
Video Integrity through
Blockchain Technology

ADAM HEMLIN BILLSTRÖM and FABIAN HUSS

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN ELECTRICAL ENGINEERING, SECOND LEVEL
STOCKHOLM, SWEDEN 2017

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Video Integrity through Blockchain
Technology

Adam Hemlin Billström and Fabian Huss

2017-08-02

Master’s Thesis

Examiner
Gerald Q. Maguire Jr.

Supervisor
Anders Västberg

Industrial adviser
Ben Wilmot

Abstract

The increasing capabilities of today’s smartphones enables users to live stream video
directly from their mobile device. One increasing concern regarding videos found
online is their authenticity and integrity. From a consumer standpoint, it is very hard to
distinguish and discern whether or not a video found on online can be trusted, if it was
the original version, or if has been taken out of context. This thesis will investigate a
method which tries to apply video integrity to live streamed media.

The main purpose of this thesis was to design and evaluate a proof of concept prototype
which will apply data integrity while simultaneously recording videos through an
Android device. Additionally, the prototype has an online verification platform which
verifies the integrity of the recorded video. Blockchain is a technology with the
inherent ability to store data in a chronological chained link of events: establishing
an irrefutable database. Using cryptographic hashes together with blockchain: an
Android device can generate cryptographic hashes of the data content from a video
recording, and consequently transmit these hashes to a blockchain. The same video
is deconstructed in the web client creating hashes that can subsequently be compared
with the ones found in the blockchain.

A resulting prototype system provides some of the desired functions. However, the
prototype is limited in that it does not have the ability to sign the hashes produced. It
has also been limited in that it does not employ HTTPS for communication, and the
verification process needs to be optimized to make it usable for real applications.

Keywords— Hashing, live stream, video integrity, video verification, blockchain

i

Sammanfattning

Den ökande funktionaliteten hos dagens smarta mobiltelefoner ger användare
möjligheten att direktsända video. Det förekommer en ökande oro när det kommer till
videors äkthet och huruvida en video är original eller inte. Ur en konsumentsynpunkt
är det nämligen väldigt svårt att bedöma huruvida det går att lita på videon, om det är
originalvideon eller om det bara är så att videon är tagen ur sitt sammanhang. Detta
examensarbete på Master-nivå kommer att undersöka en metod för att verifiera att
direktsänd media är oförändrad.

Huvudsyftet med arbetet var att ta fram och utvärdera en prototyp som kan säkerställa
oföränderlighet inom direktsänd video samtidigt som videon spelas in på mobilenheten.
Prototypen har dessutom en webbaserad verifieringsplattform som kan verifiera och
säkerställa huruvida videon (media) är oförändrad. Blockkedjeteknologin har den
inbyggda egenskapen att kunna spara data i en kronologisk sammanlänkad ordning
av händelser. Den skapar databas som inte kan ifrågasättas. Genom att använda
kryptografisk hashning tillsammans med blockkedjetekniken kan en Android mo-
bilenhet skapa kryptografiska hashar av videodata under tiden som videon spelas in
och simultant skicka dessa hashar till en blockkedja. Samma video tas sedan isär
i prototypens verifieringsfunktion. Verifieringsfunktionen skapar sedan hashar på
samma sätt som i mobilenheten för att kunna jämföra dessa hashar mot de hashar som
kan hämtas från blockkedjan.

Prototypen är fungerande men saknar viss eftersträvad funktionalitet. Prototypen är
begränsad på det sätt att mobilenheten inte kan signera de hashar som genereras. Den
saknar även möjligheten att kommunicera över HTTPS protokollet samt att processen
för att verifiera videomaterial är alldeles för långsam för att kunna användas i en verklig
produkt.

Nyckelord— direksändning, hash, videointegritet, videoverifiering, blockkedja

iii

Acknowledgement

We would like to extend our greatest gratitude towards Gerald Q. Maguire Jr. for being
our examiner in this Master’s Thesis.

We would also like to extend our gratitude towards Ben Wilmot for being our
industry supervisor at Ericsson. We would also like to thank Timur Alimbayev, Johan
Kristiansson, Mads Becker, and Mala Chakraborti at Ericsson whom all have been very
helpful.

Stockholm, August, 2017
Adam Hemlin Billström, Fabian Huss

v

Contents

Abstract i

Sammanfattning iii

Acknowledgement v

List of Figures xi

List of Tables xiii

Abbreviations xv

1 Introduction 1
1.1 Background . 1
1.2 Problem . 2
1.3 Purpose . 2
1.4 Goals of this Master’s Thesis . 3
1.5 Research Methodology . 3
1.6 The setup . 3
1.7 Delimitations . 6
1.8 Structure of the Thesis . 7

2 Background 9
2.1 Video Stream . 10

2.1.1 Advanced Video Coding . 10
2.1.2 Muxer/Demuxer . 11

2.2 Blockchain . 11
2.2.1 Blockchain Background . 11
2.2.2 Permissioned/Permission Free 12
2.2.3 Blockchain and Trust . 12
2.2.4 Cryptographic hashing . 12
2.2.5 Consensus . 13
2.2.6 Proof of Work . 13
2.2.7 Proof of Stake . 14
2.2.8 Byzantine Fault Tolerance 14
2.2.9 Smart Contracts . 15
2.2.10 How Does Blockchain Work? 15
2.2.11 Application of Blockchain 17
2.2.12 Hyperledger . 17

vii

2.2.13 Ethereum . 17
2.2.14 Tendermint . 18
2.2.15 Eris:db . 18
2.2.16 Cumulus . 19
2.2.17 Which Blockchain Solutions to Use? 20

2.3 Secure Connection . 21
2.4 Android . 21

2.4.1 Camera2 API . 21
2.4.2 MediaCodec . 22
2.4.3 Media Muxer . 23
2.4.4 MessageDigest . 24
2.4.5 Android security . 24

2.5 Web Verification client . 24
2.5.1 JavaScript . 25
2.5.2 HTTP Server . 25

2.5.2.1 POST Method . 25
2.5.2.2 Hypertext Transfer Protocol Secure 26

2.6 Related Work . 26
2.6.1 Academic Research . 26

2.6.1.1 Timestamping video footage in traffic incidents . . 27
2.6.1.2 Trusted Timestamping 27
2.6.1.3 Forensics Investigations of Multimedia Data 27
2.6.1.4 Digital Watermarking 27

2.6.2 Industrial Research . 28
2.6.2.1 Nexan - Assureon Archive Storage 28
2.6.2.2 Enigio - time:beat 28
2.6.2.3 Ascribe . 28

2.7 Background Summary . 28

3 Implementation 31
3.1 System Design . 32
3.2 Mobile Client . 32
3.3 Hashing . 34
3.4 The Web Client . 35

3.4.1 Demultiplexing & Hashing 36
3.4.1.1 Find where a hash sequence start 37
3.4.1.2 The Search Algorithm Comparing Hashes 37

3.4.2 The smart contract . 37
3.4.3 The separation of consensus and storage 38
3.4.4 How the smart contracts work 38

3.4.4.1 Appending Information to the Blockchain 38
3.4.4.2 Retrieving Information from the Blockchain 38

3.4.5 The Connections . 38
3.5 Performance limitations . 39

3.5.1 Limitations concerning the Verification Client 39
3.5.2 Limitations Concerning the Android Device 39
3.5.3 Limitations Concerning the Server 39

viii

4 Evaluation Framework 41
4.1 Tests performed . 42
4.2 Test 1 - Hashing . 42
4.3 Test 2 - Performance of Videos of Variable Length 43
4.4 Test 3 - Analysis of Changes in the size of the Blockchain 44
4.5 Test 4 - Analysis of the Search Method 44

5 Results and Analysis 47
5.1 Performance Results . 47
5.2 Results and Analysis - Hashing . 47
5.3 Result and Analysis - Performance when processing Videos of Various

Durations . 49
5.4 Performance as a function of changes to the Blockchain 53
5.5 Result and Analysis - Search method 55
5.6 Reliability Analysis . 56

6 Conclusions and Future Work 57
6.1 Conclusions . 57
6.2 Future Work . 59
6.3 Reflections Upon the Achievements of the Prototype 60
6.4 Required Reflections . 61

Appendix A Background Processes Running During Testing 63
A.1 Android Device . 63
A.2 Macbook . 63

Bibliography 73

ix

List of Figures

1.1 The proposed system model. 4
1.2 A process diagram for the process of creating and adding hashes to the

smart contract. 5
1.3 A process diagram for the process of creating, requesting and verifying

the hashes. 6

2.1 Byzantine Generals Problem [1] . 15
2.2 Blockchaining . 16
2.3 Shows the path of the longest chain 16
2.4 Diagram detailing the proposed blockchain solution 20
2.5 System diagram of connection between client app and server 21
2.6 Input/output buffer flowchart of the Android MediaCodec Class . . . 23
2.7 Example of a setup using the Media Muxer 23

3.1 Prototype overview . 32
3.2 Mobile client system . 33
3.3 Screenshots from the mobile client interface (left: Initial view, right:

after pushing the Recording Session button) 34
3.4 Screenshot from the Web client interface 36

5.1 Histograms from the different hash methods using the MessageDigest
Java class . 48

5.2 The time it takes for a blockchain call for videos of variable length . . 50
5.3 Time for the matching process of video and the hashes from the smart

contract smart contract . 51
5.4 Percentage of hashes matching with video file length 52
5.5 Blockchain call time as a function of changes to the Blockchain . . . 53
5.6 Verification time for two cases . 54
5.7 Verification time for two cases . 56

xi

List of Tables

1.1 Device details . 4

2.1 Comparison of Described Blockchains 20

3.1 Header sequences . 37

4.1 Set of fixed parameters . 42

5.1 Equations and goodness fit corresponding to the different alorithms . . 49
5.2 The Events and Time Consumption of one Test Iteration 52
5.3 The Events and Time Consumption of one Test Iteration, same dates . 55
5.4 The Events and Time Consumption of one Test Iteration, different dates 55

xiii

Abbreviations

API Application Programmable Interface
app Application
AVC Advanced Video Coding
B-Frame Bidirectional-Frame
BFT Byzantine Fault Tolerance
BTC Bitcoin (currency)
CA Certificate Authority
CSS Cascading Style Sheet
DoS Denial of Service
ETH Ether
EVM Ethereum Vitrual Machine
GOP Group of Pictures
HTTP Hypertext Transfer Protocol
HTTPS Hypertext Transfer Protocol Secure
I-Frame Intra-Frame
ID Identity
IDE Interactive Development Environment
MD5 Message Digest 5
MPEG Moving Picture Experts Group
OS Operating System
P-Frame Predicted-Frame
PoS Proof of Stake
PoW Proof of Work
REST Representational State Transfer
SAC Strict Avalanche Criterion
SDK Software Development Kit
SHA-1 Secure Hash Algorithm 1
SHA-2 Secure Hash Algorithm 2
SSL Secure Socket Layer
TCP Transfer Control Protocol
TSA Time Stamping Authority
unit8 8-bit Unsigned Integers
XML Extensible Markup Language

xv

Chapter 1

Introduction

We live in an era where mobile phones become more and more common and mobile
internet connections are getting faster and more reliable. The amount of streamed
media content around the world is at a record high, and will only increase[2].
Media content originating on smartphones spreads rapidly between users and with
limited restrictions via the social media platsforms[3]. Today video media content
is being viewed by millions via social media platforms and sometimes even used by
traditional broadcast media companies despite the fact that there is little or no source
verification. This makes it increasingly important to be able to verify online video
content, specifically: the integrity of the video file and the time it was taken (and
possibly even by whom). Additionally, there is a question of has the media been
manipulated or cut? The answer to these questions may be very important and may
completely alter the viewers’ reliance on the video.

In the context of unaccredited news, some videos have been manipulated or the video
taken out of its context. This Master’s thesis investigates methods to verify video
content based on a specific criteria: integrity (i.e., non-modification) of the recording.
This would not only flag as unverified a lot of fake news videos but might also be used
to give increased credibility to videos which can be verified.

This chapter gives a brief introduction to this Master’s thesis. Section 1.1 gives a
general background to the reader. Section 1.2 further discusses the problems that this
thesis will investigate. Section 1.3 gives a brief overview of our ideas regarding how the
problem will be solved and why. Section 1.4 succinctly breaks down and quantizes the
project into measurable goals. Section 1.5 presents a general framework and approach
to the complete project. Section 1.6 explains the initial idea regarding what the final
proof of concept prototype will look like. In Section 1.7 the delimitations are discussed
and why certain areas have been excluded. Finally, Section 1.8 outlines the entirety of
this thesis.

1.1 Background

Mobile phone cameras have a plethora of applications and uses in the connected
society. The ability to share cherished moments and experiences are increasingly
important and highly appreciated by the citizen of the modern world. Videos are found

1

on almost every social media platform and users are streaming more and more content
live from their phone camera or other internet connected device(s). The number of
videos which can be found online is immense and it is often very difficult to discern
the authenticity and the integrity of the media content, to distinguish between original
content and falsified and/or copied content. People and news agencies are using media
content to drive their own agenda and these videos may be manipulated, cut, or taken
out of their original context without the viewer’s knowledge. Therefore, it is of great
interest to develop a tool which makes it easy to, in a fast manner, distinguish between
the modified content and the original content. This tool would enable viewers to
themselves be able to discern and verify which videos to trust and which videos to
discard regarding their integrity.

The topic of this Master’s thesis is, as previously mentioned, highly relevant and widely
discussed but usually not in the context of blockchains. Blockchain technology has the
potential to provide data security and enable validation of the integrity of the data.

1.2 Problem

More and more mobile phones are equipped with cameras, internet connections, and
various sensors. The increasing capabilities of today’s smartphones enable the end
user to produce and distribute media content more easily than before. One issue that
has arisen from this is the inability to be able to distinguish between a modified video
and the original video. Additionally, videos are taken out of context or claimed to be
from a place and/or time different from what might actually be the truth. It is getting
increasingly difficult for the viewer to know what to believe, who to believe, and tools
to help counter these issues are scarce and limited.

A service as proposed by this Master’s thesis will need to be trusted by its users. It
is therefore of paramount importance to be able to ensure the integrity of the service
and its software. The user needs to be able to trust the software they are downloading,
installing, and using on their smartphone.

1.3 Purpose

The purpose of this Master’s thesis is to set up and evaluate the usage of a blockchain
in order to verify and store signature hashes from live-streamed video content from
an Android device. The creation of the signature hashes should be done as near to
real-time as possible, leaving as little time as possible for data manipulation by anyone
and enabling the establishment of the precedence of this signed hash (i.e., it can be
shown that it was signed at a particular period in time (based upon the entries before
and after it in the blockchain), therefore the hash had to be calculated before this, and
hence the media over which the hash is computed has to be even earlier than this).
Storing the signatures in the blockchain will enable signature verification at any later
time. In the thesis, the “Good cop/Bad cop” [4] the thesis project addes the signed
hashes to the stream and stores the final signed hash with one or more escrow agents
- (noting that Shamir secret sharing can be used - so that n of m escrow agents are
sufficient to recover the escrowed value). In contrast, in this thesis project, the signature
hash is stored in a blockchain. Verification methods for these hashes are implemented

2

and accessible to users via a web-based interface. This proof of concept prototype
showcases the potential of combining blockchains with hashes over chunks of media
content and meets the requirements of the evolving world of streaming media content.

1.4 Goals of this Master’s Thesis
The measurable goals for this Master’s Thesis can be enumerate as three goals through
which we aim to develop and evaluate a proof of concept prototype. The prototype
when complete should be able (in no particular order) to:

1. Determine whether a video has been taken within a specified time interval of 1
day.

2. Determine which parts of the video whose integrity can/cannot be verified.

3. The process of verifying the video should require less than 60 seconds for a 300
second video recording∗.

1.5 Research Methodology
The qualitative hypothetico-deductive method is used for this Master’s thesis. We have
selected a deductive method since it uses previous theory and the main goal of the thesis
is to prove a theory; specifically, to prove that blockchain technology is a suitable tool
to ensure data integrity for video streaming. This is the hypothesis we wish to either
confirm or dismiss.

We have chosen a qualitative method as this project is primary exploratory research
within the combined areas of data integrity and blockchains. We seek to provide
insights into the problem being investigated. The data collection method in this
Master’s thesis will be unstructured and dependent upon the actual progress toward
the project’s goals.

The data collected during the investigation will be highly reliable since it will be
collected by software without any human interaction. The data is replicable as long as
the same hardware and software are used. This is due to the fact that different hardware
has different characteristics (such as processing power and read/write memory speed).

1.6 The setup
The verification service (web server) runs on a Macbook Pro (see Table 1.1) with El
Capitan (10.11.6) version of the MacOS operating system. The mobile client software
is installed on a Oneplus One (see Table 1.1), running the Android Operating System
(OS) version 6.0.1. The system can be seen in Figure 1.1. The Android application
is built in Android studio 2.3† using Java and Extensible Markup Language (XML).
The phone sends the hashes over the Hypertext Transfer Protocol (HTTP) protocol
to the server which is running on the Macbook Pro seen in Figure 1.2. The server
computes the blockchain. The verification service seen in Figure 1.3 takes videos as
∗The 300 second recording translates to 225Mb of data given the parameters set in Table 4.1
†https://android-developers.googleblog.com/2017/03/android-studio-2-3.html

3

an input and verifies the integrity of the video by hashing the videos and comparing
these hashes to the signed hashes found in the blockchain. The web app is built in
JavaScript/HTML/Cascading Style Sheet (CSS) and is further explained in Section 2.5.
The web browser used for testing is Google Chrome version 58.0.3029.110 (64-bit).

Table 1.1: Device details
Macbook Android device

Model Macbook Pro Retina 13” Late 2013 Oneplus One
OS OSX El Capitan (10.11.6) Android OS version 6.0.1

Processor 2.4GHz core i5 Snapdragon 801 Quad-core 2.5 GHz
RAM 8GB 1600MHz DDR3 3GB 1866MHz LPDDR3

Graphics Iris 5100 Free Adreno330 GPU
Camera sensor N/A Sony Exmor RS IMX214 (4K@30fps)

Figure 1.1: The proposed system model.

4

Figure 1.2: A process diagram for the process of creating and adding hashes to the
smart contract.

5

Figure 1.3: A process diagram for the process of creating, requesting and verifying the
hashes.

1.7 Delimitations
This Master’s thesis will investigate and develop a proof of concept prototype
showcasing the merger of an app running on an Android device with a backend security
system using blockchain verification through smart contracts. However, the thesis will
not examine what type of manipulation or tampering has been done to the recorded
data, but rather will simply verify if the hash of the video content is the same as that
of the signed hash as recorded in the blockchain. There already exists a plethora of
methods for detecting data tampering and detecting what has actually been manipulated
(see Section 2.6.1). The planned proof of concept prototype will simply determine
whether or not the hash of the video subjected to verification matches the original
video’s hash saved by the Android device in the blockchain. Additionally, the use of

6

a blockchain is limited to setting up a working blockchain which can handle and store
unique hashes from connected Android devices.

Other delimitations are the assumption of a perfect connection between the Android
device and the server, i.e., without any packet loss. This loss free communication is
required for both the upload of the video to be compared and the upload of hashes (with
the meta data) to the blockchain. The issue of handling packet-loss in these scenarios
are outside of the scope of this Master’s thesis.

1.8 Structure of the Thesis
This Master’s thesis is organized into six chapters. Chapter 2 details all the discrete
building blocks that the thesis will be constructed from. Chapter 2 also provides all of
the relevant background that the reader will need to understand the rest of this thesis.
Chapter 3 details proof of concept prototype and the fundamental building blocks of the
project in which the prototype will be implemented, also the limitation of each major
part of the prototype. Chapter 4 details the research process, building the structure
of the research process, solution framework evaluation, and describes the tests used
to evaluate the prototype. Chapter 5 introduces the test results evaluating the final
product and discussing the results. Finally, Chapter 6 summarizes the conclusions of
this project and proposes what should be done as future work.

7

8

Chapter 2

Background

Proving the integrity of data has become more and more important. Security breaches
that have leaked passwords and user emails are commonplace and regularly appear
in the news. When a system is hacked, the first issue that usually comes to mind is
the compromise of confidentiality, specifically what confidential information is now in
the hands of the perpetrator. Another aspect, which is getting increasingly important,
is to know the integrity of data, has anything been changed in order to address the
higher level question: “Can we trust that this data is the actual data?”. The need to
verify the integrity of the data varies between different organizations. For example,
in health care, incorrect information could be life threatening, while in industries
such as finance in authentic data could be associated with great cost. Social media
platforms are presenting live videos on their platform with only a very low (if any)
level of verification, often next to paid content and advertising. Companies paying
for distribution of content and advertising have an inherent interest to know that their
content is being displayed reliably and in the case of advertisements that the content
displayed next to their content is reliable, i.e., that it has not been compromised.
This Master’s thesis will investigate the possibility of verifying the integrity of video
content (such as surveillance videos) using blockchains. The resulting system should
be capable of being implemented on various platforms, such as social media platforms.

This chapter introduces the reader to all the relevant background knowledge needed to
grasp all of this Master’s thesis. Section 2.1 details what a video stream is composed
of and how it can be decomposed. In Section 2.2 describes the intricacies of the main
underlying concepts that comprises a blockchain. Section 2.3 talks about the security
of our system with regards to device to device communication. Section 2.4 details
the Android framework and what components & Application Programming Interfaces
(APIs) will be used to create the prototype mobile client. Section 2.5 explains the
front end development done for the web server, focusing mainly on the necessary
JavaScript development. Section 2.6 discusses related projects that have been done
both in academia and in the industry. Lastly, Section 2.7 summarizes the background
information and lays a theoretical foundation for this Master’s thesis.

9

2.1 Video Stream

A video stream can be either a combination of audio & video, only video, or video
and other content, depending on the format. A camera outputs uncompressed video
at a constant data rate. The data rate for uncompressed video is fixed and given as
the frame rate multiplied by the video resolution, and the color depth. Compression
of video tries to minimize the data rate in order to transmit the data within a given
bandwidth-constrained channel or to reduce the time it takes to transfer the compressed
data. Compression can be done using two techniques: lossless or lossy. As the words
imply, lossless compression compresses the data without the loss of information. In
contrast, lossy compression encodes the data by removal of some information in order
to further minimize or bound the resulting data rate or required storage space.

Uncompressed data from the camera is encoded and compressed using video encoding
formats (such as AVC [5], HEVC [6], VP8 [7], VP9 [8], etc.), often in combination
with audio encoding formats (MP3 [9], AAC [10], Opus [11], etc.). Container formats
(such as AVI [12], QTFF [13], Matroska [14], mp4 [5], etc.) combines the audio and
video together with additional related files and optional features (header files, chapters,
subtitles, etc.), and creates one single file.

Feature extraction from a video can be done frame by frame, using short video
sequences, or entire video files. The thesis will investigate what the signed hashed
should be done on, i.e., either frame by frame or on video segments. Additionally,
the time to compute the hash needs to be taken into consideration when generating the
signed hashes. Finally, the number of hashes being created should also be considered,
this is discussed in Section 6.1. As we will work with compressed video we need to
ensure that the code that does the compression has not been modified, hence in Section
2.2.4 we will describe how we also compute hashes over the code in the device. The
computing power of a smartphone needs to be considered with respect to a real-time
hashing algorithm when computing hashes over video frames or video segments. This
is tested in test “Hashing” in Section 5.2

2.1.1 Advanced Video Coding
Advanced Video Coding (AVC) or simply H.264 is a standard video encoding format
from the Moving Picture Experts Group (MPEG). It is one of the most common video
encoding formats for recording, compression, and streaming. H.264 encoded videos
are constructed from chunks of frames called a Group of Pictures (GOP). These GOPs
consists of three different frame types:

1. Intra-frame (I-Frame)

2. Predicted-frame (P-Frame)

3. Bidirectional-frame (B-Frame)

An I-frame is a complete standalone frame which can construct a full image by itself.
P-frame uses the information from a previous frame together with new information in
order to construct the full image. A B-frame as the name implies takes information
from both the previous frame and the coming frame to construct a full image.
Concretely, this means that I-frames have little or no compression difference from a

10

normal compressed still image. A P-frames can further compress the data by predicting
the content when constructing the image. And lastly, B-frames can compress the data
even further by having even less information by looking at both past and future frames
[15]. Each chunk (GOP) must start with an I-frame and can thereafter contain P-frames
and B-frames interchangeably depending on the encoded data. There can be multiple
I-frames in a chunk. For example, in fast-paced video content such as rapid sports
games, there is a greater need for more I-frames. Whereas in more static cases such
as video conference calls, the CODEC does not need to use as many I-frames and can
thus reduce the bitrate by using more P- and B-frames to construct the video.

2.1.2 Muxer/Demuxer
The process of multiplexing/demultiplexing the content will not change the source data
itself but can change the way in which the data is packaged. The H.264 stream will
add with other data componets and meta data that together make up a new mp4 file.
Several streams of data becomes a new package with new labels (headers). The process
of demuxing the data is the reversed process of muxing. The process of taking the mp4
file apart extracts its data, stream by stream.

2.2 Blockchain

Blockchain technology is a ledger containing all of the executed transactions for
devices in a logical network. The ledger grows with each block appended in a
linear chronological fashion. Each node in the logical network maintains a copy
of the blockchain which together with cryptographic hashes (see Section 2.2.4) and
a consensus algorithm prevent undetected tampering with the blockchain[16]. The
ledger is tamper proof, hence all of the information in the ledger is locked in and can
not be changed by anyone without completely altering the blockchain, see Section
2.2.10. There is a great variety of blockchains and each serves a different purpose.
A blockchain can be distributed, for everyone to use, thus everyone will keep a copy
of the blockchain. Alternatively, a permissioned blockchain requires that a user has
permission in order to gain access to the blockchain. Both distributed and centralized
blockchains have advantages and disadvantages. These different blockchain solutions
will be further elaborated in Sections 2.2.10 through 2.2.15.

2.2.1 Blockchain Background
The different techniques used by blockchains are not new. The first research on
cryptographically connected blocks was proposed by Haber and Stornetta as early as
1990 [17]. In 1998 a mechanism for decentralized digital currency called bit gold
was proposed. But it was not until 2008 when a white paper was written under the
pseudonym Satoshi Nakamoto told the world about Bitcoin [18]. The area is still
maturing but products, solutions, and collaborations with many high profile members
are being developed all the time all over the globe, including Hyperledger [19] and
R3 [20] (Richard Branson’s COALA) to name two of the blockchain initiatives [21].
Blockchain has evolved from a technology revolving around tokens (Bitcoin) to a
technology more adapted and suited for a specific purpose. Moreover, this purpose
changes with every application of the technology.

11

2.2.2 Permissioned/Permission Free

As stated earlier, there are two main blockchain types: permissionless blockchain and
permissioned blockchain. The former are public for everyone to see, such as Bitcoin.
This type of blockchain can also be used in a closed environment where only users with
access to the environment have the possibility to read and write data in the blockchain.
In a permissioned blockchain the users need to trust a third party, i.e. the provider of the
blockchain. The advantage of using a trusted third party with a centralized blockchain
is that the system can use faster consensus algorithms and as a result transactions can
be done in close to real-time. In contrast, decentralized distributed blockhains makes
use of consensus algorithms such as proof of work (PoW), which is further described
in Section 2.2.6. In the case of Bitcoin, the decentralized blockchain verification of a
transaction could take hours. The advantages and disadvantages of the two proposed
models will be discussed in Sections 2.2.5 and 2.2.6.

2.2.3 Blockchain and Trust

Blockchain technology is reinventing trust. Trust in a third party is unnecessary when
using a permissionless decentralized blockchain network. In this setting, a blockchain
makes use of middlemen unnecessary. A decentralized distributed blockchain does
not require any trust between parties since each transaction is inserted via a consensus
algorithm and subsequently everything can always be proven and verified, i.e. every
transaction is stored in the blockchain and no one will be able to claim subsequently
that a transaction did not take place. Due to the indisputable nature of the blockchain,
every piece of information stored in the blockchain can be verified by anyone at
anytime. The indisputable nature of the blockchain makes everything verifiable and
very easy to track, all they way back to the genesis (original) block.

2.2.4 Cryptographic hashing

The general idea of hash algorithms is that they act as one-way deterministic functions,
i.e. you cannot use the output of a hash function to determine the original input.
This deterministic nature means that the same input will always reproduce the same
output. The secure hash algorithm 2 (SHA-2) is the third generation of the family
of SHA algorithms. Note that the previous generations have been deemed insecure
for use in practical applications [22, 23]. The SHA-2 family consists of SHA224,
SHA256, SHA384, and SHA512. SHA224 and SHA384 are slightly modified and
truncated versions of SHA256 and SHA512 respectively. All of these algorithms break
the input data into subsets, then these subsets are used to calculate the output bits.
The operations in this computation consist of logical bit operations, such as modulo
addition, bit rotation, etc.

The SHA256 algorithm accepts arbitrary length input sequences but always produces
a fixed length output containing (256 bits generally written as a 64 hexadecimal
characters), hence there exists 2256 ≈ 1.15×1077 unique outputs. Additionally, for an
ideal hash function any change in the input sequence should produce a very different
output value. This is due to the Strict avalanche criterion (SAC) which states that given
a change of one input bit, the probability of a change in each output bit must exceed
50% probability [24].

12

In Examples 2.2.1 and 2.2.2, the second input sequence “hello!”∗ has one extra
character, yet yields a completely different hash satisfying the SAC. One concern
regarding the calculation of hashes is the usage of too few characters in the input
sequence in order to produce a hash. A related problem is the collision risk, i.e.,
two different input sequences produce the same output hash. Currently there are no
publicly known ways of hacking the SHA-2 family of algorithms. Attacks include
brute forcing the input birthday attack, or collision attack [25]. One recent blog post
by the security team at Google exposed vulnerabilities in the SHA-1 algorithm using
a collision attack to produce the same output hash from two different PDF files. The
attack named “shattered” is 100 000 times faster than normal brute force [23]. The
complexity of brute forcing a short input sequence is directly related to the length of the
input sequence. For example, if an input is a three character long lower case alphabetic
sequence, then the number of possibilities for that sequence is 263 = 17576. Whereas
if the input sequence consists of long arrays of data (for example, binary data or data
containing upper and lower case characters, arabic numerals, special characters, etc.)
vastly increases the number of possibilities as: CL, where C is the number of elements
in the set of characters used and L is the length of the input sequence.

Example 2.2.1: SHA256 input: ”hello”

2cf24dba5fb0a30e26e83b2ac5b9e29e1b161e5c1fa7425e73043362938b9824

Example 2.2.2: SHA256 input: ”hello!”

ce06092fb948d9ffac7d1a376e404b26b7575bcc11ee05a4615fef4fec3a308b

2.2.5 Consensus
Blockchain sets out to solve the problem of coming to agreements across multiple
nodes/devices. Disparate consensus opinions can be caused for a couple of reasons.
First and foremost, when multiple nodes must agree on a common block they are
influenced by neighboring nodes in the network. Assuming that neighbors can easily
spread, share, and agree on the same block. But problems arise when the nodes cannot
easily communicate with each other (for example, due to long delays or lack of network
connectivity).

In addition, there may be hostile nodes, i.e., nodes that purposely disrupt with the
intent to cause harm to the system. The blockchain must provide a solution which can
facilitate consensus while managing misbehaving nodes.

2.2.6 Proof of Work
Proof of Work (PoW) was initially proposed as a method of deterring
spam/denial of service (DoS) attacks on services. The concept relies upon the fact
that by requiring users/services to compute a small (mathematical) problem in order
for the service to approve the user/ service, this “work” deters casual attackers. In a

∗This can be tested by using “echo -n hello! | sha256sum” in a linux terminal.

13

blockchain, these proof of work problems are typically small cryptographic puzzles
that help validate blocks in the blockchain. The most distributed block will become
the next block, thus coming to a consensus regarding which is the next block in the
blockchain. Additionally, there is an incentive to solve these small cryptographic
puzzles, as the mining node could be compensated with a fraction of a unit of
cryptocurrency. For this reason PoW solvers are called miners, as they mine for
cryptocurrency by helping to validate transactions.

2.2.7 Proof of Stake

Proof of Stake (PoS) is an alternative method of proof of work. The fundamental
difference between the two lies in the blockchain participants not competing for
the next block; but rather a block creator is determined (pseudo-randomly) by how
invested (in the stake) in the blockchain the person/entity is. Additionally, there is no
compensation given to the stakeholders. PoS does not “mine” in the sense of PoW,
hence there is no financial cost associated with appending blocks to the blockchain.

2.2.8 Byzantine Fault Tolerance

The Byzantine Generals Problem [26] describes the situation where a number of
generals have to agree on a common order to execute with regards to the enemy army.
Having a common strategy in a battlefield is essential when striving for victory. The
decision to either retreat or attack is vital information that can determine victory or
defeat. These generals only have access to couriers who carry messages amongst them.
If one of the generals is in league with the enemy force, then that general can sow
discord by sending false messages to the remaining generals. These false message
will influence the remaining generals and thus the common plan for the entire army
will be in disarray; for example, with some generals preparing for an attack, while
others prepare for retreat. An illustration of this problem can be seen in Figure 2.1.
The example of Byzantine Generals Problems relates to blockchain in terms of which
blockchain ledger is to be approved and appended, despite one of the generals being
suborned. The blockchain together with PoW (see Section 2.2.6) is one of the first
digital solutions to the Byzantine Generals Problem. However, there are other solutions
(see for example PoS in Section 2.2.7).

The Byzantine fault tolerance (BFT) model can be described as a method for coming
to agreements among the generals. In order for a common decision to be agreed upon
(i.e reaching a consensus) a certain percentage (67%) of these generals needs to agree
in order for a consensus to be reached.

In the blockchain approach to PoW consensus, the BFT model lies on the opposite side
of the spectrum when compared to the Bitcoin PoW model [27]. The BFT model is
built upon a small set of trusted nodes, instead of trying to reach consensus with the
complete set of untrusted nodes, these trusted nodes must obtain a 67% consensus.

14

Figure 2.1: Byzantine Generals Problem [1]

2.2.9 Smart Contracts

Smart contacts are small frameworks or scripts built on top of a blockchain in order to
control functions. Smart contracts are the intelligence of a blockchain, applications
stored on the blockchain. This application brings new functionality and since it
is stored in the blockchain it is impossible to change (without altering the entire
blockchain). Smart contracts may be written in several Turing complete scripting
languages, e.g. Solidity see Section 2.2.13. Initially, blockchains (such as Bitcoin)
were able to perform simple tasks connected to cryptocurrency and the management of
the transfer of those currencies. Since then, smart contracts have evolved to manage
more demanding tasks. Smart contracts are sometimes referred to as smart agents since
the word “contracts” is associated with a single use case. Once a smart contract is
created, it can act autonomously when called on to perform an action [28]. A smart
contract can act as a third party or middleman when exchanging money, property
shares, or anything else that can be represented digitally. Smart contracts are able
to do this in a transparent and conflict-free way. The agreement will be defined in the
code of the smart contracts and when all parties have fulfilled their part the exchange
will be made according to the contract[29].

2.2.10 How Does Blockchain Work?

A blockchain is a chain of blocks, such as shown in Figure 2.2.

15

Figure 2.2: Blockchaining

The new block is created by hashing the hash of the previous block together with the
hashed content of the present block and a timestamp. This way the new block will
always be dependent upon the previous block and interlink them in an indisputable
manner, as seen in Figure 2.2. If a block in the blockchain is interchanged with another
block, then the chain is broken and a new shorter blockchain is created (whose length
depends on which block is replaced). Every block beyond the interchanged block will
be “thrown away”(i.e., is no longer valid). Depending on which protocol is used by
the surrounding blockchain nodes, the protocol may discard the shorter blockchain and
keeps the longest, according to the consensus algorithm (see Figure 2.3).

Figure 2.3: Shows the path of the longest chain

The blockchain will keep the blockchain that the majority of the users consider to be the
correct one. This could be the majority of the network if the network is permissionless
or if the blockchain is permissioned it will be the majority of trusted nodes. This means
that a consensus-based blockchains will keep the unaltered blockchain. The only way
to alter the blockchain is to have the majority of nodes in the system believe the altered
blockchain is the correct one. This would occur if an entity controls more than half of
the computing power of the network (in the case of PoW) or if the party owns more
than half of the assets (in the case of PoS). To have 100% control requires 100% of the
assets of the system.

The fact that every transaction is stored and that nothing is ever deleted or taken out
of the blockchain means that the blockchain will constantly grow. Therefore, the
blockchain will grow with time and usage. This constant growth can create a problem
of scalability for which there is no clear solution. One approach to limit the growth of

16

the blockchain is to use hashes instead of the actual information. Any amount of digital
information can be hashed and the resulting size of the hash will be no more than 32
bytes (with the use of SHA-256).

2.2.11 Application of Blockchain
Following Satoshi Nakamoto’s 2008 white paper on blockchain for
cryptocurrency, in 2009 the same author released the first source code for the
Bitcoin (BTC) application. Bitcoin has since grown rapidly to a market footprint
of around 39 billion U.S. dollars (as of 12 Jul 2017)[30]. BTC is a decentralized
cryptocurrency using a permissionless blockchain that every user has the ability
to download and thereby check. The users of the network use their personal
computational power to verify transactions through hashes, i.e., mining. The miners
are given a computationally difficult problem to solve. Furthermore, this task increases
in difficulty as the computational power of the network increases. The Bitcoin protocol
aims to append a new block to the Bitcoin blockchain every 10 minutes. This
distributed PoW is a huge waste of energy but the strategy makes Bitcoin very hard
to control in a centralized manner. The total computational power of the Bitcoin
network is estimated to be more than 256 times the power of the world’s 500 top
supercomputers [31]. The entire Bitcoin network has a transaction speed of less
than 7 transactions per second[32], which is a major concern regarding scalability.
In comparison, leading credit-card payment companies average 2000 transactions per
second, with the capability of sustaining 10000 transactions per second [33].

2.2.12 Hyperledger
Hyperledger is a project under the Linux Foundation which seeks to provide a unified
blockchain architecture for industrial applications. Hyperledger is a collaboration of
more than 100 organizations focused on banking, supply chain, and other transaction
networks [34].

The traditional blockchain used in Bitcoin relies on a PoW model for determining
how blocks and transactions are verified. In contrast, Hyperledger uses the BFT
system which relies on a few nodes working together to reach consensus (see Section
2.2.5). The advantages are the fact that it requires less distribution of ledgers to
reach consensus. Fewer decision nodes result in lower latency, hence blocks can
consensually be locked within milliseconds instead of the 10 minutes needed for the
Bitcoin blockchain. As less time is needed to reach consensus, the performance in
transactions per seconds increases manyfold.

2.2.13 Ethereum
Ethereum is a permissionless blockchain made as a smart contracts platform run
by Ether (ETH)[35]. The platform is highly distributed with, compared to Bitcoin,
faster transaction times of seconds instead of minutes [36]. However, Ethereum is
still very slow compared to permissioned (non-distributed) blockchains such as Eris
and Hyperledger. Ethereum makes it possible to create and use smart contracts and
distributed applications to be run distributed over the network without any downtime,
any third part interference, or fraud, as well as creating, handling, and holding
cryptocurrencies [37]. This is done through the peer to peer network which constitutes

17

Ethereum together with ETH which fuels the network, the consensus algorithm to share
the state of the network, and the Turing complete scripting language which enables
users to write complex scripts (smart contracts). It is the consensus engine which sets
the speed of the Ethereum network by updating the state of the network at specific time
intervals (shorter than for the Bitcoin network). The Ethereum network is fueled by gas
which is a unit connected to ETH which is used to pay for the storage and computations
an application (smart contract) needs.

Solidity is a programing language build specifically to target the Ethereum virtual
Machine (EVM) which in turn is the protocol to access the blockchain[38]. Solidity
has a syntax similar to JavaScript and is the language in which many smart contracts
are written. The smart contracts are then compiled into bytecode and fed into to EVM
and thus they can operate on the blockchain. In Ethereum are every transaction and
smart contract is saved on the blockchain. The blockchain is in turn distributed and the
states are handled by the consensus algorithm.

2.2.14 Tendermint

Tendermint [39] is software for securely and consistently replicating an
application on many machines [40, 41]. Tendermint is not a blockchain in itself
but rather a general purpose blockchain consensus engine with a consensus layer for
blockchaining. Tendermint can be used as a replacement for the consensus engines of
other blockchains [41, 42]. Moreover, Tendermint is a platform built for creating and
developing blockchain applications. The platform does not provide any functionality
and needs an application to run on top of it. Tendermint runs a BFT algorithm and
requires at least 3 out of 4 validating nodes in order to validate transactions. If the
Byzantine criteria are unfulfilled, then transactions will be stored in the memory pool
of the system to wait for verification. A node connects to the network as an observer and
is not required to be a validating node [40]. Tendermint is a permissioned blockchain
consensus manager which gives it the ability to perform transactions very frequently
(in the order of 1 transaction per second and up to 10 000 transactions per second) [43].
Tendermint is also highly flexible since it uses Docker (a container platform) to launch
applications.

2.2.15 Eris:db

Eris:db is a controllable (permissible), smart contract-enabled, PoS based blockchain
design with the PoS based on Tendermint. Eris:db is an application layer for blockchain
applications. Eris is the backbone for deploying and interacting with the application
logic [42]. Eris builds on both Tendermint, for consensus, and Ethereum for smart
contracts. Compared to Tendermint, Eris has more functionality already built in. Eris
is an implementation of Ethereum and uses the Ethereum transaction mechanics, with
additional features for a name-registry, permissions, contracts, and keys for signing
transactions [44]. Eris and Tendermint both use Docker to launch applications. This
makes it highly flexible, since it can run on almost every computer [45]. Compared to
Hyperledger, Eris is less focused on financial transactions and more focused on smart
contracts and the functionality they offer, both hyperledger and Eris have the same
advantages due to being a permissioned blockchain with a high transaction rate.

18

2.2.16 Cumulus
Cumulus is a blockchain solution developed by Ericsson∗. Cumulus builds on
and works with the Ethereum Virtual Machine (EVM) but separates the consensus
algorithm and the blockchain from the EVM. Cumulus works similar to Ethereum;
however, it is a private blockchain which means it does not run on gas. This brings
Cumulus a lot of flexibility, while still having the benefit of the smart contracts
mentioned in Section 2.2.9. A client running Cumulus will be able to call (use) and
deploy (install on the blockchain) smart contracts with remote access to the EVM,
the consensus mechanisms and the storage server (which could be a blockchain).
Depending on the use of the blockchain different needs arise. Cumulus may use a
distributed blockchain with a suitable consensus mechanism, similair to Bitcoin in
Section 2.2.11, Ethereum in Section 2.2.13, or it may be equipped with permissioned
blockchain running on a number of trusted servers. It is possible to run Cumulus
with a regular database but still utilize the blockchain for consensus and smart
contracts though the consensus client. Compared to the other blockchain technologies
investigated, Cumulus is the most flexible.

The consensus hash server may be seen as a state manager for the system. The
consensus server saves the hashes of all transactions in a long linked hash list, similar
to a blockchain but without blocks. Depending on usage the system may utilize
one manager, several managers, or even one manager for each node in the system,
all depending on the level of trust needed for the system and the distribution of the
system. The separation of consensus and storage gives the possibility to store and
access information in a more efficient and more flexible manner compared to regular
blockchain storage since the storage may be on a different storage unit.

The separation of the EVM, Storage server and Consensus server, is very clear in
Figure 2.4. All communication with the world goes through the smart contract which
is deployed in the EVM, the storage server, and the consensus server. The consensus
server is a lightweight blockchain in which no data can be saved but it keeps track of the
transaction and the chronological order of the transaction (much as how a blockchain
works, as described previously). The separation makes the consensus mechanism very
light weight and the information stored by the smart contract on the storage server
may be stored in a database and yet maintain the same level of integrity as a regular
blockchain.

Cumulus has a number of already developed smart contracts, one of them is an RSA
manager. RSA is a public key cryptosystem used to secure and sign communications
[46]. The RSA manager provides the sender the ability to sign and encrypt the message,
the receiver is then able to verify the sender and decrypt the message.

∗Specifically, Ericsson R&D Luleå

19

Figure 2.4: Diagram detailing the proposed blockchain solution

2.2.17 Which Blockchain Solutions to Use?

There are a number of blockchain solutions to choose from, some of the most important
ones are described in the previous subsections. For this Master’s thesis project we chose
to work with Cumulus because of it flexibility and due to the availability of in-house
knowledge of Cumulus at Ericsson. Moreover, Ericsson has developed useful APIs
which are used by the web server.

Table 2.1 provides an overview of the previously discussed blockchains and how they
differ. Bitcoin is added for comparison due to its popularity and people’s general
knowledge about it.

Table 2.1: Comparison of Described Blockchains
Distribution Transaction speed (per second) Smart Contracts Consensus Algorithm API

Hyperledger Permissioned Fast (10k) Yes BFT No
Eris:db Permissioned Fast (10k) Yes Tendermint(PoS) Yes

Ethereum Permissioned Free Slow (20) Yes PoS Yes
Tendermint Permissioned Fast (10k) Yes Tendermint BFT No

Bitcoin Permssioned Free Very slow (7) No PoW No
Cumulus Permissioned (untested) Yes Yes (unknown) Yes

20

2.3 Secure Connection

In this Master’s thesis project data integrity is of paramount importance. In order to
be able to trust the data stored within the blockchain, a reliable secure connection is
created between the application (app) running on an Android device and the computer
that is computing the blockchain (as shown in Figure 2.5. Only meta data and hashes
are sent between the device and the server where the blockchain computations are done,
therefore it is impossible for a third party to know what the plaintext of the video is.
As a result encryption of this hash might be of less importance. However, it is crucial
for the system to know that the integrity of the hash is intact. The video captured and
stored at a device can later be verified as to what is received by another device by using
the blockchain. An HTTP connection is used between the device and the server. The
HTTP connection will in future implementation (see Section 6.2) be replaced with a
HTTPS connection to secure the communication.

Figure 2.5: System diagram of connection between client app and server

2.4 Android

The Android platform is a mobile operating system based on the Linux kernel
and developed by Google Inc. Application software development for Android
is done through a Software Development Kit (SDK) and preferably through the
official Interactive Development Environment (IDE) Android Studio. Android app
development is done with a Java back-end and a front-end interface layer built on
XML. For this Master’s thesis project the minimum SDK API level has been set to 21
(Android 5.0 Lollipop) in order to gain access to the features in the Camera2 API. The
Camera2 API can handle more complex requests and can be customized more when
processing images and videos than the older camera API. The new API is described in
further detailed in Section 2.4.1.

2.4.1 Camera2 API
The Camera2 API is the latest suite of camera APIs provided to Android developers
by Google [47]. Introduced for API level 21 (Android 5.0 Lollipop) and above. The
previous camera API has since been deprecated and is not recommended for use in app
development. Although the old API is used in backward compatible apps, the new API
provides a plethora of new features to developers. Camera2 models the camera device
as a pipeline which can send and receive requests. This API can be used to change

21

requests and alter settings on the fly, while still maintaining the same preview session
seen by the user. The API does not differentiate between still pictures and video, i.e.
unlike the deprecated camera API, a video is simply treated as a rapid succession of
images and thus they are processed in the same way.

2.4.2 MediaCodec
MediaCodec is a class in Android which can access low-level media APIs [48]. The
class is used to specify encoding/decoding schemes, frame rate, bit rate, resolution, etc.
The MediaCodec can be used in conjunction with the Camera2 API to setup and handle
specific requests. The MediaCodec class in the context of this set up is according to the
flowchart shown in Figure 2.6. Empty input buffers are initialized, transmitted from
the CODEC, and handed to the input client. In this context, the input client is the
camera. These input buffers are filled by the camera data in the Raw file format and
transported back to the CODEC. The CODEC empties the input buffers and encodes
the input buffer’s data into a specified video format and places the output into output
buffers. These output buffers can be used to encode video files, send the encoded video
over streaming protocols, etc. When an output buffer is filled, it will be transported
to the receiving client (in the figure this is shown as a Media Multiplexer (Muxer)).
Once the output buffer is emptied, it is transported back to the CODEC to serve new
requests. The transport between CODEC and client on both the input and output side
is done asynchronously. Asynchronous buffer handling means that the CODEC does
not have to wait for one task to finish before starting a new one. Thus input buffers can
be emptied and filled simultaneously without the need to wait in line when encoding
an input buffer to fill output buffers in the CODEC.

The Android MediaCodec API uses the H.264 baseline profile∗. The baseline profile
is designed for low-cost applications with low processing power. The more limited
baseline profile (compared to more complex profiles in the H264 standard) excludes
support for more complex colour spaces (YUV4:2:2†, and YUV4:4:4‡). The profile
also limits the frame types to I-frames and P-frames (as described earlier in Section
2.1.1).

∗Support for H264 Main Profile was added in Android 6.0 and onwards.
†The color depth corresponds to 4 bytes of data per 2 pixels.
‡The color depth corresponds to 3 bytes of data per pixel.

22

Figure 2.6: Input/output buffer flowchart of the Android MediaCodec Class

2.4.3 Media Muxer

The Media Muxer class was introduced in Android 4.3 (API level 18). The class
multiplexes different streams and media data (audio, video, etc.) [49]. The Media
Muxer class can be used together with the MediaCodec class (described in Section
2.4.2). As shown in Figure 2.7, the Media Muxer accepts video, audio, and other meta
data and multiplexes them into a single container file. When using the MPEG-4 (.mp4)
container format, the muxer is able to include meta data requests such as geolocation
and device orientation. This geolocation (location data) can potentially be used when
generating the unique output hash. Given that the location data could be read from the
mp4 container file on the receiving side it would be possible to know where the device
claims it was (assuming that the location data is trusted in the original video).

Figure 2.7: Example of a setup using the Media Muxer

23

2.4.4 MessageDigest
MessageDigest is a built in Android class that has been included since the very first
public version Android 1.0 (API level 1) [50]. It is included in the “java.security”
package. It should be noted that java is the programming language that Android is built
on top of. The MessageDigest class provides methods for calculating various kinds
of hash functions. By default the MessageDigest class can digest data and produce
Message Digest 5 (MD5), SHA-1, SHA-2 (SHA-224 all through SHA-512) hashes.
Section 2.2.4 gives more information regarding these functions.

2.4.5 Android security
Each app running on the Android OS runs in a secure sandbox. The components that
together provide a secure environment include∗ [51]:

• The Android operating system is a multi-user Linux system in which each app is
considered a different user.

• By default, the system assigns each app a unique Linux user Identity (ID) (this
ID is used only by the system and is unknown to the app). The system sets
permissions for all the files in an app so that only the user ID assigned to that
app can access them.

• Each process has its own virtual machine, so an app’s code runs in isolation from
other apps.

• By default, every app runs in its own Linux process. The Android system starts
the process when any of the app’s components need to be executed, and then
shuts down the process when it is no longer needed or when the system must
recover memory for other apps† [51].

Using the principles of least privileges [52], each app is isolated so that it can only
access its own resources. By default, an app only has access to the most basic resources
necessary to run the app. Additionally, an app needs permission in order to gain
access to resources and modules from the OS, e.g. Input/Output write permission,
camera services, GPS, etc. Furthermore, as of Android Marshmallow (6.0), an app
also requires the user to explicitly grant permission to the app to use the requested
permission upon the first launch of the app. All of these features together creates a
secure environment around each app built on top of the Android platform.

2.5 Web Verification client
The verification of the video is done via a web page hosted on a web server. For
the purposes of testing in this thesis project, the web server runs locally on the
host computer (Macbook, see Section 1.6 and the web page is accessible by our
web browser via the local host on port: 8080, i.e., http://localhost:8080/. The web
server is built in JavaScript. JavaScript was chosen as it is a very common front-end
development language. The JavaScript together with HTML (content of web page) and

∗Portions of Section 2.4.5 are reproduced from work created and shared by the Android Open Source
Project and used according to terms described in the Creative Commons 2.5 Attribution License.
†Which is not an issue since our app does not run in the background.

24

CSS (defining the web page’s design) constitutes the web page retrieved from the web
server.

2.5.1 JavaScript

In this Master’s thesis, Node.js∗ is used as the run-time environment together with the
jQuery† library installed on the server. Node.js runs there servers, i.e., the consensus
server (see Section 2.2.16, the storage server (see Section 2.2.16), and the web server
(see Section 2.5). Note that all three servers run within the node.js environment on
the computer hosting the web server and blockchain. JavaScript is the front end
development language which realizes the functionality of the web page. JavaScript
works together with HTML and CSS in order to deliver a nice looking functional web
page.

2.5.2 HTTP Server

In order to easy communicate with the blockchain from both the mobile Android device
and the server running the verification client Representational States Transfer (REST,
also called RESTful)[53] APIs used over the HTTP protocol, usually to the server’s
(TCP) port (80). A RESTful API is basically a web server architecture which enables
clients to make a request of servers. The HTTP protocol builds upon a request/response
relationship between a client and a server and in this case used within the RESTful API
architecture. In HTTP a string is sent to a specific port on the server with a specific
method predefined by the HTTP standard. The most common methods are: GET,
HEAD, POST, and PUT[54]. The POST method is used by both the Android device
and the web client of this Master’s thesis project to give both the ability to add and via
the reply to this POST request to get information from the server.

2.5.2.1 POST Method

The POST method is a standard method in the HTTP protocol and gives the user the
ability to add and receive data from the server[54]. A HTTP transaction session is
established through a TCP connection to a specific port on the server. After the TCP
connection is established, of plain text HTTP message is sent to the other who either
confirms the transaction or responds with an error message. It is in the body of this
message that the response to the sender will be sent. Within the scope of this Master’s
thesis the response will either be a boolean variable showing a successful transmission
or a string of hashes requested from the blockchain.

Example 2.5.1 illustrates a regular HTTP POST together with the cumulus specific
request and the actual input arguments used by the prototype. The first line constitutes
the header of the message. Below the header is the body of the message. All of the
Cumulus data is written in Base64 encoding. Base64 is used to encode binary data into
8-bits ASCII string format. It utilizes a base of 64 and is able to write “a-z”, “0-9”, and
“- ” or “+ /”[55].

∗https://nodejs.org/en/
†https://jquery.com/

25

Example 2.5.1: Client Side- HTTP POST with body

POST /index.html HTTP/1.0
Address: example@example.com
Username: username
Password: password
Function: call/deploy
EVM: 3a66203a35a176540802cf5c51dd6e842d880d3a
Contract: 53684f50367ad35480bd330224a75b6430fd985c
Arguments: input

Another approach to sending a HTTP POST is to write all of the information in the
header and skip the body of the message, such a message is shown in Example 2.5.2.
This is the type of message used in this prototype. The design choice of the REST
server is made by the developer of Cumulus and can therefore not be answered for by
this Master’s thesis project.

Example 2.5.2: Client Side- HTTP POST Without Body

POST http://address:password@example.com/call/EVM/Contract/input

2.5.2.2 Hypertext Transfer Protocol Secure

Hypertext Transfer Protocol Secure (HTTPS) is an encrypted version of the HTTP
protocol[56]. HTTPS is usually used for sensitive information such as banking, private
information, or classified information. HTTPS usually uses port 443 rather than HTTP
port 80. In order for a user to be able to trust that a server is who it says that it is-
signed, third party certificates are used, usually in conjuction with the use of the Secure
Socket Layer (SSL) as a secure transport protocol. A third party provides the server
with a signed certificate which the user of the service verifies. Now that the user has
verified the identity of the client and the server has verified the identity of the client -
and encryption between the two parties may be set up. The security depends on that
the certification chain work, that the user knows which server to use and that the user
(client) notices when the certificate is incorrect or missing. Furthermore, in order to
provide a high level of security the keys and the algorithms used need to be strong.

2.6 Related Work

This section presents related work done both in the academic world and the industry.

2.6.1 Academic Research

Three different academic papers have been identified as relevant to this research. The
following subsections highlight their main points and relevance to this Master’s thesis
project.

26

2.6.1.1 Timestamping video footage in traffic incidents

In the context of the model proposed in this Master’s thesis, the conference paper
“Securing Video Integrity Using Decentralized Trusted Timestamping on the Bitcoin
Blockchain” [57] is particularly relevant as the scenario is close to what this Master’s
thesis investigates.

In this paper Gipp, Krosti, and, Breitinger investigated the use of the Bitcoin network
to timestamp a video feed from a smartphone camera placed in a car in the event
of an accident. They describe the use of an algorithm using the accelerometer of
the smartphone to detect traffic accidents. When the magnitude of the accelerometer
readings exceeds a certain threshold, the app initiates the video recording and storing
functionality of the smartphone. The camera’s output is processed by the smartphone,
hashed, and this hash is sent as a transaction on the Bitcoin network. The hash will be
stored in the Bitcoin network and subsequently be accessible to anyone but temperable
by none. The stored video can be verified as the original video content as captured at
approximately the time of the timestamp.

2.6.1.2 Trusted Timestamping

With regards to trusted timestamping two reports were identified: “Trusted Times-
tamping” [58] and Commitcoin [59]. Both solutions leverage the time stamp made
using the Bitcoin protocol when creating a transaction together with the carbon dating
nature of the blockchain (i.e., one can tell the rough date of an entry by looking at the
sequence of time stamps). These two solutions are slightly different in terms of their
execution, but the basic theory of using the existing Bitcoin blockchain is the same.
The paper “Trusted time stamping” uses a Time Stamping Authority (TSA)[60] on
top of the Bitcoin functionality. The plain text time stamp from the TSA is added to
the hashed information of the transaction and hashed again before being added to the
Bitcoin blockchain. Commitcoin does not use a third party to create a time stamp, but
rather relies entirely on the blockchain to do this. Both solutions are based upon a block
associated with the transaction being appended to the blockchain to which subsequent
blocks will be appended.

2.6.1.3 Forensics Investigations of Multimedia Data

In [61], R. Poisel and S. Tjoa review the latest trends in forensic investigations of
multimedia data, i.e. images, videos, and audio files. They describe different methods
for determining what has been done to images and expose fabrications down to which
details within a picture have been tampered with. Being able to tell what parts of
an image are inconsistent with the rest of the image is often of particular interest.
However, the ability to distinguish such disparate elements in a picture is outside the
scope of this project, as we simply wish to prove that a video sequence has or has not
been tampered with. However, it is worth mentioning that applying state-of-the-art
research done in video forensics will likely be the next logical step when investigating
source material deemed to have been manipulated.

2.6.1.4 Digital Watermarking

I. Echizen, et al.[62] insert digital watermarks into video files to detect data tampering.
They begin by breaking a video file into its composonents: the video, the audio, the

27

timecodes, and the header. The header is used together with the timecodes to separately
watermark the audio and video. After watermarking, the parts are then combined and
sent over a given channel. By separating audio and video, the watermarking can prove
which form of data tampering has been done and whether the video or audio has been
altered (such as shifted, replaced, or deleted, or if the header has been manipulated).

2.6.2 Industrial Research
Three different industry solutions have been identified as being relevant. The following
subsections highlight their main points and relevance to this Master’s thesis project.

2.6.2.1 Nexan - Assureon Archive Storage

Nexan AssureonTM“Assureon Archive Storage”[63] took an approach similar to that to
be used in this Master’s thesis project. Fingerprints are created from the data in order to
prove the integrity of files within a data archive system. The original files are stored on
at least two different disks or at two different geographical locations. The fingerprints
are later used for verification of the files. However, they have not described a method
for safe storage of the fingerprints. In contrast, this safe storage of the fingerprints is a
central goal of our solution.

2.6.2.2 Enigio - time:beat

The product series “time:beat” includes: time:shot, time:stamp, time:grab, and
time:mail: by Enigio. This series shares similarities with the proposed solution in
this Master’s thesis. For example, “time:beat” is a blockchain solution for the purpose
of archiving time stamped fingerprints of integrity sensitive materials: email, pictures,
documents, and websites. These fingerprints are stored in a permissioned blockchain
controlled and owned by Enigio. The fingerprints are accessible from their webpage
for verification[64].

2.6.2.3 Ascribe

Ascribe helps artists to create a digital copy of their work and time-stamp it in the
Bitcoin blockchain. When a file is uploaded, Ascribe creates a digital certificate which
can be traded, tracked, or loaned via the blockchain. Ascribe uses an open source
protocol called “SPOOL”[65] to interact with the Bitcoin blockchain[66].

2.7 Background Summary

Table 2.1 summarized the differences and similarities of the blockchain platforms
discussed in Sections 2.2.12 through 2.2.17. The different parts and aspects of the proof
of concept prototype were broken down and analyzed. From the smallest components
of the blockchain consensus algorithms, to which existing blockchain platform should
be utilized. Section 2.3 talked about the communication between an Android device
and a server. Furthermore, while there exists some related work, there seems to be a
gap when it comes to solutions combining blockchains with video integrity. The closest
related work we have discovered was discussed in Section 2.6.1.1, where blockchains
are used to enable Android devices to be used as dash-cameras to create verifiable video

28

clips for use in conjunction with traffic accidents. Chapter 3 provides an overview of
the proposed proof of concept prototype.

29

30

Chapter 3

Implementation

The main objective of the thesis is to realize a proof of concept prototype of the
proposed system using a laptop computer and an Android device.

The live video content is hashed in real-time in chunks of predetermined size(s) by the
Android device. The size depends on the buffer sizes used by the Android device when
filming and encoding raw footage, the speed of the Android system on the device, and
speed with which the blockchain is able to receive hashes. When the video content
is hashed it will be signed by the Android device and sent to the blockchain. These
hashes are appended with a time stamp upon arrival in the blockchain. Later, the video
may then be verified by using the web client part of the system. The web client will
emulate what the Android device did when filming the video by breaking the video
into the predetermined size chunks with the same time alignment as the original video.
The web client hashes the content of the video starting with a specific time frame and
ending with another specific time frame and then compares the hash with the hash
found in the blockchain. If the two hashes do not match, then the video chunk has been
manipulated.

The proposed system is meant to simulate the live streaming feature of social media
platform apps such as the Facebook app. When a video is uploaded through the system
proposed in this Master’s thesis it will be an easy task for the user to later determine
if the video was produced (approximately) when claimed by the publisher of the video
content (in this case the party that uploads the video using the proposed system).

This chapter introduces the design of the prototype in Section 3.1. In Section 3.2 the
the functionality of the mobile client is described step by step manner together with a
screenshot. This is followed by a description of how the prototype utilizes the hashing
function in Section 3.3. The web client is described in Section 3.4 visualized with a
screenshot. The description of the web client will identify the specific data sets to be
hashed. This is follow by a description of how the smart contracts work.

This chapter details the proof of concept prototype. The chapter both presents all of
the discrete components that will be combined and provides details of the parameters
used to fine-tune and analyze the complete system.

31

3.1 System Design
The system is built in three parts: the web client, the mobile client, and the smart
contract (see Figure 3.1). For the mobile client running on the Android device, there
are a lot of parameters that need to be tuned in order to achieve the best configuration
and still have the performance required for the prototype. The parameters that will be
investigated for the entire system are:

1. Buffer chunk size (these define the size of the chunks are used for hashing),

2. Hashing algorithm(s), and

3. Encoding settings (frame rate, bit rate, resolution, etc.).

The smart contract is the only part which interacts with the blockchain.

Figure 3.1: Prototype overview

3.2 Mobile Client
The mobile client running on the Android device executes several concurrent tasks
using multiple threads. These tasks are:

1. Record video produced by the camera,

2. Encode raw camera feed in to H.264,

3. Acquire meta data (e.g. geolocation),

4. Multiplex video, (audio), and potential meta data into a mp4 container,

32

5. Fetch output buffers, append meta data, and run through a SHA-2 hashing thread,

6. Send the hash from the SHA-2 thread to HTTP client running on the mobile
client, and

7. Transmit the hash from the HTTP client to server client.

As mentioned in Section 2.4.2 the MediaCodec handles input buffers and output buffers
asynchronously. This means that the buffers can be used concurrently without needing
to wait for earlier buffers to be processed as shown in Figure 3.2. The MediaCodec will
send the H.264 filled output buffers to the MediaMuxer. Simultaneously, the SHA-2
thread will intercept the output buffer of the encoded video data. The SHA-2 thread
also processes the acquired meta data, if there is any. The hash produced by the SHA-2
thread is sent to the Mobile HTTP client and sent to the smart contract through a HTTP
POST request.

Figure 3.2: Mobile client system

Simultaneously with the SHA-2 thread, the MediaMuxer combines video, (audio), and
meta data to create a combined container file in .mp4 file format. When the phone stops
recording, an .mp4 file will have been generated and the app will stop sending hashes
to the HTTP client (and by extension the smart contract) once all the output buffers
have been emptied and the last block of the file written.

An Android app has been developed targeting Android devices running 5.0 Lollipop
(API level 21) and above. The app interface can be seen in Figure 3.3. Running
Android 5.0 gives developers access to the Camera2 API as described in Section 2.4.1
and the MediaCodec class introduced in Android 4.1 as described in Section 2.4.2. The
interface of the Android app can be seen in Figure 3.3. The left picture in Figure 3.3

33

shows the start screen of the app. If the button “Recording Session” is pressed the right
hand picture appears and the app is ready to record.

Figure 3.3: Screenshots from the mobile client interface (left: Initial view, right: after
pushing the Recording Session button)

3.3 Hashing
The security of the blockchain is to a great extent derived from the hashing algorithm
used by the system. Longer and more complex hashing outputs makes brute forcing
much harder (as described in Section 2.2.4), but it will also require more resources from
the devices running both the mobile client and the web client. In real-time the mobile
phone will hash the video which is computationally demanding (but less demanding
than video encoding) and the web client will need to do the same in a short amount
of time (otherwise the service might not be used by an end user) potentially over very
large video files. The potential usage of both of these clients requires a well thought
through and well balanced hashing algorithm, as will be described in Chapter 4.

The hashing algorithm will operate on chunks of data from the output buffer from
the MediaCodec (as described in Section 2.4.2). These chunks consist of GOPs as
decribed in Section 2.1.1. These chunks will be used to compute the hashes to be
incorporated into the blockchain. The chunk size will be evaluated in Chapter 4. A
private-public key-pair will be used to sign these hashes. A smart contract is used as a
trusted third party and acts as the Certificate Authority (CA) to store all the public keys

34

of the system. The public keys are stored in the blockchain or on the consensus and
storage sever (see Section 2.2.16), therefore the public keys are accessible by anyone
connected to Cumulus with the correct access rights.

3.4 The Web Client
The verification of the video is done by the web client and the interface is shown in
Figure 3.4. The web client performs the same computations as the original mobile
client on the media content and uses the hashes from the blockchain (accessible online)
in order to verify the integrity of the video clip.

The web application is simple and features a drag and drop window to upload the video.
Any video may be uploaded with a size limit of 1 GB. The video is then divided into
the same sets of frames of the video and each set of frames is hashed with the same
hashing algorithm used on the mobile device. The hashes are then compared with the
hashes stored in the blockchain. If the same hash produced by the web client can be
found in the specified time span of video content, then, the hash is considered verified.

In order to communicate with the smart contract there are two parameters needed: the
Virtual Machine address of the EVM and the contract Address (for details see Section
2.2.16). Cumulus runs within an Ethereum Virtual Machine and several of these virtual
machine can be operated on the same time within the cumulus runtime environment.
The virtual machine address is the address used in order to separate the machines from
each other. The virtual machine address may be arbitrary but uniquely chosen by the
deployer of the contract (not done by the verification client). The Contract address
in generated by Cumulus and given as a response to the deployment of the contract.
The end-user of a system such as this proposed prototype will not be in contact with
either the virtual machine contract nor the contract address. This should be handled
by the system. The date span seen in Figure 3.4 added is the span of the dates the the
verification client calls upon the smart contract to get hashes for. Thus the client will
be able to verify the integrity of videos for all of the dates within the date span.

35

Figure 3.4: Screenshot from the Web client interface

3.4.1 Demultiplexing & Hashing

It is of utmost importance to be able to tell exactly where to divide the video into sets
of frames at a frame by frame level and to know exactly the correct size of chunk to
use. If the specification of the start and end frames is done with only one bit of offset
the resulting hashs will be completely different (see Section 3.3) and therefore it will
be impossible to match with the hashes received from the blockchain (for verification).
In order to correctly determine where in the video input one should start and end (i.e.
how long the input bitstream should be) we will specify the specific I-frames of the
bitstream that are to be processed. Each chunk of input starts with an I-frame and
then depending on the preset length of the input chunks, either one or more chunks are
processed (hashes) until the ending I-frame appears. These I-frames are the foundation
to determine where the hashing processing must start and end. If the preset input size
of the chunks is less than the amount of data between I-frames, then several hashes will
be computed over that data set.

The process of identifying I-frames is done using the headers from the H.264 stream
which have been parsed through the mp4 muxer. The byte sequency idicating an I-
frame in the H.264 stream is “00 00 01 65” or “00 00 00 01 65” in Hexadecimals, this
can be written as “0 0 1 101” and “0 0 0 1 101” in 8-bit unsigned integers (unit8) (the
units used in this project). The data headers are changed when going through the media
muxer in the android device. When parsing an mp4 file, the sequence “0 0 X X 101 ”
is the sequence for an I-frame, still in the primitive uint8 data format. The “X X” mid
sequence are numbers being added by the muxer and indicate the size of the header,
which will vary and therefore may not be used in the sequence when identifying an
I-frame. The process of identifying P-frames is similar but with a different sequence to
identify them(see Table 3.1.

36

Table 3.1: Header sequences
Header Value (hexadecimal) Value (uint8)
I-frame 00 00 01 65 0 0 0 1 101
P-frame 00 00 01 42 0 0 0 1 65

3.4.1.1 Find where a hash sequence start

As described in Section 3.4.1 the start of the video sequence being hashes is based
upon specific I-frames in the video. However, since this needs sequence of data to
be determined down to the exact starting bit, there is a need for great precision and
accuracy in splitting the video into chunks at the proper place (and moreover the same
place in both the mobile client and in the web client).

3.4.1.2 The Search Algorithm Comparing Hashes

The search method was originally designed as two for-loops comparing all hashes from
the video with all the hashes received from the smart contract. This effectively gives an
nxm matrix of values to compare and has a complexity of O(N×M). In order to speed
up the comparison two improvements have been implemented. The first improvement
is a counter that increments for every matched hash. This counter is subsequently used
as the starting value for the outer loop of the search in the next iteration and will cut the
number of comparisons needed in approximately half. However, this method is only
usable if the hashes are always in the correct order when being compared. It is also
very important that both arrays being compared are approximately the same length or
that the longer one is used in the outer loop. The second improvement made to the
search algorithm to break the inner loop when a match is made. This potentially cuts
the total number of comparisons in half. This effectively brings the complexity of the
search algorithm to a complexity of O(N) when a matching video is being compared.

3.4.2 The smart contract

The smart contracts run on the blockchain within the EVM environment. The smart
contract is a small script written in Solidity deployed on the blockchain which is called
every time an interaction with the blockchain is made. These interactions are stored
as transactions, the transactions are hashed and stored according to the consensus
mechanism while the information carried in the transaction are stored locally on the
server (laptop). The smart contract itself is deployed on the consensus server and
therefore written into the transaction history which makes it impossible to change.
The blockchain server and the consensus server runs on a laptop together with the web
server application. However, the web application and the servers connected to Cumulus
are completely separate and the only interaction between them are through the interface
of the smart contract.

The Web application, EVM, the consensus server, and the storage server all run on
the same laptop (see Table 1.1). However, this specific set up was done purely for
convenience and any of these elements may run on any computer with an Internet
connection, provided the communication bandwidth is sufficient and the connection is
sufficiently reliable.

37

3.4.3 The separation of consensus and storage
Cumulus separates the consensus server from the storage server. This is very
useful in some applications but not necessarily for this Master’s thesis project. This
separation makes it possible at a later stage change the storage since the the blockchain
characteristics are located in the consensus server and not the storage server. The
storage is separated from the blockchain which makes it very flexible to take, for
the specific use case, the most efficient shape and form. Many of the blockchain’s
specific advantages for a system are, available from the consensus server, hence it
is less interesting to actually save all information transmitted via the network into a
blockchain. The integrity of the system will be guaranteed from the hash chain in the
consensus server and the smart contracts may be implemented in the consensus server
while the actual information could be saves elsewhere.

3.4.4 How the smart contracts work
The smart contract is built upon two functions: PUT and GET. The Andoid device uses
the PUT function in order to add hashes to the blockchain and the verification client
uses the GET function in order to retrieve the hashes for a specific range of dates.

3.4.4.1 Appending Information to the Blockchain

An HTTP POST function is used to append information to the blockchain. The
response of the POST function for the put function is a Boolean variable indicating
whether the hash was successfully appended or not. The hash is saved in a ’Struct’∗

together with the meta data of the video. The hashes of the struct are hashed together
with previous transactions via the consensus algorithm, the resulting hashes are saved
on the consensus server while the data from the transaction is saved on the storage
server.

3.4.4.2 Retrieving Information from the Blockchain

The GET function looks through the entire blockchain to find dates matching the date
specified in the web interface by the user. The hashes from the matched dates are added
to a list and returned to the verification client.

3.4.5 The Connections
The communication between the different servers of the system are done over HTTP.
This is mainly done due for convenience, robustness and to make the system as
device agnostic as possible. Almost all devices are able to communicate over the
HTTP protocol and for security reasons will future implementations use the HTTPS
protocol (see Section 6.2). This proof of concept prototype was implemented on
a local network and at a small scale, therefore it is important to strive towards
compatibility with security standards, such as HTTPS, but less important, at this stage,
to actually realize the level of security needed for full scale operations. For these
reasons, this Master’s thesis project has chosen to implement the HTTP standard for
communication. However, the REST server is HTTPS-ready but uses self signing
certificates in order to show functionality without the expense of getting certificates
∗A Struct is a data type declaration in Solidity. A struct defines a list of physically grouped variables

placed under one name.

38

signed by a third party CA. Future implementations of this model should investigate
whether it is feasible to use smart contracts as a trusted third party and certification
provider. This will be further discussed in Section 6.2.

All communications involving the smart contract are done through HTTP POST
requests to the API server.

3.5 Performance limitations
The limitations of this Master’s thesis project are divided into three different groups:
limitations in the verification client, limitations in the Android device, and limitations
in the server. All 3 groups of limitations have different constraints and some of the
limitations limitations are interlinked.

3.5.1 Limitations concerning the Verification Client
One limitations in the verification client is the language in which the functionality
is written. JavaScript is a front end scripting language and it is not optimized for
highly demanding back-end computations which makes the processing less efficient
and as a result the system is slower that it might have been if another programming
language has been used. On top of this is the verification client is running on the same
Macbook (Section 1.6) as the server running the consensus server (Section 2.2.16),
the storage server (Section 2.2.16), and the REST server (Section 2.5.2) which may
limit the system’s performance when the system is under maximum load. The system
is expected to be much faster if concentrated solely on the verification process in the
web browser. However, combining all of this processing on one computer was easy to
accomplish. This issue is further discussed in Section 6.2.

3.5.2 Limitations Concerning the Android Device
The MediaMuxer offers methods that can multiplex various kinds of meta data into the
actual .mp4 file. However, multiplexing pure string information through the Android
MediaMuxer class has not been introduced on a per frame level for Android version 5.0.
The latest Android version (Android 8.0 O Developer Preview) includes functionality
for frame by frame string information multiplexing. Thus, the proof of concept app
has omitted the frame number string that was originally proposed. That being said,
frames have to be verified through identification of the relevant source material on the
verification side. The proposed signing of each hash cannot be done with Android 5.0,
the actual solution of the problem for frame/GOP identification as a future work. This
means that with the current solution, the hashed buffers could be scrambled internally
and would be still be able to verify each hash found in the blockchain. (Barring
the construction of the video based on frame sub-types described in Section 2.1.1.)
Additionally, audio has been omitted in the video multiplexing. The prototype does not
need to include audio for proving that the proposed solution can function. Therefore,
the prototype is limited to the footage from the device’s camera.

3.5.3 Limitations Concerning the Server
The server running the smart contract and the blockchain were not developed by the
authors of this Master’s thesis. The current server is limited to around 20 transactions

39

per second. However, this limitation is believed (by the authors) to be mainly due to
hardware limitations and lack of optimization. The server is a lightweight REST server
developed to serve the purpose of the POST request. The server is light weight and
should therefore not be resource demanding, however it is not optimized for its specific
purpose. The authors believe the main reason for the performance limit is hardware
based since the prototype has been tested under different amount of stress. The higher
test levels put on the system has resulted in a drastically lowered throughput of hashes
on the REST server, which has been interpreted as a hardware limitation. However,
this is not further investigated and considered outside of the scope of the scope of this
thesis (see Section 6.2).

40

Chapter 4

Evaluation Framework

The results of this project will be evaluated in two steps: the first step will be a binary
evaluation of whether this solution can provide verification of whether a video clip
has been modified. The second step investigates the performance when verifying the
integrity of the video clips. The foundation of the system is video integrity, but if the
performance is poor few people will use it. Moreover, if the system is hard to use, then
no user will use the system. Therefore, it is of great importance that a balance between
performance, usability, and assessing video integrity is found in order for this solution
to potentially be deployed and used. As a result the following criteria will be used to
evaluate the system:

• Evaluate the added load on the Android system when performing the original
hashing and signing.

• Evaluate the effect of the size of the content buffers to be hashed on the
Android device in order to match the performance of the Android system and
the blockchain.

• Measures the time needed in order to do verification via a web browser for an
averaged sized video. In this work we will consider this time to be reasonable if
it takes 60 seconds or less for video clips up to 600 seconds of video duration†.

• Identify which hashing algorithm is the most viable. Are there any advantages
to using different hashing algorithms?

• Evaluate the smart contract created. Measure the performance limitations it puts
on the end system.

Section 4.1 describes an overview of the tests performed. Section 4.2 details how the
evaluation of the built-in hashing function is done. Section 4.3 details the evaluation
when appending various video lengths to the blockchain. Section 4.4 describes the
evaluation of a blockchain that is growing in size. Section 4.5 looks into how to evalute
the search algorithm for the blockchain.

†The 600 second recording translates to 225Mb of data given the parameters set in Table 4.1

41

4.1 Tests performed
The tests utilized the evaluation framework introduced above. These tests mainly
concern aspects of the web client, and the Android device. These tests focused on
constraints and limitations that will persist even if more powerful servers are used to
deploy the model, i.e. the computing capacities of an Android device are compared
using the prototype used for testing. The tests are conducted using a fixed set of
parameters in order to eliminate artifacts and conduct the tests in a reproducible
manner. For obvious reasons some tests will deviate from the expected parameter
values given the nature of the test when testing a certain parameter. Additionally, the
majority of the tests are done with exactly 10 measurement points. 10 points was
chosen so that outliers and anomalies in the data sampling could be identified, while
still being able to evaluate the system in a reasonable amount of time. Evaluating
the prototype gives only some indication of the actual limitations of the system. A
test consists of recording and transmitting hashes to the smart contract. After a
recording is finished, the video file stored locally on the Android device is transferred
to the verification side for verification. Given these circumstances, a lossless video
transmission is assumed. The video is then uploaded via the verification web client
and used for further testing.

Given the testing environment, the results for the server side testing must be seen as an
indication of what the results might be when implemented on dedicated servers running
the blockchain, rather than absolute performance values. As the goal was not to have
high confidence, but rather simply an indication of the likely performance.

Table 4.1: Set of fixed parameters
Parameter: Value:

Hash function SHA-256
Recording time 60 seconds

Buffer size 1 frame
Resolution 720x1280

Bitrate 6Mbps
Framerate 30fps

Hash transmission rate 30hps
I-frame interval 5 seconds

Given the parameters in Table 4.1, 60 seconds of footage will contain up to 45MB of
data. The bit rate is specified as an upper limit that the MediaCodec class will not
exceed.

4.2 Test 1 - Hashing
This test is deigned to test the performance of the MessageDigest class in Android
(described in Section 2.4.4). The MessageDigest class is a built-in class that digests
byte arrays and returns a hash value corresponding to the input data. The design of the
test is as following:

1. Receive byte array from MediaCodec class

42

2. Start timer before MessageDigest method call

3. Call MessageDigest class with byte array from the MediaCodec

4. Stop timer after MessageDigest returns corresponding hash value

5. Write elapsed time, and input byte array size to log file

The test is done using the standard parameter settings specified in Table 4.1 for each of
the algorithms that the MessageDigest class can use (see Section 2.4.4). Roughly 1800
measurements were made for each hash function. A histogram of the size divided by
time for each hash function was compiled. The results will be presented in Section 5.2.

4.3 Test 2 - Performance of Videos of Variable Length

This test is designed in order to characterize the system when verifying videos of
different lengths. The test is designed mainly to see how the time for different
processing steps varies with the length of the video and to evaluate the accuracy of the
system by measuring the proportion of matched hashes. The time from a contract call
to a response is measured from the time the verification client makes a request until the
server responds based upon using the smart contract. The verification client makes a
call to the server via the API. The client connects to the blockchain via communication
with the smart contract. The smart contract searches for those hashes corresponding to
the request and returns a verification response to the client.

Under the prerequisites that a video has been recorded, and hashes sent to a newly
deployed contract on a new VM-adress. The test is designed as follows:

1. Upload a video (locally stored) through the web interface

2. Press “Lookup”

3. Wait for response from smart contract

4. Save response time and video length in a log file.

5. Deploy new contract on new VM-address and start over.

The verification time is the time it takes for the verification client to input a video, digest
it into chunks, hash these chunks, and compare each hash with the hashes previously
received via the smart contract. The time for a blockchain call and verification
constitutes the total time it take for the system to verify the video.

The fraction of hashes that match indicate the accuracy of the process. The test
environment is assumed to be a system with zero communication losses, when
transmitting and handling both the video and hashes. This means that match results
below 100% indicates shortcomings in the prototype. This test is to verify a correlation
between the accuracy of the system and the length of the videos used for testing.

All tests in Test 2 are conducted with a newly deployed contracts and without
previously saved data. The results will be presented in Section 5.3.

43

4.4 Test 3 - Analysis of Changes in the size of the
Blockchain

This test investigates whether the performance of the system is affected by the
amount of data stored by a deployed contract. The test is based upon comparing the
‘verification time’ and the blockchain call time’. Each video is recorded and the hashes
of the video is added to the smart contracts. The number of video hashes stored by
the smart contract will increase with each iteration of the test since the same contract
is used for every video. It is always the latest video taken that will be subject to the
verification process.

Under the prerequisites that a video has been recorded, and hashes sent to a single
contract with one VM-adress. The testing process is as follows:

1. Upload a video (locally stored) through the web interface

2. Specify the current date for smart contract look up.

3. Press “Lookup”

4. Wait for response from smart contract

5. Save verification time and blockchain call time to log file

6. Record new video to the same contract and the same VM-address with either the
same, or new∗ date on the next recording.

7. Start over

This test utilizes two methods. The first method simulates the case when all videos
are taken on the same day, hence all hashes are saved in the blockchain with the same
date’s time stamp. This means that when the call from the verification client asks for
the hashes of a specific date, all hashes accumulated from that day will be sent in the
response to the verification client. In the second method all videos will be sent to the
blockchain with unique dates. This means that the verification client’s request will only
match one video (the last one recorded) and this video’s hashes will be compared to all
of the accumulated hashes obtained by the other method.

The test starts by deploying a smart contract. The first test method responds to the
request by sending all hashes (from all videos in the test) back to the verification client.
The second method only sends the hashes from the latest video back to the verification
client. The difference between these two methods will show how different parts of the
system are affected by the growing blockchain. The methods will be evaluated based
upon 10 iterations per method. During the test the blockchain will grow based upon
the 10 videos’ corresponding hashes. The results will be presented in Section 5.4.

4.5 Test 4 - Analysis of the Search Method
This test is designed to evaluate the speed of the search algorithm used in the
verification client for matching the hashes received from the smart contract with the
∗Used in the second method when all videos have different dates

44

hashes generated from the video. As mentioned in Section 3.4.1.2 the speed of the
search algorithm is very dependent upon the amount of matching hashes. A larger
number of matches will yield a faster search. By comparing the number of video
hashes from the Android device with the correct video and an incorrect video of the
same size will examine how much faster the verification client is when the video is
a perfect match compared to a 0% match. The relevant measurement is the time for
verification.

The prerequisites for this test is that a new contract, and new VM-adress is deployed
for each new test point. The test is designed as follows:

1. Upload either a video with corresponding blockchain hashes, or a video without
corresponding hashes∗ video (locally stored) through the web interface

2. Press “Lookup”

3. save search time to log file

4. Deploy new contract with new VM-address and record new video.

5. Start over

The results will be presented in Section 5.5.

∗Video without corresponding hashes is used for when no hashes will match the content of the blockchain.

45

46

Chapter 5

Results and Analysis

In this chapter, the results of the tests described in Chapter 4 are presented. Addition-
ally, analysis is done for each test and comments are made regarding their relevance
and impact on the prototype.

Section 5.1 succinctly states all the results of tests on the prototype. Section 5.2
details the results regarding the different hash functions. Section 5.3 showcases the
performance for videos of varied lengths. Section 5.4 presents the results regarding
the performance with changes to the length of the blockchain. Section 5.5 presents the
results for the execution of the search method by the web verification client. Section
5.6 presents a reliability analysis of the tests performed and the general setup.

5.1 Performance Results

The main performance results of the tests of the prototype are:

• The accuracy of the system is 98.1 % on average (this result does not vary
depending on recording length) throughout all tests.

• The prototype is able to handle approximately 20 transaction per second.

• The response time for the HTTP POST request to the smart contract mainly
depends on the amount of data being requested.

• The search algorithm is extremely fast for a perfect data set and the comparison
of hashes is primarily a function of the time it takes to process the video.

5.2 Results and Analysis - Hashing

Figure 5.1 shows histograms corresponding to the execution time of the different
hashing methods included in the MessageDigest class is plotted as a histogram of
the message size divided by time. The tests were conducted using the parameter
values from Table 4.1, varying only the hash function parameter. All histograms were
generated using approximately 1800 measurements. The fastest method on average
is the SHA-1 algorithm, while the slowest being the SHA-384 and the SHA-512

47

algorithms. Table 5.1 presents the equation and the corresponding goodness fit (R2-
value) for each of the tested algorithms. The linear regression does not represent the
data well given the low values for the R2-value.

Figure 5.1: Histograms from the different hash methods using the MessageDigest Java
class

48

Table 5.1: Equations and goodness fit corresponding to the different alorithms
Hashing method: Equation R2-value

MD5 y = 0.0346x+17171 0.210
SHA-1 y = 0.0039x+24237 0.019

SHA-224 y = 0.0309x+16068 0.272
SHA-256 y = 0.0195x+19477 0.142
SHA-384 y = 0.0196x+16133 0.308
SHA-512 y = 0.0195x+15972 0.278

Given that both I-frames and P-frames will pass through the MessageDigest class
means that using the mean of the data is not a good indicator of the average buffer
size. The I-frame will always contain more information and thus skew the mean value
for both time and size. In the case of the histograms shown in Figure 5.1, bigger
buffer sizes will take longer time to digest. But the size difference is accounted for
with the size divided by time factor which otherwise would have skewed the data in
the histogram. Furthermore, The SHA-2 family of algorithms seems to perform more
consistently than the deprecated MD5, and SHA-1 algorithms. In both SHA-384 and
SHA-512 we can also see some bimodal tendencies. With a median size of around
23kb and median time around 0.30ms. This time is less than the time between two
frames even when the camera is operating at 30fps (i.e. a per frame time of 33ms).

The results of the equations and R2-values in Figure 5.1 for each algorithm is quite
poor, a linear regression does not give a good indication of the relationship between
byte array length and time it takes to digest the data into cryptographic hashes. The
reason for this might be that there are a lot of concurrently running tasks within the
Android Device that use the same resources. The computational resources are quite
limited and the Android app might prioritize other concurrently running threads.

This test took 60 seconds for each algorithm tested. The test was conducted so that
when the Android device was running, it was also storing the time, and size for each
buffer that passed through the MessageDigest class.

5.3 Result and Analysis - Performance when processing
Videos of Various Durations

Figure 5.2 illustrates the response time for a blockchain call from the web verification
client via the smart contract. It also presents the linear regression, and goodness fit (R2-
value). As can be seen from the regression line in Figure 5.2 this is a linear process.
Five measurements have been taken for each video length. The video length test points
are: 15 seconds, 30 seconds, 60 seconds, 180 seconds, and 300 seconds. The test points
span short video recordings from 15 seconds up to 300 seconds and incremental data
points in order to see the performance on shorter recordings. Each measurement is
the amount of time from when the verification client sends a call until the verification
client receives a response.

As previously mentioned, calculating the regression between the test measurements

49

yields a linear function with the duration of the video. The linearity of the curve
indicates that the process depends of the amount of information being processed and
transmitted by the smart contract and the REST server. This is not a problem for shorter
length videos, as in this test for videos up to up to 300 seconds in duration, but could
potentially be a problem for much longer videos as a user is not interested in waiting a
long period of time to verify the integrity of video. If the user needs to wait for a long
time for verification, the user-friendliness would be quite lacklustre.

According to the evaluation framework in Section 4 the time for verification was
desired to be under 60 seconds for a 300 second long video. In the measurements above
in Figure 5.2 the 300 second mark yields a call time of 100 seconds. This is however
easily managed by decreasing the number of hashes per second from the 30 hashes per
second the system uses in this test. In Figure 5.3 the time for verification is plotted
against the the time duration of the video. The linear regression, and goodness fit (R2-
value is also presented. As in Figure 5.2 the average is taken from 5 measurements
for each different video duration. The length of the video is, as before: 15 seconds, 30
seconds, 60 seconds, 180 seconds, and 300 seconds. Each measurement corresponds to
the time it takes for the verification client to digest the video, hash the smaller chunks
and compare the hashes made from the video with the hashes fetched via the smart
contract.

As can be seen in Figure 5.3 this is a linear process that depends on the duration of
the video. As when discussing time for the blockchain call this is not a problem when
handling smaller sized videos but could potentially become an issue when handling
bigger videos since the time for verification is a linear function which will increase
with the videos size. The curve indicates that the time it would take to verify a 300
second long video would be around 100 seconds. This means that the total time to
verify a 300 second long video would be given as per Equation 5.1, where tbc is the
time to make a blockchain call, tvt is the verification time, and finally tt is the total
time.

Figure 5.2: The time it takes for a blockchain call for videos of variable length

50

tbc + tvt = tt (5.1)

Since the evaluation framework in Chapter 4 clearly states that the upper limit of
verifying a video should be less than 60 seconds for a 300 second long video this
result is not acceptable. However, this is easily achieved by decreasing the frequency
of creating hashes. In this test, 30 hashes are created per second (one per frame),
this is both demanding on the hardware & battery and more frequently than would be
necessary in most cases. This will be further discussed in Section 6.2.

Figure 5.4 indicates the accuracy of the entire system over different length videos, the
same lengths as in previous tests. The linear regression equation and goodness fit (R2-
value) is also presented in the figure

In this plot every value from the test is plotted. The same data points are used from
the previous figure, but with the corresponding hash match percentages plotted instead.
As can be seen the spread between data points is greater for short duration videos,
while the spread decreases with increasing duration of videos. The over all accuracy of
verification of the videos are very high - with an overall average of around 98% which
is considered good in this project. The cause of the error was not investigated, but will
be discussed further Section 6.2.

Figure 5.3: Time for the matching process of video and the hashes from the smart
contract smart contract

51

Figure 5.4: Percentage of hashes matching with video file length

One complete test iteration can be broken down to five time consuming events, each
event with a different time consumption, see Table 5.2. For each iteration of the test
is a new contract deployed which means that there will be no accumulated data from
previous transaction for the smart contract to consider. The first event is to record the
video from the mobile device. The hashes are during the recording simultaneously
being transmitted to the smart contract. The second event is to upload the recorded
video to a shared Google Drive folder. This is done in order to transfer the video to
the verification client from the mobile device. The video is subsequently downloaded
by the verification client. The time consumption of the upload and the download are
estimated since they are not interesting for the solution, and thus were not measured.
Simultaneously with the up- and download of the video (step 2 & 3) the blockchain
call to the REST server is made (step 4). This means that the longest time of either the
combination of step 2 and 3, or step 4 is considered when calculated the total time. The
next event is step 5, verification of the video. The total time for one iteration of the test
is the sum of the events necessary to preform the test. Five measurements for each pre-
set time interval are recorded which makes a total of 25 measurements for each event.
Since videos of longer time duration are bigger in size every step will have a bigger
time consumption and therefore make every aspect of the test more time consuming.

Table 5.2: The Events and Time Consumption of one Test Iteration
Steps Event Time consumption [s] Comment

1 Record video 15, 30, 60, 180, or 300 Section 5.3
2 Uploading the video 20≤ t ≤ 60 Estimated
3 Downloading the video 30≤ t ≤ 70 Estimated
4 Blockchain call 4≤ t ≤ 120 Figure 5.2
5 Verifying video 1≤ t ≤ 24 Figure 5.3

Total One test iteration 70≤ t ≤ 574

52

5.4 Performance as a function of changes to the Blockchain

The linearity of the process is independent of whether the the date searched for matches
all of the video hashes or just the latest video’s hashes. However, there is a clear
difference in the slope of the lines. The line illustrating the time for a blockchain call
for different dates has a lower slope.

The fact that both lines pass through close to origin indicates that there is little or
no overhead of the system and that the time consumption of the system is primarily
dependent of the size of the input data rather than the function call itself. The different
lines illustrated two processes that are very similar to each other. The blue line
illustrates the time taken when asking for all hashed data stored by the smart contract
while orange line asks only for those hashes matching the specific video being verified.
The search process being conducted by the smart contract is therefore different since
less data is identified and sent back by the call function. This difference is clearly
visible in Figure 5.5 from the difference in the slopes of the lines. The linear regression,
and goodness fit (R2-value) is also presented in the figure.

Figure 5.5: Blockchain call time as a function of changes to the Blockchain

Figure 5.6 illustrates the time for verification for the two cases tested. the figure also
presents the linear regression equation, and the goodness fit (R2-value). The process
measured in this test is the time it takes for the web client to divide the video stream
into frame sizes, hashing each frame, and compare each frame’s hash with the hashes

53

received from the smart contract. Both lines illustrating the different test cases cross the
y-axis at more than 1000 ms. The line illustrating the verification time for a video on
the date of the last video has a very small slope while the line illustrating the verification
time for verification of a video against all videos on different dates has a greater slope.

The fact that both lines cross the y-axis at a large value indicates the overhead of
processing being done for every video independently of the data stored by the smart
contract. This processing overhead is explained by the deconstruction of video into
frames and the hashing of those frames. This processing was expected to consume a
lot of resources. The difference in the slope between the two curves is explained by the
search algorithm tested and discussed in Section 5.5. The search algorithm is design
to be as effective as possible when comparing matching data sets. The smart contract
always returns arrays the length of the data set stored by the smart contract. Thus,
the search algorithm needs to compare partly empty arrays with the arrays based upon
hashes of the video, which makes the search function less effective. This is further
discussed in Section 6.2.

Figure 5.6: Verification time for two cases

The test are conducted very similar to previous test (see Section 5.3). The video is
recorded, uploaded from the Android device, and downloaded on the verification client.
The verification client sends a request for dates to the smart contract and receives a
response. The video is broken down, hashed and compared (verified) with the hashes
requested from the blockchain. The difference from this test compared to the test
conducted in section 5.3 is that there is not a new smart contract deployed between the
videos and the video hashes are accumulated within the same contract making search
times longer for each iteration. The test is done in two ways: every video has the same
date (see Table 5.3) and that the date of each video is unique (see Table 5.4). The
difference in the tests result in different time consumption for one iteration of the test.

54

Table 5.3: The Events and Time Consumption of one Test Iteration, same dates
Steps Event Time consumption [s] Comment

1 Record video 15, 30, 60, 180, or 300 Section 5.3
2 Uploading the video 20≤ t ≤ 60 Estimated
3 Downloading the video 30≤ t ≤ 70 Estimated
4 Blockchain call 8≤ t ≤ 45 Figure 5.5
4 Verification 1.2≤ t ≤ 1.4 Figure 5.6

Total One test iteration 73≤ t ≤ 475

Table 5.4: The Events and Time Consumption of one Test Iteration, different dates
Steps Event Time consumption [s] Comment

1 Record video 15, 30, 60, 180, or 300 Section 5.3
2 Uploading the video 20≤ t ≤ 60 Estimated
3 Downloading the video 30≤ t ≤ 70 Estimated
4 Blockchain call 4≤ t ≤ 34 Figure 5.5
4 Verification 1.2≤ t ≤ 1.9 Figure 5.6

Total One test iteration 69≤ t ≤ 464

5.5 Result and Analysis - Search method
The Figure in 5.7 shows the slopes from the test described in Section 4.5. the figure
also includes the regression, and goodness fit (R2-value) for both the unmatched, and
the matched video. The test is conducted using both a video with matching hashes, and
a video without matching hashes. This test is conducted using videos with duration
15s, 60s, and 180s. The unmatched videos use a second order polynomial regression,
whereas the matching videos use a linear regression. The test is conducted using three
data points for video duration and each data point uses two iterations. In total 6 data
points for unmatched videos, and 6 data points for matching videos.

55

Figure 5.7: Verification time for two cases

As can be seen, the complexity for the unmatched video is shown to be of complexity
O(N×M), and the corresponding matched version has a complexity of O(N). Note
that this search algorithm could be further improved by using a hash table which is
discussed in Section 6.2.

5.6 Reliability Analysis
The proposed system was tested in an open office environment on computers and
phones running software out of the control of the Master’s thesis project group. The
internal processes of both the Macbook and the Android device are hard to control.
However, the tests were conducted with the minimum of programs, applications, and
background processes running on both systems. The running background processes can
be found in Appendix A. The wireless network connecting the devices was a network
accessible for anyone working in close proximity and therefore was not isolated. With
that said, the tests were done in the exact same way, and the local network used is a
private network only accessible to few individuals, with the consensus of the authors
being that the test are reliable.

Due to the time consuming nature of the tests being conducted the number of
data points are limited, statistical analysis of the prototype’s behaviour is therefore
impossible.

56

Chapter 6

Conclusions and Future Work

This chapter reflects on the results presented in Chapter 5. Reflections both in what the
results actually mean, and also what can be improved upon in future work.

Section 6.1 concludes the thesis and describes the outcome. Section 6.2 states what
should be done to build upon this project. Additionally, Section 6.3 presents reflections
regarding the thesis project itself. Finally, Section 6.4 discusses concerns regarding
both the intricacies of the proposed solution and what value this solution actually could
offer to others.

6.1 Conclusions

A proof of concept prototype was implemented and evaluated. The content creator
client part of the prototype parses sources data from a smartphone camera and creates
hashes of the video sequences. The hashes are consequently in real-time stored by
a smart contract in a blockchain ledger for safekeeping and verification. A web client
together with a blockchain will enable an end user to be able to prove that data uploaded
through the prototype has or has not been tampered with. The Web verification client
interacts with a smart contract. The smart contract is set up to handle requests from
both the Android device client, and the web verification client. The smart contract is
the only entity interacting with the blockchain itself.

The prototype at the current stage would not be a viable solution that could be trusted
to keep the integrity of a video. Given that the signing process is missing, there would
be no way in determining the order of the hashes corresponding to which frame(s).
The signing process proposed in Section 6.2 would enable the signing of each hash,
and also enable the verification side to be able to more easily identify where the hashes
corresponds to in the video itself.

The prototype demonstrates much of the functionality that was desired, hence this
Master’s thesis have achieved part of its major goal by designing and implementing
a working proof of concept prototype of the proposed system.

Section 3.5.2 describes the limitations of the Android platform. The prototype excludes
the ability to inject and sign the frame(s)/GOP(s) used for hashing. As mentioned, this

57

is one of the fundamental limitations in the API used for developing the prototype.
Furthermore, hashing GOPs rather than frames was implemented but not used in the
evaluation framework of the testing.

As discussed in Section 2.1 there are mainly two ways in which the video may be
divided and later hashed: frame by frame or in data chunks. The natural way from the
mobile client point of view is to hash the frames individually since the data buffers in
the Android phone handles the buffers on a frame by frame basis. However, building
from this it is fairly straight forward to either group a number of frames together
before being hashed or e.g hash a concatenated buffer with data from in between two
I-frames. This particular method was implemented but not used in the testing due to the
GOPs being less demanding for the system; and the evaluation framework was setup
in order to stress test the prototype. The method of hashing on frame basis is further
strengthened by the accuracy of the frame identification on the verification client side.
As mentioned earlier the over all matching rate is around 98.1%, see Section 5.1, we
have only analyzed the bit stream in order to identify the starting point for I-frames,
and P-frames. Also, we are convinced this number could reach 100% without major
difficulty, the reason being that there might be additional information sent that do not
contain frame information. Additionally, the prototype generates hashes from H.264
buffer data in the Android device, whereas the hashes are recreated in the web client
using mp4 format (i.e. the H.264 video is not demultiplexed from the .mp4 container
before being hashed). The differences in header information in the H.264 to header
information in .mp4 files have been identified, but not the other differences that the
container might introduce when solely multiplexing video footage.

The Android device does not handle the video data as a long fixed length byte array
which means that a method creating the array needed would have to be implemented.
This would cost both memory and processing power. On the side of the verification
client there would be a problem to know where to divide and hash the data into chunks.
Frames are natural places to cut a video and they are also easy to identify. In order to
create the chunks a method is needed to identify the pieces to be created. This method
would also have to be implemented. However, a benefit of this method is the flexibility
of the chunk sizes. It would be easy to set a specific chunk size and optimize the size to
suit the rest of the system. Such optimization has not been investigated by this Master’s
thesis.

The RESTful server is able to handle HTTP POST requests over the wireless local area
network coming from an Android device. Deploying the servers and the system in a real
scenario would require more extensive work for handling requests that are sent over the
internet. Furthermore, the prototype assumes that the system has not been developed
with a lossless package stream in mind, certain existing live-streaming protocols can
only work under lossy condition, thus losing information due to noisy transmission
channels. Hence introducing false negatives to the blockchain verification. In order to
facilitate a lossy channel for streaming, the hash function would need to be changed
in order to mitigate the problem of recalculating the same hashes from lossy media.
One of the main purposes in hash-functions is to avoid different data generating the
same hashes i.e. avoiding collisions. A more robust solution would need to address
the problem by either sending video data losslessly, or by introducing a method
for identifying similar videos that have been corrupted by perturbation in the video
transmission channel.

58

6.2 Future Work

All discrete parts of the prototype could use upgrades, and improvements in order
to make the solution faster and more robust. Given that the developed prototype
is a “minimum working solution”, developing a future product based on this initial
prototype would require lots of work.

The implementation within this project could be modified to add additional function-
ality to the system. First and foremost, the hashes need to be signed by introducing
meta data in the transmitted video stream that tells the system which frames belongs to
which hashes. If the hashes remain the same, but the frames have been scrambled (i.e.,
stored in a different order than i the original video file), the integrity of the video will
still be intact. Injecting the meta data in the container (mp4-file) for signing hashes
should be possible in the latest developer preview of Android 8.0, however it is yet
to be implemented. Furthermore, additional meta data from the device may be hashed
together with the video content to increase the level of trust in the video. This meta data
could include geolocation, camera and device settings, account associated signatures
(e.g. asymmetrical cryptography), firmware of the phone, audio from the recording,
etc. All of this additional meta data hampers the possibility to tampering with the
media content or the device.

The smart contract currently searches through the entire blockchain for hashes to
match. Unfortunately, this is a tedious process when one has to use a specific date.
Moreover, the request returns all of the hashes for the specified date. A more robust
solution would be more automated and would not require input by the end-user and the
time stamp of the transaction should be generated from the smart contract. The search
function itself and the return function of the smart contract should each be optimized.
The optimization of these would most likely reduce the time needed by the blockchain
call function during the verification by the client and by extension speed up the entire
verification process.

The algorithm for matching hashes from a target video with the blockchain has not
been optimized for usage in a working system. A search algorithm using hash tables
could be implemented in the web client in order to speed up the searching process.
With a worst case complexity of O(N) the hash table will not make the search process
linear in both the case with a non-matching video and with a video that finds matches.

The RESTful server is currently able to handle around 20 transaction per second which
is likely to be a bottle neck if many users were to use the service at the same time. To
scale the solution other server solutions be looked at, especially hardware-wise since
the hardware is the biggest limiting factor at the current implementation.

The communication between the device and the RESTful-server, and between the web
verification client and the RESTful-server is currently done using the HTTP protocol.
In order to ensure security for transactions should the connection be done using the
HTTPS protocol and SSL, this to ensure the communication is encrypted and that
communication can be trusted. This is very important for future big scale applications
when the communication is done over internet.

The blockchain itself only serves the web client with hashes. Some optimizations

59

to be looked at could be to include data structures to query the blockchain etc. The
limitations of the blockchain are rather the hardware that it runs on top of.

The Android device employs and sends HTTP Posts, enabling the RESTful-server to
also be run on the same or another computer. Another approach could instead be to run
a Cumulus client on the Android device, thus omitting the need for a central RESTful-
server which currently needs to handle all incoming HTTP(S)-requests from all nodes
(devices) that wish to interact with the smart contract. However it is of great importance
to secure the communication between the devices.

The accuracy of the matching of hashes needs to be increased. The prototype has
an average matching rate of around 98% which is sufficient for this Master’s thesis
project but not for a product. The reason for the discrepancy in accuracy needs to be
understood and dealt with. An accuracy of 100% should be an achievable end goal.

The verification client is at the moment able to handle whole videos. The next step
would be to add the functionality to handle live video streams such as those that can
be found on, for example Youtube, or Facebook. In this setting the user never really
downloads the entire video but rather only access parts of it at a given time.

The current prototype utilizes hashes as a digital fingerprint of the data and it is these
hashes which are compared to each other in order to identify video segments. This is a
very binary way of identifying the video and the slightest change in the videos on any
segment would completely change these hashes. Small changes such as: a slight color
difference, the addition of a watermark, or a format change would completely alter
the input data to the hash function and make the video completely unidentifiable by
the current implementation. This is true even though it would be very easy to identify
with the naked eye. Other methods should therefore be investigated as an alternative to
hashing or possibly in conjunction with the hashing techniques.

In regards to the actual CODEC used, this solution only looked at H.264/.mp4
format/container. A real system should be compatible with more than just one standard
format and container, and be more agnostic with respect to the CODEC.

6.3 Reflections Upon the Achievements of the Proto-
type

The parts lacking implementation in the prototype are the actual signing process of the
hashes to be transmitted to the blockchain. This has been omitted due to the limitations
in the Android 5.0 MediaMuxer class. Android 8.0 O Developer preview includes
functionality such that the signing process can be included when muxing audio/video
into the mp4 container, with additional meta data multiplexed in the form of string
values. The proposed solution cannot, as previously stated in Section 3.5.2 distinguish
the order of the buffers corresponding to each frame. Unfortunately, this limits the
usage of the prototype solution. However, due to time constraints and not having
access to an Android device with the latest version of the software, this solution was
unfeasible at the time of this thesis project. Multiplexing further meta data is also
something that should be evaluated and investigated. Applying meta data in the form
of signatures connected with identities, location meta data, etc. is something that we

60

filed as an Intellectual Property Rights disclosure within Ericsson. The Intellectual
Property Rights disclosure has been filed under the Patent Cooperation Treaty, and
filed to the European Patent Office.

Other parts of the project that were not achieved are the security aspects of the
communication between the different nodes of the prototype.

6.4 Required Reflections
The purpose of the prototype is to give the users of media platforms a service to use in
order to verify the integrity of the video media that they are viewing. The information
learned by implementing and evaluating this prototype could if realized in a product
provide a base on which a user could decide whether a video is trustworthy or not. For
good or evil, the prototype is essentially a system which verifies the integrity of certain
aspect of the media content, specifically time and evidence of content tampering, and
should be used in conjunction with other systems and/or aspects to establish trust in a
given video. Additionally, the usage of this service also requires the use of common
sense. A user should not place all of their trust in a single system, not even in this
case. A system may suffer from system failure, manipulations, flaws not obvious to
the user, or just bad intent. The prototype created in this Master’s thesis is subject to
all of these risks and may give a false sense of security to the user. It should therefore
always be clearly stated what the prototype is actually verifying, thus giving the user a
fair chance to make their own assessment without adding any bias.

The prototype may in the future be able to include identities coupled to specific media
content. This is very useful in terms of verifying the integrity of the media but it
may also pose a risk to personal integrity which is something which should not be
taken lightly. The same problem may occur when using positioning together with time
stamps. All of these additional features that may pose a threat or compromise to the
personal integrity of the end-user should always be at the behest of the user.

The prototype of this Master’s thesis could if developed into a product provide the
consumers of online media content with a tool to verify the integrity of online content.
The media content consumer does no longer have to rely upon the social media
platform provider to verify the integrity of the media content found on the platform,
the usage of such a product will thereby give power back to the content consumer.
This power shift is an important social aspect of this Master’s thesis. The process of
verifying the content is triggered by the content consumer but otherwise should be
highly automated. Aside from maintenance work and system updates, the verification
process requires little or no human interaction. The automated nature of the verification
process is a strong economic incentive for the provider of the online media content
platform since this product could perform a service much cheaper and more efficient
than trying to verify videos by using a human operator. However, there are some
costs associated with such a service: namely storage, computational costs, and network
traffic. These are not only monetary costs, but such a product also has an environmental
footprint in terms of the energy consumption, manufacturing of the components, and
recycling. These are the environmental aspects identified with this Master’s thesis
project.

61

62

Appendix A

Background Processes Running
During Testing

The processes are listed in descending order of RAM usage for the Android Device,
and in descending order of processor usage for the Macbook.

A.1 Android Device
• Settings: 1 process and 0 services

• CM Logger: 1 process and 2 services

• com.qualcomm.qcrilmsgtunnel: 1 process and 1 service

• Google Play services: 1 process and 12 services

• Google: 1 process and 1 service

• AudioFX: 1 process and 1 service

• SwiftKey: Keyboard: 1 process and 1 service

• Black Hole: 1 process and 1 service

• Theme Chooser: 1 process and 1 service

A.2 Macbook
• kernel task

• WindowServer

• hidd

• sysmond

• Google Chrome Helper

• Google Chrome Helper

63

• SophosSXLD

• SystemUIServer

• SophosScanD

• launchd

• opendirectoryd

• Microsoft Excel

• syslogd

• SophosAntiVirus

• notifyd

• SafariCloudHistoryPushAgent

• SophosWebIntelligence

• gamecontrollerd

• UserEventAgent

• Google Chrome Helper

• SophosUIServer

• SophosServiceManager

• Google Chrome

• Google Chrome

• loginwindow

• UserEventAgent

• mDNSResponder

• usbd

• SpotifyWebHelper

• powerd

• cfprefsd

• Google Chrome Helper

• Google Chrome Helper

• ntpd

• watchdogd

• mtmfs

64

• cloudd

• awdd

• mapspushd

• symptomsd

• findmydeviced

• sua-1702150-0-InfiniteMediaAcceleration SUA

• mdworker

• com.apple.spotlight.IndexAgent

• SophosAutoUpdate

• ctkd

• USBAgent

• usernoted

• CalendarAgent

• distnoted

• aslmanager

• WiFiProxy

• autofsd

• Spotlight

• Finder

• periodic-wrapper

• AssetCacheLocatorService

• syspolicyd

• apsd

• mdworker

• systemsoundserverd

• Citrix Service Record Application

• CallHistorySyncHelper

• coresymbolicationd

• diskarbitrationd

• Microsoft Update Assistant

65

• useractivityd

• AirPlayUIAgent

• secinitd

• lsd

• printtool

• nsurlsessiond

• airportd

• IMDPersistenceAgent

• icdd

• identityservicesd

• storeaccountd

• smd

• kdc

• configd

• BezelUIServer

• sharingd

• distnoted

• mdflagwriter

• mdworker

• com.apple.AddressBook.ContactsAccountsService

• com.apple.ctkpcscd

• amfid

• SpotlightNetHelper

• installd

• cfprefsd

• revisiond

• com.apple.CloudPhotosConfiguration

• storedownloadd

• racoon

• pkd

66

• LaterAgent

• akd

• blued

• fseventsd

• com.apple.audio.SandboxHelper

• FolderActionsDispatcher

• com.apple.InputMethodKit.TextReplacementService

• iconservicesagent

• IMRemoteURLConnectionAgent

• nsurlsessiond

• SocialPushAgent

• CommCenter

• system installd

• mtmd

• coreservicesd

• DiskUnmountWatcher

• nsurlstoraged

• pboard

• sharedfilelistd

• mds stores

• appleeventsd

• com.apple.AddressBook.InternetAccountsBridge

• suhelperd

• com.apple.PerformanceAnalysis.animationperfd

• IDSKeychainSyncingProxy

• sharedfilelistd

• securityd

• mdflagwriter

• askpermissiond

• wdhelper

67

• SubmitDiagInfo

• accountsd

• ScopedBookmarkAgent

• corestoraged

• VTDecoderXPCService

• mds

• TMCacheDelete

• AppleSpell

• iTunes Helper

• AppleIDAuthAgent

• WirelessRadioManagerd

• nbagent

• com.apple.speech.speechsynthesisd

• storeinstalld

• networkd privileged

• kextd

• netbiosd

• TISwitcher

• nsurlstoraged

• wirelessproxd

• photolibraryd

• com.apple.CommerceKit.TransactionService

• tccd

• diagnostics agent

• CVMServer

• distnoted

• iconservicesd

• bird

• IMRemoteURLConnectionAgent

• gamed

68

• com.apple.AmbientDisplayAgent

• backupd-helper

• Google Chrome Helper

• KernelEventAgent

• com.apple.CommerceKit.TransactionService

• Notiscenter

• crashpad handler

• DataDetectorsDynamicData

• systemstatsd

• softwareupdated

• CloudKeychainProxy

• usbmuxd

• mdworker

• Citrix Receiver Authentication

• imklaunchagent

• thermald

• coreduetd

• spindump

• com.apple.hiservices-xpcservice

• AppleCameraAssistant

• com.apple.Safari.History

• cloudpaird

• secd

• EscrowSecurityAlert

• com.apple.audio.DriverHelper

• sandboxd

• Google Chrome Helper

• warmd

• rtcreportingd

• deleted

69

• iconservicesagent

• securityd service

• com.apple.CodeSigningHelper

• AlertNotificationService

• Bilder Agent

• CrashReporterSupportHelper

• CallHistoryPluginHelper

• Keychain Circle Notification

• tccd

• Google Chrome Helper

• storelegacy

• networkd

• CalNCService

• storeaccountd

• Wi-Fi

• Textredigerare

• com.apple.ifdreader

• secinitd

• SophosCleanD

• Google Chrome Helper

• diagnosticd

• nbstated

• logind

• recentsd

• filecoordinationd

• PlexHelper

• com.apple.AccountPolicyHelper

• lsd

• authd

• reversetemplated

70

• com.apple.geod

• spindump agent

• tccd

• CoreServicesUIAgent

• launchservicesd

• mdworker

• mdworker

• com.apple.CommerceKit.TransactionService

• soagent

• fmfd

• com.apple.cmio.registerassistantservice

• com.apple.dock.extra

• imagent

• fontd

• applessdstatistics

• nehelper

• coreaudiod

• Google Chrome Helper

• AirPlayXPCHelper

• suggestd

• SophosConfigD

• diskmanagementd

• storeinappd

• storeassetd

• pbs

• Logitech Control Center Daemon

• awacsd

• locationd

• swcd

• CMFSyncAgent

71

• taskgated

• akd

• Dock

• mdworker

• com.apple.activitymonitor.helper

• ocspd

• com.apple.iCloudHelper

• com.apple.appkit.xpc.openAndSavePanelService

• ViewBridgeAuxiliary

• Dropbox Finder Integration

72

Bibliography

[1] P. Debraj Ghosh. (5 April 2016) The Byzantine General’s Scenario. Downloaded:
2017-02-20. [Online]. Available: https://cdn-images-1.medium.com/max/1600/
0*-xCD-El4LZ48dji1.png

[2] J. Smith, “Here’s why consumers are increasingly turning to
streaming media devices to view content,” June 16 2016, BI
Intelligence, Business Insider Nordic, Accessed: 2017-05-10. [Online].
Available: https://www.theguardian.com/global-development-professionals-
network/2017/jan/17/blockchain-digital-technology-development-money

[3] S. Goel, A. Anderson, J. Hofman, and D. J. Watts, “The structural
virality of online diffusion,” Management Science, vol. 62, no. 1, pp.
180–196, 2016. doi: 10.1287/mnsc.2015.2158. [Online]. Available: http:
//dx.doi.org/10.1287/mnsc.2015.2158

[4] M. Morshed, “Voice over IP and Lawful Intercept : Good cop/Bad cop,” Master’s
thesis, KTH, School of Information and Communication Technology (ICT), 2010,
urn:nbn:se:kth:diva-24260, oai:DiVA.org:kth-24260, diva2:346180.

[5] G. J. Sullivan, P. N. Topiwala, and A. Luthra, “The H.264/AVC advanced video
coding standard: overview and introduction to the fidelity range extensions,”
Proc. SPIE, vol. 5558, pp. 454–474, 2004. doi: 10.1117/12.564457. [Online].
Available: http://dx.doi.org/10.1117/12.564457

[6] G. J. Sullivan, J. R. Ohm, W. J. Han, and T. Wiegand, “Overview of the High
Efficiency Video Coding (HEVC) Standard,” IEEE Transactions on Circuits and
Systems for Video Technology, vol. 22, no. 12, pp. 1649–1668, Dec 2012. doi:
10.1109/TCSVT.2012.2221191

[7] P. Wilkins, Y. Xu, L. Quillio, J. Bankoski, J. Salonen, and J. Koleszar, “VP8
Data Format and Decoding Guide,” RFC 6386, nov 2011. [Online]. Available:
https://rfc-editor.org/rfc/rfc6386.txt

[8] Adrian Grange, Peter de Rivaz, and Jonathan Hunt, “VP9 Bitstream
& Decoding Process Specification,” Version 0.6, March 2016, https:
//storage.googleapis.com/downloads.webmproject.org/docs/vp9/vp9-bitstream-
specification-v0.6-20160331-draft.pdf.

[9] R. Finlayson, “A More Loss-Tolerant RTP Payload Format for MP3 Audio,”
Internet Request for Comments, vol. RFC 5219 (Proposed Standard), Feb. 2008
[Online]. Available: http://www.fc-editor.org/rfc/rfc5219.txt, 2001.

73

[10] “Information technology – Generic coding of moving pictures and associated
audio information – Part 7: Advanced Audio Coding (AAC),” International
Organization for Standardization, Geneva, CH, Standard, Dec. 2006, ISO/IEC
13818-7:2006/Cor 2:2010.

[11] JM. Valin, K. Vos, and T. Terriberry, “Definition of the Opus Audio
Codec,” RFC 6716, September 2012, 10.17487/RFC6716. [Online]. Available:
http://www.rfc-editor.org/info/rfc6716

[12] E. Fleischman, “WAVE and AVI Codec Registries,” RFC 2361, June 1998,
10.17487/RFC2361. [Online]. Available: http://www.rfc-editor.org/info/rfc2361

[13] Apple Computer, Inc, “Quicktime File Format,” March 2001. [Online].
Available: https://developer.apple.com/standards/qtff-2001.pdf

[14] A. Noé, “Matroska file format (under construction!),” Matroska (non-profit
org), pp. 1–48, Jan 2009. [Online]. Available: https://www.matroska.org/files/
matroska.pdf

[15] Apple Inc., “MPEG-2 Reference Information,” Published: http://documentation.
apple.com/en/compressor/usermanual/index.html#chapter=18%26section=5%
26tasks=true, accessed: 2017-05-09.

[16] K. Purvis, “Blockchain: what is it and what does it mean for
development?” January 17 2017, accessed: 2017-02-10. [Online].
Available: https://www.theguardian.com/global-development-professionals-
network/2017/jan/17/blockchain-digital-technology-development-money

[17] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” Journal
of Cryptology, vol. 3, no. 2, pp. 99–111, 1991. doi: 10.1007/BF00196791.
[Online]. Available: http://dx.doi.org/10.1007/BF00196791

[18] S. Nakamoto, “Bitcoin: A peer-to-peer electronic cash system, 2008,” URL:
http://www. bitcoin. org/bitcoin. pdf, 2012.

[19] “Hyperledger,” https://www.hyperledger.org/about/members, a Linux Foundation
Collaborative Project. Accessed: 2017-02-10.

[20] “About r3,” http://www.r3cev.com/about, accessed: 2017-02-10.

[21] Secretariat of the Internet Governance Forum (IGF), “Dynamic coalition
on blockchain technologies,” UN-DESA, http://www.intgovforum.org/cms/
130-dynamic-coalitions/2249-dynamic-coalition-on-blockchain-technologies,
accessed: 2017-02-10.

[22] National Institute of Standards and Technology, “NIST brief comments on recent
cryptanalytic attacks on secure hashing functions and the continued security
provided by SHA-1,” http://csrc.nist.gov/groups/ST/toolkit/documents/shs/hash
standards comments.pdf, accessed: 2017-02-21.

[23] Google Security PR, “Announcing the first SHA1 collision,” https://security.
googleblog.com/2017/02/announcing-first-sha1-collision.html?m=1, 2017.

74

[24] H. C. Williams, Ed., Advances in cryptology–CRYPTO ’85: proceedings, ser.
Lecture notes in computer science. Berlin ; New York: Springer-Verlag, 1986,
no. 218. ISBN 978-0-387-16463-2

[25] N. P. Smart, Cryptography: an introduction. McGraw-Hill New York, 2003,
vol. 5. ISBN 9780077099879

[26] L. Lamport, R. Shostak, and M. Pease, “The byzantine generals problem,”
ACM Transactions on Programming Languages and Systems, vol. 4/3, pp.
382–401, July 1982. [Online]. Available: https://www.microsoft.com/en-us/
research/publication/byzantine-generals-problem/

[27] M. Vukolić, The Quest for Scalable Blockchain Fabric: Proof-of-Work vs. BFT
Replication. Cham: Springer International Publishing, 2016, pp. 112–125.
ISBN 978-3-319-39028-4. [Online]. Available: http://dx.doi.org/10.1007/978-3-
319-39028-4 9

[28] J. Stark, “Making sense of blockchain smart contracts,” CoinDesk, Published
on June 4, 2016, http://www.coindesk.com/making-sense-smart-contracts/,
accessed: 2017-02-10.

[29] “Smart contracts: The blockchain technology that will replace lawyers,” http:
//blockgeeks.com/guides/smart-contracts/, accessed: 2017-02-10.

[30] Blockchain Luxembourg S.A., “Market capatilization,” https://blockchain.info/
sv/charts/market-cap?timespan=60days, accessed: 2017-02-28.

[31] R. Cohen, “Global bitcoin computing power now 256 times faster than top
500 supercomputers, combined!” http://www.forbes.com/sites/reuvencohen/
2013/11/28/global-bitcoin-computing-power-now-256-times-faster-than-top-
500-supercomputers-combined/#7652859928b, Forbes, 28 November 2013,
accessed: 2017-02-10.

[32] Blockchain Luxembourg S.A., “Transaction rate,” https://blockchain.info/sv/
charts/transactions-per-second, accessed: 2017-02-21.

[33] A. Zohar, “Bitcoin: Under the hood,” Commun. ACM, vol. 58, no. 9,
pp. 104–113, Aug. 2015. doi: 10.1145/2701411. [Online]. Available:
http://doi.acm.org/10.1145/2701411

[34] F. L. David Voell et al., “Hyperledger whitepaper,” Published: https://wiki.
hyperledger.org/groups/whitepaper/whitepaper-wg, August 3, 2016, http://www.
the-blockchain.com/docs/Hyperledger\%20Whitepaper.pdf, accessed: 2017-02-
10.

[35] B. Vitalik et al., “Ethereum whitepaper,” Published: https://github.com/ethereum/
wiki/wiki/White-Paper, September 1, 2014, accessed: 2017-02-20.

[36] P. Bajpai, “Bitcoin vs ethereum: Driven by different purposes,” accessed: 2017-
02-10. [Online]. Available: http://www.investopedia.com/articles/investing/
031416/bitcoin-vs-ethereum-driven-different-purposes.asp

[37] “Ethereum,” [Online]. Available: https://www.ethereum.org/, accessed: 2017-02-
10.

75

[38] Gavin Wood, “Ethereum: A secure decentralised generalised transaction
ledger,” Published: https://ethereum.github.io/yellowpaper/paper.pdf, Mars
12, 2017, http://www.the-blockchain.com/docs/Hyperledger\%20Whitepaper.
pdf, accessed: 2017-04-19.

[39] Ethan Buchman and Jae Kwon, “Docker,” https://github.com/tendermint/
tendermint/blob/master/DOCKER/README.md, accessed: 2017-02-10.

[40] Tendermint, “Introduction to tendermint,” [Online]. Available: https://tendermint.
com/intro, accessed: 2017-02-10.

[41] E. Buchman, “Tendermint: Byzantine fault tolerance in the age of blockchains,”
Master’s thesis, University of Guelph, http://hdl.handle.net/10214/9769, 2016.

[42] Z. Ramsay, “On Eris and Tendermint: Application and Consensus,” Monax Blog,
https://monax.io/2016/03/02/eris-and-tendermint/, accessed: 2017-02-10.

[43] Ethan Buchman and Jae Kwon, “Github Wiki: Introduction,” https://github.com/
tendermint/tendermint/wiki/Introduction, accessed: 2017-02-28.

[44] Tendermint, “Tendermint vs. other software,” https://tendermint.com/intro/
tendermint-vs, accessed: 2017-02-10.

[45] Monax, “Platform,” https://monax.io/platform/, accessed: 2017-02-10.

[46] M. Bellare and P. Rogaway, The Exact Security of Digital Signatures-
How to Sign with RSA and Rabin. Berlin, Heidelberg: Springer Berlin
Heidelberg, 1996, pp. 399–416. ISBN 978-3-540-68339-1. [Online]. Available:
http://dx.doi.org/10.1007/3-540-68339-9 34

[47] Android Open Source Project, “Camera2 API,” Published: https://developer.
android.com/reference/android/hardware/camera2/package-summary.html,
accessed: 2017-05-08.

[48] ——, “MediaCodec,” Published: https://developer.android.com/reference/
android/media/MediaCodec.html, accessed: 2017-05-08.

[49] ——, “Mediamuxer,” Published: https://developer.android.com/reference/
android/media/MediaMuxer.html, accessed: 2017-05-08.

[50] ——, “Messagedigest,” Published: https://developer.android.com/reference/java/
security/MessageDigest.html, accessed: 2017-07-06.

[51] ——, “Application Fundamentals,” Published: https://developer.android.com/
guide/components/fundamentals.html, accessed: 2017-04-21.

[52] J. H. Saltzer and M. D. Schroeder, “The protection of information in computer
systems,” Proceedings of the IEEE, vol. 63, no. 9, pp. 1278–1308, 1975.

[53] R. T. Fielding, “Architectural styles and the design of network-based software
architectures,” Ph.D. dissertation, University Of California, Irvine, 2000, http:
//jpkc.fudan.edu.cn/picture/article/216/35/4b/22598d594e3d93239700ce79bce1/
7ed3ec2a-03c2-49cb-8bf8-5a90ea42f523.pdf.

76

[54] Ludovico Fischer, “A Beginner’s Guide to HTTP and REST,” Published: https:
//code.tutsplus.com/tutorials/a-beginners-guide-to-http-and-rest--net-16340, Jan
2009, accessed: 2017-06-03.

[55] S. Josefsson, “The Base16, Base32, and Base64 Data Encodingsl,” Request for
Comments, Oct. 2006. [Online]. Available: https://tools.ietf.org/html/rfc4648

[56] E. Rescorla and A. Schiffman, “The Secure HyperText Transfer Protocol,”
Request for Comments, vol. 2260, Aug. 1999. [Online]. Available: https:
//tools.ietf.org/html/rfc2660

[57] B. Gipp, J. Kosti, and C. Breitinger, “Securing video integrity using decentralized
trusted timestamping on the bitcoin blockchain,” MCIS 2016 Proceedings. 51.,
2016. doi: http://aisel.aisnet.org/mcis2016/51

[58] B. Gipp, N. Meuschke, and A. Gernandt, “Decentralized trusted timestamping
using the crypto currency bitcoin,” CoRR, vol. abs/1502.04015, 2015. [Online].
Available: http://arxiv.org/abs/1502.04015

[59] J. Clark and A. Essex, CommitCoin: Carbon Dating Commitments with Bitcoin.
Berlin, Heidelberg: Springer Berlin Heidelberg, 2012, pp. 390–398. ISBN
978-3-642-32946-3. [Online]. Available: http://dx.doi.org/10.1007/978-3-642-
32946-3 28

[60] C. Adams, P. Cain, D. Pinkas, and R. Zuccherato, “Internet X.509
Public Key Infrastructure Time-Stamp Protocol (TSP),” Internet Request for
Comments, vol. RFC 3161 (Proposed Standard), Aug. 2001. [Online]. Available:
https://rfc-editor.org/rfc/rfc3161.txt

[61] R. Poisel and S. Tjoa, “Forensics investigations of multimedia data: A review
of the state-of-the-art,” in 2011 Sixth International Conference on IT Security
Incident Management and IT Forensics, May 2011. doi: 10.1109/IMF.2011.14
pp. 48–61.

[62] I. Echizen, S. Singh, T. Yamada, K. Tanimoto, S. Tezuka, and B. Huet, “Integrity
verification system for video content by using digital watermarking,” in 2006
International Conference on Service Systems and Service Management, vol. 2,
Oct 2006. doi: 10.1109/ICSSSM.2006.320788. ISSN 2161-1890 pp. 1619–1624.

[63] “Assureon archive storage data sheet,” [Online]. Available: https://www.
nexsan.com/wp-content/uploads/datasheets/Assureon-DS-v2.pdf, Nexsan, 900
E. Hamilton Ave., Suite 230, Campbell, CA 95008, Revision 22 November 2016,
2 pages, accessed: 2017-02-14.

[64] Göran Almgren, Mats Stengård, and Hans Almgren, “Enigio AB,” [Online].
Available: https://enigio.com/, accessed: 2017-02-24.

[65] Dimitri de Jonghe and Trent McConaghy, “SPOOL,” [Online]. Available: https:
//github.com/ascribe/spool, accessed: 2017-02-24.

[66] S. Higgins, “Blockchain startup raises $2 million for intellectual property
solution,” [Online]. Available: http://www.coindesk.com/blockchain-startup-2-
million-intellectual-property/, accessed: 2017-02-24.

77

TRITA-ICT-EX-2017:122

www.kth.se

