
Graphical system visualization
and flow display
A visual representation of an
authentication, authorization, and
accounting backend

JOAKIM AF SANDEBERG

DEGREE PROJECT IN INFORMATION TECHNOLOGY, SECOND LEVEL
STOCKHOLM, SWEDEN 2016

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

Graphical system visualization and flow display

A visual representation of an authentication, authorization, and accounting backend

Joakim af Sandeberg

Master of Science Thesis

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

28 July 2016

Examiner: Gerald Q. Maguire Jr.

c© Joakim af Sandeberg, 28 July 2016

Abstract

Displaying the architecture of a software system is not a simple task. Showing
all of the available information will unnecessarily complicate the view, while
showing too little might render the view unhelpful. Furthermore, showing the
dynamics of the operation of such a system is even more challenging.

This thesis project describes the development of a graphical tool that can
both display the configuration of an advanced authentication, authorization, and
accounting (AAA) system and the messages passed between nodes in the system.
The solution described uses force-based graph layouts coupled with adaptive
filters as well as vector-based rendering to deliver a view of the status of the
system. Force-based layout spreads out the nodes in an adaptive fashion. The
adaptive filters starts by showing what is most often the most relevant information,
but can be configured by the user. Finally, the vector based rendering offers
unlimited zoom into the individual nodes in the graph in order to display additional
detailed information.

Unified Modeling Language (UML) sequence charts are used to display the
message flow inside the system (both between nodes and inside individual nodes).

To validate the results of this thesis project each iteration of the design was
evaluated through meetings with the staff at Aptilo Networks. These meetings
provided feedback on the direction the project was taking as well as provided
input (such as ideas for features to implement).

The result of this thesis project shows a way to display the status of an AAA
system with multiple properties displayed at the same time. It combines this with
a view of the flow of messages and application of policies in the network via
a dynamically generated UML sequence diagram. As a result human operators
are able to see both the system’s architecture and the dynamics of its operation
using the same user interface. This integrated view should enable more effective
management of the AAA system and facilitate responding to problems and
attacks.

i

Sammanfattning

Att visualisera arkitekturen av ett mjukvarusystem är inte lätt. Visas all tillgänglig
information så blir vyn för komplicerad medan ifall för lite visas så blir vyn
onödig. Att samtidigt visa dynamiken som uppstår när systemet arbetar är
ytterligare en utmaning.

Detta examensprojektet beskriver hur utvecklingen av ett grafiskt verktyg, som
både kan visa konfigurationen av ett avancerat autentisering-, tillåtelse- och
bokförings-system (AAA) och meddelanden som skickas mellan noder i systemet.
Lösningen använder en kraftriktad graflayout tillsammans med adaptiva filter och
vektorbaserad rendering för att visa en vy av systemets status. De adaptiva filtren
börjar med att visa den information som oftast är mest relevant men kan ställas
in av användaren. Nyttjandet av vektorbaserad grafik tillhandahåller obegränsade
möjligheter för användaren att zooma in på delar av grafen för att visa mer
detaljerad information.

UML sekvensdiagram används för att visa medelandeflödet inuti systemet (både
mellan noder och inuti noder).

För att utvärdera resultatet av examensprojektet blev varje iteration av designen
utvärderad vid möten med personalen på Aptilo Networks. Dessa möten gav
återkoppling på vilken rikting projektet tog samt input med t. ex. idéer på nya
egenskaper att lägga till.

Resultatet av detta examensarbete visar ett sätt att visa statusen för ett AAA
system med många av systemets egenskaper visade samtidigt. Det kombinerar
detta med en vy av flödet av meddelanden och applikationpolicies i nätverket via
ett dynamiskt genererat UML sekvensdiagram. Resultatet av detta är att mänskliga
operatörer kan se både systemets arkitektur och dynamiken i hur det fungerar i
samma gränssnitt. Detta gränssnitt bör möjliggöra mer effektiv hantering av AAA
systemet och underlätta lösningar på både problem i systemet och attacker mot
systemet.

iii

Acknowledgements

I would like to thank Aptilo Networks for providing the project opportunity for
this thesis project and in particular Chris Steinbach for providing valuable insight
into the ALE configuration system. I would also like to thank my examiner Gerald
Q. Maguire Jr. for examining me and providing feedback on my work.

v

Contents

1 Introduction 1
1.1 Background . 1

1.1.1 About Aptilo . 1
1.1.2 Large scale networks . 2

1.2 Problem . 3
1.3 Purpose . 3
1.4 Goal . 4
1.5 Sustainability . 4

1.5.1 Ethics . 5
1.6 Method . 5
1.7 Delimitations . 5
1.8 Outline . 6

2 Theoretical background 7
2.1 Large scale Wi-Fi systems and networks 7
2.2 Aptilo Long term Evaluation (ALE) system 8

2.2.1 Different types of protocols 8
2.2.2 Application groups . 10
2.2.3 Adapters . 11
2.2.4 Tracing in the ALE system 11

2.3 Important properties for graph visualization 11
2.4 Force based graphical layout . 12

2.4.1 Slowdown when nodes are nearing their equilibrium . . . 12
2.4.2 Coarse pre-positioning of nodes 13

2.5 Other possible techniques to enhance readability 13
2.5.1 Edge clustering . 14
2.5.2 Filtering . 14
2.5.3 Different types of shared property representation 14
2.5.4 Other approaches to represent shared properties 16

2.6 Detect if a graph is easily readable 16
2.7 UML Sequence Chart . 19

vii

viii CONTENTS

2.8 Ruby on Rails . 20
2.8.1 View layer . 20
2.8.2 Controller layer . 21
2.8.3 Model layer . 21

2.9 Javascript . 22
2.9.1 Sigma.js . 22
2.9.2 cardinal-spline-js . 24
2.9.3 D3.js . 25

2.10 Interface to ALE system’s data 25
2.11 Development at Aptilo and Bugzilla 26
2.12 Working model . 27

2.12.1 Kanban . 27
2.12.2 Extreme programming 28

3 Method 31
3.1 Literature study . 31
3.2 Related work . 31
3.3 Presenting mockups and prototypes 33
3.4 Retrieving information . 34

3.4.1 Parsing the retrieved elements 34
3.5 Creating abstractions . 34
3.6 Displaying the information . 35

3.6.1 Node properties displayed within nodes 35
3.6.2 Common properties as areas instead of links 36
3.6.3 Link status as dots upon the links 38
3.6.4 Active legend . 39
3.6.5 Layout engine . 40

3.7 Generating flow information . 41
3.7.1 UUID-tracking . 41
3.7.2 Tracking counter . 42
3.7.3 Parsing the log . 43

3.8 Displaying flow as a sequence chart 44

4 Result evaluation 47

5 Presentation of results 49
5.1 Images of the graphs shown inside the web GUI 49

5.1.1 Examples of the sequence diagrams 55
5.2 Results from the artificial neural network 58

CONTENTS ix

6 Analysis 59
6.1 Analysis of the graphs inside the web GUI 59
6.2 Analysis of the sequence diagrams 60
6.3 Analysis of the artificial neural network’s result 60

7 Conclusion 63
7.1 Discussion . 64
7.2 Future work . 64

Bibliography 67

A Task description from Aptilo 71
A.1 Introduction . 71
A.2 Requirements . 71

A.2.1 ALE System Visualization 72
A.2.2 Overlays . 72
A.2.3 Flow Visualization . 72
A.2.4 Message Flow Diagram 73
A.2.5 Policy Flow Diagram . 73

Appendix B

Learning sources for the artificial neural network 75

List of Figures

2.1 An overview of Aptilo SMP’s interaction with the internet. The
core of Aptilo SMP is the ALE system[1]. 9

2.2 An animation sequence for an edge-clustering process. Color is
used to encode edge directions[11]. 14

2.3 Two kinds of system property representations. The two graphs
present the same information but in two different ways. 15

2.4 Displaying properties both as links and as grouping. The nodes
are grouped by their respective site into site 1 and site 2. It is now
clearly visible that the blue and green properties are each only
present at one site each (site 1 and site 2, respectively) while the
red feature is shared between the two sites. 16

2.5 Graph showing the error of the neural network during learning.
The graph is generated by default by Neuroph when training a
network. A full iteration is considered when all images in the
learning set has been passed once. This means that 1/30th of an
iteration is the same as the network analyzing one image, when
30 images are used in the training set. The setup used when
generating this graph is presented in Section 5.2 on page 58. . . . 18

2.6 Example of ordering of a waffle as UML sequence chart. 20
2.7 An example of a node’s structure overlaid onto a node to create a

graph within a node. 23
2.8 A line drawn through a set of points. The image (to the left) shows

the straight lines between points before cardinal-spline-js is used
and the resulting curve (to the right) after cardinal-spline-js has
been used. 25

2.9 Picture of the priority board during this project 28
2.10 Flowchart for a typical XP approach 29

3.1 A node within the graph with its properties displayed. 36
3.2 An example of a graph with colored dots at the end of the edges. . 38
3.3 A layout created with the modified version of forceAtlas2 algorithm. 40

xi

xii LIST OF FIGURES

3.4 An example of the sequence diagram for a group of log entries.
The log is displayed to the left and the corresponding sequence
diagram to the right. The log only shows the relevant messages,
and their relative timestamp. 43

4.1 A graphical representation of the neural network. The values and
color of the neurons show how much they each influence the final
result. 48

4.2 A graph representing the error when training the neural network.
The error decreases as the network adjusts itself to the input. An
error tolerance of 1% is used. The exponential trend line to the
data has the equation y = 0,2164e−0,393x and R2 = 0,997 48

5.1 A view of how the webpage might look inside the Aptilo web GUI. 50
5.2 A view of the graph grouped by application group and site. The

external nodes in the system are visible as green dots. The system
nodes are the squares with each application group forming a
complete graph. 51

5.3 The settings menu below the system graph 52
5.4 Images of the settings menu which is displayed below the graph

and the active legend which is displayed to the right of the graph. . 53
5.5 Images displaying the different node types as well as the different

edge representations. If the user zooms in on a node, they can see
all of the properties of that particular node. This information is
also available in the active legend if the user clicks on the node. . 54

5.6 A view of the webpage when displaying a message or policy
sequence diagram. The currently shown view shows a message
sequence. The settings box above the diagram shows the last four
characters of the UUID, trace number, timestamp, and the first
message in the sequence for each sequence found. There are three
different events visible in this figure. Events are shown further
down the webpage if the user scrolls. 56

5.7 Example of a sequence of function calls inside the policy engine.
The labels above are either of the function being called or the
function it returns from depending on if the line is solid or not. . . 57

5.8 Graph showing the results from the neural network measurement
done before each demo meeting. The value represent how similar
the graphs generated were to the graphs the neural network had
trained on. The error bars shows a 95% confidence interval. 58

List of Source code listings

3.1 Code to display an area behind a set of nodes in Sigma.js 36
3.2 Code to display colored dots on the links between nodes in Sigma.js 38

xiii

List of Acronyms and Abbreviations

This document requires readers to be familiar with some technical terms relevant
to the thesis. Below is a list of these terms.

AAA Tripel-A system. A networking system that handles
Authentication, Authorization, and Accounting. This
system keeps track and controls the users access to
network resources.

Adapter An interface to the ALE system which can receive and
send information, either inside the system or to external
networks via protocols such as RADIUS. One adapter
can be linked to more than one node for redundancy.

ALE Aptilo Longterm Evolution. A network backend and
AAA system developed by Aptilo Networks.

Application Group One or more nodes in the ALE system which together
provides an application such as a database or history
storage.

JSON Javascript Object Notation. Data structure used to store
virtual objects.

Node This term refers either a vertex inside a graph or a
machine in the ALE system, depending on context.

Protocol Either a networking protocol or a way to evaluate
information flowing to an adapter in the ALE system,
depending on context.

Regular Expression Regex. A search pattern used to match specific text
inside a string of text. Support special characters such
as [0-9] for numbers between 0 and 9, [a-zA-Z] for any
lower or uppercase letter between a and z and + (plus

xv

xvi LIST OF ACRONYMS AND ABBREVIATIONS

sign) for one or more characters of a given match. As an
example, the regex ([a-zA-Z][0-9]+) will search for all
strings containing a sequence with one or more letters
followed by a number of any length, e.g. test0312 but
not monkey or 13214test.

Ruleset One or more rules associated with an Application
Group. The rules in the ruleset determine how to
process information inside the Application Group.

SVG Scalable Vector Graphics. An image format which
stores images as vectors instead of pixels.

Web GUI Web Graphical User Interface. The Web GUI referenced
in this report is the web interface through which the
ALE system is monitored and configured.

Chapter 1

Introduction

This thesis is the result of a thesis project carried out at Aptilo Networks A
graphical system overview has been added to their Wi-Fi and cellular backend
service to make it easier to administer. The graphical system overview is designed
to display relations in the network as well as information flows inside this network.
Each flow displays which components of the system are communicating and what
data is being sent between them. The system also displays in detail what happens
to specific ”traced messages” inside the system. These details can be shown both
for individual servers and between servers.

1.1 Background

This section will describe Aptilo Networks as a company, why large scale
networks are needed and the characteristics of these large scale networks, in
particular Aptilo Networks’ technologies.

1.1.1 About Aptilo

Aptilo Networks[1] is a company headquartered in Stockholm, Sweden, that
produces and markets software systems to manage mobile data and Wi-Fi services
for 3G, LTE, WiMAX, Wi-Fi, and fixed broadband networks, including solutions
for mobile data offloading using Wi-Fi. Aptilo’s service management platform
controls billing, along with user services and access to the network. The
company offers service management and policy-based control solutions for both
telephony network operators and Internet service providers(ISPs). In addition to
its headquarters, Aptilo has regional offices in Kuala Lumpur, Malaysia; Dallas,
Texas; and Dubai, United Arab Emirates[2].

1

2 CHAPTER 1. INTRODUCTION

1.1.2 Large scale networks

Large scale network systems are becoming more and more prevalent in today’s
society. For example, in the UK there is one Wi-Fi hotspot for every 11 people
and worldwide there is one for every 150 people[3]. Many of these hotspots
are connected to larger networks administered by ISPs and wide area cellar
network operators. To administer these systems a backend is used to verify users,
keep track of sessions, and connect the various types of hotspots to the network
operator’s network. These hotspots may support various protocols, differ in their
behavior, and be spread over large geographical areas.

In order to manage large scale Wi-Fi systems, Aptilo Networks has created a
platform called the Aptilo Service Management PlatformTM (SMP)[4] which
consists of user portals, billing system, and an authentication, authorization,
and accounting (AAA) service. This service management platform is realized
using the Aptilo Long term Evolution (ALE) architecture. This architecture has
three layers: management, control, and execution. The management layer is
used for configuration and monitoring. The control layer interacts with external
systems to control these systems using protocols such as RADIUS, DIAMETER,
BGP, SNMP, SOAP/XML, etc. The execution layer provides application logic
processing.

According to Chris Steinbach of Aptilo[5] SMP system handles all the routing
and control of the network. A typical SMP deployment consists of between one
and several dozen SMP nodes as well as connections to external nodes (such as
Wi-Fi access points or cellular basestations). Each of the SMP nodes handles one
or more services, such as policy and service control, session storage, client traffic
control, or database storage.

In addition, Chris Steinbach said that each of the SMP nodes may also have one
or more adapters to handle communication between SMP nodes or with external
nodes. Such adapters include an HTTP adapter, RADIUS adapter, and DHCP
adapter. Each node also has several additional properties, such as which site it
is at, what different protocols it can handle, and its current load. To get a full
grasp of of the system with all the different connections and protocols interacting,
a graphical representation is needed. This graphical representation can present
different views depending on whether the user wants to see the structure of the
system or to follow a sequence of messages due to a given interaction with a user.

1.2. PROBLEM 3

1.2 Problem

The number of SMP nodes and external nodes (typically ranging between 5-
50 SMP nodes, 10-200 external nodes) makes it infeasible to present all of the
available information at once, thus some abstractions need to be made. The
problem with such abstractions is that important information may be lost and some
abstractions might make the status of the system harder to understand instead of
easier.

The location of the nodes in the graph must be considered. The graph might
have multiple desired properties that have to be weighed against each other and a
balance between these properties has to be found. For example, it might be desired
that nodes sharing a property (for instance their geographical location) should be
positioned close to each other, but this might lead to more edges crossing inside
the graph making the edges harder to follow. This means that a balance has to be
found in which these nodes might be positioned close together but without voiding
some other condition for instance minimizing the number of edges that cross.

Due to the large number of users and high amounts of traffic it might be hard
to identify specific traffic and to monitor the flow of information between nodes
inside the system. However, a desirable feature is that a network administrator
can turn on a trace flag to identify the traffic of a specific user or protocol, e.g.
RADIUS authenticates. This traffic can then be displayed to show how this traffic
flows through the system, while highlighting where any errors occur along the
way.

From this problem a problem statement arises in the form of:

How can a program best present a schematic high-level overview of the SMP
system, combined with a (possibly dynamic) traffic overlay?

1.3 Purpose

The purpose of this thesis is to describe the development and functions of a tool
which represents a high-level overview of a distributed system with many different
properties and protocols for each node. Additionally, the tool can present dynamic
data about traffic propagating through the network.

4 CHAPTER 1. INTRODUCTION

1.4 Goal
Aptilo has clearly stated a set of requirements about how the graphical overview
system should function and look. These requirements can be seen in appendix
A. Note that in this appendix an SMP instance implemented using the ALE
architecture is referred to as an ALE system (this same convention will be
followed in the rest of this thesis). As stated by Aptilo, the key requirements
are:

• “The ALE management interface MUST provide a consolidated, schematic
high-level overview system configuration including ALE nodes, and external
nodes, node groups and networks.”

• “Given that some ALE installations will be complex, involving many nodes,
it MUST be possible to control the level of detail[...]”

• “It SHOULD be possible to generate diagrams exposing system behaviour
from user trace [...]”

These requirements constitute the goal of this project.

The finished tool will be integrated as an addition to their ALE management web
Graphical User Interface (GUI) where two new pages will be added. One with the
flow view and one with the network overview. These two pages will be combined
to one if it is deemed feasible.

1.5 Sustainability
The environmental impact of the work described in this thesis can be considered
benign. A better system overview will lead to a system with a more even load
over the system and easier identification of bottlenecks. With this increased
information the administrator will be able to expand the system only at the points
where it is actually needed. This leads to fewer servers that needs to be kept
running and this means less power consumed. The economic impact of the tool
should be positive for the company as this tool should help make their system more
attractive to their customers. Moreover, the societal impact should be positive as
the administrators will be able to better analyze problems with the system, hence
more quickly resolve problems; therefore, providing better service to the end
users. The increased use of mobile data offloading using Wi-Fi has a very positive
benefit for the end users in terms of longer operating times for their devices and
in some networks lower cost for the service. Moreover, mobile data offloading
means that there is less emitted radio energy over a large area, benefiting society.

1.6. METHOD 5

1.5.1 Ethics

Special caution has to be taken when choosing how to do the evaluation of the
thesis project as well as how information about the ALE system is described. No
trade secrets about the ALE system will be mentioned, but enough detail has to
be described to ensure that the reader understands the solution to the problem and
how it enhances the existing ALE product. Additionally, the evaluation has to be
done in a general and objective manner and critically analyzed. In this way aspects
of the tool that are relevant to others and to other problems can be presented in fair
and balanced way, potentially leading to the adoption of these elements in other
tools and systems.

1.6 Method
The method adopted in this thesis project is the design science method using
iterative design, implementation, and evaluation of a prototype. Each prototype
will be demonstrated to the product development team at Aptilo and their
comments will be combined with an artificial neural network to form an opinion
of the current design. The process is iterated to improve the prototype until it
has fulfilled the project’s goal. The information from the series of evaluations
will be analyzed using an inductive approach to form a conclusion. A qualitative
approach will be used during meetings with Aptilo before reaching the final result,
and finally a quantitative assessment will be done through the use of an artificial
neural network to evaluate the final result.

1.7 Delimitations
This thesis will be limited to only looking at a representation of the system in a
graph form with nodes and edges. No other type of system representation will be
analyzed. The graphical representation will only be for rather small systems with
approximately 50 nodes instead of large systems containing thousands of nodes.
This means that some available graph abstractions will not be applicable to the
project since some abstractions are only usable for larger systems.

The thesis will only focus on systems where each node has many shared properties
and to be displayed at the same time. In a traditional graph each pair of nodes only
might be connected or not.

The flow view will be specific for the ALE system and will only show traces of
packets starting with a specific trigger event within the system. No traces between

6 CHAPTER 1. INTRODUCTION

external nodes will be done since the external nodes’ program code can not be
modified by Aptilo to ensure correct logging of the trace.

1.8 Outline
Chapter 2 will give a theoretical background to this thesis project. The key
technologies used will be described and the current state of the art will be
presented. The beginning of the chapter describes AAA networks and the ALE
system. In the middle of the chapter graph visualization techniques are described
along with how to analyze if a graph is easily readable and a description of the
UML sequence diagram. The end of the chapter goes on to describe the different
programming libraries and frameworks used to implement the solution.

In Chapter 3 the method for the work conducted is described. The beginning of the
chapter describes how the literature study was done and what related work were
found. The working methods used, Kanban and Extreme Programming (XP), are
then described. The chapter describe how the rest of the work was conducted,
starting with the presentation of mockups, how the graph was generated and
displayed, and finally how the messages flows in the system were identified and
displayed.

Chapter 4 explains how the evaluation of the result was done. The first part of the
chapter describes the program Neuroph [6] which was used to create an artificial
neural network to evaluate screen images with. The second part describes how the
meetings with the staff at Aptilo were used to evaluate the work.

Chapter 5 the presents the results. Images of the different views that have been
generated are displayed together with descriptions of how the user may interact
with them. First images of the system overview is displayed, which shows a
graph of the system together with a legend. Second images of the UML sequence
diagram is shown.

In Chapter 6 an analysis is done of the data gathered from the artificial neural
network. A graph of the results generated from the network is presented and its
values are discussed.

Chapter 7 gives a conclusion to the thesis project. First a summary is given and
then which goals were completed are mentioned. Next a final statement from
Chris Steinbach is displayed. Lastly a discussion of the thesis project is given and
future work for the tool developed is suggested.

Chapter 2

Theoretical background

This chapter will describe all of the theory underlying this thesis. The chapter
begins with a summary of large-scale Wi-Fi systems and networks. This will be
followed by short summary of some of the protocols relevant to this thesis project.
Next the ALE system is described. Section 2.4 summarizes some important
properties of graphs, while Section 2.5 presents the concept of force based
graphical layout. Section 2.6 describes some techniques to enhance graphical
layouts, while Section 2.7 discusses how we can evaluate whether a graph is
readable. Section 2.8 describes a UML sequence chart. Section 2.9 describes the
Ruby on Rails programming environment and Section 2.10 describes Javascript –
as these formed the basis for the implementation. The last Sections 2.11 and 2.12
describe the how software development at Aptilo is structured and the working
models that were chosen for this thesis project.

Appendix B was used to provide good and bad examples of graphs for training
of the artificial neural network. Details of artificial neural networks can be found
in standard textbooks on the subject, such as Christopher M. Bishop’s ”Neural
networks for pattern recognition”[7] and ”Pattern Recognition and Machine
Learning”[8] by the same author.

2.1 Large scale Wi-Fi systems and networks

Creating a large scale Wi-Fi system is a non-trivial task. The systems delivered
by Aptilo may have tens of thousands of Wi-Fi access points or basestations.
Additionally, the network administrator needs to manage the traffic between these
nodes and the various services, as well as managing the individual services and the
servers on which these services run. Furthermore, many different protocols need
to be understood. Access control is provided by an authentication, authorization,

7

8 CHAPTER 2. THEORETICAL BACKGROUND

and accounting (AAA) system. A traditional AAA system can control access to
resources in the network, enforce policies for user groups or individual users, log
usage, and provide usage information necessary for billing for use of services.
Aptilo’s access control system does all of this and more as it must also be able
to interact with the network operator’s AAA system. In the context of this thesis,
AAA is described as:

Authentication Authentication in AAA means keeping track of which user
is which so that no one can impersonate another user. This
is most often done based upon a user name and a password,
but might also be done by other methods, such as subscriber
identification module (SIM) cards or certificates.

Authorization Authorization means that when a user is accessing the
network he or she only gets access to those network resources
for which they have subscribed. This might be used to assign
the user a specific amount of bandwidth and grant access to
certain internet services, such as web pages, but not to other
services (such as video streaming).

Accounting Accounting is used to measure and record the amount of
network (including service) resources a user uses. This
accounting might keep track of the amount of data a user
transfers, the amount of time the user is connected to
the network, and what kind of data the user transfers.
The accounting records can subsequently be used to either
bill users or limit their usage after a certain amount of
usage. Additionally, accounting data is also analyzed to
extract network trends and to display aggregated resource
utilization, both of which are important for network and
service capacity planning.

2.2 Aptilo Long term Evaluation (ALE) system
The ALE system provides a complete AAA solution with a focus on flexibility.
The system will be described by dividing the system into protocols, application
groups, and adapters.

2.2.1 Different types of protocols
As previously mentioned there are many different protocols used to realize the
AAA system. Some of the protocols used in the ALE system are:

2.2. APTILO LONG TERM EVALUATION (ALE) SYSTEM 9

Figure 2.1: An overview of Aptilo SMP’s interaction with the internet. The core
of Aptilo SMP is the ALE system[1].

RADIUS and DIAMETER Both RADIUS and DIAMETER can be used to
handle transactions for AAA. The Wi-Fi access
points might make RADIUS or DIAMETER requests
to the RADIUS/DIAMETER servers to determine
whether to allow a device to access the network.
These responses can specify the maximum bandwidth
that this device can utilize. RADIUS is often used
as an example throughout this thesis project but
all these examples might be changed for another
protocol for instance DIAMETER.

MAP/HLR The MAP protocol is used to communicate with
the home location registrar (HLR) within GSM
and UMTS mobile networks. This can be used to
access the user’s credentials when a mobile carrier
is providing Wi-Fi access.

LDAP LDAP can be used to search for, retrieve, and

10 CHAPTER 2. THEORETICAL BACKGROUND

modify files on an external server. LDAP is frequently
used to store data, such as logs for accounting
purposes. LDAP can also be used to retrieve
information about users in a distributed system.

2.2.2 Application groups
An application group in the ALE system is a group of nodes that together provide
a service to the ALE system. Inside the application group both load balancing and
redundancy are maintained by using the nodes within the group. The six types of
application groups in the ALE system are:

Policy and service control Policy and service control is an application group
dedicated to enforcing different kinds of rules depending
on the traffic. Service control may for instance have
a rule enabling users who have already signed in not
to have to enter their password again.

Usage data The usage data application group keeps track of the
usage of the system by users. It does this by keeping
logs of the usage of each node and logging the events
sent between nodes.

Storage cluster The storage cluster group stores long term information
within the network. Such long term information
includes user names and passwords.

History storage cluster The history storage cluster group has a similar function
to the storage cluster group, but this group stores the
user logs. These logs record which user is logged in,
where, and for how long.

Client traffic controller The client traffic controller group maintains all the
direct communication with nodes outside of the system
and routes data from the user terminals (i.e., clients)
to the internet and back. This group uses one or more
adapters. When a user connects to an adapter the
adapter applies policy and service control based upon
the specific rules to be applied for this specific client.

Portal cluster A portal cluster provides a captive portal for users
connecting to the network. This application group
provides network specific web pages to the users.

2.3. IMPORTANT PROPERTIES FOR GRAPH VISUALIZATION 11

Such a web page might display ”Welcome to network
XXXX, please buy a voucher to surf”.

2.2.3 Adapters
Adapters within the ALE system are routines for handling different types of
connections and network protocols. Currently there are seventeen adapters
available, both the most common AAA protocols listed in Section 2.2.1, but also
adapters for DNS, DHCP, SQL, and a custom API adapter. Most of these adapters
can be customized; for example, to optimize the RADIUS adapter depending on
whether it is communication with Aruba equipment or Cisco equipment. Another
example of customization is to log usage data to an external database.

2.2.4 Tracing in the ALE system
An extra feature of the of the ALE system relevant to this report is the option to
enable tracing. Tracing inside the system can be done by enabling a trace rule
for a specific condition. The condition is a regular expression which is matched
to either a standard field (such as username) or to any custom field setup in the
policy for an adapter.

If the regular expression is true, then a message is placed in the log contain trace
messages for all the following debug log messages that are generated. These trace
messages give information about which trace was triggered and information about
what is happening in the system, such as ”Evaluating policy rule-set [...]”.

2.3 Important properties for graph visualization
Important properties when visualizing a graph are hard to define and measure,
since what makes a graph easily readable is to some extent subjective. However,
general design aspects such as colors, fonts, line widths, and aspects specific for
graph design, such as node clustering, line shapes, and node positioning may
greatly affect whether a graph is easily to read or not. Unfortunately, what is a
good property for a small graph might not be a good property for a large graph.
For example when you have a large graph node edges might be better visualized
if they are clustered together and then shown as wider links. However, for a small
graph this clustering is unnecessary and makes the graph harder to read.

There exist some graphical layout solutions. For example, one widely used
method to position nodes is to use force based layout. This method is described
in the next section.

12 CHAPTER 2. THEORETICAL BACKGROUND

2.4 Force based graphical layout

Force based graphical layout is a way to determine positions for nodes in a graph
using a physics based approach. The solution produces a graph where the number
of edge crossings is minimized and nodes are positioned close to its neighbors.

Force based layouts positions the nodes by creating a n-body system where each
node has a set of forces (gravity) pulling it towards other nodes. How strong the
force is between two nodes depends on the number of links between these nodes.
To ensure that all nodes are not pulled together spring like attraction/repulsion is
used. This can be contrasted to the inverse square law applicable for a traditional
gravitational system.

To describe the spring attraction and repulsion Hooke’s law is used. Hooke’s law
describes how the force of a spring is proportional to the distance it is extended.
This means that the springs in a force based layout will pull the nodes together.
When they are closer than a certain threshold they instead will push away to ensure
that the nodes in the system do not overlap. Different weights can be used for both
the nodes and the edges in the system in order to arrange the nodes into a specific
layout. A node with a higher weight will be harder to move by the forces acting
upon it and an edge with higher weight will pull harder on the nodes it is connected
to.

Certain steps can be taken to enhance the algorithm. Two highly useful things to
add to the algorithm are slowing down when nodes are nearing their equilibrium
and doing coarse prepositioning of the nodes. These are each described in the
following subsections.

2.4.1 Slowdown when nodes are nearing their equilibrium

When nodes are nearing their optimal position they might reach an unstable state,
such that the algorithm moves the node past its optimal position to a location on
the other side of its optimal position. Then in the next iteration it moves it past
the optimal position once again, This continues with the node never reaching its
optimal position. To circumvent this problem the iterations can be made more fine
grained at a heavy cost in performance, or the nodes can be slowed down when
they are detected to be moving back and forth. Slowing down ensures that the
nodes can move rapidly to the area near their optimal position, but when they are
moving past this position they are slowed down by a factor, i.e. their effective
weight is increased to make them stop moving.

2.5. OTHER POSSIBLE TECHNIQUES TO ENHANCE READABILITY 13

2.4.2 Coarse pre-positioning of nodes
A pre-positioning algorithm can be applied to ensure that nodes start off close
to their optimal positions. The pre-positioning algorithm used in this thesis
was first presented by Hua, et al. in ”Force-Directed Graph Visualization with
Pre-Positioning”[9]. Their paper describes how pre-positioning can be used to
decrease the time to reach equilibrium by approximately 20%. This has the
added benefit of making the result more consistent compared to a random initial
positioning of the nodes.

The pre-positioning proposed can be described as:

1. Vall is all nodes in the graph. Sort Vall by node degree.

2. Select node Vk that is the node with highest degree in Vall . Position Vk in the
middle of the frame of reference.

3. Find all nodes Vkc that are connected to Vk. Position all Vkc in an evenly
spread out circle around Vk.

4. Find all nodes Vkcc that is connected to Vkc. Position all Vkcc in an evenly
spread out circle around Vkc.

5. Repeat step 4 recursively for all children to Vkcc.

In each step only nodes that have not yet been positioned should be moved.
Sorting by highest degree ensures that these nodes have the most effect on the
layout.

Some enhancements to this algorithm can be made. The algorithm presented by
Dong, et al. in ”An advanced pre-positioning method for the force-directed graph
visualization based on pagerank algorithm”[10] takes a novel approach by using
pagerank to determine the importance of nodes instead of using degree as Hua, et
al. did. According to Dong, et al. this leads to a better layout than just using each
node’s degree.

2.5 Other possible techniques to enhance readability
There exists many techniques to make a graph easier to read. This can be
done by changing shape of the lines, filtering out unnecessary information, and
changing how the information contained in the graph is presented. The following
subsections describe several of these techniques, specifically edge clustering,
filtering, and ways of showing shared properties.

14 CHAPTER 2. THEORETICAL BACKGROUND

2.5.1 Edge clustering
By grouping edges together the connections in the graph can be viewed in a
more general setting[11]. This could be applicable to a graph where each edge
represents one unit of traffic being sent between two nodes. When many edges
exists between clusters within the graph, then these edges might be grouped
together and displayed as one larger edge (as shown in Figure 2.2). The resulting
graph would then be simpler to read and the edges represent the amount of traffic
between regions instead of the amount of traffic between individual nodes.

Figure 2.2: An animation sequence for an edge-clustering process. Color is used
to encode edge directions[11].

2.5.2 Filtering
Filtering of the graph is a simple way to reduce the amount of information
displayed to the user. Filters can be applied in many ways, such as filtering
on domain specific properties or graph specific properties. Examples of domain
specific properties are “only nodes with an RADIUS adapter” or “Hide nodes that
are part of the storage cluster application group” while a graph specific property
can be “Show nodes with a degree larger than 10”.

2.5.3 Different types of shared property representation
The edges in the graph might represent different properties shared by one or more
nodes. For instance, edges might represent nodes that are part of the same subnet,
part of the same application group, or simply nodes that have sent traffic between
each other. This means that different ways to represent these edges might be used
and combined to make the graph as easy to read as possible[12].

Complete graph

One way to show that a group of nodes share a property is to make the nodes
a complete graph. This means adding an edge from every node in the group to
every other node. This has the advantage of easily showing that the nodes are

2.5. OTHER POSSIBLE TECHNIQUES TO ENHANCE READABILITY 15

connected and if the edges represent for instance a subnet it is intuitive to see
that the connected nodes share a physical connection. The disadvantage of this
approach is the large number of edges needed. The number of edges grows with
O(n2) where n is the number of nodes. An example of such a complete graph is
shown in Figure 2.3a.

(a) Properties represented by
creating a complete graph with
sub-nodes

(b) Properties represented by
virtual nodes

Figure 2.3: Two kinds of system property representations. The two graphs present
the same information but in two different ways.

Link to virtual nodes

To decrease the number of edges needed for a group, one approach is to add a
virtual node to the group. This can for instance be done for a subnet by creating a
node whose name is the name of the subnet and connecting all nodes that are part
of this subnet to the new virtual node. This has the advantage of decreasing the
number of edges needed from O(n2) to O(n), but the result is a little less intuitive
since there is an extra hop between connected nodes. An example of using virtual
nodes is shown in Figure 2.3b.

Grouping

Instead of using links to display a shared property the nodes might instead be
physically grouped together. This can be done by adding hidden edges between
the nodes and letting the force based layout act upon these hidden edges to position
the nodes closer together. For example, when combined with an edge filter, this
can be used to group the nodes by physical location and display (color) edges
depending on type of service. The resulting graph would then display which

16 CHAPTER 2. THEORETICAL BACKGROUND

services are distributed among multiple physical locations and which are not. An
example of such an graph is shown in Figure 2.4.

Figure 2.4: Displaying properties both as links and as grouping. The nodes are
grouped by their respective site into site 1 and site 2. It is now clearly visible that
the blue and green properties are each only present at one site each (site 1 and
site 2, respectively) while the red feature is shared between the two sites.

2.5.4 Other approaches to represent shared properties

There are more approaches available than these, but most other approaches
are either suited for much larger networks, or networks with rather different
structure such as social networks. A few of these approaches are described in
”Motif Simplification: Improving Network Visualization Readability with Fan,
Connector, and Clique Glyphs” by C. Dunne and B.Schneiderman. The three
shapes Fan, Connector, and Clique Glyphs were considered, but ultimately were
not used in this thesis.

2.6 Detect if a graph is easily readable
Relevant to this study is to evaluate if the resulting graph is good result in the
sense that both the staff at Aptilo finds it useful and that it is good with regards to
some objective measurement.

As described in Cody Dunne’s presentation [13], as mentioned on page 27, there
exists more than 24 rules to take into account when measuring the readability
of a graph. In Katherine Ognyanova’s presentation ”Static and dynamic network
visualization with R” [14] four of the most basic measurements are:

• Minimal edge crossing,

2.6. DETECT IF A GRAPH IS EASILY READABLE 17

• Uniform edge length,

• Minimal amount of nodes overlapping, and

• Symmetrical.

However, many other measurements are listed by various sources [15, 16, 12].
Some of these measurements are (in addition to the previous four):

• Minimize edge bends,

• Central placement of high degree nodes,

• Minimize difference in node size,

• Hierarchical layout (i.e. directed edges facing the same way as much as
possible), and

• Avoid crossing among outlines (i.e. avoid having different clusters of nodes
cross their outlines).

Unfortunately, no general tool to measure these qualities were found. The closest
tool that was found is described in Cody Dunne and Ben Shneiderman’s paper
”Improving Graph Drawing Readability by Incorporating Readability Metrics:
A Software Tool for Network Analysts” [17], but the program SocialAction
described in the paper could not be downloaded. This is due to the fact that the
SourceForge page [18] for the project had been abandoned. The page had not
been updated since 2013 and contained no files. My examiner did find the code as
part of the ManyNets project via the link http://www.cs.umd.edu/hcil/
manynets/manynets-source-code-final.zip. I tried to build and
run it both via IntelliJ, Netbeans, and CMD but kept encountering errors. As a
result I did not use this software.

Instead a simple image recognition neural network was constructed to objectively
determine if the graphs generated in the thesis are most similar to the graphs with
many of these good aesthetics or similar to graphs with many bad aesthetics. The
neural network is very general.

Neuroph [6] was used to construct and run this neural network. The image
recognition network in Neuroph is constructed from the description available in
the Neuroph image recognition guide. Two sets of images are given as input
to the neural network. One with images the network should recognize, in this
thesis these are graphs with good aesthetics. The other set is a set of images
considered poor and should not be recognized, in this thesis these are graphs with
bad aesthetics.

http://www.cs.umd.edu/hcil/manynets/manynets-source-code-final.zip
http://www.cs.umd.edu/hcil/manynets/manynets-source-code-final.zip

18 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.5: Graph showing the error of the neural network during learning. The
graph is generated by default by Neuroph when training a network. A full iteration
is considered when all images in the learning set has been passed once. This
means that 1/30th of an iteration is the same as the network analyzing one image,
when 30 images are used in the training set. The setup used when generating this
graph is presented in Section 5.2 on page 58.

Before the neural network learns from the input images some parameters have
to be set. The most important parameters for this neural network are

Image sampling size The images are split before passed into the neural
network, into subimages of a given height and width.
The number of neurons in the first layer is then H*W
where H and W are height and width of the grid.

Hidden layers size Inside the neural network there are multiple hidden
layers. More hidden layers and more neurons per layer
will generally produce a more accurate result for the
network, but adding more neurons give diminishing
returns and takes more processing power on the computer
system running the network.

Max error How large an error the neural network can have on
the training set. This is the value to be reached by
the error rate after multiple iterations in the graph (see
for example the graph shown in Figure 2.5). Typically
around 1%(0,01) maximum error is acceptable (in this

2.7. UML SEQUENCE CHART 19

graph corresponding to 8 iterations), but this depend on
the application. This is the value represented on vertical
axis on the graph in Figure 2.5. A lower value means
better accuracy for the network, but requires a longer
training period and very low values are not guarantied
to ever be reached when learning.

After training the neural network with the two input sets new images can be passed
to the neural network. The neural network outputs a value between 0% and 100%
indicating how well the images match those among the training images. This
value will be used as a metric to objectively determine if the layout done by the
program constructed in this thesis project can be considered good and to ensure
that the work done during the thesis is progressing in the correct direction.

2.7 UML Sequence Chart
Since the project’s goal is to both visualize the system as a whole and to
visualize flows in the system, a UML sequence chart is used to visualize the flow
independently of the structure of the system. The UML sequence chart is a well
known way of displaying how a series of messages or actions are sent between
multiple entities or actors within a system. In such a chart each actor is displayed
with a timeline going vertically through the chart. Each event is then annotated
by an arrow going between two actors or in a loop back to the same actor. Each
arrow initiating or requesting something is solid, while arrows returning or ending
something are dashed. An example of a sequence chart for ordering a waffle in a
cafeteria is shown in Figure 2.6.

20 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.6: Example of ordering of a waffle as UML sequence chart.

2.8 Ruby on Rails
Ruby is a programming language created in 1995. Ruby is considered a
functional programming language balanced with imperative programming. The
main concept of Ruby is that everything can be considered an object and unlike
languages such as Java where primitive types (classless types) exists, in Ruby
even basic things such as integers (int) extends the class Numeric. A common
application for Ruby is to host webpages via the Rails framework.

Ruby on Rails (or simpy Rails) is a web-application framework specially designed
to include special tools and APIs to enable database-backed web applications in
Ruby. Rails consists of three layers which each have a specific responsibility.
Each of these layers is explained in the following subsections.

2.8.1 View layer

The view layer determines the layout and design of the webpage. Each view
that should be presented to the user of the webpage has a layout specified in the
view layer. The view files are often HTML files with embedded ruby calls. The
embedded calls may execute calls to the model layer and thus get unique content
for the current user.

2.8. RUBY ON RAILS 21

2.8.2 Controller layer
The controller layer handles requests arriving to the Rails application. It decides
which view should be returned combined with which model. The controller
ensures that when a user requests a certain domain the correct view and correct
model are paired and returned. This means that multiple views may share the same
model and multiple models may be combined into a single view. For example, the
controller layer may keep track of whether a user is logged in or not and either
display a login prompt or the actual view that should be displayed if the user is
logged in. The controller may keep track of the type of user and thus either display
an administration panel or a regular user panel.

2.8.3 Model layer
The model contains the logic specific for the application. The model layer
contains all the logic and functions related to the data associated with the site.
The model layer retrieves/saves data from/to a database, and gives the view layer
content to show. The model layer may also summarize and modify the data and
execute different functions depending on what interactions the user has with view
layer.

Active Record

Active Record is the persistent data management used in a Rails application as part
of the model layer. Active Record provides an interface with Ruby functions to
a relational database and provides storage of Ruby objects directly mapped to the
database. To enable Active Record for an object the object is created as a subclass
of ActiveRecord::Base. This creates a table in the database with the same name
as the class and the object will have a number of Active Record API functions
attributed to it. To fill the table with associations to other models tags, functions
such as belongs to, has one, and has many can be used.

Active Record provides several functions to retrieve objects from the database. If
the object User is stored in the database, then User.all will return all users
stored in the database. User.find_by(name: David) will find the first
user with the name ”David”. A more complex call to retrieve users can be
users = User.where(name: ’David’, occupation:
’Painter’).order(created at: :desc). This will return all users
with the name David and occupation Painter and sort them by the date they were
created in the system.

To get the same information as the previous Active Record statement in SQL the

22 CHAPTER 2. THEORETICAL BACKGROUND

query would be SELECT * FROM Users WHERE name = David AND
occupation=Painter ORDER By created at DESC; The similarity
to SQL in the function names are intentional, as Active Record does an SQL query
to the database when it is used. The advantage of Active Record is that it provides
Ruby functions and it creates Ruby objects from the return of the SQL query.
Active Record also sets up the objects within the database and automatically adds
their properties, just by sub classing an active record when creating an object.

When Active Record is used all changes made to an object after it is retrieved are
kept in a buffer and not added to the database until the save function is used on
the object. In the case of ALE, this means that when a user is making changes
to the system no changes are actually saved until a specific save button is used to
commit these changes to the database.

2.9 Javascript
Javascript is a loosely typed, lightweight programming language initially created
by Oracle. Javascript is best known as a scripting language for web pages, but it
can also be run outside of a web browser through frameworks such as Node.js.
Javascript is typically run at the client side of the web page and enables the
developer of the website options to manipulate and create live interactions with the
website. Such interactions can be simple things (such as changing the page layout,
detecting mouse movement, and enabling buttons) to more complex things (such
as browser games, advanced graphical demonstrations and physics simulations).
Some of the Javascript libraries that will be used in this thesis project are described
in the following subsections.

2.9.1 Sigma.js
Sigma.js is a graph drawing library constructed in Javascript to display graphs on
web pages. It can display graphs using one of three different renders: HTML5
Canvas, WebGL or SVG. This library also supports a variety of plugins.

Sigma.js’s core functionality only displays nodes and edges given positions.
Sigma.js can be extended to do many things through the use of plugins, e. g.
show custom images for each node, display multiple edges between the same two
nodes, create a layout using a basic force based layout, and parse graphs from
external Javascript Object Notation (JSON) files.

The basic graph object in Sigma.js only has 10 methods that can be used to
retrieve one or all edges/nodes, add edges/nodes, and remove edges/nodes. Most

2.9. JAVASCRIPT 23

of sigma’s functionality comes from its easily extendable core as well as its high
rendering performance.

The following paragraphs describe the main plugins used in this thesis

sigma.renderers.customShapes

This plugin enables custom node shapes as well as overlaying images on top of
nodes in the sigma graph. This means that system nodes and external nodes can
have different shapes. It also means that images with node properties can be
overlaid in order to display the value of a node’s attributes.

sigma.exporters.svg

The sigma.exporters.svg plugin enables export of a Sigma.js graph to a Scalable
Vector Graphics (SVG) file. This SVG file can then be combined with custom
shapes to enable drawing graphs within nodes, where the internal node structure
can be displayed with a graph. This graph can then be overlaid onto the node
and displayed as a part of a larger graph. An example of this concept is shown in
Figure 2.7

Figure 2.7: An example of a node’s structure overlaid onto a node to create a
graph within a node.

24 CHAPTER 2. THEORETICAL BACKGROUND

sigma.layout.forceAtlas2

The sigma.layout.forceAtlas2 plugin gives sigma the functionality to do force
based layout of the sigma graph. The plugin takes several options as input, such
as node and edge weight factor, starting iterations, and how much to slow down
the nodes should be subject to. How the force based layout works was further
described in the Section 2.4 starting on page 12.

sigma.plugins.filter

The sigma.plugins.fliter plugin enables the use of custom functions to specify
filters for the graph. The filter function is called once for each edge and node
in the graph and returns either true or false. If true, then the currently called
node or edge is displayed, otherwise it is hidden. The filter function can consider
properties such as node type, node degree, edge, length, or a custom property to
decide if the element should be shown or not.

sigma.renderers.parallelEdges

By default Sigma.js does not support multiple edges between two nodes, but the
sigma.renderers.parallelEdges plugin adds this support. Each edge in the graph
has a count property and to have multiple edges between the two nodes different
counts are set for the different edges. All edges between two nodes can then be
displayed at the same time without overlapping.

2.9.2 cardinal-spline-js

Cardinal-spline-js[19] is a project available on GitHub which adds a new function
to the HTML5 Canvas. The new function receives an array of points as input
and outputs a shaped containing a curved line through the points. The curve is
interpolated via the formula for a cardinal spline. An exapmle of the shape before
and after the cardinal-spline-js function is used can be seen in Figure 2.8.

2.10. INTERFACE TO ALE SYSTEM’S DATA 25

Figure 2.8: A line drawn through a set of points. The image (to the left) shows the
straight lines between points before cardinal-spline-js is used and the resulting
curve (to the right) after cardinal-spline-js has been used.

2.9.3 D3.js
D3.js[20] is a Javascript library made for processing and representing data on
web pages. D3 stands for Data Driven Documents. Like Sigma.js D3.js supports
plugins. In this thesis project D3.js is combined with a plugin to present UML
sequence diagrams. The plugin is d3-message-sequence.

The GitHub project d3-message-sequence enables the drawing of sequence
diagrams with D3.js. This plugin has functions for adding messages between
actors as well as parameters for setting animation properties when adding data.
During this thesis project this plugin was used without any animations but the
plugin was modified to support different kinds of arrows, extra labels for the
arrows, and different arrow colors. These modifications are further described in
Section 3.8 starting on page 44.

2.10 Interface to ALE system’s data
The ALE system configuration is accessed through a web page served via Ruby
on Rails. This means that a developer might access the data either from the SQL
database where Active Record stores its values or via the built-in Rails functions
that Active Record provides. The various configuration objects such as adapters,
system nodes, protocols, rulesets, external nodes, etc. are represented and made
accessible via these two interfaces.

Active Record can be used to retrieve the configuration of the system, but to
retrieve data recorded by the system the log file is accessed. The ALE system
stores data in a log file aggregated from all nodes in the system locally on the
master node. The master node also runs the web server from which the system

26 CHAPTER 2. THEORETICAL BACKGROUND

is configurated. This logfile can be accessed directly from Ruby code running
on Rails, but has to be parsed into usable objects. This parsing is described in
Subsection 3.7.3 starting on page 43.

2.11 Development at Aptilo and Bugzilla
The development at Aptilo uses Bugzilla[21] as its main form of organization.
Bugzilla is used by many software projects (i.e. the Linux Kernel, Open Office,
Red Hat and by Mozilla). While Bugzilla was originally only intended to track
bugs in the system, Aptilo has extended its usage to include new features to
implement and other changes to be made to the system. Each new feature to
implement is added as a new ”bug” and all relevant fields, such as name, who it is
assigned to, priority, severity, and target release are filled out.

Bugzilla is well integrated with Git and together with each bug the relevant
Git repositories gets listed. When a developer has made changes to a file, the
developer may send the changes for code inspection. The code inspection part
of Bugzilla has been modified at Aptilo to work through Bash Unix Shell via the
command codeinspect. The command accepts multiple arguments but the main
arguments are

Bugnumber The tracking number in Bugzilla, so the reviewer
knows which bug the changes are made for,

Reviewer email The mail to which the codeinspect is sent,

Git branch The branch in which the new commits to be inspected
are located, and

Commit hash If the developer does not wish to send the full git
history since the last accepted commit, the hash of a
commit may be specified.

The commits sent in the codeinspect may only add one feature at a time, and
should contain two commits with each codeinspect; one with the modified files,
and one which increases the version number.

After a codeinspect has been sent, the reviewer receives an email containing a git
patch with the suggested commits. The reviewer might then forward the message
if need be, to people in the staff with more expertise in the changed code. The
reviewer then responds back to the sender, either with changes needed or with a
confirmation that the developer can push the changes to the remote server.

2.12. WORKING MODEL 27

2.12 Working model
Kanban[22] is an agile method to use for software development and extreme
programming(XP)[23] is a programming philosophy used when writing program
code. Both of these working models were originally designed to be used in a team
of developers, but many parts are applicable for a sole developer.

2.12.1 Kanban
Kanban[22] was first developed at Toyota in the 1940s. The motivation was to
implement just in time development in a similar fashion to how a convenience
store manages its stock. This means that each step in the development process
tries to start new work only when it deems all previous work is finished, and to
have as few jobs running in parallel at a time. This is supposed to lead to more
flexible planning and faster output.

In Kanban a priority board lists of all the tasks in the backlog. The board at Aptilo
is grouped by Later, Soon, and Next. An example of the planning board can
be seen in Figure 2.9. The most important task or tasks are positioned in Next,
while in Soon a small group of slightly less important tasks are placed. Finally,
in Later are all tasks which are currently not deemed important. When a task is
finished, then a new task is plucked from the Next group. When the Next group is
empty, then the most important tasks in the Soon group are moved up to the Next
group. This means that only the most important tasks are being worked on and no
lengthy planning sessions are needed. This approach can be compared to Scrum
where each sprint is planned beforehand.

28 CHAPTER 2. THEORETICAL BACKGROUND

Figure 2.9: Picture of the priority board during this project

2.12.2 Extreme programming
Extreme programming (XP)[23] is a philosophy with an emphasis on simplicity.
This simplicity is meant to be used as the simplest approach most often is the best
approach when programming. XP also emphasize the importance of integrating
code with the excising solutions to avoid compatibility issues. XP also suggests a
structure of the work that goes very well with Kanban in that the most important
piece work is selected and finished before starting on any new work. A flowchart
of how XP might work is illustrated in Figure 2.10.

2.12. WORKING MODEL 29

Figure 2.10: Flowchart for a typical XP approach

These two working models(Kanban and XP) were chosen since Kanban was
used as a standard at Aptilo, I had previous experience with XP, and I believed
they would go nicely together.

Scrum was considered as another option but were not chosen since Kanban was a
better option to use, due to Kanban being standard at Aptilo.

Chapter 3

Method

The overall goal of this thesis project is to demonstrate a practical solution which
is capable of displaying the state of an ALE system with many different properties
visualized along with how the traffic is flowing within the system. This chapter
will describe the method used to achieve this overall goal

3.1 Literature study

The first part of the project was a literature study. The study’s goal was to get
a general understanding of different types of graph representations and to find
existing solutions to similar problems.

The literature study is based upon sources found by querying Google Scholar,
IEEEXplore, and Scopus. The search queries were formed with a basic
understanding from previous courses at KTH, specifically: ID2220: Advanced
Topics in Distributed Systems, and IK1550: Internetworking. These searches
were done in several iterations based on the previous search results in order to
get more and more specific results. At the end of the literature study a reading
list of approximately 15 documents were used as a base. From this knowledge the
first prototype was created to demonstrate to the staff at Aptilo. Their feedback
was the main input for my subsequent design decisions.

3.2 Related work

Six previous works were deemed to be the most relevant to this thesis project and
highly related to the work to be conducted. A description of each of these works
as well as which parts of the work were relevant and why is given in this section.

31

32 CHAPTER 3. METHOD

Force-Directed Graph Visualization with Pre-Positioning
Hua, et al. presented a model for prepositioning the nodes in the graph before

applying a force-based layout in ”Force-Directed Graph Visualization with Pre-
Positioning: Improving Convergence Time and Quality of Layout”[9]. This was
highly useful for the thesis project since it described a rather simple algorithm
for pre-positioning the nodes which decreases the time to reach equilibrium by
approximately 20%. Another benefit of pre-positioning (instead of spreading the
nodes randomly) is that the result will always be the same after a certain number
of iterations with the force-based algorithm. This means that a user of the system
will always end up with the same graph for the same input parameters, compared
to having the nodes in a random pattern when starting the algorithm. This is
especially useful for the user when sharing the generated graph’s settings with a
colleague, since they both will see the same result.

There exists more advanced pre-positioning algorithm such as one based on
pagerank described by Dong, et al. in ”An advanced pre-positioning method
for the force-directed graph visualization based on pagerank algorithm” [10], but
since the graph constructed by the tool in this thesis project was rather small, the
performance benefit of such advanced pre-positioning was not needed. Using this
advanced pre-positioning would only increase the complexity.

Improving Graph Readability by Incorporating Readability Metrics
In [17] by C. Dunne and B. Shneiderman several readability metrics are defined

for how to determine if a graph is easily readable. These readability metrics
include properties such as node occlusion, edge crossing, edge crossing angle,
and edge tunneling. All these readability metrics are always kept in consideration
during this thesis project to ensure that the graphs presented and generated by
the tool always follow these guidelines in the best possible way. A tool called
SocialAction[18] was created, but as described in Section 2.6 on page 16 the
source code for the tool could not be found early in this project.

Measuring and Improving the Readability of Network Visualizations
In the Ph.D. thesis ”Measuring and Improving the Readability of Network

Visualizations”[16] by Dunne there are further descriptions of how a graph can be
determined to be easily readable or not. The contents of this thesis overlap with
the work presented by Dunne and Shneiderman in ”Improving Graph Drawing
Readability by Incorporating Readability Metrics: A Software Tool for Network
Analysts” (described in the previous paragraph). Since Dunne’s thesis describes
many other useful things to be considered in this thesis project such as ”Group-
in-a-Box” layouts, and describe the readability metrics with other words, this was
considered a key source.

3.3. PRESENTING MOCKUPS AND PROTOTYPES 33

Exploiting aesthetic criteria
In ”An improved force-directed graph layout algorithm based on aesthetic

criteria”[15] by Dong, et al. a force-based layout algorithm is presented which
takes the aesthetics of the graph into consideration. The algorithm’s result is
influenced by some of the aesthetic criteria previously presented by C. Dunne,
such as number of edge crossings and crossing angles. After the layout is done
by the force-based algorithm a refinement process is described which curves the
edges to improve the angular resolution yielding better crossing angles for the
edges. Both the new layout and the bending of edges are highly relevant to this
thesis project.

Comparing Expected and Real-Time Spotify Service Topology
In Vilius Visockas’ master’s thesis ”Comparing Expected and Real-Time

Service Topologies”[24] a way of finding, visualizing, and analyzing the topology
of Spotify’s music service is described. The work described in the thesis is similar
to this thesis project since the work described also visualizes a network’s topology
and flows. The major difference is that the scale of Spotify’s music service is much
larger than the typical ALE system, but many parts of Visockas’ work were still
applicable to this thesis project.

Exploring Color in Interface Design
In the article ”Exploring Color in Interface Design”[25] by Shubin, et al.

describes how different colors can interact in an interface. The article describes
how the properties of colors in the interface such as contrast, hue, and saturation
can play a part in how a user sees various elements in the interface. The examples
given in the article are used as guidelines when deciding what colors should be
used in the tool created in this thesis project.

3.3 Presenting mockups and prototypes

Each Friday the development staff at Aptilo has a demonstration session at which
the developers may demonstrate new features that they have added to the system
and then lead discussions about problems and possible choices for their current
work. During this project the current state of the prototype was demonstrated
every other Friday and questions about how to proceed were asked. For the first
Friday some mockup pictures were presented to give an idea of what the first
prototype might look like. These demonstrations were also used to ensure that the
work proceeded in the correct direction, so that in each iteration the graph either
gave more information or became easier to read.

34 CHAPTER 3. METHOD

3.4 Retrieving information
To retrieve information SQL queries were first made directly to the database where
Active Record store its information. This seemed like a good approach at first
approach since I already had some expertise in SQL. A first implementation
was constructed using SQL and Python to create a data structure for a basic
graph. The disadvantage of this approach was that the SQL database does not
contain any uncommitted changes to the configuration. These changes are only
stored in the current state of Rails’ ActiveRecord and thus I needed to use the
ActiveRecord API to retrieve this information. To gain access to this uncommitted
information the program and subsequent development were therefore changed to
be completely in Ruby on Rails.

Retrieving the needed information within Ruby on Rails were rather easy with the
#all accessor which retrieves all Objects of a given class. The start of the program
therefore contained lines such as:

@system nodes = SystemNode . a l l
@ e x t e r n a l n o d e s = E x t e r n a l N o d e . a l l
@ c l i e n t n e t w o r k s = C l i e n t N e t w o r k . a l l

3.4.1 Parsing the retrieved elements
Once the information had been retrieved it was parsed into useful objects. The
different groupings of the nodes had to be created from this information, e. g.
each application group had to be added to the graph as links between all nodes
of the same type. Connections between system and external nodes were added
as a virtual node with multiple links from each external node and one link to
each system node. Other properties such as sites and subnets were also added to
realize a complete graph. The last step was to export the collected information
as a temporary JSON string. This JSON string is used as input to the graphical
Javascript component.

3.5 Creating abstractions
The graphical component receives the graph as a very dense graph with a very
large number of edges between some pairs of nodes. It is not uncommon for a
pair of system nodes to share four subnets, three application groups, and a site.
This information is given to the graphical component as the nodes having eight
edges between each other, each marked with the corresponding edge type. To
ease the reading of this file, filters are applied to the different properties so that a

3.6. DISPLAYING THE INFORMATION 35

user might choose to display only sites, only applications, or a combination some
of different properties. The whole range of properties are shown in Figure 5.3 in
Section 5.1. The figure is available on page 49.

3.6 Displaying the information

Sigma.js is used to display the information contained in the graph. To better
display the nodes Sigma.js was extended in several ways. Some of these
extensions (e.g. edgeDots - see Subsection 3.6.3) were found to be general enough
to be included in the Sigma.js GitHub project. These plugins can therefore be
found in the plugins folder in Sigma.js GitHub repository∗ or among the current
pull requests.

Some of the source code is also shown in this thesis. The version of this source
code that is shown has been changed to simply show function calls (rather than the
full code and arguments) to make it clearer for the reader. For instance the existing
code to add a line to the canvas might simply be displayed as an addLine()
function.

3.6.1 Node properties displayed within nodes

To make it easier to view the properties of a single node within the graph, Sigma.js
was extended with the customShapes plugin. This plugin was initially intended to
display images within a graph so it had to be modified with a new custom shape
for the purpose of overlaying a custom made graph on the image. The graph to be
overlaid was generated with the exporter.SVG plugin. This combination produces
the result shown in Figure 3.1.

∗ Sigma.js plugins https://github.com/jacomyal/sigma.js/tree/master/plugins

https://github.com/jacomyal/sigma.js/tree/master/plugins

36 CHAPTER 3. METHOD

Figure 3.1: A node within the graph with its properties displayed.

3.6.2 Common properties as areas instead of links
If nodes only could have one property of a certain type (for instance a node can
only be at one site at a time) it would better to display this property as an area
instead of as a complete graph of the properties. To make this possible Sigma.js
was extended with another customShape that keeps track of the edge of the shape
spanning all included nodes. To increase the performance corners of the area
not inside the view port are not rendered. To make the area rounded instead of
a polygon with sharp corners the utility library cardinal-spline-js was used. An
abbreviated version of the code to do this is displayed below.

Source code listing 3.1: Code to display an area behind a set of nodes in Sigma.js
1 /* Nodes are stored in the map in sub-arrays based on their

group name (offset-name). Each node is then stored in the
sub-array as[x, y, id]*/

2 var shapeToNodesMap = [] ;
3 var drawCustomBackground = f u n c t i o n (node , x , y , s i z e , c o n t e x t) {
4 /* Order the nodes by their angle compared to the

center, with angles moving in a clockwise direction
starting with the node with lowest ratio between dX
and dY. This is used to draw the outline of the area
in the correct order. If this where not done the
outlining would just jump between nodes randomly*/

5 var degreeMap = [] ;
6 var nodes = shapeToNodesMap [node . shapeName] ;
7 {minX , minY , maxX , maxY} = getMinMaxCoords () ;
8 var middleX = (maxX + minX) / 2 ;
9 var middleY = (maxY + minY) / 2 ;

10 nodes . f o r E a c h (f u n c t i o n (node) {

3.6. DISPLAYING THE INFORMATION 37

11 var dX = node [0]−middleX ;
12 var dY = node [1]−middleY ;
13 var a n g l e = Math . a t a n (dX / dY) ;
14 degreeMap [a n g l e] . push (node) ;
15 }) ;
16 degreeMap . sor tByKey () ;
17 var nodesToDraw = getNodesToDraw (degreeMap) ;
18 /* Add the nodes to an array and remove nodes that are

not part of the edges of the area. This removal is
done if the node is inside the triangle created by
the middle point of all nodes in the group and the
location of its two neighbours in the degreeMap. All
nodes are of the form [x, y]. This means [0][1] is
the first node’s y-coordinate*/

19 c o n t e x t . moveTo (nodesToDraw [0] [0] , nodesToDraw [0] [1]) ;
20 var p o i n t s T o C u r v e = [] ;
21 f o r (i = 0 ; i<nodesToDraw . l e n g t h ; i ++){
22 var p r e v i o u s I n d e x = (i −1)%nodesToDraw . l e n g t h ;
23 i f (p r e v i o u s I n d e x < 0) {
24 p r e v i o u s I n d e x = nodesToDraw . l e n g t h + p r e v i o u s I n d e x

;
25 }
26 var prev iousNode = nodesToDraw [p r e v i o u s I n d e x] ;
27 var nextNode = nodesToDraw [(i +1)%nodesToDraw . l e n g t h

] ;
28 var c u r r e n t N o d e = nodesToDraw [i] ;
29 i f (! i s I n s i d e T r i a n g l e (middleX , middleY , p rev iousNode

[0] , p rev iousNode [1] , nextNode [0] , nextNode [1] ,
c u r r e n t N o d e [0] , c u r r e n t N o d e [1])) {

30 p o i n t s T o C u r v e . push (c u r r e n t N o d e [0]) ;
31 p o i n t s T o C u r v e . push (c u r r e n t N o d e [1]) ;
32 }
33 }
34 /* Create a nice looking curve, fill it and stroke it.

The curve function is from cardinal-spline-js*/
35 c o n t e x t . c u r v e (po in t sToCurve , 0 . 5 , 25 , t rue) ;
36 c o n t e x t . s t r o k e () ;
37 c o n t e x t . f i l l () ;
38 } ;

The above code starts off by retrieving all the nodes belonging to the current
region and finding the middle coordinate of the region. It then proceeds to map
the angle of each node relative to this middle coordinate and sorts the nodes by
this angle.

To finally create the shape the points are looped through and if the node is
considered to be an edge node (not inside the triangle created by the previous
node, next node, and the middle) it is added to the shape. The shape is then filled

38 CHAPTER 3. METHOD

and stroked. The stroke creates some margin between the nodes and the edge of
the shape. The resulting shape will now show the area behind the nodes inputed
to the fuction.

3.6.3 Link status as dots upon the links
To show the status of the nodes, dots were added to the links between nodes to
show if the link has both connected nodes online or offline. If any of the two
connected nodes are offline, then the link is marked with red dots and if both is
online the link is marked with green dots. An example of this is shown in Figure
3.2.

Figure 3.2: An example of a graph with colored dots at the end of the edges.

If the status is unknown for a node, then the dots are removed. The plugin
made for Sigma.js is in the form of a new edge renderer by the name dotCurve.
The code is displayed below in an abbreviated form.

Source code listing 3.2: Code to display colored dots on the links between nodes
in Sigma.js

1 s igma . ca n va s . edges . do tCurve = f u n c t i o n (edge , sou rce , t a r g e t ,
c o n t e x t , s e t t i n g s) {

2 addLine () ; /* The previous edge renderer which adds the
line between source and target*/

3 /*Check if there are any dots to be rendered*/
4 i f (edge . s o u r c e D o t C o l o r != u n d e f i n e d | | edge .

t a r g e t D o t C o l o r != u n d e f i n e d) {
5 /*Retrive the size and offset. If they are undefined

default to 3 and 1 */
6 var d o t O f f s e t = edge . d o t O f f s e t | | 3 ;
7 var d o t S i z e = edge . d o t S i z e | | 1 ;
8 /*Scale the sizes to the current zoom level, defined

by size and sSize*/
9 d o t S i z e = s i z e ∗ d o t S i z e ;

3.6. DISPLAYING THE INFORMATION 39

10 d o t O f f s e t = d o t O f f s e t ∗ s S i z e ;
11 /*Create dots for the source and the target (if they

are defined)*/
12 i f (edge . s o u r c e D o t C o l o r != u n d e f i n e d) {
13 c r e a t e D o t (c o n t e x t , sX , sY , cp , tX , tY , d o t O f f s e t

, d o t S i z e , edge . s o u r c e D o t C o l o r) ;
14 }
15 i f (edge . t a r g e t D o t C o l o r != u n d e f i n e d) {
16 c r e a t e D o t (c o n t e x t , tX , tY , cp , sX , sY , d o t O f f s e t

, d o t S i z e , edge . t a r g e t D o t C o l o r) ;
17 }
18 }
19 } ;
20 /* Function which adds a dot to the context depending on an

offset, a size and a color*/
21 f u n c t i o n c r e a t e D o t (c o n t e x t , sX , sY , cp , tX , tY , o f f s e t , s i z e

, c o l o r) {
22 c o n t e x t . b e g i n P a t h () ;
23 c o n t e x t . f i l l S t y l e = c o l o r ;
24 /*Get the coordinates for the point*/
25 var d o t = g e t P o i n t O n B e z i e r (sX , sY , cp . x , cp . y , tX , tY ,
26 o f f s e t) ;
27 /*Create a 2*Pi radians arc, i. e. a full circle*/
28 c o n t e x t . a r c (d o t . x , d o t . y , s i z e ∗ 3 , 0 , 2 ∗ Math . PI ,
29 f a l s e) ;
30 /*Fill the circle with the previous fillStyle*/
31 c o n t e x t . f i l l () ;
32 }

In this code sX, sY, tX, tY are the source and target’s X/Y coordinates (respectively).
cp is a control point to determine the bending of the Bezier curve. dotOffset is the
distance between the node and the dot on the edge and dotSize is the size of the
dot.

3.6.4 Active legend
A feature that greatly improved the readability of the graph was the option to click
the elements in the graph to display more information about them. For instance
a user might click on a link to see its connections and what the link represents.
To enable this functionality an ”Active legend” was created next to the display of
the graph. This active legend receives events when a user clicks on elements in
the graph and depending upon the element the relevant information is shown. As
an example, when the user clicks a system node the available information for the
system node is shown, such as adapters, application groups, subnets and name. If
the user clicks on an edge in the graph, then the active legend shows the start and
end of the edge, what type of information it represents (subnet, application group

40 CHAPTER 3. METHOD

etc.), and which specific relation it represents (e.g. a specific subnet or specific
application group). Images displaying this active legend is available in Figure 5.4a
and 5.4b on page 53.

3.6.5 Layout engine
The layout engine is based upon the sigma.layout.forceAtlas2 plugin (in the
following text simply forceAtlas) for Sigma.js, but this plugin was extended to
support different filters for the layout. An example of the result of this modified
algorithm can be seen in Figure 3.3. The nodes were initially spread out in a circle
sorted randomly, but were then positioned by the algorithm based upon their color.
The green nodes were filtered out when the positioning was done, thus they remain
in a circular pattern.

Figure 3.3: A layout created with the modified version of forceAtlas2 algorithm.

The new version of the algorithm receives two new optional properties as
input. The two arrays edgeFilter and nodeFilter contain Strings. The
Strings filters all the nodes and edges in the graph (respectively). The edges and

3.7. GENERATING FLOW INFORMATION 41

nodes in the graph have a new, optional, property filterType which is what
the filters map against. If the filterType is present in the respective array, then the
forceLayout will be applied to this element. Otherwise the elements are ignored
when applying the forceAtlas algorithm. The modification can also be found in
Sigma.js pull request 726∗.

3.7 Generating flow information

This section describes how the flow information was retrieved and displayed. First
a description of how a flow is identified is given, then how this flow is retrieved
from the logs, and lastly how the flow is displayed in the web GUI.

3.7.1 UUID-tracking

A universally unique identifier (UUID) is generated by the Linux UUID library
call (see the Linux manual page uuid(3)). This function generates a unique 16 byte
long identifier. This identifier is used throughout the system. When printed to the
log the last four characters from the (see the Linux manual page uuid parse(3))
function is used. Four is an arbitrary number (set in the source code with the
constant UUID LENGTH) and the number of digits could be increased if lots of
information is being logged (hence ensuring that the UUIDs do not overlap). The
reason to not log all 16 bytes is for the log to be easier to read by humans. A long
16 byte tag would take up lots of space for the reader of the log.

To add this UUID-tracking several of the ALE systems packages had to be
modified, including:

evh2 The event handler in the system.

aptlog The system’s logging service. This package writes logs for
the full system on the current master node.

freeradius The RADIUS component in the system receives, parses,
and sends RADIUS requests.

sessionproxy-server The proxy relays requests to the correct node in the network
for instance to a RADIUS adapter when receiving a RADIUS
request.

∗ Sigma.js pull request 726 https://github.com/jacomyal/sigma.js/pull/726

https://github.com/jacomyal/sigma.js/pull/726

42 CHAPTER 3. METHOD

3.7.2 Tracking counter
The UUID added to the tracking messages shows which flow the current flow is
part of, but does not show the order in which the events have happened. Events at
a given node will be ordered in the log file, but events between nodes will not be
ordered. The clocks of each node were set using NTP and their accuracy measured
using the ntpq command. The time stamps in the system were considered
unreliable since the clocks in the system were measured to differ by about 70
ms. Also checking the order in the log file is not be reliable since the messages
are not certain to be written in the order that they were sent over the wire. An
example of this was that a request is sometimes logged after their corresponding
ruleset was logged as having been evaluated. There are other was to improve this
measurement to be better than 70ms, for instance by updating the NTP time more
often or switching protocol to a more accurate one (such as PTP). Unfortunately,
since the accuracy needed were likely to be higher than the accuracy NTP has to
offer, and switching to PTP seemed harder than an alternative approaches, none
of these approaches were pursued.

To solve this problem a counter was introduced to the message. The counter was
increased at key parts in the code, for instance when the message was passed
through evh2[26] and through freeradius. This means that a message with a
higher counter will always have been created after a message with a lower counter.
Unfortunately, this is not true if the message ”splits” into two parallel events.
Since the ALE system is based upon distinct events, and the execution inside one
of these distinct event is considered sequential in ALE, this is not a problem[5].
If the event were to split up, the highest counter is used by each node before
increasing it, leading to a mechanism similar to lamport time[27]. If we were to
track multiple ALE events, a more advanced kind of ordering would have to be
used.

The policy engine in the system was also modified to more thoroughly log what
it does by adding a log line before a policy is executed and when it has finished.
From these log lines another sequence chart can be made which shows the calling
of different policies within the policy engine. An example of how the log entries
might look when transformed into a sequence diagram is visible in Figure 3.4.
The log entries has been abbreviated to only show a relative time stamp and the
log message.

3.7. GENERATING FLOW INFORMATION 43

1:Begin Aptilo-Timer-Schedule-RS

1:End Begin Aptilo-Timer-Schedule-RS

3:Begin Aptilo-CDR-RS

3:Begin Aptilo-WiFi-CDR-RS

4:Begin Aptilo-WiFi-CDR-Send-Event-RS

10:End Aptilo-WiFi-CDR-Send-Event-RS

11:End Aptilo-WiFi-CDR-RS

11:End Aptilo-CDR-RS

Figure 3.4: An example of the sequence diagram for a group of log entries. The
log is displayed to the left and the corresponding sequence diagram to the right.
The log only shows the relevant messages, and their relative timestamp.

3.7.3 Parsing the log
After the log was modified to include the UUID and the counter it needs to be
parsed to extract each single UUID as an event sequence. A sample log message
which had matched the tracking condition would now look like:

1 20160415 0 9 : 1 8 : 4 8 . 1 2 9 2 s e s s i o n p r o x y / S e s s i o n P r o x y [3 1 9 3] : Trace :
(User−Trace) : [1] : ” joak ims− t r a c e ” : e2a3 | 4 : Sending RADIUS−
Auth t o 1 9 2 . 1 6 8 . 1 2 0 . 2 2 1 : 1 6 0 6 6

The parts of the message could be viewed as:

1 Date Timestamp NodeId EngineType / EngineName [PID] : Type : (
LogLevel) : [TraceID] : ” TraceName ” : UUID | Count : Message

Splitting the log message into an array at the character ’ ’ and String ”: ” gives
each component of the log as an individual String. The indexes of the arrays are:

• For the String splitted at ’ ’ -

– Index 0 - Date

– Index 1 - Timestamp

– Index 2 - NodeId

– Index 3 - Engine

44 CHAPTER 3. METHOD

• For the String splitted at ”: ” -

– Index 1 - Type

– Index 2 - (LogLevel)

– Index 3 - [TraceId]

– Index 4 - ”TraceName”

– Index 5 - UUID|Count

– Index 6 and higher - Message

To ensure that the message to be parsed actually is a correct trace message the
arrays are checked to have the correct length. Index 5 of the array derived from
”: ” which should contain UUID|Count, hence it is checked to match the regular
expression [a-f|\d]{’+UUID LENGTH’} which ensures that the text actually
matches the correct format. UUID LENGTH is a constant set to the number of
characters of the UUID in the log. If the expression does not match the log line is
discarded.

All of these properties of each log line are parsed into Ruby objects which are then
grouped by UUID. The UUIDs are then sorted based upon the first time stamp for
each UUID and internally on the counter for the UUID. To detect where to add
messages in the sequence chart each time both the engine has changed and the
counter has increased the previous log line is shown as the line that caused the
message.

When dealing with the policy engine a “calling stack” is created so whenever a
new policy is executed it is added to the stack and when a policy is done executing
it is removed from the stack. This ensures that is always possible to know between
which two policies the calls are interacting.

3.8 Displaying flow as a sequence chart
Displaying the flow as sequence chart is done with D3.js[20]. As noted earlier
D3.js is a framework for displaying data driven documents on web pages. D3
provides functions for displaying and updating information on a HTML Canvas
or SVG. As described earlier in Section 2.9.3, the GitHub project d3-message-
sequence provides a simple plugin to display some of the properties of a sequence
chart. These components were used to display the data in the web GUI. However,
the plugin was modified to handle some special features, specifically:

Update data in the chart The default d3-message-sequence plugin could not
update the data in the graph with new information. To correct this a

3.8. DISPLAYING FLOW AS A SEQUENCE CHART 45

remove() and an instant_add() function were introduced. These
functions provides the functionality needed to update data by removing old
data and adding the new data.

Different color for different arrows To color the arrows in different colors
depending upon which UUID they belong to the plugin was extended to
check for a color property in the messages. This property is used to color
the arrows.

Show extra information above arrows To show the UUID and how long the
flow for the specific UUID lasts, an extra text field was added above the
message arrows. For the first message for each UUID this text field was
filled with this UUID tag and how many milliseconds it was between the
first and last message for the flow of the UUID. This time indicates how
long it took for the system to process the full flow caused by the message.

Add click functionality to the arrows in the chart To easier get further details
of the events in the chart the functionality to click on the arrows in the
chart were added. The search engine for the log available on the website
accepts multiple different arguments but the relevant argument were a regex
matching anywhere on the full log line.

To give the user the option to click on the arrows a regex matching the UUID
and range for the function call was generated, since the UUID is unique for
each trace. It is also ensured by Aptilo’s convention that the ’:’ character
were used to separate the different parts of the log line. This means that the
regular expression (([A-F]|[0-9]){4})\|\d*: will only match the
UUID and its counter in the log. The \d character in the regular expression
were changed to a regular expression for the range of the UUID’s counter
up until the next arrow in the sequence diagram. Finally a link leading to
the search engine for the log with the generated regular expression as an
argument were created and attached to each arrow in the sequence diagram.

Chapter 4

Result evaluation

This chapter describes how the results of the tool developed in this thesis project
were evaluated. The two main ways of conducting the evaluation were the use
of a neural image network to get an objective evaluation as well as meetings at
Aptilo to get a subjective evaluation. How the evaluation with Aptilo were done
was described in Section 3.3 starting on page 33.

As described in Chapter 2.6 a neural network is used to determine the quality of
the result. As training for the neural network 30 images were used that had either
been mentioned as an example of a good graph or an example of a bad graph
in sources listed in Appendix B. It is worth noting that 30 images is a very low
number of samples to train a neural network with but the network will still output
some metric determining the images similarity. All images used for learning were
mentioned as either good or bad by the authors, often in pairs with one good
and one bad version of the same graph. The reason for only having 30 images
during training was since there was very hard to find examples of good and bad
graphs from credible sources. During both my literature study and an extra search
specifically for training images, these 30 images were all that could be found.

The configuration used when evaluating the generated graphs used 1600 neurons
in the first layer, 12 neurons in the second layer, 8 neurons in the third layer whose
outputs were combined into a value. A sample of the configuration of the network
can be viewed in Figure 4.1. The setup was done based upon the guide provided
at Neuroph’s webpage.

47

48 CHAPTER 4. RESULT EVALUATION

Figure 4.1: A graphical representation of the neural network. The values and
color of the neurons show how much they each influence the final result.

To train the network the input were given for different number of iterations
until the network showed the correct result with at least 99% accuracy, i.e., 1%
error. This value was reached after 8 full iterations of the training set (meaning all
training images has been inputted 8 times). The error during training can be seen
in Figure 4.2.

Figure 4.2: A graph representing the error when training the neural network. The
error decreases as the network adjusts itself to the input. An error tolerance of 1%
is used. The exponential trend line to the data has the equation y= 0,2164e−0,393x

and R2 = 0,997
.

Chapter 5

Presentation of results

This chapter presents the results collected during the thesis project. First images
of the system’s architecture will be shown followed by images of some example
sequence charts.

5.1 Images of the graphs shown inside the web GUI
This section shows examples of the results as shown to the user as a page inside
the web GUI.

49

50 CHAPTER 5. PRESENTATION OF RESULTS

Figure 5.1 shows a webpage giving an overview of the system. In the middle
of the view is a graph which represents the system. To the right is an legend which
changes when the user clicks on elements in the graph. At the bottom, the upper
part of the settings panel for the graph visible. The full settings menu (accessible
by scrolling down the page) is visible in Figure 5.3 on page 52. The menu items
for the other parts of the web GUI have been redacted at Aptilo’s request.

Figure 5.1: A view of how the webpage might look inside the Aptilo web GUI.

The images presented from this point forward will not show the rest of the web
GUI, but instead only show the view presented inside the subpage. Since the user
only accesses this part of the GUI from the same page, therefore the elements in
the menu will not change. This means that the menu always will look the same on
all images rendering the display of it redundant. Figure 5.2 shows another view

5.1. IMAGES OF THE GRAPHS SHOWN INSIDE THE WEB GUI 51

of the graph. The external nodes in the system can be viewed on the left side of
the image as green dots. Labels for these are visible if the user hovers their mouse
over one of these nodes. The ALE system is visible to the right. From the graph
of the ALE system we can see that the system is spread out over two different
sites (the two gray areas) with four nodes at each site. Additionally, there are two
application groups spread over the two sites (visible as the blue group and the
purple link).The structure of the two sites are the same since the upper half of the
graph is a mirror image of the bottom half of the graph.

Figure 5.2: A view of the graph grouped by application group and site. The
external nodes in the system are visible as green dots. The system nodes are the
squares with each application group forming a complete graph.

52 CHAPTER 5. PRESENTATION OF RESULTS

Figure 5.3 shows the settings panel for the graph view. The settings panel is
placed directly under the graph. When the user makes a change to the settings the
graph is updated (nearly) instantaneously. If the layout is changed (accessed via
the ”GROUP BY” drop down menu) an animation is visible when the layout is
calculated so that the user can see how the grouping is done.

Figure 5.3: The settings menu below the system graph

5.1. IMAGES OF THE GRAPHS SHOWN INSIDE THE WEB GUI 53

Figure 5.4a shows how the legend looks when a node has been clicked. The
available properties for the node which can be presented in the graph is shown.
All elements in the legend are clickable to access the configuration page for the
clicked property.

Figure 5.4b shows how the legend to the right of the graph looks when an edge
has been clicked. It shows what relationship the edge represents, the type of the
edge, and what nodes the edge connects.

(a) Active legend
displaying properties
of a node

(b) Active legend
displaying properties
of an edge

Figure 5.4: Images of the settings menu which is displayed below the graph and
the active legend which is displayed to the right of the graph.

54 CHAPTER 5. PRESENTATION OF RESULTS

Figure 5.5 shows the different types of ALE nodes which are present in the
system. Their types are either master, slave, or unknown combined with the
node’s status: online, offline, or undefined. Online nodes are nodes where the
ALE system is up and running, while offline are ALE nodes which have been
online at some point. The undefined nodes are systems which are starting, shuting
down, or nodes which has not been connected yet.

(a) Example of a system
node with its properties
displayed inside it. The
edge displays the current
node status. Red is for
offline and dotted is for an
unknown type.

(b) View of an online
master node. This by the
solid green outline. Solid
indicates master node,
while green indicates
online.

(c) View of an online slave
node. The dashed green
outline denotes an online
slave node, where dashed
indicates slave node and
green indicates that the
node is online.

Figure 5.5: Images displaying the different node types as well as the different edge
representations. If the user zooms in on a node, they can see all of the properties
of that particular node. This information is also available in the active legend if
the user clicks on the node.

5.1. IMAGES OF THE GRAPHS SHOWN INSIDE THE WEB GUI 55

5.1.1 Examples of the sequence diagrams
This section shows examples of the sequence diagrams generated by the tool.
These sequence diagrams are present on a separate webpage available via the
system’s menus. The menus visible in the screenshots in this report has been
redacted to display only the current page. After the first figure the menus have
been cropped out of the picture.

56 CHAPTER 5. PRESENTATION OF RESULTS

Figure 5.6 shows a sequence of messages between different components in the
system. When the UUID changes from one UUID to another, then the color of the
arrows changes to reflect this. Above the first arrow for the new UUID the time for
the sequence to finish and the characters representing the UUID are shown. All
arrows in the chart are clickable to access the log file at the entry which generated
the selected arrow. The UUIDs shown in the chart are selected by the checkboxes
above the graph. This means that the user might read the log, find an interesting
UUID (for example each UUID at the time of an error) and display the flow at the
time of the error by checking the box for the specific UUID.

Figure 5.6: A view of the webpage when displaying a message or policy sequence
diagram. The currently shown view shows a message sequence. The settings box
above the diagram shows the last four characters of the UUID, trace number,
timestamp, and the first message in the sequence for each sequence found. There
are three different events visible in this figure. Events are shown further down the
webpage if the user scrolls.

5.1. IMAGES OF THE GRAPHS SHOWN INSIDE THE WEB GUI 57

Figure 5.7 shows the flow inside the policy engine. This view is similar to
the message sequence diagram, but some differences are noticeable. Since these
messages are running on the same server the timestamps can be used to directly
measure the time taken by each function. This means that above each function
call the execution time taken for that specific function is shown. It is also possible
to determine returning arrows because, unlike when dealing with the message
sequence flow, each function returns. Similar to the message sequence diagram
the arrows are clickable to access the log and each UUID to be displayed can
be selected above the graph. If the list of UUIDs are very long the user might
use the browsers built-in search function (Ctrl + F in most browsers) to simply
search the list for the relevant UUID but since the list is order chronologically
with timestamps it is also easy to simply scroll it to the relevant UUID. The length
of the list depends on the amount of messages being traced in the system, and how
long time it was since the log file was emptied, but may contain up to a hundred
messages in a typical use case. The administrator can clear the list by moving the
current log to the history folder since the list only displays the current log file.

Figure 5.7: Example of a sequence of function calls inside the policy engine. The
labels above are either of the function being called or the function it returns from
depending on if the line is solid or not.

58 CHAPTER 5. PRESENTATION OF RESULTS

5.2 Results from the artificial neural network
The neural network created used the value 40 for both H and W resulting in a
first layer with 1600 neurons. The value of 40 was chosen as the highest possible
value that the host computer could handle, higher values crashed the Neuroph
Studio application. The two hidden layers had 12 and 8 neurons respectively and
the error tolerance during training was set to 1%. The setup of the neural network
is further described and illustrated in Chapter 4 starting on page 47.

As seen in Figure 5.8 the neural network judged the graphs to be roughly 90%
similar to good graphs. Unfortunately, since the network was only trained with
30 samples, these values alone cannot be used to determine the overall quality of
the generated graphs and no statistical improvement can be measured. 30 samples
can be compared to the values found in the UCI Machine Learning Repository[28]
where 350 different data sets for machine learning can be found, and the median
number of samples in the sets is 606. If we assume that the accuracy of the neural
network follows a standard deviation, four times as many samples are needed to
double the accuracy. This means that for any the top half of values in Figure 5.8
error bars to not overlap the lowest value’s error bars, 74 more samples are needed.

Figure 5.8: Graph showing the results from the neural network measurement done
before each demo meeting. The value represent how similar the graphs generated
were to the graphs the neural network had trained on. The error bars shows a
95% confidence interval.

Chapter 6

Analysis

This chapter will analyze the results presented in the previous Chapter. First the
images presented will be analyzed and then the result from the artificial neural
network will be analyzed.

6.1 Analysis of the graphs inside the web GUI

The layout presented gives the user two or three options of how they wish to
represent properties. Properties that a graph only has one of, such as physical
location, can be represented as both a complete graph, via the layout engine, or as
an area behind the nodes with these same properties. The properties that a node
may have multiple of, such as application group or subnet, can be represented as
either a complete graph, or via the layout engine. The layout engine visualize the
properties by grouping nodes sharing a property closely together. For instance, if
the layout engine visualize application groups, the nodes will be attracted to other
nodes within the same application groups as them, and nodes sharing multiple
application groups between them will be even more attracted. It is also possible
to completely turn of all information regarding any given property of a system.

This series of prototypes leads to a tool that makes it easy to only show the
relevant information. This is easily seen in Figure 5.2 on page 51 where the
user of the tool can easily identify application groups spanning more than one
site. Previously the user would have had to manually open up an application
group, get the list of nodes belonging to the application group, and manually go
through the configuration of each of the nodes in the list to see if they are located
at different sites. Now the user can get the same information by just clicking three
buttons (”Group by: Application Group”, ”Link category - Application Group”,
and ”Backgrounds - Site”) in the new graph tool within the web GUI.

59

60 CHAPTER 6. ANALYSIS

The graphs presented follow the colors specified in ”Exploring Color in Interface
Design”[25] and have a low number of edges crossing if the layout is set to group
by the same property as the edges show. If they are set to present two different
properties (such as layout done on application groups, while the edges show the
subnet) the layout engine factors both in equal part. Since the user can customize
the layout of the graph, as well as the areas and edges present in the graph, there
may occur graphs which are suboptimal in their design, but this is hard to avoid
due to the many different factors interacting.

6.2 Analysis of the sequence diagrams

The sequence diagrams follow the UML standard, but shows information relevant
to the user, such as execution time. Each sequence diagram has an UUID to
identify it so the user can look in the logs to get further details about what is
happening in the system for a certain period of time. The user might also look at a
series of events (i.e., a chain of events) by clicking on the checkbox for more than
one UUID. Since the UUID is shared between the policy sequence diagram and
the message sequence diagram, the user might look at both the policy execution
and the message flow for the same event to see if all policies triggered upon the
correct messages and in the correct order.

Realizing all the properties of the sequence diagram mentioned in the previous
paragraph lead to an easy to use tool which translates complex logs, that
previously were the best means to know what is happening in the system, into
easy to read sequence diagrams. If the user wishes to examine the log for a specific
event the user can click on the arrows in the sequence diagram and the log data
will be presented on page within the browser. The new page contains the log with
a customized search done. The search filters the log to only show the data for the
clicked event.

6.3 Analysis of the artificial neural network’s result

The artificial neural network outputs a coarse result of how well the generated
graphs match the graphs in the training set. Unfortunately, this result alone cannot
determine whether the graph generated is good, but it ensures a more objective
measurements than the meetings with the staff at Aptilo. Since the result of the
artificial neural network were close to 90% for all graphs, we might consider all
the generated graphs to be good graphs. Unfortunately, due to the low accuracy
of the neural network, between the first and the last iteration of the prototype, any

6.3. ANALYSIS OF THE ARTIFICIAL NEURAL NETWORK’S RESULT 61

progress in producing better graphs cannot objectively be measured by this neural
network.

Chapter 7

Conclusion

This thesis shows a way to display a network with multiple properties displayed
at the same time along with the ability to display UML sequence diagrams of both
messages and policy sequences.

The thesis uses the Sigma.js Javascript library to provide an interactive webpage
within the ALE framework’s configuration utility. The system architecture view
webpage provides a system administrator with an overview of the system’s current
status. The view can be customized to show a subset or combination of many
of the properties of the system. Additionally, it is easy for the administrator to
configure their own view of the system, so as to provide the information that they
need to perform their own tasks. The user’s interaction with the webpage consists
of setting the layout to display a certain property, hiding, or showing different
properties. It is also possible to click on specific elements to show their properties
or ’Alt’ click elements to access their configuration page.

The tool implemented in this thesis project also provides means to generate a
sequence diagram of messages flowing between nodes in the system, as well as
a sequence diagram displaying how the rulesets inside the system’s policy engine
were evaluated. This view also shows how long each function takes to execute.
This makes it easier to identify those functions taking extraordinarily long to
execute. Each arrow in the sequence diagram can be clicked to display the system
log for that period of the specific function call’s in the case of rulesets or the
duration of a message flow in the case of message sequences.

All of the (sub-)goals in Aptilo’s task description with the key words MUST and
REQUIRED were completed and all but one of those with the keyword SHOULD
were completed. The only (sub-)goal that is incomplete was the last one:

It SHOULD be possible to control the level of detail seen [in the UML sequence

63

64 CHAPTER 7. CONCLUSION

diagram], for example, by limiting the nesting level.

Achieving this goal is left as part of future work.

Aptilo’s impression of the work conducted in the thesis was that it was good and
Aptilo’s verdict on the work as presented is:

”The graphical overview will provide a simpler way for a administrators and
support staff to view the current network configuration. The message sequence
chart and policy sequence chart provide a clear view of system behaviour.
Combined, these tools will reduce handling time for support cases and decrease
the number of cases that require escalation. Additionaly they will be used during
development and testing to automate the documentation of use cases.”

The completion of the (sub-)goals combined with the response to the feedback
given by Aptilo during the project means that the prototype of the tool is ready to
be integrated into Aptilo’s ALE framework. This integration is scheduled to be
part of the ALE version 5.1 release in 2017.

7.1 Discussion
Evaluating the solution was harder than I had expected since I was unable to find a
pre-existing tool that could evaluate the visual properties of a graph. Fortunately,
the neural network and Aptilo’s Friday meetings provided some feedback. Since
the neural network’s assessment is rather coarse, the statistical significance of
the results are too low to determine anything except that the result presented is
considered to be somewhat good. The meetings ensured that the work progressed
and gave valuable input and output to the company, but the subjective assessment
given in these meetings is hard to quantify in numbers and were therefore only
used as guidelines during the work. This also means that the solution suggested
in this thesis could use further evaluation.

Something that also took more time than expected during the work was adjusting
to the coding practice at Aptilo and integrating with their existing code base. The
use of ”codeinspects” and strict git structure ensures a low technical debt, but was
hard to adjust to as I had no experience with them from my previous studies.

7.2 Future work
Displaying more information in the different views could further enhance the
product. Possible information to be added might include:

7.2. FUTURE WORK 65

• Completing the last SHOULD requirement from Aptilo, as described earlier
in this Chapter.

• Adding the message sequence as an overlay to the graph of the system’s
architecture,

• Error information and statistics as an overlay to the graph of the system’s
architecture or the sequence diagram,

• Logs in relation to the policies in the sequence diagram,

• Ruleset code in relation to the policies in the sequence diagram,

• When viewing properties as links, add a ”colorblind mode” to aid people
with color blindness,

• Combining the graph of the system’s architecture with geographical data to
overlay the graph on a map, and

• Combining the graph of the system’s architecture with the structure of the
physical network to more easily identify single points of failure.

Another possible future effort is to analyze the graphs generated by tool presented
with SocialAction described in section 2.6 on page 16. If SocialAction does not
function properly, another tool is needed. Such a tool would have to analyze
properties of the layout of a graph, such as calculating the number of edge
crossings, colors, edge angles, and symmetry. This could be a possible project
for a future master’s thesis since evaluating the visual properties of a graph were
something that was hard to do during this thesis project. As a result I only had a
variety of guidelines to follow during it.

Bibliography

[1] “Aptilo Networks - carrier solutions for managing mobile data services.”
[Online]. Available: http://www.aptilo.com/

[2] T. Rybing, “Aptilo Networks.” [Online]. Available: https://en.wikipedia.
org/w/index.php?title=Aptilo Networks&oldid=717397730

[3] J. Wakefield, “One wi-fi hotspot for every 150 people, says study,”
BBC News, Nov. 3, 2014. [Online]. Available: http://www.bbc.com/news/
technology-29726632

[4] “Aptilo Service Management Platform | Aptilo.” [Online]. Available:
http://www.aptilo.com/aptilo-service-management

[5] C. Steinbach, “Interview with Chris at Aptilo Networks,” Stockholm,
Sweden, Jan. 2016.

[6] “Java Neural Network Framework Neuroph.” [Online]. Available: http:
//neuroph.sourceforge.net/

[7] C. M. Bishop, Neural Networks for Pattern Recognition. New York, USA:
Oxford University Press, Inc., 1995. ISBN 978-0-19-853864-6

[8] C. Bishop, Pattern Recognition and Machine Learning. New York, USA:
Springer, Oct. 2007. ISBN 978-0-387-31073-2

[9] J. Hua, M. L. Huang, W. Huang, J. Wang, and Q. V. Nguyen, “Force-
directed Graph Visualization with Pre-positioning - Improving Convergence
Time and Quality of Layout,” in 2012 16th International Conference on
Information Visualisation, Jul. 2012. doi: 10.1109/IV.2012.31 pp. 124–129.

[10] W. Dong, F. Wang, Y. Huang, G. Xu, Z. Guo, X. Fu, and K. Fu, “An
advanced pre-positioning method for the force-directed graph visualization
based on pagerank algorithm,” Computers & Graphics, vol. 47, pp.
24–33, Apr. 2015. doi: 10.1016/j.cag.2014.10.001. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/S0097849314001277

67

http://www.aptilo.com/
https://en.wikipedia.org/w/index.php?title=Aptilo_Networks&oldid=717397730
https://en.wikipedia.org/w/index.php?title=Aptilo_Networks&oldid=717397730
http://www.bbc.com/news/technology-29726632
http://www.bbc.com/news/technology-29726632
http://www.aptilo.com/aptilo-service-management
http://neuroph.sourceforge.net/
http://neuroph.sourceforge.net/
http://www.sciencedirect.com/science/article/pii/S0097849314001277

68 BIBLIOGRAPHY

[11] W. Cui, H. Zhou, H. Qu, P. C. Wong, and X. Li, “Geometry-based
edge clustering for graph visualization,” Visualization and Computer
Graphics, IEEE Transactions on, vol. 14, no. 6, pp. 1277–1284, 2008.
doi: 10.1109/TVCG.2008.135. [Online]. Available: http://ieeexplore.ieee.
org/xpls/abs all.jsp?arnumber=4658140

[12] C. Dunne and B. Shneiderman, “Motif simplification: improving
network visualization readability with fan, connector, and clique glyphs,”
in Proceedings of the SIGCHI Conference on Human Factors in
Computing Systems. ACM, 2013, pp. 3247–3256. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2466444

[13] C. Dunne, “Measuring and Improving the Readability of Network
Visualizations,” NIST ACMD Seminar, University of Maryland, College
Park,, Aug. 28, 2012. [Online]. Available: http://math.nist.gov/mcsd/
Seminars/2012/2012-08-28-Dunne-presentation.pdf

[14] K. Ognyanova, “Static and dynamic network visualization with R,”
Presentation from 8th Annual Political Networks Workshop & Conference
(POLNET 2015), Jun. 18, 2015. [Online]. Available: http://kateto.net/
network-visualization

[15] W. Dong, X. Fu, G. Xu, and Y. Huang, “An improved force-
directed graph layout algorithm based on aesthetic criteria,” Computing
and Visualization in Science, vol. 16, no. 3, pp. 139–149, Nov.
2014. doi: 10.1007/s00791-014-0228-5. [Online]. Available: http:
//link.springer.com.focus.lib.kth.se/article/10.1007/s00791-014-0228-5

[16] C. Dunne, “Measuring and improving the readability of network
visualizations,” Ph.D. dissertation, University of Maryland, College Park,
Maryland, USA, 2013, [Online] Available: ”http://hcil2.cs.umd.edu/trs/
2013-14/2013-14.pdf. [Online]. Available: http://gradworks.umi.com/35/
99/3599522.html

[17] C. Dunne and B. Shneiderman, “Improving graph drawing readability
by incorporating readability metrics: A software tool for network
analysts,” University of Maryland, HCIL Tech Report HCIL-2009-13,
2009. [Online]. Available: http://www-lb.cs.umd.edu/∼cdunne/hcil/pubs/
Dunne09Improvinggraphdrawing.pdf

[18] “SocialAction.” [Online]. Available: https://sourceforge.net/projects/
socialaction/

http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658140
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=4658140
http://dl.acm.org/citation.cfm?id=2466444
http://math.nist.gov/mcsd/Seminars/2012/2012-08-28-Dunne-presentation.pdf
http://math.nist.gov/mcsd/Seminars/2012/2012-08-28-Dunne-presentation.pdf
http://kateto.net/network-visualization
http://kateto.net/network-visualization
http://link.springer.com.focus.lib.kth.se/article/10.1007/s00791-014-0228-5
http://link.springer.com.focus.lib.kth.se/article/10.1007/s00791-014-0228-5
http://hcil2.cs.umd.edu/trs/2013-14/2013-14.pdf
http://hcil2.cs.umd.edu/trs/2013-14/2013-14.pdf
http://gradworks.umi.com/35/99/3599522.html
http://gradworks.umi.com/35/99/3599522.html
http://www-lb.cs.umd.edu/~cdunne/hcil/pubs/Dunne09Improvinggraphdrawing.pdf
http://www-lb.cs.umd.edu/~cdunne/hcil/pubs/Dunne09Improvinggraphdrawing.pdf
https://sourceforge.net/projects/socialaction/
https://sourceforge.net/projects/socialaction/

BIBLIOGRAPHY 69

[19] “epistemex/cardinal-spline-js.” [Online]. Available: https://github.com/
epistemex/cardinal-spline-js

[20] M. Bostock, “D3.js - Data-Driven Documents.” [Online]. Available:
https://d3js.org/

[21] “Home :: Bugzilla :: bugzilla.org.” [Online]. Available: https:
//www.bugzilla.org/

[22] “What is Kanban?” [Online]. Available: https://leankit.com/learn/kanban/
what-is-kanban/

[23] “Extreme Programming: A Gentle Introduction.” [Online]. Available:
http://www.extremeprogramming.org/

[24] V. Visockas, “Comparing Expected and Real–Time Spotify Service
Topology,” Master’s thesis, KTH, Royal Institute of Technology,
Stockholm, Sweden, May 29, 2012, Trita-ICT-EX, 2012:63. [Online].
Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96352

[25] H. Shubin, D. Falck, and A. G. Johansen, “Exploring Color in
Interface Design,” interactions, vol. 3, no. 4, pp. 36–48, Jul. 1996. doi:
10.1145/234813.234818. [Online]. Available: http://doi.acm.org/10.1145/
234813.234818

[26] S. Åhman and M. Wallstersson, “EVH2 protocol : Performance analysis and
Wireshark dissector development,” Bachelor’s thesis, KTH, Royal Institute
of Technology, Stockholm, Sweden, June 30, 2012, Trita-ICT-EX, 2012:123.
[Online]. Available: http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98689

[27] L. Lamport, “Time, clocks, and the ordering of events in a distributed
system,” Communications of the ACM, vol. 21, no. 7, pp. 558–565, 1978.
[Online]. Available: http://dl.acm.org/citation.cfm?id=359563

[28] “UCI Machine Learning Repository.” [Online]. Available: https://archive.
ics.uci.edu/ml/index.html

https://github.com/epistemex/cardinal-spline-js
https://github.com/epistemex/cardinal-spline-js
https://d3js.org/
https://www.bugzilla.org/
https://www.bugzilla.org/
https://leankit.com/learn/kanban/what-is-kanban/
https://leankit.com/learn/kanban/what-is-kanban/
http://www.extremeprogramming.org/
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96352
http://doi.acm.org/10.1145/234813.234818
http://doi.acm.org/10.1145/234813.234818
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-98689
http://dl.acm.org/citation.cfm?id=359563
https://archive.ics.uci.edu/ml/index.html
https://archive.ics.uci.edu/ml/index.html

Appendix A

Task description from Aptilo

This document outlines work required to help visualize the ALE system configuration
and behavior.

A.1 Introduction

A typical ALE installation consists of multiple nodes; upstream and downstream
nodes that are external to the ALE system, and nodes belonging to the ALE
system. Each ALE node can be configured with multiple interworking components
for external communication, policy evaluation, usage data and accounts.

Understanding the ALE system configuration, at a high level, is a prerequisite
to working with an existing customer installation. Configuration information is
made available via the ALE management interface, but is difficult to assimilate,
and easy to misinterpret since it is spread out over many configuration pages.

The ALE system behavior is also highly configurable. In particular, the flow of
control in the ALE policy engine is sensitive to changes in configuration and
to differences in external stimuli. During trouble-shooting our understanding
of the flow is informed both by familiarity with the policy rules, which may be
incomplete, and reference to trace logs, which are dense and difficult to follow.

A.2 Requirements

Keywords ”MUST”, ”MUST NOT”, ”REQUIRED”, ”SHOULD”, ”SHOULD
NOT” and ”MAY” that appear in this document are to be interpreted as described
in RFC2119.

71

72 APPENDIX A. TASK DESCRIPTION FROM APTILO

A.2.1 ALE System Visualization

The ALE management interface MUST provide a consolidated, schematic high-
level overview system configuration including ALE nodes, and external nodes,
node groups and networks. All nodes MUST be annotated with their configured
names. The constituent external nodes of external node groups MUST be
represented. For ALE nodes, membership in an Application Group MUST be
represented. So too MUST allocation of adapters to and ALE node be shown.

Given that some ALE installations will be complex, involving many nodes, it
MUST be possible to control the level of detail see in the system overview.
This MAY involve, for example, hierarchical views. Part of the work will be
to investigate the best way to manage this. The system visualization MUST
be integrated into the existing ALE management interface and MUST therefore
follow the guidelines described in the ”Aptilo Developer Handbook”.

A.2.2 Overlays

Once a schematic system overview is in place, we MAY supplement the diagram
by overlaying statistical information retrieved from the ALE nodes. ALE already
collects statistic relating to request rate and timeouts for policy and adapters.
Part of the work would be to investigate what statistical information might be
represented and how.

We MAY also correlate errors and warnings in the system log with individual
nodes. We MAY, for example, overlay nodes in the diagram with colors
representing the number of severity of the log messages. Part of the work would
be to investigate the best way to display this information.

A.2.3 Flow Visualization

It SHOULD be possible to generate diagrams exposing system behavior from user
trace (i.e. from a text log of the message and policy control flow).

Augmenting the user trace MAY be necessary in order to make log interpretation
feasible. Any changes to the user trace MUST NOT reduce its readability or,
alternatively, it SHOULD be possible to disable the augmentation.

So that we may version control and include these diagrams as documentation, any
tools created to generate diagrams MUST output a text-based source (e.g. the dot
language as used by graphviz).

A.2. REQUIREMENTS 73

A.2.4 Message Flow Diagram
A tool SHOULD be designed and implemented to generate a UML sequence,
or comparable, diagram showing the sequence of message flows between ALE
nodes and components. The input to the tool will be system user trace and system
configuration. Part of the work will be to investigate how best, and in what detail
to represent nodes, components, messages and flow sequence.

Used in combination with network capture files, the message flow diagram MAY
include messages sent to external nodes.

A.2.5 Policy Flow Diagram
A tool SHOULD be designed and implemented to generate a UML collaboration,
or comparable, diagram showing the flow of control between policy rulesets. The
input to the tool will be system user trace and, if necessary, system configuration.
It SHOULD be possible to control the level of detail seen, for example, by limiting
the nesting level.

As a possible extension the policy flow MAY include Lua function invocations.
The Message Flow Diagram and the Policy Flow Diagram MAY be combined if
the resulting diagram is still comprehensible.

Appendix B

Learning sources for the artificial
neural network

[1] C. Dunne, “Measuring and improving the readability of network
visualizations,” Ph.D. dissertation, University of Maryland, College
Park, Maryland, USA, 2013, [Online] Available: ”http://hcil2.cs.umd.edu/trs/
2013-14/2013-14.pdf. [Online]. Available: http://gradworks.umi.com/35/99/
3599522.html

[2] K. Ognyanova, “Static and dynamic network visualization with R,”
Presentation from 8th Annual Political Networks Workshop & Conference
(POLNET 2015), Jun. 18, 2015. [Online]. Available: http://kateto.net/
network-visualization

[3] T. Masui, “Evolutionary Learning of Graph Layout Constraints from
Examples,” in Proceedings of the 7th Annual ACM Symposium on User
Interface Software and Technology, ser. UIST ’94. New York, NY, USA:
ACM, 1994. doi: 10.1145/192426.192468. ISBN 978-0-89791-657-8 pp.
103–108. [Online]. Available: http://doi.acm.org/10.1145/192426.192468

[4] P. Healy and N. S. Nikolov, Graph Drawing: 13 Th International Symposium,
GD 2005, Limerick, Ireland, September 12-14, 2005, Revised Papers.
Springer Science & Business Media, Jan. 2006. ISBN 978-3-540-31425-7

75

http://hcil2.cs.umd.edu/trs/2013-14/2013-14.pdf
http://hcil2.cs.umd.edu/trs/2013-14/2013-14.pdf
http://gradworks.umi.com/35/99/3599522.html
http://gradworks.umi.com/35/99/3599522.html
http://kateto.net/network-visualization
http://kateto.net/network-visualization
http://doi.acm.org/10.1145/192426.192468

TRITA-ICT-EX-2016:111

www.kth.se

	Introduction
	Background
	About Aptilo
	Large scale networks

	Problem
	Purpose
	Goal
	Sustainability
	Ethics

	Method
	Delimitations
	Outline

	Theoretical background
	Large scale Wi-Fi systems and networks
	Aptilo Long term Evaluation (ALE) system
	Different types of protocols
	Application groups
	Adapters
	Tracing in the ALE system

	Important properties for graph visualization
	Force based graphical layout
	Slowdown when nodes are nearing their equilibrium
	Coarse pre-positioning of nodes

	Other possible techniques to enhance readability
	Edge clustering
	Filtering
	Different types of shared property representation
	Other approaches to represent shared properties

	Detect if a graph is easily readable
	UML Sequence Chart
	Ruby on Rails
	View layer
	Controller layer
	Model layer

	Javascript
	Sigma.js
	cardinal-spline-js
	D3.js

	Interface to ALE system’s data
	Development at Aptilo and Bugzilla
	Working model
	Kanban
	Extreme programming

	Method
	Literature study
	Related work
	Presenting mockups and prototypes
	Retrieving information
	Parsing the retrieved elements

	Creating abstractions
	Displaying the information
	Node properties displayed within nodes
	Common properties as areas instead of links
	Link status as dots upon the links
	Active legend
	Layout engine

	Generating flow information
	UUID-tracking
	Tracking counter
	Parsing the log

	Displaying flow as a sequence chart

	Result evaluation
	Presentation of results
	Images of the graphs shown inside the web GUI
	Examples of the sequence diagrams

	Results from the artificial neural network

	Analysis
	Analysis of the graphs inside the web GUI
	Analysis of the sequence diagrams
	Analysis of the artificial neural network's result

	Conclusion
	Discussion
	Future work

	Bibliography
	Task description from Aptilo
	Introduction
	Requirements
	ALE System Visualization
	Overlays
	Flow Visualization
	Message Flow Diagram
	Policy Flow Diagram

	Appendix B Learning sources for the artificial neural network

