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Abstract

This thesis project has studied a number of protocols that could be used to communicate between a
vehicle and a remote server in the context of Scania’s connected services. While there are many
factors that are of interest to Scania (such as response time, transmission speed, and amount of data
overhead for each message), this thesis will evaluate each protocol in terms of how much data
overhead is introduced and how packet loss affects this overhead. The thesis begins by giving an
overview of how a number of alternative protocols work and what they offer with regards to Scania’s
needs. Next these protocols are compared based on previous studies and each protocol’'s
specifications to determine which protocol would be the best choice for realizing Scania’s connected
services. Finally, a test framework was set up using a virtual environment to simulate different
networking conditions. Each of the candidate protocols were deployed in this environment and
setup to send sample data. The behaviour of each protocol during these tests served as the basis for
the analysis of all of these protocols. The thesis draws the conclusion that to reduce the data
transmission overhead between vehicles and Scania’s servers the most suitable protocol is the UDP
based MQTT-SN.
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Sammanfattning

I den har rapporten har jag undersékt ett antal protokoll som kan anvandas for att kommunicera
mellan server och lastbil och darmed anvandas for Scanias Connected Services. DA det 4 manga
faktorer som &r intressanta nar det kommer till kommunikation mellan lastbil och server for Scania
som till exempel responstid, éverféringshastighet och mangden extra data vid 6verforing sa har jag
valt att begransa mig till att utvardera protokollen utifran hur mycket extra data de anvander vid
overforing och hur detta paverkas av paketforlust. Rapporten borjar med att ge en dverblick Gver
vilka tankbara protokoll som kan anvandas och vad de kan erbjuda géllande Scanias behov. Efter
det s jamfors protokollen baserat pa tidigare studier och protokollens specifikationer for att avgora
vilket protokoll som &r bast lampat att anvandas i Scanias Connected Services. Sists s& skapas ett
virtuellt ramverk for att simulera olike natverksforhallanden. Har testas varje protokoll och far
sanda olike dataméangder for att sedan fa sin prestanda utvarderad baserat pa hur mycket extra data
som sandes. Dessa resultat ligger sedan till grund for den analys och slutsats angdende vilket
protokoll som &r bast lampat att anvandas av Scania. Rapporten drar slutsatsen att baserat pa den
information som finns tillganglig och de resultat som ficks av testerna sa skulle den UDP baserade
MQTT-SN vara bast [ampad for att minimera méngden extra data som skickas.

Nyckelord
MQTT, MQTT-SN, AMQP, TCP, UDP, paketforlust, header data, overhead, publish-subscribe
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1 Introduction

According to predictions made in a press release from 2014, Scania estimated that in 2015 it would
have around 150 000-200 000 vehicles using its services [1]. According to a statement by Volkswagen,
the current owner of Scania, Scania currently has approximately 170 000 connected vehicles sending
data to Scania for processing and of these, 70 000 were added in 2015 [2]. If this growth continues,
the number of Scania’s connected vehicles in 2020 is estimated to be around 600 000. This creates a
demand for a scalable solution that can cope with the increasing amount of data that these vehicles (in
the aggregate) will generate. Additionally, it is expected that the amount of data per vehicle will also
increase over the amount transferred by a vehicle today. Currently, a vehicle is estimated to transmit
approximately 91 kB per operating hour (see Table 2-2 on page 24.). While currently huge amounts of
data are not being transferred, the increase in number of connected trucks and the expected increase
in the number of services offered combined with the cost of transmission means that there is a
substantial financial benefit for Scania in reducing the aggregate amount of transmitted data.
Additionally, there is the limitation of data caps put in place by the different network providers. This
data cap typically limits each truck to 10 MB of data transfer per day. As a result, the lower the
protocol overhead, the more of this 10 MB/day that will be available for other services.

1.1 Background

Scania currently employs their own proprietary communication protocol called Scania
Communication Protocol version 2 (SCPv2). This protocol is used for all communication between
vehicles and Scania’s servers. The rapid growth in the number of connected vehicles has prompted
Scania to investigate what alternative protocols are available and how they would perform in
comparison to the current solution in order to ensure that they will be able to keep up with the
increasing volume of traffic.

Figure 1-1 illustrates the current system. This figure gives an overview of how the communication
is done. All of the sensors in a truck are connected via a Controller Area Network (CAN bus) for
internal communication. The CAN busses are connected to a C200, or in newer trucks a C300, which
resides in the cab of the truck. The C200/C300 is Scania’s proprietary Electronic Controller Unit
(ECU). This ECU acts as a communication gateway from the truck to Scania’s servers, and to the truck
from the servers. The use of a communication gateway decouples the internal and external
communication protocols, thus making it easy to replace any of these communication protocols. This
decoupling also allows different protocols to be used for different scenarios. The decoupling of the
protocols also decouples the internal and external functionality offered by the ECU, further increasing
the system’s flexibility. Improving the communication between these gateways and Scania’s server(s)
through the use of new protocols will be the focus of this thesis.

With the current growth in the number of connected devices and the emergence of the so called
Internet of Things (IoT), many protocols have been introduce that profile themselves as the best
option for different kinds of connected devices. The two most prominent protocols are the Message
Queue Telemetry Transport (MQTT) [3] protocol and the Advanced Message Queue Protocol
(AMQP) [4]. Both of these protocols are being maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) consortium. There is also the MQTT-SN variant of the
MQTT protocol which profiles itself as a communication protocol for resource constrained network
connected devices [5]. Meanwhile, the Constrained Application Protocol (CoAP) has been
standardized by the Internet Engineering Task Force (IETF) [6].

Each of these protocols has its own advantages and disadvantages and has been created with
different use cases in mind. The result is that each protocol is more or less suitable for use for
communication between Scania made vehicles and Scania’s servers. This thesis project investigates
how these alternative protocols behave with regards to data transmission overhead, particularly when
packet loss increases.
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Figure 1-1: System Overview

1.2 Problem definition

The problem to be solved is: What is the best protocol with regards to Scania’s desire to reduce the
data transmission overhead due to the protocol used to communicate between vehicles and their
servers. While Scania has expressed an interest in reducing the response time and increasing the
transfer speed, their main focus was to reduce the amount of data that is transmitted. The main
factors that increase the amount of data transmitted are the overhead of each protocol, the size of the
payload, and how data transmission is affected due to retransmissions performed as a result of packet
loss. As a result, the overhead and performance over a network with potentially high packet loss rates
will be the criteria by which the alternative protocols will be evaluated.

Each protocol offers different features and levels of customizability, but the following
requirements must be fulfilled by each protocol:

1. All communication must be secure; hence all of the payload data must be encrypted.

Since all the investigated protocol operate on the application level Scania is free to encrypt the
packets as they see fit. This thesis will not evaluate how the encryption of packets might affect
the amount of data transmitted, but all protocols need to support encryption. A number of
different encryption approaches will be discussed in Chapter 5.

2. The protocol must be able to guarantee a reliable at-least-once delivery (see Figure 2-2 on
page 6).
3. The protocol must be able to handle files of up to 64 MB in size.

This could also be supported either on a protocol level or on an application level and is thus
not a strict protocol requirement. The problem with large files is that if the connection is lost
during the transmission of the file, then the receiver and sender need to synchronize what
portion(s) of the file were received and which were lost so that the entire file does not need to
be re-sent when connectivity is re-established.

The protocols will be implemented and then evaluated in the context of Scania’s communication
platform. The test environment for this implementation will provide a framework in which we can
vary those variables that impact the protocol's performance regarding data transmission, such as
packet loss, payload size, and frequency that data is sent. An example of the most common messages
and their frequencies is presented later in Table 2-2 on page 24.
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1.3 Purpose

The purpose of this thesis project is to evaluate several different communication protocols in terms of
how well they fit Scania’s requirement regarding communication between their servers and vehicles
they provide their services for. The results should allow Scania to make an informed decision about
the advantages and disadvantages of alternative protocols when deciding to upgrade from their
current SCPv2 protocol.

1.4 Goals

The goal of this thesis project is evaluate different communication protocols for communication
between Scania’s vehicles and server. This has been divided into the following two sub-goals:

1. Create a proof of concept message platform to allow communication between a virtual
machine acting as server and a client using each of the investigated protocols. This will allow
us to vary one variable (such as protocol used, percentage of packets dropped, and message
size) at a time.

2. Evaluate each of the protocols on the basis of how they perform regarding overhead and how
packet loss affects the amount of data transmitted.

1.5 Research Methodology

The original idea was that a prototype implementation of the protocol would be developed and then
evaluated using a client application running inside a vehicle with a server application running on
Scania’s servers. However, the system that was first thought to be quite modular with regard to the
protocol turned out to be quite interconnected. This meant that the SCPv2 protocol implementation
could not be easily replaced by the new protocol implementation. The alternative was to have the
SCPv2 protocol use the new protocol via a gateway. However, this would affect the validity of the
experimental data since the evaluation would only reveal how the alternative protocols behave as a
gateway protocol for SCPv2. Additionally, the SCPv2 protocol is quite large, as well as proprietary, so
this would affect both the quality of the experimental data as well as the quality of the thesis.

For the above reasons, the approach used for testing was to set up a virtual environment with an
emulated network connection (between the gateway in the vehicle and the gateway in front of the
Scania server. This emulated network makes it possible to completely control the network’s behaviour
(in terms of delay, error rate, congestion, etc. ), hence the protocols will be tested in this controlled
environment. While this would seem to be an artificial environment which is quite far from the
network conditions that the actual Scania trucks are subject to, it allows for a more exact reasoning
about how different network conditions affect the protocols. The main parameter we will focus on
emulating is packet loss, since packet loss can be directly controlled and it impacts the amount of data
transmitted by the different protocols. This test environment enables us to draw reliable conclusions
based on the experimental data about how the protocols behave as the packet loss rate varies.

1.6 Network assumptions

According to internal measurements by Telefonica, a GSM network provider for Scania, during the
month of April 2016 the average packet retransmission rate was around 0-4% depending on how
packet loss is counted. Based on the number of outgoing ACK/NACK from the server to the vehicle the
packet loss will be around 4% NACK's, however a NACK could be due to a late packet or an indication
of mismatched encryption keys and does not necessarily indicate packet loss. So if the number of
packets sent from the c300 is instead compared to the number of ACK/NACKS sent from the server
the packet loss rate is about one every ten millionth packet. In the end though any retransmission
results in more traffic being sent over the network. So whether a retransmission is due to a late packet,
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a packet loss or erroneous encryption keys does not matter for our experiments so the assumption will
be that for the communication networks that Scania uses has a retransmission rate of about 4% on
average. However, according to Scania the number of retransmissions is not the only network
impairment that affects the communication between the vehicles and the servers. Another thing to
consider is that trucks often operate in remote areas, such as mines, where the connection might be
unstable or non-existent. Finally, the amount of data that can be transferred in a day is limited to 10
MB due to restrictions by the network provider. Table 1-1 summarizes the assumptions made about
the network for the purposes of this thesis project. More about the SCPv2 background can be read in
section 2.4.1.

Table 1-1: Assumptions about network between vehicle and server gateways

GPRS transmission

Unstable connection

High packet loss

Limited amount of data

1.7 Delimitations

There exists a multitude of protocols that are marketed as solutions for networks where limiting the
amount of data transmitted is a priority. However, due to the limited time available for this project the
most well-known and widely adopted protocols for connected devices have been chosen to focus on.
This choice was made because extensive research and testing has already been done on these
protocols and due to an expressed interest by Scania as to the potential for cloud integration.
Specifically the MQTT protocol, its sensor network variant (MQTT-SN), and AMQP have been chosen.
Two additional protocols were also investigated, but were not tested: CoAP and the Fast and Secure
Protocol (FASP). This latter protocol was of particular interest since the transfer of larger files over
unstable networks with high retransmission rates was of interest to Scania.

1.8 Structure of the thesis

Chapter 2 introduces the basic terminology and principles of the investigated network messaging
protocols. It describes how the underlying protocols work and how the design choices of these
protocols affect their performance. This will allow the reader to understand and follow the reasoning
regarding the results presented later in the thesis.

Chapter 3 explains the experimental setup that will be used and how the protocols will be
evaluated using this experimental setup. Chapter 4 describes how the experimental setup and each of
the protocols were implemented. Chapter 5 looks at the experimental results and discusses them in
terms of what these results might mean for Scania. Finally, Chapter 6 concludes the thesis and
suggests future work.
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2 Background

When evaluating each of the protocols there were three main properties that Scania is interested in:
response time, transmission speed, and data transmission overhead. While all of these criteria are of
interest, the main focus in this thesis project is the reduction of overhead. Moreover, the amount of
overhead is directly related to the level of reliability that is desired, due to the additional
transmissions that each additional level of guarantee entails. This chapter will discusses exactly how
each different level of delivery guarantees affect the transmission of data.

This chapter also looks at the functionality of the underlying transport protocols (specifically,
Transmission Control Protocol (TCP), User Datagram Protocol (UDP), and Stream Control
Transmission Protocol (SCTP) and how the performance and reliability of protocols higher up in the
protocol stack are affected by this functionality. Section 2.3 describes how the publish/subscribe
paradigm and the request/response paradigm work. This is essential background knowledge since
all the protocols to be considered follow one of these two paradigms.

The current Scania Communication Protocol SCPv2 will be briefly discussed in Section 2.4.
Following this there will be section discussing each of the protocols that will be evaluated.

2.1 Guarantee of delivery

Guaranteeing reliable data delivery incurs additional overhead: for example, in the form of
re-transmissions or using error correcting coding. A reliable protocol comes at the expense of
response time and/or transfer rate, due to the overhead associated with ensuring reliability. The
greater the level of reliability, the greater the data transmission overhead. When attempting to
reliably deliver data, the protocol can achieve one of the following types of delivery guarantees: at
most once delivery, at least once delivery, or exactly once delivery. Each of these is described below.

2.1.1 At most once delivery

At most once delivery, also known as “fire and forget”, ensures nothing in terms of actually
delivering data, unless the underlying transport protocol, such a TCP or SCTP, provides a guarantee
of reliability. At most once delivery simply sends data to the receiver and hopes for the best (see
Figure 2-1). If the receiver is able to successfully receive this data, then this method delivers data
quickly since there was no need for any additional overhead. Moreover, there is no need for the
sender to wait for an acknowledgement (ACK) that data has been received. However, if the receiver
is unavailable or the data is lost along the way, then we have no way of knowing that our data never
reached its destination.

Sender Send—> Receiver

Figure 2-1: At most once delivery

“At most once” delivery could be a problem if the communication takes place over unreliable
links, since data would be lost and there is no way of knowing which data was lost or even how much
data was lost.
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2.1.2 Atleast once delivery

In order to ensure “at least once” delivery there needs to be some way of knowing that the data has
reached the destination at least once. This is usually done by the receiver sending an ACK to the
sender to notify it that the data was received (as shown in Figure 2-2). The ACK process differs
between protocols, as some protocols may send an ACK for every unit of data received, while others
may send cumulative or selective ACKSs.

v

Sender Receiver

€—Acknowledge—

Figure 2-2: At least once delivery

There is also the question about how to determine that data was not delivered. A common
solution is to have a timeout starting when the data was sent until when it is resent unless an ACK
has been be received. When the timeout occurs, the sender resends the data and restarts the timer,
optionally increasing the waiting time with each missed ACK.

It is important to note that the ACKs can be acknowledgements of sequential bytes, messages, or
datagrams. In our later discussion of each of the protocols, we will specifically note what the ACK
refers to.

2.1.3 Exactly once delivery

The highest level of reliability ensures that data is delivered exactly once. Ensuring that data is
delivered exactly once requires that we deliver the data to the receiver (this can be done via a
combination of timeouts and retransmissions) and that the receiver can know if it has successfully
received this data previously (if so it can discard the duplicate data).

To enforce this exactly once message delivery semantics both MQTT and AMQP use a kind of
“double send” with ID-tagged messages to keep track of which messages have already been received
in order to filter out duplicate messages. This is a variation of “Strategy 3” described in [7]. This
double send is similar to a two-phase commit in databases.

This double send (shown in Figure 2-3) works as follows:
1. When the sender sends a message it stores the message and its associated message-1D.

2. If the receiver receives the message, then it stores the message-ID and sends a received
message back to the sender containing this message-ID.

3. The sender responds with a release message to the receiver which tells the receiver that the
received message was seen and that the stored message-1D can be released.

4. The receiver releases the message-ID and deletes its copy of the stored message, then it
sends a transfer completed message to the sender to indicate that the message transfer was
successfully completed.
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Figure 2-3: Exactly once delivery

2.2 Underlying protocols

Due to specifications from Scania all of protocols need to run on top of the Internet Protocol (IP).
For our investigations we will perform all our tests using IPv4. We could have chosen either 1Pv4 or
IPv6, but after discussing with Scania they had no plans for moving to IPv6 yet - although this
transition will happen sooner or later. It should also be noted that even if the larger IPv6 header had
been chosen it would not affect the comparison of the protocals since all of the protocols include an
IP header. We will consider three different transport protocols: UDP, TCP, and SCTP. We will
examine what effect each of these protocols has on the later tests in terms of data transmission
overhead.

221 UDP

UPD is a best effort delivery, connectionless protocol that offers mo guarantees regarding
delivery [8]. The header of a UDP packet consists of a source port, a destination port, a length, and
an optional checksum each consisting of 16 bits as shown in Figure 2-4.

Source port Destination port
(2 byte) (2 byte)
Length (Optional)
(2 byte) Checksum (2 byte)

Figure 2-4: UDP header

The main appeal of the UDP protocol is its simplicity. Since it includes very little additional
information, apart from the data we want to send, it allows us to send a lot of data very quickly and
with low overhead. The drawback is that we will have to provide reliability ourselves at a higher
layer. However, since we can chose exactly what features we want to include, a UDP based solution
has the potential to be optimized for a specific use case. For example, UDP is used by FASP, as
described in Section 2.9.4.

222 TCP

TCP provides an ordered, reliable byte stream between two hosts. Using TCP we get a lot more
features than when using the UDP protocol, but it comes at the cost of increased message size. The
TCP header is shown in Figure 2-5.
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Source port Destination port

(2 byte) (2 byte)
Sequence number
| (4 bytes) |
Acknowledgement number

I (4 bytes) |
Offset Reserved Control bits Window
(4 bits) (6 bits) (6 bits) (2 byte)

Checksum Urgent pointer

(2 byte) (2 _Dﬂe)

Figure 2-5: TCP header

The minimal sized, i.e., without any options, TCP header is 20 bytes. The following aspects are
worth considering when using TCP in the context of this project:

1.

Connection oriented protocol

Since TCP is a connection based byte oriented protocol the bytes are ordered using a
sequence number, hence the sender and receiver need to synchronize their respective
randomly selected sending byte sequence numbers when a TCP connection is initialized.
This is done through a three-way handshake. This handshake is designed to reduce the risk
of false connections [9], that is, that someone sends a packet with the correct sequence
number, but with a malicious payload. However, this three-way handshake is vulnerable to
a so-called “SYN” attack, where false initial synchronization segments are set to deny service
to legitimate users or to cause resource exhaustion of the device receiving these SYN
segments.

Retransmission of missing bytes

When TCP transmits a TCP segment it stores the segment and waits for a cumulative ACK
from the receiver. This cumulative ACK indicates that this data and all of the proceeding
data has been received. However, reliable ordered byte delivery is undesirable for sensor
data, as it does not matter whether a previous sensor value was lost when the sensor has
now reported its current value. For example, an old pressure sensor report has little value if
there is a newer value. Unfortunately, TCP will wait until all previous bytes have been
delivered before delivering the new data. This problem is called “head of queue blocking”
and could have undesired consequences in the context of this thesis project.

Congestion control

To avoid overloading the network TCP employs a congestion control algorithm together
with a congestion window (cwnd). This algorithm has several phases and starts out in the
“slow start phase” (as shown in Figure 2-6). In this phase the size of the congestion window
is doubled on receiving each ACK. Then, either it hits a threshold which causes it to go into
a congestion avoidance mode, which utilizes a linear increase of the congestion window on
each ACK* until it loses a segment, or it loses a segment before reaching this threshold. In
either case, when a segment loss is detected, then the congestion control threshold will be
cut to half the current threshold and the congestion window will be reset and the algorithm
starts over. This may result in a TCP session almost never operating at full capacity.

*The increase is by 1/cwnd + 1/8 of segment size each time an ACK is received.
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Packet loss

Threshold

Congestion window

Figure 2-6: Slow start congestion window adjustment; points represent received ACKs, adapted from [10]

Another mechanism for congestion control is called “Fast retransmission recovery” (shown
in Figure 2-7). TCP decides whether a segment was lost is by keeping a timer for each
segment, and if the receiver does not respond with an ACK in time, then the segment is
assumed to be lost. If this happens, then the congestion windows will be reset and the
threshold will be halved — however, this is undesirable if the segment was lost for a reason
other than congestion.

TCP avoids reducing the threshold when a segment is lost and the receiver is continuing to
successfully receive other segments. In this case, the receiver will respond with an ACK
indicating the sequence number of the next byte that it is expecting and it will continue to
send this same value for each new segment it receives.

If the sender does not receive an ACK for a segment within a specified time, but has received
three ACKs indicating that the receiver is still waiting for the same numbered next byte, the
sender knows that this segment was lost for a reason other than congestion, so it
immediately re-sends the missing segment and does not reduce the congestion threshold.

Sender Receiver

Packet 1

Y v

Packet 2

——Packet 3 (lost—.

Re-send packet 3————————»

Figure 2-7: Fast Recovery Retransmission
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2.2.2.1 CUBIC congestion control algorithm

There have been multiple improvements to how TCP handles congestion by using smarter
congestion control algorithms. The algorithm currently used in the C300 is the CUBIC congestion
control algorithm [11], an improvement of the Binary Increase Congestion (BIC) algorithm [12].
CUBIC will be the congestion control tested during all of our experiments.

The aim of CUBIC is to maintain the stability and scalability of the BIC algorithm, while
simplifying the congestion window control function and increasing TCP’s friendliness to other
protocols. CUBIC does this by replacing the complex three-phase growth function of BIC with a
simpler, two-phase cubic growth function.

In the CUBIC algorithm the algorithm has two phases when adjusting the congestion window:
(1) Steady State Behaviour and (2) Probing. In the Steady State Behaviour phase the algorithm
quickly increases the congestion window until it starts to approach the window size threshold
(Wax), then it starts to rapidly decrease the growth of the congestion window. This continues until
the growth reaches zero, after which the algorithm enters the second phase, i.e., the Probing phase.
During the probing phase it once again starts to accelerate the congestion window growth as it
moves away from W}, ..

One of the improvements over the BIC algorithm is that CUBIC replaces multitude functions in
the BIC algorithm with the CUBIC growth function described in Equation 1 :

Weupic = Cc(T - K)3 + Whax

Equation 1 CUBIC growth function [11, pp. 4, fig 1.2]

Here C is a constant scaling factor and T is the elapsed time since the algorithm started. When
plotted, the graph of the congestion window increases as a function of time and will look similar to
that shown in Figure 2-8.

Congestion Window
M

¢ Steady state behavior )

Probing

N

|
|
€
|
I
I
I
I

v

Time

Figure 2-8: CUBIC growth graph
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223 SCTP

While not utilized in any of the investigated protocols it could still be worth to look at the Stream
Control Transmission protocol. Unlike UDP which works in terms of datagrams and TCP which
works in terms of delivering ordered bytes, SCTP operates on messages and was designed to support
multiple streams — hence avoiding head of queue blocking. SCTP supports multi-homed hosts (so
that an SCTP host and client can automatically fail-over to an alternate network address if there is a
problem). Additionally, SCTP supports selective acknowledgements — so that it can efficiently deal
with burst errors. SCTP was designed to be used to reliably deliver messages, for example for
Signalling System 7.

Type Flags, Length,
1 Octet 1 Octet 2 Octets
User Data,
4 Octets
Figure 2-9: SCTP Chunk layout
Source Port, Destination Port,
2 Octets 2 Octets
Verification Tag,
4 Octets
Check Sum,
4 Octets
Figure 2-10: SCTP Common Header

2.2.3.1 SCTPvs TCP and UDP

An SCTP packet consists of a common header seen in Figure 2-10 which contains the source and
destination port as well as a verification tag and a check sum. After the header the protocol can
transmit multiple chunks seen in Figure 2-9 which contains the actual payload as well as a type
field, flags and a length field.

A list of differences between the SCTP protocol and the TCP and UDP protocol can be seen on [13]
where the most relevant for this case is the SCTP avoidance of head-of-queue blocking, message
oriented communication, multihoming and SYN cookies.

1. Multihoming

For SCTP, multihoming means that the sender and receiver can specify multiple endpoints
of attachment. This means that if one of the endpoints fail another one can be utilized to
deliver the messages. Since this works on a transport level the application level never needs
to know a different route was even used.

2. Message oriented communication

Unlike TCP but like UDP , SCTP is a message oriented protocol. This means that if SCTP
transmits X number of bytes, then the receiving application can read X number of bytes in
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one read. While UDP also offers this type of transmission, it does so with no delivery
guarantees. SCTP on the other hand has a guarantee of delivery.

3. Head-of-queue blocking avoidance

TCP guarantees that the packets are reliably delivered in the order that they were sent.
SCTP also offers delivery guarantees but with no guarantees about ordering. This allows it
to avoid the head-of-queue blocking that can occur for TCP were the transmission has to
wait for the last transmission to be ACK'd before being able to transmit the next set of bytes.

4. Four way handshake

To establish a new connection SCTP performs a four way handshake with a signed cookie
were the receiver of the connection will not reserve any resources for the incoming
connection unless it can prove that it is the IP address from which it is trying to initiate a
connection. This prevents a common attack against TCP known as SYN flooding [14]

2.3 Design paradigms

Two common communication patterns that are widely used today are publish/subscribe and
request/response. Each of these will be described below.

2.3.1  Publish/Subscribe

In the publish/subscribe pattern senders assume the role of publisher and receivers act as
subscribers. Between the publisher and the subscriber is often a broker who acts as a middleman
between the publisher and the subscriber (see Figure 2-11). The subscriber subscribes for a certain
topic either directly to the publisher or to the broker. A topic is a tag that the publisher attaches to
its messages when it sends them. When a publisher publishes a message to the broker, the broker
will forward this message to all of the subscribers who have subscribed to this topic.

Publisher

Message, Message

Topic 1 Topic 2

Broker

_ 7 <~ s
Message Message "Lc,\ssf’f
Topic 1 Topic 2

Topic 1
Topic 1

A
Subscriber Subscriber

Subscribed Subscribed
~_ totopic 1 ; to topic 1& 2
Figure 2-11: Publish/Subscribe messaging pattern using a broker

The publish/subscribe pattern has two major advantages over a traditional client/server design
for disseminating data.
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First, the publisher and subscriber are loosely coupled with regards to space, time, and
synchronization [15]. This means that the publisher does not need to know who is listening, the
subscriber and publisher do not need to be active at the same time and the publisher is not blocked
while producing a new event. This is in contrast to a traditional server/client solution where the
sender and receiver are tightly coupled and the server cannot send if the client is not receiving. This
makes it ideal for disseminating data to subscribers via an unreliable and/or intermittent network
connectivity where providing a guarantee that the other party is listening can be difficult.

Second, publish/subscribe is scalable due to its tree-based structure, since if the system needs to
be scaled up more brokers can be added and the topics split between them, thus reducing the load
on individual brokers.

However, there are disadvantages to using the publish/subscribe paradigm. One is that, even
though it is loosely coupled regarding time, space, and synchronization; it is tightly coupled with
regards to the published data. If a change is to be made in how the published data is represented,
then the programmer will need to modify all the subscribers. Souleiman Hasan, Sean O'Riain, and
Edward Curry are researching how to achieve decoupling with regards to data semantics by using
approximate matchings [16].

2.3.2 Request/Response

The request/response (or request-reply) paradigm is a basic communication method between pairs
of computers. It works by having one computer send a request to another computer. When the
second computer receives the request it sends a response. The most well-known application of this
design is the HTTP protocol in which a client requests a webpage from a server and the server
responds with the requested document.

This paradigm is flexible in that it only requires a point-to-point communication channel over
which the client sends a request to the server and the server responds to that client. However, HTTP
could also use the publish/subscribe paradigm if requests and responses are sent to all interested
parties [17].

The request/response model supports two modes for when the client waits for a response from
the server. The first mode uses synchronous blocking, thus the sender sends a request to the server
and then waits for a response. This allows a simple implementation, but can become problematic -
since if a client crashes it will be problematic to re-establish the blocked thread™.

The other mode uses an asynchronous call-back where the client sends requests to the server
and then sets up call-backs for the server. The client keeps one thread listening for reply messages
from the server and one thread to serve the responses. This way, when a reply is received, the
response invokes the call-back that was previously established. A client that uses this approach can
easily recover if it were to crash by simply restarting the reply thread and continuing. This makes
the asynchronous call-back more suitable than the synchronous approach when there is a need to be
resilient to crashes; for example, when operating in a remote environment where a reset of the
computer might be difficult to perform.

2.4 SCPv2

SCPV2 is the current communication protocol deployed by Scania for communication between the
gateway in vehicles and the gateways at their server. A good understanding of the requirements of
this protocol will be beneficial when comparing how other protocols perform in comparison with it.

* Note that protocols such as QUIC re-establish a communication session using cryptograhic means. (https://www.chromium.org/quic)
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Unfortunately, this protocol is proprietary, hence the protocol description will be brief (and lack any
specific details).

However, there is a specification that Scania wants the new protocol to fulfil (see Section 2.4.2).
Each of the protocols will be evaluated against this list of requirements to ensure that there no
required feature is missing.

2.41 Protocol background

The original Scania Communication Protocol version one only supported sending data via Global
System for Mobile Communication (GSM) using the Short Message Service (SMS) protocol. SMS
supports messages of up to 160 characters (including header and error detection code). However, as
the amount of data being transferred between the vehicle and server grew, the need for a new
protocol became evident. The two major requirements for version two of this protocol were:

1. Send alarge amount of data in a single UDP packet to achieve low communication cost and

2. The choice of communication infrastructure should be independent of the data being sent
from one application to another.

In the second version of the protocol, SMS was only used to wake up the system after which the
vehicle gateway connected to one of Scania’s Domain Name System (DNS) Servers to obtain an IP
address of one of Scania’s servers. Subsequently all communication to/from this server was done
over UDP using General Packet Radio Service (GPRS).

2.4.2 Requirement specifications

Scania’s requirements for version two of the protocol and all subsequent implementations are:
1. All communication must be done over a secure encrypted connection.

2. The protocol should be able to handle files of up to 64MB in size. This includes being able to
resume transmission of such a large file should connectivity be lost.

3. The protocol shall guarantee at-least-once delivery.

For each protocol that will be evaluated in this thesis these requirements will be verified. It
should be noted that except for requirement 3, these requirements are not necessarily provided by
the protocol itself — as the functionality could be provided by a lower layer transport protocol or the
application layer; however, while not a metric for our evaluation, the discussion will talk about how
difficult it was to set up each of the protocols along with its respective broker.

2.5 MQTT

MQTT is a publish/subscribe protocol running on top of TCP and was originally developed in 1999.
In 2013, it was turned over to the OASIS organization. The current OASIS standard version of
MQTT is 3.1.1 and this version was approved on the 29th of October 2014 [18].

MQTT was designed to be a light-weight, open, simple, and easy to implement protocol which
would make it ideal for use in the context of Machine to Machine (M2M) communication and loT
[3]. MQTT has been deployed for a number of real world applications. These applications, most
notably Facebook messenger and Amazon Web Services 10T, show that MQTT delivers on its
promises [19, 20].
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2.5.1 Methods

In accordance with MQTT’s aim to be easy to implement, the number of methods defined by MQTT
for interacting with a specific resource are only five™:
Connect After a network connection has been established between a client and a

server the first message must be a CONNECT packet that sends identifying
information about the client to the server.

Keep alive Specifies how long the client can go without publishing a message before
being disconnected. Set on connect.

Disconnect Waits for the client to finish its work and for the TCP session to terminate.

Subscribe Sends a SUBSCRIBE message from the client to the server to create

subscriptions for one or more topics.

Unsubscribe Sends a UNSUBSCRIBE message from the client to the server to
unsubscribe from one or more topics.

Publish Sends a PUBLISH message from client to server or from server to client to
transport a message.

2.5.2 Quality of service

MQTT allows the user to specify different Quality of Service (QoS) levels depending on what is
needed. The protocol defines three QoS levels that correspond to three different levels of delivery
guarantees. Sending a message with a QoS of zero will result in a message with “at most once”
delivery (there is no follow up of the sent message). A message sent with a QoS of one will result in a
message with an “at least once” delivery guarantee with an ACK being sent for each message
delivered. Finally, a QoS level of two will result in “exactly once” delivery. To offer actual “exactly
once” delivery MQTT uses the message ID to filter out duplicate messages as discussed in [7] and
illustrated in Figure 2-3 on page 7.

2.5.3 Durable subscriptions

It is possible for the client to specify when it connects whether its connection is a durable or a
non-durable connection by setting a “Clean session” flag in the CONNECT message (setting the flag
to false will enable a durable connection). If the client chooses to use a durable connection, then the
broker will store undelivered messages if the client disconnects and the broker will subsequently try
to deliver these saved messages as soon as the client connects again.

In contrast, for a non-durable connection the lifetime of the subscription is limited to the time
the client is connected to the broker

254 Keep alive packets

When a client connects to a server it specifies a Keep Alive value. This is a 16-bit value that specifies,
in seconds, how long a client can go without either publishing a message to the server or sending a
PING request. If the client does not do one of these operations within one and a half times the Keep
Alive value, then the server will consider the client disconnected and remove all of its subscriptions.

* The client-server terminology used is the same as specified in the MQTT 3.1.1 Specification under “Terminology” [3].
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2.5.5 Last will

The client may also specify a Last Will when it connects. This consists of topic string followed by a 2-
byte length-field defining the length of the message followed by the actual message. If the client has
not published any message during one and a half times the Keep Alive time, then the server will
automatically disconnect the client and publish its last will message on the specified topic.

2.5.6 MQTT Messaging overhead

MQTT messages have two header parts, one fixed part that is necessary for all messages and one
variable part that varies depending on the message being sent.

The fixed part consists of two bytes and specifies the type of message being sent, whether it
should be kept (in memory) until acknowledged, what the QoS should be for the message, and if the
message should be retained after it has been delivered to its recipients. The remaining length field
indicates how many octets remain of the message which includes the variable header and the
payload. This fixed header is shown in Figure 2-12.

Message DUP QoS - :
Type flag level RETAIN Rema;ngmcgt;(tenglh.

(bitfields) 1 Octet

Figure 2-12: MQTT fixed header

For our tests we are mainly interested in the variable header for the publish message and the
publish ACK message since these are the messages that will most frequently be sent. The variable
header for the publish message contains a topic name as well as a message identifier (see Figure
2-13). The length field in the header consists of two bytes and indicates the number of octets that is
required to represent the topic name that follows the two bytes. So the shorter the topic name the
fewer bytes needed for each published message. The topic name is then followed by a two octet
message identifier. If QoS 2 is used, there is one additional packet that will be sent a lot: the
published REC packet to realize the at least-once guarantee. This packet looks identical to the
published ACK message. The publish ACK message contains no additional fields beyond the fixed
header besides a two octet field to indicate what message is acknowledged.

Length MSB, | Length LSB, Topic name, Message ID | Message ID

1 Octet 1 Octet x Octets | --- |MSB, 10ctet LSB, 1 Octet
Figure 2-13: MQTT Publish variable header
2.6 MQTT-SN

MQTT-SN* is a variant of the MQTT protocol that aims to be more optimized for sensor networks
through a series of changes, most notably that the underlying transport protocol is UDP rather than
TCP. In 2008, Hunkeler, Truong, and Stanford-Clark listed the following design points that
MQTT-SN was developed to address [21]:

1. MQTT-SN should be as close to MQTT as possible

This is so that it requires minimal integration effort to use the MQTT-SN protocol with a
pre-existing MQTT broker. As a result, the MQTT-SN protocol supports almost all
functionality that MQTT supports.

* Originally, this was named MQTT-S, but was renamed to avoid any confusion that the S stood for “Security” [46].
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Designed for resource constrained devices

The protocol is designed to be able to run on very resource constrained devices, and
whenever any complex processing needs to be done it should be done by the gateway or the
broker to minimize the client side load as much as possible.

Designed for wireless networks

Wireless networks are expected to have higher failure rates, lower transmission rates, and
shorter maximum message payload sizes than fixed networks. For example, the
IEEE 802.15.4 wireless standard provides a maximum of 128 bytes for each frame at the
physical layer [21]. This includes header data for the network protocol, MAC address,
security, etc., so using UDP instead of TCP means we could reduce the header overhead of
each packet significantly. It should be noted that there are header compression algorithms
that can be deployed to reduce the amount of header data transmitted. For example Robust
Header Compression (ROHC/ROHCvV2) [22, 23] for IPv4 and 6LoWPAN for IPv6 [24]. In
this thesis however no compression algorithms will be investigated.

Broker gateways

To allow for easy integration with existing MQTT brokers, MQTT-SN utilizes gateways between the
broker and the client. This gateway usually runs on the same platform as the broker and translates
the incoming MQTT-SN messages from the clients to MQTT just before passing them on to the
broker. This can be done in two different ways [21, p. 5] (as shown in Figure 2-14):

1.

Transparent gateway

The transparent gateway architecture connects each client to the gateway with an MQTT-SN
connection. Then for each MQTT-SN connection the gateway maintains a MQTT connection
to the broker.

While this offers a straight-forward implementation where each MQTT-SN message is
simply translated to a MQTT message, the number of MQTT connections that have to be
maintained between the broker and the gateway creates scalability issues when a large
number of clients are simultaneously connected.

2. Aggregate gateway

In contrast, an aggregate gateway maintains one MQTT connection between the gateway
and the broker. While the implementation of such a gateway is a bit more complex than a
transparent gateway, the benefit is that this approach scales a lot better - since the gateway
does not have to support as many MQTT connections to the broker.

cliemi—b-d—>\ client
0 |+

Clienj«—>€8—»>«—> MQTT cliente—> <= ey
. é broker . = broker
G client€—>

MQTT-SN MQTT MQTT-SN MQTT

messages messages messages messages

Figure 2-14: Transparent and aggregate gateway, adapted from Figure 5 of [21, p. 5]

3. Multiple gateway support

Since MQTT-SN is designed to work well over wireless networks where connections are
unreliable and have high link failure rates, MQTT-SN supports maintaining multiple
connections via different gateways in order to have a fall back connection in case of failure.
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This also allows the clients to spread their network traffic over multiple connections and
thus avoids congestion in the gateway.

Since the gateway will translate the MQTT-SN message to a MQTT message the gateway will
always operate on the message just before they are passed to the broker. This is so that we avoid
transmitting the larger MQTT messages and only use the MQTT format prior to the broker where
the increased size does not matter (as much).

2.6.2 MQTT-SN Messaging overhead

By design, the messaging overhead of MQTT-SN is very small. The header can consist of either 2 or
4 octets depending on how large the message. This header is shown in Figure 2-15.

Length, Message
1 or 3 octets |type, 1 octet

Figure 2-15: MQTT-SN header, adapted from [5, p. 7]

The reason for the variable length is that MQTT-SN allows the use of 1 octet for the length if the
payload size is less than 256 octets. However, for use cases the payloads will not use the shorter
message length, thus the header size can be considered to always be 4 octets. The message type
simply describes what type of message it is according to the protocol specification [5, p. 7].

2.6.3 Topic ID registration

One of the things that MQTT-SN does to reduce network traffic compared to the other protocols is
to use a 2 octet Topic ID instead of a plain text topic string. The topic string is only used during the
login process where the client sends a registration packet with the desired topic as a string. The
broker then responds with a 2 octet ID number that is subsequently used to identify that topic. This
way it is possible to go from a 31 octet topic string to a 2 octet topic ID. To use the topic ID instead of
a topic string the sender has two options. Either performs a registration negotiation where it sends
its topic string to the broker and the broker responds with the corresponding topic ID. The other
way is to use pre-defined topic 1Ds where the broker and publisher both have a set of pre-defined
topic IDs. For our tests we will only use pre-defined topic IDs since it is not unreasonable to assume
that for the services Scania will be using the topic IDs will be known before transmission starts.

2.6.4 Keep alive message

Since MQTT-SN is a connectionless protocol it needs some way to keep track of whether the party
receiving the messages is still there when using a QoS level of 1 or higher. Normally the receiver
would respond with an ACK to tell the sender that the message was successfully delivered; however,
when there is packet loss even this ACK may be lost. The way MQTT-SN solves this is by keeping a
keep-alive timer that tells the sender how long it should wait before sending a keep-alive ping. The
receiver of the ping will then respond with a ping ACK and then the transmissions may resume.

2.7 CoAP

CoAP is a proposed IETF standard and aims to provide a request/response protocol that allows very
simple devices to communicate over the Internet [6]. COAP is designed to allow nodes to easily be
controlled via standard internet applications. This is achieved by utilizing the Representational
State Transfer (REST) architectural style of the web.
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Similar to HTTP, CoAP accesses content via a Uniform Resource Locator (URI) using the GET,
POST, PUT, and DELETE methods. CoAP is designed to easily translate to HTTP. There are even
guidelines from IETF on how to map CoAP to HTTP [25]. However, although CoAP is designed to
resemble HTTP in many ways, it differs in many others due to the requirements that a constrained
device puts on it.

The biggest difference between HTTP and CoAP is that CoAP is a UDP based protocol. This is to
avoid the overhead that TCP entails (which a constrained device wants to avoid).

CoAP offers two options regarding delivery guarantees. These are “at-most once delivery” and
“at-least once” delivery. These are referred to as “non-confirmable” messages and “confirmable”
messages in the CoAP specification. Confirmation requires the receiver of a message to send an ACK
when it receives the message.

2.8 AMQP

AMQP is a protocol that communicates via publish/subscribe and operates on top of TCP. It was
originally developed in 2003 by John O’Hara at JPMorgan Chase and iMatix with aim of creating an
interoperable message system that was non-proprietary and could be used as a standard messaging
protocol for investment banks [26].

Unlike MQTT, AMQP was not designed to have a small code footprint or an easy to use
interface, but rather AMQP was designed to be feature rich and high performance. Additionally, it is
not simply a messaging protocol, but also defines its own type system to ensure interoperability
between client and server.

Since AMQP was created to be used as a standard messaging protocol for a wide range of
different users it supports a wide variety of messaging applications and communication patterns
through a common interface. As a consequence, AMQP is a large protocol that is feature rich and
allows for a lot of customization. However, going into detail about each feature of this protocol is
outside the scope of this thesis. A short summary of the functionality that AMQP offers follows [4, p.
2]

Types AMQP has its own type system that defines a set of primitives that can be
used to ensure interoperability between sender and receiver. These primitive
values can then be associated with semantic information when sent in a
message that tells the receiver how to interpret the value. For example, a
string could be sent with the associated information that it is to be
interpreted as a URL.

Transport The conceptual model of an AMQP network is that it is a network of nodes
connected via links. These nodes can either be sender, relays, or receivers.
The link between nodes is a unidirectional communication channel which
connects to the node’s “terminus”. This terminus can be either a source or a
target depending on the role of the node.

Each node is responsible for the safe storage and delivery of messages to the
next node. The link protocol between the nodes ensures that the message
and responsibility are correctly transferred between nodes.

The nodes exist within containers which can, for example, be brokers or
clients. For example, a broker container can consists of many queue nodes
that store messages. These messages are subsequently relayed to the
appropriate client container, which in turn contains a consumer node and a
queue node.
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Messaging AMQP defines a standard for how messages are to be delivered. This
includes how the message should be formatted with regards to header,
trailers, and structure of payload, delivery states for messages, states for
stored messages, how to filter messages, etc.

Transactions AMOQP uses a transactional model for message transfer. This means is that
each transfer is initiated by a “declare” message and ended by a “discharge”
message. This allows the transaction to coordinate independent transfers
into one coordinated transaction, and ensures that if one of the transfers in a
transaction fails, then all transfers in the transaction fail.

Securities AMQP supports built-in  security mechanisms for encryption and
authentication. These mechanisms include the use of the Simple
Authentication and Security Layer (SASL) [27] for authentication and
Transport Layer Security (TLS) [28] for encryption on top of TCP.

AMQP is a large system, thus rather than going into detail about each of the features that AMQP
offers - if any of these additional features are used in the experiment, then the details of these
features will be described in the relevant section of this thesis.

2.8.1  AMQP Messaging overhead

Whenever a subscriber connects to a broker it must begin by sending a protocol header. The
protocol header is 8-octets long and consists of the letters “AMQP” in uppercase followed by the
major revision version number, major version number, and finally the protocol revision [29, p. 32].
However, as this header should only be sent when connecting it does not significantly affect the
amount of data sent.

After a subscriber has connected it is able to send messages using 4 different frames namely:
1. “METHOD?” - method frame

2. “HEADER?” - content header frame

3. “BODY” - content body frame

4. “"HEARTBEAT” - heartbeat frame

Each of these frames will be encapsulated by a general frame as shown in Figure 2-16.

| Frame-
Type, Channel, Size
: Payload, x octets End
1Octet| 2 Octets 4 Octets . J - - - oo
Figure 2-16: AMQP General frame format, adapted from [24, p. 33]

For our purposes the heartbeat type will be set but not utilized. This is due to the fact that if we
are to perform a substantial number of tests, the time waiting before performing a retransmission
must be very short. This is possible since we do our testing over the loop-back interface were a
response, if not dropped, should be almost instantaneous. The method type will be used to login to
the broker and uses the header shown in Figure 2-17.

Class-id, | Method-id, \
2 Octets 2 Octets | avload, x octets

Figure 2-17: Method frame, adapted from [24, p. 34]
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The Class-id and Method-id will be predefined AMQP variables, and the payload content will be
the arguments that will be passed to the AMQP broker specifying what kind of method it is. For
most messages the method will be “Publish” except for a login at the start and a disconnect at the
end.

Almost all of the transmitted messages will utilize the content header and body frames to
transmit the sample messages we use for benchmarking. These are illustrated in Figure 2-18.

Content Header Frame

Classid, | Weight, | Body Size, | Pgﬁr’ [ Property lists, |
20ctets | 2 Octets . 20ctets . X octets L.

Content Body Frame

Payload, I F;a:‘rge-
X octets - - |1 Octet
Figure 2-18: Content Header and Body frames adapted from [24, p. 36]

The Class-id is the same as for the Method frame, and the weight is unused and should be set to
0. Body size specifies the size of the content body. The property flags specify the different properties
a message can have. These properties will be defined in the property list. The Content body frame
contains the payload and an octet indicating the end of the frame.

2.8.2 AMQP v1.0 controversy

With the introduction of AMQP protocol version 1.0 there was a schism in the AMQP community
due to the drastic changes that the version 1.0 introduced. Version 0.9.1 of the protocol specified
how the client to broker protocol was supposed to operate and what messaging capabilities the
broker should supply. This included how the exchanges, queues, and bindings of the broker were
supposed to work, as well as what the messages between the client to broker and broker to queue
would look like. However, in version 1.0 the specification became narrower and it now only specifies
what the messages that will be exchanged between two endpoints are supposed to look like. This
makes broker management a separate part of the protocol, thus allowing for more flexibility
regarding how the creator of the broker can handle the messages.

The 0.9.1 version of the protocol has been used in the tests performed in this thesis project.
However, this should not affect the results since although the protocol specifications have changed
the communication between client and broker has remained largely the same.

2.9 Related work

All the investigated protocols have been available for the public to experiment with for quite some
time, thus some researchers have tested and compared these different protocols. In this section
some of those investigations will be surveyed.

2.9.1 Broker comparisons

When implementing a protocol that makes use of a message broker it is worth examining existing
implementations of brokers. Since the broker acts as a middleman between the two communicating
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parties the broker does not care very much about how the implementation of the client and server
work, only that the messages transmitted to the broker are in the correct message format. For
example, there is a list of MQTT broker implementations on the official MQTT GitHub
repository [30]. The large number of different MQTT broker implementations would allow us to
perform our tests using many different brokers, but such an investigation is out of the scope of this
thesis project.

Finding unbiased and comprehensive benchmarks, i.e., benchmarks not conducted by one of
the broker manufacturers, proved to be very hard to find. For this reason | settled on using
RabbitMQ [31] as the message broker for AMQP and Mosquitto [32] for MQTT and MQTT-SN due
to their large active user communities and ease of use. For MQTT-SN Mosquitto with a really small
message broker (RSMB) as gateway is used. However, | make no claim that RabbitMQ or
Mosquitto/RSMB are in fact the optimal broker/gateway choices for each protocol, thus my
comparisons have to be taken for what they are.

2.9.2 Comparison of MQTT and AMQP

In 2015, Jorge E. Luzuriaga, et al. compared MQTT and AMQP in the context of mobile
networks [33]. They evaluated these two protocols by creating an experimental setup where they
evaluated loss, latency, and jitter. They then used these values to conclude what is the best use for
each protocol and in what context it is most suitable to use a given protocol.

They evaluated common scenarios for a wireless sensor network (WSN), such as loss of
connectivity for a period of time and behaviour during message bursts. They determined that apart
from some peculiar behaviour from AMQP that causes it to receive messages in reversed order when
a message burst occurs, they both perform well, but AMQP offers more features related to security,
while MQTT is more energy efficient.

Finally, they concluded by saying that for “reliable, scalable and advanced clustering messaging
infrastructures over an ideal WLAN” one should use AMQP, but for sensors operating in
constrained environments, such as low-speed wireless networks, then MQTT is the better choice.

It should be noted that both MQTT and AMQP are TCP based protocols, so assuming MQTT-SN
is used, the choice of MQTT is most likely even more suitable when it comes to constrained
environments. However, in the context of this thesis the devices that are located in the vehicle are
not constrained in terms of available power, link bandwidth, etc.

2.9.3 Comparison of MQTT and CoAP

In 2014, Thangavel, et al. carried out a comparison between CoAP and the MQTT protocol [34].
They implemented common middleware to facilitate communication between clients and a server
using a common interface.

From their results they found that when a QoS level 1 for MQTT is used and a similar quality of
service for CoAP using confirmable messages, then MQTT has a lower delay than CoAP when the
packet loss was less than 25%. However, when the packet loss rate reached a sufficiently high
percentage, then the delay for MQTT grew a lot faster than CoAP. The authors reasoned that this
behaviour is due to the fact that since CoAP is UDP based and MQTT is TCP based, the
retransmissions for MQTT sent a lot more data in each packet due to the overhead of TCP— hence
the faster increase in delay.

Due to these different behaviours the authors argue that a good solution would be to have
adaptive middleware that detects the current network conditions and then choses a suitable
protocol.
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2.9.4 Fast and Secure Protocol (FASP)

An alternative protocol that can be used when the objective is high speed file delivery is the
proprietary application layer protocol developed by Aspera called Fast and Secure Protocol (FASP)
[35]. FASP optionally offers encryption of the data.

FASP is built on top of UDP and aims to offer a protocol that will outperform TCP based
protocols for file transfers, while still offering a delivery guarantee. This is achieved by using their
own closed source proprietary algorithms for deciding on sending rate and retransmissions instead
of TCP’s congestion control and retransmission algorithms.

A 2015 Master’s thesis by Patrik Hagernas evaluated the performance of FAST over 5G, which
Ericsson estimates will have a theoretical maximum throughput of 10 Gbit/s indoors and in dense
areas [36]. He managed to achieve a maximum throughput of 6.3 Ghit/s [37] which he compared to
the results of another Master’s thesis by Victor Johansson who managed to achieve a maximum 7.3
Gbit/s throughput using pure UDP on a 10 Gbit/s link [38]. Both of these thesis projects used the
same test environment.

The graphs in the analysis section of Patrik’s report clearly indicate how vastly superior FASP is
compared to plain TCP (with either New Reno or CUBIC) with respect to bandwidth utilization. The
TCP based protocols quickly throttle themselves down when there packets are lost and then stay
very consistently at low throughput even when the available bandwidth is increased. In contrast,
FASP quickly achieves large bandwidth utilization and rapidly adapts to changes in available
bandwidth.

2.9.5 Monitoring of other types of vehicles

While Scania has chosen to focus on real time data updates being sent via GSM to a server running
either in the cloud or at a Scania facility there are other options that have been or are deployed to
monitor certain engine parameters. One example is a module similar to the C300 that is mounted
inside a airplane engine and then, instead of transmitting its data to a server, transmits all gathered
sensor data wirelessly to a local database running inside of the plane [39]. This way, a lot more data
can be gathered from the sensors since the database is local. GE focuses on gathering data as
described in [40] as data lakes, where enormous amounts of data are gathered per flight and then
analysed to see if something can be improved. This could be something for Scania to look into since
it does not cost much to transmit data locally. Currently Scania does not log anywhere near the
amount of data mentioned in the articles about GE’s monitoring of their jet engines, but Scania does
log small amounts of error codes and status messages to an on board chip. According to Scania
engineers the biggest obstacle right now to logging larger amounts of data is that the infrastructure
inside the truck is not yet able to handle large amounts of data. However, there are plans to add an
Ethernet connection from the C300 or equivalent module to log CAN bus data straight to a
persistent storage device for later extraction.

2.9.6 SCPv2 Transmission data

According to measurements made by Telefonica the data transmissions over their GSM networks by
Scania can be summarize as in Table 1-1. In this table registration consists of truck and server
initiating a secure connection. RD stands for Remote diagnostics and this used to transmit
diagnostic data about the vehicle. OTA stands for over the air and this traffic is for remote software
updates. STS stands for tachograph service — this service logs driving time, speed, and driver
activity eliminating the needs for the driver to keep such logs. Position data is based upon a GPS
receiver or other device indicating the position of the vehicle. Vehicle data consists of the current
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state of the systems inside the vehicle, such as engine speed, engine temperature and other sensor
data values. Geofencing triggers an alarm when a vehicle enters or leaves a defined geographical
zone.

Table 2-1: Traffic volumes for Telefonica, April 2016

Traffic type Delivered bytes Protocol bytes %of total bytes
Registration 117 586 340 927 0.04

RD 20 048 644 13 441 380 1.44

OTA updates 0 0 0

STS 5542 5315 ~0

Position data 170 467 835 205 865 722 22.1

Vehicle data 613 665115 711 055 980 76.32
Geofence 641 693 976 031 0.1

Total 804 946 415 931 685 355 100

The delivered bytes column indicates total amount of payload (in bytes) being transmitted while
protocol bytes indicate the overhead introduced by the protocol. As can be seen about 86.4% of the
transmitted data was payload data, which means that the overhead introduced by the SCPv2
protocol is around 14%. However, this overhead only includes the application level overhead
introduced by the SCPv2 protocol and so it does not take into account the IP and Ethernet header
that will need to be prepended. This is for the entire month of April so no conclusions can be drawn
about how the protocol behaves during different conditions, but the average packets loss rate during
this period of time is around 0-4% (depending on how you count a packet loss, see section 1.6)
according to an internal document by Scania network providers. Another interesting fact to note is
that over 98% of the traffic is generated by the position data and vehicle data messages. These
correspond to the Positioning and Current Status messages described in Table 2-2. It is evident
from these two tables that having a protocol that performs well on small (around 1kB) and frequent
(about every minute) messages will provide Scania with the greatest benefit.

Table 2-2: Sending rates and message sizes as specified by Scania
Name Size Frequency
Vehicle data ~1 kB 10 per min
Positioning ~1 kB 1 per min
Tachograph file ~100 kB 4 per h
OTA Software update ~10 MB Sporadic, very uncommon
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2.10 Summary

From the earlier investigated protocols we can how summarize the protocols to be evaluated in the
context of our implementation:

MQTT

MQTT-SN

CoAP

AMQP

FASP

A light-weight protocol built on TCP that prioritizes ease of implementation and
small code footprint.

The sensor network variant of the MQTT protocol is built on the same principles as
MQTT. However, MQTT-SN uses UDP as its transport layer protocol, thus it is more
light-weight than MQTT with regard to the overhead of each packet. Additionally, it
has features that might be helpful when used in a WSN.

CoAP is the only one of the listed protocols made for WSN that does not follow the
publish/subscribe paradigm, but rather was designed to be similar to HTTP. This
choice was made to facilitate easy integration of WSN nodes with the web. However,
as evident by comparisons with other protocols, it is obvious that CoAP also
performs well in non-web contexts - due to its low packet overhead.

AMQP is the most complex of the protocols investigated due to its huge feature set
and wide range of customizability.

A proprietary UDP based protocol that offers high available bandwidth utilization
while still offering delivery guarantees. This protocol is particularly useful for
delivering large files.
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3 Methodology

This chapter provides an overview of the research methodology used in this thesis project.
Section 3.1 explains the process used to conduct the research. Section 3.2 explains the different
experimental setups. Section 3.3 explains what data was collected and why. In Section 3.4 the
experimental setup is explained, along with why it was chosen. Section 3.5 discusses the reliability
and the validity of the experiments.

3.1 Research Process

The research was originally planned to be performed in two stages. In the first stage the different
protocols would be run in an artificial environment where the client and server each will be running
inside a Virtual Machine (VM). In the second stage the protocols were planned to be run inside the
C300 module and would communicate with a Scania server. However, due to timing constraints the
implementation scope meant that second stage would not be possible and if attempted, would not
produce valid data. Instead the implementation was done inside a virtual environment to collect
simulated data in a controlled environment. This data will then be evaluated based on the volume of
data overhead introduced by each of the different protocols.

The VM for the artificial environment will be running Linux with iptables” setup to emulate
different network conditions. While there are other tools that offer more functionality regarding
network emulation, such as Netem?, there were a lot of problems getting Netem to work properly
when setting up different networking conditions on multiple ports. Since the only emulation we
needed was packet loss and iptables directly provides this and since this approach worked
immediately the implementation used iptables instead of another alternative. Using iptables
provides an environment with as little external interference as possible, while allowing us to change
one network parameter at a time. The VM was configured to simulate different scenarios ,such as
packet loss and protocol used, to see how these factors affect the amount of data transmitted.

3.2 Experimental Setup

This description of the experimental setup describes how the artificial environment was set up. The
description describes how the environment was created and gives an overview of the system used
for testing. This section also describes how the publisher and broker were set up and connected
together with what operating system and hardware were used for the network emulations.

3.2.1 Atrtificial Environment

The artificial environment allows the experiments to be performed in a completely controlled
environment where minimal interference is present. This makes it easier to reason about how the
protocols behave when conditions vary since we can adjust the conditions exactly as we want them
without any uncontrolled external factors influencing the results.

* http://linux.die.net/man/8/iptables
* http://www.linuxfoundation.org/collaborate/workgroups/networking/netem
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3.2.1.1 Overview

For the first experiment, a virtual machine will be running on the desktop computer described in
Section 3.2.1.2. This configuration facilitates communication between the publisher and broker by
using the loop-back interface. Oracle’s VirtualBox software is running on the test computer.
VirtualBox provides a virtualized execution environment the VM. The test environment for the
experiment is shown in Figure 3-1.

The host machine connects to the VM through a secure shell (SSH) connection. Through this
connection each set of tests can be automated started by the host machine. First the host machine
starts the brokers on the VM in order to prepare them to receive messages from the publisher
applications. The server has one broker running on each utilized port and for each port iptables is
configured to provide each of different network emulations in order to realize the specific network
conditions for the relevant test. Utilizing the port configuration this way makes it easy to
differentiate the packets when logging the experimental data. Next the publisher application for the
first test will be started. The host machine will tell the client to commence sending packets of
different sizes on the different ports and logs how quickly it is able to complete the set of tests and
how much data was sent in order to transmit the desired data. This continues until all the tests for
all the configurations have been performed.

Host machine

|
SSH connection
v

Client VM

Puwm : ?uiéssage ACK:
Published Messages—>»
Message ACK——»

| oop-back
Broker Iptables :L.o:r?e::e;on
Published Messages— I

Network

traffic

Tshark
|

| Logfile

Figure 3-1: Artificial test environment
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3.2.1.2 Test machine

The computer on which the tests will be run is a Dell Precision M2800 whose specifications are
shown in Table 3-1.

Table 3-1: Desktop computer specifications

Processor Memory Storage Operating System
Intel Core i7- 16 GB DDR3 SDRAM | LCS-2561L9S-11 Windows 7 Enterprise
4810MQ @ 2.80 GHz | @ 1600 MHz (256GB Solid State Drive) | 64-bit, Service Pack 1
with 4 CPU cores

To simulate various conditions under which the protocols are to be evaluated iptables is used on
this desktop. Iptables allows the user to set up rules for packet filtering including stochastic rules.
Rules were written for each port to have different probabilities to drop packets. This made it easy to
compare the protocols since it allows us to change only one variable at a time.

3.2.1.3 Virtual Machine

As noted earlier, the VM will run on top of Oracle’s VirtualBox environment. This VirtualBox
environment is in turn run on the computer specified in Table 3-1 and has access to the hardware
resources specified in Table 3-2.

Table 3-2: Virtual machine specifications

Processor cores Memory (Guest) Operating System
1 8 GB Debian 1.3.14.1

3.2.1.4 Client

The client will be a publisher application running inside the VM. This application is invoked via SSH
to start sending packets to a specified address (in our case the loopback address) and port. The
clients are small programs built specifically for this test. Each client has the same interface for each
of the protocols that are to be tested. When invoked, the user can specify the destination IP address,
port number, number of iterations (how many times the program will be run), burst size (how many
packets will be sent in a burst = one iteration), time between bursts (how long, in ps, that the
program will wait between each iteration), payload size (the size in bytes of each payload) as well as
a QoS level. Since the interface is the same for all the tested protocols we can easily automate the
testing procedure for quick and easy testing.

3.2.1.5 Server

The server consists of a broker and a small custom C program that when activated will subscribe to
the topic that the client publishes messages on. As soon as a message of that topic is published the
program will consume it and, depending on the QoS level, the broker may send an ACK. This
procedure will be the same for all protocols. For AMQP the librabbit-c [41] library will be used,
while for the MQTT and MQTT-SN protocols the Paho libraries will be used [42]. The only task for
the server is to consume messages and send ACKs so that we can see how these protocols behave
when sending data.

As described in Section 2.9.1, two different brokers and one gateway will be used when the tests
are conducted. For the AMQP protocol the RabbitMQ version 3.6.1 broker will be used, for MQTT
the Mosquitto version 1.4.8 broker will be used, and for MQTT-SN Really Small Message broker
version 1.3.0.2 (RSMB) will be used as a gateway.
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3.2.1.6 Link properties

Since the tests utilize the loopback-interface there is no link per-se. However, since the criteria that
the protocols will be evaluated on is the amount of transferred data and not transfer speed we want
the transfer speed to be as fast as possible to shorten the time required to run all of the tests.
However, the MTU of the loop-back interface will affect how much data can be placed into each IP
packet and as such will impact the amount of data transferred. The MTU is set to 1500 bytes since
this is the same as the MTU for a GPRS connection that Scania utilizes on the C300 module. This
choice will produce more valid data than selecting another MTU size would.

3.3 Data Collection

Scania has specified that their main points of interest are: (1) how much data is sent over the
network when sending the desired data, (2) how quickly the protocols are able to transmit messages,
and (3) what is the response time for the requests. The reason for the first question is that Scania
pays for each kB sent over the GSM network at a fee set by the network provider. Scania is allowed a
maximum of 10MB per day per truck. This limit is set by the network provider, thus it is in Scania’s
best interest to transmit below 10MB a day per truck.

The focus of this thesis will be to evaluate each of the protocols as to how much overhead they
introduce for each test. Tshark® will be used to log all the network traffic to a local file on the VM.
These files will then be in a format that is easy to analyse using Wireshark’s graphical interface.

3.3.1  Tests performed

Each test will consist of a 1MB data transfer from the publisher to the broker. The tests will be
conducted using a QoS level of 1 and an application payload size, excluding headers, of 100B, 1kB,
and 10kB. This set of tests will be done for each protocol and for each percentage of packet loss
(from 0% to 30%). By performing the tests this way we will collect a lot of data about how the
protocol behaves when transferring the most common packet sizes™ as well as how they perform
when transferring a larger amount of data converted into multiple smaller packets. The exception to
testing with each of the three packet sizes occurs for the MQTT-SN variant as the broker did not
accept the larger sized payload. Thus except for the 100B test, each of the tests with MQTT-SN will
have its payload split into payloads of 255B on the application level. This of means that the
MQTT-SN protocol will transmit more header data than the other protocols in these tests were
(application layer) fragmentation is used, hence this will be addressed in the analysis.

3.3.2 Logging

To log all incoming and outgoing network the terminal version of Wireshark, Tshark, is used on the
VM. This allows logging of all packets that are sent over the network including the TCP handshakes
and other data related to the transmission. Since we need to be able to filter the received packets
based on which test they belonged to we ran each test on a different port and then group the logged
files by ports. Having the possibility to filter on ports also allows us to filter out the SSH packets
used to control the tests. The result is that we can tell exactly how much data was sent for each test
for a given emulated network condition.

* https://www.wireshark.org/docs/man-pages/tshark.html
T The three different sizes were selected to be representative of the typical amounts of payload generated by the different sources expected from
the current C300 software and a representative colection of attached sensors.
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3.3.3 Sample Size

For each protocol the amount of data transmitted will be investigated as a function of the packet loss
rate. The percentage of packet loss will vary from 0% to 30% in steps of 1%, and for each percentage
and for each protocol 1IMB of data will be transferred using three different payload sizes. These sizes
are 100B, 1kB, and 10kB. These payload sizes were chosen to capture certain attributes of the
protocols. The 100B payload size is used to illustrate how MQTT-SN compares to the other
protocols when the payload is fragmented into the same number of packets as for the other
protocols. This is so we can understand how this protocol would compare to the other protocols,
especially when a larger payload size of 1kB is used which would be the case normally for the
protocols when deployed by Scania. The 1kB payload size is used to see how the protocols would
behave when transmitting the most common of the expected payload sizes, while 10kB is meant to
reveal how the protocols behave when they make use of transport layer fragmentation to transport
large payloads. Each test will be conducted with a QoS level of 1. Table 3-3 summarizes the different
protocols, packet loss rates, and payload sizes to be used for testing.

Table 3-3: Summary of protocols, packet loss rates, and payload sizes to be used for testing
Protocols Packet loss Payload sizes
AMQP, MQTT, MQTT-SN 0%, 1%, 2%, ..., 29%, 30% 1008, 1kB, 10kB

3.3.4 Note about QoS

Although each protocol offers multiple QoS levels they offer it in slightly different ways. For
example, AMQP allows for more precise control of the service level than simply setting the QoS level
for messages. As one can specify exactly how many un-ACKd messages the broker should be allowed
to send to the client before it starts to wait for ACKs. However, we need to be able to guarantee
at-least once delivery for all of our messages. This corresponds to a QoS level of 1 for MQTT and
MQTT-SN. For the tests of the AMQP protocol, the protocol will be configured to either assume a
QoS of 0, that is retain none of the messages, or it will be configured to retain all messages until
ACKd.

3.4 Experimental design

This section describes how the experiment was set up and how each test was conducted as well as
how many tests were performed and with what parameters. It will also talk about the reliability and
validity of the data that the tests are expected to produce.

3.4.1 Testbed

The test bed is set up to allow for easy testing of the protocol together with logging data in order that
the test results will be simple to analyse. To achieve this there was a need to quickly test lots of
different network conditions. Additionally, it should be easy to tell to which test each packet
belongs. This was done was by configuring iptables to emulate the different network conditions on
different ports. Then we have one broker for each port ready and listening for traffic on that port as
shown in Figure 3-2. Having multiple brokers running on the same server at first seemed as if it
would influence the tests by taking system resources; however, for our tests we have around 100
brokers running and an idle Mosquitto broker is shown as using 0.0% of the CPU and 0.0% memory
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and a RabbitMQ broker as 0.0% CPU and 0.5% of memory when monitored using htop 1.0.2*. By
setting the tests up in this way we do not have to worry about starting and re-starting the brokers on
the same port. Additionally, because we start the next test immediately after finishing the previous
test, there is a chance that we might receive a late packet during a new test or miss packets from
previous tests.

. Potx ~——» Broker
I —

Portx+1 —» Broker
]

testn \ Port x+n-1 —>»  Broker

\L—,
Portx+n —>» Broker

I |
Figure 3-2: Testbed overview

For each test a total amount of 1MB is transferred from the publisher to the broker. The data is
sent in chunks of 100B, 1kB or 10kB or each packet loss percentage between O and 30 percent
packets as described in Section 3.3.3 and shown in

Protocols Packet loss Payload sizes

AMQP, MQTT, MQTT-SN 0%, 1%, 2%, ..., 29%, 30% 1008, 1kB, 10kB

. As a result we have a total of 279 ports open with 279 brokers listening to one port each for
each protocol tested. Each port is configured as shown in Appendix A. It should be noted that Figure
3-2 only illustrates the outgoing port, but the brokers will need to be connected to a port as well
when responding to the publisher.

3.5 Assessing the reliability and validity of the data to be collected

A lot of thought went into designing tests that would produce both reliable and valid results.
However, there are some practical factors that need to be addressed that will affect the validity of
the results that it was not possible to solve within the time frame of this thesis project. These factors
are described in the following subsections.

3.5.1  Reliability

For the artificial environment we are able to produce very reliable results. This is due to the fact that
given the parameters to configure iptables, the programs used to send the data, the data we send,

* http://linux.die.net/man/1/htop
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and the virtual machines we used someone else should be able to set up the same tests, perform the
experiment, and obtain almost exactly the same results. This is due to the fact that in our artificial
environment there is nothing interfering with the testing, hence the results should be easily
reproducible.

3.5.2 Validity

With regard to validity there are some problems. The purpose of the experiments is to determine
how well suited the protocols are for Scania’s purposes. This is done by testing how the protocols
behave when different network conditions are emulated. Since we can eliminate nearly all
interference with the experiments we are able to produce very valid data about how each protocol
behaves with regard to packet loss. However, the C300 module will never operate in a vacuum and
there will always be interference affecting the results which means that the results of our testing will
not be completely valid in the context of one of Scania’s vehicles.
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4 Test setup

The main focus of the tests is to determine how each of the different emulated network conditions
affects the amount of data transmitted. For these experiments the MTU will be kept at 1500 (the
same as that of a GPRS link) and the transfer speed will be as fast as the loop-back interface allows.
While GSM would theoretically only allow a throughput of ~100kb/sec, this thesis focuses on the
amount of data transferred rather than the transfer time. Thus we chose not to limit the transfer
speed in order to able to perform the tests as quickly as possible. Note also that the actual
throughput of a GPRS link depend upon both the radio conditions and whether GMSK or 8PSK
modulation is used, what type of coding is used, and how many slots are allocated to the device.

4.1 Extra header data

For every packet sent, both an application level header and transport level header need to be
prepended. While this certainly is not be the case for every application using TCP or UDP it will be
for these tests due to the fact the application will issue a push call for every TCP transmission, and
for the UDP the fragmentation will occur on the application level so no IP fragmentation will be
used. The impact of this will be discussed in section 5.2.

The application level headers will be the headers of the protocol we are investigating, while the
transport layer header will be either that of TCP or UDP. Additionally an IPv4 header of 20 octets
and, for our simulated tests, an Ethernet 11 header of 14 octets will be transmitted. The total amount
of header data is shown in Figure 4-1. This data was generated by publishing a one character
message to the broker and then using Wireshark to investigate the size of the packets that were sent.
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:E; 60
2 32 32 32 32
40
0
AMQP  AMQP MQTT MQTT MQTT-SN MQTT-SN
PUB  PUB-ACK PUB  PUB-ACK PUB  PUB-ACK
H Ethernet ®mIP Transport M Application
Figure 4-1: Total amount of header data for each packet when transmitting a single byte of application layer

payload

Since the application layer headers vary depending on the message being sent, the most
common message header was chosen for these measurements. For the AMQP protocol this message
is the PUB and PUB-ACK messages — as they contain the general frame plus the method, header,
and body frame (the header and body are only used for the PUB message) along with two property
fields as will be explained in Section 4.2.1. Except for the initial login message and the final
disconnect message to the broker, PUB and PUB ACK messages will only be sent once assuming
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none of them are lost. The MQTT setup is similar. Here the PUB message will include the fixed
length header along with a variable length PUB header. Finally, for MQTT-SN since the payload was
only one octet the size the length field is only one octet rather than three. The total application layer
header is 7 octets. One of the reasons that the MQTT-SN protocol header is so much smaller than
the other protocols is that it does not include the topic string, but instead uses the registered topic
ID (encoded as two octets). This means that for the tests performed in Figure 4-1. MQTT included a
topic ID as a string 31 octets in size, while AMQP for this same topic together with an exchange
string results in an extra 40 octets of payload. However, it should be noted that although MQTT-
SN supports 64kB payloads during our tests if the longer size field is used, then the broker in our
tests refused packets that used this larger size. As a result we could only test MQTT-SN with 255
octet payloads. This more header data was transferred in our tests than would occur if the longer
size field had been supported by the broker. As noted earlier this will be addressed in the analysis
section.

It should also be noted that this test only considered the data sent in one application level PUB
and received in one application level PUB-ACK. For the MQTT protocol there will be an additional
66 octets transferred in the form of a TCP ACK from the client to the server to ACK the application
level ACK. This will not be the case for the AMQP protocol, despite running over TCP for the reasons
to be discussed in Section 5.1.

4.2 Publisher applications

To measure how each protocol performs with regard to the amount of data overhead for each
scenario, a set of applications were created that publish a fixed amount of data to a broker. These
applications take as input the amount of data that is to be sent and how many times each item is to
be sent. The programs operate as described in the following subsections.

For the applications, no modifications to the socket buffer sizes were made and the default receive
and send socket buffer size were the following™.

rmem_default = 212992
rmem_max = 212992
wmem_default = 212992
wmem_max = 212992
message_cost = 5
netdev_max_backlog = 1000
optmem_max = 20480

421 AMQP publisher application

For the AMQP publisher application the first thing we do, apart from reading from standard input
(stdin), is to set the exchange and routing key. An exchange is a construct inside the broker that
maintains a number of queues. These queues are indexed by the routing key when publishing or
subscribing to a topic. Consider the topic “test.topic.first”with the exchange key “amq.topic”. This
can be defined as:

char const *exchange = "amq.topic";
char const *routingkey = "scania.truck.test.system.sensor";

Next, the message to be sent is composed. This is done by creating a C-style string, which is a
null terminated array of characters. The size of this message is taken from stdin via the automated

* http://man7.org/linux/man-pages/man7/socket.7.html (socket setting variables explained in section “/proc interfaces”)
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script and depends on what payload size will be used. The message will be created in the same way
for all the publisher applications.

char* messagebody = (char*)malloc(payloadsize + 1);
memset(messagebody, 'a', payloadsize);
messagebody[payloadsize] = '\0';

The login to the broker is initiated using the following parameters

amgp_login(conn, "/", ©, AMQP_DEFAULT_ FRAME_SIZE, ©, AMQP_SASL_METHOD_PLAIN,
"gueSt", "gueSt");

This function call tells the broker to allow for any number of channels, although only one will be
used in our case. The maximum frame size is set to the default of 128 KB (the value of
AMQP_DEFAULT_FRAME_SIZE). Additionally, heartbeats are disabled. The
AMQP_SASL_METHOD_PLAIN parameter tells the broker to expect two additional arguments: the
name and password. In this case both are simply set to the string “guest”. The broker was configured
to have a user with this name and password.

Finally, we set the Content Header frames property flag and property list fields as described in
Figure 2-18. The flag fields are set as follows:

props. flags = AMQP_BASIC_CONTENT TYPE_FLAG | AMQP_BASIC_DELIVERY MODE_FLAG;

This sets bits 12 and 15 of the property flags field and tells the broker that the property list will
contain the content property and the delivery property. These are set to:

props.content_type = amgp_cstring bytes("text/plain");
props.delivery_mode = qos;

The above tell the broker that the payload will be a null terminated C string and that the QoS
level will be as specified, in our case 1.

4.2.2 MQTT publisher application

For the MQTT application a client object is first created to initiate the connection. The connection is
then created by calling the create function with these settings:

MQTTClient_create(&client, address, CLIENTID, MQTTCLIENT PERSISTENCE_NONE,
NULL);

This call passes, a handle to the client object to be created, the IP address of the server, and the
ID of the client (which in this case is the default ID “ExampleClientPub”). The
MQTTCLIENT _PERSISTENCE_NONE flag indicates that the client does not request any persistence for
the messages. This means that these messages, assuming a QoS level 1 or higher, will be stored in
volatile memory, hence if and only if the client dies they will be lost.

The only additional connection options are the keep alive interval and the clean session setting:

conn_opts.keepAliveInterval = 20;
conn_opts.cleansession = 1;

This above sets the keep-alive timer to 20 seconds and enables a clean session (i.e., tells the
server not to keep any information about the client when it disconnects).

Finally the message to be published is set with:

pubmsg.payload = payload;
pubmsg.payloadlen = strlen(payload);
pubmsg.qos = qos;

pubmsg.retained = 9;
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In this case payload is the message (as a null terminated string) to be sent. The bit fields for
QoS are set by the user and the retained property is set to false (telling the server not to keep a copy
of the message).

4.2.3 MQTT-SN publisher application

The MQTT-SN publisher is a bit different as MQTT-SN utilizes UDP rather than TCP. This means
we simply assign the application a port, an IP address, and a topic and then we can start sending
messages.

When initiating communication from an MQTT-SN application to a broker the user can chose to
perform either a registration handshake where the client uses a long topic ID to register a unique
shorter ID to be used for all conversations using that topic or the client can use a pre-registered two
octet long short ID, which is what will be done for this client. This short ID barely impacts the
amount of data transmitted and it is reasonable to assume that Scania will use sufficiently few topics
that pre-registering them will be possible. The chosen topic name has no significance an could be
any two character combination.

topic_id = "tt";

A UDP socket is created and initiates a connection to the broker. This was a bit problematic
since the client would sometimes crash when the connection failed. This was solved by having the
automated script described in Section 4.3 handle the problem by re-starting the client if the connect
packet was lost.

sock = mgqtt_sn_create_socket(mgtt_sn_host, mgtt_sn_port);
mgtt_sn_send_connect(sock, client_id, keep_alive, TRUE);

After that the client is ready to start transmitting data by looping over a publish and receive
pair:
for(i = iterations; i > 0; i--){
usleep(tbb);
for (n = burstsize;n > 0; n--){
mqtt_sn_send_publish(sock, topic_id, topic_id_type, payload, qos, retain);
while(!mgtt_sn_simple_pub_ack_wait(sock)){
mqtt_sn_send_publish(sock, topic_id, topic_id_type, payload, qos, retain);

¥

}
}

Here the client will publish the pre-defined message to the broker and then wait for an ACK.
The “mqtt_sn_simple_pub_ack_wait“ function will cause the client to wait 10 ms from when it
publishes the message when it checks whether an ACK has been received before performing a
retransmission. Initially, 1 second was used ensure that the retransmission were not done
erroneously, but waiting 1 second between retransmissions takes very long time when sending 4000
packets per test with lots of packet losses. Waiting 10 ms is plenty of time when running on the
loopback interface which is confirmed by pinging the loopback address which gives an average RTT
of 0.06ms

--- 127.0.0.1 ping statistics ---
101 packets transmitted, 101 received, 0% packet loss, time 99998ms

rtt min/avg/max/mdev = 0.024/0.060/0.121/0.014 ms
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4.3 Automated scripting

To be able to perform all the tests for all the different configurations a script was used to set up the
scenarios and run the tests. The scripts were written in Bash script and executed using the GNU
Bash shell version 4.3.30(1). These scripts are included in Appendix B. To perform all the tests the
script used three stages to ensure everything worked properly. First the setup phase was run. Here
the script generated all the configurations for the scenarios that would be run when using the script
and output them to a text file. This included rules for iptables and parameters to the publisher
applications. After the setup phase was done all of the brokers were started and set to listen to the
ports to be used. This is followed by a delay of 20 seconds to ensure that all of the brokers have
completed their startup before continuing. The script then starts to iterate through the test
scenarios generated in the setup phase. Each iteration begins by first starting tshark to log all of the
network traffic over the loopback interface to a file on the virtual drive inside the VM, then the
iptables are configuring according to the requirements for scenario and lastly the publisher
application is run with the parameters from the scenario file. This is repeated for all of the scenarios
in the scenario file. It should be noted that when the publisher connects to the broker the programs
would sometimes crash if the connect packet was lost. For this reason the publisher applications
were set to exit with an error code that is non-zero which the script can check for. If this occurs, then
the script will restart the publisher application and continue to do so until a connection is
successfully established. The order that the script will perform the tests in is that all packet loss
configurations for a certain protocol and payload size are runs with first AMQP, then MQTT, and
finally MQTT-SN. After this iteration is done, then the payload size is increased and the tests are
done over again in the same order.
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5 Analysis

In this chapter experimental results will be analysed. In section 5.1 the experimental data from the
test will be presented and 5.2 will talk in more detail about how the data was transmitted between
server and client. Section 5.3 will discuss the reliability and validity of the obtained data and finally
Section 5.4 will talk about the set up and performance of the tests.

5.1 Major results

Looking at the graphs Figure 5-1, Figure 5-2, and Figure 5-3 we can see the results for the different
test scenarios for the first payload size. It should be noted that for some of the tests with higher
packet losses the protocols would sometimes break down or the logging of the traffic was corrupted
or erroneous. This means that some of the plots contain more data and some less, but dots on the
line represents a successfully completed and logged scenario. The most common protocol to
breakdown was MQTT-SN which is most likely due to the fact that the protocol is very minimal and
offers little functionality in terms of automatic connection recovery. This behavior could probably
have been fixed had more time gone into the implementations and configurations of the brokers,
but as will be discussed in Section 5.3 there were some limitations that made running multiple tests
difficult.

5.1.1  100B payload results

The purpose of the 100B payload test was to see how the protocols compared when the 1MB of data
to be sent was broken up into a large number of small payloads to be transmitted by each protocol.
This test was necessary since, as mentioned in Section 4.1, the broker would not accept MQTT-SN
payloads using the larger size field; hence the maximum payload size for the MQTT-SN protocol was
255 octets. In order to prevent the MQTT-SN protocol from having to break the payload up into
multiple smaller transmissions the 100B payload was used. The results can be seen in Figure 5-1
where the total number of kB’s transferred for each protocol as a function of packet loss is plotted.
The plots contain some expected and some unexpected results. The fact that the MQTT-SN protocol
outperforms the more data heavy and TCP based protocols with regards to the total amount of data
transmitted is unsurprising. Unfortunately, the UDP based protocol broke down after reaching 19%
packet loss, hence there is no test data available for higher packet loss rates. However, based on how
MQTT-SN behaves in the 1kB tests shown in Figure 5-6, there is no reason to believe that the
behaviour for higher packet loss rates in the case of 100B payloads would be drastically different
than it was for O to 18%.

The more interesting result is that for the AMQP and MQTT protocols, as shown in Figure 5-1,
they do not differ that much despite AMQP being a much heavier protocol with regards to data
transmission overhead.

However, when looking at the number of packets transmitted between the server and the client,
as well as the contents of those packets it becomes clears as to why this is. When comparing the
number of packets going from the client to the server in Figure 5-2 and from server to client in
Figure 5-3 we see that the number of packets from the server to the client is about the same for all
the protocols, but the number of packets sent from the client to the server for the MQTT protocol is
about twice as many packets as the other two protocols.
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Figure 5-2: Number of packets transmitted from client to server, 1MB data, 100B payload, QoS 1
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The reason for this behaviour is, as mentioned in Section 4.1, because MQTT sends an extra TCP
ACK compared to AMQP. This ACK is sent from the client to the server to ACK that the application
layer ACK was delivered. In contrast, AMQP solves this in a different way. Figure 5-4 shows the
output of Wireshark when looking at the transmissions between the client and server. Here it looks
as if AMQP never performs a transport layer ACK, but instead only does application level ACKs. The
way AMQP gets away with this is by setting the ACK flag for each packet it transmits, as shown in
Figure 5-5, to ACK the previous packet. This way, each PUB is a TCP ACK for the last application
layer ACK, and each application layer ACK is a TCP ACK for the last PUB.
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Acknowledgment number: 19@ (relative ack number)
Header Length: 32 bytes
4 Flags: ©x018 (PSH, ACK)
@ee. .... .... = Reserved: Not set
«e® .... .... = Nonce: Not set
. ©... .... = Congestion Window Reduced (CWR): Not set
+0.. .... = ECN-Echo: Not set
..0. .... = Urgent: Not set
..1 .... = Acknowledgment: Set
s 1iw: = Pushy Set
.0.. = Reset: Not set
..0. = Syn: Not set
..® = Fin: Not set

Figure 5-5: AMQP TCP ACK flags

Since we transmit a lot of packets that result in a TCP ACK this makes AMQP competitive with
MQTT. However, as the packet loss rate increases the difference in the number of packets sent by
AMOQP as compared to MQTT shrinks and the amount of data transmitted for each AMQP scenario
increases more quickly than for MQTT. This indicates that AMQP is more sensitive to high packet
loss rates than MQTT with regards to the increased amount of data transmission. It should be noted
though that the MQTT test was not able to complete some of the tests when the loss rate became
high, perhaps indicating that AMQP is more stable. However, no conclusions will be drawn about
the stability of each protocol due to the fact that there might have been a number of factors that
made these test fail (such as the client’s implementation, the broker’s configuration, the VM, or
simply the logging program corrupting the log file).

5.1.2 1kB payload results

For the 1kB payload tests the graph in Figure 5-6 looks quite as expected. First, the MQTT-SN
performance is a lot worse now when compared to the 100B tests due to the fact that it has to
transmit 4 IP packets for every AMQP or MQTT payload transmitted. Thus it will transmit 4 times
as much IP header bytes than it would have if the larger packet size was used (almost 4 times since
an extra octet would be needed for the larger payload size field). However, despite this the MQTT-
SN protocol manages to almost be however on par with the other protocols with regards to the total
number of bytes transmitted data at lower packet loss rates. But as the packet loss rate grows so
does the number of transmitted bytes and it does so at a much more rapid pace for MQTT-SN than
for the other protocols. Looking at the number of transmitted packets to and from the server we can
see that the number of transmitted packets for the MQTT-SN protocol in Figure 5-7 and Figure 5-8
are much higher than for the other two protocols, especially when compared to the 100B tests. It
should also be noted that the reason why the number of packets sent from the client to the server is
higher than from server to client is due to the fact that the retransmission wait time is set to be
smaller than the keep alive timer. Therefore, if an ACK is not transmitted within 10 ms then the
client performs a retransmission. This means that there will always be a retransmission when an
ACK is lost, but no ACK will be sent when a PUB is lost - instead a PUB retransmission will occur
after 10 ms. As a result there will be more messages set from the client to the server than in the
reverse direction.

For the AMQP and MQTT the larger payload size results in the overhead from the header being
smaller in comparison to each other than when the payload size was 100B. The number of
transmitted packets for each of the TCP based protocols maintains largely the same proportion to
each other as was to be expected.
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Figure 5-8: Number of packets transmitted from server to client, 1MB data, 1kB payload, QoS 1

5.1.3 10kB payload results

For the 10kB payload test the results were also expected although with greater variation for the tests
due to fewer packets being sent over the network. Interestingly, the MQTT-SN variant refused to
work for this scenario despite being the one that should not be affected by the average size since it
will be fragmented on the application level anyway. For AMQP and MQTT the results were also
quite unstable with often erroneous packet logs. The logs would show that despite a total payload of
1 MB that the total delivered data was less than that. No indication of the logging program failing
were found since tshark properly logged each packet. For the results that were had however it can be
clearly seen in Figure 5-9 that the larger payload size reduces the difference the header size makes
due to much fewer packets transmitted.

The results for the 10kB transmission should however not be considered very trustworthy.
Mainly due to the instability and error proneness of the tests, but also because of sporadic behaviour
that can be seen for example in Figure 5-10 which lists the time to complete a transmission. The
behaviour of AMQP is especially interesting since it seems to indicate that for large payloads the
protocol is very sensitive to packet loss with regards to transmission time.
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5.2 Reliability and validity

As discussed in Section 3.5.1 the reliability of the tests are very good since the conditions can be
controlled very precisely. However, the validity suffers for the same reasons that the reliability is
good. Since we have a virtual environment communicating over the loop-back interface it is quite
different from the case when using the C300 module communicating over a GPRS link.
Unfortunately, we want to evaluate the protocols suitability for the C300 module, but these tests
sacrificed validity for reliability. On the other hand, these provide Scania with better data about how
the protocols behave when the packet loss rate varies. It would have been difficult to precisely
control the packet loss rate when running from a real truck as the packet loss rate would vary with
both the position and the velocity of the truck. Another factor that influences the validity of the tests
is that the testing frameworks are custom built. Despite being small programs it is out of the scope
for this thesis project to tweak and test the programs to see if there are settings and functionality
that the protocols provide that could improve their performance with a different test program. This
is especially true for the MQTT-SN protocol where the documentation was scarce and the
programmer has to set up a lot of the functionality on his own.

Another thing that impacts the validity of the results is the way that the transmissions are done with
regards to packet fragmentation and pushing. For TCP, every transmission issues a PUSH request to
immediately transmit the packet. While this might not be an unreasonable thing to do when
assuming that the payload is small enough to fit inside the MTU and the user want the message to
be transmitted as soon as possible (as would be the case for the 1kB payloads in 24) it would not be
the same if the payload was 10kB. This payload would need to be fragmented, but it would not need
a new TCP header for every fragment. Thus, if we assume that the 1IMB payload sent in the tests is
1000 packets with a payload of 1kB that would have been pushed, then the results are valid. If we
however assume that the 1IMB payload sent would have been 10 messages with a payload of 100kB
then the results are not entirely accurate since in a real world scenario multiple packets would have
been able to fit under the same TCP header. This holds true for UDP as well where a single UDP
header could have been used to transmit a 10kB payload fragmented into multiple packets.

5.3 Discussion

Most of the results were pretty unsurprising and as expected. The result that was not expected was
that the AMQP protocol was able to keep up as well as it did, despite having a lot larger headers
even when the payload size was small.

It was unfortunate that the larger packet size did not work for the case of MQTT-SN, since that
skewed the results for the MQTT-SN protocol on the 1kB test. Moreover, 1 kB is by far the most
common packet size for the Scania traffic. However, | believe that it is evident from the 100B tests
that MQTT-SN most likely would have outperformed the other protocols with regard to the total
number of bytes transmitted if the larger payload sizes could have been utilized. However, as with
the other two protocols the advantage of smaller headers diminishes as the payload size grows; thus
while it would have been better, this still would not have been as large a difference as it was for the
100B tests.

An interesting point to look at to determine how well these protocols are suited for Scania is to
see how they perform under the average conditions discussed in Section 2.9.6, i.e. when the packet
loss rate is about 4% and the packet overhead is about 14%. Since the most commonly transmitted
payload is 1kB (about 98% of the payloads) the corresponding overhead for each of these protocols
would be most interesting. However, as mentioned multiple times before, the MQTT-SN protocol
experiences a lot more overhead due to the fragmentation at the application layer. As the results
currently stand AMQP has an overhead, when transmitting 1MB data as 1kB payloads, of about 34%
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and MQTT has an overhead of about 32% according to the data from Figure 5-6. According to the
same data, MQTT-SN, has an overhead of 43%, which is a lot higher than the other two protocols.
However, when comparing the 100B data payload, AMQP introduces about 389% overhead, MQTT
around 366%, and MQTT-SN about 217%. In this test MQTT-SN does a lot better than the other two
protocols which leads me to believe that if the larger packet size had been used the UDP based
MQTT-SN would have beaten the other protocols by a wide margin with regards to the total number
of transmitted bytes.

Another way to look at this is that if the larger packet size could have been used, then the
percentage of overhead can be calculated with the following formula

TotalData
Overhead =1 —

) * (PayloadSize + HeaderSize + 1) + (PacketstomServer) * (ACKSize)

(PacketsFromClient
4

Equation 2 MQTT-SN data overhead calculation formula

Since the header size is the same for both directions except for an extra octet for the length field,
and the 1kB payload would fit both with regards to the application layer protocol and the MTU, then
the formula enables us to calculate the overhead. Using the data from Figure 5-8 and Figure 5-9
along with the header size from Figure 4-1 for MQTT-SN the corrected overhead data for 4% packet
loss and 1kB payloads with have a total byte overhead of approximately 193kB, which is roughly 19%
for a 1IMB transfer. This is a better than both the other tested protocols and also a better than the
SCPv2 protocol considering that the 14% overhead mentioned in Section 4.1 only takes the
application level headers into account.
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6 Conclusions and Future work

This chapter states the conclusions that | have drawn based on the analysis performed in Chapter 5.
The limitations that were faced will be addressed in Section 6.2, while Section 6.3 describes both
work that was left undone and work that should/could be done as future work. The chapter
concludes some reflections about the impact this work may have.

6.1 Conclusions

While the final goals for this thesis project were met, these goals changed a bit along the way.
Therefore, it is a bit of a stretch to state that the goals met. Originally, the idea was to first create a
virtual environment and test the protocols there. Then utilize these results as a benchmark for tests
under real conditions and running on the real hardware (i.e., a client for each protocol running on
Scania’s C300 module) while communicating with a broker running on one of Scania’s servers.
Moreover, it was desired that the protocols be evaluated in terms of their transmission speed,
response time, and the total amount of data sent over the network. While this idea at first seemed
plausible, the more time that was spent on developing the applications the more out of scope this
original idea for testing seemed. So after discussing the situation with my supervisors, it was
concluded that the most interesting investigation was how to reduce the number of bytes
transmitted, hence the scope of the project was changed and the goals updated.

With respect to achieving these updated goals the biggest problem faced was that the
specification for AMQP is so huge that getting an overview of all the parameters that might
influence the results was difficult. At the same time the MQTT-SN protocol had very scarce
documentation. Moreover, the official IBM/Mosquitto supplied broker only supported QoS levels of
-1 and O which resulted in the need to set up a custom PUB/ACK procedure for the client to achieve
QoS 1.

Getting the stochastic packet filtering to work was also a bit of a challenge. The intuitive choice
was to use netem to emulate different conditions and then log each protocol’s behaviour. However,
the netem utility would randomly crash or fail to set up the rules properly. This lead to the use of
iptables to set up random packet drops. While iptables is not traditionally used to emulate lossy
networks, it did supply the requisite functionality to randomly drop packets. Since this was what we
needed and it worked well, this solution ended up being s used.

Since lots of time was spent doing superfluous things, such as C300 implementations of each of
the protocols the time spent implementing the actual test applications was less than would have
been desirable. The time would have been better spent verifying the correctness of the applications,
speeding them up, and performing more tests. So if the thesis project were to be done over again the
focus would be set earlier and be narrower than it was to begin with in this project.

From the results that were collected, despite the poor performance on the tests were the payload
had to be split, MQTT-SN appears to have the potential to be the lightest protocol (of the three) for
transmitting data. However, since the MQTT-SN protocol is far from being plug-and-play the
number of bytes transmitted depends upon the developer handling connections, registers, and ACKs
properly; otherwise, the end result could be worse than the other protocols (as exemplified when the
smaller payload size was used). MQTT-SN also has the potential to be integrated with existing cloud
solutions which Scania has expressed interest in, since MQTT-SN could be feed through a gateway
making it into MQTT messages.
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6.2 Limitations

The biggest limitation faced regarding the implementations was without a doubt the complexity of
the system that the protocols were to be evaluated for. Underestimating the effort required for a
standalone protocol implementation meant that a lot of time was spent on setting up and
investigating solutions that were never tested. This combined with the fact that the documentation
for the MQTT-SN variant was very limited and that the scope of the AMQP protocol was quite huge
meant that a lot of effort went into developing the test applications instead of running the tests.

With regard to results, one of the major limitations was that no data was generated from an
actual Scania vehicle. While the generated data is reliable, having some data generated by
transmissions from a Scania vehicle to a server would have been nice to complement the
experimental data from the emulated test environment. As of now, running over the loop-back
interface of the virtual machine it becomes obvious what effect the packet loss rate has on the
performance of the protocols; however, for Scania it would have been interesting to know how the
protocols behave in the context of a C300 module transmitting data to a Scania server.

The time it took to perform the tests was also a limiting factor. For the first round of tests a 1
second wait time was used to ensure no erroneous retransmissions occurred. This was OK for the
TCP based protocols where TCP seemed to take care to the retransmissions, thus the 1 second wait
time was rarely needed. However, for the UDP based MQTT-SN this proved to be an extremely long
time to wait when you actually need to perform a lot of packet retransmissions. This was amplified
by the fact that the smaller packet size resulted in even more packets. Fortunately, this testing was
running while other work was being done, thus it did not block any other tasks from being
completed. However, when these tests finished it became apparent that some scenarios had failed,
so the time between retransmissions was reduced to 10 ms to allow for quicker testing. While the
MQTT-SN tests did go about 20% faster they were still way to slow to perform a lot of tests with.
The total transmission times for sending 1 MB of data using a 1 kB payload (with 10 ms
retransmission time for MQTT-SN) as a function of packet loss rate are shown in Figure 6-1.
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Figure 6-1: Execution time for 1MB data, 1kB payload, QoS 1 with 10 ms retransmission time for MQTT-SN
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It should be noted that the reason why the TCP based are so much faster is most likely due to
the fact that since we are running on the loopback interface the response time is extremely low. This
will cause TCP to configure the RTO to a very low value resulting in very quick retransmissions
when the packet is dropped. The UDP based MQTT-SN on the other hand gets no such protocol
configurations and thus needs to wait for the application layer to perform the resend.

6.3 Future work

The suggested future work ranges from tasks that were planned, but left undone, to suggestions for
further research that would build upon insights gained doing this thesis project.

6.3.1 In vehicle testing

The most obvious thing that was left undone and what would be the natural next step is to test the
protocols from inside an actual Scania vehicle. This would provide relevant data for Scania to base
their protocol implementation decisions on. To perform this test the current communication stack
of the C300 module would need to be replaced and the Scania server would need to run the broker
corresponding to the protocol used.

6.3.2 More protocols and brokers

While the protocols that Scania has expressed the most interest in have been evaluated in this thesis
project there are many additional protocols that would/could offer features that might be of interest
to Scania. One example is the FASP protocol discussed in Section 2.9.4. While the experiments of
this thesis focused mainly on multiple smaller transfers over a unreliable link (because these
transfer currently they make up the bulk of the traffic), there will still need to be OTA updates.
These updates can often be multiple MB in size and will need to be transferred over the same lossy
network as the other communication between the vehicle and Scania’s server. FASP would be an
ideal solution since it is designed to transfer large file over networks with high packet loss rates.

Another protocol that was discussed is CoAP. Since this protocol was also designed to transmit
very little data over the network it could very well prove to be a nice fit for Scania. This protocol is
also designed to easily translate to HTTP which means it could be integrated with existing web
solutions if the need for that would arise.

Finally, evaluating additional brokers could be of interest. However, since the protocols specify
how the transmitted data needs to be packetized a change in broker would not affect the number of
bytes transmitted (other than in the case of the broken MQTT-SN broker). However, other brokers
could be of interest for other metrics which Scania is interested in, such as response time and
transmission speed.

6.3.3 Encryption

One of the things that a protocol developer will need to look into is the type of encryption that is
used. It would be interesting to evaluate how well different types of encryption would work in
networks with very high packet loss rates. For example, TLS would need to do handshaking
procedures to negotiate a certificate, but with high packet loss rates this might take a very large
number of retransmissions to successfully complete. An obvious topic to look at is stream based
ciphers as opposed to block ciphers, for example the Espresso cipher for 10T devices [43] as this
would negate the need to introduce unnecessary encryption data overhead.
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6.3.4 Scalability tests

For this evaluation we had one publisher running with one subscriber connected. This is not a very
realistic scenario and it would have been interesting to see how the protocols behave as the number
of connections per broker increases. However, this is would be as much a broker and publisher
implementation evaluation as it would be a protocol evaluation, hence for this thesis such testing
was out of scope.

6.3.5 IPv6 and header compression

For the current scenarios no form of compression was used. While more exact data about the
payload would be needed to evaluate how much of an impact header compression has on the
overhead. One example of an interesting compression form that could be investigated in the future
when IPv6 is adopted is the 6LOWPAN compression or the ROHC/ROHCv2 algorithms described in
section 2.6.

6.4 Required reflections

As the fleet of Scania vehicles grows so will the need for reducing the number of bytes transmitted.
While the amount of data being sent right does not require a new protocol, a new protocol will be
needed to handle the aggregated date of an increased number of trucks, especially as this number is
expected to continue to grow. Not only is the number of vehicles increasing but so is the number of
services that are offered. When coupled with the advent of autonomous vehicles this creates real
economic incentives to minimize the amount of data traffic in order to allow for the greatest
possible scalability. A scalable system will also mean that more data can be transmitted and acted on
with low delay as compared to if the data would need to be offloaded when the vehicles are
connected to a static network. This could allow for real time detection of failing systems,
information about obstacles in the traffic and weather conditions among other things.

Being able to offer more services might also mean more efficient vehicles and more efficient
vehicles means less carbon (and other) emissions from the engines. Since both the environment and
the customer benefit from reduced fuel consumption this might be a win for all parties involved.
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Appendix B: Automated Scripts

Scenario creator script
#!/bin/bash
base_dir=$1

outfile cli=$base dir/cli_scen
outfile_srv=$base_dir/srv_scen

cli_prog=( $base_dir/testframework/producers/ThesisMQTT
$base_dir/testframework/producers/ThesisMQTTSN
$base_dir/testframework/producers/ThesisAMQP ) #"$base_dir/programs/test_hello_cli" )
#cli_prog=($base_dir/testframework/producers/ThesisMQTTSN ) #"$base_dir/programs/
srv_prog=( "MQTT" "MQTTSN" "AMQP") #"$base_dir/programs/test_hello_srv" ) #("MQTT"
"AMQP" "COAP" "SCPv2")

#srv_prog=("MQTTSN") #"$base_dir/programs/test_hello_srv" ) #("MQTT" "AMQP"
type=("a" ) #"pingpong")

for i in ${programs[@]};
do

echo "$i"
done

echo

packet_loss_scale=0.5
packet_loss="."
#for i in $(seq -10 2 -2);

for i in $(seq © 1 30)

do
echo $i
#packet_loss+="$(echo "1.0/(1+e($i*-1))" | bc -1 ) "
packet_loss+="$(echo "$i/100" | bc -1 ) "
done
latency_scale=0.5
latency="0 "
for i in $(seq -1 0.5 4);
do
echo $i
latency+="$(echo "(e($i))" | bc -1 ) "
done
size scale=0.5
size=""
for i in $(seq 2 1 4);
do
echo $i
size+="$(echo 107" (($i))" | bc -1 ) "
done

echo ${programs[@]}
echo ${packet_loss[@]}

echo ${latency[@]}

rm $outfile_cli
for p in ${cli_prog[@]}
do

for t in ${type[@]}
do
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for x in $packet_loss

do
for s in $size
do
echo "$p $t $x @ $s" >> $outfile cli
done
done

done
done

rm $outfile_srv
for p in ${srv_prog[@]}

do
for t in ${type[@]}
do
for x in $packet _loss
do
for s in $size
do
echo "$p $t $x @ $s" >> $outfile_srv
done
done
done

done
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client run script

#!/bin/bash
echo $1 $2 $3

interface=1o

#$1 scenario_file $2 other node
srv_addr="127.0.0.1"

k=1

base_dir=$1

echo "hello $2"

echo $PATH

echo $USER

filters=

fields="-T fields -e frame.time_relative -e frame.len -e ipv6.dst -e ip.dst -e
tcp.dstport -e udp.dstport -e icmpv6.echo.identifier -e ipv6.src -e ip.src -e
tcp.srcport -e udp.srcport -e icmpv6.echo.sequence_number -e tcp"

ip link set dev $interface mtu 1500

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers

/sbin/tc qdisc replace dev $interface root netem loss ©
#start tshark
#tshark -i $interface $fields $filters > $base_dir/packetlog/$3/p &

sleep 20
while read -r proto typ loss latency size file

do

tshark -i $interface -w $base_dir/packetlog/cli_log$k.pcap &
tshark_pid=$!

((portno=k+10000))

percent_loss=0"$(echo "$loss*100" | bc -1 ) " #tconvert prob to procent
#set netem

chain_name=PROBDROP${loss:0:5}

iptables -L $chain_name > /dev/null

if [ $? -eq 1 ;

then

echo -e "no chain, adding chain $loss\n"

iptables -N $chain_name

iptables -A $chain_name -m statistic --mode random --probability $loss

fi
iptables -A INPUT -p tcp --source-port $portno -j $chain_name
iptables -A INPUT -p udp --source-port $portno -j $chain_name

#/sbin/tc qdisc replace dev $interface root netem loss $percent_loss delay

"$latency"ms

#sleep 1

maxsize=1000000

total_size=1000000

reruns="$(echo "$total size"/"$size" | bc ) "

num_pack=1

pack_size=$size

if [ "$proto" = "$base_dir/testframework/producers/ThesisMQTTSN" ]
then
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maxsize=255
if (( $size > $maxsize ))

then
#echo -e "\tspliting\t$size\t$maxsize\n"
num_pack="$(echo "$size"/"$maxsize" +1 | bc ) "
#techo -e "\tspliting\t$num_pack\n"
pack_size="$(echo "$size"/"$num_pack" | bc ) "
#techo -e "\tspliting\t$pack_size\n"
fi
fi
echo $k
for i in $(seq 1 1 1)
do

exit_code=1
while [ $exit_code -ne 0 ]
do
#syntax: prog host portno mode
# echo "$proto $srv_addr $portno $reruns $num_pack 10 $size 1 "
$proto $srv_addr $portno $reruns $num_pack 10 $size 1 >

/dev/null
exit_code=$?
done
done
#sleep 0.3

kill $tshark pid
((k+=1)) #incremetn counter
#tc qdisc delete dev $interface root netem
done <$2
sleep 2
#clean
$base_dir/programs/test_hello_cli ::1 9999 > /dev/null

/sbin/tc qdisc delete dev $interface root netem
$base_dir/packet_separator.sh $base_dir $base_dir/packetlog/$3/p $3



Execution script

#!/bin/bash
f#tset vars
usr=karlstri
nodel=::1
node2=::1

base_dir="/home/$usr/programing/exjobb"
ctl node=::1

nodel ctl1=10.0.2.15

node2_ctl=10.0.2.15
scenario_file_cli="¢$base_dir/cli_scen"
scenario_file_srv="¢$base_dir/srv_scen"
#init

reset

echo -e "\t$base dir\t"

$base_dir/scenariocreator.sh $base_dir
sudo /sbin/tc qdisc replace dev lo root netem loss © delay ©Oms

#make each node have the requierd stuff

./resource_copyier.sh $base_dir root@$nodel $base_dir/temp
./resource_copyier.sh $base_dir root@$node2 $base_dir/temp

#clean previus tests

ssh root@$nodel -f "$base_dir/prep_srv.sh" $base_dir $node2
ssh root@$node2 -f "$base_dir/prep_cli.sh" $base_dir $nodel

#run the test
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ssh root@$nodel_ctl -f $base_dir/test_srv.sh $base_dir $scenario_file_srv srv $node2
ssh root@$node2_ctl -f $base_dir/test_cli.sh $base_dir $scenario_file _cli cli $nodel
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Server run script

#!/bin/bash
echo $1 $2 $3

iptables -F
iptables -X

interface=1lo

#$1 scenario_file $2 other node

k=1

base_dir=%1

echo "hello $2"

echo $PATH

echo $USER

filters=

fields="-T fields -e frame.time_relative -e frame.len -e ipv6.dst -e ip.dst -e
tcp.dstport -e udp.dstport -e icmpv6.echo.identifier -e ipv6.src -e ip.src -e
tcp.srcport -e udp.srcport -e icmpv6.echo.sequence_number -e tcp”

AMQP_broker=rabbitmg-server
MQTT_broker=mosquitto
MQTTSN_broker=$base_dir/org.eclipse.mosquitto.rsmb/rsmb/src/broker_mqtts

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers

ip link set dev $interface mtu 1500
killall test_hello_srv

#start tshark

#tshark -i $interface $fields $filters > $base_dir/packetlog/$3/p &
tshark -i $interface -w $base_dir/packetlog/srv_log.pcap &
tshark_pid=$!

#export RABBITMQ_NODENAME=rabbit
#export RABBITMQ_NODE_PORT=5469
#rabbitmg-server

#pid=$!

#echo -e "$pid\n" > $base_dir/pidfile

while read -r proto typ loss latency file

do
percent_loss="$(echo "$loss*100" | bc -1 ) " #tconvert prob to procent
((portno=k+10000))
echo $k

chain_name=PROBDROP${loss:0:5}
iptables -L $chain_name > /dev/null

if [ $? -eq 1 1;

then

echo -e "no chain, adding chain $loss\n"

iptables -N $chain_name

iptables -A $chain_name -m statistic --mode random --probability $loss

fi

-j DROP



Appendix B: Automated Scripts | 73

iptables -A INPUT -p tcp --destination-port $portno -j $chain_name
iptables -A INPUT -p udp --destination-port $portno -j $chain_name

echo $proto

if [ "$proto" = "AMQP" ]

then
echo "AMQP"
export RABBITMQ_NODE_PORT=$portno
export RABBITMQ NODENAME=node$portno
$AMQP_broker -detached > /dev/null &
pid=$!
echo -e "$pid" >> $base_dir/pidfile

fi

if [ "$proto” = "MQTT" ]

then
echo "MQTT"
$MQTT_broker -p $portno > /dev/null &
pid=$!
echo -e "$pid" >> $base_dir/pidfile

fi

#tmgttsn (rsmb)

if [ "$proto" = "MQTTSN" ]

then
echo "MQTT-sn"
rsmb_conf="¢base_dir/confs/m$k.conf"
echo -e "listener $portno INADDR_ANY mqtts " > $rsmb_conf
$MQTTSN_broker $rsmb_conf > /dev/null &
pid=$!
echo -e "$pid" >> $base_dir/pidfile

fi

((k+=1)) #incremetn counter
#tc qdisc delete dev $interface root netem
done <$2
#sleep 20
#clean
echo -e "-cleaning up"
$base_dir/programs/test_hello_srv ::1 9999 > /dev/null
kill $tshark_pid
#ip6tables -L
iptables -F
iptables -X

$base_dir/packet_separator.sh $base_dir $base_dir/packetlog/$3/p $3
#rabbitmgctl stop

#killall rabbitmg-server -s9

#killall beam -s9

#killall inet_gethost -s9

sleep 10

.base_dir/abort.sh
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Abort script
#!/bin/bash

sudo killall test_srv.sh
sudo killall test_cli.sh
sudo killall test_hello_srv
sudo killall test_hello_cli
rm -f pidfile
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Packet separator script
#!/bin/bash

#tassume packetes are udp/tcp
#assume port 22 are not used by anything but ssh
#assume each test have a unique set of src and dst port

echo "separating"

packet_file=$2

k=1

sshport=22

sshpactes=0
outfile=$1/packetlog/$3/s

#techo $1 $2 $3 $outfile
declare -A map;
map[22]="ssh";

old_src_port=0
old_dst_port=0
while read -r ts size dst dst_port src src_port flags file #read from logfile
do
if [ $dst_port -eq 22 ] || [ $src_port -eq 22 ] #ignore ssh

then
continue;
fi;
if [ $dst_port -eq 4369 ] || [ $src_port -eq 4369 ] #ignore erlang port maper
then
continue;
fi;

if ( test "${map[$dst_port]+isset}" && test "${map[$src_port]+isset}" ) #if
previud know combo
then
#techo "yes $dst_port";

else #if combo is unkown make combo know
if [ $dst_port -eq $0ld dst _port ] || [ $src_port -eq $old dst port ]
||[ $dst_port -eq $0ld src_port ] || [ $src_port -eq $old_src_port ]
then
echo "">"$outfile""$k"
echo "restart"
map[$dst_port]=$k
map[$src_port]=%$k
else
map[$dst_port]=$k
map[$src_port]=%$k

((k++))
fi

fi;

#do the loging

#echo "$outfile""${map[$dst_port]}"

echo $ts $size $dst $dst_port $src $src_port>>"$outfile""${map[$dst_port]}"

old_dst_port=$dst_port
old src_port=$src_port
#techo $ts $size $dst $dst_port $src $src_port #>>"$outfile""$k"
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done <$packet_file
echo "done , $k files"
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Client preparation script
#!/bin/bash

#
mkdir -p $1/cli_log
mkdir -p $1/packetlog/cli

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers/:$LD_LIBRARY_
PATH

rm $1/cli_log/*
rm $1/packetlog/cli/*

make -C programs -B

killall local_run.sh
killall tshark

killall ping6

#sudo rabbitmqctl stop
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#!/bin/bash

mkdir -p $1/srv_log
mkdir -p $1/packetlog/srv

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers/:$LD_LIBRARY_
PATH

rm $1/srv_log/*
rm $1/packetlog/srv/*

make -C programs -B

killall local run.sh
killall tshark

killall pingé

#sudo rabbitmqctl stop
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