
Evaluation of communication
protocols between vehicle and
server
Evaluation of data transmission
overhead by communication protocols

TOMAS WICKMAN

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN INFORMATION TECHNOLOGY, SECOND CYCLE
STOCKHOLM, SWEDEN 2016

Evaluation of communication
protocols between vehicle and
server
Evaluation of data transmission
overhead by communication
protocols

Tomas Wickman

2016-06-29

Master’s Thesis

Examiner
Gerald Q. Maguire Jr.

Academic adviser
Anders Västberg

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

This thesis project has studied a number of protocols that could be used to communicate between a
vehicle and a remote server in the context of Scania’s connected services. While there are many
factors that are of interest to Scania (such as response time, transmission speed, and amount of data
overhead for each message), this thesis will evaluate each protocol in terms of how much data
overhead is introduced and how packet loss affects this overhead. The thesis begins by giving an
overview of how a number of alternative protocols work and what they offer with regards to Scania’s
needs. Next these protocols are compared based on previous studies and each protocol’s
specifications to determine which protocol would be the best choice for realizing Scania’s connected
services. Finally, a test framework was set up using a virtual environment to simulate different
networking conditions. Each of the candidate protocols were deployed in this environment and
setup to send sample data. The behaviour of each protocol during these tests served as the basis for
the analysis of all of these protocols. The thesis draws the conclusion that to reduce the data
transmission overhead between vehicles and Scania’s servers the most suitable protocol is the UDP
based MQTT-SN.

Keywords

MQTT, MQTT-SN, AMQP, TCP, UDP, packet loss, header data, overhead, publish-subscribe

 Sammanfattning | iii

Sammanfattning

I den här rapporten har jag undersökt ett antal protokoll som kan användas för att kommunicera
mellan server och lastbil och därmed användas för Scanias Connected Services. Då det är många
faktorer som är intressanta när det kommer till kommunikation mellan lastbil och server för Scania
som till exempel responstid, överföringshastighet och mängden extra data vid överföring så har jag
valt att begränsa mig till att utvärdera protokollen utifrån hur mycket extra data de använder vid
överföring och hur detta påverkas av paketförlust. Rapporten börjar med att ge en överblick över
vilka tänkbara protokoll som kan användas och vad de kan erbjuda gällande Scanias behov. Efter
det så jämförs protokollen baserat på tidigare studier och protokollens specifikationer för att avgöra
vilket protokoll som är bäst lämpat att användas i Scanias Connected Services. Sists så skapas ett
virtuellt ramverk för att simulera olike nätverksförhållanden. Här testas varje protokoll och får
sända olike datamängder för att sedan få sin prestanda utvärderad baserat på hur mycket extra data
som sändes. Dessa resultat ligger sedan till grund för den analys och slutsats angående vilket
protokoll som är bäst lämpat att användas av Scania. Rapporten drar slutsatsen att baserat på den
information som finns tillgänglig och de resultat som ficks av testerna så skulle den UDP baserade
MQTT-SN vara bäst lämpad för att minimera mängden extra data som skickas.

Nyckelord

MQTT, MQTT-SN, AMQP, TCP, UDP, paketförlust, header data, overhead, publish-subscribe

 Acknowledgments | v

Acknowledgments

I would like to thank Professor Gerald Q. Maguire Jr. for having written the draft thesis template to
help bootstrap the writing process and for having a very helpful thesis webpage as well as providing
valuable feedback which has helped immensely with the quality of the thesis.

I would also like to thank Håkan Nilsson and Ken Nordström for being very helpful supervisors that
were always willing to take time to answer any questions I might have had.

My working college for this thesis project was Karl Strihagen whose thesis has the working title
“Evaluation of publish/subscribe protocols”.

Finally I would like to thank Scania for providing me with the opportunity to do this thesis project.

Stockholm, June 2016
Tomas Wickman

 Table of contents | vii

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... xi
List of Tables .. xiii
List of acronyms and abbreviations xv
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 2
1.3 Purpose .. 3
1.4 Goals .. 3
1.5 Research Methodology ... 3
1.6 Network assumptions ... 3
1.7 Delimitations .. 4
1.8 Structure of the thesis .. 4

2 Background .. 5
2.1 Guarantee of delivery .. 5

2.1.1 At most once delivery .. 5
2.1.2 At least once delivery .. 6
2.1.3 Exactly once delivery .. 6

2.2 Underlying protocols .. 7
2.2.1 UDP .. 7
2.2.2 TCP ... 7
2.2.3 SCTP .. 11

2.3 Design paradigms ... 12
2.3.1 Publish/Subscribe ... 12
2.3.2 Request/Response ... 13

2.4 SCPv2 ... 13
2.4.1 Protocol background ... 14
2.4.2 Requirement specifications ... 14

2.5 MQTT .. 14
2.5.1 Methods .. 15
2.5.2 Quality of service .. 15
2.5.3 Durable subscriptions ... 15
2.5.4 Keep alive packets .. 15
2.5.5 Last will ... 16
2.5.6 MQTT Messaging overhead ... 16

2.6 MQTT-SN .. 16
2.6.1 Broker gateways ... 17
2.6.2 MQTT-SN Messaging overhead 18

viii | Table of contents

2.6.3 Topic ID registration .. 18
2.6.4 Keep alive message .. 18

2.7 CoAP ... 18
2.8 AMQP .. 19

2.8.1 AMQP Messaging overhead ... 20
2.8.2 AMQP v1.0 controversy .. 21

2.9 Related work .. 21
2.9.1 Broker comparisons .. 21
2.9.2 Comparison of MQTT and AMQP 22
2.9.3 Comparison of MQTT and CoAP 22
2.9.4 Fast and Secure Protocol (FASP) 23
2.9.5 Monitoring of other types of vehicles 23
2.9.6 SCPv2 Transmission data .. 23

2.10 Summary .. 25
3 Methodology .. 27

3.1 Research Process ... 27
3.2 Experimental Setup ... 27

3.2.1 Artificial Environment .. 27

3.3 Data Collection .. 30
3.3.1 Tests performed .. 30
3.3.2 Logging ... 30
3.3.3 Sample Size .. 31
3.3.4 Note about QoS .. 31

3.4 Experimental design ... 31
3.4.1 Test bed .. 31

3.5 Assessing the reliability and validity of the data to be
collected .. 32

3.5.1 Reliability .. 32
3.5.2 Validity .. 33

4 Test setup ... 35
4.1 Extra header data .. 35
4.2 Publisher applications .. 36

4.2.1 AMQP publisher application .. 36
4.2.2 MQTT publisher application .. 37
4.2.3 MQTT-SN publisher application 38

4.3 Automated scripting .. 39
5 Analysis .. 41

5.1 Major results .. 41
5.1.1 100B payload results .. 41
5.1.2 1kB payload results ... 44
5.1.3 10kB payload results ... 46

5.2 Reliability and validity ... 48
5.3 Discussion ... 48

6 Conclusions and Future work .. 51

Introduction | ix

6.1 Conclusions ... 51
6.2 Limitations ... 52
6.3 Future work .. 53

6.3.1 In vehicle testing ... 53
6.3.2 More protocols and brokers .. 53
6.3.3 Encryption ... 53
6.3.4 Scalability tests ... 54
6.3.5 IPv6 and header compression .. 54

6.4 Required reflections .. 54
References ... 55
Appendix A: Port configurations ... 59
Appendix B: Automated Scripts .. 67

 List of Figures | xi

List of Figures

Figure 1-1: System Overview .. 2
Figure 2-1: At most once delivery ... 5
Figure 2-2: At least once delivery ... 6
Figure 2-3: Exactly once delivery ... 7
Figure 2-4: UDP header .. 7
Figure 2-5: TCP header .. 8
Figure 2-6: Slow start congestion window adjustment; points

represent received ACKs, adapted from [10] 9
Figure 2-7: Fast Recovery Retransmission .. 9
Figure 2-8: CUBIC growth graph ... 10
Figure 2-9: SCTP Chunk layout ...11
Figure 2-10: SCTP Common Header ...11
Figure 2-11: Publish/Subscribe messaging pattern using a broker 12
Figure 2-12: MQTT fixed header .. 16
Figure 2-13: MQTT Publish variable header .. 16
Figure 2-14: Transparent and aggregate gateway, adapted from Figure

5 of [21, p. 5] ... 17
Figure 2-15: MQTT-SN header, adapted from [5, p. 7] 18
Figure 2-16: AMQP General frame format, adapted from [24, p. 33] 20
Figure 2-17: Method frame, adapted from [24, p. 34] 20
Figure 2-18: Content Header and Body frames adapted from [24, p. 36] .. 21
Figure 3-1: Artificial test environment .. 28
Figure 3-2: Testbed overview ... 32
Figure 4-1: Total amount of header data for each packet when

transmitting a single byte of application layer payload 35
Figure 5-1: Total transmitted data for 1MB using 100B payloads and

QoS 1 .. 42
Figure 5-2: Number of packets transmitted from client to server, 1MB

data, 100B payload, QoS 1 ... 42
Figure 5-3: Total number of packets from server to client 43
Figure 5-4: AMQP sample traffic .. 43
Figure 5-5: AMQP TCP ACK flags ..44
Figure 5-6: Total transmitted data for 1MB using 1kB payloads and

QoS 1 .. 45
Figure 5-7: Number of packets transmitted from client to server, 1MB

data, 1kB payload, QoS 1 .. 45
Figure 5-8: Number of packets transmitted from server to client, 1MB

data, 1kB payload, QoS 1 ..46
Figure 5-9: Total transmitted data for 1MB using 1kB payloads and

QoS 1 .. 47
Figure 5-10: Execution time for 1MB data, 10kB payload, QoS 1 47
Figure 6-1: Execution time for 1MB data, 1kB payload, QoS 1 with

10 ms retransmission time for MQTT-SN 52

xii | List of Figures

 List of Tables | xiii

List of Tables

Table 1-1: Assumptions about network between vehicle and server
gateways ... 4

Table 2-1: Traffic volumes for Telefonica, April 2016 24
Table 2-2: Sending rates and message sizes as specified by Scania 24
Table 3-1: Desktop computer specifications .. 29
Table 3-2: Virtual machine specifications .. 29
Table 3-3: Summary of protocols, packet loss rates, and payload sizes

to be used for testing .. 31

 List of acronyms and abbreviations | xv

List of acronyms and abbreviations

ACK Acknowledgement (In the context of networks)
AMQP Advanced Message Queue Protocol
BIC Binary Increase Congestion
CAN bus Controller Area Network
CoAP Constrained Application Protocol
cwnd congestion window
DNS Domain Name System
ECU Electronic Control Unit
FASP Fast and Secure Protocol
FIFO First-in-first-out
GPRS General Packet Radio Service
GSM Global System for Mobile Communication
HTTP Hypertext Transfer Protocol
IETF Internet Engineering Task Force
IoT Internet of Things
IP Internet Protocol
MQTT Message Queue Telemetry Transport
MQTT-SN Message Queue Telemetry Transport – Sensor Networks
M2M Machine to Machine
MTU Maximum Transmission Unit
QoS Quality of Service
OASIS Organization for the Advancement of Structured Information Standards
OTA Over the Air
REST Representational State Transfer
RD Remote Diagnostics
RTO Retransmission TimeOut
SASL Simple Authentication and Security Layer
SCPv2 Scania Communication Protocol version 2
SCTP Stream Control Transmission Protocol
SMS Short Message Protocol
SSH Secure Shell
STS Tachograph message
TCP Transmission Control Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
URI Uniform Resource Locator
VM Virtual Machine
WSN Wireless Sensor Network

 Introduction | 1

1 Introduction

According to predictions made in a press release from 2014, Scania estimated that in 2015 it would
have around 150 000-200 000 vehicles using its services [1]. According to a statement by Volkswagen,
the current owner of Scania, Scania currently has approximately 170 000 connected vehicles sending
data to Scania for processing and of these, 70 000 were added in 2015 [2]. If this growth continues,
the number of Scania’s connected vehicles in 2020 is estimated to be around 600 000. This creates a
demand for a scalable solution that can cope with the increasing amount of data that these vehicles (in
the aggregate) will generate. Additionally, it is expected that the amount of data per vehicle will also
increase over the amount transferred by a vehicle today. Currently, a vehicle is estimated to transmit
approximately 91 kB per operating hour (see Table 2-2 on page 24.). While currently huge amounts of
data are not being transferred, the increase in number of connected trucks and the expected increase
in the number of services offered combined with the cost of transmission means that there is a
substantial financial benefit for Scania in reducing the aggregate amount of transmitted data.
Additionally, there is the limitation of data caps put in place by the different network providers. This
data cap typically limits each truck to 10 MB of data transfer per day. As a result, the lower the
protocol overhead, the more of this 10 MB/day that will be available for other services.

1.1 Background

Scania currently employs their own proprietary communication protocol called Scania
Communication Protocol version 2 (SCPv2). This protocol is used for all communication between
vehicles and Scania’s servers. The rapid growth in the number of connected vehicles has prompted
Scania to investigate what alternative protocols are available and how they would perform in
comparison to the current solution in order to ensure that they will be able to keep up with the
increasing volume of traffic.

Figure 1-1 illustrates the current system. This figure gives an overview of how the communication
is done. All of the sensors in a truck are connected via a Controller Area Network (CAN bus) for
internal communication. The CAN busses are connected to a C200, or in newer trucks a C300, which
resides in the cab of the truck. The C200/C300 is Scania’s proprietary Electronic Controller Unit
(ECU). This ECU acts as a communication gateway from the truck to Scania’s servers, and to the truck
from the servers. The use of a communication gateway decouples the internal and external
communication protocols, thus making it easy to replace any of these communication protocols. This
decoupling also allows different protocols to be used for different scenarios. The decoupling of the
protocols also decouples the internal and external functionality offered by the ECU, further increasing
the system’s flexibility. Improving the communication between these gateways and Scania’s server(s)
through the use of new protocols will be the focus of this thesis.

With the current growth in the number of connected devices and the emergence of the so called
Internet of Things (IoT), many protocols have been introduce that profile themselves as the best
option for different kinds of connected devices. The two most prominent protocols are the Message
Queue Telemetry Transport (MQTT) [3] protocol and the Advanced Message Queue Protocol
(AMQP) [4]. Both of these protocols are being maintained by the Organization for the Advancement of
Structured Information Standards (OASIS) consortium. There is also the MQTT-SN variant of the
MQTT protocol which profiles itself as a communication protocol for resource constrained network
connected devices [5]. Meanwhile, the Constrained Application Protocol (CoAP) has been
standardized by the Internet Engineering Task Force (IETF) [6].

Each of these protocols has its own advantages and disadvantages and has been created with
different use cases in mind. The result is that each protocol is more or less suitable for use for
communication between Scania made vehicles and Scania’s servers. This thesis project investigates
how these alternative protocols behave with regards to data transmission overhead, particularly when
packet loss increases.

2 | Introduct

Figure 1-1

1.2 P

The prob
data tra
servers.
transfer
factors t
payload,
loss. As
will be th

Each
requirem

1. A

2.

3.

The
platform
vary tho
packet lo
and thei

tion

1: Syste

Problem de

blem to be s
ansmission o

While Scan
speed, thei

that increase
, and how da
a result, the
he criteria by

h protocol
ments must b

All commun

Since all the
packets as th
the amount
different enc

The protoco
page 6).

The protocol

This could a
not a strict p
during the t
portion(s) of
be re-sent w

protocols w
m. The test e
ose variables
oss, payload
ir frequencie

em Overview

efinition

solved is: Wh
overhead due
nia has expre
r main focu

e the amount
ata transmiss

overhead an
y which the a

offers diffe
be fulfilled by

nication must

e investigated
hey see fit. T
of data tran

cryption app

ol must be ab

l must be abl

also be suppo
protocol requ
transmission
f the file wer

when connect

will be implem
environment
s that impac
 size, and fre
s is presente

hat is the be
e to the pro
essed an int

us was to red
t of data tran
sion is affect
nd performan
alternative pr

erent featur
y each protoc

t be secure; h

d protocol op
his thesis wi

nsmitted, but
roaches will

ble to guara

le to handle f

orted either
uirement. Th

n of the file,
re received an
tivity is re-est

mented and
for this imp

ct the protoc
equency that

ed later in Tab

est protocol
otocol used t
terest in red
duce the am
nsmitted are
ted due to ret
nce over a ne
rotocols will

res and lev
col:

hence all of th

perate on the
ill not evalua

ut all protoco
be discussed

antee a reliab

files of up to

on a protoco
he problem w

then the re
nd which we
tablished.

then evaluat
plementation
col’s perform
t data is sent

able 2-2 on pa

with regards
to communi

ducing the re
mount of dat

the overhea
transmission
etwork with
be evaluated

vels of cust

he payload d

e application
ate how the e
ols need to s
d in Chapter

ble at-least-o

 64 MB in siz

ol level or on
with large fil
ceiver and s

ere lost so th

ted in the co
n will provid
mance regar
t. An exampl
age 24.

s to Scania’s
icate betwee
esponse time
ta that is tra
d of each pro

ns performed
potentially h

d.

tomizability,

data must be

level Scania
encryption of
support encr
5.

once delivery

ze.

n an applicat
es is that if t

sender need
at the entire

ontext of Sca
de a framewo
ding data tr
le of the mos

 desire to re
en vehicles a
e and increa
ansmitted. T
otocol, the si
d as a result o
high packet l

 but the f

encrypted.

a is free to en
f packets mig
ryption. A nu

ry (see Figur

tion level an
the connectio
to synchron

e file does no

ania’s commu
work in which

ransmission,
st common m

educe the
and their
asing the
The main
ize of the
of packet
loss rates

following

crypt the
ght affect
umber of

re 2-2 on

nd is thus
on is lost

nize what
ot need to

unication
h we can
, such as
messages

Introduction | 3

1.3 Purpose

The purpose of this thesis project is to evaluate several different communication protocols in terms of
how well they fit Scania’s requirement regarding communication between their servers and vehicles
they provide their services for. The results should allow Scania to make an informed decision about
the advantages and disadvantages of alternative protocols when deciding to upgrade from their
current SCPv2 protocol.

1.4 Goals

The goal of this thesis project is evaluate different communication protocols for communication
between Scania’s vehicles and server. This has been divided into the following two sub-goals:

1. Create a proof of concept message platform to allow communication between a virtual
machine acting as server and a client using each of the investigated protocols. This will allow
us to vary one variable (such as protocol used, percentage of packets dropped, and message
size) at a time.

2. Evaluate each of the protocols on the basis of how they perform regarding overhead and how
packet loss affects the amount of data transmitted.

1.5 Research Methodology

The original idea was that a prototype implementation of the protocol would be developed and then
evaluated using a client application running inside a vehicle with a server application running on
Scania’s servers. However, the system that was first thought to be quite modular with regard to the
protocol turned out to be quite interconnected. This meant that the SCPv2 protocol implementation
could not be easily replaced by the new protocol implementation. The alternative was to have the
SCPv2 protocol use the new protocol via a gateway. However, this would affect the validity of the
experimental data since the evaluation would only reveal how the alternative protocols behave as a
gateway protocol for SCPv2. Additionally, the SCPv2 protocol is quite large, as well as proprietary, so
this would affect both the quality of the experimental data as well as the quality of the thesis.

For the above reasons, the approach used for testing was to set up a virtual environment with an
emulated network connection (between the gateway in the vehicle and the gateway in front of the
Scania server. This emulated network makes it possible to completely control the network’s behaviour
(in terms of delay, error rate, congestion, etc.), hence the protocols will be tested in this controlled
environment. While this would seem to be an artificial environment which is quite far from the
network conditions that the actual Scania trucks are subject to, it allows for a more exact reasoning
about how different network conditions affect the protocols. The main parameter we will focus on
emulating is packet loss, since packet loss can be directly controlled and it impacts the amount of data
transmitted by the different protocols. This test environment enables us to draw reliable conclusions
based on the experimental data about how the protocols behave as the packet loss rate varies.

1.6 Network assumptions

According to internal measurements by Telefonica, a GSM network provider for Scania, during the
month of April 2016 the average packet retransmission rate was around 0-4% depending on how
packet loss is counted. Based on the number of outgoing ACK/NACK from the server to the vehicle the
packet loss will be around 4% NACK’s, however a NACK could be due to a late packet or an indication
of mismatched encryption keys and does not necessarily indicate packet loss. So if the number of
packets sent from the c300 is instead compared to the number of ACK/NACKS sent from the server
the packet loss rate is about one every ten millionth packet. In the end though any retransmission
results in more traffic being sent over the network. So whether a retransmission is due to a late packet,

4 | Introduction

a packet loss or erroneous encryption keys does not matter for our experiments so the assumption will
be that for the communication networks that Scania uses has a retransmission rate of about 4% on
average. However, according to Scania the number of retransmissions is not the only network
impairment that affects the communication between the vehicles and the servers. Another thing to
consider is that trucks often operate in remote areas, such as mines, where the connection might be
unstable or non-existent. Finally, the amount of data that can be transferred in a day is limited to 10
MB due to restrictions by the network provider. Table 1-1 summarizes the assumptions made about
the network for the purposes of this thesis project. More about the SCPv2 background can be read in
section 2.4.1.

Table 1-1: Assumptions about network between vehicle and server gateways

GPRS transmission

Unstable connection

High packet loss

Limited amount of data

1.7 Delimitations

There exists a multitude of protocols that are marketed as solutions for networks where limiting the
amount of data transmitted is a priority. However, due to the limited time available for this project the
most well-known and widely adopted protocols for connected devices have been chosen to focus on.
This choice was made because extensive research and testing has already been done on these
protocols and due to an expressed interest by Scania as to the potential for cloud integration.
Specifically the MQTT protocol, its sensor network variant (MQTT-SN), and AMQP have been chosen.
Two additional protocols were also investigated, but were not tested: CoAP and the Fast and Secure
Protocol (FASP). This latter protocol was of particular interest since the transfer of larger files over
unstable networks with high retransmission rates was of interest to Scania.

1.8 Structure of the thesis

Chapter 2 introduces the basic terminology and principles of the investigated network messaging
protocols. It describes how the underlying protocols work and how the design choices of these
protocols affect their performance. This will allow the reader to understand and follow the reasoning
regarding the results presented later in the thesis.

Chapter 3 explains the experimental setup that will be used and how the protocols will be
evaluated using this experimental setup. Chapter 4 describes how the experimental setup and each of
the protocols were implemented. Chapter 5 looks at the experimental results and discusses them in
terms of what these results might mean for Scania. Finally, Chapter 6 concludes the thesis and
suggests future work.

2

W
re
in
ov
tr
ea

T
T
p
p
al

F

2

G
re
re
gr
re
m

2

A
d
of
F
q
se
is
re

Fi

li
d

2 Backg

When evaluat
esponse time
nterest, the m
verhead is
ransmissions
ach different

This chap
Transmission
Transmission

rotocol stack
aradigm and
ll the protoco

The curre
Following this

2.1 Guara

Guaranteeing
e-transmissio
esponse time
reater the le
eliably delive

most once del

.1.1 At mo

At most once
delivering dat

f reliability.
Figure 2-1). I
quickly since
ender to wai
s unavailable
eached its de

igure 2-1:

“At most
inks, since da

data was lost.

ground

ting each of t
e, transmissi
main focus in
directly rela

s that each ad
t level of deli

pter also look
n Control P
n Protocol (SC
k are affecte
d the request
ols to be con

ent Scania C
s there will b

antee of d

g reliable da
ons or using
e and/or tra
evel of reliab
er data, the
livery, at leas

ost once deliv

e delivery, a
ta, unless the
At most onc

If the receive
there was n

it for an ackn
e or the data
estination.

At most on

once” delive
ata would be

the protocols
on speed, an
n this thesis
ated to the
dditional lev
ivery guarant

ks at the fun
rotocol (TC
CTP) and ho
ed by this fu
t/response p
sidered follo

Communicat
be section dis

elivery

ata delivery
g error corr

ansfer rate, d
bility, the gr
protocol can
st once delive

very

also known
e underlying
ce delivery s
er is able to
no need for
nowledgemen
is lost along

ce delivery

ery could be
 lost and the

s there were
nd data trans
project is th
level of re

vel of guarant
tees affect th

nctionality o
CP), User D
ow the perfor
unctionality.
paradigm wo
ow one of the

tion Protocol
scussing each

incurs add
recting codin
due to the o
reater the d

n achieve one
ery, or exactl

as “fire an
g transport pr
simply sends
successfully
any addition
nt (ACK) tha

g the way, the

e a problem
ere is no way

three main p
smission over
e reduction o

eliability tha
tee entails. T

he transmissi

of the underl
Datagram Pr
rmance and r

Section 2.3
ork. This is e
ese two parad

l SCPv2 will
h of the proto

ditional over
ng. A reliabl
overhead ass
data transmi
e of the follo
ly once deliv

d forget”, e
rotocol, such
s data to the

receive this
nal overhead
at data has b
en we have n

if the comm
of knowing w

properties th
rhead. While
of overhead.

at is desired
This chapter w
ion of data.

ying transpo
rotocol (UDP
reliability of p
describes ho

essential back
digms.

l be briefly
ocols that wil

rhead: for e
le protocol
ociated with
ssion overhe
owing types
ery. Each of

nsures noth
h a TCP or SC
e receiver an
 data, then t

d. Moreover,
been received
no way of kno

munication ta
which data w

hat Scania is
e all of these
 Moreover, t

d, due to th
will discusse

ort protocols
P), and Str
protocols hig
ow the publ

ckground kno

discussed in
ill be evaluat

example, in
comes at th

h ensuring re
ead. When a
of delivery g
these is desc

hing in term
CTP, provide

nd hopes for
this method
, there is no
d. However, i
owing that o

akes place ov
was lost or ev

Background |

interested in
criteria are o

the amount o
he additiona
es exactly how

s (specifically
ream Contro
gher up in th
lish/subscrib
owledge sinc

n Section 2.4
ed.

the form o
he expense o
eliability. Th
attempting t
guarantees: a
cribed below

ms of actuall
es a guarante

the best (se
delivers dat

o need for th
if the receive

our data neve

ver unreliabl
ven how muc

5

n:
of
of
al
w

y,
ol
he
be
ce

4.

of
of
he
to
at
.

ly
ee
ee
ta
he
er
er

le
ch

6

2

In
re
se
b
m

Fi

so
h
o

d
re

2

T
d
co
re

“d
in
d

| Background

2.1.2 At lea

n order to en
eached the d
ender to not
etween proto

may send cum

igure 2-2:

There is
olution is to

has been be r
ptionally inc

It is impo
datagrams. In
efers to.

.1.3 Exact

The highest l
delivered exa
ombination
eceived this d

To enforc
double send”
n order to fi

double send is

This doub

1. When

2. If the
messa

3. The s
receiv

4. The r
sends
succe

ast once deliv

nsure “at leas
destination a
tify it that th
ocols, as som

mulative or se

At least onc

also the que
have a time

received. Wh
creasing the w

ortant to note
n our later d

tly once deliv

level of relia
actly once re
of timeouts
data previou

ce this exactl
” with ID-tag
lter out dup
s similar to a

ble send (sho

n the sender

e receiver re
age back to t

sender respon
ved message

receiver relea
s a transfer c
essfully comp

very

st once” deli
at least once
he data was

me protocols
elective ACK

ce delivery

estion about
out starting

hen the timeo
waiting time

e that the AC
discussion of

very

ability ensur
equires that
and retransm

usly (if so it ca

ly once mess
gged message

plicate messa
a two-phase c

own in Figure

sends a mess

eceives the m
he sender co

nds with a re
was seen an

ases the me
completed m
pleted.

ivery there n
e. This is usu

received (a
may send an

Ks.

t how to det
when the da

out occurs, th
 with each m

CKs can be ac
f each of the

res that data
we deliver t

missions) an
an discard th

sage delivery
es to keep tr

ages. This is
commit in da

e 2-3) works

sage it stores

message, the
ontaining thi

elease messa
nd that the sto

essage-ID an
message to the

needs to be so
ually done by
s shown in
n ACK for ev

termine that
ata was sent
he sender re

missed ACK.

cknowledgem
protocols, w

a is delivered
the data to

nd that the re
he duplicate

y semantics
rack of which

a variation
atabases.

as follows:

s the messag

n it stores t
s message-ID

age to the rec
ored messag

nd deletes its
e sender to i

ome way of k
y the receive
Figure 2-2).

very unit of d

t data was n
until when i

esends the da

ments of sequ
we will specif

d exactly on
the receiver

eceiver can k
data).

both MQTT
h messages h
of “Strategy

e and its asso

the message-
D.

ceiver which
e-ID can be r

s copy of the
ndicate that

knowing tha
er sending a
 The ACK p

data received

not delivered
it is resent u
ata and resta

uential bytes,
fically note w

nce. Ensuring
r (this can b
know if it ha

and AMQP
have already
y 3” describe

ociated mess

-ID and sen

h tells the rec
released.

e stored me
 the message

t the data ha
an ACK to th
process differ
d, while other

d. A commo
unless an AC
arts the time

, messages, o
what the AC

g that data i
be done via
as successfull

use a kind o
been receive

ed in [7]. Thi

sage-ID.

nds a receive

ceiver that th

ssage, then
e transfer wa

as
he
rs
rs

on
K
r,

or
K

is
a

ly

of
ed
is

ed

he

it
as

Fi

2

D
F
IP
tr
b
IP
ex
ov

2

U
d
an

Fi

in
w
la
h
d

2

T
fe
T

igure 2-3:

2.2 Unde

Due to specif
For our invest
Pv6, but afte
ransition will
een chosen i
P header. W
xamine wha
verhead.

.2.1 UDP

UPD is a b
delivery [8]. T

n optional ch

igure 2-4:

The main
nformation, a

with low over
ayer. Howeve

has the poten
described in S

.2.2 TCP

TCP provides
eatures than

TCP header is

Exactly onc

rlying pro

fications from
tigations we
er discussing
l happen soo
it would not

We will consi
at effect each

est effort d
The header o
hecksum eac

UDP heade

n appeal of t
apart from th
rhead. The d
er, since we
ntial to be o
Section 2.9.4

s an ordered
when using

s shown in Fi

ce delivery

otocols

m Scania all
will perform

g with Scani
oner or later.
affect the co
ider three d
h of these pr

delivery, con
of a UDP pac
ch consisting

r

the UDP pro
he data we w
drawback is
can chose ex
ptimized for

4.

d, reliable by
the UDP pro

igure 2-5.

of protocols
m all our test
ia they had
. It should als
omparison of
different tran
rotocols has

nnectionless
cket consists
of 16 bits as

otocol is its
want to send

that we will
xactly what f
r a specific u

yte stream b
otocol, but it

s need to run
s using IPv4
no plans fo
so be noted t
f the protoco
nsport proto

on the later

protocol th
 of a source
shown in Fi

simplicity. S
, it allows us
l have to pro
features we w
use case. Fo

between two
t comes at th

n on top of th
. We could h
r moving to
that even if th

ols since all o
cols: UDP, T
r tests in ter

hat offers n
port, a desti
gure 2-4.

Since it inclu
s to send a lo
ovide reliabi
want to inclu
r example, U

hosts. Usin
he cost of inc

the Internet
have chosen e
o IPv6 yet -
the larger IPv
of the protoco
TCP, and SC
rms of data

no guarante
ination port,

udes very lit
ot of data ver
ility ourselve
ude, a UDP b
UDP is used

ng TCP we g
creased mess

Background |

Protocol (IP
either IPv4 o
although thi

v6 header ha
ols include a
CTP. We wi
transmissio

ees regardin
a length, an

ttle additiona
ry quickly an
es at a highe
based solutio
d by FASP, a

et a lot mor
sage size. Th

| 7

P).
or
is

ad
an
ill

on

ng
nd

al
nd
er
on
as

re
he

8

Fi

w

| Background

igure 2-5:

The minim
worth conside

1. Conn

Since
seque
rando
This i
of fal
numb
a so-c
to leg
segm

2. Retra

When
from
data
data,
now r
there
delive
and c

3. Conge

To av
with
“slow
is dou
a con
each
either
cut to
starts

* The increase

TCP header

mal sized, i.e
ering when u

nection orient

e TCP is a c
ence numbe
omly selected
is done throu
lse connectio
ber, but with
called “SYN”
gitimate use
ents.

ansmission of

n TCP transm
the receiver
has been rec
as it does n

reported its c
is a newer

ered before d
could have un

estion contro

void overloa
a congestion

w start phase”
ubled on rece

ngestion avoi
ACK* until i
r case, when
o half the cur
s over. This m

e is by 1/cwnd + 1/

r

e., without a
using TCP in

ted protocol

connection b
r, hence the
d sending by
ugh a three-w
ons [9], that

h a malicious
attack, wher

ers or to cau

f missing byt

mits a TCP s
r. This cumu
ceived. How

not matter w
current value

value. Unfo
delivering th
ndesired con

ol

ding the net
n window (cw
” (as shown i
eiving each A
dance mode
t loses a seg

n a segment l
rrent thresho
may result in

/8 of segment size

any options, T
the context o

based byte o
e sender an
yte sequence
way handsha
t is, that som
s payload. Ho
re false initia
use resource

tes

segment it st
ulative ACK i

wever, reliabl
whether a pre

e. For examp
ortunately, T
he new data.
nsequences in

twork TCP e
wnd). This a
in Figure 2-6
ACK. Then, e

e, which utili
gment, or it l
loss is detect
old and the c

n a TCP sessio

e each time an AC

TCP header
of this projec

oriented pro
nd receiver n
e numbers w
ake. This han
meone sends
owever, this
al synchroniz
e exhaustion

ores the segm
indicates tha
le ordered by
evious senso
ple, an old pr
TCP will wai
. This proble
n the context

employs a c
algorithm ha
6). In this ph
either it hits
zes a linear i
loses a segm
ted, then the
congestion w
on almost ne

K is received.

is 20 bytes.
ct:

otocol the by
need to syn
when a TCP
ndshake is de
s a packet w
three-way h

zation segme
n of the dev

ment and wa
at this data
yte delivery
r value was
ressure senso
it until all p
em is called
t of this thesi

ongestion co
s several pha

hase the size
a threshold
increase of t
ent before re
e congestion

window will b
ever operatin

The followin

ytes are ord
nchronize the

connection
designed to re
with the corr
handshake is
ents are set to
vice receivin

aits for a cum
and all of th
is undesirab
lost when th

or report has
previous byt
“head of qu

is project.

ontrol algori
hases and sta

of the conge
which cause

the congestio
eaching this

n control thre
be reset and
ng at full capa

ng aspects ar

dered using
eir respectiv
is initialized

educe the ris
rect sequenc
vulnerable t

o deny servic
ng these SYN

mulative AC
he proceedin
ble for senso
he sensor ha
s little value
tes have bee
eue blocking

ithm togethe
arts out in th
estion window
es it to go int
on window o

threshold. I
eshold will b
the algorithm
acity.

re

a
ve
d.
sk
ce
to
ce
N

K
ng
or
as
if

en
g”

er
he
w
to

on
In
be
m

Fi

Fi

igure 2-6:

Anoth
in Fig
segm
assum
thresh
other

TCP a
succe
indica
send

If the
three
sende
imme

igure 2-7:

Slow start c

her mechani
gure 2-7). T
ent, and if t

med to be lo
hold will be

r than conges

avoids reduc
essfully recei
ating the seq
this same va

e sender does
ACKs indica

er knows th
ediately re-se

Fast Recov

congestion win

sm for conge
TCP decides
the receiver
ost. If this h
halved – how

stion.

cing the thres
ive other seg
quence numb
alue for each

s not receive
ating that the
hat this segm
ends the miss

very Retransmi

ndow adjustme

estion contro
whether a s
does not res

happens, the
wever, this i

shold when
gments. In t
ber of the ne
new segmen

an ACK for a
e receiver is
ment was l
sing segmen

ssion

ent; points rep

ol is called “F
segment was
spond with

en the conge
is undesirabl

a segment is
this case, th
ext byte that
nt it receives.

a segment wi
still waiting

lost for a r
nt and does n

resent received

Fast retransm
s lost is by k
an ACK in t

estion windo
le if the segm

s lost and the
e receiver w
it is expecti

ithin a specif
for the same

reason other
not reduce th

d ACKs, adapt

mission reco
keeping a ti
time, then th
ows will be r
ment was los

e receiver is
will respond
ing and it wi

fied time, bu
e numbered
r than cong
he congestion

Background |

ted from [10]

overy” (show
imer for eac
he segment i
reset and th

st for a reaso

continuing t
with an AC

ill continue t

ut has receive
next byte, th

gestion, so
n threshold.

| 9

wn
ch
is

he
on

to
K
to

ed
he
it

10

2

T
co
co
C

si
p
si

(1
q
(ܹ
th
D
m

th

E

p
th

0 | Background

2.2.2.1 CUB

There have b
ongestion co
ontrol algori

CUBIC will be

The aim
implifying th
rotocols. CU
impler, two-p

In the CU
1) Steady St

quickly increܹ௫ሻ, then
he growth re

During the p
moves away fr

One of th
he BIC algori

quation 1

Here C is
lotted, the g
hat shown in

F

BIC conges

been multip
ontrol algorit
ithm [11], an
e the congest

of CUBIC i
he congestio

UBIC does th
phase cubic g

UBIC algorith
ate Behaviou
ases the con
it starts to ra

eaches zero, a
probing phas
from ܹ௫.

he improvem
ithm with th

CUBIC grow

s a constant s
raph of the c

n Figure 2-8.

Figure 2-8:

tion control

ple improve
thms. The al
n improvem
tion control t

is to mainta
on window c
his by replac
growth funct

hm the algor
ur and (2) P
ngestion win
apidly decrea
after which t
se it once ag

ents over the
e CUBIC groܹ

wth function [1

scaling facto
congestion w

CUBIC gro

l algorithm

ements to h
lgorithm cur

ment of the B
tested during

ain the stabi
control func
cing the com
tion.

rithm has tw
Probing. In
ndow until i
ase the grow
the algorithm
gain starts to

e BIC algorit
owth function

ܹ௨ = ሺܶܥ
ܭ = ඨయ

11, pp. 4, fig 1.2

or and T is th
window incre

owth graph

how TCP ha
rrently used
Binary Increa
g all of our ex

ility and sca
ction and in
mplex three-p

wo phases wh
the Steady
it starts to

wth of the con
m enters the
o accelerate

thm is that C
n described i− ሻଷܭ + ܹ
ඨ ܹ௫ܥߚ

2]

he elapsed tim
eases as a fun

andles conge
in the C300
ase Congesti
xperiments.

alability of t
ncreasing TC
phase growt

hen adjusting
State Behavi
approach th
ngestion win
second phas
the congest

CUBIC replac
n Equation 1

௫

me since the
nction of tim

estion by u
0 is the CUBI
ion (BIC) al

the BIC algo
CP’s friendlin
th function o

g the conges
viour phase t
he window s
ndow. This co
se, i.e., the P
tion window

ces multitud
1 :

e algorithm s
me and will lo

using smarte
IC congestio
lgorithm [12

orithm, whil
ness to othe
of BIC with

stion window
the algorithm
size threshol
ontinues unt
robing phase

w growth as

e functions i

started. Whe
ook similar t

er
on
].

le
er
a

w:
m
ld
til
e.
it

in

en
to

2

W
C
w
m
th
p
w
S

2

A
d
tr
fi

A
w
o

.2.3 SCTP

While not uti
Control Tran
works in term
multiple strea
hat an SCTP
roblem). Ad

with burst er
ignalling Sys

2.2.3.1 SCT

An SCTP pac
destination p
ransmit mul
ield, flags and

A list of differ
where the mo

riented comm

1. Multi

For S
of att
delive
to kno

2. Mess

Unlik
transm

P

ilized in any
smission pro

ms of deliverin
ams – hence
host and clie

dditionally, S
rrors. SCTP
stem 7.

TP vs TCP a

cket consists
port as well a

tiple chunks
d a length fie

rences betwe
ost relevant
munication,

ihoming

SCTP, multih
tachment. Th
er the messa
ow a differen

age oriented

ke TCP but li
mits X numb

Figu

Figu

of the inves
otocol. Unlik
ng ordered b

e avoiding he
ent can auto
CTP support
was designe

and UDP

of a commo
as a verificat
s seen in Fig
eld.

een the SCTP
for this case
multihomin

homing mean
his means th
ges. Since th

nt route was

d communica

ike UDP , SC
ber of bytes,

ure 2-10:

ure 2-9:

stigated prot
ke UDP whi
bytes, SCTP o
ead of queue

omatically fai
ts selective a
ed to be use

on header se
tion tag and
gure 2-9 whi

P protocol an
e is the SCT

ng and SYN co

ns that the se
hat if one of
his works on
even used.

ation

CTP is a me
 then the rec

SCTP Commo

SCTP Chunk

ocols it coul
ich works in
operates on m
e blocking. S
il-over to an
acknowledge
ed to reliabl

een in Figure
d a check su
ich contains

nd the TCP a
TP avoidance
ookies.

ender and re
the endpoin
a transport l

essage orient
ceiving appli

on Header

layout

d still be wo
 terms of da
messages and
SCTP suppor
alternate net
ments – so t
ly deliver m

e 2-10 which
m. After the
 the actual p

and UDP pro
e of head-of-

eceiver can s
nts fail anoth
level the app

ed protocol.
ication can r

orth to look
atagrams an
d was design
rts multi-hom
twork addre
that it can e

messages, for

h contains th
e header the
payload as w

otocol can be
-queue block

specify multi
her one can
plication leve

 This means
read X numb

Background | 1

at the Stream
nd TCP whic
ned to suppor
med hosts (s
ss if there is
fficiently dea

r example fo

he source an
e protocol ca
well as a typ

e seen on [13
king, messag

ple endpoint
be utilized t

el never need

s that if SCT
ber of bytes i

11

m
ch
rt
so
a

al
or

nd
an
pe

3]
ge

ts
to
ds

TP
in

12

2

T
re

2

In
su
b
to
it
w

Fi

fo

2 | Background

one r
guara

3. Head

TCP
SCTP
to avo
wait f

4. Four

To es
were
conne
conne

2.3 Desig

Two common
equest/respo

.3.1 Publis

n the publi
ubscribers. B
etween the p
opic either d
ts messages w

will forward t

igure 2-11:

The publi
or dissemina

read. While
antees. SCTP

d-of-queue bl

guarantees t
P also offers
oid the head
for the last tr

way handsha

stablish a new
the receive

ection unless
ection. This p

gn paradig

n communic
onse. Each of

sh/Subscribe

sh/subscribe
Between the
publisher an

directly to the
when it send

this message

Publish/Sub

ish/subscribe
ating data.

UDP also o
P on the other

locking avoid

that the pac
delivery gua

d-of-queue b
ransmission

ake

w connection
er of the co
s it can prov
prevents a co

gms

cation patte
f these will b

e

e pattern se
publisher an
d the subscr
e publisher o
ds them. Wh
to all of the s

bscribe messa

e pattern has

offers this ty
r hand has a

dance

ckets are reli
arantees but
blocking that

to be ACK’d

n SCTP perf
onnection wi
ve that it is t
ommon attac

erns that are
be described b

enders assum
nd the subsc
riber (see Fig
or to the bro
hen a publish
subscribers w

aging pattern u

s two major

ype of trans
guarantee o

iably deliver
with no gua

t can occur f
before being

forms a four
ill not reser

the IP addres
ck against TC

e widely us
below.

me the role
criber is ofte
gure 2-11). T

oker. A topic
her publishe
who have sub

using a broker

advantages

mission, it d
f delivery.

red in the or
rantees abou
for TCP were
g able to tran

way handsh
rve any reso
ss from whic

CP known as

ed today ar

e of publish
en a broker w

The subscribe
is a tag that
s a message
bscribed to th

over a tradit

does so with

rder that th
ut ordering.
e the transm

nsmit the nex

hake with a
ources for t
ch it is tryin
SYN floodin

re publish/s

her and rec
who acts as
er subscribes
t the publish

to the broke
this topic.

tional client/

h no deliver

ey were sen
This allows

mission has t
xt set of bytes

signed cooki
the incomin
g to initiate

ng [14]

subscribe an

ceivers act a
a middlema

s for a certai
her attaches t
er, the broke

/server desig

ry

nt.
it

to
s.

ie
ng

a

nd

as
an
in
to
er

gn

Background | 13

First, the publisher and subscriber are loosely coupled with regards to space, time, and
synchronization [15]. This means that the publisher does not need to know who is listening, the
subscriber and publisher do not need to be active at the same time and the publisher is not blocked
while producing a new event. This is in contrast to a traditional server/client solution where the
sender and receiver are tightly coupled and the server cannot send if the client is not receiving. This
makes it ideal for disseminating data to subscribers via an unreliable and/or intermittent network
connectivity where providing a guarantee that the other party is listening can be difficult.

Second, publish/subscribe is scalable due to its tree-based structure, since if the system needs to
be scaled up more brokers can be added and the topics split between them, thus reducing the load
on individual brokers.

However, there are disadvantages to using the publish/subscribe paradigm. One is that, even
though it is loosely coupled regarding time, space, and synchronization; it is tightly coupled with
regards to the published data. If a change is to be made in how the published data is represented,
then the programmer will need to modify all the subscribers. Souleiman Hasan, Sean O'Riain, and
Edward Curry are researching how to achieve decoupling with regards to data semantics by using
approximate matchings [16].

2.3.2 Request/Response

The request/response (or request-reply) paradigm is a basic communication method between pairs
of computers. It works by having one computer send a request to another computer. When the
second computer receives the request it sends a response. The most well-known application of this
design is the HTTP protocol in which a client requests a webpage from a server and the server
responds with the requested document.

This paradigm is flexible in that it only requires a point-to-point communication channel over
which the client sends a request to the server and the server responds to that client. However, HTTP
could also use the publish/subscribe paradigm if requests and responses are sent to all interested
parties [17].

The request/response model supports two modes for when the client waits for a response from
the server. The first mode uses synchronous blocking, thus the sender sends a request to the server
and then waits for a response. This allows a simple implementation, but can become problematic -
since if a client crashes it will be problematic to re-establish the blocked thread*.

The other mode uses an asynchronous call-back where the client sends requests to the server
and then sets up call-backs for the server. The client keeps one thread listening for reply messages
from the server and one thread to serve the responses. This way, when a reply is received, the
response invokes the call-back that was previously established. A client that uses this approach can
easily recover if it were to crash by simply restarting the reply thread and continuing. This makes
the asynchronous call-back more suitable than the synchronous approach when there is a need to be
resilient to crashes; for example, when operating in a remote environment where a reset of the
computer might be difficult to perform.

2.4 SCPv2

SCPv2 is the current communication protocol deployed by Scania for communication between the
gateway in vehicles and the gateways at their server. A good understanding of the requirements of
this protocol will be beneficial when comparing how other protocols perform in comparison with it.

* Note that protocols such as QUIC re-establish a communication session using cryptograhic means. (https://www.chromium.org/quic)

14 | Background

Unfortunately, this protocol is proprietary, hence the protocol description will be brief (and lack any
specific details).

However, there is a specification that Scania wants the new protocol to fulfil (see Section 2.4.2).
Each of the protocols will be evaluated against this list of requirements to ensure that there no
required feature is missing.

2.4.1 Protocol background

The original Scania Communication Protocol version one only supported sending data via Global
System for Mobile Communication (GSM) using the Short Message Service (SMS) protocol. SMS
supports messages of up to 160 characters (including header and error detection code). However, as
the amount of data being transferred between the vehicle and server grew, the need for a new
protocol became evident. The two major requirements for version two of this protocol were:

1. Send a large amount of data in a single UDP packet to achieve low communication cost and

2. The choice of communication infrastructure should be independent of the data being sent
from one application to another.

In the second version of the protocol, SMS was only used to wake up the system after which the
vehicle gateway connected to one of Scania’s Domain Name System (DNS) Servers to obtain an IP
address of one of Scania’s servers. Subsequently all communication to/from this server was done
over UDP using General Packet Radio Service (GPRS).

2.4.2 Requirement specifications

Scania’s requirements for version two of the protocol and all subsequent implementations are:

1. All communication must be done over a secure encrypted connection.

2. The protocol should be able to handle files of up to 64MB in size. This includes being able to
resume transmission of such a large file should connectivity be lost.

3. The protocol shall guarantee at-least-once delivery.

For each protocol that will be evaluated in this thesis these requirements will be verified. It
should be noted that except for requirement 3, these requirements are not necessarily provided by
the protocol itself – as the functionality could be provided by a lower layer transport protocol or the
application layer; however, while not a metric for our evaluation, the discussion will talk about how
difficult it was to set up each of the protocols along with its respective broker.

2.5 MQTT

MQTT is a publish/subscribe protocol running on top of TCP and was originally developed in 1999.
In 2013, it was turned over to the OASIS organization. The current OASIS standard version of
MQTT is 3.1.1 and this version was approved on the 29th of October 2014 [18].

MQTT was designed to be a light-weight, open, simple, and easy to implement protocol which
would make it ideal for use in the context of Machine to Machine (M2M) communication and IoT
[3]. MQTT has been deployed for a number of real world applications. These applications, most
notably Facebook messenger and Amazon Web Services IoT, show that MQTT delivers on its
promises [19, 20].

Background | 15

2.5.1 Methods

In accordance with MQTT’s aim to be easy to implement, the number of methods defined by MQTT
for interacting with a specific resource are only five*:

Connect After a network connection has been established between a client and a
server the first message must be a CONNECT packet that sends identifying
information about the client to the server.

Keep alive Specifies how long the client can go without publishing a message before
being disconnected. Set on connect.

Disconnect Waits for the client to finish its work and for the TCP session to terminate.

Subscribe Sends a SUBSCRIBE message from the client to the server to create
subscriptions for one or more topics.

Unsubscribe Sends a UNSUBSCRIBE message from the client to the server to
unsubscribe from one or more topics.

Publish Sends a PUBLISH message from client to server or from server to client to
transport a message.

2.5.2 Quality of service

MQTT allows the user to specify different Quality of Service (QoS) levels depending on what is
needed. The protocol defines three QoS levels that correspond to three different levels of delivery
guarantees. Sending a message with a QoS of zero will result in a message with “at most once”
delivery (there is no follow up of the sent message). A message sent with a QoS of one will result in a
message with an “at least once” delivery guarantee with an ACK being sent for each message
delivered. Finally, a QoS level of two will result in “exactly once” delivery. To offer actual “exactly
once” delivery MQTT uses the message ID to filter out duplicate messages as discussed in [7] and
illustrated in Figure 2-3 on page 7.

2.5.3 Durable subscriptions

It is possible for the client to specify when it connects whether its connection is a durable or a
non-durable connection by setting a “Clean session” flag in the CONNECT message (setting the flag
to false will enable a durable connection). If the client chooses to use a durable connection, then the
broker will store undelivered messages if the client disconnects and the broker will subsequently try
to deliver these saved messages as soon as the client connects again.

In contrast, for a non-durable connection the lifetime of the subscription is limited to the time
the client is connected to the broker

2.5.4 Keep alive packets

When a client connects to a server it specifies a Keep Alive value. This is a 16-bit value that specifies,
in seconds, how long a client can go without either publishing a message to the server or sending a
PING request. If the client does not do one of these operations within one and a half times the Keep
Alive value, then the server will consider the client disconnected and remove all of its subscriptions.

* The client-server terminology used is the same as specified in the MQTT 3.1.1 Specification under “Terminology” [3].

16

2

T
b
n
au

2

M
va

sh
m
in
p

Fi

p
h
2
re
fe
m
p
p
h

Fi

2

M
th
T
M

* O

6 | Background

.5.5 Last w

The client ma
yte length-fi

not published
utomatically

.5.6 MQTT

MQTT messa
ariable part t

The fixed
hould be kep

message shou
ndicates how
ayload. This

igure 2-12:

For our t
ublish ACK

header for th
-13). The len
equired to re
ewer bytes n

message iden
ublished RE
ublished AC

header beside

igure 2-13:

2.6 MQTT

MQTT-SN* is
hrough a ser

TCP. In 200
MQTT-SN wa

1. MQTT

This i
pre-e
funct

Originally, this wa

will

ay also specif
ield defining
d any messag
y disconnect t

T Messaging

ages have tw
that varies d

d part consis
pt (in memor
uld be retain
w many octe

fixed header

MQTT fixed

ests we are m
message sin

he publish m
ngth field in
epresent the
needed for e
ntifier. If Qo
EC packet to
CK message.
es a two octet

MQTT Publ

T-SN

s a variant of
ies of change

08, Hunkeler
as developed

T-SN should

is so that it
xisting MQT
ionality that

as named MQTT-S

fy a Last Will
the length o
ge during on
the client an

g overhead

o header par
epending on

sts of two by
ry) until ackn

ned after it ha
ets remain o
r is shown in

d header

mainly inter
nce these are

message conta
the header c
topic name

ach publishe
oS 2 is used
o realize the
The publish
t field to indi

ish variable he

f the MQTT
es, most nota
r, Truong, a
to address [

d be as close t

requires min
TT broker.
MQTT supp

S, but was rename

l when it con
of the messag
ne and a hal

nd publish its

rts, one fixe
n the message

ytes and spe
nowledged, w
as been deliv
of the messa

n Figure 2-12

rested in the
e the messag
ains a topic
consists of tw

that follows
ed message.

d, there is on
e at least-on
h ACK messa
icate what m

eader

protocol tha
ably that the
and Stanfor
21]:

to MQTT as

nimal integr
As a resul

ports.

ed to avoid any con

nnects. This c
ge followed b
lf times the

s last will mes

d part that i
e being sent.

ecifies the ty
what the QoS
vered to its r
age which in

2.

e variable he
ges that will m

name as we
wo bytes and
s the two byt

The topic n
ne additiona

nce guarante
age contains

message is ack

at aims to be
e underlying
rd-Clark liste

possible

ration effort
t, the MQT

nfusion that the S

consists of to
by the actual
Keep Alive t
ssage on the

is necessary

pe of messa
S should be f
recipients. T
ncludes the

ader for the
most frequen

ell as a mess
indicates th

tes. So the sh
name is then
al packet tha
e. This pack
no addition

knowledged.

e more optim
transport pr
ed the follo

to use the M
TT-SN proto

stood for “Securit

opic string fol
 message. If
time, then th
specified top

for all mess

age being sen
for the messa

The remainin
variable he

publish mes
ntly be sent.

sage identifie
he number of
horter the to
n followed b
at will be se
ket looks ide

nal fields bey

mized for sen
rotocol is UD
owing design

MQTT-SN pr
ocol support

ty” [46].

llowed by a 2
the client ha
he server wi
pic.

sages and on

nt, whether
age, and if th
ng length fiel
eader and th

ssage and th
. The variabl
er (see Figur
f octets that i
opic name th
by a two octe
ent a lot: th
entical to th

yond the fixe

nsor network
DP rather tha
n points tha

rotocol with
ts almost a

2-
as
ill

ne

it
he
ld
he

he
le
re
is

he
et
he
he
ed

ks
an
at

a
all

2

T
b
th
b

Fi

2. Desig

The p
when
broke

3. Desig

Wirel
short
IEEE
physi
secur
each
that c
Head
this th

.6.1 Broke

To allow for e
roker and th
he incoming
roker. This c

1. Trans

The tr
conne
to the

While
simpl
maint
numb

2. Aggre

In co
and t
transp
does n

igure 2-14:

3. Multi

Since
unrel
conne

gned for reso

protocol is d
never any com
er to minimiz

gned for wire

less network
er maximum

E 802.15.4 wi
ical layer [2
rity, etc., so u
packet signif

can be deploy
der Compress
hesis howeve

er gateways

easy integrat
he client. Thi
g MQTT-SN
can be done i

sparent gatew

ransparent g
ection. Then
e broker.

e this offers
ly translated
tained betwe
ber of clients

egate gatewa

ontrast, an ag
the broker. W
parent gatew
not have to s

Transparen

iple gateway

e MQTT-SN
liable and h
ections via d

urce constra

designed to
mplex proces
ze the client s

eless network

ks are expect
m message
ireless stand
1]. This incl

using UDP in
ficantly. It sh
yed to reduc
sion (ROHC/
er no compre

tion with exis
is gateway us
messages fr

in two differe

way

gateway arch
for each MQ

s a straight-
d to a MQTT
een the brok
 are simultan

y

ggregate gat
While the im
way, the bene
support as m

nt and aggrega

support

is designed
have high li
different gate

ained devices

be able to
ssing needs t
side load as m

ks

ted to have h
e payload s
dard provide
cludes heade
nstead of TC
hould be not

ce the amoun
/ROHCv2) [
ession algori

sting MQTT
sually runs o

rom the clien
ent ways [21,

hitecture conn
QTT-SN conn

-forward imp
T message, th
ker and the
neously conn

teway mainta
mplementatio

efit is that th
many MQTT c

ate gateway, ad

to work we
ink failure r
eways in orde

s

run on ver
to be done it
much as pos

higher failure
sizes than
s a maximum

er data for t
CP means we
ted that ther

nt of header d
[22, 23] for I
thms will be

brokers, MQ
on the same
nts to MQTT
, p. 5] (as sho

nects each cl
nection the g

plementation
he number o

e gateway cr
nected.

ains one MQ
n of such a g

his approach
connections t

dapted from Fig

ell over wirel
rates, MQTT
er to have a f

ry resource
should be d
sible.

e rates, lowe
fixed netwo
m of 128 by
the network
e could reduc
re are header
data transmi
IPv4 and 6L
investigated

QTT-SN utili
platform as

T just before
own in Figur

lient to the ga
ateway main

n where eac
of MQTT con
reates scalab

QTT connect
gateway is a
scales a lot b

to the broker

gure 5 of [21, p

less network
T-SN suppor
fall back con

constrained
done by the g

er transmissi
orks. For e
ytes for each
k protocol, M
ce the heade
r compressio
itted. For exa

LoWPAN for
d.

izes gateway
the broker a

e passing th
re 2-14):

ateway with
ntains a MQT

ch MQTT-SN
nnections th

bility issues

tion between
a bit more co

better - sinc
r.

p. 5]

ks where con
rts maintain

nnection in c

Background | 1

devices, an
gateway or th

ion rates, an
example, th

h frame at th
MAC addres
er overhead o
on algorithm
ample Robus
IPv6 [24]. I

s between th
and translate

hem on to th

an MQTT-SN
TT connectio

N message i
hat have to b

when a larg

n the gatewa
omplex than
ce the gatewa

nnections ar
ning multipl
case of failure

17

nd
he

nd
he
he
s,
of

ms
st
In

he
es
he

N
on

is
be
ge

ay
a

ay

re
le
e.

18

al
tr
th

2

B
4

p
m
si

2

O
to
lo
b
w
a
it
w
to
th

2

S
re
w
w
k
re

2

C
si
co
S

8 | Background

This
thus a

Since the
lways operat
ransmitting t
he increased

.6.2 MQTT

By design, the
 octets depen

The reaso
ayload size i

message leng
imply describ

.6.3 Topic

One of the th
o use a 2 oct
ogin process
roker then r

way it is possi
topic string

ts topic strin
way is to use
opic IDs. For
hat for the se

.6.4 Keep

ince MQTT-
eceiving the

would respon
when there is
keep-alive tim
eceiver of the

2.7 CoAP

CoAP is a pro
imple device
ontrolled via
tate Transfer

also allows t
avoids conge

e gateway wi
te on the me
the larger M
size does no

T-SN Messa

e messaging
nding on how

on for the var
is less than

gth, thus the
bes what typ

c ID registrati

hings that MQ
et Topic ID i
 where the c
esponds with
ible to go fro
the sender h

ng to the bro
pre-defined

r our tests we
ervices Scani

 alive messa

-SN is a conn
messages is

nd with an AC
s packet loss
mer that tells
e ping will th

P

oposed IETF
es to commu
a standard i
r (REST) arc

Figure 2-15:

the clients to
estion in the g

ll translate t
essage just b

MQTT messag
ot matter (as

aging overhea

overhead of
w large the m

riable length
256 octets.
 header size

pe of message

ion

QTT-SN doe
instead of a p
client sends
h a 2 octet ID

om a 31 octet
has two optio

oker and the
d topic IDs w
e will only us
a will be usin

age

nectionless p
s still there w
CK to tell the
even this AC

s the sender
hen respond w

standard and
unicate over t
internet app
chitectural sty

 MQTT-S

o spread the
gateway.

the MQTT-S
before they a
ges and only
much).

ad

f MQTT-SN i
message. This

h is that MQT
However, fo

e can be con
e it is accordi

s to reduce n
plain text top
a registratio

D number th
topic string
ons. Either p
 broker resp

where the bro
se pre-define
ng the topic I

protocol it ne
when using
e sender that
CK may be lo
how long it
with a ping A

d aims to pro
the Internet

plications. Th
tyle of the we

SN header, ada

eir network

SN message t
are passed to
y use the MQ

s very small.
s header is sh

TT-SN allows
or use cases
nsidered to a
ing to the pro

network traff
pic string. Th
on packet w

hat is subsequ
to a 2 octet t

performs a r
ponds with th
oker and pub
ed topic IDs
IDs will be k

eeds some w
a QoS level
t the message
ost. The way
should wait

ACK and then

ovide a requ
[6]. CoAP is

his is achiev
eb.

apted from [5, p

traffic over m

to a MQTT m
o the broker
QTT format p

. The header
hown in Figu

s the use of 1
the payloads

always be 4
otocol specif

ffic compared
he topic strin
ith the desir
uently used t
topic ID. To u
egistration n
he correspon
blisher both
since it is no
nown before

way to keep t
of 1 or high
e was succes

y MQTT-SN s
before sendi
n the transm

est/response
s designed to
ved by utiliz

p. 7]

multiple con

message the
r. This is so t
prior to the

r can consist
ure 2-15.

1 octet for th
s will not us
octets. The

fication [5, p

d to the othe
ng is only us
red topic as
to identify th
use the topic
negotiation w
nding topic I
have a set o

ot unreasona
e transmissio

track of whet
her. Normally
ssfully delive
solves this is
ing a keep-a

missions may

e protocol th
o allow node
zing the Rep

nnections an

e gateway wi
that we avoi
broker wher

t of either 2 o

e length if th
se the shorte
message typ
. 7].

er protocols i
sed during th

a string. Th
hat topic. Thi
c ID instead o
where it send
ID. The othe
of pre-define
able to assum
on starts.

ther the part
y the receive
red; howeve

s by keeping
live ping. Th
resume.

hat allows ver
es to easily b
presentationa

nd

ill
id
re

or

he
er
pe

is
he
he
is
of
ds
er
ed

me

ty
er
r,
a

he

ry
be
al

Background | 19

Similar to HTTP, CoAP accesses content via a Uniform Resource Locator (URI) using the GET,
POST, PUT, and DELETE methods. CoAP is designed to easily translate to HTTP. There are even
guidelines from IETF on how to map CoAP to HTTP [25]. However, although CoAP is designed to
resemble HTTP in many ways, it differs in many others due to the requirements that a constrained
device puts on it.

The biggest difference between HTTP and CoAP is that CoAP is a UDP based protocol. This is to
avoid the overhead that TCP entails (which a constrained device wants to avoid).

CoAP offers two options regarding delivery guarantees. These are “at-most once delivery” and
“at-least once” delivery. These are referred to as “non-confirmable” messages and “confirmable”
messages in the CoAP specification. Confirmation requires the receiver of a message to send an ACK
when it receives the message.

2.8 AMQP

AMQP is a protocol that communicates via publish/subscribe and operates on top of TCP. It was
originally developed in 2003 by John O’Hara at JPMorgan Chase and iMatix with aim of creating an
interoperable message system that was non-proprietary and could be used as a standard messaging
protocol for investment banks [26].

Unlike MQTT, AMQP was not designed to have a small code footprint or an easy to use
interface, but rather AMQP was designed to be feature rich and high performance. Additionally, it is
not simply a messaging protocol, but also defines its own type system to ensure interoperability
between client and server.

Since AMQP was created to be used as a standard messaging protocol for a wide range of
different users it supports a wide variety of messaging applications and communication patterns
through a common interface. As a consequence, AMQP is a large protocol that is feature rich and
allows for a lot of customization. However, going into detail about each feature of this protocol is
outside the scope of this thesis. A short summary of the functionality that AMQP offers follows [4, p.
2]:

Types AMQP has its own type system that defines a set of primitives that can be
used to ensure interoperability between sender and receiver. These primitive
values can then be associated with semantic information when sent in a
message that tells the receiver how to interpret the value. For example, a
string could be sent with the associated information that it is to be
interpreted as a URL.

Transport The conceptual model of an AMQP network is that it is a network of nodes
connected via links. These nodes can either be sender, relays, or receivers.
The link between nodes is a unidirectional communication channel which
connects to the node’s “terminus”. This terminus can be either a source or a
target depending on the role of the node.

Each node is responsible for the safe storage and delivery of messages to the
next node. The link protocol between the nodes ensures that the message
and responsibility are correctly transferred between nodes.

The nodes exist within containers which can, for example, be brokers or
clients. For example, a broker container can consists of many queue nodes
that store messages. These messages are subsequently relayed to the
appropriate client container, which in turn contains a consumer node and a
queue node.

20

of
fe

2

W
p
m
H
am

Fi

ar
m
re
th

Fi

0 | Background

Mess

Trans

Secur

AMQP is
ffers - if any
eatures will b

.8.1 AMQ

Whenever a
rotocol head

major revision
However, as

mount of dat

After a su

1. “MET

2. “HEA

3. “BOD

4. “HEA

Each of th

igure 2-16:

For our p
re to perform

must be very
esponse, if n
he broker an

igure 2-17:

aging AM
in
tra
sto

sactions AM
ea
m
in
tra

rities AM
au
Au
Tr

a large syste
y of these a

be described

P Messaging

subscriber c
der is 8-octe
n version nu
this header
ta sent.

ubscriber has

THOD” - met

ADER” - cont

DY” - content

ARTBEAT” -

hese frames w

AMQP Gene

purposes the
m a substant
y short. This
not dropped,

d uses the he

Method fram

MQP define
cludes how
ailers, and s
ored messag

MQP uses a
ach transfer i
essage. This
to one coord
ansaction fai

MQP suppo
uthentication
uthentication
ransport Lay

em, thus rath
additional fea

in the releva

g overhead

connects to
ets long and
umber, major

should only

s connected it

thod frame

tent header f

t body frame

heartbeat fra

will be encap

eral frame form

heartbeat ty
tial number

is possible
should be al

eader shown

me, adapted fro

es a standar
the messag

structure of
ges, how to fil

transactiona
is initiated b
s allows the
dinated trans
ils, then all tr

orts built-in
n. These m
n and Secu

yer Security (

her than goin
atures are u
ant section of

a broker it
consists of t

r version num
y be sent wh

t is able to se

frame

ame

psulated by a

mat, adapted fr

ype will be se
of tests, the
since we do
lmost instan

n in Figure 2-

om [24, p. 34]

rd for how
ge should be

payload, de
lter message

al model for
by a “declare”

transaction
saction, and e
ransfers in th

n security
mechanisms
rity Layer (
TLS) [28] fo

ng into detail
used in the e
f this thesis.

must begin
the letters “A
mber, and fin

hen connectin

end message

a general fram

rom [24, p. 33]

et but not uti
time waitin

o our testing
ntaneous. The
-17.

messages a
e formatted
livery states
s, etc.

message tra
” message an
to coordina

ensures that
he transactio

mechanism
include th

(SASL) [27]
r encryption

about each o
experiment,

n by sending
AMQP” in u
nally the pro
ng it does n

s using 4 diff

me as shown

ilized. This is
g before per

g over the lo
e method typ

are to be de
with regard

s for messag

ansfer. This
nd ended by
ate independ
if one of the

on fail.

ms for enc
he use of
] for authen

n on top of TC

of the feature
then the de

g a protocol
uppercase fol
otocol revisio
not significan

fferent frame

n in Figure 2-

s due to the
rforming a re
oop-back int
pe will be us

elivered. Thi
ds to heade
ges, states fo

means is tha
a “discharge

dent transfer
 transfers in

cryption an
the Simpl

ntication an
CP.

es that AMQ
etails of thes

l header. Th
llowed by th
on [29, p. 32
ntly affect th

es namely:

16.

fact that if w
etransmissio
erface were

sed to login t

is
r,

or

at
e”
rs
a

nd
le

nd

QP
se

he
he
].

he

we
on

a
to

th
m
en

tr

Fi

0
a
co

2

W
d
h
b
su
w
w
m
re

H
th

2

A
ti
so

2

W
im

The Class
he argument

most message
nd.

Almost a
ransmit the s

igure 2-18:

The Class
0. Body size s

message can
ontains the p

.8.2 AMQ

With the intr
due to the dr
how the clien

roker should
upposed to w

would look lik
what the mes
makes broke
egarding how

The 0.9.1
However, this
he communic

2.9 Relate

All the invest
ime, thus so
ome of those

.9.1 Broke

When implem
mplementati

s-id and Meth
ts that will b
es the metho

all of the tra
sample mess

Content He

s-id is the sam
specifies the
n have. Thes
payload and

P v1.0 contro

roduction of
rastic change
nt to broker
d supply. Th
work, as wel
ke. However,
ssages that w
r manageme

w the creator

1 version of
s should not
cation betwe

ed work

tigated proto
ome research
e investigatio

er compariso

menting a pr
ions of broke

hod-id will b
be passed to
od will be “P

ansmitted m
ages we use

eader and Body

me as for the
size of the co
se properties
an octet indi

oversy

AMQP proto
es that the v

protocol wa
his included h
ll as what th
, in version 1
will be excha
ent a separa
r of the broke

the protocol
affect the re

een client and

ocols have be
hers have tes
ons will be su

ons

rotocol that m
ers. Since the

be predefined
o the AMQP
Publish” exce

messages will
for benchma

y frames adapt

e Method fra
ontent body.
s will be defi
icating the en

ocol version
version 1.0 in
as supposed
how the exc

he messages b
1.0 the specif
anged betwe
ate part of
er can handle

l has been u
esults since a
d broker has

een available
sted and com

urveyed.

makes use of
e broker acts

d AMQP vari
broker spec

ept for a logi

l utilize the
arking. These

ted from [24, p.

ame, and the
The propert

ined in the p
nd of the fram

1.0 there wa
ntroduced. V

d to operate
changes, que
between the
fication beca
en two endp
the protoco

e the messag

used in the t
although the
 remained la

e for the pub
mpared thes

f a message
s as a middle

iables, and th
ifying what
in at the star

content hea
e are illustrat

. 36]

weight is un
ty flags speci
property list.
me.

as a schism
Version 0.9.1

and what m
ues, and bin
client to bro

me narrower
points are su
ol, thus allow
ges.

ests perform
e protocol sp
argely the sam

blic to experi
se different p

broker it is w
eman betwee

he payload c
kind of met

rt and a disc

ader and bo
ted in Figure

nused and sh
ify the differe
. The Conten

in the AMQ
1 of the prot
messaging ca
ndings of the
oker and bro
r and it now

upposed to lo
wing for mo

med in this t
pecifications
me.

iment with fo
protocols. In

worth exam
en the two co

Background | 2

ontent will b
thod it is. Fo
connect at th

ody frames t
e 2-18.

hould be set t
ent propertie
nt body fram

QP communit
ocol specifie

apabilities th
e broker wer
oker to queu
only specifie
ook like. Thi
ore flexibilit

thesis projec
have change

or quite som
n this sectio

ining existin
ommunicatin

21

be
or
he

to

to
es

me

ty
ed
he
re
ue
es
is
ty

ct.
ed

me
on

ng
ng

22 | Background

parties the broker does not care very much about how the implementation of the client and server
work, only that the messages transmitted to the broker are in the correct message format. For
example, there is a list of MQTT broker implementations on the official MQTT GitHub
repository [30]. The large number of different MQTT broker implementations would allow us to
perform our tests using many different brokers, but such an investigation is out of the scope of this
thesis project.

Finding unbiased and comprehensive benchmarks, i.e., benchmarks not conducted by one of
the broker manufacturers, proved to be very hard to find. For this reason I settled on using
RabbitMQ [31] as the message broker for AMQP and Mosquitto [32] for MQTT and MQTT-SN due
to their large active user communities and ease of use. For MQTT-SN Mosquitto with a really small
message broker (RSMB) as gateway is used. However, I make no claim that RabbitMQ or
Mosquitto/RSMB are in fact the optimal broker/gateway choices for each protocol, thus my
comparisons have to be taken for what they are.

2.9.2 Comparison of MQTT and AMQP

In 2015, Jorge E. Luzuriaga, et al. compared MQTT and AMQP in the context of mobile
networks [33]. They evaluated these two protocols by creating an experimental setup where they
evaluated loss, latency, and jitter. They then used these values to conclude what is the best use for
each protocol and in what context it is most suitable to use a given protocol.

They evaluated common scenarios for a wireless sensor network (WSN), such as loss of
connectivity for a period of time and behaviour during message bursts. They determined that apart
from some peculiar behaviour from AMQP that causes it to receive messages in reversed order when
a message burst occurs, they both perform well, but AMQP offers more features related to security,
while MQTT is more energy efficient.

Finally, they concluded by saying that for “reliable, scalable and advanced clustering messaging
infrastructures over an ideal WLAN” one should use AMQP, but for sensors operating in
constrained environments, such as low-speed wireless networks, then MQTT is the better choice.

It should be noted that both MQTT and AMQP are TCP based protocols, so assuming MQTT-SN
is used, the choice of MQTT is most likely even more suitable when it comes to constrained
environments. However, in the context of this thesis the devices that are located in the vehicle are
not constrained in terms of available power, link bandwidth, etc.

2.9.3 Comparison of MQTT and CoAP

In 2014, Thangavel, et al. carried out a comparison between CoAP and the MQTT protocol [34].
They implemented common middleware to facilitate communication between clients and a server
using a common interface.

From their results they found that when a QoS level 1 for MQTT is used and a similar quality of
service for CoAP using confirmable messages, then MQTT has a lower delay than CoAP when the
packet loss was less than 25%. However, when the packet loss rate reached a sufficiently high
percentage, then the delay for MQTT grew a lot faster than CoAP. The authors reasoned that this
behaviour is due to the fact that since CoAP is UDP based and MQTT is TCP based, the
retransmissions for MQTT sent a lot more data in each packet due to the overhead of TCP– hence
the faster increase in delay.

Due to these different behaviours the authors argue that a good solution would be to have
adaptive middleware that detects the current network conditions and then choses a suitable
protocol.

Background | 23

2.9.4 Fast and Secure Protocol (FASP)

An alternative protocol that can be used when the objective is high speed file delivery is the
proprietary application layer protocol developed by Aspera called Fast and Secure Protocol (FASP)
[35]. FASP optionally offers encryption of the data.

FASP is built on top of UDP and aims to offer a protocol that will outperform TCP based
protocols for file transfers, while still offering a delivery guarantee. This is achieved by using their
own closed source proprietary algorithms for deciding on sending rate and retransmissions instead
of TCP’s congestion control and retransmission algorithms.

A 2015 Master’s thesis by Patrik Hagernäs evaluated the performance of FAST over 5G, which
Ericsson estimates will have a theoretical maximum throughput of 10 Gbit/s indoors and in dense
areas [36]. He managed to achieve a maximum throughput of 6.3 Gbit/s [37] which he compared to
the results of another Master’s thesis by Victor Johansson who managed to achieve a maximum 7.3
Gbit/s throughput using pure UDP on a 10 Gbit/s link [38]. Both of these thesis projects used the
same test environment.

The graphs in the analysis section of Patrik’s report clearly indicate how vastly superior FASP is
compared to plain TCP (with either New Reno or CUBIC) with respect to bandwidth utilization. The
TCP based protocols quickly throttle themselves down when there packets are lost and then stay
very consistently at low throughput even when the available bandwidth is increased. In contrast,
FASP quickly achieves large bandwidth utilization and rapidly adapts to changes in available
bandwidth.

2.9.5 Monitoring of other types of vehicles

While Scania has chosen to focus on real time data updates being sent via GSM to a server running
either in the cloud or at a Scania facility there are other options that have been or are deployed to
monitor certain engine parameters. One example is a module similar to the C300 that is mounted
inside a airplane engine and then, instead of transmitting its data to a server, transmits all gathered
sensor data wirelessly to a local database running inside of the plane [39]. This way, a lot more data
can be gathered from the sensors since the database is local. GE focuses on gathering data as
described in [40] as data lakes, where enormous amounts of data are gathered per flight and then
analysed to see if something can be improved. This could be something for Scania to look into since
it does not cost much to transmit data locally. Currently Scania does not log anywhere near the
amount of data mentioned in the articles about GE’s monitoring of their jet engines, but Scania does
log small amounts of error codes and status messages to an on board chip. According to Scania
engineers the biggest obstacle right now to logging larger amounts of data is that the infrastructure
inside the truck is not yet able to handle large amounts of data. However, there are plans to add an
Ethernet connection from the C300 or equivalent module to log CAN bus data straight to a
persistent storage device for later extraction.

2.9.6 SCPv2 Transmission data

According to measurements made by Telefonica the data transmissions over their GSM networks by
Scania can be summarize as in Table 1-1. In this table registration consists of truck and server
initiating a secure connection. RD stands for Remote diagnostics and this used to transmit
diagnostic data about the vehicle. OTA stands for over the air and this traffic is for remote software
updates. STS stands for tachograph service – this service logs driving time, speed, and driver
activity eliminating the needs for the driver to keep such logs. Position data is based upon a GPS
receiver or other device indicating the position of the vehicle. Vehicle data consists of the current

24 | Background

state of the systems inside the vehicle, such as engine speed, engine temperature and other sensor
data values. Geofencing triggers an alarm when a vehicle enters or leaves a defined geographical
zone.

Table 2-1: Traffic volumes for Telefonica, April 2016

The delivered bytes column indicates total amount of payload (in bytes) being transmitted while
protocol bytes indicate the overhead introduced by the protocol. As can be seen about 86.4% of the
transmitted data was payload data, which means that the overhead introduced by the SCPv2
protocol is around 14%. However, this overhead only includes the application level overhead
introduced by the SCPv2 protocol and so it does not take into account the IP and Ethernet header
that will need to be prepended. This is for the entire month of April so no conclusions can be drawn
about how the protocol behaves during different conditions, but the average packets loss rate during
this period of time is around 0-4% (depending on how you count a packet loss, see section 1.6)
according to an internal document by Scania network providers. Another interesting fact to note is
that over 98% of the traffic is generated by the position data and vehicle data messages. These
correspond to the Positioning and Current Status messages described in Table 2-2. It is evident
from these two tables that having a protocol that performs well on small (around 1kB) and frequent
(about every minute) messages will provide Scania with the greatest benefit.

Table 2-2: Sending rates and message sizes as specified by Scania

Traffic type Delivered bytes Protocol bytes %of total bytes

Registration 117 586 340 927 0.04
RD 20 048 644 13 441 380 1.44
OTA updates 0 0 0
STS 5542 5315 ~0
Position data 170 467 835 205 865 722 22.1
Vehicle data 613 665 115 711 055 980 76.32
Geofence 641 693 976 031 0.1
Total 804 946 415 931 685 355 100

Name Size Frequency

Vehicle data ~1 kB 10 per min
Positioning ~1 kB 1 per min
Tachograph file ~100 kB 4 per h
OTA Software update ~10 MB Sporadic, very uncommon

Background | 25

2.10 Summary

From the earlier investigated protocols we can now summarize the protocols to be evaluated in the
context of our implementation:

MQTT A light-weight protocol built on TCP that prioritizes ease of implementation and
small code footprint.

MQTT-SN The sensor network variant of the MQTT protocol is built on the same principles as
MQTT. However, MQTT-SN uses UDP as its transport layer protocol, thus it is more
light-weight than MQTT with regard to the overhead of each packet. Additionally, it
has features that might be helpful when used in a WSN.

CoAP CoAP is the only one of the listed protocols made for WSN that does not follow the
publish/subscribe paradigm, but rather was designed to be similar to HTTP. This
choice was made to facilitate easy integration of WSN nodes with the web. However,
as evident by comparisons with other protocols, it is obvious that CoAP also
performs well in non-web contexts - due to its low packet overhead.

AMQP AMQP is the most complex of the protocols investigated due to its huge feature set
and wide range of customizability.

FASP A proprietary UDP based protocol that offers high available bandwidth utilization
while still offering delivery guarantees. This protocol is particularly useful for
delivering large files.

 Methodology | 27

3 Methodology

This chapter provides an overview of the research methodology used in this thesis project.
Section 3.1 explains the process used to conduct the research. Section 3.2 explains the different
experimental setups. Section 3.3 explains what data was collected and why. In Section 3.4 the
experimental setup is explained, along with why it was chosen. Section 3.5 discusses the reliability
and the validity of the experiments.

3.1 Research Process

The research was originally planned to be performed in two stages. In the first stage the different
protocols would be run in an artificial environment where the client and server each will be running
inside a Virtual Machine (VM). In the second stage the protocols were planned to be run inside the
C300 module and would communicate with a Scania server. However, due to timing constraints the
implementation scope meant that second stage would not be possible and if attempted, would not
produce valid data. Instead the implementation was done inside a virtual environment to collect
simulated data in a controlled environment. This data will then be evaluated based on the volume of
data overhead introduced by each of the different protocols.

The VM for the artificial environment will be running Linux with iptables* setup to emulate
different network conditions. While there are other tools that offer more functionality regarding
network emulation, such as Netem†, there were a lot of problems getting Netem to work properly
when setting up different networking conditions on multiple ports. Since the only emulation we
needed was packet loss and iptables directly provides this and since this approach worked
immediately the implementation used iptables instead of another alternative. Using iptables
provides an environment with as little external interference as possible, while allowing us to change
one network parameter at a time. The VM was configured to simulate different scenarios ,such as
packet loss and protocol used, to see how these factors affect the amount of data transmitted.

3.2 Experimental Setup

This description of the experimental setup describes how the artificial environment was set up. The
description describes how the environment was created and gives an overview of the system used
for testing. This section also describes how the publisher and broker were set up and connected
together with what operating system and hardware were used for the network emulations.

3.2.1 Artificial Environment

The artificial environment allows the experiments to be performed in a completely controlled
environment where minimal interference is present. This makes it easier to reason about how the
protocols behave when conditions vary since we can adjust the conditions exactly as we want them
without any uncontrolled external factors influencing the results.

* http://linux.die.net/man/8/iptables
† http://www.linuxfoundation.org/collaborate/workgroups/networking/netem

28

3

F
S
u
V
ex

co
st
ap
co
co
d
fi
d
h
al

Fi

8 | Methodology

3.2.1.1 Ove

For the first e
ection 3.2.1.

using the loo
VirtualBox pr

xperiment is

The host
onnection ea
tarts the bro
pplications.
onfigured to
onditions fo

differentiate t
irst test will

different sizes
how much da

ll the configu

igure 3-1:

erview

experiment,
2. This conf
op-back inte
rovides a vir
s shown in Fi

machine con
ach set of tes
okers on the
The server h

o provide eac
or the relev
the packets w
 be started.
s on the diffe

ata was sent
urations have

Artificial tes

a virtual ma
figuration fac
erface. Orac
rtualized exe
igure 3-1.

nnects to the
sts can be au
e VM in ord
has one brok
ch of differen
vant test. Ut
when logging

The host m
erent ports a
in order to t
e been perfor

st environmen

achine will b
cilitates com

cle’s VirtualB
ecution envi

e VM throug
utomated sta
der to prepa
ker running o
nt network e

Utilizing the
g the experim

machine will
and logs how
transmit the
rmed.

t

be running o
mmunication

Box software
ironment th

gh a secure
arted by the
are them to
on each utili

emulations in
port config

mental data.
tell the clie

w quickly it is
desired data

on the deskto
between the
e is running
e VM. The

shell (SSH)
host machin
receive mess
ized port and
n order to re
guration this
Next the pub

ent to comm
s able to com
a. This contin

op computer
e publisher a
g on the te
test environ

connection.
ne. First the
sages from
d for each po

ealize the spe
s way make
blisher appli

mence sendin
mplete the se
nues until al

r described i
and broker b
est compute
nment for th

Through thi
host machin
the publishe
ort iptables i
ecific networ
es it easy t
ication for th
ng packets o
et of tests an
ll the tests fo

in
by
r.

he

is
ne
er
is
rk
to
he
of

nd
or

Methodology | 29

3.2.1.2 Test machine

The computer on which the tests will be run is a Dell Precision M2800 whose specifications are
shown in Table 3-1.

Table 3-1: Desktop computer specifications

Processor Memory Storage Operating System

Intel Core i7-
4810MQ @ 2.80 GHz
with 4 CPU cores

16 GB DDR3 SDRAM
@ 1600 MHz

LCS-256L9S-11
(256GB Solid State Drive)

Windows 7 Enterprise
64-bit, Service Pack 1

To simulate various conditions under which the protocols are to be evaluated iptables is used on
this desktop. Iptables allows the user to set up rules for packet filtering including stochastic rules.
Rules were written for each port to have different probabilities to drop packets. This made it easy to
compare the protocols since it allows us to change only one variable at a time.

3.2.1.3 Virtual Machine

As noted earlier, the VM will run on top of Oracle’s VirtualBox environment. This VirtualBox
environment is in turn run on the computer specified in Table 3-1 and has access to the hardware
resources specified in Table 3-2.

Table 3-2: Virtual machine specifications

Processor cores Memory (Guest) Operating System
1 8 GB Debian 1.3.14.1

3.2.1.4 Client

The client will be a publisher application running inside the VM. This application is invoked via SSH
to start sending packets to a specified address (in our case the loopback address) and port. The
clients are small programs built specifically for this test. Each client has the same interface for each
of the protocols that are to be tested. When invoked, the user can specify the destination IP address,
port number, number of iterations (how many times the program will be run), burst size (how many
packets will be sent in a burst = one iteration), time between bursts (how long, in µs, that the
program will wait between each iteration), payload size (the size in bytes of each payload) as well as
a QoS level. Since the interface is the same for all the tested protocols we can easily automate the
testing procedure for quick and easy testing.

3.2.1.5 Server

The server consists of a broker and a small custom C program that when activated will subscribe to
the topic that the client publishes messages on. As soon as a message of that topic is published the
program will consume it and, depending on the QoS level, the broker may send an ACK. This
procedure will be the same for all protocols. For AMQP the librabbit-c [41] library will be used,
while for the MQTT and MQTT-SN protocols the Paho libraries will be used [42]. The only task for
the server is to consume messages and send ACKs so that we can see how these protocols behave
when sending data.

As described in Section 2.9.1, two different brokers and one gateway will be used when the tests
are conducted. For the AMQP protocol the RabbitMQ version 3.6.1 broker will be used, for MQTT
the Mosquitto version 1.4.8 broker will be used, and for MQTT-SN Really Small Message broker
version 1.3.0.2 (RSMB) will be used as a gateway.

30 | Methodology

3.2.1.6 Link properties

Since the tests utilize the loopback-interface there is no link per-se. However, since the criteria that
the protocols will be evaluated on is the amount of transferred data and not transfer speed we want
the transfer speed to be as fast as possible to shorten the time required to run all of the tests.
However, the MTU of the loop-back interface will affect how much data can be placed into each IP
packet and as such will impact the amount of data transferred. The MTU is set to 1500 bytes since
this is the same as the MTU for a GPRS connection that Scania utilizes on the C300 module. This
choice will produce more valid data than selecting another MTU size would.

3.3 Data Collection

Scania has specified that their main points of interest are: (1) how much data is sent over the
network when sending the desired data, (2) how quickly the protocols are able to transmit messages,
and (3) what is the response time for the requests. The reason for the first question is that Scania
pays for each kB sent over the GSM network at a fee set by the network provider. Scania is allowed a
maximum of 10MB per day per truck. This limit is set by the network provider, thus it is in Scania’s
best interest to transmit below 10MB a day per truck.

The focus of this thesis will be to evaluate each of the protocols as to how much overhead they
introduce for each test. Tshark* will be used to log all the network traffic to a local file on the VM.
These files will then be in a format that is easy to analyse using Wireshark’s graphical interface.

3.3.1 Tests performed

Each test will consist of a 1MB data transfer from the publisher to the broker. The tests will be
conducted using a QoS level of 1 and an application payload size, excluding headers, of 100B, 1kB,
and 10kB. This set of tests will be done for each protocol and for each percentage of packet loss
(from 0% to 30%). By performing the tests this way we will collect a lot of data about how the
protocol behaves when transferring the most common packet sizes† as well as how they perform
when transferring a larger amount of data converted into multiple smaller packets. The exception to
testing with each of the three packet sizes occurs for the MQTT-SN variant as the broker did not
accept the larger sized payload. Thus except for the 100B test, each of the tests with MQTT-SN will
have its payload split into payloads of 255B on the application level. This of means that the
MQTT-SN protocol will transmit more header data than the other protocols in these tests were
(application layer) fragmentation is used, hence this will be addressed in the analysis.

3.3.2 Logging

To log all incoming and outgoing network the terminal version of Wireshark, Tshark, is used on the
VM. This allows logging of all packets that are sent over the network including the TCP handshakes
and other data related to the transmission. Since we need to be able to filter the received packets
based on which test they belonged to we ran each test on a different port and then group the logged
files by ports. Having the possibility to filter on ports also allows us to filter out the SSH packets
used to control the tests. The result is that we can tell exactly how much data was sent for each test
for a given emulated network condition.

* https://www.wireshark.org/docs/man-pages/tshark.html
† The three different sizes were selected to be representative of the typical amounts of payload generated by the different sources expected from
the current C300 software and a representative colection of attached sensors.

Methodology | 31

3.3.3 Sample Size

For each protocol the amount of data transmitted will be investigated as a function of the packet loss
rate. The percentage of packet loss will vary from 0% to 30% in steps of 1%, and for each percentage
and for each protocol 1MB of data will be transferred using three different payload sizes. These sizes
are 100B, 1kB, and 10kB. These payload sizes were chosen to capture certain attributes of the
protocols. The 100B payload size is used to illustrate how MQTT-SN compares to the other
protocols when the payload is fragmented into the same number of packets as for the other
protocols. This is so we can understand how this protocol would compare to the other protocols,
especially when a larger payload size of 1kB is used which would be the case normally for the
protocols when deployed by Scania. The 1kB payload size is used to see how the protocols would
behave when transmitting the most common of the expected payload sizes, while 10kB is meant to
reveal how the protocols behave when they make use of transport layer fragmentation to transport
large payloads. Each test will be conducted with a QoS level of 1. Table 3-3 summarizes the different
protocols, packet loss rates, and payload sizes to be used for testing.

Table 3-3: Summary of protocols, packet loss rates, and payload sizes to be used for testing

3.3.4 Note about QoS

Although each protocol offers multiple QoS levels they offer it in slightly different ways. For
example, AMQP allows for more precise control of the service level than simply setting the QoS level
for messages. As one can specify exactly how many un-ACKd messages the broker should be allowed
to send to the client before it starts to wait for ACKs. However, we need to be able to guarantee
at-least once delivery for all of our messages. This corresponds to a QoS level of 1 for MQTT and
MQTT-SN. For the tests of the AMQP protocol, the protocol will be configured to either assume a
QoS of 0, that is retain none of the messages, or it will be configured to retain all messages until
ACKd.

3.4 Experimental design

This section describes how the experiment was set up and how each test was conducted as well as
how many tests were performed and with what parameters. It will also talk about the reliability and
validity of the data that the tests are expected to produce.

3.4.1 Test bed

The test bed is set up to allow for easy testing of the protocol together with logging data in order that
the test results will be simple to analyse. To achieve this there was a need to quickly test lots of
different network conditions. Additionally, it should be easy to tell to which test each packet
belongs. This was done was by configuring iptables to emulate the different network conditions on
different ports. Then we have one broker for each port ready and listening for traffic on that port as
shown in Figure 3-2. Having multiple brokers running on the same server at first seemed as if it
would influence the tests by taking system resources; however, for our tests we have around 100
brokers running and an idle Mosquitto broker is shown as using 0.0% of the CPU and 0.0% memory

Protocols Packet loss Payload sizes

AMQP, MQTT, MQTT-SN 0%, 1%, 2%, …, 29%, 30% 100B, 1kB, 10kB

32

an
se
th
te
p

Fi

se
p

ea
3
w

3

A
H
th
ar

3

F
gi

* h

P

A

2 | Methodology

nd a RabbitM
etting the tes
he same port
est, there is
revious tests

igure 3-2:

For each
ent in chunk
ackets as des

. As a res
ach protocol
-2 only illus

when respond

3.5 Asses

A lot of thou
However, the
he results tha
re described

.5.1 Relia

For the artific
iven the par

http://linux.die.ne

Protocols

AMQP, MQTT

MQ broker a
sts up in this
t. Additional
a chance tha

s.

Testbed ov

test a total a
ks of 100B,
scribed in Se

sult we have
l tested. Each
strates the ou
ding to the pu

ssing the

ught went in
ere are some
at it was not
in the follow

bility

cial environm
rameters to c

et/man/1/htop

T, MQTT-SN

as 0.0% CPU
s way we do n
lly, because w
at we might

erview

amount of 1M
1kB or 10kB

ection 3.3.3 a

a total of 27
h port is conf
utgoing port
ublisher.

reliability

nto designin
practical fac
possible to s

wing subsecti

ment we are a
configure ipt

Pack

N 0%,

U and 0.5% o
not have to w
we start the
receive a lat

MB is transfe
B or each pa
and shown in

79 ports ope
figured as sh
t, but the br

and valid

ng tests that
ctors that ne
solve within
ions.

able to produ
tables, the pr

ket loss

1%, 2%, …, 2

of memory w
worry about s

next test im
te packet du

erred from th
acket loss pe

n

en with 279 b
hown in Appe

okers will ne

dity of the

t would prod
eed to be ad
the time fram

uce very relia
rograms use

29%, 30%

when monito
starting and
mediately af

uring a new t

he publisher
ercentage be

brokers liste
endix A. It sh
eed to be co

data to be

duce both r
dressed that
me of this th

able results. T
d to send th

Payload

100B, 1k

ored using h
re-starting t
fter finishing
test or miss

to the broke
etween 0 an

ening to one
hould be note
onnected to a

e collected

reliable and
t will affect t

hesis project.

This is due t
he data, the d

d sizes

kB, 10kB

htop 1.0.2*. B
he brokers o

g the previou
packets from

er. The data i
nd 30 percen

port each fo
ed that Figur
a port as we

d

valid result
the validity o
These factor

o the fact tha
data we send

By
on
us
m

is
nt

or
re
ell

s.
of
rs

at
d,

Methodology | 33

and the virtual machines we used someone else should be able to set up the same tests, perform the
experiment, and obtain almost exactly the same results. This is due to the fact that in our artificial
environment there is nothing interfering with the testing, hence the results should be easily
reproducible.

3.5.2 Validity

With regard to validity there are some problems. The purpose of the experiments is to determine
how well suited the protocols are for Scania’s purposes. This is done by testing how the protocols
behave when different network conditions are emulated. Since we can eliminate nearly all
interference with the experiments we are able to produce very valid data about how each protocol
behaves with regard to packet loss. However, the C300 module will never operate in a vacuum and
there will always be interference affecting the results which means that the results of our testing will
not be completely valid in the context of one of Scania’s vehicles.

 Test setup | 35

4 Test setup

The main focus of the tests is to determine how each of the different emulated network conditions
affects the amount of data transmitted. For these experiments the MTU will be kept at 1500 (the
same as that of a GPRS link) and the transfer speed will be as fast as the loop-back interface allows.
While GSM would theoretically only allow a throughput of ~100kb/sec, this thesis focuses on the
amount of data transferred rather than the transfer time. Thus we chose not to limit the transfer
speed in order to able to perform the tests as quickly as possible. Note also that the actual
throughput of a GPRS link depend upon both the radio conditions and whether GMSK or 8PSK
modulation is used, what type of coding is used, and how many slots are allocated to the device.

4.1 Extra header data

For every packet sent, both an application level header and transport level header need to be
prepended. While this certainly is not be the case for every application using TCP or UDP it will be
for these tests due to the fact the application will issue a push call for every TCP transmission, and
for the UDP the fragmentation will occur on the application level so no IP fragmentation will be
used. The impact of this will be discussed in section 5.2.

 The application level headers will be the headers of the protocol we are investigating, while the
transport layer header will be either that of TCP or UDP. Additionally an IPv4 header of 20 octets
and, for our simulated tests, an Ethernet II header of 14 octets will be transmitted. The total amount
of header data is shown in Figure 4-1. This data was generated by publishing a one character
message to the broker and then using Wireshark to investigate the size of the packets that were sent.

Figure 4-1: Total amount of header data for each packet when transmitting a single byte of application layer

payload

Since the application layer headers vary depending on the message being sent, the most
common message header was chosen for these measurements. For the AMQP protocol this message
is the PUB and PUB-ACK messages – as they contain the general frame plus the method, header,
and body frame (the header and body are only used for the PUB message) along with two property
fields as will be explained in Section 4.2.1. Except for the initial login message and the final
disconnect message to the broker, PUB and PUB ACK messages will only be sent once assuming

14 14 14 14 14 14
20 20 20 20 20 20

32 32 32 32
8 8

99

21
37

4

7 7

0

20

40

60

80

100

120

140

160

180

AMQP
PUB

AMQP
PUB-ACK

MQTT
PUB

MQTT
PUB-ACK

MQTT-SN
PUB

MQTT-SN
PUB-ACK

Nu
m

be
r o

f b
yt

es

Ethernet IP Transport Application

36 | Test setup

none of them are lost. The MQTT setup is similar. Here the PUB message will include the fixed
length header along with a variable length PUB header. Finally, for MQTT-SN since the payload was
only one octet the size the length field is only one octet rather than three. The total application layer
header is 7 octets. One of the reasons that the MQTT-SN protocol header is so much smaller than
the other protocols is that it does not include the topic string, but instead uses the registered topic
ID (encoded as two octets). This means that for the tests performed in Figure 4-1. MQTT included a
topic ID as a string 31 octets in size, while AMQP for this same topic together with an exchange
string results in an extra 40 octets of payload. However, it should be noted that although MQTT-
SN supports 64kB payloads during our tests if the longer size field is used, then the broker in our
tests refused packets that used this larger size. As a result we could only test MQTT-SN with 255
octet payloads. This more header data was transferred in our tests than would occur if the longer
size field had been supported by the broker. As noted earlier this will be addressed in the analysis
section.

It should also be noted that this test only considered the data sent in one application level PUB
and received in one application level PUB-ACK. For the MQTT protocol there will be an additional
66 octets transferred in the form of a TCP ACK from the client to the server to ACK the application
level ACK. This will not be the case for the AMQP protocol, despite running over TCP for the reasons
to be discussed in Section 5.1.

4.2 Publisher applications

To measure how each protocol performs with regard to the amount of data overhead for each
scenario, a set of applications were created that publish a fixed amount of data to a broker. These
applications take as input the amount of data that is to be sent and how many times each item is to
be sent. The programs operate as described in the following subsections.

For the applications, no modifications to the socket buffer sizes were made and the default receive
and send socket buffer size were the following*.

rmem_default = 212992
rmem_max = 212992
wmem_default = 212992
wmem_max = 212992
message_cost = 5
netdev_max_backlog = 1000
optmem_max = 20480

4.2.1 AMQP publisher application

For the AMQP publisher application the first thing we do, apart from reading from standard input
(stdin), is to set the exchange and routing key. An exchange is a construct inside the broker that
maintains a number of queues. These queues are indexed by the routing key when publishing or
subscribing to a topic. Consider the topic “test.topic.first”with the exchange key “amq.topic”. This
can be defined as:

char const *exchange = "amq.topic";
char const *routingkey = "scania.truck.test.system.sensor";

Next, the message to be sent is composed. This is done by creating a C-style string, which is a
null terminated array of characters. The size of this message is taken from stdin via the automated

* http://man7.org/linux/man-pages/man7/socket.7.html (socket setting variables explained in section “/proc interfaces”)

Test setup | 37

script and depends on what payload size will be used. The message will be created in the same way
for all the publisher applications.

char* messagebody = (char*)malloc(payloadsize + 1);
memset(messagebody, 'a', payloadsize);
messagebody[payloadsize] = '\0';

The login to the broker is initiated using the following parameters

amqp_login(conn, "/", 0, AMQP_DEFAULT_FRAME_SIZE, 0, AMQP_SASL_METHOD_PLAIN,
"guest", "guest");

This function call tells the broker to allow for any number of channels, although only one will be
used in our case. The maximum frame size is set to the default of 128 KB (the value of
AMQP_DEFAULT_FRAME_SIZE). Additionally, heartbeats are disabled. The
AMQP_SASL_METHOD_PLAIN parameter tells the broker to expect two additional arguments: the
name and password. In this case both are simply set to the string “guest”. The broker was configured
to have a user with this name and password.

Finally, we set the Content Header frames property flag and property list fields as described in
Figure 2-18. The flag fields are set as follows:

props._flags = AMQP_BASIC_CONTENT_TYPE_FLAG | AMQP_BASIC_DELIVERY_MODE_FLAG;

This sets bits 12 and 15 of the property flags field and tells the broker that the property list will
contain the content property and the delivery property. These are set to:

props.content_type = amqp_cstring_bytes("text/plain");
props.delivery_mode = qos;

The above tell the broker that the payload will be a null terminated C string and that the QoS
level will be as specified, in our case 1.

4.2.2 MQTT publisher application

For the MQTT application a client object is first created to initiate the connection. The connection is
then created by calling the create function with these settings:

MQTTClient_create(&client, address, CLIENTID, MQTTCLIENT_PERSISTENCE_NONE,
NULL);

This call passes, a handle to the client object to be created, the IP address of the server, and the
ID of the client (which in this case is the default ID “ExampleClientPub”). The
MQTTCLIENT_PERSISTENCE_NONE flag indicates that the client does not request any persistence for
the messages. This means that these messages, assuming a QoS level 1 or higher, will be stored in
volatile memory, hence if and only if the client dies they will be lost.

The only additional connection options are the keep alive interval and the clean session setting:

conn_opts.keepAliveInterval = 20;
conn_opts.cleansession = 1;

This above sets the keep-alive timer to 20 seconds and enables a clean session (i.e., tells the
server not to keep any information about the client when it disconnects).

Finally the message to be published is set with:

pubmsg.payload = payload;
pubmsg.payloadlen = strlen(payload);
pubmsg.qos = qos;
pubmsg.retained = 0;

38 | Test setup

In this case payload is the message (as a null terminated string) to be sent. The bit fields for
QoS are set by the user and the retained property is set to false (telling the server not to keep a copy
of the message).

4.2.3 MQTT-SN publisher application

The MQTT-SN publisher is a bit different as MQTT-SN utilizes UDP rather than TCP. This means
we simply assign the application a port, an IP address, and a topic and then we can start sending
messages.

When initiating communication from an MQTT-SN application to a broker the user can chose to
perform either a registration handshake where the client uses a long topic ID to register a unique
shorter ID to be used for all conversations using that topic or the client can use a pre-registered two
octet long short ID, which is what will be done for this client. This short ID barely impacts the
amount of data transmitted and it is reasonable to assume that Scania will use sufficiently few topics
that pre-registering them will be possible. The chosen topic name has no significance an could be
any two character combination.

topic_id = "tt";

A UDP socket is created and initiates a connection to the broker. This was a bit problematic
since the client would sometimes crash when the connection failed. This was solved by having the
automated script described in Section 4.3 handle the problem by re-starting the client if the connect
packet was lost.

sock = mqtt_sn_create_socket(mqtt_sn_host, mqtt_sn_port);
mqtt_sn_send_connect(sock, client_id, keep_alive, TRUE);

After that the client is ready to start transmitting data by looping over a publish and receive
pair:

 for(i = iterations; i > 0; i--){
 usleep(tbb);
 for (n = burstsize;n > 0; n--){
 mqtt_sn_send_publish(sock, topic_id, topic_id_type, payload, qos, retain);
 while(!mqtt_sn_simple_pub_ack_wait(sock)){
 mqtt_sn_send_publish(sock, topic_id, topic_id_type, payload, qos, retain);
 }
 }
 }

Here the client will publish the pre-defined message to the broker and then wait for an ACK.
The “mqtt_sn_simple_pub_ack_wait“ function will cause the client to wait 10 ms from when it
publishes the message when it checks whether an ACK has been received before performing a
retransmission. Initially, 1 second was used ensure that the retransmission were not done
erroneously, but waiting 1 second between retransmissions takes very long time when sending 4000
packets per test with lots of packet losses. Waiting 10 ms is plenty of time when running on the
loopback interface which is confirmed by pinging the loopback address which gives an average RTT
of 0.06ms

--- 127.0.0.1 ping statistics ---
101 packets transmitted, 101 received, 0% packet loss, time 99998ms

rtt min/avg/max/mdev = 0.024/0.060/0.121/0.014 ms

Test setup | 39

4.3 Automated scripting

To be able to perform all the tests for all the different configurations a script was used to set up the
scenarios and run the tests. The scripts were written in Bash script and executed using the GNU
Bash shell version 4.3.30(1). These scripts are included in Appendix B. To perform all the tests the
script used three stages to ensure everything worked properly. First the setup phase was run. Here
the script generated all the configurations for the scenarios that would be run when using the script
and output them to a text file. This included rules for iptables and parameters to the publisher
applications. After the setup phase was done all of the brokers were started and set to listen to the
ports to be used. This is followed by a delay of 20 seconds to ensure that all of the brokers have
completed their startup before continuing. The script then starts to iterate through the test
scenarios generated in the setup phase. Each iteration begins by first starting tshark to log all of the
network traffic over the loopback interface to a file on the virtual drive inside the VM, then the
iptables are configuring according to the requirements for scenario and lastly the publisher
application is run with the parameters from the scenario file. This is repeated for all of the scenarios
in the scenario file. It should be noted that when the publisher connects to the broker the programs
would sometimes crash if the connect packet was lost. For this reason the publisher applications
were set to exit with an error code that is non-zero which the script can check for. If this occurs, then
the script will restart the publisher application and continue to do so until a connection is
successfully established. The order that the script will perform the tests in is that all packet loss
configurations for a certain protocol and payload size are runs with first AMQP, then MQTT, and
finally MQTT-SN. After this iteration is done, then the payload size is increased and the tests are
done over again in the same order.

 Analysis | 41

5 Analysis

In this chapter experimental results will be analysed. In section 5.1 the experimental data from the
test will be presented and 5.2 will talk in more detail about how the data was transmitted between
server and client. Section 5.3 will discuss the reliability and validity of the obtained data and finally
Section 5.4 will talk about the set up and performance of the tests.

5.1 Major results

Looking at the graphs Figure 5-1, Figure 5-2, and Figure 5-3 we can see the results for the different
test scenarios for the first payload size. It should be noted that for some of the tests with higher
packet losses the protocols would sometimes break down or the logging of the traffic was corrupted
or erroneous. This means that some of the plots contain more data and some less, but dots on the
line represents a successfully completed and logged scenario. The most common protocol to
breakdown was MQTT-SN which is most likely due to the fact that the protocol is very minimal and
offers little functionality in terms of automatic connection recovery. This behavior could probably
have been fixed had more time gone into the implementations and configurations of the brokers,
but as will be discussed in Section 5.3 there were some limitations that made running multiple tests
difficult.

5.1.1 100B payload results

The purpose of the 100B payload test was to see how the protocols compared when the 1MB of data
to be sent was broken up into a large number of small payloads to be transmitted by each protocol.
This test was necessary since, as mentioned in Section 4.1, the broker would not accept MQTT-SN
payloads using the larger size field; hence the maximum payload size for the MQTT-SN protocol was
255 octets. In order to prevent the MQTT-SN protocol from having to break the payload up into
multiple smaller transmissions the 100B payload was used. The results can be seen in Figure 5-1
where the total number of kB’s transferred for each protocol as a function of packet loss is plotted.
The plots contain some expected and some unexpected results. The fact that the MQTT-SN protocol
outperforms the more data heavy and TCP based protocols with regards to the total amount of data
transmitted is unsurprising. Unfortunately, the UDP based protocol broke down after reaching 19%
packet loss, hence there is no test data available for higher packet loss rates. However, based on how
MQTT-SN behaves in the 1kB tests shown in Figure 5-6, there is no reason to believe that the
behaviour for higher packet loss rates in the case of 100B payloads would be drastically different
than it was for 0 to 18%.

The more interesting result is that for the AMQP and MQTT protocols, as shown in Figure 5-1,
they do not differ that much despite AMQP being a much heavier protocol with regards to data
transmission overhead.

However, when looking at the number of packets transmitted between the server and the client,
as well as the contents of those packets it becomes clears as to why this is. When comparing the
number of packets going from the client to the server in Figure 5-2 and from server to client in
Figure 5-3 we see that the number of packets from the server to the client is about the same for all
the protocols, but the number of packets sent from the client to the server for the MQTT protocol is
about twice as many packets as the other two protocols.

42 | Analysis

Figure 5-1: Total transmitted data for 1MB using 100B payloads and QoS 1

Figure 5-2: Number of packets transmitted from client to server, 1MB data, 100B payload, QoS 1

y = 53.016x + 3335.4
R² = 0.9985

y = 0.8968x2 + 29.494x + 1937.8
R² = 0.9982

y = 84.188x + 3362.7
R² = 0.9964

0

1000

2000

3000

4000

5000

6000

7000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Tr
an

sm
itt

ed
 d

at
a

(k
B)

Packet loss

100b, Transmitted data

mqtt100b

mqtt-sn100b

amqp100b

y = 192.38x + 19708
R² = 0.998

y = 5.6185x2 + 163.34x + 9798
R² = 0.9983

y = 287.69x + 9618.2
R² = 0.9972

0

5000

10000

15000

20000

25000

30000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Nu
m

be
r o

f p
ac

ke
ts

Packet loss

100b, Number of packets from client to server

mqtt100b

mqtt-sn100b

amqp100b

Fi

A
la
o
as
w
F
la

Fi

b
f

k

igure 5-3:

The reaso
ACK compare
ayer ACK wa
utput of Wir
s if AMQP ne

way AMQP ge
Figure 5-5, to
ayer ACK, an

igure 5-4:

0

2000

4000

6000

8000

10000

12000

14000

16000

18000

20000

0%

Nu
m

be
r o

f p
ac

ke
ts

Total numb

on for this be
ed to AMQP.
as delivered.
reshark when
ever perform
ets away wit
o ACK the pr
nd each appli

AMQP sam

0% 1% 2% 3% 4%

100

ber of packets f

ehaviour is, a
. This ACK is
 In contrast

n looking at
ms a transpor
th this is by s
revious pack
cation layer

ple traffic

5% 6% 7% 8% 9%

b, Numbe

from server to

as mentioned
s sent from t
t, AMQP solv
the transmis

rt layer ACK,
setting the A

ket. This way
ACK is a TCP

9% 10
%

11
%

12
%

13
%

er of packe

mqtt100b

mqtt-sn10

amqp100

client

d in Section 4
the client to t
ves this in a
ssions betwe
, but instead
ACK flag for
y, each PUB
P ACK for th

13
%

14
%

15
%

16
%

17
%

Packet loss

ets from se

b

00b

b

4.1, because M
the server to

a different w
en the client
only does ap
each packet
is a TCP AC
e last PUB.

y

18
%

19
%

20
%

21
%

22
%

erver to cl

MQTT sends
o ACK that th
way. Figure 5
t and server.
pplication lev
t it transmits
CK for the la

y = 2
R

y = 151.7
R² =

y = 288.46x + 9
R² = 0.997

22
%

23
%

24
%

25
%

26
%

lient

Analysis | 4

s an extra TC
he applicatio
5-4 shows th
 Here it look
vel ACKs. Th
s, as shown i
st applicatio

223.51x + 980
R² = 0.9981

76x + 9487.1
= 0.9729

9624.2
77

27
%

28
%

29
%

30
%

43

CP
on
he
ks
he
in
on

6

44

M
A
in
lo
th
h
th
m
si

5

F
p
tr
as
an
S
n
d
fo
se
ar
sh
h
sm
cl
A
af
re

sm
tr
ea

4 | Analysis

Since we
MQTT. Howe
AMQP as com
ncreases mor
oss rates than
hough that t

high, perhaps
he stability o

made these t
imply the log

.1.2 1kB p

For the 1kB p
erformance
ransmit 4 IP
s much IP he
n extra octet
N protocol m

number of by
does the num
or the other p
ee that the n
re much hig
hould also be

higher than f
maller than
lient perform

ACK is lost, b
fter 10 ms. A
everse direct

For the A
maller in co
ransmitted p
ach other as

F

transmit a lo
ever, as the p
mpared to M
re quickly th
n MQTT with
the MQTT te
s indicating t
of each proto
test fail (such
gging progra

payload resu

payload test
is a lot wor

P packets for
eader bytes t
t would be n
manages to a
ytes transmit

mber of transm
protocols. Lo

number of tra
gher than for
e noted that
from server t
the keep ali

ms a retrans
but no ACK w
As a result t
tion.

AMQP and M
omparison t
packets for e

was to be ex

igure 5-5:

ot of packets
packet loss r
QTT shrinks

han for MQT
h regards to
est was not a
that AMQP
ocol due to t
h as the clie
m corrupting

lts

ts the graph
rse now whe

every AMQP
than it would

needed for th
almost be how
tted data at
mitted bytes
ooking at the
ansmitted pa
r the other tw
the reason w
to client is d
ive timer. Th
mission. Thi
will be sent w
there will be

MQTT the larg
to each othe
ach of the T

xpected.

AMQP TCP

s that result
rate increase
s and the am
TT. This indi

the increase
able to comp
is more stab
the fact that
ent’s implem
g the log file)

in Figure 5
en compared
P or MQTT p
d have if the

he larger pay
wever on par
lower packe

s and it does
e number of t
ackets for the
wo protocols
why the num
due to the fa
herefore, if a
is means tha
when a PUB

e more mess

ger payload s
er than whe

TCP based pr

P ACK flags

in a TCP AC
es the differe

mount of data
cates that AM

ed amount of
plete some o
ble. However
t there migh

mentation, th
).

5-6 looks qu
d to the 100
payload tran

e larger packe
yload size fiel
r with the ot
et loss rates.

so at a much
transmitted
e MQTT-SN
s, especially

mber of packe
act that the
an ACK is no
at there will

B is lost - ins
ages set from

size results i
en the paylo
rotocols main

CK this make
nce in the n

a transmitted
MQP is mor
f data transm
f the tests w
r, no conclus
t have been

he broker’s c

ite as expec
B tests due

nsmitted. Thu
et size was u
ld). However
her protocol
But as the

h more rapid
packets to an
protocol in F
when comp

ets sent from
retransmissi
ot transmitte
always be a

stead a PUB
m the client

n the overhe
oad size wa
ntains largel

es AMQP com
number of pa
d for each AM
re sensitive t

mission. It sh
when the loss
sions will be

a number o
configuration

cted. First, th
to the fact

us it will tran
used (almost
r, despite th
ls with regard
packet loss

d pace for M
nd from the
Figure 5-7 an

pared to the
m the client to

ion wait tim
ed within 10
a retransmis
retransmissi
to the serve

ead from the
as 100B. Th
ly the same

mpetitive wit
ackets sent b
MQP scenari
o high packe
ould be note
s rate becam

e drawn abou
of factors tha
n, the VM, o

he MQTT-SN
that it has t
nsmit 4 time
4 times sinc
is the MQTT
ds to the tota
rate grows s

MQTT-SN tha
server we ca
nd Figure 5-
100B tests. I
o the server i

me is set to b
0 ms then th
sion when a
ion will occu
er than in th

e header bein
he number o

proportion t

th
by
io
et
ed

me
ut
at
or

N
to
es
ce
T-
al
so
an
an
-8
It
is

be
he
an
ur
he

ng
of
to

Analysis | 45

Figure 5-6: Total transmitted data for 1MB using 1kB payloads and QoS 1

Figure 5-7: Number of packets transmitted from client to server, 1MB data, 1kB payload, QoS 1

y = 20.576x + 1958.1
R² = 0.9868

y = 2.3473x2 + 60.369x + 3957.4
R² = 0.9988

y = 30.423x + 942.86
R² = 0.9948

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Nu
m

be
r o

f p
ac

ke
ts

Packet loss

1kB, number of packets from client to server

mqtt1kb

mqtt-sn1kb

amqp1kb

y = 22.933x + 1192.1
R² = 0.9871

y = 0.6996x2 + 18.518x + 1303.8
R² = 0.9987

y = 28.032x + 1166.9
R² = 0.9934

0

500

1000

1500

2000

2500

3000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Tr
an

sm
itt

ed
 d

at
a

(k
B)

Packet loss

1kB, transmitted data

mqtt1kb

mqtt-sn1kb

amqp1kb

46 | Analysis

Figure 5-8: Number of packets transmitted from server to client, 1MB data, 1kB payload, QoS 1

5.1.3 10kB payload results

For the 10kB payload test the results were also expected although with greater variation for the tests
due to fewer packets being sent over the network. Interestingly, the MQTT-SN variant refused to
work for this scenario despite being the one that should not be affected by the average size since it
will be fragmented on the application level anyway. For AMQP and MQTT the results were also
quite unstable with often erroneous packet logs. The logs would show that despite a total payload of
1 MB that the total delivered data was less than that. No indication of the logging program failing
were found since tshark properly logged each packet. For the results that were had however it can be
clearly seen in Figure 5-9 that the larger payload size reduces the difference the header size makes
due to much fewer packets transmitted.

The results for the 10kB transmission should however not be considered very trustworthy.
Mainly due to the instability and error proneness of the tests, but also because of sporadic behaviour
that can be seen for example in Figure 5-10 which lists the time to complete a transmission. The
behaviour of AMQP is especially interesting since it seems to indicate that for large payloads the
protocol is very sensitive to packet loss with regards to transmission time.

y = 23.192x + 968
R² = 0.9931

y = 0.6034x2 + 37.448x + 3945
R² = 0.9985

y = 30.18x + 941.49
R² = 0.995

0

1000

2000

3000

4000

5000

6000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Nu
m

be
r o

f p
ac

ke
ts

Packet loss

1kb, number of packets from server to client

mqtt1kb

mqtt-sn1kb

amqp1kb

Linear
(mqtt1kb)

Analysis | 47

Figure 5-10: Execution time for 1MB data, 10kB payload, QoS 1

0

2000

4000

6000

8000

10000

12000

14000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

Se
co

nd
s

Packet loss

10kb, Execution time

mqtt10kb

mqtt-sn10kb

amqp10kb

y = 16.564x + 992.75
R² = 0.8603

y = -0.1306x2 + 27.644x + 888.45
R² = 0.9246

0

200

400

600

800

1000

1200

1400

1600

1800

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

To
ta

l d
at

 a
tr

an
sm

itt
ed

 (k
B)

Packet Loss

10kb transmitted data

mqtt10kb

amqp10kb

Linear (mqtt10kb)

Poly. (amqp10kb)

Figure 5-9: Total transmitted data for 1MB using 1kB payloads and QoS 1

48 | Analysis

5.2 Reliability and validity

As discussed in Section 3.5.1 the reliability of the tests are very good since the conditions can be
controlled very precisely. However, the validity suffers for the same reasons that the reliability is
good. Since we have a virtual environment communicating over the loop-back interface it is quite
different from the case when using the C300 module communicating over a GPRS link.
Unfortunately, we want to evaluate the protocols suitability for the C300 module, but these tests
sacrificed validity for reliability. On the other hand, these provide Scania with better data about how
the protocols behave when the packet loss rate varies. It would have been difficult to precisely
control the packet loss rate when running from a real truck as the packet loss rate would vary with
both the position and the velocity of the truck. Another factor that influences the validity of the tests
is that the testing frameworks are custom built. Despite being small programs it is out of the scope
for this thesis project to tweak and test the programs to see if there are settings and functionality
that the protocols provide that could improve their performance with a different test program. This
is especially true for the MQTT-SN protocol where the documentation was scarce and the
programmer has to set up a lot of the functionality on his own.

Another thing that impacts the validity of the results is the way that the transmissions are done with
regards to packet fragmentation and pushing. For TCP, every transmission issues a PUSH request to
immediately transmit the packet. While this might not be an unreasonable thing to do when
assuming that the payload is small enough to fit inside the MTU and the user want the message to
be transmitted as soon as possible (as would be the case for the 1kB payloads in 24) it would not be
the same if the payload was 10kB. This payload would need to be fragmented, but it would not need
a new TCP header for every fragment. Thus, if we assume that the 1MB payload sent in the tests is
1000 packets with a payload of 1kB that would have been pushed, then the results are valid. If we
however assume that the 1MB payload sent would have been 10 messages with a payload of 100kB
then the results are not entirely accurate since in a real world scenario multiple packets would have
been able to fit under the same TCP header. This holds true for UDP as well where a single UDP
header could have been used to transmit a 10kB payload fragmented into multiple packets.

5.3 Discussion

Most of the results were pretty unsurprising and as expected. The result that was not expected was
that the AMQP protocol was able to keep up as well as it did, despite having a lot larger headers
even when the payload size was small.

It was unfortunate that the larger packet size did not work for the case of MQTT-SN, since that
skewed the results for the MQTT-SN protocol on the 1kB test. Moreover, 1 kB is by far the most
common packet size for the Scania traffic. However, I believe that it is evident from the 100B tests
that MQTT-SN most likely would have outperformed the other protocols with regard to the total
number of bytes transmitted if the larger payload sizes could have been utilized. However, as with
the other two protocols the advantage of smaller headers diminishes as the payload size grows; thus
while it would have been better, this still would not have been as large a difference as it was for the
100B tests.

An interesting point to look at to determine how well these protocols are suited for Scania is to
see how they perform under the average conditions discussed in Section 2.9.6, i.e. when the packet
loss rate is about 4% and the packet overhead is about 14%. Since the most commonly transmitted
payload is 1kB (about 98% of the payloads) the corresponding overhead for each of these protocols
would be most interesting. However, as mentioned multiple times before, the MQTT-SN protocol
experiences a lot more overhead due to the fragmentation at the application layer. As the results
currently stand AMQP has an overhead, when transmitting 1MB data as 1kB payloads, of about 34%

Analysis | 49

and MQTT has an overhead of about 32% according to the data from Figure 5-6. According to the
same data, MQTT-SN, has an overhead of 43%, which is a lot higher than the other two protocols.
However, when comparing the 100B data payload, AMQP introduces about 389% overhead, MQTT
around 366%, and MQTT-SN about 217%. In this test MQTT-SN does a lot better than the other two
protocols which leads me to believe that if the larger packet size had been used the UDP based
MQTT-SN would have beaten the other protocols by a wide margin with regards to the total number
of transmitted bytes.

Another way to look at this is that if the larger packet size could have been used, then the
percentage of overhead can be calculated with the following formula ܱݎ݁ݒℎ݁ܽ݀ = 1 − 4ݐ݈݊݁݅ܥ݉ݎܨݏݐቀܲܽܿ݇݁ܽݐܽܦ݈ܽݐܶ ቁ ∗ ሺܲܽ݁ݖ݈݅ܵ݀ܽݕ + ݁ݖ݅ܵݎ݁݀ܽ݁ܪ + 1ሻ + ቀܲܽܿ݇݁4ݎ݁ݒݎ݁ܵ݉ݎܨݏݐ ቁ ∗ ሺ݁ݖ݅ܵܭܥܣሻ
Equation 2 MQTT-SN data overhead calculation formula

Since the header size is the same for both directions except for an extra octet for the length field,
and the 1kB payload would fit both with regards to the application layer protocol and the MTU, then
the formula enables us to calculate the overhead. Using the data from Figure 5-8 and Figure 5-9
along with the header size from Figure 4-1 for MQTT-SN the corrected overhead data for 4% packet
loss and 1kB payloads with have a total byte overhead of approximately 193kB, which is roughly 19%
for a 1MB transfer. This is a better than both the other tested protocols and also a better than the
SCPv2 protocol considering that the 14% overhead mentioned in Section 4.1 only takes the
application level headers into account.

 Conclusions and Future work | 51

6 Conclusions and Future work

This chapter states the conclusions that I have drawn based on the analysis performed in Chapter 5.
The limitations that were faced will be addressed in Section 6.2, while Section 6.3 describes both
work that was left undone and work that should/could be done as future work. The chapter
concludes some reflections about the impact this work may have.

6.1 Conclusions

While the final goals for this thesis project were met, these goals changed a bit along the way.
Therefore, it is a bit of a stretch to state that the goals met. Originally, the idea was to first create a
virtual environment and test the protocols there. Then utilize these results as a benchmark for tests
under real conditions and running on the real hardware (i.e., a client for each protocol running on
Scania’s C300 module) while communicating with a broker running on one of Scania’s servers.
Moreover, it was desired that the protocols be evaluated in terms of their transmission speed,
response time, and the total amount of data sent over the network. While this idea at first seemed
plausible, the more time that was spent on developing the applications the more out of scope this
original idea for testing seemed. So after discussing the situation with my supervisors, it was
concluded that the most interesting investigation was how to reduce the number of bytes
transmitted, hence the scope of the project was changed and the goals updated.

With respect to achieving these updated goals the biggest problem faced was that the
specification for AMQP is so huge that getting an overview of all the parameters that might
influence the results was difficult. At the same time the MQTT-SN protocol had very scarce
documentation. Moreover, the official IBM/Mosquitto supplied broker only supported QoS levels of
-1 and 0 which resulted in the need to set up a custom PUB/ACK procedure for the client to achieve
QoS 1.

Getting the stochastic packet filtering to work was also a bit of a challenge. The intuitive choice
was to use netem to emulate different conditions and then log each protocol’s behaviour. However,
the netem utility would randomly crash or fail to set up the rules properly. This lead to the use of
iptables to set up random packet drops. While iptables is not traditionally used to emulate lossy
networks, it did supply the requisite functionality to randomly drop packets. Since this was what we
needed and it worked well, this solution ended up being s used.

Since lots of time was spent doing superfluous things, such as C300 implementations of each of
the protocols the time spent implementing the actual test applications was less than would have
been desirable. The time would have been better spent verifying the correctness of the applications,
speeding them up, and performing more tests. So if the thesis project were to be done over again the
focus would be set earlier and be narrower than it was to begin with in this project.

From the results that were collected, despite the poor performance on the tests were the payload
had to be split, MQTT-SN appears to have the potential to be the lightest protocol (of the three) for
transmitting data. However, since the MQTT-SN protocol is far from being plug-and-play the
number of bytes transmitted depends upon the developer handling connections, registers, and ACKs
properly; otherwise, the end result could be worse than the other protocols (as exemplified when the
smaller payload size was used). MQTT-SN also has the potential to be integrated with existing cloud
solutions which Scania has expressed interest in, since MQTT-SN could be feed through a gateway
making it into MQTT messages.

52 | Conclusions and Future work

6.2 Limitations

The biggest limitation faced regarding the implementations was without a doubt the complexity of
the system that the protocols were to be evaluated for. Underestimating the effort required for a
standalone protocol implementation meant that a lot of time was spent on setting up and
investigating solutions that were never tested. This combined with the fact that the documentation
for the MQTT-SN variant was very limited and that the scope of the AMQP protocol was quite huge
meant that a lot of effort went into developing the test applications instead of running the tests.

With regard to results, one of the major limitations was that no data was generated from an
actual Scania vehicle. While the generated data is reliable, having some data generated by
transmissions from a Scania vehicle to a server would have been nice to complement the
experimental data from the emulated test environment. As of now, running over the loop-back
interface of the virtual machine it becomes obvious what effect the packet loss rate has on the
performance of the protocols; however, for Scania it would have been interesting to know how the
protocols behave in the context of a C300 module transmitting data to a Scania server.

The time it took to perform the tests was also a limiting factor. For the first round of tests a 1
second wait time was used to ensure no erroneous retransmissions occurred. This was OK for the
TCP based protocols where TCP seemed to take care to the retransmissions, thus the 1 second wait
time was rarely needed. However, for the UDP based MQTT-SN this proved to be an extremely long
time to wait when you actually need to perform a lot of packet retransmissions. This was amplified
by the fact that the smaller packet size resulted in even more packets. Fortunately, this testing was
running while other work was being done, thus it did not block any other tasks from being
completed. However, when these tests finished it became apparent that some scenarios had failed,
so the time between retransmissions was reduced to 10 ms to allow for quicker testing. While the
MQTT-SN tests did go about 20% faster they were still way to slow to perform a lot of tests with.
The total transmission times for sending 1 MB of data using a 1 kB payload (with 10 ms
retransmission time for MQTT-SN) as a function of packet loss rate are shown in Figure 6-1.

Figure 6-1: Execution time for 1MB data, 1kB payload, QoS 1 with 10 ms retransmission time for MQTT-SN

y = 5.627x2 + 133.26x - 13.992
R² = 0.9982

0

2000

4000

6000

8000

10000

12000

0% 1% 2% 3% 4% 5% 6% 7% 8% 9% 10
%

11
%

12
%

13
%

14
%

15
%

16
%

17
%

18
%

19
%

20
%

21
%

22
%

23
%

24
%

25
%

26
%

27
%

28
%

29
%

30
%

To
ta

l t
ra

ns
m

iss
io

n
tim

e
(S

ec
on

ds
)

Packet loss

Total transmission time with 1kB payload

mqtt1kb

mqtt-sn1kb

amqp1kb

Poly. (mqtt-sn1kb)

Conclusions and Future work | 53

It should be noted that the reason why the TCP based are so much faster is most likely due to
the fact that since we are running on the loopback interface the response time is extremely low. This
will cause TCP to configure the RTO to a very low value resulting in very quick retransmissions
when the packet is dropped. The UDP based MQTT-SN on the other hand gets no such protocol
configurations and thus needs to wait for the application layer to perform the resend.

6.3 Future work

The suggested future work ranges from tasks that were planned, but left undone, to suggestions for
further research that would build upon insights gained doing this thesis project.

6.3.1 In vehicle testing

The most obvious thing that was left undone and what would be the natural next step is to test the
protocols from inside an actual Scania vehicle. This would provide relevant data for Scania to base
their protocol implementation decisions on. To perform this test the current communication stack
of the C300 module would need to be replaced and the Scania server would need to run the broker
corresponding to the protocol used.

6.3.2 More protocols and brokers

While the protocols that Scania has expressed the most interest in have been evaluated in this thesis
project there are many additional protocols that would/could offer features that might be of interest
to Scania. One example is the FASP protocol discussed in Section 2.9.4. While the experiments of
this thesis focused mainly on multiple smaller transfers over a unreliable link (because these
transfer currently they make up the bulk of the traffic), there will still need to be OTA updates.
These updates can often be multiple MB in size and will need to be transferred over the same lossy
network as the other communication between the vehicle and Scania’s server. FASP would be an
ideal solution since it is designed to transfer large file over networks with high packet loss rates.

Another protocol that was discussed is CoAP. Since this protocol was also designed to transmit
very little data over the network it could very well prove to be a nice fit for Scania. This protocol is
also designed to easily translate to HTTP which means it could be integrated with existing web
solutions if the need for that would arise.

Finally, evaluating additional brokers could be of interest. However, since the protocols specify
how the transmitted data needs to be packetized a change in broker would not affect the number of
bytes transmitted (other than in the case of the broken MQTT-SN broker). However, other brokers
could be of interest for other metrics which Scania is interested in, such as response time and
transmission speed.

6.3.3 Encryption

One of the things that a protocol developer will need to look into is the type of encryption that is
used. It would be interesting to evaluate how well different types of encryption would work in
networks with very high packet loss rates. For example, TLS would need to do handshaking
procedures to negotiate a certificate, but with high packet loss rates this might take a very large
number of retransmissions to successfully complete. An obvious topic to look at is stream based
ciphers as opposed to block ciphers, for example the Espresso cipher for IoT devices [43] as this
would negate the need to introduce unnecessary encryption data overhead.

54 | Conclusions and Future work

6.3.4 Scalability tests

For this evaluation we had one publisher running with one subscriber connected. This is not a very
realistic scenario and it would have been interesting to see how the protocols behave as the number
of connections per broker increases. However, this is would be as much a broker and publisher
implementation evaluation as it would be a protocol evaluation, hence for this thesis such testing
was out of scope.

6.3.5 IPv6 and header compression

For the current scenarios no form of compression was used. While more exact data about the
payload would be needed to evaluate how much of an impact header compression has on the
overhead. One example of an interesting compression form that could be investigated in the future
when IPv6 is adopted is the 6LoWPAN compression or the ROHC/ROHCv2 algorithms described in
section 2.6.

6.4 Required reflections

As the fleet of Scania vehicles grows so will the need for reducing the number of bytes transmitted.
While the amount of data being sent right does not require a new protocol, a new protocol will be
needed to handle the aggregated date of an increased number of trucks, especially as this number is
expected to continue to grow. Not only is the number of vehicles increasing but so is the number of
services that are offered. When coupled with the advent of autonomous vehicles this creates real
economic incentives to minimize the amount of data traffic in order to allow for the greatest
possible scalability. A scalable system will also mean that more data can be transmitted and acted on
with low delay as compared to if the data would need to be offloaded when the vehicles are
connected to a static network. This could allow for real time detection of failing systems,
information about obstacles in the traffic and weather conditions among other things.

Being able to offer more services might also mean more efficient vehicles and more efficient
vehicles means less carbon (and other) emissions from the engines. Since both the environment and
the customer benefit from reduced fuel consumption this might be a win for all parties involved.

 References | 55

References

[1] Scania, “www.scania.se,” 23 December 2014. [Online]. Available:
http://www.scania.se/Images/100_000_uppkopplade_lastbilar_tcm85-
454469.pdf. [Accessed 09 02 2016].

[2] Volkswagen, “Scania has 170,000 connected vehicles,” 26 January 2016. [Online].
Available:
http://www.volkswagenag.com/content/vwcorp/info_center/en/news/2016/
01/connected_vehicles.html. [Accessed 09 02 2016].

[3] OASIS, “MQTT Version 3.1.1.,” 29 October 2014. [Online]. Available:
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/mqtt-v3.1.1.html. [Accessed 18
February 2016].

[4] OASIS, “AMQP 1.0 specification,” 29 October 2012. [Online]. Available:
http://docs.oasis-open.org/amqp/core/v1.0/amqp-core-complete-v1.0.pdf.
[Accessed 15 February 2016].

[5] A. Standford-Clark, H. L. Truong, “MQTT-SN 1.2 protocol specification,”
International Business Machines Corporation (IBM), 14 November 2013.
[Online]. Available: http://mqtt.org/new/wp-
content/uploads/2009/06/MQTT-SN_spec_v1.2.pdf. [Accessed 4 May 2016].

[6] Z. Shelby, K. Hartke, C. Bormann, The Constrained Application Protocol (CoAP), vol.
RFC 7252 (Standards Track), 2014.

[7] H. Garcia-Molina, Y. Huang, “Exactly-once semantics in a replicated messaging
system,” in 17th International Conference on Data Engineering, 2001.
Proceedings, 2001.

[8] J. Postel, User Datagram Protocol, vol. RFC 768 (Internet Standard), 1980.
[9] J. Postel, Transmission Control Protocol, vol. RFC 793 (Internet Standard), 1981.
[10] G. Bochmann, [Online]. Available:

http://www.site.uottawa.ca/~bochmann/CourseModules/NetworkQoS/TCP-
congestion-control.jpg. [Accessed 16 February 2016].

[11] S. Ha, I. Rhee, L. Xu, “CUBIC: A New TCP-Friendly High-Speed TCP Variant,” ACM
SIGOPS Operating System Review, vol. 42, no. 5, pp. 64-74, July 2008.

[12] K. Harfoush, I. Rhee, L. Xu, “Binary Increase Congestion Control for Fast, Long
Distance Networks,” in Proceedings of IEEE INFOCOM, Hong Kong, March,
2004.

[13] P. D. Amer, R. Stewart, “Why is SCTP needed given TCP and UDP are widely
available?,” The Internet Society, June 2004. [Online]. Available:
https://www.isoc.org/briefings/017/briefing17.pdf. [Accessed 17 June 2016].

[14] F. Baker, P. Savola, Ingress Filtering for Multihomed Networks, vol. RFC 3704 (Best
Current Practice), 2004.

[15] P. TH. Eugster, P. A. Felber, R. Guerraoui, A. Kermarrec, “The Many Faces of
Publish/Subscribe,” ACM Computing Surveys (CSUR), vol. 35, no. 2, pp. 114-
131, June, 2003.

[16] E. Curry, S. Hasan , S. O'Riain, , “Approximate Semantic Matching of Heterogeneous
Events,” in 6th ACM International Conference on Distributed (DEBS 2012),
Berlin, 2012.

[17] G. Hohpe, in Enterprise Integration Patterns: Designing, Building, and Deploying
Messaging Solutions, Addison-Wesley, p. 147.

56 | References

[18] OASIS, “MQTT version 3.1.1 becomes an OASIS standard,” 29 October 2014. [Online].
Available: https://www.oasis-open.org/news/announcements/mqtt-version-
3-1-1-becomes-an-oasis-standard. [Accessed 18 February 2016].

[19] J. Barr, “AWS IoT - Cloud Services for Connected Devices,” Amazon.com, Inc., 8
October 2015. [Online]. Available: https://aws.amazon.com/blogs/aws/aws-
iot-cloud-services-for-connected-devices/. [Accessed 18 February 2016].

[20] L. Zhang , “Building Facebook messenger,” Facebook, Inc., 12 August 2011. [Online].
Available: https://www.facebook.com/notes/facebook-engineering/building-
facebook-messenger/10150259350998920. [Accessed 18 February 2016].

[21] U. Hunkeler, H. L. Truong, A. Stanford-Clark, “MQTT-S: A publish/subscribe
protocol for Wireless Sensor Networks,” in in 3rd International Conference on
Communication Systems Software and Middleware and Workshops, 2008.

[22] L.-E Jonsson, G. Pelletier, K. Sandlund, M. West, RObust Header Compression
(ROHC): A Profile for TCP/IP (ROHC-TCP), vol. RFC 6846 (Proposed
Standard), 2013.

[23] G. Pelletier, K. Sandlund, RObust Header Compression Version 2 (ROHCv2):
Profiles for RTP, UDP, IP, ESP and UDP-Lite, vol. RFC 5225 (Proposed
Standard), 2008.

[24] C. Bormann, 6LoWPAN-GHC: Generic Header Compression for IPv6, vol. RFC 7400
(Standards Track), 2014.

[25] A. Castellani, E. Dijk, T. Fossati, S. Loreto, A. Rahman, “Guideline for HTTP-CoAP
Mapping Implementations,” CoRE Working Group, 3 July 2015. [Online].
Available: https://www.ietf.org/archive/id/draft-ietf-core-http-mapping-
07.txt. [Accessed 23 February 2016].

[26] J O'Hara, “Toward a Commodity Enterprise Middleware,” ACM Queue, vol. 5, no. 4,
pp. 48-55, May/June 2007.

[27] A. Melnikov, K. Zeilenga, Simple Authentication and Security Layer (SASL), vol.
RFC4422 (Standards Track), 2006.

[28] T. Dierks, E. Rescorla, The Transport Layer Security (TLS) Protocol Version 1.2, vol.
RFC 5246 (Standards Track), 2008.

[29] AGPM Standard, Advanced Message Queuing Protocol Specification v0-9-1, 2008.
[30] OASIS, “MQTT servers and brokers,” 28 February 2016. [Online]. Available:

https://github.com/mqtt/mqtt.github.io/wiki/servers. [Accessed 1 March
2016].

[31] Pivotal Software, Inc., “RabbitMQ,” 2016. [Online]. Available:
https://www.rabbitmq.com/. [Accessed 1 March 2016].

[32] The Eclipse Foundation, “Mosquitto, An open source MQTT broker,” [Online].
Available: http://www.mosquitto.com. [Accessed 22 April 2016].

[33] P. Boronat, C. Calafate, J. C. Cano, J. E. Luzuriaga, P. Manzoni, M. Perez, , “A
comparative evaluation of AMQP and MQTT over unstable and mobile
networks,” in 2015 12th Annual IEEE Consumer Communications and
Networking Conference (CCNC), Las Vegas, NV, 2015.

[34] X. Ma, A. Valera, H. Tan, D. Thangavel , “Performance evaluation of MQTT and CoAP
via a common middleware,” in 2014 IEEE Ninth International Conference on
Intelligent Sensors, Sensor Networks and Information Processing (ISSNIP),
Singapore, 21-24 April 2014.

[35] Aspera, Inc., “FASP overview,” Aspera, [Online]. Available:
http://asperasoft.com/technology/transport/fasp/#overview-464. [Accessed
2 March 2016].

Conclusions and Future work | 57

[36] E. Dahlman, G. Mildh, S. Parkvall, J. Peisa, J. Sachs, Y. Selén, 5G radio access, Vols.
91, 2014, D. P. Doyle, Ed., U f Ewaldsson, Ericsson Review, 18 June 2014, p. 2,
https://www.ericsson.com/res/thecompany/docs/publications/ericsson_revi
ew/2014/er-5g-radio-access.pdf .

[37] P. Hagernäs , “5G user satisfaction enabled by FASP : Evaluating the performance of
Aspera's FASP,” Master's thesis, KTH Royal Institute of Technology,
Stockholm, TRITA-ICT-EX-2015:199, August 2015,
http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-172760 .

[38] V. Johansson, “Enhancing user satisfaction in 5G networks using Network Coding,”
Master's thesis, KTH Royal Institute of Technology, Stockholm, TRITA-ICT-
EX-2015:178, July 2015, http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-
171210 ..

[39] J. J. Ziarno, “Wireless engine monitoring system with multiple hop aircraft
communications capability and on-board processing of engine data”.
United States Patent US20140114549 A1, 24 April 2014.

[40 D. Tweney, Here comes the industrial Internet — and enormous amounts of data,
VentureBeat, 2015.

[41] A. Antonuk, “rabbitmq-c repository,” Pivotal Software, [Online]. Available:
https://github.com/alanxz/rabbitmq-c. [Accessed 22 March 2016].

[42] The Eclipse Foundation, “Paho project,” [Online]. Available:
http://www.eclipse.org/paho/. [Accessed 22 March 2016].

[43] E. Dubrova, M. Hell, “Espresso: A Stream Cipher for 5G Wireless,” Cryptology ePrint
Archive, 2015.

[44] Pivotal Software, Inc., “Which protocols does RabbitMQ support?,” 2016. [Online].
Available: https://www.rabbitmq.com/protocols.html. [Accessed 1 March
2016].

[45] B. Moyer, “All About Messaging Protocols,” Techfocus media, inc., 20 April 2015.
[Online]. Available: http://www.eejournal.com/archives/articles/20150420-
protocols/. [Accessed 23 February 2016].

[46] A. Piper, “MQTT for Sensor Networks – MQTT-SN,” 2 December 2013. [Online].
Available: http://mqtt.org/2013/12/mqtt-for-sensor-networks-mqtt-sn.

 Appendix A: Port configurations | 59

Appendix A: Port configurations

Port number Packet loss
10001 0%
10002 1%
10003 2%
10004 3%
10005 4%
10006 5%
10007 6%
10008 7%
10009 8%
10010 9%
10011 10%
10012 11%
10013 12%
10014 13%
10015 14%
10016 15%
10017 16%
10018 17%
10019 18%
10020 19%
10021 20%
10022 21%
10023 22%
10024 23%
10025 24%
10026 25%
10027 26%
10028 27%
10029 28%
10030 29%
10031 30%
10032 0%
10033 1%
10034 2%
10035 3%
10036 4%
10037 5%
10038 6%
10039 7%
10040 8%
10041 9%
10042 10%

60 | Appendix A: Port configurations

10043 11%
10044 12%
10045 13%
10046 14%
10047 15%
10048 16%
10049 17%
10050 18%
10051 19%
10052 20%
10053 21%
10054 22%
10055 23%
10056 24%
10057 25%
10058 26%
10059 27%
10060 28%
10061 29%
10062 30%
10063 0%
10064 1%
10065 2%
10066 3%
10067 4%
10068 5%
10069 6%
10070 7%
10071 8%
10072 9%
10073 10%
10074 11%
10075 12%
10076 13%
10077 14%
10078 15%
10079 16%
10080 17%
10081 18%
10082 19%
10083 20%
10084 21%
10085 22%
10086 23%
10087 24%

Appendix A: Port configurations | 61

10088 25%
10089 26%
10090 27%
10091 28%
10092 29%
10093 30%
10094 0%
10095 1%
10096 2%
10097 3%
10098 4%
10099 5%
10100 6%
10101 7%
10102 8%
10103 9%
10104 10%
10105 11%
10106 12%
10107 13%
10108 14%
10109 15%
10110 16%
10111 17%
10112 18%
10113 19%
10114 20%
10115 21%
10116 22%
10117 23%
10118 24%
10119 25%
10120 26%
10121 27%
10122 28%
10123 29%
10124 30%
10125 0%
10126 1%
10127 2%
10128 3%
10129 4%
10130 5%
10131 6%
10132 7%

62 | Appendix A: Port configurations

10133 8%
10134 9%
10135 10%
10136 11%
10137 12%
10138 13%
10139 14%
10140 15%
10141 16%
10142 17%
10143 18%
10144 19%
10145 20%
10146 21%
10147 22%
10148 23%
10149 24%
10150 25%
10151 26%
10152 27%
10153 28%
10154 29%
10155 30%
10156 0%
10157 1%
10158 2%
10159 3%
10160 4%
10161 5%
10162 6%
10163 7%
10164 8%
10165 9%
10166 10%
10167 11%
10168 12%
10169 13%
10170 14%
10171 15%
10172 16%
10173 17%
10174 18%
10175 19%
10176 20%
10177 21%

Appendix A: Port configurations | 63

10178 22%
10179 23%
10180 24%
10181 25%
10182 26%
10183 27%
10184 28%
10185 29%
10186 30%
10187 0%
10188 1%
10189 2%
10190 3%
10191 4%
10192 5%
10193 6%
10194 7%
10195 8%
10196 9%
10197 10%
10198 11%
10199 12%
10200 13%
10201 14%
10202 15%
10203 16%
10204 17%
10205 18%
10206 19%
10207 20%
10208 21%
10209 22%
10210 23%
10211 24%
10212 25%
10213 26%
10214 27%
10215 28%
10216 29%
10217 30%
10218 0%
10219 1%
10220 2%
10221 3%
10222 4%

64 | Appendix A: Port configurations

10223 5%
10224 6%
10225 7%
10226 8%
10227 9%
10228 10%
10229 11%
10230 12%
10231 13%
10232 14%
10233 15%
10234 16%
10235 17%
10236 18%
10237 19%
10238 20%
10239 21%
10240 22%
10241 23%
10242 24%
10243 25%
10244 26%
10245 27%
10246 28%
10247 29%
10248 30%
10249 0%
10250 1%
10251 2%
10252 3%
10253 4%
10254 5%
10255 6%
10256 7%
10257 8%
10258 9%
10259 10%
10260 11%
10261 12%
10262 13%
10263 14%
10264 15%
10265 16%
10266 17%
10267 18%

Appendix A: Port configurations | 65

10268 19%
10269 20%
10270 21%
10271 22%
10272 23%
10273 24%
10274 25%
10275 26%
10276 27%
10277 28%
10278 29%
10279 30%

 Appendix B: Automated Scripts | 67

Appendix B: Automated Scripts

Scenario creator script

#!/bin/bash

base_dir=$1

outfile_cli=$base_dir/cli_scen
outfile_srv=$base_dir/srv_scen

cli_prog=($base_dir/testframework/producers/ThesisMQTT
$base_dir/testframework/producers/ThesisMQTTSN
$base_dir/testframework/producers/ThesisAMQP) #"$base_dir/programs/test_hello_cli")
#cli_prog=($base_dir/testframework/producers/ThesisMQTTSN) #"$base_dir/programs/
srv_prog=("MQTT" "MQTTSN" "AMQP") #"$base_dir/programs/test_hello_srv") #("MQTT"
"AMQP" "COAP" "SCPv2")
#srv_prog=("MQTTSN") #"$base_dir/programs/test_hello_srv") #("MQTT" "AMQP"
type=("a") #"pingpong")

for i in ${programs[@]};
do
 echo "$i"
done

echo

packet_loss_scale=0.5
packet_loss="."
#for i in $(seq -10 2 -2);
for i in $(seq 0 1 30)
do
 echo $i
 #packet_loss+="$(echo "1.0/(1+e($i*-1))" | bc -l) "
 packet_loss+="$(echo "$i/100" | bc -l) "

done
latency_scale=0.5
latency="0 "
for i in $(seq -1 0.5 4);
do
 echo $i
 latency+="$(echo "(e($i))" | bc -l) "
done
size_scale=0.5
size=""
for i in $(seq 2 1 4);
do
 echo $i
 size+="$(echo 10^"(($i))" | bc -l) "
done

echo ${programs[@]}
echo ${packet_loss[@]}
echo ${latency[@]}

rm $outfile_cli
for p in ${cli_prog[@]}
do
 for t in ${type[@]}
 do

68 | Appendix B: Automated Scripts

 for x in $packet_loss
 do
 for s in $size
 do
 echo "$p $t $x 0 $s" >> $outfile_cli
 done
 done
 done
done

rm $outfile_srv
for p in ${srv_prog[@]}
do
 for t in ${type[@]}
 do
 for x in $packet_loss
 do
 for s in $size
 do
 echo "$p $t $x 0 $s" >> $outfile_srv
 done
 done
 done
done

Appendix B: Automated Scripts | 69

client run script

#!/bin/bash
echo $1 $2 $3

interface=lo

#$1 scenario_file $2 other node
srv_addr="127.0.0.1"
k=1
base_dir=$1
echo "hello $2"
echo $PATH
echo $USER
filters=
fields="-T fields -e frame.time_relative -e frame.len -e ipv6.dst -e ip.dst -e
tcp.dstport -e udp.dstport -e icmpv6.echo.identifier -e ipv6.src -e ip.src -e
tcp.srcport -e udp.srcport -e icmpv6.echo.sequence_number -e tcp"

ip link set dev $interface mtu 1500

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers

/sbin/tc qdisc replace dev $interface root netem loss 0
#start tshark
#tshark -i $interface $fields $filters > $base_dir/packetlog/$3/p &

sleep 20
while read -r proto typ loss latency size file
do
 tshark -i $interface -w $base_dir/packetlog/cli_log$k.pcap &
 tshark_pid=$!
 ((portno=k+10000))
 percent_loss=0"$(echo "$loss*100" | bc -l) " #convert prob to procent
 #set netem
 chain_name=PROBDROP${loss:0:5}

 iptables -L $chain_name > /dev/null

 if [$? -eq 1];
 then
 echo -e "no chain, adding chain $loss\n"
 iptables -N $chain_name
 iptables -A $chain_name -m statistic --mode random --probability $loss -j DROP

 fi

 iptables -A INPUT -p tcp --source-port $portno -j $chain_name
 iptables -A INPUT -p udp --source-port $portno -j $chain_name

 #/sbin/tc qdisc replace dev $interface root netem loss $percent_loss delay
"$latency"ms
 #sleep 1
 maxsize=1000000
 total_size=1000000
 reruns="$(echo "$total_size"/"$size" | bc) "
 num_pack=1
 pack_size=$size
 if ["$proto" = "$base_dir/testframework/producers/ThesisMQTTSN"]
 then

70 | Appendix B: Automated Scripts

 maxsize=255
 if (($size > $maxsize))
 then
 #echo -e "\tspliting\t$size\t$maxsize\n"
 num_pack="$(echo "$size"/"$maxsize" +1 | bc) "
 #echo -e "\tspliting\t$num_pack\n"
 pack_size="$(echo "$size"/"$num_pack" | bc) "
 #echo -e "\tspliting\t$pack_size\n"
 fi
 fi
 echo $k
 for i in $(seq 1 1 1)
 do
 exit_code=1
 while [$exit_code -ne 0]
 do
 #syntax: prog host portno mode
echo "$proto $srv_addr $portno $reruns $num_pack 10 $size 1 "
 $proto $srv_addr $portno $reruns $num_pack 10 $size 1 >
/dev/null
 exit_code=$?
 done

 done
 #sleep 0.3
 kill $tshark_pid
 ((k+=1)) #incremetn counter
#tc qdisc delete dev $interface root netem
done <$2
sleep 2
#clean
$base_dir/programs/test_hello_cli ::1 9999 > /dev/null

/sbin/tc qdisc delete dev $interface root netem
$base_dir/packet_separator.sh $base_dir $base_dir/packetlog/$3/p $3

Appendix B: Automated Scripts | 71

Execution script

#!/bin/bash
#set vars
usr=karlstri
node1=::1
node2=::1

base_dir="/home/$usr/programing/exjobb"

ctl_node=::1
node1_ctl=10.0.2.15
node2_ctl=10.0.2.15

scenario_file_cli="$base_dir/cli_scen"
scenario_file_srv="$base_dir/srv_scen"
#init
reset
echo -e "\t$base_dir\t"

$base_dir/scenariocreator.sh $base_dir
sudo /sbin/tc qdisc replace dev lo root netem loss 0 delay 0ms

#make each node have the requierd stuff

./resource_copyier.sh $base_dir root@$node1 $base_dir/temp
./resource_copyier.sh $base_dir root@$node2 $base_dir/temp

#clean previus tests

ssh root@$node1 -f "$base_dir/prep_srv.sh" $base_dir $node2
ssh root@$node2 -f "$base_dir/prep_cli.sh" $base_dir $node1

#run the test

ssh root@$node1_ctl -f $base_dir/test_srv.sh $base_dir $scenario_file_srv srv $node2
ssh root@$node2_ctl -f $base_dir/test_cli.sh $base_dir $scenario_file_cli cli $node1

72 | Appendix B: Automated Scripts

Server run script

#!/bin/bash
echo $1 $2 $3

iptables -F
iptables -X

interface=lo

#$1 scenario_file $2 other node
k=1
base_dir=$1
echo "hello $2"
echo $PATH
echo $USER
filters=
fields="-T fields -e frame.time_relative -e frame.len -e ipv6.dst -e ip.dst -e
tcp.dstport -e udp.dstport -e icmpv6.echo.identifier -e ipv6.src -e ip.src -e
tcp.srcport -e udp.srcport -e icmpv6.echo.sequence_number -e tcp"

AMQP_broker=rabbitmq-server
MQTT_broker=mosquitto
MQTTSN_broker=$base_dir/org.eclipse.mosquitto.rsmb/rsmb/src/broker_mqtts

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers

ip link set dev $interface mtu 1500

killall test_hello_srv

#start tshark
#tshark -i $interface $fields $filters > $base_dir/packetlog/$3/p &
tshark -i $interface -w $base_dir/packetlog/srv_log.pcap &
tshark_pid=$!

 #export RABBITMQ_NODENAME=rabbit
 #export RABBITMQ_NODE_PORT=5469
 #rabbitmq-server
 #pid=$!
 #echo -e "$pid\n" > $base_dir/pidfile

while read -r proto typ loss latency file
do
 percent_loss="$(echo "$loss*100" | bc -l) " #convert prob to procent
 ((portno=k+10000))
 echo $k
 chain_name=PROBDROP${loss:0:5}

 iptables -L $chain_name > /dev/null

 if [$? -eq 1];
 then
 echo -e "no chain, adding chain $loss\n"
 iptables -N $chain_name
 iptables -A $chain_name -m statistic --mode random --probability $loss -j DROP

 fi

Appendix B: Automated Scripts | 73

 iptables -A INPUT -p tcp --destination-port $portno -j $chain_name
 iptables -A INPUT -p udp --destination-port $portno -j $chain_name

 echo $proto
 if ["$proto" = "AMQP"]
 then
 echo "AMQP"
 export RABBITMQ_NODE_PORT=$portno
 export RABBITMQ_NODENAME=node$portno
 $AMQP_broker -detached > /dev/null &
 pid=$!
 echo -e "$pid" >> $base_dir/pidfile
 fi
 if ["$proto" = "MQTT"]
 then
 echo "MQTT"
 $MQTT_broker -p $portno > /dev/null &
 pid=$!
 echo -e "$pid" >> $base_dir/pidfile
 fi
 #mqttsn (rsmb)
 if ["$proto" = "MQTTSN"]
 then
 echo "MQTT-sn"
 rsmb_conf="$base_dir/confs/m$k.conf"
 echo -e "listener $portno INADDR_ANY mqtts " > $rsmb_conf
 $MQTTSN_broker $rsmb_conf > /dev/null &
 pid=$!
 echo -e "$pid" >> $base_dir/pidfile
 fi

 ((k+=1)) #incremetn counter
#tc qdisc delete dev $interface root netem
done <$2
#sleep 20
#clean
echo -e "-cleaning up"
$base_dir/programs/test_hello_srv ::1 9999 > /dev/null
kill $tshark_pid
#ip6tables -L
iptables -F
iptables -X

$base_dir/packet_separator.sh $base_dir $base_dir/packetlog/$3/p $3
#rabbitmqctl stop
#killall rabbitmq-server -s9
#killall beam -s9
#killall inet_gethost -s9
sleep 10
.base_dir/abort.sh

74 | Appendix B: Automated Scripts

Abort script

#!/bin/bash

sudo killall test_srv.sh
sudo killall test_cli.sh
sudo killall test_hello_srv
sudo killall test_hello_cli
rm -f pidfile

Appendix B: Automated Scripts | 75

Packet separator script

#!/bin/bash

#assume packetes are udp/tcp
#assume port 22 are not used by anything but ssh
#assume each test have a unique set of src and dst port

echo "separating"

packet_file=$2
k=1
sshport=22
sshpactes=0
outfile=$1/packetlog/$3/s

#echo $1 $2 $3 $outfile
declare -A map;
map[22]="ssh";

old_src_port=0
old_dst_port=0
while read -r ts size dst dst_port src src_port flags file #read from logfile
do
 if [$dst_port -eq 22] || [$src_port -eq 22] #ignore ssh
 then
 continue;
 fi;

 if [$dst_port -eq 4369] || [$src_port -eq 4369] #ignore erlang port maper
 then
 continue;
 fi;

 if (test "${map[$dst_port]+isset}" && test "${map[$src_port]+isset}") #if
previud know combo
 then
 #echo "yes $dst_port";
 :
 else #if combo is unkown make combo know
 if [$dst_port -eq $old_dst_port] || [$src_port -eq $old_dst_port]
||[$dst_port -eq $old_src_port] || [$src_port -eq $old_src_port]
 then
 echo "">"$outfile""$k"
 echo "restart"
 map[$dst_port]=$k
 map[$src_port]=$k
 else
 map[$dst_port]=$k
 map[$src_port]=$k
 ((k++))
 fi

 fi;
 #do the loging
 #echo "$outfile""${map[$dst_port]}"
 echo $ts $size $dst $dst_port $src $src_port>>"$outfile""${map[$dst_port]}"

 old_dst_port=$dst_port
 old_src_port=$src_port
 #echo $ts $size $dst $dst_port $src $src_port #>>"$outfile""$k"

76 | Appendix B: Automated Scripts

done <$packet_file
echo "done , $k files"

Appendix B: Automated Scripts | 77

Client preparation script

#!/bin/bash

mkdir -p $1/cli_log
mkdir -p $1/packetlog/cli

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers/:$LD_LIBRARY_
PATH

rm $1/cli_log/*
rm $1/packetlog/cli/*

make -C programs -B

killall local_run.sh
killall tshark
killall ping6
#sudo rabbitmqctl stop

78 | Appendix B: Automated Scripts

#!/bin/bash

mkdir -p $1/srv_log
mkdir -p $1/packetlog/srv

export LD_LIBRARY_PATH=export
LD_LIBRARY_PATH=/home/karlstri/programing/exjobb/testframework/producers/:$LD_LIBRARY_
PATH

rm $1/srv_log/*
rm $1/packetlog/srv/*

make -C programs -B

killall local_run.sh
killall tshark
killall ping6
#sudo rabbitmqctl stop

TRITA-ICT-EX-2016:87

www.kth.se

