
Adding citations to PowerPoint
slides from Zotero
Making referencing in PowerPoint
easier

RUBEN LEJEUNE

PROJECT IN COMMUNICATION SYSTEMS
STOCKHOLM, SWEDEN 2015

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

Adding citations to PowerPoint
slides from Zotero
Making referencing in
PowerPoint easier

Ruben Lejeune

2015-08-28

IK2553 Project Report

Examiner and Academic adviser
Gerald Q. Maguire

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

When writing papers, it is frequently necessary to add citations. A frequently used tool to facilitate
this process is Zotero. Currently one can add citations using the Zotero Word integration extension
to a Word document, however there is not yet a tool to do so in PowerPoint – despite the fact that in
many settings this would be very desirable. This project solves this problem.

The first difficulty was that this was the first time I had to analyze a software project of this
magnitude (specifically the Zotero and Zotero Word integration software). This meant I had to
understand their structure and find out what pieces of the software would be useful to me. The
second difficulty was to understand and use some of the tools used by Zotero and Zotero Word
integration as they were new to me, specifically: creating add-ins for Powerpoint (in VBA), creating
Firefox extensions, and working with C++.

The goal of this project was to enable users to add citations to PowerPoint with an easy to use
interface. Additionally, users can now with a single button click automatically generate slides at the
end of the presentation with all the references.

Keywords

Citations, PowerPoint, Zotero, Add-In, Firefox extension, JavaScript

Sammanfattning | iii

Sammanfattning

Tidsskrifter och rapporter behöver nästan alltid inkludera referenser till andra verk genom citat och
källhänvisningar. Zotero är ett verktyg som ofta används för att förenkla det arbetet. I nuläget
existerar en utökad version av Zotero, (Zotero Word integration extension), som ger möjligheten att
integrera referenser i Word-dokument. Däremot finns ännu inte möjligheten att göra detsamma i
PowerPoint.

Den största utmaningen med mitt projekt var att sätta mig in i och förstå mjukvaran jag jobbade
med (Zotero och Zotero Word integration software). Mjukvarornas storlek gjorde det till en
komplex uppgift att förstå de interna strukturerna, samt att identifiera vilka delar som skulle vara
till nytta i mitt arbete. En annan utmaning var att jobba med för mig helt nya verktyg, som används
av både Zotero och Zotero Word integration. Dessa verktyg var: VBA för skapande av add-ins till
Powerpoint, skapandet av Firefox extensions, samt arbete i C++.

Projektets mål var att skapa ett användarvänligt verktyg för att inkludera referenser i
PowerPoint. Användaren ska också ha möjligheten att på ett enkelt sätt skapa en sammanfattande
sida som innehåller alla källhänvisningar i slutet av Powerpoint-presentationen.

Nyckelord

Citaten, PowerPoint, Zotero, Add-In, Firefox extension, JavaScript

Acknowledgments | v

Acknowledgments

I would like to thank Professor Gerald Q. Maguire Jr. for giving me ideas and feedback during this
project.

Stockholm, August 2015
Ruben Lejeune

Table of contents | vii

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations xiii
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 1
1.3 Purpose .. 1
1.4 Goals .. 1
1.5 Delimitations .. 1
1.6 Structure of the report .. 2

2 Background .. 3
2.1 Firefox extensions ... 3
2.2 The Zotero Word Add-in.. 4

2.2.1 The Graphical User Interface .. 4
2.2.2 The Macros ... 4

2.3 The Zotero extension .. 6
2.4 The XPCOM component / build folder 7
2.5 Summary .. 8

3 Methodology .. 9
4 Writing the Zotero PowerPoint software 11

4.1 The first approach ... 11
4.1.1 The Graphical User Interface .. 11
4.1.2 The macros ... 11
4.1.3 Building the Zotero PowerPoint extension 13
4.1.4 Building the XPCOM components 14

4.2 The second approach lead to the prototype 16
4.3 Installing Zotero PowerPoint .. 29

5 Conclusions and Future work .. 31
5.1 Conclusions ... 31
5.2 Limitations ... 31
5.3 Future work .. 31

References ... 33

List of Figures | ix

List of Figures

Figure 2-1 Typical structure within the xpi file ... 3
Figure 2-2 The Zotero search box.. 7
Figure 4-1 The Zotero PowerPoint GUI ...11
Figure 4-2 The working test macro ... 12
Figure 4-3 The Zotero getDocument error .. 12
Figure 4-4 The Zotero no available document error 13
Figure 4-5 The structure of the citation variable 21
Figure 4-6 The output of the field variable ... 22

List of Tables | xi

List of Tables

Table 2-1 The Zotero Word integration commands 5

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

ASCII American Standard Code for Information Interchange (also known as US-
ASCII)

dll dynamic-link library
(G)UI (Graphical) User Interface
IDL Interface Definition Language
MFC Microsoft Foundation Class
rtf Rich Text Format
Sub Subroutine
VBA Visual Basic for Applications
XML Extensible Markup Language
XPCOM Cross Platform Component Object Module
XUL XML User Interface Language

Introduction | 1

1 Introduction

This chapter provides a brief background to set the context of the work and motivate the need for a
tool to help authors to add citations to PowerPoint presentations. Section 1.4 describes the goal of
this project and Section 1.5 describes the limitations of this project. The chapter concludes with a
summary of the structure of the rest of this report.

1.1 Background

Adding appropriate citations when writing scientific papers is both common practice and in many
settings a necessity. The citation gives credit to the source and helps to support the author’s
statement(s). Additionally, a citation helps your readers to find additional information to better
understand the matter and it helps them to determine if they find the referenced sources sufficiently
reliable [1].

1.2 Problem definition

Although adding citations to your document is important, citations are often forgotten or absent in
presentations. I hope that by facilitating the process of adding citations to reference when creating a
presentation that the number of people whom will use appropriate references in their presentations
will increase.

1.3 Purpose

The purpose of this report is to describe the process of developing the software artifact that has been
created. This description has been written in order to help other developers understand more easily
what mistakes have been made, what has been tried and what could be improved. This way they can
more easily contribute to this software or suggest improvements that could be made to this
software.

1.4 Goals

The goal of this project is to enable users to easily add citations to their PowerPoint presentations.
This has been divided into the following sub-goals:

1. Add citations to the current slide,
2. Add a slide with all of the references used in the entire presentation to the end of the

presentation, and
3. Increase the number of people that add citations to their presentation.

1.5 Delimitations

The prototype software artefact that was developed during this project serves as a proof of concept.
This means that the software is a basic and rough implementation of the concept and is primarily
meant to show developers and users that the concept is useful and realisable. Further development
is needed to have a more efficient artefact that could be distributed as a product or as open source
software.

2 | Introduction

1.6 Structure of the report

Chapter 2 presents the background information about the technologies that were used during this
project. Chapter 3 presents the methodology followed to realize a prototype solution. Chapter 4
gives a detailed description of the process of creating the Zotero PowerPoint software. Chapter 5
states a conclusion about this project and suggests future work.

2

T
d
an
p
G

2

In
so

re
T

Fi

2 Backg

This chapter
during the dev

nd has a lot
oint for this

GitHub repos

2.1 Firef

n order to u
ome underst

Firefox ex
eveal the con

The typical st

The inclu

Install

Chrom

Extensions a
They can ad

igure 2-1

ground

provides ba
velopment o
of the funct

s project. Th
sitory [2].

fox extens

nderstand th
tanding of th

xtensions wh
ntent, the file
ructure of th

ded files and

l.rdf

me.manifes

add new fun
dd anything f

Typical stru

ackground in
of Zotero Pow
tionality I als
e Zotero Wo

sions

he structure
e basic conce

hen downloa
e extension c
he content wi

d folders have

The inst
(XML),
installed

st Tells Fire
inteface e

nctionality to
from a toolb

ucture within th

nformation
werPoint. As
so needed fo
ord integrati

and files of
epts of Firefo

aded are .xp
can be change
ithin the xpi

ve the followi

tallation ma
provides in

d (e.g. ID, ver

efox where to
elements of t

o Mozilla app
bar button to

he xpi file

about some
Zotero Word

or my projec
on software

the Zotero W
ox extension

i files, which
ed to .zip, wh
file is shown

ng functiona

anifest, writt
nformation
rsion).

o look for chr
the applicati

plications su
o a completel

 of the tech
d integration
t, this softwa
can easily b

Word integra
s.

h are actuall
hich allows th

n in Figure 2-

ality [4][5]:

ten in Exten
about the

rome files. C
on window t

ch as Firefox
ly new featur

hnologies th
n is an open s
are was the

be download

ration extens

ly compresse
he file to be
-1.

nsible Mark
extension t

Chrome is the
that are outsi

x and Thund
ure.

Background |

hat were use
source projec
main startin
ed from thei

sion, I neede

ed folders. T
unpacked [3

kup Languag
hat is bein

e set of user
ide of a

derbird.

| 3

ed
ct

ng
ir

ed

To
].

ge
ng

4 | Background

windows’s content area. Three rules apply when registering content to
the chrome manifest:

1. Specify the type of the package
2. Specify the name of the package
3. Specify the location of the package

Content Contains the XML User Interface Language (XUL) and JavaScript files
of the extension. We use XUL overlays to extend the browser’s user
interface (UI) by adding or modifying widgets such as buttons, menus,
etc. XUL overlays are a way of attaching additional UI Widgets to a
XUL document at runtime.

Locale Contains the language files.

Components Contains the components which will automatically be registered when
Firefox runs after the installation of the extension.

Preferences Used to store the default preferences.

2.2 The Zotero Word Add-in

The Add-in for Word basically exists out of two parts, the graphical user interface (GUI) and the
macros, which are combined in a template file, zotero.dot (found in the install folder within the xpi
file).

2.2.1 The Graphical User Interface

The GUI provides the buttons that will appear in the Add-in tab. Pressing these buttons activates
the macros to initiate the underlying commands.

2.2.2 The Macros

When Opening a template, the macros are revealed by pressing ALT + F11.

At the beginning of each macro, a set of functions are declared. These functions are part of a
library (e.g. user32) and need to be declared here before they are used;

FindWindow Gets the handle of a window outside of the application. A window
handle is a unique identifier each window is assigned when it is
created in Microsoft’s Windows operating system [6]

SendMessage Sends a message to a specified window [7]

SetForegroundWindow Brings the specified window to the foreground

WideCharToMultibyte Maps a wide-character string to a new string [8]

Whenever a button is clicked a command is executed and the subroutine (sub) that is connected
to it will call the ZoteroCommand sub with the appropriate arguments, which are the command
name and whether to bring the window to the front or not. The different commands included in the
Zotero Word integration are included in the table 2-1, found at the Zotero Word integration usage
guide. [9]

Sub stands for subroutine and is similar to a method in programming. However, a sub cannot
return a value. If you want a value to be returned in VBA, a function should be used instead of a
sub.

Ta

C

Z
C

Z
C

Z
B

Z
B

Z

Z
P

Z
R

fo
h

T

ar
co
so
w
b

able 2-1

Command

Zotero Inse
Citation

Zotero Edit
Citation

Zotero Inse
Bibliograph

Zotero Edit
Bibliograph

Zotero Refr

Zotero Set D
Prefs

Zotero
Remove Cod

The Zoter
or the standa

handle. If non

ThWnd = FindW

Next the p
re modified
ommand, an
oftware that

will see later
ehalf of the A

The Zotero

Icon

rt

rt
hy

hy

resh

Doc

des

roCommand
alone version
ne of these ap

Window(appN

pathname to
d to have th
nd document

acts on one’
on, a compo

Add-on that

Word integrat

Description

Insert a new

Edit an exist
relevant cita

Insert a bibl

Edit an exist

Refresh all c
metadata th
Zotero libra

Open the Do
and/or refer

Remove Zot
citation or b
code allows
citation or b
to be renum
Zotero field
citations and
Note that re
only be done

d sub tries to
n of Zotero) b
pplications a

Names(i) & "M

o the active d
he correct fo
t arguments
s behalf. Her

onent that w
Zotero Word

ion commands

n

w citation int

ting citation
ation before p

liography at

ting bibliogr

citations and
hat has chang
ary.

ocument Pre
rence style.

tero field cod
bibliography,

Zotero to lat
bibliography

mbered when
codes preve
d bibliograph

emoving field
e in the-final

find the Zote
by looping th
are not found

MessageWindo

document is
form and fin
is sent to the
re the agent

will handle th
d integration

s

o your docum

. You have to
pressing this

the cursor’s

raphy.

d the bibliogr
ged using the

eferences win

des from the
, it does so by
ter recognize
(e.g., in num
additional c
nts any furth
hies.

d codes is irr
l copy of you

ero or Firefox
hrough the di
d, then an err

ow", vbNullStr

constructed
nally a mes
e Zotero or F
is registered

he communic
n installs in W

ment at the c

o place the cu
s icon.

location.

raphy, updati
e information

ndow. Used t

document. W
y using a fiel
e and automa

meric styles, c
itations are c

her automati

reversible, a
ur document

x window (th
ifferent possi
ror is shown.

ring)

. The argum
ssage with t
Firefox wind
as WinWord

cation with th
Word.

cursor’s locat

ursor inside t

ing any item
n from the re

to change the

When Zotero
ld code. This
atically upda
citations hav
cited). Remo
ic updates of

and should u
if it is done a

he Zotero win
ibilities for th
.

ments for the
the correspo

dow. An agen
d and is in th
the Microsoft

Background |

tion.

the

m’s
elevant

e citation

 inserts a
field

ate the
ve often
oving the
f the

usually
at all.

ndow is used
he window

SendMessag
onding agen
nt is a piece o
his case, as w
ft Libraries o

| 5

5

d

ge
nt,
of

we
on

6 | Background

2.3 The Zotero extension

Here the term Zotero extension refers to the main Zotero extension, rather than the Zotero Word
integration extension. The reason to mention this extension here is to explain some of the methods
and files that will be used later when developing the Zotero PowerPoint software.

As we saw earlier, the macros of the add-in (Section 2.2.2) send a message is to the Firefox or
the Zotero-standalone window. The output arguments of the message are shown below:

firefox.exe –silent–ZoteroIntegrationAgent WinWord –ZoteroIntegrationCommand
addCitation –ZoteroIntegrationDocument “C:\Users\Ruben\Desktop\Zotero.dot”

In order for the command to reach and be processed by the Zotero Firefox extension, something
is needed to allow the extension to handle command-line arguments. The Zotero extension adds the
following lines to their chrome.manifest file:

Component {531828f8-a16c-46be-b9aa-14845c3b010f} components/zotero-service.js
contract @mozilla.org/commandlinehandler/general-startup;1?type=zotero {531828f8-a16c-46be-b9aa-
14845c3b010f}
category command-line-handler m-zotero @mozilla.org/commandlinehandler/general-
startup;1?type=zotero

The lines above establish a component from within zotero/components/zotero-service.js as a
command-line-handler. Search for this component id in the GitHub repository, we find the handler
code, which starts with the following line:

function ZoteroCommandLineHandler() {}

In this handler, the different arguments are extracted out of the command line string. If the
agent is present, then the Zotero.Integration.execCommand(agent, command, docId) function is
called. This function is located in zotero/chrome/content/zotero/xpcom/integration.js. During the
development of Zotero PowerPoint this file proved to be one of the most important files.

The execCommand function tries to load the correct Zotero component by first using the agent
for the component class, as follows:

var componentClass = "@zotero.org/Zotero/integration/application?agent="+agent+";1";

If we consider the agent name that was transferred from the macro in this example, we find that
this agent name is defined in the Zotero Word integration extension, in the file named
build\zoteroWinWordIntegration \zoteroWinWordApplication.h. This file contains the following
lines:

#define ZOTEROWINWORDAPPLICATION_CONTRACTID
"@zotero.org/Zotero/integration/application?agent=WinWord;1"

With this, the correct component (an XPCOM component – see Section 2.4) can be loaded using
the following code:

var application = Components.classes[componentClass].getService
 (Components.interfaces.zoteroIntegrationApplication);

The Cross Platform Component Object Module (XPCOM) is a framework which allows developers
to break up monolithic software projects into smaller modular pieces. The goal of XPCOM is to
allow different pieces of software to be developed and built independently of one another. In order
to allow interoperability between components within an application, XPCOM separates the
implementation of a component from the interface.

A
co
im

im
d

d
an

do
ap

re
b

th
b
fi
q
b
q
re

Z

Fi

2

C
th
G
if

ID
la
ob
lo
ar
th
el

zo
in

An interface i
omponents. M
mplements th

Each obje
mplemented

defined in the

The appli
document is n

nd GetActive

ocument = (ap
pplication.getA

As a resu
eturned. The
een loaded in

With thes
he addCitatio
ox based up
ile. The code

quickFormat.j
een selecte

quickFormat.
eceived at th

otero.Integrat

igure 2-2

2.4 The

Comparing th
hat the files a

GitHub repos
f a new versio

This build
DL is an int
anguage- and
bjects [12]. A

ook into the
re used in th
he XPCOM
laborate over

The b
oteroWinWo
n the compon

in Mozilla is
Mozilla com
he functiona

ect in the co
. These inter

e header file

ication will b
not found, th
eDocument i

pplication.get
ActiveDocume

ult of the a
ese zoteroW
n from the T

se instances t
on command
pon the con
e that works
js. This code
d, quickFor
xul overlay i

he pptComma

tion.displayDi

The Zotero

XPCOM c

he GitHub re
are the same
sitory. Updat
on of the cod

d folder cont
terface defin
d machine-in
After these I
components

he C++ code
component,
rview [14] of

build fold
ordIntegratio
nents-* folde

a definition
mponents imp
ality as descr

mponents.in
rfaces are cre
“zoteroInteg

be asked to
hen an active
in the “zotero

Document &&
ent());

above call, t
inWordDocu

TypeLib MSW

the different
d, which will
ntents of the

together wit
e handles all
rmat.js fills
is shown by c
and function

ialog(me._doc

search box

componen

epository and
e, except for t
te.rdf is the u
de is available

tains Interfac
nition langua
ndependent
DL files are

s folder of th
e [13]. These

which is im
f and guide [1

der is
onErrorHand
ers).

of a set of fu
plement the c
ribed by their

nterfaces rep
eated by com
gration.h” [11

to load the
e document w
oWinWordA

& docId ? appl

the method
ument instan

WORD.OLB).

t commands
l (as shown i
e zotero\chr
th this XUL
l the events
 the array
calling the di

n, as seen in t

c, 'chrome://z

nt / build fo

d the unpack
the build fold
update manif
e.

ce Definition
age. Writing
way. These
compiled th

he Zotero Wo
interfaces e

mplemented
15] to XPCOM

used t
dler.xpt, and

unctionality t
code in that d
r interfaces [

presents one
mpiling the fil
1].

correct doc
will be select

Application.cp

ication.getDoc

instances o
nces have pr
.

can now be
in Figure 2-2
rome\conten

overlay is fo
and logic for

of citation
isplayDialog
the following

otero/content

older

ked xpi file fo
der and the u
fest which is

n Language (
g in IDL a p
definitions a

hey become t
ord integratio
enable the Fi

in C++ cod
M componen

to gener
d the zoteroW

that could be
does somethi
[10].

of the XPCO
le” zoteroInt

cument based
ted (using th
pp”) with the

cument(docId

of the zotero
roperties spe

executed. On
2) activate th
t\zotero\inte
ound in the
r the overlay
n items wi
function aft

g code:

t/integration/

or Zotero Wo
update.rdf wh
pinged by th

IDL) files an
programmer
are used to s
he xpt files t
on extension
irefox extens
de in this fol
nts.

ate the
WinWordInt

e implement
hing. Each co

OM interface
tegration.idl”

d upon its i
he functions G
e following ca

d) :

oWinWordD
ecific to Wor

ne importan
he interface f
egration\qui
same folder

y. Once the c
ithin integr
ter the comm

/quickFormat.

ord integratio
which are only
he client soft

nd a folder w
describes in

specify interf
that we can

n and the hea
sion to comm
lder. Firefox

zoteroIn
tegration.dll

Background |

ted by
omponent

es that can b
” and they ar

id, and if thi
GetDocumen
all:

Document ar
rd (they hav

t command i
for the searc
ickFormat.xu
r and is calle
citations hav
ration.js. Th

mand has bee

xul', mode, io)

on we can se
y found in th
tware to chec

with C++ code
nterfaces in
faces betwee
find when w
ader files tha

municate wit
x provides a

ntegration.xp
files (locate

| 7

7

be
re

is
nt

re
ve

is
ch
ul
ed
ve
he
en

);

ee
he
ck

e.
a

en
we
at
th
an

pt,
ed

8 | Background

In the Zotero Word integration extension, the XPCOM component is used so that a number of
Microsoft and Microsoft Office libraries could be used (specifically MSO.DLL, VBE6EXT.OLB, and
MSWORD.OLB). These libraries enable the Zotero Word integration extension to get information
about the Word document and edit/add text to it.

2.5 Summary

The Zotero Word integration software can be split up into three major pieces:

1. The Firefox extension (which in turn installs the two other major components),

2. The Word Add-in, which is the template file with the UI and the macros, and

3. The XPCOM component with its IDL files, which allows the extension to communicate with
the required libraries.

Methodology | 9

3 Methodology

This project did not begin with a selection of specific research methodology. However, the research
method that was used to develop a software artifact used an empirical method based upon an
analysis of the existing Word Intergration extension.

The two most valuable sources of information to realize the Zotero PowerPoint project were the
Zotero extension and the Zotero Word integration extension. Small experiments were conducted to
observe the function of the existing extension and the code was carefully analyzed in order identify
potentially useful pieces of code. This process of identifying code for re-used was very beneficial as
these two projects already contained a lot of the functionality I needed.

I evaluated my work by testing the software for bugs and continually updating the software to
fix the detected bugs.

My first approach was to modify the Zotero Word integration extension as I thought I could
modify this code to work directly from PowerPoint. Therefore during the first phase of development
I started out by copying the Zotero Word integration extension file by file and adjusting the contents
of these files. This proved to be a bad approach, as there was not enough control of whether the
software I was writing worked correctly or not. This occurred because with this method, the
software is not gradually developed by expanding its functionality starting with a working base
functionality. When making the changes file by file, a lot of the debugging was necessary at the end
of the project when the puzzle was supposed to fit together. Shifting all of the debugging to the very
end, lead to a lot of time being lost when there are errors. In particular, in several cases I had to start
all over again with certain functions.

In the second approach to development I took a more gradual and incremental approach. The
Zotero extension and Zotero Word integration extension contained a lot of code, so it was not
feasible to try and understand everything all at once. For this reason, I tried to identify the specific
parts of the software that I would need to copy and/or change in order to develop Zotero
PowerPoint.

In this second approach I first defined which actions I wanted my software to be able to do. If
the action that I was trying to implement was already part of one of the existing extensions, then I
examined where the specific action that I want to implement in Zotero PowerPoint was initiated and
which files were associated with its realization. Once this had been established, I tried to figure out
the sequence of functions that were called from the initiation of the action until the end result.
Based upon this I started to initiate a similar sequence of function calls in my software, either by
copying and adjusting the existing code, or by making use of parts of the existing code. By logging
the values of variables and tracing function sequences, I compared these values and sequences to
those of the existing extensions. As a result I could immediately see if the results I was getting from
my new code were the expected results or not. This allowed me to continuously adjust my software
until the expected results were produced.

Whenever I came across technologies that I had not used before or if I wanted something that
was not implemented in the extensions, then I looked for tutorials on this topic and then tried to
implement this technique in my software.

4

ap
H
su
ex

4

4

T
th

4

I
in

sc
C
ad
co

<
im

ca
F

Fi

4

In
co

4 Writin

The writi
pproach I tri

However, as w
uccessful. Th
xtension.

If as a rea
.1.4 as they t

4.1 The

The first step
his, I first cre

.1.1 The

started to
ntegration. T

I copied t
creenshots a

Custom UI E
dded to mak
omplete the

An examp

button id="Bu
mage="addCit

When a b
alled. These

Figure 4-1.

igure 4-1

.1.2 The

n order to lea
ode as the re

ng the Zo

ing of the Zo
ied to write
was explaine
his second a

ader your goa
talk only abo

first appr

ps in this app
eated a Powe

e Graphical U

implement
The tool I use

the icons, be
and stretchin
Editor. Using

ke the funct
look [17].

ple of the XM

uttonAddCitat
tation" size="n

button is pre
Subs are fo

The Zotero

e macros

arn how to w
esult of clicki

otero Pow

otero PowerP
the software

ed in the prev
approach av

al is simply t
ut code that

oach

proach were
erPoint Macr

User Interfac

the User In
ed for this wa

ecause peop
ng them out
 this editor

tion of each

ML associated

tion" onAction
normal" label=

ssed the Sub
ound in the

PowerPoint G

write the mac
ng a button.

werPoint

Point softwa
e in a similar
vious chapte

voided the u

to understand
was not utili

e to figure ou
ro-Enabled P

ce

nterface by
as the Custom

ple are alread
a bit. To edi
it was easy
buttons clea

d with a butt

n="ZoteroInse
="Insert Citati

b with the sa
macros that

UI

cros I started
This simple

t softwar

are was split
r fashion as t
r, this did no
se of XPCO

d the current
ized in the fin

ut how to wr
Presentation

creating a
m UI Editor f

dy familiar w
it the UI, I o
to edit the X
arer. Finally

ton is the foll

ertCitation" sh
ion" />

ame name as
t come with

d with a smal
test project w

Writing

re

 up into two
the Zotero W
ot work out.
M compone

t code, you c
nal impleme

rite an Add-
(Zotero.pptm

UI similar
for Microsoft

with them. T
opened the P
XML and to
y I added the

owing:

howImage="tr

defined in t
the template

l test project
worked, as sh

g the Zotero Powe

o approache
Word integrat

The second
ents and an

can skip Secti
entation of th

-In for Powe
m).

to that of
ft Office [16].

This was don
PowerPoint f

add buttons
e icons to th

rue"

the “onAction
te. The resul

t to see if I co
hown in Figu

erPoint software | 1

s. In the firs
tion software
approach wa
extra Firefo

ions 4.1.3 an
he prototype.

rPoint. To d

Zotero Wor

ne by makin
file within th
s. A label wa
he buttons t

n” attribute i
lt is shown i

ould run som
ure 4-1.

11

st
e.
as
ox

nd
.

do

rd

ng
he
as
to

is
in

me

12

Fi

in
w
th
re
se
w
A

In
ad
P
d
F

Fi

ex
th
4

2 | Writing the Zot

igure 4-2

Next I o
ntegration in

would happen
he path sepa
eplaced this
eparator). In

was not defi
ActivePresent

When exe
nterface pop
dd. Howeve

PowerPoint d
document! I r
Figure 4-3.

igure 4-3

This erro
xtension now
he command
-4.

ero PowerPoint so

The test ma

pnned my Z
nto my macro
n if I invoked
arator (Appli

separator w
nvoking the c
ned. Unfort
tation should

ecuting the c
pped up and,
er, once I h
document, bu
repeated this

The Zotero

or message g
w automatic
d again with

oftware

acro wored

Zotero Powe
os and made
d a command
ication.PathS

with “/”, as th
command ag

tunately, I f
d be used for

code after re
, and as in W

had selected
ut instead a
s test with al

zoteroIntegrat

gave me the
cally activate

Word active

erPoint file
sure they we

d, I ran the A
Separator), w
his seemed t
gain, resulte
found that A
r PowerPoint

eplacing Acti
Word, I coul
 a reference

added the re
ll Word docu

tionApplication

e clue that r
es something
e, but no ope

and pasted
ere correctly
Add Citation
which appare
to work (not
d in an erro
ActiveDocum
t [18].

iveDocumen
ld choose a
e to add, th
ference was
uments close

n.getDocumen

running Wor
g called the z
en document

the macros
connected to
command. B

ently does no
e that “\” di
r indicating

ment was sp

nt with Active
citation style
his reference

added as a
ed, then I rec

t error

rd with the
zoteroIntegra
t, I received t

s from the
o the buttons
Because of a
ot work for P
id not work
that the Act

pecific to W

vePresentatio
e and select

ce was not
citation in

ceived the er

Zotero Wor
rationApplica
the error sho

Zotero Wor
s. To see wha
problem wit
PowerPoint,
correctly as
tiveDocumen

Word and tha

on, the Zoter
references t

added to m
a open Wor
rror shown i

rd integratio
ation. If I ra
own in Figur

rd
at
th

I
a

nt
at

ro
to

my
rd
in

on
an
re

Fi

th

ar
Z

fo

4

A
st
si
fu
th
cl
al

d
th
W
fo

yo
fi
ti

m
fi
in
in
o

co
re

igure 4-4

When ana
hat refers to

rgs$ = "-silent
oteroIntegrati

This code
or now.

.1.3 Bui

As the Zotero
tarted to ma
imple extens
urther upon.
hat I did not
lassical way.
ll the examp

An easy w
directory with
he full path

Windows the
older Firef

Once the
ou start up F
ile. With this
ime. Howeve

With ever
modifications
iles I wanted
nstall in Fir
nformation a
nly the follow

ontent zo
esource zo

The Zotero

alyzing the (M
other install

t -ZoteroInteg
ionDocument

e showed me

lding the Zot

o Word integ
ake an exten
sion that ins
 To create a
t have enoug
 To do this,
le files, excep

way to set u
h the same n

to the proj
extensions

fox Folder

setup was s
Firefox. If th
s setup you

er, a restart o

rything in pl
s in order to
d to adjust we
refox as a te
about the ext
wing:

otero-winpow
otero-winpow

‘no open docu

Microsoft) V
ed componen

grationAgent W
""" & name$

e that I shoul

tero PowerP

gration, whic
nsion for Zo
stalls withou
Firefox exten
gh control of
a template fo
pt for the chr

p your proje
name as the i

ect directory
folder can e
 Profiles fold

uccessful, th
e set up was
can change

of Firefox is r

lace and thin
 work for Po
ere the essen
est. This led
tension, such

erpoint-integr
erpoint-integr

ument’ error

Visual Basic fo
nts was the f

WinWord -Zot
& """"

ld focus on t

oint extensio

ch was my m
otero PowerP
ut any proble
nsion, I first
f the extensi

for a basic ex
rome.manife

ect for devel
id in the inst
y. Make sur

easily be foun
der {some

hen the appli
s done incorr

your code w
required whe

nking that th
owerPoint, I
ntial ones tha
d me to beg
h as descripti

ration chrome
ration resourc

or Applicatio
following:

teroIntegratio

the extension

on

main guide (f
Point as well
ems. This wo
used the Mo
ion, thus I sh
xtension was
est and instal

lopment is b
tall.rdf file. T
re this path
nd by execut
e id}.default

ication that t
rectly, Firefo
without havi
en changes h

he Zotero Wo
 started copy
at would giv

gin with inst
ion and auth

e/
ce/

Writing

ons (VBA) co

nCommand "

n, as the curr

for a while),
l. The first s
ould serve a

ozilla Add-on
hifted to cre
downloaded

ll.rdf files.

by adding a t
The only text

ends with a
ting Run
folder ext

the file links
x will autom
ng to reinst
ave been ma

ord integratio
ying and mo
e me a work
tall.rdf, whe

hor. In the ch

g the Zotero Powe

ode, the only

& cmd & " -

rent macros

, had its own
step was to

as the framew
n SDK [19]. H
eating an ext
d [20]. I beg

text file to th
 this file sho
a directory s
%APPDATA

tensions fold

s to will be in
matically dele
tall your exte
ade.

ion extension
odifying its f

king extensio
ere I change
hrome manif

erPoint software | 1

1

line of code

would suffic

n extension;
create a ver
work to buil

However, I fe
tension in th
in by deletin

he extension
uld contain i
separator. O
A% Mozill
er.

nstalled whe
ete the linkin
ension all th

n only neede
files. The firs
n that I coul

ed only som
fest I change

13

13

ce

I
ry
ld

elt
he
ng

ns
is

On
la

en
ng
he

ed
st
ld

me
ed

14 | Writing the Zotero PowerPoint software

Next I changed the template to install from Zotero.pptm, rather than Zotero.dot to in the
installer.jsm file and to change the references from Word to PowerPoint, as in the following lines.

var pptm = zpi.getAddonPath(this.EXTENSION_ID);
pptm.append("install");
pptm.append("Zotero.pptm");

To test the application as modified thus far, I needed to locate my profile folder Pressing
[Windows key] + [R] and typing %APPDATA% and then OK locate the Mozilla folder Locate
Firefox/Profiles/<profile_id>.default/ and open the extensions folder in it. In this folder I created a
text file named zoteroWinPowerPointIntegration@zotero.org and in the file put the full path to my
extension: C:\Users\Ruben\Desktop\Zotero for PowerPoint\Zotero-WinPowerPoint-Plugin-1.0.0

Once I did this, Firefox deleted the file I just created! Only later did I realize that this was
probably due to not naming the file the same as the id. Instead I added the file to a zip archive and
changed the extension to .xpi. Then I dragged this file to the extensions page, and it installed
properly.

Once I changed “WinWord” in the macro to “WinPowerPoint”, it gave me the following error:
“The needed component for communication with the text editor could not be loaded, make sure the
correct extension is installed and try again.”

This was a sign that I had to create the XPCOM components for this new extension.

4.1.4 Building the XPCOM components

For a long time I was stuck when trying to compile the original Zotero Word integration code. I tried
changing the absolute paths, but kept on getting errors about missing tlh files. After a while it
turned out that most of these header files were generated with the MFC TypeLib wizard. There were
3 files that generated classes in the project: MSO.DLL, VBE6EXT.OLB, and MSWORD.OLB.

To create the necessary components for Zotero PowerPoint, I created a new C++ project. I
began by copying those files that were already in the Zotero Word integration C++ code and then
adjusted them file by file to suit PowerPoint. In this process, I learned how a C++ project is
structured and how the files work together (i.e., the header files and cpp files).

To figure out exactly where I should start, I checked for those files with the smallest number of
includes. For these files, it was easier to see if the project builds correctly. However, it appeared that
in the zoteroException file, an include was needed from
“zoteroWinWordIntegrationErrorHandler.h”, which was a header file produced by one of the IDL
filess. Therefore, this file had to be generated first.

The zoteroWinWordIntegrationErrorHandler.idl only needed a change of name (to
zoteroWinPowerPointIntegrationErrorHandler) and a change of uuid to make it useable in my
build. The uuid was needed to identify my own XPCOM component. This was done in Visual Studio
by choosing Tools Create GUID (option static const struct GUID) New GUID and copying
the result to the uuid value in the IDL file.

A number of web searches showed that the IDL files could be compiled using midl.exe (located
at a path similar to C:\Program Files (x86)\Windows Kits\8.1\bin\x86). However, trying to compile
the IDL files gave the error: “cannot find C preprocessor cl.exe”. It turned out that C:\Program
Files\Microsoft Visual Studio 10.0\VC\vcvarsall.bat had to be run first before compiling. However
even after doing so, on every compile there were missing files. When I finally added all needed files,
syntax errors started showing up. These were all XPCOM related issues.

I decided to follow another tutorial to see how to write and compile XPCOM components [21].
This tutorial told me I needed to download the Gecko SDK. However, trying to integrate Gecko and

Writing the Zotero PowerPoint software | 15

15

Visual Studio kept on giving errors, so I had to find another way to compile the IDL files to xpt and
header files. Eventually I compiled them by adding the C:\Program Files\xulrunner-sdk\sdk\bin; to
the Path variables of my computer and ran the compilation with the following commands:

C:\Users\Ruben>xpidl -m header -I "C:\Program Files\xulrunner-sdk\idl" -e
"C:\Users\Ruben\Desktop\build\zoteroWinPowerPointIntegration\zoteroWinPowerPointIntegrationErrorHa
ndler.h"
C:\Users\Ruben\Desktop\build\zoteroWinPowerPointIntegration\zoteroWinPowerPointIntegrationErrorHan
dler.idl

and

C:\Users\Ruben>xpidl -m typelib -I "C:\Program Files\xulrunner-sdk\idl" -e
"C:\Users\Ruben\Desktop\build\zoteroWinPowerPointIntegration\zoteroWinPowerPointIntegrationErrorHa
ndler.xpt"
C:\Users\Ruben\Desktop\build\zoteroWinPowerPointIntegration\zoteroWinPowerPointIntegrationErrorHan
dler.idl

I next worked on the zoteroException.cpp and zoteroException.h files. Copying the header did

not give any errors. However, for the cpp file there were some files missing, specifically:
nsCOMPtr.h and nsServiceManagerUtils.h.

After getting many errors and not finding the right includes, I realized that I had downloaded
the xulrunner version for Linux.

While I got the xulrunner version for Windows working, the project still showed a lot of errors.
One solution to resolve some of the errors I was getting was due to an undefined char16_t. In order
to solved this I needed to add #include <mozilla/Char16.h> to the stdafx.h file. In the preprocessor
(located in Project Property Pages -> C/C++) I had to add _CHAR16T to the Preprocessor
definitions.

The next errors I ran into were mismatch and linking errors. There was a mismatch between the
_ITERATOR_DEBUG_LEVEL, so I had to change the Runtime Library from Multi-threaded Debug
to Multi-Threaded. I set up the linking in exactly the same as in the Word version, however in
xulrunner there must have been some changes since the time that the Word version had been
written. Finally, I resolved the linking errors by linking with nss3.lib and thus I got the compilation
to work.

For the zoteroIntegration.idl I changed only the uuid’s of the components and repeated the
same compilation process. The generated header file contained templates for the other header files.
I created the new header files and copied the generated templates into them. I had to replace
MYCLASS with the correct class name.

When comparing the folder structure I realized that I was working with the wrong project
template. To test this idea, I created a win32 dynamic-link library (dll) file. After testing the
different options, the zotero for word looked more like a Microsoft Foundation Class (MFC) dll file.
For my next attempt I chose to create a regular dll with MFC statically linked. I again copied the
generated header files from the IDLs to the new project’s header files and copied the
zoteroException file as it does not seem to have Microsoft Word specific items. The build succeeded.

The next header file to create was the zoteroWinPowerPointApplication.h. I this case I only had
to change the names and ids. Again the build succeeded.

Next I added the zoteroWinPowerPointDocument, which was generated from the modified
version of ZoteroWordIntegration. At this time, I had not yet realized that this was not going to
work for PowerPoint. I changed the class names and methods and had to import a few MFC classes
with the TypeLib. To add or check which classes are available in the files go to Project -> Class

16 | Writing the Zotero PowerPoint software

Wizard and choose MFC Class from TypeLib instead of Add Class. Browse to the correct files. The
path should be something similar to:

C:\Program Files (x86)\Common Files\Microsoft Shared\OFFICE15\MSO.DLL
C:\Program Files (x86)\Common Files\Microsoft Shared\VBA\VBA6\VBE6EXT.OLB
C:\Program Files (x86)\Microsoft Office\Office15\MSWORD.OLB

I realized after adding MSPPT.OLB that the fields and document header files were not available
for PowerPoint, which meant that I could not easily adapt the extension to work for PowerPoint (as
well as Word). This also meant that I would have to rewrite the IDL files and change most of the
extension so that it would work for PowerPoint. The Zotero integration file would not be useful, as it
works with documents and fields, which meant their integration was basically written only for word
processors and could not easily be adapted to work with other software.

Once I realized this, the first step was to see how much I could do if I presented my presentation
file as a document to the Zotero integration file. It appeared that even though I might be able to
treat my presentation as a document during the first steps, I would still run into problems before
being able to execute any command. This occurs because Fields within the document are being used
in the Word version, but there is no comparable equivalent in PowerPoint.

Based upon the above analysis this suggested that there were two different solutions:

• Figure out all the different classes and methods I would need for communication
between the Integration document and the PowerPoint extension. Create an IDL file to
support this. Implement the generated templates. Create the installation files for the
extension. Try to access the interfaces used for Zotero Word for Windows integration
(e.g. via the add citation interface) and retrieve the information, although this is
information was also written specific for Word documents. Add new methods in the
integration.js file to process this information for PowerPoint.

• Skip XPCOM by directly expand the Add-ins macro and the integration.js file. As a result
there would not be any need to develop an extension, as I could integrate most of the
code into the main Zotero software by editing the integration file. In this approach I
would use JavaScript to lookup the correct citation, format it, and return it to the macro.
Within the macro I would add the citation(s) to the presentation, add slides, etc. In this
approach I do not need to rewrite the whole Word extension and would not have to
struggle with the XPCOM components.

As the first solution is very complicated and would take a very long time to develop, I decided to
explore the second solution.

4.2 The second approach lead to the prototype

The following items need to be done to realize this second solution:

1. Enable the user to choose a citation style,
2. Add extra functionality to the Zotero integration file and try to activate the add

citation dialog (which normally requires a document file),
3. Get the information back from the add citation dialogue, sending it back either

directly to PowerPoint or store it in a temporary file,
4. Read the response and add the citation to the currently active slide, and
5. On activation of another command invoked by clicking an appropriate icon,

collect all citations and add them to the references slide(s).

I tried to log data from the zotero-service.js, which handles the command sent from VBA, but
whenever I use alert (“some text”) or console.log (“some text”) there, the file would not execute

Writing the Zotero PowerPoint software | 17

17

anymore. After a while I realized that it was not really necessary to debug this particular file, as the
only functionality was to catch a command and call a function from the Integration.js file.
Therefore, I changed the arguments passed the PowerPoint macro’s sendMessage function to:

args$ = "-silent -ZoteroPowerPoint WinPowerPoint "

In the zotero-service.js file I added the following to handle commands with the
ZoteroPowerPoint flag:

var ppt = cmdLine.handleFlagWithParam("ZoteroPowerPoint", false);
if (ppt) {
 var Zotero = this.Zotero;
 Zotero.setTimeout(function() { Zotero.Integration.pptCommand(ppt) }, 0);
}

At first I used the handleFlagWithParam in this if structure, but then I ran into trouble when
trying to use it again. I realized that it was important to first give the variable ppt its value first, as
the flag and parameter seemed to be removed after using the handleFlagWithParam. In the
Integration.js file I wrote a simple function that generates alerts when it receives the message. Later
I used this same pptCommand function to initiate the add citation command.

this.pptCommand = new function() {
 var inProgress;
 return function pptCommand(ppt) {
 alert("message ppt received");
 }
}

This worked, which meant that the command was successfully being sent and handled. It turned
out that alert worked here, but console.log commands did not. Next I wanted to display the dialog
for adding citations. In the functions used to do this for the Word integration, Word specific values
are being used. In order to execute these functions, I needed to make objects that acted as if they
were the Word specific values.

In order to display the search box, I started by examining the DisplayDialog function, as this is
the general function that can call all sorts of dialog windows. In order to do so, there were two
variables that I had to simulate, as the doc and io values are Word specific. This function call is as
follows:

this.displayDialog = function displayDialog(doc, url, options, io) {

When calling this method, first doc.cleanup(); is called, so I created a new function pptDoc()
which had a cleanup() function that did not do anything. This seemed to be the only time the doc
argument was used. As a test I used null for the io, as io ? io : null was used later in their code, so I
thought this variable might be optional. When I execute this, the dialog window opened up, however
was not actually working (for example, I was not able to switch to classic mode, create a citation list,
or close the dialog). Inside the addCitationDialog I found the following code:

io = window.arguments[0].wrappedJSObject;

This meant I had to simulate io as well. The variable io is assigned its value in the integration.js
file with the following code:

var io = new Zotero.Integration.CitationEditInterface(citation, field, me, session);

I created my own io function, pptIo(). To create this function I researched what the minimum
requirements were for io to make the search function work. To do so I needed to trace what happens
with io after it is passed to the XUL file. As can be seen in the code below, it seemed that io was
being passed to the newly opened window.

18 | Writing the Zotero PowerPoint software

Var window = Components.classes[“@mozilla.org/embedcomp/window-
watcher;1”].getService(Components.interfaces.nsIWindowWatcher).openWindow(null, url, ‘’, allOptions, (io ?
io : null));

An essential task was to get the list of citations when a user types into the search box. For some
reason I was convinced that AddcitationDialog.xul was being used for the search box and analyzed
this file for a while. However, after some testing with a couple of added alerts, it appeared that
quickFormat.xul was actually being used. The addCitationDialog function was for the classical view.
So I created a PowerPoint version of the quickFormat.xul and quickFormat.js (quickFormatPpt.xul
and quickFormatPpt.js). In the load function I commented out everything using the argument io, as
they did not seem important for the first stages of the search box.

To see what the different layout functions were I started commenting out different elements and
see what the effect was. When I stripped out all the essentials, it seemed as if I still could not
communicate with the event handlers located in quickFormatPpt.js. After a while I realized that the
quickFormatPpt.xul was still linked to the old quickFormat.js file. Once I tested the onKeyPress
event with the correct include, I was able to get a response.

As the comments in the quickFormat.js file were not clear to me, which caused me trouble when
trying to understand what each function did, I put an alert at the start of each function with the
name of the function. This way I could follow the actions of the Word version for the functionality
that I wanted to put in the PowerPoint version. These alerts enabled me to see which functions were
used, when they were used, and why.

The moment I typed something into the textbox, events started to be generated. After typing
two letters, a list of possible references showed up. With the alerts at every function in place, the
following sequence was found. On typing the first letter the following functions were called:

_onQuickSearchKeyPress _resetSearchTimer onKeyPress _quickFormat
_getEditorContent _getCurrentEditorTextNode _updateItemList _updateCitationObject
_resize

From the second letter on the following functions were called for each leter:

_onQuickSearchKeyPress _resetSearchTimer onKeyPress _quickFormat
_getEditorContent _getCurrentEditorTextNode _updateLocator _getItems
_updateItemList _updateCitationObject _buildListSeparator _buildListItem
_buildItemDescription _buildListItem _buildItemDescription _buildListItem
_buildItemDescription _buildListItem _buildItemDescription _buildListItem
_buildItemDescription _resize _openReferencePanel _updateItemList (here every list
item disappeared again) _buildListSeparator _updateCitationObject _buildListSeparator
_buildListItem _buildItemDescription (now items started filling the list up one by one
again)_buildListItem _buildItemDescription this cycle repeated until all elements are in list)

 _resize

After _resize the alerts stopped and the list of references was shown. It appeared that all the
special keypresses are handled in _onQuickSearchKeyPress, such as enter, backspace, tabs, etc. If
the key was simply an alphabetic letter, the _resetSearchTimer method was activated. I did not have
to change much here as far as I could see.

I put alerts in the PowerPoint version of _onQuickSearchKeyPress and _resetSearchTimer. The
_ resetSearchTimer did not seem to have any calls to other functions or functionality that I would
not use, so I did not change anything in this function. Both alerts for these functions showed up
when I started entering letters into the textbox.

Next in the sequence the onKeyPress event occurred, however this function simply tests if it is
acceptable to exit the window when the escape key is entered. This event was generated every time a

Writing the Zotero PowerPoint software | 19

19

key was pressed and was unimportant in the process of showing the list of potential references.
However, for some reason, my Zotero window did not want to close on escape, so I added a call to
window.close(); when the escape key was pressed. This properly closed the Zotero search bar.

Next I put an alert into the following functions: _quickFormat, _getEditorContent,
_getCurrentEditorTextNode , _updateItemsList, _updateCitationObject, and _resize. The expected
alerts showed up until _updateItemsList, thus something must have gone wrong within this
function. To explore this further, I inserted alerts that output a specific number, spread throughout
this method to see how far I got within this function. In this way I was able to pinpoint the line
where things went wrong:

while(referenceBox.hasChildNodes()) referenceBox.removeChild(referenceBox.firstChild);

When I tested whether or not the referenceBox had child nodes, there was no response. So this
function was not working properly. When checking what it was initialized with, I found the
following line of code:

referenceBox = document.getElementById("quick-format-reference-list");

I suspected that this was one of the parts of the quickFormatPpt.xul that I commented out, as at
that point I was not yet sure of its functionality. Examining this xul file, the element with this id was
indeed commented out. It was a panel with the “richlistbox” of citations that I wanted to show.

At this point I decided to uncomment all of the parts that I had commented out in the
quickFormatPpt.xul file to see how far I was getting in the sequence. It seemed that for the first
letter I got up to _updateCitationObject. Here the citation object is populated, and as I expected, it
was a function where io was being used. This was the reason things had gone wrong in this function,
as I did not yet have a suitable value for this variable.

As I now needed a suitable value for the variable io, I started to expand my pptIo function, by
adding properties when they were needed by the sequence of events. It seemed that io needed a
citation element, an array of citationItems, and an array of properties. Within these properties, a
Boolean “unsorted” should be added. I gave the unsorted variable the value ‘true’. Later in the
method io.sortable is checked, so I added this Boolean to the io elements and gave it a value of false
as I did not have any sorting implemented. These changes resulted in the following code:

this.sortable = false; // Determines if citation is sortable in current style
this.citation = {"citationItems":[], "properties":{"unsorted":true}};
this.citationsByItemID = {};

With these variables in place, I could uncomment some of the code in the load functions of
quickFormatPpt.js, especially the initialization of io, which initially I had forgotten to uncomment.
To see if the io variable was properly transferred, I tested whether I could generate an alert for the
unsorted Boolean within _onQuickSearchKeyPress. This did not work. When I checked if the code
after if(io) was executed, the subsequent alert did not appear. So there was something wrong with
the passing of my io variable to the quickFormat window.

When testing if there was an argument that came from the dialog window, the test returned
true. It was only when the .wrappedJSObject was added, that it did not work anymore. This occurs
in the following line:

io = window.arguments[0].wrappedJSObject;

I must have missed something in io that enabled it to pass the variable as a JSON object. To find
exactly what was missing, I examined how the Word version constructed the io variable. It turned
out that they initialized io with the following code:

var io = new Zotero.Integration.CitationEditInterface(citation, field, me, session);

In the function that was called, I saw that they added this.wrappedJSObject = this; to make it work
across window boundaries. When testing, I could successfully access the unsorted Boolean within io.

20 | Writing the Zotero PowerPoint software

Continuing to follow the sequence, when nodes[i].citationItem was output in the
_buildItemDescription function it showed that this value was “undefined”, but this time the _resize
function was reached. To see if this value was normally undefined on the first letter, I put the same
alert into the Word version. The Word version also that this value was undefined as well, so it
seemed as if this was the normal behavior on the first letter. This seems logical as the item list was
not yet populated.

Now I could move on to the sequence of event that occur when the second letter is typed. Here I
got to the _updateLocator event, which returned a string value to its caller (i.e., _quickFormat).
Again, there was a new use of io, which as it did not have the correct value caused a discontinuation
of the sequence. It seemed that I needed to implement a io.getItems()function, which, according to
the comments in the Word version, gets a list of items used in the current document. As we do not
actually have a document, I simply returned an empty array. This seemed to be the only function for
io needed in the _quickFormat function.

Unfortunately, it turned out that simply returning an empty array did not work. This revealed
that something more complex was going on here. When I checked the getItems function, the return
structure was:

return this._updateSession().then(function() {
return me._getItems();

}, function() {
return [];

});

This was a JavaScript promise. Basically this says, if _updateSession was a success, go into the
function where the value of me._getItems() is returned, if there was an error, then return an empty
array. I created a promise, as it seemed to be needed to correctly return the values to the
_quickFormat() function. However, I made the function that was called for the promise always
return Q.resolve(true).

this._updateSession = function updateSession() {
 return Q.resolve(true);
}

I also returned an empty array in getItems, no matter what the promise returned, using the
following code:

this.getItems = function getItems() {
 return this._updateSession().then(function() {
 return [];
 }, function() {
 return [];
 });
 }

When I tested this, I was finally able to show a list of the citations in the search box. The
sequences for the first and second letter were exactly the same as for the Word version.

The following step is the selection of an item from the list of citations. Here I used the same
method, I clicked on an item in the Word version which produced the following sequence:

_bubbleizeSelected _getEditorContent _getCurrentEditorTextNode _updateLocator
_getCurrentEditorTextNode _insertBubble _buildBubbleString _clearEntryList _resize

 _refocusQfe _previewAndSort _refocusQfe

I now tested how far the PowerPoint version got without running into trouble. It appeared that
this ran without any problems, so I did not have to change anything. After this I examined what

h
se

_

io
th
b

th

}

an
_
fu

m
m

h
ca

W
p
su
fo
tr

Fi

happened wh
equence:

_onQuick
_getCurrentE

The Pow
o.accept(_on
his.acceptDe
ar was filled

his.accept = fu
if (!this._a
 this._a
}

Even thou
ny other fu

_acceptDefer
unction. The

me._session.ad
me._session.up

To get the
had to find a
an use JSON

Figure 4-
When output

inning down
ucceed in fin
ormatted int
ried to follow

igure 4-5

en you accep

kSearchKeyP
EditorTextNo

werPoint ve
nProgress) is
eferred value
. This new fu

unction accept
acceptDeferred
acceptDeferre

ugh this work
unctions wer
red was fulfi
most impor

ddCitation(me
pdateIndices[m

e formatted c
way to conv

N.stringify(ob

5 shows the
tting various
n exactly wh
nding the exa
to the correc
w the progres

The structu

pt the citation

Press _bub
ode _accep

rsion worke
s called. I co

to pptIo. By
unctionality w

t(progressCallb
d.promise.isFu
ed.resolve(pro

ked, I still di
re called. T
illed. This se
tant function

e._fieldIndex,
me._fieldInde

citation, I ne
vert the objec
bj,null,4); to

e output of th
 possibilities

here the citat
act place whe
t bibliograph

ss step by ste

ure of the citati

n you are ad

bbleizeSelect
pt _updat

ked up unt
opied the fun
y doing this,
was impleme

back) {
ulfilled()) {

ogressCallback

id not know
Therefore, I
eemed to occ
ns that are ex

me._field.get
ex] = true;

eeded to know
ct into a stri
get an object

he citation af
s that could
tion data wa
ere the full ci
hic style. To

ep.

on variable

ding (by pres

ted _getEd
teCitationOb

il _updateC
nctionality o
the whole se

ented by the

k);

how I could
checked if

cur in the Zo
xecuted when

NoteIndex(), m

w how to out
ing and then
t as a string w

fter I selecte
contain the

as transmitte
itation data i
track this do

Writing

ssing enter).

ditorContent
bject _onP

CitationObjec
of the accept
equence got e
following cod

get the citati
there were

otero.Integrat
n this happen

me.citation);

tput objects.
 output it wi
with indenta

d multiple ci
 full citation

ed. After a lo
s stored into
own I put al

g the Zotero Powe

 This lead to

t
Progress

ect, where
t function an
executed and

ode:

ion string, as
any handle

tion.Citation
ns are the fo

 As log was n
ith alert. I fo

ation [22].

itations in th
n data, I had
ot of searchi

o a variable a
lerts everywh

erPoint software | 2

2

o the followin

the functio
nd added th
d the progres

s I did not se
ers for whe

nEditInterfac
llowing:

not working,
ound that yo

he search box
d a hard tim
ing, I did no

and where it i
here and the

21

21

ng

on
he
ss

ee
en
ce

 I
ou

x.
me
ot
is

en

22

d
ve

m

{

}

_
in
J
ci

fo
ge

to
o

Fi

co
p
th
in

va

2 | Writing the Zot

Even thou
different varia

ersion took a

The citat
me._field.getN

 "citationItem
 {
 "id": "9"
 }
],
 "properties":

This was
_updateCitati
n the correc
avaScript or
itation appea

addCitatio
ormatCitatio
etURIsForIt

I consider
o the citatio
utput shown

igure 4-6

From thi
ontains the c
lainCitation
hat propertie
ndeed contai

ar properties =

ero PowerPoint so

ugh I tried t
ables, I could
and compare

tion variabl
NoteIndex()

ms": [

 {}

also the sam
ionObject wh

ct bibliograp
r within C++
ar in the Wor

on lookup
on _getP
emID

red which va
n style. Insi

n in Figure 4-

the output o

s figure we
citation in th
received its

es, a variable
ined plainCit

= JSON.string

oftware

to generate a
d not find the
ed the values

e before it
, me.citation

me informatio
hen quickFor
hic style. As

+, I searched
rd document

pItems up
rePost fo

ariable I shou
de the getCi
-6.

of the field var

can see tha
he correct sty
value. In the
e in this fun
tation, as see

gify(citation.p

an alert with
e formatted c

s at each step

was sent
n) function ha

on that I rec
rmatPpt was
s I was not
d for the las
t. The sequen

pdateDocume
formatCitatio

uld output in
itationField

riable

at the variab
tyle. The nex
e getCitation

nction, contai
ems reasonab

properties, sav

hin each call
citation. So I

p.

to the me.
ad the value:

ceived when o
s executed. N

sure wheth
st functions
nce of functio

ent updat
on _upd

n order to ch
function I o

ble contained
xt step was tr
nField functio
ined plainCi
ble given the

veProperties);

led function
I started recr

_session.add
:

outputting ci
Next I tried to

er the Word
that were ex

on calls is:

eUpdateIndi
ateDocumen

heck if there
output the fi

d a string ca
racing backw
on this field
tation. When
code below:

;

n and output
reating the st

dCitation(me

citation.citati
o find out ho
d version di

executed befo

ices upda
nt getCit

was a string
ield variable

alled plainC
wards to dete
is constructe
n outputting

t a number o
teps the Wor

e._fieldIndex

ionItems afte
ow to format
id this withi
ore I saw th

teCitations
ationField

g approrpriat
e and saw th

Citation whic
ermine wher
ed. I expecte
g properties

of
rd

x,

er
it
in
he

te
he

ch
re
ed
it

Writing the Zotero PowerPoint software | 23

23

Citation was a variable passed to the getCitationField function, which was called from
_updateDocument. In _updateDocument I found the following code:

field.setText(formattedCitation, isRich);
citation.properties.plainCitation = field.getText();

These are calls to C++ methods in the Word version.

Earlier in the function, formattedCitation gets its value from this._session.citationText[i]. I
continued exploring this path to find exactly where citationText was changed. In the previous
function, which is formatCitation, I saw that the following line of code (which was the code I was
looking for):

var newCitations = this.style.processCitationCluster(citation, citationsPre, citationsPost);

When I outputted the citation variable that is passed to this function I saw the following:

{
 "citationItems": [
 {
 "id": 11
 }
],
 "properties": {
 "added": true,
 "zoteroIndex": 0,
 "noteIndex": 1
 },
 "citationID": "b3xd5eFw"
}

CitationPre and CitationPost were both empty arrays. I needed to find how to initialize this.style
so I could use it. As this code was in Zotero.Integration.Session.prototype.formatCitation, the class
this.style should be declared somewhere in Zotero.Integration.Session. I found it in the function
Zotero.Integration.Session.prototype.setData, as shown in the following code:

var getStyle = Zotero.Styles.get(data.style.styleID);
data.style.hasBibliography = getStyle.hasBibliography;
this.style = getStyle.getCiteProc(data.prefs.automaticJournalAbbreviations);
this.style.setOutputFormat("rtf");
this.styleClass = getStyle.class;

The Rich Text Format (rtf) format is a Microsoft proprietary format. However, many programs
can read and write files in this format.

Outputting the data variable at the beginning of this function showed that data had the value:

{
 "style": {
 "styleID": "http://www.zotero.org/styles/chicago-fullnote-bibliography",
 "hasBibliography": true,
 "bibliographyStyleHasBeenSet": false
 },
 "prefs": {
 "fieldType": "Field",
 "storeReferences": true,
 "automaticJournalAbbreviations": true,
 "noteType": "1"
 },

24 | Writing the Zotero PowerPoint software

 "sessionID": "FSemvaa4",
 "zoteroVersion": "4.0.26.4",
 "dataVersion": "3"
}

Next I searched to find where the data variable was set, as it contained important values to
initialize this.style. I started by looking for the call to the setData function. This function was used in
the _getSession function and data was initialized by the following code:

 data = new Zotero.Integration.DocumentData();.

In this code three values were assigned using the following code:

this.style = {};
this.prefs = {};
this.sessionID = null;
if (string) {
 this.unserialize(string);
}

But these values only get a real value when a string is passed to the DocumentData function. In
this case the unserializeXML function is called which gives the variables their true values. This
string comes from this._doc.getDocumentData(), which is one of the C++ methods linked to the
Word specific document.

To test if I could get the string in the correct citation style with static variables for data and
citation, I copied the output for data and used this to try to make this.style to work by adding the
following code:

var testCitation = {
 "citationItems": [{"id": 11}],
 "properties": {"added": true,
 "zoteroIndex": 0,

"noteIndex": 1},
 "citationID": "b3xd5eFw"
};

var newCitations = me.style.processCitationCluster(testCitation, [], []);

With the above values, the call succeeded in outputting the following:

 [{"bibchange":false,"citation_errors":[]},[[0,"\\uc0\\u8220{}Getting started - Mozilla | MDN\\uc0\\u8221{},
geraadpleegd 26 mei 2015, https://developer.mozilla.org/en-US/Add-ons/SDK/Tutorials/Getting_started."]]]

The string is in correct citation style, but not cleaned up yet. In order to test this, I copied this
output into a text file and gave it the extension “rtf”.

{\rtf1\ansi\deff0
\uc0\u8220{}Getting started - Mozilla | MDN\uc0\u8221{}, geraadpleegd 26 mei 2015,
https://developer.mozilla.org/en-US/Add-ons/SDK/Tutorials/Getting_started.}

As expected this showed the correct citation when opened in Word, \uc0\u8220{ and
\uc0\u8221{ were the codes for the quotes. I replaced these by an escaped quote (\”) in JavaScript.

For the Zotero for PowerPoint version the user should be able to choose his or her preferred
citation style. As the main aim for this project was to add citations and a summary references slide, I
decided not to implement all of the functionality that the Word version had. Adding citations,
choosing citation style, and adding the references slide were the only UI buttons that I focused on.

To see the available citation styles, I output the available style names and ids with the following
code:

Writing the Zotero PowerPoint software | 25

25

var styles = Zotero.Styles.getVisible();
var styleList = {"titles":[], "ids":[]};
 for each(var style in styles) {
 styleList.titles.push(style.title);
 styleList.ids.push(style.styleID);
};
alert(JSON.stringify(styleList, null, 4));

In this way I could easily copy the name and id of these styles into my VBA script. I made a new
form in VBA with just a ListBox for the citation style and a Save/Cancel option for the user to set
their preferred citation style.

Upon loading of the form, I initialize two arrays: an array with the name of each of the styles
and an array with the ids of the styles. The reason to use 2 arrays instead of one 2D array is that the
ListBox was easier to populate this way. It is also easy to request the selectedIndex from the ListBox
and thus this index can be used with the other array to retrieve the id (as I arranged them in the
corresponding order).

Saving the preferences proved to be an easy task. To save and retrieve the style preferences in
the registry, the following methods were used [23]:

SaveSetting "ZoteroPowerPoint", "PPTPreferences", "CitationStyle", styleIDs(ListBoxCitationStyles.ListIndex)
GetCitationStyle = GetSetting("ZoteroPowerPoint", "PPTPreferences", "CitationStyle",
"http://www.zotero.org/styles/chicago-fullnote-bibliography")

As a default I chose the “Chicago Full Note” style. I added the citation style as an argument to be
sent from the VBA script to JavaScript as follows:

args$ = "-silent -ZoteroPowerPoint WinPowerPoint -ZoteroCitationStyle " & citationStyle

In order to be able to process this in zotero-service.js, I had to extract the citation style from the
command line before it is sent to the pptCommand function using the following code:

var citationStyle = cmdLine.handleFlagWithParam("ZoteroCitationStyle", false);

In JavaScript the citationStyle variable is used when the pptData is initialized. In this
initialization the styleID is set to the value of citationStyle. This enables users to use different
citation styles. When testing, the “IEEE” and “Vancouver” style output a citation as (respectively):
[1] and (1), but would not increment the number when adding additional citations. The “Cell” style
gave an error ([CSL STYLE ERROR: reference with no printed form.]). The “Nature” style gave
\super 1\nosupersub{} and “Modern Humanities Research Association 3rd edition” had some rtf
codes in it. Therefore, I decided to return to these issues in the future.

The next major task was to send the citation string back to PowerPoint. I considered the
following methods:

• Use the sendMessage Windows API function to send the data back to the VBA script or
• Write the JavaScript string to a text file and poll for the file in VBA.

The first method was not well documented and I could not find how to communicate with the
VBA script when using this method. The second method might be less elegant one, but was selected
due to the lack of a better solution.

First I needed to learn how to create a temporary file file [24] and then I wrote the citation to
this file. Next I inserted a polling loop into the VBA to read the citation(s) from the temporary text
file. To do so, I found a promising method in an Excel tutorial that used Application.OnTime.
However, it seemed that this method was not defined for PowerPoint, thus I needed to find another
method. I found that a timer that could be started, stopped, and hence I could execute code after a

26 | Writing the Zotero PowerPoint software

chosen amount of time. In the FileThere sub I used this timer to check every second if the temporary
file exists or not, the timer starts from the moment the user clicked on the add citation button. This
is done in a sub called PollForDocument [25].

Once the temporary file had been found, I stopped the timer. Now the citation had to be read.
To do this I used the insight gained by reading [26] to add the following VBA code:

Open myFile For Input As #1
Dim text As String
While EOF(1) = False

Line Input #1, textline
text = text & textline

Wend
Close #1
Kill myFile

To prevent the file from being read multiple times, I added a Boolean variable: available.
Whenever the code where the text file was being read was entered, the variable available becomes
false. These his code is no longer executed until the variable becomes true again. Whenever a new
command is executed, the timer is stopped and the variable available is again set to true. When the
citation has been read, I delete the temp file and call the addCitation(text) sub. At first I worked
with an absolute path to the temp file, but had to change this so that it would work on other
computers as well. It turned out that this could easily be done by just calling Environ("Temp"),
which returns a string with the path to the temp folder [27]. This is done as follows:

myFile = Environ("Temp") & "\zoteroCitation.tmp"

To format the citations properly, the straight quote symbols had to be replaced with the left and
right quotes. So I took a step back and removed the cleaning up from JavaScript and moved it to
VBA. In the VBA code I replaced the string ANSI_X3.4-1968 with the proper symbols using the
American Standard Code for Information Interchange (ASCII , also known as US-ASCII and
standardized in) code for each symbol, as follows [28]:

citation = Replace(citation, "\uc0\u8220{}", Chr(147))
citation = Replace(citation, "\uc0\u8221{}", Chr(148))

At first, when adding a citation, I added a textbox that I called citationTextBox to the currently
active slide and added the citation text there using the following code:

Set pptSlide = ActivePresentation.Slides(ActiveWindow.View.Slide.SlideIndex)
pptSlide.Shapes.AddTextbox(msoTextOrientationHorizontal, (pptLayout.Width * 0.125), (pptLayout.Height -
100), 30, 50).name = “referenceBox”
 pptSlide.Shapes(“referenceBox”).Tags.Add "Text", citationText

Next I wanted to make the sortable styles work. Up until now I simply got a string back with the
number (e.g. [1]). Now I needed to get the citation as well. I found the string I was looking for in the
bib variable in the getBibliography function in integration.js. However, the item’s in style had to be
updated first [29]. This was done by:

var my_ids = [testCitation.citationItems[0].id];
me.style.updateItems(my_ids, true);
var bib = me.style.makeBibliography();

For the summary of references slide(s), I simply looped over all the slides looking for shapes
with the name “referenceBox” and added the text from these to one long string with newlines
between the citations. After generating a new slide at the end of the presentation [30], I simply
insert the text from the long string into the slide, as follows:

Set pptSlide = ActivePresentation.Slides.AddSlide((ActivePresentation.Slides.Count + 1), pptLayout)
slideName = "References" & slideCountRef
pptSlide.name = slideName

Writing the Zotero PowerPoint software | 27

27

pptSlide.Shapes.Title.TextFrame.TextRange.text = "References"

Up to this point everything was working with a hardcoded test citation. Next I went back to the
integration.js file and realized that I only had to change the id of the citationItems to the correct id
and then the style.processCitationCluster function would return the correct citation. The other
properties were used for the Word version, but for PowerPoint their value did not really matter.
With this change, I could now add all the saved citations as follows:

testCitation.citationItems[0].id = me.citation.citationItems[i].id;

Up until now it was only possible to add a single citation to the slide, but I wanted to be able to
add multiple citations in different textboxes to a single slide. To avoid name conflicts, but still be
able to loop through the citation boxes for the final reference slide, I gave each of the textboxes the
name “citation” & index. However, I had a problem of knowing the correct index. To learn this I had
to loop over every shape on the slide, to see if the name contained the string “citation” and get the
highest number that follows “citation” from these instances when I want to add a new citation.
Another problem was that if any citation is deleted or rearranged, then the indices would be messed
up. This would be a problem for sortable styles (e.g. IEEE).

To solve both the highest index problem and the problem with ‘holes’ or incorrect order in the
citation numbering, I added an updateIndices function that returns a Long (integer) value. This
function has a value “i” and loops over every slide and every shape within this slide. If the name of
the shape contains the string “citation” (which would be one of the citation textboxes we added), the
name of the shape is updated to “citation” followed by the number “i” and then “i” is incremented. I
also added the index of the citation to a tag of the textbox as follows:

pptSlide.Shapes(textBoxName).Tags.Add "CitationID", index

I thought that this would give the correct names and order, but it did not. When looping over all
of the shapes within a slide, VBA did not go through the shapes in the order they were visible in (as I
assumed that they were kept in top to bottom and left to right order). The shapes which were added
the earliest, were the first ones found, no matter where the shape was placed on the slide.

As I needed to order the citations in order of their position in normal reading order, I had to
rethink my strategy. Instead of immediately renaming all the shapes, I added all their names to a
string called citationCollection as follows:

For Each shp In sld.Shapes
If (InStr(shp.name, "citation") <> 0) Then
 If (i = 1) Then
 citationCollection = shp.name
 Else
 citationCollection = citationCollection & "," & shp.name
 End If

 i = i + 1
End If

Next shp

Once I got all the shape names, I split the string up to create an array. This array allowed me to
use a bubble sorting algorithm, which sorted the citations based upon the distance from the top of
the slide and distance from the left side of the slide. Once the array was sorted, I looped over every
value and changed the value of the CitationID tag to the index in this array.

Now that all of the citations have received their correct CitationID, I call a sub named
UpdateTextBoxes. UpdateTextBoxes loops over every shape in the presentation and updates the
name of the textbox to “citation” + CitationID using the following code:

shp.name = "citation" & shp.Tags("CitationID")

28 | Writing the Zotero PowerPoint software

For the sortable styles with numbers, I had to change the text of the textbox as well, so that the
correct number would be displayed. This is done with the following code:

If (shp.Tags("Sortable") = "True") Then
If (shp.Tags("Style") = "http://www.zotero.org/styles/ieee") Then
 shp.TextFrame.TextRange = "[" & shp.Tags("CitationID") & "] "
ElseIf shp.Tags("Style") = "http://www.zotero.org/styles/vancouver" Then
 shp.TextFrame.TextRange = shp.Tags("CitationID") & ". "
End If

 End If

In this way all citations were renamed in the proper order and at the end of the function I return
the “i” value, which is the value of the next citation index (as it was incremented one last time after
the last citation was renamed). I call this function before adding a new citation box and use the
value it returns as the number that should follow the string “citation” in the name of this new
textbox, its CitationID tag, and formatted the text of the textbox in the correct bibliographical style.
This way all citations have the proper order and there were no name conflicts. To allow the user to
update indices when the user has deleted or rearranged citations (as there were no events for this), I
added an Update Indices button to the Add-in which simply calls the UpdateIndices function.

Because the function to generate the references slides no longer worked with the new textbox
names, I had to make some adjustments. In the beginning of the function I counted the number of
citations in the presentation so I could generate an array of the correct length in order to hold all the
citations. Next I looped over all the shapes in the presentation and if “citation” was in the name of
the shape, I added this name to the array.

To get the references in the right order, I had to bubble sort this array based upon the
CitationID. At first the sorting of the references was incorrect for some reason. I found out that I
compared the CitationID, but that this was returned as a string instead of an int, which lead to
incorrect sorting for numbers with more than one digit. Therefore I cast these strings to integers
before comparing them. Once the sorting is completed, I used the names of the references in this
sorted array to build a string of the formatted references and used #cit# as a delimiter. This is done
as follows:

For l = 0 To (citationCount - 1)
If (sld.Shapes(citationArray(l)).Tags("Sortable") = "True") Then
 citationString = citationString & "#cit#" & sld.Shapes(citationArray(l)).TextFrame.TextRange.text &

sld.Shapes(citationArray(l)).Tags("Text")
Else
 citationString = citationString & "#cit#" & sld.Shapes(citationArray(l)).TextFrame.TextRange.text
End If

Next

Once I created this new string, I split it up again to create an array that now contains the
formatted references in the correct order. As a result, I can just loop through these and add them to
the new slide, but if there were a lot of references, the resulting text would not fit on one slide. For
this reason I had to find a way to determine how many references I should add on each slide. To do
this I calculated how much space one line would take, by adding font size and spacing before and
after it. I divided the height of the shape that would be needed to contain these references by the
previously calculated space, to get the number of lines I could add to as slide. This is implemented
as follows:

referenceLength = fontSize + pptSlide.Shapes(2).TextFrame.TextRange.ParagraphFormat.SpaceAfter +
pptSlide.Shapes(2).TextFrame.TextRange.ParagraphFormat.SpaceBefore
itemsPerSlide = pptSlide.Shapes(2).Height / referenceLength

Writing the Zotero PowerPoint software | 29

29

I looped over all the citations in the array with the formatted citations and added references to
the slide until the number of (itemsPerSlide – 1) was reached. The minus one leaves a bit of space
for very long references. If the slide reached this point and there were still references left, a new
reference slide is added and the same process of adding references to the slide was repeated until
there were no references left.

To update the reference slides, I added some functionality in the beginning of this
ZoteroAddReferencesSlide function. First I counted the number of reference slides present in the
presentation. With a loop I deleted all the references slides. This way all references slides get cleared
up and the new version can be added. The resulting code is:

For counter = 1 To slideCountRef
ActivePresentation.Slides("References" & counter).Delete

Next

Some of the styles still did not work, as mentioned earlier in this report. The Citation style “3d
edition of Modern Humanities Research Association” gave as reference:

\uc0\u8216{}Zotero | Start\uc0\u8217{} <https://www.zotero.org/start> [accessed 25 May 2015]

When putting these codes into an rtf document, I saw that these were single quotes. Just as with
the double quotes, I replaced them with their ASCII character value. For the “Cell” style I found out
that this needed to be treated as one of the sortable styles as well, otherwise the following error
showed up: [CSL STYLE ERROR: reference with no printed form.]. To treat it as a sortable style I
added the id of the style to the styles that need to use the bib variable for their citation in the
integration.js file. This was the same case for the “Nature” style.

One problem I noticed while testing was that the “Nature”, “IEEE”, and “Vancouver” styles gave
extra newlines when adding them to the references slide. I solved this by adding some code to the
integration.js file that removed all newlines from the citation text, as follows:

citationText = citationText.replace(/\n/gm, “”);

The only thing left was to give the citation a more flexible layout. This is why I added an option
to choose the text size for the citations in the preferences form. After doing this I also automatically
make the textbox size adjust to the size of the text with the following code:

pptSlide.Shapes(textBoxName).TextFrame.TextRange.Font.Size = Val(GetFontSize)
pptSlide.Shapes(textBoxName).TextFrame.AutoSize = ppAutoSizeShapeToFitText
pptSlide.Shapes(textBoxName).TextFrame.WordWrap = msoFalse

To make the PowerPoint template installable, I could save it as a ppam or ppa file, wither of
which is a PowerPoint Add-in file [31], with the first being a file with macro-enabled add-ins.

4.3 Installing Zotero PowerPoint

If you wish to install the Zotero PowerPoint extension, the following steps are required:

1. Download the software from GitHub: https://github.com/lejruben/zotero-powerpoint

2. Navigate to the “zotero-powerpoint-master\zotero-powerpoint-master\fully functional
zotero version” folder and copy the zotero@chnm.gmu.eduf folder to whichever folder you
want. Copy the path to this folder, as we’ll need it in step 4.

3. Go to the extensions folder by executing Run %APPDATA% Mozilla folder Firefox
Folder Profiles folder {some id}.default folder extensions folder and create a text
file here with the name “zotero@chnm.gmu.eduf”

4. Open this text file and paste the path to the zotero@chnm.gmu.eduf folder (e.g. C:\Program
Files (x86)\zotero@chnm.gmu.eduf\), do not forget to end the path with a backslash.

30 | Writing the Zotero PowerPoint software

5. Restart Firefox and accept the installation

6. Install the PowerPoint Add-in: Go to File Options Add-ins

At the bottom at Manage, select PowerPoint Add-ins and press go. Click Add New… and
navigate to the zotero-powerpoint-master\zotero-powerpoint-master\Zotero.ppam file.
Press OKand agree to enabling macros. Close the dialog box and the add-in will have been
installed. From now on all the functionality should be available in the Add-ins tab.

Note that the above operations will install the whole Zotero extension together with the added
code for Zotero PowerPoint. If you already have the Zotero extension installed, this might lead to a
conflict, hence you might need to remove it before adding the new extension.

Conclusions and Future work | 31

5 Conclusions and Future work

In this chapter I offer my conclusions from this project. Section 5.1 addresses whether the goals
were reached or not and what I could have done differently. Section 5.2 discusses the limitations
which prevented me from making the project even better. Finally, Section 5.3 suggests some work
that could be done in the future.

5.1 Conclusions

The goals of creating an extension that could add citations from Zotero and creating the reference
slides, were met. I am quite happy with the final result. It was a good experience as I learned a lot
about new technologies and am better prepared to handle large pieces of software.

If I had to do the project over again, I would not have started off by copying and modifying the
code file by file. Instead I would first make a basic version of the desired application to see that I
could make the technologies work together. In this way I could have noticed earlier that modifying
the Zotero Word integration was not going to work out and I would not have spent so much time
creating extensions or have faced all the C++/XPCOM problems (However, I did learn from this
effort). I published the source code on GitHub and made a video about the project to encourage
other developers to help improve this software.

GitHub: https://github.com/lejruben/zotero-powerpoint

Video: https://www.youtube.com/watch?v=SP02B2gAG50

5.2 Limitations

To make this software safe, reliable, and distributable, more developers would need to be involved.
As I was not a specialist in the technologies used, the implementations are sometimes rough and
could be improved. I tried a couple of times to get help and feedback from other Zotero developers,
but had limited success.

5.3 Future work

The following steps would be needed for the Zotero developers to review my code and see whether it
is safe and efficient enough to integrate into their software. Although I tried to get some interest in
this code, I did not get much of a response. Some of the follow could be improved:

• Passing the citation between JavaScript and VBA could probably be implemented more
elegantly than by writing to a temporary file and polling for this file.

• The classical view of the search query has been left out of this software. For a more
complete version, this should be implemented.

• The editing of the citation within the search box was not implemented.
• There might be a more elegant solution than hardcoding the citation styles into VBA and

JavaScript, thus new citation styles could be added.

If someone continues working on this project, he/she should read this report with the full code
next to it. The report might be hard to understand without the code. I would also recommend first
going over the code and look at better ways of implementing the operation, before expanding the
functionality of the code. Be sure to check the Zotero Word integration extension as well, as the
functionality you may want to implement, might already exist.

Finally, I can be reached at the address ruben.lejeune@gmail.com if there are any questions.

References | 33

References

[1] Bailey / Howe Library, ‘Why Citations Matter.’ The University of Vermont Libraries
[Online]. Available: https://library.uvm.edu/guides/citation/why.php. [Accessed: 13-
Aug-2015]

[2] ‘zotero/zotero-word-for-windows-integration’, GitHub. [Online]. Available:
https://github.com/zotero/zotero-word-for-windows-integration. [Accessed: 13-Aug-
2015]

[3] ‘Extension Packaging’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Add-ons/Extension_Packaging.
[Accessed: 14-Aug-2015]

[4] ‘Building an extension | MDN.’ [Online]. Available:
https://developer.mozilla.org/en-US/docs/Building_an_Extension#XUL_Overlays.
[Accessed: 15-Aug-2015]

[5] ‘The Essentials of an Extension’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/Overlay_Extensions/XUL_School/The_Essentials_of_an_Extension. [Accessed:
15-Aug-2015]

[6] ‘Classic VB/API - How can I find a window outside of my program?-VBForums.’ 23
August 2005 [Online]. Available:
http://www.vbforums.com/showthread.php?356751-Classic-VB-API-How-can-I-
find-a-window-outside-of-my-program. [Accessed: 20-May-2015]

[7] ‘The SendMessage function.’ 5 May 2011 [Online]. Available:
http://vb.mvps.org/hardcore/html/thesendmessagefunction.htm. [Accessed: 20-
May-2015]

[8] ‘WideCharToMultiByte Visual Basic 6 API Function.’ [Online]. Available:
http://www.ex-designz.net/apidetail.asp?api_id=561. [Accessed: 20-May-2015]

[9] ‘word_processor_plugin_usage [Zotero Documentation].’ [Online]. Available:
https://www.zotero.org/support/word_processor_plugin_usage. [Accessed: 14-Aug-
2015]

[10] ‘XPCOM Interfaces - Mozilla | MDN.’ [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Mozilla/Tech/XUL/Tutorial/XPCOM_Interfaces. [Accessed: 27-Aug-2015]

[11] ‘Components.interfaces’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Mozilla/Tech/XPCOM/Language_Bindings/Components.interfaces.
[Accessed: 17-Aug-2015]

[12] ‘What is IDL? - Stack Overflow.’ [Online]. Available:
http://stackoverflow.com/questions/670630/what-is-idl. [Accessed: 15-Aug-2015]

[13] ‘xpcom - Open / Read or Decompile .xpt to idl - Stack Overflow.’ [Online]. Available:
http://stackoverflow.com/questions/9410856/open-read-or-decompile-xpt-to-idl.
[Accessed: 15-Aug-2015]

[14] ‘An Overview of XPCOM’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-
US/docs/Mozilla/Tech/XPCOM/Guide/Creating_components/An_Overview_of_XP
COM. [Accessed: 16-Aug-2015]

[15] ‘XPCOM guide’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Tech/XPCOM/Guide. [Accessed:
16-Aug-2015]

[16] ‘Change the Ribbon in Excel 2007 - 2013.’ [Online]. Available:
http://www.rondebruin.nl/win/s2/win001.htm. [Accessed: 16-Aug-2015]

34 | References

[17] ‘Ribbon Images & Labels Part II.’ [Online]. Available:
http://gregmaxey.mvps.org/word_tip_pages/ribbon_images_labels_part_II.html.
[Accessed: 16-Aug-2015]

[18] ‘In PowerPoint VBA, how do I refer to the ACTIVE slide?’ [Online]. Available:
http://answers.microsoft.com/en-us/office/forum/office_2007-powerpoint/in-
powerpoint-vba-how-do-i-refer-to-the-active/5b4a7daf-9309-4159-b648-
586d75895f85?auth=1. [Accessed: 16-Aug-2015]

[19] ‘Getting started - Mozilla | MDN.’ [Online]. Available:
https://developer.mozilla.org/en-US/Add-ons/SDK/Tutorials/Getting_started.
[Accessed: 26-May-2015]

[20] ‘Firefox Extension Template.’ [Online]. Available: http://davidwalsh.name/firefox-
extension-template. [Accessed: 16-Aug-2015]

[21] ‘Jonas’ weblog – Setting up the Gecko SDK with Visual Studio 2010.’ [Online].
Available: http://blog.peschla.net/2011/11/setup-gecko-sdk-with-vs2010/.
[Accessed: 17-Aug-2015]

[22] ‘How can I display a JavaScript object? - Stack Overflow.’ [Online]. Available:
http://stackoverflow.com/questions/957537/how-can-i-display-a-javascript-object.
[Accessed: 20-Aug-2015]

[23] ‘Save User Inputs as Default Settings - EnvisionCAD | MicroStation, InRoads,
AutoCAD and Civil 3D Services.’ [Online]. Available:
http://envisioncad.com/tips/save-user-inputs-as-default-settings/. [Accessed: 20-
Aug-2015]

[24] ‘File I/O’, Mozilla Developer Network. [Online]. Available:
https://developer.mozilla.org/en-US/docs/Mozilla/Add-
ons/Code_snippets/File_I_O. [Accessed: 20-Aug-2015]

[25] ‘Powerpoint run macro on timer.’ [Online]. Available:
https://social.msdn.microsoft.com/Forums/en-US/9f6891f2-d0c4-47a6-b63f-
48405aae4022/powerpoint-run-macro-on-timer?forum=isvvba. [Accessed: 20-Aug-
2015]

[26] ‘Read Data from Text File using Excel VBA - Easy Excel Macros.’ [Online]. Available:
http://www.excel-easy.com/vba/examples/read-data-from-text-file.html. [Accessed:
20-Aug-2015]

[27] ‘SpecialFolders and Windows Temp folder.’ [Online]. Available:
http://www.rondebruin.nl/win/s3/win027.htm. [Accessed: 20-Aug-2015]

[28] ‘How to use VBA Replace function to replace double quotes in a string?’ [Online].
Available: http://forums.esri.com/Thread.asp?c=93&f=992&t=92684. [Accessed: 21-
Aug-2015]

[29] ‘The citeproc-js Citation Processor.’ [Online]. Available: http://gsl-nagoya-
u.net/http/pub/citeproc-doc.html#generating-bibliographies. [Accessed: 21-Aug-
2015]

[30] ‘Slides.AddSlide Method (PowerPoint).’ [Online]. Available:
https://msdn.microsoft.com/en-us/library/office/ff746586.aspx. [Accessed: 21-Aug-
2015]

[31] ‘Add or remove add-ins.’ [Online]. Available: https://support.office.com/en-
gb/article/Add-or-remove-add-ins-64d3d147-98fb-4b82-8833-709d54e3ace1.
[Accessed: 21-Aug-2015]

35

TRITA-ICT 2015:10

www.kth.se

