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Abstract 

Network data rates are growing rapidly. The data rates provided to the customers by their network 
providers vary from Mbps to Gbps. However, rarely do users get the promised peak throughput. 

In cellular networks, network conditions change based on obstacles, weather conditions 
between the client and the base stations, and even the movement of objects and people. As a result 
of the changes in the radio link, the data transfer rate can change rapidly, hence devices needs to 
adjust their communications based on the currently available data rate. 

The Transmission Control Protocol (TCP) is widely used for reliable data transfer over 
networks. However, TCP was initially designed when link data rates were much lower than the link 
data rates commonly available today. As a result, TCP does not perform well at high data rates, 
despite some of the changes that have been made to the protocol to support high data rate links. 
Moreover, TCP has problems adapting to large changes in link bandwidth (not caused by 
congestion), resulting in a lower average throughput than the link could potentially deliver. 

This thesis evaluates two different versions of the TCP protocol (e.g., TCP Reno and Cubic TCP) 
and proposes a network coding scheme to enhance users’ experience when communicating over 
unstable radio links. The performance of the two TCP protocols and Random Linear Network 
Coding (RLNC) scheme were measured in an emulated network environment. The results of these 
measurements were analyzed and evaluated. The analysis shows that RLNC can provide a higher 
throughput than TCP over a network with high packet loss. However, RLNC is a UDP based solution 
and does not implement congestion control algorithms or reliability. A new solution is proposed 
that increases reliability and implements network adaptation in RLNC solutions. 

The results obtained in this thesis can be used to develop a new protocol to increases the quality 
of users’ experience in high loss networks. 
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Sammanfattning 

Datahastigheter över nätverk ökar drastiskt. Datahastigheterna som ges tillgängliga till användare 
av deras respektive dataleverantör kan variera från Mbit/s till Gbit/s. Det är dock inte ofta 
användare får ut vad som har lovats.  

I mobila nätverk kan nätverkets tillstånd ändras baserat på hinder, väderleksförhållanden 
mellan en klient och basstationerna, till och med beroende på förflyttning av objekt eller människor. 
På grund av detta så behöver användares utrustning anpassa dess kommunikation, baserat på den 
för närvarande tillgängliga datahastigheten. 

Transmission Control Protocol (TCP) används i stor utsträckning vid behovet av tillförlitlig 
dataöverföring över nätverk. Däremot så designades TCP när länkdatahastigheterna var mycket 
lägre än vad som är vanligen tillgängligt idag. På grund av detta så presterar inte TCP över höga 
datahastigheter, trots ändringar som har gjorts i protokollet för att stödja höghastighets datalänkar.  

Utöver det så har TCP svårt att anpassa sig efter stora ändringar i länkens bandbredd (som inte 
är orsakat av stockning), som resulterar i en mindre genomsnitts-dataström än vad länken 
potentiellt hade kunnat ge. 

Detta examensarbete utvärderar två olika versioner av TCP (e.g., TCP Reno och Cubic TCP) och 
föreslår ett sätt att använda network coding för att öka användares upplevelse vid dataöverföring 
över instabila radio länkar. Prestationerna av de två TCP versionerna och Random Linear Network 
Coding (RLNC) metoden har blivit mätt i en emulerad nätverksmiljö. Resultaten från dessa 
mätningar blev analyserade och utvärderade. Analysen visar att RLNC kan ge en högre dataström 
än TCP över ett nätverk med hög risk för paketförluster. Däremot så är RLNC en User Datagram 
Protocol (UDP) baserad lösning, och därav inte implementerar trängselkontrolls-algoritmer eller 
tillförlitlighet. Ett förslag till en ny lösning som ökar tillförlitlighet och implementerar 
nätverksanpassning till RLNC lösningar har presenterats. 

Resultaten från detta examensarbete kan användas till att utveckla nya protokoll för att öka 
kvalitén av användares upplevelse i nätverk med risk för hög paketförlust. 

Nyckelord 

TCP, mobila nätverk, dataströmmar, bandbredd, Network Coding, UDP, Emulerade nätverk, latens, 
länk datahastighet 
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1 Introduction 

This chapter contains an introduction to the subject. It provides the reader with a general 
background of Transmission Control Protocol (TCP) and network coding. The problem that this 
thesis addresses will be defined and explained. Following this the purpose, goals, and methodology 
of the research are presented. Finally, the structure of the thesis is outlined. 

 Background 1.1

In 1981, TCP was defined in RFC 793 [1]. TCP is part of the foundation of the internet protocol suite, 
commonly known as TCP/IP. TCP remains the most widely used protocol for reliable transfer when 
sending a sequence of bytes between applications over a network. However, other protocols, such as 
the Stream Control Transmission Protocol (SCTP), have proven to be a potential competitor [2]. 

A lot has changed in networking technology since 1981. According to Nielsen’s law of internet 
bandwidth “a high-end user’s connection speed grows by 50% a year”[3]. Nielsen’s law claims that 
in 1984, the throughput of a high-end user over a network link was only about 300 bps and in 2013 
this had increased to about 100 Mbps. Users living in capital cities with fiber in their buildings could 
reach even higher throughputs of 1 Gbps. However, these rates were for wired networks. Wireless 
networks offer much lower data rates. The download data rate of my cellphone using my operator’s 
Long Term Evolution (LTE) network averages 40 Mbps in 2015. 

According to Ericsson’s white paper “5G Radio Access” [4], in 2020 the first 5G networks will be 
deployed and these networks need to be able to support a traffic volume of 1000 times that of today, 
and peak data rates around 10 Gbps. Ericsson states that their 5G solution will not consist of a single 
technology, but rather will be an integrated combination of several radio-access technologies. 
Ericsson thinks that mobile-broadband technologies such as High Speed Packet Access (HSPA) and 
LTE will continue to be improved and will serve as a foundation for 5G. Although the network will 
support traffic of 1000 times of today, a typical user will still suffer from random packet loss errors 
and throughputs below the peak data rates. The latter is partly due to TCP and its weaknesses. 

TCP was not specifically developed for wireless networks and struggles to adapt to rapid 
changes in the link’s characteristics. The characteristics of a wireless link can change for several 
reasons. A large change in link throughput can occur due to a handover between different access 
network points, obstacles between the client and the access point, current weather conditions, and 
movement of objects and people. There are two different scenarios that can occur when the 
throughput of a link changes: 

1. The first occurs when the link data rate changes from low to high. The sender will not notice 
that the available maximum throughput has changed and hence will not take advantage of 
this increased link data rate. This can happen when a user drives through a hotspot where 
the maximum link data rate is significantly higher than the macrocell via which the terminal 
was previously communicating. 

2. The other occurs when the link changes from high data rate to low data rate. In this case the 
sender will attempt to send more data per unit time than the link can handle in its current 
state and not all of the packets can be successfully transmitted over the link, hence packets 
either will be buffered by the device or they will be lost. For example, this can occur when a 
user drives into a tunnel. 

The link characteristics and competition for the link’s capacity means that user equipment (UE) 
will, on many occasions, never achieve the maximum possible throughput of a given data link. The 
average throughput will be a much lower then what it could have been if a more adaptable protocol 
had been used. 
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T. Flach, et al. [5] examined the efficiency of TCP’s loss recovery by examining traffic from 
Google’s web services, excluding video traffic. They found that the time it took to deliver a file 
increased by a factor of 5 when there were packet losses in comparison to the file delivery time when 
there were no packet losses. The file delivery time was defined as the time from when the first byte 
was sent to when the last acknowledgement (ACK) was received. They also found that 77% of losses 
were recovered based upon TCP’s timeout and not due to TCP’s fast recovery algorithm. As TCP 
timeouts only happen after an idle period of time (to be explained farther in Section 2.1.2), the 
throughput of TCP decreases. As this packet loss was not caused by congestion, the decrease in 
throughput was unnecessary. For this and other reasons there is clearly a need to improve TCP’s 
handling of losses. 

The loss of a TCP segment due to causes other than congestion occurs frequently in wireless 
environments, due to the rapid changes in the link characteristics. Unfortunately, TCP handles each 
loss as if it were due to congestion. The usual reason stated for this is that the TCP nodes have no 
way of determining whether a segment was dropped due to a disturbance on a link or whether the 
segment was dropped because of congestion by a node in the network. 

Network coding has been around since the year 2000. The basic idea is that bits in the 
information flow do not have to be delivered independently. Instead these bits can be mixed with 
other information flows, as long as the receiving host(s) has enough “evidence” or “clues” to sort out 
the original information [6]. There has been a lot of research in this area and network coding has 
proven to be a means to maximize information flow, especially in multicast networks. 

 Problem definition 1.2

An underlying assumption of TCP’s congestion control algorithms is that the risk of packet loss 
caused by damage is very small. On wired networks the probability of a bit error for simple twisted 
pair wires is ~10-5. Today, for fiber the probability of a bit error is generally under 10-15 (after 
decoding) [7].This assumption and the major concern of avoiding network congestion collapse [8] 
lead to TCP treating every packet loss as if it were caused by congestion in the network. 

Unfortunately, the risk of packet loss caused by damage or disturbances in wireless 
environments is greater than the risk in wired environments. As noted earlier a disturbance can 
occur for many reasons. Many of these disturbances lead to a loss of packets for a period of time 
proportional to the velocity of the objects that are changing the radio propagation environment. 
However, a change in the link’s characteristics does not necessary mean that the link’s data rate 
changes, as it may be possible to overcome the impairments by increasing transmit power or by 
some other means. A disturbance caused by a handover between access points could cause the link 
data rate to change greatly, both due to the difference in available resources in the two different cells 
and because there might be a period of time during the handover when no frames are being 
transmitted. The transmission protocol needs to be able to recognize the difference between the 
different causes of losses and respond to these different causes in a more effective way than simply 
assuming that all errors are due to congestion or random bit errors. 

Logically TCP keeps a timer for each segment in order to identify that a segment was lost. If an 
acknowledgement for the segment is not received from the receiver within a specific amount of time, 
a timeout occurs. If the connection is in the slow start phase, then the timeout triggers the 
congestion avoidance phase. If the timeout is triggered during the congestion avoidance phase, then 
the slow start algorithm starts over again. In both cases the algorithm threats the timeout as an 
indication of network congestion. Additionally, as described in K. Mansley’s article “Tweaking TCP’s 
Timers” [9], TCP implementations do not actually keep a timer per segment, but rather most 
implementation share a periodic timer. The purpose of using the different algorithms that have been 



Introduction | 3 

 
 

used in the different TCP implementations is for TCP to adapt to the data link’s actual throughput in 
order to achieve as high a throughput as possible without causing network congesting. 

 Purpose 1.3

The aim of this thesis project is to propose a solution that will improve the performance of 
transmissions over wireless links, when there are potentially high error rates. Based upon my 
research and evaluation, I expect to increase my knowledge of both the TCP protocol and network 
coding. I also expect to learn how to apply my previously acquired knowledge of networking in 
practical environments. 

The results of this research will guide other researchers and facilitate the future development of 
a reliable transport protocol for 5G networks. 

Ericsson expects to benefit from the results of this thesis. Researchers at the company have been 
present during the research and they will directly gain information about the problems, proposed 
solutions, and research methodology used during this thesis project. A 10Gbit/s throughput 
emulation network is used to create a testbed for use in this thesis project. This testbed will be used 
within the company for further research. 

The public will also benefit from this research, as it might lead to a solution that could increase 
a network user’s effective link data rates in the future. Ericsson predicts “beyond 2020, wireless 
communication systems will support more than 1,000 times today’s traffic volume” [4]. If this prediction is 
true, then congestion will probably decrease and more bandwidth should be available for users. If 
users can effectively utilize this greater bandwidth, then they will be more satisfied in terms of being 
able to download (or upload) files faster than they can do so today. 

 Goals 1.4

The goal of this project is to evaluate the performance of TCP and an implementation of network 
coding over a link with a high packet loss rate. The two different methods will be compared by 
measuring their performance in an emulated network environment. Finally, an improvement is to 
be proposed to increase user satisfaction (with regard to increased user data rates) in future wireless 
networks. 

This goal has been divided into the following sub-goals: 

1. Understand the TCP protocol and the effects of random error based packet losses. 
2. Evaluate the effects of using Random Linear Network Coding (RLNC) from the Kodo library 

(these topics will be described in Sections 2.2.2 and 2.2.2.2, respectively). 
3. Compare the results of using RLNC to the performance of TCP. 
4. Draw conclusions based on these results in order to suggest how to increase the performance 

experienced by users communicating over high data rate but high packet loss rate wireless links. 

 Research Methodology 1.5

The research methodology used is to emulate a real network and to use implementations of 
protocols that are currently used by the public in realistic scenarios. The reason why this 
methodology was chosen opposed over simulation is that emulation will also expose problems that 
might exist in hardware implementations when implementing networks with this magnitude of data 
and error rates. This is of great importance in this thesis as network coding consumes 
computational resources at several nodes, which might be obscured in simulated environments. 
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Measuring how much load this computation will place on the network nodes in order to reach a 
throughput of 10 Gbit/s can be explored by using an emulation environment. 

 Structure of the thesis 1.6

Chapter 1 presents a general introduction to the subject. This includes a short background, a 
definition of the problem, the purpose of the report, the aims and goals of the research, and a brief 
description of the research methodology. 

Chapter 2 presents information and background about the TCP protocol in general, basic ideas 
behind network coding, and the Random Linear Network Coding Scheme. It also refers to other 
research that has been done to improve throughput either by improving TCP or by applying network 
coding schemes. 

Chapter 3 presents the methodology used in this thesis project. 

Chapter 4 presents the experimental testbed created for the project. The design, the tools that 
were used, and the limitations I faced are presented and discussed. 

Chapter 5 describes the development of a system for transferring data using network coding. 
The different applications are described, as well as a TCP controller thread that was implemented to 
improve the system. Finally, potential improvements to the applications are presented, along with a 
summary of the system’s design. 

Chapter 6 presents the results and the analysis conducted in this project. Baseline results 
suggest how users might experience the throughputs of today are discussed. The performances of 
the different methods that have been evaluated are compared. Finally, the chapter ends with a 
discussion of the results. 

Chapter 7 presents conclusions drawn from the analysis, as well as suggests future work to be 
done following this project. The chapter also discusses the limitations that affected the project and 
some reflections on how this research affects society. 
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2 Background 

This chapter provides the reader with background information about TCP and network coding. The 
information provided will be sufficient to understand how TCP operates and the basic ideas behind 
network coding. The RLNC scheme used in this thesis project is explained in detail. The chapter also 
describes related work that has been carried out to improve throughputs by improving TCP, as well 
as applying network coding schemes. 

 Transmission Control Protocol 2.1

TCP is the most widely used protocol for reliable data transfer. Two peers using the protocol begin 
by setting up a connection between two TCP ports, one peer acting as a sender and the other as a 
receiver. These ports can be located on a single host or on two different hosts on the network. 
Logically, for each segment (a sequence of bytes) sent from the sender to the receiver, an 
acknowledgement is sent back to the sender to notify it that the segment reached its destination; 
hence the sender can send the next segment. If an acknowledgement is not received for a segment, 
then the sender believes that the segment was lost and resends it. In this way the sender ensures 
that every byte being sent over this TCP connection reaches its destination and is delivered to the 
peer TCP’s application in order, hence TCP is a reliable byte stream transfer protocol. 

While the description above describes the logical operation of TCP, in reality implementations 
have been optimized to reduce the amount of unnecessary traffic (for example, by delaying 
acknowledgements, hence multiple segments can be acknowledged at the same time) and to 
increase the throughput of the TCP connection. In the following subsections I will thoroughly 
examine the implementation called “TCP Reno”, as this is the most widely known version of the 
protocol. The following subsections will give a more detailed description of how the protocol 
operates, and what improvements have been made in subsequent implementations, specifically: 
TCP NewReno and Cubic TCP. 

This discussion begins by presenting the three-way handshake used to initiate a TCP 
connection. This is followed by a discussion of the data transfer phase. Following this I will 
introduce details of some of the newer TCP implementations. 

2.1.1 Three-way Handshake 

To set up a TCP connection, a three-way handshake is used. This handshake is initiated by the 
sender who sends a synchronization request (SYN) to the receiver. The receiver responds with an 
ACK to the sender along with its own SYN request. Note that the sender and receiver’s SYN 
sequence numbers are both independent and preferably random 32 bit unsigned integers. The 
sender responds with an ACK of the receiver’s SYN request, thus indicating that the TCP connection 
is established. This procedure has to be done every time a new TCP connection is established. An 
example of this procedure is shown in Figure 2-1. 
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Figure 2-1: The TCP three-way handshake procedure. The figure shows the packet flow to initialize a TCP 

connection between two hosts. 

2.1.2 Data transfer 

TCP employs congestion control when sending bytes over a TCP connection. Congestion control is 
implemented by several algorithms that are designed to enable the transfer rate to reach as high a 
throughput as possible without overwhelming the network with more traffic than it can handle. The 
congestion control algorithms used by TCP Reno are: slow start, congestion avoidance, and fast 
recovery. In addition, TCP implements a sliding window scheme to prevent the sender from over 
running the buffer space that the receiver has, i.e., avoiding sending more data than the receiver is 
prepared to receive. However, with the increasing amount of memory that many receivers have, 
there is less and less need for this flow control. The flow control function is implemented at the 
receiving host of the TCP connection. It operates by informing the sender how many octets this 
receiver is ready to receive, starting from the last successfully received byte (offset). Note that the 
sequence number indicates the next byte (offset) that is expected. 

When sending data, two parameters are maintained: (1) a congestion window (cwnd) and (2) a 
slow start threshold (ssthresh). The cwnd tells the sender how many bytes can be sent without the 
network becoming congested, while ssthresh indicates when TCP should begin to apply a congestion 
avoidance algorithm. 

2.1.2.1 Slow Start 

The sender begins with a cwnd of a small multiple of the Sender Maximum Segment Size (SMSS, the 
largest segment size that the sender is allowed to send). For each ACK received, the sender increases 
cwnd by one SMSS. This results in an exponential increase in the cwnd. This process continues until 
cwnd is greater than or equal to ssthresh. Initially, ssthresh is set to an arbitrarily high value. Slow 
start continues until the end-to-end capacity of the paths between the source and destination is 
reached and packets begin to be dropped, as this is viewed as a sign of network congestion. While 
this might also be due to reaching the limit of a bottleneck link, this is not the interpretation 
embodied in TCP’s design. 

TCP keeps track of when each segment is sent. If an ACK is not received within a specific period 
of time (when the sender expects to receive an ACK), then a timeout occurs and the segment has to 
be re-sent. The timeout is calculated by estimating the Round Trip Time (RTT) of the connection. 
Unfortunately, if the RTT of a TCP connection varies a lot, this will make it difficult to find a good 
timeout value. Algorithms have been developed to compute a good average value, thus enabling TCP 
to adapt to the current state of the connection. However, these algorithms utilize a linear model of 
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the behavior of the link delays and hence finding an optimal value when a link’s bandwidth varies 
rapidly is still a problem. 

When the first timeout occurs, ssthresh is reduced to half of the current cwnd or to a minimum 
of twice the SMSS. 

2.1.2.2 Congestion avoidance 

The congestion avoidance algorithm increases the sender’s sending rate by increasing cwnd by one 
segment each round trip time (RTT), where RTT is the time it takes for a segment to be sent from 
the sender until the corresponding acknowledgement from the receiver arrives at the sender. The 
purpose of this congestion avoidance algorithm is to avoid causing excessive congestion in the 
network. It achieves this by changing from exponentially increasing the size of cwnd for each ACK 
that is received to only linearly increasing the size of cwnd for each RTT. When an isolated segment 
is lost, the receiver will notice a gap in the sequence numbers of the packets received. Since the basic 
TCP protocol only uses cumulative ACKs, the receiver will send a duplicate ACK (i.e., an ACK 
corresponding to the last acknowledged segment) to notify the sender of the sequence number of the 
last successfully received segment that had been received in order – but also indicating that an 
additional segment has been received, but that this segment is not the expected segment (hence 
there is one or more missing segments). 

If three duplicate ACKs are received by the sender, then TCP initiates the fast recovery 
algorithm – since it knows that segments are getting through, but that the segment following the 
last acknowledged segment is missing. 

2.1.2.3 Fast Recovery 

The fast recovery algorithm has three steps: 

1. First the ssthresh parameter is reduced to half of the current cwnd, but not less than 
two segments. Then the algorithm resends the missing segment using a fast retransmit 
which ignores the retransmission timer and immediately sends the missing segment. 
The cwnd is then set to ssthresh + three times the segment size. This is to take into 
account the segments that have been successfully received by the receiver, but that have 
not yet been acknowledged. This is done because the duplicate ACKs indication that the 
receiver has received some segments out of order (i.e., segments continue to be 
received – hence there is no network congestion, but rather there is simply a gap in the 
expected order of segments being received). 

2. The sender waits for an ACK that acknowledges the newly sent data. The sender 
continues to increment cwnd by one segment for each duplicate ACK received, in order 
to acount up for the segments received by the receiver. This algorithm enables the 
sender to send another segment just as soon as it is allowed based upon the cwnd. 

3. When the first ACK that acknowledges newly sent data is received, then the cwnd is set 
to ssthresh. This ACK acknowledges all the segments sent since the first duplicate ACK. 
After this, TCP returns to using the congestion avoidance algorithm. 

If a timeout occurs for any segment during either congestion avoidance or fast recovery, cwnd is 
set to one and the slow start algorithm is initiated. 



8 | Background 

 
 

2.1.3 Improvements to TCP Reno 

Newer versions of TCP have been developed to improve the algorithms of TCP Reno. Two of the best 
known versions are Cubic TCP and TCP NewReno. Each of these is described in the following 
paragraphs. 

2.1.3.1 Cubic TCP 

Cubic TCP [10] is widely implemented and has been the default congestion control algorithm in the 
Linux kernel since version 2.6.19. The algorithm is an improvement of the Binary Increase 
Congestion (BIC) congestion control algorithm, in order to improve TCP’s friendliness and 
RTT-fairness.*  

Apart from TCP Reno, Cubic TCP only uses one stage in its algorithm to handle congestion. The 
algorithm uses a cubic function to set cwnd. The function itself has two different parts: In the first 
part, window growth is a concave increase, ramping up to the cwnd prior to the observed congestion 
indication. In the second part, Cubic probes for higher throughput by increasing with an 
exponential growth, similar to TCP Reno’s slow start phase. 

2.1.3.2 TCP NewReno 

TCP Reno’s fast recovery algorithm acknowledges all the segments received at the receiver when the 
first ACK that acknowledges new data arrives. When this occurs, TCP Reno exits from the fast 
recovery algorithm and continues with the congestion avoidance algorithm. However, if multiple 
packets were dropped, then the sender would continue to receive duplicate ACKs and would once 
again initiate the fast recovery algorithm. In this case, the cwnd would be decreased once again and 
another fast retransmit performed. TCP NewReno improves TCP Reno’s fast recovery algorithm by 
remembering the last unacknowledged segment sent when entering the fast recovery phase. The 
protocol increases cwnd by one for each duplicate ACK received and transmits a new segment 
whenever cwnd allows it. It uses fast retransmit to retransmit the next segment when an ACK that 
acknowledges new data is received. This procedure is repeated until the last unacknowledged 
segment is acknowledged. At this point, the protocol exits the fast recovery phase and returns to 
congestion avoidance. 

 Network Coding 2.2

This section introduces the concept of network coding and gives a detailed description of the RLNC 
scheme. The sub-sections provide information about network coding’s role in wireless networks, as 
well as information about the network coding programming library used in this research. 

2.2.1 What is network coding? 

Network coding was first introduced by Ahlswede, et al. [11], who introduced the idea of a single 
node in the network combining incoming packets using linear combinations of these packets. One of 
the benefits of combining packets by their linear combinations is that you can send several 
independent packets over the same transmission link, with the same size as only one packet. This 
method can reduce the amount of data sent over network links, hence reducing the risk of 
congestion over a network node. However, when a combined packet arrives at the receiver, the 
receiver needs to have information about some of the other independent packets in the combination 
in order to extract the desired packet.  

                                                            
* Specifically to reduce the aggressiveness in the window reduction after losses and to reduce TCP’s dependency on the RTT. 
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This idea was further evolved into developing network coding schemes to correct packet error bursts 
over a single transmission. Instead of having specific data in each packet, packets containing overall 
information about the whole file is transmitted. As long as the receiver receives enough overall 
information about the file, it can find out the original data by using the information acquired. The 
combining of several packets will be referred to as encoding the packets, while extracting a packet 
will be referred to as decoding a packet. 

The encoding of packets can be performed in different ways, depending on what network coding 
scheme is being used. In addition to creating different kinds of combined packets, network coding 
schemes provides robustness against middle man attacks and packet sniffers. The combined packets 
do not make sense if you do not have information about the other packets used in the encoding and 
the scheme used in the encoding.  

Network coding offers its greatest benefits in wireless environments, where packet losses due to 
disturbances on the network links happen more frequently that for wired networks. Network coding 
can also make use of the wireless network’s broadcast nature to transmit packets to several hosts in 
order to distribute data or the network links can be utilized as a mesh network structure. Katti, et 
al. [12] applied this principle in their architecture named COPE. In their approach, broadcasts by 
hosts in wireless networks are stored packets in nearby nodes. These stored packets serve as 
potential evidence for future encoded packets. 

2.2.2 Random Linear Network Coding 

RLNC is a network coding scheme that uses random coefficients of a finite field to linearly combine 
packets. This technique operates by allowing nodes in the network (except for the receiving nodes) 
to perform random independent linear mappings of inputs onto each of their outgoing links. The 
receiver only needs to know the overall linear combination of source packets in order to decode a 
packet. The overall linear combinations of source packets can be passed on as a vector along with 
the data at each node. Failure in a transmission while using network coding will generally occur 
when the receiver does not receive enough evidence to be able to decode the desired data. 
Ho, et al. [13] presented success probabilities of their randomized coding scheme with different 
sizes of the finite field (these are shown in Table 2-1). The probability of successfully decoding a 
packet is shown to decrease, based on the distance to the receiving node. It also shows that the 
probability of successfully decoding packets is significantly higher when using a larger finite field. 

Table 2-1: Probabilities of success in a rectangular grid network containing 100 nodes. The receiver’s 
positions are expressed in the form (row, column) relative to the sender’s position at (1, 1). The 
bounds expressed in the first column of the table are the finite fields used while calculating the 
probabilities. 

Receiver position (3, 3) (10, 10) (2, 4) (8, 10) 
𝑭𝟐𝟒  lower bound 0.597 0.098 0.597 0.126 

𝑭𝟐𝟔  lower bound 0.882 0.567 0.882 0.604 

𝑭𝟐𝟖  lower bound 0.969 0.868 0.969 0.882 

 

This project focused on using RLNC to distribute data to several clients over error prone radio 
links. RLNC eliminates the requirement that every packet off data must be received at each client, 
by replacing it with the new requirement that enough coded packets are received at each client. As 
each coded packet is a linear combination representing all of the data, the client only needs to 
receive a sufficient number of coded packets to be able to solve the linear system of equations. This 
method also eliminates the need for the sender to keep track of which packets have been lost for 
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each independent client. The sender predicts the fraction of packets that will be lost and proactively 
sends extra coded packets to solve these expected packet loss issues. 

RLNC uses User Datagram Protocol (UDP) as the underlying transport protocol, which unlike 
TCP is an unreliable protocol and does not implement any congestion control algorithms. However, 
as UDP does not treat packet losses as congestion, errors over the network link will not cause the 
UDP sender to reduce its sending rate.  

Figure 2-2 shows an example of a RLNC transmission that suffers from a burst of packet losses 
due to some change on the network link condition. 

 
Figure 2-2: An example of an RLNC transmission that suffers from a burst of packet losses. The sender has 

expected some losses and overshoots by sending extra packets to be used by the receiver to 
extract the original data. 

The send rate in Figure 2-2 is not affected by the losses as the transmission protocol used is 
UDP, which is not affected by the condition of the network. The overshoot graph resembles the 
amount of extra coded packets that are sent to make up for the lost data. The transmission of extra 
packets will be referred to as overshooting. By expecting the losses, the sender can send extra 
packets and let the receiver solve its packet loss problems independently. A benefit of using this 
method is when data is broadcasted out to several clients who can solve their own independent 
packet loss problems by using the same coded packets.   

According to Steven Max Patterson’s article [14], the company Code On released data that 
shows their implementations of RLNC to perform between 13% and 465% faster than the industry 
standard Reed-Solomon encoding in Storage Area Network (SAN) erasure application testing. Code 
On’s RLNC implementation is tested against Intel’s Reed-Solomon implementation called ISA-L, 
and an open source implementation of erasure correcting codes for storage applications named 
Jerasure. The results show that Code On’s implementation outperforms both ISA-L and Jerasure on 
many of the test cases. It also shows a significantly faster performance on file sizes above 30MB. 
Patterson states that the increase in the performance of multicore processors and network 
parallelism has led to new possibilities to develop more advanced encoding schemes that utilize 
matrix operations and linear algebra.  
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2.2.2.1 Steinwurf APS 

Steinwurf APS is a research company in Aalborg, Denmark. The company is a licensee of Code On, 
and was founded in 2011 by researchers from MIT and Aalborg University. Steinwurf’s main 
research area is implementation of different kinds of coding solutions for reliable data transfer. 
Steinwurf works on fast implementations of network coding written in the programming language 
C++. 

In order to promote network coding being used to solve network transmission problems, 
Steinwurf has created a library named Kodo [15]. Kodo is an open source network coding library 
created in C++. Its purpose is to enable the study of network coding algorithms in practical settings. 
I acquired a license for the Kodo library for this thesis project, for the purpose of creating an 
application to evaluate RLNC. 

2.2.2.2 Kodo network coding library 

The current version of Steinwurf’s Kodo network coding library has been selected as it supports 
RLNC. This library was used to create the software used in this thesis project. This sub-section 
provides the reader with information about how the Kodo RLNC implementation works, especially 
in terms of how it was used for this thesis project. The parameters and the encoding and decoding 
procedure used in Kodo are explained. 

The library provides several functions for RLNC, which can be used in special situations to 
improve performance. However, for this thesis project only the encoding and decoding functions 
were used in the evaluations that have been conducted. 

Kodo uses Steinwurf’s Finite Field Library (Fifi library)* for finite field arithmetic. The finite 
field used in the tests of this project is the binary field of size 2 - as this was the only field size 
implemented for the file encoder implemented in Kodo. A number of parameters need to be defined 
in order to encode and decode data, specifically: the symbol size and the generation size. 

The symbol size determines the amount of data to be used for each encoded symbol. The data 
used for the symbol is expressed as a vector in the finite field. The size of the vector is increased by 
increasing the symbol’s size. The size of this vector and the size of the symbol are preferably selected 
to fit (together with the transport header and IP header) within the MTU of the transmission path†, 
in order to reduce the risk of packet fragmentation. 

The generation size defines how many symbols should be used for one generation. A generation 
is defined as the set of symbols used for one block of data. Computational cost increases when 
encoding larger blocks of data. The amount of data in a file is usually too much for network coding 
to be efficient, hence each file is divided into a set of generations. 

A generation is seen as a matrix of vectors, expressing all the data in the generation. An example 
of a generation matrix in Kodo is shown in Equation 1. 

  

                                                            
* http://steinwurf.com/fifi/  
† The MTU is usually 1500 bytes for most user networks. However, it can increase to, for example 9000 bytes, when using jumbo-frames on an 
Ethernet. 

http://steinwurf.com/fifi/
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Equation 1: The matrix of the generation size g number of symbols. The symbols are expressed as vectors of 
data in the finite field. 

𝑀 = �𝑚��⃗ 1;𝑚��⃗ 2; … ;𝑚��⃗ 𝑔�, where 𝑚��⃗ 𝑖 is a vector in 𝐹2 

2.2.2.2.1 RLNC encoding 

An encoded symbol in RLNC consists of a random linear combination of all the symbols in a 
generation. It is computed by applying linear algebra to multiply the generation matrix with a 
randomly chosen coding vector. The coding vector consists of the generation size number of 
coefficients, with each coefficient representing a symbol in the generation. The encoded symbol is 
computed by multiplying the generation matrix with the generated coding vector, as shown in 
Equation 2. 

Equation 2: The computation of an encoded symbol between the generation matrix and the coding vector. 

�⃗� = 𝑀 ∗ �⃗�,  where �⃗� = �𝑣0, 𝑣1, … , 𝑣𝑔−1 � 

The equation results in a vector of the same size as a symbol, but represents a combination of all 
the vectors in the generation. The coded symbol and the coding vector need to be known to the 
receiver in order for it to be able to decode the block of data. A coded packet, consisting of the 
encoded symbol and the coding vector, is sent to the receiver. 

2.2.2.2.2 RLNC decoding 

The receiver of the transmission gathers coded packets until a generation can be decoded. The 
vectors of a coded packet are stored in two different matrices, see Equation 3. 

Equation 3: The vectors of a coded packet are stored in two separate matrices. 

(�⃗�, �⃗�) → �⃗� = ��⃗�1, �⃗�2, … , �⃗�𝑔� ,  𝑉�⃗ = ��⃗�1, �⃗�2, … , �⃗�𝑔� 

Decoding is done by solving a linear system of equations by applying linear algebra. After 
acquiring enough encoded symbols and information about the encodings, one can find the 
generation matrix using Equation 4. 

Equation 4: By applying linear algebra to solve the linear system of equations, the receiver can compute the 
generation matrix M. 

𝑋���⃗ = 𝑀∗𝑉��⃗      →       𝑋���⃗ ∗ 𝑉��⃗
−1

= 𝑀 

The requirement of receiving all symbols in a block changes into receiving any g number of 
encoded packets. For this reason, this method is robust to errors in symbols in an encoded packet. 

2.2.2.3 Problems with network coding 

One of the problems with RLNC is that it is dependent on UDP, which does not support congestion 
control. For this reason, RLNC based implementations need to support some form of congestion 
control, but no one has yet found an efficient way of doing so. 

Unfortunately, combining network coding together with TCP is infeasible, as the receiver of a 
segment cannot send an ACK to the sender before the receiver has been able to decode the 
segment. Furthermore, this decoding cannot be done instantaneously when a packet arrives, as 
decoding can only be done when the receiver has received sufficient evidence to extract the correct 
contents of the encoded packet. This would cause delays in the different TCP connections passing 
through a network. 
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 Related work 2.3

Network coding is not widely used in many current implementations. However, companies such as 
Steinwurf, among others, are putting a lot of effort into creating products and improving network 
coding schemes for future use. This section summarizes some of the other research that has been 
done in this area, as well as other research to reduce the impact of changes in the characteristics of 
network links on the network goodput, i.e., the application layer throughput. 

2.3.1 XORs in the Air: Practical Wireless Network Coding 

The paper “XORs in the Air: Practical Wireless Network Coding” introduced an architecture named 
COPE [12], which is rooted in the theory behind network coding. COPE was created to increase 
throughput in wireless mesh networks. COPE inserts a new layer in-between the Media Access and 
Control (MAC) sublayer and the IP layer. This new COPE layer detects opportunities for coding to 
combine packets. To be more specific, it utilizes three techniques: opportunistic listening, 
opportunistic coding, and learning neighbor state. These techniques are based on continuously 
finding new ways of encoding packets and making use of nodes close to the transmission’s path. 
Additionally, COPE makes use of the broadcast nature of wireless networks to spread and store 
coded packets in neighboring nodes. 

Their results shows that COPE can increase a network’s throughput from just a few percent to 
several folds. The improvement depends on the amount of congestion in the network, the traffic 
pattern(s), and the transmission protocol used. 

2.3.2 MATIN: A Random Network Coding Based Framework for High Quality Peer-to-Peer Live 
Video Streaming 

MATIN [16] is a Random Network Coding (RNC) framework for efficient Peer-2-Peer (P2P) video 
streaming. The article addresses the problem that RNC adds high transmission overhead to the 
network, in the form of coding vectors. Another problem it addresses is the high computational 
complexity that must be implemented in the network hosts, due to the linear algebra computations. 

MATIN proposes a solution to reduce the size of the coding vectors into only one coefficient, 
instead of one for each symbol in the generation. This reduces the overhead of the coded packets, as 
well as the computational costs of inverting the matrices of coding vectors. This proposed solution 
outperforms other RNC implementations that use Gauss Jordan elimination algorithms in the 
decoding procedure. 

2.3.3 TCP Reaction to Rapid Changes of the Link Characteristics due to Handover in a mobile 
Environment 

Ronquist [17] evaluates the effects of TCP’s behavior when experiencing sudden changes in link 
characteristics. Problems are recognized when TCP experiences a handover from a fast link to a 
slower link. The investigation performed shows several spurious TCP timeouts, which trigger 
unneeded retransmissions. These result in a degradation of TCP’s performance. 

Problems also occur when handovers are performed from a slow link to a faster link. The 
problem is identified to be in the link layer buffer, which is not emptied fast enough and packets 
continue flowing on the slow link. This results in a underutilization of the newly available 
bandwidth.  
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The solution proposed for both situations are better adaptions to set an appropriate 
Retransmission Timeout (RTO) value. The conclusion of his research suggests that a small window 
size is favorable, as this can mitigate the negative effects from changes in the network link’s 
characteristics. 

2.3.4 RLNC throughput 

Kim et al. [18] introduces Coded TCP (CTCP). CTCP is a protocol that combines RLNC with TCP as 
its transport protocol. The author points out TCPs problems to recognize packet losses due to 
interference on the link, which causes the protocol to think the network is congested and lowers the 
sending rate. CTCP eliminates that problem as the packets are encoded and the receiver does not 
need to know that each packet arrived, but that a packet arrived. For the case when the network is 
really congested, CTCP reacts to the TCP timeout instead and lowers the sending rate accordingly. 
However, CTCP does not cover the problem when a burst of packet losses occur to a change in 
network link characteristics. CTCP proves to significantly increase the throughput in networks with 
frequent single random packet losses.  

Muhammad et al. [19] performs an investigation over several TCP versions when used in 
Performance Enhancing Proxy (PEP) architecture scenarios. The experiments were carried out by 
simulating a gateway connected to a Geostational Orbit (GEO)-repeater satellite to reach satellite 
terminals. The terminals are connected to end-host TCP clients. The throughput of the various TCP 
protocols was greatly reduced by the packet loss probability simulated over the satellite links. A 
solution was proposed to use RLNC together with the various TCP versions to reduce the impact of 
random packet losses. The results show that the proposed solution greatly increased the throughput 
of all of the TCP transmissions when single packet losses randomly occur.  

2.3.5 UDP based file transfers 

Several solutions have been developed to use UDP as the transport protocol to send files. Many of 
the solutions are based on using hybrid implementations of transport protocols, often by using TCP 
for control over the transmission and UDP for actual data transfer. Implementations like Hybrid 
Secure Copy Protocol (HSCP) and Tsunami UDP are examples of these hybrid protocols. For HSCP 
however, it should be noted that it is based on the original SCP protocol, with changing the data 
transfer into using UDP. A limitation of SCP is the internal buffer size of 1MB, which severely limits 
the performance over Wide Area Networks (WAN).*  

Kumar et al. [20] explains how high speed reliable UDP can be achieved by sending bulk 
transfers of UDP packets. A bitmap can be sent via the TCP control connection to notify which 
packets were received. The packets that were not received are then re-sent, and an updated bitmap 
are sent via the TCP controller. This procedure is then repeated until all the packets are received at 
the receiver. Another important factor that needs to be considered is at which rate UDP is supposed 
to send. This rate is the bandwidth of the bottleneck link. The author proposes tools like Iperf and 
Netperf to measure the bottleneck bandwidth. However, unnecessary data are transmitted to the 
network by using these tools, which increases the possibility of network congestion. The network 
route can also change during the transmission, which adds the need to periodically check the 
bottleneck bandwidth. This is an aggressive method of checking the current state of the network.  

                                                            
* https://fasterdata.es.net/data-transfer-tools/say-no-to-scp/ 
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2.3.6 DCCP 

A problem when developing UDP based file transfer protocols is implementing suitable congestion 
control algorithms. Datagram Congestion Control Protocol (DCCP) was introduced by Kohler, et 
al. [21] as a solution to this problem. 

DCCP aims to add the minimum mechanisms necessary to implement congestion control 
functionality. To obtain this, the Kohler, et al. identified the need for two mechanisms: sequence 
numbers to identify lost packets and a feedback channel to obtain congestion information. DCCP’s 
congestion control implementation uses, much like TCP, the sender’s congestion window to reduce 
unacknowledged data outstanding in the network. In contrast to TCP, unreliable transfers cannot 
use a cumulative acknowledgement in each packet to indicate which packets were received. Several 
approaches to implementing these mechanisms are presented, including transmitting 
acknowledgment information by a vector of ACKs to the sender. They present DCCP as a work in 
progress. 
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3 Methodology 

This chapter contains a description of the methodology used in the project. The research in this 
project is divided into three different stages: 

1. Literature study – The research began with a literature study to acquire necessary 
background information about the different topics. Information about TCP and its 
different implementations were acquired, as well as the known problems of TCP based 
on earlier research. The information was beneficial to create test scenarios in which 
TCP would have problems. Information about network coding was acquired to 
understand how it could work as a solution to the proposed problems. Based on the 
information gathered, the choice of evaluating the RLNC scheme and its benefits was 
made. Apart from the background information about TCP and network coding, 
information about how to set up a suitable testbed for this thesis was acquired. 
Selecting the appropriate operative systems to use and finding tools to emulate 
network links were part of this stage. 

2. Testbed implementation – This stage consisted of implementing a testbed that 
could emulate the chosen network scenarios in an end to end network environment. It 
also included developing a system to transmit a file using RLNC over the emulated 
network. This step took the largest portion of time of this thesis project. It was difficult 
to detect and to understand the system properties that affected the network 
performance. A lot of time was spent optimizing the testbed to reach 10Gbit/s (due to 
limitations of the network card). It also took time to define suitable network scenarios 
for the measurements. Finally, measurements with the different TCP algorithms and 
RLNC were performed. 

3. Analysis and verification – The final part of the project consisted of a comparison 
of the results from the measurement and a presentation of a proposed solution. The 
results of the measurements were analyzed to find and discuss the strengths and 
weaknesses of the two methods. Based on this analysis, a new solution was proposed. 
The limitations and the reliability of the measurements were commented on in terms of 
how they affected the results. 
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4 The testbed 

This chapter gives a detailed explanation of the experimental testbed used for measurements and 
the software implemented within this project. Each of the different parts of the testbed is explained 
in terms of hardware, purpose, and the tools needed. At the end of the chapter the limitations of the 
testbed are discussed and evaluated, and the maximum possible transfer rate that can be realized 
with this testbed is measured. 

 Overview and design 4.1

An overview over the design of the testbed is presented in Figure 4-1. This testbed can be divided 
into three different parts: the client(s), the network, and the server. The testbed emulates an end-to-
end connection between a client and a server over different transmission links. The values for packet 
loss and RTT over these transmission links are changed in the different tests. Switching between 
different transmissions links is used to emulate handover scenarios. 

 
Figure 4-1: Overview of the testbed design. The network contains four different network links with fixed 

maximum data rates. 

 The equipment 4.2

The hardware used in the testbed was selected to provide a stable system for a maximum 
throughput of 10 Gbit/s. The client, network, and server parts are realized by three separate physical 
machines. These machines are connected by CAT6A snagless shielded 4 pair network cables, to form 
an end-to-end network. The machines were Dell Precision tower 5810 computers. The 
specifications for the most significant hardware in the testbed are presented in Table 4-1. 

Table 4-1: The specifications for the hardware for each of the three machines used in the testbed. 

Computer make 
and model 

Dell Precision Tower 5810 

Central 
processing unit 
(CPU) 

Intel® Xeon® Processor E5-1630 v3 (4 cores, 3.7 GHz, supports Intel Turbo 
Boost technology, hyperthreading, 10 MB of cache, 140 W) 

Hard disk drive 
(HDD) 

500 GB 7200 RPM 

memory 64 GB 2133 MHz 
Network 
interface 

Myricom-10G PCIE2-8c2-2T 
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 Client and Server Node configurations 4.3

The client and the server machines are running Ubuntu 14.04 with Linux kernel version 3.16.0-37-
generic. The choice of using Ubuntu as the operating system was based on it offering a user friendly 
environment, the set of TCP congestion control algorithms implemented, and the possibilities to 
configure the system for best achievable performance based on hardware limitations. 

The TCP congestion control algorithms implemented in the Linux kernel 3.16.0-37-generic are 
TCP Reno and Cubic TCP (see Sections 2.1.3.1 and 2.1.3.2). However, the default settings of the 
Linux kernel are not optimized to reach throughputs of 10 Gbit/s. For this reason the file 
/etc/sysctl.conf was configured to change a number of system parameters. The final configuration of 
these parameters in sysctl.conf is shown in Figure 4-2. The net.core.* parameters are used to 
increase the socket buffer sizes, while the net.ipv4.* parameters are used to increase the buffers for 
the respective protocol. The vm.swappiness value is reduced from its default value of 60, to reduce 
the aggressiveness of memory swapping; hence, possibly reducing the rate of page faults. The 
system’s performance increases if sufficient memory is available. The net.core.netdev_max_backlog 
parameter sets the maximum number of packets allowed to be queued when the interface receives 
packets faster than the kernel can process them (this parameter is related to the problem described 
in Section 4.6.1). Most of these parameters were recommended configurations from Myricom [22].  

 
Figure 4-2: The configured parameters in sysctl.conf on the Ubuntu hosts. 

Configurations of the processors were made using each machine’s basic input/output system 
(BIOS). The configurations were made to disable virtual cores (i.e. disabling hyperthreading), as the 
four physical cores are by default split up into eight virtual cores. To increase the reliability of CPU 
load measurements in the experiments, single thread per core performance needs to be ensured. As 
Intel explains in their article “Performance Insights to Intel® Hyper-Threading Technology” [23], 
hyperthreading trades thread processing latency for multitask throughput. A single process’s 
performance can decrease as the available resources for a virtual core is less than of the underlying 
physical core. 

CPU frequency scaling was disabled to increase the performance of each individual core. CPU 
frequency scaling means that the operating system increases/decreases the CPU frequency in order 
to save power. It is implemented and enabled by default in the Linux kernel. This was disabled to 
ensure the highest possible performance of the CPU at all times.  
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 Configuration of the network part of the testbed 4.4

The computer that realized the emulated network is running FreeBSD 10.1 as its operating system. 
FreeBSD is an operating system which provides advanced networking features that were suitable for 
this project. One of the tools that influenced our choice of using FreeBSD was dummynet [24]. 
Dummynet is a tool added to the FreeBSD kernel. Dummynet is used in cooperation with the 
operating system’s firewall ipfw [25] to emulate the different network links that we wanted to utilize 
in our test scenarios. 

The network links are simulated by creating dummynet pipes. A dummynet pipe can be 
configured to have a limited bandwidth, a delay to simulate latency over the link, a packet loss ratio, 
and a queue size. Links are emulated by the pipe intercepting the packets in the network stack and 
trying to add them to a fixed size queue. This queue acts as a network node buffer, which is drained 
at rate based on the configured bandwidth. When a packet is removed from the queue, it is delayed 
for the configured amount of time before it is re-injected into the network stack. The packet loss 
ratio was set to drop packets based on non-congestion causes for packet loss. The pipes are added in 
the firewall’s rules and are applied when a packet matches a specific rule. A packet is forwarded to 
the dummynet pipe when a match is found. 

Several different pipes were implemented in the network. One pipe was used to simulate the 
connection between the server and the client. Handovers were emulated by swapping pipes during 
transmission. This was done by using the set property in ipfw, which can assign certain firewall 
rules to a particular set. Scripts were used to enable and disable sets after configured periods of 
time. 

The values that were used for latency and packet loss ratio were provided by Ericsson from 
measurements done in networks in North America. The values were calculated from a Cumulative 
Distribution Function (CDF) based on their measurements of RTT and packet loss. The values used 
for the different pipes are presented in Table 6-1 on page 29. 

 Measurement tools 4.5

This section describes the different tools that were used to measure the data transmitted over the 
network. The section’s purpose is to give the reader information about how the tools operate and 
possible errors the tools might generate. 

The application that was used to send files over the network using the different TCP algorithms 
was the Secure Copy Protocol (SCP) [26]. SCP is used to copy files between network hosts. It begins 
by creating an SCP session between the hosts, and then opens a TCP connection to send the file. 

The Bandwidth Monitor-Next Generation (bwm-ng) [27] application was used to measure the 
throughput to the client. Bwm-ng reads from the file /proc/net/dev in Ubuntu, which contains real 
time reports from the operating system (OS) about the amount incoming and outgoing of data on 
each network interface. Bwm-ng can export this data in Comma Separated Values (CSV) format. 
This data was subsequently used to generate graphs for further evaluation. However, the application 
was limited to reading the file every 0.5 seconds, which did not provide accurate results when 
examining a small time interval. 

The iperf3 [28] tool was used to determine the maximum throughput of the testbed. It operates 
as an end-to-end application, with a sender and a receiver. The application generates random data 
to transmit over the network. The user can define which transmission protocol to use, as well as the 
amount of time that the transfer should last. The reason for using iperf3 to determine the maximum 
throughput was because of its ability to transmit both UDP and TCP traffic. However, the 
application had some problem that made it unsuitable for the experimental phase of this project. 
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For example, the application did not show the correct throughput in its reports. In contrast, 
bwm-ng, reading the OS’s counters associated with each of the interfaces, showed a higher 
throughput than what iperf3 reported. As iperf3 can also be used to transfer files using TCP, it was 
used to test the performance of a file transfer of a video clip where all the frame data was scrambled. 
TCP is a reliable protocol; hence, the resulting file should be correct after a transmission. This was 
checked by computing an MD5 checksum of the original and received files. 

 System limitations 4.6

Transmitting data at 10 Gbit/s puts a lot of load on a system. High quality hardware is required to 
support this data rate. A lot of time was spent during this thesis project on configuring the testbed to 
support as high a throughput as possible. The final configurations that were used had a throughput 
limitation of 9.8G bit/s for TCP connections and 7.3 Gbit/s for UDP connections. 

4.6.1 Interrupt request handler 

In Ubuntu, interrupt requests are issued to the OS when packets arrive at the network interface. The 
OS then interrupts what it was doing and starts to handle the interrupt. When too many interrupts 
are issued within a short period of time, the OS cannot keep up with these interrupts; hence a 
process to schedule these interrupts is invoked. This process is called ksoftirqd [29]. Figure 4-3 
shows a snapshot of the CPU utilization when receiving a 7 Gbit/s stream of UDP packets. 

 
Figure 4-3: CPU utilization of the interrupt request scheduler and the receiving application iperf3 using the 

“top” command in Ubuntu when transmitting 7Gbit/s of UDP packets. 

The CPU usage of ksoftirqd reached over 95% when sending a UDP stream at 7 Gbit/s through 
the testbed. This means that the system could not handle all the interrupts in time and the system is 
under a heavy interrupt processing load. Some network interface can reduced this effect by not 
issuing an interrupt for each packet, but rather issuing interrupts for several packets at the same 
time*. This functionality was implemented for TCP in Myricom’s network cards, but unfortunately 
not for UDP [30]. 

This limitation only affected UDP transmissions. By assigning the receiver process and the 
ksoftirqd to execute on different cores, a maximum throughput for UDP of 7.3 Gbit/s was achieved. 
Due to the use of interrupt coalescing TCP’s throughput was not affected by interrupt request 
scheduling. A TCP connection reached a stable 9.8 Gbit/s throughput when there was no emulated 
delay or packet loss in the network. The maximum throughput achieved by both UDP and TCP are 
presented in Figure 4-4. 

                                                            
* This is called interrupt coalescing. 
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4.6.2 Memory throughput 

Another factor that is important to consider when transferring a file between computers is the 
memory read and write data rates. The maximum rate of transferring data to and from the main 
memory was measured as 1700 MB/s. This was measured by using the dd command in linux[31] to 
create a 10GB of random data on the main memory. The command provides information about how 
the file is written to the directory specified. 

4.6.3 Disk throughput 

The hard drives used in the testbed had a rotational rate of 7200 RPM, which limited their 
throughput when transferring files, due to the time it takes to write the blocks of the received file to 
the hard drive. To remove this limitation, RAM memory was allocated to store the files. 

 

Figure 4-4: The maximum TCP and UDP throughput measured on testbed hardware. 
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5 Implementation of a Network Coding application 

This chapter contains a description of the software that was created to implement RLNC for testing 
in the testbed. The chapter starts with an overview of the implementation. Then the two end-host 
applications used in the final testing are described. Then a description is give of how a thread was 
implemented to maintain a TCP connection to provide the server with feedback from the client. The 
chapter ends with a summary of the implementation. 

 Overview of the implementation 5.1

A system to enable network coding was implemented for testing and evaluation of network coding, 
specifically RLNC. The system contains a “server” and a “client” application that act as a sender and 
a receiver. Kodo was used for encoding at the sender and for decoding at the receiver. 

The purpose of the software was to send a video file through the network using RLNC. The video 
file’s format was of type YUV4MPEG2 [32], which will subsequently be abbreviated as Y4M. This 
format contains a header, followed by an amount of video frame data. The choice to use this kind of 
file was mainly because of the possibility to play the file even if part of the file is missing. This 
enables us to see how the packet losses affect the video after it had been transmitted. A video file of 
1.1 GB size was chosen for the experiments. This file size is typical of a video file that a potential user 
would download today. 

The system was able to use different settings for the encoding in terms of both symbol and 
generation size. By setting different values for these parameters, I could evaluate how different 
settings could affect the throughput and the load on the CPU. There are four different parameters 
that can affect the performance of the system: 

1. The field size affects the computational complexity of the data representation. Using too 
large a field size might slow down the encoding and decoding. The system used the 
Kodos file encoder, which only supports a binary finite field of size 2; hence, the field 
size was not a problem. 

2. The symbol size sets the amount of data used for each symbol in bytes. When used in 
network applications the size can be set to avoid the coded packets becoming larger 
than the MTU. As fragmentation will occur if the network packet is larger than the 
MTU; hence, the number of packet losses and packet handling operations will increase. 

3. The generation size determines how many symbols will be used to represent a given 
amount of the files data, i.e. a block (see Section 5.2). Increasing the generation size 
increases the computational complexity of the encoding and decoding. However, it 
reduces the need for a larger field size and it reduces the protocol’s overall complexity 
by reducing the number of different generations needed for sending the whole file. 

Before the server can start sending packets to the client, the system needs to come to a 
consensus about the file size, symbol size, and the generation size. These values were predefined in 
the first version of the system. Adding functionality to change these sizes is discussed in Section 5.4. 
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 The server application 5.2

The server application acts as a distributor of data. The purpose of this application is to encode data 
and send it to a client using UDP. The server needs to inform the client about the encoder’s settings 
in order for the receiver to initialize and build a suitable decoder. The settings have to be adapted to 
the client’s hardware limitations in order to avoid overwhelming it with too high a computational 
load. 

The file to be sent is divided into several blocks of data to reduce the computational effort 
required while encoding. The block size to use for a file is determined by three parameters: the 
symbol size, the generation size, and the field size. The server iterates through all the blocks of the 
file and for each block builds an encoder based on the current block. The data is transformed into 
vectors once the encoder for the block is built. 

For each generation of the transmission, the server iterates through a loop that creates a 
randomly coded packet for the current generation and sends it over UDP to the client. The loop 
iterates for the expected number of coded packets that need to be sent to make up for the packet loss 
rate of the network. This value has to be set such that the receiver always receives a sufficient 
number of packets to be able to decode each block. Unfortunately, no feature yet exists to detect the 
actual packet loss rate; hence the server will have to set the value large enough to make up for a 
potentially high packet loss rate. This issue is further discussed in Section 6.5. 

 The client application 5.3

The client application acts as the receiving host by listening for UDP packets on a specified port. It 
gathers coded packets sent by the server, until a generation can be decoded. Decoding can be done 
when enough coded packets have been received for a generation. If not enough coded packets for a 
generation were received before a new generation is received, then the client skips the previous 
block of data and starts to gather information about the new one. As it is crucial that enough coded 
packets always be received for the client to decode every block of the file a future extension of this 
client and the server should indicate when the client has not received enough packets to decode the 
current generation, so that the sending application could send more encoded packets. 

The client starts by initializing a decoder by using the same parameters as the server used when 
it initialized its encoder. The client reads the block number of each coded packet, which is sent as 
the first bytes of the coded packet. This information is required for the client to know when a new 
block is received. If the decoding is completed before a new block arrives, then the client simply 
waits until it reads the block number of a new block. Again a future extension would be to inform 
the sending application of this, so that it no longer needs to send encoded packets for this block. 

This simple implementation works sufficiently well for testing network coding over a network 
link, based on predefined values at both the client and the server. However, additional 
implementations are needed to make it work as intended for use as a real application. The 
parameters of the encoding/decoding have to be decided on based upon the needs of the client. A 
TCP controller thread is introduced in the next section to enable further extension of this 
implementation.  
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 TCP controller thread 5.4

A TCP controller thread maintains a TCP connection between the client and the server for as long as 
the transmission is ongoing. This connection is initiated by the client when it requests resources 
from the server. The server responds over this connection with parameters about the encoding to be 
used by the client. 

The thread (and its associated TCP connection) enables the client to send feedback to the server 
about the transmission. It can be used to initially determine the parameters for the transmission. 
The main feature that was implemented was to send information about when a block was decoded. 
This prevents the server from spending unnecessary time on encoding additional packets when the 
block has been successfully decoded. This also reduces unnecessary traffic on the network. However, 
when testing the implementation in the testbed network, the delay of this feedback to the server was 
too high for the thread to give any benefit. This occurs because the server could encode and transmit 
packets much faster than the time it took for the notification to reach the server*. It resulted in all 
the coded packets of a block being sent even if the decoder was done.  

The thread can be improved to increase efficiency, reliability, and to make the transmission 
adapt more to the network. Information that could be sent with the control thread includes: 

1. Blocks that were not decoded – The client could send feedback about those blocks that 
were not able to be decoded because of lost packets. The server would encode a small 
number of extra packets from the missing block and send it in parallel with the current 
block. This would make it possible for the receiver to decode the missing blocks, hence, 
increase the reliability of the transmission. 

2. Estimated packet loss rate – The client can use the number of received packets to 
inform the server about how much redundancy is needed. This would reduce the 
amount of overhead needed for the transmissions, as the sender can adapt to the state 
of the network. 

3. Hardware limitations – As the decoding puts pressure on the CPU, too high a 
throughput could cause the client to become overwhelmed, leading to packets being 
dropped by the client. 

 Summary of the design 5.5

Throughout this chapter the design of the system used to implement network coding in this thesis 
work has been described. The reader has been given a description of how each part of the system 
works. A description of how the implementation can be improved in the future by using a TCP 
controller thread has been described. Subsequent chapters provide analyzes of the results of 
measurements of the implemented software’s performance in the testbed. This software 
implementation was designed for testing purposes only, and is not suitable as a real application due 
to the lack of congestion control. 

 

                                                            
* The time to encode a new packet was xxx ms, while the delay from client to server was xxx ms. 
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6 Analysis 

This chapter presents the results of measurement collected when carrying out experiments in the 
testbed. Baseline tests using TCP are presented to show how a connection can act in realistic 
scenarios. The designs of these scenarios used to test RLNC are described. Finally, measurements 
when using TCP and RLNC are presented and compared. Different settings were used to cover 
different scenarios, as well as to compare the different settings used in RLNC. These settings are 
described together with each of the scenarios. 

The different network link characteristics used in the experiments conducted as part of this 
thesis project were chosen to resemble network links used in actual networks today, as well as a 5G 
network link. The 5G network link for this project was defined to have the highest possible 
throughput possible with our hardware*, i.e., 9.8 Gbit/s for TCP and 7.3 Gbit/s for UDP. The delay 
for the 5G network link used in this project is defined to be 20% lower than for the LTE links. The 
MTU used in all test cases was 1500 bytes. This value is based on the maximum size of IP datagrams 
in Ethernet 2 frames [33], which is the most common MTU value that a user would experience 
today. However, higher MTU values are often supported while transferring data between data 
centers and in gigabit Ethernet networks.  

All the network link bandwidths and RTTs used in this analysis are summarized in Table 6-1. A 
number of different packet loss rates were test-based, together with the different tests listed in Table 
6-2. 

Table 6-1: The different emulated network links used in the testbed. These links were emulated using 
dummynet. 

Network link Bandwidth RTT (ms) 

10G 10Gbit/s 46 
1G 1Gbit/s 56 

400M 400Mbit/s 56 
100M 100Mbit/s 56 

 

Table 6-2: The six TCP baseline test scenarios. The handover columns show which network characteristics 
were swapped during the test. Each test starts with “Handover 1” and stops with “Handover 3”. 
The network link specifications were shown in Table 6-1. 

Test Packet loss rate (%) Handover 1 Handover 2 Handover 3 
A1 0 10G 100M - 
B1 0 100M 10G - 
C1 0 400M 100M 1000M 
A2 0.006 10G 100M - 
B2 0.006 100M 10G - 
C2 0.006 400M 100M 1000M 

 Baseline tests 6.1

A set of tests consisting of different link conditions and handovers were defined to establish a good 
baseline for the project. This baseline resembles the link characteristics and handovers that a 
potential user could experience while using today’s LTE networks. All six of the TCP baseline tests 
are shown in Table 6-2. 
                                                            
* This is measured as a network with 0 ms delay and 0% packet loss rate. The hardware limitations are explained in chapter “4.6 System 
limitations”. 
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 Design of the experiments 6.2

This section discusses the design of the experiments. It discusses the thoughts behind these 
experiments and how they resemble realistic user scenarios. Following this there are arguments 
about the limitations of these experiments, as well as comments on the different test cases. Finally, 
the limitations of the design of the RLNC tests are explained and discussed. 

The baseline design should resemble how the system looks before the proposed solution is 
applied. In this thesis, the baseline should reflect the user’s experience when using TCP over today’s 
radio links. The situations that have to be considered are packet losses due to disturbances on the 
radio link and handovers between different radio network links. Ericsson provided the project with 
data from measurements, carried out in the North America, to best resemble real users’ experiences 
with respect to network throughput. These measurements were carried out by probing the network 
and sampling statistics at measurement point at a base station, see Figure 6-1. The measure point 
measured the round trip time and packet loss rate by probing both the wired network, and the radio 
network. The values used in the thesis were calculated as the average of each of the wired and the 
radio network measurements. The average values for the wired and the radio network were added 
together to resemble the complete path of a potential transmission path for a user.  

 
Figure 6-1: An illustration of where the measure point was located. Data was taken from connections coming 

from both the network part and the radio part, to calculate CDF of RTT and packet losses. 

TCP treats all packet losses as indications of network congestion, but the Ericsson 
measurements were based on probing to identify the networks current states, in which most cases 
congestion was probably the reason for the packet loss. Therefore, this data did not provide accurate 
packet loss rate information. 

Moreover, today’s radio links use several functions in lower layers of the network stack to 
reduce the number of packets lost by retransmitting data so that the TCP peer correctly receives all 
of the segments. These functions are implemented to reduce the effect of lost packets due to random 
errors on the link’s throughput. However, packet losses still occur as these functions cannot cover 
up all of the errors, but the rate of the observed errors is far lower than the actual error rate of the 
raw link. Unfortunately, these lower layer functions increases the delay of the transmission, while 
reducing the number of times that TCP thinks the network is congested. 

A problem is that RLNC uses UDP to transmit packets and UDP has no congestion control 
implementation. Therefore, is unfair to compare TCP to RLNC, when TCP’s low performance is 
mainly based on measurements where the network most likely was congested. Even attempting 
comparing TCP over different radio links is problematic, as the congestion based packet loss rate in 
the radio network is unknown. As a result the actual values for packet loss rates had to be estimated 
and, to some extent, these values do not match a real user’s experience over a non-congested radio 
link.  
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The handover scenarios design were based on the proposed problem: TCP adapts slowly to 
changes in the characteristics of network links. Three different handover scenarios were defined: 

1. From a high bandwidth to a lower bandwidth. 

2. From a low bandwidth to a higher bandwidth. 

3. From a medium bandwidth to a lower bandwidth, then changing to a high bandwidth. 

These three scenarios are designed to uncover problems that might occur when a user 
experiences handovers. 

As RLNC uses UDP as its transmission protocol, evaluating handovers with RLNC was 
impossible without further implementation work. As a result, RLNC was only tested with high 
packet loss rates, but without handovers. The packet loss rate chosen for tests with UDP was 1%. 
This value was chosen to show RLNC’s performance in high packet loss network environments. 

 Baseline results 6.3

The following graphs show the results of the baseline tests as defined in Table 6-2. Handover are 
performed after 40 seconds intervals. In tests A and B, the handover is performed approximately at 
the 40 second marker. In test C, the handovers are performed at the 40 second marker and the 80 
second marker. 

 
Figure 6-2: Throughput as a function of time in baseline test A. 
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Figure 6-3: Throughput as a function of time in baseline test B. 

 
Figure 6-4: Throughput as a function of time in baseline test C. 
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6.3.1 Discussion of the baseline results for each of the test scenarios 

In tests A and C, it is observed that TCP Reno reacts strongly to the packet losses when transferring 
a lot of packets over the high speed link. In test B, the reaction is less aggressive when less data is 
transferred in a short amount of time.  

Test A shows the only scenario where any of the protocols throughput are high enough to react 
to the handover. Cubic TCP probes for a higher throughput after 26 seconds, and at the 40 second 
marker, packets get lost due to the reduction in bandwidth. The protocol adapts by going down to 
the previously highest throughput. In all tests it is observed that Cubic TCP serves with a more 
stable throughput than TCP Reno. 

6.3.2 Summary of the baseline results 

The measurements show that TCP’s performance for average users with the estimated network 
conditions are often lower than 100 Mbit/s. However, this is most likely due to congestion issues in 
the network, and not entirely due to the packet error rate of the radio links. The average user utilizes 
too low a throughput to be affected by the high throughput handovers that were tested. However, 
the tests assume that the base stations participating in the handover are uncongested and can 
provide the user with the maximum available bandwidth. 

 Radio link measurements 6.4

To provide a fair comparison of TCP and RLNC, measurements emulating only the delays and losses 
associated with radio links were performed. The values used for TCP packet loss are based on values 
provided by Ericsson as measured at the radio side of the measurement point in Figure 6-1. These 
measurements were performed to understand a real user’s potential experience, as the user might 
suffer from congestion in the radio network as well. Unfortunately, an estimate of how much packet 
loss was due to congestion was unavailable. As explained earlier the values used in the emulation 
may not be correct estimates of the radio network link’s error rate, but they should be correct in 
terms of the user’s experience of the radio networks when using TCP. 

6.4.1 TCP performance over radio links 

The following are graphs consider the same test scenarios as describe earlier, but with a packet loss 
rate that represents only the radio network’s packet loss rate. These values do not account for 
congestion, but are based on what users currently experience in today’s radio networks. 
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Figure 6-5: Result from radio test A. 

 

 
Figure 6-6: Result from radio test B. 
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Figure 6-7: Result from radio test C. 

6.4.2 Discussion of results from emulated radio link tests 

It is observed that Cubic performs better than Reno in terms of adapting to the current available 
throughput. However, Cubic does not manage to fully utilize its probing mechanisms after a 
throughput reduction has occurred. In Figure 6-7, Reno never notices the handover after 80 
seconds, resulting in a much lower throughput than Cubic.  

6.4.3 RLNC performance over radio 

RLNC was also evaluated in three tests over a hypothetical 5G network link, using three different 
generation sizes. The symbol size is optimized for each of the tests by adapting it to the MTU and 
the coding vector size required for the generations. The application specific data also had to be 
accounted for. The values used in the tests are presented in Table 6-3. The overshoot value for the 
tests was achieved when every block of the transmission could be decoded; hence, the whole file was 
received by the client. 

Table 6-3: Defines the three different tests used to evaluate RLNC. The “Extra size” is the size of the UDP 
header, the coding vector, and other potential data that the Kodo-encoder adds to the packet. The 
symbol size was chosen as large as possible for the generation size of the test, without letting 
the packet get fragmented on the link.  

Test number Generation size Symbol size Extra size 
1 200 symbols 1438 bytes 76 bytes 
2 500 symbols 1400 bytes 114 bytes 
3 1000 symbols 1338 bytes 176 bytes 
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The following results show measurements when using RLNC over the emulated radio network 
links. The packet loss rate value was increased to 1%, to provide a better evaluation of how RLNC 
would perform in high packet loss environments. The transferred file used in the RLNC experiments 
was described in Section 5.1. As UDP based transmissions do not adapt to the network, it was 
decided not to show throughput graphs of the RLNC tests in this chapter. RLNC throughput graphs 
can be seen in Appendix A. 

Table 6-4: The average throughput, the number of extra packets required to decode every block, and the 
amount of CPU load required at the receiver running on a single core. 

Test 
number 

Average 
throughput 

Overshoot CPU load 
at receiver 

Total data 
sent 

Transmission 
time 

1 5.57 Gbit/s 7% 83% 1.27 GB 1.799 sec 
2 4.87 Gbit/s 3.8% 89% 1.27 GB 2.062 sec 
3 4.45 Gbit/s 2.3% 92% 1.3 GB 2.325 sec 

 

The results shown in Table 6-4 show a high possible throughput over a high loss network. 
However, the throughput does not consider congestion due to the different network nodes. These 
results include the transmission of the amount of extra data that was required to decode every 
block. The overshoot value is calculated by dividing the sent amount of coded packets by the 
generation size. The CPU load measured on a single core at the receiver is presented, as well as the 
total data sent and the exact time of the transmissions of the different tests. The total data sent are 
increased by the overhead required from the coding vectors and the amount of overshooting needed 
for the complete file to be transferred. 

 Discussion 6.5

The TCP results show that TCP has problems maintaining a high throughput even when the packet 
loss rate is low. The implementations of the protocol in Ubuntu can recognize handovers when a 
transmission does not suffer too much from random losses. However, Figure 6-7 shows a situation 
where TCP Reno has a problem recognizing a handover and as a result the throughput continues 
with a low linear increase in data rate. This results in low throughput for the user when they have 
made a handover to a base station that actually provides higher throughput. 

The network coding experimental results show that RLNC based transmission methods can 
provide high throughput in networks with a high loss rate, as the transmission rate is not dependent 
upon the individual encoded packet losses. By combining the implementation used in the 
experiments with a proposed TCP controller thread, reliability can be provided by announcing the 
blocks that were not decoded to the sender. The sender can easily compute more coded packets for 
the un-decoded block and transmit them. The sender can implement additional functionality to 
increase the amount of overshooting while continuing the transmission. This solution might 
possibly be improved by using a UDP or Stream Control Transmission Protocol (SCTP) based 
control channel to increase the rate at which control information is received. Additionally, using 
RLNC for the control channel can increase the reliability of the control information while using UDP 
based solutions.  

The RLNC results show that the CPU load increases when the generation size increases. The 
effect is a decrease in data rates as the computation time at the sender has increased. Problems can 
arise when the sender has encoded without considering the receiver’s CPU performance. If the CPU 
load is too high for the receiver, then the decoding cannot be done efficiently and packets might be 
dropped due to buffering problems. 
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The RLNC implementation does not support any form of congestion control. Implementations 
for handling congestion are required in order for this approach to be applicable in real networks, as 
transmissions might otherwise overwhelm the networks. If Ericsson’s predictions (as discussed in 
Section 1.1) are true, then congestion-based network control might not be necessary - as congestion 
might not actually be a major problem when 5G has been implemented. Higher data rates might be 
desired and UDP based methods such as RLNC might be a solution to avoid the throughput 
limitations due to burst losses by changes in the network link characteristics. 
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7 Conclusions and Future work 

This chapter presents the conclusions drawn from this project, as well as future work to be 
conducted in the area. The chapter also describes the limitations that affected the project, and how 
this research affects the society. 

 Conclusions 7.1

The first two goals of the thesis project were to investigate transport protocols and the 
characteristics of the transport protocols. These goals were met by investigating several versions of 
TCP. Theoretical investigations were made of older versions of the protocol, as well as two newer 
versions. Experiments using TCP Reno and Cubic TCP over an emulated network with different test 
scenarios were performed and the behavior was analyzed. 

The next goals were to implement and evaluate a proposed network coding solution and to 
demonstrate its capabilities. This was achieved by implementing a system that uses RLNC from the 
Kodo library and evaluated by running tests over emulated network links with high packet loss. The 
addition of a TCP control connection to announce when decoding was completed at the receiver 
proved to not have any effect. 

The last goal was to propose improvements to the concept and the protocols. This goal was met 
by proposing further implementations where the TCP control connection could be useful. 
Discussions of where the different methods might still have problems were provided. 

Some insights that I have gained is that even if the network can provide higher data rates, this 
puts a lot of pressure on the end- user devices. Packet handling puts pressure on the CPU when 
transferring at high link data rates. UDP packet handling did not perform well as the functionality to 
improve it was not implemented in the device driver. Another insight that I have gained is that TCP 
was more dependent upon packet losses than expected. When sending more data, more packet 
losses occur and the transmission is heavily affected. Random packet losses can be crucial to TCP’s 
behavior, ending in low effective throughputs. 

From my experience in this thesis project, I would suggest researchers emulate network 
scenarios instead of performing simulations. Simulations might hide hardware problems that can 
emerge while actually transmitting data between different hosts via real networks. I would also 
suggest as further research combining TCP transmissions with UDP based data transmission. I 
think future solutions can be found in separating logistic information to a TCP flow, while the actual 
data transfer utilizes a UDP flow. 

If I had to do the thesis project again, I would have tried to realize my hardware limitations 
sooner. I feel that I spent more time setting up the testbed than was needed. I should have tried to 
understand the problems that were observed, instead of relying on what other sources claimed that 
the performance should be. 

 Limitations 7.2

The limitations of my results are based upon the limitations of the testbed. The testbed created for 
the project was unable to implement radio link protocols that are used in radio connections to 
reduce the packet losses of transmissions. This limitation made it difficult to make the testbed act as 
a real radio access network. Another limitation was the values that were used to define the 
characteristics of the network links. These values were measured in real networks where congestion 
happens frequently, and most of the packet losses were due to congestion and not from random link 
errors. As RLNC does not implement congestion control, it is unfair to TCP to use these values to 
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compare its performance against RLNC’s performance. An assumption that was made when 
measuring TCPs radio performance was that the packet loss value was from errors in the radio 
environment, and not from congestion on the nodes. This assumption can affect the reliability of the 
comparison of the two methods. However, the final values used were based on average measures 
from real network scenarios. By using average values I was able to see how TCP would act in the 
environment under most of the user cases. Special cases where the RTT and packet loss are very low 
resembles a perfect connection, and cases where the values are very high could resemble a situation 
where the network are broken, or under heavy load. Using special case values does not resemble 
most of the user’s experience, and should not be considered in this thesis project. 

The maximum UDP throughput was lower than the maximum TCP throughput. This limitation 
was due to the network cards, which did not implement functionality for interrupt coalescing when 
using UDP. This problem was explained in Section 4.6.1. 

The result of these limitations made the comparison between TCP and RLNC less accurate, and 
the effect of network congestion needs to be considered when implementing UDP based methods. 

 Future work 7.3

Future work should implement a way of determining the data rate that the sender should transmit. 
This data rate should be based on the receiver’s CPU performance, the current network congestion, 
and the current packet loss rate. 

A need exists to implement better UDP packet handling in hardware to increase the link’s data 
rates when using UDP based methods. One of the limitations of this thesis was the CPU load when 
handling UDP packets.  

 Reflections 7.4

The advantages of developing systems to implement a possible RLNC solution would not be limited 
to economic aspects. Implementing it on the server side can be done by pre-encoding files with 
different settings and storing them. When a connection to a user is initialized, the server would 
retrieve the coded packets for the correct settings based on the receiver and then simply transmit 
the packets. It would not require much computational power from the server except when encoding 
new files that are to be stored. However, more storage would be required as the server would need 
to store more coded packets than the actual data, as well as several different coded packets for 
different transmission settings. The receiving side might suffer from economic aspects due to the 
bad packet handling while using UDP (explained in Section 4.6.1). The OS could not keep up with 
the high throughput packet handling and a lot of CPU power was used to schedule the interrupts. 
This might be a decrease in performance for certain devices and might have to be implemented to 
reach higher throughput.  

This solution would increase the user’s effective data rate over high loss network links and 
provide users and companies with higher throughput. Files would be transferred quicker, without 
the network link throughput suffering from non-congestion related packet losses. This would help 
network providers to reach, or to increase their goals with 5G networks in urban environments. 

The environment could be affected in a positive way by being able to increase network 
throughput through radio. The need for long distance transmission cables would decrease if higher 
throughput were enabled through long distance radio transmissions. The environment would not be 
hurt by the installation of these cables. A negative effect on the environment could be that the power 
consumption increases based on the need for more computational power at nodes. By increasing the 
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computational requirements from RLNC, the need for less extra coded packets to decode are 
needed, and the overall traffic would decrease. 
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Appendix A:  

The following graphs show the throughput received at the receiver of the three RLNC tests presented 
in Section 6.4.3. 

 

 
A-1: Throughput graph of the results of test 1 presented in Table 6-4. The Y-axis shows the number of 

bits/0.1 second. 

 

 
A-2: Throughput graph of the results of test 2 presented in Table 6-4. The Y-axis shows the number of 

bits/0.1 second. 
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A-3: Throughput graph of the results of test 3 presented in Table 6-4. The Y-axis shows the number of 

bits/0.1 second.  
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