
Automatic Log Analysis System
Integration
Message Bus Integration in a Machine
Learning Environment

CARL SVENSSON

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, FIRST LEVEL
STOCKHOLM, SWEDEN 2015

Automatic Log Analysis System
Integration
Message Bus Integration in a
Machine Learning Environment

Carl Svensson

2015-06-08

Bachelor’s thesis

Industrial advisor:
Weixi Li

Examiner and academic advisor:
Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

Ericsson is one of the world's largest providers of communications technology and services. Reliable
networks are important to deliver services that live up to customers' expectations. Tests are
frequently run on Ericsson's systems in order to identify stability problems in their networks. These
tests are not always completely reliable. The logs produced by these tests are gathered and analyzed
to identify abnormal system behavior, especially abnormal behavior that the tests might not have
caught. To automate this analysis process, a machine learning system, called the Awesome
Automatic Log Analysis Application (AALAA), is used at Ericsson's Continuous Integration
Infrastructure (CII)-department to identify problems within the large logs produced by automated
Radio Base Station test loops and processes. AALAA is currently operable in two versions using
different distributed cluster computing platforms: Apache Spark and Apache Hadoop. However, it
needs improvements in its machine-to-machine communication to make this process more
convenient to use. In this thesis, message communication has successfully been implemented in the
AALAA system. The result is a message bus deployed in RabbitMQ that is able to successfully
initiate model training and abnormal log identification through requests, and to handle a
continuous flow of result updates from AALAA.

Keywords

Big Data, Machine learning, Message passing, Machine-to-machine communication

Sammanfattning | iii

Sammanfattning

Ericsson är en av världens största leverantörer av kommunikationsteknologi och tjänster.
Tillförlitliga nätverk är viktigt att tillhandahålla för att kunna leverera tjänster som lever upp till
kundernas förväntningar. Tester körs därför ofta i Ericssons system med syfte att identifiera
stabilitetsproblem som kan uppstå i nätverken. Dessa tester är inte alltid helt tillförlitliga,
producerade testloggar samlas därför in och analyseras för att kunna identifiera onormalt beteende
som testerna inte lyckats hitta. För att automatisera denna analysprocess har ett
maskininlärningssystem utvecklats, Awesome Automatic Log Analysis Application (AALAA). Detta
system används i Ericssons Continuous Integration Infrastructure (CII)-avdelning för att identifiera
problem i stora loggar som producerats av automatiserade Radio Base Station tester. AALAA är för
närvarande funktionellt i två olika versioner av distribuerad klusterberäkning, Apache Spark och
Apache Hadoop, men behöver förbättringar i sin maskin-till-maskin-kommunikation för att göra
dem enklare och effektivare att använda. I denna avhandling har meddelandekommunikation
implementerats som kan kommunicera med flera olika moduler i AALAA. Resultatet är en
meddelandebuss implementerad i RabbitMQ som kan initiera träning av modeller och identifiering
av onormala loggar på begäran, samt hantera ett kontinuerligt flöde av resultatuppdateringar från
pågående beräkningar.

Nyckelord

Big Data, Maskininlärning, Meddelandesändning, Maskin-till-maskin kommunikation

Acknowledgments | v

Acknowledgments

I would like to show my greatest appreciation to my supervisor Weixi Li, manager Jens Wictorinus,
and other colleagues at Ericsson for giving me this opportunity and helping me out during this
thesis. I would also like to thank Professor Gerald Q. Maguire Jr. for giving great advice on the
report writing and supporting me during the thesis process.

Stockholm, June 2015
Carl Svensson

Table of contents | vii

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations xiii
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 1
1.3 Purpose .. 2
1.4 Goals .. 2
1.5 Choice of methodology ... 2
1.6 Delimitations .. 3
1.7 Structure of the thesis .. 3

2 Background .. 5
2.1 Awesome Automatic Log Analysis Application (AALAA) 5

2.1.1 AALAA Core ... 5
2.1.2 AALAA Client .. 6

2.2 RabbitMQ.. 6
2.2.1 Advanced Message Queuing Protocol (AMQP) 7
2.2.2 Open Telecom Platform (OTP) ... 7

2.3 Related work .. 8
2.3.1 Performance evaluation of RESTful web services and the

AMQP protocol ... 8
2.3.2 Building a Scalable Event Processing System with

Messaging and Policies .. 8

3 Methodology .. 9
3.1 Research Process ... 9
3.2 Research Paradigm ... 10
3.3 Data Collection .. 10
3.4 Experimental design ... 10

3.4.1 Test environment .. 10
3.4.2 Hardware/Software to be used 11

3.5 Assessing reliability and validity of the data collected 11
3.5.1 Reliability .. 11
3.5.2 Validity .. 11

3.6 Planned Data Analysis .. 11

8 | Table of contents

3.7 Evaluation framework ... 12
4 Implementation .. 13

4.1 Software design ... 13
4.1.1 Design of the AALAA system .. 13
4.1.2 Design of the Message Bus .. 16

4.2 Software implementation .. 19
4.2.1 AALAA Core implementation .. 19
4.2.2 AALAA Client implementation ... 20

5 Analysis .. 21
5.1 Major results .. 21
5.2 Reliability Analysis .. 23
5.3 Validity Analysis .. 23
5.4 Discussion ... 24

6 Conclusions and Future work .. 25
6.1 Conclusions ... 25
6.2 Limitations ... 26
6.3 Future work .. 26
6.4 Reflections ... 26

References ... 27

List of Figures | ix

List of Figures

Figure 2-1: Overview of the AALAA Core [3] ... 6
Figure 2-2: Simple example of how messages can be routed through

RabbitMQ [16] .. 7
Figure 4-1: Planned architechture of the AALAA system 15
Figure 4-2: Example of a request message sent to the AALAA Core 18
Figure 4-3: Example of a progression update message sent from the

AALAA Core .. 18
Figure 4-4: More detailed overview of the implemented message bus

including flow of events .. 18
Figure 5-1: Time to initiate request in AALAA core based on message

size .. 22

List of Tables | xi

List of Tables

Table 3-1: Hardware specifications of the used test bed 11
Table 5-1: Time to initiate request in AALAA core based on message

size. 95% confidence level applied. ... 21
Table 5-2: Difference checks for a predict action between the old and

new Spark cores ... 22
Table 5-3: Difference checks for a predict action between the old and

new Hadoop core ... 23

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

AALAA Awesome Automatic Log Analysis Application
AMQP Advanced Message Queuing Protocol
CI Continuous Integration
CII Continuous Integration Infrastructure
JSON JavaScript Object Notation
MOM Message Oriented Middleware
OTP Open Telecom Platform
RBS Radio Base Station
REST Representational State Transfer
RRS Result Reporting System
UUID Universally Unique Identifier

Introduction | 1

1 Introduction

Big data is a term associated with large and complex data sets that are inconvenient to process with
traditional methods. Such data sets have recently become an interesting area for analysis. Today
many companies are using analytic methods on big data to identify possible improvements for
various kinds of appliances [1]. Ericsson, as a world leading provider of communications technology
and services, every day faces challenges in delivering high-performing & cost-efficient networks and
infrastructure [2]. Automated test loops and processes are regularly run within their networks to
identify errors. However, it has been shown that it is very hard to write sufficient test cases to
identify all abnormal behavior in these test runs. Because of this, large amounts of valuable log data
from performed tests are used by Ericsson's CII-department to improve the whole testing process by
using this data as input to an automatic machine learning system. This systems is called the
Awesome Automatic Log Analysis Application (AALAA) [3]. By using a self-learning system to
process large quantities of logs, abnormal behavior in logs that are similar to known faults can be
identified [3].

This thesis project was carried out at Ericsson. It aims at implementing a message bus that will
be capable of communicating with two different distributed clustered computing implementations
of the AALAA system: Apache Hadoop and Apache Spark. This communication will be improved by
implementing message communication, rather than the earlier polling approach when initiating
requests and retrieving progression updates from ongoing calculations.

1.1 Background

The AALAA-system is divided into two main parts: AALAA Client and AALAA Core. The client is
responsible for initiating requests in the core. The core applies machine learning techniques on
provided logs. Two different versions of the core have been implemented. The first version is based
on Apache Hadoop and the second one is based on Apache Spark. Apache Hadoop is an open source
framework that allows distributed processing of big data across clusters of computers. It uses two
main components in its implementation: the Hadoop Distributed File System (HDFS) for storage
and the programming model MapReduce for processing [4]. Apache Spark is an open source
framework similar to Hadoop, however rather than using a disk-based MapReduce model, it allows
data to be directly loaded into memory for repeated queries [5]. This provides quicker processing of
data that is regularly accessed in the clusters, with a speedup of up to 100x in memory performance
and 10x in disk performance [6]. The initial version of the core was implemented in Hadoop [3], but
because the performance was insufficient (mainly due to sequential executions and several passes of
input data stored on disk) a Spark version was developed [7].

1.2 Problem definition

At present, both Hadoop and Spark versions of the AALAA Core are implemented. A REST-service
is currently used to communicate between the AALAA Client to remotely initiate requests in the
Hadoop core, while the Spark core currently is standalone – hence it requires manual initiation. The
results computed by the Hadoop version are stored in a database deployed using MongoDB, while
the results of the Spark version are stored in a local output file. The problem addressed in this thesis
project is to integrate the client with both the Hadoop and Spark versions of the core using a
RabbitMQ message bus. This will enable request initiations using input data provided by the client,
such as logs to be processed, along with the training or prediction action that will be used to process
this data. The message bus should also be used to update results continuously to the initiating client

2 | Introduction

– i.e., the client should receive outputs as the computation progresses. The final results should be
stored by the client into a MongoDB database.

1.3 Purpose

The aim of this thesis project is to investigate how a machine learning system for big data handling
can be expanded & improved, as well as to reflect on the chosen implementation and how the
expansion will affect the usage of the system. The purpose of the project is to improve AALAA by
implementing a better communication method in order to enable the users of the system to choose
which version of the AALAA Core to use when they send a request.

1.4 Goals

The main goal is to enable the user to send requests destined for either or both versions of the
AALAA Core. These requests will be handled instantly if resources are available. Collecting results
and visualizing the data is an important part of this goal. This goal will be achieved by adapting both
the initiating client and the current versions of the cores to be compatible with a message bus.

The following sub-goals were defined for the project:

1. Understand the current implementation of the Hadoop and Spark cores,

2. Integrate both versions of the core with a message bus,

3. Listen to new test data by integrating the client with a Result Reporting System (RRS),

4. Modify the client to be able to initiate requests and receive results,

5. Enable results updating in MongoDB through the client,

6. Combine all of the above parts and deploy the system,

7. Evaluate the resulting system.

1.5 Choice of methodology

The selection of paradigm for designing, implementing, and evaluating the solution developed in
this thesis fell on a Design Science oriented approach. Design Science is a methodology within
information systems that focuses on how to solve important problems in an unique way or how to
improve existent solutions in a more efficient way [8]. This proved to be a relevant methodology
since the main goal was to improve the AALAA system in terms of design and implementation in
order to achieve better functionality and better performance. This approach made use of both
qualitative and quantitative methods for defining the objective of the solution and to evaluate the
proposed solution through functional correctness and performance tests. The questions to be
addressed by the implemented artifact are: (1) Does the proposed solution solve the defined
problem? and (2) Is the solution sufficient in terms of performance?

An agile programming methodology was used while developing all of the software relevant to
the proposed solution. The agile programming methodology is commonly used within software
development when adaptive planning, continuous improvement, and flexible response to changes
are emphasized [9]. Important advantages associated with this programming method is that a
minimal amount of administrative overhead is incurred while planning and executing the work, and
throughout the entire process receiving constant feedback from the product’s owners regarding the
implemented parts. Agile is also convenient to use because of its ability to be tailored to meet the
different needs of a project. For example, since this project was carried out by a single developer,

Introduction | 3

only the relevant and applicable parts of the agile method were utilized. The core agile features used
while developing the software consisted of a backlog with tasks to implement, a schedule with
weekly goals, and an iterative approach with small steps at a time.

A possible methodology for software development that was not chosen for this project is the
waterfall model. This method is based on a sequential approach in contrast to agile's iterative
approach, which makes it less flexible and less open to changes during the development process.
The name waterfall comes from the following five steps that are executed in sequential order during
the development process: requirements, design, implementation, verification, and
maintenance [10]. The waterfall methodology was not considered appropriate for this thesis project
because of its large overhead, complex process, and inability to respond to rapid changes.

1.6 Delimitations

This thesis will focus on improving communication between the AALAA Client and the AALAA Core,
and to improve the functionality of the client. The overall logic and structure of the core will not be
changed, and no improvements will be made to the performance related to the training or
prediction algorithms (these are described in Section 2.1).

1.7 Structure of the thesis

Chapter 2 describes the background areas that might be relevant in order to understand this
thesis. Chapter 3 describes the methodology used while implementing and testing the artifact.
Chapter 4 presents the design decisions and implementation steps taken while developing the
artifact. Chapter 5 analyzes the work that has been done by presenting collected data and
evaluating the artifact. Chapter 6 presents conclusions drawn from this project and also presents
work that has been left for the future.

Background | 5

2 Background

This chapter will give background information of areas that might be relevant in order to
understand this thesis. In Section 2.1, a basic overview of AALAA will be given to present some of
the characteristics, architecture, and functionality of the current system. Section 2.2 explains the
message broker software by going into those details of RabbitMQ that were relevant for the
machine-to-machine communication in the implemented artifact. Section 2.3 presents some related
work on message bus implementations in larger systems.

2.1 Awesome Automatic Log Analysis Application (AALAA)

AALAA was developed at Ericsson as an attempt to solve the time consuming task of manually
identifying abnormal logs collected from Radio Base Station (RBS) test runs. As described in
Section 1.1, these tests are regularly run within Ericsson’s continuous integrated (CI) systems in
order to identify failed runs. However, these tests do not always find all of the faults.

AALAA consists of a client and a core, where the core is responsible for machine learning and
the client is responsible of sending out requests to the core and receiving updates regarding the
core’s progress. The core was developed in two different versions: Hadoop and Spark. The core
trains models by processing large batches of logs where the test outcomes are known, and tries to
identify abnormal logs from other logs based on these models. The AALAA Core is described in
Section 2.1.1 and the previous architecture of the AALAA Client is described in Section 2.1.2.

2.1.1 AALAA Core

Each AALAA Core version has two main modes available for execution: training and prediction. The
training phase takes a batch of log files produced by test runs where the outcome of the tests are
known and the status of each log is provided as passed or failed. From these logs, the algorithm
builds a model by executing three steps:

1. Feature extraction – From each log file, information that serves as a base for the training
is extracted. This data consists for example of text character occurrences, timestamp
statistics, and word counts. Most of the potential improvements to the machine learning
algorithm should be found here, enabling faulty logs to be more easily be identified by
extracting the correct features.

2. Feature transformation – In this step, data normalization and dimensionality reduction
are performed on the extracted features. Normalization is done in order to provide
consistent statistical properties throughout the whole data set (as otherwise differences in
values might be too great). Reduction is used to remove irrelevant values from the features
that have been extracted, as otherwise the number of extracted attributes could be quite
large.

3. Learning a model – The feature data is used by a variant of Self-Organizing Feature Map
(SOFM) [11] to output a model. This model is used later together with the prediction
algorithm.

The prediction phase uses a set of logs to predict which the abnormal logs are in that set. This
prediction is compared for all logs with the best model created during a training phase, where the
choice of the model is based on a scoring system called F-score that uses k-fold cross validation [12].
All logs in a set that have been classified as abnormal by the prediction algorithm are produced as
output. Figure 2-1 (Weixi Li 2013 [3]) shows the steps taken while performing a training or
prediction action.

6 | Background

2.1.2 AALAA Client

The previous AALAA Client consisted of three different modules: a Log Collector, a Train Client,
and a Prediction Client. The Log collector is responsible for copying the raw logs that will be used by
AALAA for its calculations. The Train client is used to initiate training requests to the core, while the
prediction client is used to initiate prediction requests to the core. Information about batches of logs
is polled every 10 minutes from a system called RRS. RRS uploads log data produced by a test case
when the test case has completed. When the train or prediction client discovers a new test case, then
the information needed for initiating a train or predict request to the core is stored through a REST-
service into a database from which the core will subsequently poll for this data. Once certain
milestones for calculations in the core have been reached, the same database will be updated with
progress results directly from the core. Currently, only the Hadoop Core is integrated with the
client. Further information on this will be presented in Section 4.1 starting on page 13.

2.2 RabbitMQ

RabbitMQ is a message broker written in Erlang for the purpose of translating messages from a
sending protocol to a receiving protocol [13]. Message brokers are a core part of the Message
Oriented Middleware (MOM) infrastructure and acts as a pattern for validating, transforming, and
routing data [14]. RabbitMQ uses message passing, which in our appliance means abstracting the
AALAA Client from the AALAA Core by implementing a bus with listeners that continuously listen
to a flow of messages between different parts of the system. In contrast with polling that relies on
waiting for another device to change state before continuing, message passing allows the producer

Figure 2-1: Overview of the AALAA Core [3]

Background | 7

to send a message and then continue on as normal. It relies on the receiver of the message to take
the necessary actions. RabbitMQ uses the standard protocol called “Advanced Message Queuing
Protocol” (AMQP) for message passing and the Open Telecom Platform (OTP) for its server
implementation. These two components are further described in Sections 2.2.1 and 2.2.2.

2.2.1 Advanced Message Queuing Protocol (AMQP)

AMQP is a standard used to enable message brokering applications to send messages between a
wide variety of systems with different designs [15]. This protocol consists mainly of rules defined in
a theoretical manner that applications should follow. The goal for AMQP is to enable clients and
messaging middleware to communicate without needing to know anything about each other’s
internal design. This protocol standardizes message passing on an enterprise scale and creates a
mutual ground for information exchange. AMQP is typically preferred when high quality, reliable,
and safe message delivery is required. By ensuring rapid delivery with message acknowledgements,
AMQP has proved to be an ideal standard for asynchronous messaging with multiple senders and
recipients [15].

RabbitMQ makes use of AMQP by having senders publish their messages to an exchange (which
can be seen as a mailbox). The exchange sends copies of these message to one or more predefined
queues by using an internal set of rules. Any producer that is connected to a queue can at any time
pull a message that has been delivered to that queue. Multiple consumers can subscribe to the same
queue, enabling work to be distributed in parallel over a set of workers [16]. A simple example of
message routing can be seen in Figure 2-2 [16].

2.2.2 Open Telecom Platform (OTP)

OTP is an open source release of Erlang released by Ericsson [17]. It consists of three different
components: the Erlang language itself, libraries with interfaces & tools, and a package of design
principles [18]. The main goal of OTP is to provide a platform for developing uniform applications
and systems with a common structure that enables easy scaling of systems in a fault tolerant way.
OTP is known for its concurrent method of handling tasks, while at the same time providing high
reliability. RabbitMQ makes use of OTP in the implementation of its server, thus it can take
advantage of these characteristics.

This project utilizes RabbitMQ to implement message communication between the AALAA
Client and Core. Message bus controllers are implemented in both the client and the core to enable

Figure 2-2: Simple example of how messages can be routed through RabbitMQ [16]

8 | Background

request initiations and to receive results. A further description of this architecture and
implementation can be found in Chapter 4.

2.3 Related work

This section will present related work connected to messaging in larger systems, particularly those
using the AMQP protocol. Many examples can be found in the research literature. In this section
two relevant appliances are presented.

2.3.1 Performance evaluation of RESTful web services and the AMQP protocol

Joel L. Fernandes et al. presented a conference paper in which performance evaluations of RESTful
web services were compared to the AMQP protocol [19]. Their intention was to solve the problem of
simultaneously sending massive quantities of data to databases via REST services – as this can have
a large negative impact on a system’s general performance [19]. Their goal was to address this
problem by proposing a new solution that sent messages over AMQP. Tests showed that the best
architecture for exchanging large amounts of data between these two services was to setup a
RabbitMQ server, use a Back-End service to receive messages from RabbitMQ queues and to store
these messages in a database. This proposed architecture is similar to the planned architecture for a
tracker module in the AALAA Client, where progression updates will be tracked and routed into
databases, rather than having the cores directly communicating with these databases.

This work relates to both REST and AMQP. Both are parts of the task that is to be researched in
this thesis project. The previous way of communication in AALAA was through a REST service
storing results into a database when the client wanted to initiate training or prediction requests. The
proposed new method of communication is to integrate RabbitMQ and to makes use of the AMQP
protocol, as was described in Section 2.2.

2.3.2 Building a Scalable Event Processing System with Messaging and Policies

Sumit Dawar et al. presents a policy based event system which they designed and implemented as a
scalable solution for handling a large number of events in a telecommunication environment [20].
Their solution implements message passing using RabbitMQ. In this distributed system, several
components were connected to a message bus which makes it relevant to the appliance in this thesis
as they share some modular characteristics. The purpose of the implementation in their research
was to listen to events. This will also be the case in out proposed solution for AALAA as we expect
the client to listen for test case completion events from the RRS system. The result of their research
was a system that could handle more than 1 million events per second. Their work provides
additional proof that RabbitMQ can realize high performing middleware for message routing,
although AALAA currently does not require this high a throughput*.

* Tests are currently run hourly, daily, and weekly. This means approximately hundred possible events each week.

Methodology | 9

3 Methodology

The purpose of this chapter is to provide an overview of the research method used in this thesis.
Section 3.1 describes the research process. Section 3.2 details the research paradigm. Section 3.3
focuses on the data collection techniques used for this research. Section 3.4 describes the
experimental design. Section 3.5 explains the techniques used to evaluate the reliability and validity
of the data collected. Section 3.6 describes the method used for the data analysis. Finally, Section 3.7
describes the framework selected to evaluate the implemented solution.

3.1 Research Process

The Design Science methodology used during the research process was based on a six step model
presented in “The Design Science Research Process: A Model for Producing And Presenting
Information Systems Research” by lead authors Ken Peffers and Tuure Tuunanen[21]. The steps of
this model were carried out sequentially as is natural for this methodology. Below, a description of
each of these steps is given, while also presenting the work process that was carried out and applied
to each step.

1. Problem identification and motivation – The defined problem was identified and
researched in order to obtain a better understanding of its scope and complexity. Once a
sufficient understanding of the problem had been achieved, its importance motivated
further work.

2. Objectives of the solution – Objectives of a potential solution to the problem were
addressed to classify the problem either as qualitative or quantitative problem. A
combination of these two paradigms was chosen since the solution needed both types of
analysis to improve the current implementation of AALAA and to integrate new
modules and functionality not previously present.

3. Design and development – The artifact was designed and implemented according to
agile methods by using an iterative process throughout the development. The problem
was divided into smaller tasks, where each task was separately implemented and
evaluated. Once all of these tasks had been solved, they were put together to provide a
complete solution for the defined problem.

4. Demonstration – The proposed solution was demonstrated through tests of
functional correctness and performance by comparing the new AALAA with the old
AALAA. New functionality that was previously not present was demonstrated through
experiments.

5. Evaluation – The artifact was investigated in terms of functionality by evaluating the
results of the tests performed in a demonstration. These results were compared with the
previous version of AALAA and conclusions were drawn as to whether the new
functionality and performance was sufficient to offer as a proposed solution or not.

6. Communication – The work carried out during the five previous steps is presented in
this these to communicate the problem’s importance and by presenting an artifact that
suffices as a proposed solution.

10 | Methodology

3.2 Research Paradigm

The research paradigm associated with this project is of both a qualitative and quantitative type.
This problem is fairly unique since the implementations needs to be tailored to suit the
requirements of the currently implemented AALAA system. This includes changing existing
modules, implementing new modules, and improving the method of communication; while still
maintain the underlying functionality. Little research has been found where a problem of the same
characteristics has been solved. All of the relevant information needed for building a solution was
gathered from a wide arrange of sources. An inductive approach will be applied while researching
background areas, a deductive approach will then be used to evaluate this research and to construct
a solution that will be tested in terms of functional correctness and performance (specifically
throughput).

3.3 Data Collection

The data needed to prove that the solution is feasible will be collected from tests of functional
correctness and performance of the implemented artifact. Gathering proof of functional correctness
is the most important part in order to ensure that the core functionality of the machine learning
algorithms remains the same, even after the message bus has been implemented. It is also
important to prove that the results received by the AALAA Client are correct and identical to the
direct output of the AALAA Core. Data to prove functional correctness will be collected by running
difference checks (comparisons) between the output data from the previous standalone versions of
the program and the new version of the system. Comparisons will also be made of the direct output
from the core and the messages received by the client. Performance data will be collected by
measuring the time it takes to initiate a request to the core via the message bus and to receive a
result. A sufficient number of tests will be made to compute average values, with a desired
confidence interval of 95%. Since the standard deviation between observed test runs were
moderately large (ca ± 25%), a larger amount of test runs (100) was chosen and applied for each test
case. These results will be presented in Section 5.1.

3.4 Experimental design

This section describes the test environment in which all of the tests were performed. Specifications
are given for all hardware, software, and data used for these tests.

3.4.1 Test environment

The tests were carried out in an environment present at Ericsson that consisted of a cluster with
three different machines. These three machines were divided into one master node and two slave
nodes. Both the AALAA Client and the AALAA Core were deployed in this cluster. The client
operated in the master node and the core was operable in all three nodes. The requirement of having
slave nodes for this implementation is due to the fact that the core uses the Apache Spark and
Apache Hadoop cluster frameworks to speed up big data computations. Both the RabbitMQ
message bus and the MongoDB databases used to store results were deployed in the master mode.
The logs required for testing consisted of a rather small test set (~232MB in size). This was
considered sufficient to test the message bus implementation. Larger quantities of logs have
previously been used for testing the machine learning algorithms in the core, therefore using large
logs was not considered a requirement for the testing in this thesis. This was advantageous due to
long processing times when dealing with large logs [3,7].

Methodology | 11

3.4.2 Hardware/Software to be used

The hardware specifications for all three nodes can be found in Table 3-1.

Table 3-1: Hardware specifications of the used test bed

Machine CPU Memory OS

Master node Intel Xeon X5660 @
2.80GHz, 6 cores

32 GB SUSE Linux
Enterprise Server 11,
64 bit

Slave node 1 Intel Xeon X5660 @
2.80GHz, 6 cores

16 GB SUSE Linux
Enterprise Server 11,
64 bit

Slave node 2 2x Intel Xeon X5660
@ 2.80GHz, 6 cores

16 GB SUSE Linux
Enterprise Server 11,
64 bit

The software used while testing included the Spark and Hadoop frameworks installed on all
three nodes for performing clustered machine learning in the AALAA Core. A RabbitMQ server was
installed in the master node - where the message bus was also deployed. Further information about
the structure of this message bus can be found in Section 4.1.2. Two MongoDB databases were
installed in the master node for storing result updates coming from the communication with the
AALAA Client. The three modules used for testing the implementation: Spark core, Hadoop core,
and AALAA-Tracker (part of the client) - were all compiled with Maven [22] and run as .jar (Java
Archive) files.

3.5 Assessing reliability and validity of the data collected

This section describes how the reliability and validity of the collected data can be assessed.

3.5.1 Reliability

Reliability of the data will be achieved by performing multiple test runs using the same parameters
for each test case. Any differences in results will be evaluated and the final results that are collected
will be presented as average values computed over the combined data. Parameters that might affect
reliability (such as time differences when sending messages of varying sizes) will also be evaluated.

3.5.2 Validity

Validity will be assessed to ensure that the tests actually targets those areas that we intended to
measure. This will be done by evaluating whether the test cases are sufficient to prove that the
system is reliable and whether these test cases establish a suitable framework for measuring the
system’s intended functionality and performance.

3.6 Planned Data Analysis

Data analysis of the collected data regarding its performance will be done by presenting the average
times from multiple runs of each test case. These results will be compared to the old polling method
of processing requests. Conclusions will hopefully be reached as to whether the newly implemented
artifact improves the system’s performance and functionality or not.

12 | Methodology

While evaluating the functional correctness of the implementation, any differences in output
between the old and the new system will be investigated to find and fix the root cause. Discoveries of
such differences will be presented in the analysis chapter together with information about what the
problem was and what done to solve it.

3.7 Evaluation framework

The previous AALAA-system was only partly integrated with the Hadoop core using remote request
initiated by the client. This earlier implementation used polling to initiate requests which proved to
be inconvenient due to the long times before a request could be processed by the core. The proposed
solution enable full integration with the client for both the Spark and Hadoop versions of the core. A
message bus is used to initiate fast requests in both versions of the core and also to send fast
progression updates back to the client. The convenience of using the new system will be evaluated
by comparing it with the performance and functionality of the old system. Parameters will be
accounted for, such as the improved functionality due to the additional integrated modules, as well
as the advantages of using a message bus rather than polling.

Implementation | 13

4 Implementation

This section will give an overview of the software that was implemented during this thesis project. It
describes the main design decisions that were taken concerning the overall system architecture, as
well details about more specific program functionality and how both expected and unexpected
problems were solved. Section 4.1 describes the design decisions taken for the system as a whole and
for the message bus that was built. Section 4.2 describes in greater detail how the software was
implemented, while giving details of the modules connected to the message bus and their
functionality.

4.1 Software design

This section describes the architecture of the proposed software solution. Section 4.1.1 describes the
design that was planned for the AALAA-System. Section 4.1.2 gives more details of the design of the
message bus, in particular describing the architecture of the message exchange that was built and
the format of the messages routed through it.

The design of the software was made with regard to the initial requirements that were
predefined for this project. The requirements that the design was based on, and possibly limited by,
were (1) that a message bus should be implemented and (2) that multiple modules needed to be
integrated with this message bus in order to maintain full functionality of the AALAA system. There
was a requirement to maintain the current system’s functionality, but also the aim was to provide
extended functionality by integrating modules that previously were not integrated. Since all of the
modules needed a message broker compatible with all parts, RabbitMQ was initially proposed as the
middleware for the message bus. Further research on both the system and the general
characteristics of RabbitMQ showed that RabbitMQ would provide a suitable solution, mainly due
to its flexibility, publish-subscribe like structure, and near guarantee of fail-proof delivery [13]. Its
appliance in the developed artifact was motivated by conducting research to find out if it would
suffice to solve the targeted problem or not. These motivations were done by looking at related work
that had been done with AMQP and RabbitMQ before (Section 2.3).

For the overall architecture, a proposal was laid out by Ericsson (most of which can be seen in
Figure 4-1). This proposal was broadly followed, design decisions that was taken concerned the
specific parts of this architecture. Decisions had to be made for example on module architecture,
message bus structure and message formats. Most of the main design decisions were made in
agreement with my supervisor and others at Ericsson with insight into the problem.

4.1.1 Design of the AALAA system

As can be seen in Figure 4-1 (on page 15), the proposed solution is based on a message bus
implemented in RabbitMQ. This message bus connects an upper part, the AALAA Client, and a
bottom part, the AALAA Core. The client is responsible for sending requests to be handled by the
core and to receive continuous progress updates and results from the core as the calculations
progress. The AALAA Client also handles all communication with the database for storage of
progress updates and results. The core implements the machine learning techniques and does so by
receiving either a training or a prediction request together with parameters (such as a batch of logs
and a model type). Based on this input the core will then process the logs while continuously
providing progress updates and results back to the client.

14 | Implementation

4.1.1.1 AALAA Core

AALAA consists of two different versions of the core, one implemented in Apache Spark and one
implemented in Apache Hadoop. The Hadoop version was previously integrated with a REST-
service for manual polling of requests from a database at certain time intervals, while the Spark
version was standalone and could only be executed manually. A requirement of the new architecture
was to integrate both modules with a message bus so that the monitoring client could initiate
requests to either or both modules and fetch calculation updates and results for storage into a
database. The Spark and Hadoop modules were implemented by different developers at different
times. It was discovered that both of these core modules would require specific modifications in
order to support the new message bus architecture.

4.1.1.2 AALAA Client

The approach for designing the client was different from the approach for designing the core, since
the client’s structure needed to be changed by not only changing the existent modules, but also by
implementing new modules. The old client retrieved log paths for a completed test case, collected
these logs, and decided whether to train or predict based on whether a model for that test case was
already stored. The requested information would be stored into a database that the Hadoop version
of the core would poll information from. The new client implements message communication to
initiate executions in the core by providing log paths and a train or predict parameter in a message
routed through the message bus. Logs still need to be collected by a separate module (Log
Collector). However, the module tracking completed test cases in the RRS system for core-
initiations (RRS MB Controller) requires changes in order to support message communication.

Finally, a tracker responsible for listening for progress updates from the AALAA Core needed to
be developed (this tracker is called AALAA-Tracker). The tracker’s sole responsibility is to route
progress updates to the correct database (Spark-DB or Hadoop-DB). These update results from the
calculations are done to satisfy a request from the requesting client. Thus it later provides
information to the RRS MB Controller to decide whether to send training or prediction requests.
Due to the limited duration of this thesis project, only the AALAA-Tracker was implemented in the
client. When testing the system, request messages to initiate core executions were manually
provided directly into the message bus web interface.

4.1.1.3 Message Bus Controllers

AALAA requires reliable communication between different modules (as described in Section 4.1 and
4.2). This communication had to be handled by controllers that could route messages between these
modules via the message bus. These controllers needed the functionality of opening connections
with the message bus and to provide functions for modules to send and receive messages. The main
principles that shaped the architecture of the controllers were to: (1) Maintain a uniform structure
and (2) Make the implementation simple. Therefore, it was convenient to make the design for the
controllers’ uniform by implementing a single version of a controller and deploying it as an instance
in each module. Only small adjustments were made to each controller to satisfy specific module
requirements. By doing so, similar behavior on each side of the message bus could be guaranteed,
while at the same time simplifying the logic by abstracting the controllers from the modules. Since
most of the modules that existed were implemented in Java, a decision was made to implement all
of the controllers in Java as well. The only exception was the Spark AALAA Core module that was
written in Scala [23]. However, since Scala is based on Java and provides Java support, a Java
version of the controller could easily be integrated and used with the Scala code. An overview of the
message bus integration can be seen in Figure 4-1.

Implementation | 15

Figure 4-1: Planned architechture of the AALAA system

16 | Implementation

4.1.2 Design of the Message Bus

Designing the message bus was an important part of the process of constructing the system’s
architecture. A good design would facilitate communication between all of the modules, therefore a
lot of thought was put into this design. Figure 4-4 (on page 18) illustrates a more detailed version of
the AALAA system that actually was implemented, including a more detailed overview of how the
message bus was constructed. The main decisions that had to be done concerning the message bus
were: (1) How to set up the message queues and (2) How to design the message formats. As stated
previously, the message bus was implemented in RabbitMQ and the selected message format was
JavaScript Object Notation (JSON). This message format was selected because it provided an easy
and uniform way to interpreting messages in all modules. JSON is also used with MongoDB, so by
using this format, messages could be dumped into the databases without having to make any re-
formatting.

A first stage of designing message busses in RabbitMQ is to set up an exchange. As described in
Section 2.2, an exchange is where all messages that wish to be routed are sent to. The exchange
decides where to route the incoming messages based on an attached routing key that specifies which
queue the message are to be sent to. The implemented message bus consists of one exchange that is
bound to four different message queues. Figure 4-4 explains how the message flow works in the
implemented artifact. A decision was made to separate the Spark and Hadoop versions of the core
when designing the queues. This was done because the different core versions are separate
programs and thus it was natural to utilize separate Message Bus Controllers in their
implementations. It also seemed to be reasonable to separate them as a client can route a request to
either or both of these core versions.

4.1.2.1 Message Bus structure

Each message bus controller in the AALAA Core is attached to two different message queues, one for
incoming messages and one for outgoing messages. As the bus controllers are listening to separate
incoming message queues, the message sender must provide the correct routing key when sending a
request to the exchange. This structure greatly simplifies the implementation of the core modules,
as all incoming messages from a queue can be consumed without needing to check if the content of
this message is designated for this module or not. The decision to use separate outgoing message
queues to be consumed by the AALAA-Tracker was not as easy to make since both queues would
make use of the same consumer. Before making this decisions several things had to be taken into
consideration, mainly looking at how the AALAA-Tracker would operate and how it would process
the messages it was to consume.

It was decided that the AALAA-Tracker was to communicate with two different databases, one
storing updates from the Hadoop version (Hadoop-DB) and one storing updates from the Spark
version (Spark-DB). By listening to two separate queues that were each configured to dump
messages into the database designated for that queue, two instances of the tracker could be spawned
as two different threads and each thread could update its designated database concurrently. This
was considered to be a good programming model as it offered good error-tracing abilities, while
enabling potential future expansions by adding additional queues and spawning additional threads.

4.1.2.2 Message format

While designing the format of the messages to be routed through the message bus, both decisions
about the format and message contents had to be made. JSON was selected as the format mainly
due to its lightweight format and easy readability. This decision was considered especially
appropriate since only a relatively small amount of information needed to be transferred within the
messages. The Message Bus Controllers were implemented in Java and Java provides good libraries

Implementation | 17

to process JSON-formatted data. While designing the contents of the messages, it was important to
understand what information was required to initiate executions in the core and what information
was to be sent back as results. When requesting a train or predict action in the core, only one
message is sent with the information necessary to initiate the execution. Progress updates were to be
sent back to the client during execution with information about the request’s current state. These
messages were designed to be sent continuously from the core to the tracker since the requested
calculations can sometimes take a long time. On completion of an execution task in the core, a final
message is sent along with the results produced by the requested action.

A basic example of the message format for incoming requests to the core is presented in Figure
4-2. Figure 4-3 shows an example of what a progress update message could look like.

18 | Implementation

Figure 4-2: Example of a request message sent to the AALAA Core

Figure 4-3: Example of a progression update message sent from the AALAA Core

Figure 4-4: More detailed overview of the implemented message bus including flow of events

Implementation | 19

4.2 Software implementation

This section describes the actual implementation of the software based on the architecture defined
in Section 4.1. Section 4.2.1 describes the main decisions made while modifying the AALAA Core
and its associated message bus controllers. Section 4.2.2 goes into detail about the work that was
done when changing the AALAA Client to support the new architecture. This section also describes
what parts of the client were implemented and what parts were left for future work.

4.2.1 AALAA Core implementation

The implementation of the AALAA Core mainly consisted of modifying the two existing machine
learning modules (i.e., the already implemented versions of the core for Spark and Hadoop). The
work started by (1) Identifying how the new message bus controllers could be integrated with the
existing code and (2) Locating what data that needed to be extracted from the calculations in order
to send back relevant progress update messages. The message bus controllers for both core versions
were implemented as its own Java class. The main function of this class is to communicate with
their individually assigned message bus queues for immediate message retrieval and to send back
progress updates to the requesting client via a specified exchange. The configuration for host, port,
message queues, and exchange of messages via the message bus is provided in a configuration file
for both versions. The modules read this information and pass it to their controllers in order to open
the required connections. A helper class was implemented for each version of the core to interpret
and translate incoming and outgoing JSON-formatted messages.

The trickiest part of the implementation was to connect the modules to their associated message
bus controllers in a way that would not require major modifications to the modules themselves. The
implementation philosophy was to change the existent modules as little as possible in order to avoid
any interference with their current functionality. The modules were designed to start by listening to
their assigned message bus queues. Once a message is received by a controller, the module makes
use of the helper class to extract the necessary information from the incoming message. For
example, this information will indicate whether this is a training or prediction message –hence
initiating the requested processing and indicating what logs would be used for these calculations.

Once a train or predict action was started in the core, certain milestones throughout the
calculations would be tracked in order to send progress updates through the controller to the
specified exchange when a milestone was reached. A routing key was attached to each update
message so that the exchange in the message bus would be able to route it to its corresponding
response queue (i.e., the queue listened to by the AALAA-Tracker). Progress updates were used
rather than sending back one large message at the completion of the request because of calculations
on large batches of logs that might take hours to complete. By continuously sending updates back to
the client and storing the results into a database, the current progress of a calculation using a
certain model could be checked at any time by looking in the database.

Implementing the above steps was different for the Spark and the Hadoop versions of the core.
The old version of the Hadoop module was already polling for initiation requests from a database
and stored progress updates directly into this database during its calculations. Changing this
module to support message communication consisted mostly of listening to a message queue rather
than polling from a database and redirecting progress updates to a message bus exchange rather
than storing them directly in the database. The Spark version was a standalone program using
manual requests and did not communicate with any database to store its results. Therefore, this
module had to be changed to take its parameters from a message while identifying and extracting
the data required for progress updates.

20 | Implementation

4.2.2 AALAA Client implementation

Some parts of the AALAA-Client were not implemented due to the limited duration of this thesis
project. Figure 4-1 describes what was planned and Figure 4-4 gives a good overview of what the
final version of AALAA actually looked like. For the client, the AALAA-Tracker was implemented
while the RRS MB Controller and the Log Collector were left for future work.

The AALAA-Tracker was implemented in Java. Its purpose was to listen to progress update
messages sent by the core during calculations and to store this information into a database. This
module did not exist, hence it had to be implemented from scratch. The message bus controller
associated with the tracker only needed to be able to listen for messages. For this reason no
outgoing message functionality was provided. As described in Section 4.1.2.1, one thread was
assigned to each of the two queues receiving messages from the AALAA Core. This simplified the
implementation by having the cores read the necessary configuration for these queues and
databases from a configuration file. This information is passed as parameters when spawning the
threads. Once spawned, the threads listen to their assigned queues and on the arrival of a message
the thread executes the following actions (in order): (1) read an incoming message, (2) extract the
attached UUID, and (3) route the progress update to the associated entry, i.e. the entry with the
same UUID in the database.

As the RRS MB Controller was not implemented, normal requests cannot be sent to initiate
requests (as they would be in real deployment). For this reason messages were manually
constructed and injected directly into the exchange through a web interface in order to initiate
executions in the core. The RRS MB Controller would listen to messages broadcasted by the RRS, a
system used for reporting test results and sending information about each finished test case. Once a
finished test case message is received, the logs would be collected through the Log Collector. The
RRS MB Controller would then extract these log paths and automatically initiate a training or
prediction request in one or more of the AALAA cores and it would provide the appropriate action
and log paths in the request message. This part of the implementation had the lowest priority to
complete because the development team already had good knowledge of this part of the system in
contrast with the other parts. For this reason these two components were left to be completed later.

Analysis | 21

5 Analysis

This section presents the major results collected from the experiments that were carried out on the
implemented artifact (see Section 5.1). Two major areas was examined during the evaluation: (1)
Does the solution solve the defined problem and (2) Is the solution sufficient in terms of
performance. To evaluate (1), a qualitative analysis was performed by reasoning about whether the
implemented artifact’s functionality would suffice as a valid solution or not. This will be discussed in
Section 5.4. For (2), a quantitative analysis was done by collecting data from several test cases
covering performance and functional correctness aspects of the implementation.

5.1 Major results

In this section, any data collected connected to performance and correctness tests will be presented.
Table 5-1 shows the average time consumption for sending and receiving messages through the
implemented RabbitMQ bus depending on the size of the sent message. This provides as a sufficient
test for measuring how long it would take to initiate a request from the AALAA Client to the AALAA
Core. As can be seen in Figure 4-2, the message size when sending out a request depends on three
static fields and one non-static field (the number of log paths).

Table 5-1: Time to initiate request in AALAA core based on message size. 95% confidence level applied.

Number of log paths
in message (N)

Size of log paths
(85 bytes per path)

Number of tests
performed

Average time spent
(ms)

1 85 B 100 0.8097 ± 0.04 ms

10 850 B 100 0.9133 ± 0.04 ms

100 8500 B 100 1.2402 ± 0.06 ms

1000 85000 B 100 2.2354 ± 0.1 ms

10000 850000 B 100 12.058 ± 0.59 ms

Since the only parameter that varies is the number of log paths in a request, different values
were used when generating test messages. This value was increased by 10x to cover as wide a range
of number of log paths as possible (at least for the range that might be used in a real deployment).
Messages for each test case were sent 100 times as decided by the standard deviation and the
desired confidence level of 95%. The average values from these observations with its associated
confidence intervals are presented in Table 5-1. Time measurement was started before a message
was sent to the bus, and stopped immediately after the same message was consumed in the core.
Since the requesting RRS MB Controller of the client had not yet been implemented, a simple test
program was written to send artificial messages. Figure 5-1 shows a plot of the time per bytes cost
results presented in Table 5-1.

22 | Analysis

The time to send out progression updates was not measured. These updates are generally static in
length and only consists of a few fields, as shown in Figure 4-3. The exception is the final result of a
predict action where all abnormal logs found are listed in the message, however this message will
always be smaller than the initiating request message. As will be discussed in Section 5.4 on page
24, the time it takes to send a message through the bus is extremely small in comparison to how
long the complete calculations will take, therefore a more extensive analysis of this area was
considered unnecessary.

Table 5-2 and Table 5-3 shows the data collected from tests of the functional correctness of the
implementation. They show that the functionality of the modified modules in the core remained
intact. Comparisons are presented between the outcomes of 3 different test cases for each version of
the core, where abnormal logs were predicted using already trained models in the core. The
outcomes shows no difference in output data between the old and the new implementation,
therefore the functionality of a predict action in the Spark and Hadoop core are considered correct
(or at least no less correct than they were with the previous implementations). As one might notice,
the number of logs used in the tests between Table 5-2 and Table 5-3 differs. This is due to much
faster processing times in the Spark core than the Hadoop core. Tests on the Hadoop core had to be
scaled down to process fewer logs in order to complete tests within reasonable time.

Table 5-2: Difference checks for a predict action between the old and new Spark cores

Test case Total logs
processed

Abnormal logs
old AALAA

Abnormal logs
new AALAA

Log name
comparison

1-Spark 1236 176 176 176/176 MATCH

2- Spark 1497 49 49 49/49 MATCH

3- Spark 1403 31 31 31/31 MATCH

0

2

4

6

8

10

12

14

1 10 100 1000 10000 100000 1000000

Av
er

ag
e

tim
e

sp
en

t (
m

s)

Size of log paths (85 bytes per path)

Average time spent (ms)

Average time spent (ms)

Poly. (Average time spent (ms))

Figure 5-1: Time to initiate request in AALAA core based on message size

Analysis | 23

Table 5-3: Difference checks for a predict action between the old and new Hadoop core

Test case Total logs
processed

Abnormal logs
old AALAA

Abnormal logs
new AALAA

Log name
comparison

1-Hadoop 19 7 7 7/7 MATCH

2-Hadoop 29 12 12 12/12 MATCH

3-Hadoop 9 5 5 5/5 MATCH

While testing the preservation of the training functionality in the core, only unreliable data
could be collected. Since the machine learning algorithms connected to a training action produce
slightly different outcomes every run, even though the same input logs are provided, no direct
outcome comparisons could be performed. Validating the functionality of a train action consisted of
looking whether the outcomes from the same input data were within a reasonable range relative to
each other, and by analyzing the code to ensure that the modifications that were made did not
interfere with core functionality. Multiple predict actions was also tested on the same trained
models to ensure that outcomes would not differ. The results showed no difference between the
performed predict actions.

5.2 Reliability Analysis

The experiments performed for testing the artifact’s performance are considered reliable. While
testing time consumption of the message bus, see Table 5-1, 100 tests were performed for each test
case to ensure reliable average values. Some differences were observed in time per bytes costs as the
size of the messages grew. This is due to the overhead present when routing a message, independent
of its size. This resulted in overhead having a larger impact on the smaller message. Based on the
results presented in Table 5-1, the overhead observed when sending a message was approximately
0.8 ms.

While testing functional correctness, multiple tests were performed to confirm that no changes
had been made to the machine learning functionality provided by the AALAA Core. When making
these changes, great care was taken to only modify parts of the code asserting correct input and
output data, therefore the functional correctness tests was merely a confirmation that no such
changes had taken place. Complete reliability can however not be confirmed for functional
correctness of a training action in the core because of the varying outcomes that this process
naturally produces. The assurance that no changes were made to this functionality due to the newly
added code therefore requires us to trust in the care taken when making the modifications to this
code.

5.3 Validity Analysis

The results for measuring the implemented message bus are considered valid based on the metrics
proving that messages were correctly delivered from start to end while functionality of the AALAA
Core remained intact. Validation of the planned solution in its entirety could however not be
achieved since not all parts of the AALAA client were implemented and complete tests could as a
result not be done in real deployment.

24 | Analysis

5.4 Discussion

Looking at the results presented in Table 5-1, a pattern can be seen for decreased time per bytes cost
as the message size grows. This is due to the relatively large overhead present while routing
messages of small sizes. Performance measurements can be found at RabbitMQs official blog where
similar results are noted but for larger parameters [24]. The results presented in Table 5-1 are
similar to the results presented in [24], where overhead is larger for small messages, but becomes a
small factor for larger messages. An important note to the observed message processing speed is
that its impact on the complete execution time of a train or predict action is negligible. The
execution time of calculations in the AALAA Core varies depending on the number of logs it
processes. However, this time usually ranges between a few minutes and several hours. Messages
sent that add a few extra milliseconds (or even seconds) will therefore not substantially affect the
total execution time.

The polling for requests previously implemented would in the AALAA Core poll a database for
test cases and on discovery of a new test case initiate calculations. The implemented message bus
arguably improves the architecture, scalability, and performance of AALAA based on the presented
results. This conclusion is based on the decreased times between test case discovery and the
increased functionality achieved by the additional integrated modules.

Looking at correctness, results have shown no evidence of any functionality in the core being
affected by the new implementation. Only input data and output data transferred between modules
through the message bus has been treated, great care has been taken into assuring that this data is
routed from start to end without changing information or getting lost on the way. A complete
analysis of the new artifacts correctness and performance can only be done once the Log Collector
and RRS MB Controller left for future work in Section 6.3 has been implemented.

The design decisions presented in Section 4.1 have been shown to be correct. The artifact both
solves the given problem and does so in a more efficient way than before. When constructing a
system of this scale a lot of things can be done differently, especially since the message bus can be
designed in different ways. However, since the requirements of the implemented artifact were quite
clear and thorough, the design decisions became fairly straightforward. The conclusion is that the
implemented artifact currently partly solves the given problem and will suffice as a solution once the
(near term) future work has been completed.

Conclusions and Future work | 25

6 Conclusions and Future work

This chapter presents conclusions drawn from this thesis project. Section 6.1 gives some general
conclusions regarding the achieved goals, insights gained, and things that could have been done
differently. Section 6.2 presents some of the limitations of the efforts performed and limitations of
the presented results. Section 6.3 describes things that were left for future work and suggests some
work that could be done to following up this thesis project. Finally, Section 6.4 gives some general
reflections regarding different aspects relevant to the performed work.

6.1 Conclusions

The main goal of enabling the user to send out requests to the AALAA Core was not entirely met
since not all of the work was managed to be completed in time. This meant that request messages
destined for the core had to be manually constructed and sent directly into the message bus
exchange through its web interface. The future work related to this is presented in Section 6.3.
Looking at the sub goals that were defined, we can conclude can that most of the functionality was
implemented. Both versions of the core were integrated with a message bus, the client was modified
to be able to receive progress updates from this bus, and the client successfully managed to store
these updates into MongoDB. The different parts of the solution were connected and deployed, so
that despite the need to manually send a request message, the rest of the planned flow of events
worked as intended.

The goal of implementing a solution that integrated previously unintegrated parts, namely the
Spark version of the core and the AALAA-Tracker in the client, was also achieved. Based on the
results, some conclusions can be drawn – specifically that the functionality of both core versions
remained intact since comparisons between the old solution and the modified solution showed no
difference in the prediction outputs when run with the same input data. Request initiations and
progress updates were also evidently improved in both performance and architecture as decreased
initiation times and added functionality was achieved.

Several insights were gained from completing this project. Since AALAA is a rather large and
complex system consisting of several modules, a lot of work was required just to understanding its
functionality, before I could begin to consider how to modify it. Planning the work and building an
architecture were by far the most important parts to focus on, since having a good thought process
was essential while modifying and implementing each module - so that it would be compatible with
the rest of the system. A relevant and uniform message structure was also important to construct in
order to make message translation and interpretation easy on both ends of the bus.

If I were to do the same work again, a greater focus would have been put on researching AALAA
more extensively in order to fully understand all of the requirements before doing any actual work.
Some minor issues arose after the first weeks when requirements of the planned architecture
changed slightly – causing some unnecessary work on researching parts that were in the end not
required.

26 | Conclusions and Future work

6.2 Limitations

The most obvious limitation of the work performed is that the complete solution was not finished, as
the RRS MB Controller that is supposed to send messages to initiate requests in the core was not
implemented. The planned RRS MB Controller was supposed to implement automatic checking for
whether a trained model for the incoming test case was already stored in the database and based on
this make a decision to send out a train or predict message. Since this was not done, it meant that
messages had to be manually injected directly into the message bus. This made testing of the system
in a real time environment impossible. As a result, tests had to be done by manually constructing
messages containing information about the log paths and whether a training or prediction request
was to be performed.

6.3 Future work

The next stage in the implementation phase is to build the RRS MB Controller of the AALAA Client.
This controller should listen to the test case messages sent out by the RRS system. It should then
decide whether to use the Spark or Hadoop version of the AALAA core for machine learning
processing, and then open that version of MongoDB through REST to check whether a model for
that test case is trained or not. If a model is not trained, then the log paths and test verdicts for each
log should be extracted and stored with a generated UUID into that database. A message should
then be sent to the RabbitMQ exchange in with a routing key designating the Spark version or
Hadoop version. The message that is sent should contain a “train” parameter, model name, a
generated UUID, and the log paths with its paired verdicts. If a model is stored in the database, then
only the log paths need to be extracted and saved into the MongoDB. A similar message should then
be sent to the exchange containing a “predict” message instead of “train”, the model name, a
generated UUID, and log paths without test verdicts. The Log Collector also needs to be updated in
order to handle requests from the RRS MB Controller so that logs can be copied once a new test case
has been discovered.

6.4 Reflections

Positive economic gains from of the project can hopefully be achieved as the convenience of using
AALAA has increased by enabling an automatic and fast initiation of computations once a test case
has become available in the RRS. For this effect to take place, all of the future work (in Section 6.3)
needs to be implemented to support an actual deployment. The Spark version of the core has also
been integrated with the client in addition to the Hadoop version that earlier was only partially
integrated. Spark has in several cases been shown to outperformance the Hadoop version in terms
of processing speed [7], therefore this addition might be of increased value to Ericsson.

Ethical aspects applicable to projects involving machine learning consist of having too much
automation at the expense of employees running out of work and therefore being considered
redundant. This is generally a good thing for companies - since this would result in reduced
expenses while maintaining revenues. However, it is still an ethical aspect to consider. AALAA is an
experimental feature at Ericsson's CII-department and performs a relatively specific task, therefore
its scope is currently not considered to cause lack of work for the current employees working in this
department.

References | 27

References

[1] O. Kwon, N. Lee, and B. Shin, “Data quality management, data usage experience and
acquisition intention of big data analytics,” Int. J. Inf. Manag., vol. 34, no. 3, pp. 387–
394, Jun. 2014.

[2] “This is Ericsson - this-is-ericsson.pdf.” [Online]. Available:
http://www.ericsson.com/res/thecompany/docs/this-is-ericsson.pdf. [Accessed: 25-
Mar-2015]

[3] Weixi Li, “Automatic Log Analysis using Machine Learning: Awesome Automatic Log
Analysis version 2.0”, Master's thesis, Uppsala Universitet, Department of Information
Technology, Report number IT 13 080, November 2013, [Online]. Available:
http://uu.diva-portal.org/smash/get/diva2:667650/FULLTEXT01.pdf.

[4] “IBM - What is MapReduce.” [Online]. Available: http://www-
01.ibm.com/software/data/infosphere/hadoop/mapreduce/. [Accessed: 19-May-2015]

[5] “Apache SparkTM - Lightning-Fast Cluster Computing.” [Online]. Available:
https://spark.apache.org/. [Accessed: 19-May-2015]

[6] R. S. Xin, J. Rosen, M. Zaharia, M. J. Franklin, S. Shenker, and I. Stoica, “Shark: SQL
and Rich Analytics at Scale,” in Proceedings of the 2013 ACM SIGMOD International
Conference on Management of Data, New York, NY, USA, 2013, pp. 13–24 [Online].
Available: http://doi.acm.org/10.1145/2463676.2465288. [Accessed: 25-Mar-2015]

[7] Georgios Koutsoumpakis, “Spark-based Application for Abnormal Log Detection.”,
Master's thesis, Uppsala Universitet, Department of Information Technology, Report
number IT 14 057, September 2014, [Online]. Available: http://uu.diva-
portal.org/smash/get/diva2:751988/FULLTEXT01.pdf.

[8] G. L. Geerts, “A design science research methodology and its application to accounting
information systems research.”, International Journal of Accounting Information
Systems, vol.12, no.2, pp. 142-151, June 2011. DOI: 10.1016/j.accinf.2011.02.004,
[Online]. Available:
http://www.sciencedirect.com.focus.lib.kth.se/science/article/pii/S146708951100020
0. [Accessed: 14-May-2015]

[9] “What is the Agile Software Development Methodology?” [Online]. Available:
http://agilemethodology.org/. [Accessed: 19-May-2015]

[10] “Waterfall Model.” [Online]. Available: http://www.waterfall-model.com/. [Accessed:
19-May-2015]

[11] Jaakko Hollmen, “Self-Organizing Map (SOM).”, Mar 8 13:44:34 EET 1996, [Online].
Available: http://users.ics.aalto.fi/jhollmen/dippa/node9.html. [Accessed: 19-May-
2015]

[12] “Cross Validation.” [Online]. Available:
http://www.cs.cmu.edu/~schneide/tut5/node42.html. [Accessed: 19-May-2015]

[13] “RabbitMQ - What can RabbitMQ do for you?” [Online]. Available:
https://www.rabbitmq.com/features.html. [Accessed: 08-May-2015]

[14] “What is message broker? - Definition from WhatIs.com.” [Online]. Available:
http://whatis.techtarget.com/definition/message-broker. [Accessed: 19-May-2015]

[15] “An Advanced Message Queuing Protocol (AMQP) Walkthrough,” DigitalOcean.
[Online]. Available: https://www.digitalocean.com/community/tutorials/an-advanced-
message-queuing-protocol-amqp-walkthrough. [Accessed: 10-Apr-2015]

[16] “RabbitMQ - AMQP 0-9-1 Model Explained.” [Online]. Available:
https://www.rabbitmq.com/tutorials/amqp-concepts.html. [Accessed: 10-Apr-2015]

[17] S. Torstendahl, “Open Telecom Platform.”, Ericsson Review No. 1, 1997, pp. 14-23,
[Online]. Available:
http://www.erlang.se/publications/ericsson_review_otp_1997012.pdf. [Accessed: 19-
May-2015]

[18] “Using Erlang for an Open Telecommunications Platform.” [Online]. Available:
http://www.methodsandtools.com/archive/erlang.php. [Accessed: 16-Apr-2015]

28 | References

[19] J. L. Fernandes, I. C. Lopes, J. J. P. C. Rodrigues, and S. Ullah, “Performance
evaluation of RESTful web services and AMQP protocol,” in Ubiquitous and Future
Networks (ICUFN), 2013 Fifth International Conference on, 2013, pp. 810–815.

[20] S. Dawar, S. Van der Meer, E. Fallon, J. Keeney, and T. Bennett, “Building a Scalable
Event Processing System with Messaging and Policies – Test and Evaluation of
RabbitMQ and Drools Expert ” in proceedings of the 2013 Information Technology and
Telecommunications conference (IT&T) 2013, [Online]. Available:
http://www.researchgate.net/publication/255723410_Building_a_Scalable_Event_Pr
ocessing_System_with_Messaging_and_Policies__Test_and_Evaluation_of_Rabbit
MQ_and_Drools_Expert. [Accessed: 21-May-2015]

[21] K. Peffers, T. Tuunanen, C. E. Gengler, M. Rossi, W. Hui, V. Virtanen, and J. Bragge,
“The Design Science Research Process: A Model for Producing and Presenting
Information Systems Research,” in In: 1st International Conference on Design Science
in Information Systems and Technology (DESRIST, 2006, pp. 83–106.

[22] “Maven – Welcome to Apache Maven.” [Online]. Available:
https://maven.apache.org/. [Accessed: 30-May-2015]

[23] “Learn | The Scala Programming Language.” [Online]. Available: http://www.scala-
lang.org/documentation/. [Accessed: 30-May-2015]

[24] “RabbitMQ » Blog Archive » RabbitMQ Performance Measurements, part 2 -
Messaging that just works.” [Online]. Available:
https://www.rabbitmq.com/blog/2012/04/25/rabbitmq-performance-measurements-
part-2/. [Accessed: 17-May-2015]

TRITA-ICT-EX-2015:55

www.kth.se www.kth.se

	Abstract
	Keywords

	Sammanfattning
	Nyckelord

	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	List of acronyms and abbreviations
	1 Introduction
	1.1 Background
	1.2 Problem definition
	1.3 Purpose
	1.4 Goals
	1.5 Choice of methodology
	1.6 Delimitations
	1.7 Structure of the thesis

	2 Background
	2.1 Awesome Automatic Log Analysis Application (AALAA)
	2.1.1 AALAA Core
	2.1.2 AALAA Client

	2.2 RabbitMQ
	2.2.1 Advanced Message Queuing Protocol (AMQP)
	2.2.2 Open Telecom Platform (OTP)

	2.3 Related work
	2.3.1 Performance evaluation of RESTful web services and the AMQP protocol
	2.3.2 Building a Scalable Event Processing System with Messaging and Policies

	3 Methodology
	3.1 Research Process
	3.2 Research Paradigm
	3.3 Data Collection
	3.4 Experimental design
	3.4.1 Test environment
	3.4.2 Hardware/Software to be used

	3.5 Assessing reliability and validity of the data collected
	3.5.1 Reliability
	3.5.2 Validity

	3.6 Planned Data Analysis
	3.7 Evaluation framework

	4 Implementation
	4.1 Software design
	4.1.1 Design of the AALAA system
	4.1.1.1 AALAA Core
	4.1.1.2 AALAA Client
	4.1.1.3 Message Bus Controllers

	4.1.2 Design of the Message Bus
	4.1.2.1 Message Bus structure
	4.1.2.2 Message format

	4.2 Software implementation
	4.2.1 AALAA Core implementation
	4.2.2 AALAA Client implementation

	5 Analysis
	5.1 Major results
	5.2 Reliability Analysis
	5.3 Validity Analysis
	5.4 Discussion

	6 Conclusions and Future work
	6.1 Conclusions
	6.2 Limitations
	6.3 Future work
	6.4 Reflections

	References

