
Automating Interactions with
Web Services
NFC based attendance software in
Java

CARL JOHANSSON & SOREN KAVOSI

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, FIRST LEVEL
STOCKHOLM, SWEDEN 2015

Automating Interactions with Web
Services
NFC based attendance software
in Java

Carl Johansson & Soren Kavosi

2015-06-02

Bachelor’s Thesis

Examiner and Academic adviser
Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

Today we use an obsolete way of handling information regarding which student and/or teacher is
attending which class/lab/seminar, attendance is written down on a piece of paper and collected so
that an administrator can manually enter this information to some data processing system.

This method is far from optimal and demands a lot of time and resources from administrators,
teachers, and students. Correct gathering of attendance is important since it is required for specific
parts of some courses. We propose to automate the collection of this attendance data, thus enabling
students and teachers to simply swipe their NFC-enabled KTH access card in order to enter their
name on an attendance list. This will be achieved by creating an application that adds a student to
an attendance list by reading information using a NFC/RFID reader and mapping the card’s UID to
a KTHID (a locally unique identifier used within the university) using a database. The resulting
attendance list should be formatted in such a fashion that it can easily be uploaded to systems such
as KTH Social and Daisy. Ideally these systems will be extended so that instructors/teachers can use
this attendance list to automatically create the appropriate entries in these systems to record the
student’s participation in the indicated activity – in the process avoiding a lot of manual labor and
improving the accuracy of the process.

An additional problem is that there is currently no unified system that connects the KTH access
card database (BRAVIDA) to the KTH LDAP database (which stores information about KTH
students, faculty, and staff). This means that each student’s access card UID must manually be
added to a database together with the student’s KTHID. However, once this database entry has been
made, we can then map from a card number to a KTHID (or the reverse).

The purpose behind and expected result of this thesis is a functional prototype of an application
that creates an attendance list by reading data from the student or teacher’s access cards using a
NFC reader. This will hopefully stimulate further digitalization in KTH and also encourage more
courses to utilize such access card based attendance lists. The result should be less manual effort by
students, faculty, and staff, as well as more accurate and timely filing of attendance information for
courses.

Keywords

student attendance, application, access card, NFC reader, prototype

Sammanfattning | iii

Sammanfattning

I dagsläget använder vi en föråldrad metod för att hantera information kring vilken student
och/eller instruktör som närvarar vid vilken föreläsning/laboration/seminarie, närvaron skrivs ner
på en bit papper som samlas ihop och skickas till en administratör som sedan manuellt får mata in
den här informationen i de olika databehandlingssystemen.

Denna metod är långtifrån optimal och kräver en massa tid och resurser från administratörer,
lärare och elever. Att den insamlade informationen är korrekt är viktig eftersom den är ett krav vid
vissa kurser. Vårt förslag är att insamlingen av närvaroinformation automatiseras, genom att
studenter och lärare enkelt kan dra sina KTH access kort för att mata in sitt namn på en
närvarolista. Detta kommer att genomföras genom utvecklandet av en applikation som lägger till en
student i närvarolistan genom att läsa av kort genom en NFC/RFID läsare och mappning av kortens
UID till ett KTH användarnamn (användarnamnet är unikt inom KTH) med hjälp av en databas.
Närvarolistan som genereras som ett resultat av programmets körning skall vara formaterad på ett
sådant sätt att den enkelt kan laddas upp till system som KTH Social och Daisy. Idealt skall
applikationen vidareutvecklas så att instruktörer/lärare kan använda närvarolistan till att
automatiskt lägga till rätt post i de systemen för att lagra information om studentens närvaro vid en
viss aktivitet - med mål att undvika mycket manuell inmatning samt öka noggrannheten kring
processen.

Ett ytterligare problem är att det i nuläget inte finns något system som kopplar KTH:s databas
för accesskort (BRAVIDA) till KTH LDAP databasen (som lagrar information om KTH studenter,
fakultet och personal). Detta betyder att varje användares accesskorts UID måste läggas till i en
databas manuellt tillsammans med studentens KTH användarnamn. Emellertid är det så att när
posten väl är inlagd i databasen, så kan vi mappa mellan accesskorts UID till KTHID(eller
motsatsen).

Detta examensarbete har resulterat i en fungerande prototyp av en applikation som skapar
närvarolistor genom att läsa av data från studenter och lärares accesskort med hjälp av en NFC
läsare. Detta kommer förhoppningsvis att stimulera ökad digitalisering inom KTH och dessutom
motivera fler kursansvariga att använda accesskortsbaserade listor. Resultatet bör förhoppningsvis
bli mindre manuellt arbete för studenter, fakultet och övrig personal samt mera precis och snabbare
insamling av närvaroinformation.

Nyckelord

studentnärvaro, applikation, accesskort, NFC-läsare, prototyp

Acknowledgments | v

Acknowledgments

We would like to thank O'Reilly Media Inc. for allowing us to use a figure from the book:
Beginning NFC (ISBN-13: 978-1-4493-0851-3).

We would like to thank Victor Häggqvist and Peter Lundberg for their valuable input during the
development of this prototype.

We would like to thank those who allowed us to use their KTH usernames during the testing of
the prototype.

Stockholm, June 2015
Carl Johansson & Soren Kavosi

Table of contents | vii

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations xiii
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 2
1.3 Purpose .. 3
1.4 Goals .. 3
1.5 Research Methodology ... 3
1.6 Delimitations .. 4
1.7 Structure of the thesis .. 4

2 Background .. 5
2.1 Radio Frequency Identification (RFID) 5
2.2 Near Field Communication (NFC) .. 5

2.2.1 Communication modes ... 6
2.2.2 Operating modes .. 6
2.2.3 Type of devices ... 7
2.2.4 NFC vs. RFID ... 7
2.2.5 Uses .. 7

2.3 Lightweight Directory Access Protocol (LDAP) 8
2.3.1 Schema ... 8
2.3.2 Attribute .. 9
2.3.3 Object classes .. 9

2.4 Related work .. 10
2.4.1 Student attendance monitoring using NFC and fingerprint

readers .. 10
2.4.2 TouchIn: a web based application 10
2.4.3 Control of attendance through mobile NFC technologies 10
2.4.4 Easy Attendance: Location-based authentication for

students integrated with Moodle 11

2.5 Summary .. 11
3 Methodology .. 13

3.1 Research Process ... 13
3.1.1 Phase 1: Information gathering phase 13
3.1.2 Phase 2: Developing individual parts of the application .. 13

viii | Table of contents

3.1.3 Phase 3: Create and test the Graphical User Interface ... 13
3.1.4 Phase 4: Evaluation .. 13

3.2 Data Collection .. 14
3.2.1 Sampling ... 14
3.2.2 Sample Size .. 14
3.2.3 Target Population .. 14

3.3 Experimental design and Planned Measurements 15
3.3.1 Test environment .. 15
3.3.2 Hardware and Software to be used................................. 15

3.4 Assessing reliability and validity of the data collected 17
3.5 Evaluation framework ... 17

4 The application .. 19
4.1 Design .. 19

4.1.1 Java .. 19
4.1.2 LDAP .. 19
4.1.3 Functional requirements ... 20

4.2 Development .. 22
4.3 Testing .. 24

4.3.1 Testing of individual modules .. 24
4.3.2 Testing the modules together ... 24
4.3.3 Testing the GUI with Volunteers 25
4.3.4 Time to perform an LDAP query 27

4.4 Final prototype ... 28
5 Analysis .. 33

5.1 Major results .. 33
5.1.1 User tests .. 33
5.1.2 LDAP lookup time test .. 33

5.2 Reliability Analysis .. 36
5.3 Validity Analysis .. 36
5.4 Discussion ... 36

6 Conclusions and Future work .. 39
6.1 Conclusions ... 39
6.2 Limitations ... 39
6.3 Future work .. 40
6.4 Reflections ... 41

References ... 43
Appendix A: Creating the new LDAP database 47

A.1: Installing OpenLDAP (on Ubuntu 14.04)...................................... 47
A.2: Creating the OU used with ldapadd ... 47
A.3: Adding a schema with ldapadd utility and slaptest utility 47

Appendix B: Detailed results ... 49
Appendix C: Source code ... 51

List of Figures | ix

List of Figures

Figure 1-1: System diagram of the attendance registration system 2
Figure 2-1: The NFC protocol stack [13]. (It appears here with

permission from O’Reilly Media, Inc.) 6
Figure 2-2: Example of a LDAP directory tree structure 8
Figure 2-3: An early example of the schema used in this project 9
Figure 4-1: Flowchart showing the card reading loop of the app. 20
Figure 4-2: Sample code that with an ACR122U USB NFC Reader

connected to the computer would print out the UID of a
card placed near the reader. .. 23

Figure 4-3: Part of the code to measure the time taken for LDAP
queries. .. 28

Figure 4-4: Start-screen with the “File”-option selected 29
Figure 4-5: Dialog window for setting up a scheduled event 29
Figure 4-6: Successful card registration .. 30
Figure 4-7: Unsuccessful card registration ... 30
Figure 4-8: Display list of current attendees .. 31
Figure 5-1: Sample test output from the LDAP query rate test with a

delay of 1000 ms. ... 34
Figure 5-2: The time to complete LDAP lookups with a delay of 1, 10,

20, 60 seconds between lookups ... 35
Figure 5-3: Figure depicting the 26 packets sent and the time between

them for two LDAP lookups performed after each other
(lookup 1 took 340 ms and lookup 2 took 96 ms). Note
that this only depicts the lookup versus the KTH LDAP
database. .. 35

List of Tables | xi

List of Tables

Table 2-1: Summary of related work ...11
Table 3-1: Technical specifications for test computers 16
Table 3-2: Technical specifications for USB NFC-reader ACR122U

[32] ... 16
Table 3-3: Software specifications .. 17
Table 4-1: Shows the structure of the Response when a Command

APDU is sent to get the UID of the currently connected
card, SW1 and SW2 is the status code. Adapted from a
table in ACR122U API section 4.1.[35] 23

Table 4-2: Answers and measures regarding unexpected behavior
when using the application .. 25

Table 4-3: Answers and measures regarding potentially required
application clarifications ... 26

Table 4-4: Answers and measures regarding suggestions on
improvements of the application ... 27

Table 5-1: The test results from the LDAP lookup time tests. All
values are in milliseconds (ms) and 5 lookups were done
for each "time between lookups" value. 34

List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

APDU Application Program Data Unit
CN Common Name
DC Domain Component
DIT Directory Information Tree
DN Distinguished Name
GUI Graphical User Interface
ICT Information and Communication Technology
IEC International Electrotechnical Commission
ISO International Organization for Standardization
Kbps Kilobit per second
KTH Kungliga Tekniska Högskolan
LDAP Lightweight Directory Access Protocol
LLCP Logical Link Control Protocol
LSB Least Significant Bit
MHz Megahertz
MSB Most Significant Bit
MVC Model-View-Controller
NDEF NFC Data Exchange Format
NFC Near Field Communication
OS Operating System
OU Organizational Unit
PC Personal Computer
POS Point-of-Sale
PUL Personuppgiftslagen - The Personal Data Act
RFID Radio Frequency Identification
SL Storstockholms Lokaltrafik AB - Stockholm Public Transport
SNEP Simple NDEF Exchange Protocol
UID Unique Identifier
USB Universal Serial Bus
Wi-Fi Wi-Fi Alliance – tradegroup for promoting interoperability of IEEE 802.11

equipped devices
WWW World Wide Web

Introduction | 1

1 Introduction

This chapter introduces the background and problem definition that motivates the execution of this
thesis. Also, it explains the goals, research methodology, delimitations and structure of this thesis.

1.1 Background

Radio frequency identification (RFID) technology is a widely used technology and has been used for
many years for tracking packages, access control, identification of animals, etc. RFID tags are read
by RFID readers. These tags have both a manufacturer's identifier and a serial number, but can also
store other information. Further details about RFID are given in Section 2.1.

In contrast, Near Field Communication (NFC) is an emerging technology with an expanding
market. NFC takes RFID technology as a base, then extends it to be a more complete
communications technology and to increase security it reduces the range at which this
communication may take places to several centimeters. Additionally, RFID technology can use one
of many different frequencies, while NFC operates at 13.56 MHz. According to the research firm
Berg Insight, the annual growth rate of NFC-enabled mobile handsets will be about 50 % by year
2017 [1] and nearly 30 % by year 2019 for NFC-enabled Point-of-Sale (POS) terminals [2]. This, in
turn, will increase the demand for NFC applications. Further details about NFC are given in Section
2.2.

There is currently a broad spectrum of uses in society when it comes to NFC. One example is
access control, such as implemented in ticketing systems for public transportation and
locking/unlocking doors in buildings. Another example is simplified payment systems where smart
phones implementing NFC can be used for secure transactions. Google has made progress in NFC
payments with an application called Google Wallet [3] which serves as a digital wallet where credit
cards, coupons, and such are stored digitally.

At KTH School of Information and Communication Technology (ICT), RFID is a part of
everyday life for students and teachers due to the fact that it is implemented in the access control
system used throughout the university for locking/unlocking doors. All students, staff, and faculty
possess a unique RFID equipped access card of the type Mifare Plus 4k [4], which is currently solely
used for locking/unlocking doors. However, these cards have the potential for more than just
locking/unlocking doors. This thesis project aims to automate the process of registering attendance
information. This problem is discussed more thoroughly in Section 1.2.

Figure 1-1 is a system diagram that illustrates the relationship between the different elements of
the application proposed in this thesis project as a solution to the problem of registering attendance
at events at the university. The system is based on the RFID cards (in this case a Mifare Plus 4k card
– further described in Section 2.2), a NFC reader which is capable of reading the card number
contained in the RFID card, an instructor’s PC running our application, access to the existing KTH
LDAP database, access to our new database, and access from the instructor’s PC to one of the KTH
systems that is used to keep track of attendance.

2 | Introduction

Figure 1-1: System diagram of the attendance registration system

1.2 Problem definition

In KTH, there is currently no effective way of registering attendance at classes, labs, and such;
as this process is done manually using pieces of paper*. Students are usually required to write their
signature next to their name on a pre-printed attendance list. This method is far from optimal with
regard to accuracy, trustworthiness, privacy, and amount of labor. Forged signatures indicating that
a student has been present, when in fact they have not, is always a risk when passing around an
attendance list in class. Furthermore, as emphasized by the recent decision [5] by Ander Lundgren,
KTH’s University Director, in his “beslut V-2015-0309: Vidarebefordrar beslut ’Anvisning om
hantering av förteckningar över studenter’ – there are also privacy and personal integrity issues
with regard to lists of students. Gathering correct and accurate information about attendance is
important since attendance is required to receive credit for parts of some courses. Accuracy is a
problem both due to clerical errors in reading the lists after they have been signed, but also due to
missing names that have been manually added to the list – as these entries are frequently
unreadable, incomplete, or not unique.

Another issue regarding the current handling of attendances lists in KTH is the amount of
administrative work that needs to be done. Paper attendance lists are typically passed on to an
administrator who needs to manually enter the information from the list into data processing
systems such as Daisy, KTH Social, and Bilda†.

* Information from professor Gerald Q. Maguire Jr.
† These are three of the many systems used at KTH for course administration.

Introduction | 3

3

There are several problems relevant to the design and implementation of the proposed
application, namely:

• How to connect the KTH access card database (BRAVIDA) [4] to the KTH LDAP database.
Or if they are not connected, how to generate a new database that links an access card
number to a KTHID (a locally unique identifier used within the university).

• How and when will the client and the server interact (e.g., what protocols should be used
for: (a) entering new users, (b) entering attendance information, and (c) providing the
collected data to some other data processing system). The last of these protocols concerns
how to make the attendance information available to systems such as KTH Social and Daisy.

• User friendliness (how to inform each user that their attendance has been recorded and that
the mapping has been done correctly/incorrectly).

1.3 Purpose

The purpose of this degree project is to develop an application that makes it possible to create
digital attendance lists for occasions such as seminars, labs, and thesis presentations and
oppositions. In turn, this will facilitate and streamline monitoring of attendance, thus it may
increase the use of attendance lists.

We expect that there will be benefits with regard to ethical and social issues. Registration of
mandatory attendance will increase in credibility, due to the fact that a student must be physically
present to swipe his/her access card. This will in turn hopefully diminish attendance forgery that
occurs when students falsely register other students whom are not present. The proposed system
should also provide greater personal privacy as the list of attendees need not be visible to anyone
other than the instructor.

There will also be sustainability benefits due to the reduced use of paper and the internal
transportation of this paper from place to place. Since all students and teachers at KTH ICT already
possess access cards (and each person is already issued such an access card for room access), there
will not be any increase in the number of these plastic cards.

1.4 Goals

The main goal of this project is to design, develop, and evaluate an application prototype that
creates an attendance list by using a NFC reader to read access card data from the access card which
each students already has. The attendance list should be able to be easily transferred by the
instructor to administrative systems such as KTH Social and Daisy.

To achieve our main goal, we need to achieve the following sub-goals:

• Increase the trustworthiness of attendance,

• Stimulate students’ level of ambition (in terms of actually attending the events that they are
required to attend), and

• Reduce paper and time consumption for these administrative tasks.

1.5 Research Methodology

This thesis project began with a literature study in order to gain a solid base of knowledge of
relevant topics. This literature search primarily used the KTH Library in order to find and access
journals, articles, books, reports, student theses, and other reliable sources.

4 | Introduction

The development of the application will be iterative and incremental to facilitate the process of
producing a partially complete system [6]. This will be necessary due to the need for a functioning
system in the early stages of the project to allow for iterative system design, testing, and evaluation.

1.6 Delimitations

This project will only focus on developing an application compatible for Windows computers, rather
than an application for mobile devices (e.g., smartphones and tablets), because of the fact that we
have no earlier experience with mobile application development. Also, there is no unified way of
writing an application for multiple mobile operating systems (since they use different API:s), which
is another factor for why a mobile application would not be suitable for this thesis project.

The system will only implement reading of KTH access cards and will do this reading using a
USB connected NFC reader (specifically the ACR122U – see Section 3.3.2). There will be no large
scale real world tests of the application, instead we will focus on small tests to ensure functionality.

1.7 Structure of the thesis

This first chapter introduced the background, problem definition, and goals of this thesis. Chapter 2
will present relevant background information that is needed to understand this thesis project, e.g.
NFC and LDAP. Chapter 3 presents the research methodology and methods used in this thesis
project. Chapter 4 describes the design, testing, development and final prototype of the application .
Chapter 5 is an analysis of our test results. Finally, the thesis concludes with Chapter 6 which
summarizes our conclusions and suggest some future work.

Background | 5

2 Background

This chapter provides some essential information about RFID, NFC, and LDAP. These three areas
are pivotal to understand the system developed in this thesis project. Furthermore, some related
work will also be described and analyzed.

2.1 Radio Frequency Identification (RFID)

RFID is a technology based on communication through electromagnetic signals that enables
identification and tracking of RFID tags. These tags may be attached to (or even embedded inside)
objects. The communication supported by RFID can occur between movable objects or between
stationary and movable objects [7]. An RFID reader enables automatic identification based upon
RFID tags, rather than manual scanning used together with barcode technologies. Different
frequency band allocations are used for different types of RFID systems, based on what
transmission ranges are needed. The most common frequencies are: low frequency (125 – 134 kHz),
high frequency (13.56 MHz), and ultra-high frequency (433 and 858-930 MHz) [8].

There are three main components of an RFID system: tags, interrogators, and controllers. A tag
transmits data that is has stored to an interrogator when it receives a signal from the interrogator,
as long as it is within that interrogator’s electromagnetic field [9]. Tags can either be active,
meaning that they have their own power source and thus they are able to transmit data up to a range
of 100 meters, or passive, indicating that there is no power source, instead the tag is powered by the
interrogator [10]. The controller, which is generally a PC, processes the information received from
the interrogator via some interface.

2.2 Near Field Communication (NFC)

Near Field Communication (NFC) is a communication technology that enables contactless sharing
of data between devices. The communication range varies depending on the specifics of the card
technology being used, but is generally less than 10 cm [11] with a maximum read/write speed of
424 kbps [12]. From a security perspective, this short range makes it difficult for another party to
intercept the traffic as they have to be very close to their target. NFC is based on RFID technologies,
such as ISO/IEC 14443 and ISO/IEC 18092, and operates on 13.56 MHz (i.e., high frequency RFID)
signals [13]. NXP Semiconductors MIFARE is a smart card technology based on ISO/IEC 14443 and
is commonly used in access control. FeliCa is another smart card technology based on
IOS/IEC 18092 that is popular in Japan where it is used in ticketing for public transportation [14].
The architecture of NFC is illustrated in Figure 2-1.

6 | Background

Figure 2-1: The NFC protocol stack [13]. (It appears here with permission from O’Reilly Media, Inc.)

2.2.1 Communication modes

A NFC device can either be active, which means it has a power supply that enables it to generate its
own radio frequency (RF) signal, or passive, meaning that it does not have a power supply and thus
has to be powered by another device. A passive device has the advantage of not needing a battery or
other built-in source of power.

NFC communication has two different modes: active or passive. In active mode, both
communicating devices generate their own RF signals, thus allowing either of the devices to initiate
transmission, i.e., either device can be a initiator or a target. The initiator generates a RF signal and
the target responds to the initiator when it receives the signal. In passive mode, the communication
occurs between an active and a passive device, with the passive device deriving its power from the
initiator [15].

2.2.2 Operating modes

Based upon the article “NFC Essentials”[14] by Coskun, Ok, and Ozdenizci, and the NFC Forum’s
“What It Does”[15] NFC implements three different modes of operation: read/write mode, peer-to-
peer mode, and card emulation mode [16][17]:

• In read/write mode, the active NFC device can read and write data in a passive device,
such as a NFC tag. Schemes such as ISO 14443 and FeliCa are compliant with the
read/write mode.

• Peer-to-peer mode allows communication and data exchange between two active NFC
devices. This data exchange could for example be files shared between two NFC-enabled
mobile phones. The peer-to-peer mode is standardized in ISO/IEC 18092.

• The card emulation mode allows devices to emulate tags and smart cards when
communicating with an external reader. This mode enables two-way communication and
thus enabling NFC devices to perform contactless payments, access control and
ticketing. The standard used is ISO 14443.

Background | 7

7

2.2.3 Type of devices

An NFC enabled mobile phone, NFC reader, and NFC tag are the three different types of NFC
devices [16]. NFC tags are passive devices with unique identifiers (UIDs) and are normally access
cards or stickers (such as those found on advertisement posters). NFC tags can be of different types
(type 1, 2, 3, or 4) as defined by the NFC Forum [18]. These tag types differ in memory capacity,
transmission speed, price, and compatible products. Communication between two NFC tags is not
possible, as tags must communicate with active devices such as NFC readers.

NFC readers are active devices and can be either internal or external. An external reader, such
as a NFC POS terminal or an USB NFC reader, can read information from another NFC device.
Internal readers, such as used in NFC-enabled mobile devices, are integrated into a device. This
integration allows NFC-enabled mobile devices to be active devices and to communicate with
passive devices such as tags [16].

2.2.4 NFC vs. RFID

Since NFC is an extension of high frequency RFID and they both operate on 13.56 MHz. (As
mentioned in Section 2.1, RFID can also operate in other frequencies – depending upon the specific
device). Figure 2-1 on page 6 illustrated the NFC architecture and some unique features for NFC
that are not available in RFID. Two of these features are the NFC Data Exchange Format (NDEF)
Message and Record field. In addition, there are two ISO 18092-based protocols: Logical Link
Control Protocol (LLCP) and Simple NDEF Exchange Protocol (SNEP) [13]. These fields allow NFC
to perform two-way communication as opposed to RFID where the initiator can either write to or
read from the tag. The two-way communications are peer-to-peer and card emulation, as mentioned
in Section 2.2.2.

2.2.5 Uses

Due to the simple usage model that NFC provides, there are currently many uses of NFC devices in
society and the adoption of NFC is expected to continue growing during the forthcoming years [19]
and there is. Stockholms Lokaltrafik (SL- Stockholm Public Transport) implements NFC/RFID
access cards in their ticketing system, allowing users to simply hold their access cards in front of a
reader rather than using paper tickets with magnetic stripes, barcodes, or manually applied stamps.
Transport systems in London also utilize NFC/RFID access cards. The local government body
“Transfer for London” (TfL), responsible for the transporting systems in London, offers access by
NFC-enabled credit cards and mobile phones [20]. KTH ICT utilizes NFC/RFID access cards,
allowing students and teachers to lock/unlock doors inside the university. One common property of
the access cards used by SL, TfL and KTH ICT is that they are MIFARE type cards.

Today it is quite common to connect two devices, such as a mobile phone and a wireless
headset; unfortunately, this is not a simple process. However, using NFC this pairing can be done
simply by tapping the devices together – once they are in range of each other the devices can
exchange the information needed for pairing. Note that subsequently NFC is not used as the actual
data transfer technology for sending data between these devices as its transmission speed is quite
slow, instead the data transfer is done via faster wireless technologies, such as Bluetooth or Wi-Fi.

8 | Background

2.3 Lightweight Directory Access Protocol (LDAP)

The Lightweight Directory Access Protocol (LDAP) is a protocol for accessing and managing
directories over an IP network. LDAP is used to access directories that store and organize
information. According to IETF’s RFC 4511: "LDAP provides access to distributed directory services
that act in accordance with X.500 data and service models. These protocol elements are based on
those described in the X.500 Directory Access Protocol (DAP)."[21]

LDAP directories use a directory information tree (DIT) as a data structure. Entries in a DIT are
based on the Distinguished name (DN) of an object and structured in a tree hierarchically. An
example of a DN is "cn=Andreas Andersson,ou=users,dc=example,dc=com". This is an entry in the
tree shown in Figure 2-2.

Figure 2-2: Example of a LDAP directory tree structure

The content that can be stored in an LDAP database is based on schemas. The schema defines
object classes and attributes that can be used inside the database, e.g. if a schema defines an object
class A containing one or more attributes, then a user can add one (or more) objects of type A to the
database.

2.3.1 Schema

A schema is a type of document used in LDAP that describes attributes and/or object classes. For
LDAP to be able to create an object of a certain class that class must first have been defined in a
schema. The attributes used by the object must also be defined in a schema. Schemas are written as
normal documents, then converted and imported to the LDAP database. If an implementation is
defined in a schema, but unknown by the LDAP server - the object classes and attributes it describes
will be unusable [22]. Each element in a schema must be identified by a globally unique Object
Identifier (OID), these OIDs are hierarchical and a organization can create as many branches as
they want from their root OID. An example of an OID is: 1.3.6.1.4.1.4203.666.* that is OpenLDAPs
experimental branch.

Figure 2-3 is an example of the schema used in this project. This is an initial version and should
not be thought of as the final product, but is here to give the reader an idea of what a schema looks
like. This should help the reader when reading this subsection and following two subsections about
attributes and objects.

Background | 9

9

Figure 2-3: An early example of the schema used in this project

2.3.2 Attribute

An attribute has a unique name (this is only required to be unique within a specific system) and
contain some type of data,. Each attribute is a member of one or more object classes. The attribute
itself has a type that defines what it can contain, e.g. it is an Integer type- this means that it can
contain a 32-bit numeric value. In the schema for an object class containing this attribute the
schema specifies whether or not the attribute may occur or must occur, i.e. whether this attribute is
optional or mandatory. The value of an attribute can be specified as being single valued or multi
valued. The latter indicates if more than one value can be stored in a specific attribute. For example,
multiple e-mail attributes might be associated with one person. An attribute can be part of a
hierarchy, if so they inherit all of the properties from their parent. [22]

2.3.3 Object classes

Object classes could be seen as containers for attributes, but are considered attributes themselves.
There are some predefined object classes in LDAP and a user can add new classes through a schema.
The object class must have a globally unique name or identifier. As an attribute can be part of a
hierarchy, so can an object class, i.e. an object class can inherit attributes from its parent as well as
add new attributes, effectively extending the original object class. [22]

10 | Background

2.4 Related work

This section present some related work on student attendance systems utilizing NFC. The purpose
of these systems works are generally the same, but they differ in their designs and implementations.

2.4.1 Student attendance monitoring using NFC and fingerprint readers

Benyo et al. [23] developed a NFC based attendance system to increase student attendance at
lectures. They used a scalable back office and contactless terminals together with not only access
cards (MIFARE Desfire), but also fingerprint identification. In order to prevent students from using
another student’s card, there was a binding between the student’s identification and their
fingerprint. The sensitive fingerprint data were stored in the MIFARE Desfire cards since they were
considered secure, thus avoiding unnecessary storage in any part of the monitoring system. The
back office collected and stored attendance information gathered from the terminals via wireless
communications.

2.4.2 TouchIn: a web based application

Ayu and Ahmad developed an NFC supported web based attendance system called “TouchIn” [24].
The system was implemented as a web based application using PHP, JavaScript, and MySQL. The
system consisted of one reader unit and one web server unit. The reader unit is an application
installed on an NFC-enabled device, while the web server unit is a computer hosting web services.
Three different scenarios were implemented: a student with an NFC-enabled device and internet
connectivity, a student with an NFC-enabled device but without internet connectivity, and lastly a
student without either a device or internet connectivity but equipped with a NFC-tag. In the first
scenario, NFC communication between the mobile device and a tag attached to a poster will load
and submit the student’s ID, the device’s ID, and a course code. The second scenario requires the
lecturer to set the course code in an application on his/her NFC-enabled mobile device, thus
allowing attendance registration through communication between the lecturer’s mobile device and
the student’s device. The last scenario requires NFC tags containing the student’s ID. These tags are
read by the lecturer’s mobile device. Attendance requests and responses are handled in the web
server unit.

2.4.3 Control of attendance through mobile NFC technologies

Fernandez et al. [25] developed a mobile application to reduce the time wasted doing manual
student attendance registration. After comparing different technologies (such as Bluetooth, Infrared
Data Association, RFID, and NFC), they came to the conclusion that NFC would be the best solution
due to its speed and wide availability in smartphones. The application allows students to sign in and
register their attendance by tapping their NFC-enabled smartphone (acting as an active device) on
an NFC tag (a passive device). The institution manages (through a management application) the
time frames that determine the limits for a students’ arrival to be considered as attending an event.
The application has the ability to give calendar information specific to each student, for example,
showing attended/missed classes, dates for upcoming classes, current attendance percentage, and
much more.

Background | 11

11

2.4.4 Easy Attendance: Location-based authentication for students integrated with Moodle

M. Bucicoiu and N. Tapus describe a simple location-based student registration system that is
optimized to fast, easy to use, and integrated with existing technology; thus overcoming system
complications and high cost [26]. The system requires that the student and teacher first identify
themselves to an aggregation platform, in this case a Moodle [27] plug-in running on a back-end
server. This back-end server then creates a session enabling the student to touch the teacher’s NFC-
enabled phone with their own NFC-enabled phone. A picture of the student appears on the teacher’s
phone, giving the teacher an opportunity to grant attendance only if the picture matches the
student.

PHP was used as the programming language for the development of the Moodle plug-in that
provided web-services. The communication between the NFC-enabled phones and the back-end
server was done through XMLRPC over HTTPS.

2.5 Summary

The NFC technology is growing and thereby increasing the demand on NFC-compatible applications
and systems. NFC is used in public transportation, access control, payments, etc. and there has been
some studies and related work on using NFC to take attendance of visitors at events (e.g. at
university lectures).

Table 2-1 gives a summary of related work and notes the advantages and disadvantages of these
earlier systems. These related works will be kept in mind when forming our own functional
requirements in Section 4.1.3.

Table 2-1: Summary of related work

Related work Advantages Disadvantages

Benyo et al. Binding between student ID
and fingerprint thus increasing
reliability.

Wireless communication
between the terminals and the
back office is considered
unreliable.

Ayu and Ahmad The system supports three
different scenarios and has a
minimal hardware
requirement of a NFC-tag and
a NFC-enabled phone

None

Fernandez et al. Additional information
provided by the application,
such as; the minimum and
actual attendance percentage,
the upcoming classes in the
subject, etc.

Students are required to
possess a NFC-enabled phone
(active device) since the device
in the classroom is a NFC tag
(passive device).

Bucicoiu and Tapus The system integrates with an
existing platform (Moodle)
used by the university.

Students are required to
possess a NFC-enabled phone

Methodology | 13

3 Methodology

The purpose of this chapter is to provide an overview of the research method used in this thesis.
Section 3.1 describes the research process. Section 3.2 focuses on the data collection techniques
used for this research. Section 3.3 describes the experimental design. Section 3.4 explains the
techniques used to evaluate the reliability and validity of the data collected. Finally, Section 3.5
describes the framework selected to evaluate the application.

3.1 Research Process

Upon completion of this process a prototype of an NFC based attendance application will be
present, we have decided to split our method into four phases as it would give us a chance to go
back and repeat steps taken. Since each phase is run through multiple times we hope to weed out
any bugs as well as find flaws in functionality and what other functionality might be needed to get a
prototype that can show the potential of such a system.

3.1.1 Phase 1: Information gathering phase

In this phase information were supposed to be gathered and researched to collect the necessary
knowledge for developing the application. This involves reading reports on similar subjects written
by other people and collecting good ideas for this project. It also involves gathering general
knowledge and freshening up on our programming skills to prepare for the practical part of the
project.

3.1.2 Phase 2: Developing individual parts of the application

This phase consists of three sub phases:

1. Research in order to acquire the knowledge and skills needed to create the necessary
functionality for each part of the application.

2. Create each part of the application using pair programming to ensure the utilization of
both persons’ knowledge.

3. Test of each part of the application to ensure that functionality is what we looked for,
this involved looking for minor bugs as well as code optimization.

3.1.3 Phase 3: Create and test the Graphical User Interface

In this phase a Graphical User Interface (GUI) is created and then integrated with all the parts from
phase 2 to achieve the desired functionality. This phase also includes testing to ensure that the
application responds as desired and that none of the parts clashed with each other.

3.1.4 Phase 4: Evaluation

In this phase we evaluate our application and the functionality it provides to determine if anything
is missing or obsolete. If something is considered obsolete, then it should be removed; while if
anything is still missing, then return to phase 1 to start gathering new information and add the
missing functionality.

14 | Methodology

3.2 Data Collection

The initial data collection will utilize a set of test cards, while subsequent testing will use KTH access
cards (assigned to the authors and their classmates). This subsequent testing with actual users will
be limited to trials with a small number of instructors (as described in Section 3.2.2). The initial
target population is the students and instructors at KTH ICT (as described in Section 3.2.3). Future
testing on a university scale is outside the scope of this thesis, but our design should scale to tens of
thousands of students and thousands of instructors.

3.2.1 Sampling

A host computer with a virtual machine running an OpenLDAP server acts as the information
gathering station running our application. This host computer has a NFC-reader connected to it via
USB. Currently we have 8 MIFARE test cards, as well as 2 backup test cards. These test cards are
used together with the host computer to generate test attendance lists.

The test cards are linked to KTH users in the LDAP database (with the cardid <-> kthuser
connections), the KTH usernames connected to the test cards were initially chosen at random from
the Winnie-the-Pooh universe’s Swedish characters. After communicating with Robin Roy (KTHs
Personal data representative) we were informed that even if the information used is not sensitive
some form of consent were preferred, we then switched to using usernames of other students at
KTH ICT that consented to us using their usernames for demonstration purposes.

Due to the lack of test cards a function has been created that generates random first name and
last name combinations (together with fake e-mail addresses and usernames), this has been done to
populate the attendance list during test. We decided to keep these names random instead of getting
them from the KTH LDAP database as some people might object to us using their names while
testing the application.

3.2.2 Sample Size

Due to the fact that there is no maximum number of students that can attend a course in KTH (it is
limited to the resources) we have no idea how many people will be registered in one event where the
application is present. Since we have access to 10 test cards, we will also simulate 10 extra users,
giving us a total of 20 users when testing the application. The sample size of instructors will be 5,
which is the optimal number for usability tests based on multiple articles*†‡.

3.2.3 Target Population

The target population is the number of students participating in courses at KTH ICT with the need
for signing attendance lists and the number of instructors who have sections in such courses.
Estimating the number of access cards currently deployed is straightforward since all students, staff,
and teachers each possess one. In 2014, the total number of students taking courses at ICT was 1301
and the total number of employees were 321 [28].

The legal requirements of Personuppgiftslagen (PuL), “The Personal Data Act”, are examples of
some of the ethical concerns that should be taken into consideration during the data collection part
of this thesis project. The purpose of PuL is to protect people’s integrity when personal data is
collected and manipulated, for instance, stored in a database [29]. Our system will handle names

* http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
† http://www.measuringu.com/blog/sample-size-problems.php
‡ http://www.measuringu.com/five-users.php

http://www.nngroup.com/articles/why-you-only-need-to-test-with-5-users/
http://www.measuringu.com/blog/sample-size-problems.php
http://www.measuringu.com/five-users.php

Methodology | 15

15

which is considered personal information. This information is not as harmless as one might think,
since searching for someone’s name on the Internet could provide other information about the
person. The use of such a system in conjunction with registering attendance is not expected to
cause specific PUL issues, since the users of the application (both instructors and students) have
already given approval for the handling of the necessary personal information (such as their name)
in the course of their activities (work or studies) at KTH and the only information that is being
collected when an instructor uses the application is the same information that would be collected via
a paper attendance list. The application collects only the data that the instructor would normally
collect, hence there is no change it the exposure of data to the instructor, but as noted earlier there
is a decrease in the exposure of the data to other student in the classroom, laboratory, seminar, etc.

There are questions regarding PuL with respect to the collection of the binding between the
KTH access card number and the user’s KTHID – since this information is currently not kept
outside of the BRAVIDA system. There will be PuL questions as to whether the new database will
need to be integrated and managed by the KTH (should it go into production use), as the database
should be given the same protections as the existing LDAP database and presumably the same rules
will apply to its use.

3.3 Experimental design and Planned Measurements

The testing carried out in conjunction with this thesis project has two main components: initial
testing during phases 2 and 3) and testing on a small scale with a limited number of instructors
(during phase 4). The test environment is described in Section 3.3.1 and the hardware and software
are described in Section 3.3.2.

3.3.1 Test environment

The testing of the software will initially be performed on a laptop computer running Microsoft’s
Windows 7. Additionally, Java Runtime is needed on this laptop as the prototype of our application
is written in Java. The laptop has a ACR122U NFC reader connected to it through USB and will
interact with the Mifare 1k test cards used to simulate student access cards. This same laptop hosts a
guest OS (Linux) running OpenLDAP to allow lookups in our new database.

The exact specifications for the laptops used in this thesis project are described in Table 3-1. The
NFC reader’s specifications is shown in Table 3-2, observe that the application program data unit
(APDU) (used by the application to communicate with the reader) is for ACR122U and this same
APDU might not work with other readers. The test cards used are Mifare 1k, instead of the Mifare 4k
Plus KTH uses. However, this will not have any negative impact on this work since both our test
cards and the KTH student access cards both use 4 byte UIDs [4].

3.3.2 Hardware and Software to be used

Two test systems will be used during this thesis project. Their specifications are given in Table 3-1. A
NFC (or RFID) card reader is necessary for the test environment. For this thesis project we have
used an Advanced Card Systems Holdings Limited ACR122U. These specifications for this NFC card
reader are given in Table 3-2. Table 3-3 specifies the software needed and their versions.

There is a guest server running on the ASUS K55V to act as LDAP server to enable the lookup of
KTH usernames from card IDs. The server is running OpenLDAP 2.4.31 on Ubuntu (64-bit) Server
14.04.1 LTS in Oracle VirtualBox 4.3.22 r98236 with 1 core and 1024 MB RAM, the kernel version is
Kernel 3.13.0-32-generic. The LDAP server has the standard schemas with one addition: the schema

16 | Methodology

shown in Figure 2-3 is also installed through the ldapadd[30] utility (it was first converted using the
slaptest[31] utility). Details on the installation of the LDAP server is available in Appendix A.

Table 3-1: Technical specifications for test computers

Test system System 1 System 2

Model/make ASUS K55V ASUS G551JM

CPU I7-3610QM @ 2.30 GHz I7-4710HQ @ 2.50GHz

RAM 8 GB @ 1600 MHz 16 GB

GPU GeForce GT630M GeForce GTX860M

HDD 1TB @ 5400 rpm 250 GB SSD

NIC Realtek PCIe GBE Family Controller Realtek PCIe GBE Family Controller

OS Windows 7 Service pack 1 Windows 8.1

Table 3-2: Technical specifications for USB NFC-reader ACR122U [32]

Interface USB Full Speed

Operating Distance Up to 50 mm

Supply Voltage Regulated 5V DC

Supply Current 200mA (operating); 50mA (standby); 100mA (normal)

Operating Temperature 0-50 ˚C

Operating Frequency 13.56 MHz

Smart Card Interface Support • ISO 14443 Type A & B

• Mifare

• FeliCa

• 4 types of NFC (ISO/IEC 18092) tags

Operating System Support • Win 98, Win ME, Win NT 4.0, Win 2000, Win
2003, Win 2003 R2, Win XP, Win Vista, Win 2008,
Win 7, Win 8

• Win 2003 x64, Win 2003 R2 x64, Win XP x64, Win
Vista x64, Win 2008 x64, Win 2008 R2 x64, Win 7
x64, Win 8 x64, Win 2012 x64

• Win CE 5.0 and 6.0

• Mac OS®

• Linux®

• Android™ 3.1 and above

Methodology | 17

17

Table 3-3: Software specifications

Program Version Description

NetBeans IDE 8.0.2 Java-written platform used for software
development

ACS Unified Driver (PC/SC
Drivers)

4.0.0.4 Smart card reader driver, needed for
development with ACR122U

Java SDK 7 Update 51 (64-bit) A development environment for Java

3.4 Assessing reliability and validity of the data collected

In order to acquire reliable results, the number of test cards communicating with our application
must be equal to the average number of students usually attending lectures. Due to the fact that we
only possess 10 test cards, we will create virtual “fake”-users. These fake users have random first
and last names.

The reliability in regard to user-functionality (the user in our case is assumed to be an
instructor) will be tested by manually simulating a normal user’s behavior. This normal behavior is
defined as:

1. starting the application
2. setting up the event
3. starting the card-scanning procedure
4. scanning a card (which looks up information via LDAP and presents this

information to the user)*
5. stopping the card-scanning procedure
6. saving the attendance list as a file
7. sending the attendance list as an e-mail attachment, and
8. closing the application

The simulation of an event will be done by having four test users test the application and then
interviewing these people. This will increase the validity of our results since we will obtain “human”
input concerning the usability of the application.

3.5 Evaluation framework

User-friendliness is a very important element of our application. We will test the user-friendliness
by evaluating the feedback and input gathered from our test users, as mentioned in the previous
section. Based on this feedback, adjustments will be made to the application.

* This procedure is repeated for each student’s access card.

The application | 19

4 The application

The purpose of this chapter is to give the reader an insight into the application and consists of the
following parts; the major design decisions made for the application (in Section 4.1), it will describe
how we worked to create the aforementioned application (in Section 4.2), what we tested and how
the tests were conducted (in Section 4.3), and finally describe the finished prototype and show some
of the functionality (in Section 4.4).

4.1 Design

This section describes the background of why we made certain decisions in our thesis project.
Specifically we will explain why we chose Java, LDAP, and certain functionality for the app.

4.1.1 Java

There are a number of reasons for why we chose Java as our programming language. First of all,
Java is platform independent, meaning that Java programs can run on all hardware and software
platforms. One example of a hardware platform is a PC, and software platforms include: Windows,
Linux, and Mac OS X. Building a GUI is easy and effective due to the fact that Java has a lot of
frameworks (e.g. AWT and Swing) and these frameworks provide many components, such as;
buttons, text fields, labels, etc. These reasons motivated the choice of java as a our programming
language, especially as our application development was mainly focused on creating a very user
friendly GUI.

Another reason for our choice of Java was the fact that both of us have had previous experience
with Java in courses at KTH, thus we had some basic knowledge of java and how to develop java
programs. We knew that we had to learn a number of concepts, but felt that Java would offer a
relatively short learning process compared to other programming languages. Another determinant
factor in choosing Java was that we decided to implement our system using the Model-View-
Controller (MVC) pattern. Both of us have had previous experience regarding MVC in Java during
the earlier stages of our education at KTH.

4.1.2 LDAP

LDAP was selected as the database to use to store the information connecting each student to an
access card. To do this we created an object called “carduser”, see Figure 2-3 for the schema. This
would enable KTH’s Information Technology staff to use this solution in the future by simply adding
the attribute “cardid” to their current LDAP object class that represents students in the KTH LDAP
server. This would require only a small change in the code of our application, as the application
would use only one LDAP server, rather than two separate LDAP servers. We initially considered
using an SQL database, but almost immediately discarded this idea - since if we used LDAP the
possibility to merge the two databases offers a large advantage.

If at a later date KTH wants to add support for the use of cards other than the student access
card, they could add a new attribute such as “slcardid” (short for SL card ID) so that students could
use their SL card to register their attendance. It would also be possible to add a attribute
“custcardid” (Custom card ID) so that the student can register and then use whatever NFC device
they want, assuming that the NFC device they use has a GUID and not just an UID.

20 | The application

4.1.3 Functional requirements

This section will describe the different decisions made to realize the necessary functionality of the
application and why they were made. The different functionalities are; reading a card (described in
Section 4.1.3.1), loop for card handling (described in Section 4.1.3.2), storing the attendance list
(described in Section 4.1.3.3), special case: course registration (described in Section 4.1.3.4), user-
friendly display (described in Section 4.1.3.5) and handling missing information (described in
Section 4.1.3.6).

4.1.3.1 Reading a card

We used the javax.smartcardio library to detect the presence of a card near the NFC reader and to
read the UID of such a card. The key functions are checking if a card is present and getting the UID
from that card. In the event of an error we get an error indication and display it via a message on the
screen such as "User not found!" or "User not in KTH LDAP!" with red background and a cross. If
the reading of the card succeeded and we were able to find the corresponding information in the
LDAP database, then a message with the user’s CN will be displayed on a green background with a
checkmark.

4.1.3.2 Main loop for card handling (CardHandler.java)

The most important functionality needed for our program to be able to achieve our goals was a way
to read the student’s access card’s RFID chip. While the application is running it keep checking
whether a card is present, if so then it will read the card’s UID and use this to lookup the
corresponding KTHID and record this user as being present for the event.

As shown in the flowchart in Figure 4-1, the loop continuously looks for a card until one is
present. Upon finding a card it reads the UID from the card and checks if this UID is present in our
LDAP database. If this UID exists, then the application looks up the corresponding user information
via the KTH LDAP server. However, if the UID does not exist then the application generates a
prompt asking the user for his or her KTH username. Using this username the application queries
the KTH LDAP server for the corresponding user information and extracts the user’s KTHID. The
application can now register a new binding with its LDAP server. Once this user’s card ID and
KTHID information has been stored, then the application can send a confirmation e-mail to the user
about this registration. Finally, the application records the user’s attendance and loops to look for a
new card.

Figure 4-1: Flowchart showing the card reading loop of the app.

The application | 21

21

4.1.3.3 Storing the attendance list

Another important requirement was to give the users of the application several ways of handling the
attendance lists. The required functionalities are listed below, and enable users to:

• Store the attendance list locally, either as a txt-file or XML-file,

• Send this file to his/her e-mail own address as a file attachment, and

• Upload the attendance list directly to one of the KTH course administration systems.

Unfortunately, uploading the attendance list to KTH administrative systems was not
implemented due to lack of time.

4.1.3.4 Special case: Course registration

One of the Daisy developers stated that some usages of the application such as course
registration could not be automated for entry into Daisy, as multiple factors(in the list below) affects
whether a student can be registered or not. [33] This does not affect the part of taking attendance
only the ability to take course registrations through the application.

• Is the student admitted to the course?

• Is the student registered for the current semester?

• Is the student eligible to take this course?

These factors complicate our application and requires additional development which is outside
the scope of this thesis project. Also, KTH is planning to allow students to register for courses by
themselves directly via KTH’s administrative systems, which makes further developments into this
special case functionality for the application unnecessary [33].

4.1.3.5 Visual presentation of information

The output from the application should be user-friendly and simple to understand. An attendee
scanning his/her KTH access card via the NFC USB-reader should be able to see if the registration
of their attendance was successful or not. To do this, we chose to make the display show the user’s
name and KTH-ID (the CN of the LDAP object class for the student) of the latest scanned attendee
in green if registration for the event was successful, and in red if their registration attempt was
unsuccessful. The colors green and red are optimal since they often resemble success and failure
respectively. Additionally, in order to avoid problems for colorblind users we display a checkmark if
the registration was successful and a cross if the registration was unsuccessful.

4.1.3.6 How to handle missing information

The scenario of a student scanning their card resulting in an unsuccessful registration was taken
into consideration. This unsuccessful registration could occur because a card is not yet registered
(not connected with a specific user in our LDAP database). Our application provides the possibility
for instructors to manually enter the KTH username of the student in a dialog window that appears
when there is an unsuccessful card registration. After the username is entered, our application will
query the KTH LDAP database for the specified username and subsequently successfully register the
student and show their CN on the screen.

22 | The application

Previously in this thesis project, there were thoughts of implementing a feature that would allow
users of the application to add a student and/or card in the LDAP database, but this was not
implemented due to the fact that we believe that this functionality should be done in a centralized
fashion via an administrative unit of KTH ICT. As attendance is most likely taken during the first 15
minutes of the lecture, seminar, etc, the process of adding user and card combinations to the LDAP
database directly in the application might slow it down(in terms of registering other attendees). As
the application is expected to be fast and simple, we believe that adding people to the database is
best done via the IT helpdesk or another administrative unit.

4.2 Development

The coding of the application was done exclusively in NetBeans IDE 8.0.2. By deciding upon a single
IDE we were able to use the exact same settings while coding and were able to push everything
including our configurations to Bitbucket* using git. This simplified our work as we did not need to
waste time trying to setup two different IDEs in the same way.

Early on a decision was made to do most of the coding using the agile software development
technique of pair programming. Pair programming has two roles that the users frequently switch
between. The first role is the driver - who writes all of the code while in the driver role. The second
role is the observer who reviews each line of code as it is written and considers how to proceed as
well as considers potential flaws in the current code. The decision to use pair programming was
mainly based on the fact that we both wanted to write equal amounts of the code, while neither of us
needed to individually understand all of the details of all of the code. However, we both have an
understanding of the code as a whole.

An important part of the project was searching, mainly on stackoverflow posts, for multiple
examples of working (and non-working) ideas when trying to understand how to develop a certain
function of the application. By looking at other people basic ideas and examples we were able to
incorporate their knowledge into our knowledge, hence extending the good parts while discarding
the unnecessary parts.

The main part of the Java library that were used for this project was the Java Smartcard I/O API
(the package javax.smartcardio) which “… defines a Java API for communication with Smart Cards
using ISO/IEC 7816-4 APDUs. It thereby allows Java applications to interact with applications
running on the Smart Card, to store and retrieve data on the card, etc."[34]. This package enabled
us to connect to and use the USB NFC Reader and to communicate with smartcards using the APDU
commands found in the ACR122U API[35]. An example of code that uses the ACR122U API and
javax.smartcardio package is Figure 4-2 below. If this code is compiled and run it will print the UID
of any card it can communicate with.

* https://bitbucket.org/ - A web-based hosting service for projects that use the revision control
systems Mercurial or Git.

The application | 23

23

Figure 4-2: Sample code that with an ACR122U USB NFC Reader connected to the computer would print out

the UID of a card placed near the reader*.

The reason that the for-loop looks the way it does is that the Response APDU has the format
shown in Table 4-1, the Least Significant Bit (LSB) is first and the Most Significant Bit (MSB) is last,
therefore the UID value has to be read backwards. This same process is performed our application
so that the UID is recorded the correct way.

Table 4-1: Shows the structure of the Response when a Command APDU is sent to get the UID of the
currently connected card, SW1 and SW2 is the status code. Adapted from a table in ACR122U API
section 4.1.[35]

Response Data out (in bytes 0x00-0xFF)

Result UID
(LSB)

- - UID
(MSB)

SW1
(Status code)

SW2
(Status code)

* Note: Do not forget to add "import javax.smartcardio.*" in the beginning of the file if you try this
example.

24 | The application

4.3 Testing

Testing was done in 3 parts. Section 4.3.1 and Section 4.3.2 were done by us. Section 4.3.3 was done
by volunteers, under our supervision. Section 4.3.4 describes how we tested the time needed to
make the LDAP queries and get a response.

4.3.1 Testing of individual modules

Testing of individual modules (classes) was done to check that they performed as they should in the
form of functionality rather than efficiency. The testing itself varied from class to class, but in this
section we will use the SaveHandler class as an example, but overall we tested that all of the
methods performed the functionally they were built for.

Some classes required us to create fake data for testing, the SaveHandler is one of these classes
that required fake data for testing. First of we created a Test() method inside a class called Test. In
this class we created the objects that we needed to test our class, such as a SchemaEvent, an
ArrayList containing Visitor(s), and in the case of SaveHandler a target file. Testing was performed
by repeatedly saving information to different files to see if the code would save the values properly,
even when SchemaEvent was empty, when the ArrayList was empty, when no file was specified, and
similar tests cases.

If the method, in this case saveToTxtFile(ArrayList<Visitor> visitors, SchemaEvent se, File file)
in SaveHandler.java, was able to save to a file when all necessary information was provided and if it
returned the correct value (true/false), then this function was considered functional. If the tests
broke, then we would look at the code and print debugging information to find where the code failed
and fix that part. Then we tested this code once again. Once a module were considered functional,
i.e., it did what it was supposed to under normal conditions, then the code was integrated together
with the other modules and the GUI for further testing (as described in Section 4.3.2).

4.3.2 Testing the modules together

First of all, the application was tested to see if it would start and stop as it should. These tests were
based on the normal behavior specified in Section 3.4. Then we created the CardHandler.java class
in order to have a working module that successfully communicates with the NFC USB Reader and
reads the UID of a student access card. This enabled us to test the module with the GUI to see that it
still provided the same functionality as when tested independently, while now also updating the
display. Following this we could test the normal behavior, including parts of the application that
relied on the CardHandler.

The application | 25

25

The next step was to implement the LDAPQuery class to see if we could resolve a cardid to KTH
usernames and then get the relevant information about the student (based on the user’s KTH
username). At this point the CN of the student associated with this card is supposed to be displayed.
After this basic testing we continued to add new modules. This procedure was repeated, adding a
module and testing as much of the normal behavior scenario as possible, until all the modules had
been added to the application. At this point we could start testing the full application as it was
supposed to work as it has shown all of the necessary functionality.

Changes to the code were made based on testing the application as a whole to ensure user-
friendliness and to optimize the application’s functionality. One of such changes was the addition of
an icon next to the name of the most recently scanned attendee in the form of a checkmark/cross
based on successful/unsuccessful registration for the even in order to ensure that the difference was
distinct for those who are unable to differentiate between the two colors that were used.

4.3.3 Testing the GUI with Volunteers

In order to improve the application and make any changes necessary to achieve our goals, we had
volunteers test the application and then ask them some questions. Table 4-2, Table 4-3, and Table
4-4 summarizes the questions ask of the volunteers, their answers, and our actions. In order to
gather relevant answers, the volunteers simulated the normal behavior (as described in Section 3.4)
with some modifications. These modifications were made since different users perform these tasks
in different ways.

Table 4-2: Answers and measures regarding unexpected behavior when using the application

Did you experience any unexpected behavior when using the application?

Tester Answer Our Actions

A NullPointerException caused when trying to
save an event after a failed search.

Implemented fail check that
prevents the save function
from being run if no search
results were returned.

B The display-text in the start screen does not
change when the start/stop option is clicked.

We changed the display-text
so that it clearly says that
the card scanning has not
started yet. The display-text
now changes with regard to
whether it is running the
card scan or not.

C The application did not register the card when
the card was removed too quickly during a scan.

There is nothing we can do
to prevent this. The card
should not be removed too
quickly.

D Card scanning does not work directly after the
application is started

This behavior is intentional
and is now properly
communicated to the user.

26 | The application

Table 4-3: Answers and measures regarding potentially required application clarifications

Is there something in the application that needs to be clarified?

Tester Answer Our actions

A It is difficult to see if the application card scanning is on
or off (the menu option “start/stop”).

We changed the text on the
menu option “start/stop” so
that it would say “Start
scanning” when the card
scanning is stopped, and vice
versa.

B It is not possible to save a file if no schema event has
been added.

If no schema event is added,
then the application will only
save the attendee’s information,
rather than not saving anything
at all.

D It is difficult to see:

1. What you actually save when clicking on “File
 Save  As text/XML”

2. What you send when clicking on “File Send
as e-mail”

3. What the “e-mail notifications” option does.

1. We changed the text to
“Send attendance list”
to further clarify the
save button.

2. Same measure as the
previous point, but
changed the text to
“Send attendance list as
e-mail”.

3. Same measure as the
previous point, but
changed the text to
“E-mail notifications
for registrants”

The application | 27

27

Table 4-4: Answers and measures regarding suggestions on improvements of the application

Do you have any suggestions on how to improve the application?

Tester Answer Our actions

A You need to specify what kind of input is needed in the
“setup scheduled event”-option in a better way. An
example is where the user needs to enter the period of
the course, there you should have a placeholder and not
a hover text.

The period text field is now
prefilled with 2015VT, no
placeholder were added due to
time restraints.

B You should not have case-sensitive input forms (e.g.
where the user enter the period of the course).

Changes were made in the code
in order to meet this
requirement. Input is now
casted to upper case.

D 1. The “attendance taken-from” when setting up a
scheduled event should be filled in
automatically based on when the current time.

2. Make the font size smaller in the “current
attendees“-display, it is unnecessarily big

3. It would be nice to have an option to remove
registered attendees

4. The “current attendees”-display should either
have a close-button or be integrated in the main
screen instead of being a separate screen

5. When a user that has already been registered
tries to register again the screen color should
change to yellow and not continuing to be
green.

1. We changed the code
to meet this
requirement.

2. We made the font size
smaller.

3. No measures will be
made for this since we
do not think that this
functionality is needed

4. A close button has
been added.

5. We'll keep it green as
more colors might
make it harder for
those that are
colorblind.

The results from these tests will be analyzed in Section 5.1.1.

4.3.4 Time to perform an LDAP query

The module for LDAP (LDAPQuery.java) was tested to measure the time it takes to complete both of
the LDAP queries: the one to our own LDAP database and the KTH LDAP database. This means that
we will subtract the time from just before the first LDAP query from the time just after the second
LDAP query response arrives in order to compute a total query response time (in milliseconds –
written below as “ms”). The main part of the test code is shown in Figure 4-3.

28 | The application

Figure 4-3: Part of the code to measure the time taken for LDAP queries.

The for-loop will be run executing 5 queries (for different users each loop), the number of
queries was restricted to 5 as that was the number of students that at the time had allowed us to use
their usernames. The time for each query to complete is recorded and used to calculate average
time, minimum time, and maximum time. The test code will be executed multiple times with
different delays between the queries, the planned delays are: 1000 ms, 1 0000 ms, 2 0000 ms, and
60 000 ms. These delays are used to simulate possible delays between adding each new student. The
first value 1 000 ms was chosen as a starting point as any less time would mean that the student
would not even have time to check if their registration succeeded or not. The last value of 60 000 ms
was chosen as the maximum delay due to the fact that most students will register attendance one
right after another at the beginning of a lecture, lab, or seminar. Additionally, it is still possible to
register your attendance after a longer time in order to handle the occasional straggler.

4.4 Final prototype

Figure 4-4 shows the start screen of the application. One of the menu options is called “File” (shown
as selected in Figure 4-4). This provides the options to start/stop the card scanning, save the current
attendance list, and send the current attendance list as an e-mail attachment. The save-option
allows the user to save the current attendance list either as a txt-file or a XML-file. After choosing to
save the file, the destination path and name of the file can be chosen via a pop up file chooser dialog
(jFileChooser). When choosing the option “Send list as e-mail”, a pop up window will appear and
prompt the user to enter the recipient’s e-mail address. An e-mail containing the attendance list as
an attached file will be sent to the specified e-mail address. The sender should be the instructor’s
own e-mail address. During development we used our own e-mail addresses for testing purposes.

The application | 29

29

Figure 4-4: Start-screen with the “File”-option selected

Another option in the menu is “Setup”, where the user has the options to setup a scheduled
event, setup a manual event (when an event is not present in the KTH scheduling system), and to
enable/disable the option to send a confirmation e-mail to each successfully registered attendee.
Figure 4-5 shows the dialog window that appears when the user chooses to setup a scheduled event.
The user is prompted to enter the course code (“EQ1120” is an example, as shown in the figure) and
the current term (entered in the field period) in order to search for an event. The time interval
during which attendance will be taken and the instructor’s KTH id need to be entered via the dialog
window.

Figure 4-5: Dialog window for setting up a scheduled event

30 | The application

When the user has set up an event, he/she can proceed with the attendance registration process
by clicking on the “Start scanning”-option under “File”, as illustrated in Figure 4-4. Once the start-
option has been selected, the application and the connected NFC USB-reader are ready to scan
RFID cards. Clicking on the “Stop scanning”-option , which replaces the “Start scanning”-option as
a menu option when running the scan, again will stop the scanning (not shown in the figure).
Pressing start again after stopping the application will start the scanning again from the stopped
point, it will not reset any information gathered prior to pressing stop. Figure 4-6 illustrates an
successful student registration, while Figure 4-7 illustrates an unsuccessful registration resulting in
a dialog box popping up to enable the instructor to manually entry a student’s the KTH-ID (as
described in Section 4.1.3.6).

Figure 4-6: Successful card registration

Figure 4-7: Unsuccessful card registration

The application | 31

31

The last menu option is called “Help” and allows the user to view the current list of attendees in
a separate window. Figure 4-8 shows the “current attendees”-display with three registered students
as an example. The order of the students is based on their attendance registration time.

Figure 4-8: Display list of current attendees*

* These users have explicitly given their permission for their name and KTHID to be shown in this
thesis.

Analysis | 33

5 Analysis

In this chapter, test results are presented and discussed.

5.1 Major results

The results can be divided into two parts: user tests and results of the LDAP lookup time test.

5.1.1 User tests

The feedback gathered from our user tests (presented in Section 4.3.3) were very valuable as they
identified some flaws in our application that we had missed during our own testing. One common
flaw that was pointed out by different test users was the fact that it was difficult to see if the
application was scanning for cards or not. This occurred because the display-text on the start screen
did not change after the “Start/stop” option was chosen, thus confusing the user. This was corrected
by changing the text that is displayed after the Start/stop option is chosen.

Another flaw was that incomplete text in certain parts (menu options, input forms, etc.) of the
application resulted in the test users being uncertain as to what kind of information should be
entered. A clear example of this problem was the “Save  as txt” option which did not specify what
it would save. We assumed that this information was implied, but some test users did not
understand that the application would save the attendance list. Another example was the text
describing what to type in input forms presented during the processing of the “setup scheduled
event”-option. The hover text giving examples of what to enter was not sufficient, perhaps these test
users were not actually instructors and thus were not used to entering course codes and semester
periods.

The results of our user tests varied a lot depending on the user’s background. Test users with
less programming and testing knowledge did not provide as much constructive feedback. Moreover
they did not test the application that thoroughly and thus did not find many flaws. On the other
hand, test users with more programming and testing knowledge provided more explicit feedback.
These user were able to push the application to its limits and thus revealed more flaws.

For some of the suggested improvements regarding our application no actions were taken because
we did not agree with those particular improvements. One example is the suggestion about changing
the display color to yellow when a student who has already been registered tries to register again.
We felt that it would be better to keep the two colors green and red, as more colors would potentially
complicate the situation for colorblind users. Another example is the suggestion of being able to
remove attendees from the current attendance list. We reckoned that this functionality could
potentially be misused by individuals with intentions of damaging others (e.g. when there are
insufficient reasons for removing a student).

5.1.2 LDAP lookup time test

As can be seen in Table 5-1 the LDAP test results varied slightly for the different delay times. The
biggest discovery from these tests is the fact that the maximum value is so far above the median,
which in turn pushes up the average value to almost twice the median value. This tells us that the
distribution of query times has a long tail.

34 | Analysis

Table 5-1: The test results from the LDAP lookup time tests. All values are in milliseconds (ms) and 5
lookups were done for each "time between lookups" value.

Time between lookups: 1000 ms 10000 ms 20000 ms 60000 ms
Sum 863 850 968 1053

Average 172.6 170 193.6 210.6
Minimum 93 89 109 99
Maximum 471 473 481 616

Median 100 93 127 110

The fact that the first lookup out of the 5 (as can be seen in Figure 5-1) for each delay time
always was several times slower than the following 4 lookups. This could potentially mean that the
first card that is scanned will not be properly processed and displayed before the next card is
scanned.

If other external factors, such as the network being congested, can increase the round trip time
of the packets thus increasing the probability that the second student’s card will be displayed only
shortly after the first student’s has scanned his/her card. There is code in the application that
prevents a new card from being scanned while the prior one is still connected, which means that if
the student waits before removing his or her card there will not be a problem.

Figure 5-1: Sample test output from the LDAP query rate test with a delay of 1000 ms.

Analysis | 35

35

As can be seen in Figure 5-2 the time to complete each LDAP lookup follows the same pattern in
which the first query takes on average 500 ms, while the second to fifth lookup takes on average
100 ms each. If this pattern were to continue there will be no problem with our application,
although the limited number of usernames that we had to use in queries limited the number of
subsequent consecutive LDAP lookups that we could made. If we were to have many more
usernames to use for the lookups there might be another pattern revealed.

Figure 5-2: The time to complete LDAP lookups with a delay of 1, 10, 20, 60 seconds between lookups

Below in Figure 5-3, one can see that most packets in the first and second lookup takes the same
amount of time, one thing to be noted is that the packets in which the first lookup takes longer are
all sent by the LDAP server. This gives further material to the idea that it is the authentication to the
LDAP server that makes the first lookup take a longer time.

Figure 5-3: Figure depicting the 26 packets sent and the time between them for two LDAP lookups performed

after each other (lookup 1 took 340 ms and lookup 2 took 96 ms). Note that this only depicts the
lookup versus the KTH LDAP database.

An interesting thing to note is that there seems to be no limit on the number of LDAP queries
that can be performed. This was discovered when we tried to do 50 lookups in a row with 1 000 ms
between each lookup, all lookups were completed successfully. Although a limit was discovered
when tried to extract multiple user’s information in a single query – as we once got an error stating
that the "Size limit exceeded".

0

20

40

60

80

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26Ti
m

e
be

tw
ee

n
pa

ck
et

s i
n

m
s(

m
ill

is
ec

on
ds

)

Packets

Lookup 1

Lookup 2

36 | Analysis

5.2 Reliability Analysis

There are some factors that could affect the query time. These factors include the round trip latency
of the connection between the test computer and the LDAP server, the test computer’s CPU, the
current load on KTH’s LDAP server, and the time of day when the tests were made. These are only
some of the factors and there are other factors such as network distance which might also affect the
tests.

Since the tests were done on a computer connected to an access point inside KTH ICT’s wireless
local area network, the time difference between queries to the KTH LDAP server should have been
routed completely within KTH’s network, hence they did not have to go through external nodes to
reach their destination. Our LDAP server was running locally on the same machine as the tests were
conducted, hence the time to do a local lookup and transfer the data should be minimal, hence the
overall test results should describe a future scenario where the KTH LDAP server stores the access
card’s UID and only one lookup is needed.

Four consecutive tests were made starting with a delay of 1 000 ms and ending with 60 000 ms
without the GUI. As mentioned in Section 4.3.4, the test-method used our java methods that
executed LDAP queries with an access card UID to lookup the KTH username based upon this UID
and then a LDAP query was made to lookup information about the student based on their KTH
username. The UID was not obtained via scanning of card, but instead was built into the test script,
hence there were no delays due to accessing the NFC reader or the RFID card. This means that the
additional delay of the communication between the reader and the cards were excluded from the
test. For reliability purposes the tests were done with the same five users in all the tests.

The user tests of the application also considered reliability since the users performed the normal
behavior as described in Section 3.4.

5.3 Validity Analysis

The data gathered are considered valid since, as previously described in Section 5.1.2, a time stamp
is collected before and after the LDAP queries and then compared to the time stamp after the
responses have been received. This time is recorded and printed to the console. As we pointed out in
Section 4.3.4, the time between queries is recorded, thus we can calculate the average, minimum,
and maximum query response times. The output containing this information is considered valid as
the time measurements were in units of nanoseconds, and then stored in units of milliseconds to
allow for easier comparisons.

5.4 Discussion

One interesting question is: Will the system scale for other universities with larger numbers of
students and faculty? The number of students and faculty can vary quite a lot depending on the
university. For example, Stockholms University has 70 000 students and 5 000 staff*, New York
University has 58 547 students and 4 572 faculty†, and California State University has 460 000
students and 47 000 faculty and staff‡. These numbers are much larger that the corresponding
numbers for KTH ICT, where the total number of students was 1 301 and the total number of faculty
& staff were 321, in 2014 (as described previously in Section 3.2.3).

* http://www.su.se/english/about/facts-figures
† http://www.nyu.edu/about/news-publications/nyu-at-a-glance.html
‡ http://www.calstate.edu/PA/2015facts/

http://www.su.se/english/about/facts-figures
http://www.nyu.edu/about/news-publications/nyu-at-a-glance.html
http://www.calstate.edu/PA/2015facts/

Analysis | 37

37

The high numbers of students and faculty at other universities should not be a problem with
regard to scalability because these numbers will not affect the LDAP queries made from our
application, unless there are limitations on how many nearly simultaneous LDAP queries can be
made. The number of attendees at any lecture/lab/seminar is normally affected by the maximum
number of students that can participate in a given course during a certain period. This is in turn
affected by the specific school’s regulations and room capacities. As mentioned in Section 5.1.2, we
made a test with 50 lookups in a row with 1 000 ms between each lookup and the application
continued to behave in the expected manner. It is clear that 100 or 200 lookups per second could
occur in schools with more students and faculty.

The pattern of lookup times shown in Figure 5-2, illustrated and described in Section 5.1.2,
supports our argument of the application being able to operate with larger numbers of students. An
average lookup time of about 100 ms should not be a problem since it is sufficiently fast so that most
humans will not notice any delay. We doubt that two subsequent card scans and lookups could take
place in under 100 ms. Of course there could be a similar student registration taking place in one of
KTH’s 264 rooms*.

Compared to some of the other relevant work in Table 2-1, our prototype has the advantage of
not requiring students to have an NFC-enabled phone or any application installed. It only requires
students to have a KTH access card, which is not a problem at KTH ICT since all students possess
one. The downside is that this solution assumes that student have access cards with unique IDs,
which they have at KTH ICT, but this might not be the case at other universities. Our solution has
the major disadvantage of not being integrated with any administrative system and only being able
to save attendance lists locally as a txt or xml-file. Although the list can be send as an e-mail
attachment.

* http://www.kth.se/places/room

http://www.kth.se/places/room

Conclusions and Future work | 39

6 Conclusions and Future work

This final chapter summarizes and concludes this thesis project as well as describes the limitations
of this thesis project and gives suggestions for future work. At the end of the chapter, reflections on
relevant economic, social, environmental, and ethical aspects of our work are presented.

6.1 Conclusions

Over time we noticed that we would be unable to reach all our goals (as specified in Section 1.4)
within the planned time period, hence we choose to focus on the first part of our goals: "... develop
and evaluate an prototype application that creates an attendance list by using a NFC reader to read
access card data.". This goal was reached and a functional prototype was created. This prototype can
read the UID of an access card. Given this UID a lookup can be made to get information about the
student associated with this card. The second major goal, to enable uploading of the attendance list
to other KTH services remains for future work (see Section 6.3).

We have gained multiple insights during this project that have further increased our knowledge,
some of these insights are:

• Our knowledge of Java has been increased as we learnt about LDAP communication
from within Java. We also learned how to communicate with an USB NFC Reader using
Java with APDUs, how to send mail using Java with javax.mail, and how to read JSON
in Java with javax.json.

• We have gained new knowledge and extended our knowledge of RFID and NFC during
this thesis project.

• We have learned how to setup OpenLDAP within a Linux environment and how to
create and add new schemas to the LDAP database. Additionally, we gained some
knowledge about how to use LDAP related utilities, such as slaptest and ldapadd.

The most important suggestion we have for others working in this area in the future would be to
do a major background study - as there are many other people doing similar things and you should
be able to gain valuable information and inspiration from their work.

As the project nears its end we only have one regret: we did not reach out to all the people that
could help us within the first week. Waiting to ask until when we needed their help leads to delays in
the project and eliminated the chance to change directions during the thesis project. For example, if
we had gotten the information about Daisy earlier (see the first paragraph of Section 6.3) we might
have changed direction to focus on the upload of the attendance information to the system, rather
than retrieving attendance information from the students.

6.2 Limitations

One of the main goals of this thesis was to create a functional prototype of an application that could
create an attendance list and easily transfer it to administrative systems such as Daisy (described in
Section 1.4). Unfortunately, the developers of Daisy have not implemented such a function and we
would have needed to learn how to integrate the application with the Daisy API ourselves.
Unfortunately, this was not possible due to lack of time and a lack of knowledge. This will be further
described in the next section.

40 | Conclusions and Future work

There were other limitations as well, one of them is that we only had 10 test cards. These cards
included our own two KTH access cards, two additional cards generously donated to us by
Fidesmo*, and the last 6 cards were a part of a development kit bought with our own money. Since
we both are students with tight budgets, the option to buy additional cards was unavailable. The
small number of test cards limited our tests in terms of the number of unique queries that we could
make.

Other limitations of our results included:

• The application was not properly tested on operative systems other than Microsoft’s
Windows.

• The application requires a PC and a NFC USB ACR122U reader.

These limitations will further be described in the next section.

6.3 Future work

The most important future work would be the ability to directly upload attendance lists from the
application into KTH’s course administration systems, such as Bilda, Daisy, Social, etc. Initially,
there were plans to upload the attendance lists into Daisy with the help of the Daisy developers;
however, they did not consider this a high priority to add to Daisy [33]. According to one developer
we could have gotten access to the private Daisy API and built a JavaScript function to automate the
checking of the checkboxes that represent course registrations in Daisy. If someone were to look at
this in the future, we would suggest that they start there. One of our hopes is given that the
development of this prototype as a proof-of-concept, KTH administrators will support the required
extension to Bilda, Daisy, Social, etc.

As the application has been built in Java it should theoretically run on both Linux and Mac OS
X. However, the application has not been tested in these environments due to lack of access to these
operating systems. The application has been tested once on Linux, but has not be tested again since
the last changes were made. If KTH were to decide to use this prototype as a base for an attendance
system we would recommend that the application should be properly tested in both Linux and Mac
OS X environments before changes to the code are made.

Something that would simplify user’s life in the future would be an Android, iOS, and/or
Windows Phone port of the application to enable staff to take attendance without needing a laptop
or stationary computer and a USB connected NFC Reader. This would be a useful feature as many of
the staff might not want to drag around extra equipment. The parts of the application that would
need to be modified or re-implemented would then be the GUI. Additionally, some adjustments
would have to be made to the CardHandler.java class to make it use the Android/iOS/Windows
Phone API.

Currently, the application only supports one specific USB NFC Reader, the ACR122U. A clear
future effort would be to extend the application to check what type of NFC reader is currently
connected. Then the application would be able to choose the correct method for reading cards for
that type of reader. This is necessary as different readers use different command APDUs to
communicate with the cards and the format of the response might differ between different readers.
This would not be needed if KTH adopted a standard hardware platform which they provided to all
instructors for collecting attendance lists through NFC.

* http://fidesmo.com/sv/

http://fidesmo.com/sv/

Conclusions and Future work | 41

41

An interesting adaptation of the application would be to add support for the RFID locks
currently deployed on the doors on the lecture halls in the Electrum building (in the rooms used by
KTH ICT). This could possibly enable a teacher to swipe his/her card and have the RFID lock take
attendance automatically and then e-mail the attendance list to the instructor. This would require
either KTH to rebuild the RFID lock system from scratch or work out some kind of arrangement
with the vendor to enable the use of plugins for these locks.

6.4 Reflections

If our prototype were to be further developed and integrated with appropriate administrative
systems at KTH, there could be economic benefits for the school - as such a system would reduce the
time and resources needed by instructors and administrators at KTH. It could also reduce the time
needed to register attendance manually from sheets of paper, as currently that paper has to circulate
around the classroom (with the risk of not be properly passed to all students) and reduces the focus
on the current lecture, lab, or seminar.

The prototype as it is currently implemented (i.e., without integration with any administrative
system) could possibly improve several ethical aspects regarding attendance registration. To passing
around a piece of paper to collected attendance at events has the potential risk of forgery - as it is
hard to detect that one student is signing the name of his/her friend who is not present at the event.
By using our prototype, students would simply place their KTH access card on the NFC reader
connected to the instructor’s PC. If a student attempts forgery, he/she would have to possess his or
her friend’s KTH access card and would need to scan two different cards (once for themselves and
once for their friend) and this is easier for the instructor or other attendees to notice.

The environmental aspects regarding this thesis are also interesting. Implementation of our
prototype would require purchasing of NFC USB readers which has a negative impact on the
environment since production and transportation of these device’s requires additional energy and
material. However, the fact that our prototype would be used rather than paper lists (which require
a lot of paper) could possibly be a benefit from an environmental point of view. Also, running our
application would not increase computer usage since instructors at KTH ICT generally use
computers in some way to present information at lectures, labs, seminars, etc.

References | 43

References

[1] D. Graziano, “NFC-equipped smartphone sales ballooned 300% in 2012 even without
Apple’s support,” BGR. 20-Jun-2013 [Online]. Available:
http://bgr.com/2013/06/20/nfc-smartphone-adoption-2012/. [Accessed: 10-Apr-
2015]

[2] R. Boden, “Berg Insight reports on NFC POS terminal growth • NFC World+,” NFC
World+. Feb-2015 [Online]. Available:
http://www.nfcworld.com/2015/02/24/334209/berg-insight-reports-on-nfc-pos-
terminal-growth/. [Accessed: 10-Apr-2015]

[3] Google, “An easy way to pay, purchase, and save – Google Wallet.” [Online].
Available: https://www.google.com/wallet/. [Accessed: 10-Apr-2015]

[4] M. Tapper, “FW: Genomförande av exjobb - accesskort,” 03-Feb-2015 [Online].
Available:
https://www.dropbox.com/s/r5u2hqihdxh14q9/FW_%20Genomf%C3%B6rande%2
0av%20exjobb%20-%20accesskort%20-%20Soren%20Kavosi.pdf?dl=0

[5] A. Lundgren, “Anvisning om hantering av förteckningar över studenter.” KTH
Universitetsförvaltning, 16-Apr-2015 [Online]. Available:
https://www.dropbox.com/s/lbujsq7ix580ou1/SUF_RH_PLAN15042012190.pdf?dl
=0

[6] C. Larman, “Iterative Development,” in Agile and Iterative Development: A
Manager’s Guide, Addison-Wesley Professional, 2003, ISBN-10: 0-13-111155-8 ISBN-
13: 978-0-13-111155-4 [Online]. Available:
http://proquest.safaribooksonline.com.focus.lib.kth.se/book/software-engineering-
and-development/agile-development/0131111558/iterative-and-
evolutionary/ch02lev1sec1. [Accessed: 14-Apr-2015]

[7] J. Landt, “The history of RFID,” IEEE Potentials, vol. 24, no. 4, pp. 8–11, Oct. 2005.
[8] I. Poole, “RFID Frequencies | RFID Frequency Bands & Spectrum | Allocations,”

Radio-Electronics.com. [Online]. Available: http://www.radio-
electronics.com/info/wireless/radio-frequency-identification-rfid/low-high-
frequency-bands-frequencies.php. [Accessed: 27-Mar-2015]

[9] V. D. Hunt, M. Puglia, and A. Puglia, RFID - A Guide to Radio Frequency
Identification. Hoboken John Wiley & Sons, Inc, 2007, ISBN-13: 978-1-4493-7206-4
[Online]. Available:
http://onlinelibrary.wiley.com/doi/10.1002/9780470112250.ch1/summary

[10] J. Thrasher, “RFID versus NFC: What’s the difference between NFC and RFID?,”
RFID insider. 11-Oct-2013 [Online]. Available: http://blog.atlasrfidstore.com/rfid-vs-
nfc. [Accessed: 24-Mar-2015]

[11] NXP Semiconductors, “MIFARE smart card ICs :: NXP Semiconductors.” [Online].
Available:
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare
_smart_card_ics/. [Accessed: 02-May-2015]

[12] NFC Forum, “What Is NFC? - About the Technology,” NFC Forum. [Online].
Available: http://nfc-forum.org/what-is-nfc/about-the-technology/. [Accessed: 01-
Jun-2015]

[13] T. Igoe, D. Coleman, and B. Jepson, “The Architecture of NFC,” in Beginning NFC,
O’Reilly Media, Inc., 2014, ISBN-10: 1-4493-0851-1 ISBN-13: 978-1-4493-0851-3
[Online]. Available: http://shop.oreilly.com/product/0636920021193.do. [Accessed:
02-Apr-2015]

[14] Sony, “Sony Global - FeliCa - Overview of FeliCa - What is FeliCa ?” [Online].
Available: http://www.sony.net/Products/felica/about/. [Accessed: 14-Apr-2015]

[15] T. Igoe, D. Coleman, and B. Jepson, “How NFC Operates,” in Beginning NFC, O’Reilly
Media, Inc., 2014, ISBN-10: 1-4493-0851-1 ISBN-13: 978-1-4493-0851-3 [Online].

44 | References

Available: http://shop.oreilly.com/product/0636920021193.do. [Accessed: 19-Apr-
2015]

[16] Vedat Coskun, Kerem Ok, and B. Ozdenizci, “NFC Essentials,” in Professional NFC
Application Development for Android, John Wiley & Sons, 2013, ISBN-13:
9781118380543, pp. 10–23 [Online]. Available:
http://site.ebrary.com.focus.lib.kth.se/lib/kth/detail.action?docID=10684960

[17] NFC Forum, “What Is NFC? - What It Does,” NFC Forum. [Online]. Available:
http://nfc-forum.org/what-is-nfc/what-it-does/. [Accessed: 21-Apr-2015]

[18] NFC Forum, “NFC Forum Specification Architecture - Tag Type Technical
Specifications,” NFC Forum. [Online]. Available: http://nfc-forum.org/our-
work/specifications-and-application-documents/specifications/tag-type-technical-
specifications/. [Accessed: 01-Jun-2015]

[19] C. Kern, “New Report Forecasts Major Growth In NFC Enabled Handsets And NFC
Transaction Market By 2019.” [Online]. Available:
http://www.retailsolutionsonline.com/doc/new-report-forecasts-major-growth-in-
nfc-enabled-handsets-and-nfc-transaction-market-by-0001. [Accessed: 02-Apr-2015]

[20] Transport for London, “Contactless - Transport for London.” [Online]. Available:
http://www.tfl.gov.uk/fares-and-payments/contactless?cid=contactless. [Accessed:
21-Apr-2015]

[21] Jim Sermersheim <jimse@novell.com>, “Lightweight Directory Access Protocol
(LDAP): The Protocol.” [Online]. Available: https://tools.ietf.org/html/rfc4511.
[Accessed: 30-Mar-2015]

[22] Zytrax, “Open Source Guide - LDAP for Rocket Scientists.” [Online]. Available:
http://www.zytrax.com/books/ldap/. [Accessed: 30-Mar-2015]

[23] B. Benyo, B. Sodor, T. Doktor, and G. Fordos, “Student attendance monitoring at the
university using NFC,” presented at the Wireless Telecommunications Symposium
(WTS), 2012, London, 2012, ISBN-13: 978-1-4577-0579-3, pp. 1–5 [Online].
Available: http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=6266137

[24] M. A. Ayu and B. I. Ahmad, “TouchIn: An NFC Supported Attendance System in a
University Environment,” Int. J. Inf. Educ. Technol., vol. 4, no. 5, pp. 448–453, Oct.
2014.

[25] M. J. L. Fernandez, J. G. Fernandez, S. R. Aguilar, and B. Selvi, “Control of
attendance applied in higher education through mobile NFC technologies,” Expert
Syst. Appl., vol. 40, no. 11, pp. 4478–4489, Sep. 2013.

[26] M. Bucicoiu and N. Tapus, “Easy attendance: location-based authentication for
students integrated with Moodle,” presented at the 2013 11th RoEduNet International
Conference, 2013, ISBN-13: 978-1-4673-6114-9, pp. 1–4 [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs_all.jsp?arnumber=6511761

[27] Moodle, “Moodle - Open-source learning platform.” [Online]. Available:
https://moodle.org/. [Accessed: 27-Apr-2015]

[28] KTH, “KTH | Skolan i siffror.” [Online]. Available:
https://www.kth.se/ict/om/skolan-i-siffror-1.7724. [Accessed: 03-May-2015]

[29] Datainspektionen, “Personuppgiftslagen - Datainspektionen.” [Online]. Available:
http://www.datainspektionen.se/lagar-och-regler/personuppgiftslagen/. [Accessed:
14-May-2015]

[30] OpenLDAP, “Manual Pages - ldapadd(1),” 24-Nov-2011. [Online]. Available:
http://www.openldap.org/software/man.cgi?query=ldapadd&sektion=1&manpath=
OpenLDAP+2.4-Release. [Accessed: 22-May-2015]

[31] OpenLDAP, “Manual Pages - slaptest,” 24-Nov-2011. [Online]. Available:
http://www.openldap.org/software/man.cgi?query=slaptest&manpath=OpenLDAP+
2.4-Release. [Accessed: 22-May-2015]

References | 45

45

[32] Advanced Card Systems Ltd., “ACR122U USB NFC Reader,” Advanced Card Systems
Ltd. [Online]. Available: http://www.acs.com.hk/en/products/3/acr122u-usb-nfc-
reader/. [Accessed: 28-Apr-2015]

[33] N. Dimitrakas, “Re: Hjälp med exjobb - implementation av Daisy,” 07-May-2015
[Online]. Available:
https://www.dropbox.com/s/0tsmddfh9lwhmjw/Re_%20Hj%C3%A4lp%20med%20
exjobb%20-%20implementation%20av%20Daisy%20-
%20Soren%20Kavosi.pdf?dl=0

[34] Oracle, “JavaTM Smart Card I/O API,” javax.smartcardio (Java Smart Card I/O), 26-
Sep-2014. [Online]. Available:
https://docs.oracle.com/javase/7/docs/jre/api/security/smartcardio/spec/javax/sm
artcardio/package-summary.html. [Accessed: 18-May-2015]

[35] Advanced Card Systems Ltd., “ACR122U Application Programming Interface V2.02.”
Advanced Card Systems Ltd., 20-Dec-2012 [Online]. Available:
http://downloads.acs.com.hk/drivers/en/API-ACR122U-2.02.pdf. [Accessed: 18-
May-2015]

[36] J. Ellingwood, “How To Install and Configure OpenLDAP and phpLDAPadmin on an
Ubuntu 14.04 Server,” DigitalOcean, 05-Jun-2014. [Online]. Available:
https://www.digitalocean.com/community/tutorials/how-to-install-and-configure-
openldap-and-phpldapadmin-on-an-ubuntu-14-04-server. [Accessed: 24-May-2015]

[37] stezz, “somethingMeaningful: How to add a new schema to openLDAP 2.4+.”
[Online]. Available: http://stezz.blogspot.se/2012/05/how-to-add-new-schema-to-
openldap-24.html. [Accessed: 25-Mar-2015]

Appendix A: Creating the new LDAP database | 47

Appendix A: Creating the new LDAP database

A.1: Installing OpenLDAP (on Ubuntu 14.04)

sudo apt-get update

sudo apt-get install slapd ldap-utils

sudo dpkg-reconfigure slapd

• Omit OpenLDAP server configuration? No

• DNS domain name? ldap.local

• Organization name? ldap

• Administrator password? ldap

• Database backend? HDB

• Remove the database when slapd is purged? No

• Move old database? Yes

• Allow LDAPv2 protocol? No

A.2: Creating the OU used with ldapadd

create a file with: "vim carduserou.ldif" and add:

dn: ou=carduser,dc=ldap,dc=local

objectclass: organizationalUnit

ou: carduser

Use "ldapadd -xWvD cn=admin,dc=ldap,dc=local -f carduserou.ldif" to add the OU to LDAP.

A.3: Adding a schema with ldapadd utility and slaptest utility

Create the schema and name it carduser.schema, in our case we used the one shown in the paper.

mkdir /tmp/lidf/

echo "include /etc/ldap/schema/carduser.schema" > schema_conv.conf

slaptest -f ./schema_conv.conf -F /tmp/ldif/

vim /tmp/ldif/cn\=config/cn\=schema/cn\=\{0\}carduser.ldif

Change the following lines to this:

dn: cn=carduser,cn=schema,cn=config,

objectClass: olcSchemaConfig

cn: carduser

Also remove the following lines from the file (* is any text):

structuralObjectClass:*

entryUUID: *

creatorsName: *

createTimestamp: *

entryCSN: *

48 | Appendix A: Creating the new LDAP database

modifiersName: *

modifyTimestamp: *

cp /tmp/ldif/cn\=config/cn\=schema/cn\=\{0\}carduser.ldif /etc/ldap/schema/carduser.ldif

ldapadd -Q -Y EXTERNAL -H ldapi:/// -f /etc/ldap/schema/carduser.ldif

Based on information from a community tutorial on Digital Ocean[36], and a blogpost on
SomethingMeaningful(stezz.blogspot.com)[37].

Appendix B: Detailed results | 49

49

Appendix B: Detailed results

Lookup: 1000 ms 10000 ms 20000 ms 60000 ms Average
1 471 473 481 616 510
2 100 93 127 106 107
3 105 89 109 122 106
4 94 104 120 99 104
5 93 91 131 110 106

Time between lookups: 1000 ms 10000 ms 20000 ms 60000 ms
Sum: 863 850 968 1053
Average: 172,6 170 193,6 210,6
Min: 93 89 109 99
Max: 471 473 481 616
Median: 100 93 127 110

0

100

200

300

400

500

600

700

0 1 2 3 4 5 6

Time to complete
(ms)

Query

Time to execute LDAP queries

1000 ms

10000 ms

20000 ms

60000 ms

Average

Appendix C: Source code | 51

Appendix C: Source code

This appendix gives a listing of the source code. The source code is available for download from the
DiVA repository where this thesis is stored.

The .zip-archive contains the following classes:

• CardHandler.java

• Controller.java

• CurrentAttendeesDisplay.java

• CustomEventConfigurator.java

• LDAPQuery.java

• MailHandler.java

• Precense.java

• SaveHandler.java

• ScheduledEventConfigurator.java

• SchemaEvent.java,

• SchemaHandler.java,

• Visitor.java

• Window.java

TRITA-ICT-EX-2015:47

www.kth.se

	Abstract
	Keywords

	Sammanfattning
	Nyckelord

	Acknowledgments
	Table of contents
	List of Figures
	List of Tables
	List of acronyms and abbreviations
	1 Introduction
	1.1 Background
	1.2 Problem definition
	1.3 Purpose
	1.4 Goals
	1.5 Research Methodology
	1.6 Delimitations
	1.7 Structure of the thesis

	2 Background
	2.1 Radio Frequency Identification (RFID)
	2.2 Near Field Communication (NFC)
	2.2.1 Communication modes
	2.2.2 Operating modes
	2.2.3 Type of devices
	2.2.4 NFC vs. RFID
	2.2.5 Uses

	2.3 Lightweight Directory Access Protocol (LDAP)
	2.3.1 Schema
	2.3.2 Attribute
	2.3.3 Object classes

	2.4 Related work
	2.4.1 Student attendance monitoring using NFC and fingerprint readers
	2.4.2 TouchIn: a web based application
	2.4.3 Control of attendance through mobile NFC technologies
	2.4.4 Easy Attendance: Location-based authentication for students integrated with Moodle

	2.5 Summary

	3 Methodology
	3.1 Research Process
	3.1.1 Phase 1: Information gathering phase
	3.1.2 Phase 2: Developing individual parts of the application
	3.1.3 Phase 3: Create and test the Graphical User Interface
	3.1.4 Phase 4: Evaluation

	3.2 Data Collection
	3.2.1 Sampling
	3.2.2 Sample Size
	3.2.3 Target Population

	3.3 Experimental design and Planned Measurements
	3.3.1 Test environment
	3.3.2 Hardware and Software to be used

	3.4 Assessing reliability and validity of the data collected
	3.5 Evaluation framework

	4 The application
	4.1 Design
	4.1.1 Java
	4.1.2 LDAP
	4.1.3 Functional requirements
	4.1.3.1 Reading a card
	4.1.3.2 Main loop for card handling (CardHandler.java)
	4.1.3.3 Storing the attendance list
	4.1.3.4 Special case: Course registration
	4.1.3.5 Visual presentation of information
	4.1.3.6 How to handle missing information

	4.2 Development
	4.3 Testing
	4.3.1 Testing of individual modules
	4.3.2 Testing the modules together
	4.3.3 Testing the GUI with Volunteers
	4.3.4 Time to perform an LDAP query

	4.4 Final prototype

	5 Analysis
	5.1 Major results
	5.1.1 User tests
	5.1.2 LDAP lookup time test

	5.2 Reliability Analysis
	5.3 Validity Analysis
	5.4 Discussion

	6 Conclusions and Future work
	6.1 Conclusions
	6.2 Limitations
	6.3 Future work
	6.4 Reflections

	References
	Appendix A: Creating the new LDAP database
	A.1: Installing OpenLDAP (on Ubuntu 14.04)
	A.2: Creating the OU used with ldapadd
	A.3: Adding a schema with ldapadd utility and slaptest utility

	Appendix B: Detailed results
	Appendix C: Source code

