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Abstract

During the recent years, a new area called Cloud Networked Robotics (CNR) has evolved
from conventional robotics, thanks to the increasing availability of cheap robot systems
and steady improvements in the area of cloud computing. Cloud networked robots refers to
robots with the ability to offload computation heavy modules to a cloud, in order to make
use of storage, scalable computation power, and other functionalities enabled by a cloud
such as shared knowledge between robots on a global level. However, these cloud robots
face a problem with reachability and QoS of crucial modules that are offloaded to the
cloud, when operating in unstable network environments. Under such conditions, the
robots might lose the connection to the cloud at any moment; in worst case, leaving the
robots “brain-dead”.

This thesis project proposes a machine learning-based network aware framework
for a cloud robot, that can choose the most efficient module placement based on location,
task, and the network condition. The proposed solution was implemented upon a cloud
robot prototype based on the TurtleBot 2 robot development kit, running Robot Operating
System (ROS). A continuous experiment was conducted where the cloud robot was ordered
to execute a simple task in the laboratory corridor under various network conditions. The
proposed solution was evaluated by comparing the results from the continuous experiment
with measurements taken from the same robot, with all modules placed locally, doing the
same task.

The results show that the proposed framework can potentially decrease the battery
consumption by 10% while improving the efficiency of the task by 2.4 seconds (2.8%).
However, there is an inherent bottleneck in the proposed solution where each new robot
would need 2 months to accumulate enough data for the training set, in order to show good
performance. The proposed solution can potentially benefit the area of CNR if connected
and integrated with a shared-knowledge platform which can enable new robots to skip the
training phase, by downloading the existing knowledge from the cloud.
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Sammanfattning

Under de senaste aren har ett nytt forskningsomrade kallat Cloud Networked Robotics
(CNR) vaxt fram inom den konventionella robottekniken, tack vare den tkade tillgangen
pa billiga robotsystem och stadiga framsteg inom omradet cloud computing. Molnrobotar
syftar pa robotar med férmagan att flytta resurstunga moduler till ett moln for att ta del av
lagringskapaciteten, den skalbara processorkraften och andra tjanster som ett moln kan
tillhandahalla, t.ex. en kunskapsdatabas for robotar éver hela varlden. Det finns dock ett
problem med dessa sorters robotar gallande nabarhet och QoS for kritiska moduler
placerade pa ett moln, nar dessa robotar verkar i instabila natverksmiljoer. | ett sadant
scenario kan robotarna nar som helst férlora anslutningen till molnet, vilket i vérsta fall
lamnar robotarna hjarndéda.

Den har rapporten foreslar en maskininlarningsbaserad natverksmedveten
ramverkslésning for en molnrobot, som kan vélja de mest effektiva modulplaceringarna
baserat pa robotens position, den givna uppgiften och de rddande natverksforhallanderna.
Ramverkslosningen implementerades pd en molnrobotsprototyp, baserad pa ett robot
development kit kallat TurtleBot 2, som anvander sig av ett middleware som heter Robot
Operating System (ROS). Ett fortskridande experiment utférdes dar molnroboten fick i
uppgift att utféra ett enkelt uppdrag i laboratoriets korridor, under varierande
natverksforhallanden. Ramverkslosningen utvarderades genom att jamfora resultaten fran
det fortskridrande experimentet med méatningar som gjordes med samma robot som
utforde samma uppgift, fast med alla moduler placerade lokalt pa roboten.

Resultaten visar att den foreslagna ramverkslésningen kan potentiellt minska
batterikonsumptionen med 10%, samtidigt som tiden for att utfora en uppgift kan minskas
med 2.4 sekunder (2.8%). Daremot uppstar en flaskhals i framtagna I6sningen déar varje ny
robot kraver 2 manader for att samla ihop nog med data for att maskinilarningsalgoritmen
ska visa bra prestanda. Den forlsagna I6sningen kan dock vara fordelaktig for CNR om
man integrerar den med en kunskapsdatabas for robotar, som kan mojliggora for varje ny
robot att kringd den 2 manader langa traningsperioden, genom att ladda ner existerande
kunskap fran molnet.

Nyckelord
CNR, ROS, natverksmedvetenhet, moln, 6ppen kallkod, TurtleBot.
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1 Introduction

Until the end of the 1980’s robots were mainly thought of as being big, expensive, and not
accessible to the average person. This started to change with LEGO® introducing
educational products [1] and when researchers started to focus on how to build lots of
smaller inexpensive robots, rather than one large expensive robot [2]. Subsequently
companies have developed robots for use by the general consumer, e.g. Sony’s Artificial
Intelligence robot pet (AIBO) that was envisioned as a form of robot-based entertainment
[3] [4] and iRobot’s robotic vacuum cleaner, Roomba, that was first put on the market in
2002 [5]. In more recent years, the accessibility of robots to the average person has greatly
increased with the commercialization of robot development kits such as the TurtleBot™ 2
from Clearpath Robotics [6], the iRobot Create® 2 [7], and the Revolution JD [8]. However,
a general problem with the development of robots is that robots are very complex systems.
An average person or a software developer is unlikely to know all the details about how to
build drivers for sensors and actuators and how to do low-level programming. There have
been attempts to address this problem by providing high-level interfaces to sensors and
actuators in the form of robotics middleware, e.g. real-time middleware (RT-middleware)
[9] and the Robot Operating System (ROS) [10] [11]. In 2002, researchers started to try to
overcome the limitations of stand-alone robots by connecting robots, sensors, and humans
through networks, establishing the research area of Networked Robotics [12].

At the same time as robots were becoming increasingly accessible to general
consumer, there were steady improvements in the area of Grid Computing, with the help of
virtualization technology [13], to address the problem of reliability and Quality of Service
(QoS) [14] [15]. This later resulted in Grid Computing evolving into what is now known as
Cloud Computing [16] [17] [18]. In recent years, Cloud Computing has been brought to the
public market in the form of popular services such as Amazon’s Elastic Compute Cloud
(Amazon EC2) [19], Apple’s iCloud [20], and Microsoft Cloud [21]. By combining the
increasingly accessible networked robot technology with the powerful technology of Cloud
Computing, a new technology has been enabled which is called Cloud Networked Robotics
(CNR) [12] [22].

1.1 Background

According to Hu, Tay and Wen, CNR improves upon the area of Networked Robotics in
three major aspects: the “ability to offload computation-intensive tasks to the cloud”,
enabling “access to vast amounts of data”, and by enabling “access to shared knowledge
and new skills” [23]. Some of the proposed uses of CNR are improving robot grasping,
navigation, daily services (e.g. wash your face, grocery shopping, medical treatment,
housework, and much more), exploration of dangerous areas, intelligent transportation,
smart home, education, defense, and much more [23] [12]. CNR can also provide robots
that have limited resources with advanced services, e.g. tracking of dynamic objects [24],
distributed sensing [25], localization services, scene recognition, robotic manipulation, and
shared knowledge between robots [26].

However, CNR is not limited to services that are meant for cloud robots. A general
overview of the different elements of CNR and their relationships can be seen in Figure 1-1.
Some of the main concepts in CNR are sensors and actuators on the robots, Machine-To-
Machine (M2M) communication between robots, Machine-To-Cloud (M2C)
communication between robots and the cloud, and cloud computing. CNR also
incorporates external services that can make use of the data that these cloud robots collect,
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such as smartphone apps and web-services. Cloud robots can make use of data that comes
from external sensor networks that are connected to the cloud. An example could be
service cloud robots in a supermarket that acquire the traffic information. The cloud robots
could notice that it is unlikely that there will be many customers on a certain day, hence
some of the cloud robots would turn off in order to save energy.

ROS
[ N ] LN ] LN
Sensors
Actuators ]
T4
1
1
H I — |
¥ ¥ ¥
M2M (Machine-To-Machine) | (~ \[ Common Interface ]
Communication
[ Multi- RobotManagement ][ VM } \
[ Shared Robot Knowledge ] == /
Cloud [ Robot N ] ‘= N
) Computing obot Navigation
M2C (Machine-To-Cloud)
Communication [ ]
mm—————— > [ Offloading Management ][
\_ }[ Common Interface }/

=y i

Sensor Smart- Serwce Web-
Networks phones Apphcahon Service

Cloud Networked Robotics (CNR)

Figure1-1: The different element of CNR and the relationships between the el ements.

For the last few years, CNR has been a hot topic for researchers. However, most
research has been about the different areas that could benefit from this new research area.
For example, Turnbull and Samanta developed a small scale cloud infrastructure that
could handle the formation control algorithms and compute loads of a vision acquisition
system for their robots [27]. CNR has also been successfully applied to explore the
possibilities of parallelizing robotic algorithms on the cloud [28], remote motor control of
guadrotor teams constructing cubic structure [29], and much more [30] [31] [32]. Most, if
not all, of this research builds upon the assumption of stable network environments.
However, this assumption does not reflect real-life situations and places that are affected
by unstable network environments, where the connection can instantly change from good
to bad.

1.2 Problem definition

Much of the research concerning CNR assumes stable network environments where the
connection between the robot and cloud is unlikely to be lost. In these scenarios, the cloud
can be seen as an external brain for the robots [27]. However, many of the areas where
CNR could be applied, such as exploration of dangerous areas, customer support in a super
market, and data center monitoring (to name a few), may not have ideal network
environments. Such unstable network environments might unplug the brain from the
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robot, leaving it brain dead [27]. In the case of quadrotor teams [29], this would mean that
the cloud would not be able to control the motors of the quadrotor teams, making them
crash instead of executing their assigned tasks. Termination of a robotic service by
accident, such as a robot losing connectivity to the cloud, must be prevented or addressed
in some way since cloud networked robots are likely to become a critical part of our lives
[12].

A serious problem for mobile devices is the energy problems of today’s handheld
devices. Even though new chemicals and alternative battery technology have been
proposed, the energy concerns are unlikely to disappear [33]. This problem also occurs for
CNR, since cloud robots are also likely to see an increase in energy-hungry applications
and services as the area matures. Even though there have been many proposals for docking
stations and battery exchange systems ( [34], [35], to name a few), where cloud robots can
go to recharge (or exchange) their batteries, it is still preferred that a robot will continue to
provide a service or execute a task for as long as possible before having to recharge its
batteries.

As to summarize, the problem with CNR is that when operated in an unstable
network environment, the robot might lose connectivity to the cloud. How do you choose
the best module placements so that (to the best effort) the robot will not be left brain dead,
at the same time as striving to achieve long battery time by having modules on the cloud
for as long as possible?

1.3 Purpose

The purpose of this thesis project is to gain a better understanding of the problems
inherent in current cloud robot platforms when faced with unstable network
environments. Furthermore, upon identifying the problems, some recommendations for
future developers of CNR-technology are to be made in order to enable this technology to
progress even further. These recommendations are given in Section 6.1.

14 Goals

As a consequence of the problem described in Section 1.2, the goal of this thesis project is
to develop a network-aware framework that can be used in a CNR-system operating in an
unstable network environment. The network-aware framework should satisfy two sub-
goals in order to address the earlier mentioned problems:

1. Aim to increase the total battery time of the cloud robot.

2. Make efficient module placements choices depending on the task, place, and
network condition.

A proposed machine learning-based network-aware framework solution, aiming to
reach these two sub-goals, was developed upon a cloud robot prototype and is presented in
Section 4.2. The results from an evaluation of the proposed solution, showing promising
results, are presented in Section 5.1.

1.5 Research Methodology

This thesis project made use of an empirical quantitative research methodology to reach its
goals. This approach was chosen since the author wanted to investigate the problem in a
real environment rather than in a computer simulated environment. Initially an inductive
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research approach was used to develop a cloud robot prototype that was observed when
performing simple tasks. A theory of the current problems with CNR platforms was
generated from these observations, and a deductive research approach was used to confirm
these theories. A solution was implemented in order to tackle the problem specified in
Section 1.2 and satisfy the goals described in Section 1.4. The solution was tested and
evaluated to create some recommendations for future developers and researchers of the
same area.

1.6 Delimitations

Since the whole area of CNR is too large to cover, this thesis project will focus on a specific
part of CNR. An overview of the delimitations of this project can be seen in Figure 1-2. This
project will focus on the Machine-To-Cloud (M2C) communications rather than Machine-
To-Machine (M2M) communications (shown as a dashed line), i.e. the focus here will be
on single-robot system without multi-robot coordination. Elements connected to the cloud
such as external sensor networks, smartphones, external service applications, and web-
services are also out of the scope of this project (this is indicated by their dashed outlines
and gray shading).

ROS
ool (0 (:‘,‘ G, (:\'
Sensors |
Actuators h
vl [ 3
1
1
1 | . 1
¥ — ¥ B, ¥
M2M (Machine-To-Machine) | (~ ‘\[ Common Interface ]
Communication A T
| Multi-Robot Management | VM ] ~.
- > ¥
R R i e e e e ] 1
i Shared Robot Knowledge | I—- N )
Cloud Bt 2
_ Computiiig [ Robot Navigation ] I"_" N
M2C (Machine-To-Cloud) [TTTTTomommoomomoooooo s
Communication ( 4
—————— > [ Offloading Management ][ VM ]/
L JU commoninterface 1
i ail e § i
RS S S Tp— T—
« Sensor |; Smart- |, Service ! | Web- |
{ Networks J { Pphones J { Application | | Service J

Cloud Networked Robotics (CNR)

Figure1-2: The delimitations of this project, excluded areas are drawn with dashed linesand filled
with gray.

1.7 Structure of the thesis

Chapter 2 presents relevant background information about CNR, ROS, network-
awareness, and related works. Chapter 3 presents the methodology and method used to
develop and evaluate a solution to the problem. Chapter 4 presents the cloud robot
prototype to be used in the specified use-case, as well as the design decisions made when
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designing a network-awareness framework for this prototype. Chapter 5 presents the major
results from the experiments and concludes with a discussion of these results. Lastly,
Chapter 6 presents a conclusion, future work, and reflections on this thesis project.
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2 Background

This chapter will provide the reader with sufficient background information on the
different main concepts and elements that was used in this project. Section 2.1 will cover
the background of CNR and give a deeper understanding of the concept and benefits of
CNR. Section 2.2 will present the robotics middleware chosen for this project, ROS, and
provide necessary background concerning the publish-subscribe messaging paradigm.
Section 2.3 will present the TurtleBot 2 robot development Kit that was used in this project
to develop a cloud robot prototype (presented in Section 4.1), as well as to provide a deeper
understanding of how the robot uses a Simultaneous Localization and Mapping (SLAM)
[36] algorithm to navigate spaces. Section 2.4 will present several related works and
provide an overview of what has already been done in this research area. Lastly, Section 2.5
will provide a summary of the whole chapter.

2.1 Cloud networked robotics

This section will give a detailed background on, as well as state the benefits of, the area of
CNR. Different proposed cloud robotic computing architectures will be discussed and
possible application areas will be presented.

2.1.1 Background of cloud networked robotics

In 2001, researchers started to do preliminary work on Internet-based tele-operated
robots. They envisioned a system where robots could work in a cooperative way as well as
interact with humans, all while being connected over a network. The name Networked
Robots (or Networked Robotics) was coined in 2004 and refers to a system with five
distinct elements being present: physical embodiment of a robot, autonomous capabilities,
network-based cooperation, environment sensors and actuators, and human-robot
interaction. [37]

The area of Networked Robotics is said to transcend stand-alone robots in
conventional robotics by having an interrelation between robots, environmental sensors,
and humans [37]. It is very difficult to create a stand-alone robot that can understand
context and have the ability to communicate with people. The reason for this is that such a
robot would need to understand the current situation, relate that to a relevant past, at the
same time while performing necessary actions [38]. Even though Networked Robotics has
seen huge success in several areas, an inherent problem in the architecture, which was not
solved when evolving from stand-alone robotics, is the limitation of non-elastic resources,
since all computations are conducted onboard the robots. This limitation makes for several
constraints in resources, information and learning, and communication. Cloud Networked
Robotics (CNR), first coined by James Kuffner in 2010 [39], is proposed to overcome these
limitations by making use of the elastic-resource capabilities of cloud technology [12] [23].
The main benefits of CNR are mainly three aspects:

Offloading of computation heavy tasks to a cloud [27] [40]: Since the robots
no longer require computational heavy tasks to be performed by the onboard hardware,
the robots can be equipped with lighter hardware which results in lower power
consumption and decreases the cost of the robots. Offloading tasks to a cloud may also
improve performance when executing a task.
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Access to a vast amount of data which does not need to created nor
maintained by the individual robots [23] [31]: Cloud robots can receive information
such as traffic, weather, and personal information (to name but a few), that may or may
not be originally intended for the cloud robots. This enables the creation of extremely
powerful robotic systems where robots could potentially predict behavior, future events,
and understand context, thanks to the application of Big Data Analysis.

The possibility of having access to shared knowledge and learning new
skills [26] [32]: Robots can be made with minimum software and download the necessary
application and skills from shared robot databases. If a robot learns something new, this
can be uploaded to the shared “brain” in order to make a world-wide community of cloud
robots even smarter.

2.1.2 Machine-to-machine and machine-to-cloud communication

When talking about CNR, it is often important to distinguish between machine-to-machine
(M2M) and machine-to-cloud (M2C) communications. The difference between M2M and
M2C communications can be seen in Figure 2-1. M2M communications refers to robots
talking to other robots over a wireless- or wired medium where these robots can be
connected to each other in a structured or ad hoc fashion. The benefits are that when a
robot that cannot establish a direct connection to the cloud (this can happen because of
several reasons, such as the robot being too far away from a wireless access point) it may
be able to connect to other nearby robots, then in an ad hoc fashion utilize these other
robots to forward its messages to a robot that can communicate with a wireless access
point. Robots can also share information in order to make use of collaborative decision
making, which can be useful in various robot-related communications [23].

M2C communications refers to communication between robots and the cloud. This
includes robots making use of all the benefits specified above in Section 2.1.1, such as
computation offloading, vast amount of data, and possibilities of shared knowledge. The
cloud also provides a large volume of storage, orders of magnitude larger than possible at
individual robots.

(o o)

M2M (Machine-To-Machine)

0
Communication j U’\/.".\
[ I ]

I

- Ll

M2C (Machine-To-Cloud) U
Communication

ual

g o

Figure2-1: The difference between machine-to-machine commrunication and machine-to-cloud
communication.
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2.1.3 Cloud robotic computing architectures

Hu, Tay, and Wen [23], recognizes that there are mainly three system architectures that
can make use of cloud computing: a peer-based model, a proxy-based model, and a clone-
based model. An overview of the three elastic computing models can be seen in Figure 2-2.

M2M (Machine-To-Machine)

(o @)

1
Communication g.f I]n k ~ w AN

M2C (Machine-To-Cloud) l\ e L @' ¥

Communication

> |] D/ﬂ Peer-based model

= - - - - - —
(o @)
.
ee) S d-----it---- .
Leader !

Nesmnressmgronsed Proxy ~_ — \“. Clone

e o i B . F e P e esesensad

Proxy-based model Clone-based model

Figure2-2:  Elastic computing models for cloud robotics (Adapted from [23] ).

Peer-based
model

Proxy-based
model

In a peer-based model, each robots is considered as an
individual computing unit creating a fully distributed
computing mesh. There is no M2C communications present in
this model since every robot works as an extension to the cloud
architecture. This makes this model very well suited for systems
that contain nodes with high mobility, since a Virtual Machine
(VM) can be instantiated anywhere in the infrastructure.

In a proxy-based model, there exists one robot leader that is
assigned to act as a gateway to the cloud. This leader
communicates with a specific VM proxy located in the cloud.
The proxy can delegate computation tasks and storage between
the nodes on the cloud. Since the robots’ network is limited to a
single point of connectivity to the cloud, this architecture is not
very robust from a robot-cloud connectivity point of view. The
leader-proxy connection might also be a bottleneck if the robot
network runs applications that transfer a lot of data between
the cloud and the robots. The robot leader will also most likely
need to be equipped with more powerful hardware and larger
battery in order to provide the robot network with connectivity
to the cloud.
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Clone-based In a clone-based model, every robot has its own connection to a

model clone of itself running on a VM on the cloud. If the robot needs
to offload some modules in order to, for example, save battery,
it can order the clone to take care of the computation load. This
model is very robust against connectivity issues since there are
several connections to the cloud. The model works best for
systems where the robots are likely to work in a certain area,
since too high mobility might take the robots physically too far
away from the VM. This might result in the need to migrate the
VM to another data center in order to satisfy the QoS of the
applications.

2.1.4 Possible application areas

In addition to the possible application areas presented in Section 1.1, CNR has also been
proposed to improve traditional robot systems, such as Google’s autonomous driving
project [41] and a new approach to logistics and warehouse automation by Kiwa Systems
[42]. Other interesting application areas of CNR are improving surgical robots [43],
elderly-care [12], a museum guide [37], transportation of people [37], and agriculture [44].

2.2 Robot operating system

This section describes the robot middleware that was chosen for this thesis project. ROS is
a meta-operating system for robot platforms. It is open-source” and provides hardware
abstractions, inter-process message-passing, package management, low-level device
control, and much more [11]. ROS started as a collaboration project between the Personal
Robots Program at Willow Garage' and the STanford Al Robot (STAIR) project at Stanford
University*. Researchers at both projects wanted to develop a robot framework with
emphasis on large-scale integrative robotics research in order to tackle the problem of
developing applications for ever increasingly complex robot systems. They believed that
ROS should be developed with five philosophical goals in mind, in order to tackle the
problems: peer-to-peer, tools-based, multi-lingual, thin, and free and open-source [10].

ROS has been released in a number of different distributions since its first release
in March 2010. The latest distribution of ROS is ROS Indigo Igloo, which was released in
July 2014 and is the 8t generation of ROS. A new distribution of ROS, the 9% generation
ROS Jade Turtle, is expected to be released in May 2015 [45].

2.2.1 ROS file system

The ROS file system was developed in order to enhance collaboration between researchers.
The file system consists of four main elements: packages, manifests, message types, and
service types. File system management in ROS is done by using a tool called catkin, which
is a low-level build system. The four elements of the ROS file system are:

Packages Packages are a group of folders that contain a ROS project or
library. A package may contain datasets, libraries, and ROS
runtime processes. A package is an abstraction for organizing

* The source code is available at http://wiki.ros.org/ROS/.
T http://pr.willowgarage.com/
+ http://stair.stanford.edu/
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software in ROS.

Manifests Manifests are xml files that provide metadata about a package.
A manifest also contains license information and dependencies.
Message types Message types define the data structures for messages in ROS.

They are stored in “package/msg/SpecificMessageType.msg”.

Service types  Service types define the data structures for services in ROS.

They are stored in “package/srv/SpecificServiceType.srv”.

An overview of a typical workspace created using catkin is shown in Figure 2-3. A
catkin workspace usually contains a top-level CMakelLists.txt file, which is used to link
together the file system for indexing. As defined in [46], a catkin warkspace can contain up
to four different spaces: a source-space, a build-space, a development- space, and an
install-space, each with their own purpose. In the example, the catkin workspace contains
several different packages. A package contains a CMakeList.txt (in order to index the
package, specify build locations, and add dependencies), a package.xml (specifies
dependencies and package licenses), and four subfolders called incllude, src, srv, and msg.
The “include” folder contains include libraries that are needed during runtime. The “src”
folder contains the original source files of the application contained in the package, in the
case of this thesis project the file extension was often “.cpp” since most of the applications
were written in the C++ programming language. The “srv” folder contains the data
structures for any service messages used in the application. Lastly, the “msg” folder
contains the data structure for any topic message used in the application.

Catkin Workspace
/ Package A \ / Package N \
Cmakelist.txt | | package.xml Cmakelist.txt | | package.xml
( ) 4 A
include include
\ J P \ J
4 ) 4 3
Src src
\ J \ J
( ) ( )
srv msg Srv msg
J

\

/

N

)

Figure 2-3:

when compiling and during runtime.

A typical catkin workspace containing catkin projects and necessary project files used

11
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222 Publish-subscribe messaging paradigm

The publish-subscribe messaging paradigm is a software architecture used to propagate
information through a distributed system in a many-to-many communication fashion [47].
Entities that provide information are called publishers and entities that tap into this
information are called subscribers. The key characteristics of this messaging paradigm is
that a publisher does not need to know the address of a particular subscriber nor does it
need to know the number of subscribers to the information. This introduces better
scalability in the network as well enabling a more dynamic network topology. The publish-
subscribe messaging paradigm can be divided into two main types: content-based and
topic-based.

In a content-based publish-subscribe messaging paradigm, subscribers specify
special attributes sought for in published content. As a consequence, a subscriber will only
receive messages that contains these specific attributes. In a topic-based model, there exist
predefined subjects (also known as topics) to which publishers may publish information
and to which subscribers may subscribe to in order to receive information. Topics may be
handled by some kind of message broker that controls what publisher can publish to which
topic and that knows which subscribers are currently subscribed to each topic. Figure 2-4
shows an example of the topic-based publish-subscribe messaging paradigm with
publishers publishing messages to three different topics handled by a message broker. The
subscribers subscribe to their choice topic (a subscriber can subscribe to several topics at a
time) and the information published by the publishers will reach the correct subscriber
even though either one is directly aware of the existence of the other.

4 )

Message Broker

Subscriber

Publisher > Topic A
Subscriber

> Topic B
Subscriber

Publisher » Topic C
\ ) Subscriber

Figure2-4: General idea of the topic-based publish-subscribe paradigm.
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2.2.3 ROS computation graph

The ROS computation graph is based on a topic-based publish-subscribe model because of
the flexibility it provides. However, this model is not very well suited for synchronous
transactions, which are often useful in robot systems. As a consequence, the ROS
computation graph also introduces the notion of services into the topic-based publish-
subscribe model. Another feature that was deemed useful for debugging a robot system is
storing sequence of data in order to enable the possibility to replay the data in the exact
same sequence to a topic at a later date. Such as stored sequence of data is referred to as a
bag. The ROS computation graphs consists of seven elements: the master, nodes, the
parameter server, topics, messages, services, and bags. They are described as follows:

Master The master is a process node that acts as a name registration-
server and lookup-server for the rest of the computation graph;
just as the message broker in Figure 2-4. When a node wants to
publish to a topic it first looks up the address of all other nodes
through the master node. Without the master node, all of the
other nodes in a ROS system would unable to find each other.

Nodes A node is a process that performs computation of some sort.
Nodes can be used for many different things, e.g. one node
could control an actuator while another node performs path
finding for the robot. A node can be a publisher, subscriber,
service provider, service requester, or all these at the same time.

Parameter The parameter server is described by ROS Wikipedia® as a
server “server [which] allows data to be stored by key in a central
location. It is currently part of the Master.”

Messages A message is a data structure which is made up of specified
fields. Nodes use messages to communicate with each other.
The fields can be made up by standard primitive types such as:
Integer, Point, and Boolean. The fields may also be made up by
nested primitive types or other previously defined message
types if they are included in the project. An example of a
message-type definition in ROS can be seen in Table 2-1. This
example data type consists of two primitive data types called
array_x_value and array_y value, and an included message
type from the geometry_msgs library of type Pose, here called
pose.

Topics Messages are sent and received between nodes on the basis of
publishing and/or subscribing to a topic. The name of a topic is
used to identify the content of a message and it also determines
where a message should be routed. Instead of sending a
message to a certain host, a node just publishes a message to a
topic. If a node is interested in a certain type of messages, it can
subscribe to a topic to receive all messages that are published
for that certain topic. For a given topic, there may be multiple
concurrent publishers and subscribers. However, there may
only be a single message-type on a specific topic.

* Available at http://wiki.ros.org/.
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Services Although the publish-subscribe model of topics is very flexible,
its many-to-many, one-way transport is not particularly good
for request-reply interactions commonly found in distributed
systems. For this type of interaction between nodes, services are
used instead. Services can be seen as a remote procedure call
(RPC). A service is defined by a pair of request-reply message
structures.

Bags Bags are the format for recording and saving message data, such
as sensor data, in ROS. The recorded message data can also be
played back into a topic at a later time. This is very useful for
forwarding messages or developing and testing algorithms.

Table 2-1: ROS message type consisting of two primitive data types and an included message type.

int64 array_x_value
inté4 array_y_value
geometry_msgs/Pose pose

Figure 2-5 shows a schematic summary of the ROS computation graph. As noted
above, a node can be a subscriber or a publisher of a topic, or both. As can be seen in the
figure, by subscribing to a topic, a node tells the master to add its address to the list of
subscribers for this topic. When a node later publishes a message on this topic, the master
will tell the node which nodes have subscribed to this topic; then the node will use this
information to send copies of the message to all of these destination nodes. In the case of a
service, when a node asks for a service, the master answers with the address of the node
that offers the requested service. The node that wants this service will then initiate a one-
to-one communication channel to the service node and gain access to the desired service.
Topics and services in ROS uses TCP as the default transport protocol.
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Figure2-5: A schematic diagram of the ROS computation graph.

2.3  TurtleBot 2 robot development kit

TurtleBot 2 is the second generation of the TurtleBot development kit series originally
developed by Willow Garage [48]. More recently, TurtleBot has become a licensed
trademark of the Open Source Robotics Foundation®. The robot development kit consists of
a hardware platform (shown in Figure 2-6) and an open-source software platform with
many useful modules. A more detailed description of these modules is given in Section
2.3.1.

The TurtleBot 2 hardware platform (shown in Figure 2-6) consists of a Yujin Robot
Kobuki base station, a frame with three levels, a Microsoft Kinect, and a ROS compatible
laptop computer. The Kestrel weather sensor was connected to the Kobuki base station in
order to satisfy the use-case described in Section 4.1. The Kobuki base station is powered
by a 12V brushed DC motor and uses a factory calibrated 3-axis digital gyroscope for
localization®. The laptop computer runs ROS on top of an Ubuntu 12.04 Long Term
Support (LTS) distribution. It is used to control the data flows between hardware modules
as well as doing the laser scan- and point-cloud computations used in navigation. The
Microsoft Kinect is used to provide depth perception, imaging, and a point cloud. These
operations will be further explained in Section 2.3.2 and Section 2.3.3.

* More info about retailers and the TurtleBot trademark can be found on http://www.turtlebot.com.
t A more detailed hardware description can be found at http://kobuki.yujinrobot.com/home-en/documentation/hardware.
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Laptop Computer

Microsoft Kinect

|
I

Kestrel Weather
Sensor

Kobuki Base Station

Figure2-6: Hardware modules of the TurtleBot 2 robot development kit and a Kestrel Weather Sensor.

2.3.1 Turtlebot 2 software modules

The TurtleBot 2 robot development kit has an open-source software platform” with many
useful modules that include basic drivers, a navigation stack, a person recognition and
follower stack, and much more. Some of the key libraries and modules used in this thesis
project are turtlebot_bringup, turtlebot_navigation, gmapping, amcl, move_base,
map_server, and rviz. A more detailed description of each module and library are as
follows:

turtlebot_bringup This library contains all the scripts necessary for setting
up variables and starting low-level drivers for all of the
hardware components.

turtlebot_navigation This library contains all modules necessary used for
navigation in spaces.

gmapping Gmapping is a third-party package that provides the
TurtleBot 2 with laser-based SLAM functions. It can use
laser data from the Kinect and pose data collected from
the gyroscope to create a 2-D occupancy grid map of a
space. This grid map can later be saved and reused to
perform localization in a building.

* The source code can be found at https://github.com/turtlebot.
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amcl Amcl is a module that provides probabilistic localization
of a robot moving in a 2D space. Adaptive Monte Carlo
Localization (AMCL) [49] [50] uses adaptive particle-
filters, such as KLD-sampling (Kullback-Leibler
divergence) [51], to compute the pose of the robot
against a known map.

move_base The move_base package is a major component of the
turtlebot_navigation stack. A user can send an action to
the move_base in the form of a goal in the map. The
module can use maps, laser scans, point clouds,
transforms from the amcl module, and odometry
information to create a global- and local plan to reach
the goal in the map. Further details about this module
are described in Section 2.3.3.

map_server The map_server node provides other nodes in ROS with
map information. It can also save a dynamically
generated map, created with the gmapping tool, to a file
for later use. Maps are created in the YAML file format.
More about this server is given in Section 2.3.2.

rviz Rviz is a 3D visualization tool which enables an
operator to view the robot on the map and interact with
move_base through a Graphical User Interface (GUI).
Rviz can be used for many different things, but its
details are outside the scope of this thesis project”.

2.3.2 Map creation using the gmapping tool

In order to understand how the TurtleBot navigates in a space, it is essential to know how
maps are created and what algorithms used to solve the simultaneous localization and
mapping (SLAM) problem. This subsection will not dive deeply into the area of robot
localization techniques, but will cover the basic concepts behind the techniques used by the
gmapping module.

The gmapping module is a ROS wrapper for the third-party gmapping tool written
by Grisetti, Stachniss, and Burgard [52]. The tool uses laser scanner and odometry data to
build an occupancy grid of a space by estimating the posterior probability over maps and
trajectories with the help of a Rao-Blackwellized particle filter [53] [54]. The general idea
of an occupancy grid is that a space is represented as an array of cells. Each cell in the
occupancy grid contains a probabilistic value that the cell is occupied. An occupancy grid
map will usually represent a cell as a pixel in an image, where a black pixel means that the
cell is occupied (by a wall, human, or something else), whereas a white pixel means that the
cell is free. A gray pixel means that the occupancy of the cell is unknown [55].

Before the TurtleBot can navigate using a map of a known space, it is necessary to
create the map and save it to a file. This can be done by running the gmapping_demo
application, containing the slam_gmapping node, in the turtlebot_navigation library. The
slam_gmapping node takes laser scan data from the Kinect and odometry data while the
robot is running around in a space. It uses these data to build a map which is published on

* Interesting guides and tutorials for the use of rviz can be found at http://wiki.ros.org/rviz.
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a topic with the message type nav_msgs/OccupancyGrid. Such a map represents a 2D
(grid) map of a space, where each cell in the grid represents the probability of occupancy.
The view_navigation application GUI in the rviz library can be used to guide the robot
around the room, as well as to view the map as it is being generated by the
slam_gmapping node. Figure 2-7 is a map of the laboratory corridor generated by having
the robot run around with the gmapping_demo application along the path shown as a red
line. This map was saved to a file using the map_saver function in the map_server
application.

< —

Figure2-7: The resulting occupancy grid map of the laboratory corridor and the path of the robot
when generating the map with the gmapping module.

The map_server application subscribes to a topic with the message type
nav_msgs/OccupancyGrid. When the user is satisfied with the map and wants to save it,
the map_server will retrieve the occupancy grid map from the topic and save the map as a
pgm”image file and saves the metadata in a YAML file. Table 2-2 shows the resulting
YAML file of the generated map. The file consists of six different parameters: image,
resolution, origin, negate, occupied_thresh, and free_thresh.

Table 2-2:  The contents of the resulting occupancy map after saving it to a YAML file.

image: /home/turtlebot/Turtlebot_Maps/my_map.pgm
resolution: 0.050000

origin: [-29.800000, -34.600000, 0.000000]

negate: 0

occupied_thresh: 0.65

free_thresh: 0.196

* A grayscale image format. Further details are available at http://netpbm.sourceforge.net/doc/pgm.html.
TYAML (YAML Ain’t Markup Language) is a data serialization standard. More details are at http://www.yaml.org/.
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The file path to the pgm image file that represents the
occupancy grid.

The size of a pixel relative to the real world in units of
meters along the edge of the pixel.

The original 2-D pose (also called origin of the map) of the
robot in units of pixels from the lower-left pixel in the map.

Specifies if the occupancy color scheme should be reversed
or not.

Pixels with an occupancy probability greater than this
threshold should be classified as occupied.

Pixels with an occupancy probability lower than this
threshold should be classified as free.

2.3.3 Navigation using simultaneous localization and mapping

Now that the TurtleBot has a functioning occupancy grid map (which can be retrieved from
the map_server module), the robot can use its navigation stack to navigate to positions
(goals) set by the user. The way the TurtleBot uses sensar data, the grid map, and SLAM to
navigate an area is well described in [56]. Figure 2-8 is an attempt to visualize the entirety
of the navigation stack and the relationships between the relevant modules.
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Figure2-8: A summary of all the elements and modules of the ROS navigation stack and their

relationships.
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In this process we assume that a robot with sensors and actuators is placed in a
room, an occupancy grid map of the room has already been created with the gmapping
tool, and the map_server module provides the map to the modules that request it via
topics and services. The first step is that a user (or program as in this thesis project)
provides the robot with a goal to which the robot should move. A user can do this by simply
publishing a geometry msgs/PoseStamped goal to the global planner module on the topic
move_base_simple/goal. If the user needs continuous updates about the status of the
goal, it is also possible to make an interactive action call to a SimpleActionServer in the
move_base module®. Once a goal is set in the global planner, the amcl module will make
use of laser scan data (from the Kinect) and odometry data (derived from the gyroscope) in
order to localize the robot on the map. The localization is done by computing the posterior
robot pose estimates for a set number of particles and trying to fit them to the known map.
The SLAM algorithm dynamically updates the map in order to accommodate moving
objects.

When the robot has found its position and pose in the map, the global planner
starts to calculate a rough potential path to the goal with the help of the global costmap.
The global costmap incorporates data about where in the map it is possible for the robot to
move without bumping into anything. However, since the global planner tends to create
infeasible paths to the goal, a local planner uses a dynamic window approach to account for
this shortcoming [56]. The local planner also sends commands to the actuator in order to
move the robot along a path. All the modules described above are concurrently executing
in order to localize the robot on the map, update the map, create costmaps used for path
planning, and plan both a global and a local path to the goal.

2.4 Related work

The problems described in Section 1.2 are not exclusive to the area of CNR. The mobile
industry has been trying to solve its energy problems by remote execution or migrating
applications, or even entire VMSs, to the cloud depending on network conditions and other
parameters [33]. This has spawned a whole new area in the mobile industry called mobile
offloading. There have already been several proposed architectures to solve this problem
such as MAUI [33], CloneCloud [57], ThinkAir [58], and a proposed use of machine
learning algorithms to create a dynamic offloading scheduler [59]. This section will
introduce what have already been done in the area of CNR to make cloud robot
architectures network aware. However, since the mobile industry is working on solving a
similar problem, related work to mobile offloading will also be introduced.

24.1 Pioneering module offloading work in CNR

Already in the early stages of CNR, Hu, Tay, and Wen proposed that a CNR architecture
should have offloading strategies that consider various factors, such as task deadline and
amount of data to be exchanged, in order to minimize battery consumption while providing
high QoS [23]. They identified the fundamental problem as the trade-off between the
energy consumption from data transmissions, when transmitting the necessary data to the
cloud, and the energy consumed when executing a task locally on the robot.

*This is done with the help of the ROS “actionlib” package, which provides an interface for interfacing with pre-emptible
tasks. More info about this package can be found at http://wiki.ros.org/actionlib.
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A dynamic voltage scaling energy consumption model for local execution was
compared against a polynomial energy consumption model for the cloud execution, in
order to find the optimal operational regions of both schemes. They show that for a given
delay deadline and a preset number of bits to be transferred, that the minimum energy
consumed can be compared between these two models. Although they take into
consideration that the network conditions may change by looking at the delay, there are
still questions as to how this model would work in an unstable network environment, since
they have not consider changing network bandwidth in their work.

2.4.2 Team MIT’'s DARPA robotics challenge contribution

Fallon et al. describe their contribution to the (United States of America) Defense
Advanced Research Project Agency (DARPA) Robotics Challenge Trial” in a Massachusetts
Institute of Technology (MIT) Computer Science and Artificial Intelligence Laboratory
(CSAIL) technical report [60]. They used an Atlas humanoid robot frame and prioritize
teleoperation by a human over attempting to create an autonomous system. The robot
system is divided into three main components: an operator control unit, a field computer,
and the hardware components. The different planners (manipulation-, footstep-, and task
planner) are deployed on the operator control unit, but a module may be offloaded to a
cloud for better performance. In between the operation control unit and the field computer
on the robot is a restricted link that is supposed to simulate different harsh network
environments of a danger site.

A part of the technical report explains the different implementation choices of the
network- and transmission layer modules used for communication between the robot and
the operator side, as well as the tools and programs used to simulate different harsh
network environments. The system focuses on compressing data in order to transfer data
efficiently between the robot and the operator control unit. However, there is hot much
explanation of how the robot would fare if the connection were to be lost unexpectedly. The
Robotics Challenge Trials let participants have pretty good control over their robots with
teleoperation. However, the Robotics Challenge Finals promise to require the robots to
function more autonomously, by inducing “long [network] blackouts of up to a
minute” [61]. This sounds like a tough criteria to fulfill based on what is written in the
technical report, as the robot would need some kind of migration module to make use of
the planners even under total blackout of communications.

2.4.3 MAUI: code offloading in smartphones

Cuervo et al. [33] were ones of the earliest groups to propose an architecture that makes
use of code offloading to solve the battery problem in the mobile industry. Their proposed
architecture, called MAUI, uses code portability to create a clone of a smartphone in the
cloud. They strived to maximize energy savings while minimizing the need to change
anything in existing applications. The general idea is that a clone of the smartphone is
running in a server (in the cloud) and every time a function is called, an optimization
framework calculates whether the function should be run locally or be executed in a server.

“DARPA Robotics Challenge is a competition of teams that develop hardware and software robot systems designed to assist
in man-made or natural disasters. Read more at http://www.theroboticschallenge.org/.
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The optimization framework makes use of information, gathered from profiling the
device, the program, and the network, as input to a global optimization problem. The
profiling of the device looks at the energy consumption and Central Processing Unit (CPU)
utilization of the function. This is similar to what a program profiler does, i.e., it analyzes
the program and determines what state is required to be transferred to the cloud, as well as
considering the program’s runtime duration and required number of CPU cycles. For the
profiling of the network, MAUI sends 10 KB of data over a Transport Control Protocol
(TCP) connection to the server-side and calculates the average throughput by measuring
the time it took to transfer all of the data. A possible downside of this solution is that it is
hard to profile a dynamic program which has very different total runtime and whose
bandwidth requirements depend upon the environment and task.

2.4.4 CloneCloud

CloneCloud, by Chun et al. [57], is a mobile offloading architecture that tries to solve the
same problem as MAUI. CloneCloud also uses an optimization solver to optimize the
energy consumption and execution time. Similarly to MAUI, the solver determines what
functions should be executed in the cloud and which functions should be executed locally
in the robot, by profiling the program. Although similar in concept, CloneCloud differs
greatly from MAUI in implementation, MAUI is implemented on Microsoft's .NET
framework while CloneCloud is implemented upon a Dalvik VM.

CloneCloud improves upon MAUI by not requiring source code availability and
does not require that the programmer identify which functions would work better in the
cloud. It also addresses the scalability problem of MAUI by using VMs in the cloud to
simulate the whole smartphone. CloneCloud is very similar to MAUI, hence it also has the
same potential downside in that it is hard to make a good estimate of the runtime in a
dynamic program and what bandwidth is needed as both may differ greatly depending
upon the environment and task.

2.4.5 ThinkAir

Kosta et al. [58] proposes a mobile offloading framework called ThinkAir that promises to
solve MAUI’s scalability problem, as well as to improve upon CloneCloud by using an
online method-level offloading solution. ThinkAir improves upon the CloneCloud VM
solution by enabling parallelization between multiple VMs and providing dynamic resource
allocation depending on the task.

The ThinkAir architecture was designed with four main objectives in mind: the
architecture should dynamically adapt to changing environments, it should be easy to
implement for developers, performance should be improved by using cloud computing,
and the architecture should support dynamic scaling in computational power. In order to
dynamically adapt to a changing environment, ThinkAir implements three different
profiling models: a hardware-, software-, and network profiler. The hardware profiler
monitors the CPU, the screen, the Wi-Fi interface, and the 3G radio interface, then sends
this state information to an energy estimation model. The network profiler measures both
the round-trip time (RTT) between the smartphone and the server and the amount of data
sent and received during a time interval, in order to calculate the effective network
bandwidth.
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2.4.6 Machine learning offloading scheduler

While other related works has focused on the core mechanics of offloading techniques,
Eom et al. [59] propose to improve upon these systems by implementing an adaptive
offloading scheduler. Their adaptive offloading scheduler is based on a machine learning
algorithm that takes into consideration varying network conditions, as well as the workload
and the load at the device. They consider several different machine learning algorithms
and come to the conclusion that an Instance-Based Learning algorithm best fits the
problem.

The machine learning algorithm takes four different variables as input in order to
decide upon a module’s placement: the local execution time, the size of the data to be
transferred, the network bandwidth, and number of invocations needed for arguments
setups. They show that with the help of a training set, the adaptive offloading scheduler can
choose the “best” module placements on the fly 87.5% of the time in an environment when
the network conditions are fluctuating. However, they do not report on how the system
would fare with an application where it is hard to estimate how much bandwidth is needed
at a certain time in the future.

2.4.7 Point cloud culling under communication restraints

Beksi and Papanikolopoulos [62] present another approach to successfully make use of
module offloading to a cloud even under constrained network conditions. Their solution
focuses on enabling real-time vision tasks on a robot with low on-board resources, by
offloading the computationally heavy modules to the cloud. The transmitted data is
analyzed on the server-side to discover if there is any congestion building up in the
network. The server-side can throttle the connection using an adaptive threshold setting, in
order to avoid causing congestion even in a network with constrained communication
resources. The downside of this solution is that it is not robust against complete network
failure, which means that the robot would not be able to recover if network connectivity
were lost.

25 Summary

This chapter has presented the basic concepts of CNR as well as a general background on
the ROS middleware and the TurtleBot robot system and its functionalities. Most of the
related work in CNR has focused on enabling robots to function even with constrained
communications, by using data compression or transmission throttling. However, there
seems to still be a gap in what should be done when connectivity is temporarily lost.
Although some of the related work on mobile offloading seems promising, it is hard to
estimate how well the offloading solutions would work with a CNR system. The reason for
this is that most of the mobile applications have predictable behavior in both CPU and
bandwidth requirements; which we will see later in Section 4.2.2, is not always the case for
a CNR system.
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3 Methodology

The purpose of this chapter is to provide an overview of the research method used in this
thesis. Section 3.1 describes the research process. Section 3.2 details the research
paradigm. Section 3.3 focuses on the data collection techniques used for this research.
Section 3.4 describes the experimental design. Section O explains the techniques used to
evaluate the reliability and validity of the data collected. Section 3.6 describes the method
used for the data analysis. Finally, Section 3.7 describes the framework selected to evaluate
the cloud robot prototype and the network aware framework.

3.1 Research Process

Since the complexity of a CNR system is high, instead of looking at a simulated
environment where the complexity might be simplified, it was decided that a real life cloud
robot was to be tested and observed when placed in an unstable network environment. If
any problems are found during the observations, the aim is to design and implement a
solution to the problems. Figure 3-1 shows the steps conducted in order to carry out this
research.

| ! Testand confirm !
i Generate theory | theory i

Observe the V \' Implement
prototype ‘ - . . i solution

: robot prototype !

Z ........ ._.7_-l .

Figure3-1: Overview of the research process used to carry out this research.

As the availability of commercial cloud robots is low, initially the focus will be put
on developing a use-case where a cloud robot would be subject to an unstable network
environment, and based on the use-case develop an actual cloud robot prototype. This step
is described in Section 4.1. The next step will be to observe the prototype while it is
executing a simple task (according to the use-case) in an unstable network environment.
Based on the observations, any potential problems will be examined and theories to why
these problem occur will be proposed. These theories will then be tested and confirmed in
a series of experiments. These three steps are described in [63] (see Appendix VI) and
Section 4.2.2. A network aware framework solution will then be designed and implemented
to solve these potential problems. This step is described in Section 4.2. Lastly, the
proposed solution will be tested and evaluated by a continuous running experiment which
will result in recommendations for other researchers and developers in the area of CNR.
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The results from these experiments and the recommendations and conclusions can be read
in Chapter 5 and Chapter 6.

3.2 Research Paradigm

In conjunction with the research process, the research methodology of this thesis project
will be qualitative. There have still not been any extensive research about network aware
CNR systems, since the area of CNR is fairly new. Therefore a mixed research approach,
containing both an inductive and a deductive touch, will be used in order to reach the goals
of this project. Firstly, an inductive research approach is applied to create theories from
observations of a cloud robot, then a deductive research is used to develop a network aware
framework solution.

3.3 Data Collection

The data will be collected by a series of experiments where the proposed solution will
execute a task in a corridor under various network conditions. The data will be collected by
the program written by the author and saved to a tab separated value file (.tsv). Since more
measurements are preferable, as many measurements as possible will be collected during a
period of two months (July, August, 2014) when the robot will not be in the way of
everyday activities at the laboratory.

3.4 Experimental design

This section will describe the test bed where the experiments were conducted as well as the
hardware and software used in the experiments.

34.1 Experimental test bed

The experimental test bed was placed in a corridor in the Cyber Media Center Suita-branch
laboratory. An overview of the experimental test bed can be seen in Figure 3-2. The
physical layer of the experimental setup consists of three main components: a cloud robot
(described in section 4.1), a wireless router, and a VM on a local cloud. The cloud robot was
placed in the corridor and connected to a wireless router using Wi-Fi (802.11g). While the
cloud robot was connected to a dedicated wireless router, there were other wireless
networks in the vicinity of the experimental setup. The VM on the local cloud was
connected to the router using a 100 Mbit/s Ethernet cable. The cloud robot and VM
communicates using both ROS topics and services over TCP. The Linux network
controlling tool tc (traffic control)* was used both in the cloud robot and the VM to
simulate latency and bandwidth restrictions in the network. An example of how tc was
used to model the traffic can be seen in Appendix I.

* Tc is used to show and/or manipulate traffic control settings in Linux kernel. More info can be found at
http://lartc.org/manpages/tc.txt.
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Figure3-2:  An overview of the experimental test bed.

In order to create a stable test bed with as few changing variables as possible, the
Linux power management was turned off by calling $sudo /etc/init.d/acpi-support stop in
the command line. Linux also has CPU frequency scaling functionality built into the system
which enables the Operating System (OS) to automatically scale the CPU frequencies
depending on the system load in order to save power. This functionality was disabled and
the CPU frequency was set to always stay at 1.6 GHz by using the following command:
$sudo cpufreg-set —c [CPU_NUMBER] —f 1.6GHz.

3.4.2 Hardware/Software to be used

The cloud robot prototype was implemented on top of a TurtleBot 2 robot development kit
running ROS Hydro Medusa. The technical specifications of the laptop used by the
TurtleBot 2 and the VM on the local cloud can be seen in Table 3-1. The cloud robot
prototype also made use of a Kestrel Weather Sensor to measure the temperature in the
corridor. The current latency was measured using an echo-response program written by
the author and the network bandwidth was estimated using netperf [64]. The currently
used bandwidth of the applications were measured using the ifstat [65] Linux module.

Table 3-1: Technical specifications of the devices used in the experiments.
Device (O CPU RAM

TurtleBot 2 laptop | Ubuntu 12.04 LTS 32-bit | Inte® Atom™ N2600 1GB
1.6GHz* 4 core

Local cloud VM Ubuntu 12.04 LTS 32-bit | Intel® Core™ i7-4900M Q 16 GB
2.80GHz* 8 core
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3.5 Assessing reliability and validity of the data collected

This section will briefly introduce the methodology behind how the reliability and validity
of the collected data is assessed.

3.5.1 Reliability

The reliability of the collected data will be assessed by looking at what variables that might
affect the results. Another variable that will be taken into account when assessing the
reliability is the fact that the experiment is conducted with an actual robot instead of just a
computer simulation.

3.5.2  Validity

The validity of the collected data is to be assessed by comparing the measurements
obtained from the experiment in the laboratory corridor to that of the measurements that
will be obtained from another experiment, which is to be performed in the actual data
center.

3.6 Planned Data Analysis

This section describes the techniques used to analyze the obtained data as well as the
software tools used to carry out the data analysis.

3.6.1 Data Analysis Technique

Before starting the data analysis, the data was put through data cleaning. Values that are
corrupt or erroneous are not considered for the later data analysis. The data contains two
classes of data (“onload” and “offload”), which will be plotted onto a graph for region
distribution analysis. In order to find different relationships, the data will be put through a
sorting process so that different variables in the data can be tested against each other. After
making observations of different graphs, line fitting techniques will be applied to the data
in order to find the point of trade-offs between onloading and offloading. Lastly,
measurements from when modules were executed locally on the robot will be compared to
measurements from when modules were executed remotely on the cloud.

3.6.2 Software Tools

As described in Section 3.3, the data will be collected by the program written by the author
and stored in a tab separated value file (.tsv). Microsoft Excel will be used clean and sort
the data imported from the tsv file. The sorted data will be analyzed using gnuplot™ by
looking at plotted graphs and applying line fitting techniques.

3.7 Evaluation framework

A normal CNR system would not be able to offload modules to the cloud safely when
operating in an unstable network environment. Therefore, the proposed solution will be
evaluated by comparing the potential energy savings and task efficiency of the proposed

* A command-line driven graphing utility for Linux. More info can be found on their homepage: http://www.gnuplot.info/.
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solution, when operating under good network conditions, against a cloud robot where
modules are only placed locally on the robot. Evaluating the proposed solution under
random network conditions against a robot with locally placed modules is for future work.
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4 Network-Aware Cloud Networked Robot

This thesis proposes to integrate functionality from the area of mabile offloading into the
area of cloud networked robotics, in order to improve the total operation time of the robots
and execution time of robot tasks when operating in unstable network environments. An
overall summary of the proposed system can be seen in Figure 4-1.
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Figure4-1: Anoverview of the proposal system design.

As can be seen in the overview, a robot is connected to a cloud, located in a
datacenter, via a Wi-Fi connection. Inside the robot there are several robot modules that
communicates with other modules inside the robot, as well as modules placed on the cloud.
Network monitor modules are placed both in the robot and in the cloud. The network
monitor modules exchange information about the network, through network profiling, and
information about the status of the systems they are running on top of. This information is
proposed to be run through a machine-learning algorithm which will decide if the network
condition is good enough for the robot modules to be placed on the cloud, or if it is more
efficient to place the robot modules inside the robot. When a decision has been made that
the current network condition cannot provide sufficient resources, a migration order is
sent from the network monitor to the destination robot module to trigger a migration.

This chapter is divided into two sections. To create a network-aware cloud
networked robot system, a cloud networked robot prototype had to be developed to use as
a reference point. Chapter 4.1 covers the major design decisions and implementation
stages done in order to develop a cloud networked robot prototype. Chapter 4.2 covers the
development process of the network-aware cloud networked robot system as well as
introduces the notion of using tasks as evaluators instead of time.
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4.1  Cloud Networked Robot Prototype

Before it was possible to decide on a design for the network-aware CNR system, an actual
cloud networked robot prototype had to be developed to use as a reference point. The cloud
networked robot prototype described in this chapter was developed for this thesis but was
also partly presented in [63] (see Appendix VI).

The first thing that had to be done was to decide on a use-case for the cloud
networked robot prototype. Several different use-cases were considered, but the use-case
which was deemed most feasible to complete under the time-limit at the time was “a
datacenter monitoring cloud networked robot”. At the start of this project, a project to
create an autonomous datacenter monitoring system was underway at Osaka University
[66]. A simulation showed that there was a possibility of hotspots forming in the data
center, which the temperature sensors on the hardware would not be able to sense right
away. The report proposes that autonomous robots could move around in the data center
and measure the temperature at these spots. The required information could then be
transferred to a cloud to be processed by a map-reduce system, such as Hadoop, to uncover
trends in the data. An explanation of the use-case can be seen in Figure 4-2.

Temperature
measurements /

=] y
y ! y

Figure4-2: The use-case where a cloud robot monitors the corridors of a datacenter for temperature
hotspots.

Instead of putting a lot of temperature sensors in the data center to cover all areas,
a cloud robot can use its equipped temperature sensors to search the corridors of the
datacenter for temperature hotspots. The robot will get orders from the cloud on where to
search for these temperature hotspots and begin to move to the position of the order while
continuously scanning the route for these hotspots. While moving around in the
datacenter, the robot should also be able to detect and avoid both immovable and movable
objects that are in the way, e.g. the datacenter service personnel. When an abnormal value
has been found, the robot should try to find the origin, the temperature hotspot, and
inform the cloud of the findings.
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4.1.1 Datacenter monitoring cloud robot implementation

The TurtleBot 2 robot-suite [6], described in Section 2.3, was chosen as a base for the cloud
robot and additional high-level modules such as Hadoop, multi-robot coordination
modules, and machine-learning algorithms for determining new goals for the robot was
placed on a local cloud.

As described in Section 2.3.1, there are several basic modules available on the
Turtlebot 2 platform, such as move_base and turtlebot_bringup that interact with sensors
and actuators. If we can compare these modules explained above in terms of a human,
there is a body with sensors and actuators on the physical robot and intelligence on top of
the cloud. However, there is no brain to connect these two elements. A proposal on how to
connect the body and intelligence can be seen in Figure 4-3.
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Figure4-3: Anoverview of the proposal cloud network robot design.

The brain contains modules that can all interact with each other in order to get or
set information. However, in order to tackle the problem where a cloud networked robot
loses connectivity to a cloud and stops completely, a kind of hierarchy within the brain was
thought up where modules can be seen as either global or local.

Modules that can be seen as mostly local should take commands, or have some of
the knowledge from the global modules. At the same time, local modules should be able to
be independent for some time from the global modules so that even if connection is lost,
the robot will still continue to be useful. Global modules on the other hand should have a
full overview of the state of the cloud robot, as well as the information gathered by the
robot. By using this relationship between local and global modules, placing local modules
on the robot and global modules on the cloud can increase the cloud robots robustness
against the connection problems in unstable network environments.
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As can be seen in Figure 4-3, move_base interacts with two local modules called
mfg (measurement_feedback goal) and local_mapcell_manager. The mfg module sends
objectives, “goals”, to the move_base with the help of SimpleActionServer. Move_base
responds with updates to the goal, e.g. the message “SUCCEEDED” if the robot has
successfully reached the goal. The local_mapcell _manager receives information from the
move_base module of where the robots has recently been and stores this for future use.

4.1.2 Map and mapcells

As was described in Section 2.3, move_base takes goals with the help of a
SimpleActionServer in the form of geometry_msgs/PoseStamped messages. Likewise the
robot position in the provided map, which is acquired by listening to frame
transformations from the “tf” module, is also in the form of the PoseStamped message type.
The PoseStamped message type contains the x, y, and z-position in a map as well as
relative rotation of the robot in the form of x, y, z, and w-values.

However when listening to frame transforms, the robot position will be very precise
in the map. This makes it harder to develop simple algorithms for where the robot should
move after having completed a task. Therefore, a concept of map and mapcells was thought
up where the map, which was provided to the “map_server”, is divided into several square
areas, as can be seen in Figure 4-4 where the right side of the map is divided into blue
squares. By doing this, a certain position in the map can be specified to be a part of a
mapcell. Such a mapcell can contain all kinds of information such as the last time the robot
was in the mapcell, as well as the time and position of every temperature measurement
that was recorded in the mapcell. In short, a mapcell acts as a container of different
information concerning a certain area of a room.

Figure4-4: An area of the laboratory corridor isdivided into two rows of mapcells.

As described in Section 2.3.2, when the map was originally created, the gmapping
program remembers the original 2-D pose (also called origin of the map) of the robot until
the whole map is created. It then calculates and sets the origin as pixels from the lower-left
pixel in the map. The left part of the corridor was also mapped in order for the robot to be
able to have fast localization even in the left part of the corridor. The origin in the map was
automatically set to be [-29.8, -34.6, 0.0] in the pgm image when it was created with the
map_saver program. As this only signifies the default position of a robot before calibrating
the current position, this value was unchanged. The resolution of this map is 0.05
meters/pixel and each mapcell was set with a width and height of 1 meter. Since the
corridor was 11 meters long and almost 2 meters wide, it was divided into 22 mapcells; 11
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mapcells long and 2 mapcells wide. The dimensions of a mapcell is decided by the
sextuplet: <min_x, max_x, min_y, max_Y, center_x, center_y>. The center values in this
sextuplet serves as a reference point in a mapcell, where the robot can move to if it gets an
order to move to a certain mapcell. The algorithm to decide which mapcell a position
belong to is described in Figure 4-5.

The algorithm described in Figure 4-5 is very complex for such a simple task and
could have been replaced with a simple mapping transform algorithm, which could be
based upon the transformation to a position given the size of a mapcell and an origin.
However, there was not enough time to implement this and it was decided that the
algorithm was good enough for this small scale thesis project.

INPUT value_x, value_y
FORX=0to 10
FORY=0to1
IF MapCell[X][Y].min_x < value_x &&
MapCell[X][Y].max_x >= value_x &&
MapCell[X][Y].min_y < value_y &&
MapCell[X][Y].max_y >= value vy
RETURN MapCell[X][Y]
ELSE
CONTINUE
END IF
END FOR
END FOR
RETURN FALSE

Figure4-5. The pseudo code for the algorithm that decides which MapCell a coordinate residesin.

4.1.3 Global goals and measurement feedback goals

Current hardware on most cloud robot bases are not powerful enough to be able to analyze
massive amounts of data, in order to decide on complex tasks or planning of paths, at the
same time as being able to properly control local modules. This can be solved by moving
such resource heavy modules to a cloud. However, if the robots are operating in
environments with unstable network connections, losing connection to such important
modules might mean that the robot will stop to function, since it will not get any new goals
after completing a previous goal.

A goal or a task can be everything from a complex task such as “scanning a part of a
datacenter and compare to monthly trends”, to more simple tasks such as “move the robot
20 cm forward”, “avoid the obstacle in front of the robot”, “calculate the current robot
position”, and “measure the current temperature”. What can be noted is that there is a

huge difference in how much time it takes to complete a complex task compared to a much
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simpler one. While “scanning a part of a datacenter and compare to monthly trends” can
take everything between 4-20 minutes (maybe even longer), a simple task such as
“measure the current temperature” takes less than 10 milliseconds.

This difference can be exploited in order to make the cloud robot more robust
against the problem explained above. Complex tasks, which we can call global goals, can
be decided by a module that is placed on a cloud while less complex tasks, which we can
call measurement feedback goals (MFG), can be placed locally on the robot. The
relationship between global goals and MFGs can be seen in Figure 4-6. In this example a
square room is divided into five times five mapcells. A mapcell in the grid at x, y, can be
addressed as mapcell(x)(y). A “global goal” is assigned to mapcell(5)(0) by a module
residing on a cloud. MFGs are tasks that can be seen as necessary in order to complete the
global goal or in worst case a detour for the global goal.
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Figure4-6: The relationship between measurement feedback goals and global goals.

4.1.4 Global goal example algorithm: least recently visited

For the prototype implementation of the cloud robot a general area coverage algorithm was
decided upon to act as the global goal algorithm. This general coverage algorithm is called
“Least recently visited” (inspired by [67]) and has its goal to find an area that the robot has
visited least recently. An example of this algorithm can be seen in Figure 4-7.

In the figure, an area is divided into five times five mapcells, which all contains a
visiting counter. The visiting counter in every mapcell is incremented every time the robot
enters a new mapcell. This means that the higher the visiting counter, the longer time ago
the mapcell was visited. In the first step, the robot’s current position is at mapcell(0)(4)
and the mapcell that has been least recently visited is mapcell(4)(0), since it has the
highest visiting counter.
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Figure4-7: An example of a global goal algorithm to decide a major task.

In the second and third step the robot starts moving towards the global goal set at
mapcell(4)(0) and continuously increment the visiting counters of every mapcell when
entering a new mapcell. When the robot finally arrives at mapcell(4)(0), all the visiting
counters are recalculated and a new global goal is selected. This time mapcell(0)(0) has
the highest visiting counter and is therefore the mapcell that has been least recently visited.
This continues until the global_goal_manager, briefly described in section 4.1.1, decides on
another global goal policy. The robot may do local task while moving to another least
recently visited mapcell.

Another more intuitive way of achieving the same behavior is by putting a
timestamp in the previous visited mapcell when moving into another mapcell. The least
recently visited mapcell will then be the mapcell with the earliest timestamp. The benefit of
this is that you only need to update the timestamp of one mapcell when moving to another,
as opposed to the proposed algorithm where all mapcells need to be updated every time the
robot enters a new mapcell. Implementation of such an algorithm is left for future work.

415 Measurement feedback goal example algorithm

In order to create a cloud robot that could satisfy the use-case presented in the beginning
of section 4.1, a measurement feedback algorithm was implemented that has as its goal to
search for abnormal temperature values on the path to a global goal. If an abnormal
temperature value is found, the algorithm aims to locate the temperature hotspot; the
origin of the hotspot. An example of the algorithm can be seen in Figure 4-8.
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Figure4-8: An example of an algorithm that decides a sub-task to the major task.

An area is once again divided into a grid of five times five mapcells. The first stage
of the algorithm is to scan for abnormal temperature values, which if found would indicate
that a hotspot has formed somewhere in the datacenter. As seen in (1) in Figure 4-8, when
traveling from mapcell(2)(3) to mapcell(2)(2) the robot finds an abnormal temperature
value. By finding the abnormal temperature value, the algorithm enters its second stage
which is to locate the origin of the hotspot. The second stage starts by assigning a “current
investigation cell” (Current IC) to the mapcell where the abnormal value was found;
mapcell(2)(2). The algorithm then continues to mark surrounding mapcells as “unchecked
directions” and the mapcell visited before finding the abnormal value (mapcell(2)(3)) as
“checked direction”; since it had a lower average temperature.

As can be seen in (2) in Figure 4-8, the robot will then start to check surrounding
mapcells for their average temperatures. If a surrounding mapcell has a lower average
temperature than the “current IC”, that mapcell is marked as a “checked direction”.
However, in (3) the robot finds that the average temperature of mapcell(3)(2) has a higher
average temperature then the “current IC”. The algorithm will now assign mapcell(3)(2) to
be the new “current IC” as well as mark the previous IC as a “checked direction”. This
continues until all surrounding mapcells of a “current IC” has been checked as “checked
directions”; meaning that the hotspot has been found since all surrounding mapcells have
lower average temperature.

4.1.6 Merger module

When implementing the cloud robot, a problem was discovered when trying to synchronize
the robot position to a temperature measurement. The problem can be best described by
Figure 4-9. It turns out that the temperature sensor used, Kestrel Meter 4000 Weather
Meter*, can only publish temperature measurements at a rate of 3Hz while the position
module can publish position measurements at a much higher rate.

* http://kestrelmeters.com/products/kestrel-4000-weather-meter
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Figure4-9: Merging position and temperature data based on the newest position update.

Illustrated in Figure 4-9, the move_base module publishes position measurements
at a higher rate than the Kestrell Temperature Sensor. If the position measurement and
temperature measurement is merged in the Kestrell temperature Sensor module before
being sent to the mapcell _manager, it becomes hard to know which temperature
measurement that corresponds to what position. Even though the temperature
measurement might have been taken at position (1,2), the newest position value to arrive at
the Kestrell module will be (2,2). This makes it so that the temperature value is merged
together with a position where it was not taken.

What can be done to prevent this, and how it was implemented in the prototype,
can be seen in Figure 4-10. In this case another module acts as a merger of the two types of
measurements. Both the move_base and the Kestrell Temperature Sensor will publish
their measurements with a timestamp. The merger module will then merge the position
and temperature measurements that have the closest timestamps and forward this to the
mapcell_manager. In the case seen in Figure 4-10, timestamp “c” of the temperature
measurement is closer to timestamp “b” than timestamp “a”. The merger module therefore
merges temperature 25 together with position (2,2) and forwards it in newly crafted
message.
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Figure4-10: Merging position and temperature data based on time stamps.

4.2 Network-Aware Cloud Networked Robot

The cloud robot prototype presented in the chapter 4.1 was used as a base in the
development of a network-aware cloud robot. Building upon the architecture seen in
Figure 4-3, this chapter discusses the major reasons behind design choices and the
implementation of network-aware functionality onto the existing architecture in order to
achieve the goals specified in Section 1.4. An overview of the proposal network-aware cloud
robot system can be seen in Figure 4-11.



Network-Aware Cloud Networked Robot | 41

- -
Mlgratlon Order I

o9

-

)

r
e
[P

Higher level
| = - ———— o ——— —— - - -
]

= 1 - i i- I 1

(3] 1 Machine-Learning Multi-robot i .
intelligencem i | coortmtion modute || Hodeop | i Newerk Monier |
: e . ———— 4 : | § _% 1
1
= -: ———l———ﬂl— ———L————Jr—— 1 3 F :
1 global_goal i' global_mapcell_manager I : 3 1
': i - x | 1 1 !
1 ! e -
I ; 1 Migration Order | : :
I : | 1 gt |} I
1
i 1 ! 1 - t
I lobal_goal lobal mapcell manager I
1 1 9 9 9 P 9 | : Network 1
! I | i Profiling :
| : mfg local mapcell manager ' I 1
I N i
I i
i
i
1
i
1
1
1
i
i
_I

1
1
] —
| : mfg local mapcell manager I g ‘
L J : 18
B === == ol
I — i
) — L St g I N Network Monitor
T, "
1 move base Laser scan data ath e |l | reeeeeees
Bo'dyM ;
Y/ |
I

I Actuators Sensors

Lower level
Figure4-11: An overview of the proposal network-aware system design.

As was presented in chapter 4.1.1, the “brain”-part of the system has modules that
can be migrated between the cloud and the robot. Working as an extension of the existing
cloud robot prototype, network monitors are placed on both the robot and the cloud. These
network monitor modules perform continuous profiling of the network condition. These
modules can also access information about the required quality of service for each module
in the “brain”-part of the system, and if needed, issue a migration order to the affected
module. Such a migration order will result in the affected module having to migrate to
either the cloud or the robot depending on its current position.

4.2.1 Migrating modules in ROS

The idea with ROS, and other component oriented frameworks, is to start all nodes and
define all node relationships at the beginning and then refrain from making any major
changes until the shutdown of the system. However, when moving this kind of system into
the realm of unstable network environments, a need for the migration of modules becomes
apparent. This thesis proposes two possible methods to do module migration in ROS, seen
in Figure 4-12 below.
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Figure 4-12: Two methods of migrating a module in ROS,

The figure depicts two examples where a network monitor issues a migration order
to a node, currently placed locally on the robot, to migrate to the cloud. The first method,
seen to the right in the figure, is the easiest to implement. The method consists of four
steps to complete the migration. Firstly, a migration order is sent from the local network
monitor to the node on the robot, asking the node to migrate to the cloud because of a
recent change in the network condition. The node on the robot will then save its current
state and start a clone of itself remotely on the cloud with its current state. Launching a
node from another node can be achieved by using a process management APl of your
choosing or using rosspawn®, which can provide that kind of service from within ROS. The
newly created node on the cloud then needs to register all the topics and services that it
intends to use to the master. Lastly, the node on the robot will shut down so to not disturb
the node on the cloud.

The second method, seen to the left in the figure, is probably the more efficient but
more resource consuming method, since it requires the state of the entire node to be left in
memory. Here, two nodes of the same kind will run simultaneously, although one of the
nodes will be hibernating. A network monitor will send a migration order to a proxy node
that will forward the migration order to the node on the robot. The node on the robot will
save its state and send it to the proxy, upon it will receive an order to hibernate. The proxy
node will then order the hibernating node on the cloud to wake up with the saved state.

It was decided that the method of using a proxy node would take too long to
implement. Therefore, the method where you startup and shutdown nodes was selected for
the implementation of network-aware functionality onto the existing cloud network robot
architecture. These two ways of migrating modules are parts of the clone-based model of
CNR presented in Section 2.1.3. For this to work, all the message types, manifests, and

*More info about this library can be found at http://wiki.ros.org/rosspawn.
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other ROS elements described in Section 2.2.1 that are needed by the programs, has to be
read and put on the cloud clone before starting the modules.

4.2.2 Limitations of the cloud robot prototype

After working with (and observing) the cloud robot prototype in order to develop network-
aware functionality, it became apparent that the cloud robot prototype and ROS posed
some important limitations that had to be taken into consideration.

The first important limitation is depicted in Figure 4-13 and has to do with the
inconsistency in path selection of the cloud robot. The cloud robot prototype uses the
move_base module (see Section 2.3 for further details) in ROS to create paths, do
localization, and mapping of the area. Even though the robot is to start from one position
in the corridor and move to another, the move_base module will choose a path from many
different variables, which are almost impossible to predict going by experience. That is not
a problem, however, when the robot moves closer to objects or walls it tends to use more
bandwidth, since it needs to send more data in order to calculate a local path to avoid
collision. Hlustrated in Figure 4-13, the robot chooses two different paths to complete the
same task, moving from the black dot to the white dot. The problem as stated above is that
the path of the dotted line will use more bandwidth. Therefore, it is hard to predict how
much bandwidth the robot will use, even for the simplest tasks.

T TR (AR ‘pc)
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Figure4-13: The robot taking two different paths, from the same origin to the same goal, in the corridor
of the laboratory.

Another limitation of ROS is that topics and services (see section 2.2.3) behave
quite differently under different network conditions. Table 4-1 shows the summary of
results from an experiment to measure the round-trip delay time (RTT) between a client
node and a monitor node (server), when using topics and services with different delays and
node placements. The four different node placements scenarios can be seen in Figure 4-14.
Seen in the upper left of the figure is a scenario where the client node (“C”) is in the robot
and the master (“Ma”) and monitor (“M”) nodes are on the cloud. Next to the upper right is
a scenario when the client and master nodes are on the robot and the monitor is on the
cloud. To the lower left is the scenario where the monitor and client nodes are on the robot
and the master is on the cloud. Lastly, to the lower right, is a scenario where there are
master nodes in both the cloud and the robot and the client and monitor nodes are in
different places. The full table of results can be seen in Appendix 1.

The summary of results from this experiment, seen in Table 4-1, shows that services
introduces a substantial amount of extra delay in RTT for every scenario compared to
topics. The reason for this is that when publishing a message on a topic, the publishing
node will retrieve the list of subscribers of a topic at the master node only once and then
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buffer this information. However, a node that tries to utilize a service repeatedly needs to
lookup the list of service providers at the master node every time service call is executed.

Table4-1: Summary of results when measuring the RTT between two nodes in different settings and using either
topics or services.

Average | 2245 |291.70 |1440 | 18350 | 1245 11880 | 14.05 | 163.90
Std.Dev 4.73 28.59 1.64 35.22 3.36 8.46 3.32 2.85
Std.Err 1.06 6.39 0.37 7.88 0.75 1.89 0.74 0.64

Topics
(ms)

Average | 2.70 57.95 3.15 52.35 0.00 0.00 2.25 53.45
Std.Dev 1.56 20.23 2.08 0.75 0.00 0.00 0.44 2.58
Std.Err 0.35 4.52 0.47 0.17 0.00 0.00 0.10 0.58
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Figure 4-14: The four different node placements in the experiment to measure RTT in different scenarios.

Based on the information about services and topics that was gained from the
experiment described above, another minor experiment was done in order to see how delay
and the two scenarios, single-master and multimaster, affects the startup time of a
resource consuming module. The module that was chosen for this experiment was
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move_base and the full table of results can be seen in Appendix I11. What can be concluded
from the summary of results, seen in Table 4-2, is that the move base module has a
minimum startup time of 5.3 seconds. Moreover, using only a single master results in an
exponential growth in startup time when the delay of the network is increased. The startup
time of a minimum of 5.3 seconds has to be taken into account when evaluating the
network-aware cloud robot with the chosen migration technique that uses startup and
shutdown of nodes. What can also be noted is that the move_base module would take
several minutes to start when using a single master while only a few seconds to start when
using a multimaster, when the network is subject to high round-trip latency. Due to the
nature of unstable network environments, where the robot can be connected to the cloud at
one time only to lose the connection the next moment, the use of only a single ROS master
would make the system stop every time the robot loses connection to the cloud. Therefore,
in order to develop network-aware functionality upon the cloud robot prototype, the
system must use several ROS masters. This can be done for example by using the
multimaster library®. Lastly, a small experiment was also conducted to stress test the
move__base module when it is placed on a cloud. What was found in that experiment is that
the move_base module will cease to function, stop giving move commands to the
actuators, when the round-trip latency of the network raises to around 160 milliseconds.

Table 4-2: Summary of results measuring the startup time of move_base under different conditions where “ SM”
stands for “ single-master” and “ MM” for “ multi-master” .

Delay (ms) Oms 50ms 140ms Oms 50ms 140ms
(SM) (SM) (SM) (MM) (MM) (MM)
Average 13414.00 | 95688.00 | 230206.00 | 5350.00 5350.00 6112.00
Std.Dev. 854.01 1555.95 1556.01 236.11 182.21 246.82
Std.Err. 381.92 695.84 695.87 105.59 81.49 110.38

The reason for choosing the move_base module is that it is by far the most resource
consuming module in the cloud robot prototype. This was discovered during an
experiment to map the CPU usage of all modules. In that experiment, the robot was set to
move to the end of the corridor and back. The battery consumption, CPU execution time,
and different modules’ CPU usage was measured when the modules was placed locally on
the robot and remotely on the cloud. The full table of results from this experiment can be
seen in Appendix IV. The average bandwidth usage of move base, when placed on the
cloud, is 3.4 Mbit/s. The reason why the amount of bandwidth used by the move_base
module is this high, is because the module is transmitting a lot of raw data from the kinetic
sensor. This could be improved by both improving the pathfinding, by pre-computing all
paths to a goal, and by optimizing the module to only transmit the most necessary data.

Another limitation of the cloud robot prototype is that the temperature sensor is set
to measure the temperature three times every seconds. The problem is that the program
does not take into consideration that the rate of change of temperature is proportional to
the difference between the temperature on the sensor and the temperature of its
surroundings. This results in a heat source looking skewed or larger than it might be in
reality. This could be corrected by applying Newton’s law of cooling in order to calculate
the “real” temperature at a certain position. However, there was not enough time to do this
and this was left out for future work.

* http://wiki.ros.org/multimaster_fkie.
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4.2.3 Network-aware machine learning algorithm

The network-aware machine learning algorithm was developed to take the limitation of the
system described in 4.2.2 into account, while aiming to satisfy the two sub-goals presented
in Section 1.4. The algorithm described in this and following sections of the chapter works
to find the most efficient module placement for modules depending on the task, the
location where the task is to be executed, and the initial network condition at the location;
satisfying sub-goal number 2. A task can, as previously described in chapter 4.1.3, be all
from scanning a part of a room for abnormal temperature values to just moving the robot
from one point to another.

The benefit of having the network-aware machine learning algorithm try to find the
best placement policy, instead of having only a continuous evaluation of the network
condition and migrating modules on the fly, is that you can achieve an overall more
efficient and better migration policy. If modules are migrated every time on the fly when
the network condition get better or worse than a certain limit, you might end up with a lot
of unnecessary migration. Since migrating modules is expensive, you might end up with a
less efficient system than if you do not migrate any modules at all. By trying to find the
most efficient module placement while keeping the number of migrations during a task
relatively low, the algorithm satisfies sub-goal number 1 as specified in Section 1.4.

An overview of the proposed network-aware machine learning algorithm can be
seen in Figure 4-15. Before the start of a task the network is being constantly monitored by
a network profiler. The network profiler estimates the condition of the network and parses
this into two variables, Apw and C,, which are forwarded to the machine-learning algorithm.
The machine-learning algorithm lookups the training set for the specific task at the specific
location. It then executes a classification algorithm to come to the conclusion if the
modules need to be migrated, or not, before the start of the task. This means that the
module placements will be static during the execution of the task. The migration decision
could include the options to say “migrations are only allowed x amount of times”, in order
to enable modules to migrate on the fly if the network goes down when a crucial module is
on the cloud. This however would take too much time to implements and was left out for
future work.

After the end of a task comes a phase in the algorithm which evaluates if the
migration decision was good or not. After an evaluation of the migration decision has been
done, the decision evaluation module inserts the newly gained data into the training set for
the specific task at the specific location, which makes the algorithm come full circle from
making a decision and then as time goes learns by classification and newly gained data.
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Figure 4-15: The machine learning algorithm used to enable network-awar e functionality in the cloud
robot prototype.

4.2.4 Network profiling

The first phase in the machine-learning algorithm is acquiring information about the
current state of the network. This is done by doing continuous profiling of the network.
Usually this can be done by measuring the latency and available bandwidth. However, as
discussed in section 4.2.2, the cloud robot requires different amount of bandwidth to
operate depending on the route taken to the goal. Therefore, instead of just looking at the
currently available bandwidth of the network, or the currently used bandwidth of the robot,
a new ratio called “bandwidth ratio” (Ruw) is introduced. This new ratio gives a better
overview of how much more bandwidth the robot can use before filling up the network. An
explanation of this ratio can be seen in Equation 4-1.

_ Abw
bw
Equation 4-1: The relationship between the bandwidth ratio and available bandwidth and currently used

banadwidth.

In this equation the available bandwidth (Asw) is the currently maximum available
bandwidth of the network, and the current bandwidth (Cow) is the bandwidth currently
used by the robot. A way to picture this ratio can be seen in Figure 4-16. The reason the
ratio is derived this way, and not for example in the inversed way, is that the algorithm
described in Section 4.2.5 works better when the ratio and latencies are on a similar scale.
Choosing the ratio to be expressed in this way makes it get closer in scale to the latency axis
after put through a normalization process. The bandwidth ratio is expressed in percent and
indicates how many more percent of Cyw is left from the available bandwidth. So the
information that is needed by the machine-learning algorithm from the network profiling
phase is: the current latency (C)), the currently used bandwidth (Cpw), and the currently

47



48 | Network-Aware Cloud Networked Robot

available bandwidth of the network (Aww). An overview of the whole network profiling
phase and the programs used to acquire the required information can be seen in Figure
4-17.

Apw: Available bandwidth of entire link between robot and the cloud

B

Cpw- Currently used bandwidth Ry,,: Bandwidth ratio
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Figure 4-16: A descriptive schematic of the bandwidth ratio in relation to the currently used bandwidth
and the currently available bandwidth.
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Figure 4-17: Overview of which programs that are used to acquire information about the network
condition and how thisinformation is parsed for the machine learning algorithm.

The current latency (Cy) is acquired by measuring the round-trip delay time (RTT)
between the robot and the cloud. The RTT was measured by a publish echo program that
was created by the author. This publish echo program runs on top of the publish-subscribe
messaging paradigm, and echoes messages containing timestamps. An overview of the
procedure of the program can be seen in Figure 4-18. Here, the program will receive a
request for the current latency by the network profiling module. 1t will then continue by
taking a timestamp and include this in a message which is published on a topic to a node
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on the cloud. When the message arrives to the module on the cloud, that module will
proceed to echo the message back by publishing it on a topic to the node on the robot.
When the message arrives to the node on the robot, the node takes another timestamp and
subtracts the time of the timestamp in the message. The calculated current latency is then
sent back to the network profiling module.

/ Robot \ / Cloud \
Network
profiler
Latency: G Request: G
===1 Timestamp: Ty [============= >~
Echo \ Echo
node / node
I 1 Time T is when the
C=T-T echo comes back
= - Ip
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Figure 4-18: Smple overview of how the publish echo program cal culates the current latency.

The currently available bandwidth of the network (Aww) and the currently used
bandwidth of the robot (Cpw), are acquired by using two external programs called netperf
[64] and ifstat [65]. Ifstat is a program that reports interface statistics back to a user. It
does this by using operating systems drivers to gather statistics. The driver that is used in
the experimental test bed is the “/proc/net/dev” file. Netperf is a network performance
benchmarking program developed by the HP information networks division. An example
of the bash commands that can be used to acquire the information from these two
programs can be seen in Table 4-3. The actual code used for acquiring this information
from the two programs can be seen in Appendix V.

Table 4-3: Two examples of how to acquire the currently used bandwidth (C,,) from ifstat, and the currently
available bandwidth (Ay,) from netperf, using the command line.

bash$ifstat —i wlan00.1 1
bash$ netperf -H 192.168.0.2

425 Migration decision using k-nearest neighbor algorithm

It was decided that a migration decision will be selected with the help of a classification
algorithm named k-nearest neighbor (k-nn) because it is easy to implement, compatible to
adding of new data to the training set, and because of the results presented in [59].
However, before explaining the details of the classification algorithm, it is important to
specify the structure of the training set.
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The idea is, as specified in chapter 4.2.3, that there exists a tuple (task, location) for
every pair of specific task and specific location, and that each such tuple has a training set.
Such a training set is built up like a database of rows, where each row represent the
prerequisite information, migration decision, and evaluation parameters of a run of the
specific task at the specific location. The specification of a row can be seen in Table 4-4.
The first two parameters of a row are the parameters received during the network profiling
phase. Then comes the migration decision of that specific run, and lastly, three parameters
that are used during the evaluation phase as well as for data analysis. The benefit of these
training sets are that they can be uploaded to a world-wide knowledge database (such as
described in [26]) of training sets, which can be downloaded by robot that wants to
perform such a task at a similar location. By doing this, new robots does not need to
rediscover this knowledge since another robots may have already done the same task at a
similar location.

Table 4-4: The structure of arow in atraining set.

<Rpw> <C;> <Migration Decision> <Mission Status> <Bias> <Tiask™

The parameters that are used for making a migration decision are the first three:
Row, Ci, and Migration Decision (MD). In Figure 4-19 is an example of what the k-nearest
neighbor classification algorithm tries to do with a training set. In this example, which is
not actually accurate but rather tries to make it easier to explain, the whole graph is the
training set and each point is a row in the set. Each dot has a color, black or blue, which
represents if a module should be offloaded or not. If a migration decision needs to be made
at a place in the graph where there is no dot, selecting a row in the training set would not
solve the problem. What is done instead is that the k-nearest neighbor algorithm classifies
an area in the graph to either output the migration decision onload (when in the white
area) or offload (when in the blue shaded area). As more data is added to the training set
(the graph), the classification becomes more accurate.
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Figure4-19: An example of what the k-nn classification algorithmtries to do.

Calculating the migration decision (MD) can be seen as an optimization problem of
the triple MD(x,y, z), where x is C;, y is Ruww, and z is the migration decision onload when
equal to zero and offload when equal to one. Each row in the training set can be described
as seen in Equation 4-2. A row is here specified as a quadruple of variables where x, is the
C value of row n, yn is the Rpw Of row n, z, is the MD of row n, and w, is the Euclidean
distance between the two points P(x,y) and P(Xn,yn).

R(xXp, Vi Zny Wi, D(n) =[0,N, — 1], N,.: Number of rows in the training set
Equation 4-2: The definition of a row in the training set.

The implementation of the k-nn algorithm in this project aims to find the answer to
z by finding the Euclidean distance between the two parameters, Row and C;, and every row
in the training set. The Euclidean distance between the migration decision and row n in the
training set (w,,) can be seen in Equation 4-3.

Wp = \/(x —X)% + (y — y)?

Equation 4-3: The Euclidean distance between the current run and row n in the training set.

The specific implementation of k-nn in this project uses k = 5 since this was a good
fit for the data after some trial and error. This means that the five rows with the smallest
Euclidean distance from the current run are selected from the training set and put into
another quadruple set, R (X, Vi, Zm» Wi ), Where D(m) = [0,k — 1]. A majority vote is then
held between these five rows with the five smallest values to wy, to decide if the migration
decision of the current run should be offloaded (z equals one) or onloaded (z equals zero).
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The equation of the majority vote can be seen in Equation 4-4. This equation in
conjunction with the specifications and equations above states that if there are more rows
with a migration decision of offload, than rows with the migration decision onload, in the
vicinity of the current migration decision (w in MD(x,y,z)), then the current migration
decision should be offload. The other way around means that the current migration
decision (w in MD(x,y,2)) should be onload.

k

k
1, ZOZm > E
— m=
z= k
k
0, Z Zm < E
m=0

Equation 4-4: Calculating the migration decision by majority vote.

4.2.6 Decision evaluation and evaluation parameters

After a task has ended, it is essential to evaluate if the decision that was made before the
start of the task was right or wrong, or in some cases less wrong than right. However, to do
an evaluation, there is a need to specify what information to use in an evaluation. It was
decided that an evaluation is to be based on the time it took to execute the task (Task), and
how much battery the task consumed (Biask)-

As the OS of choice in this project was an Ubuntu Linux distribution, these
parameters can be calculated by reading specific files in system and process directories.
More specifically, the time it takes for a task to execute (Ttask) can be calculated by reading
the /proc/stat file [68] before the task started and once again after the task has ended. The
total time in jiffies, or “USER_HZ”, can be obtained by adding together all numbers after
the cpu line in the file, in order to create an accurate timestamp. The total execution time
of the task is obtained by subtracting the timestamp from before the start of the task with
the timestamp after the end of the task. It is possible to calculate the battery consumption
of the task by reading the two files charge full and charge_now under the
/sys/class/power_supply/BATO0/ directory, before the start and after the end of a task. By
dividing the number in charge_now with the number in charge_full you can get a more
accurate reading of the battery level in percent, before and after the task. Subtracting the
battery level after the task with the battery level before the task gives the change in battery
charge, hence the battery consumption in percent.

The next problem is what to compare these two parameters against to make an
evaluation. Because of the lack of time, this project focuses on evaluating decisions to
offload modules before a task and leaves out the evaluation of migration decisions to put
modules locally on the robot. In the case where you want to evaluate a decision to offload
modules, the answer to what to compare the two parameters against would be the average
of the corresponding parameters when having the module on the robot. In order to get this
information, a small experiment was conducted to create two control values; one control
value for the battery consumption (CBtask) and one control value for the task completion
time (CTrask). The experiment was run on top of the test bed specified in chapter 3.4 while
having all the modules locally on the robot. The task presented to the robot was to run to
the end of the corridor and back to the beginning. The experiment consisted of twenty runs
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and the summary of results of this experiment, when the CPU frequency was set to 1.6GHz
and power management was disabled, can be seen in Table 4-5.

Table 4-5: Summary of results from having the robot run to the end of the corridor and back with all modules
locally when having the CPU frequency set to 1.6GHz

CBiask — (%) CTiask — (S)
Average 0.004586 87.9286
Std.Dev. 0.000702 14.3815

We now have values that represents the performance of a run and two control
values to compare to in order to evaluate if the migration decision was good or bad. The
way to compare the acquired values to the control values is still up to discussion, but an
example could be to introduce a weight. Since migration in ROS in its current state is quite
resource expensive, a weight could be put on the acquired values to say that if the decision
performed only 5% worse than the control values it would still be an acceptable decision.
Such a weight could be defined as in Equation 4-5 where V. stands for “validity ratio”,
which would be 1.05 if a decision is allowed to perform 5% worse than the control values. A
decisions that equals one in this figure would mean an acceptable decision, where a
decision that equals zero means another decision would have been better.

( ( Ttask ) + ( Btask )

1’ CTtask > CBtask < V;«
Decision =
( Ttask ) + ( Btask )
CT CB
O, task z task > Vr
Equation 4-5: A decision is allowed to perform worse than the control values in proportion to the validity

ratio.

When a decision has been evaluated, the information acquired during the network
profiling phase, the migration decision, and the evaluation values are added to the training
set of the specific task at the specific location as a new row (see the definition of a row in
Table 4-4). This makes the machine-learning algorithm comes full circle since as more data
is added to the training set, more accurate migration decisions can be made by the
machine-learning algorithm.
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5 Analysis

In this chapter the major results from the experiments described in chapter 3 is presented
and analyzed. The experiment used the network-aware cloud robot presented in chapter 4.
Furthermore, a reliability analysis is performed on the acquired results in section 5.2 and
the major results are discussed in section 5.4.

5.1 Major results

In this section the major results of the continuous experiment is presented. The cloud
robot with the network-aware functionalities presented in chapter 4 was set running, with
the specific task described in chapter 3.4.1, in the laboratory corridor over the span of two
months while running the machine-learning algorithm described in 4.2. This resulted in a
training set with 572 valid measurement after the data was cleaned. A subset of these 572
entries in the training set was plotted in a graph. Following this, a classification algorithm
was run as an overlay, in order to decide if an area should be considered best for offloading
modules to a cloud or placing modules locally on a robot. The resulting scatter graph can
be seen in Figure 5-1.

bw-ratio

30 40 S0 60 70 8 100 110 120 130 14¢ 50 160 170 180 190 200

Latency (ms)

Figure5-1: Subset of the training set plotted by latency and bandwidth ratio and with an added overlay
that displays what module placementsis the most efficient.

Here, the x-axis represents the RTT latency of the network and the y-axis
represents the bandwidth ratio (Cow). A blue dot signifies a migration decision where
offloading was the best decision and an orange triangle represents a migration decision
where onloading would have been the best decision. The white areas are where the
classification algorithm calculates that onloading modules would be the best decision and
the blue area is where the classification algorithm calculates that offloading modules would
be the best decision.
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The graph seen in Figure 5-1 represents the areas of offloading modules or placing
modules locally on a robot based on the validity ratio (V) presented in section 4.2.6. This
graph only shows a very general picture of the most efficient module placement and it also
presents data that is derived from a variable defined by the author. Furthermore, it also
does not take the migration time into consideration. Therefore, there was a need to further
analyze the data and find the tradeoff between offloading modules and placing modules
locally on the robot, when looking specifically on latency and bandwidth ratio. Since most
values above 160 milliseconds tend to point to local module placements being the most
efficient, all values where the RTT latency was lower than 160 milliseconds were selected
for a new subset. The aim of this new subset is to see how the bandwidth affected the
battery consumption and task execution time. The graph where these values were plotted
to show the relation between bandwidth ratio and the task execution time can be seen in
Figure 5-2.

140 ' ' data points
t ata poin

Power fit

Local Modules ----

130 +d4 With migration .

120 ; B
110 | N .
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80 1 1 !
0 5 10 15 20

bw-ratio

Figure5-2:  Plotting a subset of the training sets task execution time against the bandwidth ratio
including trend lines.

The graph shows all values where the latency was lower than 160 milliseconds. The
x- and y-axis represents the bandwidth ratio and the task execution time. All values are
represented as red crosses and the task execution time control value (CTtask), presented in
section 4.2.6, is represented by a blue dotted line called Local Modules. The values were
run through a power fit (because it seemed to fit the data the best) to create a trend line,
which is represented as a green dotted line called Power fit in the graph. Lastly, a
simulation was done on the subset of values to show how the trend line looks when you
take the five second migration time (see section 4.2.2, Table 4-2) into account. This trend
line is represented as a violet small dotted line called With migration.
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The subset of values where the RTT latency was lower than 160 milliseconds were
also plotted to see how the bandwidth ratio affects the total operating time of the system.
This can be seen in Figure 5-3. Here, the values are once again represented as red crosses
and the total operation time, derived from the control values presented in 4.2.6, is
represented as a blue-dotted line called Local Modules. This control line was derived from
the two control values by Equation 5-1. The values was also analyzed and run through a
line fitting program to create a trend line which is represented as a green dotted line called
Linear fit. This time the values seem to fit a constant growth line better.

data points

Linear fit
Local Modules --------
75 ]

6.5 * ‘ . ' ‘ F+ T4 | e
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4 1 ! 1
0 5 10 15 20

bw-ratio

Figure5-3: Plotting of a subset of the training sets robot total operation time against bandwidth ratio
including trend lines.

CBtask
CTyusk X 3600

Operation Time (hours) =

Equation 5-1: Deriving the total operation timein hours from the control values.

What can be seen especially in Figure 5-2, is that when the bandwidth ratio gets
closer to 10 units, the bandwidth ratio’s effect on the task execution time start to pan out.
Further analysis was therefore carried out to see how the latency affect the task time
execution. The resulting graph when plotting a new subset of the training set, with all
values with a bandwidth ratio over 10 units, can be seen in Figure 5-4. The data points are
once again represented as red crosses and the task execution time control value (CTtask) is
represented as a blue dotted line called Local Modules. The data seem to have a linear
trend and was therefore run through a linear fit program to produce a linear fit trend line,
which is represented in the graph as a green dotted line called Linear Fit. A simulation was
done on the trend line to see how the extra five seconds introduced from module migration
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would affect the task execution time. This simulation trend line is represented as a violet
dotted line called With migration.

I
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Figure5-4;: Plotting a subset of the training sets task execution time against latency with trend lines.

The previous graphs presents how the performance differs when faced with
different network conditions. However, these graphs does not show how much time and
battery can potentially be saved by running the modules remotely on a cloud, when the
network is working without any set restrictions to latency or bandwidth. The robot was set
running the same task another twenty times without imposing any restrictions in latency
or bandwidth on the network. The results of these twenty runs when compared to the
control values can be seen in Figure 5-5 and Figure 5-6.
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Avg. Battery Consumption per task (%)
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Figure5-5:  Average battery consumption per task comparison between local and remote module
placement with different local CPU frequency.
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Figure5-6: Average task completion time comparison between local and remote module placement
with different local CPU frequency.

5.2 Reliability Analysis

The results are assumed to be reliable since the experimental setup was created to be as
sterile as possible, so that no external variables would influence the results. In order to
produce reliable results, the robot was assigned to complete a simple task in order to
achieve as many consistent runs as possible. Furthermare, the power management on the
laptop was disabled and the CPU frequency was configured to 1.6GHz, in order to
eliminate unpredictable behavior when either the battery level gets lower or the load on the
CPU changes.
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Two variables that need to be taken into consideration, when analyzing the
reliability of the results, is the unpredictable pathfinding by the move base module and
the natural behavior of batteries. The charge in batteries sometimes unpredictably drops
more than usual and sometimes even recharge. Some test runs with the cloud robot would
even show that the robot would recharge during the run because of this. Even though these
two variables are unpredictable, they are affecting the system whether the modules are
placed locally on the robot or offloaded to the cloud. Therefore, they can be seen as natural
elements in the system and the results would reflect the real world much better than a
computer simulation.

5.3 Validity Analysis

The validity of the results could not be checked since there was no time to redo the
experiments in a real environment of a datacenter, and compare the results from such an
experiment to the results from the experiment in the corridor. The reason being that the
laboratory was scheduled for a renovation and the data center moved to another building.

5.4 Discussion

By looking at the graph produced by the machine learning algorithm, seen in Figure 5-1, it
looks like the proposed solution is actually able to map the most efficient module
placement to the network condition. Without specifying an actual limit in either bandwidth
ratio or latency, the proposed solution is able to find a border for when placing modules on
the cloud will be inefficient, by comparing results to a control value and classifying new
values on the fly. However, as can be seen in the graph, there is not nearly enough data
points to make a really accurate classification. For example, between 20 and 40
milliseconds RTT latency the graph implies that the bandwidth ratio does not matter and
that it will always be beneficial to place the modules on the cloud. This is clearly not true as
the move _base module needs a certain amount of bandwidth to function. This error
originates from not having enough data points in the vicinity of those areas, which resulted
in the classification algorithm being unable to correct the error that is easily found by the
human eye.

A guestion that arises from this problem is that acquiring these 572 measurements
took over two months, but how long will it actually take for the algorithm to make plausible
decisions? This may seem like a trivial matter, but it is not practical for a robot to take
several months to learn even such a simple task. However, this can be integrated with a
shared-knowledge platform, as presented in [26], so that another robot in a similar setting
can download this data and learn from it; making it so that new robots does not have to
take several months to function efficiently.

When looking more closely at the graph in Figure 5-2 it seems like as the
bandwidth ratio grows larger, the trend line moves closer to what looks to be an asymptote
around 78 seconds task execution time. On the left part of the graph, at around a
bandwidth ratio of 4.9 units, the trend line (labeled “Power fit” in the graph) crosses the
control line (labeled “Local modules” in the graph). The point where the two lines cross
acts as the border between when modules should be placed on the cloud and when
modules should be placed on the robot, when running a certain task at that specific
location with the specific module configuration. However, this trend line does not take the
migration time into account. Instead, when looking at the simulated trend line (labeled
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“With migration” in the graph), where the 5 seconds migration time is taken into account,
the graph shows a not so promising result. The simulated trend line and the control value
line crosses at around a bandwidth ratio of 10 units; more than double the amount of
where the trend line without migration overhead crosses the control value. This means that
even though the migration overhead of 5 seconds may seem small, it has a negative effect
on the task execution time in this certain scenario. In many of those runs, the execution
time becomes the same (or in some cases longer) as when having modules locally on a
robot.

Even though Figure 5-2 shows that the task execution time can be higher or lower
than the control value depending on the bandwidth ratio, Figure 5-3 shows that the total
operation time, derived from the battery consumption and task time execution, does not
change a lot depending on the bandwidth ratio. The data points are quite spread out, but a
major part of the data points seem to indicate that it is possible to achieve a longer total
operation if modules are offloaded to a cloud. Furthermore, the trend line indicates that,
depending on the network condition, a robot can have up to an hour longer total operation
time by offloading modules. Although that is to be expected, since lowering the load on the
CPU should also lower the battery consumption. However, there is still a tradeoff where
offloading modules to a cloud increases the required bandwidth, which means that the
network card will see an increased load. In this experiment it seems that even though there
is an increased amount of data sent over the network, the robot can still save battery time
by offloading modules to a cloud.

Figure 5-4 shows how the task execution time changes depending solely on the RTT
latency when the bandwidth ratio is over 10 units; which means that the robot is not even
using one tenth of the available bandwidth. What can be seen in Figure 5-4 is that the data
points are once again spread out. Even though the data is spread out, there is a notable
linear trend that goes upwards; as the RTT latency increases, the task execution time
increases. However, even when the RTT latency is over 160 milliseconds, the trend line still
indicates that it is possible to have a task execution time that is lower than the control
value. On the other side, one thing that is worrisome is that the simulated trend line for
migration crosses the control line at 55 milliseconds RTT latency. This means that by using
the proposed method of migrating modules, it would only be beneficial to place modules
on a cloud if the system is run over a network that has a RTT latency lower than 55
milliseconds. The RTT latency when using a commercial cloud, e.g. Amazon Web Services,
is usually over 100 milliseconds, which means that the only feasible solution would be to
install a local cloud solution for offloading purposes.

Lastly, what can be gathered from Figure 5-5 and Figure 5-6, is that under stable
network conditions there is clearly a lot to be gained from offloading modules to a cloud;
10% decrease in battery consumption and 2.4 seconds (2.8%) faster task completion. What
is also interesting is that the results show that it is beneficial to change the local CPU
frequency, depending on whether the modules are offloaded to a cloud or placed locally on
the robot. When the modules are placed locally on the robot, it is better to set the CPU to a
high frequency. Even though the CPU will consume a higher amount of battery per second,
it will enable the robot to finish a task faster, which in turn lowers the energy consumption
per task. When modules are offloaded to a cloud, it is more beneficial to lower the
frequency of the CPU on the robot, in order to save battery consumption when possible.
The only thing that a higher frequency on the local CPU seem to provide, when the
modules are offloaded to a cloud, is the variance in measurements go down. The most
probable reason for this is that a low CPU frequency means that the program will compete
more with other programs running in the system. Sometimes there will be no backend
tasks that will compete with the program, while sometimes there might be a lot of
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competition for execution time in the CPU. When the CPU is configured to operate with a
lower frequency it probably cannot handle this change. This means that you can have a
more predictable system if you configure the CPU to run at a high frequency.
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6 Conclusions and Future work

This chapter will conclude the thesis report with a conclusion of the project in Section 6.1.
Section 6.2 discusses the limitations of the projects. This is followed by a description in
Section 6.3 of the future work that remains. The chapter concludes in Section 6.4 with
some reflections regarding the project.

6.1 Conclusions

This thesis project proposed a machine learning-based network aware framework solution
to solve the problems with having cloud robots in unstable network environments. The
goals of this thesis project were met since the proposed solution is able to save battery on
the cloud robots as well as choose the most appropriate module placements depending on
task, place, and network condition.

Looking at the results and taking into account the many hours of observing a cloud
robot working in an unstable network environment, the area of CNR would not benefit
from the proposed solution, since it has an inherent bottleneck in the training phase of the
machine learning algorithm. Currently all cloud robots that wants to use the proposed
solution would need to train for over 2 months to work efficiently. However, if connected
and integrated with a shared-knowledge platform on a global level, the proposed solution
could be very powerful, since all new robots would be able to skip the training phase by
downloading the knowledge.

A recommendation for the ROS community is to develop better support for
migrating modules within ROS. Even though this goes against the basic principles of ROS,
where all modules should be initiated at the start of the system and remain static, module
migration functionality would enable many powerful applications. Another
recommendation is to rework the service implementation so that it can handle buffering of
addresses (just as it can for topics), in order to reduce the time it takes to repeatedly make
a service call when the network is subject to high latency. Furthermore, future applications
should be developed with network awareness in mind, by decoupling functionality that
must be placed locally on the robot from functionality that can make use of the power of
the cloud.

I have learned a lot from this thesis project, since | had to learn and use a wide
variety of programs as well as develop drivers, program functionality on different layers,
and test the whole system myself. If | had to do it again I would limit the scope of the thesis
project even further and put more time into defining the goals, the purpose, and the
research methodology (specifically | would write chapters 1, 2, and 3 before starting to
develop the solution). This would have helped tremendously during the early- and middle-
stages of the project.

6.2 Limitations

The largest limitation of this thesis project was the limited amount of time to develop and
test the proposed solution before the renovation of the laboratory facilities in the middle of
August 2014. Because of this there were insufficient time to implement module migration
functionality into the solution. Furthermore, the limited amount of time also meant that it
was only possible to take 572 valid measurements during the experiment; this can be seen
in the results and Figure 5-1. During the middle-stages of the project, a lot of time was
dedicated to writing research papers that were published in various settings. Although the
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time was well spent and | gained a lot of experience, this time could have been put into
development and testing of the proposed solution.

Another large limitation was the fact that the TurtleBot navigation stack was a bit
inconsistent and would at times get stuck, hence all the applications had to be restarted.
This would happen randomly and the position of the modules did not matter. Although the
consistency of the current navigation stack is much better than that of the first generation
TurtleBot, there is still a need for further improvements.

The results were limited by the fact that the network profiling is done only once for
every task. Since there is no continuous profiling of the network, the proposed solution
cannot adapt to unpredictable network changes. This could be solved by implementing
continuous network profiling, however this was out of the scope of this thesis project due
to the limited amount of time. Furthermore, the experiment was only performed using a
single type of cloud robot, hence it is impossible tell from these results if another cloud
robot system would be able to improve the performance of a task and reduce its battery
consumption, by implementing the proposed solution.

6.3 Future work

As this thesis project was done by a single person, there was not enough time to develop
and implement a lot of the proposed functionality into a running solution; hence quite a lot
has been left for future work. Some of this future work includes implementing the proxy-
based module migration functionality (shown to the left in Figure 4-12) into the proposed
solution. It would also be interesting to expand the single-robot system into a multi-robot
system, where the knowledge gained from the machine learning-based network aware
framework could be shared between robots. Another important future work is to
implement continuous network profiling into the network aware framework, in order to
enable the robot to adapt to unpredictable network changes. Furthermore, the proposed
machine learning-based solution can currently only evaluate if an offloading migration
decision was right or wrong. Future work will also need to address how to evaluate an
onloading migration decision, in order to prevent the training set from becoming biased in
the favor of onloading.

Other future work includes improving the temperature sensing module by applying
Newton’s law of cooling, in order to increase the precision of the temperature
measurements compared to the “real” temperature at that location. It would also be
interesting to explore the possibilities to connect the proposed solution to an external
service, such as a Hadoop cluster where the data could be analyzed in order to find trends
that are invisible to the human eye. In order to improve the performance of the proposed
solution, the algorithms introduced in Section 4.1.2 and Section 4.1.4 could be improved as
stated in those sections.

6.4 Reflections

As this technology develops further, robots will be able to autonomously move around in
environments currently inhabited only by humans. This will surely be beneficial on many
levels; however, this technology will surely encounter some ethical and security issues.
These robots may go around and collect (on purpose or not) private information which can
be shared via the cloud. This may lead to many serious problems concerning misuse or
leakage of this information [12]. Furthermore, there will surely also be some ethical issues
regarding where these cloud robots are allowed to move around. Legislators are recently
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starting to acknowledge these issues around privacy and security [69], which is good since
cloud networked robots are surely here to stay.
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Appendix I: TC network controlling example

This appendix will describe an actual example of the settings used in tc to simulate various
network conditions. The example will make use of queuing disciplines (gdisc) and
hierarchical token buckets (htb) in order to induce the network with latency and bandwidth.
The example will set the bandwidth of the wireless network link to 1Mbit/s and 135ms
latency. The settings can be seen in the table below.

#tc qdisc add dev wlanO root handle 1: htb default 10

#tc classadd dev wlanO parent 1: classid 1:1 htb rate 1000k bit bur st 500k

#1tc gdisc add wlan0 parent 1:1 handle 10: netem delay 135ms

#1tcfilter add dev ethO parrent 1. protocol ip u32 match ip dst 10.0.0.2 flowid 1:1
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Appendix Il: Detailed results of RTT experiment

The RTT when using ROS services under various latency and module placements. See
Section 4.2.2 for further details about the experiment.

ms (Master-Monitor) o] 20 50 100 ms (Client-Master) 0] 20 50 100
1 19 126 278 539 1 14 75 168 335
2 24 136 282 532 2 13 79 176 319
3 19 126 283 526 3 14 76 181 321
4 22 134 284 528 4 20 78 170 316
5 35 131 278 556 5 13 78 168 323
6 31 139 277 541 6 13 88 172 323
7 19 142 280 532 7 15 83 170 323
8 23 158 283 535 8 14 79 173 321
9 27 131 281 529 9 14 83 172 322
10 20 171 280 530 10 14 74 275 337
11 30 128 276 526 11 17 77 171 322
12 22 132 285 532 12 15 77 170 396
13 19 143 288 535 13 15 88 169 319
14 18 124 279 551 14 14 78 170 324
15 21 128 385 531 15 14 78 169 319
16 20 124 281 536 16 14 105 170 316
17 22 131 301 528 17 15 83 176 322
18 20 138 361 535 18 13 82 177 326
19 18 128 287 532 19 14 82 296 322
20 20 131 285 534 20 13 99 177 322
Average 22.45 | 135.05 | 291.70 | 534.40 Average 14.40 82.10 | 183.50 | 326.40
Standard Deviation 4.73 11.67 28.59 7.67 Standard Deviation | 1.64 7.86 35.22 17.18
Sanple Size 20.00 20.00 20.00 20.00 Sanple Size 20.00 20.00 20.00 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 2.07 5.12 12.53 3.36 Margin of Error 0.72 344 15.44 7.53
Upper Bound 24.52 | 140.17 | 304.23 | 537.76 Upper Bound 15.12 85.54 | 198.94 | 333.93
Lower Bound 20.38 | 129.93 | 279.17 | 531.04 Lower Bound 13.68 78.66 | 168.06 | 318.87
Max 35.00 [ 171.00 | 385.00 | 556.00 Max 20.00 | 105.00 | 296.00 | 396.00
Min 18.00 [ 124.00 [ 276.00 | 526.00 Min 13.00 74.00 | 168.00 | 316.00
Range 17.00 47.00 | 109.00 | 30.00 Range 7.00 31.00 | 128.00 | 80.00
Variance 22.37 | 136.26 | 817.17 | 58.78 Variance 2.67 61.78 |1240.79| 295.09
Standard Error 1.06 2.61 6.39 171 Standard Error 0.37 1.76 7.88 3.84
Median 20.50 | 131.00 | 282.50 | 532.00 Median 14.00 79.00 | 171.50 | 322.00
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ms (Client-Monitor) 0] 20 50 100 ms (Multimaster) 0] 20 50 100
1 9 58 115 221 1 14 77 162 312
2 10 87 115 220 2 13 73 162 312
3 14 54 115 219 3 19 77 162 311
4 13 58 151 214 4 10 76 163 314
5 14 55 119 219 5 20 78 165 319
6 12 51 116 217 6 14 71 163 313
7 12 57 118 232 7 12 71 165 315
8 14 58 123 217 8 15 73 166 312
9 12 53 115 214 9 12 74 163 310
10 11 99 113 223 10 13 68 160 311
11 10 56 114 216 11 11 78 161 313
12 12 53 120 220 12 23 88 164 312
13 8 62 123 212 13 17 72 165 312
14 10 56 112 219 14 12 91 171 311
15 10 57 117 218 15 14 75 163 318
16 13 52 117 216 16 14 77 167 313
17 21 55 117 216 17 11 72 170 312
18 21 62 116 295 18 12 70 162 311
19 11 54 113 214 19 13 77 162 322
20 12 57 127 218 20 12 111 162 313
Average 1245 | 59.70 [ 118.80 | 222.00 Average 14.05 | 77.45 [ 163.90 | 313.30
Standard Deviation| 3.36 11.90 8.46 17.69 Standard Deviation 3.32 9.65 2.85 3.05
Sample Size 20.00 | 20.00 | 20.00 | 20.00 Sample Size 20.00 | 20.00 | 20.00 | 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 1.47 5.22 3.71 7.75 Margin of Error 1.45 4.23 1.25 1.33
Upper Bound 13.92 | 64.92 | 122,51 | 229.75 Upper Bound 1550 | 81.68 | 165.15 | 314.63
Lower Bound 1098 | 54.48 | 115.09 | 214.25 Lower Bound 1260 | 73.22 | 162.65 | 311.97
Max 21.00 | 99.00 [ 151.00 | 295.00 Max 23.00 | 111.00 | 171.00 | 322.00
Min 8.00 51.00 | 112.00 | 212.00 Min 10.00 | 68.00 | 160.00 | 310.00
Range 13.00 | 48.00 | 39.00 | 83.00 Range 13.00 | 43.00 | 11.00 | 12.00
Variance 11.31 | 141.69 | 71.64 | 313.05 Variance 11.00 | 93.10 8.09 9.27
Standard Error 0.75 2.66 1.89 3.96 Standard Error 0.74 2.16 0.64 0.68
Median 12.00 | 56.50 | 116.50 | 218.00 Median 13.00 | 75,50 | 163.00 | 312.00
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The RTT when using ROS topics under various latency and module placements. See
Section 4.2.2 for further details about the experiment.

1 2 22 52 108 1 2 22 52 102
2 2 22 52 102 2 5 25 52 107
3 5 22 52 102 3 5 22 52 102
4 2 22 52 102 4 10 23 52 102
5 2 22 52 102 5 2 25 52 106
6 2 22 59 102 6 2 23 52 103
7 2 22 52 103 7 3 22 52 103
8 3 22 143 104 8 2 23 52 106
9 2 22 52 102 9 2 25 52 103
10 2 22 58 102 10 2 22 52 102
11 2 22 52 103 11 3 22 52 102
12 2 22 52 102 12 2 25 52 102
13 2 29 53 229 13 5 23 53 102
14 2 22 56 102 14 2 24 55 102
15 8 22 62 102 15 6 22 53 102
16 2 22 52 104 16 2 27 52 102
17 2 24 52 103 17 2 24 52 102
18 3 22 52 102 18 2 22 53 102
19 2 22 52 107 19 2 22 53 102
20 5 25 52 228 20 2 22 52 102
Average 2.70 22.60 57.95 | 11555 Average 3.15 23.25 52.35 | 102.80
Standard Deviation 1.56 1.70 20.23 | 38.67 Standard Deviation | 2.08 1.48 0.75 1.58
Sanple Size 20.00 [ 20.00 | 20.00 | 20.00 Sample Size 20.00 [ 20.00 [ 20.00 | 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 0.68 0.74 8.87 16.95 Margin of Error 0.91 0.65 0.33 0.69
Upper Bound 3.38 23.34 | 66.82 | 132.50 Upper Bound 4.06 2390 | 52.68 | 103.49
Lower Bound 2.02 21.86 | 49.08 | 98.60 Lower Bound 2.24 22.60 | 52.02 | 102.11
Max 8.00 29.00 | 143.00 | 229.00 Max 10.00 | 27.00 | 55.00 | 107.00
Min 2.00 22.00 | 52.00 [ 102.00 Min 2.00 22.00 | 52.00 [ 102.00
Range 6.00 7.00 91.00 | 127.00 Range 8.00 5.00 3.00 5.00
Variance 243 2.88 | 409.21 | 1495.00 Variance 4.34 2.20 0.56 2.48
Standard Error 0.35 0.38 452 8.65 Standard Error 0.47 0.33 0.17 0.35
Median 2.00 22.00 | 52.00 | 102.00 Median 2.00 23.00 | 52.00 | 102.00
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1 2 22 52 108
2 2 22 52 102
3 5 22 52 102
4 2 22 52 102
5 2 22 52 102
6 2 22 59 102
7 2 22 52 103
8 3 22 143 104
9 2 22 52 102
10 2 22 58 102
11 2 22 52 103
12 2 22 52 102
13 2 29 53 229
14 2 22 56 102
15 8 22 62 102
16 2 22 52 104
17 2 24 52 103
18 3 22 52 102
19 2 22 52 107
20 5 25 52 228
.|
Average 2.70 22.60 | 57.95 | 11555
Standard Deviation 1.56 1.70 20.23 | 38.67
Sanple Size 20.00 [ 20.00 | 20.00 | 20.00
Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 0.68 0.74 8.87 16.95
Upper Bound 3.38 2334 | 66.82 | 132.50
Lower Bound 2.02 21.86 | 49.08 | 98.60
Max 8.00 29.00 | 143.00 | 229.00
Min 2.00 22.00 | 52.00 [ 102.00
Range 6.00 7.00 91.00 | 127.00
Variance 2.43 2.88 | 409.21 | 1495.00
Standard Error 0.35 0.38 4.52 8.65
Median 2.00 22.00 | 52.00 [ 102.00

1 2 22 52 102
2 5 25 52 107
3 5 22 52 102
4 10 23 52 102
5 2 25 52 106
6 2 23 52 103
7 3 22 52 103
8 2 23 52 106
9 2 25 52 103
10 2 22 52 102
11 3 22 52 102
12 2 25 52 102
13 5 23 53 102
14 2 24 55 102
15 6 22 53 102
16 2 27 52 102
17 2 24 52 102
18 2 22 53 102
19 2 22 53 102
20 2 22 52 102
.|
Average 3.15 23.25 | 52.35 | 102.80
Standard Deviation | 2.08 1.48 0.75 1.58
Sample Size 20.00 | 20.00 | 20.00 [ 20.00
Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 0.91 0.65 0.33 0.69
Upper Bound 4.06 23.90 | 52.68 | 103.49
Lower Bound 2.24 22.60 52.02 | 102.11
Max 10.00 [ 27.00 [ 55.00 | 107.00
Min 2.00 22.00 | 52.00 | 102.00
Range 8.00 5.00 3.00 5.00
Variance 434 2.20 0.56 2.48
Standard Error 0.47 0.33 0.17 0.35
Median 2.00 23.00 | 52.00 | 102.00
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Appendix Ill: Measuring startup time of move_base

This appendix presents the full table of results from the experiment where the startup time of
the move_base module was measured, when using single-master and multimaster.

Using single-master:

move_base startup time under delay (RTT ms)

Oms

20ms

50ms

100ms

120ms

140ms

1 14520 44380 93320 180020 200900 229240
2 12150 46040 95730 173150 199720 229760
3 13230 46280 97320 175460 200580 231140
4 13630 44670 96800 171630 201740 228500
5 13540 45290 95270 172000 199840 232390
Average 13414.00 45332.00 95688.00 174452.00 | 200556.00 [ 230206.00
Standard Deviation 854.01 828.60 1555.95 3452.89 826.49 1556.01
Sample Size 5.00 5.00 5.00 5.00 5.00 5.00
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 748.57 726.30 1363.85 3026.59 724.45 1363.91
Upper Bound 14162.57 46058.30 97051.85 177478.59 | 201280.45 [ 231569.91
Lower Bound 12665.43 44605.70 94324.15 171425.41 | 199831.55 [ 228842.09
Max 14520.00 46280.00 97320.00 180020.00 | 201740.00 | 232390.00
Min 12150.00 44380.00 93320.00 171630.00 | 199720.00 | 228500.00
Range 2370.00 1900.00 4000.00 8390.00 2020.00 3890.00
Variance 729330.00 686570.00 | 2420970.00| 11922470.00 | 683080.00 | 2421180.00
Standard Error 381.92 370.56 695.84 1544.18 369.62 695.87
Median 13540.00 45290.00 95730.00 173150.00 | 200580.00 [ 229760.00

Using multimaster:

move_base startup time under delay (RTT ms) 100ms 120ms 140ms
1 5530 5280 5450 5450 6020 5900
2 5330 5160 5450 5500 6060 5980
3 5330 5490 5030 5760 5680 6360
4 5580 5720 5370 5410 6150 6400
5 4980 5460 5450 6050 6020 5920
|
Average 5350.00 5422.00 | 5350.00 | 5634.00 | 5986.00 | 6112.00
Standard Deviation 236.11 214.29 182.21 | 269.69 | 179.11 | 246.82
Sample Size 5.00 5.00 5.00 5.00 5.00 5.00
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 206.96 187.83 159.71 | 236.39 | 157.00 | 216.35
Upper Bound 5556.96 5609.83 | 5509.71 | 5870.39 | 6143.00 | 6328.35
Lower Bound 5143.04 5234.17 | 5190.29 | 5397.61 | 5829.00 | 5895.65
Max 5580.00 5720.00 | 5450.00 | 6050.00 | 6150.00 | 6400.00
Min 4980.00 5160.00 | 5030.00 | 5410.00 | 5680.00 | 5900.00
Range 600.00 560.00 420.00 | 640.00 | 470.00 | 500.00
Variance 55750.00 | 45920.00 | 33200.00 | 72730.00 | 32080.00 | 60920.00
Standard Error 105.59 95.83 81.49 120.61 80.10 110.38
Median 5330.00 5460.00 | 5450.00 | 5500.00 | 6020.00 | 5980.00
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Appendix IV: Finding a resource heavy module

This appendix presents the detailed results from the experiment to determine which modules
that are resource heavy in the TurtleBot. The experiment were divided into two settings: local
modules with power management disabled and CPU frequency set to user space mode
1.6GHz, and remotely placed modules with power management disabled and local CPU
frequency set to user space mode 1.6GHz.

Local modules with power management disabled and CPU freguency set to user space
mode 1.6GHz

battery percentage change CPU working time (jiffies) ~CPU working time (s) CPU UTIME CPU NICE CPU STIME CPU IDLE
1 0.00507617 40486 101.215 26668 0 5950 7566
2 0.00429523 32612 81.53 21098 0 4712 6550
3 0.00644279 49765 124.412 31433 0 7339 10621
4 0.00429517 33767 84.4175 21914 0 5005 6586
5 0.00429517 33399 83.4975 21768 0 4801 6552
6 0.00546658 42164 105.41 26898 0 6146 8787
7 0.00429523 32769 81.9225 21173 0 4765 6570
8 0.00449044 33114 82.785 21363 0 4806 6693
9 0.00468564 34128 85.32 22052 0 4905 6915
10 0.00449044 33227 83.0675 21677 0 4941 6367
11 0.00448608 35101 87.7525 22441 1 5432 6926
12 0.004291 33130 82.825 21146 0 5008 6728
13 0.00448608 33321 83.3025 21263 0 5035 6762
14 0.00468111 37488 93.72 23856 0 5644 7679
15 0.004291 32957 82.3925 21026 0 5075 6609
16 0.004291 33199 82.9975 21224 0 4930 6770
17 0.00429106 33062 82.655 21181 0 4801 6846
18 0.004291 33284 83.21 21199 1 4908 6927
19 0.00448602 33446 83.615 21638 0 4790 6762
20 0.004291 33010 82.525 20991 0 4814 6951
Average 0.00458591 35171.45000000 87.92860000 22600.45000000 0.10000000 5190.35000000 7108.35000000
Standard Deviation 0.00070242 5752.65199616 14.38150230 3513.35038579 0.00000000 867.88273657 1368.63858146
Sample Size 10 10 10 10 10 10 10
Confidence Coff. 196 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 0.00043537 3565.53064726 8.91374748 2177.59712972 0.00000000 537.91929315 848.29098136
Upper Bound 0.00502128 38736.98064726 96.84234748 24778.04712972 0.10000000 5728.26929315 7956.64098136
Lower Bound 0.00415054 31605.91935274 79.01485252 20422.85287028 0.10000000 4652.43070685 6260.05901864
Max 0.00644279 49765.00000000 124.41200000 31433.00000000 0.00000000 7339.00000000 10621.00000000
Min 0.00429517 32612.00000000 81.53000000 21098.00000000 0.00000000 4712.00000000 6367.00000000
Range 0.00214762 17153.00000000 42.88200000 10335.00000000 0.00000000 2627.00000000 4254.00000000
Variance 0.00000049 33093004.98888880 206.82760846  [12343630.93333330 0.00000000 753220.44444444 | 1873171.56666667
Standard Error 0.00022213 1819.14828942 4.54783034 1111.01894373 0.00000000 274.44861895 432.80152110
Median 0.00449044 33583.00000000 83.95750000 21841.00000000 0.00000000 4923.00000000 6639.50000000
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CPU 10 WAIT Between first and last packet (s)  Number of sent packets Avg. packets/sec Avg. packet size (bytes)  Avg. bytes/sec RVIZ (utime) (%)  RVIZ (stime) (%)

35 95.757 16 0.167 348.75 58.273 31.4899 1.11644

20 7.6 8 1.053 348.75 367.106 30.9671 1.10389

24 58.886 16 0.272 348.75 94.759 30.7827 1.03888

14 34.718 30 0.864 370.333 320.003 31.4508 1.11647

37 86.716 12 0.138 348.75 48.261 31.9531 1.21261

22 87.596 12 0.137 348.75 47.776 31.4581 1.10758

17 48.926 12 0.245 348.75 85.537 31.9113 1.10165

22 7.494 8 1.067 348.75 273.277 31.6452 1.10225

10 71.813 12 0.167 348.75 58.277 31.669 1.02555

24 7.827 8 1.022 348.75 356.465 31.9018 1.1918

54 7.55 8 1.06 348.75 369.543 30.2214 1.07689

23 61.389 30 0.489 370.333 180.978 30.2415 0.971929

25 82.743 12 0.145 348.75 50.578 30.5693 1.04739

31 77.344 18 0.233 325.222 75.688 30.6685 1.00299

24 7.816 8 1.024 348.75 356.956 30.8645 1.01344

30 7.79 8 1.027 348.75 358.167 31.1425 0.960872

17 82.78 13 0.157 350.846 55.098 31.1264 1.0314

20 33.549 30 0.894 370.333 331.153 30.5192 1.04555

21 73.561 16 0.218 348.75 75.855 31.37 1.0943

19 7.745 8 1.033 348.75 360.243 30.3272 0.0969403
24.45000000 47.48000000 14.25000000 0.57060000 350.91585000 196.19965000 31.11397500 | 1.02294107
8.40965054 34.99586096 6.53537383 0.42585021 6.82514387 139.16288743 0.39201622 0.05738458

10 10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96

5.21235541 21.69065935 4.05066667 0.26394469 4.23026800 86.25405125 0.24297417 0.03556733
29.66235541 69.17065935 18.30066667 0.83454469 355.14611800 282.45370125 31.35694917 1.05850839
19.23764459 25.78934065 10.19933333 0.30665531 346.68558200 109.94559875 30.87100083 | 0.98737374
37.00000000 95.75700000 30.00000000 1.06700000 370.33300000 367.10600000 | 31.95310000 [ 1.21261000
10.00000000 7.49400000 8.00000000 0.13700000 348.75000000 47.77600000 30.78270000 | 1.02555000
27.00000000 88.26300000 22.00000000 0.93000000 21.58300000 319.33000000 1.17040000 0.18706000
70.72222222 1224.71028468 42.71111111 0.18134840 46.58258890 19366.30923649 | 0.15367672 0.00329299
2.65936500 11.06666293 2.06666667 0.13466566 2.15830000 44.00716900 0.12396641 0.01814660
22.00000000 53.90600000 12.00000000 0.25850000 348.75000000 90.14800000 31.56755000 | 1.10573500

camera/rectify_ir (utime) (%) camera/rectify_ir (stime) (%) camera/register_depth_rgb (utime) (%) camera/register_depth_rgb (stime) (%) camera/points_xyzrgb_sw_registered (utime) (%)

0.0246999 0.0296399 0.0222299 0.0296399 0.0271699

0.0306636 0.0245308 0.0245308 0.0306636 0.0275972

0.0200944 0.0321511 0.0221039 0.0301417 0.0221039

0.0148074 0.0384991 0.0236918 0.0296147 0.0266532

0.0329351 0.0239528 0.0209587 0.0329351 0.029941

0.0237169 0.030832 0.0260886 0.0260886 0.0237169

0.027465 0.027465 0.0305166 0.0244133 0.027465

0.0271788 0.024159 0.0332186 0.0181192 0.0181192

0.0263713 0.0293015 0.0263713 0.0234412 0.0175809

0.0240768 0.030096 0.0210672 0.0331056 0.0210672

0.0199425 0.0313381 0.0227914 0.0313381 0.0227914

0.0211289 0.0332025 0.0211289 0.0301841 0.0211289

0.02701 0.0240089 0.0180067 0.0330122 0.02701

0.0293427 0.0266752 0.0186726 0.0346778 0.0266752

0.0212398 0.0333768 0.0212398 0.0303426 0.0212398

0.0240971 0.0271093 0.021085 0.0331335 0.021085

0.024197 0.024197 0.0181477 0.0362954 0.0302462

0.0300445 0.0240356 0.0180267 0.0360534 0.02704

0.0209293 0.0328888 0.0239192 0.026909 0.0298989

0.0242351 0.0302939 0.0181763 0.0333232 0.0242351
0.02470881 0.02888767 0.02259859 0.03017161 0.02463825
0.00514117 0.00442744 0.00409301 0.00473748 0.00428427

10 10 10 10 10
196 1.9 196 1.9 196

0.00318653 0.00274416 0.00253688 0.00293632 0.00265542
0.02789534 0.03163182 0.02513546 0.03310793 0.02729366
0.02152227 0.02614351 0.02006171 0.02723529 0.02198283
0.03293510 0.03849910 0.03321860 0.03310560 0.02994100
0.01480740 0.02395280 0.02095870 0.01811920 0.01758090
0.01812770 0.01454630 0.01225990 0.01498640 0.01236010
0.00002643 0.00001960 0.00001675 0.00002244 0.00001835
0.00162578 0.00140008 0.00129432 0.00149812 0.00135480
0.02553560 0.02947070 0.02411130 0.02962730 0.02518505
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camera/points_xyzrgb_sw_registered (stime) (%)  camera/depth_registered_rectify_depth (utime) (9 camera/depth_registered_rectify_depth (stime) (%)  camera/points_xyzrgb_hw_registered (utime)

0.0271699 0.0197599 0.0321099 0.0271699

0.0245308 0.0275972 0.0245308 0.0153318

0.0321511 0.0221039 0.0301417 0.0221039

0.0296147 0.0236918 0.0266532 0.0266532

0.0269469 0.029941 0.0239528 0.0179646

0.0332037 0.0237169 0.030832 0.0213452

0.027465 0.0152583 0.03662 0.0305166

0.0362385 0.0271788 0.0271788 0.0301987

0.0322316 0.0293015 0.0263713 0.0234412

0.030096 0.0240768 0.030096 0.0240768

0.0284892 0.0227914 0.0284892 0.0199425

0.0332025 0.0271657 0.0271657 0.0211289

0.02701 0.0180067 0.0360133 0.02701

0.0266752 0.0186726 0.0320102 0.0186726

0.0303426 0.0212398 0.0333768 0.0212398

0.0301214 0.0240971 0.0271093 0.0301214

0.0211723 0.024197 0.0302462 0.024197

0.02704 0.0210311 0.0330489 0.0240356

0.0239192 0.0179394 0.0358787 0.0209293

0.0302939 0.0272645 0.0242351 0.0212057

- _ |
0.02889573 0.02325157 0.03009604 0.02336424
0.00353717 0.00452067 0.00386652 0.00494817

10 10 10 10
196 1.96 196 196

0.00219236 0.00280194 0.00239650 0.00306691
0.03108809 0.02605351 0.03249254 0.02643114
0.02670336 0.02044963 0.02769955 0.02029733
0.03623850 0.02994100 0.03662000 0.03051660
0.02453080 0.01525830 0.02395280 0.01533180
0.01170770 0.01468270 0.01266720 0.01518480
0.00001251 0.00002044 0.00001495 0.00002448
0.00111855 0.00142956 0.00122270 0.00156475
0.02985535 0.02389685 0.02863740 0.02375900

camera/points_xyzrgb_hw_registered (stime) (%) camera/disparity_depth (utime) (%) camera/disparity_di camera/disparity_registered_sw (utime) (%)  camera/disparity_registered_sw (stime) (%)

0.0271699 0.0271699 0.0246999 0.0222299 0.0321099

0.0367963 0.0345308 0.0275972 0.0245308 0.0275972

0.0321511 0.0261228 0.0261228 0.0241133 0.0301417

0.0266532 0.0207303 0.0355377 0.0207303 0.0355377

0.0359292 0.0239528 0.0329351 0.0239528 0.029941

0.0332037 0.0260886 0.0284603 0.0237169 0.030832

0.0244133 0.027465 0.027465 0.0213617 0.0335683

0.0211391 0.0120795 0.0422782 0.0271788 0.0271788

0.0293015 0.0146507 0.041022 0.0175809 0.0322316

0.030096 0.030096 0.0270864 0.0180576 0.0331056

0.0431871 0.0227914 0.0313381 0.0199425 0.0313381

0.0301841 0.0211289 0.0301841 0.0181105 0.0362209

0.0300111 0.0240089 0.0300111 0.0210078 0.0300111

0.0346778 0.0266752 0.0240077 0.0266752 0.0266752

0.0333768 0.0151713 0.03644111 0.0242741 0.0333768

0.0240971 0.0271093 0.0271093 0.0180728 0.0331335

0.0332708 0.0211723 0.0332708 0.0302462 0.024197

0.0300445 0.0210311 0.0360534 0.02704 0.02704

0.0298989 0.026909 0.0239192 0.026909 0.0298989

0.0302939 0.0272645 0.0242351 0.0272645 0.0242351
0.03079477 0.02380742 0.03048873 0.02314978 0.03041852
0.00499645 0.00681787 0.00632690 0.00298893 0.00262324

10 10 10 10 10
1.96 1.96 1.96 1.96 1.96

0.00309683 0.00422576 0.00392145 0.00185256 0.00162590
0.03389160 0.02803317 0.03441018 0.02500234 0.03204442
0.02769794 0.01958166 0.02656727 0.02129722 0.02879262
0.03679630 0.03453080 0.04227820 0.02717880 0.03553770
0.02113910 0.01207950 0.02469990 0.01758090 0.02717880
0.01565720 0.02245130 0.01757830 0.00959790 0.00835890
0.00002496 0.00004648 0.00004003 0.00000893 0.00000688
0.00158002 0.00215600 0.00200074 0.00094518 0.00082954
0.02969875 0.02610570 0.02802875 0.02297340 0.03147095
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0.0321099

0.0222299 0.0296399 0.0296399 2.44035 0.941066 17.8062

0.0214645 0.0337299 0.0337299 0.0306636 2.25684 0.972035 17.6407

0.0261228 0.0301417 0.0321511 0.0321511 2.61831 1.00472 16.5699

0.0296147 0.0236918 0.0296147 0.0296147 2.30402 0.998016 17.5941

0.029941 0.0239528 0.0269469 0.0359292 2.21863 1.05392 17.4436

0.0213452 0.0332037 0.0284603 0.0332037 2.60412 0.95342 16.6113

0.0305166 0.01831 0.0305166 0.0335683 2.36504 0.979584 17.6539

0.0332186 0.024159 0.0271788 0.0332186 2.38268 0.972398 17.3673

0.0293015 0.0263713 0.020511 0.0380919 2.27086 1.0695 17.156

0.0240768 0.0331056 0.0180576 0.0391248 2.39564 0.954043 17.2631

0.0170935 0.0398849 0.0227914 0.0341871 2.42728 0.999972 17.8001

0.0211289 0.0332025 0.0301841 0.0301841 2.24268 1.0655 17.706

0.0210078 0.0330122 0.0330122 0.0240089 2.22382 1.12542 17.7186

0.0293427 0.0240077 0.0320102 0.0293427 2.39277 1.06167 17.3736

0.0212398 0.0303426 0.0273083 0.0333768 2.21197 1.06199 16.8159

0.0240971 0.0271093 0.0331335 0.0271093 2.20489 1.07232 16.9433

0.0332708 0.0211723 0.0362954 0.024197 2.23519 1.06769 17.2131

0.0330489 0.0210311 0.02704 0.0360534 2.20526 1.06958 16.7438

0.0239192 0.026909 0.0298989 0.026909 2.28129 0.995635 17.1142

0.0302939 0.0212057 0.0181763 0.039382 2.15692 1.06634 16.8919
002611371 002783265 002833286 003199781 232192800 | 1.02424095 17.27133000 255499300
0.00429518 000530773 000491715 0.00331081 013732087 | 0.04275692 042655347 009454779

10 10 10 10 10 10 10 10
1.9 1.9 196 196 1.9 196 196 1.9

0.00266218 000328977 000304768 0.00205206 008511236 | 0.02650101 026438058 0.05860133
0.02877589 003112242 003138054 003404986 240704036 | 105074196 1753571058 261359433
0.02345153 002454288 002528517 0.02994575 223681564 | 0.99773994 17.00694942 2.49639167
003321860 003372990 003372990 003912480 261831000 | 1.06950000 17.80620000 252579000
002134520 001831000 001805760 002961470 221863000 | 0.94106600 1656990000 2.23537000
0.01187340 001541990 001567230 0.00951010 0.39968000 | 0.12843400 1.23630000 029042000
0.00001845 000002817 000002418 0.00001096 001885702 | 0.00182815 018194787 000893928
0.00135826 000167845 000155494 0.00104697 004342467 | 001352092 0.13488805 002089864
002771215 0.02825650 002903750 003321115 237386000 | 0.97599100 17.40545000 2.36073500

Remotely placed modules with power management disabled and local CPU frequency
set to user space mode 1.6GHz

battery percentage change Local CPU NICE Local CPU STIME Local CPU IDLE Local CPU 10 WAIT

1 0.00427932 9551 0 3403 19744 54
2 0.00466835 11300 0 3838 20906 114
3 0.00447387 10538 0 3698 21052 123
4 0.00525194 12629 0 4280 22991 200
5 0.00447387 10856 0 3601 19509 50
6 0.00427932 9283 0 3126 18666 82
7 0.00447387 10284 0 3206 19017 51
8 0.00427938 9662 0 3025 18212 138
9 0.00427932 10357 0 3389 18555 48
10 0.00408483 10293 0 3542 18142 94
11 0.00487614 12130 0 4037 22164 73
12 0.00409597 10236 0 3476 18358 57
13 0.00409597 10444 0 3606 18287 47
14 0.00390095 8876 0 2806 18100 83
15 0.00409591 10223 0 3370 18067 90
16 0.004291 10145 0 3371 17977 47
17 0.00448602 10613 0 3423 18553 47
18 0.00429106 10024 0 3068 18273 64
19 0.004291 10527 0 3395 18382 94
20 0.004291 10464 0 3638 18194 52
Average 0.00436295 10421.75000000 0.00000000 3464.90000000 19157.45000000 80.40000000
Standard Deviation 0.00032355 971.17386588 0.00000000 372.12805442 1550.46130770 49.48445323
Sanple Size 10 10 10 10 10 10
Confidence Coff. 196 196 196 1.96 196 196
Margin of Error 0.00020054 601.93979836 0.00000000 230.64735771 960.98587463 30.67078187
Upper Bound 0.00456349 11023.68979836 0.00000000 3695.54735771 20118.43587463 111.07078187
Lower Bound 0.00416242 9819.81020164 0.00000000 3234.25264229 18196.46412537 49.72921813
Max 0.00525194 12629.00000000 0.00000000 4280.00000000 22991.00000000 200.00000000
Min 0.00408483 9283.00000000 0.00000000 3025.00000000 18142.00000000 48.00000000
Range 0.00116711 3346.00000000 0.00000000 1255.00000000 4849.00000000 152.00000000
Variance 0.00000010 943178.67777778 0.00000000 138479.28888889 2403930.26666667 244871111111
Standard Error 0.00010232 307.11214202 0.00000000 11767722332 490.29891563 15.64835810
Median 0.00437663 10325.00000000 0.00000000 3472.50000000 19263.00000000 88.00000000
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Remote CPU working time (jiffies) Remote CPU working time (s)  Between first and last packet (s) Number of sent packets Avg. packets/sec Avg. packet size (bytes)

17065 85.325 90.841 79630 876.59 481.873
18278 91.39 97.709 86811 888.469 475.811
18018 90.09 94.992 73299 771.63 531.147
20628 103.14 103.367 92804 897.807 473.215
17088 85.44 90.301 79656 882.112 482.211
16371 81.855 86.091 76106 884.014 478.916
16899 84.495 86.598 78651 908.227 470.206
16328 81.64 84.416 76160 902.196 469.243
16509 82.545 86.434 77214 893.334 475.731
16001 80.005 85.15 76884 902.928 470.458
19815 99.075 104.812 95915 915.118 467.182
16398 81.99 86.709 79519 917.082 466.083
16377 81.885 86.286 79033 915.944 466.654
16270 81.35 84.687 77316 912.965 467.051
16199 80.995 85.208 77895 914.176 466.326
15942 79.71 84.084 77562 922.439 464.308
16726 83.63 88.856 81393 916.013 466.721
16383 81.915 86.405 79210 916.727 466.491
16528 82.64 88.522 80759 912.309 467.052
16348 81.74 85.178 78431 920.785 464.869
17008.55000000 85.04275000 89.33230000 80212.40000000 898.54325000 473.57740000
1371.37589061 6.85687945 6.27709498 5811.05307439 39.65496523 18.26446915
10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96
849.98758314 4.24993792 3.89058378 3601.72801056 24.57840209 11.32043526
17858.53758314 89.29268792 93.22288378 83814.12801056 923.12165209 484.89783526
16158.56241686 80.79281208 8544171622 76610.67198944 873.96484791 462.25696474
20628.00000000 103.14000000 103.36700000 92804.00000000 908.22700000 531.14700000
16001.00000000 80.00500000 84.41600000 73299.00000000 771.63000000 469.24300000
4627.00000000 23.13500000 18.95100000 19505.00000000 136.59700000 61.90400000
1880671.83333333 47.01679583 39.40192143 33768337.83333330 | 1572.51626779 333.59083321
433.66713426 2.16833567 1.98499172 1837.61633192 12.54000107 5.77573228
16982.00000000 84.91000000 88.44950000 77932.50000000 890.90150000 475.77100000
Avg. bytes/sec Avg. MBit/sec  RVIZ (utime) (%) RVIZ (stime) (%) camera/rectify_ir (utime) (%) camera/rectify_ir (stime) (%) camera/register_depth_rgb (utime) (%)
422404.959 3.379 4.95752 6.11778 0 0.0703194 0
422743.287 3.382 5.12638 6.34096 0 0.0601816 0
409848.993 3.279 4.1625 5.64991 0 0.0610501 0
424856.001 3.399 5.17258 6.12759 0 0.0630211 0
425364.147 3.403 5.14396 5.81695 0 0.0819288 0.00585206
423368.501 3.387 5.09437 5.95565 0 0.067192 0
427053.895 3.416 5.16599 6.06545 0 0.0650926 0
423349.778 3.387 5.29152 6.07545 0 0.0673689 0
424986.028 3.4 5.23351 5.89375 0.0060573 0.060573 0
424789.318 3.398 5.23092 6.26211 0 0.0624961 0
427526.567 3.42 5.81882 6.33863 0.00504668 0.0605602 0
427436.268 3.419 6.08611 6.24466 0 0.0731797 0
427428.642 3.419 5.59932 6.49692 0 0.0427429 0
426401.726 3.411 5.34726 6.72403 0 0.0676091 0
426303.562 3.41 5.71023 6.4325 0 0.055559 0
428295.738 3.426 6.15983 6.26019 0 0.0564546 0
427522.384 3.42 5.6738 6.3195 0 0.0717446 0
427645.185 3.421 5.51181 6.62882 0 0.054935 0
426095.88 3.409 5.83858 6.39521 0 0.054453 0
428044.148 3.424 5.65207 6.50844 0 0.0672865 0
425073.25035000 | 3.40045000 | 5.39885400 6.23272500 0.00060573 0.06318741 0.00029260
4785.26110024 0.03818668 | 0.32752120 0.20684677 0.00191549 0.00654387 0.00185058
10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96
2965.93555797 0.02366835 | 0.20299974 0.12820496 0.00118723 0.00405593 0.00114700
428039.18590797 | 3.42411835 | 5.60185374 6.36092996 0.00179296 0.06724334 0.00143961
422107.31479203 | 3.37678165 | 5.19585426 6.10452004 -0.00058150 0.05913148 -0.00085440
427053.89500000 | 3.41600000 | 5.29152000 6.34096000 0.00605730 0.08192880 0.00585206
409848.99300000 | 3.27900000 | 4.16250000 5.64991000 0.00000000 0.06018160 0.00000000
17204.90200000 0.13700000 | 1.12902000 0.69105000 0.00605730 0.02174720 0.00585206
22898723.79745130 | 0.00145822 | 0.10727014 0.04278559 0.00000367 0.00004282 0.00000342
1513.23242754 0.01207569 | 0.10357130 0.06541069 0.00060573 0.00206935 0.00058521
424078.90950000 [ 3.39250000 | 5.15497500 6.07045000 0.00000000 0.06405685 0.00000000
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camera/register_depth_rgb (stime) (%)  camera/points_xyzrgb_sw_registered (utime) (%)  camera/points_xyzrgb_sw_registered (stime) (%)  camera/depth_registered_rectify_depth (utime) (%)

0.0703194 0 0.0703194 0.00585995

0.0492395 0 0.0711238 0

0.0555001 0 0.0555001 0

0.0630211 0 0.0581734 0

0.0643727 0 0.0643727 0

0.067192 0 0.0610836 0

0.0650926 0 0.0650926 0

0.0612445 0 0.0489956 0

0.0726876 0 0.060573 0

0.0499969 0 0.0499969 0

0.0555135 0 0.0555135 0

0.079278 0 0.079278 0

0.0427429 0 0.0427429 0

0.0614628 0 0.0491703 0

0.0617322 0 0.055559 0

0.0690001 0 0.0564546 0

0.0597872 0 0.0597872 0

0.0427272 0.00610389 0.0610389 0

0.0484027 0 0.0484027 0.00605034

0.0795204 0 0.0672865 0.00611696
0.06094167 0.00030519 0.06006769 0.00090136
0.00800123 0.00000000 0.00759235 0.00185308

10 10 10 10
1.96 196 1.96 1.96

0.00495921 0.00000000 0.00470579 0.00114855
0.06590088 0.00030519 0.06477348 0.00204991
0.05598246 0.00030519 0.05536190 -0.00024719
0.07268760 0.00000000 0.07112380 0.00585995
0.04923950 0.00000000 0.04899560 0.00000000
0.02344810 0.00000000 0.02212820 0.00585995
0.00006402 0.00000000 0.00005764 0.00000343
0.00253021 0.00000000 0.00240091 0.00058600
0.06369690 0.00000000 0.06082830 0.00000000

camera/depth_registered_rectify_depth (stime) (%)  camera/points_xyzrgb_hw_registered (utime) (%) camera/points_xyzrgb_hw_registered (stime) (%) camera/disparity_depth (utime) (

0.0585995 0 0.0703194 0

0.0656527 0 0.0547106 0

0.0666001 0 0.0666001 0

0.0727167 0 0.0678689 0

0.0643727 0 0.0702247 0

0.0733003 0 0.067192 0

0.0710101 0 0.0650926 0

0.05512 0 0.0673689 0

0.0666303 0 0.0787449 0

0.0499969 0 0.0562465 0

0.0605602 0 0.0605602 0

0.0670814 0 0.079278 0

0.048849 0 0.048849 0

0.0553165 0 0.0614628 0.00614628

0.0617322 0.00617322 0.0617322 0

0.0627274 0 0.0564546 0

0.0478297 0 0.0657659 0

0.0610389 0 0.0671428 0

0.054453 0 0.0605034 0

0.0795204 0.00611696 0.0489356 0
0.06215540 0.00061451 0.06375266 0.00030731
0.00767879 0.00000000 0.00689268 0.00000000

10 10 10 10
1.96 1.96 1.96 1.96

0.00475936 0.00000000 0.00427213 0.00000000
0.06691476 0.00061451 0.06802478 0.00030731
0.05739604 0.00061451 0.05948053 0.00030731
0.07330030 0.00000000 0.07874490 0.00000000
0.04999690 0.00000000 0.05471060 0.00000000
0.02330340 0.00000000 0.02403430 0.00000000
0.00005896 0.00000000 0.00004751 0.00000000
0.00242825 0.00000000 0.00217966 0.00000000
0.06612640 0.00000000 0.06728045 0.00000000
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camera/disparity_depth (stime) (%) camera/disparity_registered_sw (utime) (%)  camera/disparity_registered_sw (stime) (%)  camera/disparity_registered_hw (utime) (%)

0.0644594 0 0.0644594 0
0.0711238 0 0.0547106 0
0.0666001 0 0.0555001 0
0.0727167 0 0.0630211 0
0.0643727 0 0.0702247 0
0.0733003 0 0.0794087 0
0.0650926 0 0.0710101 0
0.0673689 0 0.0612445 0
0.0726876 0 0.0666303 0
0.0624961 0 0.0499969 0
0.0555135 0.00504668 0.0605602 0.00504668
0.0670814 0 0.0670814 0
0.048849 0 0.048849 0
0.0676091 0.00614628 0.0491703 0
0.0493858 0 0.0617322 0
0.0627274 0 0.0501819 0
0.0777233 0.00597872 0.0538084 0
0.0671428 0 0.0671428 0
0.0605034 0 0.0484027 0
0.0734035 0 0.0672865 0
|
0.06550787 0.00085858 0.06052109 0.00025233
0.00406700 0.00000000 0.00878247 0.00000000
10 10 10 10
1.96 1.96 1.96 1.96
0.00252075 0.00000000 0.00544343 0.00000000
0.06802862 0.00085858 0.06596452 0.00025233
0.06298712 0.00085858 0.05507766 0.00025233
0.07330030 0.00000000 0.07940870 0.00000000
0.06249610 0.00000000 0.04999690 0.00000000
0.01080420 0.00000000 0.02941180 0.00000000
0.00001654 0.00000000 0.00007713 0.00000000
0.00128610 0.00000000 0.00277726 0.00000000
0.06698450 0.00000000 0.06374025 0.00000000
camera/disparity_registered_hw (stime) (%)  map_server (utime) (%) map_server (stime) (%) amcl (utime) (%) amcl (stime) (%) move_base (utime) (%) move_base (stime) (%)
0.0585995 0 0.0644594 0.492236 2.092 3.28743 5.41459
0.0547106 0 0.0656527 0.514279 2.19389 3.2334 5.53124
0.0555001 0 0.0666001 0.49395 1.77045 3.441 4.6953
0.0678689 0 0.0678689 0.591429 2.12333 3.40314 4.73143
0.0760768 0 0.0819288 0.456461 2.08919 3.23034 5.00351
0.0610836 0 0.0794087 0.525319 2.04019 3.44512 4.85615
0.0650926 0 0.0591751 0.443813 2.12439 3.34931 4.94112
0.0612445 0 0.0734934 0.459334 2.11293 3.57055 4.85056
0.0726876 0 0.0787449 0.454298 2.08371 3.27094 5.00333
0.0499969 0 0.0687457 0.456221 2.16861 3.16855 5.30592
0.0555135 0.00504668 0.0555135 0.519808 2.31643 3.63361 5.14762
0.0731797 0 0.0731797 0.518356 2.30516 3.51872 5.64093
0.0549551 0 0.0549551 0.519021 2.26537 3.54155 5.581
0.0553165 0 0.0737554 0.473264 2.30486 3.49723 5.26122
0.055559 0 0.0740786 0.500031 2.27175 3.5496 5.32132
0.0627274 0 0.0564546 0.464183 2.32719 3.8891 5.76465
0.0717446 0 0.0717446 0.526127 2.24202 3.40189 5.46455
0.0488311 0 0.0610389 0.488311 2.25233 3.17402 5.59727
0.054453 0 0.0484027 0.0484027 2.31123 3.35189 6.06244
0.0795204 0 0.0795204 0.458772 2.28774 3.89038 5.03426
0.06173307 0.00025233 0.06773606 0.47018079 2.18413850 3.44238850 5.26042050
0.00821924 0.00000000 0.00745545 0.04563561 0.11709592 0.12418388 0.28830468
10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96
0.00509434 0.00000000 0.00462093 0.02828524 0.07257681 0.07696996 0.17869309
0.06682741 0.00025233 0.07235699 0.49846603 2.25671531 3.51935846 5.43911359
0.05663873 0.00025233 0.06311513 0.44189554 2.11156169 3.36541854 5.08172741
0.07607680 0.00000000 0.08192880 0.59142900 2.19389000 3.57055000 5.53124000
0.04999690 0.00000000 0.05917510 0.44381300 1.77045000 3.16855000 4.69530000
0.02607990 0.00000000 0.02275370 0.14761600 0.42344000 0.40200000 0.83594000
0.00006756 0.00000000 0.00005558 0.00208261 0.01371146 0.01542163 0.08311959
0.00259915 0.00000000 0.00235762 0.01443125 0.03702898 0.03927039 0.09116994
0.06116405 0.00000000 0.06830730 0.47578500 2.10246500 3.31837000 4.97222500
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Appendix V: Network profiling code

/ *% *% /
/*************************************************************************************************/
/*******************FU N CT I O N S CO N N ECTE D TO GATH E R I N G**************************/
/*******************I N FO R MAT I O N FO R MAC H I N E L EAR N I N G***~k~k~k*********************/
[ *

[FFFRFRFEF IRk ** *kkkkk *% *% *kkkkkkkhhkhhkkhhkhhkkhkkhirkik * * /

[FFFxFRFEF Ik ** *kkkkk *% *% * * *kkkkkkkhhkhhkkhhkhhkkhkkhikrk * * /

vector<float> parselfstatData(char* buf){
vector<string> strings;

istringstream iss(buf);
string S;
char* buff;

while(getline(iss, s, '\n")){
strings.push_back(s);
}

strings.clear();

buff = (char*) strings[2].c_str();

istringstream fs(buff);

while(getline(fs, s, ' )}
strings.push_back(s);

}

vector<float> ret;
for(int i=0; i<strings.size(); i++){
if(stringsli].length() > 0){
ret.push_back(atof(strings[i].c_str()));

}
}
return ret;
}
void getlfstatData(void){
int fd[2];
pid_t pid;
int childStatus;

if(pipe(fd) == -1)1
perror(“pipe");
exit(1);

}

pid = fork();
if(pid == -1){
perror(“fork™;
exit(1);
}else if(pid == 0){
while((dup2(fd[1], STDOUT_FILENO) == -1) && (errno == EINTR)){}
close(fd[0]);
close(fd[1]);
execl("/usr/bin/ifstat”, "/usr/bin/ifstat”, "-i", "wlan0", "0.1", "1", (char*) 0);
perror(“execl");
_exit(1);
}

close(fd[1]);

while(true){
ssize_t count = read(fd[0], buffer, sizeof(buffer));
if(count == -1){
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if(errno == EINTR){
continue;

telse{
fprintf(stdout, "Couldn't read from child process\n");
exit(1);

}else if(count == 0){
break;

}else{
break;

}

}

close(fd[0]);

waitpid(pid, &childStatus, WEXITED);
return;

}

float parseNetperfData(char* buf){
vector<string> strings;
istringstream iss(buf);
string S;
char* buff;

while(getline(iss, s, \n)){
strings.push_back(s);
}

strings.clear();

buff = (char*) strings[6].c_str();

istringstream fs(buff);

while(getline(fs, s, ' )){
strings.push_back(s);

}

vector<float> values;
for(int i=0; i<strings.size(); i++){
if(strings]i].length() > 0){
values.push_back(atof(strings[i].c_str()));
}
}

return values|values.size()-1];

}

void getNetperfData(void){
int fd[2];
pid_t pid;
int childStatus;

if(pipe(fd) == -1
perror(“pipe");
exit(1);

}

pid = fork();
if(pid == -1){
perror(“fork™;
exit(1);
}else if(pid == 0){
while((dup2(fd[1], STDOUT_FILENO) == -1) && (errno == EINTR)){}
close(fd[0]);
close(fd[1]);
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execl("/usr/bin/netperf", "/usr/bin/netperf’, "-H", "133.1.134.124", (char*) 0);
perror("execl");
_exit(1);

}

close(fd[1]);
while(true){
ssize_t count = read(fd[0], buffer, sizeof(buffer));
if(count == -1){
if(errno == EINTR){
continue;
telse{
fprintf(stdout, "Couldn't read from child process\n");
exit(1);

}else if(count == 0){
break;

Yelse{
break;

}

}

close(fd[0]);

waitpid(pid, &childStatus, WEXITED);
return;

}

std::string floatToString(float number){
std::ostringstream buf;
buf << number;
return buf.str();

}

std::string intToString(int number){
std::ostringstream buf;
buf << number;
return buf.str();

}

void getCpusStat(const char* proc_stat_file_path){
procStatTokens.clear();
ifstream  proc_stat_file(proc_stat_file_path);
if(proc_stat_file.is_open()){
for(int i=0; i<12; i++){
getline(proc_stat_file, token, ' ");
procStatTokens.push_back(token);
}
}else{
fprintf(stderr, "No file path: %s\n",
proc_stat_file_path);

exit(1);
}
proc_stat_file.close();
return;
}
unsigned long getCpuStat(void){
unsigned long ret =0;

for(int i=2; i<12; i++){
ret = ret + strtoul(procStatTokens[i].c_str(), NULL, 0);
}

89
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return ret;

}

float getCurrentBatteryCapacity(void){
string info;
ifstream file(CHARGE_FULL_PATH);
getline(file, info);
float charge_full = atof(info.c_str());
ifstream file2(CHARGE_NOW_PATH);
getline(file2, info);
float charge_now = atof(info.c_str());
file.close();
file2.close();
return (charge_nowi/charge_full);

}

/*************)\'***********************************************************************************/

[FFFFII KKK KK KKK *kkkkk *% *% * * *kkhkkkhkkkdhkhhrkhhkhhkkhhkkdrrhrrrkhrx * *% /

[ EUNCTIONS CONNECTED TO GATHERING **sisssssiiisscss|
[ NFORMATIO FOR MACHINE LEARNING s ssisisscssiiisss
/ * (END)#eesmssies *
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Abstract—This paper proposes a network-aware cloud net-
worked robotic sensor observation framework based on the topic-
based publisher/subscriber messaging paradigm. Cloud network
robotics systems have some advantages in making use of rich
computation or storage resources of clouds, low maintenance
cost, and easy development of applications. But a problem occurs
when systems that need fast feedback from application modules
are run over networks with intermittent connection. In this
framework, the placement of the robot application modules is
changed according to the QoS provided by the physical network.
We also propose a mapcell-based robotic sensor observation
algorithm that suits to the framework. A prototype system of
a data center monitoring robot that is based on the proposed
framework and algorithm is implemented and a preliminary
experiment was carried out to demonstrate the benefit of the
system. The experiment result shows that the performance of
the data center monitoring could be improved and hot spots can
be found faster by making the cloud networked robot network-
aware.

Keywords—cloud networked robotics; sensor networks; network
qos; big data analysis; publish subscribe messaging paradigm;

I. INTRODUCTION

Cloud Networked Robotics (CNR) has been paid great
attention and many development efforts have been made for
CNR systems, such as [1], [2], and [3]. In CNR, robot
application modules can be more efficient if they are placed
on a cloud since this saves computation power, memory, and
battery consumption on the robots. Furthermore, application
modules are easier to maintain since updates to the application
module software does not have to be done for each and every
robot, thus reducing maintenance cost. It is also beneficial to
put some of the robot modules on a cloud, since the cloud
can provide the modules with rich computation resources that
can be used for complex computations, and storages for large
amount of data [4]. Another advantage of CNR is that it makes
it easier for programmers to write a program without having
detailed knowledge about robots. Some applications in areas
such as building management [5], agriculture [6], and the
medical field [7], have been developed and demonstrate the
effectiveness of CNR.

One of the most significant applications of CNR is to ob-
serve and analyze real-time situations of the real-world. Robots
can move around uncertain remote areas and observe sensor
data of a target region. The sensor data can then be analyzed
and the results can be used as input to a robot’s next movement
plan. This can for example be used by a building-management
system, where sensor data of temperature/humidity is gathered

up in a cloud to be processed and then forwarded to a facility
management system, in order to improve the efficiency of
air conditioners. Based on this concept, we are developing
an automatic data center monitoring system that uses cloud
robotics and CFD-simulations (Fig. II) [8].

Existing CNR-based systems assume stable network envi-
ronments in which the robots can always contact the processes
on the cloud immediately. However, this assumption does not
match the case with uncertain remote environments such as
wide farms and disaster areas, where the condition of a wire-
less network may not always be stable. Such situations may
easily occur even in an office or a data center where the target
area may be separated by objects or walls, which results in
large variations in network conditions. In order to apply CNR-
based robots to this kind of environments, we must assume
that network connections are intermittent or can only achieve
narrow bandwidth transmissions. There has been a study to
apply Delay/Disruption Tolerant Networks (DTN) to CNR in
order to keep the data transfer stable in environments with
intermittent network connections, but it causes high latency
when the condition of the physical wireless network degrades
[9]. Although the problem with intermittent connections is
solved by using DTN, the requirements of the feedback speed
or bandwidth for robots are not always satisfied.

To tackle this problem with potentially high latency and
narrow bandwidth, modules that require fast feedback or high
bandwidth could be placed on robots so that the system can
always get a fast response. This solution is not optimal since
it goes against the policy of CNR-based systems by increasing
the computation load on robots and not making use of the rich
computation power on the cloud. Since we must consider the
scenarios concerning uncertain remote areas, where uniform
wireless network quality cannot be assumed, we can say that
if a network link has high bandwidth and low latency, the
modules would most likely be better off placed on the cloud.
On the other hand, if the network condition were bad with low
bandwidth and high latency, these modules would be better
off placed inside the robot. This means that the most suitable
module placement may dynamically change, since in some
places the network is stable, and in other places unstable.

In this paper we present a framework for making a cloud
robotic sensor observation system ‘“network-aware” in order
for it to be able to change the placement of the modules to the
most suitable place, following the QoS (Quality of Service) of
the network. The contributions of this paper are as follows:

e Presents a network-aware cloud robotic sensor frame-



Fig. 1.

A CFD-simulation of the data center [8].

work that is based on the Topic-Based Publisher
Subscriber (TBPS) messaging paradigm.

e  Proposes a mapcell-based robotic sensor observation
algorithm that suits to the network-aware cloud robotic
sensor framework. The algorithm consists of two types
of goal decision algorithms, global goal (GG) and
measurement feedback goal (MFG).

e Shows the effectiveness of the framework and al-
gorithm through an experiment using a prototype
implementation of a data center monitoring robot on
ROS [1].

II. ASSUMED ENVIRONMENT

This section presents an overview of the system structure
and mission, as well as the messaging paradigm assumed in
this study.

A. System Structure and Mission

Fig. II-B shows an overview of our assumed environment.
The mission of the system is to create a sensor data map
for the target region, which plots observed sensor value. In
conjunction with the mission, we envision an automatic data
center monitoring system where robots moves around in the
data center and monitor the temperature. If any abnormal
values are found, the robots should try to find, and if possible
correct, a temperature hot spot as soon as possible. The data
is also to be gathered up in the cloud be used as the input for
the CFD-simulation module.

Each of the robots is assumed to be equipped with sensors,
such as a temperature sensor, a humidity sensor, a camera
sensor, and so on. According to the sensor data observed
by the sensors, the next goal, which means the next sensing
target position for the robot is decided. The next sensing
target positions are decided by some algorithms to achieve
fast construction of a sensor data map. The algorithm should
be changed depending on the application or sensing target,
such as an algorithm which selects a position where the oldest
sensing value is mapped, an algorithm which selects a position
where an abnormal sensor value is estimated by a calculation
of trends and patterns of the sensor data, etc.

We also assume that a movement management process
exists on the robots and that the robots operate in a wire-
less network environment with intermittent connections. The

e sensor data map N
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( cloud ' / /[ data lookups \
\ /
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Subscribed to topic: “Actuator1_Goal”

Fig. 2. The assumed environment where a cloud has a sensor data map of
a target region and decides goals for a robot.

movement management process detects and avoids obstacles
to reach to the specified goal. If the process modules in the
cloud and the robots were to be connected together in a DTN-
network to uphold connectivity, there would be very high
latency and small bandwidth. But when the robot is located
at the position where the wireless network is stable, the robot
can have good bandwidth and low latency.

B. Messaging Paradigm (TBPS)

The topic-based publish/subscribe (TBPS) messaging
paradigm is assumed to run on all robot modules because
it enables the development of scalable and distributed infor-
mation processing systems [10], which is essentially what a
cloud network robots system is. An example of a CNR system
that uses TBPS is ROS [1], which adopts TBPS as its base
messaging mechanism for inter-module communications.

An example of the TBPS messaging paradigm can be
seen in Fig. II-B. A process might need position data from
a sensor, but instead of asking the sensor directly for the robot
position, it can subscribe to a topic with the name position.
A topic works as a message filter that only handle messages
that contain the same type of data that the topic is configured
for. The sensor can publish its position data on this topic and
all subscribers of the topic will receive the same data. After
the sensor data has been processed, the processor can publish
an actuation command on the topic Actuatorl_Goal, so that
“Actuator]” can move the robot to a goal in the target region.

III. NETWORK-AWARE CLOUD ROBOTIC FRAMEWORK

In this section, we present a network-aware cloud robotic
framework that is based on the TBPS messaging paradigm.
In this framework, the modules change their placement to the
most suitable place (i.e. on the cloud or on the robot) following
the current QoS of the network.

We treat the following QoS for TBPS messaging:

e Latency: message propagation delay between the pub-
lisher and subscriber. If DTN is applied as a base
network system, the latency can be very high, for
example from 300sec - lday. Normally, when Wi-Fi
is applied as a base network system, the latency may
be for example 1ms - 10ms.

e Bandwidth: amount of data sent within a certain
period of time. In a Wi-Fi environment, the bandwidth
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the robot because of intolerable latency.

may be 10Mbps - 50Mbps, while in a Bluetooth SPP
environment, the bandwidth may be 10kbps - 500kbps.

In our framework, the current latency (referred to as
“actual latency”) and available bandwidth are monitored. Every
module that publishes or subscribes to a topic, specifies its
required latency as “needed latency” and required bandwidth,
for publishing or subscribing to a certain topic, as ‘“needed
bandwidth”. When the monitored QoS does not satisfy the
needed QoS in the current module placement, it considers
moving the module to the robot from the cloud. Since the
publisher module does not need to worry about the place where
the subscriber module is running when using TBPS, there is
no need to modify the program code on the modules.

The case seen in Fig. II-B identifies the problem with
placing a crucial module on the cloud when the network
is subject to high latency. In this example, the sensors on
“Robot1” publish its position on the topic Position, and the
actuator on Robotl subscribes to the topic Robotl_Actuate
to receive actuation commands. The process on the cloud
subscribes to the topic position and when it receives a
position message from Robotl, it decides the next action and
publishes the command on the topic Robot1_Actuate. At this
time, the process has a “needed latency” of 1 second. But
Robotl is connected via DTN, so the actual delay at this
moment is 300 seconds. In order to satisfy the QoS, the module
is migrated to the robot where the actual delay is 20 msec.

Using the QoS with bandwidth may be more complex. Such
a case can be seen in Fig. II-B, where a robot is connected to a
cloud via a link with low available bandwidth. Several sensors
in the robot need to send their sensor data to a module that will
calculate the average of all the data and forward this average
to a simulation program. Each sensor sends data at a rate of
30kbps and there are four sensors, which means that the sum
of “needed bandwidths” is 120kbps. The available bandwidth
is only 40kbps and will therefore not be enough. Moving the
average calculating module to the robot solves this problem
since the average calculator module has a needed bandwidth
of 30kbps, which is less than the available bandwidth of 40kbs.

But by always placing the modules in the robot, there is a
valuable trade-off from maintenance cost, energy consumption,
and possibilities to make use of the vast amount of different in-
formation available on the cloud. Both ways have their benefits
and downfalls, so we therefore propose a network-aware cloud

the robot because of low available bandwidth.

networked robot that monitors the network to get network
data about the actual delay and available bandwidth, upon
it may restructure itself to migrate modules freely between
the cloud and the robot. In terms of adapting to network
changes, a network-aware cloud robot would act according to
the following:

e Required QoS can be satisfied on cloud (good
bandwidth and/or low latency): The system migrates
the modules to the cloud in order to increase the
efficiency and make better use of available data, as
well as decrease the usage of resources in the robot.

e Required QoS cannot be satisfied on cloud (low
bandwidth and/or high latency) or no network
connection: The system migrates the modules to the
robot in order to continue to provide the functions with
required QoS.

IV. DESIGN OF A NETWORK-AWARE CLOUD ROBOTIC
SENSOR OBSERVATION SYSTEM

In this section we propose a design of a network-aware
cloud robotic sensor observation system. Firstly we introduce
a system design that realizes the network-aware cloud robotic
framework described in the former section. We then intro-
duce an abstraction of a robot’s movement planning that can
do sensor observation while having measurement feedback.
Lastly, we propose a mapcell-based robotic sensor observation
algorithm that suits to the network-aware cloud robotic sensor
framework, which is described in the former section. The
algorithm consists of the two types of goal decision algorithms,
global goal (GG) and measurement feedback goal (MFG).

A. Design of a network-aware cloud robotic system

Fig. IV shows a system design of the framework. We
assume publisher/subscriber modules use pub/sub network
layer on top of the lower layer networks.

The publisher/subscriber modules may specify required
QoS in form of needed latency and bandwidth. The required
QoS is specified with the publish and subscribe command
messages. If a module does not have any requirements for
network QoS, the module does not have to specify any required
QoS. In this case, the module does not run as network-aware.
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The pub/sub network layer reports publish/subscribe status
information and QoS requirements to a network monitor. The
network monitor creates and keeps publisher and subscriber
relations based on the received publish/subscribe status infor-
mation. In addition, the network monitor maintains the QoS
requirements for each publisher and subscriber relation.

The pub/sub network layer also measures the actual QoS,
the actual latency and available bandwidth. The actual QoS
is measured through passive monitoring of the network. This
means that instead of actively sending messages to test the
latency and bandwidth, actual application data is measured
to obtain more accurate network situation. The actual QoS
will be sent to the network monitor as a QoS feedback
report. A usual problem with passive monitoring is that it
relies on the data sent by applications, which means that
the information acquired through this might be out-of-date.
If the sensors always publish messages, the network monitor
will be informed of any changes in the network. Otherwise,
the publisher must send periodic test message to measure the
actual latency and available bandwidth.

If any of the module’s required QoS is not satisfied on
network monitor, the network controller estimates the QoS in
the alternative module placements keeping the publisher and
subscriber relations. If QoS is considered to be satisfied in
the other module placement, a placement direction command
will be sent to a module to move itself to another position if
needed.

B. Sensor Observation With Measurement Feedback

The problem faced in the assumed environment is that the
network connection may suddenly go down or present very
high latency. To be able to utilize the vast resources provided
by the cloud to decide complex movement schemes, even when
modules have to be migrated to the robot to satisfy the needed
QoS, we propose to divide the robots movement planning into
two different goal decision algorithms, global goal (GG) and
measurement feedback goal (MFG).

A global goal (GG) is an abstraction of a complex objec-
tive, e.g. searching through a part of a room in order to find
temperature hot spots. In order to complete such an objective
the robot will need to perform many minor tasks, such as
deciding where to continue to search after an abnormal value
has been found, avoid running into objects, decide when a hot
spot has been found, and so on. We call these many minor tasks
that often involve reacting to the surrounding environment,

measurement feedback goals (MFG). An important difference
to take notice of between these two goal decisions algorithms
are that they operate on different time scales. A GG might
be completed every 3 to 15 minutes, while a MFG could be
completed all between 50 milliseconds to 2 seconds.

If we apply these two goal decision algorithms to an
example similar to the example presented in the previous
section concerning high latency, we get a scenario that can be
seen in Fig. IV-A. This time a robot with sensors and actuators
are connected via DTN to a cloud with measurement feedback
and global goal modules. Sensors on the robot send the
robot’s position to the measurement feedback, which decides
a movement so that the robot gets closer to accomplishing the
global goal. The robot expects a needed latency between itself
and the measurement feedback to be less than 1 second, but the
actual delay is over 300 seconds. By moving the measurement
feedback module to the robot, the actual delay goes down to
20 ms, which is less than the needed latency of 1 second. The
actual delay between the robot and the global goal module
will still be up to 300 seconds, but is no problem since the
global goal module expects that it will take over 360 seconds
to complete a global goal. This enables the system to utilize
the power of the cloud while having real-time feedback, even
under unstable network conditions.

C. Global Goal

Before we can define a goal decision algorithm, we need
to define an abstraction, which can hold information about
a target region. We propose that a target region is divided
into squares, which we call “MapCells”. A MapCell contains
information about the coordinates of a square area in a target
region, temperature data, and the latest time an area was visited
by a robot.

An example of an algorithm that can be used by the global
goal module to decide which area the robot should scan next
can be seen in Fig. IV-B. It is called the “least recently visited”
algorithm and was used by [11]. Each MapCell contains the
time when the MapCell was last visited by a robot and the
algorithm uses this to decide which MapCell that was least
recently visited. A room, presented as a black square, is divided
into squares of MapCells, which can be placed on a x- and
y-axis. Hereafter, (x, y) denotes a MapCell at the coordinates x
and y. The six steps in the example that explains the algorithm
are as follows:

Needed
latency: 360 sec|

Needed
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> Robotl Goal
‘ Type: Feedback

Measurement
Feedback -

Robotl_Goal
Type: Global

Connected via DTN
Actual latency: 300 sec

i Robotl Goal
[ Type: Feedback |
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Fig. 6. An example that shows how the concept of global- and measurement

feedback goals can use the vast resources of the cloud while providing real-
time feedback to modules.
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Step 1): The robot, placed at the black square, selects
a MapCell to visit by finding the highest number;
the higher the number, the longer time ago since
a MapCell was visited. The MapCell that is least
recently visited is (4, 0).

Step 2) and 3): The robot moves to (4, 0) and
recalculates all the values so the algorithm can find
out which is the next least recently visited MapCell.

Step 4) and 5): It is decided that (0, 0) is the next least
recently visited MapCell and the robot moves there.
When arriving at the MapCell, all the values are once
again recalculated.

Step 6): (0, 1) is found to be the next least recently
visited MapCell. The robot moves there and this
continues indefinitely or until another algorithm takes
over. An example of this is the measurement feedback
module that may start locating a temperature hot spot
if an abnormal value has been found.

D. Measurement Feedback Goal

An example of an algorithm that can be used by the
measurement feedback module to locate a temperature hot
spot, when an abnormal value has been found, can be seen
in Fig. IV-B. The algorithm can be explained by an example
in six steps. The steps are as follows:

Step 1): The algorithm starts when an abnormal value
has been found. The first action is marking the area
of the room ((2, 2)), where the abnormal value was
found, as being the current investigation cell (IC).
This is followed by marking the previously visited
MapCell ((2, 3)) as being a checked direction, as well
as marking all surrounding MapCells as unchecked
directions that needs to be investigated.

Step 2): The robot will start investigating the sur-
rounding unchecked directions to see if their average
temperature is larger or lower than the current IC.
It chooses to start the investigation in (2, 1). The
average temperature is found to be lower than that
of the current IC, and (2, 1) is therefore marked as a
checked direction.

Step 3: The robot finds an area ((3, 2)) that has
higher average temperature than that of the current

value has been found and needs to be investigated.

{' Laptop computer ‘
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Fig. 9. The prototype implementation.

IC, and therefore updates (3, 2) to be marked as the
current IC. All surrounding MapCells are reset and
once again marked. The previous IC is marked as a
checked direction while the all the other surrounding
MapCells are marked as unchecked directions.

e Step 4) and 5): The robot continues to investigate
surrounding unchecked directions. It is found out that
(3, 1) and (3, 3) has a lower average temperature than
the current IC. Both MapCells are therefore marked
as checked directions.

e Step 6): The last surrounding MapCell is found to
also have a lower average temperature than that of the
current IC, and the algorithm therefore decides that
the hot spot has been found. The robot can now go
back to completing the objective set by the global goal
module.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENT

To show the feasibility and effectiveness of the framework
presented in the former sections, we implemented a prototype
system and conducted an experiment, based on the scenario
with the data center presented in section II, to see how much
time that could be saved from finding temperature hot spots
when a measurement feedback module, used for finding hot
spots, is placed in the robot instead of in the cloud.



A. Prototype Implementation

A prototype implementation of the network-aware cloud
robotic sensor observation system was developed on top of
ROS [1]. The prototype implementation uses the two algo-
rithms described in section IV-C and IV-D, but does currently
only support static module placements.

The Fig. IV-D shows the overview of the prototype imple-
mentation of the robot. The robot used was a “Turtlebot 27 [12]
robot suite from Willow Garage, which includes a Microsoft
Kinect, a Kobuki base station with factory calibrated gyro,
a wood and steel frame for mounting modules, and a ROS
compatible laptop computer (Netbook).

The Microsoft Kinect uses a camera, an infrared projector,
and a specialized chip to recognize gestures, patterns, and
depth. This can be used to create a 3D-map of a room, and
with the help of the gyro of the Kobuki base station, the
robot can locate itself in the map and navigate the room with
simultaneous localization and mapping (SLAM) algorithms.
The Kobuki base station is a movement base similar to the
famous “Roomba” cleaning robot [13]. A laptop computer
(Netbook), running Linux (Ubuntu), is used to run modules
for robot controls such as a “move_base” module that takes
goals in a map as input and forward actuation commands to
the Kobuki base station, a program to fetch sensor data from
the Kinect, and so on. At the cloud side, there is a normal PC-
server with Linux (Ubuntu), and the laptop connects to the
server on the cloud side via Wi-Fi connection (802.11n).

B. Experiment Setup

The experiment setup, seen in Fig. V-A, was designed to
take the scenario presented in section II, where the server
corridors could make network connection go bad, into account.
The experiment setup was placed in a corridor, which is 2
meters wide and 12 meters long. A pair of electrical heaters
was placed by the walls to simulate a temperature hot spot.

To simulate a network with intermittent connections, we
statically configured an area in the corridor to be without
network connection. As can be seen in Fig. V-A, two areas
(each about 1.5 times 2 meters) at each end of the corridor are
configured to have network connection, while all the area in
between is configured to have no network connection.

The sensors were set to publish measurements at a rate
of three times a second. The global goal module was con-
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simulate a temperature hot spot.

The experiment setup in a corridor with heaters on the side to

figured to publish an actuation command on a topic called
“Global_Goal”, ordering the robot to move to the end of the
corridor, back to near the beginning, and then to the end of
the corridor once again, resulting in a movement similar to
the letter “Z”. The robot was instructed to run for an extra
50 measurements after a temperature hot spot was found, i.e.
around an extra 16 seconds.

The experiment was divided into two runs, one run where
global goal and measurement feedback were placed on the
cloud, and the other run where the global goal module is placed
on the cloud while the measurement feedback module is placed
in the robot. The second run can be seen as our “network-
aware” system, having sensed or predicted the loss of network
connection, and then migrated the MFG module to the robot
in order to satisfy future QoS.

In the former experiment run (normal), sensor data (temper-
ature and position) does not reach the measurement feedback
module, since it does not meet the required “needed latency”
set by the MFG module in this environment. That is, in
the former experiment, only the global goal module runs to
manage movement of the robot.

C. Experiment Results

The results from the experiment can be seen in Fig. V-C.
The graph shows temperature on the y-axis and corresponding
measurement number on the x-axis, essentially meaning that
the two lines represents how temperature changes over time
when the robot moves along the predetermined path. The
dotted line, which is named “Normal” shows the experiment
run where only the global goal module runs on the cloud.
The straight line, called “Network-aware”, represents the ex-
periment run where the measurement feedback goal module is
placed on the robot, while the global goal module is placed
on the cloud.

The results show that while running down the corridor the
prototype implementation with “network-aware” finds an ab-
normal value and start to investigate, while the other prototype
implementation runs to the end of the corridor until it get
network connection again and can go and investigate the area
around the abnormal value. When the measurement feedback
goal module is placed in the robot, the robot will investigate
around the area of the heaters to finally find the hot spot. The
difference in time between the two runs was roughly around
100 measurements; meaning around 33 seconds.

VI. RELATED WORK

A QoS-driven framework for self-adaptive mobile applica-
tions have been proposed to support seamless configurations
[14]. A middleware discovers alternative remote providers of
functionalities required by an application to keep the SLA
(Service-Level Agreement).

Some researches have been studied so far on ‘mobile
offloading’, which aims to offload computing tasks to a cloud
in order to save computational power and increase battery life
on the local devices [15]-[17].

Our framework does not need specified remote-able meth-
ods since TBPS does not need to know where a module
is, but rather what information that module subscribes to
or publishes. Furthermore, our framework takes care of the
movement planning module of the autonomous robots in the
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unstable wireless network, which is out of scope in the existing
works.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a network-aware cloud net-
worked robotic sensor observation framework based on the
topic-based publisher/subscriber messaging paradigm. A real-
life example scenario was also presented and an experiment
was carried out to see how the example scenario could benefit
from migrating modules from the cloud to the robot. Our
preliminary results show that having modules in the robot
could find hot spots faster than having the modules in the
cloud, opening a possibility for making the data center more
energy efficient and reduce running cost.

The next step is to fully implement network monitors into
the system to be able to receive information about the network
condition from the network. At this time, since the actual QoS
is collected on the network monitor, the future QoS for each
publisher/subscriber may be estimated. For this purpose, we
will consider mechanisms to manage the actual QoS and the
robot’s geographical coordinates, as well as mechanisms to
predict the future QoS.

Another aspect yet to be taken into consideration is the
time it will take to move modules from one place to another.
If degrading network conditions are predicted beforehand or
the network condition is gradually getting worse, the modules
can be moved without any problems. The problem is the cases
where no changes in network condition is predicted and a
sudden change in network condition occurs, leaving little to
no time for the system to adapt. Furthermore, future work also
includes investigating the trade-off between migrating modules
to decrease CPU loads and additional networking required to
migrate the modules.

Unlike the experiment in this paper, where modules are
placed in a position known beforehand to be better or worse,
future works will conduct experiments with dynamic network
environments. The current system used in the experiment
does not need the vast computing capacity or storage that a
cloud provides, but the system we are aiming to create does.
Network monitors will be implemented to monitor the network
condition while evaluating if modules need to be moved to

another position in order to satisfy QoS, at the same time as
predicting future QoS and estimating the time it will take to
move the modules to the new placement. This will be done
in order to, as often as possible, prevent the scenarios where
sudden changes occurs in the network condition.
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