
Enabling Network-Aware Cloud
Networked Robots with Robot
Operating System
A machine learning-based approach

FREDRIK HANS NORDLUND

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2015

Enabling Network-Aware Cloud
Networked Robots with Robot
Operating System
A machine learning-based
approach

Fredrik Hans Nordlund

2015-03-02

Master’s Thesis

Examiner and Academic adviser
Gerald Q. Maguire Jr.

Academic adviser in Japan
Shinji Shimojo

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

During the recent years, a new area called Cloud Networked Robotics (CNR) has evolved
from conventional robotics, thanks to the increasing availability of cheap robot systems
and steady improvements in the area of cloud computing. Cloud networked robots refers to
robots with the ability to offload computation heavy modules to a cloud, in order to make
use of storage, scalable computation power, and other functionalities enabled by a cloud
such as shared knowledge between robots on a global level. However, these cloud robots
face a problem with reachability and QoS of crucial modules that are offloaded to the
cloud, when operating in unstable network environments. Under such conditions, the
robots might lose the connection to the cloud at any moment; in worst case, leaving the
robots “brain-dead”.

This thesis project proposes a machine learning-based network aware framework
for a cloud robot, that can choose the most efficient module placement based on location,
task, and the network condition. The proposed solution was implemented upon a cloud
robot prototype based on the TurtleBot 2 robot development kit, running Robot Operating
System (ROS). A continuous experiment was conducted where the cloud robot was ordered
to execute a simple task in the laboratory corridor under various network conditions. The
proposed solution was evaluated by comparing the results from the continuous experiment
with measurements taken from the same robot, with all modules placed locally, doing the
same task.

The results show that the proposed framework can potentially decrease the battery
consumption by 10% while improving the efficiency of the task by 2.4 seconds (2.8%).
However, there is an inherent bottleneck in the proposed solution where each new robot
would need 2 months to accumulate enough data for the training set, in order to show good
performance. The proposed solution can potentially benefit the area of CNR if connected
and integrated with a shared-knowledge platform which can enable new robots to skip the
training phase, by downloading the existing knowledge from the cloud.

Keywords

CNR, ROS, network awareness, cloud, open-source, TurtleBot.

 Sammanfattning | iii

Sammanfattning

Under de senaste åren har ett nytt forskningsområde kallat Cloud Networked Robotics
(CNR) växt fram inom den konventionella robottekniken, tack vare den ökade tillgången
på billiga robotsystem och stadiga framsteg inom området cloud computing. Molnrobotar
syftar på robotar med förmågan att flytta resurstunga moduler till ett moln för att ta del av
lagringskapaciteten, den skalbara processorkraften och andra tjänster som ett moln kan
tillhandahålla, t.ex. en kunskapsdatabas för robotar över hela världen. Det finns dock ett
problem med dessa sorters robotar gällande nåbarhet och QoS för kritiska moduler
placerade på ett moln, när dessa robotar verkar i instabila nätverksmiljöer. I ett sådant
scenario kan robotarna när som helst förlora anslutningen till molnet, vilket i värsta fall
lämnar robotarna hjärndöda.

Den här rapporten föreslår en maskininlärningsbaserad nätverksmedveten
ramverkslösning för en molnrobot, som kan välja de mest effektiva modulplaceringarna
baserat på robotens position, den givna uppgiften och de rådande nätverksförhållanderna.
Ramverkslösningen implementerades på en molnrobotsprototyp, baserad på ett robot
development kit kallat TurtleBot 2, som använder sig av ett middleware som heter Robot
Operating System (ROS). Ett fortskridande experiment utfördes där molnroboten fick i
uppgift att utföra ett enkelt uppdrag i laboratoriets korridor, under varierande
nätverksförhållanden. Ramverkslösningen utvärderades genom att jämföra resultaten från
det fortskridrande experimentet med mätningar som gjordes med samma robot som
utförde samma uppgift, fast med alla moduler placerade lokalt på roboten.

Resultaten visar att den föreslagna ramverkslösningen kan potentiellt minska
batterikonsumptionen med 10%, samtidigt som tiden för att utföra en uppgift kan minskas
med 2.4 sekunder (2.8%). Däremot uppstår en flaskhals i framtagna lösningen där varje ny
robot kräver 2 månader för att samla ihop nog med data för att maskinilärningsalgoritmen
ska visa bra prestanda. Den förlsagna lösningen kan dock vara fördelaktig för CNR om
man integrerar den med en kunskapsdatabas för robotar, som kan möjliggöra för varje ny
robot att kringå den 2 månader långa träningsperioden, genom att ladda ner existerande
kunskap från molnet.

Nyckelord

CNR, ROS, nätverksmedvetenhet, moln, öppen källkod, TurtleBot.

 Acknowledgments | v

Acknowledgments

This report is a result of a Master’s thesis project at the Applied Information Systems Research
Division (Shimojo Laboratory) at the Cybermedia Center, Osaka University, Japan, during the
period of November 2013 to the end of August 2014.

I would like to thank the following persons for helping me to make this thesis project a
success:

• Professor Gerald Q. Maguire Jr., for supporting me by providing an excellent
template for a thesis report, as well as having the patience to sit through several
meetings to discuss the thesis project and for several times taking the time to write
feedback on the drafts of the report. I would not have been able to finish this report
without your help.

• Professor Shinji Shimojo, for believing in me and for the many hours of support
and engaging me in discussions about the project, as well as giving me the
inspiration to strive to always do better during my thesis project.

• Professor Yuichi Teranishi, for spending many hours in meetings about the thesis
project as well as helping with the writing of two conference papers that led to this
thesis project. Without the many last-minute edits, this thesis would surely not turn
out the way it has.

• Professor Manabu Higashida, for always taking the time to engage in a discussion
or answer questions whenever I had something on my mind. The many advices I
received during the year made me not only a better researcher, but a better person
as well.

I would also like to give a special thanks to my girlfriend at the time, Satoko Miki,
and her family for showing me endless support throughout the year. Your hospitality and
kindness gave me the power to always do my best during the year.

Another special thanks to Anton Friberg and Erik Ledin for helping me with
revising the report. The many comments and insights greatly helped in shaping the report.

Stockholm, February 2015
Fredrik Hans Nordlund

 Table of contents | vii

Table of contents

Abstract ... i
Keywords .. i

Sammanfattning ... iii
Nyckelord .. iii

Acknowledgments ... v
Table of contents ... vii
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations xiii
1 Introduction .. 1

1.1 Background .. 1
1.2 Problem definition ... 2
1.3 Purpose .. 3
1.4 Goals .. 3
1.5 Research Methodology ... 3
1.6 Delimitations .. 4
1.7 Structure of the thesis .. 4

2 Background .. 7
2.1 Cloud networked robotics .. 7

2.1.1 Background of cloud networked robotics 7
2.1.2 Machine-to-machine and machine-to-cloud communication8
2.1.3 Cloud robotic computing architectures 9
2.1.4 Possible application areas .. 10

2.2 Robot operating system ... 10
2.2.1 ROS file system .. 10
2.2.2 Publish-subscribe messaging paradigm 12
2.2.3 ROS computation graph ... 13

2.3 TurtleBot 2 robot development kit ... 15
2.3.1 Turtlebot 2 software modules .. 16
2.3.2 Map creation using the gmapping tool 17
2.3.3 Navigation using simultaneous localization and mapping 19

2.4 Related work .. 20
2.4.1 Pioneering module offloading work in CNR 20
2.4.2 Team MIT’s DARPA robotics challenge contribution 21
2.4.3 MAUI: code offloading in smartphones 21
2.4.4 CloneCloud ... 22
2.4.5 ThinkAir ... 22
2.4.6 Machine learning offloading scheduler 23
2.4.7 Point cloud culling under communication restraints 23

2.5 Summary .. 23
3 Methodology .. 25

3.1 Research Process ... 25
3.2 Research Paradigm ... 26

viii| Table of contents

3.3 Data Collection .. 26
3.4 Experimental design ... 26

3.4.1 Experimental test bed ... 26
3.4.2 Hardware/Software to be used 27

3.5 Assessing reliability and validity of the data collected 28
3.5.1 Reliability .. 28
3.5.2 Validity .. 28

3.6 Planned Data Analysis .. 28
3.6.1 Data Analysis Technique .. 28
3.6.2 Software Tools .. 28

3.7 Evaluation framework ... 28
4 Network-Aware Cloud Networked Robot 31

4.1 Cloud Networked Robot Prototype .. 32
4.1.1 Datacenter monitoring cloud robot implementation 33
4.1.2 Map and mapcells ... 34
4.1.3 Global goals and measurement feedback goals 35
4.1.4 Global goal example algorithm: least recently visited 36
4.1.5 Measurement feedback goal example algorithm 37
4.1.6 Merger module .. 38

4.2 Network-Aware Cloud Networked Robot 40
4.2.1 Migrating modules in ROS .. 41
4.2.2 Limitations of the cloud robot prototype 43
4.2.3 Network-aware machine learning algorithm 46
4.2.4 Network profiling ... 47
4.2.5 Migration decision using k-nearest neighbor algorithm ... 49
4.2.6 Decision evaluation and evaluation parameters 52

5 Analysis .. 55
5.1 Major results .. 55
5.2 Reliability Analysis .. 59
5.3 Validity Analysis .. 60
5.4 Discussion ... 60

6 Conclusions and Future work .. 63
6.1 Conclusions ... 63
6.2 Limitations ... 63
6.3 Future work .. 64
6.4 Reflections ... 64

Bibliography .. 67
Appendix I: TC network controlling example 73
Appendix II: Detailed results of RTT experiment 75
Appendix III: Measuring startup time of move_base 79
Appendix IV: Finding a resource heavy module 80
Appendix V: Network profiling code 87
Appendix VI: COMPSACW2014 Paper 91

 List of Figures | ix

List of Figures

Figure 1-1: The different element of CNR and the relationships between the
elements. .. 2

Figure 1-2: The delimitations of this project, excluded areas are drawn with
dashed lines and filled with gray. .. 4

Figure 2-1: The difference between machine-to-machine communication
and machine-to-cloud communication. 8

Figure 2-2: Elastic computing models for cloud robotics (Adapted from
[23]).. 9

Figure 2-3: A typical catkin workspace containing catkin projects and
necessary project files used when compiling and during runtime.
 ...11

Figure 2-4: General idea of the topic-based publish-subscribe paradigm. 12
Figure 2-5: A schematic diagram of the ROS computation graph. 15
Figure 2-6: Hardware modules of the TurtleBot 2 robot development kit and

a Kestrel Weather Sensor. ... 16
Figure 2-7: The resulting occupancy grid map of the laboratory corridor and

the path of the robot when generating the map with the
gmapping module. ... 18

Figure 2-8: A summary of all the elements and modules of the ROS
navigation stack and their relationships. 19

Figure 3-1: Overview of the research process used to carry out this research.
 .. 25

Figure 3-2: An overview of the experimental test bed. 27
Figure 4-1: An overview of the proposal system design. 31
Figure 4-2: The use-case where a cloud robot monitors the corridors of a

datacenter for temperature hotspots. 32
Figure 4-3: An overview of the proposal cloud network robot design. 33
Figure 4-4: An area of the laboratory corridor is divided into two rows of

mapcells. .. 34
Figure 4-5: The pseudo code for the algorithm that decides which MapCell a

coordinate resides in. ... 35
Figure 4-6: The relationship between measurement feedback goals and

global goals. .. 36
Figure 4-7: An example of a global goal algorithm to decide a major task.37
Figure 4-8: An example of an algorithm that decides a sub-task to the major

task. ... 38
Figure 4-9: Merging position and temperature data based on the newest

position update. ... 39
Figure 4-10: Merging position and temperature data based on time stamps.

 ... 40
Figure 4-11: An overview of the proposal network-aware system design. .. 41
Figure 4-12: Two methods of migrating a module in ROS. 42
Figure 4-13: The robot taking two different paths, from the same origin to the

same goal, in the corridor of the laboratory. 43
Figure 4-14: The four different node placements in the experiment to

measure RTT in different scenarios.44

x| List of Figures

Figure 4-15: The machine learning algorithm used to enable network-aware
functionality in the cloud robot prototype. 47

Figure 4-16: A descriptive schematic of the bandwidth ratio in relation to the
currently used bandwidth and the currently available
bandwidth. .. 48

Figure 4-17: Overview of which programs that are used to acquire
information about the network condition and how this
information is parsed for the machine learning algorithm.... 48

Figure 4-18: Simple overview of how the publish echo program calculates the
current latency. ..49

Figure 4-19: An example of what the k-nn classification algorithm tries to do.
 .. 51

Figure 5-1: Subset of the training set plotted by latency and bandwidth ratio
and with an added overlay that displays what module
placements is the most efficient. ... 55

Figure 5-2: Plotting a subset of the training sets task execution time against
the bandwidth ratio including trend lines. 56

Figure 5-3: Plotting of a subset of the training sets robot total operation
time against bandwidth ratio including trend lines. 57

Figure 5-4: Plotting a subset of the training sets task execution time against
latency with trend lines. ... 58

Figure 5-5: Average battery consumption per task comparison between local
and remote module placement with different local CPU
frequency. ... 59

Figure 5-6: Average task completion time comparison between local and
remote module placement with different local CPU frequency.59

 List of Tables | xi

List of Tables

Table 2-1: ROS message type consisting of two primitive data types and an
included message type. .. 14

Table 2-2: The contents of the resulting occupancy map after saving it to a
YAML file. .. 18

Table 3-1: Technical specifications of the devices used in the experiments.
 .. 27

Table 4-1: Summary of results when measuring the RTT between two
nodes in different settings and using either topics or services.44

Table 4-2: Summary of results measuring the startup time of move_base
under different conditions where “SM” stands for “single-
master” and “MM” for “multi-master”. 45

Table 4-3: Two examples of how to acquire the currently used bandwidth
(Cbw) from ifstat, and the currently available bandwidth (Abw)
from netperf, using the command line.49

Table 4-4: The structure of a row in a training set. 50
Table 4-5: Summary of results from having the robot run to the end of the

corridor and back with all modules locally when having the CPU
frequency set to 1.6GHz. .. 53

 List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

AIBO Artificial Intelligence roBOt
AMCL Adaptive Monte Carlo Localization
API Application Programming Interface
Abw Available bandwidth
CBtask Control value of battery change
Cbw Current bandwidth
Cl Current latency
CNR Cloud Networked Robotics
CPU Central Processing Unit
CSAIL Computer Science and Artificial Intelligence Laboratory
CTtask Control value of task completion time
C-Ma Client-Master
C-Mo Client-Monitor
DARPA (United States of America) Defense Advanced Research

Project Agency
DC Direct current
EC2 Amazon’s Elastic Compute Cloud
GB Gigabyte
GHz Gigahertz
GUI Graphical User Interface
Hz Hertz
IC Investigation cell
KB Kilobyte
KLD-sampling Kullback-Leibler divergence-sampling
LEGO® A trademark of Lego A/S
LTS Long Term Support
M2C Machine-To-Cloud
M2M Machine-To-Machine
MD(x,y,z) Migration Decision tripple
MFG Measurement Feedback Goal
MIT Massachusetts Institute of Technology
ML Machine Learning
MM Multi-master
M-M Master-Monitor
OS Operating System
QoS Quality of Service
P(x,y) Point at coordinates x and y
R(xm,ym,zm,wm) Quadruple of row m
RAM Random Access Memory
ROS Robot Operating System
RPC Remote procedure call
RT-middleware Real-time middleware
RTT Round-trip time
Rbw Bandwidth ratio
SLAM Simultaneous Localization and Mapping
SM Single-master
STAIR STanford AI Robot
Std.Dev. Standard Deviation
Std.Error Standard Error

xiv| List of acronyms and abbreviations

RPC Remote Procedure Call
TCP Transport Control Protocol
Ttask Task execution time
VM Virtual Machine
Vr Validity ratio
YAML YAML Ain’t Markup Language

 Introduction | 1

1 Introduction

Until the end of the 1980’s robots were mainly thought of as being big, expensive, and not
accessible to the average person. This started to change with LEGO® introducing
educational products [1] and when researchers started to focus on how to build lots of
smaller inexpensive robots, rather than one large expensive robot [2]. Subsequently
companies have developed robots for use by the general consumer, e.g. Sony’s Artificial
Intelligence robot pet (AIBO) that was envisioned as a form of robot-based entertainment
[3] [4] and iRobot’s robotic vacuum cleaner, Roomba, that was first put on the market in
2002 [5]. In more recent years, the accessibility of robots to the average person has greatly
increased with the commercialization of robot development kits such as the TurtleBot™ 2
from Clearpath Robotics [6], the iRobot Create® 2 [7], and the Revolution JD [8]. However,
a general problem with the development of robots is that robots are very complex systems.
An average person or a software developer is unlikely to know all the details about how to
build drivers for sensors and actuators and how to do low-level programming. There have
been attempts to address this problem by providing high-level interfaces to sensors and
actuators in the form of robotics middleware, e.g. real-time middleware (RT-middleware)
[9] and the Robot Operating System (ROS) [10] [11]. In 2002, researchers started to try to
overcome the limitations of stand-alone robots by connecting robots, sensors, and humans
through networks, establishing the research area of Networked Robotics [12].

At the same time as robots were becoming increasingly accessible to general
consumer, there were steady improvements in the area of Grid Computing, with the help of
virtualization technology [13], to address the problem of reliability and Quality of Service
(QoS) [14] [15]. This later resulted in Grid Computing evolving into what is now known as
Cloud Computing [16] [17] [18]. In recent years, Cloud Computing has been brought to the
public market in the form of popular services such as Amazon’s Elastic Compute Cloud
(Amazon EC2) [19], Apple’s iCloud [20], and Microsoft Cloud [21]. By combining the
increasingly accessible networked robot technology with the powerful technology of Cloud
Computing, a new technology has been enabled which is called Cloud Networked Robotics
(CNR) [12] [22].

1.1 Background

According to Hu, Tay and Wen, CNR improves upon the area of Networked Robotics in
three major aspects: the “ability to offload computation-intensive tasks to the cloud”,
enabling “access to vast amounts of data”, and by enabling “access to shared knowledge
and new skills” [23]. Some of the proposed uses of CNR are improving robot grasping,
navigation, daily services (e.g. wash your face, grocery shopping, medical treatment,
housework, and much more), exploration of dangerous areas, intelligent transportation,
smart home, education, defense, and much more [23] [12]. CNR can also provide robots
that have limited resources with advanced services, e.g. tracking of dynamic objects [24],
distributed sensing [25], localization services, scene recognition, robotic manipulation, and
shared knowledge between robots [26].

However, CNR is not limited to services that are meant for cloud robots. A general
overview of the different elements of CNR and their relationships can be seen in Figure 1-1.
Some of the main concepts in CNR are sensors and actuators on the robots, Machine-To-
Machine (M2M) communication between robots, Machine-To-Cloud (M2C)
communication between robots and the cloud, and cloud computing. CNR also
incorporates external services that can make use of the data that these cloud robots collect,

2

su
fr
se
co
so

re
F
co
sy
p
q
n
H
b
to

1

M
co
ca
C
m
e

| Introduction

uch as sma
rom extern
ervice cloud
ould notice
ome of the c

Figure 1-1:

For t
esearch has

For example
ould handle
ystem for

possibilities
quadrotor te
not all, of t
However, th
by unstable
o bad.

.2 Prob

Much of the
onnection b
an be seen

CNR could b
market, and
nvironment

rtphone app
nal sensor n
d robots in a
e that it is u
cloud robot

 The differe

the last few
s been abou
e, Turnbull
e the forma
their robot
of paralleli

eams constr
this researc

his assumpt
network en

blem defin

e research c
between the

as an exte
be applied, s
d data cen
ts. Such un

ps and web
networks th
a supermar
unlikely tha
ts would tur

ent element of

w years, CN
ut the differe
l and Sama
ation contro
ts [27]. CN
izing roboti
ructing cubi
ch builds u
ion does no

nvironments

nition

concerning
e robot and
ernal brain
such as exp

nter monito
nstable net

b-services. C
hat are con
rket that acq
at there will
rn off in ord

f CNR and the

NR has been
ent areas th
anta develo
ol algorithm
NR has als
ic algorithm
ic structure

upon the a
ot reflect re
s, where th

CNR assum
cloud is un
for the rob
loration of

oring (to n
twork envir

Cloud robot
nnected to
quire the tra
l be many c

der to save e

relationships

n a hot topi
hat could be
oped a sma
ms and com
so been su

ms on the cl
e [29], and m
ssumption

eal-life situa
he connectio

mes stable
nlikely to be
bots [27]. H
dangerous

name a few
ronments m

s can make
the cloud.

affic inform
customers o
energy.

s between the e

ic for resea
enefit from
all scale clo

mpute loads
ccessfully a
oud [28], re
much more
of stable n

ations and p
on can insta

network en
e lost. In the

However, ma
areas, custo

w), may no
might unplu

e use of data
 An examp

mation. The
on a certain

elements.

archers. Ho
this new re

oud infrast
s of a vision
applied to

remote moto
e [30] [31] [
network en
places that
antly chang

nvironment
ese scenario
any of the
omer suppo
ot have id
ug the bra

a that come
ple could b
cloud robot
n day, henc

owever, mos
esearch area
ructure tha

n acquisitio
explore th

or control o
[32]. Most,
nvironments

are affecte
ge from goo

ts where th
os, the clou
areas wher

ort in a supe
eal networ

ain from th

es
be
ts
ce

st
a.
at

on
he
of
if
s.

ed
od

he
ud
re
er
rk
he

Introduction | 3

3

robot, leaving it brain dead [27]. In the case of quadrotor teams [29], this would mean that
the cloud would not be able to control the motors of the quadrotor teams, making them
crash instead of executing their assigned tasks. Termination of a robotic service by
accident, such as a robot losing connectivity to the cloud, must be prevented or addressed
in some way since cloud networked robots are likely to become a critical part of our lives
[12].

A serious problem for mobile devices is the energy problems of today’s handheld
devices. Even though new chemicals and alternative battery technology have been
proposed, the energy concerns are unlikely to disappear [33]. This problem also occurs for
CNR, since cloud robots are also likely to see an increase in energy-hungry applications
and services as the area matures. Even though there have been many proposals for docking
stations and battery exchange systems ([34], [35], to name a few), where cloud robots can
go to recharge (or exchange) their batteries, it is still preferred that a robot will continue to
provide a service or execute a task for as long as possible before having to recharge its
batteries.

As to summarize, the problem with CNR is that when operated in an unstable
network environment, the robot might lose connectivity to the cloud. How do you choose
the best module placements so that (to the best effort) the robot will not be left brain dead,
at the same time as striving to achieve long battery time by having modules on the cloud
for as long as possible?

1.3 Purpose

The purpose of this thesis project is to gain a better understanding of the problems
inherent in current cloud robot platforms when faced with unstable network
environments. Furthermore, upon identifying the problems, some recommendations for
future developers of CNR-technology are to be made in order to enable this technology to
progress even further. These recommendations are given in Section 6.1.

1.4 Goals

As a consequence of the problem described in Section 1.2, the goal of this thesis project is
to develop a network-aware framework that can be used in a CNR-system operating in an
unstable network environment. The network-aware framework should satisfy two sub-
goals in order to address the earlier mentioned problems:

1. Aim to increase the total battery time of the cloud robot.

2. Make efficient module placements choices depending on the task, place, and
network condition.

A proposed machine learning-based network-aware framework solution, aiming to
reach these two sub-goals, was developed upon a cloud robot prototype and is presented in
Section 4.2. The results from an evaluation of the proposed solution, showing promising
results, are presented in Section 5.1.

1.5 Research Methodology

This thesis project made use of an empirical quantitative research methodology to reach its
goals. This approach was chosen since the author wanted to investigate the problem in a
real environment rather than in a computer simulated environment. Initially an inductive

4

re
p
g
th
S
ev
sa

1

S
p
p
T
o
su
se
a

1

C
aw
d
p

| Introduction

esearch app
performing

enerated fr
hese theori

Section 1.2
valuated to
ame area.

.6 Delim

Since the wh
part of CNR.
project will f
To-Machine
on single-rob
uch as exte
ervices are
nd gray sha

Figure 1-2:

.7 Stru

Chapter 2
wareness, a

develop and
prototype to

proach was
simple tas
om these ob
es. A solut
and satisfy

o create som

mitations

hole area of
. An overvie
focus on th

e (M2M) co
bot system
ernal senso
also out of

ading).

 The delimi
with gray.

ucture of th

presents r
and related
d evaluate
o be used in

 used to de
ks. A theo
bservations
ion was im

y the goals
me recomm

f CNR is too
ew of the de
e Machine-
mmunicatio
without mu
r networks
the scope o

itations of this

he thesis

relevant ba
d works. Ch

a solution
n the specifi

evelop a clo
ory of the
s, and a ded

mplemented
described

mendations

o large to co
elimitations
-To-Cloud (
ons (shown
ulti-robot co
s, smartpho
of this proj

s project, exclu

ackground
hapter 3 pre

to the pro
ied use-cas

oud robot p
current pro
uctive resea

d in order t
in Section
for future d

over, this th
s of this proj
(M2C) comm
n as a dashe
oordination

ones, extern
ect (this is

uded areas ar

informatio
esents the m
oblem. Cha
e, as well a

prototype th
oblems wit
arch approa
to tackle th
1.4. The so

developers

esis project
ject can be
munication
ed line), i.e
n. Elements
nal service
indicated b

re drawn with

on about
methodolog
apter 4 pre
s the design

hat was obs
th CNR pla
ach was use
he problem
olution was
and resear

t will focus
seen in Fig

ns rather tha
e. the focus
s connected
application

by their das

dashed lines

CNR, ROS
gy and met
esents the
n decisions

served whe
atforms wa

ed to confirm
specified i

s tested an
rchers of th

on a specifi
ure 1-2. Thi
an Machine
here will b
to the clou

ns, and web
hed outline

and filled

S, network
thod used t
cloud robo
 made whe

en
as
m
n

nd
he

ic
is
e-
be
ud
b-
es

k-
to
ot
en

Introduction | 5

5

designing a network-awareness framework for this prototype. Chapter 5 presents the major
results from the experiments and concludes with a discussion of these results. Lastly,
Chapter 6 presents a conclusion, future work, and reflections on this thesis project.

 Background | 7

2 Background

This chapter will provide the reader with sufficient background information on the
different main concepts and elements that was used in this project. Section 2.1 will cover
the background of CNR and give a deeper understanding of the concept and benefits of
CNR. Section 2.2 will present the robotics middleware chosen for this project, ROS, and
provide necessary background concerning the publish-subscribe messaging paradigm.
Section 2.3 will present the TurtleBot 2 robot development kit that was used in this project
to develop a cloud robot prototype (presented in Section 4.1), as well as to provide a deeper
understanding of how the robot uses a Simultaneous Localization and Mapping (SLAM)
[36] algorithm to navigate spaces. Section 2.4 will present several related works and
provide an overview of what has already been done in this research area. Lastly, Section 2.5
will provide a summary of the whole chapter.

2.1 Cloud networked robotics

This section will give a detailed background on, as well as state the benefits of, the area of
CNR. Different proposed cloud robotic computing architectures will be discussed and
possible application areas will be presented.

2.1.1 Background of cloud networked robotics

In 2001, researchers started to do preliminary work on Internet-based tele-operated
robots. They envisioned a system where robots could work in a cooperative way as well as
interact with humans, all while being connected over a network. The name Networked
Robots (or Networked Robotics) was coined in 2004 and refers to a system with five
distinct elements being present: physical embodiment of a robot, autonomous capabilities,
network-based cooperation, environment sensors and actuators, and human-robot
interaction. [37]

The area of Networked Robotics is said to transcend stand-alone robots in
conventional robotics by having an interrelation between robots, environmental sensors,
and humans [37]. It is very difficult to create a stand-alone robot that can understand
context and have the ability to communicate with people. The reason for this is that such a
robot would need to understand the current situation, relate that to a relevant past, at the
same time while performing necessary actions [38]. Even though Networked Robotics has
seen huge success in several areas, an inherent problem in the architecture, which was not
solved when evolving from stand-alone robotics, is the limitation of non-elastic resources,
since all computations are conducted onboard the robots. This limitation makes for several
constraints in resources, information and learning, and communication. Cloud Networked
Robotics (CNR), first coined by James Kuffner in 2010 [39], is proposed to overcome these
limitations by making use of the elastic-resource capabilities of cloud technology [12] [23].
The main benefits of CNR are mainly three aspects:

Offloading of computation heavy tasks to a cloud [27] [40]: Since the robots
no longer require computational heavy tasks to be performed by the onboard hardware,
the robots can be equipped with lighter hardware which results in lower power
consumption and decreases the cost of the robots. Offloading tasks to a cloud may also
improve performance when executing a task.

8

m
su
n
p
a

s
a
ca
ro

2

W
(M
M
ta
co
ro
se
b
ro
p
m

in
co
cl
in

| Background

Acce
maintained
uch as traff

not be origi
powerful rob

nd understa

The
kills [26] [
pplication a
an be uploa
obots even

2.1.2 Ma

When talkin
M2M) and

M2C commu
alking to o
onnected to
obot that c
everal reaso

be able to c
obots to fo

point. Robot
making, whi

M2C
ncludes rob
omputation
loud also p
ndividual ro

Figure 2-1:

ess to a v
d by the in
fic, weather
inally inten
botic system
and context

possibilit
[32]: Robot
and skills f
aded to the
smarter.

achine-to-m

ng about CN
machine-to

unications
other robots
o each othe
annot estab
ons, such a
onnect to o
rward its m
ts can also
ich can be u

C communic
bots making
n offloading
rovides a la

obots.

 The differe
communica

vast amou
ndividual
r, and perso

nded for the
ms where r
t, thanks to

ty of havin
ts can be ma
from shared

shared “br

machine an

NR, it is often
o-cloud (M2
can be seen
s over a w
er in a stru
blish a dire
s the robot
other nearb
messages to

share info
useful in var

cations refer
g use of al
g, vast amo
arge volume

ence between m
ation.

unt of data
robots [2

onal inform
e cloud rob

robots could
the applica

ng access t
ade with mi
d robot data
rain” in ord

nd machine

n importan
2C) commu
n in Figure

wireless- or
uctured or a
ect connecti

being too f
by robots, t
o a robot th
ormation in
rious robot-

rs to comm
ll the benef
ount of data
e of storage

machine-to-m

a which d
3] [31]: Clo

mation (to n
bots. This e
d potentiall
ation of Big

to shared
inimum sof
abases. If a
er to make

e-to-cloud c

nt to distingu
unications.
e 2-1. M2M

wired med
ad hoc fash
ion to the c
far away fro
then in an a
hat can com

order to m
-related com

munication b
fits specifie
a, and possi
e, orders of

machine comm

does not n
oud robots c
name but a
enables the
ly predict b
Data Analy

knowledg
ftware and d
a robot learn

a world-wi

communica

uish betwee
The differe
 communic
dium wher

hion. The be
cloud (this
om a wirele
ad hoc fash
mmunicate
make use of
mmunication

between rob
ed above in
ibilities of s
magnitude

unication and

need to cr
can receive
few), that

e creation o
behavior, fu
ysis.

ge and lea
download th
ns somethi
ide commun

ation

en machine
ence betwee
cations refe
re these ro
enefits are
can happen

ess access p
hion utilize

with a wir
f collaborat
ns [23].

bots and the
n Section 2
shared kno

e larger than

d machine-to-c

reated no
informatio
may or ma

of extremel
uture events

arning new
he necessar
ng new, thi
nity of clou

e-to-machin
en M2M an
ers to robot
bots can b
that when

n because o
point) it ma
e these othe
reless acces
tive decisio

e cloud. Thi
.1.1, such a

owledge. Th
n possible a

cloud

or
n

ay
ly
s,

w
ry
is

ud

ne
nd
ts

be
a

of
ay
er
ss
n

is
as
he
at

2

H
ca
b

2.1.3 Clo

Hu, Tay, an
an make us

based model

Figure 2-2:

Pee
mo

Pro
mo

oud robotic

d Wen [23]
se of cloud c
l. An overvi

 Elastic com

er-based
del

oxy-based
del

c computin

], recognize
computing:
iew of the th

mputing mode

In a p
individ
comput
this mo
archite
that co
(VM) ca

In a pr
assigne
commu
The pro
the nod
single p
very ro
leader-
networ
the clou
need to
battery
to the c

ng architec

es that ther
 a peer-bas

hree elastic

els for cloud ro

peer-based
dual comp
ting mesh.
odel since e
ecture. This
ontain node

an be instan

roxy-based
ed to act
unicates wit
oxy can del
des on the c
point of con

obust from a
-proxy conn
rk runs app
ud and the
o be equipp
y in order to
cloud.

ctures

re are main
sed model, a
computing

obotics (Adap

model, ea
uting unit
There is no

every robot w
makes this
s with high
ntiated anyw

model, the
as a gate

th a specifi
egate comp

cloud. Since
nnectivity to
a robot-clou

nection migh
plications th

robots. The
ped with m
o provide th

nly three sys
a proxy-bas
models can

pted from [23])

ach robots
t creating
o M2C com
works as an
model very

h mobility, s
where in th

ere exists o
eway to th
ic VM prox

putation task
e the robots’
o the cloud,
ud connecti
ht also be a
hat transfer
e robot lead
ore powerfu

he robot net

ystem archit
sed model,
n be seen in

]).

 is consid
a fully

mmunication
n extension
y well suited
since a Virt

he infrastruc

one robot le
he cloud.
xy located i
ks and stor
’ network is
, this archit
ivity point

a bottleneck
r a lot of d
der will also
ful hardwar
twork with

Background |

tectures tha
and a clone

n Figure 2-2

dered as a
distribute

ns present i
to the clou

d for system
ual Machin
cture.

eader that i
This leade
n the cloud

rage betwee
s limited to
ecture is no
of view. Th

k if the robo
data betwee
o most likel
re and large

connectivit

| 9

9

at
e-
.

an
ed
in

ud
ms
ne

is
er
d.
n
a

ot
he
ot
en
ly
er
ty

10 | Background

Clone-based
model

In a clone-based model, every robot has its own connection to a
clone of itself running on a VM on the cloud. If the robot needs
to offload some modules in order to, for example, save battery,
it can order the clone to take care of the computation load. This
model is very robust against connectivity issues since there are
several connections to the cloud. The model works best for
systems where the robots are likely to work in a certain area,
since too high mobility might take the robots physically too far
away from the VM. This might result in the need to migrate the
VM to another data center in order to satisfy the QoS of the
applications.

2.1.4 Possible application areas

In addition to the possible application areas presented in Section 1.1, CNR has also been
proposed to improve traditional robot systems, such as Google’s autonomous driving
project [41] and a new approach to logistics and warehouse automation by Kiwa Systems
[42]. Other interesting application areas of CNR are improving surgical robots [43],
elderly-care [12], a museum guide [37], transportation of people [37], and agriculture [44].

2.2 Robot operating system

This section describes the robot middleware that was chosen for this thesis project. ROS is
a meta-operating system for robot platforms. It is open-source* and provides hardware
abstractions, inter-process message-passing, package management, low-level device
control, and much more [11]. ROS started as a collaboration project between the Personal
Robots Program at Willow Garage† and the STanford AI Robot (STAIR) project at Stanford
University ‡. Researchers at both projects wanted to develop a robot framework with
emphasis on large-scale integrative robotics research in order to tackle the problem of
developing applications for ever increasingly complex robot systems. They believed that
ROS should be developed with five philosophical goals in mind, in order to tackle the
problems: peer-to-peer, tools-based, multi-lingual, thin, and free and open-source [10].

ROS has been released in a number of different distributions since its first release
in March 2010. The latest distribution of ROS is ROS Indigo Igloo, which was released in
July 2014 and is the 8th generation of ROS. A new distribution of ROS, the 9th generation
ROS Jade Turtle, is expected to be released in May 2015 [45].

2.2.1 ROS file system

The ROS file system was developed in order to enhance collaboration between researchers.
The file system consists of four main elements: packages, manifests, message types, and
service types. File system management in ROS is done by using a tool called catkin, which
is a low-level build system. The four elements of the ROS file system are:

Packages Packages are a group of folders that contain a ROS project or
library. A package may contain datasets, libraries, and ROS
runtime processes. A package is an abstraction for organizing

* The source code is available at http://wiki.ros.org/ROS/.
† http://pr.willowgarage.com/
‡ http://stair.stanford.edu/

ca
to
to
in
se
p
d
T
fo
ca
w
st
co

Man

Mes

Ser

An o
atkin work
ogether the
o four diffe
nstall-space
everal diffe

package, sp
dependencie
The “include
older contai
ase of this t

were written
tructures fo
ontains the

Figure 2-3:

nifests

ssage type

rvice types

verview of
kspace usua

file system
erent space
e, each with
erent packa
pecify build
es and pack
e” folder co
ins the orig
thesis proje
n in the C

for any serv
 data struct

 A typical c
when comp

softwar

Manife
A mani

es Messag
They ar

s Service
They ar

a typical wo
ally contain
for indexin

es: a source
h their own
ages. A pac
d locations

kage licenses
ontains inclu
ginal source
ect the file e
C++ progra
vice messa

ture for any

catkin workspa
piling and dur

re in ROS.

ests are xml
ifest also co

ge types def
re stored in

e types defi
re stored in

workspace cr
ns a top-lev
ng. As defin
e-space, a
purpose. In

ckage conta
s, and add
s), and four
ude librarie

e files of the
extension w
amming lan
ages used i
y topic mess

ace containing
ring runtime.

l files that p
ontains licen

fine the dat
 “package/m

ine the dat
 “package/s

reated using
vel CMakeL
ed in [46], a
build-space

n the examp
ains a CMa
d dependen
r subfolders
es that are
e applicatio

was often “.c
nguage. Th
in the appl
sage used in

g catkin proje

provide met
nse informa

ta structure
msg/Specifi

ta structure
srv/Specific

g catkin is
Lists.txt file
a catkin wo
e, a develo
ple, the catk
akeList.txt
ncies), a p
s called incl
needed dur
n contained

cpp” since m
he “srv” fol
lication. La

n the applica

ects and necess

tadata abou
ation and de

es for messa
icMessageT

es for servi
cServiceTyp

shown in F
e, which is
orkspace ca
opment- sp
kin worksp
(in order t
package.xm
lude, src, sr
ring runtim
d in the pac
most of the
lder contai
astly, the “
ation.

ssary project f

Background | 1

1

ut a package
ependencies

ages in ROS
Type.msg”.

ices in ROS
pe.srv”.

Figure 2-3. A
used to lin
n contain u
ace, and a
ace contain
to index th

ml (specifie
rv, and msg

me. The “src
ckage, in th
application
ns the dat

“msg” folde

files used

11

11

e.
s.

S.

S.

A
nk
up
an
ns
he
es
g.
c”
he
ns
ta
er

12

2

T
in
E
in
th
n
sc
su
to

sp
re
p
a
h
to
sh
p
su
ti
ev

2 | Background

2.2.2 Pu

The publish
nformation

Entities tha
nformation
hat a publis

need to kno
calability in
ubscribe m
opic-based.

In a
pecial attrib
eceive mess

predefined s
nd to which

handled by s
opic and th
hows an e

publishers p
ubscribers
ime) and th
ven though

Figure 2-4:

blish-subs

-subscribe
through a d
t provide i
are called

sher does n
ow the nu

n the netwo
messaging p

.

content-ba
butes sough
sages that c
subjects (al
h subscribe
some kind o

hat knows w
example of

publishing m
subscribe to
he informat

h either one

 General id

scribe mess

messaging
distributed
information
subscribers

not need to
mber of su
rk as well e
aradigm ca

ased publis
ht for in pub
ontains the
so known a

ers may sub
of message b

which subscr
f the topi

messages to
o their choi
tion publish
is directly a

dea of the topic

saging par

paradigm
system in a

n are called
s. The key c
know the a

ubscribers
enabling a m
an be divid

sh-subscrib
blished con
ese specific
as topics) t

bscribe to in
broker that
ribers are c
ic-based pu
o three diffe
ice topic (a s
hed by the
aware of the

c-based publi

radigm

is a softwa
a many-to-m
d publisher
characterist
address of a
to the info

more dynam
ded into tw

be messagin
ntent. As a c

attributes. I
o which pu

n order to r
t controls wh
currently su
ublish-subs
rent topics
subscriber
publishers

e existence o

ish-subscribe p

re architect
many comm
rs and enti
tics of this
a particular
ormation. T

mic network
wo main typ

ng paradigm
consequence
In a topic-b

ublishers m
eceive infor
hat publish

ubscribed to
cribe mess
handled by
can subscri

s will reach
of the other

paradigm.

ture used t
munication
ities that t
messaging

r subscriber
This introd

k topology. T
pes: conten

m, subscri
e, a subscrib

based mode
may publish

rmation. To
her can publ
o each topic
saging par
y a message
ibe to sever

h the correc
r.

to propagat
fashion [47
ap into thi
paradigm i

r nor does i
duces bette
The publish

nt-based an

bers specif
ber will onl

el, there exis
informatio

opics may b
lish to whic
c. Figure 2-
radigm wit
e broker. Th
al topics at

ct subscribe

te
7].
is
is
it

er
h-
nd

fy
ly
st
n

be
ch
-4
th
he

a
er

Background | 13

13

2.2.3 ROS computation graph

The ROS computation graph is based on a topic-based publish-subscribe model because of
the flexibility it provides. However, this model is not very well suited for synchronous
transactions, which are often useful in robot systems. As a consequence, the ROS
computation graph also introduces the notion of services into the topic-based publish-
subscribe model. Another feature that was deemed useful for debugging a robot system is
storing sequence of data in order to enable the possibility to replay the data in the exact
same sequence to a topic at a later date. Such as stored sequence of data is referred to as a
bag. The ROS computation graphs consists of seven elements: the master, nodes, the
parameter server, topics, messages, services, and bags. They are described as follows:

Master The master is a process node that acts as a name registration-
server and lookup-server for the rest of the computation graph;
just as the message broker in Figure 2-4. When a node wants to
publish to a topic it first looks up the address of all other nodes
through the master node. Without the master node, all of the
other nodes in a ROS system would unable to find each other.

Nodes A node is a process that performs computation of some sort.
Nodes can be used for many different things, e.g. one node
could control an actuator while another node performs path
finding for the robot. A node can be a publisher, subscriber,
service provider, service requester, or all these at the same time.

Parameter
server

The parameter server is described by ROS Wikipedia * as a
“server [which] allows data to be stored by key in a central
location. It is currently part of the Master.”

Messages A message is a data structure which is made up of specified
fields. Nodes use messages to communicate with each other.
The fields can be made up by standard primitive types such as:
Integer, Point, and Boolean. The fields may also be made up by
nested primitive types or other previously defined message
types if they are included in the project. An example of a
message-type definition in ROS can be seen in Table 2-1. This
example data type consists of two primitive data types called
array_x_value and array_y_value, and an included message
type from the geometry_msgs library of type Pose, here called
pose.

Topics Messages are sent and received between nodes on the basis of
publishing and/or subscribing to a topic. The name of a topic is
used to identify the content of a message and it also determines
where a message should be routed. Instead of sending a
message to a certain host, a node just publishes a message to a
topic. If a node is interested in a certain type of messages, it can
subscribe to a topic to receive all messages that are published
for that certain topic. For a given topic, there may be multiple
concurrent publishers and subscribers. However, there may
only be a single message-type on a specific topic.

* Available at http://wiki.ros.org/.

14 | Background

Services Although the publish-subscribe model of topics is very flexible,
its many-to-many, one-way transport is not particularly good
for request-reply interactions commonly found in distributed
systems. For this type of interaction between nodes, services are
used instead. Services can be seen as a remote procedure call
(RPC). A service is defined by a pair of request-reply message
structures.

Bags Bags are the format for recording and saving message data, such
as sensor data, in ROS. The recorded message data can also be
played back into a topic at a later time. This is very useful for
forwarding messages or developing and testing algorithms.

Table 2-1: ROS message type consisting of two primitive data types and an included message type.

int64 array_x_value

int64 array_y_value

geometry_msgs/Pose pose

Figure 2-5 shows a schematic summary of the ROS computation graph. As noted
above, a node can be a subscriber or a publisher of a topic, or both. As can be seen in the
figure, by subscribing to a topic, a node tells the master to add its address to the list of
subscribers for this topic. When a node later publishes a message on this topic, the master
will tell the node which nodes have subscribed to this topic; then the node will use this
information to send copies of the message to all of these destination nodes. In the case of a
service, when a node asks for a service, the master answers with the address of the node
that offers the requested service. The node that wants this service will then initiate a one-
to-one communication channel to the service node and gain access to the desired service.
Topics and services in ROS uses TCP as the default transport protocol.

2

T
d
tr
a
m
2

K
la
o
b
lo
S
a
M
o

* M
† A

Figure 2-5:

2.3 Turt

TurtleBot 2
developed b
rademark o
 hardware

many useful
2.3.1.

The T
Kobuki base
aptop comp

order to sati
by a 12V br
ocalization†

Support (LT
s well as d

Microsoft Ki
operations w

More info about
A more detailed

 A schemati

tleBot 2 ro

is the seco
by Willow
of the Open

platform (s
l modules.

TurtleBot 2
e station, a
puter. The K
isfy the use
rushed DC
†. The lapto

TS) distribut
doing the la
inect is use

will be furth

t retailers and th

d hardware desc

ic diagram of

obot devel

ond genera
Garage [4
Source Rob
shown in F
A more de

 hardware p
frame with

Kestrel weat
e-case descr

motor and
op comput
tion. It is us
aser scan- a
ed to provid
er explaine

he TurtleBot tra

cription can be f

f the ROS comp

opment k

ation of the
48]. More
botics Found
Figure 2-6)
etailed desc

platform (sh
h three level

ther sensor
ribed in Sec
d uses a fa
ter runs RO
sed to contr
and point-c
de depth pe

ed in Section

ademark can be
found at http://

mputation grap

kit

e TurtleBot
recently, T
dation*. The
and an op

cription of t

hown in Fig
ls, a Micros
r was conne
ction 4.1. Th
ctory calibr

OS on top
rol the data
cloud comp
erception, i
n 2.3.2 and

 found on http:/
kobuki.yujinrob

ph.

developme
TurtleBot h
e robot deve

pen-source s
these modu

gure 2-6) co
soft Kinect,
ected to the
he Kobuki b
rated 3-axi
of an Ubu

a flows betw
putations u
maging, an
Section 2.3

//www.turtlebo
bot.com/home-e

ent kit seri
has become
elopment k
software pl
ules is given

onsists of a
and a ROS

e Kobuki ba
base station
is digital gy
untu 12.04
ween hardw
used in nav
nd a point c
3.3.

ot.com.
en/documentat

Background | 1

1

es originall
e a license
kit consists o
latform wit
n in Sectio

Yujin Robo
S compatibl
ase station i
n is powere
yroscope fo

Long Term
ware module
vigation. Th
cloud. Thes

tion/hardware.

15

15

ly
ed
of
th
n

ot
le
n

ed
or
m
es
he
se

16

2

T
u
fo
p
m
fo

* T

6 | Background

Figure 2-6:

2.3.1 Tur

The TurtleB
useful modu
ollower stac

project are
map_server
ollows:

turt

turt

gma

The source code

 Hardware

rtlebot 2 so

ot 2 robot
ules that in
ck, and muc

turtlebot_
r, and rviz.

tlebot_bri

tlebot_na

apping

e can be found a

modules of th

oftware mo

developmen
nclude basic
ch more. So
_bringup,
. A more d

ingup

vigation

at https://github

he TurtleBot 2

odules

nt kit has a
c drivers, a
ome of the
turtlebot_n

detailed des

This librar
up variable
hardware c

This librar
navigation

Gmapping
TurtleBot 2
laser data
the gyrosc
space. Thi
perform lo

b.com/turtlebot

2 robot develop

an open-sou
a navigation

key librarie
navigation,
scription of

ry contains a
es and start
components

ry contains
n in spaces.

g is a third
2 with laser
from the Ki
ope to crea
s grid map

ocalization i

t.

pment kit and

urce softwar
n stack, a p
es and mod
, gmappin
f each mod

all the scrip
ting low-lev
s.

s all modul

d-party pack
r-based SLA
inect and p

ate a 2-D oc
can later b

n a building

d a Kestrel We

re platform
person reco
dules used i
ng, amcl,
dule and lib

pts necessar
vel drivers f

les necessa

kage that p
AM function
pose data co
ccupancy gr
be saved an
g.

eather Sensor.

m* with man
ognition an
in this thesi
move_base

brary are a

ry for settin
for all of th

ary used fo

provides th
ns. It can us
ollected from
rid map of
nd reused t

ny
nd
is
e,
as

ng
he

or

he
se
m
a

to

Background | 17

17

amcl Amcl is a module that provides probabilistic localization
of a robot moving in a 2D space. Adaptive Monte Carlo
Localization (AMCL) [49] [50] uses adaptive particle-
filters, such as KLD-sampling (Kullback-Leibler
divergence) [51], to compute the pose of the robot
against a known map.

move_base The move_base package is a major component of the
turtlebot_navigation stack. A user can send an action to
the move_base in the form of a goal in the map. The
module can use maps, laser scans, point clouds,
transforms from the amcl module, and odometry
information to create a global- and local plan to reach
the goal in the map. Further details about this module
are described in Section 2.3.3.

map_server The map_server node provides other nodes in ROS with
map information. It can also save a dynamically
generated map, created with the gmapping tool, to a file
for later use. Maps are created in the YAML file format.
More about this server is given in Section 2.3.2.

rviz Rviz is a 3D visualization tool which enables an
operator to view the robot on the map and interact with
move_base through a Graphical User Interface (GUI).
Rviz can be used for many different things, but its
details are outside the scope of this thesis project*.

2.3.2 Map creation using the gmapping tool

In order to understand how the TurtleBot navigates in a space, it is essential to know how
maps are created and what algorithms used to solve the simultaneous localization and
mapping (SLAM) problem. This subsection will not dive deeply into the area of robot
localization techniques, but will cover the basic concepts behind the techniques used by the
gmapping module.

The gmapping module is a ROS wrapper for the third-party gmapping tool written
by Grisetti, Stachniss, and Burgard [52]. The tool uses laser scanner and odometry data to
build an occupancy grid of a space by estimating the posterior probability over maps and
trajectories with the help of a Rao-Blackwellized particle filter [53] [54]. The general idea
of an occupancy grid is that a space is represented as an array of cells. Each cell in the
occupancy grid contains a probabilistic value that the cell is occupied. An occupancy grid
map will usually represent a cell as a pixel in an image, where a black pixel means that the
cell is occupied (by a wall, human, or something else), whereas a white pixel means that the
cell is free. A gray pixel means that the occupancy of the cell is unknown [55].

Before the TurtleBot can navigate using a map of a known space, it is necessary to
create the map and save it to a file. This can be done by running the gmapping_demo
application, containing the slam_gmapping node, in the turtlebot_navigation library. The
slam_gmapping node takes laser scan data from the Kinect and odometry data while the
robot is running around in a space. It uses these data to build a map which is published on

* Interesting guides and tutorials for the use of rviz can be found at http://wiki.ros.org/rviz.

18

a
(g
T
a
sl
th
li
a

n
th
p
Y
re

im

re

o

n

o

fr

* A
† Y

8 | Background

 topic with
grid) map o

The view_n
round the
lam_gmapp
he robot ru
ine. This m
pplication.

Figure 2-7:

The
nav_msgs/O
he map_ser

pgm* image
YAML file o
esolution, o

Table 2-2: T

mage: /home

esolution: 0

rigin: [-29.8

negate: 0

ccupied_thr

ree_thresh:

A grayscale ima
YAML (YAML A

h the messa
of a space, w

navigation a
room, as

ping node.
n around w

map was sa

 The resulti
when gene

map_serv
OccupancyG
rver will ret
file and sa

of the gene
origin, nega

The contents of

e/turtlebot/T

.050000

800000, -34.6

resh: 0.65

0.196

age format. Furt
Ain’t Markup La

age type na
where each
application
 well as
Figure 2-7

with the gma
aved to a f

ing occupancy
erating the map

er applicat
Grid. When
trieve the o

aves the me
erated map
ate, occupie

f the resulting o

Turtlebot_M

600000, 0.00

her details are a

anguage) is a dat

av_msgs/O
 cell in the
GUI in the

to view th
is a map o

apping_dem
file using th

y grid map of
ap with the gm

ation subsc
n the user is
occupancy g
etadata in

p. The file c
ed_thresh, a

occupancy map

Maps/my_m

00000]

available at http
ata serialization

ccupancyG
grid repres

e rviz libra
he map as
f the labora
mo applicat
he map_sa

the laboratory
mapping modu

cribes to a
s satisfied w

grid map fro
a YAML† fi
consists of
and free_th

after saving it t

ap.pgm

p://netpbm.sour
standard. More

Grid. Such a
sents the pr
ry can be u
s it is bei
atory corrid
tion along t
aver functio

y corridor and
le.

a topic wi
with the ma
om the topic
le. Table 2
six differe

resh.

to a YAML file.

rceforge.net/do
e details are at h

a map repr
robability of
used to guid
ing genera

dor generate
the path sho
on in the

d the path of t

ith the m
ap and wan
c and save t

2-2 shows t
ent parame

oc/pgm.html.
http://www.yam

resents a 2D
f occupancy
de the robo
ated by th
ed by havin
own as a re
map_serve

the robot

essage typ
nts to save it
the map as
the resultin
ters: image

ml.org/.

D
y.
ot
he
ng
ed
er

pe
t,
a

ng
e,

2

N
th
(g
n
o

ima

reso

orig

neg

occ

free

2.3.3 Na

Now that the
he map_se
goals) set by

navigate an
of the naviga

Figure 2-8:

age

olution

gin

gate

cupied_thr

e_thresh

vigation us

e TurtleBot
rver modul
y the user. T
area is well
ation stack a

 A summary
relationshi

The
occu

The
mete

The
robo

Spec
or n

resh Pixe
thre

Pixe
thre

sing simult

has a funct
le), the rob
The way the
l described
and the rela

y of all the ele
ips.

file path
upancy grid

size of a
ers along th

original 2-
ot in units o

cifies if the
ot.

els with an
eshold shoul

els with a
eshold shoul

taneous lo

tioning occu
bot can use
e TurtleBot
in [56]. Fig

ationships b

ements and mo

to the pgm
.

pixel relati
he edge of th

-D pose (als
of pixels from

occupancy

n occupanc
ld be classif

n occupan
ld be classif

calization

upancy grid
its navigat

t uses senso
gure 2-8 is a
between the

odules of the R

m image fi

ive to the
he pixel.

so called or
m the lower

y color sche

cy probabi
fied as occu

ncy probab
fied as free.

and mappi

d map (whic
tion stack t

or data, the g
an attempt t
e relevant m

ROS navigatio

ile that rep

real world

rigin of the
r-left pixel i

eme should

ility greate
upied.

bility lower

ing

ch can be re
to navigate
grid map, a
to visualize

modules.

on stack and t

Background | 1

1

presents th

in units o

map) of th
in the map.

be reverse

er than thi

r than thi

trieved from
to position

and SLAM t
e the entiret

their

19

19

he

of

he

ed

is

is

m
ns
to
ty

20 | Background

In this process we assume that a robot with sensors and actuators is placed in a
room, an occupancy grid map of the room has already been created with the gmapping
tool, and the map_server module provides the map to the modules that request it via
topics and services. The first step is that a user (or program as in this thesis project)
provides the robot with a goal to which the robot should move. A user can do this by simply
publishing a geometry_msgs/PoseStamped goal to the global planner module on the topic
move_base_simple/goal. If the user needs continuous updates about the status of the
goal, it is also possible to make an interactive action call to a SimpleActionServer in the
move_base module*. Once a goal is set in the global planner, the amcl module will make
use of laser scan data (from the Kinect) and odometry data (derived from the gyroscope) in
order to localize the robot on the map. The localization is done by computing the posterior
robot pose estimates for a set number of particles and trying to fit them to the known map.
The SLAM algorithm dynamically updates the map in order to accommodate moving
objects.

When the robot has found its position and pose in the map, the global planner
starts to calculate a rough potential path to the goal with the help of the global costmap.
The global costmap incorporates data about where in the map it is possible for the robot to
move without bumping into anything. However, since the global planner tends to create
infeasible paths to the goal, a local planner uses a dynamic window approach to account for
this shortcoming [56]. The local planner also sends commands to the actuator in order to
move the robot along a path. All the modules described above are concurrently executing
in order to localize the robot on the map, update the map, create costmaps used for path
planning, and plan both a global and a local path to the goal.

2.4 Related work

The problems described in Section 1.2 are not exclusive to the area of CNR. The mobile
industry has been trying to solve its energy problems by remote execution or migrating
applications, or even entire VMs, to the cloud depending on network conditions and other
parameters [33]. This has spawned a whole new area in the mobile industry called mobile
offloading. There have already been several proposed architectures to solve this problem
such as MAUI [33], CloneCloud [57], ThinkAir [58], and a proposed use of machine
learning algorithms to create a dynamic offloading scheduler [59]. This section will
introduce what have already been done in the area of CNR to make cloud robot
architectures network aware. However, since the mobile industry is working on solving a
similar problem, related work to mobile offloading will also be introduced.

2.4.1 Pioneering module offloading work in CNR

Already in the early stages of CNR, Hu, Tay, and Wen proposed that a CNR architecture
should have offloading strategies that consider various factors, such as task deadline and
amount of data to be exchanged, in order to minimize battery consumption while providing
high QoS [23]. They identified the fundamental problem as the trade-off between the
energy consumption from data transmissions, when transmitting the necessary data to the
cloud, and the energy consumed when executing a task locally on the robot.

* This is done with the help of the ROS “actionlib” package, which provides an interface for interfacing with pre-emptible
tasks. More info about this package can be found at http://wiki.ros.org/actionlib.

Background | 21

21

A dynamic voltage scaling energy consumption model for local execution was
compared against a polynomial energy consumption model for the cloud execution, in
order to find the optimal operational regions of both schemes. They show that for a given
delay deadline and a preset number of bits to be transferred, that the minimum energy
consumed can be compared between these two models. Although they take into
consideration that the network conditions may change by looking at the delay, there are
still questions as to how this model would work in an unstable network environment, since
they have not consider changing network bandwidth in their work.

2.4.2 Team MIT’s DARPA robotics challenge contribution

Fallon et al. describe their contribution to the (United States of America) Defense
Advanced Research Project Agency (DARPA) Robotics Challenge Trial* in a Massachusetts
Institute of Technology (MIT) Computer Science and Artificial Intelligence Laboratory
(CSAIL) technical report [60]. They used an Atlas humanoid robot frame and prioritize
teleoperation by a human over attempting to create an autonomous system. The robot
system is divided into three main components: an operator control unit, a field computer,
and the hardware components. The different planners (manipulation-, footstep-, and task
planner) are deployed on the operator control unit, but a module may be offloaded to a
cloud for better performance. In between the operation control unit and the field computer
on the robot is a restricted link that is supposed to simulate different harsh network
environments of a danger site.

A part of the technical report explains the different implementation choices of the
network- and transmission layer modules used for communication between the robot and
the operator side, as well as the tools and programs used to simulate different harsh
network environments. The system focuses on compressing data in order to transfer data
efficiently between the robot and the operator control unit. However, there is not much
explanation of how the robot would fare if the connection were to be lost unexpectedly. The
Robotics Challenge Trials let participants have pretty good control over their robots with
teleoperation. However, the Robotics Challenge Finals promise to require the robots to
function more autonomously, by inducing “long [network] blackouts of up to a
minute” [61]. This sounds like a tough criteria to fulfill based on what is written in the
technical report, as the robot would need some kind of migration module to make use of
the planners even under total blackout of communications.

2.4.3 MAUI: code offloading in smartphones

Cuervo et al. [33] were ones of the earliest groups to propose an architecture that makes
use of code offloading to solve the battery problem in the mobile industry. Their proposed
architecture, called MAUI, uses code portability to create a clone of a smartphone in the
cloud. They strived to maximize energy savings while minimizing the need to change
anything in existing applications. The general idea is that a clone of the smartphone is
running in a server (in the cloud) and every time a function is called, an optimization
framework calculates whether the function should be run locally or be executed in a server.

* DARPA Robotics Challenge is a competition of teams that develop hardware and software robot systems designed to assist
in man-made or natural disasters. Read more at http://www.theroboticschallenge.org/.

22 | Background

The optimization framework makes use of information, gathered from profiling the
device, the program, and the network, as input to a global optimization problem. The
profiling of the device looks at the energy consumption and Central Processing Unit (CPU)
utilization of the function. This is similar to what a program profiler does, i.e., it analyzes
the program and determines what state is required to be transferred to the cloud, as well as
considering the program’s runtime duration and required number of CPU cycles. For the
profiling of the network, MAUI sends 10 KB of data over a Transport Control Protocol
(TCP) connection to the server-side and calculates the average throughput by measuring
the time it took to transfer all of the data. A possible downside of this solution is that it is
hard to profile a dynamic program which has very different total runtime and whose
bandwidth requirements depend upon the environment and task.

2.4.4 CloneCloud

CloneCloud, by Chun et al. [57], is a mobile offloading architecture that tries to solve the
same problem as MAUI. CloneCloud also uses an optimization solver to optimize the
energy consumption and execution time. Similarly to MAUI, the solver determines what
functions should be executed in the cloud and which functions should be executed locally
in the robot, by profiling the program. Although similar in concept, CloneCloud differs
greatly from MAUI in implementation, MAUI is implemented on Microsoft’s .NET
framework while CloneCloud is implemented upon a Dalvik VM.

CloneCloud improves upon MAUI by not requiring source code availability and
does not require that the programmer identify which functions would work better in the
cloud. It also addresses the scalability problem of MAUI by using VMs in the cloud to
simulate the whole smartphone. CloneCloud is very similar to MAUI, hence it also has the
same potential downside in that it is hard to make a good estimate of the runtime in a
dynamic program and what bandwidth is needed as both may differ greatly depending
upon the environment and task.

2.4.5 ThinkAir

Kosta et al. [58] proposes a mobile offloading framework called ThinkAir that promises to
solve MAUI’s scalability problem, as well as to improve upon CloneCloud by using an
online method-level offloading solution. ThinkAir improves upon the CloneCloud VM
solution by enabling parallelization between multiple VMs and providing dynamic resource
allocation depending on the task.

The ThinkAir architecture was designed with four main objectives in mind: the
architecture should dynamically adapt to changing environments, it should be easy to
implement for developers, performance should be improved by using cloud computing,
and the architecture should support dynamic scaling in computational power. In order to
dynamically adapt to a changing environment, ThinkAir implements three different
profiling models: a hardware-, software-, and network profiler. The hardware profiler
monitors the CPU, the screen, the Wi-Fi interface, and the 3G radio interface, then sends
this state information to an energy estimation model. The network profiler measures both
the round-trip time (RTT) between the smartphone and the server and the amount of data
sent and received during a time interval, in order to calculate the effective network
bandwidth.

Background | 23

23

2.4.6 Machine learning offloading scheduler

While other related works has focused on the core mechanics of offloading techniques,
Eom et al. [59] propose to improve upon these systems by implementing an adaptive
offloading scheduler. Their adaptive offloading scheduler is based on a machine learning
algorithm that takes into consideration varying network conditions, as well as the workload
and the load at the device. They consider several different machine learning algorithms
and come to the conclusion that an Instance-Based Learning algorithm best fits the
problem.

The machine learning algorithm takes four different variables as input in order to
decide upon a module’s placement: the local execution time, the size of the data to be
transferred, the network bandwidth, and number of invocations needed for arguments
setups. They show that with the help of a training set, the adaptive offloading scheduler can
choose the “best” module placements on the fly 87.5% of the time in an environment when
the network conditions are fluctuating. However, they do not report on how the system
would fare with an application where it is hard to estimate how much bandwidth is needed
at a certain time in the future.

2.4.7 Point cloud culling under communication restraints

Beksi and Papanikolopoulos [62] present another approach to successfully make use of
module offloading to a cloud even under constrained network conditions. Their solution
focuses on enabling real-time vision tasks on a robot with low on-board resources, by
offloading the computationally heavy modules to the cloud. The transmitted data is
analyzed on the server-side to discover if there is any congestion building up in the
network. The server-side can throttle the connection using an adaptive threshold setting, in
order to avoid causing congestion even in a network with constrained communication
resources. The downside of this solution is that it is not robust against complete network
failure, which means that the robot would not be able to recover if network connectivity
were lost.

2.5 Summary

This chapter has presented the basic concepts of CNR as well as a general background on
the ROS middleware and the TurtleBot robot system and its functionalities. Most of the
related work in CNR has focused on enabling robots to function even with constrained
communications, by using data compression or transmission throttling. However, there
seems to still be a gap in what should be done when connectivity is temporarily lost.
Although some of the related work on mobile offloading seems promising, it is hard to
estimate how well the offloading solutions would work with a CNR system. The reason for
this is that most of the mobile applications have predictable behavior in both CPU and
bandwidth requirements; which we will see later in Section 4.2.2, is not always the case for
a CNR system.

3

T
th
p
S
ev
u
th

3

S
e
ro
a
so
re

o
e
is
ex
B
th
a
S
to
p
w

3 Metho

The purpose
hesis. Secti

paradigm. S
Section 3.4
valuate the

used for the
he cloud rob

3.1 Rese

Since the c
nvironment
obot was to
ny problem
olution to t
esearch.

Figure 3-1:

As th
on developin
nvironment
s described
xecuting a

Based on th
hese proble
 series of e

Section 4.2.2
o solve the

proposed so
will result in

odology

e of this cha
ion 3.1 de

Section 3.3
describes th
 reliability
data analys

bot prototyp

earch Pro

complexity
t where the

o be tested
ms are foun
the problem

 Overview o

he availabili
ng a use-ca
t, and based

d in Section
simple task
e observati

em occur wi
experiments
2. A networ
ese potenti
lution will b

n recommen

apter is to p
escribes the

focuses on
he experim
and validity
sis. Finally,
pe and the n

cess

of a CNR
e complexity
and observ

nd during th
ms. Figure 3

of the researc

ity of comm
ase where a
d on the use
n 4.1. The
k (according
ons, any po
ill be propo
s. These th
k aware fra
ial problem
be tested an
ndations fo

provide an
e research

n the data c
mental desig

y of the dat
Section 3.7

network aw

R system is
y might be s

ved when pl
he observat
3-1 shows th

ch process use

mercial clou
a cloud rob
e-case deve
next step w
g to the use
otential pro

osed. These
hree steps a
amework sol
ms. This ste
nd evaluate
or other res

overview of
process. S

collection t
gn. Section
ta collected.
7 describes t

ware framew

s high, ins
simplified, i
laced in an
tions, the a
he steps co

ed to carry out

ud robots is
bot would b
elop an actu
will be to
e-case) in a

oblems will
theories wi

are describe
lution will t
ep is descr

ed by a cont
searchers an

f the resear
Section 3.2
echniques
0 explains
. Section 3.6
the framew

work.

stead of lo
it was decid
unstable ne

aim is to de
nducted in

t this research

low, initial
be subject t
al cloud rob
observe the

an unstable
be examine

ill then be t
ed in [63]
then be desi
ribed in Se
tinuous run
nd develope

rch method
2 details t
used for th
the techniq
6 describes

work selected

ooking at
ded that a re
etwork env
esign and i
 order to ca

h.

lly the focu
to an unsta
bot prototyp
e prototype

e network e
ed and the

tested and c
(see Appen
igned and im
ection 4.2.

nning exper
ers in the a

Methodology | 2

used in thi
the researc
his research
ques used t
s the metho
d to evaluat

a simulate
eal life clou

vironment. I
implement
arry out thi

s will be pu
able networ
pe. This ste
e while it i
nvironmen
ories to wh
confirmed i
ndix VI) an
mplemente
 Lastly, th
iment whic

area of CNR

25

is
ch
h.
to
od
te

ed
ud
If
a
is

ut
rk
ep
is
t.

hy
n

nd
ed
he
ch
R.

26 | Methodology

The results from these experiments and the recommendations and conclusions can be read
in Chapter 5 and Chapter 6.

3.2 Research Paradigm

In conjunction with the research process, the research methodology of this thesis project
will be qualitative. There have still not been any extensive research about network aware
CNR systems, since the area of CNR is fairly new. Therefore a mixed research approach,
containing both an inductive and a deductive touch, will be used in order to reach the goals
of this project. Firstly, an inductive research approach is applied to create theories from
observations of a cloud robot, then a deductive research is used to develop a network aware
framework solution.

3.3 Data Collection

The data will be collected by a series of experiments where the proposed solution will
execute a task in a corridor under various network conditions. The data will be collected by
the program written by the author and saved to a tab separated value file (.tsv). Since more
measurements are preferable, as many measurements as possible will be collected during a
period of two months (July, August, 2014) when the robot will not be in the way of
everyday activities at the laboratory.

3.4 Experimental design

This section will describe the test bed where the experiments were conducted as well as the
hardware and software used in the experiments.

3.4.1 Experimental test bed

The experimental test bed was placed in a corridor in the Cyber Media Center Suita-branch
laboratory. An overview of the experimental test bed can be seen in Figure 3-2. The
physical layer of the experimental setup consists of three main components: a cloud robot
(described in section 4.1), a wireless router, and a VM on a local cloud. The cloud robot was
placed in the corridor and connected to a wireless router using Wi-Fi (802.11g). While the
cloud robot was connected to a dedicated wireless router, there were other wireless
networks in the vicinity of the experimental setup. The VM on the local cloud was
connected to the router using a 100 Mbit/s Ethernet cable. The cloud robot and VM
communicates using both ROS topics and services over TCP. The Linux network
controlling tool tc (traffic control)* was used both in the cloud robot and the VM to
simulate latency and bandwidth restrictions in the network. An example of how tc was
used to model the traffic can be seen in Appendix I.

* Tc is used to show and/or manipulate traffic control settings in Linux kernel. More info can be found at
http://lartc.org/manpages/tc.txt.

L
th
w
d
th
$

3

T
ru
T
p
co
th
u

D

T

L

Figure 3-2:

In or
Linux power
he comman

which enabl
depending o
he CPU fre

$sudo cpufr

3.4.2 Ha

The cloud ro
unning RO

TurtleBot 2
prototype al
orridor. Th
he author a

used bandwi

Table 3-1: T

Device

TurtleBot 2 l

Local cloud V

 An overvie

rder to crea
r manageme

nd line. Linu
les the Ope

on the syste
equency wa
eq-set –c [C

rdware/Sof

obot prototy
OS Hydro M

and the V
lso made us

he current l
and the net
idth of the a

Technical specif

OS

laptop Ub

VM Ub

ew of the exper

ate a stable
ent was tur
ux also has C
erating Sys

em load in o
s set to alw

CPU_NUMB

ftware to b

ype was imp
Medusa. Th

VM on the l
se of a Kest
atency was
twork band
applications

ifications of the

S

buntu 12.04 L

buntu 12.04 L

rimental test b

test bed wi
rned off by c
CPU freque
stem (OS)
order to sav
ways stay a
BER] –f 1.6

be used

plemented o
he technica
local cloud
trel Weathe

s measured
dwidth was
s were meas

e devices used in

LTS 32-bit

LTS 32-bit

bed.

ith as few c
calling $sud
ency scaling
to automat

ve power. T
at 1.6 GHz b
6GHz.

on top of a
al specifica

d can be se
er Sensor to
using an e
estimated

sured using

n the experimen

CPU

Intel® Ato
1.6GHz *

Intel® Co
2.80GHz

changing va
do /etc/init.
g functionali
tically scale
his function
by using th

TurtleBot 2
ations of th
en in Table
o measure

echo-respon
using netp

g the ifstat [

nts.

om™ N2600
 4 core

re™ i7-4900M
* 8 core

ariables as p
t.d/acpi-sup
ity built int
e the CPU
nality was d

he following

2 robot deve
he laptop u
e 3-1. The
the temper

nse program
perf [64]. T
[65] Linux m

RA

1 G

MQ 16

Methodology | 2

2

possible, th
pport stop i
o the system
frequencie

disabled an
g command

elopment ki
used by th
cloud robo

rature in th
m written b
he currentl

module.

AM

GB

GB

27

27

he
in
m
es

nd
d:

it
he
ot
he
by
ly

28 | Methodology

3.5 Assessing reliability and validity of the data collected

This section will briefly introduce the methodology behind how the reliability and validity
of the collected data is assessed.

3.5.1 Reliability

The reliability of the collected data will be assessed by looking at what variables that might
affect the results. Another variable that will be taken into account when assessing the
reliability is the fact that the experiment is conducted with an actual robot instead of just a
computer simulation.

3.5.2 Validity

The validity of the collected data is to be assessed by comparing the measurements
obtained from the experiment in the laboratory corridor to that of the measurements that
will be obtained from another experiment, which is to be performed in the actual data
center.

3.6 Planned Data Analysis

This section describes the techniques used to analyze the obtained data as well as the
software tools used to carry out the data analysis.

3.6.1 Data Analysis Technique

Before starting the data analysis, the data was put through data cleaning. Values that are
corrupt or erroneous are not considered for the later data analysis. The data contains two
classes of data (“onload” and “offload”), which will be plotted onto a graph for region
distribution analysis. In order to find different relationships, the data will be put through a
sorting process so that different variables in the data can be tested against each other. After
making observations of different graphs, line fitting techniques will be applied to the data
in order to find the point of trade-offs between onloading and offloading. Lastly,
measurements from when modules were executed locally on the robot will be compared to
measurements from when modules were executed remotely on the cloud.

3.6.2 Software Tools

As described in Section 3.3, the data will be collected by the program written by the author
and stored in a tab separated value file (.tsv). Microsoft Excel will be used clean and sort
the data imported from the tsv file. The sorted data will be analyzed using gnuplot* by
looking at plotted graphs and applying line fitting techniques.

3.7 Evaluation framework

A normal CNR system would not be able to offload modules to the cloud safely when
operating in an unstable network environment. Therefore, the proposed solution will be
evaluated by comparing the potential energy savings and task efficiency of the proposed

* A command-line driven graphing utility for Linux. More info can be found on their homepage: http://www.gnuplot.info/.

Methodology | 29

29

solution, when operating under good network conditions, against a cloud robot where
modules are only placed locally on the robot. Evaluating the proposed solution under
random network conditions against a robot with locally placed modules is for future work.

4

T
a
a
o

d
co
N
m
in
p
co
ef
th
se

n
a
st
d
in

4 Netwo

This thesis p
rea of cloud
nd executio

overall summ

Figure 4-1:

As ca
datacenter, v
ommunicat

Network mo
monitor mod
nformation

proposed to
ondition is
fficient to p
he current
ent from th

This
networked r

 reference
tages done

developmen
ntroduces th

ork-Awar

proposes to
d networked
on time of r
mary of the

 An overvie

an be seen
via a Wi-Fi
tes with oth
onitor mod
dules excha
about the s
be run thro
good enoug

place the ro
network co

he network m

chapter is
robot system

point. Cha
in order to
t process o
he notion o

re Cloud

o integrate f
d robotics, i
robot tasks
proposed s

ew of the prop

n in the ov
i connection

her modules
ules are pl

ange inform
status of the
ough a mach
gh for the r
bot module

ondition ca
monitor to t

s divided i
m, a cloud n
apter 4.1 co

develop a c
of the netw
f using task

 Network

functionalit
in order to i
 when oper

system can b

posal system d

verview, a r
n. Inside th
s inside the
aced both

mation abou
e systems th

chine-learni
robot modu
es inside th
annot provid
the destinat

into two s
networked r
overs the m
cloud netwo
work-aware
ks as evaluat

ked Robo

ty from the
improve the
rating in un
be seen in F

design.

robot is co
he robot the
robot, as we
in the robo
t the netwo
hey are run
ng algorithm

ules to be pl
e robot. Wh
de sufficien
tion robot m

sections. To
robot protot
major desig
orked robot
e cloud net
tors instead

Network

ot

area of mo
e total oper
nstable netw
Figure 4-1.

onnected to
ere are seve
ell as modu
ot and in th
rk, through
ning on top
m which wi
laced on th
hen a decisi
nt resources
module to tr

o create a
type had to
gn decision
t prototype.
tworked rob
d of time.

k-Aware Cloud Ne

obile offload
ration time o
work enviro

o a cloud, l
eral robot m
ules placed o
the cloud. T
h network p
p of. This in
ill decide if

he cloud, or
ion has bee
s, a migrat
rigger a mig

a network-a
o be develop
ns and imp
. Chapter 4.

obot system

etworked Robot | 3

ding into th
of the robot
onments. A

located in
modules tha
on the cloud
The networ

profiling, an
nformation i

the networ
if it is mor

en made tha
tion order i
gration.

aware clou
ped to use a
plementatio
.2 covers th

m as well a

31

he
ts

An

a
at
d.
rk
nd
is
rk
re
at
is

ud
as
n

he
as

32

4

B
cl
n
a

n
w
d
cr
[6
ce
aw
a
tr
tr

a
d
se
co
d
o
h
in

2 | Network-Aware

4.1 Clou

Before it wa
loud netwo

networked r
lso partly p

The
networked r
which was d
datacenter m
reate an au
66]. A simu
enter, whic
way. The re
nd measur
ransferred t
rends in the

Figure 4-2:

Inste
 cloud rob

datacenter fo
earch for th
ontinuously

datacenter, t
objects that
has been fo
nform the c

e Cloud Networke

ud Networ

s possible t
rked robot p

robot protot
presented in

first thing
robot protot
deemed mo
monitoring
utonomous
ulation sho

ch the temp
eport propo
re the temp
to a cloud to
e data. An e

 The use-ca
hotspots.

ead of puttin
ot can use
or temperat

hese temper
y scanning
the robot sh
are in the w

ound, the ro
loud of the

d Robot

rked Robo

to decide on
prototype h
type describ

n [63] (see A

that had t
type. Severa
ost feasible
cloud netw
datacenter

owed that t
perature sen
oses that au
perature at
o be process
xplanation

ase where a cl

ng a lot of t
its equipp

ture hotspo
rature hotsp
g the route
hould also b
way, e.g. the
obot should
findings.

ot Prototyp

n a design f
had to be de
bed in this c
Appendix VI

to be done
al different

e to comple
worked rob
r monitorin
there was a
nsors on th
utonomous

these spot
sed by a ma
of the use-c

loud robot mo

temperature
ped tempera
ots. The rob
pots and be
e for thes
be able to d
e datacente
d try to fin

pe

for the netw
eveloped to
chapter was
I).

was to de
t use-cases
ete under t
ot”. At the
g system w

a possibility
he hardware

robots coul
ts. The req
ap-reduce sy
case can be

onitors the cor

e sensors in
ature senso

bot will get o
egin to move
e hotspots
etect and av
r service pe

nd the orig

work-aware
use as a ref
s developed

ecide on a
were consid

the time-lim
start of th

was underw
y of hotspo
e would not
ld move aro

quired infor
ystem, such
seen in Figu

rridors of a da

n the data ce
ors to searc
orders from
e to the pos

s. While m
void both im
ersonnel. W
gin, the tem

CNR syste
ference poin
d for this th

use-case fo
dered, but
mit at the
his project,
way at Osak
ots forming
t be able to
ound in the
rmation co

h as Hadoop
gure 4-2.

atacenter for t

center to cov
ch the corr

m the cloud
sition of the
moving aro
mmovable a

When an abn
mperature h

m, an actua
nt. The clou
hesis but wa

or the clou
the use-cas
time was “
a project t

ka Universit
in the dat

o sense righ
e data cente
ould then b
p, to uncove

temperature

ver all areas
ridors of th

on where t
e order whil
ound in th
and movabl
normal valu
hotspot, an

al
ud
as

ud
se
“a
to
ty
ta
ht
er
be
er

s,
he
to
le

he
le

ue
nd

4

T
ro
m
p

T
a
th
th
co

se
lo
th

th
b
th
fu
ro
o
a

4.1.1 Da

The TurtleBo
obot and

modules, an
placed on a l

As d
Turtlebot 2 p

nd actuator
here is a bo
he cloud. H
onnect the

Figure 4-3:

The b
et informat
oses connec
hought up w

Modu
he knowled

be independ
he robot wi
ull overview
obot. By us

on the robot
gainst the c

tacenter m

ot 2 robot-s
additional

nd machine
local cloud.

described in
platform, su
rs. If we ca

ody with sen
However, the

body and in

 An overvie

brain conta
tion. Howev
ctivity to a c
where modu

ules that ca
dge from the
dent for som
ill still conti
w of the sta
ing this rel
t and globa

connection p

monitoring c

suite [6], de
high-level

-learning a

n Section 2
uch as mov
an compare
nsors and a
ere is no bra
ntelligence c

ew of the prop

ains module
ver, in orde
cloud and st
ules can be s

an be seen a
e global mo
me time fro
inue to be u
ate of the c
ationship b
al modules
problems in

cloud robo

escribed in S
modules s

algorithms f

2.3.1, there
ve_base and
e these mod
actuators on
ain to conn
can be seen

posal cloud ne

es that can
er to tackle
tops comple
seen as eith

as mostly lo
odules. At th
m the glob
useful. Glob
cloud robot
between loca

on the clo
n unstable n

ot implemen

Section 2.3,
such as H
for determi

are severa
d turtlebot_
dules expla

n the physic
nect these tw
n in Figure 4

twork robot d

all interact
the problem

etely, a kind
her global o

ocal should
he same tim
al modules
bal modules
, as well as
al and glob

oud can incr
network env

Network

ntation

 was chosen
Hadoop, mu
ining new g

al basic mo
_bringup tha
ained above
cal robot an
wo elements
4-3.

design.

with each
m where a
d of hierarch
r local.

d take comm
me, local mo

 so that eve
s on the oth
s the inform
al modules
rease the cl
vironments.

k-Aware Cloud Ne

n as a base f
ulti-robot c
goals for th

odules avail
at interact w

e in terms o
nd intelligen
s. A propos

other in or
cloud netw

chy within th

mands, or h
odules shou
en if conne
her hand sh
mation gath
s, placing lo
cloud robots
.

etworked Robot | 3

3

for the clou
coordinatio
he robot wa

lable on th
with sensor
of a human

nce on top o
sal on how t

der to get o
worked robo
he brain wa

have some o
uld be able t
ection is los
hould have
hered by th
ocal module
s robustnes

33

33

ud
n

as

he
rs
n,
of
to

or
ot
as

of
to
t,
a

he
es
ss

34

m
o
re
su
m

4

A
S
ro
tr
T
re

in
m
u
a
sq
m
w
th
in

p
th
p
ab
a
m
th
m
co

4 | Network-Aware

As ca
mfg (measu
objectives, “
esponds wi
uccessfully

move_base m

4.1.2 Ma

As was de
SimpleActio
obot posit
ransformati

The PoseSta
elative rotat

How
n the map.

move after h
up where the

reas, as can
quares. By

mapcell. Suc
was in the m
hat was rec
nformation

Figure 4-4:

As de
program rem
he whole m

pixel in the m
ble to have
utomaticall

map_saver
he current

meters/pixel
orridor was

e Cloud Networke

an be seen
rement_fee

“goals”, to
ith updates
reached th

module of w

ap and map

escribed in
nServer in

tion in th
ions from th
amped mes
tion of the r

ever when l
This makes

having comp
e map, whic
n be seen i
doing this,

ch a mapcel
mapcell, as
corded in t
concerning

 An area of

escribed in
members th

map is create
map. The le
fast localiz

ly set to be
program. A
position,

l and each
s 11 meters

d Robot

in Figure 4
edback_goa
the move_b
s to the go
e goal. The

where the ro

pcells

n Section
the form of

he provided
he “tf” mod
ssage type
robot in the

listening to
s it harder t
pleted a task
ch was prov
in Figure 4-
, a certain
ll can contai

well as the
the mapcel
g a certain a

f the laborator

Section 2.3
he original 2
ed. It then c
eft part of th
ation even i
[-29.8, -34

As this only s
this value
mapcell w

long and al

4-3, move_
al) and loca

_base with
oal, e.g. th
e local_map
obots has re

2.3, move
f geometry
d map, w

dule, is also
contains th

e form of x,

frame tran
to develop s
k. Therefore
vided to the
-4 where th
position in
in all kinds
e time and
ll. In short
area of a roo

ry corridor is

3.2, when th
2-D pose (al
calculates an
he corridor
in the left p

4.6, 0.0] in
signifies the
was uncha

was set with
lmost 2 me

_base intera
al_mapcell_

the help of
e message

pcell_mana
ecently been

e_base tak
_msgs/Pos

which is a
in the form

he x, y, and
y, z, and w-

nsforms, the
simple algo
e, a concept
e “map_serv
he right sid

n the map c
of informat
position of
, a mapcel

om.

divided into t

he map was
lso called or
nd sets the
r was also m
part of the c

the pgm im
e default po
anged. The
h a width

eters wide, i

acts with tw
_manager.
f SimpleAct
“SUCCEED

ager receive
n and stores

kes goals
seStamped
acquired b

m of the Pose
d z-position
-values.

e robot posit
rithms for w
t of map an
ver”, is divi

de of the m
can be spec
tion such as
f every tem
l acts as a

wo rows of ma

s originally
rigin of the
origin as pi

mapped in o
orridor. Th

mage when
osition of a r
e resolution
and height
it was divid

wo local mo
The mfg m

ctionServer.
DED” if th
es informati
s this for fut

with the
messages. L

by listening
eStamped m
n in a map

tion will be
where the r

nd mapcells
ided into se

map is divid
cified to be
s the last tim

mperature m
a container

apcells.

created, th
map) of th

ixels from th
order for the
he origin in t

it was crea
robot befor
n of this m
t of 1 mete
ded into 22

odules calle
module send

Move_bas
he robot ha
ion from th
ture use.

help of
Likewise th
g to fram
message typ
p as well a

very precis
robot shoul
was though

everal squar
ed into blu

e a part of
me the robo

measuremen
of differen

he gmappin
e robot unt
he lower-lef
e robot to b
the map wa

ated with th
re calibratin
map is 0.0
er. Since th

mapcells; 1

ed
ds
se
as
he

a
he

me
pe.
as

se
ld
ht
re
ue

a
ot
nt
nt

ng
til
ft

be
as
he
ng
05
he
11

m
se
se
o
b

co
b
H
a

4

C
m
sa
su
e
m
a

d
2
p
h

mapcells lon
extuplet: <m
extuplet ser

order to mo
belong to is d

The a
ould have b

based upon
However, th

lgorithm wa

Figure 4-5:

4.1.3 Glo

Current hard
massive amo
ame time a
uch resour
nvironment

modules mig
fter comple

A goa
datacenter a
20 cm forw
position”, an
huge differen

ng and 2 m
min_x, max
rves as a ref
ove to a ce
described in

algorithm d
been replac
the transfo

here was n
as good eno

 The pseudo

obal goals

dware on m
ounts of dat
as being abl
rce heavy
ts with uns
ght mean th
eting a previ

al or a task
and compar
ard”, “avoid
nd “measur
nce in how

mapcells w
x_x, min_y
ference poin
rtain mapc
n Figure 4-5

described in
ced with a
ormation to

not enough
ough for thi

o code for the

and measu

most cloud ro
ta, in order
le to proper
modules to
stable netw
hat the robo
ious goal.

can be ever
e to monthl
d the obsta
re the curre
much time

wide. The d
y, max_y, c
nt in a map

cell. The alg
5.

n Figure 4-5
simple ma

o a position
time to im

is small scal

e algorithm tha

urement fe

obot bases
r to decide o
rly control
o a cloud.

work conne
ot will stop t

rything from
ly trends”, t

acle in fron
ent temper
it takes to c

dimensions
center_x, ce
pcell, where
gorithm to

5 is very co
apping tran
n given the
mplement t
le thesis pro

at decides wh

eedback go

are not pow
on complex
local modu
 However,
ctions, losi
to function,

m a complex
to more sim

nt of the ro
ature”. Wh
complete a

Network

of a map
enter_y>. T
 the robot c
decide wh

omplex for
nsform algo
e size of a m
this and it
oject.

ich MapCell a

oals

werful enou
x tasks or pl
ules. This ca

 if the ro
ng connect
, since it wil

x task such
mple tasks s
obot”, “calcu
at can be n
complex ta

k-Aware Cloud Ne

pcell is dec
The center v
can move to
hich mapcel

such a sim
orithm, whi
mapcell an

t was decid

a coordinate r

ugh to be ab
lanning of p

an be solved
obots are o
tion to suc
ill not get an

as “scannin
such as “mo
ulate the cu
noted is tha
ask compare

etworked Robot | 3

3

cided by th
values in thi
o if it gets a
ll a positio

ple task an
ich could b

nd an origin
ded that th

resides in.

le to analyz
paths, at th
d by movin
operating i
h importan
ny new goal

ng a part of
ove the robo
urrent robo
at there is
ed to a muc

35

35

he
is

an
n

nd
be
n.
he

ze
he
ng

n
nt
ls

a
ot
ot
a

ch

36

si
ta
“m

a
b
ca
re
sq
a
re
g

4

F
d
“L
v

v
e
th
a
h

6 | Network-Aware

impler one.
ake everyth
measure th

This
gainst the p

be decided b
all measur
elationship
quare room
ddressed a
esiding on a

global goal o

Figure 4-6:

4.1.4 Glo

For the proto
decided upo
Least recen

visited least

In th
visiting coun
nters a new
he mapcell
nd the ma

highest visiti

e Cloud Networke

. While “sca
hing betwe
e current te

difference
problem ex
by a modul
rement fee

between gl
m is divided
as mapcell(
a cloud. MF
or in worst

 The relatio

obal goal e

otype imple
n to act as

ntly visited”
recently. An

he figure, an
nter. The vi
w mapcell. T

was visited
apcell that h
ing counter

d Robot

anning a pa
een 4-20 m
emperature”

can be exp
xplained abo
e that is pla
dback goa
lobal goals

d into five ti
x)(y). A “g

FGs are task
case a detou

onship betwee

example alg

ementation
the global g
(inspired b

n example o

n area is div
siting count

This means
d. In the fir
has been l

r.

art of a dat
minutes (m
” takes less

ploited in o
ove. Compl
aced on a c

als (MFG),
 and MFGs
imes five m

global goal”
ks that can
ur for the g

en measureme

gorithm: le

of the cloud
goal algorith

by [67]) and
of this algor

ivided into
nter in every

that the hi
rst step, the
east recent

acenter and
maybe even

than 10 mil

order to m
ex tasks, w

cloud while
can be p

s can be see
mapcells. A
” is assigne
be seen as n
lobal goal.

nt feedback go

east recentl

d robot a ge
hm. This ge

d has its goa
rithm can b

five times f
y mapcell is
gher the vis
e robot’s cu
tly visited i

d compare t
longer), a

lliseconds.

make the clo
which we can

less compl
laced local

en in Figure
mapcell in

ed to mapc
necessary in

oals and globa

ly visited

eneral area c
eneral cover
al to find an
e seen in Fi

five mapcel
 increment
siting count
urrent posit
is mapcell(

to monthly
a simple ta

oud robot m
n call globa
lex tasks, w
lly on the
e 4-6. In thi
the grid at

cell(5)(0) b
n order to c

al goals.

coverage al
rage algorit

n area that t
igure 4-7.

lls, which a
ted every tim
ter, the long
tion is at m
(4)(0), sinc

y trends” ca
ask such a

more robus
al goals, ca

which we ca
robot. Th

is example
 x, y, can b

by a modul
complete th

gorithm wa
thm is calle
he robot ha

ll contains
me the robo
ger time ag

mapcell(0)(4
e it has th

an
as

st
an
an
he

a
be
le

he

as
ed
as

a
ot
go
4)
he

m
e
co
th
T
a
re

ti
re
th
a
ro

4

In
o
se
te
o

Figure 4-7:

In th
mapcell(4)(0
ntering a n
ounters are
he highest v

This continu
nother glob
ecently visit

Anot
imestamp i
ecently visit
his is that y
s opposed t
obot enters

4.1.5 Me

n order to c
of section 4.
earch for a
emperature

origin of the

 An exampl

he second an
0) and con
new mapcel
e recalculat
visiting coun
ues until the
bal goal po
ted mapcell

ther more
in the previ
ted mapcell

you only nee
to the propo
 a new map

easuremen

create a clo
1, a measur

abnormal te
e value is f
 hotspot. An

le of a global g

nd third ste
tinuously i
ll. When th
ed and a n
nter and is t
e global_goa
olicy. The r
l.

intuitive w
ious visited
l will then b
ed to update
osed algorith
pcell. Implem

t feedback

ud robot th
rement feed
emperature
found, the a
n example o

goal algorithm

ep the robot
increment t
he robot fin
ew global g
therefore th
al_manager

robot may d

way of ach
d mapcell w
be the mapc
e the timest
thm where a
mentation o

k goal exam

hat could sa
dback algor
e values on
algorithm a
of the algori

m to decide a

t starts mov
the visiting

nally arrives
goal is sele
he mapcell t
r, briefly de
do local ta

hieving the
when movin
cell with the
tamp of one
all mapcells
of such an a

mple algorit

atisfy the us
rithm was im
n the path t
aims to loc
ithm can be

Network

major task.

ving toward
g counters o
s at mapcel

ected. This t
that has bee
escribed in s
sk while m

same beh
ng into anot
e earliest tim
e mapcell w
s need to be
algorithm is

thm

se-case pres
mplemented
to a global

cate the tem
e seen in Fig

k-Aware Cloud Ne

ds the globa
of every m
ll(4)(0), all
time mapce
en least rece
section 4.1.1

moving to a

havior is b
ther mapce

mestamp. T
when moving
e updated ev
s left for futu

sented in th
d that has a
l goal. If a
mperature h
gure 4-8.

etworked Robot | 3

3

al goal set a
mapcell whe

l the visitin
ell(0)(0) ha
ently visited
1, decides o

another leas

by putting
ell. The leas
he benefit o
g to another
very time th
ure work.

he beginnin
as its goal t
an abnorma
hotspot; th

37

37

at
n

ng
as
d.
n
st

a
st
of
r,

he

ng
to
al

he

38

o
th
tr
v
w
in
m
d
“c

m
te
H
av
b
co
d
lo

4

W
th
F
M
m

* h

8 | Network-Aware

Figure 4-8:

An ar
of the algorit
hat a hotspo
raveling fro

value. By fin
which is to l
nvestigation

mapcell(2)(2
directions” a
checked dir

As ca
mapcells for
emperature

However, in
verage tem

be the new
ontinues un

directions”;
ower averag

4.1.6 Me

When imple
he robot po

Figure 4-9.
Meter*, can
module can

http://kestrelm

e Cloud Networke

 An exampl

rea is once
thm is to sc
ot has form
om mapcell
nding the a
ocate the or

n cell” (Cu
2). The algo
and the ma
rection”; sin

an be seen i
r their aver
e than the
 (3) the rob
perature th
“current IC

ntil all surr
meaning th

ge temperat

erger modu

menting th
osition to a
It turns ou
only publis
publish pos

meters.com/prod

d Robot

le of an algori

again divid
can for abno

med somewh
l(2)(3) to m
abnormal te
rigin of the
rrent IC) t

orithm then
apcell visite
nce it had a

in (2) in Fi
rage tempe
“current IC

bot finds tha
hen the “cur
C” as well a
rounding m
hat the hots
ture.

ule

e cloud rob
temperatur

ut that the t
sh tempera
sition measu

ducts/kestrel-40

ithm that decid

ded into a g
ormal temp
here in the d
mapcell(2)(2
emperature
e hotspot. Th
to the map

n continues
ed before fin
lower avera

igure 4-8, th
eratures. If
C”, that m
at the avera
rrent IC”. Th
as mark th

mapcells of a
spot has bee

bot, a proble
re measure
temperatur

ature measu
urements at

000-weather-m

des a sub-task

grid of five t
perature val
datacenter.
2) the robo

value, the
he second s

pcell where
to mark sur
nding the a
age tempera

he robot wi
a surround

mapcell is m
age tempera
he algorithm
e previous
a “current I
en found si

em was disc
ement. The
re sensor us
urements at
t a much hi

eter

k to the major

times five m
ues, which
As seen in

ot finds an
algorithm

stage starts
 the abnor
rrounding m
abnormal v
ature.

ill then star
ding mapce
marked as
ature of map
m will now
IC as a “ch

IC” has bee
nce all surr

covered whe
problem ca

sed, Kestrel
t a rate of
gher rate.

r task.

mapcells. Th
if found wo
(1) in Figur
abnormal
enters its s
by assignin

rmal value
mapcells as

value (mapc

rt to check
ell has a lo
a “checked
pcell(3)(2)
assign map

hecked dire
en checked
rounding m

en trying to
an be best d
l Meter 40
3Hz while

he first stag
ould indicat
re 4-8, whe
temperatur
second stag
ng a “curren

was found
s “unchecke
cell(2)(3)) a

surroundin
ower averag
d direction”
has a highe

pcell(3)(2) t
ection”. Thi
as “checke

mapcells hav

synchroniz
described b
00 Weathe
the positio

ge
te
en
re
ge
nt
d;
ed
as

ng
ge
”.
er
to
is

ed
ve

ze
by
er
n

a
te
b
m
m
th
to

ca
m
th
a
m
m
m
m

Figure 4-9:

Illust
t a higher r
emperature

being sent
measuremen
measuremen
he Kestrell
ogether with

What
an be seen i

measuremen
heir measu
nd tempera

mapcell_ma
measuremen
merges tem
message.

 Merging p

trated in Fi
rate than th

e measurem
to the ma

nt that co
nt might hav
module wi

h a position

t can be do
in Figure 4-
nts. Both th
rements wi
ature measu
anager. In t
nt is closer t

mperature 2

osition and te

gure 4-9, th
he Kestrell

ment is mer
apcell_man
orresponds
ve been tak
ll be (2,2).

n where it w

one to preve
-10. In this
he move_b
ith a timest
urements th
the case se
to timestam
5 together

emperature da

he move_ba
Temperatu

rged in the
nager, it b

to what
ken at positi

This make
was not take

ent this, an
case anothe

base and th
tamp. The
hat have th
een in Figu

mp “b” than
with posit

ata based on th

ase module
ure Sensor.

Kestrell te
ecomes ha

position.
ion (1,2), th
es it so that
n.

nd how it w
er module a

he Kestrell
merger mo

he closest tim
ure 4-10, ti

timestamp
tion (2,2) a

Network

he newest pos

 publishes p
If the posi

emperature
ard to kno

Even tho
e newest po
t the tempe

was impleme
acts as a me
Temperatu

odule will th
mestamps a
imestamp “

p “a”. The m
and forwar

k-Aware Cloud Ne

sition update.

position me
ition measu

Sensor mo
ow which
ough the
osition valu
erature valu

ented in th
erger of the
ure Sensor
hen merge
and forwar
“c” of the

merger modu
rds it in ne

etworked Robot | 3

3

easurement
urement an
odule befor
temperatur
temperatur
e to arrive a

ue is merge

he prototype
two types o
will publis
the positio
d this to th
temperatur
ule therefor
ewly crafte

39

39

ts
nd
re
re
re
at
ed

e,
of
h
n

he
re
re
ed

40

4

T
d
F
im
a
ro

0 | Network-Aware

Figure 4-10

4.2 Netw

The cloud r
developmen
Figure 4-3,
mplementat
chieve the g
obot system

e Cloud Networke

0: Merging p

work-Awar

robot proto
t of a netw
this chapt

tion of netw
goals specif

m can be see

d Robot

osition and te

re Cloud N

otype prese
work-aware
ter discusse
work-aware
fied in Secti
en in Figure

emperature da

Networked

ented in th
e cloud rob
es the maj
e functional
on 1.4. An o

e 4-11.

ata based on ti

d Robot

he chapter
bot. Buildin
jor reasons
lity onto th
overview of

ime stamps.

4.1 was u
ng upon th
s behind d
e existing a
the propos

used as a
he architect
design choic
architecture
sal network-

base in th
ture seen i
ces and th
e in order t
-aware clou

he
n

he
to

ud

ca
cl
n
m
in
m
ei

4

T
d
ch
th
a
in

Figure 4-11

As w
an be migra
loud robot p

network mo
modules can
n the “brain

module. Suc
ither the clo

4.2.1 Mig

The idea wit
define all no
hanges unti
he realm of
pparent. Th
n Figure 4-1

1: An overvie

was presente
ated betwee
prototype, n

onitor modu
n also acces
n”-part of t
ch a migrat
oud or the r

grating mo

th ROS, an
ode relation
il the shutd

f unstable n
his thesis pr
12 below.

ew of the prop

ed in chapte
en the cloud
network mo
ules perform
s informati
the system,
tion order w
robot depen

odules in R

nd other com
nships at th

down of the
etwork envi
roposes two

posal network-

er 4.1.1, the
d and the ro
onitors are p
m continuo
on about th
, and if nee
will result

nding on its

ROS

mponent or
he beginnin
system. Ho

vironments,
o possible m

-aware system

e “brain”-pa
obot. Work
placed on b

ous profiling
he required
eded, issue
in the affec
current pos

riented fram
ng and then
owever, whe
a need for

methods to d

Network

m design.

art of the sy
king as an ex
both the rob
g of the net
quality of s
a migratio

cted modul
sition.

meworks, is
n refrain fr
en moving t
the migratio
do module

k-Aware Cloud Ne

ystem has m
xtension of

bot and the
twork cond
service for e

on order to
le having to

s to start al
rom making
this kind of
ion of modu
migration i

etworked Robot | 4

4

modules tha
f the existin
cloud. Thes

dition. Thes
each modul
the affecte

o migrate t

ll nodes an
g any majo
f system int
ules become
in ROS, see

41

41

at
ng
se
se
le

ed
to

nd
or
to
es
n

42

to
se
st
m
re
st
n
ch
n
in
th

m
m
n
th
sa
n

im
th
a
C

* M

2 | Network-Aware

Figure 4-12

The f
o a node, cu
een to the
teps to com

monitor to t
ecent chang
tate and sta

node from a
hoosing or

newly create
ntends to us
he node on

The s
more resour
memory. He
nodes will b
hat will forw
ave its state

node will the

It wa
mplement. T
he impleme
rchitecture

CNR presen

More info about

e Cloud Networke

2: Two metho

figure depic
urrently pla
right in the

mplete the m
the node on
ge in the ne
art a clone
another no
using rossp

ed node on
se to the m
the cloud.

second met
rce consumi
ere, two no
e hibernatin
ward the m
e and send i
en order the

as decided
Therefore, t
entation of
. These two

nted in Sect

t this library can

d Robot

ods of migratin

cts two exam
aced locally
e figure, is
migration. F
n the robot
etwork con
of itself rem
de can be

pawn*, whic
the cloud t

aster. Lastly

hod, seen t
ing method
des of the s
ng. A netwo

migration ord
it to the pro
e hibernatin

that the m
the method
network-aw

o ways of m
tion 2.1.3. F

n be found at ht

ng a module i

mples wher
y on the rob

the easiest
Firstly, a m
t, asking th
dition. The
motely on t
achieved b

ch can provi
then needs
y, the node

o the left in
, since it req
same kind
ork monito
der to the n
oxy, upon it
ng node on

method of u
d where you
ware functio

migrating m
For this to

ttp://wiki.ros.or

in ROS.

re a network
bot, to migra
t to implem

migration ord
he node to m
e node on th
the cloud w

by using a p
ide that kin
 to register
on the rob

n the figure,
quires the s
will run sim
r will send

node on the
t will receiv
the cloud to

using a pro
u startup and
onality onto

modules are
work, all t

rg/rosspawn.

k monitor is
ate to the c

ment. The m
der is sent
migrate to
he robot wi

with its curr
process ma

nd of service
r all the top
ot will shut

, is probably
state of the
multaneous
a migration

e robot. The
ve an order t
o wake up w

oxy node w
d shutdown
o the existin
parts of the

the message

ssues a mig
cloud. The f
method con

from the lo
the cloud b

ill then sav
rent state.

anagement
e from with
pics and ser
t down so to

y the more
entire node

sly, although
n order to a
e node on th
to hibernat

with the sav

would take
n nodes was
ng cloud ne
e clone-bas
e types, ma

gration orde
first method
nsists of fou
ocal networ
because of
e its curren
Launching
API of you

hin ROS. Th
rvices that i
o not distur

efficient bu
e to be left i
h one of th

a proxy nod
he robot wi
e. The prox
ed state.

too long t
s selected fo
etwork robo
sed model o
anifests, an

er
d,
ur
rk
a

nt
a

ur
he
it

rb

ut
in
he
de
ill
xy

to
or
ot
of

nd

o
re

4

A
aw
so

in
m
lo
in
d
a
b
co
sa
th
m

q
re
n
n
S
a
a
cl
a
m
d

in
to
n

other ROS e
ead and put

4.2.2 Lim

After workin
ware functi
ome import

The
nconsistenc

move_base
ocalization,
n the corrid

different var
 problem, h

bandwidth,
ollision. Illu
ame task, m
he path of t

much bandw

Figure 4-13

Anot
quite differe
esults from

node and a m
node placem
Seen in the u

nd the mas
 scenario w
loud. To the
nd the mas

master node
different pla

The s
ntroduces a
opics. The r

node will ret

elements de
t on the clou

mitations o

ng with (and
ionality, it
tant limitati

first impor
cy in path

module (s
and mappi

dor and mov
riables, whic
however, wh
since it nee
ustrated in

moving from
the dotted

width the ro

3: The robot
of the labo

ther limitat
ently under

m an experim
monitor nod

ments. The f
upper left o
ter (“Ma”) a

when the cli
e lower left
ster is on t
es in both t

aces. The ful

summary of
a substantia
reason for
trieve the li

escribed in S
ud clone be

of the cloud

d observing
became ap
ions that ha

tant limitat
selection of
ee Section
ing of the a
ve to anothe
ch are almo
hen the rob
eds to send
Figure 4-13

m the black
line will us

obot will use

taking two diff
oratory.

ion of ROS
r different
ment to me
de (server),
four differen
of the figure
and monito
ient and m
is the scena
he cloud. L
the cloud a
ll table of re

f results fro
al amount
this is that
ist of subsc

Section 2.2
efore startin

d robot pro

g) the cloud
pparent tha
ad to be tak

tion is dep
f the cloud

2.3 for fu
area. Even t
er, the mov
ost impossib
bot moves c
d more dat
3, the robot
dot to the w

se more ban
e, even for th

fferent paths, f

S is that to
network co

easure the r
when using

nt node pla
e is a scenar
or (“M”) nod

master nodes
ario where
Lastly, to th
and the rob
esults can b

om this expe
of extra de

t when pub
cribers of a

.1 that are n
ng the modu

ototype

robot proto
at the cloud
ken into con

icted in Fig
d robot. Th
urther deta
though the
ve_base mo
ble to predi
closer to obj
ta in order
t chooses tw
white dot. T
ndwidth. Th
he simplest

from the same

opics and se
onditions. T
round-trip d
g topics and
cements sce
rio where th
des are on th
s are on the
the monito

he lower rig
bot and the
e seen in Ap

eriment, see
elay in RTT

blishing a m
topic at the

Network

needed by t
ules.

otype in ord
d robot pro
sideration.

gure 4-13 a
e cloud rob

ails) in RO
robot is to
dule will ch
ict going by
jects or wal
to calculate

wo different
The problem
herefore, it
t tasks.

e origin to the

ervices (see
Table 4-1 s
delay time
d services w
enarios can
he client no
he cloud. N
e robot and
r and client
ght, is a sce
e client and
ppendix II.

en in Table
T for every

message on
e master no

k-Aware Cloud Ne

the program

der to devel
ototype and

and has to
bot prototy

OS to creat
start from

hoose a path
y experience
alls it tends
e a local p
t paths to c

m as stated a
is hard to

e same goal, in

e section 2
shows the
(RTT) betw

with differen
n be seen in
ode (“C”) is

Next to the u
d the monit
t nodes are

cenario whe
d monitor n

4-1, shows
y scenario c

a topic, the
ode only on

etworked Robot | 4

4

ms, has to b

lop network
d ROS pose

do with th
ype uses th
te paths, d
one positio
h from man
e. That is no
to use mor
ath to avoi
complete th
above is tha
predict how

n the corridor

.2.3) behav
summary o

ween a clien
nt delays an

Figure 4-14
in the robo

upper right i
tor is on th
on the robo

ere there ar
nodes are i

that service
compared t
e publishin

nce and the

43

43

be

k-
ed

he
he
do

n
ny
ot
re
id
he
at
w

r

ve
of
nt
nd
4.
ot
is

he
ot
re
n

es
to
ng
en

44

b
lo

ex
a
re

4 | Network-Aware

buffer this in
ookup the li

Table 4-1: S
t

Services
(ms)

Average

Std.Dev

Std.Err

Topics
(ms)

Average

Std.Dev

Std.Err

Figure 4-14

Based
xperiment d
nd the two
esource co

e Cloud Networke

nformation
ist of service

Summary of res
topics or servic

0ms

M-M M

22.45 2

4.73 2

1.06

0ms

M-M M

2.70

1.56 2

0.35 4

4: The four d

d on the i
described a
o scenarios
nsuming m

d Robot

. However,
e providers

sults when mea
es.

50ms

M-M

0

C

291.70 1

28.59 1

6.39 0

50ms

M-M

0

C

57.95 3

20.23 2

4.52 0

ifferent node p

nformation
bove, anoth
s, single-m

module. Th

a node tha
 at the mast

asuring the RT

ms

C-Ma

50m

C-M

4.40 183

.64 35.2

.37 7.8

ms

C-Ma

50m

C-M

.15 52.

.08 0.7

.47 0.1

placements in

n about ser
her minor e

master and
he module

at tries to ut
ter node eve

TT between two

ms

Ma

0ms

C-M

3.50 12.4

22 3.36

8 0.75

ms

Ma

0ms

C-M

35 0.00

5 0.00

7 0.00

n the experime

rvices and
xperiment w
multimaste
that was

tilize a serv
ery time ser

o nodes in diffe

Mo

50ms

C-Mo

5 118.80

8.46

1.89

Mo

50ms

C-Mo

0.00

0.00

0.00

ent to measure

topics that
was done in
er, affects
chosen for

vice repeate
rvice call is

erent settings a

0ms

Multi

0 14.05

3.32

0.74

0ms

Multi

2.25

0.44

0.10

e RTT in differ

t was gaine
n order to se
the startup

r this expe

edly needs t
executed.

and using eithe

50ms

Multi

163.90

2.85

0.64

50ms

Multi

53.45

2.58

0.58

rent scenarios

ed from th
ee how dela
p time of
eriment wa

to

er

s.

he
ay

a
as

Network-Aware Cloud Networked Robot | 45

45

move_base and the full table of results can be seen in Appendix III. What can be concluded
from the summary of results, seen in Table 4-2, is that the move_base module has a
minimum startup time of 5.3 seconds. Moreover, using only a single master results in an
exponential growth in startup time when the delay of the network is increased. The startup
time of a minimum of 5.3 seconds has to be taken into account when evaluating the
network-aware cloud robot with the chosen migration technique that uses startup and
shutdown of nodes. What can also be noted is that the move_base module would take
several minutes to start when using a single master while only a few seconds to start when
using a multimaster, when the network is subject to high round-trip latency. Due to the
nature of unstable network environments, where the robot can be connected to the cloud at
one time only to lose the connection the next moment, the use of only a single ROS master
would make the system stop every time the robot loses connection to the cloud. Therefore,
in order to develop network-aware functionality upon the cloud robot prototype, the
system must use several ROS masters. This can be done for example by using the
multimaster library*. Lastly, a small experiment was also conducted to stress test the
move_base module when it is placed on a cloud. What was found in that experiment is that
the move_base module will cease to function, stop giving move commands to the
actuators, when the round-trip latency of the network raises to around 160 milliseconds.

Table 4-2: Summary of results measuring the startup time of move_base under different conditions where “SM”
stands for “single-master” and “MM” for “multi-master”.

Delay (ms) 0ms
(SM)

50ms
(SM)

140ms
(SM)

0ms
(MM)

50ms
(MM)

140ms
(MM)

Average 13414.00 95688.00 230206.00 5350.00 5350.00 6112.00

Std.Dev. 854.01 1555.95 1556.01 236.11 182.21 246.82

Std.Err. 381.92 695.84 695.87 105.59 81.49 110.38

The reason for choosing the move_base module is that it is by far the most resource
consuming module in the cloud robot prototype. This was discovered during an
experiment to map the CPU usage of all modules. In that experiment, the robot was set to
move to the end of the corridor and back. The battery consumption, CPU execution time,
and different modules’ CPU usage was measured when the modules was placed locally on
the robot and remotely on the cloud. The full table of results from this experiment can be
seen in Appendix IV. The average bandwidth usage of move_base, when placed on the
cloud, is 3.4 Mbit/s. The reason why the amount of bandwidth used by the move_base
module is this high, is because the module is transmitting a lot of raw data from the kinetic
sensor. This could be improved by both improving the pathfinding, by pre-computing all
paths to a goal, and by optimizing the module to only transmit the most necessary data.

Another limitation of the cloud robot prototype is that the temperature sensor is set
to measure the temperature three times every seconds. The problem is that the program
does not take into consideration that the rate of change of temperature is proportional to
the difference between the temperature on the sensor and the temperature of its
surroundings. This results in a heat source looking skewed or larger than it might be in
reality. This could be corrected by applying Newton’s law of cooling in order to calculate
the “real” temperature at a certain position. However, there was not enough time to do this
and this was left out for future work.

* http://wiki.ros.org/multimaster_fkie.

46 | Network-Aware Cloud Networked Robot

4.2.3 Network-aware machine learning algorithm

The network-aware machine learning algorithm was developed to take the limitation of the
system described in 4.2.2 into account, while aiming to satisfy the two sub-goals presented
in Section 1.4. The algorithm described in this and following sections of the chapter works
to find the most efficient module placement for modules depending on the task, the
location where the task is to be executed, and the initial network condition at the location;
satisfying sub-goal number 2. A task can, as previously described in chapter 4.1.3, be all
from scanning a part of a room for abnormal temperature values to just moving the robot
from one point to another.

The benefit of having the network-aware machine learning algorithm try to find the
best placement policy, instead of having only a continuous evaluation of the network
condition and migrating modules on the fly, is that you can achieve an overall more
efficient and better migration policy. If modules are migrated every time on the fly when
the network condition get better or worse than a certain limit, you might end up with a lot
of unnecessary migration. Since migrating modules is expensive, you might end up with a
less efficient system than if you do not migrate any modules at all. By trying to find the
most efficient module placement while keeping the number of migrations during a task
relatively low, the algorithm satisfies sub-goal number 1 as specified in Section 1.4.

An overview of the proposed network-aware machine learning algorithm can be
seen in Figure 4-15. Before the start of a task the network is being constantly monitored by
a network profiler. The network profiler estimates the condition of the network and parses
this into two variables, Abw and Cl, which are forwarded to the machine-learning algorithm.
The machine-learning algorithm lookups the training set for the specific task at the specific
location. It then executes a classification algorithm to come to the conclusion if the
modules need to be migrated, or not, before the start of the task. This means that the
module placements will be static during the execution of the task. The migration decision
could include the options to say “migrations are only allowed x amount of times”, in order
to enable modules to migrate on the fly if the network goes down when a crucial module is
on the cloud. This however would take too much time to implements and was left out for
future work.

After the end of a task comes a phase in the algorithm which evaluates if the
migration decision was good or not. After an evaluation of the migration decision has been
done, the decision evaluation module inserts the newly gained data into the training set for
the specific task at the specific location, which makes the algorithm come full circle from
making a decision and then as time goes learns by classification and newly gained data.

4

T
cu
U
d
o
cu
a
o
ex

b
u
ra
d
C
a
in
in
p

Figure 4-15

4.2.4 Ne

The first ph
urrent state

Usually this
discussed in
operate depe
urrently ava
 new ratio

overview of h
xplanation

Equation 4-

In th
bandwidth o
used by the
atio is deriv

described in
Choosing the

fter put thr
ndicates ho
nformation

phase is: the

5: The machi
robot proto

twork prof

hase in the
e of the net
can be don

n section 4
ending on t
ailable band
called “ban

how much m
of this ratio

-1: The relatio
bandwidth

his equation
of the netw
robot. A w

ved this wa
n Section 4.2
e ratio to be

rough a norm
ow many m

that is nee
e current la

ne learning al
otype.

filing

e machine-l
twork. This
ne by measu
.2.2, the cl
the route ta
dwidth of th
ndwidth ra
more bandw
o can be see

onship between
.

n the availab
work, and th
way to pictur
ay, and not
2.5 works b
e expressed
malization p

more percen
eded by the
atency (Cl),

lgorithm used

learning alg
s is done by
uring the la
loud robot

aken to the
he network,
atio” (Rbw)
width the ro

en in Equati

ܴ௪ =
en the bandwid

ble bandwid
he current
re this ratio

t for examp
better when
 in this way
process. Th
nt of Cbw is
machine-le

, the curren

d to enable net

gorithm is
y doing con
atency and

requires d
goal. There
, or the curr
is introduc
obot can us
ion 4-1.

௪ܥ௪ܣ	= 	
dth ratio and a

dth (Abw) is
bandwidth
o can be se

ple in the in
the ratio an

y makes it ge
he bandwidt
s left from
earning algo
ntly used ba

Network

twork-aware f

acquiring
ntinuous pr
available b

different am
efore, instea
rently used
ced. This ne
e before fill

available band

s the curren
(Cbw) is th

een in Figur
nversed way
nd latencies
et closer in
th ratio is ex

the availa
orithm from
andwidth (C

k-Aware Cloud Ne

functionality i

informatio
rofiling of t

bandwidth.
mount of ba
ad of just lo
bandwidth
ew ratio gi
ling up the

dwidth and cu

ntly maximu
he bandwid
re 4-16. Th
y, is that th
s are on a s
scale to the
xpressed in

able bandw
m the netwo
Cbw), and t

etworked Robot | 4

4

in the cloud

n about th
the network
However, a
andwidth t

ooking at th
h of the robo
ives a bette
network. A

urrently used

um availabl
dth currentl
e reason th
he algorithm
similar scale
e latency axi

percent an
idth. So th
ork profilin
he currentl

47

47

he
k.
as
to
he
ot,
er

An

le
ly

he
m
e.
is

nd
he
ng
ly

48

av
p
4

b
w
m
p
re
ta

8 | Network-Aware

vailable ba
phase and th
4-17.

Figure 4-16

Figure 4-17

The c
between the
was created
messaging p
procedure o
equest for t
aking a tim

e Cloud Networke

andwidth of
he program

6: A descripti
and the cur

7: Overview o
condition a

current late
e robot and

by the auth
paradigm, a
of the progr
the current

mestamp and

d Robot

f the netwo
ms used to a

ive schematic
rrently availa

of which prog
and how this i

ency (Cl) is
the cloud.

hor. This pu
and echoes
ram can be
t latency by
d include th

ork (Abw). A
acquire the

of the bandw
able bandwidth

grams that are
information is

acquired by
The RTT w

ublish echo
s messages
e seen in Fi
y the netwo
his in a mes

An overview
e required i

idth ratio in r
h.

e used to acqu
s parsed for th

y measurin
was measure

program ru
containing

igure 4-18.
rk profiling
ssage which

w of the w
nformation

elation to the

ire informatio
he machine lea

g the round
ed by a pub
uns on top o

timestamp
Here, the

g module. I
h is publish

whole netwo
n can be see

currently use

on about the n
arning algorit

d-trip delay
blish echo p
of the publis
ps. An over
program w

It will then
hed on a top

ork profilin
en in Figur

ed bandwidth

network
thm.

y time (RTT
program tha
sh-subscrib
rview of th

will receive
continue b

pic to a nod

ng
re

T)
at
be
he

a
by
de

o
p
W
su
se

b
[6
d
th
b
o
p
fr

b

b

4

It
a
a
H
sp

on the cloud
proceed to e
When the m
ubtracts the
ent back to

Figure 4-18

The
bandwidth o
64] and ifst

does this by
he experim

benchmarkin
of the bash
programs ca
rom the two

Table 4-3: T
a

bash$ ifstat –

bash$ netper

4.2.5 Mig

t was decid
lgorithm na
dding of n

However, be
pecify the s

d. When th
echo the m

message arriv
e time of th
the networ

8: Simple ove

currently a
of the robot
tat [65]. Ifs
using oper

mental test b
ng program

h command
an be seen
o programs

Two examples
available bandw

–i wlan0 0.1

rf –H 192.16

gration dec

ded that a m
amed k-nea

new data to
efore explai
tructure of

he message
message back

ves to the n
he timestam
k profiling m

erview of how

available ba
t (Cbw), are
stat is a pro
rating system
bed is the “

m developed
ds that can

in Table 4-
can be seen

of how to acq
width (Abw) from

1

68.0.2

cision usin

migration d
arest neighb
o the traini
ining the d
the training

e arrives to
k by publis

node on the
mp in the m

module.

the publish ec

andwidth o
acquired b
ogram that
ms drivers
“/proc/net/
d by the HP
n be used t
-3. The actu
n in Append

quire the curre
m netperf, using

ng k-neares

decision will
bor (k-nn) b
ing set, an

details of th
g set.

the modul
shing it on
robot, the n
essage. The

cho program

of the netw
y using two

t reports int
to gather st

/dev” file. N
P informatio
to acquire
ual code us

dix V.

ently used ban
g the command

st neighbor

l be selecte
because it is
d because

he classifica

Network

le on the c
a topic to t

node takes a
e calculated

calculates the

ork (Abw) a
o external p
terface stati
tatistics. Th
Netperf is a
on network
the inform

sed for acqu

ndwidth (Cbw) f
line.

r algorithm

ed with the
s easy to im
of the resu

ation algorit

k-Aware Cloud Ne

cloud, that
the node o
another tim

d current lat

e current laten

and the cu
programs ca
tistics back
he driver th
a network p
ks division.
mation from
quiring this

from ifstat, an

m

help of a c
mplement, co

ults presen
thm, it is i

etworked Robot | 4

4

module wi
on the robo
mestamp an
tency is the

ncy.

rrently use
alled netper
to a user. I

hat is used i
performanc
An exampl

m these tw
informatio

nd the currently

classificatio
ompatible t

nted in [59]
important t

49

49

ill
t.

nd
en

ed
rf
It
n

ce
le

wo
n

y

n
to
].
to

50 | Network-Aware Cloud Networked Robot

The idea is, as specified in chapter 4.2.3, that there exists a tuple 〈݇ݏܽݐ, for 〈݊݅ݐ݈ܽܿ
every pair of specific task and specific location, and that each such tuple has a training set.
Such a training set is built up like a database of rows, where each row represent the
prerequisite information, migration decision, and evaluation parameters of a run of the
specific task at the specific location. The specification of a row can be seen in Table 4-4.
The first two parameters of a row are the parameters received during the network profiling
phase. Then comes the migration decision of that specific run, and lastly, three parameters
that are used during the evaluation phase as well as for data analysis. The benefit of these
training sets are that they can be uploaded to a world-wide knowledge database (such as
described in [26]) of training sets, which can be downloaded by robot that wants to
perform such a task at a similar location. By doing this, new robots does not need to
rediscover this knowledge since another robots may have already done the same task at a
similar location.

Table 4-4: The structure of a row in a training set.

<Rbw> <Cl> <Migration Decision> <Mission Status> <Btask> <Ttask>

The parameters that are used for making a migration decision are the first three:
Rbw, Cl, and Migration Decision (MD). In Figure 4-19 is an example of what the k-nearest
neighbor classification algorithm tries to do with a training set. In this example, which is
not actually accurate but rather tries to make it easier to explain, the whole graph is the
training set and each point is a row in the set. Each dot has a color, black or blue, which
represents if a module should be offloaded or not. If a migration decision needs to be made
at a place in the graph where there is no dot, selecting a row in the training set would not
solve the problem. What is done instead is that the k-nearest neighbor algorithm classifies
an area in the graph to either output the migration decision onload (when in the white
area) or offload (when in the blue shaded area). As more data is added to the training set
(the graph), the classification becomes more accurate.

th
e
a
C
d

ܴ
z
in
tr

fi
E
a
h
d

Figure 4-19

Calcu
he triple ܦܯ
qual to zero
s seen in Eq

Cl value of r
distance betw

ܴሺݔ, ,ݕ ݖ
Equation 4-

The i
by finding

n the trainin
raining set (

Equation 4-

The s
it for the da

Euclidean d
nother qua

held between
decision of t

9: An exampl

ulating the mܦሺݔ, ,ݕ ሻ, wݖ
o and offloa
quation 4-2
row n, yn is
ween the tw

, ,ሻݓ ܦ
-2: The definit

implementa
the Euclide
ng set. The
ሻ can beݓ)

-3: The Euclid

specific imp
ata after som
istance from

adruple set,
n these five
the current

le of what the

migration d
where x is C
ad when equ
2. A row is h
s the Rbw of
wo points P(

ሺ݊ሻܦ = ሾ0, ܰ
tion of a row i

ation of the
ean distance
Euclidean d

e seen in Equ

ݓ =
dean distance

plementatio
me trial an
m the curreܴሺݔ, ,ݕ ݖ
e rows with
run should

k-nn classific

decision (M
Cl, y is Rbw,
ual to one.
here specifi
f row n, zn

(x,y) and P(

ܰ െ 1ሿ,
in the training

k-nn algori
e between t
distance bet

quation 4-3.

= ඥሺݔ െ ݔ
between the c

on of k-nn in
d error. Th
ent run areݖ,ݓሻ, wh
the five sm

d be offloade

ation algorith

MD) can be s
and z is th
Each row in

ied as a qua
is the MD
(xn,yn).

ܰ : ݉ݑܰ
g set.

ithm in this
he two para
tween the m

ሻଶ + ሺݕ െ ݕ
current run an

n this proje
his means th
e selected fr
ere ܦሺ݉ሻ =

mallest value
ed (z equals

Network

hm tries to do.

seen as an o
e migration
n the traini

adruple of v
of row n, a

ݓݎ	݂	ݎܾ݁݉
s project aim
ameters, Rb

migration de

	ሻଶݕ
nd row n in the

ect uses k =
hat the five
rom the tra= ሾ0, ݇ െ 1ሿ. A
es to wn, to
s one) or on

k-Aware Cloud Ne

optimization
n decision o
ing set can b
variables wh
and wn is th

ݎݐ	݄݁ݐ	݊݅	ݏݓ
ms to find th
bw and Cl, an
ecision and

e training set.

5 since this
rows with

aining set a
A majority
decide if th

nloaded (z e

etworked Robot | 5

5

n problem o
onload whe
be describe
here xn is th
he Euclidea

݁ݏ	݃݊݅݊݅ܽݎ
he answer t
nd every row
row n in th

s was a goo
the smalles

and put int
vote is the

he migratio
equals zero)

51

51

of
n

ed
he
an

	ݐ
to
w

he

od
st
to
n
n
).

52 | Network-Aware Cloud Networked Robot

The equation of the majority vote can be seen in Equation 4-4. This equation in
conjunction with the specifications and equations above states that if there are more rows
with a migration decision of offload, than rows with the migration decision onload, in the
vicinity of the current migration decision (w in MD(x,y,z)), then the current migration
decision should be offload. The other way around means that the current migration
decision (w in MD(x,y,z)) should be onload.

ݖ = 	
۔ۖەۖ
,1ۓ ݖ

ୀ > 	 2݇	
0, ݖ

ୀ < 		 2݇		
Equation 4-4: Calculating the migration decision by majority vote.

4.2.6 Decision evaluation and evaluation parameters

After a task has ended, it is essential to evaluate if the decision that was made before the
start of the task was right or wrong, or in some cases less wrong than right. However, to do
an evaluation, there is a need to specify what information to use in an evaluation. It was
decided that an evaluation is to be based on the time it took to execute the task (Ttask), and
how much battery the task consumed (Btask).

As the OS of choice in this project was an Ubuntu Linux distribution, these
parameters can be calculated by reading specific files in system and process directories.
More specifically, the time it takes for a task to execute (Ttask) can be calculated by reading
the /proc/stat file [68] before the task started and once again after the task has ended. The
total time in jiffies, or “USER_HZ”, can be obtained by adding together all numbers after
the cpu line in the file, in order to create an accurate timestamp. The total execution time
of the task is obtained by subtracting the timestamp from before the start of the task with
the timestamp after the end of the task. It is possible to calculate the battery consumption
of the task by reading the two files charge_full and charge_now under the
/sys/class/power_supply/BAT0/ directory, before the start and after the end of a task. By
dividing the number in charge_now with the number in charge_full you can get a more
accurate reading of the battery level in percent, before and after the task. Subtracting the
battery level after the task with the battery level before the task gives the change in battery
charge, hence the battery consumption in percent.

The next problem is what to compare these two parameters against to make an
evaluation. Because of the lack of time, this project focuses on evaluating decisions to
offload modules before a task and leaves out the evaluation of migration decisions to put
modules locally on the robot. In the case where you want to evaluate a decision to offload
modules, the answer to what to compare the two parameters against would be the average
of the corresponding parameters when having the module on the robot. In order to get this
information, a small experiment was conducted to create two control values; one control
value for the battery consumption (CBtask) and one control value for the task completion
time (CTtask). The experiment was run on top of the test bed specified in chapter 3.4 while
having all the modules locally on the robot. The task presented to the robot was to run to
the end of the corridor and back to the beginning. The experiment consisted of twenty runs

Network-Aware Cloud Networked Robot | 53

53

and the summary of results of this experiment, when the CPU frequency was set to 1.6GHz
and power management was disabled, can be seen in Table 4-5.

Table 4-5: Summary of results from having the robot run to the end of the corridor and back with all modules
locally when having the CPU frequency set to 1.6GHz.

 CBtask – (%) CTtask – (s)
Average 0.004586 87.9286

Std.Dev. 0.000702 14.3815

We now have values that represents the performance of a run and two control
values to compare to in order to evaluate if the migration decision was good or bad. The
way to compare the acquired values to the control values is still up to discussion, but an
example could be to introduce a weight. Since migration in ROS in its current state is quite
resource expensive, a weight could be put on the acquired values to say that if the decision
performed only 5% worse than the control values it would still be an acceptable decision.
Such a weight could be defined as in Equation 4-5 where Vr stands for “validity ratio”,
which would be 1.05 if a decision is allowed to perform 5% worse than the control values. A
decisions that equals one in this figure would mean an acceptable decision, where a
decision that equals zero means another decision would have been better.

݊݅ݏ݅ܿ݁ܦ = 	 ۔ۖەۖ
ۓ 1, ቀ ௧ܶ௦ܥ ௧ܶ௦ቁ + ቀ ௧௦ቁ2ܤܥ௧௦ܤ 	≤ ܸ
0, ቀ ௧ܶ௦ܥ ௧ܶ௦ቁ + ቀ ௧௦ቁ2ܤܥ௧௦ܤ 	> ܸ			

Equation 4-5: A decision is allowed to perform worse than the control values in proportion to the validity
ratio.

When a decision has been evaluated, the information acquired during the network
profiling phase, the migration decision, and the evaluation values are added to the training
set of the specific task at the specific location as a new row (see the definition of a row in
Table 4-4). This makes the machine-learning algorithm comes full circle since as more data
is added to the training set, more accurate migration decisions can be made by the
machine-learning algorithm.

5

In
a
F
th

5

In
ro
th
m
tr
e
w
m
b

re
o
w
cl
th
b

5 Analy

n this chapt
nd analyzed

Furthermore
he major re

5.1 Majo

n this secti
obot with th
he specific t

months whil
raining set
ntries in th

was run as a
modules to a
be seen in Fi

Figure 5-1:

Here
epresents t

offloading w
where onloa
lassification
he blue area

be the best d

ysis

ter the majo
d. The expe
e, a reliabili

esults are dis

or results

ion the maj
he network
task describ
le running t
with 572 va

he training s
an overlay, i
a cloud or p
igure 5-1.

 Subset of th
that display

e, the x-ax
the bandwi
was the best
ading woul
n algorithm
a is where th
decision.

or results fr
eriment used
ity analysis
scussed in s

ajor results
k-aware func
bed in chap
the machin
alid measur
set was plot
in order to d
placing mod

he training se
ys what modu

xis represen
dth ratio (
t decision a
ld have bee

m calculates
he classifica

rom the exp
d the netwo

s is perform
section 5.4.

of the con
ctionalities

pter 3.4.1, in
ne-learning
rement afte
tted in a gra
decide if an
dules locall

et plotted by la
ule placements

nts the RT
(Cbw). A blu
and an ora
en the bes
that onload

ation algori

periments d
ork-aware c

med on the a

ntinuous exp
presented i

n the labora
algorithm d

er the data w
aph. Follow

n area shoul
ly on a robo

atency and ba
s is the most ef

TT latency
ue dot sign
nge triangl

st decision.
ding modul
ithm calcula

described in
cloud robot
acquired res

periment is
in chapter 4

atory corrid
described in
was cleaned

wing this, a c
d be consid
ot. The resu

ndwidth ratio
efficient.

of the ne
nifies a mig
e represent
 The white
les would b
ates that off

n chapter 3
presented i

esults in sec

s presented
4 was set ru

dor over the
n 4.2. This r
d. A subset
classificatio

dered best fo
ulting scatte

o and with an a

etwork and
gration dec
ts a migrat
e areas are

be the best d
floading mo

Analysis | 5

is presente
in chapter 4

ction 5.2 an

d. The clou
unning, wit

e span of tw
resulted in
of these 57

on algorithm
or offloadin
er graph ca

added overlay

d the y-axi
cision wher
tion decisio
e where th
decision an
odules woul

55

ed
4.

nd

ud
th

wo
a

72
m
ng
an

y

is
re
n

he
nd
ld

56

m
g
p
d
a
lo
v
ef
fo
b
to
F

x
re
se
ru
w
si
ta
li

6 | Analysis

The g
modules loc

raph only s
presents dat
does not tak

nalyze the
ocally on th

values above
fficient, all
or a new su

battery cons
o show the

Figure 5-2.

Figure 5-2:

The g
x- and y-axi
epresented
ection 4.2.6
un through

which is rep
imulation w
ake the five
ine is repres

graph seen
ally on a ro

shows a very
ta that is de

ke the migra
data and fi

he robot, wh
e 160 millis
values whe

ubset. The
sumption an

relation be

 Plotting a
including t

graph show
is represent
as red cros

6, is represe
h a power fi

presented
was done on
e second mi
sented as a

in Figure 5
obot based o
y general pi
erived from

ation time in
ind the trad
hen looking
seconds ten
ere the RTT
aim of this

nd task exe
etween band

subset of the t
trend lines.

ws all values
ts the band
sses and the
ented by a
t (because i
as a green
n the subse
igration tim
violet small

5-1 represen
on the valid
icture of the

m a variable
nto conside
deoff betwe

g specifically
nd to point
T latency wa
s new subs

ecution time
dwidth rati

training sets t

s where the
dwidth ratio
e task execu
blue dotted
it seemed t

n dotted lin
et of values

me (see secti
l dotted line

nts the area
dity ratio (V
e most effic
e defined by
eration. The
een offloadi
y on latency
t to local m
as lower th

set is to see
e. The grap
o and the t

task execution

latency was
o and the ta
ution time c
d line called
to fit the da
ne called P
s to show h
ion 4.2.2, T
e called Wit

s of offload
Vr) presente
cient modul
y the autho

erefore, ther
ing module
y and bandw

module place
an 160 mill

e how the b
h where the

task executi

 time against

s lower than
ask executi

control valu
d Local Mo
ata the best)
Power fit in
ow the tren

Table 4-2) in
th migratio

ding module
ed in section
le placemen
or. Furtherm
re was a nee
es and placi

dwidth ratio
ements bei
liseconds w
bandwidth
ese values w
ion time ca

the bandwidth

n 160 millis
ion time. A

ue (CTtask), p
odules. The
t) to create
n the grap
nd line look
nto account
n.

es or placin
n 4.2.6. Thi
nt and it als
more, it als
ed to furthe
ing module

o. Since mos
ng the mos

were selecte
affected th

were plotte
n be seen i

h ratio

seconds. Th
All values ar

presented i
values wer
a trend line

ph. Lastly,
ks when yo
t. This tren

ng
is

so
so
er
es
st
st

ed
he
ed
in

he
re
n

re
e,
a
u

nd

a
T
a
re
th
li
L

cl
F
ex
v
o
re
tr
w
d

The s
lso plotted

This can be
nd the tot
epresented
he two cont
ine fitting p

Linear fit. Th

Figure 5-3:

Equation 5-

What
loser to 10

Further ana
xecution. T

values with a
once again r
epresented
rend and w

which is repr
done on the

subset of va
to see how
seen in Fig

tal operatio
as a blue-d
trol values

program to c
his time the

 Plotting of
including t

-1: Deriving th

t can be se
units, the b

alysis was t
The resultin
a bandwidth

represented
as a blue d

was therefore
resented in
trend line t

alues where
w the bandw

ure 5-3. He
on time, de
dotted line c

by Equatio
create a tren
e values see

f a subset of th
trend lines.

݊݅ݐܽݎܱ݁
he total opera

en especial
bandwidth r
therefore ca
ng graph w
h ratio over
 as red cros
dotted line
e run throu
the graph a

to see how t

e the RTT l
width ratio a
ere, the valu
erived from
called Local
on 5-1. The
nd line whi

em to fit a co

he training set

݊	ܶ݅݉݁	ሺ݄ݑ
ation time in h

lly in Figur
ratio’s effec
arried out

when plottin
r 10 units, c
sses and the
 called Loc

ugh a linear
as a green d
the extra fiv

atency was
affects the t
ues are onc

m the cont
l Modules. T
values was
ch is repres
onstant grow

ts robot total o

ሻݏݎݑ = ܥ ௧ܶ
ours from the

re 5-2, is th
ct on the tas
to see how

ng a new su
can be seen
e task execu

cal Modules
fit program

dotted line c
ve seconds i

lower than
total operat
e again rep
rol values
This contro

s also analy
sented as a g
wth line bet

operation time

௧௦௦ܤܥ ൈ 3600
control value

hat when th
sk execution

w the latenc
ubset of th
in Figure 5

ution time c
s. The data

m to produc
called Linea
introduced f

n 160 millis
ting time of

presented as
presented

ol line was d
yzed and ru
green dotte
tter.

e against band

0	
es.

he bandwidt
n time start
cy affect th

he training
5-4. The dat
control valu
a seem to h
ce a linear f
ar Fit. A sim
from modu

Analysis | 5

5

econds wer
f the system
s red crosse
in 4.2.6, i

derived from
un through
ed line calle

dwidth ratio

th ratio get
t to pan out

he task tim
set, with a
ta points ar

ue (CTtask) i
have a linea
fit trend line
mulation wa
ule migratio

57

57

re
m.
es
is
m
a

ed

ts
t.

me
all
re
is
ar
e,
as
n

58

w
d

d
b
n
ru
o
co

8 | Analysis

would affect
dotted line c

Figure 5-4:

The
different net
battery can
network is w
unning the

or bandwidt
ontrol value

t the task ex
called With

 Plotting a

previous g
twork cond
potentially

working with
same task

th on the n
es can be se

xecution tim
migration.

subset of the t

graphs pres
ditions. How

be saved b
hout any se
another tw

network. Th
een in Figur

me. This sim

training sets t

sents how
wever, these
by running
et restriction
wenty times
he results o
re 5-5 and F

mulation tr

task execution

the perfor
e graphs do
the modul

ns to latenc
without im

of these tw
Figure 5-6.

rend line is

 time against

rmance dif
oes not sho
es remotely

cy or bandw
mposing any
wenty runs w

represente

latency with t

ffers when
ow how mu
y on a clou

width. The r
y restriction
when comp

ed as a viole

trend lines.

faced wit
uch time an
ud, when th
robot was se
ns in latenc
pared to th

et

th
nd
he
et
cy
he

5

T
st
p
a
la
el
C

Figure 5-5:

Figure 5-6:

5.2 Relia

The results
terile as po

produce reli
chieve as m
aptop was
liminate un

CPU change

 Average ba
placement

 Average ta
with differe

ability Ana

are assume
ossible, so t
iable result

many consis
disabled a

npredictable
s.

attery consum
with different

ask completion
ent local CPU

alysis

ed to be rel
that no exte
ts, the robo
stent runs a
and the CP
e behavior w

mption per task
t local CPU fr

n time compar
U frequency.

liable since
ernal variab
ot was assi
as possible.
PU frequen
when either

k comparison
frequency.

rison between

the experim
bles would
gned to co
Furthermo

ncy was co
r the battery

between local

local and rem

mental setu
influence t

mplete a s
ore, the pow
nfigured to

y level gets l

l and remote m

mote module p

up was crea
the results.

simple task
wer manage
o 1.6GHz,
lower or the

Analysis | 5

5

module

placement

ated to be a
 In order t
in order t

ement on th
in order t

e load on th

59

59

as
to
to
he
to
he

60 | Analysis

Two variables that need to be taken into consideration, when analyzing the
reliability of the results, is the unpredictable pathfinding by the move_base module and
the natural behavior of batteries. The charge in batteries sometimes unpredictably drops
more than usual and sometimes even recharge. Some test runs with the cloud robot would
even show that the robot would recharge during the run because of this. Even though these
two variables are unpredictable, they are affecting the system whether the modules are
placed locally on the robot or offloaded to the cloud. Therefore, they can be seen as natural
elements in the system and the results would reflect the real world much better than a
computer simulation.

5.3 Validity Analysis

The validity of the results could not be checked since there was no time to redo the
experiments in a real environment of a datacenter, and compare the results from such an
experiment to the results from the experiment in the corridor. The reason being that the
laboratory was scheduled for a renovation and the data center moved to another building.

5.4 Discussion

By looking at the graph produced by the machine learning algorithm, seen in Figure 5-1, it
looks like the proposed solution is actually able to map the most efficient module
placement to the network condition. Without specifying an actual limit in either bandwidth
ratio or latency, the proposed solution is able to find a border for when placing modules on
the cloud will be inefficient, by comparing results to a control value and classifying new
values on the fly. However, as can be seen in the graph, there is not nearly enough data
points to make a really accurate classification. For example, between 20 and 40
milliseconds RTT latency the graph implies that the bandwidth ratio does not matter and
that it will always be beneficial to place the modules on the cloud. This is clearly not true as
the move_base module needs a certain amount of bandwidth to function. This error
originates from not having enough data points in the vicinity of those areas, which resulted
in the classification algorithm being unable to correct the error that is easily found by the
human eye.

A question that arises from this problem is that acquiring these 572 measurements
took over two months, but how long will it actually take for the algorithm to make plausible
decisions? This may seem like a trivial matter, but it is not practical for a robot to take
several months to learn even such a simple task. However, this can be integrated with a
shared-knowledge platform, as presented in [26], so that another robot in a similar setting
can download this data and learn from it; making it so that new robots does not have to
take several months to function efficiently.

When looking more closely at the graph in Figure 5-2 it seems like as the
bandwidth ratio grows larger, the trend line moves closer to what looks to be an asymptote
around 78 seconds task execution time. On the left part of the graph, at around a
bandwidth ratio of 4.9 units, the trend line (labeled “Power fit” in the graph) crosses the
control line (labeled “Local modules” in the graph). The point where the two lines cross
acts as the border between when modules should be placed on the cloud and when
modules should be placed on the robot, when running a certain task at that specific
location with the specific module configuration. However, this trend line does not take the
migration time into account. Instead, when looking at the simulated trend line (labeled

Analysis | 61

61

“With migration” in the graph), where the 5 seconds migration time is taken into account,
the graph shows a not so promising result. The simulated trend line and the control value
line crosses at around a bandwidth ratio of 10 units; more than double the amount of
where the trend line without migration overhead crosses the control value. This means that
even though the migration overhead of 5 seconds may seem small, it has a negative effect
on the task execution time in this certain scenario. In many of those runs, the execution
time becomes the same (or in some cases longer) as when having modules locally on a
robot.

Even though Figure 5-2 shows that the task execution time can be higher or lower
than the control value depending on the bandwidth ratio, Figure 5-3 shows that the total
operation time, derived from the battery consumption and task time execution, does not
change a lot depending on the bandwidth ratio. The data points are quite spread out, but a
major part of the data points seem to indicate that it is possible to achieve a longer total
operation if modules are offloaded to a cloud. Furthermore, the trend line indicates that,
depending on the network condition, a robot can have up to an hour longer total operation
time by offloading modules. Although that is to be expected, since lowering the load on the
CPU should also lower the battery consumption. However, there is still a tradeoff where
offloading modules to a cloud increases the required bandwidth, which means that the
network card will see an increased load. In this experiment it seems that even though there
is an increased amount of data sent over the network, the robot can still save battery time
by offloading modules to a cloud.

Figure 5-4 shows how the task execution time changes depending solely on the RTT
latency when the bandwidth ratio is over 10 units; which means that the robot is not even
using one tenth of the available bandwidth. What can be seen in Figure 5-4 is that the data
points are once again spread out. Even though the data is spread out, there is a notable
linear trend that goes upwards; as the RTT latency increases, the task execution time
increases. However, even when the RTT latency is over 160 milliseconds, the trend line still
indicates that it is possible to have a task execution time that is lower than the control
value. On the other side, one thing that is worrisome is that the simulated trend line for
migration crosses the control line at 55 milliseconds RTT latency. This means that by using
the proposed method of migrating modules, it would only be beneficial to place modules
on a cloud if the system is run over a network that has a RTT latency lower than 55
milliseconds. The RTT latency when using a commercial cloud, e.g. Amazon Web Services,
is usually over 100 milliseconds, which means that the only feasible solution would be to
install a local cloud solution for offloading purposes.

Lastly, what can be gathered from Figure 5-5 and Figure 5-6, is that under stable
network conditions there is clearly a lot to be gained from offloading modules to a cloud;
10% decrease in battery consumption and 2.4 seconds (2.8%) faster task completion. What
is also interesting is that the results show that it is beneficial to change the local CPU
frequency, depending on whether the modules are offloaded to a cloud or placed locally on
the robot. When the modules are placed locally on the robot, it is better to set the CPU to a
high frequency. Even though the CPU will consume a higher amount of battery per second,
it will enable the robot to finish a task faster, which in turn lowers the energy consumption
per task. When modules are offloaded to a cloud, it is more beneficial to lower the
frequency of the CPU on the robot, in order to save battery consumption when possible.
The only thing that a higher frequency on the local CPU seem to provide, when the
modules are offloaded to a cloud, is the variance in measurements go down. The most
probable reason for this is that a low CPU frequency means that the program will compete
more with other programs running in the system. Sometimes there will be no backend
tasks that will compete with the program, while sometimes there might be a lot of

62 | Analysis

competition for execution time in the CPU. When the CPU is configured to operate with a
lower frequency it probably cannot handle this change. This means that you can have a
more predictable system if you configure the CPU to run at a high frequency.

 Conclusions and Future work | 63

6 Conclusions and Future work

This chapter will conclude the thesis report with a conclusion of the project in Section 6.1.
Section 6.2 discusses the limitations of the projects. This is followed by a description in
Section 6.3 of the future work that remains. The chapter concludes in Section 6.4 with
some reflections regarding the project.

6.1 Conclusions

This thesis project proposed a machine learning-based network aware framework solution
to solve the problems with having cloud robots in unstable network environments. The
goals of this thesis project were met since the proposed solution is able to save battery on
the cloud robots as well as choose the most appropriate module placements depending on
task, place, and network condition.

Looking at the results and taking into account the many hours of observing a cloud
robot working in an unstable network environment, the area of CNR would not benefit
from the proposed solution, since it has an inherent bottleneck in the training phase of the
machine learning algorithm. Currently all cloud robots that wants to use the proposed
solution would need to train for over 2 months to work efficiently. However, if connected
and integrated with a shared-knowledge platform on a global level, the proposed solution
could be very powerful, since all new robots would be able to skip the training phase by
downloading the knowledge.

A recommendation for the ROS community is to develop better support for
migrating modules within ROS. Even though this goes against the basic principles of ROS,
where all modules should be initiated at the start of the system and remain static, module
migration functionality would enable many powerful applications. Another
recommendation is to rework the service implementation so that it can handle buffering of
addresses (just as it can for topics), in order to reduce the time it takes to repeatedly make
a service call when the network is subject to high latency. Furthermore, future applications
should be developed with network awareness in mind, by decoupling functionality that
must be placed locally on the robot from functionality that can make use of the power of
the cloud.

I have learned a lot from this thesis project, since I had to learn and use a wide
variety of programs as well as develop drivers, program functionality on different layers,
and test the whole system myself. If I had to do it again I would limit the scope of the thesis
project even further and put more time into defining the goals, the purpose, and the
research methodology (specifically I would write chapters 1, 2, and 3 before starting to
develop the solution). This would have helped tremendously during the early- and middle-
stages of the project.

6.2 Limitations

The largest limitation of this thesis project was the limited amount of time to develop and
test the proposed solution before the renovation of the laboratory facilities in the middle of
August 2014. Because of this there were insufficient time to implement module migration
functionality into the solution. Furthermore, the limited amount of time also meant that it
was only possible to take 572 valid measurements during the experiment; this can be seen
in the results and Figure 5-1. During the middle-stages of the project, a lot of time was
dedicated to writing research papers that were published in various settings. Although the

64 | Conclusions and Future work

time was well spent and I gained a lot of experience, this time could have been put into
development and testing of the proposed solution.

Another large limitation was the fact that the TurtleBot navigation stack was a bit
inconsistent and would at times get stuck, hence all the applications had to be restarted.
This would happen randomly and the position of the modules did not matter. Although the
consistency of the current navigation stack is much better than that of the first generation
TurtleBot, there is still a need for further improvements.

The results were limited by the fact that the network profiling is done only once for
every task. Since there is no continuous profiling of the network, the proposed solution
cannot adapt to unpredictable network changes. This could be solved by implementing
continuous network profiling, however this was out of the scope of this thesis project due
to the limited amount of time. Furthermore, the experiment was only performed using a
single type of cloud robot, hence it is impossible tell from these results if another cloud
robot system would be able to improve the performance of a task and reduce its battery
consumption, by implementing the proposed solution.

6.3 Future work

As this thesis project was done by a single person, there was not enough time to develop
and implement a lot of the proposed functionality into a running solution; hence quite a lot
has been left for future work. Some of this future work includes implementing the proxy-
based module migration functionality (shown to the left in Figure 4-12) into the proposed
solution. It would also be interesting to expand the single-robot system into a multi-robot
system, where the knowledge gained from the machine learning-based network aware
framework could be shared between robots. Another important future work is to
implement continuous network profiling into the network aware framework, in order to
enable the robot to adapt to unpredictable network changes. Furthermore, the proposed
machine learning-based solution can currently only evaluate if an offloading migration
decision was right or wrong. Future work will also need to address how to evaluate an
onloading migration decision, in order to prevent the training set from becoming biased in
the favor of onloading.

Other future work includes improving the temperature sensing module by applying
Newton’s law of cooling, in order to increase the precision of the temperature
measurements compared to the “real” temperature at that location. It would also be
interesting to explore the possibilities to connect the proposed solution to an external
service, such as a Hadoop cluster where the data could be analyzed in order to find trends
that are invisible to the human eye. In order to improve the performance of the proposed
solution, the algorithms introduced in Section 4.1.2 and Section 4.1.4 could be improved as
stated in those sections.

6.4 Reflections

As this technology develops further, robots will be able to autonomously move around in
environments currently inhabited only by humans. This will surely be beneficial on many
levels; however, this technology will surely encounter some ethical and security issues.
These robots may go around and collect (on purpose or not) private information which can
be shared via the cloud. This may lead to many serious problems concerning misuse or
leakage of this information [12]. Furthermore, there will surely also be some ethical issues
regarding where these cloud robots are allowed to move around. Legislators are recently

Conclusions and Future work | 65

65

starting to acknowledge these issues around privacy and security [69], which is good since
cloud networked robots are surely here to stay.

 Bibliography | 67

Bibliography

[1] M. Resnick, S. Ocko and S. Papert, "LEGO, Logo, and Design,," Children's
Environments Quarterly, vol. 5, no. 4, pp. 14-18, 1988.

[2] R. A. Brooks and A. M. Flynn, "Fast, Cheap and Out of Control: A Robot Invasion
of the Solar System," Journal of The British Interplanetary Society, vol. 42, pp.
478-485, 1989.

[3] M. Fujita and H. Kitano, "Development of an Autonomous Quadruped Robot for
Robot Entertainment," Autonomous Robots, vol. 5, no. 1, pp. 7-18, 01 03 1998.
DOI: 10.1023/A:1008856824126.

[4] Sony Corporation, "Sony Launches Four-Legged Entertainment Robot," Sony
Corporation, 11 05 1999. [Online]. Available:
http://www.sony.net/SonyInfo/News/Press_Archive/199905/99-
046/index.html. [Accessed 27 12 2014].

[5] iRobot Corporation, "iRobot: Our History," iRobot, [Online]. Available:
http://www.irobot.com/About-iRobot/Company-Information/History.aspx.
[Accessed 27 12 2014].

[6] Clearpath Robotics Inc., "TurtleBot™ - Clearpath Robotics. TurtleBot is an open
source ROS robot," Clearpath Robotics Inc., [Online]. Available:
http://www.clearpathrobotics.com/turtlebot_2/. [Accessed 27 12 2014].

[7] iRobot Corporation, "iRobot-Create 2," iRobot Corporation, [Online]. Available:
http://www.irobot.com/About-iRobot/STEM/Create-2.aspx. [Accessed 27 12
2014].

[8] EZ-Robot Inc., "Revolution JD," EZ-Robot Inc., [Online]. Available:
http://www.ez-robot.com/Shop/AccessoriesDetails.aspx?productNumber=31.
[Accessed 27 12 2014].

[9] N. Ando, T. Suehiro, K. Kitagaki, T. Kotoku and W.-K. Yoon, "RT-Component
Object Model in RT-Middleware - Distributed Component Middleware for RT
(Robot Technology)," in 2005 IEEE International Symposium on Computational
Intelligence in Robotics and Automation, 2005. CIRA 2005. Proceedings, Espoo,
2005. DOI: 10.1109/CIRA.2005.1554319.

[10] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger, R.
Wheeler and A. Ng, "ROS: an open-source Robot Operating System," in Proc.
Open-Source Software workshop of the International Conference on Robotics
and Automation (ICRA), Kobe, 2009.

[11] Open Source Robotics Foundation, "ROS.org | Powering the world's robots,"
Open Source Robotics Foundation, [Online]. Available: http://www.ros.org/.
[Accessed 30 12 2014].

[12] K. Kamei, S. Nishio, N. Hagita and M. Sato, "Cloud Networked Robotics," IEEE
Network, vol. 26, no. 3, pp.28-34, 17 05 2012.
DOI:10.1109/MNET.2012.6201213.

[13] W. Voorsluys, J. Broberg and R. Buyya, "Introduction to Cloud Computing," in
Cloud Computing: Principles and Paradigms, R. Buyya, J. Broberg and A.
Goscinski, Eds., Hoboken, NJ: John Wiley & Sons, Inc., 2011, pp. 1-41. DOI:
10.1002/9780470940105.ch1.

[14] R. Buyya and S. Venugopal, "Market-Oriented Computing and Global Grids: An
Introduction," in Market-Oriented Grid and Utility Computing, R. Buyya and K.

68 | Bibliography

Bubendorfer , Eds., Hoboken, NJ: John Wiley & Sons, Inc., 2009, pp. 24-44.
DOI: 10.1002/9780470455432.ch1.

[15] M. Hamdaqa and L. Tahvildari, "Cloud Computing Uncovered: A Research
Landscape," in Advances in Computers, vol. 86, A. Hurson and A. Memon, Eds.,
Elsevier, 2012, pp. 41-85. DOI: 10.1016/B978-0-12-396535-6.00002-8.

[16] P. Mell and T. Grance, "The NIST Definition of Cloud Computing," National
Institute of Standards and Technology, Gaithersburg, 2011.

[17] I. Foster, Y. Zhao, I. Raicu and S. Lu, "Cloud Computing and Grid Computing
360-Degree Compared," in Grid Computing Environments Workshop, 2008.
GCE '08, Austin, TX, 2008. DOI: 10.1109/GCE.2008.4738445.

[18] G. B. Kandiraju, H. Franke, M. D. Williams, M. Steinder and S. M. Black,
"Software defined infrastructures," IBM Journal of Research and Development,
vol. 58, no. 2/3, pp. 2:1-2:13, 15 04 2014. DOI: 10.1147/JRD.2014.2298133.

[19] "AWS | Amazon Elastic Compute Cloud (EC2) - Scalable Cloud Hosting," Amazon
Web Services, Inc., [Online]. Available: https://aws.amazon.com/ec2/. [Accessed
30 12 2014].

[20] "iCloud," Apple Inc., [Online]. Available: https://www.icloud.com/. [Accessed 30
12 2014].

[21] "Microsoft Cloud," Microsoft, [Online]. Available:
http://www.microsoft.com/enterprise/microsoftcloud/default.aspx. [Accessed
30 12 2014].

[22] D. Lorencik and P. Sincak, "Cloud robotics: Current trends and possible use as a
service," in 2013 IEEE 11th International Symposium on Applied Machine
Intelligence and Informatics (SAMI), Herl'any, 2013. DOI:
10.1109/SAMI.2013.6480950.

[23] G. Hu, W. P. Tay and Y. Wen, "Cloud Robotics: Architecture, Challanges and
Applications," IEEE Network, vol. 26, no. 3, pp. 21-28, 17 05 2012. DOI:
10.1109/MNET.2012.6201212.

[24] M. Roth, D. Vail and M. Veloso , "A Real-time World Model for Multi-Robot
Teams with High-Latency Communication," in Proceedings. 2003 IEEE/RSJ
International Conference on Intelligent Robots and Systems, 2003. (IROS
2003), Las Vegas, Nevada, 2003. DOI: 10.1109/IROS.2003.1249244.

[25] L. E. Parker, K. Fregene, Y. Guo and R. Madhavan, "Distributed Heterogeneous
Sensing for Outdoor Multi-Robot Localization, Mapping, and Path Planning," in
2002 NRL Workshop Multi-Robot Systems: From Swarms to Intelligent
Automata, Washington, DC, 2002.

[26] M. Waibel, M. Beetz, J. Civera, R. D’Andrea, J. Elfring, D. Gálvez-López, K.
Häussermann, R. Janssen, J. Montiel, A. Perzylo, B. Schießle, M. Tenorth, O.
Zweigle and R. v. d. Molengraft, "RoboEarth: A World Wide Web for Robots,"
IEEE Robotics & Automation Magazine, vol. 18, no. 2, pp. 69-82, 16 06 2011.
DOI: 10.1109/MRA.2011.941632.

[27] L. Turnbull and B. Samanta, "Cloud Robotics: Formation Control of a Multi
Robot System Utilizing Cloud Infrastructure," in 2013 Proceedings of IEEE
Southeastcon, Jacksonville, FL, 2013. DOI: 10.1109/SECON.2013.6567422.

[28] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran, F. F. Kong, A.
Kumar, K. D. Meng and G. W. Kit, "DAvinCi: A Cloud Computing Framework for
Service Robots," in 2010 IEEE International Conference on Robotics and
Automation (ICRA), Anchorage, AK, 2010. DOI: 10.1109/ROBOT.2010.5509469.

[29] Q. Lindsey, D. Mellinger and V. Kumar, "Construction with quadrotor teams,"

Conclusions and Future workBibliography | 69

69

Autonomous Robots, vol. 33, no. 3, pp. 323-336, 01 10 2012. DOI:
10.1007/s10514-012-9305-0.

[30] Y.-Y. Chen, J.-F. Wang, P.-C. Lin, P.-Y. Shih, H.-C. Tsai and D.-Y. Kwan,
"Human-Robot Interaction Based on Cloud Computing Infrastructure for Senior
Companion," in 2011 IEEE Region 10 Conference TENCON 2011, Bali, 2011. DOI:
10.1109/TENCON.2011.6129046.

[31] B. Kehoe, A. Matsukawa, S. Candido, J. Kuffner and K. Goldberg, "Cloud-Based
Robot Grasping with the Google Object Recognition Engine," in 2013 IEEE
International Conference on Robotics and Automation (ICRA), Karlsruhe,
Germany, 2013. DOI: 10.1109/ICRA.2013.6631180.

[32] M. Tenorth, K. Kamei, S. Satake, T. Miyashita and N. Hagita, "Building
Knowledge-enabled Cloud Robotics Applications using the Ubiquitous Network
Robot Platform," in 2013 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS), Tokyo, Japan, 2013. DOI:
10.1109/IROS.2013.6697184.

[33] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu, R. Chandra and
P. Bahl, "MAUI: Making Smartphones Last Longer with Code Offload," in
Proceedings of the 8th international conference on Mobile systems, applications,
and services (MobiSys '10), New York, NY, USA, 2010. DOI:
10.1145/1814433.1814441.

[34] Y.-C. Wu, M.-C. Teng and Y.-J. Tsai, "Robot Docking Station for Automatic
Battery Exchanging and Charging," in Proceedings of the 2008 IEEE
International Conference on Robotics and Biomimetics, Bangkok, Thailand,
2009. DOI: 10.1109/ROBIO.2009.4913144.

[35] J. Zhang, G. Song, Y. Li, G. Qiao and Z. Li, "Battery Swapping and Wireless
Charging for a Home Robot System with Remote Human Assistance," IEEE
Transactions on Consumer Electronics, vol. 59, no. 4, pp. 747-755, 23 12 2013.
DOI: 10.1109/TCE.2013.6689685.

[36] J. J. Leonard and H. F. Durrant-Whyte, "Simultaneous Map Building and
Localization for an Autonomous Mobile Robot," in IEEE/RSJ International
Workshop on Intelligent Robots and Systems '91. 'Intelligence for Mechanical
Systems, Proceedings IROS '91, Osaka, 1991. DOI: 10.1109/IROS.1991.174711.

[37] A. Sanfeliu, N. Hagita and A. Saffiotti, "Network Robot Systems," Robotics and
Autonomous Systems, vol. 56, no. 10, pp. 793-797, 2008. DOI:
10.1016/j.robot.2008.06.007.

[38] T. Akimoto and N. Hagita, "Introduction to a Network Robot System," in
International Symposium on Intelligent Signal Processing and
Communications, 2006. ISPACS '06, Yonago, 2006. DOI:
10.1109/ISPACS.2006.364842.

[39] James Kuffner (Google), "Cloud-Enabled Humanoid Robots," in Presentation at
2010 10th IEEE-RAS International Conference on Humanoid Robots
(Humanoids 2010 Workshop), Nashville, 2010.

[40] G. Mohanarajah, D. Hunziker, R. D’Andrea and M. Waibel, "Rapyuta: A Cloud
Robotics Platform," IEEE Transactions on Automation Science and Engineering,
vol. PP, no. 99, pp. 1-13, 11 07 2014. DOI: 10.1109/TASE.2014.2329556.

[41] E. Guizzo , "How Google's Self-Driving Car Works," IEEE Spectrum, 18 10 2011.
[Online]. Available: http://spectrum.ieee.org/automaton/robotics/artificial-
intelligence/how-google-self-driving-car-works. [Accessed 15 01 2015].

[42] Kiwa Systems, "Kiva’s warehouse automation system is the most powerful and
flexible Automated Storage and Retrieval System (AS/RS) available for

70 | Bibliography

automating DCs," Kiwa Systems, [Online]. Available:
http://www.kivasystems.com/solutions/. [Accessed 15 01 2015].

[43] J. Markoff, "New Research Center Aims to Develop Second Generation of
Surgical Robots," New York Times, 23 10 2014. [Online]. Available:
http://www.nytimes.com/2014/10/23/science/new-research-center-aims-to-
develop-second-generation-of-surgical-robots.html. [Accessed 15 01 2015].

[44] "VINBOT | VINBOT Official Website," VINBOT, [Online]. Available:
http://vinbot.eu/. [Accessed 15 01 2015].

[45] T. Foote, "Distributions - ROS Wiki," Open Source Robotics Foundation, 22 07
2014. [Online]. Available: http://wiki.ros.org/Distributions. [Accessed 15 01
2015].

[46] T. Foote and D. Thomas, "Naming Conventions for Catkin Based Workspaces,"
03 07 2014. [Online]. Available: https://github.com/ros-
infrastructure/rep/blob/master/rep-0128.rst. [Accessed 15 01 2015].

[47] R. Baldoni, M. Contenti and A. Virgillito, "The Evolution of Publish/Subscribe
Communication Systems," in Future directions in distributed computing,
Heidelberg, Springer-Verlag, 2003, pp. 137-141.

[48] E. Ackerman, "Interview: TurtleBot Inventors Tell Us Everything About the
Robot," 26 03 2013. [Online]. Available:
http://spectrum.ieee.org/automaton/robotics/diy/interview-turtlebot-inventors-
tell-us-everything-about-the-robot. [Accessed 17 01 2015].

[49] F. Dellaert, D. Fox, W. Burgard and S. Thrun, "Monte Carlo Localization for
Mobile Robots," in Proceedings. 1999 IEEE International Conference on
Robotics and Automation, 1999, Detroit, MI, 1999. DOI:
10.1109/ROBOT.1999.772544.

[50] D. Fox, "Adapting the Sample Size in Particle Filters Through KLD-Sampling,"
International Journal on Robotics Research (IJRR), vol. 22, no. 12, pp. 985-
1003, 2003.

[51] D. Fox, "KLD-Sampling: Adaptive Particle Filters," in Advances in Neural
Information Processing Systems 14 (NIPS-01), MIT Press, 2001.

[52] "OpenSLAM.org," [Online]. Available: http://openslam.org/gmapping.html.
[Accessed 19 01 2015].

[53] G. Grisetti, C. Stachniss and W. Burgard, "Improving Grid-based SLAM with Rao-
Blackwellized Particle Filter by Adaptive Proposasls and Selective Resampling,"
in Proceedings of the 2005 IEEE International Conference on Robotics and
Automation, 2005. ICRA 2005, 2005. DOI: 10.1109/ROBOT.2005.1570477.

[54] G. Grisetti, C. Stachniss and W. Burgard, "Improved Techniques for Grid
Mapping with Rao-Blackwellized Particle Filters," IEEE Transactions on
Robotics, vol. 23, no. 1, pp. 34-46, 05 02 2007. DOI: 10.1109/TRO.2006.889486.

[55] H. P. Moravec, "Sensor Fusion in Certainty Grids for Mobile Robots," AI
Magazine, vol. 9, no. 2, pp. 61-74, 07/08 1988. ISSN: 0738-4602.

[56] H. W. Keat and L. S. Min, "An Investigation of the Use of Kinect Sensor for
Indoor Navigation," in TENCON 2012 - 2012 IEEE Region 10 Conference, Cebu,
2012. DOI: 10.1109/TENCON.2012.6412246.

[57] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik and A. Patti, "CloneCloud: Elastic
Execution between Mobile Device and Cloud," in Proceedings of the Sixth
Conference on Computer Systems (EuroSys '11), Salzburg, Austria, 2011. DOI:
10.1145/1966445.1966473.

[58] S. Kosta, A. Aucinas, P. Hui, R. Mortier and X. Zhang, "ThinkAir: Dynamic

Conclusions and Future workBibliography | 71

71

resource allocation and parallel execution in the cloud for mobile code
offloading," in 2012 Proceedings IEEE INFOCOM, Orlando, FL, 2012. DOI:
10.1109/INFCOM.2012.6195845.

[59] H. Eom, P. St Juste, R. Figueiredo, O. Tickoo, R. Illikkal and R. Iyer, "Machine
Learning-Based Runtime Scheduler for Mobile Offloading Framework," in 2013
IEEE/ACM 6th International Conference on Utility and Cloud Computing
(UCC), Dresden, 2013. DOI: 10.1109/UCC.2013.21.

[60] M. Fallon, S. Kuindersma, S. Karumanchi, M. Antone, T. Schneider, H. Dai, C. P.
D’Arpino, R. Deits, M. DiCicco, D. Fourie, T. Koolen, P. Marion, M. Posa, A.
Valenzuela, K.-T. Yu, J. Shah, K. Iagnemma, R. Tedrake and S. Teller, "An
Architecture for Online Affordance-based Perception and Whole-body Planning,"
Cambridge, 2014.

[61] DARPA, "Upgraded Atlas Robot to Go Wireless as the Stakes Are Raised for the
DARPA Robotics Challenge Finals," 20 01 2015. [Online]. Available:
http://www.theroboticschallenge.org/upgraded-atlas-press-release. [Accessed 21
01 2015].

[62] W. J. Beksi and N. Papanikolopoulos, "Point Cloud Culling for Robot Vision
Tasks Under Communication Constraints," in 2014 IEEE/RSJ International
Conference on Intelligent Robots and Systems (IROS 2014), Chicago, IL, USA,
2014. DOI: 10.1109/IROS.2014.6943088.

[63] F. Nordlund, M. Higashida, Y. Teranishi, S. Shimojo, M. Yokoyama and M.
Shimomura, "Designing of a Network-Aware Cloud Robotic Sensor Observation
Framework," in 2014 IEEE 38th International Computer Software and
Applications Conference Workshops (COMPSACW), Västerås, 2014. DOI:
10.1109/COMPSACW.2014.51.

[64] Jones, Rick;, "The Netperf Homepage," Hewlett-Packard Company, [Online].
Available: http://www.netperf.org/netperf/. [Accessed 06 01 2015].

[65] G. Roualland, "Ifstat," 01 02 2004. [Online]. Available:
http://gael.roualland.free.fr/ifstat/. [Accessed 06 01 2015].

[66] M. Higashida, "Autonomic Datacenter Operation under the concept of Cloud
Network Robotics," in IEICE Technical Report, Osaka, 2013.

[67] M. A. Batalin, "Cooperative Algorithms for Mobile Robots and a Sensor
Network," 2004.

[68] M. Kerrisk, "proc(5) - Linux manual page," 31 12 2014. [Online]. Available:
http://man7.org/linux/man-pages/man5/proc.5.html. [Accessed 06 01 2015].

[69] A. A. Proia, D. Simshaw and K. Hauser, "Consumer Cloud Robotics and the Fair
Information Practice Principles: Recognizing the Challenges and Opportunities
Ahead," Minnesota Journal of Law, Science & Technology, Forthcoming, 2014.
DOI: 10.2139/ssrn.2466723.

 Appendix I: TC network controlling example | 73

Appendix I: TC network controlling example

This appendix will describe an actual example of the settings used in tc to simulate various
network conditions. The example will make use of queuing disciplines (qdisc) and
hierarchical token buckets (htb) in order to induce the network with latency and bandwidth.
The example will set the bandwidth of the wireless network link to 1Mbit/s and 135ms
latency. The settings can be seen in the table below.

tc qdisc add dev wlan0 root handle 1: htb default 10

tc class add dev wlan0 parent 1: classid 1:1 htb rate 1000kbit burst 500k

tc qdisc add wlan0 parent 1:1 handle 10: netem delay 135ms

tc filter add dev eth0 parrent 1: protocol ip u32 match ip dst 10.0.0.2 flowid 1:1

 Appendix II: Detailed results of RTT experiment | 75

Appendix II: Detailed results of RTT experiment

The RTT when using ROS services under various latency and module placements. See
Section 4.2.2 for further details about the experiment.

ms (Master-Monitor) 0 20 50 100 ms (Client-Master) 0 20 50 100
1 19 126 278 539 1 14 75 168 335
2 24 136 282 532 2 13 79 176 319
3 19 126 283 526 3 14 76 181 321
4 22 134 284 528 4 20 78 170 316
5 35 131 278 556 5 13 78 168 323
6 31 139 277 541 6 13 88 172 323
7 19 142 280 532 7 15 83 170 323
8 23 158 283 535 8 14 79 173 321
9 27 131 281 529 9 14 83 172 322

10 20 171 280 530 10 14 74 275 337
11 30 128 276 526 11 17 77 171 322
12 22 132 285 532 12 15 77 170 396
13 19 143 288 535 13 15 88 169 319
14 18 124 279 551 14 14 78 170 324
15 21 128 385 531 15 14 78 169 319
16 20 124 281 536 16 14 105 170 316
17 22 131 301 528 17 15 83 176 322
18 20 138 361 535 18 13 82 177 326
19 18 128 287 532 19 14 82 296 322
20 20 131 285 534 20 13 99 177 322

Average 22.45 135.05 291.70 534.40 Average 14.40 82.10 183.50 326.40
Standard Deviation 4.73 11.67 28.59 7.67 Standard Deviation 1.64 7.86 35.22 17.18
Sample Size 20.00 20.00 20.00 20.00 Sample Size 20.00 20.00 20.00 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 2.07 5.12 12.53 3.36 Margin of Error 0.72 3.44 15.44 7.53
Upper Bound 24.52 140.17 304.23 537.76 Upper Bound 15.12 85.54 198.94 333.93
Lower Bound 20.38 129.93 279.17 531.04 Lower Bound 13.68 78.66 168.06 318.87
Max 35.00 171.00 385.00 556.00 Max 20.00 105.00 296.00 396.00
Min 18.00 124.00 276.00 526.00 Min 13.00 74.00 168.00 316.00
Range 17.00 47.00 109.00 30.00 Range 7.00 31.00 128.00 80.00
Variance 22.37 136.26 817.17 58.78 Variance 2.67 61.78 1240.79 295.09
Standard Error 1.06 2.61 6.39 1.71 Standard Error 0.37 1.76 7.88 3.84
Median 20.50 131.00 282.50 532.00 Median 14.00 79.00 171.50 322.00

76 | Appendix II: Detailed results of RTT experiment

ms (Client-Monitor) 0 20 50 100 ms (Multimaster) 0 20 50 100
1 9 58 115 221 1 14 77 162 312
2 10 87 115 220 2 13 73 162 312
3 14 54 115 219 3 19 77 162 311
4 13 58 151 214 4 10 76 163 314
5 14 55 119 219 5 20 78 165 319
6 12 51 116 217 6 14 71 163 313
7 12 57 118 232 7 12 71 165 315
8 14 58 123 217 8 15 73 166 312
9 12 53 115 214 9 12 74 163 310

10 11 99 113 223 10 13 68 160 311
11 10 56 114 216 11 11 78 161 313
12 12 53 120 220 12 23 88 164 312
13 8 62 123 212 13 17 72 165 312
14 10 56 112 219 14 12 91 171 311
15 10 57 117 218 15 14 75 163 318
16 13 52 117 216 16 14 77 167 313
17 21 55 117 216 17 11 72 170 312
18 21 62 116 295 18 12 70 162 311
19 11 54 113 214 19 13 77 162 322
20 12 57 127 218 20 12 111 162 313

Average 12.45 59.70 118.80 222.00 Average 14.05 77.45 163.90 313.30
Standard Deviation 3.36 11.90 8.46 17.69 Standard Deviation 3.32 9.65 2.85 3.05
Sample Size 20.00 20.00 20.00 20.00 Sample Size 20.00 20.00 20.00 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 1.47 5.22 3.71 7.75 Margin of Error 1.45 4.23 1.25 1.33
Upper Bound 13.92 64.92 122.51 229.75 Upper Bound 15.50 81.68 165.15 314.63
Lower Bound 10.98 54.48 115.09 214.25 Lower Bound 12.60 73.22 162.65 311.97
Max 21.00 99.00 151.00 295.00 Max 23.00 111.00 171.00 322.00
Min 8.00 51.00 112.00 212.00 Min 10.00 68.00 160.00 310.00
Range 13.00 48.00 39.00 83.00 Range 13.00 43.00 11.00 12.00
Variance 11.31 141.69 71.64 313.05 Variance 11.00 93.10 8.09 9.27
Standard Error 0.75 2.66 1.89 3.96 Standard Error 0.74 2.16 0.64 0.68
Median 12.00 56.50 116.50 218.00 Median 13.00 75.50 163.00 312.00

Conclusions and Future workAppendix II: Detailed results of RTT experiment | 77

77

The RTT when using ROS topics under various latency and module placements. See
Section 4.2.2 for further details about the experiment.

ms (Master-Monitor) 0 20 50 100 ms (Client-Master) 0 20 50 100
1 2 22 52 108 1 2 22 52 102
2 2 22 52 102 2 5 25 52 107
3 5 22 52 102 3 5 22 52 102
4 2 22 52 102 4 10 23 52 102
5 2 22 52 102 5 2 25 52 106
6 2 22 59 102 6 2 23 52 103
7 2 22 52 103 7 3 22 52 103
8 3 22 143 104 8 2 23 52 106
9 2 22 52 102 9 2 25 52 103

10 2 22 58 102 10 2 22 52 102
11 2 22 52 103 11 3 22 52 102
12 2 22 52 102 12 2 25 52 102
13 2 29 53 229 13 5 23 53 102
14 2 22 56 102 14 2 24 55 102
15 8 22 62 102 15 6 22 53 102
16 2 22 52 104 16 2 27 52 102
17 2 24 52 103 17 2 24 52 102
18 3 22 52 102 18 2 22 53 102
19 2 22 52 107 19 2 22 53 102
20 5 25 52 228 20 2 22 52 102

Average 2.70 22.60 57.95 115.55 Average 3.15 23.25 52.35 102.80
Standard Deviation 1.56 1.70 20.23 38.67 Standard Deviation 2.08 1.48 0.75 1.58
Sample Size 20.00 20.00 20.00 20.00 Sample Size 20.00 20.00 20.00 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 0.68 0.74 8.87 16.95 Margin of Error 0.91 0.65 0.33 0.69
Upper Bound 3.38 23.34 66.82 132.50 Upper Bound 4.06 23.90 52.68 103.49
Lower Bound 2.02 21.86 49.08 98.60 Lower Bound 2.24 22.60 52.02 102.11
Max 8.00 29.00 143.00 229.00 Max 10.00 27.00 55.00 107.00
Min 2.00 22.00 52.00 102.00 Min 2.00 22.00 52.00 102.00
Range 6.00 7.00 91.00 127.00 Range 8.00 5.00 3.00 5.00
Variance 2.43 2.88 409.21 1495.00 Variance 4.34 2.20 0.56 2.48
Standard Error 0.35 0.38 4.52 8.65 Standard Error 0.47 0.33 0.17 0.35
Median 2.00 22.00 52.00 102.00 Median 2.00 23.00 52.00 102.00

78 | Appendix II: Detailed results of RTT experiment

ms (Master-Monitor) 0 20 50 100 ms (Client-Master) 0 20 50 100
1 2 22 52 108 1 2 22 52 102
2 2 22 52 102 2 5 25 52 107
3 5 22 52 102 3 5 22 52 102
4 2 22 52 102 4 10 23 52 102
5 2 22 52 102 5 2 25 52 106
6 2 22 59 102 6 2 23 52 103
7 2 22 52 103 7 3 22 52 103
8 3 22 143 104 8 2 23 52 106
9 2 22 52 102 9 2 25 52 103

10 2 22 58 102 10 2 22 52 102
11 2 22 52 103 11 3 22 52 102
12 2 22 52 102 12 2 25 52 102
13 2 29 53 229 13 5 23 53 102
14 2 22 56 102 14 2 24 55 102
15 8 22 62 102 15 6 22 53 102
16 2 22 52 104 16 2 27 52 102
17 2 24 52 103 17 2 24 52 102
18 3 22 52 102 18 2 22 53 102
19 2 22 52 107 19 2 22 53 102
20 5 25 52 228 20 2 22 52 102

Average 2.70 22.60 57.95 115.55 Average 3.15 23.25 52.35 102.80
Standard Deviation 1.56 1.70 20.23 38.67 Standard Deviation 2.08 1.48 0.75 1.58
Sample Size 20.00 20.00 20.00 20.00 Sample Size 20.00 20.00 20.00 20.00
Confidence Coff. 1.96 1.96 1.96 1.96 Confidence Coff. 1.96 1.96 1.96 1.96
Margin of Error 0.68 0.74 8.87 16.95 Margin of Error 0.91 0.65 0.33 0.69
Upper Bound 3.38 23.34 66.82 132.50 Upper Bound 4.06 23.90 52.68 103.49
Lower Bound 2.02 21.86 49.08 98.60 Lower Bound 2.24 22.60 52.02 102.11
Max 8.00 29.00 143.00 229.00 Max 10.00 27.00 55.00 107.00
Min 2.00 22.00 52.00 102.00 Min 2.00 22.00 52.00 102.00
Range 6.00 7.00 91.00 127.00 Range 8.00 5.00 3.00 5.00
Variance 2.43 2.88 409.21 1495.00 Variance 4.34 2.20 0.56 2.48
Standard Error 0.35 0.38 4.52 8.65 Standard Error 0.47 0.33 0.17 0.35
Median 2.00 22.00 52.00 102.00 Median 2.00 23.00 52.00 102.00

Conclusions and Future workAppendix III: Measuring startup time of move_base | 79

79

Appendix III: Measuring startup time of move_base

This appendix presents the full table of results from the experiment where the startup time of
the move_base module was measured, when using single-master and multimaster.

Using single-master:

Using multimaster:

move_base startup time under delay (RTT ms) 0ms 20ms 50ms 100ms 120ms 140ms
1 14520 44380 93320 180020 200900 229240
2 12150 46040 95730 173150 199720 229760
3 13230 46280 97320 175460 200580 231140
4 13630 44670 96800 171630 201740 228500
5 13540 45290 95270 172000 199840 232390

Average 13414.00 45332.00 95688.00 174452.00 200556.00 230206.00
Standard Deviation 854.01 828.60 1555.95 3452.89 826.49 1556.01
Sample Size 5.00 5.00 5.00 5.00 5.00 5.00
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 748.57 726.30 1363.85 3026.59 724.45 1363.91
Upper Bound 14162.57 46058.30 97051.85 177478.59 201280.45 231569.91
Lower Bound 12665.43 44605.70 94324.15 171425.41 199831.55 228842.09
Max 14520.00 46280.00 97320.00 180020.00 201740.00 232390.00
Min 12150.00 44380.00 93320.00 171630.00 199720.00 228500.00
Range 2370.00 1900.00 4000.00 8390.00 2020.00 3890.00
Variance 729330.00 686570.00 2420970.00 11922470.00 683080.00 2421180.00
Standard Error 381.92 370.56 695.84 1544.18 369.62 695.87
Median 13540.00 45290.00 95730.00 173150.00 200580.00 229760.00

move_base startup time under delay (RTT ms) 0ms 20ms 50ms 100ms 120ms 140ms
1 5530 5280 5450 5450 6020 5900
2 5330 5160 5450 5500 6060 5980
3 5330 5490 5030 5760 5680 6360
4 5580 5720 5370 5410 6150 6400
5 4980 5460 5450 6050 6020 5920

Average 5350.00 5422.00 5350.00 5634.00 5986.00 6112.00
Standard Deviation 236.11 214.29 182.21 269.69 179.11 246.82
Sample Size 5.00 5.00 5.00 5.00 5.00 5.00
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 206.96 187.83 159.71 236.39 157.00 216.35
Upper Bound 5556.96 5609.83 5509.71 5870.39 6143.00 6328.35
Lower Bound 5143.04 5234.17 5190.29 5397.61 5829.00 5895.65
Max 5580.00 5720.00 5450.00 6050.00 6150.00 6400.00
Min 4980.00 5160.00 5030.00 5410.00 5680.00 5900.00
Range 600.00 560.00 420.00 640.00 470.00 500.00
Variance 55750.00 45920.00 33200.00 72730.00 32080.00 60920.00
Standard Error 105.59 95.83 81.49 120.61 80.10 110.38
Median 5330.00 5460.00 5450.00 5500.00 6020.00 5980.00

80 | Appendix IV: Finding a resource heavy module

Appendix IV: Finding a resource heavy module

This appendix presents the detailed results from the experiment to determine which modules
that are resource heavy in the TurtleBot. The experiment were divided into two settings: local
modules with power management disabled and CPU frequency set to user space mode
1.6GHz, and remotely placed modules with power management disabled and local CPU
frequency set to user space mode 1.6GHz.

Local modules with power management disabled and CPU frequency set to user space
mode 1.6GHz

battery percentage change CPU working time (jiffies) CPU working time (s) CPU UTIME CPU NICE CPU STIME CPU IDLE
1 0.00507617 40486 101.215 26668 0 5950 7566
2 0.00429523 32612 81.53 21098 0 4712 6550
3 0.00644279 49765 124.412 31433 0 7339 10621
4 0.00429517 33767 84.4175 21914 0 5005 6586
5 0.00429517 33399 83.4975 21768 0 4801 6552
6 0.00546658 42164 105.41 26898 0 6146 8787
7 0.00429523 32769 81.9225 21173 0 4765 6570
8 0.00449044 33114 82.785 21363 0 4806 6693
9 0.00468564 34128 85.32 22052 0 4905 6915

10 0.00449044 33227 83.0675 21677 0 4941 6367
11 0.00448608 35101 87.7525 22441 1 5432 6926
12 0.004291 33130 82.825 21146 0 5008 6728
13 0.00448608 33321 83.3025 21263 0 5035 6762
14 0.00468111 37488 93.72 23856 0 5644 7679
15 0.004291 32957 82.3925 21026 0 5075 6609
16 0.004291 33199 82.9975 21224 0 4930 6770
17 0.00429106 33062 82.655 21181 0 4801 6846
18 0.004291 33284 83.21 21199 1 4908 6927
19 0.00448602 33446 83.615 21638 0 4790 6762
20 0.004291 33010 82.525 20991 0 4814 6951

Average 0.00458591 35171.45000000 87.92860000 22600.45000000 0.10000000 5190.35000000 7108.35000000
Standard Deviation 0.00070242 5752.65199616 14.38150230 3513.35038579 0.00000000 867.88273657 1368.63858146
Sample Size 10 10 10 10 10 10 10
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 0.00043537 3565.53064726 8.91374748 2177.59712972 0.00000000 537.91929315 848.29098136
Upper Bound 0.00502128 38736.98064726 96.84234748 24778.04712972 0.10000000 5728.26929315 7956.64098136
Lower Bound 0.00415054 31605.91935274 79.01485252 20422.85287028 0.10000000 4652.43070685 6260.05901864
Max 0.00644279 49765.00000000 124.41200000 31433.00000000 0.00000000 7339.00000000 10621.00000000
Min 0.00429517 32612.00000000 81.53000000 21098.00000000 0.00000000 4712.00000000 6367.00000000
Range 0.00214762 17153.00000000 42.88200000 10335.00000000 0.00000000 2627.00000000 4254.00000000
Variance 0.00000049 33093004.98888880 206.82760846 12343630.93333330 0.00000000 753220.44444444 1873171.56666667
Standard Error 0.00022213 1819.14828942 4.54783034 1111.01894373 0.00000000 274.44861895 432.80152110
Median 0.00449044 33583.00000000 83.95750000 21841.00000000 0.00000000 4923.00000000 6639.50000000

Conclusions and Future workAppendix IV: Finding a resource heavy module | 81

81

CPU IO WAIT Between first and last packet (s) Number of sent packets Avg. packets/sec Avg. packet size (bytes) Avg. bytes/sec RVIZ (utime) (%) RVIZ (stime) (%)
35 95.757 16 0.167 348.75 58.273 31.4899 1.11644
20 7.6 8 1.053 348.75 367.106 30.9671 1.10389
24 58.886 16 0.272 348.75 94.759 30.7827 1.03888
14 34.718 30 0.864 370.333 320.003 31.4508 1.11647
37 86.716 12 0.138 348.75 48.261 31.9531 1.21261
22 87.596 12 0.137 348.75 47.776 31.4581 1.10758
17 48.926 12 0.245 348.75 85.537 31.9113 1.10165
22 7.494 8 1.067 348.75 273.277 31.6452 1.10225
10 71.813 12 0.167 348.75 58.277 31.669 1.02555
24 7.827 8 1.022 348.75 356.465 31.9018 1.1918
54 7.55 8 1.06 348.75 369.543 30.2214 1.07689
23 61.389 30 0.489 370.333 180.978 30.2415 0.971929
25 82.743 12 0.145 348.75 50.578 30.5693 1.04739
31 77.344 18 0.233 325.222 75.688 30.6685 1.00299
24 7.816 8 1.024 348.75 356.956 30.8645 1.01344
30 7.79 8 1.027 348.75 358.167 31.1425 0.960872
17 82.78 13 0.157 350.846 55.098 31.1264 1.0314
20 33.549 30 0.894 370.333 331.153 30.5192 1.04555
21 73.561 16 0.218 348.75 75.855 31.37 1.0943
19 7.745 8 1.033 348.75 360.243 30.3272 0.0969403

24.45000000 47.48000000 14.25000000 0.57060000 350.91585000 196.19965000 31.11397500 1.02294107
8.40965054 34.99586096 6.53537383 0.42585021 6.82514387 139.16288743 0.39201622 0.05738458

10 10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96

5.21235541 21.69065935 4.05066667 0.26394469 4.23026800 86.25405125 0.24297417 0.03556733
29.66235541 69.17065935 18.30066667 0.83454469 355.14611800 282.45370125 31.35694917 1.05850839
19.23764459 25.78934065 10.19933333 0.30665531 346.68558200 109.94559875 30.87100083 0.98737374
37.00000000 95.75700000 30.00000000 1.06700000 370.33300000 367.10600000 31.95310000 1.21261000
10.00000000 7.49400000 8.00000000 0.13700000 348.75000000 47.77600000 30.78270000 1.02555000
27.00000000 88.26300000 22.00000000 0.93000000 21.58300000 319.33000000 1.17040000 0.18706000
70.72222222 1224.71028468 42.71111111 0.18134840 46.58258890 19366.30923649 0.15367672 0.00329299
2.65936500 11.06666293 2.06666667 0.13466566 2.15830000 44.00716900 0.12396641 0.01814660
22.00000000 53.90600000 12.00000000 0.25850000 348.75000000 90.14800000 31.56755000 1.10573500

camera/rectify_ir (utime) (%) camera/rectify_ir (stime) (%) camera/register_depth_rgb (utime) (%) camera/register_depth_rgb (stime) (%) camera/points_xyzrgb_sw_registered (utime) (%)
0.0246999 0.0296399 0.0222299 0.0296399 0.0271699
0.0306636 0.0245308 0.0245308 0.0306636 0.0275972
0.0200944 0.0321511 0.0221039 0.0301417 0.0221039
0.0148074 0.0384991 0.0236918 0.0296147 0.0266532
0.0329351 0.0239528 0.0209587 0.0329351 0.029941
0.0237169 0.030832 0.0260886 0.0260886 0.0237169

0.027465 0.027465 0.0305166 0.0244133 0.027465
0.0271788 0.024159 0.0332186 0.0181192 0.0181192
0.0263713 0.0293015 0.0263713 0.0234412 0.0175809
0.0240768 0.030096 0.0210672 0.0331056 0.0210672
0.0199425 0.0313381 0.0227914 0.0313381 0.0227914
0.0211289 0.0332025 0.0211289 0.0301841 0.0211289

0.02701 0.0240089 0.0180067 0.0330122 0.02701
0.0293427 0.0266752 0.0186726 0.0346778 0.0266752
0.0212398 0.0333768 0.0212398 0.0303426 0.0212398
0.0240971 0.0271093 0.021085 0.0331335 0.021085

0.024197 0.024197 0.0181477 0.0362954 0.0302462
0.0300445 0.0240356 0.0180267 0.0360534 0.02704
0.0209293 0.0328888 0.0239192 0.026909 0.0298989
0.0242351 0.0302939 0.0181763 0.0333232 0.0242351

0.02470881 0.02888767 0.02259859 0.03017161 0.02463825
0.00514117 0.00442744 0.00409301 0.00473748 0.00428427

10 10 10 10 10
1.96 1.96 1.96 1.96 1.96

0.00318653 0.00274416 0.00253688 0.00293632 0.00265542
0.02789534 0.03163182 0.02513546 0.03310793 0.02729366
0.02152227 0.02614351 0.02006171 0.02723529 0.02198283
0.03293510 0.03849910 0.03321860 0.03310560 0.02994100
0.01480740 0.02395280 0.02095870 0.01811920 0.01758090
0.01812770 0.01454630 0.01225990 0.01498640 0.01236010
0.00002643 0.00001960 0.00001675 0.00002244 0.00001835
0.00162578 0.00140008 0.00129432 0.00149812 0.00135480
0.02553560 0.02947070 0.02411130 0.02962730 0.02518505

82 | Appendix IV: Finding a resource heavy module

camera/points_xyzrgb_sw_registered (stime) (%) camera/depth_registered_rectify_depth (utime) (%) camera/depth_registered_rectify_depth (stime) (%) camera/points_xyzrgb_hw_registered (utime) (%)
0.0271699 0.0197599 0.0321099 0.0271699
0.0245308 0.0275972 0.0245308 0.0153318
0.0321511 0.0221039 0.0301417 0.0221039
0.0296147 0.0236918 0.0266532 0.0266532
0.0269469 0.029941 0.0239528 0.0179646
0.0332037 0.0237169 0.030832 0.0213452

0.027465 0.0152583 0.03662 0.0305166
0.0362385 0.0271788 0.0271788 0.0301987
0.0322316 0.0293015 0.0263713 0.0234412

0.030096 0.0240768 0.030096 0.0240768
0.0284892 0.0227914 0.0284892 0.0199425
0.0332025 0.0271657 0.0271657 0.0211289

0.02701 0.0180067 0.0360133 0.02701
0.0266752 0.0186726 0.0320102 0.0186726
0.0303426 0.0212398 0.0333768 0.0212398
0.0301214 0.0240971 0.0271093 0.0301214
0.0211723 0.024197 0.0302462 0.024197

0.02704 0.0210311 0.0330489 0.0240356
0.0239192 0.0179394 0.0358787 0.0209293
0.0302939 0.0272645 0.0242351 0.0212057

0.02889573 0.02325157 0.03009604 0.02336424
0.00353717 0.00452067 0.00386652 0.00494817

10 10 10 10
1.96 1.96 1.96 1.96

0.00219236 0.00280194 0.00239650 0.00306691
0.03108809 0.02605351 0.03249254 0.02643114
0.02670336 0.02044963 0.02769955 0.02029733
0.03623850 0.02994100 0.03662000 0.03051660
0.02453080 0.01525830 0.02395280 0.01533180
0.01170770 0.01468270 0.01266720 0.01518480
0.00001251 0.00002044 0.00001495 0.00002448
0.00111855 0.00142956 0.00122270 0.00156475
0.02985535 0.02389685 0.02863740 0.02375900

camera/points_xyzrgb_hw_registered (stime) (%) camera/disparity_depth (utime) (%) camera/disparity_depth (stime) (%) camera/disparity_registered_sw (utime) (%) camera/disparity_registered_sw (stime) (%)
0.0271699 0.0271699 0.0246999 0.0222299 0.0321099
0.0367963 0.0345308 0.0275972 0.0245308 0.0275972
0.0321511 0.0261228 0.0261228 0.0241133 0.0301417
0.0266532 0.0207303 0.0355377 0.0207303 0.0355377
0.0359292 0.0239528 0.0329351 0.0239528 0.029941
0.0332037 0.0260886 0.0284603 0.0237169 0.030832
0.0244133 0.027465 0.027465 0.0213617 0.0335683
0.0211391 0.0120795 0.0422782 0.0271788 0.0271788
0.0293015 0.0146507 0.041022 0.0175809 0.0322316

0.030096 0.030096 0.0270864 0.0180576 0.0331056
0.0431871 0.0227914 0.0313381 0.0199425 0.0313381
0.0301841 0.0211289 0.0301841 0.0181105 0.0362209
0.0300111 0.0240089 0.0300111 0.0210078 0.0300111
0.0346778 0.0266752 0.0240077 0.0266752 0.0266752
0.0333768 0.0151713 0.03644111 0.0242741 0.0333768
0.0240971 0.0271093 0.0271093 0.0180728 0.0331335
0.0332708 0.0211723 0.0332708 0.0302462 0.024197
0.0300445 0.0210311 0.0360534 0.02704 0.02704
0.0298989 0.026909 0.0239192 0.026909 0.0298989
0.0302939 0.0272645 0.0242351 0.0272645 0.0242351

0.03079477 0.02380742 0.03048873 0.02314978 0.03041852
0.00499645 0.00681787 0.00632690 0.00298893 0.00262324

10 10 10 10 10
1.96 1.96 1.96 1.96 1.96

0.00309683 0.00422576 0.00392145 0.00185256 0.00162590
0.03389160 0.02803317 0.03441018 0.02500234 0.03204442
0.02769794 0.01958166 0.02656727 0.02129722 0.02879262
0.03679630 0.03453080 0.04227820 0.02717880 0.03553770
0.02113910 0.01207950 0.02469990 0.01758090 0.02717880
0.01565720 0.02245130 0.01757830 0.00959790 0.00835890
0.00002496 0.00004648 0.00004003 0.00000893 0.00000688
0.00158002 0.00215600 0.00200074 0.00094518 0.00082954
0.02969875 0.02610570 0.02802875 0.02297340 0.03147095

Conclusions and Future workAppendix IV: Finding a resource heavy module | 83

83

Remotely placed modules with power management disabled and local CPU frequency

set to user space mode 1.6GHz

camera/disparity_registered_hw (utime) (%) camera/disparity_registered_hw (stime) (%) map_server (utime) (%) map_server (stime) (%) amcl (utime) (%) amcl (stime) (%) move_base (utime) (%) move_base (stime) (%)
0.0222299 0.0321099 0.0296399 0.0296399 2.44035 0.941066 17.8062 2.29215
0.0214645 0.0337299 0.0337299 0.0306636 2.25684 0.972035 17.6407 2.23537
0.0261228 0.0301417 0.0321511 0.0321511 2.61831 1.00472 16.5699 2.28474
0.0296147 0.0236918 0.0296147 0.0296147 2.30402 0.998016 17.5941 2.38695

0.029941 0.0239528 0.0269469 0.0359292 2.21863 1.05392 17.4436 2.25755
0.0213452 0.0332037 0.0284603 0.0332037 2.60412 0.95342 16.6113 2.41913
0.0305166 0.01831 0.0305166 0.0335683 2.36504 0.979584 17.6539 2.33452
0.0332186 0.024159 0.0271788 0.0332186 2.38268 0.972398 17.3673 2.39778
0.0293015 0.0263713 0.020511 0.0380919 2.27086 1.0695 17.156 2.52579
0.0240768 0.0331056 0.0180576 0.0391248 2.39564 0.954043 17.2631 2.46185
0.0170935 0.0398849 0.0227914 0.0341871 2.42728 0.999972 17.8001 2.59822
0.0211289 0.0332025 0.0301841 0.0301841 2.24268 1.0655 17.706 2.61696
0.0210078 0.0330122 0.0330122 0.0240089 2.22382 1.12542 17.7186 2.62897
0.0293427 0.0240077 0.0320102 0.0293427 2.39277 1.06167 17.3736 2.86758
0.0212398 0.0303426 0.0273083 0.0333768 2.21197 1.06199 16.8159 2.87648
0.0240971 0.0271093 0.0331335 0.0271093 2.20489 1.07232 16.9433 2.81334
0.0332708 0.0211723 0.0362954 0.024197 2.23519 1.06769 17.2131 2.64957
0.0330489 0.0210311 0.02704 0.0360534 2.20526 1.06958 16.7438 2.9053
0.0239192 0.026909 0.0298989 0.026909 2.28129 0.995635 17.1142 2.6909
0.0302939 0.0212057 0.0181763 0.039382 2.15692 1.06634 16.8919 2.85671

0.02611371 0.02783265 0.02833286 0.03199781 2.32192800 1.02424095 17.27133000 2.55499300
0.00429518 0.00530773 0.00491715 0.00331081 0.13732087 0.04275692 0.42655347 0.09454779

10 10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96 1.96

0.00266218 0.00328977 0.00304768 0.00205206 0.08511236 0.02650101 0.26438058 0.05860133
0.02877589 0.03112242 0.03138054 0.03404986 2.40704036 1.05074196 17.53571058 2.61359433
0.02345153 0.02454288 0.02528517 0.02994575 2.23681564 0.99773994 17.00694942 2.49639167
0.03321860 0.03372990 0.03372990 0.03912480 2.61831000 1.06950000 17.80620000 2.52579000
0.02134520 0.01831000 0.01805760 0.02961470 2.21863000 0.94106600 16.56990000 2.23537000
0.01187340 0.01541990 0.01567230 0.00951010 0.39968000 0.12843400 1.23630000 0.29042000
0.00001845 0.00002817 0.00002418 0.00001096 0.01885702 0.00182815 0.18194787 0.00893928
0.00135826 0.00167845 0.00155494 0.00104697 0.04342467 0.01352092 0.13488805 0.02989864
0.02771215 0.02825650 0.02903750 0.03321115 2.37386000 0.97599100 17.40545000 2.36073500

battery percentage change Local CPU UTIME Local CPU NICE Local CPU STIME Local CPU IDLE Local CPU IO WAIT
1 0.00427932 9551 0 3403 19744 54
2 0.00466835 11300 0 3838 20906 114
3 0.00447387 10538 0 3698 21052 123
4 0.00525194 12629 0 4280 22991 200
5 0.00447387 10856 0 3601 19509 50
6 0.00427932 9283 0 3126 18666 82
7 0.00447387 10284 0 3206 19017 51
8 0.00427938 9662 0 3025 18212 138
9 0.00427932 10357 0 3389 18555 48

10 0.00408483 10293 0 3542 18142 94
11 0.00487614 12130 0 4037 22164 73
12 0.00409597 10236 0 3476 18358 57
13 0.00409597 10444 0 3606 18287 47
14 0.00390095 8876 0 2806 18100 83
15 0.00409591 10223 0 3370 18067 90
16 0.004291 10145 0 3371 17977 47
17 0.00448602 10613 0 3423 18553 47
18 0.00429106 10024 0 3068 18273 64
19 0.004291 10527 0 3395 18382 94
20 0.004291 10464 0 3638 18194 52

Average 0.00436295 10421.75000000 0.00000000 3464.90000000 19157.45000000 80.40000000
Standard Deviation 0.00032355 971.17386588 0.00000000 372.12805442 1550.46130770 49.48445323
Sample Size 10 10 10 10 10 10
Confidence Coff. 1.96 1.96 1.96 1.96 1.96 1.96
Margin of Error 0.00020054 601.93979836 0.00000000 230.64735771 960.98587463 30.67078187
Upper Bound 0.00456349 11023.68979836 0.00000000 3695.54735771 20118.43587463 111.07078187
Lower Bound 0.00416242 9819.81020164 0.00000000 3234.25264229 18196.46412537 49.72921813
Max 0.00525194 12629.00000000 0.00000000 4280.00000000 22991.00000000 200.00000000
Min 0.00408483 9283.00000000 0.00000000 3025.00000000 18142.00000000 48.00000000
Range 0.00116711 3346.00000000 0.00000000 1255.00000000 4849.00000000 152.00000000
Variance 0.00000010 943178.67777778 0.00000000 138479.28888889 2403930.26666667 2448.71111111
Standard Error 0.00010232 307.11214202 0.00000000 117.67722332 490.29891563 15.64835810
Median 0.00437663 10325.00000000 0.00000000 3472.50000000 19263.00000000 88.00000000

84 | Appendix IV: Finding a resource heavy module

Remote CPU working time (jiffies) Remote CPU working time (s) Between first and last packet (s) Number of sent packets Avg. packets/sec Avg. packet size (bytes)
17065 85.325 90.841 79630 876.59 481.873
18278 91.39 97.709 86811 888.469 475.811
18018 90.09 94.992 73299 771.63 531.147
20628 103.14 103.367 92804 897.807 473.215
17088 85.44 90.301 79656 882.112 482.211
16371 81.855 86.091 76106 884.014 478.916
16899 84.495 86.598 78651 908.227 470.206
16328 81.64 84.416 76160 902.196 469.243
16509 82.545 86.434 77214 893.334 475.731
16001 80.005 85.15 76884 902.928 470.458
19815 99.075 104.812 95915 915.118 467.182
16398 81.99 86.709 79519 917.082 466.083
16377 81.885 86.286 79033 915.944 466.654
16270 81.35 84.687 77316 912.965 467.051
16199 80.995 85.208 77895 914.176 466.326
15942 79.71 84.084 77562 922.439 464.308
16726 83.63 88.856 81393 916.013 466.721
16383 81.915 86.405 79210 916.727 466.491
16528 82.64 88.522 80759 912.309 467.052
16348 81.74 85.178 78431 920.785 464.869

17008.55000000 85.04275000 89.33230000 80212.40000000 898.54325000 473.57740000
1371.37589061 6.85687945 6.27709498 5811.05307439 39.65496523 18.26446915

10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96

849.98758314 4.24993792 3.89058378 3601.72801056 24.57840209 11.32043526
17858.53758314 89.29268792 93.22288378 83814.12801056 923.12165209 484.89783526
16158.56241686 80.79281208 85.44171622 76610.67198944 873.96484791 462.25696474
20628.00000000 103.14000000 103.36700000 92804.00000000 908.22700000 531.14700000
16001.00000000 80.00500000 84.41600000 73299.00000000 771.63000000 469.24300000
4627.00000000 23.13500000 18.95100000 19505.00000000 136.59700000 61.90400000

1880671.83333333 47.01679583 39.40192143 33768337.83333330 1572.51626779 333.59083321
433.66713426 2.16833567 1.98499172 1837.61633192 12.54000107 5.77573228

16982.00000000 84.91000000 88.44950000 77932.50000000 890.90150000 475.77100000

Avg. bytes/sec Avg. MBit/sec RVIZ (utime) (%) RVIZ (stime) (%) camera/rectify_ir (utime) (%) camera/rectify_ir (stime) (%) camera/register_depth_rgb (utime) (%)
422404.959 3.379 4.95752 6.11778 0 0.0703194 0
422743.287 3.382 5.12638 6.34096 0 0.0601816 0
409848.993 3.279 4.1625 5.64991 0 0.0610501 0
424856.001 3.399 5.17258 6.12759 0 0.0630211 0
425364.147 3.403 5.14396 5.81695 0 0.0819288 0.00585206
423368.501 3.387 5.09437 5.95565 0 0.067192 0
427053.895 3.416 5.16599 6.06545 0 0.0650926 0
423349.778 3.387 5.29152 6.07545 0 0.0673689 0
424986.028 3.4 5.23351 5.89375 0.0060573 0.060573 0
424789.318 3.398 5.23092 6.26211 0 0.0624961 0
427526.567 3.42 5.81882 6.33863 0.00504668 0.0605602 0
427436.268 3.419 6.08611 6.24466 0 0.0731797 0
427428.642 3.419 5.59932 6.49692 0 0.0427429 0
426401.726 3.411 5.34726 6.72403 0 0.0676091 0
426303.562 3.41 5.71023 6.4325 0 0.055559 0
428295.738 3.426 6.15983 6.26019 0 0.0564546 0
427522.384 3.42 5.6738 6.3195 0 0.0717446 0
427645.185 3.421 5.51181 6.62882 0 0.054935 0

426095.88 3.409 5.83858 6.39521 0 0.054453 0
428044.148 3.424 5.65207 6.50844 0 0.0672865 0

425073.25035000 3.40045000 5.39885400 6.23272500 0.00060573 0.06318741 0.00029260
4785.26110024 0.03818668 0.32752120 0.20684677 0.00191549 0.00654387 0.00185058

10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96

2965.93555797 0.02366835 0.20299974 0.12820496 0.00118723 0.00405593 0.00114700
428039.18590797 3.42411835 5.60185374 6.36092996 0.00179296 0.06724334 0.00143961
422107.31479203 3.37678165 5.19585426 6.10452004 -0.00058150 0.05913148 -0.00085440
427053.89500000 3.41600000 5.29152000 6.34096000 0.00605730 0.08192880 0.00585206
409848.99300000 3.27900000 4.16250000 5.64991000 0.00000000 0.06018160 0.00000000
17204.90200000 0.13700000 1.12902000 0.69105000 0.00605730 0.02174720 0.00585206

22898723.79745130 0.00145822 0.10727014 0.04278559 0.00000367 0.00004282 0.00000342
1513.23242754 0.01207569 0.10357130 0.06541069 0.00060573 0.00206935 0.00058521

424078.90950000 3.39250000 5.15497500 6.07045000 0.00000000 0.06405685 0.00000000

Conclusions and Future workAppendix IV: Finding a resource heavy module | 85

85

camera/register_depth_rgb (stime) (%) camera/points_xyzrgb_sw_registered (utime) (%) camera/points_xyzrgb_sw_registered (stime) (%) camera/depth_registered_rectify_depth (utime) (%)
0.0703194 0 0.0703194 0.00585995
0.0492395 0 0.0711238 0
0.0555001 0 0.0555001 0
0.0630211 0 0.0581734 0
0.0643727 0 0.0643727 0

0.067192 0 0.0610836 0
0.0650926 0 0.0650926 0
0.0612445 0 0.0489956 0
0.0726876 0 0.060573 0
0.0499969 0 0.0499969 0
0.0555135 0 0.0555135 0

0.079278 0 0.079278 0
0.0427429 0 0.0427429 0
0.0614628 0 0.0491703 0
0.0617322 0 0.055559 0
0.0690001 0 0.0564546 0
0.0597872 0 0.0597872 0
0.0427272 0.00610389 0.0610389 0
0.0484027 0 0.0484027 0.00605034
0.0795204 0 0.0672865 0.00611696

0.06094167 0.00030519 0.06006769 0.00090136
0.00800123 0.00000000 0.00759235 0.00185308

10 10 10 10
1.96 1.96 1.96 1.96

0.00495921 0.00000000 0.00470579 0.00114855
0.06590088 0.00030519 0.06477348 0.00204991
0.05598246 0.00030519 0.05536190 -0.00024719
0.07268760 0.00000000 0.07112380 0.00585995
0.04923950 0.00000000 0.04899560 0.00000000
0.02344810 0.00000000 0.02212820 0.00585995
0.00006402 0.00000000 0.00005764 0.00000343
0.00253021 0.00000000 0.00240091 0.00058600
0.06369690 0.00000000 0.06082830 0.00000000

camera/depth_registered_rectify_depth (stime) (%) camera/points_xyzrgb_hw_registered (utime) (%) camera/points_xyzrgb_hw_registered (stime) (%) camera/disparity_depth (utime) (%)
0.0585995 0 0.0703194 0
0.0656527 0 0.0547106 0
0.0666001 0 0.0666001 0
0.0727167 0 0.0678689 0
0.0643727 0 0.0702247 0
0.0733003 0 0.067192 0
0.0710101 0 0.0650926 0

0.05512 0 0.0673689 0
0.0666303 0 0.0787449 0
0.0499969 0 0.0562465 0
0.0605602 0 0.0605602 0
0.0670814 0 0.079278 0

0.048849 0 0.048849 0
0.0553165 0 0.0614628 0.00614628
0.0617322 0.00617322 0.0617322 0
0.0627274 0 0.0564546 0
0.0478297 0 0.0657659 0
0.0610389 0 0.0671428 0

0.054453 0 0.0605034 0
0.0795204 0.00611696 0.0489356 0

0.06215540 0.00061451 0.06375266 0.00030731
0.00767879 0.00000000 0.00689268 0.00000000

10 10 10 10
1.96 1.96 1.96 1.96

0.00475936 0.00000000 0.00427213 0.00000000
0.06691476 0.00061451 0.06802478 0.00030731
0.05739604 0.00061451 0.05948053 0.00030731
0.07330030 0.00000000 0.07874490 0.00000000
0.04999690 0.00000000 0.05471060 0.00000000
0.02330340 0.00000000 0.02403430 0.00000000
0.00005896 0.00000000 0.00004751 0.00000000
0.00242825 0.00000000 0.00217966 0.00000000
0.06612640 0.00000000 0.06728045 0.00000000

86 | Appendix IV: Finding a resource heavy module

camera/disparity_depth (stime) (%) camera/disparity_registered_sw (utime) (%) camera/disparity_registered_sw (stime) (%) camera/disparity_registered_hw (utime) (%)
0.0644594 0 0.0644594 0
0.0711238 0 0.0547106 0
0.0666001 0 0.0555001 0
0.0727167 0 0.0630211 0
0.0643727 0 0.0702247 0
0.0733003 0 0.0794087 0
0.0650926 0 0.0710101 0
0.0673689 0 0.0612445 0
0.0726876 0 0.0666303 0
0.0624961 0 0.0499969 0
0.0555135 0.00504668 0.0605602 0.00504668
0.0670814 0 0.0670814 0

0.048849 0 0.048849 0
0.0676091 0.00614628 0.0491703 0
0.0493858 0 0.0617322 0
0.0627274 0 0.0501819 0
0.0777233 0.00597872 0.0538084 0
0.0671428 0 0.0671428 0
0.0605034 0 0.0484027 0
0.0734035 0 0.0672865 0

0.06550787 0.00085858 0.06052109 0.00025233
0.00406700 0.00000000 0.00878247 0.00000000

10 10 10 10
1.96 1.96 1.96 1.96

0.00252075 0.00000000 0.00544343 0.00000000
0.06802862 0.00085858 0.06596452 0.00025233
0.06298712 0.00085858 0.05507766 0.00025233
0.07330030 0.00000000 0.07940870 0.00000000
0.06249610 0.00000000 0.04999690 0.00000000
0.01080420 0.00000000 0.02941180 0.00000000
0.00001654 0.00000000 0.00007713 0.00000000
0.00128610 0.00000000 0.00277726 0.00000000
0.06698450 0.00000000 0.06374025 0.00000000

camera/disparity_registered_hw (stime) (%) map_server (utime) (%) map_server (stime) (%) amcl (utime) (%) amcl (stime) (%) move_base (utime) (%) move_base (stime) (%)
0.0585995 0 0.0644594 0.492236 2.092 3.28743 5.41459
0.0547106 0 0.0656527 0.514279 2.19389 3.2334 5.53124
0.0555001 0 0.0666001 0.49395 1.77045 3.441 4.6953
0.0678689 0 0.0678689 0.591429 2.12333 3.40314 4.73143
0.0760768 0 0.0819288 0.456461 2.08919 3.23034 5.00351
0.0610836 0 0.0794087 0.525319 2.04019 3.44512 4.85615
0.0650926 0 0.0591751 0.443813 2.12439 3.34931 4.94112
0.0612445 0 0.0734934 0.459334 2.11293 3.57055 4.85056
0.0726876 0 0.0787449 0.454298 2.08371 3.27094 5.00333
0.0499969 0 0.0687457 0.456221 2.16861 3.16855 5.30592
0.0555135 0.00504668 0.0555135 0.519808 2.31643 3.63361 5.14762
0.0731797 0 0.0731797 0.518356 2.30516 3.51872 5.64093
0.0549551 0 0.0549551 0.519021 2.26537 3.54155 5.581
0.0553165 0 0.0737554 0.473264 2.30486 3.49723 5.26122

0.055559 0 0.0740786 0.500031 2.27175 3.5496 5.32132
0.0627274 0 0.0564546 0.464183 2.32719 3.8891 5.76465
0.0717446 0 0.0717446 0.526127 2.24202 3.40189 5.46455
0.0488311 0 0.0610389 0.488311 2.25233 3.17402 5.59727

0.054453 0 0.0484027 0.0484027 2.31123 3.35189 6.06244
0.0795204 0 0.0795204 0.458772 2.28774 3.89038 5.03426

0.06173307 0.00025233 0.06773606 0.47018079 2.18413850 3.44238850 5.26042050
0.00821924 0.00000000 0.00745545 0.04563561 0.11709592 0.12418388 0.28830468

10 10 10 10 10 10 10
1.96 1.96 1.96 1.96 1.96 1.96 1.96

0.00509434 0.00000000 0.00462093 0.02828524 0.07257681 0.07696996 0.17869309
0.06682741 0.00025233 0.07235699 0.49846603 2.25671531 3.51935846 5.43911359
0.05663873 0.00025233 0.06311513 0.44189554 2.11156169 3.36541854 5.08172741
0.07607680 0.00000000 0.08192880 0.59142900 2.19389000 3.57055000 5.53124000
0.04999690 0.00000000 0.05917510 0.44381300 1.77045000 3.16855000 4.69530000
0.02607990 0.00000000 0.02275370 0.14761600 0.42344000 0.40200000 0.83594000
0.00006756 0.00000000 0.00005558 0.00208261 0.01371146 0.01542163 0.08311959
0.00259915 0.00000000 0.00235762 0.01443125 0.03702898 0.03927039 0.09116994
0.06116405 0.00000000 0.06830730 0.47578500 2.10246500 3.31837000 4.97222500

 Appendix V: Network profiling code | 87

Appendix V: Network profiling code

/***/
/***/
/*******************FUNCTIONS CONNECTED TO GATHERING**************************/
/*******************INFORMATION FOR MACHINE LEARNING***************************/
/***/
/***/
vector<float> parseIfstatData(char* buf){
 vector<string> strings;
 istringstream iss(buf);
 string s;
 char* buff;

 while(getline(iss, s, '\n')){
 strings.push_back(s);
 }

 strings.clear();
 buff = (char*) strings[2].c_str();
 istringstream fs(buff);
 while(getline(fs, s, ' ')){
 strings.push_back(s);
 }
 vector<float> ret;
 for(int i=0; i<strings.size(); i++){
 if(strings[i].length() > 0){
 ret.push_back(atof(strings[i].c_str()));
 }
 }
 return ret;
}

void getIfstatData(void){
 int fd[2];
 pid_t pid;
 int childStatus;

 if(pipe(fd) == -1){
 perror("pipe");
 exit(1);
 }

 pid = fork();
 if(pid == -1){
 perror("fork");
 exit(1);
 }else if(pid == 0){
 while((dup2(fd[1], STDOUT_FILENO) == -1) && (errno == EINTR)){}
 close(fd[0]);
 close(fd[1]);
 execl("/usr/bin/ifstat", "/usr/bin/ifstat", "-i", "wlan0", "0.1", "1", (char*) 0);
 perror("execl");
 _exit(1);
 }

 close(fd[1]);
 while(true){
 ssize_t count = read(fd[0], buffer, sizeof(buffer));
 if(count == -1){

88 | Appendix V: Network profiling code

 if(errno == EINTR){
 continue;
 }else{
 fprintf(stdout, "Couldn't read from child process\n");
 exit(1);
 }
 }else if(count == 0){
 break;
 }else{
 break;
 }
 }
 close(fd[0]);
 waitpid(pid, &childStatus, WEXITED);
 return;
}

float parseNetperfData(char* buf){
 vector<string> strings;
 istringstream iss(buf);
 string s;
 char* buff;

 while(getline(iss, s, '\n')){
 strings.push_back(s);
 }

 strings.clear();
 buff = (char*) strings[6].c_str();
 istringstream fs(buff);
 while(getline(fs, s, ' ')){
 strings.push_back(s);
 }
 vector<float> values;
 for(int i=0; i<strings.size(); i++){
 if(strings[i].length() > 0){
 values.push_back(atof(strings[i].c_str()));
 }
 }
 return values[values.size()-1];
}

void getNetperfData(void){
 int fd[2];
 pid_t pid;
 int childStatus;

 if(pipe(fd) == -1){
 perror("pipe");
 exit(1);
 }

 pid = fork();
 if(pid == -1){
 perror("fork");
 exit(1);
 }else if(pid == 0){
 while((dup2(fd[1], STDOUT_FILENO) == -1) && (errno == EINTR)){}
 close(fd[0]);
 close(fd[1]);

Conclusions and Future workAppendix V: Network profiling code | 89

89

 execl("/usr/bin/netperf", "/usr/bin/netperf", "-H", "133.1.134.124", (char*) 0);
 perror("execl");
 _exit(1);
 }

 close(fd[1]);
 while(true){
 ssize_t count = read(fd[0], buffer, sizeof(buffer));
 if(count == -1){
 if(errno == EINTR){
 continue;
 }else{
 fprintf(stdout, "Couldn't read from child process\n");
 exit(1);
 }
 }else if(count == 0){
 break;
 }else{
 break;
 }
 }
 close(fd[0]);
 waitpid(pid, &childStatus, WEXITED);
 return;
}

std::string floatToString(float number){
 std::ostringstream buf;
 buf << number;
 return buf.str();
}

std::string intToString(int number){
 std::ostringstream buf;
 buf << number;
 return buf.str();
}

void getCpuStat(const char* proc_stat_file_path){
 procStatTokens.clear();
 ifstream proc_stat_file(proc_stat_file_path);
 if(proc_stat_file.is_open()){
 for(int i=0; i<12; i++){
 getline(proc_stat_file, token, ' ');
 procStatTokens.push_back(token);
 }
 }else{
 fprintf(stderr, "No file path: %s\n",
 proc_stat_file_path);
 exit(1);
 }
 proc_stat_file.close();
 return;
}

unsigned long getCpuStat(void){
 unsigned long ret = 0;
 for(int i=2; i<12; i++){
 ret = ret + strtoul(procStatTokens[i].c_str(), NULL, 0);
 }

90 | Appendix V: Network profiling code

 return ret;
}

float getCurrentBatteryCapacity(void){
 string info;
 ifstream file(CHARGE_FULL_PATH);
 getline(file, info);
 float charge_full = atof(info.c_str());
 ifstream file2(CHARGE_NOW_PATH);
 getline(file2, info);
 float charge_now = atof(info.c_str());
 file.close();
 file2.close();
 return (charge_now/charge_full);
}
/***/
/***/
/*******************FUNCTIONS CONNECTED TO GATHERING*************************/
/*********************INFORMATIO FOR MACHINE LEARNING***************************/
/**************************************(END)***/
/**/
/**/

 Appendix VI: COMPSACW2014 Paper | 91

Appendix VI: COMPSACW2014 Paper

Some of the work in this thesis (most notably Section 4.1) were taken from
one of the author’s own papers (Nordlund et al., 2014). IEEE (publisher of
the proceedings of the Computer Software and Applications Conference
Workshops, COMPSACW) who accepted this article state that the use of the
author’s work in their own thesis is allowed.

©2014 IEEE.

Reprinted, with permission, from Fredrik Nordlund, Manabu Higashida, Yuichi
Teranishi, Shinji Shimojo, Masanori Yokoyama, and Michio Shimomura,
“Designing of a Network-Aware Cloud Robotic Sensor Observation Framework”,
July 2014.

Designing of a Network-Aware Cloud Robotic
Sensor Observation Framework

Fredrik NORDLUND†, Manabu HIGASHIDA†, Yuuichi TERANISHI†‡,
Shinji SHIMOJO†‡, Masanori YOKOYAMA⋆, Michio SHIMOMURA⋆

† Osaka University
‡ National Institute of Information and Communications Technology

⋆ Nippon Telegraph and Telephone Corporation
fredrik.nordlund@ais.cmc.osaka-u.ac.jp, {manabu, teranisi, shimojo}@cmc.osaka-u.ac.jp,

{yokoyama.masanori, shimomura.michio}@lab.ntt.co.jp

Abstract—This paper proposes a network-aware cloud net-
worked robotic sensor observation framework based on the topic-
based publisher/subscriber messaging paradigm. Cloud network
robotics systems have some advantages in making use of rich
computation or storage resources of clouds, low maintenance
cost, and easy development of applications. But a problem occurs
when systems that need fast feedback from application modules
are run over networks with intermittent connection. In this
framework, the placement of the robot application modules is
changed according to the QoS provided by the physical network.
We also propose a mapcell-based robotic sensor observation
algorithm that suits to the framework. A prototype system of
a data center monitoring robot that is based on the proposed
framework and algorithm is implemented and a preliminary
experiment was carried out to demonstrate the benefit of the
system. The experiment result shows that the performance of
the data center monitoring could be improved and hot spots can
be found faster by making the cloud networked robot network-
aware.

Keywords—cloud networked robotics; sensor networks; network
qos; big data analysis; publish subscribe messaging paradigm;

I. INTRODUCTION

Cloud Networked Robotics (CNR) has been paid great
attention and many development efforts have been made for
CNR systems, such as [1], [2], and [3]. In CNR, robot
application modules can be more efficient if they are placed
on a cloud since this saves computation power, memory, and
battery consumption on the robots. Furthermore, application
modules are easier to maintain since updates to the application
module software does not have to be done for each and every
robot, thus reducing maintenance cost. It is also beneficial to
put some of the robot modules on a cloud, since the cloud
can provide the modules with rich computation resources that
can be used for complex computations, and storages for large
amount of data [4]. Another advantage of CNR is that it makes
it easier for programmers to write a program without having
detailed knowledge about robots. Some applications in areas
such as building management [5], agriculture [6], and the
medical field [7], have been developed and demonstrate the
effectiveness of CNR.

One of the most significant applications of CNR is to ob-
serve and analyze real-time situations of the real-world. Robots
can move around uncertain remote areas and observe sensor
data of a target region. The sensor data can then be analyzed
and the results can be used as input to a robot’s next movement
plan. This can for example be used by a building-management
system, where sensor data of temperature/humidity is gathered

up in a cloud to be processed and then forwarded to a facility
management system, in order to improve the efficiency of
air conditioners. Based on this concept, we are developing
an automatic data center monitoring system that uses cloud
robotics and CFD-simulations (Fig. II) [8].

Existing CNR-based systems assume stable network envi-
ronments in which the robots can always contact the processes
on the cloud immediately. However, this assumption does not
match the case with uncertain remote environments such as
wide farms and disaster areas, where the condition of a wire-
less network may not always be stable. Such situations may
easily occur even in an office or a data center where the target
area may be separated by objects or walls, which results in
large variations in network conditions. In order to apply CNR-
based robots to this kind of environments, we must assume
that network connections are intermittent or can only achieve
narrow bandwidth transmissions. There has been a study to
apply Delay/Disruption Tolerant Networks (DTN) to CNR in
order to keep the data transfer stable in environments with
intermittent network connections, but it causes high latency
when the condition of the physical wireless network degrades
[9]. Although the problem with intermittent connections is
solved by using DTN, the requirements of the feedback speed
or bandwidth for robots are not always satisfied.

To tackle this problem with potentially high latency and
narrow bandwidth, modules that require fast feedback or high
bandwidth could be placed on robots so that the system can
always get a fast response. This solution is not optimal since
it goes against the policy of CNR-based systems by increasing
the computation load on robots and not making use of the rich
computation power on the cloud. Since we must consider the
scenarios concerning uncertain remote areas, where uniform
wireless network quality cannot be assumed, we can say that
if a network link has high bandwidth and low latency, the
modules would most likely be better off placed on the cloud.
On the other hand, if the network condition were bad with low
bandwidth and high latency, these modules would be better
off placed inside the robot. This means that the most suitable
module placement may dynamically change, since in some
places the network is stable, and in other places unstable.

In this paper we present a framework for making a cloud
robotic sensor observation system “network-aware” in order
for it to be able to change the placement of the modules to the
most suitable place, following the QoS (Quality of Service) of
the network. The contributions of this paper are as follows:

• Presents a network-aware cloud robotic sensor frame-

Fig. 1. A CFD-simulation of the data center [8].

work that is based on the Topic-Based Publisher
Subscriber (TBPS) messaging paradigm.

• Proposes a mapcell-based robotic sensor observation
algorithm that suits to the network-aware cloud robotic
sensor framework. The algorithm consists of two types
of goal decision algorithms, global goal (GG) and
measurement feedback goal (MFG).

• Shows the effectiveness of the framework and al-
gorithm through an experiment using a prototype
implementation of a data center monitoring robot on
ROS [1].

II. ASSUMED ENVIRONMENT

This section presents an overview of the system structure
and mission, as well as the messaging paradigm assumed in
this study.

A. System Structure and Mission

Fig. II-B shows an overview of our assumed environment.
The mission of the system is to create a sensor data map
for the target region, which plots observed sensor value. In
conjunction with the mission, we envision an automatic data
center monitoring system where robots moves around in the
data center and monitor the temperature. If any abnormal
values are found, the robots should try to find, and if possible
correct, a temperature hot spot as soon as possible. The data
is also to be gathered up in the cloud be used as the input for
the CFD-simulation module.

Each of the robots is assumed to be equipped with sensors,
such as a temperature sensor, a humidity sensor, a camera
sensor, and so on. According to the sensor data observed
by the sensors, the next goal, which means the next sensing
target position for the robot is decided. The next sensing
target positions are decided by some algorithms to achieve
fast construction of a sensor data map. The algorithm should
be changed depending on the application or sensing target,
such as an algorithm which selects a position where the oldest
sensing value is mapped, an algorithm which selects a position
where an abnormal sensor value is estimated by a calculation
of trends and patterns of the sensor data, etc.

We also assume that a movement management process
exists on the robots and that the robots operate in a wire-
less network environment with intermittent connections. The

sensor data map

sensor data

update

algorithm to decide next goal (Process)

Subscribed to topic: ”Position”

target region

obstacle
Sensor1

goal

wireless

network

movement management (Actuator1)

Subscribed to topic: “Actuator1_Goal”

cloud

robot

Publish

Topic: ”Position”

Message: (2.2, -4,7)
Publish

Topic: ”Actuator1_Goal”

Message: (5.6, 8.7)

data lookups

Fig. 2. The assumed environment where a cloud has a sensor data map of
a target region and decides goals for a robot.

movement management process detects and avoids obstacles
to reach to the specified goal. If the process modules in the
cloud and the robots were to be connected together in a DTN-
network to uphold connectivity, there would be very high
latency and small bandwidth. But when the robot is located
at the position where the wireless network is stable, the robot
can have good bandwidth and low latency.

B. Messaging Paradigm (TBPS)

The topic-based publish/subscribe (TBPS) messaging
paradigm is assumed to run on all robot modules because
it enables the development of scalable and distributed infor-
mation processing systems [10], which is essentially what a
cloud network robots system is. An example of a CNR system
that uses TBPS is ROS [1], which adopts TBPS as its base
messaging mechanism for inter-module communications.

An example of the TBPS messaging paradigm can be
seen in Fig. II-B. A process might need position data from
a sensor, but instead of asking the sensor directly for the robot
position, it can subscribe to a topic with the name Position.
A topic works as a message filter that only handle messages
that contain the same type of data that the topic is configured
for. The sensor can publish its position data on this topic and
all subscribers of the topic will receive the same data. After
the sensor data has been processed, the processor can publish
an actuation command on the topic Actuator1_Goal, so that
“Actuator1” can move the robot to a goal in the target region.

III. NETWORK-AWARE CLOUD ROBOTIC FRAMEWORK

In this section, we present a network-aware cloud robotic
framework that is based on the TBPS messaging paradigm.
In this framework, the modules change their placement to the
most suitable place (i.e. on the cloud or on the robot) following
the current QoS of the network.

We treat the following QoS for TBPS messaging:

• Latency: message propagation delay between the pub-
lisher and subscriber. If DTN is applied as a base
network system, the latency can be very high, for
example from 300sec - 1day. Normally, when Wi-Fi
is applied as a base network system, the latency may
be for example 1ms - 10ms.

• Bandwidth: amount of data sent within a certain
period of time. In a Wi-Fi environment, the bandwidth

ActuatorSensor

Process
Needed latency: 1 sec

Robot1

Actual latency

becomes: 20 msec

Robot1_ActuatePosition

Connected via DTN

Actual latency: 300 sec

Fig. 3. A case where a process running on the cloud would be better placed in
the robot because of intolerable latency.

S

Sensor

Sensor average

calculator

Simulation

program

Robot1
Needed

bandwidth:

120 kbps

Available

bandwidth:

40 kbps
S

Sensor

S

Sensor

S

Sensor

Connection with low

available bandwidth

Robot1_SensorData (4 X 30kbps)

AverageSensorData (30kbps)

Needed

bandwidth:

30 kbps

Available

bandwidth:

40 kbps

Fig. 4. A case where a module running on the cloud would be better placed in
the robot because of low available bandwidth.

may be 10Mbps - 50Mbps, while in a Bluetooth SPP
environment, the bandwidth may be 10kbps - 500kbps.

In our framework, the current latency (referred to as
“actual latency”) and available bandwidth are monitored. Every
module that publishes or subscribes to a topic, specifies its
required latency as “needed latency” and required bandwidth,
for publishing or subscribing to a certain topic, as “needed
bandwidth”. When the monitored QoS does not satisfy the
needed QoS in the current module placement, it considers
moving the module to the robot from the cloud. Since the
publisher module does not need to worry about the place where
the subscriber module is running when using TBPS, there is
no need to modify the program code on the modules.

The case seen in Fig. II-B identifies the problem with
placing a crucial module on the cloud when the network
is subject to high latency. In this example, the sensors on
“Robot1” publish its position on the topic Position, and the
actuator on Robot1 subscribes to the topic Robot1_Actuate
to receive actuation commands. The process on the cloud
subscribes to the topic Position and when it receives a
position message from Robot1, it decides the next action and
publishes the command on the topic Robot1_Actuate. At this
time, the process has a “needed latency” of 1 second. But
Robot1 is connected via DTN, so the actual delay at this
moment is 300 seconds. In order to satisfy the QoS, the module
is migrated to the robot where the actual delay is 20 msec.

Using the QoS with bandwidth may be more complex. Such
a case can be seen in Fig. II-B, where a robot is connected to a
cloud via a link with low available bandwidth. Several sensors
in the robot need to send their sensor data to a module that will
calculate the average of all the data and forward this average
to a simulation program. Each sensor sends data at a rate of
30kbps and there are four sensors, which means that the sum
of “needed bandwidths” is 120kbps. The available bandwidth
is only 40kbps and will therefore not be enough. Moving the
average calculating module to the robot solves this problem
since the average calculator module has a needed bandwidth
of 30kbps, which is less than the available bandwidth of 40kbs.

But by always placing the modules in the robot, there is a
valuable trade-off from maintenance cost, energy consumption,
and possibilities to make use of the vast amount of different in-
formation available on the cloud. Both ways have their benefits
and downfalls, so we therefore propose a network-aware cloud

networked robot that monitors the network to get network
data about the actual delay and available bandwidth, upon
it may restructure itself to migrate modules freely between
the cloud and the robot. In terms of adapting to network
changes, a network-aware cloud robot would act according to
the following:

• Required QoS can be satisfied on cloud (good
bandwidth and/or low latency): The system migrates
the modules to the cloud in order to increase the
efficiency and make better use of available data, as
well as decrease the usage of resources in the robot.

• Required QoS cannot be satisfied on cloud (low
bandwidth and/or high latency) or no network
connection: The system migrates the modules to the
robot in order to continue to provide the functions with
required QoS.

IV. DESIGN OF A NETWORK-AWARE CLOUD ROBOTIC
SENSOR OBSERVATION SYSTEM

In this section we propose a design of a network-aware
cloud robotic sensor observation system. Firstly we introduce
a system design that realizes the network-aware cloud robotic
framework described in the former section. We then intro-
duce an abstraction of a robot’s movement planning that can
do sensor observation while having measurement feedback.
Lastly, we propose a mapcell-based robotic sensor observation
algorithm that suits to the network-aware cloud robotic sensor
framework, which is described in the former section. The
algorithm consists of the two types of goal decision algorithms,
global goal (GG) and measurement feedback goal (MFG).

A. Design of a network-aware cloud robotic system

Fig. IV shows a system design of the framework. We
assume publisher/subscriber modules use pub/sub network
layer on top of the lower layer networks.

The publisher/subscriber modules may specify required
QoS in form of needed latency and bandwidth. The required
QoS is specified with the publish and subscribe command
messages. If a module does not have any requirements for
network QoS, the module does not have to specify any required
QoS. In this case, the module does not run as network-aware.

Lower Layer Network

Recieve

Manages publisher / subscriber relation

Decides module placements

Subscribe

with QoS

Requirements

(Latency,

Bandwidth)

Network

Monitor / Controller

Publish

with QoS

Requirements

(Latency,

Bandwidth)

Placement

direction

Publisher

Module

Subscriber

Module

Pub/Sub Layer Pub/Sub Layer

Placement

direction

Publish/Subscrib Status Information

QoS Requirement Report

QoS Feedback Report

Fig. 5. The design of the network monitor.

The pub/sub network layer reports publish/subscribe status
information and QoS requirements to a network monitor. The
network monitor creates and keeps publisher and subscriber
relations based on the received publish/subscribe status infor-
mation. In addition, the network monitor maintains the QoS
requirements for each publisher and subscriber relation.

The pub/sub network layer also measures the actual QoS,
the actual latency and available bandwidth. The actual QoS
is measured through passive monitoring of the network. This
means that instead of actively sending messages to test the
latency and bandwidth, actual application data is measured
to obtain more accurate network situation. The actual QoS
will be sent to the network monitor as a QoS feedback
report. A usual problem with passive monitoring is that it
relies on the data sent by applications, which means that
the information acquired through this might be out-of-date.
If the sensors always publish messages, the network monitor
will be informed of any changes in the network. Otherwise,
the publisher must send periodic test message to measure the
actual latency and available bandwidth.

If any of the module’s required QoS is not satisfied on
network monitor, the network controller estimates the QoS in
the alternative module placements keeping the publisher and
subscriber relations. If QoS is considered to be satisfied in
the other module placement, a placement direction command
will be sent to a module to move itself to another position if
needed.

B. Sensor Observation With Measurement Feedback

The problem faced in the assumed environment is that the
network connection may suddenly go down or present very
high latency. To be able to utilize the vast resources provided
by the cloud to decide complex movement schemes, even when
modules have to be migrated to the robot to satisfy the needed
QoS, we propose to divide the robots movement planning into
two different goal decision algorithms, global goal (GG) and
measurement feedback goal (MFG).

A global goal (GG) is an abstraction of a complex objec-
tive, e.g. searching through a part of a room in order to find
temperature hot spots. In order to complete such an objective
the robot will need to perform many minor tasks, such as
deciding where to continue to search after an abnormal value
has been found, avoid running into objects, decide when a hot
spot has been found, and so on. We call these many minor tasks
that often involve reacting to the surrounding environment,

measurement feedback goals (MFG). An important difference
to take notice of between these two goal decisions algorithms
are that they operate on different time scales. A GG might
be completed every 3 to 15 minutes, while a MFG could be
completed all between 50 milliseconds to 2 seconds.

If we apply these two goal decision algorithms to an
example similar to the example presented in the previous
section concerning high latency, we get a scenario that can be
seen in Fig. IV-A. This time a robot with sensors and actuators
are connected via DTN to a cloud with measurement feedback
and global goal modules. Sensors on the robot send the
robot’s position to the measurement feedback, which decides
a movement so that the robot gets closer to accomplishing the
global goal. The robot expects a needed latency between itself
and the measurement feedback to be less than 1 second, but the
actual delay is over 300 seconds. By moving the measurement
feedback module to the robot, the actual delay goes down to
20 ms, which is less than the needed latency of 1 second. The
actual delay between the robot and the global goal module
will still be up to 300 seconds, but is no problem since the
global goal module expects that it will take over 360 seconds
to complete a global goal. This enables the system to utilize
the power of the cloud while having real-time feedback, even
under unstable network conditions.

C. Global Goal

Before we can define a goal decision algorithm, we need
to define an abstraction, which can hold information about
a target region. We propose that a target region is divided
into squares, which we call “MapCells”. A MapCell contains
information about the coordinates of a square area in a target
region, temperature data, and the latest time an area was visited
by a robot.

An example of an algorithm that can be used by the global
goal module to decide which area the robot should scan next
can be seen in Fig. IV-B. It is called the “least recently visited”
algorithm and was used by [11]. Each MapCell contains the
time when the MapCell was last visited by a robot and the
algorithm uses this to decide which MapCell that was least
recently visited. A room, presented as a black square, is divided
into squares of MapCells, which can be placed on a x- and
y-axis. Hereafter, (x, y) denotes a MapCell at the coordinates x
and y. The six steps in the example that explains the algorithm
are as follows:

ActuatorSensor

Measurement

Feedback

Global Goal

Robot1

Needed

latency: 1 sec

Needed

latency: 360 sec

Connected via DTN

Actual latency: 300 sec

Robot1_Goal

Type: Feedback

Position Actual

latency: 20 ms

Robot1_Goal

Type: Global

Robot1_Goal

Type: Feedback

Fig. 6. An example that shows how the concept of global- and measurement
feedback goals can use the vast resources of the cloud while providing real-
time feedback to modules.

(1)
0

0

1

2

3

4

y

1 2 3 4 x

23 22 21 20 24

19 15 17 16 18

10 11 12 13 14

5 6 7 8 9

1 2 3 4

(4)
0

0

1

2

3

4

y

1 2 3 4 x

2

22 21

6 5 17 18 19

7 13 14 15 16

8 9 10 11 12

(2)
0

0

1

2

3

4

y

1 2 3 4 x

23 22

19 16 18

12 13 14

6 7 8 9

1 2 3 4

(5)
0

0

1

2

3

4

y

1 2 3 4 x

1 7 5 6

24 2 3 4 23

9 8 20 21 22

10 16 17 18 19

11 12 13 14 15

(3)
0

0

1

2

3

4

y

1 2 3 4 x

24 23 2 1

22 4 3 20 21

6 5 17 18 19

7 13 14 15 16

8 9 10 11 12

(6)
0

0

1

2

3

4

y

1 2 3 4 x

1 7 5 6

2 3 4 23

9 8 20 21 22

10 16 17 18 19

11 12 13 14 15

MapCell Current Position

Nr

Visiting Counter

Fig. 7. The algorithm used by the global goal module to decide where the robot
should scan for temperature hot spots.

(1)
0

0

1

2

3

4

y

1 2 3 4 x

(4)
0

0

1

2

3

4

y

1 2 3 4 x

(2)
0

0

1

2

3

4

y

1 2 3 4 x

(5)
0

0

1

2

3

4

y

1 2 3 4 x

(3)
0

0

1

2

3

4

y

1 2 3 4 x

(6)
0

0

1

2

3

4

y

1 2 3 4 x

MapCell Unchecked Direction Checked DirectionCurrent IC

Fig. 8. The algorithm used to find a temperature hot spot when an abnormal
value has been found and needs to be investigated.

• Step 1): The robot, placed at the black square, selects
a MapCell to visit by finding the highest number;
the higher the number, the longer time ago since
a MapCell was visited. The MapCell that is least
recently visited is (4, 0).

• Step 2) and 3): The robot moves to (4, 0) and
recalculates all the values so the algorithm can find
out which is the next least recently visited MapCell.

• Step 4) and 5): It is decided that (0, 0) is the next least
recently visited MapCell and the robot moves there.
When arriving at the MapCell, all the values are once
again recalculated.

• Step 6): (0, 1) is found to be the next least recently
visited MapCell. The robot moves there and this
continues indefinitely or until another algorithm takes
over. An example of this is the measurement feedback
module that may start locating a temperature hot spot
if an abnormal value has been found.

D. Measurement Feedback Goal

An example of an algorithm that can be used by the
measurement feedback module to locate a temperature hot
spot, when an abnormal value has been found, can be seen
in Fig. IV-B. The algorithm can be explained by an example
in six steps. The steps are as follows:

• Step 1): The algorithm starts when an abnormal value
has been found. The first action is marking the area
of the room ((2, 2)), where the abnormal value was
found, as being the current investigation cell (IC).
This is followed by marking the previously visited
MapCell ((2, 3)) as being a checked direction, as well
as marking all surrounding MapCells as unchecked
directions that needs to be investigated.

• Step 2): The robot will start investigating the sur-
rounding unchecked directions to see if their average
temperature is larger or lower than the current IC.
It chooses to start the investigation in (2, 1). The
average temperature is found to be lower than that
of the current IC, and (2, 1) is therefore marked as a
checked direction.

• Step 3: The robot finds an area ((3, 2)) that has
higher average temperature than that of the current

Fig. 9. The prototype implementation.

IC, and therefore updates (3, 2) to be marked as the
current IC. All surrounding MapCells are reset and
once again marked. The previous IC is marked as a
checked direction while the all the other surrounding
MapCells are marked as unchecked directions.

• Step 4) and 5): The robot continues to investigate
surrounding unchecked directions. It is found out that
(3, 1) and (3, 3) has a lower average temperature than
the current IC. Both MapCells are therefore marked
as checked directions.

• Step 6): The last surrounding MapCell is found to
also have a lower average temperature than that of the
current IC, and the algorithm therefore decides that
the hot spot has been found. The robot can now go
back to completing the objective set by the global goal
module.

V. PROTOTYPE IMPLEMENTATION AND EXPERIMENT

To show the feasibility and effectiveness of the framework
presented in the former sections, we implemented a prototype
system and conducted an experiment, based on the scenario
with the data center presented in section II, to see how much
time that could be saved from finding temperature hot spots
when a measurement feedback module, used for finding hot
spots, is placed in the robot instead of in the cloud.

A. Prototype Implementation

A prototype implementation of the network-aware cloud
robotic sensor observation system was developed on top of
ROS [1]. The prototype implementation uses the two algo-
rithms described in section IV-C and IV-D, but does currently
only support static module placements.

The Fig. IV-D shows the overview of the prototype imple-
mentation of the robot. The robot used was a “Turtlebot 2” [12]
robot suite from Willow Garage, which includes a Microsoft
Kinect, a Kobuki base station with factory calibrated gyro,
a wood and steel frame for mounting modules, and a ROS
compatible laptop computer (Netbook).

The Microsoft Kinect uses a camera, an infrared projector,
and a specialized chip to recognize gestures, patterns, and
depth. This can be used to create a 3D-map of a room, and
with the help of the gyro of the Kobuki base station, the
robot can locate itself in the map and navigate the room with
simultaneous localization and mapping (SLAM) algorithms.
The Kobuki base station is a movement base similar to the
famous “Roomba” cleaning robot [13]. A laptop computer
(Netbook), running Linux (Ubuntu), is used to run modules
for robot controls such as a “move base” module that takes
goals in a map as input and forward actuation commands to
the Kobuki base station, a program to fetch sensor data from
the Kinect, and so on. At the cloud side, there is a normal PC-
server with Linux (Ubuntu), and the laptop connects to the
server on the cloud side via Wi-Fi connection (802.11n).

B. Experiment Setup

The experiment setup, seen in Fig. V-A, was designed to
take the scenario presented in section II, where the server
corridors could make network connection go bad, into account.
The experiment setup was placed in a corridor, which is 2
meters wide and 12 meters long. A pair of electrical heaters
was placed by the walls to simulate a temperature hot spot.

To simulate a network with intermittent connections, we
statically configured an area in the corridor to be without
network connection. As can be seen in Fig. V-A, two areas
(each about 1.5 times 2 meters) at each end of the corridor are
configured to have network connection, while all the area in
between is configured to have no network connection.

The sensors were set to publish measurements at a rate
of three times a second. The global goal module was con-

Global GoalAreas with

Wi-Fi connection

Global Goal

Start

Global Goal

Fig. 10. The experiment setup in a corridor with heaters on the side to
simulate a temperature hot spot.

figured to publish an actuation command on a topic called
“Global Goal”, ordering the robot to move to the end of the
corridor, back to near the beginning, and then to the end of
the corridor once again, resulting in a movement similar to
the letter “Z”. The robot was instructed to run for an extra
50 measurements after a temperature hot spot was found, i.e.
around an extra 16 seconds.

The experiment was divided into two runs, one run where
global goal and measurement feedback were placed on the
cloud, and the other run where the global goal module is placed
on the cloud while the measurement feedback module is placed
in the robot. The second run can be seen as our “network-
aware” system, having sensed or predicted the loss of network
connection, and then migrated the MFG module to the robot
in order to satisfy future QoS.

In the former experiment run (normal), sensor data (temper-
ature and position) does not reach the measurement feedback
module, since it does not meet the required “needed latency”
set by the MFG module in this environment. That is, in
the former experiment, only the global goal module runs to
manage movement of the robot.

C. Experiment Results

The results from the experiment can be seen in Fig. V-C.
The graph shows temperature on the y-axis and corresponding
measurement number on the x-axis, essentially meaning that
the two lines represents how temperature changes over time
when the robot moves along the predetermined path. The
dotted line, which is named “Normal” shows the experiment
run where only the global goal module runs on the cloud.
The straight line, called “Network-aware”, represents the ex-
periment run where the measurement feedback goal module is
placed on the robot, while the global goal module is placed
on the cloud.

The results show that while running down the corridor the
prototype implementation with “network-aware” finds an ab-
normal value and start to investigate, while the other prototype
implementation runs to the end of the corridor until it get
network connection again and can go and investigate the area
around the abnormal value. When the measurement feedback
goal module is placed in the robot, the robot will investigate
around the area of the heaters to finally find the hot spot. The
difference in time between the two runs was roughly around
100 measurements; meaning around 33 seconds.

VI. RELATED WORK

A QoS-driven framework for self-adaptive mobile applica-
tions have been proposed to support seamless configurations
[14]. A middleware discovers alternative remote providers of
functionalities required by an application to keep the SLA
(Service-Level Agreement).

Some researches have been studied so far on ‘mobile
offloading’, which aims to offload computing tasks to a cloud
in order to save computational power and increase battery life
on the local devices [15]–[17].

Our framework does not need specified remote-able meth-
ods since TBPS does not need to know where a module
is, but rather what information that module subscribes to
or publishes. Furthermore, our framework takes care of the
movement planning module of the autonomous robots in the

 0

 5

 10

 15

 20

 25

 30

 35

 50 100 150 200 250 300 350 400 450

T
em

pe
ra

tu
re

 (
ce

nt
ig

ra
de

)

Number of measurements (times)

Network-aware(GG and MFG)
Normal(GG)

Fig. 11. The results from the experiment.

unstable wireless network, which is out of scope in the existing
works.

VII. CONCLUSION AND FUTURE WORK

In this paper we proposed a network-aware cloud net-
worked robotic sensor observation framework based on the
topic-based publisher/subscriber messaging paradigm. A real-
life example scenario was also presented and an experiment
was carried out to see how the example scenario could benefit
from migrating modules from the cloud to the robot. Our
preliminary results show that having modules in the robot
could find hot spots faster than having the modules in the
cloud, opening a possibility for making the data center more
energy efficient and reduce running cost.

The next step is to fully implement network monitors into
the system to be able to receive information about the network
condition from the network. At this time, since the actual QoS
is collected on the network monitor, the future QoS for each
publisher/subscriber may be estimated. For this purpose, we
will consider mechanisms to manage the actual QoS and the
robot’s geographical coordinates, as well as mechanisms to
predict the future QoS.

Another aspect yet to be taken into consideration is the
time it will take to move modules from one place to another.
If degrading network conditions are predicted beforehand or
the network condition is gradually getting worse, the modules
can be moved without any problems. The problem is the cases
where no changes in network condition is predicted and a
sudden change in network condition occurs, leaving little to
no time for the system to adapt. Furthermore, future work also
includes investigating the trade-off between migrating modules
to decrease CPU loads and additional networking required to
migrate the modules.

Unlike the experiment in this paper, where modules are
placed in a position known beforehand to be better or worse,
future works will conduct experiments with dynamic network
environments. The current system used in the experiment
does not need the vast computing capacity or storage that a
cloud provides, but the system we are aiming to create does.
Network monitors will be implemented to monitor the network
condition while evaluating if modules need to be moved to

another position in order to satisfy QoS, at the same time as
predicting future QoS and estimating the time it will take to
move the modules to the new placement. This will be done
in order to, as often as possible, prevent the scenarios where
sudden changes occurs in the network condition.

REFERENCES

[1] ROS development community, Documentation ROS Wiki, Available at:
http://wiki.ros.org, Accessed Mar. 2014.

[2] N. Ando, T. Suehiro, K. Kitagaki, K. Kotoku, W. K.Yoon, RT-
Middleware: Distributed Component Middleware for RT (Robot Tech-
nology), 2005 IEEE/RSJ International Conference on Intelligent Robots
and Systems (IROS2005), pp.3555-3560, Aug. 2005.

[3] Robot Service initiative, Robot Service Network Protocol, 5th
Japan - Korea Service Robot Workshop, 26th Nov. 2009, Available at:
http://robotservices.org, Accessed Mar. 2014.

[4] R. Arumugam, V. R. Enti, L. Bingbing, W. Xiaojun, K. Baskaran,
F. F. Kong, A. S. Kumar, K. D. Meng, G. W. Kit, DAvinCi: A Cloud
Computing Framework for Service Robots, in Proc. of 2010 IEEE
International Conference on Robotics and Automation (ICRA 2010),
pp.3084-3089, 3-7th May 2010.

[5] I. G. Alonso, P. Suarez, V. Curto, O. Alvarez Fres, Work in progress:
Smart home energy (SHE), 2011 2nd IEEE PES International Conference
and Exhibition on Innovative Smart Grid Technologies (ISGT Europe),
Manchester, pp.1-4, 5-7th Dec. 2011.

[6] Fujitsu Limited, Fujitsu Expands Lineup of Akisai Food and
Agriculture Cloud Services, Tokyo, 24th Dec. 2013, Available at:
http://www.fujitsu.com/global/news/pr/archives/month/2013/20131224-
01.html, Accessed Mar. 2014.

[7] T. Yokoo, M. Yamada, S. Sakaino, S. Abe, Development of a Physical
Therapy Robot for Rehabilitation Databases, 2012 12th IEEE Interna-
tional Workshop on Advanced Motion Control (AMC), Sarajevo, pp.1-6,
Mar. 2012.

[8] M. Higashida, Autonomic Datacenter Operation under the concept of
Cloud Network Robotics, in IEICE Technical Report, CNR2013-10-16,
Vol.113, No.248, pp.33-38, Oct. 2013 (In Japanese).

[9] S. Shimojo, M. Higashida, Y. Teranishi, Future Network Required for
Cloud Robotics, The Journal of the Institute of Electronics, Information
and Communication Engineers (J. IEICE), Vol. 95, No. 12, pp.1057-
1061, Dec. 2012 (In Japanese).

[10] J. Li, X. Ji, X. Liu, Y. Jianguo, S. Gopalakrishnan, F. Hu, Topic-Based
Resource Allocation for Real-Time Publish/Subscribe Communication
Systems, 2010 5th International ICST Conference on Communications
and Networking in China (CHINACOM), Beijing, pp.1-9, 25-27th Aug.
2010.

[11] M. A. Batalin, Symbiosis: Cooperative Algorithms for Mobile Robots
and a Sensor Network, Ph.D. Dissertation Proposal, University of
Southern California, Jul. 2004.

[12] Open Source Robotics Foundation, TurtlebotTM, Available at:
http://turtlebot.com/, Accessed Mar. 2014.

[13] iRobot Corporation, iRobot Roomba Vacuum Cleaning Robot, Available
at: http://www.irobot.com, Accessed Mar. 2014.

[14] R. Rouvoy, P. Barone, Y. Ding, F. Eliassen, S.O. Hallsteinsen,
J. Lorenzo, A. Mamelli, U. Scholz MUSIC: Middleware Support for Self-
Adaptation in Ubiquitous and Service-Oriented Environments, Software
Engineering for Self-Adaptive Systems, LNICS, Vol. 5525. Springer-
Verlag, pp.164-182, 2009.

[15] S. Kosta, A. Aucinas, P. Hui, R. Mortier, X. Zhang, ThinkAir: Dynamic
resource allocation and parallel execution in the cloud for mobile code
offloading, in Proc. of IEEE INFOCOM 2012 , pp.945-953, Mar. 2012.

[16] H.R.F. Macario, S. Srirama, Mobile code offloading: should it be a
local decision or global inference?, in Proc. of ACM MobiSys 2013
pp.539-540, June 2013.

[17] L. Jiao, R. Friedman, X. Fu, S. Secci, Z. Smoreda, H. Tschofenig,
Cloud-based Computation Offloading for Mobile Devices: State of the
Art, Challenges and Opportunities, in Proc. of Future Network and
Mobile Summit 2013, pp.1-11, July 2013.

TRITA-ICT-EX-2015:8

www.kth.se

