
Location based sports/fitness app
Android app for smartphones

JIMMY QUARESMINI

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, FIRST LEVEL
STOCKHOLM, SWEDEN 2015

Location based sports/fitness app
Android app for smartphones

Jimmy Quaresmini

2015-02-18

Bachelor’s Thesis

Examiner and Academic adviser
Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

 Abstract | i

Abstract

The City of Stockholm’s budget for sports is 1.6% of the total city budget in 2014. About 60,000,
licensed (age 15 and up, about 50%) and younger actively played soccer in Stockholm in 2005. That
is roughly 24% of the total number of participants in sports activities in Stockholm’s district. There
is a need for a location-based application (commonly abbreviated "app") to help people
spontaneously meet for different sports activities.

The app developed and analyzed in this thesis will address this need and assist potential
participants in organizing sports activities, deciding to participate in these activities, make friends,
etc. Not only large team sports will be considered, but sports done in pairs such as tennis and other
sports as well that you do with others. Consider a person who has moved to a new city and wants to
play football (soccer), but does not know people in this city. This app can help this person find
others who would like to play in a quick and easy way by looking at a map and seeing where others
would like to participate in this sport, for example at a particular soccer field, using location
information concerning the potential participants and this specific field. Apps that use location
information have become very common with the widespread use of smartphones. Such an app
provides a location-based service.

This thesis describes the design and implementation of an Android app with a location-based
service and how to set up this app, what technology is needed to get the needed location
information, and the programming language used. In addition, the thesis considers users’ needs and
how the app caters to those needs. An analysis will be done of how well this app communicates with
a database server as the number of users increases, scales. Performance and load on both the server
and app will be considered. The performance will be analyzed to see how well it matches the users’
expectations.

The app developed in this thesis will be for the Android platform and Apple's iOS (but the focus
in the thesis is on the Android-version). This app will communicate with a database server running
a Linux OS, an Apache HTTP server, a MySQL database, and using a PHP programming web
infrastructure (such a setup of services is commonly called by the acronym LAMP). The app will
connect to Facebook and Twitter to exchange information (however, that is outside the scope of this
thesis).

Keywords

Location-based, application, app, service, Android, scales, database, server, LAMP,
sports

 Sammanfattning | iii

Sammanfattning

Stockholms stads budget för sport är 1,6% av den totala budgeten 2014. Ungefär 60 000
licensierade (15 år och uppåt, 50 %) och yngre aktiva fotbollsspelare fanns i Stockholm år 2005. Det
motsvarar ungefär 24 % av dem som utövade sport det året i Stockholms distrikt. Det finns ett
behov av en platsbaserad applikation (vanligen förkortat ”app”) som hjälper människor att spontant
träffas för att utöva olika sporter man utför tillsammans.

Appen som utvecklas och analyseras i detta examensarbete försöker tillgodose detta behov och
hjälper potentiella deltagare att organisera sportaktiviteter, besluta att delta i dessa aktiviteter,
skaffa nya vänner m.m. Inte bara stora lagsporter, men också sporter man utför i par som tennis och
andra sporter man utför tillsammans med andra kommer beaktas. Betänk en person som nyss har
flyttat till en ny stad och vill spela fotboll, men inte känner några i denna stad. Denna app kan hjälpa
den här personen hitta andra som vill sporta på ett enkelt och snabbt sätt genom att titta på en karta
och se var andra vill utöva denna sport, t.ex. på en viss fotbollsplan, med användning av
platsinformation om potentiella deltagare och denna specifika plan. Appar som använder
platsinformation har blivit väldigt vanliga med det utbredda användandet av smarta mobiltelefoner.
En sådan här app erbjuder en platsbaserad tjänst.

Denna rapport beskriver designen och implementationen av en Android app med en
platsbaserad tjänst och hur man sätter upp en sådan här app, vilka teknologier som behövs för att få
den platsinformation som behövs och det programmeringsspråk som används. Därutöver kommer
rapporten överväga användares behov och hur appen tillgodoser dessa behov. En analys kommer
genomföras av hur denna app kommunicerar med en databas server när antalet användare ökar,
när den skalar. Prestanda och belastning av både appen och servern kommer tas med i beräkningen.
Prestandan kommer analyseras för att se hur väl det motsvarar användares förväntningar.

Appen som utvecklas i detta examensarbete kommer vara för Android och Apples iOS (men
fokuset i detta examensarbete kommer vara på Android versionen). Denna app kommer
kommunicera med en databas server som kör ett Linux OS, har en Apache http (webb) server, en
MySQL databas och som använder en PHP programmerings-infrastrutur (en sådan uppsättning
tjänster kallas vanligen LAMP, en akronym). Appen kommer ansluta till Facebook och Twitter för
att utbyta information (men det ligger dock utanför ramen för detta examensarbete).

Nyckelord

Platsbaserad, application, app, tjänst, Android, skalar, databas, server, LAMP, sport

 Acknowledgments | v

Acknowledgments

I would like to thank Professor Gerald Q. Maguire Jr. for being my examiner and academic
adviser and accepting to help me with a short notice.

I would also like to thank Chima Okechukwu and digiArts Entertainment AB for providing this
thesis project.

Stockholm, February 2015
Jimmy Quaresmini

 Table of contents | vii

Table of contents

Abstract .. i
Keywords ... i

Sammanfattning .. iii
Nyckelord ... iii

Acknowledgments .. v
Table of contents .. vii
List of Figures .. ix
List of Tables ... xi
List of acronyms and abbreviations .. xiii
1 Introduction ... 1

1.1 Background ... 1
1.2 Problem definition .. 1
1.3 Purpose ... 2
1.4 Goals ... 2
1.5 Research Methodology .. 3
1.6 Delimitations ... 3
1.7 Structure of the thesis ... 3

2 Background ... 5
2.1 Types of Localization and Location-Based Services (LBS) 5

2.1.1 GPS ... 5
2.1.2 Cell-ID .. 6
2.1.3 Wireless LAN localization .. 6
2.1.4 GSM Time advance offset ... 6
2.1.5 Signal strength ... 6
2.1.6 Using mobile phones' hardware to do "dead reckoning" 6
2.1.7 User check-in ... 6
2.1.8 LBS-applications .. 7

2.2 Developing Android apps with a database... 7
2.2.1 Android OS .. 7
2.2.2 Developing apps for Android .. 7
2.2.3 LAMP ... 8
2.2.4 Android App Localization ... 8

2.3 Related works ... 9
2.3.1 Building LBS Based On Social Network API: An Example

of a Social Check-in App .. 9
2.3.2 Some experiments with the performance of LAMP

architecture .. 9
2.3.3 Characterizing Mobile Open APIs in Smartphone Apps 9
2.3.4 Investigation of location capabilities of four different

smartphones for LBS navigation applications 9
2.3.5 Tests of smartphone localization accuracy using W3C API

and Cell-Id ... 10
2.3.6 Selective cloaking: Need-to-know for location-based apps 10

8 | Table of contents

2.4 Summary ... 10
3 Methodology ... 13

3.1 Research Process .. 13
3.2 Data Collection ... 14

3.2.1 Sampling .. 14
3.2.2 Sample Size ... 14
3.2.3 Target Population ... 14

3.3 Experimental design/Planned Measurements 15
3.3.1 Test environment and test model ... 15
3.3.2 Hardware/Software to be used .. 15

3.4 Assessing reliability and validity of the data collected 16
3.4.1 Reliability ... 16
3.4.2 Validity ... 16

3.5 Planned Data Analysis ... 16
3.5.1 Data Analysis Technique ... 16
3.5.2 Software Tools ... 17

3.6 Evaluation framework .. 17
4 The application: development, testing, and evaluation 19

4.1 Developing the code for the app ... 19
4.2 The App, Kopplar, and its functions ... 20
4.3 Testing and setting up an emulator to use the app-code on 22
4.4 Installing and setting up Locust .. 24
4.5 Simulation of app users on mobile devices 24

4.5.1 Measurements using the emulator and devices 24
4.5.2 Measurements using Locust .. 27

5 Analysis ... 29
5.1 Major results ... 29

5.1.1 Smartphone/emulator measurements of web server
response times .. 29

5.1.2 GPS-measurements on smartphone/emulator 30
5.1.3 Locust’s test of web server response times 31

5.2 Reliability Analysis ... 32
5.3 Validity Analysis ... 32
5.4 Discussion .. 33

6 Conclusions and Future work ... 35
6.1 Conclusions .. 35
6.2 Limitations .. 36
6.3 Future work ... 36
6.4 Reflections .. 36

References .. 39
Appendix A: Detailed results .. 41

 List of Figures | ix

List of Figures

Figure 2-1: Google Nexus 5 smartphone .. 5
Figure 2-2: Emulator loading Android OS version 4.4.2 8
Figure 3-1: The 3 steps of making the HTTP POST request in the app

that I measure the time of. Measurements start right
before step 1, and ends right after step 3. 13

Figure 4-1: Android Device Chooser with Genymotion Emulator and
Samsung Galaxy Young 2 in Eclipse 20

Figure 4-2: Login-screen ... 20
Figure 4-3: Menu-options in the app Kopplar ... 21
Figure 4-4: Android SDK Manager with Intel’s HAXM-installer

marked ... 22
Figure 4-5: Home screen on the app (called Kopplar) on the

Genymotion emulator .. 25
Figure 4-6: HttpClient doing a HTTP POST request in the normal

way while I measure the time .. 25
Figure 4-7: Using an URLConnection in my function to get an

outstream and then creating a BufferedWriter to later do
the HTTP POST request with. Have started measuring
the time before this. ... 26

Figure 4-8: Reading the response from the HTTP POST request
using an InputStream and a BufferedReader while still
being in my function. After reading, I stop measuring the
time and store the value (in ms). ... 26

Figure 4-9: Start options for Locust. Selection of number of users
and users / second. ... 28

Figure 5-1: Results in a popup I did in the app after a test of 100
users. The result to focus on comes after “5)” (“1611
ms…”). .. 32

Figure 5-2: Test results after having run Locust with 300 simulated
users. .. 33

Figure 5-3: Average response times on Locust. 100-700 users. 34

 List of Tables | xi

List of Tables

Table 5-1: Average response times (in ms) on smartphone and
emulator with 100-500 users at the same time. The
number of requests made is shown. Note that there is a
programmatic 500 ms delay included in these
measurements. ... 29

Table 5-2: Average time (in ms) to send a POST request without
reading the POST request ‘s response from the server
(see below) measured on smartphone and emulator with
100-500 users at the same time. Note that there is a
programmatic 500 ms delay included in these
measurements. Equal number of requests as in Table 5-1. ... 30

Table 5-3: Locust-tests with 100-700 users and statistics. “Dur.” =
Duration. Average and Median are response times in
milliseconds (ms). .. 31

 List of acronyms and abbreviations | xiii

List of acronyms and abbreviations

apk Android Application Package
API Application Programming Interface
app Application
GLONASS GLObalnya NAvigatsionnaya Sputnikovaya Sistema
GNSS Global Navigation Satellite System
GPS Global Positioning System
GSM Global System for Mobile communications
JAR Java ARchive
LAMP Linux OS, Apache HTTP server, MySQL database, PHP programming
LBS Location-Based Services
OS Operating System
SDK Software Development Kit
SSID Service Set IDentifier
RSSI Received Signal Strength Indication
WLAN Wireless Local Area Network
W3C World Wide Web Consortium
WWW World Wide Web
XML Extensible Markup Language

 Introduction | 1

1 Introduction

Location-Based Services (LBSs) have become very common due to the increase in the number of
smart mobile phones (smartphones). LBSs use the coordinates of a device or a place in some way,
for example to give tips about something fun to do close by or even as a form of reality based game.

Applications (commonly known and abbreviated as "apps") for smartphones today (in 2014)
exist for all sorts of needs. These apps are created by companies, organizations, institutions, and
smaller developers.

This thesis will describe the design, development, and evaluation of an app that uses LBS to
help people meet to engage in some group sporting activity. This chapter describes the background,
problem definition, purpose, goals, methodology, and the delimitations of this thesis, as well as
presents the structure of this report.

1.1 Background

The City of Stockholm’s budget for sports is 1.6% of the total city budget[1]. About 60,000, licensed
(age 15 and up, constituting about 50%) and younger actively played soccer in Stockholm in 2005
(see [2]). That is roughly 24% of the total number of participants in sports activities in Stockholm’s
district. There is a need for a location-based smartphone app to help people spontaneously meet for
different sports activities. This app will assist potential participants in organizing sports activities,
deciding to participate in these activities, make friends, etc.

Moreover, people may want to participate in team sports (for example, (American) football, ice
hockey, or soccer), but do not know who else (near where they live or work) would like to participate
or know enough people to form team(s). The same may be true for other sports, such as tennis, that
also requires a partner. This could mean that an individual would be unable to participate in a sport
that they enjoy, hence they might not get as much exercise as they would like and need. This could
negatively impact the person’s health. In addition, not knowing people may lead to feelings of
isolation, which could be detrimental to the individual’s mental health. Such an application could
help address these needs. This will be brought up again in Sections 1.3 and 6.4.

1.2 Problem definition

The company digiArts Entertainment AB[3] wants to create a smartphone app to allow people to
easily meet and enjoy different sports based on location information. In most cases the location
information the app uses is the user’s coordinates, often accessed through the smartphone's GPS,
but also general information about the place to do sports, such as weather for example can be
shown. In this thesis we will focus on the design and development of this smartphone app using the
Android Operating System (OS) that uses location information of both potential participants and of
available places where one can engage in some kind of sport(s).

Consider a person who has moved to a new city, say Stockholm, Sweden, and wants to play
soccer, but does not know (many) people in this city. There are about 330[4] different pitches
outside and indoor halls where soccer players can play soccer in Stockholm (matches and/or
training) as of 2014. The proposed app can help the user find others who would like to play soccer in
these places in a quick and easy manner by using the location of these places and the location of the
users as well. In addition, the user will get information about the place to play, whether there is a
fee, etc.

Another problem that needs to be addressed is how to store information about users, sports
facilities, etc. and to access this information in a way that the user finds acceptable. A web server

2 | Introduction

will be used to provide both the storage and major computations to support the app. The app will
communicate using a secure means with this web server. We have chosen to use an Apache web
server running on the Linux OS together with a MySQL database and scripts written in PHP. This
type of setup is commonly known by the acronym LAMP.

In addition to the app’s user interface enabling the user to indicate if they are interested in
participating in a particular sport, the interface must also provide a way for the user to register with
the service and to “log in” (some means of authenticating themselves and getting authorization to
securely exchange information with the web server).

1.3 Purpose

My purpose for selecting this thesis project is to learn how to develop an Android app for
smartphones, learn how such an app can communicate with a database on a web server, analyze
how the app and server perform, and how this setup will scale. Additionally, I would like to
understand what such an app could mean for people who could now meet new people and more
easily engage in different sports, such as team sports.

The company’s purpose is to make an app that many people will want to use and make money
from the app indirectly from sponsors and others. The app will be freely available to users. The
company also hopes people will find this app to be useful and fun.

How this app may be beneficial to people in general was brought up briefly in Section 1.1.
Additionally, there is a need to consider the user’s privacy, personal integrity, and other issues when
providing location information to a server and when providing other personal information.
Furthermore there are various societal issues and sustainability issues that need to be considered
when creating an LBS. Other and similar aspects will also be brought up in Section 6.4.

This thesis may help other app developers and others interested in how to use location
information in a smartphone app and those who want to understand the performance of such an
app (together with LAMP).

1.4 Goals

To develop a mobile phone app that uses location and other information to dynamically organize ad
hoc sports events requires acquiring location information, some personal information about the
potential participants, and information about the available sites where the event could take place.
The app also requires support from a server that can keep track of a user’s preferences, the interests
of all potential participants in a particular type of event, the number of participants needed in each
type of event, the potential sites for each type of event, etc. In addition to designing and
implementing this app and its supporting infrastructure, there is a need to analyze how the app
performs and how it can be of benefit to both individual users and to society. Further, by applying
my theoretical knowledge about general programming I will gain practical experience in Android
programming in “the real world”*. The sub-goals of this project are:

1. Learning to acquire and use location information,

2. Learn how to design, develop, and deploy an Android app,

3. Learn how to best communicate between the app and the server infrastructure,

* This type of application programming and its environment are actually new to me, so a personal goal is to
learn this skill – which is currently highly valuable in industry.

Introduction | 3

4. Understand how the web server and database works (i.e., how to provide a suitable
server infrastructure),

5. Develop an app digiArts Entertainment AB is satisfied with,

6. Analyze the performance of app and the corresponding server infrastructure, and

7. Consider the benefits of the app to individuals and society.

1.5 Research Methodology

We will test the app both in an emulator (that simulates a smartphone on a computer) and on real
smartphones and thus gather data about the app’s performance with the web server. Based upon an
analysis of this data, along with preferences both of myself and the company, I will consider what
possible changes could/should be made in the app or infrastructure and I will identify conclusions
that can be drawn.

The app will not be written from scratch. Instead, existing code for an app not released yet on
Android will be developed, analyzed, and modified as needed. The existing app called “Kopplar” was
developed by DigiArts Entertainment AB for the Android and iOS platforms. Actually, DigiArts
hired a company in India I do not have the name of to do the programming of the app. Further
details about this app can be found in Section 4.2. DigiArts Entertainment AB has not looked at this
Android version of the app and I do not know beforehand what is needed to be done with it. The app
version studied in this thesis will be the Android version.

If errors are found, they will be corrected. Warnings will be corrected if needed. I will not have
access to those that developed this app before me (the company in India) and have to rely on myself
to understand what the code does.

1.6 Delimitations

Due to the limited time available for this thesis project, the project will not analyze how the app
affects people in real life, using polls or similar means of studying user opinions. Additionally, due
to the limited time available for this project a complete website for the app will not be constructed
(as was thought about beforehand). As mentioned in Section 1.5, this app is for Android rather than
for Apple’s iOS.

1.7 Structure of the thesis

In Chapter 2 relevant background information and previous works will be presented. Chapter 3
brings up the details about the methodology and methods used. Chapter 4 details what I did, phones
and emulator used, the setup and so on. Chapter 5 presents the results and an analysis of these
results. Chapter 6 presents the conclusions, limitations, future work and reflections on the possible
impacts of the app on society.

2

T
in
w

2

L
so

b
in
d
ex

2

G
sy
N
la
p
G
is
of

2 Backg

This chapter
nformation i

with a databa

2.1 Type

Localization i
ome of the ty

Location-
ut also in som

n a number
different way

xample, toda

.1.1 GP

GPS is the mo
ystem. It is

NAvigatsionn
atitudes (suc
ositioning w

GLONASS, G
s called COM
f users.

ground

will present
is divided in

ase. The chap

es of Loca

is the proces
ypes of locali

-Based Servic
me web sites
of applicatio

ys, depending
ay most smar

S

ost common
the most fam

naya Sputnik
ch as Sweden
with high prec

PS, and A-G
MPASS or Bei

the backgro
nto 2 parts: t
pter will also

alization a

ss by which
ization curren

ces (LBS) are
s and applica
ons). An LB
g on what k
rtphones sup

form of loca
mous kind o
ovaya Sistem

n) better than
cision [6]. Th

GPS (describe
iDou-2, but a

Figure 2-1

ound informa
types of loca
briefly descr

and Locati

a mobile ph
ntly used wit

e common to
ations for com
S gathers in

kind of devic
pport Global

alization in sm
of Global Na
ma (GLONAS
n GPS does.
he Google Ne
ed further be
as of yet - ne

1: Goog

ation about
alization and
ribe six relate

ion-Based

hone's locatio
th mobile ph

oday, mostly
mputers (for

nformation (t
ce it is and w
Positioning

martphones
avigation Sat
SS) is a Russ
Both GPS an
exus 5 smart
elow). Europ
either is wide

gle Nexus 5 sm

location-bas
d LBSs, and
ed works.

d Services

on is estimat
hones.

in smartpho
r example, W
the coordina
what hardwa
System (GPS

today. GPS i
ellite System
ian GNSS. G

nd GLONASS
tphone (show
e's GNSS is c

ely deployed

martphone

sed apps. Th
developing A

s (LBS)

ted. This sec

ones (in the f
Windows 8 ut

ates) of a us
ware is in tha

S) (see sectio

is an Americ
m (GNSS) [5
GLONASS co
S currently s
wn in Figure
called Galile
or used by l

Background |

e backgroun
Android app

ction present

form of apps
ilizes locatio

ser’s device i
at device. Fo
on 2.1.1).

can navigatio
]. GLObalny
vers norther

support globa
2-1) support

eo and China
arge number

5

nd
ps

ts

),
on
in
or

on
ya
rn
al
ts

a's
rs

6 | Background

GPS uses multilateration, a technique to determine the location based on knowledge about
other locations that are already known. By solving a set of simultaneous linear equations, the GPS
receiver can use the information transmitted from three or four satellites to determine its position
in three dimensions and the current time. Smartphones today (2014) often implement Assisted-GPS
(A-GPS) to reduce the time it takes to determine the receiver’s initial location.

2.1.2 Cell-ID

If a device lacks GPS, another method to learn the device’s location (coordinates - longitude and
latitude) is to listen for a cellular base station’s ID, then look in a database to see what the longitude
and latitude of this base station is. A cellular phone that can hear multiple base stations can use this
approach repeatedly to better estimate its location. This method is often called "Cell-ID". For
further details see [7].

2.1.3 Wireless LAN localization

This approach is similar to using a cellular base station’s ID, but instead uses the Service Set
IDentifier (SSID) of a Wireless Local Area Network (WLAN) access point and a database of
locations of known access points. These access points' locations are often provided by users
themselves (so-called "crowdsourcing"), see for example WiGLE.net[8] and Navizon[9].

2.1.4 GSM Time advance offset

Global System for Mobile communications (GSM) base stations transmits information to tell the
mobile device how to offset its transmissions in time so that they arrive at the correct time slot at the
base station. This can be used to estimate the distance from a given base station. Again the method
can be used multiple times to better estimate the location of the mobile device. For further details
see publications such as [10].

2.1.5 Signal strength

Many researchers have utilized signal strength measurements, see for example [11]. Today,
numerous commercial systems uses the Received Signal Strength Indication (RSSI) for cellular or
WLAN interfaces to estimate the distance from several base stations or access points to estimate
their location. For further details of combining this method with inertial measurements see [12].

2.1.6 Using mobile phones' hardware to do "dead reckoning"

As shown in Section 2.3.4, a mobile phone's own hardware can be used to estimate the location by
using so-called "dead reckoning". Dead reckoning estimates a location based upon tracking
movements, i.e., the direction and speed moved, from a given starting location.

2.1.7 User check-in

One more method to get the location, which has become quite common is called "check-in". In this
method, a user looks at a map and choses his or her own location on it, from which the coordinates
will be provided to an app.

Additionally, other technical means to gather location, especially indoors, exist, but they will not
be mentioned here.

Background | 7

2.1.8 LBS-applications

There are many types of applications of LBS. Finding something close by that one is interested in,
such as a specific type of store or restaurant. Finding people by viewing a map, advertisement, or
notifications of different types. Examples of LBS apps include applications for emergencies, criminal
investigations, and games using your location. There are many more examples of such apps.

The author's perception is that a location-based sports/fitness app that combines knowledge of
locations of places to do sports and facilitates meeting new people has not been exploited in many
apps available in the market; which, if true, indicates that the app may serve a need or fill a gap.

2.2 Developing Android apps with a database

Android provides developers with a Software Development Kit (SDK) that one can download for free
at the Android website*[13].

2.2.1 Android OS

The Android OS is an open source project[14]. It comes in many different versions and have been in
development since 23 September 2008[15]. The latest version, as of November 2014, is Android 5.0.
Names of Android OS versions come from the world of candy and sweets, with Android 5.0 called
Android L or "Lollipop". Version 4.4 was called KitKat. …

The Android OS has a nice look and allows installation of many different apps. These apps are
installed from files whose names end with “.apk”, which stands for Android Application Package.

The Android OS is not only used for smartphones, but also for tablets and wearable devices and
more. Android 4.4 is a version specifically for wearable devices.

2.2.2 Developing apps for Android

The programming languages used for developing Android apps are Java and Extensible Markup
Language (XML). XML is used by Android to create the graphical interface (i.e., the layout), while
Java is the foundation for the app’s logic. Android uses a specialized version of XML with its own
terms. Java source-files are packaged as Java Archive (JAR)-files. The Eclipse integrated
programming environment comes with the Android SDK.

To test the apps, one may use an emulator that comes with Eclipse. It emulates many different
smartphones, but also other devices such as wearable devices for example. An example of the user
interface when loading the emulator is shown in Figure 2-2. The emulator will be discussed in more
detail in Chapter 4.

* http://developer.android.com/index.html

8

2

L
re
d
ea

L
"e
u
L
ch

2

T
A
A
L
al

| Background

.2.3 LAM

LAMP is an a
ealize a web

database, and
arlier, the ap

However,
LAMP consist
engine X"), M

use MariaDB
Likewise, the
hanges to ref

.2.4 And

To do localiza
Application P
Android a d
LocationMan

llows an app

Fig

MP

acronym for
b service. LA
d PHP scrip
pp developed

, a LAMP w
ts of, so the w
Microsoft’s I

B or Drizzle,
OS could be

flect what is

droid App Lo

ation in Andr
Programming
developer ac
ager gives a

p to learn the

gure 2-2:

a widely uti
AMP often c
pting program
d and studied

web service s
web server ra
IIS, Lighttpd

while the s
e Microsoft’s
used, so ther

ocalization

roid apps is p
g Interface (A
cquires a h
a developer a

location of t

Emulator loa

ilized combin
consists of t
mming lang

d in this thesi

solution can
ather than an

d, Tomcat, or
scripting lan
Windows, A

re is WAMP,

pretty simpl
API) that hel

handle for a
access to di
the device.

ading Android

nation of sof
the Linux O
guage, hence
is will use LA

use other s
n Apache We
r Cherokee. T
nguage could
Apple’s Mac O

 WIMP, MAM

e because An
lp a develope
a new insta
fferent meth

OS version 4.4

ftware that i
OS, an Apach
e the acrony
AMP.

olutions for
eb server cou
The database
d be Python
OS, … instea
MP, etc.

ndroid itself
er with this t
ance of a "
hods and inf

4.2

is used as a f
he web serv
ym LAMP. A

each of the
uld be NginX
e could inste
 or Perl ins

ad of Linux. T

provides goo
task. To do l
"LocationMa
formation, w

foundation t
ver, a MySQ
As mentione

e 4 parts tha
X (pronounce
ead of MySQ
stead of PHP
The acronym

od framewor
localization i
anager". Thi
which in tur

to
QL
ed

at
ed

QL
P.

ms

rk
in
is

rn

Background | 9

Because the device’s position is a sensitive personal matter, an app needs the user’s permission
to access the location. If this permission is granted, the app will be able to gather location
information.

Localization in Android can be done in two ways (latest known location and registration) and
used in one way (intent) as described here. An app may get the latest known location from some
location provider (using the LocationManager). The app may also want updates from time to time
about the device’s current location. It receives these updates by registering for updates from a
location provider. Localization can be used to trigger actions at a specified position. To do this the
developer needs to register a so-called "intent". Information about all of these operations can be
found at Android's "Location and Maps" at [16].

Another alternative to Android’s localization APIs is Google Maps' Android API (see [17]), which
according to some developers is more accurate and simpler to use[18]. Both APIs work well though
and it is up to each developer to chose which API they want to use.

2.3 Related works

This section summarizes some related works on LBS, characterizing the accuracy of LBS, the
performance of LAMP, and making performance measurements and tuning Android apps.

2.3.1 Building LBS Based On Social Network API: An Example of a Social Check-in App

This app uses the location of people to provide a user check-in function. Users use the Facebook API
to gather information about the user (provided the user agrees to share this information). This app
uses the Facebook Query Language (FQL) similar to SQL queries, to get the information needed for
a user to perform a social check-in. For further details see [19].

2.3.2 Some experiments with the performance of LAMP architecture

In 2005, Ramana and Prabhakar[20] tested the performance of the LAMP architecture,
specifically one using MySQL and PHP, in different setups. They measured CPU performance
combined with connections per second and how many bytes are transferred over a long time period.
They also compared programs written in PHP and the same program written in C for different
calculations and tasks. Different CPU speeds were used for the execution of the software. The other
operations were done on a single Pentium4 CPU.

2.3.3 Characterizing Mobile Open APIs in Smartphone Apps

Li Zhang, et al. studied many different mobile open APIs and their performances in smartphone
apps. By "open APIs" they mean parts of apps that perform specific tasks, such as the Facebook
login dialog[21] using the OAuth protocol 2.0 [22, 23]. They measure or gather info about CPU
usage, latency, power usage and network traffic for different APIs. They also identify some tools to
perform measurements and collect some of this information.

2.3.4 Investigation of location capabilities of four different smartphones for LBS navigation
applications

Retscher and Hecht[24] studied the hardware (accelerometer, magnetometer and the digital
compass) in four smartphones that makes it possible to gather the location data (coordinates -
latitude and longitude) and also using GPS. They test 4 different smartphones in a city-environment

10 | Background

to see how they perform, both inside and outside, compared to known reference values. Provided
that known locations were the starting point, they showed that using the accelerometer and the
digital compass or magnetometer could be used to get the location data (often called "geolocation").

2.3.5 Tests of smartphone localization accuracy using W3C API and Cell-Id

Grzegorz Sabak [7] tested how well two common non-GPS techniques, World Wide Web
Consortium (W3C) API and Cell-ID, worked for localization purposes and compared with GPS. The
W3C API provides geolocation through web browsers using different techniques, some of which
were mentioned earlier.

2.3.6 Selective cloaking: Need-to-know for location-based apps

In [25], Benjamin Henne, et al. describe how to keep the user's location private to apps by default,
unless the user explicitly give an app permission to find and use the location of the mobile device.
They introduce a method that obfuscates the location. Otherwise, many apps can access the location
whether they need to have it or not and the user may not want this. What is especially relevant to my
work is that they describe how to get the device’s location in Android 4 (Android Ice Cream
Sandwich).

2.4 Summary

Mobile phones are certainly not new; they have been around for decades. Smartphones and
tablets with the capabilities of today have only been around for 4-5 years (since the iPad was
launched in 2010 [26]) and about 6 years for the Android OS (since 2008 as mentioned above). Still,
despite this relatively "short" time, there are already many apps and APIs for both smartphones and
tablets and many apps have been developed.

Localization has been around a very long time. Using satellites and base stations for
localizations is not new either, but has been popularized by the use of smartphones and smartphone
apps. Additionally, localization has spread to computers, tablets, and web applications.

Table 2-1 summarizes the related works, highlight the advantages and disadvantages brought up
in these works.

Background | 11

Table 2-1: Advantages and disadvantages of relevant works

Relevant Work Advantages Disadvantages

Building Location-Based
Service Based On Social...

To the point, clear, uses
pictures. Good info about
Facebook.

None

Some experiments with
the performance of LAMP
architecture

Fairly well thought through
tests. Good they tested
common setups like LAMP
and WAMP. The tests of PHP
vs C was perhaps most
interesting and really clear.

Bit unclear how to interpret
the result-graphs.

Characterizing Mobile
Open APIs in Smartphone
Apps

Thorough testing with many
apps and tests. Pretty good
info about APIs.

Some unclear terms, but not
many. Few pictures.

Investigation of location
capabilities of four
different smartphones...

Interesting introduction about
different localization
techniques.

Some of the results seemed a
bit unclear.

Tests of smartphone
localization accuracy
using W3C API and Cell-
ID

Pretty clear tests. Good that
they brought up such common
localization techniques aside
from GPS.

Fairly complicated formulas in
the Data model.

Selective cloaking: Need-
to-know for location-
based apps

Fairly useful app they did
these days. Several pictures.

None

3

T
S
u
te
m
th

3

1)
sm
4
em
re
P
fr
3

Fi

u
u
ca

3 Metho

The purpose
ection 3.1 d

used for this
echniques us

method used
he capacity o

3.1 Rese

) Develop a
martphone(s
) Run the a
mulator whil
equest is don

POST request
rom the web
-1. Repeat th

igure 3-1:

HTTP PO
uses it. A cert
users will the
an handle di

odology

of this chap
escribes the

s research. S
sed to evalua
for the data

of the web ser

earch Pro

an Android
s) that use A
app and do
le measuring
ne (before th
t at the web s
server and s

his process th

The 3 steps
Measureme

OST requests
ain number

en be mimick
fferent loads

pter is to pro
research pr

Section 3.3 d
ate the reliabi

analysis. Fin
rver using th

cess

app in Ecli
Android. 3) In

an HTTP P
g the time sim
he connection
server (using
stop the time
he desired nu

s of making the
ents start right

are sent to t
of POST requ
ked this way
s of traffic.

ovide an ove
rocess. Secti
describes th
ility and vali
nally, Section
he Android ap

ipse. 2) Set
nstall the ap
OST request
multaneously
n is set up ac
g PHP files).
e measureme
umber of tim

e HTTP POST r
before step 1,

the web serve
uests with a

y and respon

rview of the
on 3.2 focus

he experimen
dity of the da
n 3.6 describ
pp.

t up and st
pp on the em
t at the sam
y. Time mea
ctually). This
This is step

ent. Take not
mes.

request in the a
 and ends righ

er to simulat
chosen delay
se times reco

research me
ses on the d
ntal design.
ata collected

bes the frame

tart an emu
mulator and s
me time on m

surement sta
s is step 1 in
2 in Figure 3
te of this tim

app that I meas
ht after step 3.

te the behavi
y will be equi
orded to eva

method used i
data collectio

Section 3.4
d. Section 3.5
ework selecte

ulator and g
smartphone(
mobile devic
arts right bef
Figure 3-1. 5
3-1. 6) Recei

me. This is ste

sure the time o

ior of the app
ivalent of 1 “

aluate how th

Methodology | 1

in this thesi
on technique
 explains th

5 describes th
ed to evaluat

get access t
(s) to be used
ce(s) and th
fore the POS
5) Process th
ive a respons
ep 3 in Figur

of.

p when a use
user”. Severa
he web serve

13

s.
es
he
he
te

to
d.
he
ST
he
se
re

er
al
er

14 | Methodology

3.2 Data Collection

In preparation for future testing of the app and web server with a number of users, this section
examines how many users might need to be involved in such testing to have a representative test
population. Note that testing of this app with more actual users than 2 was postponed and remains
for future work.

3.2.1 Sampling

An emulator of a mobile phone, 3 real mobile phones (with emulated users in the app) and a
python-based load testing tool will be used to test the below number of users (target population).

3.2.2 Sample Size

Based on the target population below (see 3.2.3 below), and estimations of how many Android
phones there are in Stockholm, Sweden (the greater Stockholm area, not only the city of Stockholm)
and other estimations and assumptions (see 3.2.3), the sample size for 95% confidence is 96.

3.2.3 Target Population

People in Stockholm interested in doing sports with others, wanting to use this app to do sports
together and that have Android smartphones with API 14 (or later) are the target population. To
estimate the target population I will do some estimations and calculations and some guesses. It is
not easy to get precise numbers on how many have Android smartphones, or a certain API level on
those Android smartphones.

Measuring number of smartphones which use Android or are iPhones can be done in different
ways. Numbers of owners or the amounts of traffic from different smartphones are 2 different ways
to measure this. Another is to look at sales. It becomes a bit confusing so one has to do estimations.

An international comparison[27] put the number of Android owners in Sweden at 55% in 2013,
vs 35% iPhone owners, but it did not say out of how many smartphones. Swedish statistics from
sales showed that about 9 million smartphones were sold in 3 years up to 2013 in Sweden. In
February of 2013, 73% of Sweden’s population used a smartphone according to [28]. Stockholm’s
population in 2014 was 2,192,000 people (again, counting Greater Stockholm). 73% of 2.192 million
is 1,600,160 people (number of people with smartphones). Again, 55% of smartphones in 2013
supposedly were Android, which would mean about 880,088 (55% of 1,600,160) Android
smartphones. According to [29], Android users having Android 4.0 or later, is 50% on the 1st of
April, but since it is a little “old”, I believe it is 75% in Sweden today. This is not an exact number as
such numbers are very difficult to obtain.

If you go by the 75% figure for Android smartphone users having Android 4.0 (lowest API level
the app in this thesis supports) or higher though, you land at the figure 660,066. Of those, a guess is
that maybe half do sports or such physical activities that are equivalent to sports. Further, another
guess is that between 12.5 % to 25% of these 660,066 people could imagine trying out this app now
when it is new and unknown. Again, this is only a guess. It could be more and it could be less. The
number between 12.5 % and 25 % of 660.066 people is about 123,762 people.

To conclude: target population is 123,762 people in the Greater Stockholm area.

Methodology | 15

3.3 Experimental design/Planned Measurements

The testing that was actually done in the course of this thesis project is described in this section. The
planned measurements are described, while the results of the testing and the results of the actual
measurements are given in Chapter 4.

3.3.1 Test environment and test model

The tests will be conducted both on a laptop with a smartphone emulator and with real Android
smartphones running the app on them and communicating with a webserver. The webserver
contains several PHP-files that are used in conjunction with the java-code of the Android app.
Further, the webserver has actually a domain-name reserved for the app: kopplar.com. For
software- and hardware-requirements, see below.

As mentioned above in Section 3.1, HTTP POST-requests with some delays will be used to
model user behavior and measure response times from the server.

3.3.2 Hardware/Software to be used

The laptop that has the emulator is an HP Pavilion Entertainment PC, DV-6. It has 4 GB RAM, an
AMD dual core RM-75 CPU running at 2.2 GHz. It has a 500 GB hard drive running at 5,500 RPM.
The OS is Windows 8.1, 64-bit.

The emulator used is a Genymotion (version 2.3.1). This emulator was chosen over the standard
Android emulator that comes with Eclipse, because the standard emulator is terribly slow, especially
on this laptop. The best ("fastest") virtual device (simulated smartphone) on the standard emulator
took 15 minutes to start up. Almost any virtual device of those that can be “installed” (which means
here downloaded from the cloud to be used as virtual devices) in Genymotion starts within about 3
minutes. According to some, Genymotion is even faster than a smartphone!

The Android version used on the emulator is 4.3, Jelly Bean, API level 18. This version was
chosen because the app was developed with this Android version as the target version, but also
because later versions of Android did not work well with the Genymotion emulator when using
Google Apps (such as Google Maps for instance).

The smartphone that was emulated is an HTC Evo with 1 processor, 1 GB RAM and a 720x1280,
320 dpi (dots per inch) screen (all of which I could chose).

Smartphones to be used are a Samsung Galaxy Young 2, a Samsung Galaxy S5 and a Samsung
Galaxy S4. All 3 use Android 4.4.2 (API 19), which is not a problem (I know that after having tested
the app on them). S4 has a 1.9 GHz CPU and S5 has a 2.5 GHz CPU, both with 4 cores. These
smartphones were meant to be used the most initially. They used 4G communication, the S5 using
the S4’s mobile internet. Most smartphone tests were carried out on the Samsung Galaxy Young 2
though. It has a 1 GHz CPU (single core) uses WiFi instead. That could explain why it showed
somewhat better results surprisingly (as seen in Chapter 5).

The web server is a shared server hosted by the company HostGator paid for by DigiArts
Entertainment AB. The OS is Linux CentOS Enterprise 6.6 x86. It runs on a 32 Core AMD Opteron
6376 CPU with 64 or 32 GB RAM. It runs the Apache 2.2.26 web server with MySQL 5.5.40-36.1, (in
phpmyadmin it is called "libmysql" 5.0.96) database provider and PHP 5.4.35.

The app is called Kopplar and is written in Java and XML together using Eclipse 4.2.1 (part of
"Android Developer Tools"). For “heavy” (over 100 users) load testing Python-based “Locust” will be
used. Its results will also be compared to results from the emulator as well as the smartphones.

16 | Methodology

3.4 Assessing reliability and validity of the data collected

This section addresses the question of how I ensured that the data collected would be reliable and
valid.

3.4.1 Reliability

Ideally, one would have had access to as many smartphones as needed to test how well the app
scaled (say 96 smartphones). However, smartphones cost a lot of money so that was not feasible
here. Hence the simulation of users.

One could also discuss what normal user behavior of the app would be. Likely, a user would do
more than simply log in, check the home page and log out (which is what I will do to simulate one
user). This is the minimal user behavior of the app, which I felt enough to test with. See Section 4.2
for what can be done with the app. See further Section 5.2 for more on reliability.

3.4.2 Validity

Values from both real smartphones and an emulator will be used, and they will be gathered
programmatically (not by humans). Given that smartphones were also used, “real” values were used
of the app “in action”, not just on an emulated smartphone.

Time measurements in both the app itself as well as in Locust are exact, but may be susceptible
to activity on the server, errors etc. that may not be immediately obvious. Several tests will be done
to try to get results that are valid and reliable (using the average of these tests). For more, see
Section 5.3.

3.5 Planned Data Analysis

This section presents my planned data analysis. The discussion is divided into two parts: the data
analysis techniques and the software tools that I planned to use.

3.5.1 Data Analysis Technique

Several function calls (to the same function, one I made) will be done. The function calls will each
contain startups of threads (5) that will make HTTP POST requests to the web server. Timing of
these requests will be done inside the treads. These calls will be done at the same time (using a timer
in the app) on the emulator and a smartphone. On one occasion 2 smartphones will be used with the
emulator. The time will be measured from right before the POST requests are made to when the
responses from the server are received and read. I did these tests both with and without reading the
responses from the server, but most were read.

These test results from the emulator and smartphone will be used to calculate an average of the
5 tests I’ll do per number of users I test with (100-500 in the case of the emulator and
smartphones).

Locust (mentioned below) will also use POST-requests. The results from Locust will then, like
above, be used to calculate an average from 4 of its statistics: average (of the POST requests), fail
rate, number of requests and RPS (Requests Per Second). Like above, 5 tests will be done per
number of users, but Locust will simulate 100-700 simultaneous users.

Methodology | 17

3.5.2 Software Tools

Python-based load testing tool Locust (in Python called “locustio”) will be used to simulate
number of users from 25 to 800.

3.6 Evaluation framework

My plan is to make programming changes to the app's java code and measure how long some
functions take to finish. This will then be presented to the user and can thus be noted. It will be tried
on the emulator as well as on 3 smartphones (but not all of them at once, see Section 4.2.1).

As mentioned above, Python-based Locust will also be used to simulate several users and
statistics from it will be used to help evaluate the web server’s performance in this setup.

 The application: development, testing, and evaluation | 19

4 The application: development, testing, and evaluation

This chapter describes the app itself & its function, how the app was developed, and how I set up the
test environment with an emulator to launch, test, and modify the app. These tests were done to
both understand the behavior of the app and to change the app in order to measure response-times
from the webserver. The chapter also describes the hardware and software used to do these tasks.

4.1 Developing the code for the app

The app came with a lot of code from the start, designed for API level 14 as the minimum SDK and
API level 18 as the target SDK. The app should be able to run on those Android versions that are
equivalent to API 14 (4.0, Ice Cream Sandwich) through API 18 (4.3).

There were some minor errors and many warnings, but overall it is a basically finished app with
many files. DigiArts Entertainment AB had not yet had time to review this version though.

The basic tasks in developing the app was to understand the code and make changes to make
the measurements I needed as well as fixing errors I found. What did what in the code took some
time to figure out and I did not have contact with those that developed the app. It was a lot of testing
with printouts etc. that was needed.

As Eclipse builds the project it creates a number of files. One of these files has the file extension
“.apk”. This file is used for the installation of the app on the virtual device or on a smartphone. As
part of the "Run"-process in Eclipse, the project (the app), in addition to being built and installed on
the virtual device or phone, is also launched (started on the emulator/smartphone - this step fails at
times). Should the launch fail, but the installation worked, then one simply finds the icon for the
app on the virtual device or smartphone and starts the app "manually". In Eclipse they also have
something else they call “launch” as part of the process to run the app. It begins before one gets to
chose device to launch the app on. It may sound confusing, but it is more that the word launch is
used for both attempting to install the app on a device and for starting the app itself on the device
once it is installed. So, the steps are basically launch -> select device -> install-> launch (start on the
device).

When the emulator is used, one has an automatic debugging of the app and can see printouts
from the app in the debugging-window if there is any printout (which helps in troubleshooting). If
the USB-cable used to install the app on the smartphone is still attached, it will be debugged too.

The emulator used to test the app on is called Genymotion (from Genymotion) and was
downloaded separately. To use the Genymobile's emulator, Eclipse needs a plugin for Genymotion*.
An example of selecting this emulator is shown in Figure 4-1. More about the emulator in Section
4.3.

* Download-instructions: https://www.genymotion.com/#!/support?chapter=collapse-eclipse#faq

20

Fi

4

T

Fi

0 | The application

igure 4-1:

4.2 The

The first thing

igure 4-2:

n: development, te

Android De

App, Kop

g a user of th

Login-scree

esting, and evalua

evice Chooser w

pplar, and

he app Koppl

en

ation

with Genymoti

its functio

lar will see is

ion Emulator a

ons

s the Login-sc

nd Samsung G

creen (see Fi

Galaxy Young 2

igure 4-2).

2 in Eclipse

re
2
b
p
m

la
th
is
b
m

The user
espectively. I
, to allow us
efore, he or s
assword in t

mail and pass

Once the
ater in Figur
he map, whic
s a blue butt
utton that a

menu-button

has 2 text-f
In addition,
sers to login
she needs to
the new scre
sword and pr

user has log
re 4-5). On t
ch takes up t
ton which fin
llows the us
. Tapping on

Fi

fields for e-m
under the Re

n via Faceboo
 register by p
en that show

resses the Lo

gged in or re
he Home-sc
the main por
nds the posit
er to chat w

n that will bri

igure 4-3:

mail and pa
egister-butto
ok and Twitt
pressing the
ws up. If the
ogin-button.

egistered, he
creen, the us
rtion of the s
tion on the m

with a friend
ing up the m

Menu-optio

The

assword and
on, there are
ter respectiv
Register-but
user is alrea

e or she will
er can see u

screen if ther
map for the
they have pr
enu seen in F

ons in the app K

e application: deve

2 buttons f
2 more butt

vely. If the u
tton and the
ady registere

be taken to
pcoming eve

re are any. In
upcoming ev
reviously add
Figure 4-3 be

Kopplar

elopment, testing,

for login and
tons, not see
user has not
e writing nam
ed, he or she

the Home-s
ents marked
n the bottom
vents. The to

dded and on
elow.

and evaluation | 2

d registratio
n in Figure 4
used the ap

me, e-mail an
e fills in the e

creen (show
d with pins o
m center, ther

op right has
the left is th

21

on
4-
pp
nd
e-

wn
on
re
a

he

22

o
n
n
o

4

o
A
b
ca
"r
ap
A
so
co

p
ge
A
H
th
A

Fi

2 | The application

The menu
ption where

new sports-ev
not in the pic

ne’s message

4.3 Test

At first th
ut smartpho

Android emul
efore even th
an take 20-
reasonable"
pp was loade

API these emu
o easy to de
omputer they

The reaso
rocessor (see
et a faster em

APIs and esp
HAXM. This i
he HAXM in

Another CPU-

igure 4-4:

n: development, te

u-options are
my name is

vent, go to th
cture. These
es (from frien

ting and s

his task seem
one apps, eve
lator that Ec
he start scre
-30 minutes
time (under
ed, there was
ulators will r
ecide what e
y are tested o

on for the slu
e further dow
mulator, esp

pecially one c
is chosen in
nstaller (see
-acceleration

Android SD

esting, and evalua

e to update o
s in the pictu
he event list,
options com
nds) and to l

etting up

med very stra
en when only
clipse came w
een was visib
 or more. 7
an hour), if

s a risk that t
run, what CP
emulated ha
on are a bit o

uggishness is
wn). If the co
ecially with
can chose th
Eclipse, for

e Figure 4-4
n option was

DK Manager wit

ation

one’s profile
ure. One can
, search, sha

me below “sh
logout.

an emulat

aightforward
y running th

with was extr
ble. Pressing
7 of 8 emul
they started
the virtual d

PU, RAM etc.
ardware to c
old like mine

s that this em
omputer tha
an Intel x86

he Intel-spec
example in "
 below). Un
not availabl

th Intel’s HAXM

e (can add a p
n go to the h
are on Faceb
hare” in the p

tor to use

and very ap
hem in emula
remely slow t
g the "all app
lated virtual

d at all. If you
device becom
. it will have,
chose for op

e from 2008-

mulator actu
at the emulat
6 atom (can c
cific x86 Em
"Android SD

nfortunately,
e because it w

M-installer mar

picture for e
ome-screen
ook or Twitt
picture and a

the app-c

pealing - as i
ators. Howev
to start. It m
ps"-button an
l devices I t
u abort the s

mes corrupt. Y
even what s

ptimal perfo
2009.

ally emulate
tor runs on h
chose 64 too

mulator Accel
DK Manager”

this is not
was only ava

rked

example), wh
described ab

ter and also
are to add a

code on

it is quite en
ver, it turned

might take an
nd waiting f
tried failed
startup attem
You chose wh
screen it will
ormance, esp

es the smartp
has an Intel-
o) system im
lerator optio
” where you c

possible on
ailable on Lin

hich is the to
bove, create
some option
friend, chec

njoyable to tr
d out that th
hour or mor

for a respons
to start in

mpt before th
hich Android
have. It is no

pecially if th

phone’s ARM
CPU, one ca
age of Googl

on, also calle
can downloa

n AMD-CPU
nux.

op
a

ns
ck

ry
he
re
se
a

he
d-
ot
he

M-
an
le

ed
ad
s.

The application: development, testing, and evaluation | 23

Another option was to find another emulator. Although a solution to the problem with the
sluggish "normal" Android emulator was what was sought, what was found was an alternative
emulator from Genymobile[30] called "Genymotion"*. Several users had written web postings about
its speed I saw when trying to find information about the performance of the "normal" emulator.
Genymotion was found to be much faster and more responsive, even if it is somewhat more limited
in terms of choices of APIs. For example, it lacks Google APIs (Google apps), which are very
important to the app that is being developed. Genymobile chose not to include Google APIs in their
virtual devices, but it was still possible to install code that uses these APIs on the virtual device
(despite the fact that Genymobile makes no promises or guarantees about these APIs working).

The reason that Genymotion is so fast is because it does not emulate the processor of a
smartphone, but rather use x86 (32 bit) architecture virtualization. This means that Genymotion
uses instructions for a 32-bit CPU directly. The Android emulator that comes with Eclipse simulates
the CPU-architecture of a smartphone, which often is an ARM-CPU. So, the Android emulator uses
instructions for an ARM-CPU that then gets translated to x86 (or x64 for 64-bit) instructions, which
slows it down, a lot on older computers. Further, Genymotion uses the OpenGL hardware
acceleration of the computer’s graphic card, speeding it up even more.

Many attempts to install Google apps for API 19 on Genymotion failed. This API was the
preferred API when using Eclipse and the "normal" emulator because this API was not the
absolutely latest, but the next latest version of the Google APIs for non-wearable devices (unlike API
20 which is for wearable devices). API 21 (Android 5.0) is the latest API as of today in January 2015.
It was not apparent why this API (19) could not be installed. Finally, an attempt was made with API
18. The emulator said "Failed...", but it turned out that this API version worked!

The process to install the Google apps API was to start with an emulator running a virtual device
of either a phone or a tablet with API 18. Then simply drag & drop an executable file (that one had
downloaded to the device) to translate the ARM-calls for this virtual device. Next, restart the virtual
device and then drag and drop the Google apps API (which you previously downloaded) onto the
virtual device for this particular API. Note that there were several Google app API's to choose from.
They each have different sizes and some sources for download were not very reliable. Once again
you restart the device. Unfortunately, it can take several restarts before the device works. This is
because files etc. get updated on the virtual device with each restart. Users have found this through
trial-and-error.

When you drag and drop the files [zip-files with the “.zip” extension] to the virtual device
Genymotion converts the file to its own internal form and logically places it in the flash memory of
the virtual device and installs this application. While this is a very neat feature, it can fail at times
for no apparent reason.

If all has gone well, you are now ready to open the "Play store" app on your virtual device. If you
can see this app (the play store), then you should be fine. However, during my testing it took many
attempts to get it to show and there was no apparent reason when it did not show. Once the Google
Play Store app has been opened, one needs to fill in the mail address (used as your user name) and
password of one's Google account. Then one can download an app from Google’s Play store. Once
this is done, one can update the Google apps that have already been installed on the virtual device
and set up the app. At this point, the app we developed could be installed, launched, and run on the
virtual device.

* http://www.genymotion.com

24 | The application: development, testing, and evaluation

4.4 Installing and setting up Locust

Locust is as mentioned in Chapter 3 based on Python, so to be able to use Locust, one needs to
install Python first. Further, a particular version of Python needs to be used and it is not as simple
as downloading the latest version unfortunately. The reason is that Locust depends on 2 other small
programs called “gevent” and “greenlet”, which requires an earlier version of Python. Sometimes the
information was a bit confusing and sometimes one lacked information to help one understand
what needed to be done or how to correct an error. Almost all of the problems related to which
version of Python, gevent and greenlet one used though. Much trial-and-error was needed and
consultation of Google to finally get the versions to match. 4 different versions of Python were tested
in this process and 3 uninstallations before getting it right.

The result was that Python needed to be version 2.7.5. Gevent should be version 1.0.1 (not 0.13
as Locust mentions in its installation instructions) and Greenlet should be 0.4.5. Python 2.7 and
2.7.9 will not work with Locust, even if gevent and greenlet installed on Python 2.7.

Another note is that a program used in Python to install other programs called “pip” had to be
installed after Python was installed. This was done by first visiting a web site that had a link that led
to displaying (as text on a website) a Python-file needed for “pip” so one had to copy all of the
contents of this (marking it and copy the text) and store in a Python-file (ending .py). Then, by
typing in a Windows command prompt “python get-pip.py” one installed “pip”. Here, “get-pip.py” is
the file that one saved before. One had to first make sure the Windows PATH environment variable
pointed to the Python-catalog or be in that folder.

Once all of this was done, Locust itself could be installed using “pip” by simply typing “pip
install locustio”.

4.5 Simulation of app users on mobile devices

Two different methods were used for testing the effects of multiple app users: testing using the
emulator and testing using Locust.

4.5.1 Measurements using the emulator and devices

To simulate users communicating with the web server, several (specifically 5) HTTP POST requests
(the same POST request) were performed. The reason for making 5 requests and not 10 or 1 is
because the app used 5 HTTP POST requests if a user chose to log in, look at the home screen (see
Figure 4-5 below), and then log out. That whole process on the emulator took about 1 minute to do.
The app chose to do HTTP POST requests and not HTTP GET or other HTTP-commands when one
only logged in, went to the home-screen and logged out so that was chosen.

m
em
1,
re

Fi

b
w
m

co
co
[3

Fi

It took ti
measurement

mulator, it
,000 millisec
epresents the

s
r
e
d

igure 4-6:

Additiona
ackground (

would be thr
make an app u

Another
onnection. H
ould (but not
31]. In that c

gure 4-5:

me and expe
ts correct. In
t took app
conds) to m
e actual com

startTime =
response =
endTime= =
duration =

HttpClient d

ally, it was
(that is, not i
own. The re
unnecessaril

discovery w
Hence, if ano

t always) int
case an excep

Home scree

erimentation
n the course
proximately
ake an “http
munication w

= System.cu
httpClient
System.cur
(endTime –

doing a HTTP P

found that
in the main

eason is that
ly slow.

as that the
ther function
erfere, as the
ption would

en on the app (

n with the J
of doing so,

600--700 m
pClient.execu
with the serv

urrentTimeM
t.execute(
rrentTimeM
– startTim
POST request

network-rela
thread) or a

t networking

“HttpClient”
n also called
e connection
be thrown a

The

(called Kopplar

ava-code to
some intere

milliseconds
ute(httpPost
ver, this dura

Mills();
httpPost);
ills();
e);
in the normal w

ated tasks h
an exception
g may take s

” that was u
“HttpClient”

n was still be
and no meas

e application: deve

r) on the Genym

find what to
esting things

(varying
)” (see Figu

ation was me

way while I me

had to be do
, “NetworkO

some time to

used in this
”, even creat
open (i.e., ha
urement cou

elopment, testing,

motion emulat

o measure a
s were discov

from roug
ure 4-6 below
easured.

easure the time

one in threa
OnMainThrea
o complete a

 code used
ting a new in
ad not been r
uld be made.

and evaluation | 2

tor

and to get th
vered. For th
ghly 300 t
w). Since thi

e

ads or in th
adException
and that ma

a single TC
nstance of it,
released – se
. This seeme

25

he
he
to
is

he
”,

ay

CP
it

ee
ed

26 | The application: development, testing, and evaluation

to happen rather randomly, but the problem only came once I tried to make separate POST requests
to measure the time of, as the app were still doing its own requests. The timing of these exceptions
was not measured.

The answer to these problems was to create a new function to be used only for testing that did
not use “HttpClient”, but instead used “HttpURLConnection”. “HttpURLConnection” does not use
“HttpClient.execute”, but instead opens a connection, creates an outstream (Figure 4-7), and writes
on that stream. After which it will disconnect. To receive and read the response, an InStream needs
to be created and a BufferedReader used (see Figure 4-8). As neither out- nor instreams are
buffered, the Buffered Writer and Reader are needed. One should close out- and instreams
afterwards.

One might expect this second approach to take longer, given that more commands are used.
However, it was actually found to be faster. From the opening of the connection until the function
had written on the outstream, it took about 1-200 ms compared to roughly (not calculated –
average) 600-700 ms as written above just for “httpCllent.execute(httpPost)”. As a parenthesis it
can be mentioned that Android recommends using “HttpURLConnection” instead of “HttpClient”.

OutputStream out = urlConnection.GetOutputStream();
BufferedWriter writer = new BufferedWriter(
 new OutputStreamWriter(out, “UTF-8”));

Figure 4-7: Using an URLConnection in my function to get an outstream and then creating a BufferedWriter
to later do the HTTP POST request with. Have started measuring the time before this.

// Get Response
InputStream is = urlConnection.getInputStream();
BufferedReader rd = new BufferedReader(new InputStreamReader(is));
String line;
StringBuffer response = new StringBuffer();
while ((line = rd.readLine()) != null) {
 response.append(line),
 response.append(‘\r’);
}
// rd.close()
endTime= = System.currentTimeMills();
duration = (endTime – startTime);
timeValues.add(duration);
Figure 4-8: Reading the response from the HTTP POST request using an InputStream and a BufferedReader

while still being in my function. After reading, I stop measuring the time and store the value (in
ms).

To make it a little more similar to a normal user using the app (which uses the slower httpClient
POST request as mentioned above), delays (Java’s Thread.sleep-command) of 500 milliseconds in
these threads that ran my function with a faster POST request were implemented. To clarify, my
function ran as a thread and in this function the sleep-command was used. The app’s code limited it
to max 5 connections at the same time. For that reason, I chose to also have 5 threads running at the
same time, where each thread ran one connection doing a POST request. This gave a limit to how
much the web server was tested, but it was also the same way the app was programmed so it seemed
reasonable.

Each device (and the emulator) was decided to first simulate 5 “users”. As described above, 1
“user” is equal to 5 HTTP POST requests. Of course, the app’s functionality gets affected by this in
how it works, but as the measurements were of the web server communicating with the app and not

The application: development, testing, and evaluation | 27

the app itself, this was deemed acceptable. As long as the device could send out requests in about
the same rate that I estimate several normal users would, it would be fairly similar. As written
above, a normal user logging in, going to the home screen and logging out takes 5 POST requests
and 1 minute. If 5 users are logging in at the exact same time, their POST requests would come close
together in time (25 POST requests in 1 minute) and I tried to make the app simulate that.

Further, the app was also tested just at different times without being synchronized. However, a
timer was introduced in the java-code for the app that enabled it to be run at a specific time on all
devices it was installed on. This was to simulate several users communicating at the same time with
the server. So, the app could run a test with 100 users on the emulator and a smartphone at exactly
9 pm (21:00) for example.

After the first test with 5 users worked well, the number of users was increased to 10, 15, 20, 25,
50, and 100. Since little difference was noticed with these numbers of users, the number of users
were increased to 1,000 in steps of 100 (200, 300 and so on) on the individual mobile device (in the
app). In total, the number of users went up in steps of 200 when I increased by 100 users as both a
smartphone and the emulator tested 100 more users when I ran them simultaneously. The first tests
were on the emulator alone, but later tests were on the emulator and smartphone at the same time.

Initially, tests were conducted only measuring the time it took to send out the POST requests
with no consideration to the response from the server. However, tests were later conducted that also
included the time to read the response from the server for 100-1,000 users in steps of 100 (see
Chapter 5). 5 measurements were taken on both the emulator and the smartphone at the same time
using the timer mentioned earlier per number of users simulated. So, 5 tests for 100 users reading
responses from the server, 5 tests for 200 users and so on up to 500 users. 500 users on both the
emulator and the smartphone at the same time can be seen as 1,000 simultaneous users. The
measurements that did not read the responses were not always 5 per number of users. Those tests
were also undertaken on the smartphone alone or the emulator alone at times for comparison.

4.5.2 Measurements using Locust

Locust was used to both compare with the results from the emulator and devices and to test with
more users than 100 (it was thought that Locust would be more effective at simulating more than
100 users). Tests were performed using 25, 50, 75, 100, 500, and 1,000 users to get a “sense” of
whether the web server’s performance was affected or not. There were no real changes up to 100
users, but large changes were evident as the number of users approached and reached 700 (over
300 really). As a result I focused on testing with 100-700 users. I had initially planned to test from
100-1,000 users, but tests failed when testing with 800 users – when the server stopped
responding. As written above, I once tested with 1,000 users without the server stopping to respond,
but that was during a test of Locust and the server, hence I do not consider that test in my
evaluation of the app.

To start a load test with Locust, one has to open a command prompt on Windows and set the
current directory to where the Python-file (simply called “locustfile.py”) is that has the information
about the tasks for the Locusts about to “swarm”. It is usually in Python’s “Scripts”-folder. In the file
I used I had 2 POST requests, but one was only done at the start of Locust to login. Further, I wrote
in the file that it should do its POST request and then wait between 5 and 15 seconds. The start-
command in the command-prompt (have to have fixed the PATH-environment variable first) to
start Locust is in my case “locust –H http://kopplar.com”. Where –H tells Locust which host to
communicate with (http://kopplar.com here).

After that is done and one checks that Locust is working without problems, one opens a web
browser and goes to the address http://127.0.0.1:8089/, which is Localhost, port 8089. The first
screen one then sees is the below selection-window in Figure 4-9.

28

d
te
m
ev
th
a
ex

m
n
E
u

Fi

8 | The application

Locust ca
different GET
est done her

make a POST
vent that ha
he web serve

POST requ
xactly the sa

In real lif
means numbe
number. Both
Each of these
uniform rand

igure 4-9:

n: development, te

an be set up i
T- or POST-r
re, a user wo
T request to g
d been put i

er by using th
uest to the s
me request t

fe locusts are
er of users cr
h of these pa
e users then

dom distribut

Start option

esting, and evalua

n different w
requests, wai
ould initially
get event dat
into the syste
he app. To ge
server contai
that would be

e insects. In
reated (“hatc
arameters ar

n sends a PO
tion.

ns for Locust. S

ation

ways so that i
iting times b

y do a POST
ata. The even
em for testin
et that event
ining three
e made by th

this load te
ched”) each s
re normally
OST request

Selection of nu

it mimics dif
etween each
request to l

nt contains in
ng. This even
t, I programm
things: latit

he app in my

sting tool, on
second. Num
set via a we
once every

umber of users

fferent user b
h call, logins,

ogin, but aft
nformation a
nt had been
matically cre
ude, longitu
function the

ne can decid
mber of users
eb interface c

5-15 second

s and users / se

behaviors, su
 and more. I
ter that only
about an upc
stored in the

eated a messa
ude, and use
ere.

de the “hatch
s can also be
connecting t
ds, chosen a

econd.

uch as makin
In the specifi
y do one task
coming sport
e database o
age to send a
er-ID. This i

h rate”, whic
e set to a fixe
to “localhost
ccording to

ng
fic
k:
ts

on
as
is

ch
ed
”.
a

 Analysis | 29

5 Analysis

In this chapter, I present the results of the testing described in the previous chapter and discuss
these results.

5.1 Major results

The major results fall into three categories: measurements of the web server response times,
GPS location measurements, and Locust testing of the web server. Each of these will be described in
the subsections below.

5.1.1 Smartphone/emulator measurements of web server response times

The results of the tests can vary quite a lot from time to time. Overall, a big impact upon the
performance of the communication with the web server was not noticed, even with up to 1,000
simultaneous simulated users.

In Table 5-1 under the column for 100 users we can see that some requests failed of the 100 * 5
HTTP POST requests sent to and received from the web server from the app. As the number of users
increased, some requests failed so not exactly 500 (or 1000, 1500 etc.) requests succeeded. To send
these 500 requests took about 2 minutes. In the case of 200 users means 5*200 = 1,000 POST
requests were sent, etc.. In the case of 100 users these 500 requests were sent in about 120 seconds
(2 minutes), which gives an average rate of 4.17 requests/second. This value will later be compared
to the rate when testing with Locust. The values in the two tables below are in milliseconds.
Remember that 1 second = 1,000 ms. The values are the averages of the 5 measurements for each
test load (i.e., for a given number of users).

Table 5-1: Average response times (in ms) on smartphone and emulator with 100-500 users at the same
time. The number of requests made is shown. Note that there is a programmatic 500 ms delay
included in these measurements.

Users 100 200 300 400 500

Galaxy Young2 1401 ms 1306 ms 1246 ms 1214 ms 1275 ms

Genymotion 1541 ms 1441 ms 1367 ms 1344 ms 1421 ms

Requests 500 1000 1500 2000 2500

Results where the response of the HTTP POST-message from the web server was not read (or
printed for evaluation) is shown in Table 5-2 for comparison. This was not done at first because the
way the app did the POST-requests was a bit different from how I did it in my function. The app’s
POST-requests were done in one line without a buffered reader, unlike in my function which used
both a buffered reader and writer for reading responses and sending requests respectively. The
reason is that they used the HttpClient in the app while I in my function in the app used
HttpURLConnection. HttpClient’s POST-request is simpler to write, but HttpClient is not
recommended to use by Android (as they do not actively develop it to avoid breaking compatibility).
When HttpClient’s POST-request is done, the response is gotten too on the same line in the code as
far as I can tell and stored in a variable called “response”. To read the POST-message, they later in
the code use part of that variable by calling “response.getEntity()” and have a function to interpret
what the response says.

30 | Analysis

In my function, because of using HttpURLConnection, I have to first create a connection, then
make a POST request and then read the response. These are all separate parts in the same function.

Table 5-2: Average time (in ms) to send a POST request without reading the POST request ‘s response from
the server (see below) measured on smartphone and emulator with 100-500 users at the same
time. Note that there is a programmatic 500 ms delay included in these measurements. Equal
number of requests as in Table 5-1.

Users 100 200 300 400 500

Galaxy Young2 703 ms 718 ms 749 ms 739 ms 739 ms

Genymotion 665 ms 676 ms 690 ms 668 ms 681 ms

The same number of requests was made for the tests results shown in Table 5-2 and Table 5-1. I
did these tests that did not read the responses first as my first thought was to see if the server’s
ability to handle the POST request was affected by the number of users and I was not very interested
in the response (as long as it was a normal POST response without error). This goes back to what I
wrote above about how the POST-request is done with one line in the app normally and how
everything from that request is stored in one variable (from which the response can sort of be
“extracted”). Reading the POST response to me seemed more like processing of the information
after the POST request was done and thus not something I felt interested in measuring at first. I did
read the POST responses after that and those measurements are in table 5-1 above.

Again, as mentioned in Chapter 4, I let the threads making the calls sleep 500 ms, in order to
make it similar to the app’s own POST requests (which are sent at a slower rate). This programmatic
delay of 500 ms is included in the measurements, thus the actual response times shown in both
Table 5-1 and Table 5-2 are 500 ms shorter than the values shown.

The Galaxy Young2 smartphone was also tested on its own (without the emulator running
simultaneously) several times. It was tested 3 times with 100, 200, and 300 users. It was also tested
2 times with 400 users and 5 times with 500 users. The average response times for 100-500 users
were as follows: 692, 712, 726, 722, and 720 ms. These are roughly 10-20 ms faster than the results
in the table above, but most results in the table above come only from one run (apart from where
500 users were simulated).

Further, tests without reading the responses were done on two other Samsung smartphones
(both running with 100 users) (as described in Chapter 3) while the emulator also ran with 100
users. Only twice did both smartphones run at the same time (and with the emulator) due to
mistakes in the emulator or by the smartphone users. The average response time for the Samsung
S5 running with 100 users was 776 ms. While the Samsung S4’s average response time was 740 ms
and the emulator’s average response time for these two tests were 656 ms.

5.1.2 GPS-measurements on smartphone/emulator

As an aside, the time it took to get the GPS coordinates was measured, but it was not easy to exactly
see where programmatically this reading was done. Regardless, it on average took 165,890 ns, or
0.17 ms to do this, with larger variations. For example, one reading took over 1.8 million ns, while
another took about 65,000 ns. Most took around 85,000 ns though. These readings are from the
Samsung Galaxy Young2 while testing with users where the responses were read. The median value
was 76,695 ns.

Analysis | 31

For comparison, the emulator’s average time to get GPS coordinates during the same test was
1,652,961 ns! However, there was one extreme value of over 34 million nanoseconds, thus
affecting that average a lot. If one excludes this one extreme result, the average becomes 231,976 ns.
Median turned out to be 69,705 ns, so a huge difference.

5.1.3 Locust’s test of web server response times

Locust’s results for 100-700 users, in steps of 100 are shown in Table 5-3.In this table, RPS means
Requests Per Second. All tests with 100-500 users were done with 1 user created every second,
except for one test with 400 users, when 2 users were created every second. There were five tests for
each of the different numbers of users. For the cases of 600 and 700 users, 2 users were spawned
per second to shorten the duration of the tests.

Table 5-3: Locust-tests with 100-700 users and statistics. “Dur.” = Duration. Average and Median are
response times in milliseconds (ms).

Users 100 200 300 400 500 600 700

Average 866 4245 5759 12125 12599 13810 53383

Fails(%) 2.8 17 31.6 40.6 30.4 22.8 30.83

Requests 706 1259 2374 2304 2692 3523 1731

RPS 9.8 6.6 13.08 6.2 14.98 20.78 7.96

Dururation
(minutes)

3 5 9 13-14 13-14 10 9

Median 470 770 5100 11000 11000 13000 38000

The RPS value shown in the above table is the value at the time when the test was stopped and
may thus be somewhat misleading. The number of requests is also a bit misleading because it was
not possible to run the test for exactly the same amount of time in every test. However, these results
can be used to compare with the tests of the app and the number of requests it made depending on
the number of users that were simulated. This comparison is given in Section 5.1.1. One can also
note the low number of requests with 700 users due to the slow response times and high failure rate.

The duration of the test runs varied a bit. It is worth to know that it took quite some time to
create all of the users. Once the desired number of users was created and running, the rest of the
test run went pretty fast considering the number of requests that I wanted. As an example: when
300 users were simulated, creating the 300 users took 7 minutes, while getting about 2,000
requests as I wanted took only 2 minutes. The total duration was then 7 + 2 = 9 minutes. The test
duration is the time from the creation of the first user (start of the test) until the test stopped,
including “user-creation-time”. The test duration for 100 users was 3 minutes, for 200 users 5
minutes, for 300 users 9 minutes, for 400 users about 13-14 minutes (one longer), for 500 users
roughly 13-14 minutes (one longer), for 600 users 10 minutes, and for 700 users 9 minutes. Note
that for both 600 and 700 users the rate of creating new users was twice that of the other tests.

Lastly, there is the median value. For all measurements a median value was gotten. What is
shown in the table is the median value of the median values. Median is the middle value when one
ranks results from lowest to highest.

32

5

G
va
th
F
w
of
n

m
L
th
m

5

N
F
gi
re

Fi

b

2 | Analysis

5.2 Relia

Given that on
alues is prob
he server st

Furthermore,
web server wh

f the interne
name a few po

Locust’s m
meant to han
Locust: above
his frequency

more likely to

5.3 Valid

Numbers are
Figure 5-1). A

iven the high
eading the re

igure 5-1:

Locust’s d
elow shows,

ability Ana

ne millisecon
bably not rec
ruggles (i.e.
, fluctuations
hen tests are

et connection
otential facto

measuremen
ndle these loa
e 300 users t
y. However,

o show bette

dity Analy

e collected p
At times som
h loads and t
esults.

Results in a
“5)” (“1611

data are gath
there is som

alysis

nd is a short
commended.
, has increa
s in response
e done, load
n, and the CP
ors.

nts introduce
ads, so I thin
the results a
the exact nu
r performanc

ysis

programmati
me requests g

the performa

a popup I did in
ms…”).

hered progra
me difficulty i

t amount of
. However, w

asing delays
e times could
on compute

PU speeds an

ed quite a h
nk one shou

are very poor
umbers are pe

ce than this s

ically and pr
got no respo
ance of the s

n the app after

ammatically
n interpretin

time, a thou
what we wan

to requests
d be due to a
er or mobile
nd capacity o

heavy load o
uld look at th
r for this typ
erhaps less r
shared serve

resented on
onse from th
server. There

r a test of 100 u

so they are
ng these resu

usandth of a
nt to look for
) as the nu
number of fa
device when
f the specific

on the server
he “bigger pi
pe of server w
reliable as a d
er as will be d

screen after
he server, but
e was very lit

users. The resu

valid readin
ults.

a second, rel
r is a trend,

umber of use
actors, such

n the tests ar
c web server

r and the se
icture” of the
with this PO
dedicated se
discussed in S

r each run
ut that was to
ttle risk of hu

ult to focus on

ngs, but as t

ying on exac
specifically

ers increase
as load on th
e done, spee
used – just t

erver was no
e results from

OST request a
rver would b
Section 5.4.

(as shown i
o be expecte
uman error i

comes after

he discussio

ct
if
s.

he
ed
to

ot
m
at
be

in
ed
in

on

te
is
st
re

Fi

fa
ve

5

N
p
L
a
st
n
re
th
S

to
w
b
th
P
ot
to
th

af
5
re

The statis
est where it s
s the location
tats is not c
equests”, “#

igure 5-2:

In the top
arthest to the
ery good.

5.4 Disc

No clear tren
rogramming

Locust showe
bit hard to b

topped respo
needed to be
equests every
he server (H
ee the end of

Deciding
o measure, a

whether a cer
ehavior of th
hose interact

POST, which
ther HTTP r
o do POST r
hread on a fo

I initially
fter some ti
00 ms delay
equest to tak

stics screen (
says “Stoppe
n of the PHP
clear when m
fails”, Media

Test results

p right beside
e right in the

cussion

nd found re
g. Differences
ed large effec
believe at tim
onding to th
a dedicated

y 5-15 second
ostGator). T
f this section

exactly what
and whether
rtain numbe

he user that w
tions with th
makes it see

requests such
requests as t
orum, reply, p

used a 9 sec
me the dela

y was used in
ke about as l

shown in Fig
ed” in the pic
P-file to do th
making the p
an, Average, M

s after having r

es “Stopped”
e statistics). T

elated to the
s between em

cts. Actually,
mes. After att
he tests so n

server in or
ds was too fa

This explains
n for more dis

t to measure
to include th

er of HTTP r
was interesti
he app itself
m reasonabl

h as GET, PU
the app doe
print inform

cond delay in
ays felt a bit
n my function
long time as

gure 5-2) is o
cture. After “
he HTTP PO
picture sma
Min, Max, “C

run Locust wit

”, it says “RPS
To the right

e number of
mulator and
 the Locust-r

tempting to t
no requests s
rder to be ab
ast for the se
 the very po
scussion of t

e in the app w
he response
requests can
ing were tho
f. Locust, th
le for me to a

UT etc.. I cou
es so. Locust

mation in the

n my functio
t superfluous
n when doin
the POST re

open under th
POST” to the

OST requests
aller. From l
Content Size

h 300 simulate

S 15.9” (Requ
of that it say

f users usin
the mobile d
results show
test with 800
succeeded. I
ble to handle
rver in quest
or performa

the Locust-re

was a bit tric
or not. Furth

n accurately
se that intera

he load-testin
also use them

uld have done
t can also re
command pr

on in the app
s and were
g the POST r
equest norm

he entire test
e left, it says
s to. Unfortu
eft it says in
” and “# reqs

ed users.

uests Per Sec
ys “Failures 3

ng the app i
device are in

wed such poo
0 users with L

subsequentl
e the attemp
tion accordin
nce as the nu

esults.

cky. Both with
her, it is of c
simulate a u

acted with th
ng tool uses

m to simulate
e that also if
ead web pag
rompt and m

p to try to sim
removed in
request. I wa

mally done by

st with a butt
s “/phone/ap
unately, the t
n order: Typ
s/sec”.

cond, same a
33%”. In oth

itself with t
n this case les
or performan
Locust, the s
ly learned th

pted traffic lo
ng to the com

number of us

th regard to w
course open f
user, but in
he web serve
s HTTP requ
e users. Locu
I had wante

ges, watch m
more.

mulate user
my function

anted my fun
y the app, th

Analysis | 3

ton to stop th
pi.php”, whic
text above th
pe, Name, “

as the numbe
her words: no

he additiona
ss interesting

nce that it wa
server actuall
hat the serve
oads. Sendin

mpany hostin
sers increase

which reques
for discussio
this case th

er, rather tha
uests, such a
ust can also d
d, but wante

movies, read

behavior, bu
n, although
nction’s POS

hus I kept thi

33

he
ch
he

er
ot

al
g.
as
ly
er
ng
ng
s.

st
on
he
an
as
do
ed

a

ut
a

ST
is

34

d
fa

10
w

ev
lo
p
re
b
re
w
si
3
si
w
A
b

Fi

4 | Analysis

delay of 500 m
aster than th

Deciding
0,000 users

with less than

I felt less
ven though I
oad-testing t
roject was n
eally is. I ex
ecause the s
estrictions o

was generatin
imultaneous
00 and 400
imulated it t

worse when th
Average was

een taken fro

igure 5-3:

ms. As noted
e POST requ

upon the n
might have b

n 1,000 users

confident ab
I wrote the p
tool though a
not dedicated
xpect that a
erver was ru
n number of
ng. My test
 users at all.

0 users in th
ook about 12
he number o
about 53 se
om Table 5-3

Average res

d in Section 4
uest used by t

umber of us
been interest
s seems adeq

bout Locust’s
python-file te
and I trust i
d, the results
dedicated w

unning other
f connection
results show

. This is conf
e Locust-sta

2 seconds on
of users was i
conds, maki

3.

sponse times o

4.5.1, my own
the app.

sers to simu
ting to really

quate.

s results at fi
elling it what
its results no
s of Locust t

web server w
r processes a
ns and other
w that this n
firmed by th

atistics show
n average to g
increased fro
ing the user

on Locust. 100

n function in

ulate is anot
y be thorough

irst, especial
t to do. My ex
ow. Given th
testing may

with the sam
and tasks, it m

resources a
non-dedicate

he big increa
wn previously

get a respons
om 600 to 70
experience

0-700 users.

the app did

her open qu
h. However, f

ly given that
xperience is

hat the web
seem much
e hardware
may drop so
vailable to s
ed server ca
se in average

y in Table 5-
se, which is p
00 as can be
very poor. V

the POST re

uestion. Sim
for the time

t I had less c
that it is def
server used
 worse than
may show b

ome of the re
service the re
annot really
e response t
-3. When 40
pretty terrib

e seen in Figu
Values in Fig

equest 500 m

mulating up t
being, testin

ontrol over i
finitely a goo
in this thesi
the situatio

better result
equests due t
equests that
handle man
imes betwee

00 users wer
le. It got eve

ure 5-3 below
gure 5-3 hav

ms

to
ng

it,
od
is

on
s,
to

I
ny
en
re
en
w.
ve

 Conclusions and Future work | 35

6 Conclusions and Future work

In this chapter I present my conclusions after having worked on this thesis project and describe
what limitations I had. This is followed by some suggestions for future work on both testing the
performance of the web server and on the app itself. The chapter concludes with my reflections on
how the app can affect people and society.

6.1 Conclusions

I was able to make the changes needed in the app to test what I wanted and got results for the tests
that I wanted to make. The results were a little surprising to me, but not too much so. I also learned
how to create an app for Android smartphones. Although I have only scratched the surface of what
there is to know about this subject, I learned a lot about Android in general. I had expected to see
some trend in the performance of the web server as the number of users increased, but no clear
trends are apparent (in my own test). Furthermore, I was surprised to see the slowest smartphone
do so well in these tests. Locust’s results also surprised.

I have learned that smartphones really are “smart” in the sense that they have lots of new
technology in them that can be used in many fascinating ways. I also learned more about
localization, even though this was not the focus of the tests conducted for this thesis project.
Further, I could see the benefit of planning my time over the course of this thesis project. This
planning was important as time went by quickly and a lot needed to be done in this limited time.

I learned something about what information is useful to store about users within apps such as
this. I also learned how to work with Google maps, specifically how to get a developer’s key to
develop such applications. However, only a limited amount of work was done with the actual map
itself.

The Eclipse integrated programming environment can definitely be scary to the developer at
times and give you the impression that something is seriously wrong, when perhaps all you need to
do is to clean the project. I also learned several new different things with regard to programming.

Had I not already done so much app programming before I began the thesis, I would probably
not have completed the project on time. There really was limited time to develop the complete app
in this project, while still having sufficient time to conduct the tests described earlier. Fortunately, it
was possible to make temporary changes to the app to facilitate my testing.

Along the way I encountered a lot of the errors, many of which took a fairly long time to find a
solution to. This reinforced the value of planning my time.

I had good help along the way, which was very important. This guidance enabled me to avoid
getting stuck along the way.

Ensuring that everything is ready before beginning the thesis project proved to be important.
Halfway through this thesis project, it was unclear whether I would get access to a web server, which
was very important as I needed the web server to provide many files which the app needed to work
properly.

Looking at previous works early on was a good way to get a sense of what it means to do a thesis,
and it also enabled me to compare what I was doing with what others have done as well as to learn
more generally how to carry out a thesis project.

If I would have to do it all over again, perhaps I would have tried the app on a larger number of
different types of smartphones, this would have been especially useful at certain times during my
app development process. Planning the tests was important and actually carrying out the testing

36 | Conclusions and Future work

took longer time than I had expected. Perhaps I should have focused more on using load-testing
tools, but I am not sure. I enjoyed trying to do the load testing myself programmatically.

I should have taken more time to understand the pre-requisites of the app, such as what type of
web server was needed, and how to have appropriate access to a suitable web server in advance,
thus avoiding the nasty surprise that I faced after having done a lot of testing already – when I
found that the web server was significantly underpowered. A suitable server needed to be able to
handle 100-1,000 users, if that is the number of potential users that you want to support. Further,
prior to the start of the thesis I also should have had more information about the PHP-files on the
web server that were necessary. There are 7 PHP files that are necessary for this app and they are
not all in the same location (folder) on the server. Some of them contain a lot of code, while others
are shorter.

A clear conclusion is that you should not assume that others know what you need. However,
sometimes it is hard to know what one needs in advance.

6.2 Limitations

There were three major limitations encountered during this thesis project:

• Not having access to more Android smartphones.
• Not having a smartphone of my own during most of the thesis project was a

major limitation. Finally, I got one towards the end of the thesis project and
could run tests on it.

• Not having a dedicated web server when testing.

6.3 Future work

My suggestions for future work are:

• Scale the app to support even more users, for example up to 10,000 users.
• Create a website for the app.
• Launch the app at the Google Play Store.
• Analyze how the app affects people in real life, using polls or similar means of

studying user opinions. See Section 3.2.
• Test the app at times of the day when internet activity peaks, for example

according to [32] would be at 5 in the morning and 10 pm at night in USA.
• Expand the app to other types of events where people meet.*
• Test web servers with different hardware configurations and compare the

results.

6.4 Reflections

An app such as this can help people meet and do sports, which can be good both for mental and
physical health. If health would improve, it would not only be good for the individual, but for society
as a whole.

The sports meant to be exercised with this app have been imagined to be team sports to a big
extent, but one could see it being used for people running together perhaps and similar sports that
you do in pairs (tennis is an example in the app). Many of these sports, if not most, are indeed

* Currently I am working on such an app myself for Windows 8.1, but this app is not related to my thesis work
for this company.

Conclusions and Future work | 37

outdoor sports, but several of these can be done indoors as well. So, one could certainly say there
may be an environmental impact, even if not big provided people don’t litter, which cannot be
guaranteed of course. Apart from littering, the environmental impact is basically limited to wear and
tear of the ground and possibly disturbing wildlife if sports outdoors have such an impact (running
in the nature may have this effect).

Should the app become popular so that many uses it, it could mean increased income for those
that have for example football pitches or other places where sports are exercised that are exercised
together as the ones this app tries to help with. Although in Stockholm there is a shortage of pitches
and halls for indoor sports I think so therefore maybe they will not earn so much more.

Another possible economic benefit is that the app could benefit the app owner of course if the
app becomes a success and ads in the app for example could be used to generate income.

Of course, the company renting the web server would make money off of the web traffic to and
from the server.

As brought up in Sections 1.1 and 1.3 (and above in this section) an app like this could help
improve people’s health [see [33], [34], and [35] for the benefits of sports to health]. This would
likely benefit those with fewer friends the most, but by no means only these people. People with
fewer friends benefit more from meeting new friends and perhaps even gives them a chance to do
something that they could not do otherwise, such as exercise with others, avoiding the need to pay
to go to an aerobics class or similar, which may cost quite a lot. However, in the end the use of the
app depends on the individual app-user and his/her situation.

There is of course also a risk of people possibility using this app to abuse others, hence those
making and distributing the app must at least be aware of this risk. The users also need to be aware
of this. Hopefully such problems will be very rare.

Another advantage of this app is of course that it can bring the user a lot of fun, as it can make it
easier to get to meet others and exercise and have fun. Location-based services affect how we live
our lives today as many of us have smartphones with apps that check for our location or maybe we
“check in” on Facebook and other social websites. Thereby we see more about our surroundings, but
we also let others know where we are more. This can be good, but also possibly a risk factor when a
person may intend to do us harm. Case in point is the sad case of the man who used an app to see
where police officers were near him in New York City and then sought them out and shot them
unprovoked at the end of 2014. In other less extreme cases, location can be an annoyance due to
vendors sending us ads via our smartphones depending on our location, but this can also be
beneficial to help us out or help us have more fun. Pew did a poll on how location-based services are
used by people and related questions as can be seen at [36].

 References | 39

References

[1] Pontus Gyllensten, ‘Het debatt om anläggningskrisen i Stockholms stad’,
Stockholmsidrotten, Updated: 2014-09-29 08:37. [Online]. Available:
http://www.rf.se/Distrikt/StockholmsIdrottsforbund/Varanyheter/2014/Hetdebattomanla
ggningskriseniStockholmsstad/. [Accessed: 18-Jan-2015]

[2] Stockholms Fotbollförbund, ‘Fakta’, 18-Jan-2015. [Online]. Available:
http://www.stff.se/om-stff/fakta/. [Accessed: 18-Jan-2015]

[3] ‘digiarts.wuzzel.com |’, 18-Jan-2015. [Online]. Available: http://www.digiarts.se/.
[Accessed: 18-Jan-2015]

[4] ‘Stockholms anläggningssituation — Stockholms FF’, 18-Jan-2015. [Online]. Available:
http://www.stff.se/kommun-anlaggning/stockholms-anlaggningssituation/. [Accessed: 18-
Jan-2015]

[5] Lantmäteriet, ‘GPS och andra GNSS’, 18-Jan-2015. [Online]. Available:
http://www.lantmateriet.se/Kartor-och-geografisk-information/GPS-och-geodetisk-
matning/GPS-och-satellitpositionering/GPS-och-andra-GNSS/. [Accessed: 18-Jan-2015]

[6] Lantmäteriet, ‘Glonass’, 18-Jan-2015. [Online]. Available:
http://www.lantmateriet.se/sv/Kartor-och-geografisk-information/GPS-och-geodetisk-
matning/GPS-och-satellitpositionering/GPS-och-andra-GNSS/Glonass/. [Accessed: 18-
Jan-2015]

[7] G. Sabak, ‘Tests of smartphone localization accuracy using W3C API and Cell-Id’, in
Computer Science and Information Systems (FedCSIS), 2013 Federated Conference on,
Krakow, Poland, 2013, pp. 845–849.

[8] WiGLE.net, ‘WiGLE: Wireless Network Mapping’. [Online]. Available: https://wigle.net/.
[Accessed: 16-Nov-2014]

[9] Navizon Inc., ‘How it works’, 18-Jan-2015. [Online]. Available:
http://www.navizon.com/navizon-how-it-works. [Accessed: 18-Jan-2015]

[10] Denis Foo Kune, John Koelndorfer, Nicholas Hopper, and Yongdae Kim, ‘Location leaks on
the GSM Air Interface’, in 19th Network and Distributed System Security Symposium, 2012
[Online]. Available: http://www-
users.cs.umn.edu/~foo/research/docs/fookune_ndss_gsm.pdf

[11] P. Bahl and V. N. Padmanabhan, ‘RADAR: an in-building RF-based user location and
tracking system’, presented at the Nineteenth Annual Joint Conference of the IEEE
Computer and Communications Societies (INFOCOM 2000), Tel Aviv, Israel, 2000, vol. 2,
pp. 775–784 [Online]. DOI: 10.1109/INFCOM.2000.832252

[12] J. Schmid, T. Gadeke, W. Stork, and K. D. Müller-Glaser, ‘On the fusion of inertial data for
signal strength localization’, presented at the 8th Workshop on Positioning Navigation and
Communication (WPNC), 2011, 2011, pp. 7–12 [Online]. DOI:
10.1109/WPNC.2011.5961006

[13] Google Inc. and the Open Handset Alliance, ‘Android Developers’. [Online]. Available:
http://developer.android.com/index.html. [Accessed: 16-Nov-2014]

[14] Google Inc. and the Open Handset Alliance, ‘Welcome to the Android Open Source Project!’.
[Online]. Available: http://source.android.com/. [Accessed: 16-Nov-2014]

[15] Dan Morrill, ‘Announcing the Android 1.0 SDK, release 1’, Android Developers Blog, 23-
Sep-2008. [Online]. Available: http://android-
developers.blogspot.se/2008/09/announcing-android-10-sdk-release-1.html. [Accessed:
16-Nov-2014]

[16] Google Inc. and the Open Handset Alliance, ‘Location and Maps’, Android Developers.
[Online]. Available: http://developer.android.com/guide/topics/location/index.html.
[Accessed: 16-Nov-2014]

[17] Google Inc. and the Open Handset Alliance, ‘Location APIs’, | Android Developers.
[Online]. Available: http://developer.android.com/google/play-services/location.html.
[Accessed: 16-Nov-2014]

[18] Stack Exchange Inc., ‘geolocation - How do I get the current GPS location programmatically
in Android? - Stack Overflow’. [Online]. Available:
http://stackoverflow.com/questions/1513485/how-do-i-get-the-current-gps-location-
programmatically-in-android. [Accessed: 16-Nov-2014]

40 | References

[19] Pin-Fan Lee and Shuchih Ernest Chang, ‘Building Location-Based Service Based on Social
Network API: An Example of Check-In App’, presented at the IEEE International
Conference on Green Computing and Communications (GreenCom) and 2013 IEEE and
Internet of Things (iThings/CPSCom), Beijing, 2013, pp. 1904–1909 [Online]. DOI:
10.1109/GreenCom-iThings-CPSCom.2013.354

[20] U.V. Ramana and T.V. Prabhakar, ‘Some experiments with the performance of LAMP
architecture’, presented at the The Fifth International Conference on Computer and
Information Technology, 2005. CIT 2005., 2005, pp. 916–920 [Online]. DOI:
10.1109/CIT.2005.169

[21] Facebook, ‘Login Dialog’, Developers Docs. [Online]. Available:
https://developers.facebook.com/docs/reference/dialogs/oauth/. [Accessed: 16-Nov-2014]

[22] IETF OAuth WG, ‘OAuth 2.0 — OAuth’. [Online]. Available: http://oauth.net/2/.
[Accessed: 16-Nov-2014]

[23] D. Hardt, ‘The OAuth 2.0 Authorization Framework’, Internet Req. Comments, vol. RFC
6749 (Proposed Standard), Oct. 2012 [Online]. Available: http://www.rfc-
editor.org/rfc/rfc6749.txt

[24] G. Retscher and T. Hecht, ‘Investigation of location capabilities of four different
smartphones for LBS navigation applications’, presented at the 2012 International
Conference on Indoor Positioning and Indoor Navigation (IPIN), 2012, pp. 1–6. DOI:
10.1109/IPIN.2012.6418892

[25] Benjamin Henne, Christian Kater, Matthew Smith, and Michael Brenner, ‘Selective
cloaking: Need-to-know for location-based apps’, presented at the Eleventh Annual
International Conference on Privacy, Security and Trust (PST), 2013, 2013, pp. 19–26
[Online]. DOI: 10.1109/PST.2013.6596032

[26] Rene Ritchie, ‘History of iPad (original): Apple makes the tablet magical and revolutionary |
iMore’, 06-Oct-2014. [Online]. Available: http://www.imore.com/history-ipad-2010.
[Accessed: 16-Nov-2014]

[27] ‘Android vanligaste smartphone i Sverige – men vi surfar med Iphone’, Ajour. 20-Jan-2015
[Online]. Available: http://www.ajour.se/android-vanligaste-smartphone-i-sverige-men-vi-
surfar-med-iphone/. [Accessed: 20-Jan-2015]

[28] ‘Svenskar använder smartphones flitigast’, Dagens Media, 20-Jan-2015. [Online].
Available: http://www.dagensmedia.se/nyheter/mobilt/article3634818.ece. [Accessed: 20-
Jan-2015]

[29] ‘Google ändrar hur man mäter Android-statistik’, Feber / Android, 20-Jan-2015. [Online].
Available: http://feber.se/android/art/268842/google_ndrar_hur_man_mter_andr/.
[Accessed: 20-Jan-2015]

[30] ‘Genymobile | Let IT be Mobile’. 17-Jan-2015 [Online]. Available:
http://www.genymobile.com/. [Accessed: 17-Jan-2015]

[31] ‘SingleClientConnManager | Android Developers’, 17-Jan-2015. [Online]. Available:
http://developer.android.com/reference/org/apache/http/impl/conn/SingleClientConnMa
nager.html. [Accessed: 17-Jan-2015]

[32] ‘How time of day affects content performance - iMediaConnection.com’, 17-Jan-2015.
[Online]. Available: http://www.imediaconnection.com/content/31577.asp. [Accessed: 17-
Jan-2015]

[33] ‘ESSA’, 18-Jan-2015. [Online]. Available: https://www.essa.org.au/. [Accessed: 18-Jan-
2015]

[34] ‘ACSM | Medicine & Science in Sports & Exercise’, 18-Jan-2015. [Online]. Available:
http://www.acsm.org/access-public-information/acsm-journals/medicine-science-in-
sports-exercise. [Accessed: 18-Jan-2015]

[35] Psychology of Sport and Exercise. 2015 [Online]. Available:
http://www.journals.elsevier.com/psychology-of-sport-and-exercise/. [Accessed: 18-Jan-
2015]

[36] K. Zickuhr, ‘Location-Based Services’, Pew Research Center’s Internet & American Life
Project. 18-Jan-2015 [Online]. Available:
http://www.pewinternet.org/2013/09/12/location-based-services/. [Accessed: 18-Jan-
2015]

 Appendix A: Detailed results | 41

Appendix A: Detailed results

The table below presents all the results (i.e., including both from the tests with the smartphone and the
emulator and Locust). Only tests with responses are shown. All of the results and median values are in
ms.

Smartphone Result Emulator Result Locust Average Locust Median

100 1210 100 1302 100 1647 100 420
 1451 1380 956 470
 1534 1648 438 410
 1627 1611 654 590
 1182 1583 635 510

200 1320 200 1422 200 1378 200 1100
 1269 1499 2867 670
 1289 1419 843 550
 1288 1420 13036 10000
 1364 1443 3100 770

300 1189 300 1310 300 6544 300 6100
 1165 1281 5747 4900
 1338 1431 5464 5100
 1326 1471 7294 6800
 1210 1342 3745 3500

400 1160 400 1277 400 14615 400 13000
 1217 1324 11152 11000
 1204 1343 10340 9800
 1310 1411 12761 12000
 1177 1363 11759 11000

500 1303 500 1449 500 9441 500 8900
 1296 1442 11472 11000
 1220 1411 18253 15000
 1278 1407 10844 9500
 1314 1418 12983 11000
 1240 1396 600 16621 600 17000
 12870 14000
 14468 12000
 12648 13000
 12444 13000
 700 40754 700 28000
 29903 28000
 29039 96000
 99502 63000
 67719 38000

Users 100 200 300 400 500 600 700
Median
(smartphone)

1451 1289 1210 1204 1287

Median
(emulator)

1583 1422 1342 1343 1414.5

Median
(median,
Locust)

470 770 5100 11000 11000 13000 38000

42 | Append

The
last row

dix A: Detailed res

median valu
of the table a

ults

ue of the med
above.

dian values tthat Locust ggave are showwn below. Thhese values aare in the

TRITA-ICT-EX-2015:10

www.kth.se

