
Hardware Security Module
Performance Optimization by
Using a “Key Pool”
Generating keys when the load is low
and saving in the external storage to
use when the load is high

NIMA SABOONCHI

KTH ROYAL INSTITUTE OF TECHNOLOGY
I N F O R M A T I O N A N D C O M M U N I C A T I O N T E C H N O L O G Y

DEGREE PROJECT IN COMMUNICATION SYSTEMS, SECOND LEVEL
STOCKHOLM, SWEDEN 2014

Hardware Security Module
Performance Optimization by
Using a “Key Pool”
Generating keys when the load is
low and saving in the external
storage to use when the load is
high

Nima Saboonchi

2014-12-25

Master’s Thesis

Examiner and Academic adviser
Gerald Q. Maguire Jr.

Industrial adviser
Roberth Lundin

KTH Royal Institute of Technology
School of Information and Communication Technology (ICT)
Department of Communication Systems
SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

This thesis project examines the performance limitations of Hardware Security Module (HSM) devices
with respect to fulfilling the needs of security services in a rapidly growing security market in a cost-
effective way. In particular, the needs due to the introduction of a new electronic ID system in Sweden
(the Federation of Swedish eID) and how signatures are created and managed..

SafeNet Luna SA 1700 is a high performance HSM's available in the current market. In this thesis
the Luna SA 1700 capabilities are stated and a comprehensive analysis of its performance shows a
performance gap between what HSMs are currently able to do and what they need to do to address the
expected demands. A case study focused on new security services needed to address Sweden's
e-Identification organization is presented. Based upon the expected performance demands, this thesis
project proposes an optimized HSM solution to address the identified performance gap between what
is required and what current HSMs can provide. A series of tests were conducted to measure an
existing HSM's performance. An analysis of these measurements was used to optimize a proposed
solution for selected HSM or similar HSMs. One of the main requirements of the new signing service is
the capability to perform fifty digital signatures within the acceptable response time which is 300 ms
during normal hours and 3000 ms during peak hours. The proposed solution enables the HSM to meet
the expected demands of 50 signing request per second in the assumed two hours of peak rate at a cost
that is 1/9 of the cost of simply scaling up the number of HSMs.

The target audience of this thesis project is Security Service Providers who use HSMs and need a
high volume of key generation and storing. Also HSM vendors consider this solution and add similar
functionality to their devices in order to meet the desired demands and to ensure a better future in this
very rapidly growing market.

Key Words

HSM, Digital Signature, PKI, e-Identification, RSA, SAML

 Sammanfattning | iii

Sammanfattning

Detta examensarbete undersöker prestandabegränsningar för Hardware Security Module (HSM)
enheter med avseende på att uppfylla behov av säkerhetstjänster i en snabbt växande marknad och
på ett kostnadseffektivt sätt. I synnerhet på grund av de säkerhetskrav som nu existerar/tillkommit
efter införandet av ett nytt elektroniskt ID-system i Sverige (Federationen för Svensk eID) och hur
underskrifter skapas och hanteras.

SafeNet Luna SA 1700 är en högpresterande HSM enhet tillgänglig på marknaden. I den här
avhandlingen presenteras nuvarande HSM kapacitet och en omfattande analys av resultatet visar ett
prestanda gap mellan vad HSMS för närvarande kan göra och vad som behöver förbättras för att ta
itu med de förväntade kraven.

En fallstudie fokuserad på nya säkerhetstjänster som krävs i och med Sveriges nya e-
Identifiering presenteras. Baserat på resultatet i den här avhandlingen föreslås en optimerad HSM
lösning för att tillgodose prestanda gapet mellan vad HSM presterar och de nya krav som ställs.

Ett flertal tester genomfördes för att mäta en befintlig HSM prestanda. En analys av dessa
mätningar användes för att föreslå en optimerad lösning för HSMS (eller liknande) enheter. Ett av
de huvudsakliga kraven för den nya signeringstjänsten är att ha en kapacitet av 50 digitala
signaturer inom en accepterad svarstidsintervall, vilket är 300ms vid ordinarie trafik och 3000ms
vid högtrafik. Förslagen i avhandlingen möjliggör HSM enheten att tillgodose kraven på 50
signeringen per sekund under två timmars högtrafik, och till en 1/9 kostnad genom att skala upp
antalet HSMs.

Målgruppen i den här avhandlingen är användare av HSMs och där behovet av lagring och
generering av nycklar i höga volymer är stort. Även HSM leverantörer som kan implementera den
här optimeringen/lösningen i befintlig funktionalitet för att tillgodose det här behovet i en alltmer
växande marknad.

Nyckelord

HSM, Digitala signatur, PKI, e-legitimation, RSA, SAML

Table of Contents | v

Table of Contents

Abstract .. i
Key Words ... i

Sammanfattning .. iii
Nyckelord .. iii

Table of Contents ... v
List of Figures ... vii
List of Tables ... ix
List of Acronyms and Abbreviations ... xi
Acknowledgements ... xiii
1 Introduction ... 1

1.1 Problem definition .. 1
1.2 New e-ID System ... 1
1.3 Signature Service requirements by large Authorities 2
1.4 Plugin problem ... 2
1.5 Purpose ... 3
1.6 Advantages of the new service model .. 4
1.7 Proof and validation of a signature in new system 5
1.8 Service Design .. 5
1.9 Bottleneck ... 7
1.10 Goal ... 7
1.11 Aim of this master thesis ... 8
1.12 Research Methodology .. 8
1.13 Delimitations ... 9
1.14 Structure of the thesis .. 9

2 Background ... 11
2.1 Related work ... 11
2.2 Fundamentals of Public-key cryptography and PKIs 11

2.2.1 Digital Signature and Verification ... 12
2.2.2 Hash Function .. 12
2.2.3 Secure Hash Function (SHA) .. 13
2.2.4 Certificate Signing Request (CSR) ... 13
2.2.5 Certificate Authority (CA) .. 13
2.2.6 X.509 Digital Certificate ... 13
2.2.7 X.509 Digital Certificate History .. 13
2.2.8 ASN.1 / DER Encoding ... 14

2.3 Digital Signature ... 15
2.4 RSA .. 15
2.5 Security Assertion Markup Language (SAML) 16
2.6 Java Security .. 17
2.7 Bouncy castle ... 17
2.8 Telia’s Net iD ... 17
2.9 HSM.. 17

2.9.1 General specification and capability .. 17
2.9.2 Drawback to Using HSMs .. 18
2.9.3 SafeNet Luna .. 18
2.9.4 Key Generation performance and key storage capacity........... 18
2.9.5 Key Export .. 19

vi | Table of Contents

2.9.6 Key storage capacity inside the HSM on the fly and in RAM ... 20
2.9.7 Storage Media ... 20
2.9.8 Timing measurements of the current system as input to the

design process ... 20
2.9.9 Maximum FIFO queue length for signing requests 20

2.10 Step by step time measurement of traditional HSM’s operations 21
2.10.1 Key generation time (KG) .. 21
2.10.2 Private Key Wrap and Export .. 21
2.10.3 Private Key import and unwrap .. 22
2.10.4 Signing process time (Si) .. 22
2.10.5 Signing process while performing unwrapping at the same

time .. 24
3 Implementation of the proposed solution 25

3.1 Database .. 26
3.2 Key Pool .. 28
3.3 Single HSM design ... 29
3.4 Distributed design with more than one HSM 30
3.5 Using Physical Keys in distributed systems (using multi HSM) 31
3.6 Sign request generator .. 31
3.7 Sign Request handler ... 32
3.8 Signing .. 32
3.9 CA .. 32

4 Analysis ... 33
4.1 Key Generation on the fly .. 34
4.2 Pre-Generated keys .. 35
4.3 Maximum size for the FIFO queue of requests 36
4.4 Latency .. 37
4.5 Queue size and Latency Calculation in advance 39

4.5.1 Base Rate (BR) ... 39
4.5.2 Queue Size (Q) .. 41
4.5.3 Key Preparation (KP) time ... 41
4.5.4 Latency calculation (L) .. 42

4.6 Reliability / validity Analysis .. 42
5 Conclusions and Future work ... 43

5.1 Conclusions .. 43
5.2 Limitations .. 44
5.3 Future work ... 44
5.4 Reflections .. 44

References .. 45
Appendix A: SAML Signing Request / Response 47
Appendix B: Test results ... 51
Appendix C: Luna SA 1700 HSM Performance report (internal
by SafeNet) .. 54

List of Figures | vii

List of Figures

Figure 1-1: Signed PDF file can validated by Acrobat reader 4
Figure 1-2: Step by step processing of a digital signature request and response 6
Figure 2-1: SafeNet, Inc.’s Luna SA 1700 HSM as a network appliance 18
Figure 3-1: Database keys used for storage of data .. 26
Figure 3-2: Columns of the signature table .. 27
Figure 3-3: The idle time key generation process and the use of the key pool to

process requests ... 29
Figure 3-4: Single HSM design ... 30
Figure 3-5: Design with multiple HSMs .. 31
Figure 4-1: 3000 signing with key generation .. 34
Figure 4-2: 3000 signing with key generation on the fly and 2000 additional

signing with the one request per second .. 35
Figure 4-3: 3000 sign with pre-generated keys .. 35
Figure 4-4: Latency when the maximum queue size is 50 without key pool

solution (The vertical lines indicate the arrival rates of the test
distribtuion.) ... 36

Figure 4-5: Latency when the maximum queue size is 50 with the key pool
solution (The vertical lines indicate the arrival rates of the test
distribtuion.) ... 37

Figure 4-6: Time before first dropped request when using the Key Pool 38
Figure 4-7: Latency versus arrival rate ... 38
Figure 4-8: The triangle represents the available FIFO queue space and shows

how it decreases with increasing arrival rates, at some point being
exhausted. ... 39

Figure 4-9: Processing of 3000 signing requests at 25 requests per second 40
Figure 4-10: Processing of 3000 signing requests with at 26.3 requests per

second ... 40
Figure 4-11: Processing of 3000 signing requests at 27 requests per second 41

List of Tables | ix

List of Tables

Table 1-1: Gives a summary of the state of NetID plugins 3
Table 1-2: Problems of the current e-ID systems .. 3
Table 2-1: Fields of a X509 Certificate ... 14
Table 2-2: Number of keys supported by LunaSA SA 1700 18
Table 2-3: Key generation performance of Luna SA 1700 19
Table 2-4: SafeNet key pair generation performance .. 21
Table 2-5: Time to wrap a private key using AES (256) ... 21
Table 2-6: Time to move a block of RSA 2048-bit keypairs into or outof the

HSM ... 21
Table 2-7: Time to load public key and wrapped private key. unwrap the

private key to make the key pair available in the HSM 22
Table 2-8: Performance in Stockholm ... 23
Table 2-9: Performance in Malmö ... 23
Table 2-10: Signing time per key pair with different numbers of simultaneous

threads .. 23
Table 2-11: Signing request time when simultaneously performing a key

unwrapping process ... 24
Table 3-1: Description of the columns of the keys table ... 27
Table 3-2: Description of the signature related columns .. 28
Table 4-1: Sample of SigningRequest Generation following a specific

distribution ... 33
Table 4-2: Latency calculation vs actual test results ... 42

List of Acronyms and Abbreviations | xi

List of Acronyms and Abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
app application
ASN Abstract Syntax Notation
CA Certificate Authority
CIA Confidentiality, Integrity, and Availability
CMS Cryptographic Message Syntax
COTS Commercial Off-The-Shelf
CRL Certificate Revocation List
CSR Certificate Signing Request
DER Definite Encoding Rules
DSS Digital Signature Services
EFST e-Förvaltningsstödjande tjänster (e-Governement support services)
EMR Electronic Medical Record
FIFO First In-First Out
FIPS (U.S.) Federal Information Processing Standard
HSM Hardware Security Module
IdP Identity Provider
ITU International Telecommunication Union
Java SE Java Platform, Standard Edition
JCA Java Cryptography Architecture
JCE Java Cryptography Extension
KG Key generation
MAC Message Authentication Code
NPAPI Netscape Plugin Application Programming Interface
NIST (U.S.) National Institute of Standards and Technology
NTLS Network Trust Link Service
OCSP Online Certificate Status Protocol
PED PIN Entry Device
PKI Public Key Infrastructure
PPAPI Pepper Plugin API
RSA Ron Rivest, Adi Shamir, Leonard Adleman
SAMBI Samverkan för behörighet och identitet inom hälsa, vård och omsorg
SAML Security Assertion Markup Language
SHA Secure Hash Algorithm
SITHS Service identification for both physical and electronic identification.
SITHS Card has many uses and is suited to all national services in e-health.
SSL Secure Sockets Layer
SSO Single Sign On
TSL Trust service Status Lists
U.S. United States (of America)

Acknowledgements | xiii

Acknowledgements

I express my gratitude to Professor Maguire who worked tirelessly to see me through the entire degree
project process. The company supervisor, Roberth Lundin, also deserves a pat on their back for his
counsel and guidance during the design period. Finally, my family has been with me from the start to
the end. There is no other way to say thank you, but I am sincerely grateful.

May God bless you all.

Introduction | 1

1 Introduction

This thesis project designed and evaluated a key pool solution for Hardware Security Module (HSM)
devices in order to increase their performance by decreasing the response time when processing
signing requests in a Digital Signature Service. This chapter provides an overview of the thesis project,
describes the research problem in more detail, and specifies the research methodology utilized to carry
out this thesis project.

1.1 Problem definition
Today’s electronic identification (e-ID) system does not meet the current requirements for e-IDs,
hence it needs to be upgraded – especially in terms of advanced embedded security controls. High risk
areas include the fact that the authority’s access to logs of e-service systems is inadequate. This
proposal is supported by the framework agreement established in Sweden for Electronic Identification
2008 (e-ID 2008) that is valid until 30 June 2016 [1]. This agreement calls for the identification of
users and these requirements created issues for the transformation to new issuers of e-legitimations.
Furthermore, the existing e-ID signature plugin is incompatible with popular web browsers, such as
Google’s Chrome, Mozilla’s Firefox, Microsoft’s Internet Explorer, etc.

1.2 New e-ID System
A study of the e-ID system was started by the Swedish government on 17th June 2010 and the complete
report of this research was published on December 2010. The report identified a solution for which an
Agency under the Ministry of Enterprise was established starting as of 1 January 2011[2]. The
acquisition of operations, management of metadata records of all members, guide service, and the
other associated tasks were delegated to a new e-ID board (in Swedish “E-legitimationsnämnden”*).

The federation associated with a Swedish Federation of e-identification providers was initiated
with its first phase in 2013. The request for quotations ended with only a single quote (from Cybercom
Sweden AB), hence this firm eventually got the contract. The definition of a centralized signature
service was initiated in 2014. However, this service was excluded from the scope of work and in 2010
was assigned to The Legal, Financial and Administrative Services Agency (Swedish: Kammarkollegiet)
blanket e-government services. The framework incorporates six service providers who offered to
construct signature services. The approval of these signature services must pass a practical
examination process governed by the e-ID board. Moreover, there are other clauses in the agreement
that governs the association of Swedish e-identification service federation along with hands on tests
conducted during the months of May and June 2014. As per the new clauses of the eID registry board,
the authority to purchasd eID is restricted and only the e-ID board is authorized to make such
purchases. In March 2014, the Swedish e-ID Federation was formed and started resolving e-ID issues
and providing e-services to clients.

The main services were started in “Kammarkollegiets blanket E-förvaltningsstödjande tjänster”
(EFST) 2010[3]. Kammarkollegiet invited suppliers, who are part of EFST 2010 to start a new digital
signature service based on standalone Security Assertion Markup Language (SAML) and Identity
Providers (IdP). During May and June 2014, the eID board started to test and validate the services
with regard to all the defined requirements. The first two digital signature suppliers who fulfilled all
the requirements were added to the framework agreement.

Initially, the Swedish Tax Office (Skatteverket) directed the very first contract related to Signature
Services. The assessments of these contracts were to be announced in September or October of 2014.
At the beginning of November 2014, the Tax Office chose Cybercom to supply this service and a
contract has been signed.

* http://www.elegnamnden.se

2 | Introduction

1.3 Signature Service requirements by large Authorities
The E-ID Board has defined some security level requirements for a signature service which must be
fulfilled by all Signature Service providers. The performance requirements which must be fulfilled by
the service providers include the maximum response time for each sign request during normal hours
which is 300 ms and 3000 ms during peak hours.

Additionally, each authority has its own requirements which must be fulfilled by the service
providers, such as the maximum request rate at which the provider must be able to respond within the
acceptable response time. This information is mostly confidential information and hence not public,
but we know that several millions of request per year are expected to be received by these large
authorities. Different request rates occur during different hours, days, and months per year. There are
several reasons for this. For example, when signing a Tax declaration report and sending it to Tax
Office users usually using signing service. As this signing of declarations mostly occurs during the
normal working hours of a day and because the traffic is usually high during the months that the Tax
Office accepts these declarations (especially in the final hours before the filing deadline) we can
estimate the peak request rate. Therefore, we can have made some assumptions about the distribution
of request and the request rates during peak hours. In this research, we assume a peak request rate of
50 requests per second*.

1.4 Plugin problem
Due to its wide use in Sweden, the NetID signatures plugin has been used for this thesis project. Many
users over the years have downloaded the NetID plugin because it was easy to use and hassle free.
Today it is still very easy to download a signature plugin by clicking on an e-ID application (app), but
there are increasing numbers of problems associated with using this plugin.

Microsoft’s Internet Explorer customers use an Active-X element NetID plugin. Unfortunately, the
NetID plugin’s apps are not supported by Windows 8 in “Metro”† mode with Internet Explorer 10.
Moreover, it is unlikely that the Microsoft will provide support for this plugin in the future.

For use with Mozilla’s Firefox and Google’s Chrome, the NetID plugin followed the Netscape
Plugin Application Programming Interface (NPAPI). The NetID plugin is supported by Firefox Version
30. Unfortunately, Chrome version 37 will not support NPAPI. However, the NetID plugin still works
for the Chrome 35 developer version - because Google’s Pepper Plugin API (PPAPI) is still supported.
As a result, NetID plugins may not be supported by Chrome during 2015 [6][7].

Today, using the NetID plugin seems to be increasingly awkward to use due to the inability to use
Chrome and because users have to answer a number of questions when they use the plugin which is by
default blocked by browser. Moreover, many browsers only allow the plugin to run smoothly if it is
downloaded from the app store associated with the device/browser vendor. As a result, NetID
customers must be charged less (by the app store) and they have to download the plugin for each of the
browsers that they use. Telia has realized that this plugin has problems and have announced another
method of doing digital signature without using the plugin.

Even if a user has successfully downloaded and installed the plugin, a number of problems can still
occur when using this plugin. For example, a number of banking sectors have completely removed the
plugin applications from their system. Since March 2014, a Bank ID can be utilized without utilizing
any assistance from Active-X elements or plugins. However, all of the user using the old versions of
plugins are now enforced to work to use a new (free) app. For Bank IDs this app permits a consistent
interface. Unfortunately, because each of the different markets has chosen a different approach to
using e-IDs, the end users face a lot of confusion and hassles. This can be seen in the fact that although

* This rate for the two busiest hours of the day, half this rate for the remaining business hours, and a quarter of
this rate for the remaining hours of the day repeated for a week would be sufficient for signing over 6 million Tax
declaraions.
† Metro style was the old name. Now it called Windows 8 Application or windows 8 mode. Internet Explorer app
from the home page of the windows 8 is a simplified version of the browser which does not have the same support
as the desktop version of Internet Explorer so that is why some additions and features you cannot use it.[4][5]

Introduction | 3

Telia has distributed a large number of electronic IDs*, there have not been any endorsements by their
customers regarding the use of NetID.

Table 1-1: Gives a summary of the state of NetID plugins

supplier Version Comment
Internet Explorer 8-11 Plugins will work as usual until further notice
Firefox 30 Warnings dialog
Chrome 38 Works (but the support of it will be removed in the future)
Opera 22 Works
Safari 7.0 Works

1.5 Purpose
This section discuss several issues related to handling signatures in the ongoing the Swedish
e-Identification Board’s Certificate Service project for the year 2014-2015. Today browsers are not
allowed to use signature plugins. This change means that new applications are needed to utilize the
emerging new federated e-ID system. These applications can be utilized in order to support any other
application as a national service, including applications involving Electronic Medical Records (EMRs).
Application that were previously integrated with the earlier browser plugins are now encouraged to
run without using a browser plugin (i.e., it should run as a stand-alone application).

The problems of the current e-ID systems are summarized in Table 1-2. Section 1.6 will discuss the
advantages of this new model for signing, 1.7 describes how a signature can be associated with a
specific person, and Section 1.8 describez the design of this new signing service. The bottleneck
introduced by the HSM is described in Section 1.9 in order to motivate the goal of this thesis project
(as presented in Section 1.10).

Table 1-2: Problems of the current e-ID systems

Asymmetry in the
handling of signature

The current e-ID system has an asymmetry in its construction. The design
was based upon a report submitted to an authority. In this design a
document and its signature are separate files and the handling of each of
them is quite different. For example, the signature should be handled as a
binary file. This design decision creates huge problems with the
management and storage of the document (and its corresponding
signature). There is a need for a practical way to create and sign a
document. The current Swedish system makes the creation of effective
management of the document and their signatures awkward.

Unable to create
standard PDF-A
documents or XML
DigSign files

A signed PDF-A (ISO 19005-1) document cannot be created using a Bank
ID. In addition, XML DigSig† signatures cannot be used in files. XML file
results from using a Bank ID need to be handled separately. This is as a
major limitation in the use of a Bank ID signature.

Plugins are now seen
as the scourge
(difficulty) of the
browser

Currently plugins are considered a problem when using browsers. The
state of the art suggests that plugins and browsers work together, but this
requires use of particular methods when using plugins. Each browser
manufacture has their own method of accepting and distributing plugins.
For example, NetID needs to handle each web browser separately and
they need to write documentation about how to install the digital
signature plugin for each type of browser.

* For example, they distribute e-IDs for the Swedish Tax Office (Skatteverket).
† “DigSig” is a project from ebIX which is focused on use of encryption and digital signatures within the European
energy sector.[8]

4 | Introduct

1.6 A
A Signin
was requ
provider
and mob
XAdES*
signing a
store dig
standard
Electron
(SAMBI)

Ther
the burd
server. T
signing s
also spec
The cert
private o

A nu
impleme
variety o
local sys
signatur
the signa

* XAdES s
recomme

Figure 1-1

tion

Advantage
ng Service re
uired for a s
r (IdP). SAM
bile cards to
formats are

application w
gitally signe

d policy of th
nic ID system
) and new fed

re is no requ
den on the s
This will pre
server. A cer
cifies the val
tificate can b
or profession

umber of ne
entation of th
of logins and
stem. Moreo
re can be crea
ature of a PD

stands for "XM

endation maki

1: Signed P

s of the ne
equires minim
signature or

ML allows all
o activate au
e supported.
with the doc
ed documen
he Federatio

m supports “S
derations as

uirement to k
server and im
event this se
rtificate is is
lidity time, i

be used for th
nal identity of

ew opportun
he new e-ID

does not req
over, the crea
ated for a PD

DF-A file can

ML Advanced
ng it suitable f

DF file can val

ew service
mal infrastru

identity dat
the sources

utomatically.
A digitally

cument gene
ts (as files)

on of Swedish
Samverkan fö
well as stand

keep any of t
mproves secu
ensitive info

ssued to the
.e., the amou
he specified
f the docume

nities are re
system. The
quire Public
ation of sign

DF A-2 docum
be easily ver

Electronic Sig
for advanced e

idated by Acro

e model
ucture. In th
ta. This SAM
of identities
In addition

signed docu
eration appli
. The frame
h e-ID provi

för behörighe
dalone IdPs.

the user’s in
urity by not
ormation fro

user as a tim
unt of time a
time validity
ent’s signer.

elated to the
main feature
Key Infrastr

natures in ot
ment or an X
rified using A

gnatures" is a s
electronic sign

obat reader

he year 2010,
ML ticket ca
s, such as sm
, signatures

ument is easi
ication, thus
eworks and
iders superv
et och identi
[10]

nformation in
storing a us

om being sto
me stamped
after signing
y of the signa

e signature s
es of the new

ructure (PKI)
ther formats
XML docume
Acrobat Read

set of extensio
nature.[9]

, under EFST
an be collecte
mart cards, ba

via XML Di
ily created v

s enabling a
assurance a

ised by the e
tet inom häl

n the signing
ser’s sensitiv
olen from or

proof of sig
g time that th
ature and th

services bein
w ID system a
) based appli
s is also poss
ent. As show
der.

ons to XML Sig

T only a SAM
ted from any
ank tokens,
igSIG, PDF

via integratio
user to prod

are provided
e-ID Board.
lsa, vård och

g server. This
ve informatio
r mishandle

gning. This c
his signature

he certificate

ng decouple
are that it fac
ications to ru
sible. For in

wn in the figu

ignature

ML ticket
y identity
Bank ID,
A-2, and

on of the
duce and
d due to
The new

h omsorg”

s reduces
on in the

ed by the
certificate
e is valid.
asserts a

ed by the
cilitates a
un on the

nstance, a
ure below,

Introduction | 5

1.7 Proof and validation of a signature in new system
Identity providers can utilize bank issued tokens to enable user to login to the system. When a user
sends a document and asks to sign it, the identity provider shows the message to the user and asks the
user to confirm the signing request to sign this specific document. After clicking the “confirm” button,
the identity provider creates a ticket and places the user information in it. Then the signature service
provider uses this identity information to create a certificate for the signed document. Since all of these
processes are logged, the identity in the ticket and the identity in the certificate are both identical and
linked together. As a result one can used the logged information from the complete process to prove
that this signature belongs to that specific bank token and that it belongs to a specific person.

1.8 Service Design
The steps in order for a user to digitally sign a document for an e-government agency are (numbered
as shown in Figure 1-2):

1. The user logs in to the authority e-Service (IdP in the background).
2. User asks for sign the document.
3. E-service prepare the request file and send the IdP reference and hash value to signature service

provider.
4. The Cybercom Signature Service (CSS) make a call to the identical IdP that the costumer is logged

in order to create a ”Proof of identity for Signature (Legitimering för Underskrift)” to the signature
itself. IdP shows a dialog to user and ask to approve that by clicking the button. (Like login process
but this time by showing the text that this process is for approve the signature request).

5. Then CSS make a call to signing engine to handle signing the document and certificate creating by
a Certificate Authority (CA)

6. Signing engine makes the calls to the HSM, to create the key pair, create the signature, (puts the
distinguished name + some certificate extensions + public key in to CSR and make self-signed
CSR to CA), destroying the private key.

7. Singing engine send CSR to the CA to create certificate and send back the certificate to signing
engine.

8. Signing engine sends back certificate, signing data to the authority e-services.
9. Authority e-services put the certificate, signature in the XML structure or pdf-A document in order

to send back to the user.

6 | Introduct

tion

Figuree 1-2: Step

by step processsing of a digital signature reequest and ressponse

Introduction | 7

1.9 Bottleneck
From a security point of view availability is one of the edges of Confidentiality, Integrity, and
Availability (CIA) Triad. As Matt Bishop has stated, “Availability refers to the ability to use the
information or resource desired. Availability is an important aspect of reliability as well as of system
design because an unavailable system is at least as bad as no system at all.” [11]

This new infrastructure enables companies to provide a general purpose signature service to their
customers. Cybercom is one of the companies participating in this competitive market for signature
services. It is estimated that some of these signature service providers will receive 200* signature
requests per second. In comparison, the current capacity of key generating and signing of SafeNet,
Inc.’s Luna SA 1700 HSM, is around 2 signing processes (key generation + signing) per second. The
“bottleneck” of the signing process inside the HSM is the key generation process, which requires
around 588 milliseconds (see Appendix C). On the other hand, as was discussed in Section 1.3, the
signature service provider must be able to handle peak rates of 50 sign requests per second with
acceptable latency. One solution could be the purchase of approximately 9† HSMs in order to be able to
respond to these 50 requests per second. However, as Section 2.9.2 will describe, this solution would
be very costly. Another solution would be to acquire a more expensive but higher performance HSM.
Unfortunately, neither of these provides a good solution. Unless this bottleneck is removed the system
cannot respond within the required bounded response time and some of the requests will start to be
dropped during peak hours, negatively affecting the availability in the signing system.

1.10 Goal
Previous studies have shown that the current HSMs are unable to meet customer expectations because
the amount of time that a HSM needs to generate a key pair is too long relative to the expected request
rate for signatures during peak hours. The aim of this project is to create a suitable solution by
increasing the effective performance of an affordable HSM.

In this research project, we propose a solution based upon the introduction of a “Key Pool”. The
idea, proposed by Prof. Gerald Q. Maguire Jr., is to use the HSM to generate key pairs and store them
during idle times. Then during peak hours, these stored key pairs can be utilized in the signing process.
This approach of pre-generating keys avoids the need to generate keys at the same rate as the peak
arrival rate of signing requests.

However, because the HSM has limited storage capacity, we have to save these pre-generated keys
outside the HSM. Moreover, we must be able to store these keys outside of the HSM without
compromising the assurance level of the HSM. In order to maintain the desired level of assurance, we
use well-trusted encryption methods to protect the pre-generated keys in our “key pool” when they are
stored outside of the HSM. The ability to securely store parts of the key pool outside of the HSM
decouples the number of keys that can be pre-generated from the memory capacity of the HSM.

The aim of this research is not only to optimize the effective performance of a single HSM in order
to meet the expected customer demands while saving money, but also to create an extensible set of
HSMs to respond to even higher customer demands in the future. This later is possible if it is possible
to load the pre-generated keys into one of several HSMs that can simply be used for signing during
periods of peak demand for signing.

* This number is only an estimated number. As it discussed in Section 1.3 most of the actual peak rate and
distribution of requests information is confidential and not shared by large authorities.
† It depends on the request distribution and duration of peak hours. In this research two hours was selected as the
duration of the peak rate of requests.

8 | Introduction

1.11 Aim of this master thesis
The currently available high performance HSMs are not cost-effective on large scales to reach the
performance levels expected in the near future with the new signing method (discussed in Section 1.2).
Digitally signing documents is expected to be a large business and socially very important to citizens
and businesses, hence it is worth some research in order to go beyond the performance limits of the
currently available HSM platforms. There are various approaches that could be used. This thesis seeks
to improve the process of key generation using two methods. A detailed analysis of the time required
for each stage of the process will be examined from beginning to the end. The aim is to introduce a
solution that will make the use of digital IDs both feasible and economical, in order to take advantage
of the features that digital IDs have over the traditional methods of signing documents.

1.12 Research Methodology
The thesis applied the design science methodology for this research. A working artifact demonstrating
the feasibility and enabling performance measurements of the proposed solution was designed and
evaluated. The project took place as the following steps:

• Existing solutions for digital signing services were investigated using a literature study. All
of the procedures involved these services were investigated by examining the operation of a
HSM in detail (based upon examining a SoftHSM, the SafeNet HSM simulator, and the
SafeNet Luna SA network-attached HSM). The literature study also looked at Java security
and details of certificates; CAs; PKIs; Ron Rivest, Adi Shamir, and Leonard Adleman (RSA)
public-private key pairs; etc.

• The different methods involved in the signing procedure were investigated, measured, and
analyzed in order to and discover the limiting step(s) in this processing. This lead us to split
the investigation into the following components:

1. Understand how the signing requests arrive and are place in a first in-first out
(FIFO) queue.

2. Measure the time required for each of the following operations: batch RSA key pair
generation by both a soft HSM and actual hardware, wrapping, exporting, and saving
the generated keys in two different media (specifically files and a database), loading
the wrapped keys from a file or database, and unwrapping the keys.

3. Measure the time required to sign simulated request bytes* when generating the RSA
keys for each request on the fly.

4. Measure the time required for different types and sizes of keys.

• The key pool solution is introduced in order to use pre-generated keys. The likelihood of
having a sufficient number of pre-generated keys is examined in order to assess the efficacy
of the proposed solution for a high performance signing service. An analysis was done to
learn the maximum number of signing requests per second that could be processed over the
course of a day (where the actually load varies between very low and much higher than the
HSM’s maximum service rate).

• The proposed key pool solution was implemented.
• The performance of the proposed key pool solution was measured using a Luna SA HSM

and these measurements were evaluated by comparing the performance of the prototype
with the results of existing solutions.

* Simulated requests were used to avoid compromising any real customer’s data and to enable the analysis of
much higher signing request rates than currently occur in practice.

Introduction | 9

1.13 Delimitations
The effective performance of a signing service was enhanced in this thesis project. The functions
related to the signing service were revised to reduce the maximum delay for a signing request. The
proposed solution can overcome the processing rate and storage limitations of the present HSM due to
the proposed change in the method of key pair generation.

The main focus of this project concerns the operations performed by the HSM (in terms of
limitations of the performance of the signing service). Moreover, the signing service information along
with the private information store in the HSM, the private results of the key generation, etc. remain
private and confidential – despite the key wrapping/export and import/unwrapping operations. As the
details of the HSM are highly confidential to the manufacturers, this thesis proposes a means to
improve the performance of the HSM – without the need to consider the details of the HSM.
Therefore, the security factors of the HSM based system are not highlighted in this thesis. In fact, the
implementation details of the proposed solution and how to ensure the integrity of the overall system
are only briefly mentioned.

Additionally, some elements of the HSM that can affect the performance of the solution, such as
the signing algorithm, key size, wrap key type, and the size of the wrapped data are not discussed in
detail in this thesis. However, detailed information is provided concerning the CA certificates, the
structure of these certificates, and samples of same of the elements present in these certificates.

1.14 Structure of the thesis
Chapter 2 provides background information related to a Public Key Infrastructure. The core elements
and the characteristics of such an infrastructure are described briefly. Moreover, a detailed discussion
is given about the HSM and its functions as related to the Public Key Infrastructure.

Chapter 3 discusses details of the processes of key generation and signing, and then introduces the
proposed solution using a key pool. The chapter also gives some details of the implementation of the
proposed solution.

Measurements of the performance of the prototype are analyzed and compared with existing
solutions in Chapter 4. The analysis of these measurements influenced the subsequent further
development of the prototype. The results of this analysis are an improved prototype that meets the
goal specified in Section 1.10.

The final chapter of this thesis presents some conclusions, a discussion of how well we achieved
our aims, and what was gained by implementing the proposed new solution. In addition, the effect of
the new solution is described in terms of the context of the initial problem. Some future work is
proposed to extend the results of this thesis project and some reflections are made regarding the social,
economic, and other aspects of this thesis project.

Background | 11

2 Background

A digital signature realizes a scheme to assert information about security components, such as the
privacy of a conversation, the integrity of data, the authenticity of a digital message/sender, and
non-repudiation by a sender. Digital certificates are facilitated by the existence of a PKI. Digital
certificates are the main component of a digital signature service.[12], [13]

A CA signs a certificate to attest to its authenticity. This certificate can be used to create a digital
signature. The certificate can be stored in hardware devices or in a file stored on a storage device.[14]

The history of certification methods starts in 1976, when public key cryptography first appeared.
Due to the threat of “man-in-the-middle attacks” researchers developed certificate based methods to
provide users with confidence in the authenticity of the public keys they are using.

The guarantees developed are based upon digital certificates signed by trusted entities, referred to
as CAs. A CA vouches for a particular public key belonging to its indicated owner. The emergence of
PKIs led to the deployment of mechanisms to manage digital certificates throughout the existence of
the corresponding keys. However, the certificate based infrastructure that developed has suffered
because PKIs turned out to be very complex to deploy, cumbersome to use, and non-transparent for
users.

Based on key pairs and digital certificates, a PKI facilitates the use of public key cryptography.
Today, a lot of Commercial Off-The-Shelf (COTS) software, such as e-mail programs, web browsers,
file encryption software, and groupware, has some form of PKI support embedded in it [13]. These PKI
enabled applications are the main beneficiary of the results expected from this thesis project.

Another crucial part of a PKI is key management. Key management involves the generation,
exchange, storage, use, and replacement of keys [15]. In a service that requires high security standards,
such as FIPS 140 level 2, level 3, or level 4 [16], all cryptographic and key management processing
must be handled by a specific cryptographic module called a hardware security module (HSM).

2.1 Related work
Research has previously been mainly done on improving the performance of the signing process of
HSMs. In contrast this research focuses on key generation by HSMs, but no previous research was
found regarding improving key generation by HSMs.

2.2 Fundamentals of Public-key cryptography and PKIs
Cryptography is the science of encoding and safeguarding data. Public-key cryptography has been

in existence for a long period and a large amount of research & development work has been done.
Different committees have proposed standards related to public-keys and PKI. In order to understand
the rest of this thesis one must understand the details of how public-key cryptography and PKIs
actually work. First we look into relevant details so that the reader of this thesis will understand the
operation of public-key encryption and digital signatures.

This section describes some of the basic elements of public-key cryptography and PKIs.
Understanding these details will help us to explain the software, hardware, and procedures necessary
to achieve the level of trust expected by society and industry.[13]

Public-key cryptography is distinguished from a symmetric-key, private-key, and shared secret
approach by enabling one key to be made public and the other key is kept private. In contrast,
symmetric-key cryptography uses a common key for both decrypting and encrypting messages. This is
intuitively similar to the expectation that one can lock and unlock a door using the same key. However,
this method requires a secure way to distribute the secret-key to the two (or more) parties.

12 | Background

Public-key cryptography utilizes key pairs, one for encrypting and another for decrypting. A
message encrypted using a public-key can only be decrypted using its corresponding private-key; while
a message encrypted with the private-key can only be decrypted using its corresponding public-key.
This asymmetry is used in the implementation of digital signatures and encryption. This concept is
very attractive and it offers a number of advantages as compared to symmetric-key cryptography. One
of these advantages is that one party can apply their private key to digitally sign a message, while the
validity of this signature can be checked by anyone who has a copy of the signer’s public key.
Additionally, the use of a public key for this operation simplifies key distribution – as each user’s
public key can be published widely without compromising the user’s private key (provided that it is
very difficult* to use the public key to find the corresponding private key). Only the user’s private key
needs to be carefully protected.

2.2.1 Digital Signature and Verification

Creating a digital signature provides a means by which a message can be verified or authenticated, i.e.
proving that the message originates from a specific sender. For example, if Bill wants to digitally sign a
message and send the result to Tom. Bill uses his private-key to encrypt the message; he then sends
this encrypted message along with his public-key (the public key is attached to the signed message) to
Tom. Tom applies Bill’s public key to see original message. However, at this point Tom has no way to
neither know that it is actually Bill’s public key nor know if the message has been tampered with.

The possibility of combining the digital signature and the encryption enables the communicating
parties to have both privacy and authentication. Encryption using the recipient’s public key can be
used to ensure the privacy of the message, since only the recipient has the corresponding private key to
decrypt the message. While as described above we can use a digital signature to enable the recipient to
authenticate the message.

Unfortunately, the time required to perform public-key encryption is typically much greater than
the time required to do encryption using a symmetric-key. In contrast, distribution of public keys for
use with public-key cryptography is simple (as no secrecy is required), while secure distribution of
symmetric keys is difficult. This leads to three interesting results: (1) we can use public-key
cryptography to help us distribute the symmetric key, then use the symmetric key for decrypting a
potentially large message, (2) we can compute a hash over a large message to produce a short (even
fixed size) hash and then securely transmit the hash to the other party – who can now easily check if
the message it authentic and if it has been modified, and (3) we can use hashing together with digital
signatures to provide authentication of origin, detects any modification of the message, and achieve
non-repudiation.[17, Ch. 6]

2.2.2 Hash Function

Any function that maps data from arbitrary length datum to a fixed length datum is referred to a hash
function. The output of the hash function is called a hash value, hash code, hash sum, or checksum
depending upon how this output is used. Hash functions are used to generate fixed length output that
acts as a reference to the original data. This is handy when the original data is very cumbersome to be
used in its entirety. Hashing can be thought of as a one-way encryption algorithm. We say that it is
one-way, because it should not be feasible to derive the original message from the hash.

A practical illustration of the application of hashes is the data structure known as a hash table. In
this structure, data is stored in an associative manner. Using a hash table minimizes the search time in
comparison to a linear search as the hashed value is used to locate the table entry for a potentially long
string.

* This is usually evaluated relative to an advisory’s assumed available computing power, such that the advisory will
not be able to find the private key in less time than the message should remain unencrypted, unforgable, etc.

Background | 13

Generating hash values from the input data facilitates verification that the data matches the
expected data. Because generating a specific hash value is not easy and it should be unlikely that two
different strings generate the same hash value, hashing has been widely used to verify that the received
data has not been modified since it was sent.[18, Ch. 5]

2.2.3 Secure Hash Function (SHA)

The United States (U.S.) National Institute of Standards and Technology (NIST) published a Secure
Hash Algorithm (SHA) as a U.S. Federal Information Processing Standard (FIPS): SHA-1 is one of the
members of a family of cryptographic hash functions. NIST announced that SHA-1 is in end of life.
SHA-2 is another family of hash functions, with different block sizes. SHA-2 includes SHA-256 and
SHA-512. These algorithms differ in the word size used in the algorithm; SHA-256 uses 32-bit words
while SHA-512 uses 64-bit words. There are also truncated versions of each standard, known as SHA-
224 and SHA-384.[18, Ch. 5]

2.2.4 Certificate Signing Request (CSR)

A CSR is an encrypted text in a file that is derived from the computer server from certificate owner
information like organization name, common name (domain name), locality, country, email address
and distinguished name and the public key that will be included in the certificate. Then this file will be
sent to CA to perform the sign and create the certificate.

2.2.5 Certificate Authority (CA)

A CA is an entity that issues digital certificates. A CA certifies that the named subject of the digital
certificate is the owner of the public key contained in this certificate. (The structure of a digital
certificate is describe in the next section) This certification enables third parties to rely upon
signatures made using the private key that corresponds to the public key that was certified. In a typical
trust model, a given CA is a trusted third party who is trusted by all the communicating parties. Most
public key infrastructure schemes feature one or more CAs.

Note that it is also possible to create a hierarchy of CAs with each CA’s certificate signed by the CA
above them in the hierarchy. It is also possible for two CA hierarchies to cross certify their certificates.
For example, two organizations might agree that certificates signed by either hierarchy of CAs would
be trusted by applications used in these two organizations.[18, Ch. 7]

2.2.6 X.509 Digital Certificate

In 1988, the International Telecommunication Union (ITU) established a certificate standard called
X.509 in order to enable authentication of remote network users. X.509 is based on public key
cryptography and data signatures. In X.509 the digital certificate contains [19]:

• A version number which indicates the version of X.509 that the certificate’s data format
follows.

• A public-key certificate is a digitally signed statement from one entity, indicating that the
public key of another entity has some specific value.

Further details of the X.509 certificate’s structure are given in the following section.

2.2.7 X.509 Digital Certificate History

X.509 Version 1 is the most generic and the most widely used version of X.509. X.509 Version 2
introduced the use of unique identifiers for both the subject and the issuer to enhance the possibility of
reusing the subject, the issuer, or both.

14 | Background

In 1996, X.509 Version 3 was developed to support extensions. These extensions allow anyone to
define an extension and include this extension in a certificate. There are number of extensions that are
used, these include:

• Key usage to limit the use of keys to a particular purposes such as “signing-only”
• Alternative Names associates other identities with a given public key, examples include:

DNS names, Email addresses, and IP addresses.

In order to indicate that an extension needs to be checked, the extension is marked as being
critical and set to "keyCertSign". For example, if such a certificate is presented during Secure Sockets
Layer (SSL) communication, the receiving system should reject it as the extension indicates that the
associated private key is meant only for signing certificates and hence should not be used in SSL[19].

Table 2-1: Fields of a X509 Certificate

Version: The Version field identifies the version of the X.509 standard utilized in
this certificate; this affects the information specified in the certificate.

Serial Number To differentiate one certificate from the other, the entity creating the
certificate assigns a serial number to it. This information is of great
importance. For example, when a certificate is revoked the serial number of
the certificate is placed in a certificate revocation list (CRL).

Signature Algorithm
Identifier

This field shows which algorithm used by the CA to sign the certificate.

Issuer Name The Issuer Name is the name of the entity that signed the certificate and this
is normally a CA. Use of this certificate implies trust of the issuer of this
certificate. Note: In some cases an issuer signs its own certificate (called a
self-signed certificate).

Validity Period Every certificate is only valid for a stated period, after which it becomes
obsolete. This is the certificate’s validity period. This period is usually
specified as a start date and an end date. The validity period chosen for a
given certificate is dependent on factors such as how strong the private key
is and the amount a user is willing to pay to acquire the certificate.

Subject Name Subject Name refers to the name of the entity identified by the certificate’s
public key. The name expected to be unique across the internet. For
example, a Distinguished Name (DN) of an entity might be:

• Common Name (CN)= Test Name,
• Organizational Unit (OU)=IT Co,
• Organization (O)=Cybercom.
• Country (C)=SE

Subject Public Key
Information

Subject Public Key Information is normally used to refer to the public key
of the entity that is being named in conjunction with the algorithm
identifier. This identifier must specify the cryptographic system to which
the public key belongs and the parameters that are associated with it.

Extensions Allow anyone to define an extension and include this extension in a
certificate.[19].

2.2.8 ASN.1 / DER Encoding

Data contained in a certificate is encoded using Abstract Syntax Notation (ASN) 1/ Definite Encoding
Rules (DER) standards. DER describes a single way in which data can be stored and transferred.[20]

Background | 15

2.3 Digital Signature
A digital signature is a mathematical scheme used to provide a number of assurances, such as the
privacy of a conversation, integrity of data, the authenticity of a digital message or sender, and
non-repudiation of the sender. In cases where one may be concerned about the security of sensitive
documents such as receipts, contracts, agreements, or other similar documents where users are
concerned over unauthorized access or theft of data, the best solution is application of a digital
signature.

When a document is digitally signed, the signature is usually sent as a separate document. A
recipient of a digitally signed document receives both the message and the signature and he/she
applies a verification technique to the combined message and signature in order to verify the
authenticity of the digital signature of this document. Digital signatures prevent unauthorized changes
to a document. Additionally, successful verification of a digital signature ensures that the expected
party has signed the document that has been received. Encryption can be used to ensure the privacy of
the message.

Digital signatures are used to in conjunction with efforts to ensure privacy, authentication,
integrity, and non-repudiation. As an authentication mechanism, digital signatures enable the message
sender to attach a unique code that acts as a signature. This signature is normally formed by
computing a hash over the message and encrypting the resulting hash value with the sender’s private
key. The advantage of this technique is that the signature gives a guarantee of the source and the
integrity of the message. Following the NIST standard, a digital signature uses a secure hash algorithm
(such as SHA-512) to compute a secure hash over the plain text message. Next the plaintext message,
the message signature, and the public key of the sender are packed together, signed, and encrypted
using the public key of the recipient. The recipient unpacks the received message, decrypts the
message using its own private key, then the same hash function is used to compute a message digest of
the received message which is compared to the decrypted signature. If the message digest and the
signature match, then the message is believed to be authenticated and unmodified.[14]

2.4 RSA
In the 1970s, Ron Rivest, Adi Shamir, and Leonard Adleman invented an encryption algorithm that
has been named after them. RSA relies on the difficulty of factoring integers. This scheme is the best
known and most widely used public key encryption scheme. It is based on the concept of
exponentiation in a system that shows some degree of congruence over the integer’s module (a product
of two primes). It usually makes use of large integers (for instance 1024 bits) and its security is based
on the assumption that factoring large numbers is difficult, i.e., that factoring is computationally
expensive. For example, factoring a value “n” using a standard factoring algorithm takes ܱ(݁୪୭ ୪୭ ୪୭) operations. Therefore, in key generation, each person creates their own private and
public key pair as in ElGamal. [17, Ch. 4]

RSA Key Generation of a public/private key pair generation consists of the following steps:

• “Select two random large primes, p and q;
• Compute the system modulus n = p ∗ q; and
• Encryption key e could be a random selection, where 1 < e < φ(n), gcd(e, φ (n)) = 1

 (note φ (n) = (p −1)(q −1));
• Now we can calculate the decryption key d: e ∗ d = 1 (mod φ (n)) and 0 ≤ d ≤ n.

Public encryption key: PU = {e, n}
Secret decryption key: PR = {d, p, q}.”[17, Ch. 4]

Assume that we have two parties: Bill and Tom. Tom wants to use this scheme. Bill sends a
message to Tom. This message must be in the form of a number that is acceptable by Tom’s modulus
system. This problem can be implemented in the same way as the ElGamal scheme, thus the message
m has to be smaller than the modulus n. Bill can break his message it into blocks if necessary.[17, Ch.
4]

16 | Background

2.5 Security Assertion Markup Language (SAML)
Two previous security initiatives are the source of the Security Assertion Markup Language (SAML):
the Authorization Markup Language (AuthXML) and Security Services Markup Language (S2Ml).
Entities which have identity related information that is specific to a given security domain is termed a
subject. The framework for the exchange of the security information in SAML is an XML-based system
on subjects. It does not require the use of a single vendor’s security architecture, as SAML does not
provide the underlying user authentication design.

SAML is made up of components that when combined enable various functionalities to be
implemented. These components can be used to provide a transfer of authentication or transfer
attribute and authorized information among autonomous firms that have created a trust relationship.
SAML defines the content and structure of protocol messages that are used for both the transfer of the
information and assertions. In the latter case, an assertion in SAML is written using XML.
Additionally, SAML profiles have been defined to meet the needs of particular business functionality,
for example the Single Sign On (SSO) profile.

The standard-based approach provided by the SAML enables SSO among numerous applications
and supports identity management. Prior to the introduction of the SAML standard, enforcing security
by developers focused on using proprietary security mechanisms leading to heterogeneous application
systems. The result of using these proprietary security mechanisms was cost-ineffective and lead to
interoperability issues between different vendors products. In many cases, this required the system to
use client side screen scrapping or in the worst-case scenario using key stroke logging. The lack of
interoperability and the ad hoc solutions to overcome these problems introduced many security
loopholes and increased the risks of client side hackers. Moreover, the resulting patchwork solutions
made it difficult to manage deployment and troubleshooting of the integration of multiple
applications. The design of SSO enabled the user to sign on to different application hence solving the
problem.

A proprietary mechanism can be used to encrypt the user credentials in the HTTP-POST header
and to pass the security token to another application, thus encapsulating the details of the proprietary
mechanism. The security of this transfer can be realized through a secure transport protocol such as
SSL. When the user authenticates using the SSO-enabled application, the client application uses the
SSO mode of the security token that is available in the HTTP-POST header. This design helps to
redirect the user to the target resources or the application which has the appropriate access privileges.
Proprietary agents interpret the HTTP header that contains the SSO security token. The use of a
particular proprietary agent is common to a business and their trading partners. A vendor-defined
mechanism can be similar to this approach, yet follow the fundamental SAML specification for the
representation of authentication and authorization of the credentials for the standard security-token
format.[21],[22]

Background | 17

2.6 Java Security
A set of the application programming interfaces (APIs) is included in the Java security technology,
tools, and the execution of common security algorithms, mechanisms, and the protocols. The area
spanned by the Java security protocols is wide and includes cryptography, public key infrastructure,
secure communication, authentication, and access control. A comprehensive security framework
provides this technology. Moreover, Java security provides the system administrator with a set of tools
which aid him/her in ensuring that the application secure. The Java security platform offers
dynamism, extensibility, standardization, and interoperability.[23] The features relevant to this thesis
project are cryptography, authenticity verification capability, public key infrastructure, and
authorization.

2.7 Bouncy castle
Bouncy Castle Crypto is a package used in the Java implementation of cryptographic algorithms. It was
developed by the Legion of the Bouncy Castle. This package provides a lightweight API that is suitable
for use in any environment that conforms to the Java Cryptography Extension (JCE) framework.
Bouncy Castle can generate X.509 certificate in both version 1 and 3 which are used in the CA
implementation. [24]

2.8 Telia’s Net iD
Telia’s Net iD utilizes a smart card and PKI to support e-identification in Sweden. The product has two
groups of potential customers: (1) health care, municipalities, and government agencies and (2) Telia’s
customers. Telia no longer provides smart cards containing certificates to private customers, instead
individuals can get a smart card ID from the Swedish Tax Office (Skatteverket).

2.9 HSM
The section gives a general description of HSM devices, including the specific functionalities that were
employed in the design and evaluation of the proposed solution. This description will be important to
understand the tests described in Chapter 3.

Different vendors’ HSMs have different functionalities, in addition to the basic functions of key
generation and key storage. Additionally, the different vendors have different shares of the market.
Key export is a function that can be found in some HSMs, but it may only be available in specific
models of a vendor’s products. In this thesis project, we utilized a SafeNet Luna SA 1700. All of the
measurements were made using this device and the functions that will be described in the following
subsections describe the features of this specific HSM.

2.9.1 General specification and capability

A HSM is a cryptographic processor that is specifically designed to be used for the protection of a
cryptographic key throughout its lifecycle. HSMs act as trusted anchors to protect a PKI. They are
designed to utilize cryptography in order to protect some of the most security conscious organizations
in the world. This protection is achieved by managing, processing, and a storing cryptographic keys
securely inside a hardened and tamper resistant device.[25]

A HSM is capable of performing a number of important security related functions, including:

• Cryptographic operations, such as encryption, digital signatures, hashing, and computing
Message Authentication Codes (MACs).

• Key management functions such as key generation and secure key storage.
• Authentication by verifying digital signatures.[26]

18 | Backgro

2.9.2

The maj
thousand
and the
and main
applianc
the reaso
(from a
104-2.

2.9.3 S

SafeNet,
mind. T
cryptogr
address
number
their full

Figure 2-1

2.9.4

Table 2-
options:
performa
and sign
informat

Table 2-2:

Key typ
AES 256

RSA 102

RSA 204

RSA 409

ound

Drawback to

or drawback
d U. S. dolla
sophisticatio
ntenance add

ce version of
ons for the h
testing labo

SafeNet Lun

, Inc.’s Luna
This HSM is
raphic keys th

market need
of applicatio

l lifecycle, an

1: SafeNet,

Key Generat

-2 shows the
2 Megabyte

ance of a Lu
ning. All of
tion about th

 Number o

pe
6-bit

24-bit

48-bit

96-bit

o Using HSM

k to the use o
ars to many t
on of the sec
ding to the c
the SafeNet

high price for
oratory) that

na

a SA 1700 H
s a popular
hat is both st
ds where sec
ons to accel

nd to act as a

Inc.’s Luna SA

tion performa

memory cap
s of base me
na SA 1700 w
the timings

his device is g

of keys suppor

s

of a HSM is i
thousands o

curity require
cost incurred

Luna SA 170
r these devic
t their produ

HSM was des
choice for

trong and tru
curity is very
erate crypto
root for an e

A 1700 HSM as

ance and key

pacity of the
emory and 16
with either o

s in this the
given in Appe

rted by LunaSA

Base mem
16,000

4,500

2,500

1,200

its cost. The
of dollars. Th
ed by the cu

d by custome
00 that can
ces is the hig
uct meets go

signed with
enterprises

usted. The Sa
ry important
ographic ope
enterprise’s e

a network app

y storage ca

e HSM for va
6 Megabytes
one or two H
esis are give
endix C.

A SA 1700

mory

price of thes
heir cost dep
ustomer. In a
ers that have
do key expor

gh costs for H
overnment s

the security
requiring a

afeNet Luna
t. SafeNet Lu
rations, to s
entire encryp

pliance

pacity

arious types
with a mem

HSMs for key
en in units o

se devices can
ends on the

addition, a H
purchased a
rting costs ~
HSM vendor
pecifications

of its crypto
a secure me
SA 1700 pro

una can be e
ecure the cr

ption infrastr

of keys for tw
ory upgrade

y generation,
of millisecon

Memory U
129,000

35,000

20,000

10,000

n range from
level of func

HSM requires
a HSM.[26] A
~US$25K [27
rs getting a c
s such as NI

ographic ele
echanism fo
oduct was de
easily integr
ryptographic
ructure.[28]

two different
e. Table 2-3 s

hashing and
nds (ms). A

Upgrade

m under a
ctionality
s support

A network
7]. One of
certificate
IST FIPS

ements in
r storing

esigned to
ated in a

c keys for

t memory
shows the
d signing,

Additional

Background | 19

Table 2-3: Key generation performance of Luna SA 1700*
 Single HSM 2xHSM

O
pe

ra
tio

n

K
ey

 si
ze

(b

its
)

O
ps

/s
ec

on
d

L
at

en
cy

(m

s)

O
ps

/s
ec

on
d

L
at

en
cy

(m

s)

KeyGen

1024 11 98 3.6 210

2048 1.8 590 1.3 650

4096 0.17 15,000 0.067 10000

8192 0.008 120,000 0.025 40000

2.9.5 Key Export

SafeNet Luna HSMs originally performed all cryptographic operations within the HSM and only
allowed the results of these operations to be available outside the HSM. Fortunately, the current HSM
provides the functionality necessary for backup and restore operations. Based upon this functionality
we devised a secure hardware mediated transaction that implements cloning†. This allows sensitive
materials to be moved directly between HSMs in a secure fashion. This technology was limited to
handling very large numbers of keys, i.e., more keys than the storage capability of the HSM.

Some developers and service providers have made it possible to store key materials outside of the
HSM, for example in databases or in other suitable frameworks. These solutions permit large numbers
of keys to be stored and facilitate management of security information.

The solution that SafeNet Luna offers comes in two different versions to addresses different
application requirements, specifically:

1. For those applications that demand optimum physical and procedural security the export of any
material that is deemed to be sensitive is not permitted.

2. For applications that make use of databases that contain key and profile materials, there is a special
version of the HSM that permits export of materials in encrypted form for storage in an external
database. These materials can later be imported, decrypted, and used within the HSM. Note that
these materials cannot be used outside the HSM, only stored and returned to the HSM.

The two versions of the HSM are mutually exclusive. However, the non-exporting version is
capable of storing and handling sensitive objects that are contained in the HSM and these objects can
be copied and moved directly to another similar HSM through the cloning operation. It is also
important to note that the exporting version is capable of wrapping key materials exported from the
HSM and unwrapping key materials imported into the HSM, but this version of the HSM is not
capable of performing cloning. Moreover, it is not possible to convert one version of the HSM into the
other version without destroying all the contents of the HSM. Therefore, the exporting model of Luna
HSM provides a key export capability while running in full FIPS 140-2 level 3 validated mode of
operation. The advantage of this model is that you do not need to downgrade the security of the HSM
device in order for the export capabilities to function.

The exportability of the objects (keys) is an important consideration as the keys must only be
accessible and used inside the HSM in order maintain the trust level of the system. When the HSM’s

* SafeNet never publishes their product performance. The numbers used in this document are based on the latest
test results from a SafeNet Sales engineer. The full set is given in Appendix C.
† In this context cloning means taking a full back up from a partition of the HSM and storing that in a backup
device called “Luna Backup HSM”. The resulting backup partition can be restored into other HSM. This feature
can be used in Key Pool Distributed mode. See Section 3.4.

20 | Background

export capabilities are disabled, keys can never leave the HSM. In cases where the organization
requires the two different capabilities, the use of a mixed population of HSMs is encouraged. This
involves the use of different Luna HSM servers to address each requirement. Setting of the Luna HSM
configuration is done at the factory with the provision that setting the system requires contacting the
vendor and shipping the HSM back to the company for reconfiguration.[29]

2.9.6 Key storage capacity inside the HSM on the fly and in RAM

After decoding the keys, testing was performed in order to retrieve data into the HSM’s random access
memory (RAM). The maximum number of the RSA 2048-bit keys pairs which can be stored in the
RAM (on the fly) of the HSM was determined to be 12,033. Note that the figure here differs from the
value in Table 2-2 since the table illustrates HSM memory values in numbers of keys, rather than
numbers of key pairs. Alternatively, 12,033 key pairs represent the number of key pairs that can be
unwrapped and stored in the RAM.

2.9.7 Storage Media

Two different types of storage were utilized for testing. First, a flat file was used for storing the public
and private keys that were wrapped and exported. The second type of storage utilizes a database. Using
a database provides greater convenience and flexibility when storing the exported data, while also
permitting other metadata to be stored along with the exported wrapped sets of keys. Sections 2.10.2
and 2.10.3 described the results of the measurement using these two different types of storage.

2.9.8 Timing measurements of the current system as input to the design process

Before we initiated the design and implementation stage of our proposed solution, the critical
processes associated with key generation, hashing & signing, and signing were measured. For each
process, a test was executed many times in order to provide reliable data as input to the design stage.

2.9.9 Maximum FIFO queue length for signing requests

A set of measurements on Luna SA 1700 were made to determine the maximum length of the FIFO
queue. These measurements were based on injecting a very large number of requests at an increasing
rate and watching when the number of responses was no longer in equilibrium with the injected rate,
i.e., when requests were being dropped. The maximum queue length for requests was found to be 150
requests.

As 150 is the maximum queue size, this means that the next request in the queue (which would
have the number 151) would have a maximum total response time of 3020 ms (3000 ms waiting +
20 ms sign) – which exceeds the maximum acceptable response time defined by the eID board
(e-legitimationsnämnden). From this we can conclude that the 150 requests have to be processed
within 3000 ms, which is equivalent to 50 requests per second.

This small queue size is potentially a system bottleneck as the system will start to drop requests
which could have been processed successfully within the acceptable maximum response time of the
burst length of requests exceeds 150 requests in 3000 ms (assuming a processing rate of 50 requests
per second).

In the Analysis in Section 4.3, in order to be able to perform tests of both the traditional and new
key pool systems, the maximum queue length has been set to 50. The reason for using 50 rather than
150 is that 150 is quite a large number for our test scenario and it is not possible to fill this queue and
get dropped requests within the 3000 signing requests that we have used for our test request
distribution (as specified in Table 4-1).

Background | 21

2.10 Step by step time measurement of traditional HSM’s operations
This section concerns testing and measurement of operations that are essential. These results were
used as input to the design and implementation described in Chapter 3. These values will also be
utilized for comparison with the performance of the prototype of the proposed solution.

2.10.1 Key generation time (KG)

The new system requires RSA 2048-bit key pairs (by default) for testing in the test environment. The
key generation rate was on an average ~673ms per key pair. This value was close to the SafeNet
product specification of the performance of key generation for RSA 2048-bit (compare the results in
Table 2-4 with Table 2-3).

Table 2-4: SafeNet key pair generation performance

Number of
key pairs

Total time
(ms)

Time per keypair
(ms)

100 66,462 664.62

1,000 683,499 683.499

2,000 1338,983 669.491

2.10.2 Private Key Wrap and Export

Measurements of the time to wrap and export keys stored in RAM to external storage (to a file and to a database) were
conducted when using AES 256 to encrypt the block of keys. Table 2-5 shows the time to wrap and
export a block of RSA 2048-bit key pairs to a file, while

Table 2-6 shows the time to load RSA 2048-bit key pairs from a database. The time to transfer 10,000
wrapped RSA 2048-bit key pairs to and from the HSM and the database is less than 1 ms/key.

Table 2-5: Time to wrap a private key using AES (256)

Number
of keys

Total
time
(ms)

Key pair generation,
wrap, and save to file

(ms)

Key generation
per key

(ms)

Wrap and save to file
per key

(ms)
100 85,012 850.12 709.25 140.87

200 167,575 837.875 701.715 136.16

1,000 810,143 810.143 688.92 121.223

Table 2-6: Time to move a block of RSA 2048-bit keypairs into or outof the HSM

Number of key pairs
loaded from DB

Total time
(ms)

Time per keypair
(ms)

100 485 4.85

500 635 3.27

1,000 577 0.577

5,000 829 0.165

10,000 953 0.095

22 | Background

Number of key pairs
writen to DB

Total time
(ms)

Time per keypair
(ms)

100 560 5.6

500 1,543 3.08

1,000 1,507 1.5

5,000 5,168 1.03

10,000 9,437 0.94

2.10.3 Private Key import and unwrap

Table 2-7 shows the results of the entire test of importing key pairs and un-wrapping the private key. It
takes on average 70 ms to process each private key.

Table 2-7: Time to load public key and wrapped private key. unwrap the private key to make the key pair available
in the HSM

Number
of key
pairs

Load
from DB

(ms)

Cipher
initialization

(ms)

Unwrap
private

key
process

(ms)

Total
time
(ms)

Unwrap
time per

private key
(ms)

Time per
key pair

(ms)

1,000 537 2,719 69,958 74,525 69.958 74.525

2,000 701 2,867 140,143 144,245 70.0715 72.125

3,000 693 2,721 209,628 214,225 69.876 71.408

4,000 778 2,718 279,751 283,433 69.937 70.858

2.10.4 Signing process time (Si)

The signing process is considered to be an essential security function that needs additional attention.
As per the specification of the HSM, the device is capable of processing 1200 signing requests per
seconds, hence less than one millisecond for signing per multithreaded process.

The tests conducted in this thesis project utilized two test environments located in two different
geographical locations, i.e. two different cities. The first test environment is located in Malmö and the
other test environment is in located Stockholm, both in Sweden. The time taken for sending packets
between these two sites is ~10 ms. In per our testing procedures, we perform two signing process for
every signing request, i.e. when signing a document with a new key pair and signing certificate with
CA. If a test is initiated from the Stockholm site, the delay to send a request to Malmö and receive a
response will be ~20ms, which is more than the time required to perform the signing request. All of
our tests were initiated at Stockholm site.

Table 2-8 and Table 2-9 show the signing time per key pair at the two different times (excluding
the network delay). It should be noted that the processing time per key pair decreases with increasing
numbers of requests. There are two main reasons for this. The first reason is that the time it takes to
warm up the HSM and reach the highest performance state. The second reason is the initialization

Background | 23

time for some processes, such as establishing a NTLS connection to the HSM, database connection, CA
Key preparation, un-wrap key preparation. As a result the response times for first requests are
significantly greater than for the following requests.

Table 2-8: Performance in Stockholm

Number of
signing

requests

Total time
(ms)

Time per key
pair
(ms)

500 21,952 43.904

999 43,560 43.603

1,000 43,332 43.332

Table 2-9: Performance in Malmö

Number of
signing

requests

Total time
(ms)

Time per key
pair
(ms)

9,998 206,455 20.649

9,999 203,902 20.392

The tests utilized both single threads and multithreads. The signing requests was processed in a
total amount of time ranging from 43 ms to 6.6 ms per signing request in addition to the network
delay. A major performance issue was expected to be the delay (or latency) when simultaneously
processing a number of threads. Table 2-10 shows how the signing time varies with the number of
threads, over the range from 1 to 50 threads. These results show that the batch processing of signing
requests decreases from 43 ms to 6.6 ms as the number of threads increases from 1 to 50. However, at
the same time, the processing time for a single signing requests is unstable (i.e., the variance in the
time required per signing request increases). After conducting a number of different tests, we
concluded that four threads were the optimal number of threads as this yielded a signing processing
time of 6.9 ms without degrading the performance of individual signing request processing.

Table 2-10: Signing time per key pair with different numbers of simultaneous threads

Number of
threads

Average time per
signing request

(ms)

Variance in signing
times
(ms)

1 43 0 ~ 20

2 15 0 ~ 30

4 6.9 0 ~ 30

10 6.8 0 ~ 100

30 6.7 0 ~ 500

50 6.6 0 ~ 700

We observed from the results shown in Table 2-10 that a stable signing processing time was not
possible in the two devices tested when running with multithreads. However, as our objective was to

24 | Background

deploy our proposed solution to any HSM, even those that do not supporting multithreading, hence we
performed the rest of our testing using only a single signing thread.

2.10.5 Signing process while performing unwrapping at the same time

Details of the implementation of proposed solution are given in Chapter 3. In this proposed solution,
there is a requirement to load pre-generated keys from storage, un-wrap these keys, and initiate
signing using the newly available keys. For this reason, the system’s behavior needs to be analyzed
when the signing process and the un-wrap key process are initiated at the same time. In the previous
section we saw that the signing process had a stable execution time (taking a few milliseconds) when
using less than four threads in the signing process. In this section, we evaluate parallel processing to
un-wrap keys simultaneously with signing. Table 2-11 shows some of these test results. As can be seen
from this table the impact of simultaneous signing and key unwrapping is minor, i.e. one or two
millisecond when performing batches of key signing requests. This additional delay seems to be
acceptable, especially when one considers that each unwrapping request makes available 2,000 new
key pairs – in a time that is much shorter than the normal key generation time.

Table 2-11: Signing request time when simultaneously performing a key unwrapping process

Number of
signing

requests

Total time
(ms)

Time per key
pair
(ms)

9,999 227,417 22.743

10,000 214,328 21.432

Implementation of the proposed solution | 25

3 Implementation of the proposed solution

PKI solutions are great in demand for signing services (and many other applications). As we noted
earlier, we expect that the demands on such services will increase, specifically that the peak arrival rate
of signing requests could be up to 50 requests per second for a particular signing service. Conversely,
the lowest arrival rate could be less than one, perhaps even zero for a period of a second. In this lowest
rate of arrivals, we consider the system idle.

New services require a distinct RSA 2048-bit key pair for every signing request. According to the
specifications of HSM used in our testing (see Table 2-3), it can create 1.7 such key pairs every second.
As we can see this HSM could not meet the peak signing request of 50 signing requests per second. If
we consider the peak hour on a given day of a year, then the number of key pairs required to meet a
signing request rate of 50 requests / second would be:

60 minutes * 60 seconds * 50 signing request = 180,000 requests = = 180,000 key pairs

Unfortunately, in one hour the number of key pairs that can be generated by the HSM is only:

60 minutes * 60 seconds * 1.7 keys = 6,120

The above calculations illustrate the gap between the key generation rate and the expected peak
signing request rate. In order to support this expected peak request rate we must either: (1) deploy a
HSM that can generate key pairs at a much higher rate (leading to a much higher capital expenditure)
or (2) we must generate key pairs in advance of the arrival of a signing request.

Fortunately, our HSM can generate RSA 2048-bit key pairs all day long at the rate of 1.7 such key
pairs every second. In our proposed solution, we exploit the fact that the rate of arrival of signing
requests varies over the months of the year, days of the month, and even hours within each day.
During the time when the arrival rate of signing requests is low we accumulate generated but unused
key pairs, we refer to this set of generated but unused keys as a key pool.

In this approach, we meet the peak demand by using keys from the key pool to perform the signing
request. As long as we have a supply of key pairs from the key pool, we can sign at the maximum
signing rate of the HSM (~1,200 signing operations per second) – rather than being limited to the key
generation rate (~1.7 per second). A problem with this approach is that the HSM has only limited
storage space, so we can only accumulate a limited number of key pairs. As can be seen from Table 2-2,
even with a memory upgrade, the number of key pairs that can be stored within the HSM would be
insufficient to meet the peak hour demands computed above (as 20,000 keys could be exhausted in
400 seconds if used at a rate of 50 per second).

To address the problem of limited memory capacity within the HSM, we needed to be able to store
the pre-generated keys outside of the HSM, while still ensuring their security. In order to do this we
wrap the key pair by encrypting the key pair and some metadata and then move this encrypted data
out of the HSM to storage for future use. When the pool of available keys in the HSM falls below some
threshold, we reload the key pairs into the HSM by retrieving wrapped keys from storage and unwrap
them. Because the process of wrapping/unwrapping consumes time and we want to avoid limiting the
performance of the HSM, we use symmetric encryption/decryption (specifically AES) using a key that
is securely maintained inside the HSM. Since this decryption of a key pair takes less time than key
generation we avoid the limitations of both the key generation rate and the limited memory capacity of
the HSM.

From a key confidentiality point of view, we maintain the confidentiality of the key pool because a
key pair is either stored securely inside the HSM or we maintain the confidentiality of externally stored
key pairs by encrypting them using AES before exporting them outside of the HSM. Since the
symmetric key(s) used for unwrap/wrap purposes are only stored inside the HSM it is infeasible to
unwrap keys outside of the HSM. This means that all of the keys in the key pool are only accessible via
the HSM.

26 | Implem

Whe
(~1.7 pe
using a s

Sinc
operatio
through

In or
requests
Received
or more
queue, ta
signing t
retrievin
set the ‘’
latency a

3.1 D
We have
The anal
choice of
well as fl
store the
certificat
performa

Beca
(Malmo
UNIX ba
Stockhol
this site.

Figu
main col
pool solu
stamps. A

Figure 3-1

entation of the pro

en the HSM
r second) th

secret symme

ce we want
n, we use a t
loading wrap

rder to mon
s and respon
d Time Stam
signing thre
akes a key pa
thread starts

ng the reques
’request Fini
and processin

Database
e examined t
lyses of the
f a database

flexibility and
e exported ke
te request. U
ance.

ause the test
and Stockho

ased Ubuntu
lm server ru

ure 3-1 shows
lumns: id pr
ution. For an
A brief descr

1: Database

oposed solution

is idle or w
he HSM will
etric key, the

to ensure th
thread to mo
pped keys fro

itor the perf
nses. Each r

mp’’ field whe
eads service t
air from key
s to process a
st from the q
ished Time S
ng times for

the time req
advantages
as the prefe

d increased i
eys and to st

Using this da

ts were done
olm) it was v
u server in th
ns on a Win

s the table us
rikey, pubkey
nalysis purpo
ription of eac

e keys used for

when the rate
produce un

en transferre

hat there ar
onitor the nu
om storage a

formance of t
received sign
n it is receiv

this queue. E
pool, and us

a request it s
queue reques
Stamp’’ field
every reques

quirement for
of the datab

erred storage
information c
tore the time
atabase help

e with differ
very useful to
he Malmo ce
dows platfor

sed for storin
y, status and
oses four add
ch of these co

r storage of da

e of signing
nused key pa
ed and stored

re keys avail
umber of key
and unwrapp

the HSM wh
ning reques

ved. Each of t
Every idle sig
ses this key p
sets the “req
st. When the

d. Using thes
st.

r different s
base over the
e media. This
capacity for
e for generat
ped when ext

rent servers
o be able to t
enter had a l
rm and SQL

ng keys data
d timestamp.
ditional colum
olumns is giv

ata

requests is l
airs. These u
d outside the

lable from t
ys available i
ping them usi

hen signing w
t has a tim
these reques
ning thread

pair to perfor
uest Start To
e signing thr
e timestamp

torage medi
e flat file in
s database of
each of the o

ting the signa
tracting stat

in the diffe
test the solut
ight-weight d
server 2008

into the data
. These colum
mns were add
ven in Table

less than the
unused key p

HSM.

the key pool
n the pool an
ing the secre

we have adde
me stamp pla

ts is placed i
retrieves a re
rm the signin
o Process Tim
read finishes
ps, we can de

a (as found
the previous

ffers higher t
objects. The
ature itself a
istics and an

rent location
tion with diff
database cal

8 was selecte

abase. The ke
mns were use
ded to the ke
3-1.

e key genera
pairs will be

l to perform
nd refill this

et symmetric

ded timestam
aced in the
in a FIFO qu
equest from
ng process. W
me Stamp’’ f
s its processi
etermine the

in the sectio
us chapter le

transaction s
database wa

and the time
nalyzing the

ns and envir
fferent datab
lled SQLite, w
ed as the dat

eys table con
ed to suppor
eys table to s

ation rate
wrapped

m signing
s key pool
c key.

mps to the
‘’request

ueue. One
the FIFO

When the
field after
ing it will
e queuing

on 2.9.7).
ad to the
speeds as

as used to
to sign a
system’s

ronments
ases. The
while the

tabase for

ntains five
rt the key
store time

Table 3-1:

Id
Prikey
pubkey
status
timesta

keyGen
keyGen
keyGen
keyUse

Figu
briefly d
requests
solution
timestam
signatur
informat
of recor
generate
arrays th
a value o

Figure 3-2

 Descripti

y

amp

nerateStrtT
nerateEndT
nerationDu
edTimeStam

ure 3-2 show
describes eac
s and respon

include the
mp. Addition
re process, th
tion is used

rds in prepa
ed by auto in
hat represent
of zero, which

2: Columns

on of the colum

TimeStamp
TimeStamp
uration
mp

ws the table
ch of these c
nses. The con
e requestID,
nal columns w
his informatio
during the a

aration for p
ncrement of
t the SAML s
h represents

s of the signatu

mns of the key

a unique
binary va
binary va
the status
uniquely
expiration

p when the
p When the

time to ge
when the

used for sto
columns. The
ntents of the
toBeSigned

were added t
on enables e

analysis phas
processing s
a variable. T

signing reque
the state of p

ure table

ys table

identifier
alue of the wr
alue of the pu
s of the key p
identifies th
n date.

e key generat
e HSM sends
enerate the k

e key pair get

oring signat
e signature
e table that

dBytes, signa
to be consist

exact measur
se. The table
signing requ
The toBeSig
est field toBe
processing h

rapped priva
ublic key
pair (new, inv
he time stamp

ion request w
s the new gen
key pair.
ts used

ure data int
table stores
is crucial fo

atureBytes, c
tent with key

rement of eac
eis initially f
uests. The r
natureBytes

eSignedBytes
having not (ye

Implementatio

ate key

valid, used)
p for each pa

was is sent to
nerate key pa

to the datab
information

or the opera
certificateBy
y tables. For
ch step in the
filled with hu
equestID is

s column fille
s. The Status
et) started.

on of the proposed

air of the key

o the HSM
air

base, while T
n about the s
ation of the p
yte, status, d
r the individu
e process. Th
undreds of th

a unique i
ed with rand
s column is fi

d solution | 27

Table 3-2
signature
proposed
date, and
ual single
he timing
housands
dentifier,
dom byte
filled with

28 | Implementation of the proposed solution

Table 3-2: Description of the signature related columns

requestID a unique identifier
toBeSignedBytes the document digest
status the current signature status in the records(represented as

not used, received, signed, failed)
signatureBytes the digital signatures
requestReceivedTimeStamp When a request is received
requestStartToprocessTimeStamp when the request starts to be processed
requestFinishedTimeStamp when the request has been processed
certificateBytes the certificate bytes
date the request/processing date
timestamp a unique time stamp for each record
processTime the total time taken for the request to be signed
requestGetKeyPairTimeStamp the time taken for a request to get a key pair
preGeneratedKeyPair has the value “1” when the request used a pre-generated

key pair
TestID used to identifying the test being performed
waitingTime the latency time (requestStartToprocessTimeStamp-

requestReceivedTimeStamp)

3.2 Key Pool
The key pool is the main part of the implementation. It is responsible for two processes (shown in
Figure 3-3). During the idle time of the HSM, the process begins by generating key pairs, then wraps
the private keys by using symmetric AES keys stored inside the HSM, and saves the wrapped keys in a
database. Later another process loads wrapped key pairs from the database, unwraps the private keys
using the same symmetric AES keys stored inside the HSM, and the resulting key pair is made
available in the HSM’s memory. The signing process can use the now available keys.

Each process has a single thread. The queue length is checked by the key generator and when there
is no signing request in the queue, the process sends a key pair generation request. The process of
generating the key will continue until either the defined maximum number of stored keys is reached or
upon the receipt of new signing request.

The number of available keys in the pool is checked during key preparation. When the number of
available keys falls below a defined minimum number of keys, then the thread starts to load a batch of
keys from the storage media to be placed in the key pool after un-wrapping the private keys.

Figure 3-3

3.3 S
As it dis
pairs du
(symmet
hours wh
HSM an

Base
generate
to use on
secret ke
problem
Secret Sh
this rese
purposes

By u
external

* “Luna P
conjuncti
using PED

3: The idle t

ingle HSM
cussed in pr

uring the idl
tric keys), ex
hen the requ
d the same s

ed on the sy
e and store m
ne or few sy
ey for a bunc

m with storing
haring mech
earch we us
s and called M

using M of N
storage whil

PED is a PIN
ion with HSM
D keys. The M

time key gener

M design
revious sectio
e time or w
xport and sa
uest rate is h
secret keys w

ystem requi
millions of ke
ymmetric key
ch of key pai
g and manag

hanisms to ex
ed a built in
M of N PED*

N keys for th
le applying m

Entry Device

Ms and backup
M of N feature u

ration process

ons we have
when the req
ave the encry
high encrypt

will be used to

rements and
ey pairs in ad
ys to encrypt
irs. Since sto
ging the secr
xport the sec
n functional
* keys for “Cl

e “Cloning D
multi-person

e, where PIN s
p tokens from
uses PED keys

and the use of

some main
quest rate is
ypted keys in
ted key pairs
o decrypt the

d expected
dvance. From
t all the key
orage capacit
ret keys. For
cret keys and
lity of the L
loning Doma

Domain” we
 control over

stands for Pe
SafeNet.”[29]
s to split the se

f the key pool t

steps in key
low, encryp

n the extern
s are loaded
e key pairs to

duration for
m a security p

pairs. So it
ty of HSM’s

r solving this
d store them
Luna SA 170
ain” which is

can export t
r these keys.

ersonal Identif
] PED devices
ecret over the

Implementatio

to process req

pool solution
pt the key pa
al storage. T
from the sto
be used in s

r peak hour
point of view
is good to g
are limited s
 problem we
in the extern

00 which is
described in

the secret ke
[29],[30]

fication Numb
perform auth
N persons.

on of the proposed

quests

n: generatin
airs with se

Then during
orage media
signing proce

rs we might
w it is not a g
generate and
so this cause
e can use we
nal storage a
designed fo

n Section 3.5

eys and store

mber. The PED
hentication pro

d solution | 29

ng the key
cret keys
the peak
in to the

ess.

t need to
good idea

d use new
e another
ell-known
as well. In
or similar
.

e them in

D works in
ocesses by

30 | Implem

Figure 3-4

3.4 D
Scalabili
growing
For exam
second, t
same tim
install th
distribut

As s
shared K
then we
key pairs
Dependi
only per
signing p

entation of the pro

4: Single HS

Distributed
ity of the de
very fast and

mple, if a ne
then we mus

me, from a s
he HSM dev
ted design fo

shown in Fig
Key storage.
load the enc
s by using th
ing upon the
rform key ge
process.

oposed solution

SM design

d design w
esigned solu
d we must pl
ew signature
st be able to
security (ava

vices (main a
or our Key Po

gure 3-5 we
First, we lo

crypted keys
he secret key
e system desi
eneration th

with more t
ution is very
lan for the fu
e service cus
extend the s

ailability) po
and backup)
ool solution.

can extend
ad secret key
from storage

ys. Now we c
ign each HSM

hus filling th

than one
y important
uture when t
stomer asks
solution by co
oint of view

in different

or distribut
eys into the n
e media in to
can immedia
M could play

he key pool t

HSM
because the

the system re
for a peak

onnecting m
we might ne
geographica

te the system
new HSM by
o the HSM. T
ately use the
y a specific ro
to be used b

e demand fo
equirements
rate of 100

more HSMs in
eed to distri

al locations. T

m by attachin
y using the M
Then we can
se key pairs
ole. For exam
by other HS

for signing s
 will increase
signing requ

nto the system
ibute the sys
Therefore, w

ng new HSM
M of N func

n decrypt the
in signing p

mple, one HS
SM(s) to per

service is
e further.
uests per
m. At the
stem and

we need a

Ms to the
ctionality,

wrapped
processes.
SM might
rform the

3.5 U
Secret sh
that only
unified s
data. Th
sensitive
another
Sharing
N functi
secret ob

The

“The
modu
crypt
authe

M of
share
acces
creat
Dom

3.6 S
 A progra
of the cla
in the “t
within th
signed. I
signRequ
this class

The
signing r
signing r

sing Phys
haring is a te
y a subset M
secret object
is method is

e wrapper ke
HSM. This
can be used
ionality only
bjects betwee

SafeNet Lun

e M of N fe
ules for sen
tographic mo
entication – u

f N involves
ed secret is
ss control”)
ted: blue S

main PED K

ign reque
am called “s
ass is to gene
toBeSignedB
he signature
In addition, t
uest object a
s places the o

need to perf
requests and
request per s

sical Keys
erm which is

M of these N
t.[30] The a
 one of the b
ys during the
functionalit
in different

y in the “Clo
en HSMs and

na SA Manua

eature provi
nsitive oper
odule. The fe
using the PIN

s a splitting
s distribute

”). Every typ
SO PED K

Key, orange

st genera
ignRequestG
erate a millio

Bytes” field o
e table descr
the class is r
and filling in
object in the

form the test
d request gen
second and in

Figure 3-5:

s in distrib
s used for sp
people need

aim is to enf
built in functi
e export and
ty is very im
parts of the

oning Domai
d Backup dev

al describes th

ides a mean
rations can
feature is ava
N Entry Devi

of the auth
ed (or “spli
pe of PED-

Key, black
Remote PE

tor
Generator” w
on random by
of a SAML si
ribed in Sect
esponsible fo
parameters
signRequest

ts with distrib
neration rate
ncrement the

Design with

buted syst
plitting the s
d to put toge
force multi p
tions of Luna
d when movin
mportant fro
HSM configu
in”. The Clo
vices.

his as:

ns by which
enforce mu

ailable in all
ice (PED) an

hentication s
it”) among
-administer
User/Parti

ED Vector k

was written t
yte arrays wi
igning reque
tion 3.1. The
or reading re
such as Test

tQueue, whic

butions of re
es. We have
e range up to

multiple HSMs

tems (usin
secret object
ether their sp
person contr
a SA 1700. Th
ng the wrapp
om distribut
uration, but

oning Domai

h organizatio
ulti-person
l Luna SAs c
nd PED Keys

secret into m
several PE

ed HSM se
ition Owne

key, purple S

o perform th
ith exactly th

est (see Appe
e bytes repre
ecordz from t
tID signRequ
ch is a FIFO l

equests make
used 3000

o 100 signing

Implementatio

ng multi H
between N p

plit parts in
ol over the s
his has been
per keys from
ed system p
in this resea

in is used fo

ons employi
control ove

configured to
s.

multiple pa
ED Keys (“
cret can be

er PED Ke
Secure Reco

he tests. The
he same leng
endix A) and
esent the file
the signature
uestReceived
list.

es use of a pr
requests star

g requests pe

on of the proposed

HSM)
people in su
order to ret

sensitive dev
used for spl

m a HSM out
point of view
arch we used
or cloning or

ing cryptogr
er access t
o use Trusted

arts or splits
“split-know
e split when
ey, red Clo
over Key.”[

main respon
gth and form
d to store th
e digest that
e table and c
d Date … . M

re-defined n
arting at a ra
er second. Th

d solution | 31

uch a way
trieve the
vices and
itting the
side or to
w. Secret

d the M of
r moving

raphic
to the
d Path

s. The
wledge
n it is
oning
[29]

nsibilities
expected
ose bytes

t must be
creating a
Moreover,

number of
ate of one
he storage

32 | Implementation of the proposed solution

of the time and information of each request enables the subsequent analysis of the system’s operation
characteristics. In addition, this testing process measures the latency difference over the distribution
of requests. Table 4-1 in Chapter 4 describes the signing request distribution used for testing.

3.7 Sign Request handler
The signRequestHandler is a thread that checks in the signRequestQueue and keeps taking
signRequest objects from the queue, fills in some parameters in the object, then signs the request by
using a signing class (called Sign class). The java runnable handler class enables the use of multiple
threading in the system. Tests were performed with from a one to 50 threads.

3.8 Signing
The Sign class retrieves the signRequest objects and prepares the key pair for the request in two ways
after setting sometime parameters. When testing is performed with pre-generated keys the class gets a
key pair from memory or from the key pool. In contrast, when testing without pre-generated keys the
class simply sends a request to generate a new key pair to the HSM. The byte array is signed after
getting the key pair in one of these ways, the signature bytes are added to the signRequest object,
followed by destruction of the private key. The certification parameters and public key are delivered to
the CA, after getting the certificate chains from the CA and storing the resulting information in the
signRequest object (i.e., the new certificate and CA’s certificate).

3.9 CA
The design made use of the BouncyCastle [24] code for handling CA certificate processes. The Sign
class and CA deliver a CSR to the BouncyCastleCA. After setting the certificate parameters (such as
Start Date, Expire Date, signature Algorithm, serial Number, …), then the CA creates a V3 certificate
and signs the new public key.

Analysis | 33

4 Analysis

This chapter describes an evaluation of the proposed solution. It compares the proposed solution with
the current performance of the specific HSM studied. The purpose of this comparison is to understand
the benefits and limitations of the proposed solution as it might be applied to any HSM that is capable
of exporting encrypted key pairs and importing encrypted key pairs.

Testing of the current HSM began by sending signing requests at the rate of one signing request
per second. This load was increased every 100 requests by decreasing the time between requests by
100 ms, until reaching 100 requests per second, then decreasing the time between requests by 10 ms.
Note that at 20 ms between requests the system reaches the desired maximum signing rate of
50 signing requests per second. This led us to a sequence of tests (shown in Table 4-1) that could be
used for both the existing HSM and for the proposed solution.

Table 4-1: Sample of SigningRequest Generation following a specific distribution

From To Delay between
requests

(ms)

Requests per
second

1 100 1000 1

101 200 800 1.25

201 300 700 1.43

301 400 600 1.66

401 500 500 2

501 600 400 2.5

601 700 300 3.33

701 800 200 5

801 900 100 10

901 1000 90 11.11

1001 1100 80 12.5

1101 1200 70 14.28

1201 1300 50 20

1301 1400 20 50

1401 1500 10 100

1501 1600 20 50

1601 1700 50 20

1701 1800 70 14.28

1801 1900 80 12.5

1901 2000 90 11.11

2001 2100 100 10

2101 2200 200 5

34 | Analysis

4.1 K
These in
requests
Figure 4
shown in
zero) wh
sign pro
cannot g
FIFO qu
request r
After thi

Figure 4-1

Stab
should r
than the
a extra 2
long tim
the peak
giving th

s

Fr

2201

2301

2401

2501

2601

2701

2801

2901

Key Genera
nitial experim
s exceed 1.7 s
-1 portrays th
n Table 4-1.

hen the reque
ocess. Howev
generate key
ueue for a lon
rate has once
is point numb

1: 3000 sign

bility in the s
return to a n
e system can
2000 signing

me until the s
k hours have
hem a high la

rom

1 23

1 24

1 25

1 26

1 27

1 28

1 29

1 30

ation on th
ments with th

signing requ
he signing d
It is very cl

est rate is les
ver, when in
pairs at the s

ng time. For t
e again less t
ber of the req

ning with key g

signing servic
ormal state r
handle. Figu

g requests sen
system return
e a high laten
atency as wel

To

00 30

00 40

00 50

00 60

00 70

00 80

00 90

00 100

he fly
he HSM show
uests per seco
elay experien
ear that the

ss than the H
ncreasing th
same rate tha
the last 400
than the max
quests pendi

generation

ce is another
rapidly, even
ure 4-2 show
nt at a low ra
ns to a norm
ncy but this
ll.

Delay betw
request

(ms)
00

00

00

00

00

00

00

00

wed that laten
ond, as this
nced per requ
increasing l

HSM’s capabi
he request ra
at requests a
requests, we

ximum rate a
ing in the qu

r important
n if it receive

ws the results
ate (1 per sec

mal state. As
earlier load

ween
ts

ncy rapidly i
is the HSM

uest when te
latency in re
ility to genera
ates the late
arrives, thus a
e can see a de
at which the
eue starts to

issue that ne
ed a burst of
s of performe
cond). We ca
a result not
will also affe

Requests p
second

3.33

2.5

2

1.66

1.43

1.25

1.11

1

ncreased wh
’s maximum

esting with th
sponse time
ate key pairs

ency goes up
a signing req
ecrease in th
HSM can ge
decrease.

eeds to be ad
f requests at
ed the previo
an see in this

only will req
ect requests

per
d

hen the rate o
m key generat

he arrival dis
e is very low
s on the fly an
p rapidly sin
quest must w
he latency be
enerate new k

ddressed. Th
a higher req

ous test toge
s figure that
quests sent d
waiting in t

of signing
tion rate.

stribution
(close to

nd do the
nce HSM

wait in the
cause the
key pairs.

he system
quest rate
ther with
it takes a
during in
he queue

Figure 4-2

4.2 P
Figure 4
pre-gene
keys in t
to contin
HSM. On
time. In
are alrea
pre-gene
HSM th
decreasin
remains

Figure 4-3

A co

•

•

2: 3000 sign

re-Genera
4-3 shows the
erated keys.
the HSM, the
nue signing
nce the set o
short while

ady in the q
erated keys is

he delay retu
ng request a
low.

3: 3000 sign

omparison of

The key p
test arriva
The key p
HSM cou

ning with key g

ated keys
e latency dist
In this case,
ere is no incr
at higher sig

of keys in the
the time to p

queue ahead
s retrieved fr
urns to a lo
arrival rate o

n with pre-gene

f the two test

pool solution
al rate distrib
pool solution

uld when not

generation on t

tribution whe
, we see that
rease in the t
gning rates r
e HSM are ex
perform a sin
of each new

rom external
ow value. Fo
of the test d

erated keys

s can be sum

n decreased t
bution; and
n enabled th
using the pr

the fly and 200

en using the
t as long as
time require
rapidly deple
xhausted, the
ngle request
wly arriving
l storage. As
ollowing thi

distribution,

mmarized as:

the peak late

he system to
roposed solut

0 additional si

 same arriva
there are su

ed to process
ets the supp
ere is a mom
 increases ra
request, thi
soon as this
s the delay
hence the ti

ency from 1,4

return to lo
tion.

gning with the

al signing req
ufficient num
s each signin
ly of availab

mentary incre
apidly as mor
s only lasts
new set of k
continues t

ime to proce

400,000 ms

ower delays m

e one request p

quest distribu
mber of pre-g
ng request. Th
ble keys stor
ease in the pr
re and more
until the ne

keys is availab
to decrease
ess a signing

 to 12,000 m

much faster

Analysis | 35

per second

ution and
generated
he ability
ed in the
rocessing

e requests
ext set of
ble in the
with the

g request

ms for the

than the

36 | Analysis

4.3 M
Figure 4
increase
system s
the purp
system c
performe

Figu
readily a
reaching
and star
were dro

Figu
solution
request
increase
system s

Com
requests
avoiding
number
rate the
though i
the boun
requirem

s

Maximum s
4-4 shows th
s without bo

starts droppi
pose of this
continues to
ed both with

ure 4-4 show
apparent tha
g the arrival r
rting with req
opped.

ure 4-5 show
. As it show
rate is unde
s without bo

starts to drop

mparing these
s at higher ra
g dropping r

1537, this o
system is n

it has keys av
nds of 3000

ments.

Figu

size for th
hat when we
ound – unti
ng requests.
graph these

o process so
h and without

ws the result w
at the queuin
rate of 1.66 r
quest numbe

ws the result
wn in this fig
er or near to
ound until th
p requests. In

e two test res
ates, thus the
requests. An
ccurred afte

no longer abl
vailable. Not
 ms, this sho

ure 4-4: Late
vert

e FIFO qu
e set a maxim
il the maxim
For these dr

e dropped re
ome requests
t using the k

when the tes
ng delay inc
request per s
er 376 begins

s for the sam
gure, request

50 requests
he FIFO que
n this test onl

sult shows th
e system can
nother impor

r the arrival
le to sign fa
e that in all b
ows that the

ency when the
tical lines indic

ueue of req
mum length

mum FIFO q
ropped reque
equests are
s, but most

key pool solut

st was perfor
creases rapid
second. At th
s to drop req

me test distr
ts are proces
s per second
eue is filled,

nly 17 out of 3

hat key pool s
operate for

rtant point i
l rate reache
ast enough to
but the 17 dr
e system has

e maximum que
cate the arrival

quests
h for the FIF
queue capaci
ests, the resp
shown with
requests ar

tion.

rmed without
dly with the
his point the
quests. In th

ribution perf
sses without

d. After excee
then startin

3000 request

solution enab
a longer tim
is that the f

ed 100 reque
o keep up w
ropped reque
s greater tole

eue size is 50 w
l rates of the te

FO to 50, th
ty is reached

ponse time is
a negative

re being dro

t using the k
increasing t
system has f
is test 2073

formed when
t a large dela
eding this ra
ng with requ
ts were dropp

bles the syste
e without fill
first dropped
ests per seco
with the arriv
ests that the
erance to bu

without key poo
est distribtuion

hat the queui
d at which p
s now infinit
delay. Note

opped. This

key pool solu
the request r
filled the FIF
out of 3000

en using the
ay when the

ate the queu
uest number
ped.

em to proces
lling the queu
d request n

ond. Note th
ving request
delay was st

ursts than th

ool solution (Th
n.)

ing delay
point the
te, but for

that the
test was

ution. It is
rate until
FO queue
 requests

key pool
e arriving
ing delay
1537 the

ss signing
ue, hence
umber is
at at this
ts – even
till within
he system

he

4.4 La
The num
time can
request.
we can c

Mor
queue (L
be servic

In th
it ‘Si’. Th
signing t

Here
get a key
the laten
are exter
import a
latency f
terms, th

As th
when th
pre-gene
request a
pool incr
decrease

Whe
queue o

Figure 4-5

atency
mber of signi
n be used to e

By using the
calculate the

reover, we ca
L) to the ave
ced (W) – irr

he Section 2.
his is the tota
the digest wit

e we introdu
y to be used f
ncy for a sign
rnally stored
and unwrap
for signing h
he signing lat

he maximum
he rate of s
erated keys.
arrival rate i
reases. When
es in size.

en the averag
f pending re

5: Latency w
the arriva

ing requests
estimate the
e length of th
expected late

an use Little’s
rage arrival

respective of

.10.4, we det
al response t
th private ke

uce the term
for signing. W

ning request
d wrapped k
a key (see S
has to be in
tency can be

݁ݐ݈ܽ ݃݊݅݊݃݅ܵ
m key generat
signing requ

From the a
is less than o
n the arrival

ge arrival re
equests will

when the maxi
al rates of the t

in the queu
e expected lat
he signing re
ency of this n

s Law (L = λW
rate (λ) and
the details o

termined the
ime for an in

ey of new key

key prepara
When a key i
is simply Si.

keys we have
Section 2.10.5
ncrease by th

described by

ݕܿ݊݁ ൌ ൝ܵ݅ ܵ
tion rate is le
ests is less
analysis abo
or equal to t
request rate

equest rate is
increase an

mum queue si
test distribtuio

ue when a ne
tency that w

equest queue
newly arrivin

W) to relate
the average

of the arrival

e signing pro
ndividual sig
y pair and sig

ation time (K
is available fr
 When no ke

e additional
5). If there i
he key gener
y the followinܵ݅, when ,ܲܭ when a݅ ,݅ܩܭ ݄݁ݓ
ess than the

than the k
ove, we can
the key gene
e is greater th

s greater tha
nd hence the

ze is 50 with th
on.)

ew request ar
will be experie

 and the tim
ng request.

the number
amount of t
rate and the

ocess time th
gning request
gning the Cer

KP). This ter
from the HSM
eys are availa
latency (the

is no externa
ration time
ng equation:n a key is avaikey is availab݁݊ ܽ ݇݁݊ݑ ݏ݅ ݕ
signing rate

key generatio
see that du
ration rate (
han the key g

an the maxim
e latency exp

he key pool so

rrives and th
enced by a n
e to process

of signing re
time that req
details of th

rough measu
t and include
rtificate (new

rm represent
M’s internal R
able inside th

KP time) du
ally stored w
(see Section
 ilableble externally݈ܾ݈݊ܽ݁ܽ݅ܽݒ
there must b

on rate in o
ring interva

(KG) that the
generation ra

mum signing
perienced by

lution (The ver

he signing pr
newly arrivin

each signing

equests waiti
quests have t
he service tim

urements an
es two sign p
w public key)

ts the time n
RAM or stor
he HSM, the
ue to time n

wrapped key,
n 2.10.1). Giv

y

be sufficient
order to ac

als when the
e size of the
ate (KG) the

g rate, then
y these requ

rtical lines indi

Analysis | 37

rocessing
ng signing
g request,

ing in the
to wait to

me.

nd labeled
processes:
) by CA.

needed to
rage, then
en if there
needed to

then the
ven these

idle time
cumulate

e average
total key

e key pool

the FIFO
uests will

cate

38 | Analysis

increase
Given a m
successfu
rate at w
3000 ms
system t
service r

Figu
latency i
(Max). A

Figure 4-7

La
te

nc
y

s

– up to the
maximum qu

ful requests t
which the sy
s (as after th
to operate fo
rate for signin

ure 4-7 illustr
increases up

After this, the

7: Latency v

Max

Si

Figure 4-6:

maximum F
ueue length (
o max_queu

ystem can st
his point ther
or a bounded
ng (as was sh

rates that up
p to the poin
e latency is u

versus arrival r

A

Time before

FIFO queue l
(before reque

ue_length*Si
tably operate
re is no abilit
d period of t
hown in the p

p to some arr
nt at which
nbounded, a

rate

e first dropped

length – at w
ests are drop
 = 3000 ms.
e based upon
ty to buffer a
time even w
previous sect

rival rate A, t
the FIFO qu

as requests ar

B

d request when

which point r
pped), we can

Similarly we
n max_queu

additional req
when request
tion).

the signing la
ueue is filled
re dropped.

Arriv

n using the Key

requests will
n bound the m
e can bound
ue_length nu
quests). Thu
ts arrive at a

atency is sim
d, this gives

val rate

y Pool

begin to be
maximum la
the maximu

umber of re
us it is possib
a faster rate

mply Si. After
 a maximum

dropped.
atency for
um arrival

quests in
ble for the

than the

r this, the
m latency

Analysis | 39

Figure 4-8 shows how the FIFO queue space is a function of the arrival rate. When the average
arrival rate is less than the signing service rate (C) the queue does not increase in length, hence the
queue is on average empty. From this, we can see that the point A occurs then the arrival rate exceeds
the signing rate.

Figure 4-8: The triangle represents the available FIFO queue space and shows how it decreases with increasing
arrival rates, at some point being exhausted.

Similarly, the integral of the difference between the request arrival rate and the key generation rate
gives a bound on the total key pool size (i.e., the sum of the number of internal and external keys). The
maximum size of the external storage can be used to bound the period of time that the average request
rate can exceed the key generation rate (since in this bounded period of time the number of requests
equals the maximum number of keys in the key pool – as after this there are no keys available, hence
the service time will be once again limited by the KG time). Appendix B show test results
demonstrating how the key pool can extend the stable response time of the system before reaching to
the Max queue size and starting to drop requests.

4.5 Queue size and Latency Calculation in advance
Since the signing request rates changes over the different months, weeks, days, and hours, it would

be good if we can estimate the expected latency in advance. This will enable us to understand the
system’s behavior in different situations without need to perform additional tests and timing
measurements. A system designer can consider these results when dimensioning the system during the
design phase.

4.5.1 Base Rate (BR)

Finding the Base Rate (BR) value is the initial step to calculate the expected latency. BR is the
maximum request rate that the systems can respond to requests without the queue size increasing.
Note that for a short period some request could be placed in the queue, but it should be removed from
the queue very quickly in order that the long term behavior is that of a stable system with low latency
and a queue size close to zero.

To examining BR we performed some tests and check the results. Since this test was performed in
the Stockholm office the base signing time is close to 40ms (as discussed in Section 2.10.4). We started
our testing at 25 requests per second (1000 ms /40 ms = 25). Figure 4-9 shows that the result for this
test are quite stable. The next test increased the rate to 26.3 requests per second. Figure 4-10 show that
the system is still quite stable. The final test was performed at 27 requests per second. The result of

Arrival rate

La
te

nc
y

A B

Max

Si

C

40 | Analysis

this fina
Based up

Figure 4-9:

Figure 4-1

s

al test (shown
pon these res

 Processin

10: Processi

n in Figure 4
sults we take

ng of 3000 sign

ng of 3000 sig

4-11) shows
e the rate of 2

ing requests a

ning requests

that queue s
26.3 request

at 25 requests p

with at 26.3 re

size and late
per second a

per second

quests per sec

ncy are both
as our BR.

cond

h starting to increase.

4.5.2 Q

Knowing
rate (HR

Q= (

For
then at t

Q = (40-

If th
these req

4.5.3

In this c
in the sig
HSM (in
it takes
loading
generate
the HSM

Figure 4-1

Queue Size

g BR we can
R).

(HR - BR) * T

instance if o
the end of thi

-26.3) * 100

his value is g
quests would

Key Prepara

ontext, Key P
gning proces

n storage or R
the system t
and decrypt

e a key pair i
M, for exampl

11: Processi

(Q)

calculate th

T

our system re
is 100 second

= 1370

greater than
d be dropped

ation (KP) tim

Preparation
ss. KP time ch
RAM) then K
to load and
ion in parall
is the KP tim
le for the Lun

ing of 3000 sig

he queue size

eceives requ
ds we expect

the actual m
d.

me

time is the t
hanges in dif

KP is equal to
decrypt a ke
lel with the

me non-zero,
na SA 1700 t

gning requests

e after a spec

uests at a rat
t to have follo

maximum qu

time that tak
fferent situat

o zero. In the
ey pair. Note
signing proc
 in this case

this will be 58

at 27 requests

cific time (T)

e or 40 requ
owing numbe

ueue size, the

kes to have a
tions. If we h

e key pool sol
e that in the
cess then KP
it will be eq

88ms.

s per second

) if we receiv

uests per sec
er of request

en we can co

key pair rea
have key pair
lution KP rep
e key pool so
P is also zero
qual to the ke

ve request at

cond for 100
ts in the queu

ompute how

ady in the HS
rs available i
presents the
olution if we
o. Only if we
ey generatio

Analysis | 41

t a higher

seconds,
ue:

w many of

SM to use
inside the
time that

e perform
e need to
n time of

42 | Analysis

4.5.4 Latency calculation (L)

Knowing the BR, Q, KP, and Si (see Section 2.10.4) now we can calculate the latency for a request that
we expect to receive at the time T by using following formula: L = (KP + Si) * Q.

4.6 Reliability / validity Analysis
We performed serveral tests in the Stockholm office to examine the values of BR and Si. Based upon a
number of tests we determined that BR = 26.3 requests per second and Si = 38 ms. Next three signing
tests were performed and the results compared with the results of using the queue and latency
formulas. By comparing these results, we can assess the accuracy of our formulas.

Table 4-2 shows the result for the three tests with different request rates and timing
measurements, the actual queue size and latency, and the calculated values for both latency and queue
length. Based upon these results we see that the calculation of the queue length is very close to the
actual queue length (Q), while the actual latency is within 2% of the calculated latency. Interestingly
the actual latency is all cases is slightly less than the calculated latency.

Table 4-2: Latency calculation vs actual test results

Test

ID

HR

(sign/ s)

Process

duration (s)

Calculated Q Actual Q Latency

Calculation (s)

Actual

Latency (s)

Accuracy

1 40 75.001 1027.5 1028 39.045 38.565 98.76 %
2 50 59.990 1422 1422 54.036 53.266 98.66 %
3 100 29.995 2211 2217 84.018 83.314 99.16 %

Calculations:

Q = (CR-BR) * T

Q = (40 – 26.3) * 75.001 = 1027.5

Q = (50 – 26.3) * 59.990 = 1422

Q = (100 – 26.3) * 29.995 = 2211

Latency = (KP + Si) * Q

Latency = (0+38 ms) * 1027.5 = 39045 ms = 39.045 s

Latency = (0+38 ms) * 1422 = 54036 ms = 54.036 s

Latency = (0+38 ms) * 2217 = 84018 ms = 84.018 s

Conclusions and Future work | 43

5 Conclusions and Future work

This chapter presents some conclusions and a summary of the thesis project. It reviews the outcome of
the tests. Section 5.2 identifies some of the limitations inherent in the design as realized via the test
sessions. The chapter concludes with some of the insights gained through personal reflections.

5.1 Conclusions
The research goals were met because the response time for the HSM could be improve using
pre-generated keys and using those keys via a “Key Pool”. The design could support up to 50 signing
requests per second without adverse latency effects even with a single thread. As discussed in Section
2.10.4 a minimum of 20 ms is required to perform the full signing process, hence 50 signatures per
second is the maximum capacity of the system when excluding the key preparation process. The
proposed solution optimizes the HSM performance and enables it to operate within the bounded
response time at the desired peak signing rate. Enabling multi-threading reduces the response time
from 742 ms to 20 ms which translates to a 37 times faster operation. Performance can be further
improved by applying multi-threading, but the implementation of this is left for future work.

The response time for the sign process was reduced within the HSM by multi-threading, but there
was an increased latency for each individual signing process. To sign each of 3,000 requests with a
single thread takes 20 ms without additional latency or queuing, hence a total of 60,000 ms. When
multi-threading, it took a total of 6,000 ms to complete all 3,000 requests. Hence, there is a large
reduction it the total completion time when a multi-threaded approach is used.

When performing the digital signature process using a key pool the individual steps are key
generation, wrapping, insertion into the database, reading from the database, unwrapping, and signing
a document with the new private key. We isolated each of these steps and performed tests that enabled
us to measure the performance of each step in the complete process. Analysis of this data enable us to
identify the critical step(s), for which we needed improved performance.

Noting that the processing could be implemented as parallel processes, further improvements
could be made after isolated the key generating and signing processes. The tests parallelized
networking, logging in, and database transaction in order to find out how these affected the overall
processing time. It was crucial to isolate the timing of each process in order to understand where the
bottlenecks were.

If I was to do this thesis project again, I would focus on minimize the communication delay and
variations in order to get better results, while making more measurements. Additionally, using two or
more different brands of HSMs (in the same class) would be a good way to test and compare these
different brands of HSMs.

The analyses of the test results lead to the conclusion that the proposed solution increases the
performance for the HSM while improving security. There are inherent disadvantages of the key pool
with respect to a single HSM. These disadvantages include increased communication delay, due to the
communication that occurs between the HSM, the application server, and the database. It is worth
noting that this delay was very small, but not negligible. Moreover, the lack a standard method for
implementing the proposed key pool solution could cause reduced availability – as the system’s
availability now depends upon the availability of the database (as this stores the key pool). This
suggests that for future work there is a need for a high availability database for use with the key pool. A
poor implementation of the key pool could reduce the confidentiality of the keys. To achieve better
performance and increase reliability it is strongly suggested that HSM vendors introduce key pool
functionality into their HSMs in an interoperable (standardized) manner. This would enable users to
benefit from this built-in functionality, while also enabling them to mix and match combinations of
HSMs from different vendors.

As governments have changed the requirements for digital signature services - forcing the service
providers to use a unique key pair for each signing process, hence sooner or later these changes will

44 | Conclusions and Future work

force service providers to use a key pool or similar solution in order to be able to handle the expected
peaks in signing request rates. In such a competitive market HSM devices will gain market share if
offer a built-in key pooling solution to their customers. This is expected to lead to the situation where if
a single vendor introduces a key pool solution, all other vendors will be forced to introduce a similar
solution - otherwise they will no longer be competitive.

5.2 Limitations
This proposed solution only works with export enabled HSMs. In addition, these HSMs do not allow
the users of the platform to export objects that are sensitive, including private keys regardless of the
fact that the key is wrapped using a secure method. The internal memory capacity of the HSM can be
used to store sensitive private key objects.

5.3 Future work
A considerable amount of work remains, including:

• Further research study on Private Keys is required. A Private Key in RSA format has some
additional data which is very sensitive. A good solution would be to remove the private
exponent and sensitive parts of the private key from the file and wrap and export only those
parts after wrapping. Another solution would be keep these sensitive parts of the private
key inside the HSM, while wrapping and exporting the rest. Keeping all the sensitive parts
inside the HSM will increase the level of security, but at the cost of limiting the size of the
key pool. Performance analysis of these ideas will be a challenging part of such a solution.

• Using a semi-automatic machine learning mechanism could be used to analyze request
rates over the time in order to better anticipating the future request rate distribution.

• Another method to improve the integrity and confidentiality of the solution would be to
apply a linking schema to the time-stamps (attached to the exported keys)[31].

• Using a Programmable HSMs such as Safenet’s Luna SP to implement the key pool solution
inside the HSM could minimize communication delays.

5.4 Reflections
The cost to the customers of a signing service provider can be reduced as the number of expensive
devices required to support a given peak load is decreased with the proposed solution. This reduction
in cost could potentially extend the use of such a service to many more applications and people. The
reduction in the number of HSMs require not only affects the capital expenditure and operating costs
of the signing service provider, but also leads to environmental benefits – as described further below.

A fast digital signature service combined with a reduction of service price enables the system to
serve many people on a daily basis. This usage can be for personal use or business communication,
transactions, or trades; while providing users with high reliability with confidentiality.

The environmental benefit that accompanies the system is large. The proposed solution is “green”
in that reduces the number of devices used (in this case) by an order of magnitude. As a result, the
material used is minimized, resources conserved, and time and energy in the production of each device
is reduced. Fewer devices results in a less electricity being used to operate them, hence the result is a
cumulative reduction in the amount of energy needed. The numbers of devices that will need to be
recycled are also reduced, thus avoiding further degradation of the environment.

This project has shown the feasibility of the proposed solution, but future users will have to wait
for the key pool concept to be introduced into commercial products – before most of the advantages
can be exploited.

References | 45

References

[1] “Ramavtal eID2008.” [Online]. Available:
http://www.elegnamnden.se/fragorsvar/faq/vadskakommunernagoranarderaselegiti
mationsavtalgarut2012behovsennyupphandling/ramavtaleid2008.4.71004e4c133e23
bf6db800051958.html. [Accessed: 09-Nov-2014].

[2] Utredningen om bildande av en e-legitimationsnämnd., E-legitimationsnämnden och
svensk e-legitimation: betänkande - ISBN 9789138235072 9138235072. Stockholm:
Fritze, 2010.

[3] Roberth Lundin, “EFST Underskriftstjänst och hantering av nycklar i tjänsten v2.”
Cybercom Group AB, 26-May-2014.

[4] “Internet Explorer on Windows 8.1: One browser, two experiences” [Online].
Available: http://msdn.microsoft.com/en-
us/library/ie/hh771832(v=vs.85).aspx#plugins. [Accessed: 22-Dec-2014].

[5] “Get ready for plug-in free browsing (Internet Explorer).” [Online]. Available:
http://msdn.microsoft.com/en-us/library/ie/hh968248(v=vs.85).aspx. [Accessed:
22-Dec-2014].

[6] “NPAPI Plugins - Google Chrome.” [Online]. Available:
https://developer.chrome.com/extensions/npapi. [Accessed: 20-Dec-2014].

[7] “Saying Goodbye to Our Old Friend NPAPI,” Chromium Blog. .
[8] “Welcome to ebIX.” [Online]. Available:

http://www.ebix.org/content.aspx?ContentId=1009&SelectedMenu=62. [Accessed:
17-Dec-2014].

[9] “XML Advanced Electronic Signatures (XAdES).” [Online]. Available:
http://www.w3.org/TR/XAdES/. [Accessed: 17-Dec-2014].

[10] “Om Sambi | Sambi,” 19-Nov-2014. [Online]. Available: https://www.sambi.se/om/.
[Accessed: 19-Nov-2014].

[11] M. Bishop, Introduction to computer security - ISBN 0321247442. Boston: Addison-
Wesley, 2005.

[12] Johan Ivarsson and Andreas Nilsson, “A Review of Hardware Security Modules Fall
2010,” Certezza.

[13] Sokratis K.Katsikas, Stefanos Gritzalis, and Javier Lopez, Public Key Infrastructure
(Paper Collection) - ISBN 3540222162. Springer, 2004.

[14] Ravneet Kaur and Amandeep Kaur, “Digital Signature,” presented at the IEEE -
International Conference on Computing Sciences, 2012.

[15] A. Müller, H. Schröder, and L. von. Thienen, Lean IT-Management was die IT aus
Produktionssystemen lernen kann - ISBN 978-3-8349-2910-5. Wiesbaden: Gabler,
2011.

[16] K. H. Brown, “Security requirements for cryptographic modules,” Fed. Inf. Process.
Stand. Publ., pp. 1–53, 1994.

[17] Lynn Margaret Batten, Public key cryptography applications and attacks. Hoboken,
N.J.: John Wiley & Sons, 2013.

[18] M. Y. Rhee, Wireless Mobile Internet Security (2nd Edition). Somerset, NJ, USA:
John Wiley & Sons, 2013.

[19] “X.509 certificates.” [Online]. Available:
http://docs.oracle.com/javase/8/docs/technotes/guides/security/cert3.html.
[Accessed: 24-May-2014].

[20] “A Layman’s Guide to a Subset of ASN.1, BER, and DER.” [Online]. Available:
http://luca.ntop.org/Teaching/Appunti/asn1.html. [Accessed: 04-Jun-2014].

[21] C. Steel, Core security patterns: best practices and strategies for J2EE, Web services,
and identity management - ISBN 0131463071. Upper Saddle River, NJ: Prentice Hall
PTR, 2006.

[22] K. Roebuck, Security assertion markup language (SAML): high-impact strategies -
what you need to know: definitions, adoptions, impact, benefits, maturity, vendors -
ISBN 9781743046258 - 1743046251. Milton Keynes: Lightning Source, 2011.

46 | Conclusions and Future work

[23] “Java SE Security.” [Online]. Available:
http://www.oracle.com/technetwork/java/javase/tech/index-jsp-136007.html.
[Accessed: 24-May-2014].

[24] “bouncycastle.org.” [Online]. Available:
https://www.bouncycastle.org/documentation.html. [Accessed: 25-May-2014].

[25] “Hardware Security Modules (HSMs) | SafeNet Encryption & Key Security,” safenet-
inc.com. [Online]. Available: http://www.safenet-
inc.com/Products_V2/tier2.aspx?id=8589945123. [Accessed: 27-May-2014].

[26] Jim Attridge, “SANS Institute InfoSec Reading Room.” 14-Jan-2002.
[27] “SafeNet Luna SA 5 Price list.”
[28] “Luna SA Network-Attached HSM | Hardware Security Module | SafeNet,” safenet-

inc.com. [Online]. Available: http://www.safenet-
inc.com/Products_V2/tier4.aspx?id=2147483853. [Accessed: 27-May-2014].

[29] “SafeNet Luna SA Manual.” SafeNet, 12-Mar-2014.
[30] C. Blundo, A. De Santis, R. De Simone, and U. Vaccaro, “Tight bounds on the

information rate of secret sharing schemes,” Des. Codes Cryptogr., vol. 11, no. 2, pp.
107–110, 1997.

[31] S. Haber and W. S. Stornetta, How to time-stamp a digital document, vol. 3. Jornal of
Cryptology, 1991.

Appen

Signing

dix A: SA

g Request:

AML Signinng Requesst / Respo

Appe

onse

endix A: SAML Siggning Request / RResponse | 47

48 | Conclus

sions and Future wwork

Signing

g Response:

Appeendix A: SAML Siggning Request / RResponse | 49

Conclusions

Appen

The follo
key pairs
generatio
assumed
assumed
with two

In ea
high late
with gre
characte

Test 1 : 1
sign with

s and Future work

dix B: Tes

owing three t
s come from
on. Since we

d that HSM
d that the st
o different ke

ach test two
ency time an
eater detail.
ers.

1000 sign wi
h key generat

st results

tests were pe
four differen

e did not hav
RAM has th
torage capac

ey pool sizes

graphs show
nd the second

The corresp

ith Keys in t
tion (C)

erformed to
nt places: HS
ve access to
he capacity o
city is 1000
1000 and 30

w the same te
d excludes th
ponding por

the RAM (A)

check the be
SM’s RAM, s
whole storag

of 1000 inste
rather than

000 key pairs

est results. T
he key gener
rtions of eac

) , 1000 sign

ehavior of th
stored keys in
ge of the HS
ead of 12033
20000 key

s.

The first inclu
ration time t
ch chart are

n with keys in

Ap

he HSM and
nside the HS
SM and to sim
3 key pairs.
pairs. Two t

udes the key
o be able to
e marked w

n the HSM’s

ppendix B: Test re

signing serv
SM, Key Pool
mplifying th
In the same

tests were p

y generation
show the ot

with the sam

s storage (B)

sults | 51

vice when
l, and key

he test we
e way we
erformed

part with
ther parts

me capital

) and 100

52 | Conclus

Test
sign with

sions and Future w

2 : 1000 sig
h Key Pool (C

work

gn with Keys
C) and 100 si

in the RAM
ign with key

 (A) , 1000 s
generation (

sign with key
(D)

ys in the HSMM’s storage ((B), 1000

Test
sign with

3 : 1000 sig
h Key Pool (C

gn with Keys
C) and 100 si

in the RAM
ign with key

(A) , 1000 s
generation (

sign with key
(D)

ys in the HSM

Appendix B: Tes

M’s storage (

st results | 53

(B), 3000

54 | Conclus

Appen

sions and Future w

dix C: Lun

work

na SA 17000 HSM Peerformancce report (iinternal byy SafeNett)

TRITA-ICT-EX-2014:182

www.kth.se

