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Abstract

Security protocols are ubiquitously used in various applications with the intention
to ensure secure and private communication. To achieve this goal, a mechanism
offering reliable and systematic protocol verification is needed. Accordingly, a
major interest in academic research on formal methods for protocol analysis has
been apparent for the last two decades. Such methods formalize the operational
semantics of a protocol, laying the base for protocol verification with automatic
model checking tools.

So far, little work in this field has focused on protocol standardization. Within
this thesis a security analysis of a novel Authenticated Key-Exchange (AKE)
protocol for secure association handover between two Long-Term Evolution
(LTE) base stations (which support dual-connectivity) is carried out by applying
two state-of-the-art tools for automated model checking (Scyther and Tamarin
Prover). In the course of this a formal protocol model and tool input models are
developed. Finally, the suitability of the used tools for LTE protocol analysis is
evaluated.

The major outcome is that none of the two applied tools is capable to
accurately model and verify the dual-connectivity protocol in such detail that it
would make them particularly useful in the considered setting. The reason for this
are restrictions in the syntax of Scyther and a degraded performance of Tamarin
when using complex protocol input models. However, the use of formal methods
in protocol standardization can be highly beneficial, since it implies a careful
consideration of a protocol’s fundamentals. Hence, formal methods are helpful
to improve and structure a protocol’s design process when applied in conjunction
to current practices.

Keywords: security, authenticated key-exchange, 3GPP, LTE, formal methods,
protocol verification, automated model checking
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Sammanfattning

Säkerhetsprotokoll används i många typer av applikationer för att säkerställa
säkerhet och integritet för kommunikation. För att uppnå detta mål behövs en
behövs mekanismer som tillhandahåller pålitlig och systematisk verifiering av
protokollen. Därför har det visats stort akademiskt intresse för forskning inom
formell verifiering av säkerhetsprotokoll de senaste två decennierna. Sådana
metoder formaliserar protokollsemantiken, vilket lägger grunden till automatiserad
verifiering med modellverifieringsverktyg.

Än så länge har det inte varit stort focus på praktiska tillämpningar, som
t.ex. hur väl metoderna fungerar för de problem som dyker upp under en
standardiseringsprocess. I detta examensarbete konstrueras en formell modell för
ett säkerhetsprotokoll som etablerar en säkerhetsassociation mellan en terminal
och två Long-Term Evolution (LTE) basstationer i ett delsystem kallat Dual
Connectivity. Detta delsystem standardiseras för närvarande i 3GPP. Den formella
modellen verifieras sedan med bästa tillgängliga verktyg för automatiserad
modellverifiering (Scyther och Tamarin Prover). För att åstadkomma detta har
den formella modellen implementerats i inmatningsspråken för de två verktygen.
Slutligen ha de två verktygen evaluerats.

Huvudslutsatsen är att inget av de två verktygen tillräckligt väl kan modellera
de koncept där maskinstödd verifiering som mest behövs. Skälen till detta är
Scythers begränsade syntax, och Tamarins begränsade prestanda och möjlighet
att terminera för komplexa protokollmodeller. Trots detta är formella metoder
andvändbara i standardiseringsprocessen eftersom de tvingar fram väldigt
noggrann granskning av protokollens fundamentala delar. Därför kan formella
metoder bidra till att förbättra strukturen på protokollkonstruktionsprocessen om
det kombineras med nuvarande metoder.

Nyckelord: säkerhet, autentiserad etablering av nycklar, 3GPP, LTE, formella
metoder, protokollverifiering, automatiserad modellverifiering
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Chapter 1

Introduction

Security protocols, frequently used in various applications of today’s
communication networks, sometimes contain flaws which are initially detected
only after standardization. As a result, there has been a great interest in research on
formal protocol verification during the last decades, aiming at reliably evaluating
protocol security, detecting vulnerabilities automatically, and thus enabling the
standards bodies to avoid standardizing a protocol with security flaws.

Protocol security can only be verified with respect to possible attacks, which
are numerous and hard to predict in the absence of real adversaries. In this regard,
the impersonation attack on the Needham-Schroeder protocol [1] is typically
chosen as example, to point out that protocols can be insecure although all
underlying cryptographic properties hold.

Accordingly, an interest arises for formal protocol modeling combined with
automated model checking. The latter turns out to be a sophisticated task of
verification and testing, since an unbounded number of new sessions∗ can be
created during a protocol’s execution, leading to an infinite search space. Several
proposals have been made to deal with this issue by either limiting the number of
sessions or applying heuristics and abstractions. [2, 3]

Although research in formal protocol verification is increasing, its utilization
is still limited within the protocol standardization process. However, this field
could be enriched by the use of automated model checkers, not in the least due
to the fact that real attack patterns are outputted if weaknesses exist, which can
be beneficial for discovering and avoiding vulnerabilities early in the protocol’s
design process.

∗ A session is a single partial execution of a protocol.
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2 CHAPTER 1. INTRODUCTION

Within this thesis a novel Authenticated Key-Exchange (AKE) protocol,
which is currently in its 3GPP standardization process, will be formalized
and verified with two different state-of-the-art model checking tools, namely
Scyther [4] and Tamarin Prover [5]. The main purpose of this protocol is the
secure handover of a connection from one LTE base station to another base station.
Such a protocol can be beneficial since it enables load balancing between base
stations while still maintaining security.

1.1 Problem Description and Context
This thesis targets the investigation of existing approaches for formal automated
security protocol verification and the evaluation of their suitability for verifying
LTE protocols. In the course of this, two different state-of-the-art model
checking tools (Scyther and Tamarin Prover) will be applied to a newly designed
AKE protocol for secure handover between LTE terminals that support dual-
connectivity. This protocol is currently in its 3GPP standardization process. The
initial protocol design model will be constructed with regard to existing 3GPP
drafts of the dual-connectivity protocol. This design model will be evaluated and
possibly extended or improved with regards to the verification results.

Each formal verification result can only be seen as a verification in view
of a certain formal protocol model. This model should describe the protocol’s
execution, the adversary assumptions, and the required security properties.
Accordingly, a formal model of the dual-connectivity security protocol will
initially be constructed within this thesis, laying the base for modeling the protocol
using input languages, specifically for Scyther and Tamarin Prover. After running
the formal verification, the advantages, limitations, performance and the usability
of the applied model checking tools will be evaluated. Moreover, an assessment of
the general usefulness of formal methods in a protocol’s standardization process
will be carried out.

Summarized, the goals of this thesis can be described as:

1. Design model

2. Formal model

3. Tool models and protocol verification in Scyther and Tamarin

4. Protocol design refinement

5. Evaluation of the applied tools
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1.2 Structure of this Thesis
Chapter 1 describes the relevance of formal protocol verification and the main
goals of this thesis. Chapter 2 provides a survey of AKE protocols, discusses
several AKE protocol architectures, describes their basic cryptographic properties
and operations, as well as AKE design goals with respect to potential threats.
Following this, Chapter 3 deals with the issue of formal protocol verification
by initially describing the basic requirements for creating a formal model and
afterwards, discusses approaches to verify protocol models automatically and
describes state-of-the art model checking tools.

Chapter 4 offers an overview of related work in the field of automated
model checking. In Chapter 5 the methodology that has been applied is
discussed. Chapter 6 describes the design modeling and subsequent formalizing
and verification of the dual-connectivity protocol, followed by an evaluation of
the applied model checking tools in Chapter 7. Finally, Chapter 8 concludes with
a discussion of possible future work and reflections of economic and social issues.





Chapter 2

Authenticated Key-Exchange (AKE)
Protocols

Key-Exchange Protocols aim to establish symmetric session keys between a
defined group of entities in order to secure subsequent communication.
Furthermore, authentication of each of those entities involved in the key
establishment is usually desired, hence AKE protocols typically combine Key
Establishment Protocols and Entity Authentication Protocols.

AKE protocols are widely used in today’s communication networks, building
the base for securing electronic communication, since secure session key
establishment and assurance about the identities of involved entities are
prerequisites for the reliability of any subsequent cryptographic operation.
Accordingly, numerous research efforts have been carried out on AKE protocols,
leading to more and more sophisticated protocols, enabling security claims even in
the presence of strong adversaries, who can reveal session keys, long-term-private
keys, and compromise random number generators. [6]

To give a proper overview of AKE protocols, this chapter will initially discuss
basic security properties and cryptographic operations with regard to possible
attacks. Afterwards, a survey of AKE design goals will be conducted, laying the
base for the dual-connectivity LTE protocol design, carried out within this thesis.
Boyd and Mathuria’s book [7], dealing with basic concepts of AKE protocols, was
used as the main reference for this chapter, since it provides a thorough discussion
of the topic.

5



6 CHAPTER 2. AUTHENTICATED KEY-EXCHANGE (AKE) PROTOCOLS

2.1 AKE Protocol Architecture

AKE protocols can be classified based on three criteria:

1. Which keys have already been established?
2. How is the key establishment carried out?
3. How many users are involved in the AKE procedure?

Regarding the first question, principals can either already maintain a shared
secret key or a trusted third party can be used to obtain one. If a trusted third
party is used, then a mechanism to secure communication between this party
and the protocol participants is needed. This can conceivably be achieved by
using a Public Key Infrastructure (PKI) and signed certificates. Alternatively, the
participants could already share a secret with the third party.

A criterion for categorization when analyzing the procedure of key establishment
is whether a protocol is mainly concerned with key transport or key agreement.
Key Transport Protocols are defined by one participant who generates the key and
transfers it to the other users. Alternatively, Key Agreement Protocols establish a
session key as a function of inputs provided by several participants, as for instance
occurs with the Diffie-Hellman (DH) algorithm [8], where each participant inputs
nonces and applies modulo operations to each in order to compute the final shared
secret key. Moreover, protocols can have features of both, key transport and key
agreement protocols, thus they are Hybrid Protocols. For instance, the session
key can be derived by computing a function of multiple, but not all users’ inputs.
Thus, the protocol appears to be a key agreement protocol from the viewpoint of
one subset of users, while it is seen as transport protocol from the viewpoint of
another subset of users. [7]

2.2 Cryptography

This section will cover basic cryptographic properties and related cryptographic
operations, which may be applied by security protocols in order to achieve those
properties. Cryptographic operations can be implemented by various algorithms.
As this thesis deals with protocols on a conceptual level, specific algorithms are
not considered, hence they will be neglected in the following discussion.
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2.2.1 Symmetric and Asymmetric Encryption
Confidentiality means that data is only available to entities authorized to use it.
Such a demand can be met by encrypting messages with a key, assuring that only
entities in possession of the corresponding decryption key can read them.

An encryption scheme consists of three sets: the key set K, the message set M,
and the ciphertext set C. Furthermore, three algorithms are utilized:

1. A Key Generation Algorithm which outputs a valid encryption key k ∈ K
and decryption key k−1 ∈ K.

2. An Encryption Algorithm which takes an argument m ∈ M and an
encryption key k ∈ K and outputs c ∈ C, defined as c = Ek(m). The encryption
process should be randomized, for example by the addition of a nonce to the inputs
or prepending a nonce to the argument m, ensuring that the same message never
leads to the same m, and hence a given message never leads to the same c.

3. A Decryption Function which takes an argument c ∈ C and a decryption
key k−1 ∈ K and outputs m ∈ M, defined as m = Dk−1(c). It is a required that
Dk−1(Ek(m)) = m. If a a nonce was added to the set of inputs, it has to be input
to both the encryption and decryption functions. If the nonce was prepended to m
before encryption, then it must be removed after decryption.

In a symmetric encryption scheme, the encryption and decryption keys are
equal, fulfilling the equation k = k−1. In contrast, an asymmetric encryption
scheme requires different keys (generally referred to as public and private keys)
for encryption and decryption, where it is assumed to be computationally hard to
compute the private key from the public key.

Two properties should always hold for an encryption scheme, namely semantic
security and non-malleability. Semantic security demands that anything which
can be efficiently computed given a cipher text, can also be efficiently computed
without it. Non-malleability concerns the infeasibility of taking an existing cipher
text and transforming it into a related text without knowledge of the plain text. [7]

2.2.2 Hash Functions
A hash function is a function f: X → Y, which maps an input bit-string x of
arbitrary finite length to an output bit-string y of fixed length (compression),
whereby ease of computation of y = f(x) has to be guaranteed.
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In addition, the following potential properties may be fulfilled, which are used
to classify various hash functions:

1. collision resistance - a hash-function should ideally never produce the
same output twice when applying f to two different inputs. As this property
is mathematically infeasible, hash functions are chosen to produce a very high
improbability of such collisions. Thus, it is computationally hard to find two
different inputs x and x’, which hash to the same output and h(x) = h(x’).

2. preimage resistance - for any given output y, it should be computationally
infeasible to find the related input x’ which hashes to the given output, that is
h(x’) = y. Accordingly, hash functions are also referred to as one-way functions.

3. 2nd-preimage resistance - given any input value x, it is computationally
hard to find a second input x’, which hashes to the same output as x, so that
h(x) = h(x’) holds. [7, 9]

2.2.2.1 Message Authentication Codes (MACs)

Message Authentication Codes (MACs) are specific hash functions that include a
secret key k in their operation, therefore they are also called keyed hash functions.
Just as for un-keyed hash functions, MACs attempt to assure the two properties
of computational ease to compute MACk(m) when key k and the message m are
known and computational resistance against creating new MACs for any input
when any number of text-MAC pairs (as well as optionally k) are given.

When constructing input strings to MAC functions it has to be carefully
considered how the secret key is included, otherwise various attacks become
feasible. For instance, it may become possible to append data to a message
without knowledge of the secret key or create MACs for new input values, when
the concatenation of the key and the message string is chosen poorly.

A sophisticated version of a MAC that meets this challenge is the Hash-based
MAC (HMAC). HMACs compute the hash of a message x as
HMAC(x) = h(k‖p1‖h(k‖p2‖x))∗, where p1 and p2 are XORed with k. The
strings p1 and p2 are used for padding k to the required block size of the
compression function. [9]

∗ Within this thesis, the double vertical bar (‖) is used to denote concatenation
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2.2.2.2 Integrity and Data Origin Authentication

The cryptographic property of Integrity demands that if data has been modified
by adversaries during transmission, this modification is detected. This is usually
linked to Data Origin Authentication, assuring that data came from its stated
source. Data origin authentication can be carried out only on messages which
have not been altered, otherwise they would have a different source.

The usage of MACs ensures integrity and data origin authentication since the
sender must have been in the possession of the shared secret key in order to be
able to produce the received message. Upon receiving a message with a MAC
a recipient computes the MAC in the same manner as the sender (as the hash
algorithm and the secret key are assumed to be known by sender and receiver),
then the receiver compares the received and computed MAC values and validates
the integrity and data origin authentication of the received message according to
the outcome of this comparison. If the MACs are not equal, a modification of
the message has been detected. Additionally, encryption can be carried out on the
message with an appended MAC to provide message confidentiality. [7, 9]

2.3 Possible Attacks

When dealing with feasible attacks on protocols, it is crucial to define the
adversary’s assumed capabilities. A detailed survey of various adversary models
is given in Section 3.1.3. As a base for that discussion, an adversary based on
the Dolev-Yao model [10] will be assumed, capable of intercepting all messages,
sending them out to the network and altering, re-routing, or injecting captured
or newly generated messages in an arbitrary way at any time. Furthermore, it
will be assumed that any legitimate protocol participant, any external entity, or a
combination of both can act maliciously.

Eavesdropping describes the intercepting of protocol messages by an adversary.
Eavesdropping is a prerequisite for several other, presumably more sophisticated,
attacks. In order to protect against eavesdropping, assurance of confidentiality can
be achieved by applying encryption.

Modification of messages occurs whenever an eavesdropping adversary
modifies content of messages. Such a modification can remain
undiscovered if no cryptographic integrity operations such as MACs are used for
introducing redundancy.
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If an adversary eavesdrops on a message and re-injects the whole message
or just a part of the message either immediately or at a later time, the attack is
referred to as Replay. Usually, message replay is combined with other attacks.
A specific case of replay, called Preplay, appears when an adversary captures a
message while being involved in one protocol thread∗ and re-injects it in another
simultaneous or a later protocol run. A different form of replaying is referred to
as Reflection, whereby an adversary sends back a message to the sender, typically
with the intention to get a nonce challenge signed by the sender, where this
message was initially addressed to the attacker itself. Reflection is only possible
when parallel protocol runs are allowed. To prevent replay attacks, freshness of
messages has to be assured.

Denial of Service (DoS) attacks can be conducted by preventing or hindering
legitimate agents from being able to execute a protocol. Such attacks are
typically carried out against servers as these hosts are communicating with
many clients simultaneously. Two types of DoS attacks can be identified:
resource depletion attacks (aiming to use up computational server resources)
and connection depletion attacks (aiming to exhaust the number of possible
connections to a server).

It is hard to avoid DoS attacks completely, since a connection attempt usually
results in a resource allocation at the server side or the connection has to be proven
invalid, which includes at least some computational work. However, the ease of
conducting DoS attacks can be decreased, for instance by the use of stateless
connections, where most of the information is kept in storage at the client side
and only sent to the server when it is needed. When taking such an approach each
message sent from the client has to be integrity protected.

Typing attacks refer to the replacement of protocol message fields of one type,
encrypted or not, with the message field of another type. Thereby, tricking the
protocol participant to accepting elements as a key which were originally intended
to be something else (as for instance origin identifiers) becomes possible. To
prevent such attacks, cryptographic operations such as MACs can be applied,
which eliminate the possibility of changing the message field order.

When designing a protocol, it is usually assumed that the underlying
cryptographic primitives are ideal and immune against cryptanalysis. In some
cases a combination of cryptographic protocols and cryptographic systems can
undermine this assumption. For instance, a cryptanalysis attack has been shown

∗ See Section 3.1.1 for a definition of protocol threads.
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on a protocol using the XOR function as an encryption scheme in a way that a
simple XORing of the exchanged cipher text messages reveals the encryption key.
Cryptographic attacks take various approaches, thus it is impossible to suggest a
countermeasure that will prevent all possible attacks. [11]

The flaw of Protocol Interaction describes a maliciously created interaction
between a run of a new protocol with a run of a known one. Such an attack
becomes feasible if long-term keys are used in multiple protocols, therefore such
use should be avoided. [7, 12]

2.4 AKE Design Goals
A sound definition of goals, describing the desired achievements of a certain
protocol, lays the foundation of proper protocol design and analysis. When
designing AKE protocols, each message field should be justified in view of the
defined design goals. In the course of analyzing protocols, an evaluation of
robustness against attacks and satisfiability of properties is only expressive if the
specific design goals are considered. Any possible attack on a protocol is only
harmful if it violates a property which is crucial to hold for this protocol. [13]

The basic design goals of AKE protocols comprise entity authentication
and session key establishment related features. The former refer to assurance
about identities of those entities taking part in an AKE protocol, whereas the
later concerns establishing session keys with goals such as key freshness, key
authentication, and key integrity. This section discusses both classes of design
goals along with possible combinations and overlaps between those goals in order
to establish a hierarchy of AKE design goals.

2.4.1 Entity Authentication
The issue of entity authentication is broadly discussed in the literature, but with
various slightly differing definitions given. A common denominator of these
definitions is that entity authentication refers to the assurance of an entity, i.e.
it is whom it claims to be. [3]

However, this description does not indicate which entity has provided this
assurance. For example, if entity authentication should be established between the
entities A and B then it is unclear whether A authenticated to B, B authenticated
to A, or A and B both authenticated each other, called mutual authentication.
Moreover, no assertion can be derived from the above definition about the time
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of authentication, since entity authentication does not include information about
when an entity has executed authentication. [7]

In order to be clear about entity authentication, this thesis will use the
definition of entity authentication given by Lowe in [14]. This definition will
be discussed in detail in Section 3.1.4.2.

2.4.2 Good Key Property

A session key, established by an AKE protocol, has to satisfy several features in
order to be called a ’good key’. These features basically concern the claim of key
freshness and the need to assure that only the correct entities obtain this key.

2.4.2.1 Key Freshness

Session keys are expected to be vulnerable to cryptanalysis attacks, since they
are used to repeatedly secure data in regular formats. Hence, it is easy to
collect a lot of messages encrypted with the same session key. Accordingly, it
is crucial to assure that replaying messages from previous sessions is not possible.
Additionally, the likelihood of insecure storage arises.

Such a replay attack on session keys can possibly be carried out by an
adversary intercepting A’s request for a new session key with B and replaying
a known old session key to A in order to decrypt all ongoing communication
between A and B. Furthermore, a replay attack can increase the ease of
cryptanalysis, since it holds the possibility for collecting additional ciphertext for
cracking a session key.

2.4.2.1.1 Establishing Key Freshness

Assurance of key freshness can be achieved by bounding the use of the session key
and ensuring a fresh value so that only the sender could have generated it. This
fresh value can either be chosen by the user or a received value from a trusted
entity has to be verified as fresh by the user.

The former approach is usually taken when dealing with a key agreement. For
instance, the entities A and B can both select a random value, thus the session key
is computed as a function f, taking these two values as input. As a prerequisite,
it should not be feasible for neither A nor B to force the newly computed session
key to be the same as a previous one, even if one entity knows the freshness value
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of the other. This implies that f has to be a hash function.

The latter proposal includes an entity A requiring a way to verify the freshness
of a session key created by another party B. How a value can be checked for
freshness is discussed in detail in the next paragraph. Additionally, the received
message, including the freshness value N, must satisfy data origin authentication
and data integrity in order for A to know that the message has been generated
by B and the message has not been altered during transmission. If it can be
assumed that N is fresh, then it can be derived that KAB is fresh, since B is a
trusted, authenticated entity. [7]

2.4.2.1.2 Freshness values

The critical expectation of a freshness value is to guarantee that it has not been
used before. According to L. Gong [15], three basic types of freshness values can
be utilized: timestamps, nonces, and counters.

Timestamps contain the current time, appended to a message by the sender at
transmission time and checked by the receiver at reception. A check is carried out
by comparing the timestamp with the local time. The timestamp is only accepted if
it is within an acceptable time window of the current local time. The complexity of
using timestamps is that it requires clock synchronization as well as an assurance
of secure clocks at sender and receiver sides.

Nonces are values, created by a message recipient A and sent to a sender B. B
applies a cryptographic function on A’s nonce and sends it back to A, bundled with
the actual message. Now A can be assured that the message containing A’s nonce
is fresh, since there would have been no possibility for B to generate the message
at any time before it has received A’s nonce. The main disadvantage of this
approach is the additional number of messages needed for the interactive nonce
exchange. Furthermore, a reliable and high quality (pseudo) random number
generation mechanism is a prerequisite for the nonce approach to work, because
capture and replay attacks become feasible as soon as nonces can be predicted.

Counters are synchronized values, stored by the sender and the recipient, and
are appended to each send message, after which they are increased. The drawback
of this concept is the demand to maintain the state information separately for
each communication partner, which can lead to a large number of counter values,
linearly proportional to the number of communication partners. Furthermore,
problems can arise when a given user can use multiple devices (potentially in
parallel). Moreover, replay attacks become possible whenever channel errors
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appear or counters are not properly synchronized. Hence, a mechanism is needed
to recover from synchronization failures. [7, 13]

2.4.2.2 Key Authentication

Key authentication demands, that a certain key K is only known by those protocol
participants, who are meant to know it. Accordingly, key authentication is linked
to confidentiality, i.e., the secrecy of K. It can be assumed that an authenticated
key also implies key freshness, because a key which is not fresh cannot be assured
to be confidential. This property of key authentication is sometimes referred to as
implicit key authentication. [7]

2.4.3 Key Integrity

Key integrity claims that a key has not been modified by any adversary. When
designing a key transport protocol, this implies that any key, accepted by a
receiver, must be the exact same key as chosen by the sender. Even if the good
key property holds and a key is fresh and only known by intended, authenticated
entities, the key integrity property can still be unsatisfied. [16]

2.4.4 Combined Goals

AKE protocols usually require a combination of both entity related (entity
authentication) and session key related (key freshness, key authentication) goals.
These requirements may necessitate enhanced goals, ensuring even stronger
properties.

In this regard, Key Confirmation of an entity A to an entity B combines the
good key property and the possession assurance of a certain key K from A to B.
Even if key confirmation is satisfied, keys can still be used for different sessions,
since the involved entities can run several sessions simultaneously. No entity
authentication is carried out and the only assurance key confirmation gives about
entities is the so-called far-end operative, which means that the partner wishes to
talk to at least one other entity.

Explicit Key Authentication satisfies key confirmation and additionally, a key
K is assured to be known only by the correct entities, who can be mutually
confident about the possession of K by the other entity. Finally, the strong property
of Mutual belief in a Key extends explicit key authentication in such a way that the
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partners can additionally be assured that the key maintained by the other entity is
a good key. [7]

2.4.5 Dealing with Compromised Keys
Particularly strong protocol design goals refer to more powerful adversaries, who
can reveal long-term keys and session keys. In this regard, the property of Perfect
Forward Secrecy demands that even if an adversary compromises the long-term
private keys of all agents, the keys of the previous sessions should still remain
secret. As soon as any exposed long-term key has been used for encrypting the
session key in a key transport protocol, this claim does not hold any more. Perfect
Forward Secrecy is usually linked to Key Independence, assuring that the revealing
of one session key does not facilitate the compromise of other session keys. [17]

Key Compromise Impersonation describes a case where an adversary
compromises a long-term key or session key of an agent to impersonate this agent
to other protocol participants. To protect against Key Compromise Impersonation,
asymmetric cryptography should be used, for instance signing with private keys.
[7]





Chapter 3

Formal Verification of Security
Protocols

When applying formal methods to verify security protocols, a generic model is
required which formalizes the operational semantics of a protocol, the network
and the desired security properties. Automatic model checking tools (as for
instance Scyther and Tamarin) rely on such formal models. Various slightly
differing ways of constructing formal models have been introduced in the course
of scientific research on formal verification of protocols with some common
characteristics described in [18] and further discussed in [3].

The following chapter will initially introduce these common basics of formal
models. Afterwards, different automatic model verification approaches and state-
of-the-art model checking tools (building on formal models) are discussed. A
formal model for the Dual-Connectivity Protocol is constructed in Chapter 6.2.1.

3.1 Formal Model

In formal verification, a security protocol can only be verified with respect to
a formal model. This formal model comprises a protocol model (describing
the structure, elements, and semantics of this protocol), an execution model, an
adversary model (characterizing the communication network, holding possible
intruders), and a specification of the required security properties.

The model abstracts from cryptographic methods used by specific protocols
for achieving security. A Perfect Cryptography Assumption is made in this thesis,
which means that a protocol’s algorithms are handled as idealized mathematical
constructs and furthermore as black-boxes, since only the outcome is important.

17
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It is assumed that the properties stated in [7, 19, 20] always hold. For example,
it is presumed that each encrypted message can only be decrypted with the
corresponding decryption key. Hence, an adversary is not able to decrypt
messages as long as the decryption key is not revealed.

3.1.1 Protocol Model

A context-free syntax is required to enable a meta-theoretical view of the
composition of protocols. Therefore, implementation details of protocols are
abstracted away and a symbolic model is created. Messages are represented as
a combination of basic terms using a term algebra where terms describe either
agent names, roles, freshly generated terms (nonces, session keys, etc.), variables,
or functions (encryption, decryption, hashing, etc.). These basic terms can be
combined in order to achieve various functionality. For example, pk(X) denotes
the long-term public key of X, whereas sk(X) refers to the related long-term private
key of X, and k(X,Y) represents the long-term symmetric key shared between X
and Y. Furthermore, {t1}a

t2 describes the asymmetric encryption of term t1 with
the key t2 and {t1}s

t3 the symmetric encryption of t1 with t3. Finally, a message
is a combination of an arbitrary number of terms.

Protocols comprise a set of roles, where each role is defined by a sequence of
events, which can be either the creation, sending, or receiving of messages. Events
are executed by agents who play specific roles such as the initiator or responder
role. Each execution of a role by an agent can be seen as a separate thread and
accordingly, a single thread is a distinct role instance.

A system consists of one or more agents, each of which can simultaneously
execute multiple roles in one or more protocols. Thus, one agent can for instance
at the same time act as initiator in two different threats of the same protocol, while
acting as responder in another protocol. Therefore, it is necessary to bind roles to
actual agents and variables to actual threads. This is achieved by adding a thread
identifier to each local variable var, for example var#tid. [3, 18, 21]

3.1.2 Execution Model

The protocol execution is modeled using system states and transitions between
them. A system state consists of the triple (tr, IK, th), whereby tr denotes a
specific trace, IK stands for the Intruder (adversary) Knowledge, and th represents
a function, mapping thread identifiers of initiated threads to traces.
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Traces track the execution history of events executed by specific threads, i.e.
role instances. The IK of a Dolev-Yao adversary comprises all agent names and
their long-term public keys. Additionally, some long-term private keys of a set of
agents may also have been compromised. It has to be kept in mind that multiple
diverse adversary models can be used as alternatives to the standard Dolev-Yao
model (see Section 3.1.3), which implies different initial IKs.

State transitions follow transition rules, describing how the execution of events
should be carried out. There are three basic transition rules: the create rule, the
send rule, and the receive rule. The create rule initiates a new role instance
(thread), the send rule sends a message to the network, and the receive rule
describes how an agent, running a thread, receives a message from the network.
Based upon these transition rules, it can be decided whether a specific state of a
protocol is reachable or not, which forms the basis for verification or falsification
of protocols. [3, 20, 18]

3.1.3 Network and Adversary Model
Protocol messages are exchanged via communication networks with various
properties and the possibility of there being different adversaries. These adversaries
have to be taken into account when constructing a formal model. Whether a
protocol is verified as secure or not depends upon the adversary specification and
thus, the characteristics of the network in which a protocol is executed have to be
carefully considered.

Commonly, the Dolev-Yao adversary model [10] is used to specify such
a formal network model. This model assumes that the intruder has complete
knowledge of the network and can remove, alter, and send arbitrary messages
at any time during the protocol’s execution. [7]

However, in some cases weaker or stronger adversary models can be required.
For instance, in wireless communication networks it can be assumed that an
intruder simply eavesdrops, but does not alter messages [3, 19]. An example
of a weak adversary model was suggested by Burrow et al. in [22], where the
adversary model claims that legitimate principals will always act honestly and
each authenticated entity will follow the protocol specification. In contrast, some
protocols may require a stronger adversary definition, for instance for the various
AKE Protocols [17]. A particularly strong intruder model is introduced by Bellare
and Rogway in [23], where even authenticated principals can act maliciously, thus
the adversary can compromise any agent, corrupt random number generators, and
reveal long-term keys and session keys.
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3.1.4 Security Properties Specification
Within this thesis work a point of view is taken, which considers an attack on
a protocol harmful only if it violates a property explicitly stated as crucial for
this specific protocol. This leads to the need to account for the required security
properties in the formal model [7]. Basically, there are two different classes
of security claims, one related to secrecy and the other one related to entity
authentication. Security properties are defined in terms of properties of reachable
states, thus the security properties must be valid for all states which a protocol can
reach during its execution, based on defined transition rules [3, 18].

3.1.4.1 Secrecy

A protocol P holds the claim of Secrecy of term t if all reachable states of P
ensure that t is not part of the adversary knowledge IK. Here, t can refer to any
term, which is intended to be kept secret, for instance a session key. [3, 21]

3.1.4.2 Authentication

Basically, the term authentication can be described as assurance of two agent’s
identities to each other. However, the detailed specification of the authentication
property is a widely discussed topic in the literature. This thesis will use the
definitions introduced by Lowe in [14], where a distinction between Aliveness,
Weak Agreement, Non-injective Agreement, and (Injective) Agreement is made
to classify various forms of authentication, thus offering different degrees of
strength.

Definition (Aliveness): We say that a protocol guarantees to an initiator A
aliveness of another agent B if, whenever A (acting as initiator) completes a run of
a protocol, apparently with responder B, then B has previously been running the
protocol.

The definition of aliveness turns out to be the weakest definition of
authentication. Aliveness neither assures that B has been running the protocol
recently nor that B has been running the same protocol as A. Moreover, it is not
ensured that B believes it has been running the protocol together with A, as B can
also believe it has been talking to C. As a result, it is easy to carry out simple
mirror attacks by reflecting messages of an agent back to itself.
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Definition (Weak Agreement): We say that a protocol guarantees to an
initiator A weak agreement with another agent B if, whenever A (acting as
initiator) completes a run of a protocol apparently with responder B, then B has
previously been running the protocol apparently with A.

Weak agreement extends aliveness by additionally assuring that B agreed on
running the protocol with A. However, it is still not ensured that B has been acting
as responder to A. Thus, an attack could be carried out where an intruder initializes
a parallel protocol run in which it impersonates B to A. Accordingly, A would
believe that it has been running the protocol with B, whereas B would think it ran
the protocol with the intruder rather than with A. This attack is well-known and
has for instance been conducted on the Needham-Schroeder Public Key Protocol.
[1]

Definition (Non-injective Agreement): We say that a protocol guarantees to
an initiator A non-injective agreement with a responder B on a set of data items ds
(where ds is a set of variables appearing in the protocol description) if, whenever A
(acting as initiator) completes a run of the protocol, apparently with responder B,
then B has previously been running the protocol apparently with A, B was acting as
responder in this run, and the two agents agreed on the data values corresponding
to all the variables in ds.

The definition of non-injective agreement can be seen as an extension of
weak agreement, where the agents additionally agree on their roles. Moreover,
agreement on a set of data items (for instance nonces, variables, keys, etc.)
exchanged during the protocol execution is carried out. However, still no one-
to-one-relationship between agent runs can be assured, thus A may believe it has
run the protocol twice, while B could think it has executed the same protocol only
once.

Definition (Injective Agreement): We say that a protocol guarantees to an
initiator A non-injective agreement with a responder B on a set of data items ds if
whenever A (acting as initiator) completes a run of the protocol apparently with
responder B, then B has previously been running the protocol apparently with A,
B was acting as responder in this run, the two agents agreed on the data values
corresponding to all the variables in ds, and each such run of A corresponds to a
unique run of B.

Injective agreement, also simply called agreement, finally guarantees that each
single run of a protocol executed by A corresponds to exactly one run of the same
protocol carried out by B.
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Definition (Recentness): It is non-trivial to define what the term recent means as
it depends highly on the specific implementation. For instance, it is questionable
whether something has happened recently if it appeared during A’s run or if it
appeared within t time units before A’s run. In general, all the above definitions of
authentication say nothing about recentness of the authenticated entities, but these
definitions can easily be extended in order to assure recentness by adding fresh
values (see Section 2.4.2.1.2).

3.2 Automated Model Checking
Different approaches of automated model checking and various proposals to solve
the problem of an infinite state search space will be discussed in this section. The
paper [3] by Basin, Cremers, and Meadows will serve as the main reference, since
it offers a sound and solid discussion of these topics.

3.2.1 State Space Infinity Problem
In order to verify properties of security protocols by automated model checkers
the execution of the protocols is represented in terms of reachable states. If
Reachable(P) refers to all states which can be reached during the execution of a
protocol P and S represents the set of states referring to a desired security property
S, then a protocol satisfying this property S should fulfill the following formula,
claiming that all states reachable by P are included in S:

Reachable(P) ⊆ S

If S̄ refers to the complement of S, including all states describing possible
attacks, the above formula can also be expressed as follows:

Reachable(P) ∩ S̄ = /0

This formula specifies that no state included in S̄ is reachable by P, which
means that no attack exists and no counterexample can be constructed.

When it comes to implementing an automatic model checking algorithm to
verify the reachability of states, a severe challenge appears due to the fact that the
search space becomes infinite (for two reasons). First, it is always possible to start
additional threads and sessions (where a session is a single partial execution of a
protocol) by the create rule (see Section 3.1.2). Second, the number of different
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messages which can be received by the receive rule is infinite due to the fact
that an unbounded number of different messages can be sent by an adversary at
any time, using information contained in the adversary’s knowledge (as long as
the message matches a pattern defined by the receive rule). The latter challenge
can be neglected, since it has been proven in [24] that the number of messages
involved in an attack is polynomial bounded by the size of the protocol and the
number of threads. Thus, the problem of an infinity of messages can be narrowed
down to the problem of an infinity of threads.

In such an infinite state space the secrecy problem (see Section 3.1.4.1) is
undecidable if there is no bound on the number of sessions. By introducing a
bound, the problem becomes NP-complete. The number of states that need to be
searched is limited to a specific number and accordingly, the number of possible
messages is bounded as well. [3]

3.2.2 Representation of States
When developing state space search algorithms one question is how the reachable
states should be represented. Basically, there are two ways of dealing with this
issue: explicit and symbolic representations.

When representing states explicitly, the operational semantics of a protocol
are used to encode each state as a finitely encoded triple. The disadvantage of
this approach is that it may lead to state space explosion when verifying complex
protocols. A proposal to shorten this problem is compression by using hash tables,
for instance.

Alternatively, states can be represented symbolically using formulas to describe
messages as non-ground term with variables instantiated during the search. Such
an approach is preferable to an explicit state representation in terms of efficiency.
[3]

3.2.3 Forward and Backward Search
Forward Searching Algorithms compute all reachable states of a protocol,
respectively a subset of them, in an iterative manner by beginning with the initial
state sinit . As soon as a state is reached which is part of S̄ (see Section 3.2.1),
then the desired property does not hold and a counterexample can be constructed.
When a fix-point is reached, i.e, a subsequent state equals the current state, then
it can be assumed that the desired property holds for the protocol. Fix-points are
always reached in finite-state models, i.e, where the number of sessions and hence
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the number of threads is limited. However, in infinite state models the reachability
of a fix-point cannot be guaranteed.

In contrast, Backward Searching Algorithms take the state set of possible
attacks S̄ as starting point from which a chain of possible predecessors is
iteratively constructed. The search checks whether sinit is part of these preceding
states. If so, then the desired property does not hold, since there is a possible state
sequence leading from sinit to a state in S̄, thus to a possible attack.

The closure of states is infinite for both forward and backward searching
algorithms, although the reasons are different. In forward search infinitely many
states can be reached from the starting point sinit , whereas in backward search,
the set S̄ contains infinitely many states. In general, the negation S̄ contains
more information about states than the initial state sinit , since states in S̄ include
prerequisites such as the adversary knowledge of certain terms or the claim
that particular events must have been executed before. Accordingly, applying a
backwards search approach, starting from S̄, is more suitable when it comes to
infinite state models. Conversely, when dealing with finite state spaces it is simple
and straight-forward to conduct a forward search starting from sinit . [3]

3.2.4 Bounded and Unbounded Model Checking
The main challenge of search algorithms for infinite state spaces is to overcome
the infinite state problem by somehow limiting the search space. In this regard,
two approaches can be identified: Bounded Model Checking and Unbounded
Model Checking.

Bounded Model Checking is a strategy of introducing a bound on the number
of protocol sessions, so that only a finite number of a possibly infinite number of
states has to be searched. Such an approach has been used by various automated
model checking tools, since it turned out to be sufficient to consider only a small
number of threads as a function of the number of roles appearing in a protocol.
For example, when using a number of threads which is twice the number of roles,
it is possible to replay a message from one session in another session.

Alternatively, the Unbounded Model Checking approach uses heuristics or
abstractions to handle the infinite state space problem. A symbolic representation
of states is used, usually combined with a backwards-style search on trace
patterns. Patterns describe a finite set of events, representing the infinite set
of events. For instance, the pattern of a secrecy violation would contain a set
of events, for which the secrecy claim does not hold. During the backwards
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search it is checked whether the traces of the actual protocol match the specified
pattern. Thereby, additional constraints on the protocol traces are added (such as
preceding events or limitations on the adversary knowledge) or messages can be
unified. Such a course of action is called constraint solving. When the algorithm
completes, the result is either a contradiction (meaning that no traces of the
protocol match the pattern) or a trace of the protocol exists which contains an
instance of the pattern (meaning that the pattern can be proven). [3, 25]

3.3 Model Checking Tools

Various model checking tools are currently available, utilizing different algorithms
and approaches to realize automated protocol verification. The earliest tools were
NPA and Maude-NPA [26], followed by AVISPA [27], Athena [28], and ProVerif
[29]. Within this thesis, two of the newest model checking tools, relying on
backward searching algorithms, namely Scyther [4] and Tamarin Prover [5], will
be utilized and described in detail in the following subsections.

3.3.1 Scyther

The Scyther tool uses an unbounded model checking approach and applies
a backwards search algorithm on (trace) patterns. Such patterns describe a
partially ordered set of events that must occur in the protocol traces in order
for these pattern to be verified. The occurrence of events in protocol traces is
checked by matching them to specific criteria defined in the protocol’s semantics.
Additionally, Scyther offers the possibility to introduce a bound and apply
bounded model checking if the unbounded search does not terminate. When using
a bound, the result is only valid for the specific bound on the number of sessions.

3.3.1.1 Verification Algorithm

Scyther’s backwards search algorithm is a pattern refinement algorithm, which
applies a case distinction on the source of messages (to enable constraint solving).
During the search, additional information about the patterns is derived, which is
used to add constraints. For instance, events and ordering constraints can be added
or terms can be unified, thus merged. Furthermore, restrictions on the instantiation
of variables can be applied, limiting how the variables can be replaced during the
backward search. As an example it could be claimed that variables can only be
changed by honest agents.
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Usually, patterns which should be verified by automated model checkers
represent attack patterns, for example a secrecy violation pattern. This is
accomplished by defining an infinite set of traces, representing the contradiction
of the security property. In the case of secrecy violation this would refer to all
states where an adversary knows a term, which is claimed to be secret.

There are three possibilities for Scyther’s algorithm to terminate:

1. A matching protocol trace is found, which means that the pattern is
realizable. If the pattern is an attack pattern, this infers that an attack is possible
and a trace with the minimal length can be selected from a potentially infinite set
of actual protocol traces in order to construct a representative counterexample.

2. No matching protocol trace is found and no bound is reached. From this
it can be derived that the pattern is not realizable for any bound. If the pattern is
an attack pattern, it can now be deduced that no such attack is possible for any
number of protocol sessions.

3. No matching protocol trace is found, but a bound is reached. Accordingly,
the verification of the property (a non-realizable attack pattern) is only valid for
the specified bounded number of sessions. [3]

As a result of Scyther’s protocol evaluation, a summary showing the verification
or falsification of security claims is displayed. Optionally, visual graphs of
possible attacks can be constructed if a claim has been falsified and a
counterexample can be created. The default setting of the Scyther tool limits
the session bound to a number, which allows the algorithm to always terminate.
Furthermore, it is possible for the user to manually introduce a bound by
specifying a custom number of sessions in the settings. Even if a bound is chosen,
the protocol can still be verified for an unbounded number of sessions, when the
bound is not reached. In contrast, if the bound is reached, this circumstance is
displayed as ’No attack within bound’, claiming that the search tree has not been
fully explored. [30]

3.3.1.2 Protocol Description Language

The Scyther tool takes a .spdl (security protocol description language) file as input,
which includes a specification of the protocol and the claimed security properties.
Scyther’s input language syntax is based on C and Java. Scyther uses the formal
model discussed in Section 3.1 as a base for defining protocols as a set of roles,
consisting of sequences of events.
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A simple input file, describing a protocol with two roles A and B, sending two
messages containing strings, could be modeled as follows:

protocol SimpleProtocol (A,B) {
role A {

send_1(A,B,’ping’);
recv_2(B,A,’pong’);

}

role B {
recv_1(A,B,’ping’);
send_2(B,A,’pong’);

}
};

3.3.1.2.1 Send and Receive Events

Events can be either the sending and receiving of messages (modeled as terms)
or security claims. Basically, each send event has to refer to a matching receive
event, otherwise Scyther does not compile the input file. However, if a single
receive or send event has to be modeled (for instance the revealing of a term to the
adversary), this can be expressed by adding a ! to the event specification such as:

send_!(A,B,secretKey);

3.3.1.2.2 Terms

Atomic terms are described as strings or alphanumeric characters and can refer to
any identifier (constants, freshly generated values, variables, etc.). Such atomic
terms can be combined through pairing, which enables more complex operations,
such as encryption and decryption of messages or hashing. If a term gets too
complicated, then macros can be utilized in order to replace longer names with
shorter ones. For example, a macro such as m1 could replace the sophisticated
hash h(A, B, nonce1, term1, term2).

3.3.1.2.2.1 Encryption and Hash Functions

Any term can act as a symmetric encryption key. For example, the term {ni}kir
refers to the encryption of the atomic term ni with kir. Furthermore, a symmetric
key infrastructure is pre-defined, enabling the usage of the default key k(A,B) as a
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long-term shared secret between A and B.

For instance, to denote the sending of a nonce n1, encrypted with a symmetric
key shared between A and B, one can write:

send_1(A,B,{n1}k(A,B));

Moreover, a public key infrastructure is implemented a priori. A default
long-term key pair including the keys sk(X), denoting X’s private key and pk(X),
denoting X’s public key, is available to realize asymmetric encryption as well as
signing. As an example, it is possible to send a nonce n1 from A to B, signed with
A’s private key, encrypted with B’s public key as follows:

send(A,B,{n1,{n1}sk(A)}pk(B));

Hash functions can be expressed in Scyther, usually by a global definition
(outside the protocol) of an identifier as hash function. In contrast, the predefined
hash function h can be used, for instance to produce a hash of the term ni by
writing h (ni). In order to check hashes, Scyther offers the match function, which
takes two parameters as input for comparison [30]. For instance, to check the
equality of the terms Y and hash(X, I, R) the following match would be used:

match(Y,hash(X,I,R));

3.3.1.2.2.2 Predefined Types and Usertypes

Scyther offeres several predefined, ready-to-use types, in particular Agents,
Functions (defined as function terms, which take a list of parameters as input
and are hash functions by default), Nonces (fresh values), and Tickets (a type, that
can be replaced by any arbitrary type of variable). Additionally, new types can
be globally defined as Usertypes. Such a global declaration can be achieved by
using the term const, which can be helpful when defining string constants, labels,
or protocol identifiers. [30]

3.3.1.2.3 Claim Events and Security Properties

Security properties are modeled as special role events, so-called claims, which
are part of a certain role’s description. Agents have a local view of system states,
which they create based on received messages. Properties are always claimed
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from this local view and thus, they are only valid from the viewpoint of the
specific agent inside whose role description they have been defined. The following
paragraphs describe security property claims which can be made in Scyther.

In order to distinguish between different runs of a protocol, an arbitrary
number, acting as identifier, is assigned to each run. Local variables can be freshly
instantiated by appending this run identifier, for example nr#1. Thereby, a run
always refers to a single execution of a protocol by a certain agent. [20]

3.3.1.2.3.1 Secrecy Claim

The notation claim (Initiator, Secret, ni) defines that a term ni is meant to be
secret from the perspective of the role Initiator. It is possible to declare a secret
term SessionKey explicitly as session key by using the term ’SKR’ (Session Key
Reveal) by writing claim (Initiator, SKR, SessionKey). This claim would be
falsified if the reveal session key adversary rule is set, since then the adversary
would be able to reveal the SessionKey.

3.3.1.2.3.2 Authentication Claims

Scyther’s authentication claims basically rely on the authentication definitions
introduced by Lowe in [14]. These have already been discussed in Section 3.1.4.2.

The claim (R, Alive, R’) requests aliveness of the role R’ from the local
viewpoint of role R. This infers that R’ has at least been talking to R, thus R’ has
sent a message to R, including a secret that only R’ can know. Aliveness offers no
assurance about either R’ believing it has run the protocol with R, nor whether R’
has recently been running the protocol. Additionally, there is no agreement on the
roles or exchanged data.

A stronger form of authentication can be demanded when using the claim
for weak agreement claim (R, Weakagree, R’), which additionally requests the
agreement of the responder role R’ with the fact that R’ has been running the
protocol with R. However, still no agreement on the specific roles has been carried
out.

When it comes to non-injective agreement, a distinction between agreement
on roles and agreement on exchanged data can be made. By stating claim (R,
Niagree, R’), non-injective agreement on all roles as well as on exchanged data
between the roles can be inquired. This authentication claim can only be modeled
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between all of the roles of the protocol and not between certain pairs of roles.

Alternatively, non-injective agreement can be demanded for a certain set of
data items which have been exchanged during a specified time. Therefore, the
signal claim(I, Commit, R, terms) is inserted at the end of the initiator role
definition and claim(R, Running, I, terms) is placed in the receiver role definition
before the last send statement. Agreement is only demanded for the events taking
place between the Running and Commit signals, where the Commit refers to the
agreement claim and Running describes the last communication of the responder
role, preceding the Commit claim. Thus, the Running claim is always placed
before the Commit claim. Injective agreement can be reached by adding a nonce
to the communication and the security claims, since the use of nonces ensures that
a one-to-one mapping between roles is present.

The claim (R, Nisynch, R’) requests injective agreement and thereby extends
the claim for non-injective agreement by asking for a synchronisation of roles,
which means that each role is always mapped to exactly one other role and vice
versa. Non-injective Synchronisation can only be claimed for all involved roles,
not between pairs of roles.

Finally, the strongest form of authentication which can be demanded in
Scyther is injective synchronization. This demands a unique set of runs fulfilling
all roles claimed to be executed by agents and moreover, the execution of those
roles has to be in the exact same order for all agents. For each instance of the
claim of a role R in a trace there has to be exactly one unique instance of the
role R’ to synchronize with. Synchronization means that the execution oder of the
roles has to match exactly. In contrast, if only agreement were requested, it would
still be possible that a message could be received before it has been send.

3.3.1.2.3.3 Reachability Claim

If claim(R, Reachable) is inserted, Scyther will check whether the claim can be
reached at all, thus if the protocol is executable until this claim.

3.3.2 Tamarin

Tamarin utilizes and extends Scyther’s backwards search verification algorithm.
Additionally, it offers two different modes to verify protocols, an automated and
an interactive mode, which enables users to ‘guide’ the tool while executing.
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3.3.2.1 Extending Scyther’s Verification Algorithm

Tamarin’s verification algorithm basically builds on Scyther’s backward searching
algorithm, but generalizes it in a way that offers additional functionality and
makes it possible to define protocols, security properties, and adversaries in a
more fine-grained and expressive manner. Additionally, a novel constraint solving
approach is introduced, which is described in detail in [5, 17].

3.3.2.2 Fully-automated versus interactive Mode

The Tamarin tool offers two different ways of constructing model proofs, namely
the fully-automated and the interactive modes.

The fully-automated mode uses Tamarin’s heuristics to verify the correctness
of claims for an unbounded number of threads and fresh values. If the algorithm
terminates, it returns whether the correctness could be verified and in case of an
existent attack, a counterexample can be constructed. However, it is not assured
that the algorithm terminates, since the nature of the possible specified properties
is undecidable.

Thus, the user is able to interactively explore the steps taken by the verification
algorithm (proof of single states) in the interactive mode by viewing the attack
graph and possibly guide the tool as to which approach to take in oder to prove
protocol correctness. There may exist protocols which cannot be solved by using
Tamarin’s constraint solving algorithm, thus the interactive mode cannot help
in these cases. However, if there exists a proof, but Tamarin’s heuristic selects
the wrong way to solve it, then interactive intervention can be used to guide the
system to a solution. The user can tell the tool to apply different heuristics during
constraint solving by using the flag ’–heuristic’. Tamarin offers four different
heuristics, which can either be used alone or be combined in any arbitrary way to
guide the tool to termination:

s: the ’smart’ ranking is the default ranking of premises to be solved, which works
well for most protocols;

S: like the ’smart’ ranking, but it does not delay the solving of loop breaking
premises of a protocol’s multiset rewriting rules (loop breaking premises
can be inspected in the interactive mode);

c: ’consecutive’ or ’conservative’ ranking, solves the goals in the order of
occurrence in the constraint system, thus no goal can be delayed indefinitely,
but also typically infers large proofs;
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C: like the ’consecutive’ or ’conservative’ ranking, but without delaying the
solving of loop-breaking premises.

When combing different heuristics, the chosen options are applied in a round-
robin fashion. For example, if the option ’–heuristic = ssC’ is selected, the tool
will consequently apply the smart ranking twice followed by the consecutive
ranking once. [31]

3.3.2.3 Protocol Description Language

The Tamarin tool is written in the Haskell programming language. The tool takes
a .spthy (security protocol theory) file as input. This file describes the protocol
messages (defined by multiset rewriting rules), the equational theory and the
security properties (specified by axioms and lemmas).

3.3.2.3.1 Multiset Rewriting Rules

The multiset rewriting rules that specify a protocol are represented as sequences
of left-hand-sides, labels, and right-hand-sides. These rules consist of facts, which
are modeled in the form F(t1,...,tk) with a fact symbol F and term symbols ti. The
built-in fact Fr(t) denotes the generation of a fresh term t.

Input facts from the network, modeled as In(msg), must always be placed on
the left-hand-side, representing the consuming of a message from the network.
The output of messages to the network, written as Out(msg), has to be a right-
hand-side fact. By default output facts can only be consumed once (as input fact).
Declaring a fact with an exclamation mark defines it as persistent, which means
that it can be consumed arbitrary often. Different prefixes are used to describe
various types of variables, with ’∼’ describing a fresh value, ’$’ a public value,
and ’#’ a temporal value. [5, 6, 31, 32]

To gain a clearer understanding, the following example input file will be
described in detail:

rule Step1:
[ Fr(˜t1),
In(t2)]

-->
[ Out(˜t1),
Step1(˜t1, t2) ]
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In the above listing a fresh value t1 is generated and sent out to the network.
Furthermore, a message containing the term t2 is consumed as network input.
Both values are saved as a state of Step1, offering the possibility of obtaining
them in later steps, by requesting Step1(t1,t2).

3.3.2.3.2 Equational Theory

The equational theory is defined by functions, equations, and boolean flags.

Functions with arbitrary arities can be described by the user. For instance,
the term aenc/2 can be used to denote a binary asymmetric encryption function
and adec/2 the related decryption function. The term h/1 describes an unary
hash function, or g/0 models a constant function. Additionally, equations can be
specified. For instance, the following equation declares the asymmetric decryption
of an encrypted message m:

adec(aenc(m,pk(k)),k) = m

Moreover, boolean flags state which built-in functions are required by the
protocol. The most commonly used built-in functions are those for hashing,
asymmetric encryption, symmetric encryption, Diffie-Hellman, and signing.

3.3.2.3.3 Axioms and Lemmas

Desired security properties are modeled as axioms and lemmas, describing trace
properties. Axioms define certain trace properties which have to hold for a trace in
order to be included in the search. In contrast, lemmas specify security properties
for whose validity the traces should be checked. [5, 6, 32] The syntax for defining
axioms and lemmas uses the following terms:

All for describing that all traces must fulfill the claim
Ex for describing that at least one trace must exist

which fulfills the claim
==> for implication
& for conjunction
| for disjunction
not for negation
f @ i binds f to the temporal variable i
i < j for temporal ordering
#i = #j for an equality between temporal variables
x = y for an equality between message variables
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An axiom could for example request, that all equality checks of a trace must
have been successful as a prerequisite for this trace to be included in the search
space. Such an axiom can be denoted as:

axiom Equality_Checks_Succeed:
"All x y #i. Eq(x,y) @ i ==> x = y"

A lemma stating session key secrecy could for instance be defined as:

lemma session_key_secrecy:
/* It cannot be that */

"not(
Ex A B SKeNB #n.

/* somebody claims to
have setup session keys, */

SessionKeys(A, B, SKeNB) @ n
/* but the adversary knows one of them */

& (Ex #i. K(SKeNB) @ i)
)"



Chapter 4

Related Work

Automated model checkers have been applied to a wide range of security
protocols. When creating a formal model as a base for protocol verification with
automated model checking tools, it is desirable to keep the abstraction on a level
which still allows valuable results. This chapter will initially discuss different
approaches that have been taken to create formal protocol models. Afterwards,
already conducted projects dealing with automatic protocol verification will be
covered with a focus on AKE protocols, since this thesis is targeting AKE
protocols and their verification.

4.1 Formal Protocol Modeling
A method to automatically derive a model (executable by the model checker
ProVerif) from F# code was introduced in [33]. Such a course of action aims
to fill the gap between the formal model and the protocol implementation. Other
projects dealing with the translation of implemented protocols to semantic, formal
models are [34] and [35]. These projects try to establish rules for deriving
semantic models from various classes of Public Key Exchange (PKE) Protocols.

In contrast to the verification of an already implemented protocol, automatic
protocol verification can be done during a protocol’s design process. This is the
case explored in this thesis, where the formal model will be constructed based on
declared design requirements and prerequisites.

4.2 Automatic Verification of Protocols
Scyther was used for verification of multiple IPSec key-exchange protocols,
in particular IKEv1 and IKEv2 in [37], where severe vulnerabilities of the
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authentication properties could be identified. An evaluation of
Menezes–Qu–Vanstone (MQV) protocols, a family of AKE protocols satisfying
strong security properties, has been conducted in [18]. In the course of this,
an extension of Scyther, offering additional adversary models, was implemented.
With this adversary model extension, verification of advanced security properties
such as perfect forward secrecy and key compromise impersonation (see Section
2.4.5) becomes feasible in Scyther. In [38], various entity authentication protocols
defined by the ISO/IEC 9798 standard [39] have been modeled and tested in
Scyther, revealing multiple weaknesses violating the authentication property.

The Tamarin Prover tool has been applied to a series of AKE protocols in
[6], where various adversary models and security properties were modeled and
used. Furthermore, an authentication protocol based on one-time passwords has
been evaluated by utilizing the Tamarin Prover in [40]. In [41], a study verifying
multiple AKE protocols in view of different adversary models was carried out.
Specifically, the two-pass AKE protocols NAXOS and RYY as well as the triparty
Key-Exchange protocol Joux were evaluated with regard to very strong security
property assumptions, such as perfect forward secrecy & session key and long-
term key revelations.

A verification of the Elgamal Algorithm was conducted by using Linear
Temporal Logic in [42]. A transition system was formulated as the base on which
the formal verification was carried out.

Automatic verification of LTE protocols was conducted in [36], where LTE
session management and mobility procedures are automatically verified using the
model checking tool ProVerif. In the course of this, several restrictions of ProVerif
were explored when using the tool for LTE protocol modeling. These restrictions
are mainly linked to the tool’s inability of modeling state information.



Chapter 5

Method

In general, an engineering approach is used to design a solution to a human
problem, describing a need or desire of today’s society, where the focus is on
construction aspects and answering the question of how things should be. In
contrast, a scientific approach aims at studying existing phenomena, starting with
a hypothesis to be verified and investigating how things are. [43]

This thesis’ objective is to formalize and verify a security protocol for
LTE dual-connectivity during its standardization process and evaluate the used
verification tools. To achieve this, a combination of an engineering approach
and a scientific approach is applied. An engineering method is used to formalize
the protocol, evaluate the used real-world software tools for model checking, and
possibly refine the initial protocol design with regards to the verification results.
During the formal verification process, a more scientific strategy is taken, since
the model checking tools are used to experimentally verify (or falsify) an initial
hypothesis, claiming that the protocol is secure in regards to the defined formal
model.

The basic steps of the method used within this thesis, can be summarized as:

1. Requirement analysis

2. Protocol design modeling and derivation of a formal model

3. Automated model checking

4. Protocol design refinement

5. Evaluation of tools that have been used

37



38 CHAPTER 5. METHOD

It is impossible and undesirable to completely separate the above steps, as they
overlap in several points. For example, the requirement analysis affects the design
model, which lays the basis for the formal model and thus, also influences the
input models provided to the tool(s). In general, an iterative software development
approach was taken within this thesis, which infers adjustments of earlier steps
with regard to the outcome of later steps. Accordingly, the execution of these
steps does not imply a sequential execution. For instance, the formal model
can be altered in view of limitations discovered in the model checking tools or
refinements of the design model can be made with respect to verification results.

The first step, the requirement analysis, aims to define the problem to be solved
and to constrain the design modeling of the protocol. To meet these goals, an
in-depth literature study of AKE protocols and formal verification was carried
out. Furthermore, a study of the currently available 3GPP drafts concerning the
dual-connectivity protocol was used as a basis for defining design constraints and
preliminary requirements.

The second step includes the creation of a design model of the dual-
connectivity protocol and derivation of a formal model. The design model
comprises a description of the protocol’s architecture as well as the design goals
and the detailed message flow. The literature study carried out in step 1 serves
as a basis for creating the design model. Subsequently, a formal model is derived
from the design model by following rules- extracted during the literature study on
formal verification. The formal model lays the foundation for implementing the
dual-connectivity protocol with the syntax required by the two model checking
tools Scyther and Tamarin.

In the third step, the protocol models are verified with Scyther and Tamarin
to check whether the initial hypothesis (that the protocol is secure with regards
to the defined formal model) holds. The results of the formal verification are
documented. Within the fourth step, the design model created in the second step
may be refined with regards to possible existent flaws.

Finally, a detailed evaluation of the model checking tools that were applied
and their suitability for LTE protocol modeling will be conducted in step four. In
particular, the usability of the tools as well as their scope and limitations will be
analyzed.

As a result, tool models of the dual-connectivity protocol (in Scyther and
Tamarin) and the corresponding results (verification or falsification of the initial
hypothesis that the protocol is secure) will be available. Furthermore, the
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evaluation of the protocol modeling with the chosen model checking tools will
be documented.





Chapter 6

Dual-Connectivity Protocol
Formalizing and Verification

This chapter introduces the design model of the dual-connectivity protocol in the
first section. Following this, the second section describes the formal models,
which provide the basis for protocol verification using the automated model
checking tools Scyther and Tamarin.

6.1 Design Model
Currently, the dual-connectivity security protocol is being standardized by 3GPP.
In the course of this standardization process, various 3GPP drafts have been
published. This section first discusses the basic protocol architecture as defined
in [44] and the overall key establishment schemas introduced in [45]. Afterwards,
a detailed protocol description including preliminary requirements, design goals,
and the basic message flow of the dual-connectivity security protocol is
introduced. The design goals and the detailed message flow have been newly
created within this thesis project and have not previously appeared in any 3GPP
draft.

6.1.1 Overall Architecture
In an Evolved Universal Terrestrial Radio Access Network (E-UTRAN) multiple
E-UTRAN NodeBs (eNBs) provide the E-UTRAN user plane and control plane to
User Equipments (UEs). These eNBs are inter-connected via X2-C interfaces and
further connected to the Evolved Packet Core (EPC), as described in Figure 6.1.
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Figure 6.1: Overall Architecture

The Dual-Connectivity Protocol is designed for a specific constellation, where
a UE is simultaneously connected to two (or more) eNBs. The security context
for a specific bearer ∗ b is already established between the UE and one of these
eNBs, referred to as the Master eNB (MeNB). During execution of the Dual-
Connectivity protocol, a secure connection for b is off-loaded from the MeNB to
the Secondary eNB (SeNB). The purpose of the bearer off-load from the MeNB
to the SeNB is to have the UE utilizing the potentially unused resources of SeNB.

It is assumed that the UE has already authenticated to the EPC. As a result
of a successful authentication, a secure channel between the MeNB and the UE
is established (using Radio Resource Control (RRC)), where both parties share
a session key KeNB. From the KeNB further keys are derived as described in
Section 6.1.2.2. The channel between MeNB and SeNB (X2-C) is secured via
an IPsec session key KX2, which is the origin for deriving keys for integrity and
confidentiality protection of signaling traffic between MeNB and SeNB. Both
channels, RCC and X2-C, are authenticated as well as integrity, confidentiality,
and replay protected. [44]

6.1.2 Protocol Description

The aim of the Dual-Connectivity key establishment is to derive a session key S-
KeNB, known by SeNB and UE. The S-KeNB is used to derive a KUPenc, serving as
encryption key for data traffic between SeNB and UE, related to a specific bearer.

∗ A bearer is a logical connection between two endpoints (UE and eNB), aggregating one or
multiple data plane flows.
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When the first bearer is off-loaded from the MeNB to a SeNB, the MeNB
derives a S-KeNB from the KeNB, using a Small Cell Counter (SCC) as freshness
input to the Key Derivation Function (KDF). The MeNB sends S-KeNB to the
SeNB and the value of SCC to the UE, so that the UE can calculate S-KeNB.
Afterwards, SeNB and UE can derive KUPenc from S-KeNB, which is used for
encryption of data plane traffic between SeNB and UE. The key derivations are
described in Figure 6.2.

If an additional bearer is offloaded from a MeNB to a SeNB and this SeNB has
already established a dual-connectivity security context with the MeNB (thus, the
SeNB is in possession of a S-KeNB), then the same S-KeNB can be used to derive
a KUPenc for the new bearer as long as there is no re-use of Data Radio Bearer
(DRB) IDs, which would lead to key-stream reuse. (see Section 6.1.2.4). Before
a DRB-ID is reused, refreshing of the S-KeNB is necessary.

6.1.2.1 Preliminary Requirements and Assumptions

When designing the dual-connectivity protocol, it has to be kept in mind that
security messages are attached to actual messages sent via the radio link. This
implicates restrictions in terms of message size, order, and number of sent
messages.

A 16 bits counter (SCC) serves as freshness input to the KDF for computing a
S-KeNB from a KeNB. Other approaches for providing freshness have been rejected
due to the following reasons:

The dual-connectivity security protocol should be decoupled from the
underlaying protocols, which is one argument why a time-stamp based approach,
relying on synchronized clocks, has not been chosen. Another reason for rejecting
the usage of time-stamps is that the clocks in LTE are only synchronized in terms
of relative time (time which has passed between two time-stamps), while the
actual sense of time can vary between different devices.

The use of nonces would not meet the demands of this specific protocol,
because the possibility of collision (repeating values) would be too high when
using a small range for the SCC. If one used a pseudo-random sequence to
generate nonces and used a method for detecting when re-use happens, then one
has to add additional messages to the system. Additional logic would have to be
implemented in both UE and MeNB on how to behave when a collision occurs. A
collision can be expected to occur after roughly 28 derivations (due to the birthday
paradox). In contrast, for a counter there is more control on handling repeating
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values, since one knows exactly when the repetition will occur and there is a
simple rule to detect it (wrap-around). Accordingly, when using a counter, the
repetition is guaranteed to not come earlier than the full 216 bits are used. Hence,
the usage of a counter makes the design of the overall architecture simpler then
the usage of a nonce. The randomness, provided by a nonce, would give some
increase in security (it provides some protection against pre-computation attacks
due to that the attacker cannot know the input when doing the pre-computations
for a given K-eNB). However, as the SCC variable is only 16 bits long, a nonce
does not provide that much of protection.

It is assumed, that MeNB can not be compromised at any time. Compromising
the MeNB would lead to revealing of the KeNB and the S-KeNB. The channel
between MeNB and UE and the channel between MeNB and SeNB are assumed
to be authenticated and secure.

6.1.2.2 Key Hierarchy

The KeNB is used to derive keys for confidentiality and integrity protection of
messages, exchanged via the secure channel (RCC) between MeNB and UE.
Furthermore, a session key S-KeNB is derived from the KeNB, which itself is used
as input to a derivation of KUPencs. For the sake of completeness it should be
mentioned that there are actually two different KUPencs:

1. A KUPenc(MeNB) for (user plane) data traffic encryption between MeNB
and UE is already established before execution of the dual-connectivity
protocol. However, this KUPenc(MeNB) is not relevant for the description
of the dual-connectivity protocol.

2. A KUPenc(SeNB) for (user plane) data traffic encryption between SeNB and
UE is established by the dual-connectivity protocol. From now on, the term
KUPenc will only be used for describing this KUPenc(SeNB).

In summary, the following keys are derived from the KeNB:

KRCCenc for encryption of signaling traffic between MeNB and UE

KRCCint for integrity protection of signaling traffic between MeNB and UE

S-KeNB for derivation of the KUPenc

KUPenc for data traffic encryption between SeNB and UE
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Figure 6.2 describes the derivation process of the KUPenc. The derivation
is carried out by different entities involved in the dual-connectivity Protocol
execution. The KeNB is initially known by the MeNB and the UE. During a
protocol run messages are sent by the MeNB to the UE and SeNB, so that
afterwards the UE and the SeNB both know the S-KeNB and can derive KUPenc.
The exact messages, exchanged during the dual-connectivity protocol execution,
are described in Section 6.1.2.6.

Figure 6.2: Key Derivation of KUPenc

The KDF for deriving a session key S-KeNB takes as input the KeNB and the
value of a SCC. The KUPenc is derived from the S-KeNB, where an algorithm
identifier string and the encryption type serve as further inputs to the KDF. In order
to achieve a distinct per packet encryption, an Initialization Vector (IV) consisting
of the Packet Data Convergence Protocol (PDCP) packet count, the DRB ID, and
the direction of the communication is used as input to the encryption algorithm.

6.1.2.3 Design Goals

For the dual-connectivity protocol the following design goals can be derived from
the current 3GPP drafts [44, 45]:

1. Key authentication (key secrecy) of KeNB and S-KeNB (respectively KUPenc)

2. Key freshness of S-KeNB (respectively KUPenc)

3. Mutual agreement on the key possession of S-KeNB (respectively KUPenc)

These three goals can be summarized by using the term Explicit Key
Authentication (described in Section 2.4.4).
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6.1.2.4 Security Considerations

In order to offload established bearers to SeNBs, the MeNB derives S-KeNBs from
a KeNB using SCCs as freshness inputs. One SCC value is always used for deriving
S-KeNBs for one specific SeNB and S-KeNBs are never repeating for different
SeNBs. A data plane encryption key KUPenc is derived by SeNB and UE from
S-KeNB as described in Figure 6.2.

The input parameters to the KDF for KUPenc derivation (algorithm identifier
and encryption type) can be considered as static values and the IV for the per-
packet encryption function comprises either static or possibly repeating values,
since the DRB-IDs and PDCP counters can wrap around. The PDCP count
increases every time a new packet is transmitted. Thus, the same S-KeNB could
be used with the same PDCP count and the same DRB-ID as soon as a DRB-ID
is reused. Accordingly, refreshing of the S-KeNB is required before a DRB-ID
repetition in order to prevent key-stream reuse. Therefore, the MeNB keeps track
of used DRB-IDs in each SeNB and before a DRB-ID reuse would occur, MeNB
increases the SCC value and derives a new S-KeNB.

Additionally, a wrap-around of the SCC requires choosing one of the following
three options to prevent key-stream reuse:

Option 1: Refresh of the KeNB

Option 2: Release of the UE

Option 3: No more offloads are done

The reason for this is that the derivation process of the KUPenc from the S-
KeNB includes only static or possibly repeating values (counters). A KeNB refresh
enables the MeNB will derive a fresh S-KeNB next time and a fresh KUPenc will
then be derived at SeNB and UE. [45]

6.1.2.5 Small Cell Counter (SCC) Maintenance

The SCC is a counter stored by the MeNB, which wraps around as soon as the
capacity of the variable (16 bits) is exhausted. The SCC is associated with the
security context of one UE and is maintained as long as this security context is
existent. The purpose of the SCC is to serve as freshness input to the KDF for
deriving a session key S-KeNB from KeNB. The SCC is sent over the air from the
MeNB to the UE, where it is assumed to be impossible to modify the SCC’s value
since the channel between MeNB and UE is integrity and replay protected.
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It is assumed by the UE, that the MeNB generates and increases SCCs
correctly and every time it is needed. When a security context for one UE is
established at the MeNB for the first time, the SCC’s value is set to ’0’ and the first
S-KeNB is computed. In contrast, an initialization of the SCC with a random value
would be conceivable, but such a course of action would lead to an earlier wrap
around of the SCC and moreover, re-computation tables would become bigger.
Hence, the initialization with a ’0’ value has been chosen.

When the first bearer is offloaded to a SeNB, the MeNB sets the SCC’s value
to ’1’ and subsequently the SCC is increased whenever the S-KeNB needs to be
refreshed (due to a wrap around of the DRB-ID counter). Before the SCC wraps
around (which means that it starts from ’0’ again) a refresh of the KeNB is carried
out by the MeNB and accordingly, a new S-KeNB is computed with a SCC of ’0’
as input.
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6.1.2.6 Generic Message Flow

Figure 6.3 describes an example message flow exchanged during an execution
of the dual-connectivity protocol, which is based on Figure 2.1.1-1 (”Possible
scenarios of dual connectivity with a SeNB and mechanism for key handling”)
introduced in the 3GPP draft [45]. Figure 6.3 includes only a subset of the
messages shown in Figure 2.1.1-1, since this subset is assumed to be sufficient
to derive formal models for automated verification of the required security
properties.

Figure 6.3: Generic Dual-Connectivity Message Flow Example

As it is infeasible to properly model all of the necessary concepts of the dual-
connectivity protocol using the tools Scyther and Tamarin, two specific message
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flows viable for each of these tools will be introduced in Sections 6.2.2.1 and
6.2.2.2. These two tool specific message flows will extend or simplify the generic
message flow described in Figure 6.3 .

In the generic dual-connectivity message flow example above, UE and MeNB
are initially in possession of the secret key KeNB and SeNB and MeNB share the
secret key Kx2. After the protocol’s successful termination, the S-KeNB (derived
from the KeNB by using a KDF) should be known to SeNB and UE.

6.1.2.6.1 Initial Bearer-Offload

In step 1 MeNB instantiates the SCC’s value and the DRB count with ’1’ (which
implies the first bearer addition) and computes the first S-KeNB (S-KeNB#1). In
step 2 the MeNB sends the SCC’s value together with the DRB to the UE.
Prior knowledge of the KeNB by SeNB should be avoided and the control of
the resources, allocated to the UE, should remain at the MeNB. Hence, only the
S-KeNB#1 is transmitted to SeNB, together with the DRB, in step 3.

Finally, the UE can compute S-KeNB#1 (using KeNB) in step 4 and both parties,
UE and SeNB, are now able to derive KUPenc#1 to encrypt data plane traffic. After
the derivation of KUPenc#1 the S-KeNB#1 can be deleted at the SeNB, since there
is no need for further storage. ∗

6.1.2.6.2 Bearer Addition

When an additional bearer should be offloaded to a SeNB, which has already
established S-KeNB#1 with the MeNB, then this S-KeNB and the derived KUPenc
can be used to encrypt data plane traffic related to the additional bearers (if they
can be assigned DRB-IDs for the same PDCP counts, thus the DRB-ID space is
not exhausted). The KUPenc#1 remains valid while the MeNB continues to use
S-KeNB#1 (as the derivation of KUPenc#1 does not change until S-KeNB changes).
For example, in Figure 6.3 the MeNB increases the DRB count to ’2’ in step 5 and
sends a DRB addition message to the UE in step 6 and to the SeNB in step 7. In
this case, the key KUPenc#1, which has been derived from S-KeNB#1, can be used
to encrypt data plane traffic related to DRB-ID ’1’ and ’2’, since the encryption
algorithm takes the DRB-ID and the PDCP count as freshness input to the IV in
order to prevent key-stream reuse.

∗ In keeping with the general desire of eliminating storage of keying material when it is not
necessary, thus minimizing the risk of exposing it.
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6.1.2.6.3 Session Key Refresh

As soon as the DRB-ID space is depleted, the possibility of DRB-ID reuse with
the same KUPenc would occur, hence this has to be prevented. In order to avoid
this, the MeNB increases the SCC’s value and performs a refresh of the S-KeNB
when the DRB-ID space is close to being exhausted, as described in step 8.

As soon as a new bearer should be off-loaded, the new value of SCC and the
ID of the bearer to be added (which is again ’1’ after a wrap-around of the DRB-
IDs) is sent to the UE in step 9 and S-KeNB#2 is sent to SeNB in step 10. Finally,
the UE derives the S-KeNB#2 in step 11 and both, UE and SeNB can derive a
fresh KUPenc#2 to encrypt data plane traffic related to subsequently added bearers.
KUPenc#1 continues to be used for the existing bearers (i.e., those that have been
previously set up)

Modeling a possible wrap-around of the SCC, which would additionally
require either a refresh of KeNB at the MeNB or a release of the UE, has been
left out in the above figure in order to avoid unnecessary complexity.

6.2 Formal Verification
In this section, different formal models (one for Scyther and one for Tamarin) will
be derived from the design model specified in Section 6.1. The need for different
models for the two model checking tools that have been used has arisen due to
distinct modeling possibilities and limitations of each of these tools. The common
basics of formal models of both tools are described in Section 6.2.1. Afterwards,
the tool specific models and related message flows (based on the generic Dual-
Connectivity message flow described in Section 6.1.2.6) are introduced in Section
6.2.2.

6.2.1 Generic Formal Model
The tool specific formal models for Scyther and Tamarin both comprise a protocol
model, an adversary model, and a specification of the desired security properties,
which lays a common base for protocol verification of the Dual-Connectivity
Protocol.

6.2.1.1 Generic Protocol Model

The dual-connectivity protocol requires three roles: a MeNB, an UE, and a SeNB.
The keys which are used and constructed during the protocol’s execution in the
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formal model are only a subset of those described in Section 6.1.2.2. The reason
for this is that two keys k1 and k2 can be modeled as one key in the formal
model when k2 is derived from k1 by using a publicly known KDF with publicly
known and static input (for instance an algorithm identifier). If so, then it can
be assumed that it makes no difference in terms of security whether k1 or k2 is
used to apply cryptographic operations to messages, since the KDF is part of the
adversary’s knowledge and the adversary can compute k2 as soon as it knows
k1. Accordingly, keys which are derived from KeNB for encryption and integrity
protection of the RCC link (KRCCenc, KRCCint) are both modeled as KeNB in the
formal model. Furthermore, keys derived from Kx2 for encryption and integrity
protection of the X2-C link are modeled as Kx2.

Finally, the protocol model will be expressed through message flows consisting
of terms understandable by the two model checking tools. These message flows,
which differ for the two tools Scyther and Tamarin, will be introduced in Section
6.2.2, in particular in Figure 6.4 and Figure 6.5.

6.2.1.2 Generic Adversary Model

To evaluate the dual-connectivity protocol, the basic Dolev-Yao model [10] will
be used, which was described in Section 3.1.3. Additionally, it is a prerequisite
that no compromising of the MeNB is possible and neither long-term keys nor
session keys can be revealed.

6.2.1.3 Generic Security Properties

With regard to the design goals of the dual-connectivity protocol described in
Section 6.1.2.3, various security properties can be defined in the formal model.
All properties linked to entity authentication can be neglected, since authenticated
channels are assumed to exist pairwise between MeNB and UE, and between
MeNB and SeNB. Key-related properties can be taken from the design goals
previously defined in Section 6.1.2.3.

6.2.2 Tool Specific Formal Models
This section describes the basics of modeling the dual-connectivity protocol with
Scyther and Tamarin Prover by introducing tool specific message flows derived
from the generic formal model (see Section 6.2.1) and generic message flow (see
Section 6.1.2.6). As the two used tools offer different possibilities and limitations,
distinct message flows have been designed for Scyther and Tamarin. These
message flows lay the base for implementing the dual-connectivity protocol using
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the tool specific protocol input languages. The input files for protocol verification
with Scyther and Tamarin can be found in the Appendices A.1, B.1, and B.3.

6.2.2.1 Scyther Model

Due to specific properties of the Scyther tool, the protocol input model for Scyther
is a modified version of the generic formal model. Unfortunately, counters could
not be modeled in a satisfying way, hence DRB-IDs were neglected and the
SCC was implemented as a simple nonce generated by the MeNB. This creates
a problem since a nonce is never predictable, while a counter is. Thus, the
protocol model in Scyther has a stronger computational protection against pre-
computational attacks than the real protocol. Furthermore, a wrap-around of
counters could not be implemented in Scyther, which represents another problem
caused by limitations of the tool.

In order to make Scyther understand the secure channels, all messages
between MeNB and UE, and between MeNB and SeNB are encrypted with secret
keys shared between the two related parties. To be precise, this encryption would
not be necessary for all exchanged messages, as for instance the sending of
the SCC from MeNB to UE is only in need of integrity and replay protection.
However, in order to be consistent, all messages sent via secure channels are
encrypted in the model in Figure 6.4.

Figure 6.4 outlines an example message flow of the Scyther model.

Figure 6.4: Dual-Connectivity Message Flow Example (Scyther)
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In step 1 the MeNB creates and instantiates the counter SCC. The session key
S-KeNB is computed using a KDF, taking the SCC and KeNB as input.

In step 2 the MeNB sends the value of the SCC to the UE, encrypted with
KeNB. This enables the UE to compute S-KeNB in step 4 by applying a KDF to the
SCC and the KeNB. The MeNB sends the derived session key S-KeNB to the SeNB
in step 3, encrypted with Kx2.

Finally, in step 5 the UE sends a nonce to the SeNB, encrypted with S-KeNB,
to check whether the SeNB can decrypt it correctly, hence the S-KeNB exchange
was correct. If so, the protocol execution succeeds in step 6.

The complete Scyther input file can be found in the Appendix A.1.

6.2.2.1.1 Adversary Modeling

When it comes to adversary modeling, Scyther offers two possible options for
describing how Long-Term Key Reveal (LKR) can be carried out: LKRothers and
LKRactor. When choosing the first option, the adversary can learn the key of any
agent who is not an intended partner of the protocol to be verified. For example,
if Alice communicates with Bob, Dave’s long-term key can be revealed, but never
Alice’s or Bob’s long-term keys.

In contrast, the latter option describes an adversary who can learn the long-
term-keys of agents by executing a test thread. In this case, if Alice communicates
with Bob, Alice’s and Bob’s long-term keys can be revealed to the adversary. The
setting LKRothers is chosen as default option by Scyther. To satisfy the adversary
model of the dual-connectivity protocol, the options LKRothers and LKRactors will
both be disabled, since revelation of long-term keys is assumed to be impossible.

6.2.2.1.2 Security Properties Modeling and Proving

Since the Scyther tool has several restrictions, it was not possible to model all of
the initially claimed security properties (see Section 6.1.2.3).
Implementing key freshness of the S-KeNB has not been feasible due to an inability
to model counters in Scyther. As a result, the SCC is defined as a simple nonce
and DRB-IDs are not implemented at all in the Scyther input file. Hence, it is
impossible to check whether the same value of the SCC is reused with the same
DRB-ID, which is the crucial property leading to verification of KUPenc freshness.
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When trying to model mutual session key possession of the S-KeNB (by SeNB
and UE), an additional test message containing a nonce was introduced, which
does not exist in the generic model. The receive event listed below is the actual
Scyther implementation of this message sending in step 5 in Figure 6.4.

recv(UE, SeNB, {n-ue}SK-eNB)

Scyther implicitly compares every incoming message to the specified pattern
in the receive event and drops the message if it does not match this pattern. This
pattern matching can be seen as an implicit MAC on every sent message, which is
why there is no need to model MACs explicitly. The above receive event requires
a message containing a value for n-ue, encrypted with the session key SK-eNB.

If all roles of the dual-connectivity protocol are reachable, then it means that
there exists at least one trace where all roles were able to run the protocol until
the last defined event. If so, UE and SeNB were in possession of the same session
key in at least one trace, because they were able to encrypt and decrypt the nonce
n-ue properly. Since all roles of the dual-connectivity protocol could be verified
as reachable, the property of mutual session key possession holds for at least one
trace. However, mutual key possession cannot be proven for all traces, thus not
all protocol runs have been proven to lead to mutual key possession.

It is possible to model key authentication (or key secrecy) of KeNB and S-KeNB
from the local view of a specific role.

The related claim in Scyther is written as:

claim (<Role>,Secret,k(MeNB,UE));
claim (<Role>,Secret,SK-eNB);

In the above listing, which is a simplified extract of the Scyther protocol input
file, the initially shared key KeNB is modeled as k(MeNB, UE), using Scyther’s
predefined symmetric key infrastructure. S-KeNB denotes the session key derived
from the KeNB.

The property of key secrecy can be proven in the unbounded model from the
local view of the roles MeNB and UE. In contrast, secrecy from the local view of
SeNB can only be verified after introducing a bound. This is linked to a limitation
of Scyther to process ticket variables, which have been used to model the session
key from the perspective of SeNB. However, if this introduced bound is greater
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than twice the number of involved roles (accordingly, greater than 6), the result
can still be meaningful, as described in Section 3.2.4.

The following table shows the results of the formal verification of the dual-
connectivity protocol with Scyther. It indicates whether each of the required
properties could be modeled and if so, whether this property could be verified
or falsified in the unbounded or bounded model.

Table 6.1: Scyther Verification Results

Property Modeling Possibility Result Performance
Key Secrecy Yes Verified Unbounded/Bounded

Termination
Key Freshness No - -
Key Possession No - -
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6.2.2.2 Tamarin Models

Similiar to the Scyther model (see Section 6.2.2.1), modeling in Tamarin requires
several modifications of the generic formal model. In order to create secure
channels, encryption was added to all messages transferred between MeNB and
UE, and between MeNB and SeNB.

Several features of the generic model, which are not needed from a security
point of view, were not included in order to keep the Tamarin models simple
and increase the possibility of the tool successfully reaching termination. The
DRB-IDs were abstracted away and only the SCC (counter) was implemented,
since both inputs function in a similar way. The SCC is steadily increased until
the range of the storing variable is exhausted, causing a reset of the counter to ’0’.
A reset of the SCC requires a refresh of the KeNB, while a DRB-ID reuse leads to
an increase of the SCC (implying a refresh of the S-KeNB). Accordingly, it can be
assumed as sufficient for a logical verification of the protocol’s security to model
only the SCC and ignore the DRB-IDs.

In order to model the dual-connectivity protocol in Tamarin, built-in functions
for symmetric encryption and multiset modeling (needed for the modeling of
counters) were used. Furthermore, the following new functions were defined:

k/1 : a symmetric key generation function, taking one value as input (unary
function)

KDF/2 : a key derivation function, taking two values as input (binary function)

Two Tamarin models were implemented in order to show the behavior of the
dual-connectivity protocol with regard to key freshness of the S-KeNB. The first
model illustrates that session key freshness fails if the SCC counter wraps around
and neither the KeNB is refreshed nor the UE is released. The related Tamarin Input
File 1 (Without UE Release) can be found in Appendix B.1. A counterexample,
showing the falsification of key freshness when checking Input File 1, is included
in Appendix B.2.

The second Tamarin model implements the release of the UE as soon as
the SCC is about to wrap around (described as option 2 in Section 6.1.2.4),
accordingly session key freshness holds for this model. The related Tamarin Input
File 2 (UE Release before SCC Wrap-Around) can be found in Appendix B.3.
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6.2.2.2.1 Tamarin Model 1: Without UE Release

Figure 6.5 shows an example message flow of the Tamarin model 1 (Without UE
Release).

Figure 6.5: Dual-Connectivity Message Flow Example (Tamarin)

During the initial offload, the MeNB instantiates the SCC’s value with ’1’
(implying the first bearer addition at a UE) and computes the first S-KeNB
(S-KeNB#1) in step 1. In step 2 and step 3 the MeNB sends the SCC’s value to the
UE and the S-KeNB#1 to SeNB. Following this, the UE can compute S-KeNB#1
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(using KeNB) in step 4.

Subsequently, the SCC can either be increased or reset to ’1’. If the SCC is
increased, a new S-KeNB is derived for a SCC with value ’SCC + 1’ as described in
step 5. Next, the increased SCC is sent to the UE in step 6 and the new S-KeNB#2
is transmitted to SeNB. After that, the SCC might be increased n<216 times (since
the SCC is a 16-bit counter), leading to the derivation of n new S-KeNB values.

At some point in time the SCC is reset to ’1’ as illustrated in step 9. This
represents the wrap-around of the SCC and leads to a reuse of the same S-KeNB
twice in a row, since the SCC becomes ’1’ again. Thus, the S-KeNB#n has the same
value as the initial S-KeNB#1, which was derived during the initial offload. This
circumstance is prevented by the Dual-Connectivity protocol by either refreshing
the KeNB (Option 1), releasing the UE before a possible SCC wrap-around (Option
2), or stopping the offloading of bearers (Options 3) as described in Section
6.1.2.4.

6.2.2.2.2 Tamarin Model 2: UE Release before SCC Wrap-Around

The second Tamarin input model was implemented in order to show that choosing
one of the three options to prevent key stream reuse leads to verification of session
key freshness. This model utilizes option 2. Thus, a case were the UE is released
before the SCC wraps around is modeled. Accordingly, steps 9-12 in Figure 6.5
are never executed.

The reason why modeling option 2 was chosen is that this option leads to a
simple Tamarin input file which terminates easily. When implementing option
1 (KeNB refresh) the computing of a hashed key chain for the KeNB led to a
sophisticated input file, which did not terminate. The implementation of option
2 implicitly includes option 3 (no more bearer offloads) as well, since no more
bearers for one specific dual-connecitivity context (between one SeNB and one
UE) are offloaded when the UE is released. The input file 2 can be found in
Appendix B.3.

6.2.2.2.3 Security Properties Modeling and Proving

All properties which were defined as design goals in Section 6.1.2.3 could be
modeled in Tamarin. However, if the model becomes too complicated due to the
use of several complex structures such as counters and loops, the likelihood for
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non-termination increases. Despite the use of different heuristics (see Section
3.3.2.2) no termination for all required security properties could be reached when
implementing the SCC, DRB-IDs, and the KeNB refresh. Accordingly, simpler
models were created, abstracting away the DRB-IDs and the KeNB refresh.

No verification of key secrecy and key possession could be achieved with either
of the two Tamarin input models due to non-termination of the tool. After the tool
did not terminate for over 24 hours, it quitted automatically.

However, the property of key freshness could be falsified for input model 1
and verified for input model 2. This shows the need for preventing the S-KeNB
reuse (caused by a SCC wrap-around) by either refreshing the KeNB (Option 1) or
releasing the UE (Option 2). If option 2 is taken and the UE is released before
the SCC wraps around (as it is done when executing input model 2), session key
freshness can be verified. For both input models, the tool terminated within a few
seconds for the key freshness property.

In order to model key freshness in Tamarin, additional constructs were used
which do not exist in the actual protocol model. To prevent message replay,
nonces and one time facts (facts which can only be consumed once) were added
to each sent message. Additionally, a process identifier (pid) was introduced to
differentiate between threads (see Section 3.1.2 for an explanation of threads)
when testing for session key freshness. One pid is always related to one security
association between one MeNB and one UE. The property of session key freshness
is expressed as a Tamarin lemma as follows:

lemma key_freshness:
"not(Ex actor key pid #n #m.
SessionKey(actor, key, pid) @ n &
SessionKey(actor, key, pid) @ m & n < m)"

The above lemma demands that no trace exists where the same session key k
is reused by the same actor a with the same pid at different points in time n and
m.

Three lemmas, which are not directly linked to any security property, were
added to check the required properties of the SCC. The first lemma
(“counters linear order”) proves whether the counter’s value increases in a linear
order. The second lemma (“counter reset”) assures that the initialization of the
counter always takes place before the reset. The third lemma (“counter increases”)
checks that the counter initialization always preceded the counter increase. For the
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first Tamarin Input File (without UE Release), all counter property related lemmas
could be verified. In contrast, the lemma“counter reset” cannot be proven for the
second Tamarin Input File (UE Release before SCC Wrap-Around), since the UE
is released before the counter wraps around and hence, no counter reset takes
place.

The following table shows an overview of the required security properties,
whether their modeling was possible in Tamarin, the verification result and the
performance. The performance indicates whether the tool terminated for the
respective property and if so, whether the termination could be reached in the
bounded or unbounded model.

Table 6.2: Tamarin Verification Results

Property Modeling Possibility Result Performance
Key Secrecy yes - no termination
Key Freshness yes verified unbounded

termination
Key Possession yes - no termination
Counter Linear Order yes verified unbounded

termination
Counter Reset yes verified unbounded

termination
Counter Increase yes verified unbounded

termination



Chapter 7

Evaluation of Applied Model
Checking Tools

Within this chapter, the two used model checking tools Scyther and Tamarin are
evaluated with regards to the following criteria:

Modeling possibilities and restrictions: Each tool should be evaluated as
to whether the required concepts for protocol modeling such as control flows
(e.g. loops, if-statements), state information, or cryptographic primitives can be
implemented using the respective tool.

Usability: Each tool should be analyzed as to how easy it is to learn the tool input
language of the respective tool. Moreover, the (graphical) user interface should be
evaluated concerning the ease of use. The helpfulness of the user manual should
be discussed.

Usefulness of results: Each tool should be assessed as to how useful the
respective tool’s output is in view of understandability and concreteness of the
verification results.

Performance: The likelihood of the tool terminating in the bounded and
unbounded model should be evaluated.

7.1 Evaluation of Scyther

Scyther had several modeling restrictions, as it was mainly designed for evaluation
of key establishment protocols. Difficulties arise when implementing protocols
for scenarios where keys or trust relations are already established. As an example,
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it is infeasible to represent secure channels in Scyther.

Scyther relies on Lowe’s definitions of authentication properties (see Section
3.1.4.2), but it is not clear how the definitions should be extended when using
protocols with more than two communicating parties. Hence, there is no
possibility to model injective agreement, weak agreement, or synchronization
between only two parties when implementing a multi-party protocol in Scyther.
For instance, in the case of a three-party protocol, agreement or synchronization
between all three parties is required in order to achieve verification of the
respective property, even if the property’s proof is only needed between two
parties. Additionally, no definition of custom equations is supported in Scyther
and it is impossible to model custom security properties. Only the predefined
security properties (see Section 3.3.1.2) are available.

Moreover, Scyther does not support the modeling of complex control structures
such as counters, loops, or states, as already discussed in Section 6.2.2.1.
Available options to model counter-like structures in Scyther are the use of either
nonces or variables. When using the first option, the counter is implemented
as a freshly generated value. In contrast, the second option implements the
counter as a variable, which is received within a message and consumed from the
network. However, since Scyther cannot keep a variable alive, this received value
(in option two) can again only be either a freshly generated or random value from
another party or the adversary. Hence, these two options of modeling counters are
insufficient in cases where incrementing a counter and possibly repeating values
of a counter variable need to be taken in account.

The usability of Scyther is high, since the tool’s input language is intuitive
and easy to learn. It was straight-forward to model the design model of the dual-
connectivity-protocol in Scyther (in consideration of Scyther’s limitation to model
certain constructs). The graphical user interface is understandable and allows the
user to set various options (for example a bound can be defined or the adversary
model can be redefined). The Scyther user manual is still a draft, but it is helpful
in terms of learning the protocol input syntax. Furthermore, several example
protocol implementations are available as guidance.

The tool output of the verification results is understandable. It comprises
a list of all requested security properties and the actual result (verification or
falsification). It points out whether the termination was reached in the bounded or
the unbounded model. In case of a property’s falsification, counterexamples can
be constructed and illustrated in a graphical way.



7.2. EVALUATION OF TAMARIN 63

Regarding Scyther’s performance, it could be observed that the termination in
the unbounded model usually succeeds. This is due to the fact that the modeling of
complex protocol structures is restricted by the limited input language. However,
if ticket variables are used, then the tool only succeeds in the bounded model.

7.2 Evaluation of Tamarin
Tamarin’s modeling possibilities turned out to be versatile. It is feasible to model
and verify protocols using complex control flows such as branching and looping,
which cannot be achieved when using Scyther. User-defined equational theories
can be handled, thus the modeling of algebraic properties of cryptographic
operations is possible. For instance, the modulo equational theory, bilinear
pairing, and Diffie-Hellmann exponentiation can be specified. Additionally, the
modeling of explicit states is provided; for instance, this enables the storing of the
last value of a variable received by a role, which could be used to model concepts
such as counters.

Tamarin supports a wide range of security properties, which can be defined
in-depth by the user by using first-order logic, inferring quantifications over
messages and time points. Hence, it is possible to define customized properties
such as key freshness or diverse features of a counter (linear order of values,
increasing values, etc.) as discussed in Section 6.2.2.2. Moreover, adversaries
can be described in more detail than in Scyther, even though an extension of
Scyther’s adversary models has been suggested in [46]. For instance, a particularly
strong intruder revealing random numbers and short-term and long-term keys can
be described in Tamarin.

The usability of Tamarin is slightly lowered as it initially takes some time to
become familiar with the protocol input language, especially for non-professionals
or people without programming background. However, once the concept of the
multi-set rewriting rules is understood, the syntax is intuitive to use. Tamarin
offers a command line interface and an interactive mode with a user-friendly
graphical user interface. The Tamarin manual and tutorial are still draft versions,
but they are helpful when learning the input language. There are reference
implementations of several real-world protocols available. However, these are
mainly related to PKI protocols though.
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The counter (SCC) is modeled as a persistent fact, storing an identifier pid and
a value scc. This fact can be consumed and the counter’s value can be increased
or reset as described in the following listing.

rule CounterInit:
[Fr(˜pid)] //create a fresh pid

-->
[Counter(˜pid, ’1’)] //create a counter for pid

//and initialize it with ’1’

rule CounterIncrease:
[Counter(pid, scc)]

-->
[Counter(pid, scc + ’1’)] //increase counter’s value

rule CounterReset:
[Counter(pid, scc)]

-->
[Counter(pid, ’1’)] //reset counter’s value to ’1’

The tool output in the command-line interface is a listing of the properties and
the respective verification results. Additionally, the steps of the tool’s calculation
are displayed, which are quite high-level and thus, hard to understand for a person
who is not familiar with the internals of Tamarin’s algorithm. Alternatively, the
interactive mode offers the possibility of constructing graphical counterexamples
of falsified security properties, which are easy to understand and helpful in many
cases. A sample of such a counterexample can be found in Appendix B.2.

The biggest drawback of Tamarin is its performance as there is a high
probability of non-termination when the input model becomes too complex. As
soon as either several control structures (such as loops, and counters) are used
within a protocol definition or numerous roles are defined, the likelihood of
termination decreases. Hence, the tool does not scale very well. Tamarin offers
different heuristics to increase the possibility of termination (see Section 3.3.2.3).
However, these heuristics are still in an experimental state and no differences
in terms of termination were identified when applying different heuristics to the
protocol examined in this thesis project.

7.3 Evaluation Summary
The two applied model checking tools Scyther and Tamarin show different
drawbacks and advantages. Scyther is easy to use due to its simplicity. On the
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other hand, it reveals severe restrictions in protocol modeling as many concepts
cannot be implemented. In contrast, Tamarin has a more sophisticated protocol
input language and offers more possibilities to model real-world protocols (using
loops and states). However, Tamarin does not scale well and tool termination can
often not be reached when the protocol input model is too complex.

In summary, both tools revealed several problems when applied to a real-world
LTE protocol. Neither tool is mature enough to capture what is needed for general
use in the practical setting this thesis was written in. Too many concepts have to
be abstracted away and still, termination often could not be reached. In general, it
is advisable to choose a tool for protocol verification that offers a good trade-off
between language complexity and modeling options.





Chapter 8

Conclusions

This chapter wraps up this thesis by discussing major results, insights, and
possibilities for future work. Furthermore, reflections on the ethical and social
impact of the work carried out are brought up.

8.1 Conclusion

This section discusses whether the initially claimed goals were reached and which
insights were gained. Moreover, several suggestions for follow-up work are given.

8.1.1 Goals

All of the primary goals (described in Section 1.1) were achieved within this
thesis. A design model of the dual-connectivity protocol was created (see Section
6.1) and a formal model derived (see Section 6.2.1). Following this, tool specific
models were constructed, taking into account the possibilities and limitations of
the chosen model checking tools: Scyther and Tamarin (see Section 6.2.2.1 and
Section 6.2.2.2). These tool models served as a base for implementing protocol
models (tool input files) using the tool specific input languages. The input files
can be found in the Appendices A.1, B.1, and B.3. The verification results of
these protocol models revealed no security flaws, hence no further refinement of
the initial design model was required since the initial hypothesis (claiming that
the dual-connectivity protocol is secure with regards to the formal model) has
not been falsified. Finally, the applied tools and the general usefulness of formal
methods for protocol standardization were evaluated in Section 7.1 and Section
7.2.
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8.1.2 Insights and Suggestions for Further Work

During the work with formal methods, some restrictions of the applied model
checking tools were encountered. These restrictions made it difficult to properly
model the LTE dual-connectivity protocol with the chosen tools. The main
drawback of Scyther turned out to be its focus on key exchange protocols, which
introduced limitations when modeling other types of protocols. In contrast,
Tamarin offers plenty of possibilities to model various protocols. However, the
tool does not scale well. The likelihood of non-termination of Tamarin increases
as soon as the protocol input models become too complex.

The observed limitations of the applied model checking tools slightly hinder
the initially assumed benefits of using these tools in the process of protocol
standardization. Still, in general formal methods can be highly useful since
they imply a careful consideration of a protocol’s fundamentals when designing
a formal model. The associated reflection on the logical blocks constituting
a protocol can be considered as very helpful with regard to improving and
structuring the process of protocol design. Hence, increased usage of formal
methods in protocol standardization is recommended in conjunction with current
practices.

8.2 Future Work

As the model checkers used within this thesis project revealed several limitations,
an extension of these tools with regards to the discovered weaknesses would be
desirable. Since Tamarin is an extension of Scyther and offers versatile options
to model real-world protocols, it seems reasonable to put effort into extending the
Tamarin tool.

Furthermore, it would be conceivable to study the termination problems of
Tamarin in-depth. Additional modifications of the current dual-connectivity
protocol models could be tried out to possibly achieve termination for those
properties, which did not terminate yet. Prospectively, it would be feasible to
model and verify the dual-connectivity protocol with different model checking
tools in addition to Scyther and Tamarin.

The gained knowledge of model checkers could be used to formalize and
verify protocols during their standardization process in conjunction to current
practices. Potentially, formal verification could also be applied to protocols,
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developed in a different area than LTE. These protocols might be more suitable for
model checking tools and hence, the verification results might be more helpful.

8.3 Required Reflections
The formal modeling and verification of the dual-connectivity protocol carried out
within this thesis project raises and solves several economic and ethical issues.
Using formal methods can speed up and improve the standardization process
of a protocol as it outputs real attack patterns in the presence of flaws in the
protocol design. This offers the possibility of detecting and then repairing possible
weaknesses earlier in the development process.

However, a problem may arise due to the fact that the construction of protocol
input models is subject to possible human failure. Although clear rules are defined
for describing formal models, a margin is left when it comes to the definition
of desired security properties and adversary models. This can affect the final
verification result and in the worst case, falsify the result (for instance if an overly
weak adversary model is defined or the definition of necessary security properties
is left out).

The protocol, which has been verified, handles the security of the dual-
connectivity protocol which currently is in the middle of its standardization
process. The evaluation presented in this thesis assures that non-authorized
entities are hindered from eavesdropping and altering communication and thereby
violating the security and privacy of the user.

In general, the dual-connectivity protocol facilitates load balancing between
base stations (MeNBs and SeNBs), thus enabling efficient usage of available
resources at the SeNBs. Through bearer handovers, established by the dual-
connectivity protocol, better system performance and better use of cell capacity
can be achieved. This offers increased user throughput (on both, upload and
download links) while maintaining user mobility. [47, 48]
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Appendix A

Scyther

A.1 Scyther Input File

hashfunction KDF;
macro SK-eNB = KDF(k(MeNB,UE), scc);

protocol dual-connectivity (UE, MeNB, SeNB)
{

role UE {
fresh n-ue: Nonce;
var scc: Nonce;

recv_1(MeNB, UE, {scc}k(MeNB,UE));
send_3(UE, SeNB, {n-ue}SK-eNB);

claim (UE, Secret, k(MeNB,UE));
claim (UE, Secret, n-ue);

}

role MeNB {
fresh scc: Nonce;

send_1(MeNB, UE, {scc}k(MeNB,UE));
send_2(MeNB,SeNB,{SK-eNB}k(MeNB,SeNB));

claim (MeNB, Secret, k(MeNB,UE));
claim (MeNB, Secret, SK-eNB);

}
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role SeNB {
var SK-eNB-SeNB: Ticket;
var n-ue: Nonce;

recv_2(MeNB,SeNB,{SK-eNB-SeNB}k(MeNB,SeNB));
recv_3(UE, SeNB, {n-ue}SK-eNB-SeNB);

claim(SeNB, Secret, SK-eNB-SeNB);
claim (SeNB, Secret, n-ue);

}
}



Appendix B

Tamarin

B.1 Tamarin Input File 1: Without UE Release

theory MyDualConnectivity

begin

functions: KDF/1
builtins: multiset, hashing, symmetric-encryption

// Counter creation and Provisioning of symmetric keys
rule CounterInit:

[Fr(˜pid),
Fr(˜ltk)]

--[Start(˜pid)]->
[Counter(˜pid, ’1’),
!Ltk($A, $B, ˜pid, h(˜ltk)),
!Pid(˜pid)]

// Offload start (scc counter increment)
rule MeNB_Offload_Cmd_Inc:
let

SKenb = KDF(<Kenb, scc>)
in

[!Pid(pid),
Fr(˜n),
Counter(pid, scc),
!Ltk(MeNB, UE, pid, Kenb),
!Ltk(MeNB, SeNB, pid, Kx2)]

--[Inc(pid, scc)]->
[Out(senc{<scc, ˜n>}Kenb),
OneTime_Offload_UE(pid, scc, ˜n), //prevent replay
Out(senc{<SKenb, ˜n>}Kx2),
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OneTime_Offload_SeNB(pid, scc, ˜n),
Counter(pid, scc + ’1’)]

rule MeNB_Offload_Cmd_Reset:
let

SKenb = KDF(<Kenb, scc>)
in

[!Pid(pid),
Fr(˜n2),
Counter(pid, scc),
!Ltk(MeNB, UE, pid, Kenb),
!Ltk(MeNB, SeNB, pid, Kx2)]

--[Reset(pid, scc)]->
[Out(senc{<scc, ˜n2>}Kenb),
OneTime_Offload_UE(pid, scc, ˜n2), //prevent replay
Out(senc{<SKenb, ˜n2>}Kx2),
OneTime_Offload_SeNB(pid, scc, ˜n2),
Counter(pid, ’1’)]

rule UE_Offload_Cmd:
let

SKenb = KDF(<Kenb, scc>)
in

[OneTime_Offload_UE(pid, scc, n),
!Ltk(MeNB, UE, pid, Kenb),
In(senc{<scc, n>}Kenb)]

--[SessionKey(UE, SKenb, pid)]->
[]

rule SeNB_Offload_Cmd:
[!Ltk(MeNB, SeNB, pid, Kx2),
OneTime_Offload_SeNB(pid, scc, n),
In(senc{<SKenb, n>}Kx2)]

-->
[]

rule KeyReveal:

[!Pid(pid),
!Ltk(A, B, pid, k)]

--[LtkReveal()]->
[Out(k)]

lemma counters_linear_order[use_induction]:
"All x y #n #m s.

Inc(s, x) @ n & Inc(s, y) @ m
==> (Ex z. x + z = y) | (Ex z. y + z = x) | y = x"
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lemma counter_reset:
exists-trace
"Ex s x #n #m.

Start(s) @ n & Reset(s, x) @ m & n < m"

lemma counter_increases:
exists-trace
"Ex s x #n #m.

Start(s) @ n & Inc(s, x) @ m & n < m"

lemma key_freshness:
"not(Ex a k pid #n #m.

SessionKey(a, k, pid) @ n &
SessionKey(a, k, pid) @ m & n < m)"

end
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B.2 Tamarin Counterexample (Input File 1)
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B.3 Tamarin Input File 2: UE Release before SCC
Wrap-Around

theory MyDualConnectivity

begin

functions: KDF/1
builtins: multiset, hashing, symmetric-encryption

// Counter creation and Provisioning of symmetric keys
rule CounterInit:

[Fr(˜pid),
Fr(˜ltk)]

--[Start(˜pid)]->
[Counter(˜pid, ’1’),
!Ltk($A, $B, ˜pid, h(˜ltk)),
!Pid(˜pid)]

// Offload start (scc counter increment)
rule MeNB_Offload_Cmd_Inc:

let
SKenb = KDF(<Kenb, scc>)

in
[!Pid(pid),
Fr(˜n),
Counter(pid, scc),
!Ltk(MeNB, UE, pid, Kenb),
!Ltk(MeNB, SeNB, pid, Kx2)]

--[Inc(pid, scc)]->

[Out(senc{<scc, ˜n>}Kenb),
OneTime_Offload_UE(pid, scc, ˜n), //prevent replay
Out(senc{<SKenb, ˜n>}Kx2),
OneTime_Offload_SeNB(pid, scc, ˜n),
Counter(pid, scc + ’1’)]
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rule UE_Offload_Cmd:

let
SKenb = KDF(<Kenb, scc>)

in
[OneTime_Offload_UE(pid, scc, n),
!Ltk(MeNB, UE, pid, Kenb),
In(senc{<scc, n>}Kenb)]

--[SessionKey(UE, SKenb, pid, n)]->
[]

rule SeNB_Offload_Cmd:
[!Ltk(MeNB, SeNB, pid, Kx2),
OneTime_Offload_SeNB(pid, scc, n),
In(senc{<SKenb, n>}Kx2)]

-->
[]

rule KeyReveal:
[!Pid(pid),
!Ltk(A, B, pid, k)]

--[LtkReveal()]->
[Out(k)]

lemma counters_linear_order[use_induction]:
"All x y #n #m s.

Inc(s, x) @ n & Inc(s, y) @ m
==> (Ex z. x + z = y) | (Ex z. y + z = x) | y = x"

lemma counter_increases:
exists-trace
"Ex s x #n #m.

Start(s) @ n & Inc(s, x) @ m & n < m"

lemma key_freshness:
"not(Ex a k pid nonce #n #m.

SessionKey(a, k, pid, nonce) @ n &
SessionKey(a, k, pid, nonce) @ m & n < m)"

end





 

TRITA-ICT-EX-2014:94 

www.kth.se 


	Introduction
	Problem Description and Context
	Structure of this Thesis

	Authenticated Key-Exchange (AKE) Protocols
	AKE Protocol Architecture
	Cryptography
	Symmetric and Asymmetric Encryption
	Hash Functions
	Message Authentication Codes (MACs)
	Integrity and Data Origin Authentication


	Possible Attacks
	AKE Design Goals
	Entity Authentication
	Good Key Property
	Key Freshness
	Key Authentication

	Key Integrity
	Combined Goals
	Dealing with Compromised Keys


	Formal Verification of Security Protocols
	Formal Model
	Protocol Model
	Execution Model
	Network and Adversary Model
	Security Properties Specification
	Secrecy
	Authentication


	Automated Model Checking
	State Space Infinity Problem
	Representation of States
	Forward and Backward Search
	Bounded and Unbounded Model Checking

	Model Checking Tools
	Scyther
	Verification Algorithm
	Protocol Description Language

	Tamarin
	Extending Scyther's Verification Algorithm
	Fully-automated versus interactive Mode
	Protocol Description Language



	Related Work
	Formal Protocol Modeling
	Automatic Verification of Protocols

	Method
	Dual-Connectivity Protocol Formalizing and Verification
	Design Model
	Overall Architecture
	Protocol Description
	Preliminary Requirements and Assumptions
	Key Hierarchy
	Design Goals
	Security Considerations
	Small Cell Counter (SCC) Maintenance
	Generic Message Flow


	Formal Verification
	Generic Formal Model
	Generic Protocol Model
	Generic Adversary Model
	Generic Security Properties

	Tool Specific Formal Models
	Scyther Model
	Tamarin Models



	Evaluation of Applied Model Checking Tools
	Evaluation of Scyther
	Evaluation of Tamarin
	Evaluation Summary

	Conclusions
	Conclusion
	Goals
	Insights and Suggestions for Further Work

	Future Work
	Required Reflections

	Bibliography
	Scyther
	Scyther Input File

	Tamarin
	Tamarin Input File 1: Without UE Release
	Tamarin Counterexample (Input File 1)
	Tamarin Input File 2: UE Release before SCC Wrap-Around




