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Abstract 

Information-Centric Networking (ICN) is a new research area concerning creating a new network 
architecture that would be more suitable for both current and the future's network. The MOSES 
(Mobile Opportunistic Services for Experience Sharing) project is part of this development. The 
project works with the development and demonstration of the Network of Information (NetInf) 
protocol, which is an implementation of the ICN concept. 

This Master’s thesis project is part of the MOSES project and aims to assist the MOSES project 
with the demonstration of a mobile opportunistic sharing concept based on the NetInf protocol. 
Demonstrating the MOSES concept in practice requires deep understanding of networking, 
localization, transport, and dissemination of digital content in an ad hoc network. This 
implementation requires an analysis of the previous work, development of new functionalities, and 
finally an analysis of a series of controlled experiments. 

This Master’s thesis project has designed, implemented, and evaluated an Android application 
within the MOSES framework by using the previously developed NetInf Android library. This 
prototype is used to demonstrate how mobile Android users can opportunistically share and 
disseminate content based on their location using the MOSES/ICN concept. The functionality and 
efficiency of the prototype Android application built during this thesis project has been analyzed 
and evaluated by conducting a series of controlled experiments under the supervision of MOSES 
researchers. The results of these controlled experiments has provided insight for MOSES 
researchers as well as explored the concept of using ICN (NetInf) for opportunistic content 
distribution. The experiment results aim at assisting MOSES researchers to extend and further 
develop the prototype application and the involved algorithms to create a fully functional mobile 
application for experience sharing services tailored to large-scale events. 
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Sammanfattning 

Information-Centric Networking (ICN) är ett nytt forskningsområde för att bygga en ny 
nätverksarkitektur mer passande för dagens och framtida nätverk. MOSES projektet är en del av 
denna utveckling och arbetar med utveckling och demonstration av Network of Information 
(NetInf) protokollet, som är en implementering av ICN konceptet. 

Detta examensarbete är en del av MOSES (Mobile Opportunistic Services for Experience 
Sharing) projektet som syftar till att bistå MOSES projektet med demonstrationen av "mobile 
opportunistic sharing" konceptet som bygger på NetInf protokollet. Att demonstrera MOSES 
konceptet i praktiken krävs djupt förståelse om nätverk, lokalisering, transport och spridning av 
digitalt data i en "ad hoc" och infrastruktur miljö. Genomförandet av denna implementering kräver 
en analys av tidigare arbete, utveckling av nya funktioner och slutligen analys av genomförda 
experiment och resultaten. 

Detta examensarbete har utformat, genomfört och utvärderat en Android applikation inom 
ramen för MOSES med hjälp av tidigare utvecklat NetInf Android bibliotek. Denna prototyp 
används för att visa hur mobila Android användare opportunistiskt kan dela och sprida innehåll 
baserat på deras plats med hjälp av MOSES/ICN konceptet. Funktionaliteten och effektiviteten av 
prototypen byggd under detta examensarbete har analyserats och utvärderats genom att utföra en 
serie kontrollerade experiment under ledning av MOSES forskare. Resultaten av dessa 
kontrollerade experiment har gett insikt åt MOSES forskare samt utforskat konceptet att använda 
ICN (NetInf) för opportunistisk distribution av innehåll. Experimentens resultat syftar till att hjälpa 
MOSES forskare att utöka och vidareutveckla prototypen och de involverade algoritmer för att 
skapa en fullt fungerande mobil applikation för "experience sharing services" anpassad för stora 
evenemang 

Nyckelord 

ICN NetInf MOSES Android dela data information sprida spridning opportunistiskt transport 
nätverk 
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1 Introduction 
This chapter describes the specific problem that this thesis addresses, the context of the problem, the 
goals of this thesis project, and outlines the structure of the thesis. 

1.1 General introduction to the area 

Information-Centric Networking (ICN)[1] is a concept for an Internet architecture where the focus 
is on the content, rather than the communication between hosts as in today's networks. This new 
architecture intends to be more suitable for content distribution and to mitigate the impact of 
communication disruptions. In ICN architecture any content (e.g. image, music, text, etc.) is treated as 
an object which can be cached at different locations in the network. Unlike the current Internet 
architecture, servers or other devices that are capable of retaining a copy of an object can implement 
these caches. When a user requests a specific object from the network, the network will locate the 
object (with the help of locators) within one of the caches with a copy of the object and then will deliver 
a copy of the object to the requester. With this architecture, ICN attempts to decentralize content 
sharing and offload traffic from content servers. ICN aims for a future Internet that is scalable and well 
suited for content sharing and distribution. 

Network of Information (NetInf)[2] is a protocol based on the ICN architecture. The NetInf 
protocol implements different features of the ICN architecture and allows creation and exchange of 
Named Data Objects (NDOs) between NetInf nodes. NDOs are ICN objects that are named with a 
standardized Uniform Resource Identifier (URI). An NDO could be any type of content (e.g. image, 
music, text). In a NetInf network a user will request an NDO and the NetInf network will retrieve the 
NDO from the nearest* cached location. 

Mobile Opportunistic Services for Experience Sharing (MOSES) is a research project that “will 
adapt and extend the algorithms and software systems built in the carrier projects to create a specific 
mobile application for experience sharing between visitors (using live images, videos) of an 
entertainment venue such as Expo 2015. The resulting system will (i) reduce the load on the mobile 
network (offloading) and (ii) provide a platform allowing instant refinements, creation, and sharing of 
new apps.”[3] The prototype developed during this Master's thesis project may become an experiment 
platform for experimenting with the opportunistic sharing concept by MOSES partners or the research 
community. 

1.2 Problem definition 

The ICN/NetInf concept is a new approach for eliminating the flaws of the current Internet 
architecture, as well as optimizing the current functionalities of the Internet. Opportunistic content 
sharing is a concept built upon the ICN/NetInf architecture. This opportunistic content sharing 
intends to decentralize and offload traffic from the original content storage infrastructure for common 
and popular content. Users near each other who request the same content should retrieve it from each 
other, rather than from the original content-servers. This new architecture shifts the traffic due to 
requests by end-users trying to retrieve the same content from long geographical distance to short 
distances. This is especially valuable in a flash-crowd scenario. 

The idea of distributed dissemination of user-content is to make relevant content easily available 
where it is most likely to be requested. In this approach, mobile users will mostly operate their wireless 
local area network interface in ad hoc mode, but will use infrastructure mode in order to share and 
synchronize location relevant content with NetInf-Servers for distribution purposes. 

  

                                                            
* Nearest in a network sense, not necessarily nearest in a geographical sense. 
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Caching and sharing NDOs consumes crucial resources (e.g. random-access memory and battery 
power) of the end-user's mobile device. Mobile devices should operate in a suitable manner to share 
and disseminate as many NDOs as possible, while using the minimum amount of the mobile device's 
constrained resources. The idea is to trade available local resources of a collection of user devices for a 
reduction in wide area network traffic. 

1.3 Problem context 

This Master’s thesis project is part of the MOSES project within the EIT ICT Labs Future Networking 
Systems action line. The goal of the MOSES project is to develop an architecture and platform that 
exploits opportunistic communication among mobile users[4]. 

1.4 Goals 

The main goal of this thesis is to assist the MOSES research community with a proof of the mobile 
opportunistic sharing concept by designing and implementing a prototype that will be evaluated 
during a series of controlled experiments. 

Using the Python and Android NetInf libraries provided by the MOSES project, this Master’s thesis 
project aims to design and implement an Android application which includes NetInf features for 
mobile end-users. This Android application will demonstrate how users can opportunistically share 
content based on their location(s). The contents shared by this Android application will be 
geographically tagged (geoTagged) with the coordinates of the location that the content is relevant to. 
Indoors, Bluetooth Beacons provide these coordinates as explained in Section 4.1. A use case for this 
application is that a user can opportunistically exchange location relevant content with other users in 
the physical vicinity of this user. 

Implementing features of the NetInf protocol in this Android application will demonstrate some of 
the functionalities of the ICN/NetInf concept in practice. This implementation will mainly contribute 
to a prototype for conducting a series of controlled experiments that may point out key factors 
regarding the MOSES/ICN concept. The results of these controlled experiments are intended for 
researchers in the MOSES area to reproduce or further develop the scenarios of these experiments as 
necessary. 

Besides its use in the experiments, this prototype will also demonstrate an application of MOSES 
for end users, which may generally be a contribution to the ICN research. 

1.5 Research Methodology 

ICN/NetInf is a new networking architecture, which is quite different from the current host-centric 
TCP/IP Internet architecture. In order to design, implement, and evaluate a prototype for this new 
Internet architecture, the Design Science[5] research methodology has been used in this thesis. 

The Android application has been iteratively[6][7] designed and implemented based on the NetInf 
protocol and is expected to operate within the framework of the mobile opportunistic sharing concept. 
This Android application has followed the guidelines of the MOSES project and has been implemented 
according with the instructions of our respective supervisors, who are part of the MOSES research 
community. 

The Android application is the prototype, which has been experimentally evaluated by a series of 
controlled experiments. The results of each controlled experiment is analyzed in terms of a set of 
performance metrics, the purpose of this analysis has been to attempt to identify anomalies, factors of 
efficiency, and factors of inefficiency in the opportunistic sharing concept in the context of MOSES. 
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1.6 Structure of this thesis 

Chapter 1 provides background about the technologies and concepts used in this thesis. Chapter 3 
describes the methodology used in this project for achieving the goals stated in Section 1.4. Chapter 3 
presents in detail the actual implementation and its components. Chapter 5 presents the analysis of the 
proposed solution and the metrics for the evaluation of the results of the controlled experiments. 
Chapter 6 briefly describes some of material that was developed during this thesis project but which 
has not been discussed in this thesis, this material may be of use in future projects. Finally, Chapter 7 
presents a conclusion and suggests potential future work. 
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2 Background 
Chapter 2 starts by giving a background to ICN, followed by an introduction to the NetInf architecture 
and its messaging and naming scheme. Section 2.3 reviews the Python code and Android Library used 
and developed in this project. Section 2.4 discusses the localization of objects by geoTagging and the 
significance of geoTagged content in mobile opportunistic sharing. Section 2.5 presents a use case for 
this Android implementation and its contribution to the MOSES project. The chapter concludes with a 
brief comparison of different ICN models, including NetInf. 

2.1 Information-Centric Networking 

This section provides an overview of the ICN framework in general and the NetInf implementation of 
ICN in particular. In the context of this thesis the words “content”, “data”, and “information” are used 
interchangeably to refer to the same entity: an NDO. 

As mentioned in Chapter 1, ICN is an alternative to today’s host-centric networking (one-to-one 
communication) model. There has been an increasing demand for highly efficient and scalable content 
distribution in recent times. This demand has led to the development of new Internet architectures. All 
that matters for many end users is rapid access to the content that they want without being limited to 
acquiring this content from a specific host (as is the case in the present Internet architecture). ICN is a 
research area that focuses primarily on fast retrieval of content, rather than focusing on which node to 
retrieve this content from. Ideally, the requested content could be provided by any node that has this 
data available as opposed to the current model where the content needs to be retrieved from a specific 
node. There have been several research projects regarding ICN both in Europe (PSIRP[8], 4WARD[8]) 
and in USA (CCN[8], DONA[9][10]). This Master’s thesis project is based on the NetInf 
implementation of ICN which is a result of FP7 project 4WARD*, later continued in the FP7 project 
SAIL†.  

2.2 NetInf 

As with all other ICN implementations, in NetInf‡ communication is driven by users requesting NDOs 
and the network satisfying the request by retrieving the NDO from any entity with a copy of the NDO. 
The main constituents of the NetInf protocol are NDOs, messages, and a convergence layer. The 
following subsections will describe each of these. 

2.2.1 Named Data Objects (NDOs) 
A common abstraction used by all ICN implementations is a naming scheme that enables the 
identification of information objects independent of their location. Unlike today’s Internet architecture 
where the storage locations of content are named (by a Uniform Resource Locator (URL) or the IP 
address of a server), in ICN the content itself is named. In NetInf an NDO is simply a block of 
information stored somewhere in the network. An NDO can be a text file, a web page, a picture, or a 
streaming video. There are two components to this NDO model: a naming scheme and metadata 
objects: 

                                                            
* http://www.netinf.org/4ward-netinf/ and http://www.4ward-project.eu/  
† http://www.netinf.org/sail-netinf/ and http://www.sail-project.eu/  
‡ http://www.netinf.org/  
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Naming Scheme NetInf uses the Named Information (NI)[11] naming scheme for 
naming NDOs. A NI Uniform Resource Identifier (URI) has the 
following general format: 
ni://[Authority]/<DigestAlgorithm>;<Digest Value> 
The Authority field is optional and assists applications in finding 
a given NDO. The Digest Algorithm field is mandatory and 
specifies the digest algorithm that has been applied to the binary 
data of the NDO to generate the corresponding digest value. The 
Digest Value field is also mandatory and is the output of the 
specified digest algorithm. Two NDOs are equivalent if they have 
the same digest algorithm and same digest value. An NDO’s name 
does not change depending on how or where it is stored. 

Metadata A metadata object is a useful component of an NDO, which will 
present convenient information about the respective NDO. A great 
deal of useful information may be included in the metadata to 
assist a NDO retriever by providing information about the content 
of the NDO. For example, this information can include content 
type, timestamp, URI, size, and search tokens. For example, a 
receiver could request the metadata of an object and get an 
overview of the object's content before retrieving the complete 
NDO. This could be very useful in a search scenario. 

2.2.2 Message types 
NetInf is a message-based protocol with requests and responses for publishing, getting, and searching 
for NDOs. NetInf consists of three basic requests (GET, PUBLISH, and SEARCH) and their corresponding 
response message types (GET-RESPONSE, PUBLISH-RESPONSE, and SEARCH-RESPONSE). All of these 
message types should contain a message identifier (msg-id). It is recommended that the msg-id 
should be chosen in a way to make collisions with another msg-id unlikely and that this message 
identifier must not contain any information that might be personally identifying, e.g. an IP address or 
username. It is recommended that a sufficiently long random string should be used for each msg-id. 
The details of each message type are: 

GET/GET-RESPONSE A GET message is sent to request an NDO from a NetInf network 
using the NI URI scheme. A node receiving a GET request would 
send a corresponding GET-RESPONSE with the same msg-id if it has 
an instance of the requested NDO. If the node does not have the 
NDO available, then it should forward the request and then generate 
a GET-RESPONSE after waiting a reasonable time for a response 
(depending on the implementation). The format of a GET-
RESPONSE depends on whether the node returns both content 
octets of the requested NDO & its affiliated data* or only the 
affiliated data when the content is not available in node’s cache. In 
the latter case, the GET-RESPONSE message would only contain 
affiliated data (such as locators as to where the NDO is available). 
The locator could be an IP address or a network interface’s media 
access and control (MAC) address depending on the underlying 
convergence layer used. 

                                                            
* Affiliated data describes the “overall” data excluding the content octets of a NDO [12]. 
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PUBLISH/PUBLISH-
RESPONSE 

As the name suggests, the PUBLISH message enables a node to 
announce to other nodes that it has a given NDO. In addition to the 
NDO name, the PUBLISH message contains a copy of the object 
octets and/or object meta-data. A node receiving the PUBLISH 
message may choose to add the metadata and content to its cache if 
it does not already have the NDO stored; while if the receiver already 
has a copy of the content, then it should merge the metadata. 
Ignoring extensions*, the corresponding PUBLISH-RESPONSE 
message contains only a status code and affiliated metadata.  

SEARCH/SEARCH-
RESPONSE 

The SEARCH message enables a requester to find an NDO by 
specifying search keywords in the search message. In addition to the 
mandatory msg-id field the SEARCH message has another 
mandatory field known as the tokens field which is basically a 
query string specifying what is being searched for. As with GET 
messages, a SEARCH request may also be forwarded to other nodes. 
Upon receiving a SEARCH message, the receiving node carries out a 
search in its cache using the tokens and returns a SEARCH-
RESPONSE message. The response message contains a list of NDOs 
matching the tokens and their affiliated meta-data corresponding to 
each NDO in order to assist the searcher to choose between the 
search results. 

2.2.3 Convergence Layer 
A Convergence Layer (CL) enables communication between NetInf nodes and provides framing and 
message integrity as its main services. Any protocol that allows NetInf messages to be passed without 
loss of information can be used as a NetInf CL. Initially two convergence layers were proposed[2][8]: 
HTTP CL and UDP CL. As the names suggest, they use HTTP and UDP services to transfer NetInf 
messages between nodes. E. Davis has described how to implement the NetInf Protocol with HTTP and 
DTN CLs[15]. A new Bluetooth CL has been proposed and introduced as a result of a previous student’s 
Master’s thesis[16]. A CL must fulfill at least the following requirements stated in the expired Internet 
draft draft-kutscher-icnrg-netinf-proto-01[2]: 

• Unidirectional point-to-point transport of NetInf messages, 
• Preservation of message boundaries, 
• Reliable transmission of messages, and 
• In-order delivery of messages to the destination node. 

2.3 Python and Android NetInf library 

The MOSES project provided the authors of this Master's thesis with the source code of the Python 
NetInf library v0.4[17]. This Python implementation may act as a NetInf Server and can do PUBLISH, 
GET, and SEARCH for NDOs both locally and via other NetInf Servers. Throughout this thesis, 
references are made to NetInf servers, these only refer to NetInf servers in the infrastructure and not 
to a NetInf server in an ad hoc network. In the context of MOSES, NetInf servers in the infrastructure 
may be used for content dissemination purposes. Users push/pull content to/from NetInf servers 
when possible. 

The Android application developed in this Master's thesis has used the Python NetInf library v0.4 
as the NetInf server in infrastructure mode, only for interoperability purposes in case of future 
development of this application; the focus of this thesis is on ad hoc networking and the Bluetooth CL. 
The message formats used by this Android application over the HTTP CL are according to the Python 
library v0.4 implementation. The Android application in this Master's thesis is based on this Python 

                                                            
* Some extensions are described in [13] and [14]. 
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NetInf implementation and the NetInf Android library developed by Linus Sundé during a previous 
Master's thesis project[16]. 

2.4 GeoTagged objects and their coordinates 

GeoTagging is the process of adding geographical information to an object. The tag provides a form of 
geospatial metadata and usually consists of latitude and longitude coordinates and/or other 
information, such as altitude, distance, proximity, etc. This geographical data might be obtained 
through GPS, cellular network, Wi-Fi, or Bluetooth signals. GeoTagging can provide location-specific 
information to end users. 

The geographical location data used in geoTagging can be in the form of latitude/longitude-
coordinate system either in decimal degrees (DD) format or in degrees, minutes, and seconds (DMS) 
format. When using Wi-Fi or Bluetooth devices for geoTagging, one can use a device’s MAC addresses 
or Bluetooth ID to tag content. The prototype Android application senses the received signal strength 
of Bluetooth signals and tags the content with the ID of the Bluetooth device that has the strongest 
received signal strength. 

2.5 Use case 

ICN opens a broad area for new applications that might be infeasible with today's Internet 
architecture. One type of application that MOSES is investigating, is local content sharing without 
access to Internet (i.e. via an ad hoc network).  

Assume a scenario where User A enters an art exhibition without any former knowledge about the 
art objects being exhibited. Fortunately, User B who is an art specialist, goes around the gallery and 
captures photos of the objects and comments upon them*. User A that is very interested in these art 
objects and is eager to know more about them. To get more information about these objects User A 
opportunistically attempts to synchronize with user B over Bluetooth. In this synchronization process 
User A fetches User B's locally generated (published) commented photos (as NDOs). User B's NDOs 
are geoTagged with indoor location obtained from localization beacons (explained in Section 4.1), 
therefore User A does not need to explain to User B what type of information he/she is interested in. 
User B will only give location relevant content to User A. Assuming that the application is smart 
enough, User A will receive User B's photos as a popup when passing by every art object in the gallery. 

This use case is one of the many scenarios where applications of MOSES could be used. One of the 
ideas of MOSES is content sharing without the need to explicitly search for the material on the 
Internet, thus decentralizing content dissemination. 

2.6 Comparison of alternative ICN models 

This section provides a short comparison of several different ICN approaches. Although each 
implementation’s approach to ICN differs in the details, the overall goal is to develop a network 
architecture that is better suited to efficiently accessing and distributing content. The comparison will 
consider the following four ICN approaches: 

• Data-Oriented Network Architecture (DONA), 
• Content-Centric Networking (CCN), 
• Publish-Subscribe Internet Routing Paradigm (PSIRP), and 
• Network of Information (NetInf). 

                                                            
* We assume for the purposes of this scenario that User B is permitted to take pictures of the art objects being exhibited and that they are permitted 
to communicate via Bluetooth with other nearby users. 
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Section 2.6.1 reviews the commonalities of these four ICN designs, while Section 2.6.2 discusses 
the basic differences between these four approaches. 

2.6.1 Commonalities of Designs 
Although each implementation has its own distinctive terminologies, they all share three fundamental 
principles: use a publish/subscribe paradigm, exploit universal caching, and utilize a content oriented 
security model. 

2.6.1.1 Publish/Subscribe paradigm 
All four ICN approaches make use of the publish/subscribe paradigm. PUBLISH enables nodes to 
advertise the availability of content, while SUBSCRIBE enables consumers to request content. Using 
the publish/subscribe paradigm decouples requests and responses both in time and space. The 
provider and requester of the content are not required to know the location of each other nor be online 
at the same time in order to publish or receive content. This decoupling mechanism is one of the most 
profound aspects of ICN architecture. 

2.6.1.2 Universal Caching 
In ICN architecture when a node receives a request for content, the node has to perform one of the 
following two actions: 

1. If the content is available in its own cache, then respond directly with the content. 
2. If the content is not available in its local cache, then the node can request the content 

from its peer(s). When it receives the content then the node can send a response back 
to the original requester with the content and the node can cache this content for later 
use. 

The caching mechanism applies to content carried by any protocol, and generated by any user, 
thus the content is not limited to content from a specific content provider or carried by any specific 
protocol. This decentralizes content distribution and delivery. In all four ICNs caching is implemented 
by all ICN nodes, rather than only by a few specialized caches. 

2.6.1.3 Content-oriented Security Model 
In an ICN, the content can be fetched from any network element rather than the originating server and 
thus the current security model of securing a connection between end points is of no use. Instead, in 
ICN the content itself needs to be secured. The authenticity of the content is established by having the 
original content provider sign the content. Now all of the receiving network elements can verify the 
authenticity of the content by verifying this signature. This content-oriented security model is shared 
by all four ICN approaches and is regarded as name-data integrity. The confidentiality part of this 
model is unclear[18], therefore for now only data integrity is provided.  

2.6.2 Fundamental Differences in Design 
Besides the commonalities described in the previous subsection, there are some fundamental 
differences. These differences are described further in this section in terms of the difference between 
naming, inter-domain name-based routing, and transport. 

2.6.2.1 Naming 
As stated previously, in ICN, consumers request objects by name rather than from a specific network 
node. There are two main naming systems proposed for the ICN architecture. The first naming scheme 
uses hierarchical human-readable names, similar to today’s DNS system. In this naming scheme, a 
variety of techniques can be used to allow a user to learn a public key, but this usually requires a 
globally-agreed-upon public key infrastructure (PKI) to bind names to keys in order to achieve name-
data integrity. 

The second naming system uses self-certifying names. In this case, the key is bound to the name 
itself, removing the need for a PKI. The disadvantage is that these names are not human-readable, so 
consumers have to use other techniques to determine the name of the content that they desire. 
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DONA uses a flat namespace in the form P:L, where P is a globally unique principal field 
containing the cryptographic hash of the publisher’s public key, and L is a unique object label. 
PSIRP also uses a flat namespace, but has a slightly different approach to it than DONA. NetInf also 
uses a flat namespace and includes the hash digests in the name. NetInf can use a number of different 
hashing schemes. CCN uses a hierarchical namespace in order to achieve better routing scalability 
through name-prefix aggregation. 

2.6.2.2  Inter-domain Name-Based Routing 
In order to distribute content efficiently, ICN systems have to route requests. Two main routing 
approaches are used in ICN architectures: 

Name 
resolution 

This is similar to today’s DNS system. In this model, a resolution service is 
queried for a given name and then one or more lower-layer locators are 
returned. These locators are then queried to retrieve the content, using a 
protocol such as HTTP or directly via another IP based protocol. 

Name-based 
routing 

An alternative approach to name resolution routing is to directly forward 
the request to an object copy in the network based on the object’s name, 
without initially resolving the object name into some lower-layer 
locator(s). This approach is often referred to as name-based routing. 

DONA and CCN use name-based routing to route queries, while PSIRP uses a name resolution 
model where the resolver is called the rendezvous point. NetInf supports both name resolution and 
name-based routing for retrieving data objects. 

2.6.2.3 Transport 
The transport layer is responsible for forwarding requests and responses as well providing basic 
transport layer functionalities (congestion control, flow control, and reliability). 

The DONA architecture relies on existing transport protocols such as TCP and UDP. The CCN 
architecture defines two different transport layer packet types: interest packets and data packets. A 
node that sends an interest packet via an interface to a (or a set of) neighboring node expects to receive 
a corresponding data packet in response. 

The NetInf architecture uses a CL for its transport layer. The CL can be HTTP, TCP, UDP, 
Bluetooth, etc. as long as this CL provides reliable and in-order delivery of requests and response 
messages. There could be multiple hops involved in forwarding such request and response messages, 
and each hop can potentially use a different convergence layer. 
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The “Estimote” Beacon periodically advertises the following information every 200ms (this 
advertising interval can be changed): 

• Fixed beacons containing a universally unique identifier (UUID): 
0xB9407F30F5F8466EAFF925556B57FE6D, 

• A two byte long “Major” value, 
• A two byte long “Minor” value, and 
• A one byte long measured Received Signal Strength Indication (RSSI) value. 

The major and minor values are integer values that can be used to divide an area into different 
zones and sub-zones. These values can be manually changed by using the proprietary “Estimote” 
application (available at Google Play). For the NetInf demonstration application, 10 Estimote Beacon 
transmitters are used. These transmitter were placed at different locations around the SICS Kista office 
as specified in Figure 4-2. For purposes of the demonstration, the SICS office was divided into two 
zones, thus two different “Major” values were used. Each Estimote Beacon was configured with a 
unique “Minor” value associated with the corresponding “Major” value depending on where it is 
placed.  

The Android application continuously listens for Estimote Beacon advertisements. Once a user has 
captured an image using their device’s camera, given this image a title, and pushed the “publish” 
button, the image is locally published after being tagged with the nearest (based upon with strongest 
RSSI value) beacon’s major and minor values. This geoTagging information is published as part of the 
metadata of the NDO along with a timestamp and other relevant information. The timestamps are 
based upon the local device's clock that has been automatically synchronized by different Network 
Time Protocol (NTP) servers provided by device's firmware. 

4.2 Convergence Layers  

Currently three CLs have been developed for the NetInf protocol: HTTP, UDP, and Bluetooth. The 
NetInf Android application uses HTTP and Bluetooth CLs for transport purposes. The Bluetooth CL is 
used only for ad hoc communication (i.e., directly between mobile devices), while the HTTP CL is used 
both between mobile devices (through an access point) and infrastructure attached servers (i.e., 
between a mobile device and a central NetInf server). A user can choose to enable either one or both of 
these CLs at a time. For the Bluetooth CL to work the mobile devices has to be paired in advance with 
each potential Bluetooth peer. The end user can type in individual Bluetooth device names or choose to 
communicate with all paired devices in the settings menu. In contrast, for HTTP CL to work the end 
user has to manually type in the IP addresses of all of the other devices/servers via the settings menu. 
For the demonstration application, the server’s IP address and Bluetooth paired devices settings have 
been pre-chosen by default, but these settings can be altered by the end-user. If both CLs are enabled, 
then PUBLISH, GET, or SEARCH requests for an NDO are sent over both CLs to their respective 
configured devices. Even though both CLs are functional in this application for demonstration of the 
mobile opportunistic sharing concept (i.e. ad hoc network), only the Bluetooth CL was used for the 
experiments and evaluation of this prototype. Even though MOSES may time to time use the 
infrastructure for disseminating content to the Internet, an infrastructure mode was not realized in 
this thesis project and could be incrementally added for optimization and further development of this 
application in the future. 

4.3 Graphical User Interface (GUI) 

The subject group for this Android application is end-users, therefore during the design phase end-
users were the focus of the GUI. Factors such as simple access to functions, smooth graphic-flow, 
choice of color, and layout were considered when developing what was expected to be a user-friendly 
GUI. 
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5.1 Controlled Experiment 1: Point-to-Point 

In this section, we will describe controlled experiment 1 in terms of the experimental conditions, 
scenario, synchronization process, the selected metrics, and results. Following this is a discussion of 
this experiment. 

5.1.1 Experiment Conditions 
This experiment used two Moto G handsets. Each of these handsets was running Android version 
4.4.2, with the 176.44.1 Falcon system. Each of the handsets batteries were at more than 80% charge 
(as a low remaining battery charge has been observed to contribute to higher transmission time via 
Bluetooth. This transmission property has not been confirmed by any Android documentation or the 
device's manuals, but has only been observed in the logs from our experiments.) 

The screens are turned on during the whole experiment. We chose this configuration as we 
observed in the logs that some threads go to sleep when the screen is off. We do not yet know the 
reason for this occurrence nor has any Android documentation or the device’s manuals confirmed it. 

Version 0.9 of NetInf application/library code was used together with the Bluetooth CL. The 
network was configured to operate in ad hoc mode. The Bluetooth devices only paired with each other. 

There were 10 iterations per position leading to 10 ∙ 4 = 40 iterations in total. Each iteration took 
around 30 seconds and the experiment was conducted at 5 predefined positions (one phone was 
located at a fixed stationary location). The total duration of the experiment was 30 ݏ݀݊ܿ݁ݏ ∙ 10 ∙ 4 ≅20 minutes. 

Fifteen unique NDOs were created per device. The NDO sizes ranged from 20 KB to 45 KB with an 
average size of around 29 KB. Synchronization was invoked manually. 

Generally, mobile devices use Bluetooth class 2 radios which operate with a range of between 10 to 
100 meters. However, this range is limited by several factors, such as interference from other devices 
operating in the 2.4 GHz ISM band and large physical obstructions, such as thick walls. The offices at 
SICS have very large glass-walls/windows, which contribute to better Bluetooth signal reception in the 
offices. 

During the experiment, there was no direct line of sight propagation between the mobile devices 
and there were other wireless devices present in the experimental area operating in 2.4 GHz. These 
other devices may negatively affect the overall Bluetooth range and transmission rate. 

5.1.2 Scenario 
In this experiment, two mobile devices (named Device-1 and Device-2) wish to synchronize NDOs with 
each other at each of 5 predefined positions. The purpose was to emulate a typical scenario, which 
might arise during a mobile opportunistic situation, when nearby users exchange location-relevant 
content over a short-ranged wireless CL in an ad hoc network without accessing the Internet. 

In addition to the smoothness of the GUI, what other factors contribute to a good user experience? 
One factor may be rapid exchange of information, thus low delay and exchanging as many NDO as 
possible is desirable. While the algorithms of the application might be improved, the main goal of this 
scenario and experiment was to measure the transmission-delay at different distances and with other 
possible impairments (such as closed doors and walls) when using the Bluetooth CL. 

Each test was repeated 10 times, in order to see if there is some deviation in the results and 
perhaps to identify anomalies. The results of these tests did not show high variation; therefore, the 
tests were concluded after 10 iterations. This experiment could be reproduced by someone (especially 
MOSES researchers) who is interested in more detailed results. 

This experiment took place in the SICS Kista office near the Von Neumann conference room 
(marked with a red circle in Figure 5-2). The experiment was conducted at five predefined positions 
(marked A, B, C, D, and E in Figure 5-2). Table 5-1 summarizes how each device was positioned at each 
location and what that position might represent in a real life scenario. All the controlled experiments in 
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most obvious metric is the time required to complete the Sync process in the point-to-point scenario 
used in this experiment. 

If a device attempts to completely synchronize with the other devices in the network, then for every 
failed GET, the device must send a new GET or postpone this GET to the next Sync attempt. Thus 
failing to get a NDO would either affect the Sync duration (due to the repeated GET attempt) or cause 
an extra Sync iteration – in either case increasing the convergence time. Therefore, another metric for 
this experiment is the success-rate of GETs. 

In summary, the following metrics will be measured and analyzed in this experiment: 

GET-RESPONSE Delay The time between Device-2 sending GET until the corresponding 
GET-RESPONSE is received by Device-2 from Device-1. This delay 
includes the transmission time over Bluetooth CL plus the 
processing at the two end-devices. 

GET Success-rate Fraction of successful GETs at the initiating device. A GET is 
considered successful if a Fullput GET-RESPONSE is completely 
received. 

Sync Duration The duration for one Sync iteration initiated from Device-2 to 
Device-1. Each Sync iteration consists of a complete 
synchronization, i.e., a successful SEARCH-RESPONSE is received 
and all corresponding GETs are sent independent of whether each 
GET succeeded or not. 

5.1.5 Results 
This section presents the results of this experiment. Each of the three metrics is analyzed and 
described in the following sections. 

5.1.5.1 GET-RESPONSE delay per location (First Metric) 
Here the GET-RESPONSE delay for Device-2 will be analysed for each location. In general, obstacles in 
its path and increased distance will reduce the bit rate of a wireless channel. Here we compare the 
GET-RESPONSE delays for alternatives B→A, C→A, D→A, and E→A. This comparison will be useful 
later when we consider 5 users in an ad hoc network all trying to exchange NDOs. The 5 different 
positions enable us to evaluate the situation for the edge devices (those devices with only one device 
near them) and how these edge devices may participate in ad hoc networks. 

Figure 5-4 presents the GET-RESPONSE delay for Device-2 in location B when fetching NDOs 
from Device-1 in location A. In each test-iteration Device-2 attempts to fetch Device-1's 15 NDOs. 
Figure 5-4 shows the duration for each individual GET→GET-RESPONSE, the average GET-
RESPONSE delay for each test-iteration, and the GET-RESPONSE delay averaged over all 10 
iterations. 

As is apparent in Figure 5-4 during a test-iteration, the majority of the GET→GET-RESPONSE 
durations exhibit values close to each other with only a few outliers. These outliers (e.g. experiment-
iteration 1, 8th bar in Figure 5-4) are not necessarily part of a pattern of delay/failure since they 
present single occurrences that occur from time to time. In contrast, the test-iteration in Figure 5-4 
exhibits a higher delay than the other nine test-iterations. The overall median of the GET-RESPONSE 
delays for this experiment is 232 milliseconds, while the average GET-RESPONSE delay for test-
iteration 8 is 481 milliseconds. These kinds of outliers are expected when measuring this metric in this 
experiment, since different factors may probabilistically and momentarily affect the data transmission. 
Factors such as interference/path loss in the wireless channel and momentary disturbances in the 
transmitting/receiving device can occur during one test-iteration which spans ~30 seconds. 
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In order to complete the Sync process, the device has to re-establish lost connections to those 
devices that responded to the initial SEARCH request. To achieve this, the Sync process saves a set of 
all the Bluetooth devices with whom a socket was successful established after the first successful 
SEARCH-RESPONSE. Before performing each GET request, the Sync process requests the Socket-
Manager to re-establish a socket (if one is not already established) to each of these saved devices. This 
assumes that all the devices that were available during the initial SEARCH are still within range and 
therefore the device tries to re-establish a connection with the same set of devices. A complete Sync 
iteration (explained later in Section 5.2.10.5) is usually very quick and the Bluetooth wireless range 
(considering line of sight and the fact that the handsets are equipped with Bluetooth class 2 interface) 
is usually up to ~10 meters (~60 meters outdoors with line of sight, according to the field experiments 
with the Moto G phones that were used in all the experiments reported in this thesis). It should be very 
unlikely that a remote-device after responding to a SEARCH-RESPONSE, would disappear completely. 
However, in the worst case, this does happen, and then all the GETs to that device will fail/timeout. 
Each of these failures will contribute between ~1-12 seconds (timeout for opening one Bluetooth 
socket) delay to the Sync iteration. Fortunately, this is an unlikely event when the device(s) is (are) not 
moving rapidly (e.g., in a vehicle). 

5.2.6.2 Master/Slave configuration 
The reason why we close the Bluetooth-Server while serving a client or being served by a server is due 
to various limitations introduced by our choice of the Android Bluetooth API as the CL for this 
application. In addition to the compulsory pairing in this version of Bluetooth (as we do not use BLE), 
a master/slave configuration is introduced. The information presented in this section is based on 
observations during our implementation and testing. Unfortunately, the master/slave configuration of 
Bluetooth for the Android platform is not described in detail in the Android documentation[20]. 

Bluetooth[21][22] (i.e. Bluetooth core system) is limited to a maximum of 7 simultaneous active 
clients per server using different UUIDs. Thus a given Bluetooth-Server (master) may have up to 7 
concurrent clients (slaves) forming a small ad hoc network, called a Bluetooth "piconet". 

The Android NetInf library provided by MOSES uses a single UUID for serving its clients. 
Generally, a Bluetooth slave (client) uses a UUID to refer to the Bluetooth service on the serving device 
(master). In terms of Bluetooth connectivity, this means that there is a need for a UUID per 
client→server connection. How would this work in an ad hoc network with no protocol for informing 
each device what UUID each server is listening to? A simple solution is to assign seven different UUIDs 
to the NetInf protocol and query each device to discover its neighboring devices. However, these 
additional test queries will add additional delay to the neighbor discovery process. If each attempt at 
Bluetooth neighbor discovery with a test connection to a neighboring device times out after 
~1-12 seconds for each UUID, then if the neighboring device is listening to the 7th UUID in the list an 
additional ~6-72 seconds delay will be added to the Sync process. 

Another reason for closing the Bluetooth-Server is the change in behavior of the Sync process. If a 
device performing consecutive GETs with large payloads (i.e., a large NDO in terms of its size in bytes) 
attempts to serve another client with the same NDOs, would the Sync process appear to be smooth to 
the end user? During the test phase of the implementation, a similar approach was implemented and 
tested, but an increased number of timeouts and GET failures were observed. Therefore, we decided to 
limit the devices to doing only one thing at a time. 

5.2.7 Periodic Synchronization Timer 
In this experiment and the third experiment, the synchronization process is periodically executed by a 
separate thread based on the following formula ܵோூ = ூܵ ∙ ܴ ∙  where ܵோூ is the random interval for ܭ
synchronizations, which is a product of ூܵ a Sync interval defined by the user, ܴ a random value with 
the constraint 0.45 ≤ ܴ ≤ 1.0, and ܭ is a value used to control the randomness. 

Since this application is to demonstrate opportunistic behavior, the application does not 
implement a synchronization protocol and nearby devices are unaware of each other's synchronization 
status. The Sync interval rather than being a static value defined by the user, has a controlled 
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randomness (based upon the value ܴ). This randomness may prevent neighboring devices from 
simultaneously initiating the Sync process. If all devices that are within range of each other initiate 
their Sync process at the same time, then no device gets the chance to become a client of another 
device since the first step in the Sync process is to shut down the Bluetooth-Server (as explained in 
Section 5.2.6.2). If the Sync interval were a static value then all of the devices could continuously 
attempt to synchronize, fail, and then start over until some event breaks the loop. The controlled 
randomness of the Sync interval ܵோூ should give one of the devices a chance to initiate its Sync process 
before any of the other devices have started their Sync process. ܴ has a minimum value of 0.45 as the minimum Sync interval ூܵ in this experiment is 40 seconds 
with a ܭ value (which should not be less than 1 in a normal case) of 1 would give ܵோூ of 18 seconds 
which is a convenient amount of time before a device initiates a Sync under normal condition. In this 
experiment each device is paired by Bluetooth with a maximum of 4 devices. As explained in Section 
5.2.6, a Sync process starts by sensing its neighbors by opening a test-socket to each of the devices in 
the user's bonded-device list. A Bluetooth connection attempt to an unavailable Bluetooth device will 
timeout after ~1-10 seconds (and does so according our logs). With a ~5 seconds timeout (a value 
between 1-10 seconds) for every individual device this leads to a timeout after a total of 15 seconds if 
the first 3 paired devices in the bonded-devices list are not in range and the fourth device is in range 
(this is considered the worst-case in this experimental scenario). Allowing an additional 3 seconds for 
socket-establishment to the fourth device gives a total of 18 seconds that a device would need in the 
worst case to establish a successful connection to another paired device. Even if we ignore the worst 
case in the test-socket process, under normal conditions (1=ܭ), having a Sync interval of less than 18 
seconds is not recommended. During the test phase of the implementation, it was observed that very 
short Sync intervals lead to simultaneous Sync attempts between devices. 

The ܭ value controls the randomness of ܵோூ. Thus in the case of consecutive GET failures, the Sync 
process will back-off for a limited amount of time before retrying (back off timers are discussed in the 
next section). Following such a back-off it may be convenient to retry syncing much earlier, rather than 
postponing the synchronization to the next ܵோூ. As a result, a device may start its synchronization 
within 15 seconds, rather than after 48 seconds. However, even with this randomness, since there is no 
synchronization protocol between the devices, there is still be a risk that devices become stuck in a 
state where they continuously simultaneously initiating their synchronizations. The back off timers 
(explained in the next section) and adjustments to the ܭ value are an attempt to break these kinds of 
loops. 

5.2.8 Synchronization back-off timer 
As explained in the previous section, there are cases where devices face consecutive SEARCH/GET 
failures/timeouts. This may be caused due to momentarily poor transmission quality of the wireless 
channel or a mobile-device's momentarily hardware/software misbehavior. In order to reduce the 
inefficiency in the Sync procedure, a back-off mechanism was implemented to address these types of 
events. 

The NetInf library implementation[16] will return an empty SEARCH-RESPONSE if the remote-
device does not have a copy of the requested NDO(s), thus a SEARCH does not fail even if the remote-
device does not offer any NDOs. If an aggregated SEARCH fails/timeouts, this may imply that 
something went wrong in the transmission/reception of this request to/from the neighboring devices. 
As a result, immediately retrying a new SEARCH may be inefficient, instead we should give the other 
devices an opportunity to initiate their Sync process so that they are more likely to have something to 
exchange on the next Sync attempt. The same logic applies to consecutive GET failures. If in the 
middle of a Sync process an individual GET request fails or times out, this may indicate an intermittent 
problem, therefore it may be wise to back-off for a small amount of time before retrying. 

There are various ways to implement back-off timers, but in order to keep everything simple, this 
implementation uses the same ܵோூ formula used for the Sync periodic timer. This where the ܭ variable 
is used. 
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As shown in Table 5-4, by adjusting the ܭ value ܵோூ will vary between the minimum and maximum ܵோூ values depending on the random number ܴ generated by the application. The minimum and 
maximum ܵோூ values presented in Table 5-4 are calculated by inputting the minimum and maximum 
limits of the ܴ variable together with an  ூܵ of 40 seconds. For example, if ܭ = 0.5 and 0.45 ≤ ܴ ≤ 1.0 
then the minimum ܵோூ would be 40000 ∙ 0.45 ∙ 0.5 = 9000 ms and the maximum ܵோூ would be 40000 ∙1 ∙ 0.5 = 20000 milliseconds. By using the variable ܭ, the same formula used for the periodic Sync 
interval can be used to calculate a back-off time. The minimum and maximum ܵோூ values in Table 5-4 
are with  ூܵ = 40000, thus 40 seconds is the minimum  ூܵ value for this and next experiment. An  ூܵ 
value of less than 40 seconds is not recommended since with the chosen ܭ values the Sync attempts 
and reattempts would be too rapid which would increase the probability of simultaneous 
synchronization between devices. 

Table 5-4 shows the ܭ values used in the implementation of this application depend on the device’s 
current state. For synchronization during normal circumstances, i.e. no occurrence of timeouts or 
failures, it would be convenient for the user to initiate the synchronization close to the  ூܵ interval 
defined by the user while including some randomness to prevent devices from simultaneous 
synchronization. If a device has already synchronized with its neighboring devices, then it would be 
desirable for the network to back-off longer, as a device that is already synchronized with its 
neighboring devices should give other devices the opportunity to converge as well. 

Table 5-4: K values used in the implementation 

 ࡵࡾࡿ Max (ms) ࡵࡾࡿ Value Min ࡷ
(ms) Condition 

0.5 9000 20000
SEARCH timeout, high GET error-rate, Sync failure 
due to unknown reason,  No device in range, 
SEARCH-Failure 

0.7 12600 28000 Active-Client in progress, No device in range, 
SEARCH-Failure 

1.0 18000 40000 (Normal condition boundary), No device in range, 
SEARCH-Failure 

1.2 21600 48000 No device in range, SEARCH-Failure 

1.5 27000 60000 Normal Synchronization 

2.0 36000 80000 Already Synchronized 

 

If a device attempts to initiate a Sync but there is an "Active-Client in progress", meaning that the 
device itself is currently serving a client, then it would be inefficient to postpone the Sync to the next 
usual ܵோூ (by using ܭ = 1.5). If a client frequently does not require a long amount of time to receive 
only one device’s NDOs, then a ܭ value of 0.7 would be suitable. The ܭ value of 0.5 is a lower value that 
is suitable for timeouts, while allowing faster reattempts. 

In Table 5-4 there are several conditions that share the same ܭ values. In the case of the error-
events "No device in range" and "SEARCH-Failure" the application will back-off using one of the 
following ܭ values: 0.5, 0.7, 1.0, or 1.2. As discussed in the previous section, if the reattempt occurs too 
quickly there may be a risk that the devices continue to simultaneously retry synchronizing with each 
other. Forcing the devices to choose randomly between these four different ܭ values may reduce the 
risk of simultaneous reattempts. 

It may be unnecessary to continue retrying after a failed Sync. For example, when the remote 
device is no longer in range or is unavailable. Therefore, after an unsuccessful Sync the application 
continues retrying with small ܭ values a maximum of three times and then assigns a ܭ value of 1.5. 
This K value will delay the Sync to the next periodic interval. This method also assists in breaking loops 
when several devices consecutively reattempt to synchronize with short back-off durations. 
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5.2.9 Metrics  
From the MOSES perspective, one of the core efficiency factors for content distributing/sharing is the 
total amount of time it takes for all the devices to synchronize, i.e., the network convergence time. The 
less time it takes the devices to converge, the better the overall user experience. Therefore, it seems 
natural in this experiment to measure the time it takes for all five devices to synchronize with each 
other. 

The network convergence time depends on how fast the individual NDOs are retrieved. The 
current implementation retrieves each NDO via an individual GET request and GET-RESPONSE 
message, thus the longer it takes to receive the GET-RESPONSE messages, the longer the 
synchronization time and the longer the overall network convergence time. It is therefore desirable to 
measure the median time it takes for each device to send a GET request and receive the corresponding 
GET-RESPONSE. 

As mentioned earlier, the prototype application utilizes Bluetooth CL for transport of NDOs and 
one of the constraints of using Bluetooth is the discovery of neighboring devices and opening sockets to 
them. The process of opening test-sockets with bonded devices to check their availability takes a 
considerable amount of time, especially in the case of a multi-hop scenario where each device has at 
least two dummy bonded devices (as we must wait for each of these dummy devices to timeout). This 
test-socket process affects the overall network convergence time and it is therefore important to 
measure and analyze the time required for this process. 

An important metric that affects the network convergence time is the number of successful 
synchronization attempts each device needs to make before they have all 75 NDOs. Each 
synchronization attempt takes considerable time and makes the attempting device unavailable for the 
duration of its synchronization process. The more synchronization attempts it takes a device to 
converge, the longer the network convergence time. Therefore, it is especially interesting to measure 
the required number of synchronization attempts required to converge in a multi-hop scenario as well 
as the duration of each synchronization attempt. 

In summary, this experiment uses the following metrics: 

Network Convergence Time The time required for all devices to fully synchronize with each 
other (in this case to each have 75 NDOs in their cache). 

GET-RESPONSE Delay The time from a device sending a GET until the corresponding 
GET-RESPONSE is received by the same device. This time 
includes the transmission time over the Bluetooth CL plus the 
processing delay at the two end-devices. 

Bluetooth test-socket delay The time required to establish a Bluetooth connection to a 
remote device, whether it succeeds or fails/timeouts. 

Sync Success-Rate The fraction of successful Sync iterations for a device. A 
successful Sync iteration is an instance of a synchronization 
process where a successful SEARCH-RESPONSE is received and 
all of corresponding GETs are sent - whether the GETs succeed 
or not. 

Sync Duration The duration for one successful Sync iteration for one device. 

5.2.10 Results 
This section presents and analyzes the results of experiment 2 with the metrics defined in Section 
5.2.9. In the presentation of the results for this experiment and experiment 3, each device is 
represented by a color according to the color scheme used in Figure 5-13. This is to clarify and separate 
each device’s individual results from the others. 
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5.3.2.6 Device Sync patterns 
In this experiment since each device may have the opportunity to Sync with four other devices, it may 
be of interest to view the pattern of synchronization in this semi-mesh topology. The term "pattern" in 
this section refers to the pattern of connectivity and synchronization of NDOs between the five devices, 
i.e., from whom did a device get its NDOs. Table 5-6 presents from which other device each device got 
what portion of its NDOs during all 10 iterations of this experiment. 

Table 5-6: Sync pattern (N/A indicates not applicable) 

Synced 
with Device-1 Device-2 Device-3 Device-4 Device-5 

Device-1 N/A 24.67% 41.17% 0% 0% 

Device-2 31.5% N/A 19.17% 36% 41% 

Device-3 67.83% 24.5% N/A 26.67% 7.83%

Device-4 0.67% 20.33% 39.67% N/A 51.17%

Device-5 0% 30.5% 0% 37.33% N/A 

 

As described in Section 5.1.5.1 regarding the results for location D in a point-to-point 
synchronization no matter what the distance is if a device successfully establishes an initial Bluetooth 
connection to another device, it may have a GET success-rate up to 100%. As presented in Section 
5.1.5.1, the distance may cause delay in the transmission but it does not necessarily affect the success-
rate - as observed in experiment 1. This behavior can be seen in the results presented in Table 5-6 as 
well. For instance, Device-1 is subject to a corner and a main walkway for personnel, but it still 
managed to receive the majority of its NDOs (i.e. 67.83% of 600 NDOs) from Device-3 which is not its 
closest neighboring device. Looking into Device-1’s results, as present in Table 5-6, shows also that 
Device-1 received only 0.67% of its NDOs from Device-4, which shows the similarity to the A→D case 
in experiment 1 as well as the A→E case since in this experiment Device-1 received no NDOs from 
Device-5. This similarity enables us to conclude that once a device has successfully established a 
Bluetooth socket to another device, no matter what the distance, obstructions, interference, or path 
loss, the device can perform the majority of its Gets and synchronize with the remote device. Therefore 
initial Bluetooth socket establishment is one of the essential factors in an opportunistic networking, as 
if a device manages to establish a Bluetooth socket to a relatively (relative to the range of Bluetooth) 
near or faraway device, it could successfully Sync with up to 100% success-rate and may converge. 

It should be kept in mind for all the conducted controlled experiments in this thesis, that there was 
no specific Sync protocol, therefore the synchronization pattern is very opportunistic and thus 
probabilistic. There are three probabilistic behaviors involved in the Sync process. The first probability 
is the value of R chosen by the devices in a network. For instance, assume that two devices with 
identical application settings (i.e. same CL, routing, Sync timers, etc.) initialize their Sync process by 
chance (depending on the R value). However, they may or may not start Syncing at the same time, 
because if the R values picked by the two devices are the same or close to each other (without the 18 
seconds window) then the two devices may not become a client to one another and will postpone their 
Sync. The second probability involved is the availability of the device itself, which is the probability of 
not serving a client when initiating a Sync to it. The third probability is the availability of the 
neighboring devices, depending on the number of the devices that are within the range of a device, 
what is the probability that the neighboring devices are not serving a client or performing their own 
Sync at the point in time when the device initializes its Sync process. 
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6 Contributions to MOSES 
Since this thesis project is part of a bigger research project, some tools were developed in the course of 
this project – have not yet been discussed in this thesis. The following sections describe two 
implementations that were developed and might be of use in future development of applications of 
MOSES. 

6.1 Extension of the Android NetInf Library 

The Android NetInf library[16] provided by MOSES, among other functionalities supported 
transmission over Bluetooth, HTTP, and UDP CLs. The HTTP CL of the library did not support 
SEARCH and PUBLISH functions. Thus two mobile devices could only perform a GET on each other 
over the HTTP CL. This library was extended with two Java classes: PublishHandler.java and 
SearchHandler.java. These classes were implemented to use the same architecture as the existing 
classes of the library and reused code from the library. Using these two new classes, devices can 
perform SEARCH and PUBLISH over the HTTP CL both to other devices and a NetInf server. 

6.2 Python Synchronization Script  

Section 4.4 mentioned the idea of synchronization checkpoints (i.e. NetInf servers) where users may 
use the infrastructure to disseminate their NDOs. This idea was deployed during the uncontrolled 
experiment at the SICS Open House event, but it was more an idea rather than a product of this thesis, 
therefore it was not discussed earlier in this thesis. A Python script was written in order to keep the 
two synchronization checkpoints synchronized with each other. As a result the NDOs published by 
users to each synchronization checkpoint would be available in the two "zones". 

This script completes the synchronization process in two steps. In the first step a NetInf SEARCH 
message is sent from server “A” to server “B” with the “notavailable” flag along with a list of all the 
cached NDO names. Upon receiving this search message server “B” replies with a SEARCH-
RESPONSE message with all the NDOs that it does not have in its local cache. Server “A” then 
publishes all of the NDOs on server “B” that server “B” does not have, thus server "B" becomes 
synchronized with server "A". In the second step, server “A” sends a normal SEARCH message with the 
search token "*" and server “B” responds with list of all NDO names it has in its cache. Server “A” then 
compares the received list in the SEARCH-RESPONSE message and sends a GET message for each 
NDO that is not present in its local cache and thus server "A" becomes synchronized with server "B". 
This script could be run periodically (e.g. every 5 minutes) to keep the two NetInf server's caches 
synchronized with each other. 
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7 Conclusions and Future work 
This chapter begins by presenting some conclusions. This is followed by some suggestions for future 
work and reflections on the social, ethical, and other issues relevant to this thesis project. 

7.1 Conclusions 

A functioning Android prototype application for the MOSES project was created, thus the main goal of 
this thesis project was achieved. This prototype was built based on the NetInf protocol. This prototype 
can be used for experience sharing by visitors to an entertainment venue. The application uses 
Bluetooth to disseminate location relevant content opportunistically between mobile devices in an 
ad hoc environment. A series of controlled experiments were conducted under supervision of MOSES 
researchers in order to test, verify, and evaluate the functionality of the prototype application as well as 
to analyze its efficiency for opportunistic content sharing. The results of these controlled experiments 
provided additional insights for MOSES researchers into using ICN (NetInf) for opportunistic content 
sharing and allow them to review the concept. Additionally, they can further develop and refine the 
prototype Android application and the involved algorithms. 

The three controlled experiments attempted to evaluate different scenarios and based on these 
results some key results and concerns regarding MOSES/ICN concept can be summarized as follows: 

i. The network converges faster with more devices, as evident from the results of experiment 
3 where the average network convergence time was 7 minutes and 44 seconds as opposed 
to 10 minutes and 15 seconds for experiment 2. Thus, additional devices reduce the 
convergence time, but since a device cannot have more than 7 Bluetooth active 
connections at a time any node in the network will be limited to 7 active neighbors. 

ii. The Bluetooth limitation of accepting one client per UUID limits devices to serving only 
one client at a time. Having a Server/Master listening on different UUIDs does not 
improve the efficiency and will only prolong the test-socket process further. 

iii. The test-socket timeouts are very high when a device is unavailable and thus considerably 
increases the synchronization time. Moreover, it has been observed that the Bluetooth 
transmission channel is prone to transmission errors for distances greater than a few 
meters and many socket tear downs (i.e. socket-failures) were observed between devices 
during each synchronization process further prolongs the convergence time. 

iv. As stated in Section 5.2.5, once a device receives a SEARCH-RESPONSE message, it 
calculates which NDOs it is missing in its local cache and starts sending GET requests to 
randomly selected neighbors. This is to comply with ICN architecture as the device is only 
interested in receiving the content (i.e. NDO) and it is irrelevant of where the NDO comes 
from. The node sends requests sequentially to all available devices and waits for the first 
response. This mechanism of sending multiple GET requests to fetch an NDO causes 
congestion on the transmission channel and unnecessarily uses the device’s processing 
and other resources. This becomes worse when several convergence layers are used 
simultaneously as the GET requests will be sent over all convergence layers. For example, 
if both Bluetooth and HTTP CLs are chosen by user then after receiving a successful 
SEARCH-RESPONSE, the application will send GET requests to all of the available devices 
via both convergence layers. This issue can be avoided with a host-centric approach by 
binding a SEARCH-RESPONSE to a GET request. In this approach after receiving each 
successful SEARCH-RESPONSE, the device remembers which device sent the response 
and then during the GET process each individual GET request is sent only to the device 
that actually holds the NDO instead of sending the request randomly to all available 
devices.  
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7.2 Future work 

The thesis focused primarily on building a prototype application using the NetInf protocol for 
opportunistic content sharing and conducting controlled experiments to analyze and evaluate the 
performance of the prototype application. Several aspects were out of scope of this thesis and could be 
further developed to extend the functionality of the prototype application. This section summarizes 
some of those aspects that remain undone, together with some related work that may be of interest for 
future thesis projects. 

i. It is evident from the experiment results that the transmission channel is of great 
importance and has a major impact on the efficiency of the application. Currently there are 
two alternatives for mobile ad hoc networks namely Bluetooth and Wi-Fi Direct. The 
application used Bluetooth since it had been previously worked on and developed during a 
Master’s thesis project by Linus Sundé[16] and the Bluetooth CL was already in the 
Android NetInf library. As discussed in Section 5.2.6 there are several issues which make 
use of Bluetooth undesirable for opportunistic content sharing. As future work, it is 
recommended to spend time and effort on a new CL, specifically Wi-Fi Direct[23], as an 
alternative before proceeding with further development of the prototype application. 

ii. Since the main aim of this Master’s thesis project was to build a functioning prototype 
application for opportunistic content sharing, little time was spent on optimization of the 
application itself. Caching and sharing NDOs consume considerable resources (such as 
random access memory and battery power) of the mobile device. In future work it would 
be advisable to further develop and optimize the application to use fewer resources as well 
as to refine the GUI. Moreover, there have been some refinements done to the Android 
NetInf library during this thesis project, but more investigations are required to further 
optimize and develop the library as suggested by Linus Sundé[16]. 

iii. Although the application can use HTTP CL for both ad hoc and infrastructure 
synchronization this CL was out of the scope of this thesis project, hence no experiments 
were performed using the HTTP CL. It would be of interest to conduct similar experiments 
simultaneously using both Bluetooth and HTTP CL. 

iv. Rather than implementing a completely opportunistic/probabilistic behavior as is the case 
with the current implementation, it would be advisable to either extend the current Sync 
algorithm or devise a completely new synchronization protocol that would be more 
efficient within the framework of MOSES and the information-centric concept. 

v. The controlled experiments were limited to only five devices. As is evident from the 
results, the convergence time decreases when more devices communicate with each other. 
It would be of interest to conduct experiments with more devices and observe the resulting 
behavior. Moreover, in order to analyze the behavior of the application for real life 
scenarios, a series of uncontrolled experiments should be conducted where the devices are 
distributed to end users whom would generate and share content opportunistically in an 
uncontrolled manner. 

vi. The results of the controlled experiments presented in Chapter 5 are primarily intended 
for MOSES researchers to reproduce the experiments with the desired metrics that are of 
most interest to them. An interested researcher should repeat the experiments presented 
in Chapter 5 with more than 10 iterations in order to acquire better distributions and 
observe in more depth the deviations of the results. 

7.3 Reflections 

From the end user's point of view, applications such as MOSES intend to decentralize sharing and 
dissemination of digital content, thus offloading content servers. This approach might give end users 
the opportunity to exchange data on their own and in a more on-demand manner without needing a 
subscription to an Internet service. Opportunistic location relevant content may also be beneficial from 
an educational perspective, as users who own a Smartphone device may receive informative 
news/information about the locations they pass through. 
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Offloading content servers could lead to reduced load on the infrastructure and thereby a decrease 
in deployment and maintenance costs for commercial information providers. Because if every user's 
device is a content server, there would be no need to ask for content from content servers on the 
Internet when that content is available from the user(s) nearby. This could also imply less load or 
distribute the load on the environment. Because mobile devices are usually power efficient (since they 
are constrained their battery’s power), short ranged wireless technologies could be used by power 
efficient devices (i.e. Smartphones) to satisfy their users’ demands. This is likely to lead to a reduction 
in the size of content size (via compression or other algorithms), thus decreasing the content’s size on 
the global network. 

With all the benefits of MOSES, there are also privacy and ethical concerns introduced. Personal 
data confidentiality and end user activity discretion are two factors that may violate the end user's 
privacy via a MOSES application. Opportunistic sharing or sharing in general introduces privacy issues 
such as revealing a person's identity, activity, location, or any other personal information to 
unauthorized users. Confidentiality of end user data are discussed in some papers of ICN[18], but there 
are yet no RFCs that describe how the personal data of an end user should be handled. In addition to 
confidentiality, MOSES relies on geoTagging user's data – hence coupling location and content. There 
exists no standard procedure for geoTagging end user content. Unfortunately, geoTagging end user 
content could violate the user's privacy by revealing the user's location and activity at a specific point in 
time. Furthermore in opportunistic sharing environments there should exist procedures for managing 
the exchange of data between the users. These procedures should provide a means for the end user(s) 
to have full control over what is shared and how much is shared, while at the same time preventing 
users from violating another user’s rights. Additionally, in a streaming scenario if a user chooses to 
stream a public video from n peers then this user should also share their received &  cached video with 
n other users in order to maintain a fairness in the sharing environment. 

 





 References | 61 

 
 

References 

[1] B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of 
information-centric networking (draft),” Inf.-Centric Netw., no. 10492, 2011. 

[2] S. Farrell, E. Davies, and D. Kutscher, “The NetInf Protocol,” 2013. 
[3] “MOSES-Background - MOSES-Background.pdf.” [Online]. Available: 

https://www.eitictlabs.eu/fileadmin/files/docs/Tenders/MOSES-Background.pdf. 
[Accessed: 04-Apr-2014]. 

[4] A. Lindgren, “Open position for Master Thesis work: IoT Monitoring and Analysis 
System,” SICS Swedish ICT, Thesis proposal. 19-Dec-2013. [Online]. Available: 
https://www.sics.se/media/news/open-position-for-master-thesis-work-iot-
monitoring-and-analysis-system 

[5] A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information 
Systems Research,” MIS Quarterly, 28(1): 75-105, March-2004. [Online]. Available: 
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=rep1&type
=pdf. [Accessed: 26-May-2014]. 

[6] A. Cockburn, “Using Both Incremental and Iterative Development,” STSC CrossTalk 
(USAF Software Technology Support Center) 21 (5): 27–30. ISSN 2160-1593, May-
2008. [Online]. Available: http://www.crosstalkonline.org/storage/issue-
archives/2008/200805/200805-Cockburn.pdf. [Accessed: 30-May-2014]. 

[7] C. Larman and V. R. Basili, “Iterative and Incremental Development: A Brief History,” 
IEEE Computer Society, 2003. [Online]. Available: 
http://www.computer.org/csdl/mags/co/2003/06/r6047-abs.html. [Accessed: 26-
May-2014]. 

[8] P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander, 
“LIPSIN: line speed publish/subscribe inter-networking,” in ACM SIGCOMM 
Computer Communication Review, 2009, vol. 39, pp. 195–206. 

[9] B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman, K. 
Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone, “Design considerations 
for a network of information,” in Proceedings of the 2008 ACM CoNEXT Conference, 
2008, p. 66. 

[10] S. Nechifor, “How to Manage and Search/Retrieve Information Objects,” in 
Architecture and Design for the Future Internet, Springer, 2011, pp. 201–223. 

[11] S. Farrell, C. Dannewitz, P. Hallam-Baker, D. Kutscher, and B. Ohlman, “Naming 
things with hashes,” Internet Request for Comments, RFC 6920 (Proposed Standard), 
Apr. 2013 [Online]. Available: http://www.rfc-editor.org/rfc/rfc6920.txt 

[12] D. Kutscher, S. Farrell, and E. Davies, “draft-kutscher-icnrg-netinf-proto-01 - The 
NetInf Protocol,” 10-Feb-2013. 

[13] V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L. 
Braynard, “Networking named content,” in Proceedings of the 5th international 
conference on Emerging networking experiments and technologies, 2009, pp. 1–12. 

[14] T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I. 
Stoica, “A data-oriented (and beyond) network architecture,” ACM SIGCOMM 
Comput. Commun. Rev., vol. 37, no. 4, pp. 181–192, 2007. 

[15] E. Davies, “Implementing the NetInf Protocol with HTTP and DTN Convergence 
Layers and Using NetInf over DTN as the Primary Communication Protocol for a 
Device,” 14-Jun-2013. [Online]. Available: 
http://developer.android.com/training/connect-devices-wirelessly/wifi-direct.html. 
[Accessed: 29-May-2014]. 

[16] L. Sunde, “NetInf Node for Bluetooth Enabled Android Devices,” Uppsala Universitet, 
Department of Information Technology, IT 13 081, 2013, 
http://uu.diva-portal.org/smash/get/diva2:668342/FULLTEXT01.pdf. 

[17] “Network of Information / Code / [e93120].” [Online]. Available: 
http://sourceforge.net/p/netinf/code/ci/default/tree/. [Accessed: 31-Mar-2014]. 



62 | References 

 
 

[18] M. Ion, J. Zhang, and E. M. Schooler, “Toward Content-Centric Privacy in ICN: 
Attribute-based Encryption and Routing,” In Proceedings of the ACM SIGCOMM 
2013 conference on SIGCOMM (SIGCOMM '13). ACM, New York, NY, USA, Aug-
2013, pp. 513-514. DOI=10.1145/2486001.2491717 Available: 
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p513.pdf. 
[Accessed: 28-May-2014]. 

[19] “Reality matters — Preorder for Estimote Beacons available, shipping this summer.” 
[Online]. Available: http://blog.estimote.com/post/57087851702/preorder-for-
estimote-beacons-available-shipping-this. [Accessed: 04-Apr-2014]. 

[20] “Bluetooth | Android Developers.” [Online]. Available: 
http://developer.android.com/guide/topics/connectivity/bluetooth.html. [Accessed: 
17-May-2014]. 

[21] Bluetooth SIG, “Baseband Architecture | Bluetooth Development Portal,” Baseband 
Architecture | Bluetooth Development Portal, 26-May-2014. [Online]. Available: 
https://developer.bluetooth.org/TechnologyOverview/Pages/Baseband.aspx. 
[Accessed: 26-May-2014]. 

[22] “Specification of the Bluetooth System, Covered Core Package version: 4.1.” 
http://www.bluetooth.com, 03-Dec-2013. 

[23] “Wi-Fi Peer-to-Peer | Android Developers.” [Online]. Available: 
http://developer.android.com/guide/topics/connectivity/wifip2p.html. [Accessed: 
29-May-2014]. 



 

 

Appe
 

 

 
 

NDO
coun

NDO
coun

endix A. Expe

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

eriment 2 - D

0 1

E

D

1 2

E

D

evice converg

2

xperime

Device-1 D

3 4

Experim

Device-1 D

 

gence time 

3
Ti

(min

ent 2 - I

Device-2

4 5
T

(mi

ent 2 - I

Device-2 D

Appendix A: E

4
ime
nutes)

Iteration

Device-3

6 7
Time
nutes)

Iteratio

Device-3 D

xperiment 2 - Dev

5

n 1

Device-4

8 9

n 2

Device-4 D

vice convergence 

6

Device-5

10 11

Device-5

time | 63 

7

12

 



64 | Append

 
 

 
 

 

NDO
coun

NDO
coun

dix A: Experiment

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

t 2 - Device conve

1

E

D

1

E

ergence time 

2 3

xperime

Device-1 D

2 3

xperime

Device-1

3 4
T

(min

ent 2 - I

Device-2

4
T

(min

ent 2 - I

Device-2

5
ime
nutes)

Iteration

Device-3

5 6
ime
nutes)

Iteration

Device-3

6 7

n 3

Device-4

7 8

n 4

Device-4

8

Device-5

8 9

Device-5

9

10



 

NDO
count

NDO
count

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

1 2

Ex

D

1 2

Ex

D

3

xperime

Device-1 D

3

xperime

evice-1 De

 
 

4 5
Ti

(min

ent 2 - I

Device-2 D

4 5
Ti

(min

ent 2 - I

evice-2 D

Appendix A:

6 7
ime
nutes)

teration

Device-3 D

6 7
ime
nutes)

teration

evice-3 D

 Experiment 2 - D

7 8

n 5

Device-4 D

7 8

n 6

evice-4 De

Device converge

9 10

Device-5

9 10

evice-5

ence time| 65 

 

11

11



66 | Append

 
 

NDO
count

NDO
count

dix A: Experiment

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

t 2 - Device conve

1 2 3

Ex

De

1

Ex

D

ergence time 

4 5 6

xperime

evice-1 De

2 3

xperime

Device-1 D

 
 

6 7 8
Tim

(min

ent 2 - It

evice-2 De

4 5
Tim

(min

ent 2 - It

Device-2

9 10 1
me
utes)

teration

evice-3 De

5 6
me
utes)

teration

Device-3

1 12 13

n 7

evice-4 De

7 8

n 8

Device-4

14 15 16

evice-5

9

Device-5

 

6 17

10



 

 

NDO
count

NDO
count

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

t

1 2

Ex

Device-1

1

Exp

Device-1

3

xperime

Device-2

2 3

perimen

Device-2

4 5
Tim

(minu

ent 2 - It

Device-3

4 5
Tim

(minu

nt 2 - Ite

2 Device-3

Appendix A:

6 7
me
utes)

teration

Device-

6
me
utes)

eration 

3 Device-4

 Experiment 2 - D

8 9

 9

-4 Devic

7 8

10

4 Device-

Device converge

9 10

ce-5

9

-5

ence time| 67 

 

 

 

11

10





 

 

Appe

NDO
coun

NDO
coun

endix B. Expe

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

eriment 3 - D

1

E

Device-1

1

E

Device

evice converg

2

xperime

Device2

2 3

xperime

e-1 Devic

 

gence time 
 

 

3
T

(min

ent 3 - I

Device-3

3 4
T

(min

ent 3 - I

ce-2 Dev

Appendix B: Exp

4 5
ime
nutes)

Iteration

3 Device

5
ime
nutes)

Iteration

vice-3 D

eriment 3 - Devic

6

n 1

e-4 Dev

6 7

n 2

evice-4

ce convergence 

7

vice-5

8

Device-5

time | 69 

8

9



70 | Append

 
 

NDO
coun

NDO
coun

dix B: Experiment

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

t 3 - Device conve

1

Ex

Devic

0 1

Ex

Device

ergence time 

2

xperime

ce-1 Devi

2

xperime

e-1 Devi

 

3
Ti

(min

ent 3 - It

ice-2 Dev

3
Ti

(min

ent 3 - I

ce-2 Dev

4
me

nutes)

teration

vice-3 Dev

4
ime
nutes)

teration

vice-3 D

5

n 3

vice-4 Dev

5

n 4

evice-4 D

6

vice-5

6

Device-5

7

7



 

NDO
coun

NDO
coun

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

1

Ex

Dev

1

Ex

Devic

2 3

xperime

vice-1 De

2 3

xperime

ce-1 Dev

 

4
Ti

(min

ent 3 - It

evice-2 D

4
Ti

(min

ent 3 - I

ice-2 Dev

Appendix B:

5 6
me

nutes)

teration

Device-3

5 6
ime
nutes)

teration

vice-3 De

 Experiment 3 - D

7 8

n 5

Device-4

7 8

n 6

evice-4 D

Device converge

8 9

Device-5

8 9

Device-5

ence time| 71 

 

10

10



72 | Append

 
 

NDO
coun

NDO
coun

dix B: Experiment

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

t 3 - Device conve

1

E

De

1

Ex

De

ergence time 

2 3

xperime

evice-1 D

2 3

xperime

evice-1 De

 

3 4
Ti

(min

ent 3 - I

Device-2 D

4
Ti

(min

ent 3 - It

evice-2 D

5
ime
nutes)

Iteration

Device-3

5 6
me

nutes)

teration

evice-3 D

6 7

n 7

Device-4

7 8

n 8

Device-4 D

8

Device-5

8 9

Device-5

9

10



 

 

 

NDO
coun

NDO
coun

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

0
5

10
15
20
25
30
35
40
45
50
55
60
65
70
75

0

O
t

1

E

Devi

0

Ex

Dev

2

xperime

ice-1 De

1

xperime

ice-1 Dev

 

3
Ti

(min

ent 3 - I

evice-2 D

2
Ti

(min

ent 3 - It

vice-2 De

Appendix B:

4 5
ime
nutes)

Iteration

Device-3

3
ime
nutes)

teration

evice-3 D

 Experiment 3 - D

6

n 9

Device-4

4

n 10

Device-4

Device converge

7

Device-5

5

Device-5

ence time| 73 

 

8

6



 

 
 

TRITA-ICT-EX-2014:58 

www.kth.se 


