Mobile Opportunistic Services
for Experience Sharing

Via a Netinf Android Application

POURYA MORADINIA
and
IMAL SAKHI

KTH ROYAL INSTITUTE OF TECHNOLOGY

INFORMATION AND COMMUNICATION TECHNOLOGY

Mobile Opportunistic Services for
Experience Sharing

Via a NetInf Android Application

Pourya Moradinia
pourya@kth.se

Imal Sakhi
imal@kth.se

2014-06-21

Master's Thesis

Examiner and Academic Supervisor
Professor Gerald Q. Maguire Jr.

Industrial advisors:
Dr. Anders Lindgren
Dr. Fehmi Ben Abdesslem

KTH Royal Institute of Technology

School of Information and Communication Technology (ICT)
Department of Communication Systems

SE-100 44 Stockholm, Sweden

Abstract | i

Abstract

Information-Centric Networking (ICN) is a new research area concerning creating a new network
architecture that would be more suitable for both current and the future's network. The MOSES
(Mobile Opportunistic Services for Experience Sharing) project is part of this development. The
project works with the development and demonstration of the Network of Information (Netlnf)
protocol, which is an implementation of the ICN concept.

This Master’s thesis project is part of the MOSES project and aims to assist the MOSES project
with the demonstration of a mobile opportunistic sharing concept based on the NetInf protocol.
Demonstrating the MOSES concept in practice requires deep understanding of networking,
localization, transport, and dissemination of digital content in an ad hoc network. This
implementation requires an analysis of the previous work, development of new functionalities, and
finally an analysis of a series of controlled experiments.

This Master’s thesis project has designed, implemented, and evaluated an Android application
within the MOSES framework by using the previously developed NetIlnf Android library. This
prototype is used to demonstrate how mobile Android users can opportunistically share and
disseminate content based on their location using the MOSES/ICN concept. The functionality and
efficiency of the prototype Android application built during this thesis project has been analyzed
and evaluated by conducting a series of controlled experiments under the supervision of MOSES
researchers. The results of these controlled experiments has provided insight for MOSES
researchers as well as explored the concept of using ICN (NetInf) for opportunistic content
distribution. The experiment results aim at assisting MOSES researchers to extend and further
develop the prototype application and the involved algorithms to create a fully functional mobile
application for experience sharing services tailored to large-scale events.

Keywords

ICN, NetInf, MOSES, Android, sharing, content distribution, opportunistic, transport, networking

Sammanfattning | iii

Sammanfattning

Information-Centric Networking (ICN) ar ett nytt forskningsomrade for att bygga en ny
natverksarkitektur mer passande fér dagens och framtida natverk. MOSES projektet ar en del av
denna utveckling och arbetar med utveckling och demonstration av Network of Information
(NetInf) protokollet, som ar en implementering av ICN konceptet.

Detta examensarbete ar en del av MOSES (Mobile Opportunistic Services for Experience
Sharing) projektet som syftar till att bistA MOSES projektet med demonstrationen av "mobile
opportunistic sharing” konceptet som bygger p& NetInf protokollet. Att demonstrera MOSES
konceptet i praktiken kravs djupt forstdelse om néatverk, lokalisering, transport och spridning av
digitalt data i en "ad hoc" och infrastruktur milj6. Genomfdrandet av denna implementering kraver
en analys av tidigare arbete, utveckling av nya funktioner och slutligen analys av genomférda
experiment och resultaten.

Detta examensarbete har utformat, genomfért och utvarderat en Android applikation inom
ramen for MOSES med hjalp av tidigare utvecklat Netinf Android bibliotek. Denna prototyp
anvands for att visa hur mobila Android anvandare opportunistiskt kan dela och sprida innehall
baserat pa deras plats med hjalp av MOSES/ICN konceptet. Funktionaliteten och effektiviteten av
prototypen byggd under detta examensarbete har analyserats och utvarderats genom att utféra en
serie kontrollerade experiment under ledning av MOSES forskare. Resultaten av dessa
kontrollerade experiment har gett insikt & MOSES forskare samt utforskat konceptet att anvanda
ICN (NetInf) for opportunistisk distribution av innehall. Experimentens resultat syftar till att hjalpa
MOSES forskare att utéka och vidareutveckla prototypen och de involverade algoritmer for att
skapa en fullt fungerande mobil applikation for “experience sharing services" anpassad for stora
evenemang

Nyckelord

ICN NetInf MOSES Android dela data information sprida spridning opportunistiskt transport
natverk

Table of contents | v

Table of contents

ADSTIACT ..o e i
[AT e] o £ PP [
SamMmMaNTatiNINg ...ooviiici e i
N 71 Q=1 [0 o S SEPPPRPUPRR iii
Table Of CONTENTS ... v
LISt Of FIQUIES ... Vil
LISt Of T@BIES coueeeeee e IX
List of acronyms and abbreviations........cccccovvvviiiiiiiiiiiine e, Xi
R | 4 o Yo LU T o] AT) o PP 1
1.1 General introduction to the areacccccuvveiiiiiiiiiii s 1
1.2 Problem definition ... 1
1.3 Problem CONTEXTooiiiiiiiiiiiiiiiiiieeeeeeeeee e 2
1.4 GOAIS it e 2
15 Research Methodologyueeeii i 2
1.6 Structure of thiS theSiS ..o 3
2 BackgroUund......ccooooiiiiiii s 5
2.1 Information-Centric NetWorkingceeeeiiieiiiiiecce e 5
2.2 AN 1 1 TR RRRP 5
221 Named Data Objects (NDOS)ccuvvriiiiiieiiiiiiiieiiieeieeeeeeeeeeeeeeeeeeens 5

2.2.2 MESSAGE LY PS .. ittt ettt 6

2.2.3 CONVEIGENCE LAYEI.....oeiiiiiiie et 7

2.3 Python and Android NetInf library ... 7
2.4 GeoTagged objects and their coordinates........cccccevvvvvieiiieeeeeeeeiiiinnnnn, 8
2.5 (Ol o> LY <SPPSR UPPTR PPN 8
2.6 Comparison of alternative ICN models........cccccoeiiieiiiiiiiiiiiiiie e, 8
2.6.1 Commonalities of DESIGNSccuvuviiiieieeeeeeeeeee e 9

2.6.1.1 Publish/Subscribe paradigm..........c.cccccciiiiii 9

2.6.1.2 Universal CaChing..........ccouuiiiiiiiiiieieeeiiiee e 9

2.6.1.3 Content-oriented Security Modelcccccvviiiiii 9

2.6.2 Fundamental Differences in DeSIgNcuvvviviveiiiieeiieiieiieeeeeeeee 9

FZL G 0% I - Uy 11 Vo PSSP 9

2.6.2.2 Inter-domain Name-Based ROULINGcoouvviiiiiiiiiiieiiicn e, 10

2.6.2.3 TrANSPOI ettt 10

S MEtNOA ..o 11
4 Implementation of a NetIinf Android Application 13
4.1 (€Tl Ir=To o 11 1o FR TR 13
4.2 CONVEIgENCE LAYEIS .uniiiiiiiiiie ettt 14
4.3 Graphical User Interface (GUI)uuuiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiiieiiiienens 14
4.4 SYNCRIONIZALION ... e 17
4.5 (o o Lo [o Yo PR PPPPPPPPPPPPPPPP 19
D ANAIY SIS oot 21
51 Controlled Experiment 1: Point-to-Pointccccoovviiiiiiiiiiiiiiiieeeee, 22
511 Experiment CONAitiONS.........covvviiiiiiiiiiiiiiiiiieieeeeeeeeeeeeeeeeeee e 22

5.1.2 Y o1=1 4 1=1 1 [0 FUUT TR TP 22

6 | Table of contents

5.1.3 Synchronization ProCESSooevuuiiiiiiieeeeeeeeeee e 24

5.14 IMIBITICS ..ttt e e e e e e et e e e e e e e eeeeens 24

5.15 RESUITS ...ttt 25
5.1.5.1 GET-RESPONSE delay per location (First Metric).........ccccccceerrnnnnne 25

5.1.5.2 GET success-rate and Sync Duration (Second and Third Metrics).. 28

5.1.6 DISCUSSION ..ttt 29

5.2 Controlled Experiment 2: MUlti-HOPoovviviiiiiiiiiiiiiiiiiiiieeee 30
5.2.1 Experimental CoONditioNS............coovvviiiiiiiiie e 30

5.2.2 Yo T o T 1 o USRI 30

5.2.3 SyNnchronization PrOoCESSccovvvuviiiiiiiieeeeeeeeicee e e e 31

52.4 NetInf library aggregated SEARCH mechanism 32

5.2.5 NetInf library distributed GET mechanismccccoooeeevvviinnnn 33

5.2.6 BIUBLOOTN CL .. 34
5.2.6.1 Socket Management........ccceiiiiiiiiiiiiiiiie e ee e e e e e e e e e eeaes 34

5.2.6.2 Master/Slave configurationccccccvvvvvvieiiieiiieiiieiieeeeeeeeeeeeeeeeeeeaee 35

5.2.7 Periodic Synchronization TIMEereiiiiiiiiiiiiiiiiieee e 35

5.2.8 Synchronization back-off timer............cccccovveiiiiicii e, 36

5.2.9 IMIBITICS ..ttt e e e e et e e e e e e eeeeeens 38
5.2.10 RESUIS ...uuuiiiii it 38
5.2.10.1 Network Convergence Time (First Metric)cccceeeeeeeieiiieiiiceinnne 39

5.2.10.2 GET-RESPONSE delay (Second Metric)ccceeveeivviiiiiiiiiiieeeeeeeinns 40

5.2.10.3 Test-socket delay (Third MetriC)covvveevvieiiiiiiiiiiieieeeeeeeeeeeeeeeeee, 41

5.2.10.4 Sync Success-Rate (Fourth Metric)........cccvvvvveeeiiiiiiiiiiiiicee e 42

5.2.10.5 Sync duration (Fifth MetriC)...........uuuuuuummmiiiiiii e 44

5.3 Controlled Experiment 3: Semi-Meshccceeiiiiiiiiiiiiiiiiii e, 45
5.3.1 IMIBITICS .. ettt e e e e et e e e e e e e eeeeens 46

5.3.2 RESUITS ...ttt 46
5.3.2.1 Network Convergence Time (First Metric)ccccceeeeeeieiiieiiiicinnns 46

5.3.2.2 GET-RESPONSE Delay (Second MetriC).......cccceeeeeeriveeiiiiiieeeeeeennnns 47

5.3.2.3 GET Success-Rate (Third Metric).........ccvvvvvvievieeiiiiiiiiiiieiieeeeeeeveeeee, 49

5.3.2.4 Sync Success-Rate (Fourth Metric)..........ccccvvveeiiieeiiiiiiiiiiiiieeeee e 51

5.3.2.5 Sync Convergence time (Fifth Metric)cccccooiioiiiiiiiiiiie 52

5.3.2.6 DeVviCe SYNC PAEIMS.......uciii i e e eee et e e e e eeeeees 54

6 Contributions to MOSES..........ooo i 55
6.1 Extension of the Android NetInf Library.......ccccoooeoiiiiiiiiiiiieee 55
6.2 Python Synchronization SCrpPt ... 55
7 Conclusions and Future Workccceeoiieieeiiiiiiiiiiice e 57
7.1 (070 o Tod 1V E5] [0 4 TP PPPPPPPPPPP 57
7.2 FULUTE WOTK oo 58
7.3 REFIECTIONS ..coeiiiiiiiiiie e 58
RETEIENCES ... 61
Appendix A. Experiment 2 - Device convergence time 63

Appendix B. Experiment 3 - Device convergence time 69

List of Figures | vii

List of Figures

Figure 3-1:
Figure 4-1:

Figure 4-2:
Figure 4-3:
Figure 4-4:
Figure 4-5:
Figure 4-6:
Figure 4-7:
Figure 4-8:
Figure 5-1:
Figure 5-2:
Figure 5-3:
Figure 5-4:
Figure 5-5:
Figure 5-6:
Figure 5-7:
Figure 5-8:
Figure 5-9:

Figure 5-10:

Figure 5-11:

Figure 5-12:

Figure 5-13:
Figure 5-14:
Figure 5-15:
Figure 5-16:

Figure 5-17:

Figure 5-18:

Figure 5-19:
Figure 5-20:
Figure 5-21:
Figure 5-22:
Figure 5-23:
Figure 5-24:
Figure 5-25:
Figure 5-26:
Figure 5-27:
Figure 5-28:
Figure 5-29:

Iterative design appProachccoooeciviiiiiiee e 11
Estimote Beacon. The community manager of Estimote granted
permission (by E-Mail) for use of this image in this thesis[19]......... 13
Android application GUIcooviiiiiiiiiiiiiiccce e 15
GUI Beacon informationcoooiuiiiiiiiiiiiie e 16
GUI USEI SEELINGS ..vieieieieee et e e e e e e e e e e eeeas 16
TriANQUIATION ..o 17
Estimote Beacon Zones in the SICS office.......ccccccoviiiiiiiiiis 18
Synchronization POINTSevvieeiiiiiiie e 18
Example of an application 10gcccooviiiiiiiiiiiiiiiee e 19
Controlled EXPeriments..........uueeeeiiiciiiiiiieeee et e e e e 21
SICS KiSta OffiCe ..eviiiiei i 23
SYNC FUNCTION L.t a e 24
Location B GET-RESPONSE delaycccceveiiiiiiiiiiiiiiiiiiceeeeees 26
Location C GET-RESPONSE delay..........ccccceveeeiiiiiiiiiiiieeeee e, 27
Location D GET-RESPONSE delaycccccvvveeeeiiiiiiiiiiieceee e 28
Experiment 1 SyNc DUFatioNScooiiuiiieeiiiiieee e 29
SICS Kista Office (Same as Figure 5-2)ccoocoveviiniiiiiieniiieceee, 30
Mobile devices organized in a linear topologyccccvveeeveeeeiiininnnee. 31
Sync. Process overview flow chart (Only overview, not the

complete algorithm)oueeeiiieie e 32
NetlInf library aggregated SEARCH mechanism (this is not the

case iN this eXPeriMmENT)........ccuiiiiiiiiiie e 33
NetlInf library distributed GET mechanism (this is not the case

IN thiS EXPEITMENT)....ccii i 34
DeViCES COIOI COUR......uuiiiiiiiiiiii et 39
Network CONVergence TIMEccveeeeeiiciiieieeeee e e e e e e e 39
Device convergence pattern during experiment 2 iteration 7........... 40
GET-RESPONSE DEIAYuvvuiiiiiiiiiiiiieese s 41
Bluetooth test socket dUuration..........ccccooviiiiiiiiiiiiiie e 42
Per device average number of successful Sync attempts and sync

(o [N] = 1A (o] o PP PR TUPRPTPPPRPS 43
Per deviCe error-COUNTooiiiiiiiiiiie e e s e e e e 44
Per device successful Sync duration..........ccccccvveeiiiiiiee e, 45
Location of each of the devices...........cccuviieieiiii 45
Mobile devices CONNECtioN State............ccovviiieeeeiiiiiiee e 46
Network Convergence Time (in MINUEES)ccovvvviiiiiiiieeeeeeeeeinne, 47
GET-RESPONSE Total Average Durationccccccceeeeveiiiciiinnennnn. 48
GET-RESPONSE Average Duration/Iteration............ccccoeecvvvvvnennn. 49
GET attempts and failures..........ccuuvvieeiiiii e, 50
GET's efficienCy/SUCCESS FALEvvvvviieieeeee i 51
Total Sync. Attempts/Failures.............oooociiiiiiiie e, 52

SYNC. CONVEITENCE ...ttt ettt e e e e e e et e e e e e e e eeeen 53

List of Tables | ix

List of Tables

Table 5-1:
Table 5-2:
Table 5-3:
Table 5-4:
Table 5-5:
Table 5-6:

Summary of devices 0CatioNScceevveveeeiiiii e 23
EXPeriment 1 reSUltS ... 29
DEVICES PAITING. ...ttt e e e e e e s e e e e s 31
K values used in the implementation.............ccccccooeiiiiiiiiiice e, 37
SYNC AUration reSUILSuueiiiieee e 52

Sync pattern (N/A indicates not applicable).........ccccccccovvviiiiiinnnnnnn. 54

List of acronyms and abbreviations | xi

List of acronyms and abbreviations

API Application Programming Interface
BLE Bluetooth Low Energy

CL Convergence Layer

EIT European Institute of Technology
geoTagged geographically Tagged

GPS Global Positioning System

GUI Graphical User Interface

ICN I nformation-Centric Networking

ICT Information and Communication Technologies
MAC Media Access and Control

MOSES Mobile Opportunistic Services for Experience Sharing
Netlnf Network of Information

NDO Named Data Object

NI Named Information

NTP Network Time Protocol

PKI Public Key Infrastructure

RSSI Received Signal Strength Indication
SICS Swedish Institute of Computer Science
Sync Synchronize

UAT User Acceptance Testing

URI Uniform Resource Identifier

URL Uniform Resource Locator

UuID Universally Unique Identifier

Introduction | 1

1 Introduction

This chapter describes the specific problem that this thesis addresses, the context of the problem, the
goals of this thesis project, and outlines the structure of the thesis.

1.1 General introduction to the area

Information-Centric Networking (ICN)[1] is a concept for an Internet architecture where the focus
is on the content, rather than the communication between hosts as in today's networks. This new
architecture intends to be more suitable for content distribution and to mitigate the impact of
communication disruptions. In ICN architecture any content (e.g. image, music, text, etc.) is treated as
an object which can be cached at different locations in the network. Unlike the current Internet
architecture, servers or other devices that are capable of retaining a copy of an object can implement
these caches. When a user requests a specific object from the network, the network will locate the
object (with the help of locators) within one of the caches with a copy of the object and then will deliver
a copy of the object to the requester. With this architecture, ICN attempts to decentralize content
sharing and offload traffic from content servers. ICN aims for a future Internet that is scalable and well
suited for content sharing and distribution.

Network of Information (NetInf)[2] is a protocol based on the ICN architecture. The NetInf
protocol implements different features of the ICN architecture and allows creation and exchange of
Named Data Objects (NDOs) between NetInf nodes. NDOs are ICN objects that are hamed with a
standardized Uniform Resource Identifier (URI). An NDO could be any type of content (e.g. image,
music, text). In a NetInf network a user will request an NDO and the NetInf network will retrieve the
NDO from the nearest” cached location.

Mobile Opportunistic Services for Experience Sharing (MOSES) is a research project that “will
adapt and extend the algorithms and software systems built in the carrier projects to create a specific
mobile application for experience sharing between visitors (using live images, videos) of an
entertainment venue such as Expo 2015. The resulting system will (i) reduce the load on the mobile
network (offloading) and (ii) provide a platform allowing instant refinements, creation, and sharing of
new apps.”[3] The prototype developed during this Master's thesis project may become an experiment
platform for experimenting with the opportunistic sharing concept by MOSES partners or the research
community.

1.2 Problem definition

The ICN/NetInf concept is a new approach for eliminating the flaws of the current Internet
architecture, as well as optimizing the current functionalities of the Internet. Opportunistic content
sharing is a concept built upon the ICN/Netinf architecture. This opportunistic content sharing
intends to decentralize and offload traffic from the original content storage infrastructure for common
and popular content. Users near each other who request the same content should retrieve it from each
other, rather than from the original content-servers. This new architecture shifts the traffic due to
requests by end-users trying to retrieve the same content from long geographical distance to short
distances. This is especially valuable in a flash-crowd scenario.

The idea of distributed dissemination of user-content is to make relevant content easily available
where it is most likely to be requested. In this approach, mobile users will mostly operate their wireless
local area network interface in ad hoc mode, but will use infrastructure mode in order to share and
synchronize location relevant content with NetInf-Servers for distribution purposes.

*Nearest in a network sense, not necessarily nearest in a geographical sense.

2 | Introduction

Caching and sharing NDOs consumes crucial resources (e.g. random-access memory and battery
power) of the end-user's mobile device. Mobile devices should operate in a suitable manner to share
and disseminate as many NDOs as possible, while using the minimum amount of the mobile device's
constrained resources. The idea is to trade available local resources of a collection of user devices for a
reduction in wide area network traffic.

1.3 Problem context

This Master’s thesis project is part of the MOSES project within the EIT ICT Labs Future Networking
Systems action line. The goal of the MOSES project is to develop an architecture and platform that
exploits opportunistic communication among mobile users[4].

1.4 Goals

The main goal of this thesis is to assist the MOSES research community with a proof of the mobile
opportunistic sharing concept by designing and implementing a prototype that will be evaluated
during a series of controlled experiments.

Using the Python and Android NetInf libraries provided by the MOSES project, this Master’s thesis
project aims to design and implement an Android application which includes NetInf features for
mobile end-users. This Android application will demonstrate how users can opportunistically share
content based on their location(s). The contents shared by this Android application will be
geographically tagged (geoTagged) with the coordinates of the location that the content is relevant to.
Indoors, Bluetooth Beacons provide these coordinates as explained in Section 4.1. A use case for this
application is that a user can opportunistically exchange location relevant content with other users in
the physical vicinity of this user.

Implementing features of the NetlInf protocol in this Android application will demonstrate some of
the functionalities of the ICN/NetInf concept in practice. This implementation will mainly contribute
to a prototype for conducting a series of controlled experiments that may point out key factors
regarding the MOSES/ICN concept. The results of these controlled experiments are intended for
researchers in the MOSES area to reproduce or further develop the scenarios of these experiments as
necessary.

Besides its use in the experiments, this prototype will also demonstrate an application of MOSES
for end users, which may generally be a contribution to the ICN research.

1.5 Research Methodology

ICN/NetInf is a new networking architecture, which is quite different from the current host-centric
TCP/IP Internet architecture. In order to design, implement, and evaluate a prototype for this new
Internet architecture, the Design Science[5] research methodology has been used in this thesis.

The Android application has been iteratively[6][7] desighed and implemented based on the NetInf
protocol and is expected to operate within the framework of the mobile opportunistic sharing concept.
This Android application has followed the guidelines of the MOSES project and has been implemented
according with the instructions of our respective supervisors, who are part of the MOSES research
community.

The Android application is the prototype, which has been experimentally evaluated by a series of
controlled experiments. The results of each controlled experiment is analyzed in terms of a set of
performance metrics, the purpose of this analysis has been to attempt to identify anomalies, factors of
efficiency, and factors of inefficiency in the opportunistic sharing concept in the context of MOSES.

Introduction | 3

1.6 Structure of this thesis

Chapter 1 provides background about the technologies and concepts used in this thesis. Chapter 3
describes the methodology used in this project for achieving the goals stated in Section 1.4. Chapter 3
presents in detail the actual implementation and its components. Chapter 5 presents the analysis of the
proposed solution and the metrics for the evaluation of the results of the controlled experiments.
Chapter 6 briefly describes some of material that was developed during this thesis project but which
has not been discussed in this thesis, this material may be of use in future projects. Finally, Chapter 7
presents a conclusion and suggests potential future work.

Background | 5

2 Background

Chapter 2 starts by giving a background to ICN, followed by an introduction to the NetlInf architecture
and its messaging and naming scheme. Section 2.3 reviews the Python code and Android Library used
and developed in this project. Section 2.4 discusses the localization of objects by geoTagging and the
significance of geoTagged content in mobile opportunistic sharing. Section 2.5 presents a use case for
this Android implementation and its contribution to the MOSES project. The chapter concludes with a
brief comparison of different ICN models, including NetInf.

2.1 Information-Centric Networking

This section provides an overview of the ICN framework in general and the NetInf implementation of
ICN in particular. In the context of this thesis the words “content”, “data”, and “information” are used
interchangeably to refer to the same entity: an NDO.

As mentioned in Chapter 1, ICN is an alternative to today’s host-centric networking (one-to-one
communication) model. There has been an increasing demand for highly efficient and scalable content
distribution in recent times. This demand has led to the development of new Internet architectures. All
that matters for many end users is rapid access to the content that they want without being limited to
acquiring this content from a specific host (as is the case in the present Internet architecture). ICN is a
research area that focuses primarily on fast retrieval of content, rather than focusing on which node to
retrieve this content from. ldeally, the requested content could be provided by any node that has this
data available as opposed to the current model where the content needs to be retrieved from a specific
node. There have been several research projects regarding ICN both in Europe (PSIRP[8], 4WARD[8])
and in USA (CCN[8], DONAJ[9][10]). This Master's thesis project is based on the Netinf
implementation of ICN which is a result of FP7 project AWARD", later continued in the FP7 project
SAILT,

2.2 NetInf

As with all other ICN implementations, in NetInf: communication is driven by users requesting NDOs
and the network satisfying the request by retrieving the NDO from any entity with a copy of the NDO.
The main constituents of the Netlnf protocol are NDOs, messages, and a convergence layer. The
following subsections will describe each of these.

221 Named Data Objects (NDOSs)

A common abstraction used by all ICN implementations is a naming scheme that enables the
identification of information objects independent of their location. Unlike today’s Internet architecture
where the storage locations of content are named (by a Uniform Resource Locator (URL) or the IP
address of a server), in ICN the content itself is named. In NetIlnf an NDO is simply a block of
information stored somewhere in the network. An NDO can be a text file, a web page, a picture, or a
streaming video. There are two components to this NDO model: a naming scheme and metadata
objects:

* http://www.netinf.org/4ward-netinf/ and http://www.4ward-project.eu/
T http://www.netinf.org/sail-netinf/ and http://www.sail-project.eu/
* http://www.netinf.org/

6 | Background

Naming Scheme

Metadata

222 Message types

NetInf uses the Named Information (NI)[11] naming scheme for
naming NDOs. A NI Uniform Resource Identifier (URI) has the
following general format:
ni://[Authority]/<DigestAlgorithm>;<Digest Value>

The Authority field is optional and assists applications in finding
a given NDO. The Digest Algorithm field is mandatory and
specifies the digest algorithm that has been applied to the binary
data of the NDO to generate the corresponding digest value. The
Digest Value field is also mandatory and is the output of the
specified digest algorithm. Two NDOs are equivalent if they have
the same digest algorithm and same digest value. An NDQO’s name
does not change depending on how or where it is stored.

A metadata object is a useful component of an NDO, which will
present convenient information about the respective NDO. A great
deal of useful information may be included in the metadata to
assist a NDO retriever by providing information about the content
of the NDO. For example, this information can include content
type, timestamp, URI, size, and search tokens. For example, a
receiver could request the metadata of an object and get an
overview of the object's content before retrieving the complete
NDO. This could be very useful in a search scenario.

NetlInf is a message-based protocol with requests and responses for publishing, getting, and searching
for NDOs. NetlInf consists of three basic requests (GET, PUBLISH, and SEARCH) and their corresponding
response message types (GET-RESPONSE, PUBLISH-RESPONSE, and SEARCH-RESPONSE). All of these
message types should contain a message identifier (msg-id). It is recommended that the msg-id
should be chosen in a way to make collisions with another msg-id unlikely and that this message
identifier must not contain any information that might be personally identifying, e.g. an IP address or
username. It is recommended that a sufficiently long random string should be used for each msg-id.
The details of each message type are:

GET/GET-RESPONSE

A GET message is sent to request an NDO from a NetInf network
using the NI URI scheme. A node receiving a GET request would
send a corresponding GET-RESPONSE with the same msg-id if it has
an instance of the requested NDO. If the node does not have the
NDO available, then it should forward the request and then generate
a GET-RESPONSE after waiting a reasonable time for a response
(depending on the implementation). The format of a GET-
RESPONSE depends on whether the node returns both content
octets of the requested NDO & its affiliated data® or only the
affiliated data when the content is not available in node’s cache. In
the latter case, the GET-RESPONSE message would only contain
affiliated data (such as locators as to where the NDO is available).
The locator could be an IP address or a network interface’s media
access and control (MAC) address depending on the underlying
convergence layer used.

* Affiliated data describes the “overall” data excluding the content octets of a NDO [12].

Background | 7

PUBLISH/PUBLISH- As the name suggests, the PUBLISH message enables a node to

RESPONSE announce to other nodes that it has a given NDO. In addition to the
NDO name, the PUBLISH message contains a copy of the object
octets and/or object meta-data. A node receiving the PUBLISH
message may choose to add the metadata and content to its cache if
it does not already have the NDO stored; while if the receiver already
has a copy of the content, then it should merge the metadata.
Ignoring extensions®, the corresponding PUBLISH-RESPONSE
message contains only a status code and affiliated metadata.

SEARCH/SEARCH- The SEARCH message enables a requester to find an NDO by

RESPONSE specifying search keywords in the search message. In addition to the
mandatory msg-id field the SEARCH message has another
mandatory field known as the tokens field which is basically a
query string specifying what is being searched for. As with GET
messages, a SEARCH request may also be forwarded to other nodes.
Upon receiving a SEARCH message, the receiving node carries out a
search in its cache using the tokens and returns a SEARCH-
RESPONSE message. The response message contains a list of NDOs
matching the tokens and their affiliated meta-data corresponding to
each NDO in order to assist the searcher to choose between the
search results.

223 Convergence Layer

A Convergence Layer (CL) enables communication between NetIlnf nodes and provides framing and
message integrity as its main services. Any protocol that allows NetIlnf messages to be passed without
loss of information can be used as a NetInf CL. Initially two convergence layers were proposed[2][8]:
HTTP CL and UDP CL. As the names suggest, they use HTTP and UDP services to transfer NetInf
messages between nodes. E. Davis has described how to implement the NetInf Protocol with HTTP and
DTN CLs[15]. A new Bluetooth CL has been proposed and introduced as a result of a previous student’s
Master’s thesis[16]. A CL must fulfill at least the following requirements stated in the expired Internet
draft draft-kutscher-icnrg-netinf-proto-01[2]:

Unidirectional point-to-point transport of NetInf messages,
Preservation of message boundaries,

Reliable transmission of messages, and

In-order delivery of messages to the destination node.

2.3 Python and Android NetInf library

The MOSES project provided the authors of this Master's thesis with the source code of the Python
Netlnf library v0.4[17]. This Python implementation may act as a NetInf Server and can do PUBLISH,
GET, and SEARCH for NDOs both locally and via other Netinf Servers. Throughout this thesis,
references are made to NetlInf servers, these only refer to NetInf servers in the infrastructure and not
to a NetInf server in an ad hoc network. In the context of MOSES, NetInf servers in the infrastructure
may be used for content dissemination purposes. Users push/pull content to/from NetInf servers
when possible.

The Android application developed in this Master's thesis has used the Python NetInf library v0.4
as the NetInf server in infrastructure mode, only for interoperability purposes in case of future
development of this application; the focus of this thesis is on ad hoc networking and the Bluetooth CL.
The message formats used by this Android application over the HTTP CL are according to the Python
library v0.4 implementation. The Android application in this Master's thesis is based on this Python

* Some extensions are described in [13] and [14].

8 | Background

NetInf implementation and the Netinf Android library developed by Linus Sundé during a previous
Master's thesis project[16].

2.4 GeoTagged objects and their coordinates

GeoTagging is the process of adding geographical information to an object. The tag provides a form of
geospatial metadata and usually consists of latitude and longitude coordinates and/or other
information, such as altitude, distance, proximity, etc. This geographical data might be obtained
through GPS, cellular network, Wi-Fi, or Bluetooth signals. GeoTagging can provide location-specific
information to end users.

The geographical location data used in geoTagging can be in the form of latitude/longitude-
coordinate system either in decimal degrees (DD) format or in degrees, minutes, and seconds (DMS)
format. When using Wi-Fi or Bluetooth devices for geoTagging, one can use a device’s MAC addresses
or Bluetooth ID to tag content. The prototype Android application senses the received signal strength
of Bluetooth signals and tags the content with the ID of the Bluetooth device that has the strongest
received signal strength.

2.5 Usecase

ICN opens a broad area for new applications that might be infeasible with today's Internet
architecture. One type of application that MOSES is investigating, is local content sharing without
access to Internet (i.e. via an ad hoc network).

Assume a scenario where User A enters an art exhibition without any former knowledge about the
art objects being exhibited. Fortunately, User B who is an art specialist, goes around the gallery and
captures photos of the objects and comments upon them®. User A that is very interested in these art
objects and is eager to know more about them. To get more information about these objects User A
opportunistically attempts to synchronize with user B over Bluetooth. In this synchronization process
User A fetches User B's locally generated (published) commented photos (as NDQOs). User B's NDOs
are geoTagged with indoor location obtained from localization beacons (explained in Section 4.1),
therefore User A does not need to explain to User B what type of information he/she is interested in.
User B will only give location relevant content to User A. Assuming that the application is smart
enough, User A will receive User B's photos as a popup when passing by every art object in the gallery.

This use case is one of the many scenarios where applications of MOSES could be used. One of the
ideas of MOSES is content sharing without the need to explicitly search for the material on the
Internet, thus decentralizing content dissemination.

2.6 Comparison of alternative ICN models

This section provides a short comparison of several different ICN approaches. Although each
implementation’s approach to ICN differs in the details, the overall goal is to develop a network
architecture that is better suited to efficiently accessing and distributing content. The comparison will
consider the following four ICN approaches:

Data-Oriented Network Architecture (DONA),
Content-Centric Networking (CCN),

Publish-Subscribe Internet Routing Paradigm (PSIRP), and
Network of Information (NetInf).

*We assume for the purposes of this scenario that User B is permitted to take pictures of the art objects being exhibited and that they are permitted
to communicate via Bluetooth with other nearby users.

Background | 9

Section 2.6.1 reviews the commonalities of these four ICN designs, while Section 2.6.2 discusses
the basic differences between these four approaches.

26.1 Commonalities of Designs

Although each implementation has its own distinctive terminologies, they all share three fundamental
principles: use a publish/subscribe paradigm, exploit universal caching, and utilize a content oriented
security model.

2.6.1.1 Publish/Subscribe paradigm

All four ICN approaches make use of the publish/subscribe paradigm. PUBLISH enables nodes to
advertise the availability of content, while SUBSCRIBE enables consumers to request content. Using
the publish/subscribe paradigm decouples requests and responses both in time and space. The
provider and requester of the content are not required to know the location of each other nor be online
at the same time in order to publish or receive content. This decoupling mechanism is one of the most
profound aspects of ICN architecture.

2.6.1.2 Universal Caching
In ICN architecture when a node receives a request for content, the node has to perform one of the
following two actions:

1. If the content is available in its own cache, then respond directly with the content.

2. |If the content is not available in its local cache, then the node can request the content
from its peer(s). When it receives the content then the node can send a response back
to the original requester with the content and the node can cache this content for later
use.

The caching mechanism applies to content carried by any protocol, and generated by any user,
thus the content is not limited to content from a specific content provider or carried by any specific
protocol. This decentralizes content distribution and delivery. In all four ICNs caching is implemented
by all ICN nodes, rather than only by a few specialized caches.

2.6.1.3 Content-oriented Security Model

In an ICN, the content can be fetched from any network element rather than the originating server and
thus the current security model of securing a connection between end points is of no use. Instead, in
ICN the content itself needs to be secured. The authenticity of the content is established by having the
original content provider sign the content. Now all of the receiving network elements can verify the
authenticity of the content by verifying this signature. This content-oriented security model is shared
by all four ICN approaches and is regarded as name-data integrity. The confidentiality part of this
model is unclear[18], therefore for now only data integrity is provided.

26.2 Fundamental Differences in Design

Besides the commonalities described in the previous subsection, there are some fundamental
differences. These differences are described further in this section in terms of the difference between
naming, inter-domain name-based routing, and transport.

2.6.2.1 Naming

As stated previously, in ICN, consumers request objects by name rather than from a specific network
node. There are two main naming systems proposed for the ICN architecture. The first naming scheme
uses hierarchical human-readable names, similar to today’s DNS system. In this naming scheme, a
variety of techniques can be used to allow a user to learn a public key, but this usually requires a
globally-agreed-upon public key infrastructure (PKI) to bind names to keys in order to achieve name-
data integrity.

The second naming system uses self-certifying names. In this case, the key is bound to the name
itself, removing the need for a PKI. The disadvantage is that these names are not human-readable, so
consumers have to use other techniques to determine the name of the content that they desire.

10 | Background

DONA uses a flat namespace in the form P:L, where P is a globally unique principal field
containing the cryptographic hash of the publisher’s public key, and L is a unique object 1label.
PSIRP also uses a flat namespace, but has a slightly different approach to it than DONA. NetInf also
uses a flat namespace and includes the hash digests in the name. NetInf can use a number of different
hashing schemes. CCN uses a hierarchical namespace in order to achieve better routing scalability
through name-prefix aggregation.

2.6.2.2 Inter-domain Name-Based Routing
In order to distribute content efficiently, ICN systems have to route requests. Two main routing
approaches are used in ICN architectures:

Name This is similar to today’s DNS system. In this model, a resolution service is
resolution queried for a given name and then one or more lower-layer locators are
returned. These locators are then queried to retrieve the content, using a
protocol such as HTTP or directly via another IP based protocol.
Name-based An alternative approach to name resolution routing is to directly forward
routing the request to an object copy in the network based on the object’s name,
without initially resolving the object name into some lower-layer
locator(s). This approach is often referred to as name-based routing.
DONA and CCN use name-based routing to route queries, while PSIRP uses a name resolution
model where the resolver is called the rendezvous point. NetInf supports both name resolution and
name-based routing for retrieving data objects.

2.6.2.3 Transport
The transport layer is responsible for forwarding requests and responses as well providing basic
transport layer functionalities (congestion control, flow control, and reliability).

The DONA architecture relies on existing transport protocols such as TCP and UDP. The CCN
architecture defines two different transport layer packet types: interest packets and data packets. A
node that sends an interest packet via an interface to a (or a set of) neighboring node expects to receive
a corresponding data packet in response.

The NetlInf architecture uses a CL for its transport layer. The CL can be HTTP, TCP, UDP,
Bluetooth, etc. as long as this CL provides reliable and in-order delivery of requests and response
messages. There could be multiple hops involved in forwarding such request and response messages,
and each hop can potentially use a different convergence layer.

Method | 11

3 Method

One of the main phases of this thesis project was to design and implement a prototype. This prototype
was evaluated in the second phase of this thesis project in a series of controlled experiments. An
iterative[6][7] approach (shown in Figure 3-1) was chosen to design and implement this prototype. A
literature review concerning ICN, NetInf, and MOSES was performed to gain a clear understanding of
the concepts underlying such a prototype. This review examined the basic goals of MOSES and the
architecture of ICN. The NetlInf protocol inherited this architecture. A review was made of an Android
NetInf library implemented during a previous Master's thesis project. This review assisted in
pinpointing functions that could be utilized in our prototype.

Not conclusive

Deployment

s
r'\o

o

Ok éo\t v
UAT/Test |« || Implementation ‘

Figure 3-1: Iterative design approach

After clarifying the basic architecture of the prototype, the prototype underwent a cyclic process of
design, implementation, and User Acceptance Testing (UAT). In each iteration of this cyclic process,
the UAT was demonstrated to our supervisors who are part of the MOSES research community. Each
UAT was demonstrated both by observations of the prototype's behavior in the field and by
observations of logs. The final UAT was an uncontrolled experiment. The results of this UAT were
evaluated in terms of a set of performance metrics. The results of this uncontrolled experiment will not
be present in this thesis since the intentions of this thesis project were to generally evaluate the mobile
opportunistic sharing concept and its corresponding deployed CL, rather than focusing on an
evaluation of the prototype itself.

In the final phase of this thesis project, the prototype was deployed in the Swedish Institute of
Computer Science (SICS) office in Kista in order to conduct a series of controlled experiments. The
results of these experiments were analyzed and evaluated in terms of a set of performance metrics.
Chapter 5 presents this analysis.

Implementation of a Netinf Android Application | 13

4 Implementation of a Netinf Android Application

In order to demonstrate an application of MOSES in practice an Android application was designed
from scratch. A prototype of this application was then implemented and used in a series of controlled
experiments. The main idea behind the design of this application was to demonstrate the basic
functionalities that are of interest for MOSES (i.e., geoTagging, GET, PUBLISH, and ad hoc
networking). For this reason, a simple application was designed to allow users to capture images, name
them, and share them over a short-ranged wireless channel, specifically Bluetooth, by using the NetInf
protocol. In order to respect the mobile opportunistic sharing concept, these images are geoTagged by
an indoor localization service.

MOSES intends these types of applications be used by end users, therefore a user-friendly
Graphical User Interface (GUI) was developed in order to make this application more interesting for
non-technical users. For the same reason, the GUI avoids using NetInf technical terms, such as GET,
PUBLISH, or NDO. In order to make the GUI even more interesting for an end user, an indoor
localization service uses the GUI to show the user's approximate indoor position in real time.
Furthermore, hard coding of experimental options, such as enabling/disabling services and modifying
timeouts/intervals has been avoided - as this prototype application was to be used and experimented
with mainly by MOSES researchers, rather than real end users.

Using the Android Netlnf library[16] an Android application was developed to implement the
Netinf features of GET, SEARCH, and PUBLISH in the Android environment. This Android
application was designed to operate over a wireless local area network interface in both ad hoc and
infrastructure mode. The Python NetInf Server code v0.4_Elwyn[17] was slightly altered to make it
compatible with this Android application. Note that this application was primarily designed for ad hoc
networks using the Bluetooth CL, the HTTP implementation is simply a service directly provided by
the NetlInf library to facilitate further development of this application.

GeoTagging, PUBLISH, GET, SEARCH, NDOs, metadata, and opportunistic sharing are
implemented in this application to demonstrate both their functionalities and to contribute to a
prototype demonstrating the mobile opportunistic sharing concept.

4.1 GeoTagging

The NetInf Android application can use GPS, cellular network, Wi-Fi, or Bluetooth signals for
geoTagging content. However, the current prototype uses Bluetooth transmitters known as “Estimote
Beacons” both for localization purposes and for geoTagging content. An Estimote Beacon (shown in
Figure 4-1) is a small, wireless device that periodically broadcasts low power radio signals. Each
Estimote Beacon consists of a 32-bit ARM Cortex MO CPU with 256kB flash memory, accelerometer,
temperature sensor, and a 2.4 GHz Bluetooth 4.0 Smart (also known as Bluetooth Low Energy, BLE)
radio transceiver. A soft Silicone casing covers the hardware and has a sticky backside that can be used
to attach the Beacon to any flat surface (be it wood, concrete, or glass).

Figure 4-1: Estimote Beacon. The community manager of Estimote granted permission (by E-Mail) for use of
this image in this thesis[19].

14 | Implementation of a NetIinf Android Application

The “Estimote” Beacon periodically advertises the following information every 200ms (this
advertising interval can be changed):

e Fixed beacons containing a universally unique identifier (UUID):
0xB9407F30F5F8466EAFF925556B57FEGD,

e A two byte long “Major” value,

e Atwo byte long “Minor” value, and

e A one byte long measured Received Signal Strength Indication (RSSI) value.

The major and minor values are integer values that can be used to divide an area into different
zones and sub-zones. These values can be manually changed by using the proprietary “Estimote”
application (available at Google Play). For the NetInf demonstration application, 10 Estimote Beacon
transmitters are used. These transmitter were placed at different locations around the SICS Kista office
as specified in Figure 4-2. For purposes of the demonstration, the SICS office was divided into two
zones, thus two different “Major” values were used. Each Estimote Beacon was configured with a
unique “Minor” value associated with the corresponding “Major” value depending on where it is
placed.

The Android application continuously listens for Estimote Beacon advertisements. Once a user has
captured an image using their device’s camera, given this image a title, and pushed the “publish”
button, the image is locally published after being tagged with the nearest (based upon with strongest
RSSI value) beacon’s major and minor values. This geoTagging information is published as part of the
metadata of the NDO along with a timestamp and other relevant information. The timestamps are
based upon the local device's clock that has been automatically synchronized by different Network
Time Protocol (NTP) servers provided by device's firmware.

4.2 Convergence Layers

Currently three CLs have been developed for the NetInf protocol: HTTP, UDP, and Bluetooth. The
NetInf Android application uses HTTP and Bluetooth CLs for transport purposes. The Bluetooth CL is
used only for ad hoc communication (i.e., directly between mobile devices), while the HTTP CL is used
both between mobile devices (through an access point) and infrastructure attached servers (i.e.,
between a mobile device and a central NetlInf server). A user can choose to enable either one or both of
these CLs at a time. For the Bluetooth CL to work the mobile devices has to be paired in advance with
each potential Bluetooth peer. The end user can type in individual Bluetooth device names or choose to
communicate with all paired devices in the settings menu. In contrast, for HTTP CL to work the end
user has to manually type in the IP addresses of all of the other devices/servers via the settings menu.
For the demonstration application, the server’s IP address and Bluetooth paired devices settings have
been pre-chosen by default, but these settings can be altered by the end-user. If both CLs are enabled,
then PUBLISH, GET, or SEARCH requests for an NDO are sent over both CLs to their respective
configured devices. Even though both CLs are functional in this application for demonstration of the
mobile opportunistic sharing concept (i.e. ad hoc network), only the Bluetooth CL was used for the
experiments and evaluation of this prototype. Even though MOSES may time to time use the
infrastructure for disseminating content to the Internet, an infrastructure mode was not realized in
this thesis project and could be incrementally added for optimization and further development of this
application in the future.

4.3 Graphical User Interface (GUI)

The subject group for this Android application is end-users, therefore during the design phase end-
users were the focus of the GUI. Factors such as simple access to functions, smooth graphic-flow,
choice of color, and layout were considered when developing what was expected to be a user-friendly
GUL.

Implementation of a Netinf Android Application | 15

In the scenario, illustrated in Figure 4-2, the application is being used in SICS’s Kista office. The
Estimote Bluetooth Beacons, as explained in Section 4.1, provide indoor localization. The Estimote
Beacon transmitters (marked with blue filled circles in Figure 4-2) are placed at fixed positions in the
SICS office. The coverage areas of all these beacons purposely overlap each other for indoor
localization purposes. The Beacons were set to have a transmitting range of 70 meters, but in practice
they covered ~10-15 meters due interference in the 2.4GHz channel and signal loss due to walls and
other material in the environment. The application can sense up to five beacons depending on the
user's position within the office.

o R
_ s

2T Ciel TITe [ETT Al
[T $PITTIYITIT] [T

Entrance

x
o
J

Figure 4-2: Android application GUI

The “Camera” button of the application allows the user to capture an image and assign this image a
title. The captured image uses the PUBLISH function of the Netlnf protocol to publish the
corresponding image locally via the end-user's device together with metadata (including the title,
timestamp, and other protocol-based information such as content-type, object-size, etc.). The
metadata also includes information about the Estimote Beacon with the strongest RSSI. As a result, the
captured images are geoTagged with the label of the closest Beacon. GeoTagging of NDOs in the
context of this project is mandatory, therefore the application tries up to 5 times to listen for Estimote
Beacons within range, if no Beacons are sensed after 5 tries then no NDOs are published. The user is
informed that the image publish operation failed and is asked to retry again within 10-20 seconds (this
failure is likely to be due to Android/Estimote Application Programming Interface (API) misbehavior
and could be improved in future APl updates).

The Beacons on the floor plan in Figure 4-2 are created as an instance of the FloorObject class,
which has the same coordinate system as its parent class. This allows the application to be aware of the
coordinates of each object/Beacon on the floor plan. In this way, the application can use the tagged
Beacon information in the NDQO's metadata to map each NDO in the database to the corresponding
Beacon on the floor plan. As shown in Figure 4-3 by pressing on a Beacon displayed by the application,
the user can view information about the corresponding Beacon and the images tagged with its location.
By pressing on the "View images" item in the Beacon popup window, the user will see a list of NDOs
organized by their title and the time they were published. The user can then select an NDO and view
the image.

It is convenient for the user to be able to view the number of available NDOs at each location in an
overview manner. As shown in Figure 4-3 a function in the application shows the number of available
NDOs at each location every time an NDO is added or removed from the database. This database is an
Android SQLite database provided by the NetInf library. The database holds all the components (e.g.
metadata, NI, locator(s), etc) of an NDO except for the actual octets of the NDO which is separately
saved in the file system in a folder called "ndo_cache".

16 | Implementation of a NetInf Android Application

eacon Major: 5001

Bi
Beacon Minor: 1001

View images

Figure 4-3: GUI Beacon information

In order for the application to be user friendly, preferences can be selected in the NetInf library as
well as the main application (see Figure 4-4) so that the user can at any time adjust the parameters of
the different functions. Most of the NetInf settings are set to a default value (this is transparent to
users). However, since this application is still in its early phases of development, many settings exist
solely for testing purposes or used by advanced users (i.e. MOSES researchers).

Settings Settings

DATABASE
BLUETOOTH BEACONS

Clear :
Enable discovery Ll
FLOOR PLAN
Discovery interval
Get data set remotely 4 Ll

Discovery sleep interval
Floor Plan URL 2000

hitp://B5.229.7.3/tmp/floorplan/default jpg
GET YOUR LOCATION
iBeacon Set URL

http://85.229.7.3/tmp/floorplan/beaconset txt Enable ==
SYNCHRONIZATION
Interval
Periodic Sync = 3000
" Motify me for new NDOs el
Sync by Beacon Major C

HTTP

Figure 4-4: GUIl user settings

The Estimote Beacons are positioned at fixed locations in the SICS office leading to overlapping
neighboring Beacons. The intention was to allow the application to triangulate the user's approximate
position in the office. This functionality makes the application more user friendly as the user is aware
of their approximate position at all times. The reason for estimating an approximate position rather
than an exact position is because in this test scenario a limited number of Estimote Beacons were
deployed. For better triangulation, three or more Beacon signals are required at all times and in this
scenario there were spots where the user had access to only one Beacon. The application considers the
three best signals that were sensed and then calculates the average of the corresponding Beacon's
coordinates. As shown in Figure 4-5 the large blue circle indicates user's approximate position. The
accuracy of the position computation produced by this application has not been evaluated due to the
reason that the triangulation function of this application is more of a bonus functionality and not a
requirement of MOSES. However, during repetitive observations (by human eye) of this triangulation
function during the whole period of this thesis project, no major false results were observed.

Implementation of a Netinf Android Application | 17

W -

Entrance Calculating your position

Figure 4-5: Triangulation

As illustrated in Figure 4-5 there is a small debugging line output in red text at the lower right
corner of the screen to inform the user in simple words about background activities. This function is
informative for the user in case of performance delays or misbehavior of the application. User friendly
outputs such as "Sending Photos...", "Received Photo!" and similar simple terms are used to inform the
end user of more or less what the application is doing.

Furthermore, an alert function has been implemented in the application to notify the user about
the new unseen NDOs when the user arrives in the vicinity of a given Beacon. The alert function will
change the corresponding Beacon's color to green on the floor map, vibrate the phone for 2 seconds,
and show a popup window with information about the new NDOs available for thiis location.

4.4 Synchronization

In the context of this Master’s thesis project, synchronization is one of the essential functions and is
rather very complex. Who to share with? How to share in a fairly manner? How many devices to
synchronize with simultaneously? When to synchronize? And many more questions need to be
addressed when it comes to efficient synchronization. The main objective of this thesis project was to
contribute to a prototype, in which basic synchronization is performed.

In this thesis project a synchronization (Sync) process has been designed from scratch and the
focus has been to demonstrate simple Netlnf tasks, such as SEARCH and GET. The PUBLISH function
of NetlInf has been ignored in this design since forcing NDOs to a remote user was not to be the main
task for this prototype. For this reason, the Sync process is unidirectional, meaning the user who
initiates the Sync process will be synchronized with the remote user, while the remote user is left
unsynchronized.

As mentioned in the goals of this thesis project, this application was primarily meant to be used for
experimental purposes, therefore the design of this Sync process is mainly meant to fulfill the
requirements of the controlled experiments. The Sync process and its components will be fully
described and explored in Chapter 5, where each controlled experiment will be discussed. However,
from an overview perspective the Sync process sends a SEARCH and then based on the SEARCH-
RESPONSE calculates those NDOs that do not exist in device's local cache and then performs a GET
for each NDO that the device does not (yet) have.

In Section 4.1 when describing the Estimote Beacons, it was mentioned that in this application, the
SICS office has been virtually divided into two zones with two different Beacon Major numbers as
shown in Figure 4-6. The idea behind this separation was to allow the users of this application to
synchronize location relevant content. This implementation allows users to choose from the
preferences menu whether to synchronize only location relevant content or fetch everything a remote
device has. In this scenario location relevant means content belonging to zone A or Zone B, e.g. if a

18 | Implementation of a NetInf Android Application

user namely User A finds his/her self in zone A and meets another user, namely User B in zone B or
zone A, then User A will only receive content for zone A from User B. Technically in terms of NetInf
this is done by sending a SEARCH either with token "*" or "Beacon Major 5001/5002". Token "*" tells
the remote device to respond with a SEARCH-RESPONSE with all NDOs (without the actual octets of
the object, which is called Fullput in NetInf) existing in device's entire cache. Token "Beacon Major
5002/5001" is the Beacon Major (advertised by the Estimote Beacons in the office) that the device
(which initialized the SEARCH request) is sensing, which tells the remote device to respond with a
SEARCH-RESPONSE with all NDOs (rather than Fullput) that are tagged with this Beacon Major

:
R TIT E

S — | -5, (T

1 Urtrarce Lrorarce

= =

[1]

ST

Figure 4-6: Estimote Beacon Zones in the SICS office

One may wonder, in the context of MOSES/ICN, how content is disseminated in a scenario such as
the SICS office scenario as implemented in the GUI of this application? If this application were to be
further developed, the two brown filled circles shown in Figure 4-7 would indicate the availability of a
HTTP NetInf-Server. This would allow users in the vicinity of these NetInf-Servers, to perform
infrastructure synchronization over their device's Wi-Fi interface. Assuming that the range of these
Wi-Fi access points were set to be very short, then the mobile users would most of the time,
opportunistically synchronize with other Netinf enabled Android devices over Bluetooth in ad hoc
mode. The idea behind the scenario of this application was mainly to emulate a real life scenario where
these types of MOSES applications are used. After all, MOSES is attempting to focus on opportunistic
ad hoc communication, rather than communication through the infrastructure (i.e. offloading traffic
from the content servers). Moreover, the infrastructure is mainly used for content dissemination to the
Internet. This type of scenario attempts to be a base for larger outdoor scenarios such as a “National
Park” scenario, where a user may have other neighboring users in a radius of few kilometers and come
across relatively few (relative to the size of the park) short-ranged access points (i.e. local Wi-Fi
network).

int MOSES

ﬂ%

L
ST

Ererance

Figure 4-7: Synchronization points

Implementation of a Netinf Android Application | 19

4.5 Logging

A logging system was implemented to support debugging and troubleshooting. The application utilizes
Comma Separated Values (CSV) format for logging data. As illustrated in Figure 4-8 the application
logs the following fields: timestamp, local device's Bluetooth name, message type, remote device's
Bluetooth name, message ID, convergence layer, or the function executing the line.

27-March-2014 12:37:29.005,TPA-4, NEW INSTANCE

27—March—2014

12:37:29.311, TPA—4, SEARCH, TPA-1,MOSVAbAsFddVMYDgzxeT, BT
27-March—-2014 12:37:259.452,TPA—4, SEARCH-

RESPONSE, TPA-1, MOSVAbAsFddVMYDgzxeT, BT

27-March—-2014 12:37:29.510,TPA-4,GET,TPA-1,ni:///sha-256;nCDh—-
gleijAdgh4524G—fBSgeW_ETBCvaOLTQItjY,ENiMthbIIOlelACsah,BT
27-March—2014 12:37:30.161l,TPA—-4,GET-—

RESPONSE, TPA-1,ni:///sha—-256;nCD-glRpb5jAdgh45246—
fBSgeW_ET9CvaOLToIth,ENiMthbIIOlelACsah,BT

27—March-—-2014

12:37:30.233,TP2A-4,GET, TPA-1,ni:///=2ha—-256;8H=jCvznh3n8rIxN—-StayL
4kV2RKANnkrDS2JP5_6Yhg, mDnonP£f7sRgTM3j2617J, BT

27-March—-2014 12:37:30.740,TPA—-4, GET—

RESPONSE, TPA-1,ni:///sha—256; 8HsjCvznh3n8rLxN-StayL4kV2KAnnkxD92J
PS_6Yhg, mDnonP£f7sRgTM3j2617J, BT

27-March-2014

12:37:30.796,TPA-4,GET, TPA-1,ni:///sha—-256; XATJThWK84=s3IS0AEWItbC7v
sntWbhZDkUbOJLSVQgqKO, CUEMmy2wRc7£J24rhjMwB, BT

27-March—-2014 12:37:31.058,TPA—-4,GET—

RESPONSE, TPA-1,ni:///sha—-256; XAJhWEE84s3IS5S0AEWItbC7vantWbhZDkUbBOJL
9VQgqgK0, CUEmy2wRc7 £J24rhjMwB, BT

27-March—-2014 12:37:44.079,TPA—-4, iBEACON, 1002

27-March—2014 12:42:45.600,TPA—-4, PUBLISH, {"Time":"12:42:45

pm”, "iBeaconMajor":"5001", "iBeaconID": "bS407£f30-£f5£f8-466e-
affo9-25556b57fe6d”, "charset" : "UTF—-8", "iBeaconMinoxr " :"1002", "Title
":"yid tagen”™, "meta™:"publish", "ct":"img"},MAIN

27-March-2014 12:46:12.589,TPA—-4, SEARCH-

RESPONSE, API,ViI kprlRSa kGZuEng9 +» BT

Figure 4-8: Example of an application log

Depending on the message type, the value of the fields may change (e.g. every time the application
starts/restarts there will be a line logged saying "NEW INSTANCE" or when a new image is captured
and published locally then the PUBLISH line will be followed by the metadata). There may be times
where the line is tagged with “API1”, such as the last line in Figure 4-8, this indicates that a remote
device has caused the function to be called (e.g. in this case the device is replying to a SEARCH
message with a SEARCH-RESPONSE).

Every now and then, there will be a line logged with message type “iBEACON”, which contains the
major and minor values of the closest Estimote Beacon that the device is sensing. For troubleshooting
purposes, this information is very helpful as it enables us to know the user's position at the moment of
the event. This information also helps to recreate a scenario and know how the user was moving
around.

The results of the controlled experiments presented in Chapter 5 are based on this logging system.
Therefore, any necessary or unnecessary information that may be of interest after a conducted
experiment has been included in these logs. While extensive logging may cause delay in the
performance of the application for experimental reasons these logs are an essential tool for analysis
and evaluation of the implementation itself and the protocol in general.

Analysis | 21

5 Analysis

After design and implementation of the prototype, we observed the behavior of the MOSES/ICN
concept and the NetInf protocol, by conducting a series of controlled experiments. The upcoming
subsections will describe the three controlled experiments conducted at the SICS office. We analyze the
results of each of these experiments using a set of individual metrics (described in sections 5.1.4, 5.2.9,
and 5.3.1).

The very first experiment was an uncontrolled experiment during an Open House event hosted by
SICS. During this experiment five cell phones running an instance of the application were given to
random users attending the Open House. These users voluntarily participated in this experiment and
had no prior knowledge of ICN or MOSES. These participants went around the SICS office and
captured images (creating NDOs) of objects that were interesting to them. When users were in
(Bluetooth) range of each other, synchronization would start via ad hoc mode to disseminate all the
NDOs. This early experiment mainly assisted in pointing out flaws in the implementation and a lack of
information in the logs, thus contributing knowledge for the controlled experiments presented in this
thesis.

Three controlled experiments were conducted in the SICS Kista office under the guidance of
MOSES researchers. These experiments were designed to collect data to allow an analysis and
evaluation of the MOSES/ICN concept using the prototype. The main reasons for this analysis were to
identify key factors of efficiency or inefficiency in the MOSES/ICN concept and the Bluetooth CL. Since
MOSES inherits the NetInf protocol from the ICN concept, factors of efficiency or inefficiency may
raise questions about the architecture of both concepts. The basic idea behind the scenarios of these
controlled experiments was to analyze basic MOSES scenarios where users opportunistically meet in a
location and without any Internet search; they receive location relevant content from each other.

We perform a series of experiments that are incrementally more complex. The first controlled
experiment starts by analyzing a simple point-to-point scenario with only two users. The second
controlled experiment will complicate the scenario a bit more by invalving 3 more users, thus a total of
5 devices, but in order to keep it simple, the users communicate with each other in a multi-hop manner
(i.e. all of the users cannot directly hear each other). In the last controlled experiment, all 5 users may
almost sense each other (i.e. a semi-mesh topology). These configurations are illustrated in Figure 5-1.

Controlled Experiment 1 (Point-to-Point)

t—=KX

Controlled Experiment 2 (Multi-Hop)

A=Rk=R—=Kk—=XK

’Rn,f
)

Figure 5-1: Controlled Experiments

22 | Analysis

5.1 Controlled Experiment 1: Point-to-Point

In this section, we will describe controlled experiment 1 in terms of the experimental conditions,
scenario, synchronization process, the selected metrics, and results. Following this is a discussion of
this experiment.

51.1 Experiment Conditions

This experiment used two Moto G handsets. Each of these handsets was running Android version
4.4.2, with the 176.44.1 Falcon system. Each of the handsets batteries were at more than 80% charge
(as a low remaining battery charge has been observed to contribute to higher transmission time via
Bluetooth. This transmission property has not been confirmed by any Android documentation or the
device's manuals, but has only been observed in the logs from our experiments.)

The screens are turned on during the whole experiment. We chose this configuration as we
observed in the logs that some threads go to sleep when the screen is off. We do not yet know the
reason for this occurrence nor has any Android documentation or the device’s manuals confirmed it.

Version 0.9 of NetInf application/library code was used together with the Bluetooth CL. The
network was configured to operate in ad hoc mode. The Bluetooth devices only paired with each other.

There were 10 iterations per position leading to 10 - 4 = 40 iterations in total. Each iteration took
around 30 seconds and the experiment was conducted at 5 predefined positions (one phone was
located at a fixed stationary location). The total duration of the experiment was 30 seconds - 10 - 4 =
20 minutes.

Fifteen unique NDOs were created per device. The NDO sizes ranged from 20 KB to 45 KB with an
average size of around 29 KB. Synchronization was invoked manually.

Generally, mobile devices use Bluetooth class 2 radios which operate with a range of between 10 to
100 meters. However, this range is limited by several factors, such as interference from other devices
operating in the 2.4 GHz ISM band and large physical obstructions, such as thick walls. The offices at
SICS have very large glass-walls/windows, which contribute to better Bluetooth signal reception in the
offices.

During the experiment, there was no direct line of sight propagation between the mobile devices
and there were other wireless devices present in the experimental area operating in 2.4 GHz. These
other devices may negatively affect the overall Bluetooth range and transmission rate.

5.1.2 Scenario

In this experiment, two mobile devices (named Device-1 and Device-2) wish to synchronize NDOs with
each other at each of 5 predefined positions. The purpose was to emulate a typical scenario, which
might arise during a mobile opportunistic situation, when nearby users exchange location-relevant
content over a short-ranged wireless CL in an ad hoc network without accessing the Internet.

In addition to the smoothness of the GUI, what other factors contribute to a good user experience?
One factor may be rapid exchange of information, thus low delay and exchanging as many NDO as
possible is desirable. While the algorithms of the application might be improved, the main goal of this
scenario and experiment was to measure the transmission-delay at different distances and with other
possible impairments (such as closed doors and walls) when using the Bluetooth CL.

Each test was repeated 10 times, in order to see if there is some deviation in the results and
perhaps to identify anomalies. The results of these tests did not show high variation; therefore, the
tests were concluded after 10 iterations. This experiment could be reproduced by someone (especially
MOSES researchers) who is interested in more detailed results.

This experiment took place in the SICS Kista office near the Von Neumann conference room
(marked with a red circle in Figure 5-2). The experiment was conducted at five predefined positions
(marked A, B, C, D, and E in Figure 5-2). Table 5-1 summarizes how each device was positioned at each
location and what that position might represent in a real life scenario. All the controlled experiments in

Analysis | 23

this thesis were conducted in the same location and at the same predefined positions. The reason for
doing so was to keep most of the experiment parameters the same, while only changing the number of
devices and their connectivity in the different experiments.

B

9

T

[
Entrance Entrance Entrance -’

Figure 5-2: SICS Kista Office

One thing that should be noted in Table 5-1 is that unlike other locations, location A's
communication path to other devices is around a corner and A’s location is on a corridor that is a main
walkway for SICS personnel. These attributes sometimes lead to lower transmission quality compared
to other locations. This was intentionally done in order that the edge devices (A and E) would have a
harder time reaching each other.

Table 5-1: Summary of devices locations

~Height above the floor

Location Position Real-life example

(cm)
Outside the office, on the entrance-window's

A 73 A person standing there.
counter.

Inside the office, on the entrance-window's Someone having his/her

B - 135 phone on a drawer near the
counter, with the door open. . .
window with the door open.
.) . . A user's mobile device being
c Inside the office, on the entrance-window's 73 placed in the office by the

counter, with the door closed. window with the door closed.

Someone leaving his/her
phone on a table in middle of
the room with the door
closed.

Inside the office, on a drawer, middle right
D corner of the room (from the entrance point 60
of view), with the door closed.

Outside the office, on a wooden open 77 A person standing or sitting
cabinet. in that position.

This experiment intends to measure various metrics and observe point-to-point communication
over a Bluetooth CL with an ICN-based protocol, specifically NetInf. Before starting with more
complex scenarios where several devices are involved, we began with two devices and then
incrementally added more devices in the subsequent controlled experiments.

Device-1 has 15 unique NDOs in its local cache. These NDOs will be fetched by Device-2 during its
synchronization attempts. In order to reset Device-2 after each test, the user(s) manually reset their
phone to its initial-state by choosing the “Recover State” item from the menu bar in the application.
This function removes any previously fetched NDOs.

24 | Analysis

The application displays a message with the total number of NDOs in the local cache after the
synchronization process is complete. Once Device-2 has synchronized, it was manually reset to its
initial-state and the test re-initiated.

5.1.3 Synchronization Process

As explained earlier, in this controlled experiment one device (Device-2), seeks to synchronize NDOs
with another device (Device-1), using the NetInf protocol over the Bluetooth CL. How does this
synchronization process work? In this scenario, Device-1 is stationed statically at location "A" (shown
in Figure 5-2) throughout the experiment. In contrast, Device-2 is placed in four different positions. At
each location, Device-2 initiates the Sync process. This scenario is intended to observe the impact of
distance and possible obstructions along the transmission path, therefore one device changes its
location relative to the other device that remains in a fixed location.

Figure 5-3 illustrates the Sync process carried out during this experiment. Device-2 always initiates
the Sync by sending a SEARCH request to Device-1. If Device-1 is within range, it will reply with a
SEARCH-RESPONSE containing the NDOs (not Fullput NDOs) in its cache. Deviice-2 calculates which
NDOs do not exist in its local cache and then perform a GET for each missing NDO. Device-1 replies
with a GET-RESPONSE to each GET request containing the full NDO (i.e., a Fullput NDO). After
Device-2 receives each GET-RESPONSE, it will PUBLISH the corresponding NDO locally, thus
indicating that this NDO is now available from Device-2.

| Device-1 \ Device-2 I

seARCE

S|

E
ARCH~RESPONSE

GEl

SET-RESPONs &

el

GEFRESPONSE

Figure 5-3: Sync Function

In this experiment static routing is used as provided by the NetInf library. This means, Device-1
and Device-2 will only consider each other when creating a Bluetooth socket. This contributes to faster
convergence (the network has converged when Device-2 has received all Device-1's NDOs). Device-2
and Device-1 communicate only with each other and ignore any other device(s) in the vicinity.

5.14 Metrics

From the MOSES and ICN points of view, what is the most relevant metric to measure in this scenario?
Given the description of the synchronization process, it may be obvious that GETs have a big role in a
Sync attempt. In this scenario the delay caused by the distance between the devices is the focus,
therefore we measure the time it takes for each GET's roundtrip to the remote device.

The process of exchanging NDOs is a set of processes. The first step is to establish a Bluetooth
socket to the remote-device, then send a SEARCH request, based upon the response calculate NDOs
that do not exist in the device's local cache, and finally performing a GET for each NDO. Therefore, the

Analysis | 25

most obvious metric is the time required to complete the Sync process in the point-to-point scenario
used in this experiment.

If a device attempts to completely synchronize with the other devices in the network, then for every
failed GET, the device must send a new GET or postpone this GET to the next Sync attempt. Thus
failing to get a NDO would either affect the Sync duration (due to the repeated GET attempt) or cause
an extra Sync iteration — in either case increasing the convergence time. Therefore, another metric for
this experiment is the success-rate of GETs.

In summary, the following metrics will be measured and analyzed in this experiment:

GET-RESPONSE Delay The time between Device-2 sending GET until the corresponding
GET-RESPONSE is received by Device-2 from Device-1. This delay
includes the transmission time over Bluetooth CL plus the
processing at the two end-devices.

GET Success-rate Fraction of successful GETs at the initiating device. A GET is
considered successful if a Fullput GET-RESPONSE is completely
received.

Sync Duration The duration for one Sync iteration initiated from Device-2 to

Device-1. Each Sync iteration consists of a complete
synchronization, i.e., a successful SEARCH-RESPONSE is received
and all corresponding GETSs are sent independent of whether each
GET succeeded or not.

5.1.5 Results
This section presents the results of this experiment. Each of the three metrics is analyzed and
described in the following sections.

5.1.5.1 GET-RESPONSE delay per location (First Metric)

Here the GET-RESPONSE delay for Device-2 will be analysed for each location. In general, obstacles in
its path and increased distance will reduce the bit rate of a wireless channel. Here we compare the
GET-RESPONSE delays for alternatives B—>A, C—»A, D—A, and E—A. This comparison will be useful
later when we consider 5 users in an ad hoc network all trying to exchange NDOs. The 5 different
positions enable us to evaluate the situation for the edge devices (those devices with only one device
near them) and how these edge devices may participate in ad hoc networks.

Figure 5-4 presents the GET-RESPONSE delay for Device-2 in location B when fetching NDOs
from Device-1 in location A. In each test-iteration Device-2 attempts to fetch Device-1's 15 NDOs.
Figure 5-4 shows the duration for each individual GET—>GET-RESPONSE, the average GET-
RESPONSE delay for each test-iteration, and the GET-RESPONSE delay averaged over all 10
iterations.

As is apparent in Figure 5-4 during a test-iteration, the majority of the GET->GET-RESPONSE
durations exhibit values close to each other with only a few outliers. These outliers (e.g. experiment-
iteration 1, 8th bar in Figure 5-4) are not necessarily part of a pattern of delay/failure since they
present single occurrences that occur from time to time. In contrast, the test-iteration in Figure 5-4
exhibits a higher delay than the other nine test-iterations. The overall median of the GET-RESPONSE
delays for this experiment is 232 milliseconds, while the average GET-RESPONSE delay for test-
iteration 8 is 481 milliseconds. These kinds of outliers are expected when measuring this metric in this
experiment, since different factors may probabilistically and momentarily affect the data transmission.
Factors such as interference/path loss in the wireless channel and momentary disturbances in the
transmitting/receiving device can occur during one test-iteration which spans ~30 seconds.

26 | Analysis

Location B GET — GET-RESPONSE DURATION

1.000

0.900

0.800

0.700

GET- 0.600

RESPONSE 0.500
Delay

(seconds) 0.400

|
0.300
&l [EERN

0.200
0.100
0.000 T T T T L T T P T T T T O N AT T T R T T T T O T P T I T O T T T T T T T I eI T T e T T
1 15 15 15 15 15 15 15 15 15
NDO Count/iteration

B DURATION = AVERAGE/ITERATON === OVERALL MEDIAN

Figure 5-4: Location B GET-RESPONSE delay

Figure 5-5 present the results for the same scenario, but this time Device-2 is at location C when
attempting to synchronize with Device-1 at location A. The overall average GET-RESPONSE delay for
location C was 290 milliseconds, which is a decrease in the overall average GET-RESPONSE delay
compared to location B which had an overall average of 292 milliseconds. This might imply that the
roughly 5-7 meters increase in distance introduced by location C did not affect the overall bit rate
during these two sets of tests.

Analysis | 27

Location C GET — GET-RESPONSE DURATION

1.000
0.900

0.800

0.700

GET- 0.600
RESPONSE 0.500

Delay

(seconds) 0.400
0300 L - S el

0.200

0.100

O-OOO T T T TTTTTTTTTTTTTT T T T TTTTTTTITTTTTTT T T T TTTTTTTTT T T T T TTTITITIT T T T T

NDO Count/iteration

s DURATION AVERAGE/ITERATON ===QVERALL AVERAGE

Figure 5-5: Location C GET-RESPONSE delay

The greater the distance (to locations C and D) and the more obstructions (location D is in the
middle of the office and distant from the entrance-window) introduced between the two devices, the
greater the number of unsuccessful Bluetooth socket establishments between the two devices. This is
illustrated in Figure 5-6, where in 8 out of 10 test-iterations, Device-2 could not sense Device-1, thus
Device-2 could not synchronize with Device-1. In the case of D—A, 80% of the Sync attempts failed.
However, when Device-2 could sense Device-1 and successfully established a Bluetooth socket, then
the transfers completed without any interruptions. In this case, Device-2 could fetch all of Device-1's 15
NDOs without any GET failures. This seems to indicate that once Device-2 has successfully established
a Bluetooth socket to Device-1, the GET success-rate was 100%. Location D showed a
~227 milliseconds increase in the overall average GET-RESPONSE delay compared to locations B and
C. This increased delay may be due to the increase in distance or other factors affecting the data
transmission.

28 | Analysis

Location D GET — GET-RESPONSE DURATION

1.400

1.300

1.200

1.100

1.000

0.900

GET- 0.800
RE;Z?:':SE 0.700
(seconds) 0.600
0.500

0.400

0.300

0.200

0.100

0.000

NDO Count/iteration

B DURATION ~ ==——=AVERAGE/ITERATON ==—=OVERALL AVERAGE

Figure 5-6: Location D GET-RESPONSE delay

After the tests at location D, Device-2 was moved to location E for the last tests in this first
experiment. Location E is an open wooden cabinet near the corridor (this corridor is shared by
locations B to E). This location was the most distant relative to Device-1's location. In this location all
10 iterations failed as the Bluetooth transceiver failed to establish a link connection, thus Device-2
could not sense Device-1. This may have been expected after the results at location D. In general the
further the two devices are from each other the worse the radio signal strength they are expected to
have (up to the point at which they are out of range and cannot establish any link connectivity). This
decreased radio signal strength should negatively affect their convergence time and introduce
increased delay in the synchronization process.

5.1.5.2 GET success-rate and Sync Duration (Second and Third Metrics)

After looking at the individual GET-RESPONSE delays for each location, we look at the overall Sync
duration in a simple point-to-point scenario. Table 5-2 shows different factors that might be of interest
when analyzing the Sync duration for the case of a single device. As expected, the average Sync
duration increases with distance. The average GET-RESPONSE delay as shown in Table 5-2 has a big
role in the Sync duration, as the GET function is the main operation within a Sync process. However,
as mentioned earlier, in the point-to-point Bluetooth connection used with this application, once a
device establishes a Bluetooth socket with a remote device, it is highly probable that it will have a GET
success-rate of 100%, meaning all the 15 NDOs are fetched without any GET failures. This behaviour
was observed during the 22 successful iterations of this experiment.

Table 5-2:

Position

Average Sync

duration (seconds)

Experiment 1 results

Sync Standard
deviation
(seconds)

Average GET-
RESPONSE
delay (ms)

Average
SEARCH-
RESPONSE

Number of
failed Sync
iterations

Analysis | 29

NDO Success-
rate/iteration

B 8.257 1.154 292 422 100%
C 8.393 0.987 290 319 100%
D 15.447 0.815 548 331 100%

The SEARCH-RESPONSE delay may not have a great impact on the overall Sync duration since it
is a onetime operation for each Sync instance. In contrast, since the (up to) fifteen GETs are sequential
operations; the amount of time that each one takes has a greater impact on the Sync duration.

Figure 5-7 summarizes the Sync duration results. At locations B and C in Figure 5-7 there are 10
overlapping Sync durations. This figure shows how the Sync durations are distributed for the three
locations where synchronization was possible.

Device-2 — Device-1 Sync Duration

17
i g
15
14
13
12
11
o S X

Sync Duration 09

(seconds) 08 _#L
07 % S
06
05
04
03
02 [
01 1
00 I T
B C D E
Position
< Sync. Duration e Average Sync. Duration [l Standard Deviation

Figure 5-7: Experiment 1 Sync Durations

5.1.6 Discussion

What was learned from this experiment? This experiment revealed the performance of the
fundamental functions required for MOSES/ICN opportunistic sharing applications. The key point of
this analysis was the factors that contribute to delay in the convergence time of an ICN application in
the simple case of a point-to-point link. In addition to the processing delays introduced by the two end-
devices, when designing such an application it may be important to take the metrics examined in this
experiment into consideration.

30 | Analysis

5.2 Controlled Experiment 2: Multi-Hop

After experimenting with the behavior of an ICN-based network in a simple point-to-point network,
the second scenario adds a bit of additional complexity by adding 3 more devices to the network. In
order to keep the scenario simple, the ad hoc network will behave in a simple multi-hop manner, thus
each mobile device will only directly communicate with its (one or two) neighboring devices.
Compared with the scenario of experiment 1, this scenario allows observation of 2-3 devices
exchanging NDOs in an ICN-based network. In addition to the increased number of devices in this
scenario, the multi-hop behavior gives an opportunity to observe the efficiency of content
dissemination in such an ICN-based ad hoc network. This should reveal if opportunistic content
sharing occurs in an efficient and scalable manner. Establishing whether these two properties are
achieved is one of the general goals of MOSES and ICN.

5.2.1 Experimental conditions

The conditions for this experiment are the same as in experiment 1, with only a few changes. There
were 5 devices. As before each test was repeated 10 times, with each iteration taking around 15
minutes, thus the total experiment was expected to last 10 - 15 minutes = 2 hours and 30 minutes. The
devices were configured to periodically synchronize at most every 40 seconds.

The Bluetooth devices were manually paired in a multi-hop order. This was accomplished by
putting 4 bonded devices in each device's Bluetooth bonded list: 1-2 real devices and 2-3 dummy
paired devices. The dummy paired devices emulate a "real” multi-hop scenario. When the user’s device
is paired with 4 devices (but only 2 of them are within range). This configuration allows this
experiment to measure the delay caused by a non-responsive (e.g. not in range) device.

5.2.2 Scenario

Five mobile phones named Device-1, Device-2, Device-3, Device-4, and Device-5 are at locations A to E
(see Figure 5-8) with each device having 15 unique NDOs in its local cache. As in the previous
experiment, the devices are manually reset to their initial-state after each test and once the network
has converged the devices will be manually reset to their initial-state and then the test will be repeated
for a total of 10 iterations.

SWIDISH 3 :

Kruth

Reception
—— Newuman

Entrance Entrance Entrance

Figure 5-8: SICS Kista Office (Same as Figure 5-2)

As described above, all five devices were manually paired by Bluetooth (according to Table 5-3) as
shown in Figure 5-9 to create a linear multi-hop network. Additionally, there were extra dummy
devices paired with each device in order to have four bonded devices for each device. These dummy
bonded devices allow this experiment to emulate a real life multi-hop scenario when similar delays are
among other factors that are expected to be caused both by each hop (dissemination) and

Analysis | 31

non-responsive (e.g. out of range) devices. This experiment attempts to investigate the behaviour of
ICN-based opportunistic networking in a multi-hop manner, e.g. in order for Device-1 and Device-5 to
converge, all devices in between (i.e. Device-2, Device-3, and Device-4) must converge first.

Table 5-3: Devices pairing

Device-2

Device-1

Device-2

Device-3

Device-4

Paired

Dummy Device

Device-3

Device-4

Device-5

Dummy Device

with

Dummy Device

Dummy Device

Dummy Device

Dummy Deviice

Dummy Device

Dummy Device

Dummy Device

Dummy Device

Dummy Deviice

Dummy Device

A B C D E
Device-1/, ”| Device-2 . ”| Device-3 . ”| Device-4) i Device-s\

Figure 5-9:

5.2.3

Mobile devices organized in a linear topology

Synchronization Process

The synchronization process is similar to that in experiment 1. However, instead of two devices, five
devices will synchronize with each other in a multi-hop manner. Unlike experiment 1, where the Sync
process was executed manually, in this experiment each Sync process is executed automatically by a
periodic timer, as described in Section 5.2.6.

The synchronization process performed in this experiment follows the flow chart shown in Figure
5-10. This flow chart gives an overview of the process and illustrates the main components of the
synchronization process performed by the application.

In addition to the SEARCH, GET, and the periodic timer (each of which will be discussed in the
upcoming sections), an important state in this flow chart is closing the connection to Bluetooth server
at the start of the Sync process. In order to keep this experiment as simple as possible and measure
only the metrics of interest, we have turned off all other services that may affect the results of this and
the third experiments. As the focus of this experiment is only the Sync function, all of the other
services (such as the indoor localization service and the Bluetooth beacon discovery service) of this
application are disabled before the start of the experiment.

During the implementation of this application, it was observed that the Android Bluetooth service
has a limitation of one client per Universally Unique Identifier (UUID). Further details of this are
discussed in section 5.2.6. This issue was observed to cause high processing delays and timeouts in a
bi-directional Sync attempt, therefore, a decision was made to have each device perform one activity at
a time. By shutting down the Bluetooth-Server at the beginning of a Sync no remote-devices may
connect to the device, but the device itself may connect to other devices if they are not performing their
own Sync (since if they were performing a Sync they would also have shut off their Bluetooth-Server).

To ensure that each device only handles one activity at a time, if a device receives a connection
from a client, it brings down its Bluetooth-Server (as recommended by the Android
documentation[20]) and only serves that client. This client should release its connection to the serving
device after it has been served, thus each client closes its connection after it has completed its Sync to
allow the remote-device to initiate its own Sync. As a result, a serving device will not initiate its own
Sync until the client has completed its Sync and released its connection.

The Android Bluetooth API (or the mobile device itself) was observed to misbehave during
implementation tests by not releasing a remote connection after the completion of a Sync process.
Therefore, the application implements a 30 seconds timeout after which the serving device shutdowns
a client's connection if the client has not already done so.

32 | Analysis

The SEARCH and GET timeouts are shown in Figure 5-10. These timeouts are discussed in
Sections 5.2.4 and 5.2.5 where the roles of SEARCH and GET in the Sync process are discussed.

SYNC
START

Y

’ BLUETOOTH-SERVER }

CLOSE

¥
AGGREGATED SEARCH }—F“'L"'“EOU””SEC"

SUCCESS /EMPTY

SUCCESS / FAIL / TIMEOUT (5 SEC.)

A 4

’ BLUETOOTH-SERVER

START

¥
PERIODIC SYNC TIMER
NEW Sg

A 4

SYNC
COMPLETE
Figure 5-10: Sync. Process overview flow chart (Only overview, not the complete algorithm)
5.2.4 Netlnf library aggregated SEARCH mechanism

The NetlInf library uses an aggregated SEARCH mechanism. Figure 5-11 shows Device-3 performing an
aggregated SEARCH. This mechanism sends a SEARCH to all paired devices that are available. The
order of sending SEARCH requests is random so a SEARCH may be sent to more distant devices
before nearby devices. In this scenario since each device senses only its neighbouring devices SEARCH
requests are sent in a multi-hop manner. Duplicate NDOs in the SEARCH-RESPONSE from different
devices are removed before returning the aggregated SEARCH-RESPONSE to the next step in the Sync
process.

The SEARCH function of the Android NetlInf library is used in the Sync process as was shown in
the flow chart in Figure 5-10. There is a SEARCH timeout in the application, to allow the Sync process
to proceed even if no SEARCH-RESPONSE is received from any remote device. During tests of the
application, it was observed in the logs that it takes up to 5 seconds for each SEARCH-RESPONSE.
SEARCH-RESPONSE delays have been observed to be much less than 5 seconds, but considering the
highest transmission delay case 5 seconds is considered a reasonable timeout.

In this and the next experiment each device may have up to 4 neighbouring devices, therefore
considering 4 devices each with a five seconds timeout, implies that a 20 second timeout would be
required for an aggregated SEARCH-RESPONSE. The SEARCH function is an essential component of
a Sync process. As shown in Figure 5-10, if an individual GET fails, the GET process proceeds to the

Analysis | 33

next GET; but if an aggregated SEARCH fails then the Sync process will terminate. A safety margin of 3
seconds was added, thus the SEARCH timeout implemented in application is 23 seconds.

Figure 5-11 illustrates a case where all devices may sense each other. However, this was not the
case in this experiment.

[Device-l} |Device- 2} ‘ Device-3 I ‘ Device-4’ ‘ Device-S}
cr
/

SEA,

HICH-,q £ SDONSF

SE ARCH'HESPONSE

SEARCH

SEARcH

__E)
<P QN>
pacH-RE
sEf

Figure 5-11: NetInf library aggregated SEARCH mechanism (this is not the case in this experiment)

5.2.5 Netinf library distributed GET mechanism

After a successful aggregated SEARCH, the Sync process will compute from the aggregated SEARCH-
RESPONSE a set of NDOs that do not exist in the user's local cache. The Sync process will perform a
GET for each NDO in that set. For each GET, the Netlnf library will behave as shown in Figure 5-12
(which shows Device-3 performing one GET). With respect to the ICN/NetInf concept, every GET is
randomly and sequentially sent to any available device until a GET-RESPONSE with the Fullput NDO
is received. In Figure 5-12 Device-3 sends a GET request randomly to Device-1 and Device-1 responds
with a non-Fullput GET-RESPONSE meaning Device-1 did not have the respective NDO in its local
cache, therefore Device-3 continues to send requests to randomly selected devices until Device-4
responds with a Fullput GET-RESPONSE. Now Device-3 stops sending GETs (e.g. in this case Device-3
sent a GET request to all its neighbouring devices except for Device-2) and instead does a local
PUBLISH of the NDO that it received from Device-4. However as stated earlier, in this scenario both
SEARCHSs and GETs will follow a multi-hop order since the phones can only communicate each other
in this manner.

34 | Analysis

{Device% I ‘ Device-2 I [Device-B’ [Device-4| {Device- 5}

GET

—

GET

\

GET

GET-RESPONSE

Figure 5-12: Netinf library distributed GET mechanism (this is not the case in this experiment)

As was shown in Figure 5-10, the timeout of each individual GET is set to 5 seconds. This value was
selected because when performing 60 consecutive GETs during a Sync process, we want the GETs to be
processed as quickly as possible. During the test phase of the implementation of this application, it was
observed in the logs that depending on the received signal strength of a transmission channel a GET-
RESPONSE delay may be up to 5 seconds. For example, a poor received signal strength occurs in the
worst case (location D) of experiment 1 (see Section 5.1.5.1). In this case, the GET-RESPONSE delay
was 1.291 seconds. Setting too high a GET-RESPONSE timeout may delay the completion of the Sync
and setting too low a GET-RESPONSE timeout may affect the success-rate of the GETs, which may
cause extra Sync iterations — in both cases negatively affecting the convergence time. Therefore,
5 seconds seems to be a reasonable GET-RESPONSE timeout as we will see when we consider the
results of this experiment in Section 5.2.10.2.

5.2.6 Bluetooth CL

As described earlier the NetInf library is being used with the Bluetooth CL. The following subsection
describe the special actions that are needed to manage the network sockets with Bluetooth and some
limitations of the Android Bluetooth API that necessitated introducing a particular master and slave
configuration for use with the Android application.

5.2.6.1 Socket management

A tricky part of this experiment occurs at the Bluetooth transmission level. The NetInf library was
modified for this experimental scenario to open a test-socket to all the devices in the user's Bluetooth
bonded-devices list and to verify the availability of the paired devices. According to the logs, each test-
socket takes between ~1-10 seconds (~12 seconds according to the Android documentation[20]) to
timeout if the device does not respond (e.g. it is out of range or unavailable for some other reason).

The NetInf library has a Socket-Manager class that keeps an established socket open until some
event tears it down; therefore, the test-socket process is skipped if an open-socket already exists.
During a Sync process, a Bluetooth socket may unpredictably be torn down for one of several reasons.
One reason may be due to problems at the physical layer, as transmissions on the 2.4GHz wireless
channel are subject to interference, path loss, etc. Another reason for Bluetooth socket failure is the
Bluetooth master/slave configuration discussed in the next section.

Analysis | 35

In order to complete the Sync process, the device has to re-establish lost connections to those
devices that responded to the initial SEARCH request. To achieve this, the Sync process saves a set of
all the Bluetooth devices with whom a socket was successful established after the first successful
SEARCH-RESPONSE. Before performing each GET request, the Sync process requests the Socket-
Manager to re-establish a socket (if one is not already established) to each of these saved devices. This
assumes that all the devices that were available during the initial SEARCH are still within range and
therefore the device tries to re-establish a connection with the same set of devices. A complete Sync
iteration (explained later in Section 5.2.10.5) is usually very quick and the Bluetooth wireless range
(considering line of sight and the fact that the handsets are equipped with Bluetooth class 2 interface)
is usually up to ~10 meters (~60 meters outdoors with line of sight, according to the field experiments
with the Moto G phones that were used in all the experiments reported in this thesis). It should be very
unlikely that a remote-device after responding to a SEARCH-RESPONSE, would disappear completely.
However, in the worst case, this does happen, and then all the GETs to that device will fail/timeout.
Each of these failures will contribute between ~1-12 seconds (timeout for opening one Bluetooth
socket) delay to the Sync iteration. Fortunately, this is an unlikely event when the device(s) is (are) not
moving rapidly (e.g., in a vehicle).

5.2.6.2 Master/Slave configuration

The reason why we close the Bluetooth-Server while serving a client or being served by a server is due
to various limitations introduced by our choice of the Android Bluetooth API as the CL for this
application. In addition to the compulsory pairing in this version of Bluetooth (as we do not use BLE),
a master/slave configuration is introduced. The information presented in this section is based on
observations during our implementation and testing. Unfortunately, the master/slave configuration of
Bluetooth for the Android platform is not described in detail in the Android documentation[20].

Bluetooth[21][22] (i.e. Bluetooth core system) is limited to a maximum of 7 simultaneous active
clients per server using different UUIDs. Thus a given Bluetooth-Server (master) may have up to 7
concurrent clients (slaves) forming a small ad hoc network, called a Bluetooth "piconet".

The Android NetInf library provided by MOSES uses a single UUID for serving its clients.
Generally, a Bluetooth slave (client) uses a UUID to refer to the Bluetooth service on the serving device
(master). In terms of Bluetooth connectivity, this means that there is a need for a UUID per
client—server connection. How would this work in an ad hoc network with no protocol for informing
each device what UUID each server is listening to? A simple solution is to assign seven different UUIDs
to the NetlInf protocol and query each device to discover its neighboring devices. However, these
additional test queries will add additional delay to the neighbor discovery process. If each attempt at
Bluetooth neighbor discovery with a test connection to a neighboring device times out after
~1-12 seconds for each UUID, then if the neighboring device is listening to the 7th UUID in the list an
additional ~6-72 seconds delay will be added to the Sync process.

Another reason for closing the Bluetooth-Server is the change in behavior of the Sync process. If a
device performing consecutive GETs with large payloads (i.e., a large NDO in terms of its size in bytes)
attempts to serve another client with the same NDOs, would the Sync process appear to be smooth to
the end user? During the test phase of the implementation, a similar approach was implemented and
tested, but an increased number of timeouts and GET failures were observed. Therefore, we decided to
limit the devices to doing only one thing at a time.

5.2.7 Periodic Synchronization Timer

In this experiment and the third experiment, the synchronization process is periodically executed by a
separate thread based on the following formula Si; = S, - R - K where Sg; is the random interval for
synchronizations, which is a product of S, a Sync interval defined by the user, R a random value with
the constraint 0.45 < R < 1.0, and K is a value used to control the randomness.

Since this application is to demonstrate opportunistic behavior, the application does not
implement a synchronization protocol and nearby devices are unaware of each other's synchronization
status. The Sync interval rather than being a static value defined by the user, has a controlled

36 | Analysis

randomness (based upon the value R). This randomness may prevent neighboring devices from
simultaneously initiating the Sync process. If all devices that are within range of each other initiate
their Sync process at the same time, then no device gets the chance to become a client of another
device since the first step in the Sync process is to shut down the Bluetooth-Server (as explained in
Section 5.2.6.2). If the Sync interval were a static value then all of the devices could continuously
attempt to synchronize, fail, and then start over until some event breaks the loop. The controlled
randomness of the Sync interval Sg; should give one of the devices a chance to initiate its Sync process
before any of the other devices have started their Sync process.

R has a minimum value of 0.45 as the minimum Sync interval S, in this experiment is 40 seconds
with a K value (which should not be less than 1 in a normal case) of 1 would give S, of 18 seconds
which is a convenient amount of time before a device initiates a Sync under normal condition. In this
experiment each device is paired by Bluetooth with a maximum of 4 devices. As explained in Section
5.2.6, a Sync process starts by sensing its neighbors by opening a test-socket to each of the devices in
the user's bonded-device list. A Bluetooth connection attempt to an unavailable Bluetooth device will
timeout after ~1-10 seconds (and does so according our logs). With a ~5 seconds timeout (a value
between 1-10 seconds) for every individual device this leads to a timeout after a total of 15 seconds if
the first 3 paired devices in the bonded-devices list are not in range and the fourth device is in range
(this is considered the worst-case in this experimental scenario). Allowing an additional 3 seconds for
socket-establishment to the fourth device gives a total of 18 seconds that a device would need in the
worst case to establish a successful connection to another paired device. Even if we ignore the worst
case in the test-socket process, under normal conditions (K=1), having a Sync interval of less than 18
seconds is not recommended. During the test phase of the implementation, it was observed that very
short Sync intervals lead to simultaneous Sync attempts between devices.

The K value controls the randomness of Sg;. Thus in the case of consecutive GET failures, the Sync
process will back-off for a limited amount of time before retrying (back off timers are discussed in the
next section). Following such a back-off it may be convenient to retry syncing much earlier, rather than
postponing the synchronization to the next Sg;. As a result, a device may start its synchronization
within 15 seconds, rather than after 48 seconds. However, even with this randomness, since there is no
synchronization protocol between the devices, there is still be a risk that devices become stuck in a
state where they continuously simultaneously initiating their synchronizations. The back off timers
(explained in the next section) and adjustments to the K value are an attempt to break these kinds of
loops.

5.2.8 Synchronization back-off timer

As explained in the previous section, there are cases where devices face consecutive SEARCH/GET
failures/timeouts. This may be caused due to momentarily poor transmission quality of the wireless
channel or a mobile-device's momentarily hardware/software misbehavior. In order to reduce the
inefficiency in the Sync procedure, a back-off mechanism was implemented to address these types of
events.

The Netlnf library implementation[16] will return an empty SEARCH-RESPONSE if the remote-
device does not have a copy of the requested NDO(s), thus a SEARCH does not fail even if the remote-
device does not offer any NDOs. If an aggregated SEARCH fails/timeouts, this may imply that
something went wrong in the transmission/reception of this request to/from the neighboring devices.
As a result, immediately retrying a new SEARCH may be inefficient, instead we should give the other
devices an opportunity to initiate their Sync process so that they are more likely to have something to
exchange on the next Sync attempt. The same logic applies to consecutive GET failures. If in the
middle of a Sync process an individual GET request fails or times out, this may indicate an intermittent
problem, therefore it may be wise to back-off for a small amount of time before retrying.

There are various ways to implement back-off timers, but in order to keep everything simple, this
implementation uses the same Si, formula used for the Sync periodic timer. This where the K variable
is used.

Analysis | 37

As shown in Table 5-4, by adjusting the K value Sg; will vary between the minimum and maximum
Sg; values depending on the random number R generated by the application. The minimum and
maximum Sg,; values presented in Table 5-4 are calculated by inputting the minimum and maximum
limits of the R variable together with an §; of 40 seconds. For example, if K = 0.5 and 0.45 <R < 1.0
then the minimum Sg; would be 40000 - 0.45 - 0.5 = 9000 ms and the maximum S, would be 40000 -
1-0.5 =20000 milliseconds. By using the variable K, the same formula used for the periodic Sync
interval can be used to calculate a back-off time. The minimum and maximum Sg,; values in Table 5-4
are with S; = 40000, thus 40 seconds is the minimum §; value for this and next experiment. An S,
value of less than 40 seconds is nhot recommended since with the chosen K values the Sync attempts
and reattempts would be too rapid which would increase the probability of simultaneous
synchronization between devices.

Table 5-4 shows the K values used in the implementation of this application depend on the device’s
current state. For synchronization during normal circumstances, i.e. no occurrence of timeouts or
failures, it would be convenient for the user to initiate the synchronization close to the S, interval
defined by the user while including some randomness to prevent devices from simultaneous
synchronization. If a device has already synchronized with its neighboring devices, then it would be
desirable for the network to back-off longer, as a device that is already synchronized with its
neighboring devices should give other devices the opportunity to converge as well.

Table 5-4: K values used in the implementation
K Value Min Sg, (Ms) ‘ Mf‘;;“ Condition

SEARCH timeout, high GET error-rate, Sync failure

0.5 9000 20000 | due to unknown reason, No device in range,
SEARCH-Failure

0.7 12600 28000 | Active-Client in progress, No device in range,
SEARCH-Failure

1.0 18000 40000 | (Normal condition boundary), No device in range,
SEARCH-Failure

1.2 21600 480800 | No device in range, SEARCH-Failure

1.5 27000 60000 | Normal Synchronization

2.0 36000 80000 | Already Synchronized

If a device attempts to initiate a Sync but there is an "Active-Client in progress"”, meaning that the
device itself is currently serving a client, then it would be inefficient to postpone the Sync to the next
usual Sg; (by using K = 1.5). If a client frequently does not require a long amount of time to receive
only one device’s NDOs, then a K value of 0.7 would be suitable. The K value of 0.5 is a lower value that
is suitable for timeouts, while allowing faster reattempts.

In Table 5-4 there are several conditions that share the same K values. In the case of the error-
events "No device in range" and "SEARCH-Failure" the application will back-off using one of the
following K values: 0.5, 0.7, 1.0, or 1.2. As discussed in the previous section, if the reattempt occurs too
quickly there may be a risk that the devices continue to simultaneously retry synchronizing with each
other. Forcing the devices to choose randomly between these four different K values may reduce the
risk of simultaneous reattempts.

It may be unnecessary to continue retrying after a failed Sync. For example, when the remote
device is no longer in range or is unavailable. Therefore, after an unsuccessful Sync the application
continues retrying with small K values a maximum of three times and then assigns a K value of 1.5.
This K value will delay the Sync to the next periodic interval. This method also assists in breaking loops
when several devices consecutively reattempt to synchronize with short back-off durations.

38 | Analysis

5.2.9 Metrics

From the MOSES perspective, one of the core efficiency factors for content distributing/sharing is the
total amount of time it takes for all the devices to synchronize, i.e., the network convergence time. The
less time it takes the devices to converge, the better the overall user experience. Therefore, it seems
natural in this experiment to measure the time it takes for all five devices to synchronize with each
other.

The network convergence time depends on how fast the individual NDOs are retrieved. The
current implementation retrieves each NDO via an individual GET request and GET-RESPONSE
message, thus the longer it takes to receive the GET-RESPONSE messages, the longer the
synchronization time and the longer the overall network convergence time. It is therefore desirable to
measure the median time it takes for each device to send a GET request and receive the corresponding
GET-RESPONSE.

As mentioned earlier, the prototype application utilizes Bluetooth CL for transport of NDOs and
one of the constraints of using Bluetooth is the discovery of neighboring devices and opening sockets to
them. The process of opening test-sockets with bonded devices to check their availability takes a
considerable amount of time, especially in the case of a multi-hop scenario where each device has at
least two dummy bonded devices (as we must wait for each of these dummy devices to timeout). This
test-socket process affects the overall network convergence time and it is therefore important to
measure and analyze the time required for this process.

An important metric that affects the network convergence time is the number of successful
synchronization attempts each device needs to make before they have all 75 NDOs. Each
synchronization attempt takes considerable time and makes the attempting device unavailable for the
duration of its synchronization process. The more synchronization attempts it takes a device to
converge, the longer the network convergence time. Therefore, it is especially interesting to measure
the required number of synchronization attempts required to converge in a multi-hop scenario as well
as the duration of each synchronization attempt.

In summary, this experiment uses the following metrics:

Network Convergence Time The time required for all devices to fully synchronize with each
other (in this case to each have 75 NDOs in their cache).

GET-RESPONSE Delay The time from a device sending a GET until the corresponding
GET-RESPONSE is received by the same device. This time
includes the transmission time over the Bluetooth CL plus the
processing delay at the two end-devices.

Bluetooth test-socket delay The time required to establish a Bluetooth connection to a
remote device, whether it succeeds or fails/timeouts.

Sync Success-Rate The fraction of successful Sync iterations for a device. A
successful Sync iteration is an instance of a synchronization
process where a successful SEARCH-RESPONSE is received and
all of corresponding GETSs are sent - whether the GETs succeed
or not.

Sync Duration The duration for one successful Sync iteration for one device.

5.2.10 Results

This section presents and analyzes the results of experiment 2 with the metrics defined in Section
5.2.9. In the presentation of the results for this experiment and experiment 3, each device is
represented by a color according to the color scheme used in Figure 5-13. This is to clarify and separate
each device’s individual results from the others.

Analysis | 39

[Device-1] [Devicc-2] [Deviccﬁ] [Device-4] [Device-S]

Figure 5-13: Devices color code

5.2.10.1 Network Convergence Time (First Metric)

Network convergence time is one of the most significant metrics in the context of opportunistic
communications and content sharing in an ad hoc environment. The faster the network converges, the
better the experience for the end users. Long convergence times are undesirable and make the
application inefficient for opportunistic content sharing. As stated previously, for this experiment the
network is said to have converged when all of the devices have 75 NDOs in their local caches. The
network convergence time is computed by subtracting the time of the first synchronization attempt by
any device from the time that the last device to converge retrieves the last (75th) NDO.

Since experiment 2 emulates a multi-hop network, the expected network convergence time is
higher than for a mesh network where each device hears every other device and has more
opportunities to synchronize. Figure 5-14 presents the network convergence time for all 10 iterations in
this experiment. It is worth noting that the edge devices (Device-1 and Device-5) have a longer average
convergence time than the middle devices. This is due to the fact that in a multi-hop environment the
edge devices, although they have no one else to compete with, will have a lower chance to converge as
they have only one device to synchronize with.

Network convergence time
17
16 -
15
14
13
12
-
11 - -—
10 — -
Device 9 - Sl =
convergence = 1 I
. 8
Time
(minutes) Z - |
5 [1
4 |
s L ¢ !
> i |
] | |
> I (i |
1 2 3 4 5 6 7 8 9 10
Iteration
[_175th Percentile = [—1J25th Percentile === Network convergence time per iteration

Figure 5-14: Network Convergence Time

The network convergence time for this experiment ranges from a minimum of 6 minutes and 38
seconds (iteration 1) to a maximum of 16 minutes and 4 seconds (iteration 7) with an overall average of
10 minutes and 15 seconds. Given that each device has to fetch 60 NDOs and each NDO has an average
size of 29 KiB the total amount of data is 29 KiB - 60 = ~1.74 MiB. Although the amount of data is not

40 | Analysis

large, the fact that each NDO is retrieved through individual GET requests and GET-RESPONSE
messages increases the convergence time. Moreover, since the application is based on the Bluetooth CL
(which is prone to high transmission loss and error rate as observed in the experiment logs), the
synchronization process is probabilistic, and the fact that each device can serve only one client at a
time contributes to longer convergence times.

Digging further deep into the logs it was observed that in most cases the convergence time was
affected mainly by the edge devices taking longer to converge and specifically by Device-1. The reason
for this is due to the fact that being an edge device, Device-1 had only one device available to converge
with and secondly, it had a higher transmission delay due to its location (as will be shown in Figure
5-16) compared to other devices. These factors are explored more in subsequent sections.

As observed in Figure 5-14, iteration 7 took the longest time to converge. Taking a closer look at
iteration 7, it was observed that Device-1 was stuck at 74 NDOs after 6 minutes had passed and it tried
7 additional times to synchronize with Device-2 (indicated by the orange dots) to get the last missing
NDO for the next 9 minutes without any success as depicted in Figure 5-15. These synchronization
attempts failed mainly due to Device-2 being busy serving Device-3, trying to synchronize itself, and
because of transmission errors on the Bluetooth channel. Had there not been a problem during
Device-1's Sync process after it received the 74th NDO, the whole network would have converged in
less than 9 minutes. More details of this behavior are present in Appendix A.

Experiment 2 - Iteration 7

70 #- '_::::::_
29 71 /
65 /1 /
89 7—1 /
71 7

50
NDO 40
count 35—/ /|
“" 30

/] /
A/ A 4
) 4
15 -+
10
5
0 T T T T T T T T T T T T T T T T T 1
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time (minutes)
== Device-1 === Device-2 Device-3 === Device-4 Device-5
Figure 5-15: Device convergence pattern during experiment 2 iteration 7

5.2.10.2 GET-RESPONSE delay (Second Metric)

One important factor that affects the overall network convergence time is the time it takes for a device
to receive individual NDOs. Since the synchronization process is based on GET requests sent by each
device to its neighboring bonded devices, it is important to look into each individual GET request and
the corresponding GET-RESPONSE duration and the resulting effect on the overall network
convergence time. This metric has been measured by subtracting the time when a GET request was
sent from the time when the corresponding successful GET-RESPONSE was received. Figure 5-16
shows the median GET-RESPONSE duration in seconds for all the 10 iterations for each device. As
expected Device-1 has a higher GET response duration due to its location (as described in Section
5.2.2) compared to other devices. This transmission delay results in a slower convergence time for the
device as well as causes timeouts and NDO losses that in turn results in an overall longer network
convergence time.

Analysis | 41

GET—GET-RESPONSE Duration
0.270 7
0.240 - 00.232
0.210 -
00.180 00.181 00.178 00.180
0.180 - . ’
Time 0150] 1
(seconds) o 120 J
0.090
0.060 -
0.030 -
0.000
Device-1 Device-2 Device-3 Device-4 Device-5
Device
= \EDIAN
Figure 5-16: GET-RESPONSE Delay

5.2.10.3 Test-socket delay (Third Metric)

As stated in Section 5.2.6.1, each device opens a test-socket to each of the devices in its list of bonded
devices in order to verify their availability at the start of each synchronization process. If a device is
available, then it will accept the connection request and the socket is established to that device. This
establishment step takes between 1-2 seconds. However, an issue arises when a device is unavailable,
as we have to wait for the test socket to timeout. Since in this experiment each device is paired with at
least two dummy devices, opening tests-sockets to these inevitably results in timeouts. The issue is
particularly bad for edge devices (Device-1 and Device-5) since 3 out of their 4 bonded devices are
unavailable, thus they will have on average longer synchronization times than the middle devices.

As stated previously, it was observed from the experiment logs that the timeout varies between
1-10 seconds and takes on average 5 seconds. Given that each device performs this test at the beginning
of every synchronization process, this consumes a considerable amount of time and has a major effect
on the overall network convergence time. In fact, on average 59% of the total synchronization duration
is due to the time consumed by the test socket process. This negatively affects the overall convergence
time and is due to the usage of the Bluetooth CL. This delay could be avoided by using an alternative
convergence layer, such as Wi-Fi Peer-to-Peer[23] as will be discussed in Section 7.2.

Figure 5-17 shows the average amount of time taken by the test-socket process for each device. It is
evident that the edge devices test-socket process takes a relatively longer time than the middle devices
as the end device have one additional dummy device, thus they spend more time waiting for timeouts
for unavailable devices.

42 | Analysis

Bluetooth test-socket duration
22
20 *
1 v
8 A ¢ X
16 x 7N Y
14 L b e
Test sockets 4, v
duration
(seconds) 10 v *
08 -
06
04
02
00 T T T T T 1
Device-1 Device-2 Device-3 Device-4 Device-5
@ Average device test socket duration per iteration =/ Total average duration
Figure 5-17: Bluetooth test socket duration

Digging deeper into the logs, it was observed that on average ~16 seconds (which corresponds with
the minimum Sync interval of 18 seconds as explained in Section 5.2.7) is spent on test sockets each
time a Sync Process is initiated. Given that the average number of successful synchronization attempts
required to converge is 6.4, then on average ~6.4 - 16 seconds = 102.4 seconds are spent on opening
test sockets during each iteration. This means that 17% of the average network convergence time is
spent on the test socket process checking the availability of neighboring devices. The issue is worse for
devices that have a large number of Bluetooth bonded devices that are unavailable during a
synchronization attempt. This not only delays the convergence time for the synchronizing device itself,
but also reduces the chance for other devices to converge since the converging device will not be
serving other devices when it is attempting a synchronization process itself. This is an area that can be
improved by altering the synchronization mechanism through the usage of another CL.

5.2.10.4 Sync Success-Rate (Fourth Metric)

One of the important metrics to look at is the number of successful synchronization attempts required
to converge. Successful synchronization attempts are those during which a device has detected an
active neighbor, sent a SEARCH request, and received the corresponding SEARCH-RESPONSE even if
no NDOs are retrieved during that attempt because the neighboring device did not have any new NDOs
available at that time. The fewer the synchronization attempts required to converge, the lower the
overall network convergence time. Since this experiment has a multi-hop topology and each device can
serve only one client at a time, the average number of synchronization attempts are expected to be
higher than would occur in a mesh topology (where each device will have more synchronization
opportunities).

Figure 5-18 shows the average number of successful Sync attempts per device and the average
successful Sync duration per device taken to converge. As expected the edge devices (Device-1 and
Device-5) have the most number of attempts taken to converge since they had only one active neighbor
from whom they could retrieve data. It should also be noted that the edge devices have the longest
synchronization duration as well. This is caused mainly by transmission errors on the Bluetooth
channel which causes GET timeouts as well as socket re-establishments.

Analysis | 43

Experiment 2 successful sync
Average
device
successful Sync
sync Attempts

duration

(seconds)

Device 1 Device 2 Device 3 Device 4 Device 5
= Average sync duration A Sync attempts taken to converge
Figure 5-18: Per device average number of successful Sync attempts and sync duration

Figure 5-19 shows per device failed synchronization attempts and the type of error that caused the
synchronization attempt to fail. As expected, the edge devices have the most failed attempts and 89%
of the failures are due to “No device in range” that is caused when a device attempts to synchronize but
cannot establish a socket to any of its listed bonded devices and has to abort the synchronization
attempt. The high number of errors on Device-1 corresponds to the maximum number of Sync
attempts by Device-1 as most of its Sync attempts failed due to “No device in range” error and it
consequently had to make additional attempts in order to converge. This type of error is prevalent in
this scenario for the edge devices due to the absence of additional available bonded devices. In a mesh
topology, each device has multiple neighboring nodes available with which the device could attempt to
synchronize.

44 | Analysis

Experiment 2 - Per device error

Error 32
count 28

12 1 -

| — | |
e D e — =

T T T T

Device-1 Device-2 Device-3 Device-4 Device-5

[ONo device inrange O Others

Figure 5-19: Per device error-count

5.2.10.5 Sync duration (Fifth Metric)

Another interesting metric to analyze would be the duration of successful synchronizations per device.
During each iteration a device makes several Sync attempts in order for the network to converge. If a
device takes a long time for each synchronization attempt, it will be unavailable for longer time and
this reduces the opportunity for its neighboring devices to synchronize. This is especially important in
a multi-hop scenario where each device has only a small humber of available neighbors, thus being
unavailable for longer periods will drastically prolong the convergence time.

Figure 5-20 shows the per device successful synchronization duration for all the 10 iterations. As
we can observe from this graph, most of the synchronization attempts are less than 20 seconds, with a
couple of spikes above 1 minute. The average is roughly 22 seconds and 168 milliseconds. The spikes
are due to transmission errors on the Bluetooth channel. Examining the three first long spikes for
Device-2 that are above 50 seconds it was observed that the synchronization process was delayed due
to socket re-establishment and GET timeouts. As noted in Section 5.2.5 the timeout for individual GET
requests are 5 seconds and GET requests are sent sequentially. This application waits a maximum of 5
seconds for a GET-RESPONSE message after sending a GET request. If a response is not received
within 5 seconds, then the application proceeds with the next GET request. As stated in section 5.2.6.1,
a device keeps a list of its available bonded devices that responded to the initial SEARCH request and
when a socket is torn down during the synchronization process then the device tries to re-establish a
socket back to that device. This socket re-establishment process takes between 1-10 seconds.

Analysis | 45

Per device successful Sync duration

80

75

70

65

60

55

50

Sync 45
duration 40
(seconds) 35

20 - . A -
15 :

10
05
00

Device-1 Device-2 Device-3 Device-4 Device-5

Device

Figure 5-20: Per device successful Sync duration

During the first spike there were 3 GET timeouts and 2 socket re-establishments to Device-1 that
took 15 (3 -5 = 15) seconds, thus in total the synchronization duration was prolonged 30 seconds due
to bad transmissions via the Bluetooth channel. Similarly, during the second spike there were 5 socket
re-establishments and one GET timeout that in total contributed to 26 seconds of delay. Moreover, the
individual GET>GET-RESPONSEs were also slower than usual. During the third spike (which is the
longest synchronization duration in the whole experiment), there was very poor connection to Device-1
with 7 socket re-establishments and two GET timeouts contributing to a delay of 35 seconds.
Additionally, long transmission delays were observed for the individual GET-RESPONSESs prolonging
the whole synchronization process by 1 minute and 16 seconds.

Given that the average successful synchronization duration is ~22 seconds and that ~16 seconds
are spent on the test sockets during each synchronization process, this means that the average
synchronization time is 6 seconds. That is to say, once a device has found its active neighbors then the
SEARCH, GET and GET-RESPONSESs on average take 6 seconds to complete given that there is good
quality Bluetooth channel.

5.3 Controlled Experiment 3: Semi-Mesh

The conditions and the scenario for this third experiment are exactly the same as in experiment 2 with
only one difference: all devices may communicate each other except for Device-1 and Device-5. Device-
1 and Device-5 are edge devices that may hardly or not sense each other. The organization of the
devices are the same as in experiment 2 with the locations shown in Figure 5-21.

A B C D E
lDevice-1] [Device-2] [Device-3] [Device-4] [Device-s]

Figure 5-21: Location of each of the devices

In this experiment since almost all devices may sense each other, the behavior and results of this
experiment are expected to be quite different from the previous experiment since each device has the
opportunity to become a client of four other devices. The devices are paired by Bluetooth with each
other, but unlike experiment 2 there are no dummy bonded devices in this experiment. Each device
has a total of 4 real bonded devices as shown in Figure 5-22. The reason for a semi-mesh topology

46 | Analysis

rather than a full mesh topology is due to the locations of the edge devices (Device-1 and Device-5) they
could generally not sense each other during this experiment. However, if this experiment was
reproduced, there is a possibility that these two devices might sense each other. The goal of this
experiment is to emulate a real life scenario where users meet opportunistically rather than
intentionally, thus two users depending on time, distance, and many other factors may or may not be
within Bluetooth range (i.e. in the vicinity) of each other.

Figure 5-22: Mobile devices connection state

5.3.1 Metrics

Since most of the parameters of this experiment are the same as in previous experiment, similar
metrics have been chosen to highlight the difference in results of a semi-full mesh topology compared
to a multi-hop linear topology.

The following metrics have been chosen:

Network Convergence Time The time for all devices to have fully synchronized with each other
with 75 NDOs in their cache.

GET-RESPONSE Delay The duration between a sent GET by a device until the
corresponding GET-RESPONSE is received by the same device.
This includes the transmission time over Bluetooth CL plus the
processing delay caused at the two end-devices.

GET Success-Rate Fraction of successful GETs at the initiating device. A GET is
considered successful if a Fullput GET-RESPONSE is received.

Sync Success-Rate Fraction of successful Sync iterations for one device. A successful
Sync iteration is one synchronization process, where a successful
SEARCH-RESPONSE is received and all corresponding GETs are
sent, whether the sent GETs succeed or not.

Sync Convergence Time The duration for a successful Sync iteration for one device.

5.3.2 Results

Now that all five devices may sense each other (with the limitation described above) and may exchange
NDOs, the five devices compete with each other to synchronize with another available device.
Additionally, this scenario allows the devices to have a higher chance to find an available device once
other devices have converged. In this section, the results gathered from the logs of all 10 iterations are
analyzed. The metrics that have been chosen for the analysis of this experiment are individually
explored in the upcoming sections.

5.3.2.1 Network Convergence Time (First Metric)

If we assume that this in an exhibition scenario, then when these five users opportunistically come
near each other, it would be of interest to know how long it takes for all five devices to completely
synchronize with each other. In the context of MOSES and information-centric networking, the focus is
on how efficiently content is disseminated and shared between users. This experiment attempts to
estimate the network convergence time for such an ad hoc network. The complete network

Analysis | 47

convergence time depends on many factors, such as GET-RESPONSE delay, probability of performing
a successful Sync, success-rate of individual GETs, and the quality of the Bluetooth CL transmission
channel.

Figure 5-23 presents the network convergence time for all 10 iterations of this experiment. Since in
this experiment almost all of the five devices may communicate with each other, they exhibit
probabilistic behavior as any device at a given point in time can become client to any other device and
vice versa.

Although the behavior of all of these devices are very probabilistic Device-1 (the first bar in each
iteration in Figure 5-23) still exhibits a higher convergence time in the majority of the iterations
compared to the other devices. This may be due to its location where its communication may be subject
to a higher transmission delay (GET — GET-RESPONSE duration) compared to the other devices. This
will be discussed further in the next section.

Network Convergence Time

11
10 —
9 ~] =
g _ al -
7 1 -

Convergence 6 - i |3 Eais

time | I -
(minutes) > 11 I

4 i
N | N] I 1. |
2 .
; | |
. (L] I

1 2 3 4 5 6 7 8 9 10
Iteration count

[——175th Percentile =~ —125th Percentile === Network convergence time per iteration

Figure 5-23: Network Convergence Time (in minutes)

In order to understand how the network convergence behaves in this topology (i.e., where almost
all devices are in range of each other), the following sections will examine each of the metrics which
lead to the results shown in Figure 5-23.

5.3.2.2 GET-RESPONSE Delay (Second Metric)

All five devices are within range of each other, from a device's point of view, during a Sync process up
to 4-15 NDOs = 60 GETs will be sent from one device to all other devices. This metric is computed
from the logs of each device. The duration between a GET sent by a device until the reception of the
corresponding GET-RESPONSE by the same device is computed.

Figure 5-24 presents the GET-RESPONSE average duration for each device for all 10 iterations of
this experiment. The average values for each device are fairly close to each other, except for Device-1
and Device-2 that both have slightly higher values. During all three experiments, Device-1 was
expected to have a bit higher transmission delay due its location. However, in this scenario Device-2
has the highest average GET-RESPONSE delay compared to all other devices.

48 | Analysis

GET — GET-RESPONSE Total Average Duration

0.500 0.446

0.450

g'ggg 0.343
Average 0'300 | 0300 0.287 _.0.293

GET 0.250 - : |

duration | _

0.200 : ;
(seconds)

0.150 -

0.100 -

0.050

0.000

Device-1 Device-2 Device-3 Device-4 Device-5
Device
= A\VVERAGE
Figure 5-24: GET-RESPONSE Total Average Duration

After analyzing Device-2's logs, as shown in Figure 5-25 during experiment-iterations 1, 3, and 6,
Device-2 experienced higher GET-RESPONSE delays. According to the logs, Device-2 had several
GET-RESPONSE delays between ~1-2 seconds that increased its average GET-RESPONSE delay.
Those individual GET-RESPONSEs that increased the total GET-RESPONSE delay average for Device-
2 were mostly received from Device-1 and Device-5. This may be explained by the high transmission
delays caused by the two edge device's locations. Device-1's location as explained earlier is subject to a
corner and a main walkway and Device-5 has the greatest distance from Device-2 (when compared to
the other devices). Since the synchronization process is unidirectional at each Sync iteration, only the
initiating device synchronizes with the remote-device(s) and the remote-device(s) waits until the
device has completed its synchronization. Therefore, in Figure 5-25 the results of each device in each
experiment-iteration are unrelated to another device's results. In another words, just because Device-2
had a poor connection to Device-5 and Device-1, does not mean that Device-5 and Device-1 during
their synchronization necessarily had poor connections to Device-2 (e.g. Device-5 during iteration 3
only synchronized with Device-4 and during the same iteration Device-2 synchronized mostly with
Device-5). In this network topology, almost anyone may synchronize with anyone.

Analysis | 49

GET— GET-RESPONSE Average Duration/Iteration

0.700
0.650
0.600
0.550
0.500
0.450
GET- 0.400

RESPONSE 0.350
delay

(seconds) 0.300
0.250
0.200
0.150
0.100
0.050
0.000

Iteration

M Device-1 M Device-2 W Device-3 M Device-4 W Device-5

Figure 5-25: GET-RESPONSE Average Duration/Iteration

5.3.2.3 GET Success-Rate (Third Metric)

Both from a protocol/concept and from synchronization efficiency point of view it would be interesting
to examine the success-rate of the performed GETSs. After all, the ICN concept and the Netlnf GETs
have a big role in the behavior and the efficiency of this application in the MOSES opportunistic
networking concept. Any failure of individual GETs causes extra Sync iteration(s) in order for the
device to converge and since successfully becoming a client to other devices is very probabilistic, this
may delay the network convergence time.

Both Figure 5-26 and Figure 5-27 show a special behavior of the GETs. This behavior would not
occur in a host-centric networking approach (i.e., using TCP). In this experiment, each device should
perform 60 individual GETs. In a host-centric network each GET would be transmitted only to the
device holding a copy of the requested information. In the case of a transmission-failure or packet-loss
the request (or packet) would be re-transmitted. This re-transmission is necessary, therefore it is not a
reason for inefficiency. However, in an information-centric networking approach, a request (GET) for
information is sent to the network and not to a specific device. Therefore as described earlier in
Section 5.2.5, in this application GETs are randomly sent to neighboring devices whether the remote-
device holds a copy of the NDO or not. In an ICN-based infrastructure type of network, there may be
more control over where an NDO might be available, but in an ad hoc network this NDO could be in
any of the other nodes. The Sync process uses the aggregated SEARCH mechanism and performs GETs
randomly to those devices that the initial SEARCHSs were sent to. Therefore a GET is sent to several
devices and the first GET-RESPONSE is accepted and the rest are ignored. This behavior is apparent in
Figure 5-26. For example during iteration 4, Device-2 has sent 123 GET requests to its neighboring
devices and 60 GETs where accepted. The NDOs marked as "FAIL" in Figure 5-26 are the GETs that
were sent without receiving/considering their corresponding GET-RESPONSEs. These GET-
RESPONSEs might have failed at the physical layer, timed out, or it may have been ignored since the
remote device did not have a copy of the requested NDO or it was a duplicate GET-RESPONSE.

50 | Analysis

GET Attempts and Failures

130

120

110

100

90

80

NDO 70
Count 60
50

40

30

20

10

Device-1 Device-2 Device-3 Device-4 Device-
Device

BGET Attempt @ FAIL

Figure 5-26: GET attempts and failures

This ICN-based behavior of this application of sending GETs randomly to neighboring devices may
lead to efficiency or inefficiency. Since in this experiment (nearly) all devices could sense each other
and may Sync with each other, a less distant device may fully converge before another device has
initialized its own Sync. Therefore, this second device may GET an NDO from a less distant
neighboring device than the originating device (the device who owned the NDO first before giving it to
others). This originating device may be at a longer distance or even be out of range now. As a result,
this behavior may lead to greater efficiency for the network. However, there are cases such as seen in
iteration 4 in Figure 5-26 where Device-2 (Device-2's fourth bar in Figure 5-26) has sent 123 GET-
requests, 60 of the GET-RESPONSES where accepted, and 18 of the remaining 63 GETSs according to
Device2's logs where subject to a Bluetooth socket-failure. Which leaves us with 45 remaining GETs
which are duplicate GETs that were sent to other devices and their corresponding GET-RESPONSESs
were ignored either because they were received late or the GET-RESPONSE did not contain a Fullput
NDO. In this case the ICN-based behavior leads to inefficiency in the network, since 45 GET requests
were unnecessarily sent. This inefficiency may contribute to congestion of the transmission channel, as
well as occupying the two end-device's hardware/software with unnecessary processing.

According to the logs 85.90% of all the "failures” marked in red in Figure 5-26 where due to
duplicate GETs. An additional 13.45% of all the "failures" were due to Bluetooth socket-failure and the
remaining 0.65% of "failures" were due to timeouts. A Bluetooth socket-failure means that the device
was unable to establish a connection with the remote-device. This may be due to failure at the physical
layer or the remote-device was unavailable for the moment (e.g. performing its own Sync) or the
remote device was out of Bluetooth range.

Figure 5-27 presents the efficiency/success-rate of each device in each of the 10 iterations. A
device's result is considered 100% successful/efficient if in each iteration only 60 GETs and 60
corresponding GET-RESPONSESs were exchanged between a device and its neighboring device(s).

Analysis | 51

GET's Efficiency/Success-Rate

100%
90%
80%
70%
60%
50%
40%

30% - B E
0% 1
10% - J
o 11

Device-1 Device-2 Device-3

B Device-1 M Device-2 M Device-3 M Device-4 ™M Device-5

Figure 5-27: GET's efficiency/success rate

One may prefer to analyze the efficiency and success-rate of GETs separately and explore them in
more detail, but the main idea of this analysis is to give an overview ICN's GET behavior in a MOSES
application and to identify possible factors for inefficiency in the protocol/concept itself.

5.3.2.4 Sync Success-Rate (Fourth Metric)
After clarifying the GETs behavior and influence on the network convergence time in a semi-mesh
topology in this experiment, we analyze which factors may affect/interrupt a synchronization process.
We analyze each Sync iteration success/failure in the logs. For every Sync iteration that
fails/postpones, an extra Sync iteration is required in order for the device to converge, which adds
extra delay to the network’s convergence time.

Figure 5-28 presents the results of all the Sync attempts and failures during the whole experiment.
There were a total of 451 Sync process attempts carried out by all the 5 devices during all the 10
iterations. Of these 451 attempts, 174 Sync iterations failed. Examining the logs and analyzing the
cause of each failure/interruption, it turned out that 143 of the 174 failures were due to "No device in
range" error. This error occurs every time the Sync process is performed and the Bluetooth CL sensed
no remote-devices. This does not actually mean that there were no Bluetooth devices within range, as
the neighboring devices might have shutdown their Bluetooth-Servers due to either serving other
clients or performing their own synchronization.

The remaining 31 failures are categorized as "others" (as apparent in Figure 5-28). These failures
were due to momentary software/hardware misbehavior, which might be fixed by improvements to the
implementation. The errors in this category are not primarily related to the concept/protocol itself,
therefore they are not discussed further in this thesis.

52 | Analysis

Total Sync Attempts/Failures

Attempts —’—_—,—;—,—q 451
Success 277
Total Fails 174
No device in range 143

Others F 1

0 50 100 150 200 250 300 350 400 450 500

Figure 5-28: Total Sync. Attempts/Failures

As presented in Figure 5-28, 82.18% of all the Sync process interruptions during the whole
experiment were caused by the "No device in range"” error. The primary cause for this error is due to
the design of this application and the limitations of the Bluetooth CL. In opportunistic networking
where users have limited opportunities to exchange information (i.e. NDOs) with each other, it is
unfortunate to lose synchronization opportunities due to serving one client at a time.

5.3.2.5 Sync Convergence time (Fifth Metric)

Similar to the previous experiment, one of the metrics in this experiment is the Sync duration for each
device. In opportunistic networking, a user comes within range of another user and the two users have
a limited amount of time to exchange NDOs before they move out of range of each other. Therefore,
when a device gets an opportunity to exchange NDOs with another device, it should try to exchange as
many NDOs as possible.

Table 5-5 presents the average Sync duration as well as extra data which may affect the duration of
each Sync iteration. As stated earlier, Device-1 is positioned at location "A" which is subject to a corner
and the corridor were Device-1 is positioned is a main walkway for personnel. These factors may have
negatively affected the wireless transmissions of Device-1 and Device-2. As stated earlier and as
presented in Table 5-5, Device-1 and Device-2 have the highest average GET-RESPONSE time
compared to the other devices, which may explain their high average Sync duration.

Table 5-5: Sync duration results
Average Sync Total number of Average GET-
durgtior): failed Sync e RESFE’]ONSE
.) Success-rate -

seconds iterations Duration (ms

Device-1 23.951 42 53.3% 343

Device-2 21.663 22 72.5% 446

Device-3 14.615 31 66.3% 300

Device-4 19.102 40 55.6% 287

Device-5 17.678 39 60.6% 293

A device is considered converged when it has received all of the other device’s 15 NDOs, leading to
a total cache of 75 NDOs (i.e., after including the device's own 15 NDOs). This individual convergence
time was calculated by considering each device's cache size after each Sync process using the log files.
More information about the behavior of each device throughout the 10 iterations of this experiment is
present in Appendix B. This appendix presents in which order in time each device updated its cache
until it finally reached a total cache of 75 NDOs and converged. The analysis of each device’s
convergence time and behavior in this semi-mesh topology may be of interest since it may illustrates
the efficiency and anomalies that may arise due to the ICN concept or opportunistic networking in

Analysis | 53

ad hoc mode. One interesting anomaly is present in Appendix B Experiment 3 - Iteration 5, which
illustrates how a device due to a GET failure may be delayed in converging. Each device
probabilistically becomes a client to another device and synchronizes. Since becoming a client to
another device is very opportunistic and probabilistic, it might take one to mare Sync iterations in
order to find an available neighboring device to synchronize with. In Appendix B Experiment 3 -
Iteration 5, Device-1 during its second to last successful Sync the device failed to receive one GET,
therefore it continued to have 74 NDOs for 3 minutes until it finally found an available device to
retrieve this last NDO and to converge. In this experiment since all devices may sense each other,
missing an NDO may only delay a device’s convergence time by a small amount of time because a
device may retrieve the final missing NDO from any of the other four neighboring devices that have
already converged. However, in a multi-hop scenario as in experiment 2, the chances of finding an
available neighboring device is lower and this may delay a device’s convergence tirme much more.

Figure 5-29 shows the synchronization convergence time and number of sync attempts from an
overview perspective. We analyzed whether Sync duration and the number of Sync iterations share any
common factors. A successful Sync duration as discussed earlier, is very dependent upon the number
of GETs performed and their durations. However, a Sync attempt might be interrupted/postponed for
various reasons (as discussed previously). Does a longer Sync duration mean more Sync attempts are
necessary to converge? One commonalty between the two may be that a longer Sync duration is usually
caused by poor link quality. This may affect/delay the initial socket establishment, which means that a
device that is far away has a lower probability to successfully compete a simultaneous connection
establishment to a common neighboring device. In another words if two devices perform a
simultaneous Sync to the same remote-device, then the device that is closer may be more likely to
become a client of the remote device.

Sync Convergence
30 7
6.1
A L
25 5.4 6
4.8 A
4.7 L5
20 - A — A
Average L4
successful i | Sync
Sync Duration | Attempts
(seconds) -3
10
2
05 L1
00 T T T T 0
Device-1 Device-2 Device-3 Device-4 Device-5
Total average Sync duration A Average Sync attempts taken to converge

Figure 5-29: Sync. Convergence

54 | Analysis

5.3.2.6 Device Sync patterns

In this experiment since each device may have the opportunity to Sync with four other devices, it may
be of interest to view the pattern of synchronization in this semi-mesh topology. The term "pattern™ in
this section refers to the pattern of connectivity and synchronization of NDOs between the five devices,
i.e., from whom did a device get its NDOs. Table 5-6 presents from which other device each device got
what portion of its NDOs during all 10 iterations of this experiment.

Table 5-6: Sync pattern (N/A indicates not applicable)
Device-2 Device-4
Device-1 N/A 24.67% 41.17% 0% 0%
Device-2 31.5% N/A 19.17% 36% 41%
Device-3 67.83% 24.5% N/A 26.67% 7.83%
Device-4 0.67% 20.33% 39.67% N/A 51.17%
Device-5 0% 30.5% 0% 37.33% N/A

As described in Section 5.1.5.1 regarding the results for location D in a point-to-point
synchronization no matter what the distance is if a device successfully establishes an initial Bluetooth
connection to another device, it may have a GET success-rate up to 100%. As presented in Section
5.1.5.1, the distance may cause delay in the transmission but it does not necessarily affect the success-
rate - as observed in experiment 1. This behavior can be seen in the results presented in Table 5-6 as
well. For instance, Device-1 is subject to a corner and a main walkway for personnel, but it still
managed to receive the majority of its NDOs (i.e. 67.83% of 600 NDOs) from Device-3 which is not its
closest neighboring device. Looking into Device-1's results, as present in Table 5-6, shows also that
Device-1 received only 0.67% of its NDOs from Device-4, which shows the similarity to the A—D case
in experiment 1 as well as the A—E case since in this experiment Device-1 received no NDOs from
Device-5. This similarity enables us to conclude that once a device has successfully established a
Bluetooth socket to another device, no matter what the distance, obstructions, interference, or path
loss, the device can perform the majority of its Gets and synchronize with the remote device. Therefore
initial Bluetooth socket establishment is one of the essential factors in an opportunistic networking, as
if a device manages to establish a Bluetooth socket to a relatively (relative to the range of Bluetooth)
near or faraway device, it could successfully Sync with up to 100% success-rate and may converge.

It should be kept in mind for all the conducted controlled experiments in this thesis, that there was
no specific Sync protocol, therefore the synchronization pattern is very opportunistic and thus
probabilistic. There are three probabilistic behaviors involved in the Sync process. The first probability
is the value of R chosen by the devices in a network. For instance, assume that two devices with
identical application settings (i.e. same CL, routing, Sync timers, etc.) initialize their Sync process by
chance (depending on the R value). However, they may or may not start Syncing at the same time,
because if the R values picked by the two devices are the same or close to each other (without the 18
seconds window) then the two devices may not become a client to one another and will postpone their
Sync. The second probability involved is the availability of the device itself, which is the probability of
not serving a client when initiating a Sync to it. The third probability is the availability of the
neighboring devices, depending on the number of the devices that are within the range of a device,
what is the probability that the neighboring devices are not serving a client or performing their own
Sync at the point in time when the device initializes its Sync process.

Contributions to MOSES | 55

6 Contributions to MOSES

Since this thesis project is part of a bigger research project, some tools were developed in the course of
this project — have not yet been discussed in this thesis. The following sections describe two
implementations that were developed and might be of use in future development of applications of
MOSES.

6.1 Extension of the Android NetInf Library

The Android NetInf library[16] provided by MOSES, among other functionalities supported
transmission over Bluetooth, HTTP, and UDP CLs. The HTTP CL of the library did not support
SEARCH and PUBLISH functions. Thus two mobile devices could only perform a GET on each other
over the HTTP CL. This library was extended with two Java classes: PublishHandler.java and
SearchHandler.java. These classes were implemented to use the same architecture as the existing
classes of the library and reused code from the library. Using these two new classes, devices can
perform SEARCH and PUBLISH over the HTTP CL both to other devices and a NetInf server.

6.2 Python Synchronization Script

Section 4.4 mentioned the idea of synchronization checkpoints (i.e. NetInf servers) where users may
use the infrastructure to disseminate their NDOs. This idea was deployed during the uncontrolled
experiment at the SICS Open House event, but it was more an idea rather than a product of this thesis,
therefore it was not discussed earlier in this thesis. A Python script was written in order to keep the
two synchronization checkpoints synchronized with each other. As a result the NDOs published by
users to each synchronization checkpoint would be available in the two "zones".

This script completes the synchronization process in two steps. In the first step a Netinf SEARCH
message is sent from server “A” to server “B” with the “notavailable” flag along with a list of all the
cached NDO names. Upon receiving this search message server “B” replies with a SEARCH-
RESPONSE message with all the NDOs that it does not have in its local cache. Server “A” then
publishes all of the NDOs on server “B” that server “B” does not have, thus server "B" becomes
synchronized with server "A". In the second step, server “A” sends a normal SEARCH message with the
search token "*" and server “B” responds with list of all NDO names it has in its cache. Server “A” then
compares the received list in the SEARCH-RESPONSE message and sends a GET message for each
NDO that is not present in its local cache and thus server "A" becomes synchronized with server "B".
This script could be run periodically (e.g. every 5 minutes) to keep the two NetInf server's caches
synchronized with each other.

Conclusions and Future work | 57

7 Conclusions and Future work

This chapter begins by presenting some conclusions. This is followed by some suggestions for future
work and reflections on the social, ethical, and other issues relevant to this thesis project.

7.1 Conclusions

A functioning Android prototype application for the MOSES project was created, thus the main goal of
this thesis project was achieved. This prototype was built based on the NetlInf protocol. This prototype
can be used for experience sharing by visitors to an entertainment venue. The application uses
Bluetooth to disseminate location relevant content opportunistically between mobile devices in an
ad hoc environment. A series of controlled experiments were conducted under supervision of MOSES
researchers in order to test, verify, and evaluate the functionality of the prototype application as well as
to analyze its efficiency for opportunistic content sharing. The results of these controlled experiments
provided additional insights for MOSES researchers into using ICN (NetInf) for opportunistic content
sharing and allow them to review the concept. Additionally, they can further develop and refine the
prototype Android application and the involved algorithms.

The three controlled experiments attempted to evaluate different scenarios and based on these
results some key results and concerns regarding MOSES/ICN concept can be summarized as follows:

i The network converges faster with more devices, as evident from the results of experiment
3 where the average network convergence time was 7 minutes and 44 seconds as opposed
to 10 minutes and 15 seconds for experiment 2. Thus, additional devices reduce the
convergence time, but since a device cannot have more than 7 Bluetooth active
connections at a time any node in the network will be limited to 7 active neighbors.

ii. The Bluetooth limitation of accepting one client per UUID limits devices to serving only
one client at a time. Having a Server/Master listening on different UUIDs does not
improve the efficiency and will only prolong the test-socket process further.

iii. The test-socket timeouts are very high when a device is unavailable and thus considerably
increases the synchronization time. Moreover, it has been observed that the Bluetooth
transmission channel is prone to transmission errors for distances greater than a few
meters and many socket tear downs (i.e. socket-failures) were observed between devices
during each synchronization process further prolongs the convergence time.

iv. As stated in Section 5.2.5, once a device receives a SEARCH-RESPONSE message, it
calculates which NDOs it is missing in its local cache and starts sending GET requests to
randomly selected neighbors. This is to comply with ICN architecture as the device is only
interested in receiving the content (i.e. NDO) and it is irrelevant of where the NDO comes
from. The node sends requests sequentially to all available devices and waits for the first
response. This mechanism of sending multiple GET requests to fetch an NDO causes
congestion on the transmission channel and unnecessarily uses the device’s processing
and other resources. This becomes worse when several convergence layers are used
simultaneously as the GET requests will be sent over all convergence layers. For example,
if both Bluetooth and HTTP CLs are chosen by user then after receiving a successful
SEARCH-RESPONSE, the application will send GET requests to all of the available devices
via both convergence layers. This issue can be avoided with a host-centric approach by
binding a SEARCH-RESPONSE to a GET request. In this approach after receiving each
successful SEARCH-RESPONSE, the device remembers which device sent the response
and then during the GET process each individual GET request is sent only to the device
that actually holds the NDO instead of sending the request randomly to all available
devices.

58 | Conclusions and Future work

7.2 Future work

The thesis focused primarily on building a prototype application using the NetInf protocol for
opportunistic content sharing and conducting controlled experiments to analyze and evaluate the
performance of the prototype application. Several aspects were out of scope of this thesis and could be
further developed to extend the functionality of the prototype application. This section summarizes
some of those aspects that remain undone, together with some related work that may be of interest for
future thesis projects.

i It is evident from the experiment results that the transmission channel is of great
importance and has a major impact on the efficiency of the application. Currently there are
two alternatives for mobile ad hoc networks namely Bluetooth and Wi-Fi Direct. The
application used Bluetooth since it had been previously worked on and developed during a
Master’s thesis project by Linus Sundé[16] and the Bluetooth CL was already in the
Android NetInf library. As discussed in Section 5.2.6 there are several issues which make
use of Bluetooth undesirable for opportunistic content sharing. As future work, it is
recommended to spend time and effort on a new CL, specifically Wi-Fi Direct[23], as an
alternative before proceeding with further development of the prototype application.

ii. Since the main aim of this Master’s thesis project was to build a functioning prototype
application for opportunistic content sharing, little time was spent on optimization of the
application itself. Caching and sharing NDOs consume considerable resources (such as
random access memory and battery power) of the mobile device. In future work it would
be advisable to further develop and optimize the application to use fewer resources as well
as to refine the GUI. Moreover, there have been some refinements done to the Android
NetlInf library during this thesis project, but more investigations are required to further
optimize and develop the library as suggested by Linus Sundé[16].

iii. Although the application can use HTTP CL for both ad hoc and infrastructure
synchronization this CL was out of the scope of this thesis project, hence no experiments
were performed using the HTTP CL. It would be of interest to conduct similar experiments
simultaneously using both Bluetooth and HTTP CL.

iv. Rather than implementing a completely opportunistic/probabilistic behavior as is the case
with the current implementation, it would be advisable to either extend the current Sync
algorithm or devise a completely new synchronization protocol that would be more
efficient within the framework of MOSES and the information-centric concept.

v. The controlled experiments were limited to only five devices. As is evident from the
results, the convergence time decreases when more devices communicate with each other.
It would be of interest to conduct experiments with more devices and observe the resulting
behavior. Moreover, in order to analyze the behavior of the application for real life
scenarios, a series of uncontrolled experiments should be conducted where the devices are
distributed to end users whom would generate and share content opportunistically in an
uncontrolled manner.

vi. The results of the controlled experiments presented in Chapter 5 are primarily intended
for MOSES researchers to reproduce the experiments with the desired metrics that are of
most interest to them. An interested researcher should repeat the experiments presented
in Chapter 5 with more than 10 iterations in order to acquire better distributions and
observe in more depth the deviations of the results.

7.3 Reflections

From the end user's point of view, applications such as MOSES intend to decentralize sharing and
dissemination of digital content, thus offloading content servers. This approach might give end users
the opportunity to exchange data on their own and in a more on-demand manner without needing a
subscription to an Internet service. Opportunistic location relevant content may also be beneficial from
an educational perspective, as users who own a Smartphone device may receive informative
news/information about the locations they pass through.

Conclusions and Future work | 59

Offloading content servers could lead to reduced load on the infrastructure and thereby a decrease
in deployment and maintenance costs for commercial information providers. Because if every user's
device is a content server, there would be no need to ask for content from content servers on the
Internet when that content is available from the user(s) nearby. This could also imply less load or
distribute the load on the environment. Because mobile devices are usually power efficient (since they
are constrained their battery’s power), short ranged wireless technologies could be used by power
efficient devices (i.e. Smartphones) to satisfy their users’ demands. This is likely to lead to a reduction
in the size of content size (via compression or other algorithms), thus decreasing the content’s size on
the global network.

With all the benefits of MOSES, there are also privacy and ethical concerns introduced. Personal
data confidentiality and end user activity discretion are two factors that may violate the end user's
privacy via a MOSES application. Opportunistic sharing or sharing in general introduces privacy issues
such as revealing a person's identity, activity, location, or any other personal information to
unauthorized users. Confidentiality of end user data are discussed in some papers of ICN[18], but there
are yet no RFCs that describe how the personal data of an end user should be handled. In addition to
confidentiality, MOSES relies on geoTagging user's data — hence coupling location and content. There
exists no standard procedure for geoTagging end user content. Unfortunately, geoTagging end user
content could violate the user's privacy by revealing the user's location and activity at a specific pointin
time. Furthermore in opportunistic sharing environments there should exist procedures for managing
the exchange of data between the users. These procedures should provide a means for the end user(s)
to have full control over what is shared and how much is shared, while at the same time preventing
users from violating another user’s rights. Additionally, in a streaming scenario if a user chooses to
stream a public video from n peers then this user should also share their received & cached video with
n other users in order to maintain a fairness in the sharing environment.

References | 61

References

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[°]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

B. Ahlgren, C. Dannewitz, C. Imbrenda, D. Kutscher, and B. Ohlman, “A survey of
information-centric networking (draft),” Inf.-Centric Netw., no. 10492, 2011.

S. Farrell, E. Davies, and D. Kutscher, “The NetInf Protocol,” 2013.
“MOSES-Background - MOSES-Background.pdf.” [Online]. Available:
https://www.eitictlabs.eu/fileadmin/files/docs/Tenders/MOSES-Background.pdf.
[Accessed: 04-Apr-2014].

A. Lindgren, “Open position for Master Thesis work: 10T Monitoring and Analysis
System,” SICS Swedish ICT, Thesis proposal. 19-Dec-2013. [Online]. Available:
https.//www.sics.se/media/news/open-position-for-master-thesis-work-iot-
monitoring-and-analysis-system

A. R. Hevner, S. T. March, J. Park, and S. Ram, “Design Science in Information
Systems Research,” MIS Quarterly, 28(1): 75-105, March-2004. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.103.1725&rep=repl&type
=pdf. [Accessed: 26-May-2014].

A. Cockburn, “Using Both Incremental and Iterative Development,” STSC CrossTalk
(USAF Software Technology Support Center) 21 (5): 27—30. ISSN 2160-1593, May-
2008. [Online]. Available: http://www.crosstalkonline.org/storage/issue-
archives/2008/200805/200805-Cockburn.pdf. [Accessed: 30-May-2014].

C. Larman and V. R. Basili, “Iterative and Incremental Development: A Brief History,
IEEE Computer Society, 2003. [Online]. Available:
http://www.computer.org/csdl/mags/co/2003/06/r6047-abs.html. [Accessed: 26-
May-2014].

P. Jokela, A. Zahemszky, C. Esteve Rothenberg, S. Arianfar, and P. Nikander,
“LIPSIN: line speed publish/subscribe inter-networking,” in ACM SIGCOMM
Computer Communication Review, 2009, vol. 39, pp. 195—-206.

B. Ahlgren, M. D’Ambrosio, M. Marchisio, I. Marsh, C. Dannewitz, B. Ohlman, K.
Pentikousis, O. Strandberg, R. Rembarz, and V. Vercellone, “Design considerations
for a network of information,” in Proceedings of the 2008 ACM CoNEXT Conference,
2008, p. 66.

S. Nechifor, “How to Manage and Search/Retrieve Information Objects,” in
Architecture and Design for the Future Internet, Springer, 2011, pp. 201-223.

S. Farrell, C. Dannewitz, P. Hallam-Baker, D. Kutscher, and B. Ohlman, “Naming
things with hashes,” Internet Request for Comments, RFC 6920 (Proposed Standard),
Apr. 2013 [Online]. Available: http://www.rfc-editor.org/rfc/rfc6920.txt

D. Kutscher, S. Farrell, and E. Davies, “draft-kutscher-icnrg-netinf-proto-01 - The
NetInf Protocol,” 10-Feb-2013.

V. Jacobson, D. K. Smetters, J. D. Thornton, M. F. Plass, N. H. Briggs, and R. L.
Braynard, “Networking named content,” in Proceedings of the 5th international
conference on Emerging networking experiments and technologies, 2009, pp. 1-12.
T. Koponen, M. Chawla, B.-G. Chun, A. Ermolinskiy, K. H. Kim, S. Shenker, and I.
Stoica, “A data-oriented (and beyond) network architecture,” ACM SIGCOMM
Comput. Commun. Rev., vol. 37, no. 4, pp. 181-192, 2007.

E. Davies, “Implementing the NetInf Protocol with HTTP and DTN Convergence
Layers and Using NetInf over DTN as the Primary Communication Protocol for a
Device,” 14-Jun-2013. [Online]. Available:
http://developer.android.com/training/connect-devices-wirelessly/wifi-direct.html.
[Accessed: 29-May-2014].

L. Sunde, “NetInf Node for Bluetooth Enabled Android Devices,” Uppsala Universitet,
Department of Information Technology, IT 13 081, 2013,
http://uu.diva-portal.org/smash/get/diva2:668342/FULLTEXTO1.pdf.

“Network of Information / Code / [€93120].” [Online]. Available:
http://sourceforge.net/p/netinf/code/ci/default/tree/. [Accessed: 31-Mar-2014].

62 | References

[18]

[19]

[20]

[21]

[22]

[23]

M. lon, J. Zhang, and E. M. Schooler, “Toward Content-Centric Privacy in ICN:
Attribute-based Encryption and Routing,” In Proceedings of the ACM SIGCOMM
2013 conference on SIGCOMM (SIGCOMM '13). ACM, New York, NY, USA, Aug-
2013, pp. 513-514. DOI=10.1145/2486001.2491717 Available:
http://conferences.sigcomm.org/sigcomm/2013/papers/sigcomm/p513.pdf.
[Accessed: 28-May-2014].

“Reality matters — Preorder for Estimote Beacons available, shipping this summer.”
[Online]. Available: http://blog.estimote.com/post/57087851702/preorder-for-
estimote-beacons-available-shipping-this. [Accessed: 04-Apr-2014].

“Bluetooth | Android Developers.” [Online]. Available:
http://developer.android.com/guide/topics/connectivity/bluetooth.html. [Accessed:
17-May-2014].

Bluetooth SIG, “Baseband Architecture | Bluetooth Development Portal,” Baseband
Architecture | Bluetooth Development Portal, 26-May-2014. [Online]. Available:
https://developer.bluetooth.org/TechnologyOverview/Pages/Baseband.aspx.
[Accessed: 26-May-2014].

“Specification of the Bluetooth System, Covered Core Package version: 4.1.”
http://www.bluetooth.com, 03-Dec-2013.

“Wi-Fi Peer-to-Peer | Android Developers.” [Online]. Available:
http://developer.android.com/guide/topics/connectivity/wifip2p.html. [Accessed:
29-May-2014].

Appendix A: Experiment 2 - Device convergence time | 63

Appendix A. Experiment 2 - Device convergence time

NDO
count

Experiment 2 - Iteration 1

P — / /

7z / / / /

Time
(minutes)

s Device-] s Device-2 === Device-3 mmmm== Device-4 ===== Device-5

NDO
count

Experiment 2 - Iteration 2

Time
(minutes)

s Device-1 mss=== Device-2 === Device-3 Device-4 Device-5

64 | Appendix A: Experiment 2 - Device convergence time

NDO
count

75
70
65
60
55
50
45
40
35

25
20
15
10

Experiment 2 - lteration 3

o

1 2 3 4 5 6 7 8 9
Time
(minutes)

s Device-]1 === Device-2 === Device-3 === Device-4 ===== Device-5

NDO
count

75
70
65
60
55
50
45
40
35
30
25
20
15
10

Experiment 2 - lteration 4

7
I v 4 v 4 > 4
/

/

=
N
w
IS
(&}
(o)}
~
0o
©

10
Time
(minutes)

mmm Device-1 mssm== Device-2 === Device-3 === Device-4 === Device-5

Appendix A: Experiment 2 - Device convergence time| 65

NDO
count

75
70
65

55
50
45
40
35

25
20

15 -

10

Experiment 2 - lteration 5

Time
(minutes)

s Device-1 mss=== Device-2 === Device-3 === Device-4 ===== Device-5

NDO
count

75
70
65
60
55
50
45
40
35
30
25
20
15
10

Experiment 2 - lteration 6

[EEY

Time
(minutes)

mmmmm Device-]1 === Device-2 ====== Device-3 mmmm== Deyice-4 === Device-5

66 | Appendix A: Experiment 2 - Device convergence time

Experiment 2 - lteration 7

75 ’_’?—
70]

65

60

50

45

II
55 1
/
/

NDO 40 I/

count 35
30

/
T 77

15 L L /

10

o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
Time
(minutes)

s Device-1 wsss== Device-2 === Device-3 === Device-4 === Device-5

Experiment 2 - lteration 8
75

70 /
65 VA4 / /
e 7 7 y A4

55 /
p 1~ 71 7

45

NDO 40 [I/]

count gg / I/

/

i /
51— /l /
20 1

10

Time
(minutes)

s Device-1 s Device-2 === Device-3 === Device-4 ===== Device-5

Appendix A: Experiment 2 - Device convergence time| 67

Experiment 2 - Iteration 9
» 7 77 7
7 / /7 /
6 / /7 /
0 / /7 /
> 7/ /7 /
45 /#F
NDO 40
count gg // II // //
T I 777
20 - /
15
10
5
0
0 1 2 3 4 5 6 7 8 9 10 11
Time
(minutes)
== Device-1 — === Device-2 ===== Device-3 =m==== Device-4 === Device-5
Experiment 2 - Iteration 10
e 7 = 7
0 / 7/ /
& / 7/ /
%0 / 77 /
> / YA /
>0 / y A /
NDO 40 [/ 7 / /
count 35 [/ /] /]
3 /7]]/
T/
/A A A
S I A A A |
10
5
0
0 1 2 3 4 5 6 7 8 9 10
Time
(minutes)
e Device-1 w===== Device-2 === Device-3 mm==== Device-4 ===== Device-5

Appendix B: Experiment 3 - Device convergence time | 69

Appendix B. Experiment 3 - Device convergence time

Experiment 3 - Iteration 1

;(5) /]
79 7/ A —]
& 7/ / 7 /
o0 7/ / I/ /
2 / / /7 /
4> // 7 / /I - II
o / y A | / /
e / y A | / /
o / 7/ / /
o 7/ y4 / / /
20 7 y 4 7 / /
10
5
O T T T T T T T
0 1 2 3 4 5 6 7
Time
(minutes)

= Device-1 — =ss=== Device2 ~ === Device-3 === Device-4 = === Device-5

Experiment 3 - Iteration 2

7)

count 35
3

/
/
7
/
45 VA | /
NDO W A— — S—4 i
/ II
/
/

Time
(minutes)

mmmmmm Device-1 s Device-2 === Device-3 == Device-4 === Device-5

70 | Appendix B: Experiment 3 - Device convergence time

Experiment 3 - Iteration 3

;(5) / 7 7

65 / V4

69 / A 4 7/

2 / /7 7 7

20 / -4 Z 7
NDO 40 VAR i AR 4 /
cours: 30 A 17 4

30

15 L

10

5

0 T T T T T T T

0 1 2 3 4 5 6
Time
(minutes)
s Device-1 === Device-2 === Device-3 === Device-4 === Device-5

Experiment 3 - Iteration 4

gg / / 7% /
o0 y A A 4 7
2 77 7/ 7
29 /7 7 7/ 7
NDO 40 [/ / /
35 / / / / /
count X 7 - e 4
o — y/a
e
10
5
0 T T T T T T
0 1 2 3 4 5 6
Time
(minutes)

mmmmm Device-1 mmss== Device-2 === Device-3 === Device-4 === Device-5

Appendix B: Experiment 3 - Device convergence time| 71

NDO
count

Experiment 3 - Iteration 5

/
[/7 J/ /
[Z 7 /

Time
(minutes)

s DeVice@-1 = Device-2 = Device-3 == Device-4 we= Device-5

NDO
count

75
70
65
60
55
50
45
40
35
30
25
20
15
10

Experiment 3 - lteration 6

Time
(minutes)

mmmmm Device-1 wssss= Device-2 === Device-3 === Device-4 === Device-5

72 | Appendix B: Experiment 3 - Device convergence time

Experiment 3 - Iteration 7

65 / /) 7/ /
60 / // Z. /
§3 / /%' .
: i
NDO 40
/
count 3> Z/ 71/
25 / /
2 / /
15 / L
10
5
O T T T T T T T T
0 1 2 3 4 5 6 7 8
Time
(minutes)
s Device-1 mssm== Device-2 === Device-3 === Device-4 ===== Device-5

Experiment 3 - Iteration 8

0 7 7
60 ZzZ [/ VAV 4 /
55 /7 y A A 4 /
50 A 4 / / /
a5 / Z. / 7/ /
NDO 40 [A S/ /
count 35 // //// // II
30
75 // [/
20 /7 [/
T A
10
5
O T T T T T T T T T
0 1 p 3 4 5 6 7 8 9
Time
(minutes)

e Device-1 =ssm== Device-2 === Device-3 == Device-4 === Device-5

Appendix B: Experiment 3 - Device convergence time| 73

Experiment 3 - Iteration 9

70 / / y4
2 7/ 7/ y4
e 7/ /—7/ y4
o 7 /—7/ y4
2 y4 /— 7/ y4
25 II II //II /
NDO 40
count 35 4 7/
30
10
5
O T T T T T T T 1
1 2 3 4 5 6 7 8
Time
(minutes)
mmmmm Device-1 === Device-2 === Device-3 === Device-4 === Device-5
Experiment 3 - Iteration 10
7 7 7 = =
29 7 /= =
60 Z / = e
o5 B A S S—
20 7/ 7
20 7/ 7/ /
NDO 40 VAV AR 4 /
count 33 A/ 7/
30
20
15 <
10
5
O T T T T T T 1
1 2 3 4 5 6
Time
(minutes)

s Device-1 === Device-2 === Device-3 mmmm== Device-4 === Device-5

TRITA-ICT-EX-2014:58

