
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

S A B R I N A A L I T A N D R A
a n d

S A R W A R U L I S L A M R I Z V I

 Security for Cloud Based Services

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Security for Cloud Based Services

Sabrina Ali Tandra
and

Sarwarul Islam Rizvi
2014-01-27

Master’s thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

 Stockholm, Sweden

i

Abstract
Cloud computing is a new buzzword in the modern information technology world. Today

cloud computing can be considered as a service, similar to the way that electricity is
considered a service in urban areas. A cloud user can utilize different computing resources
(e.g. network, storage, software application), whenever required, without being concerned
with the complex underlying technology and infrastructure architecture. The most important
feature is that the computing resources are available whenever they are needed. Additionally,
users pay only for the resource they actually use. As a result, cloud users can easily scale their
information technology infrastructure, based on their business policy and requirements. This
scalability makes the business process more agile.

The motivation for this thesis was the need for a suitable set of security guidelines for
ifoodbag (and similar companies) when implementing web applications in the cloud. The goal
of this thesis is to provide security in a system, being developed in another Master’s thesis
project, to implement the ifoodbag web application in a cloud. To achieve this goal, we began
by identifying the risks, threats, and vulnerabilities in the system model proposed by these
other students for their implementation. A study was made of several different security
mechanisms that might reduce or eliminate risks and secure the most vulnerable points in the
proposed system’s design. Tests of these alternatives were conducted to select a set of
mechanisms that could be applied to the proposed system’s design. Justification for why these
specific mechanisms were selected is given. The tests allowed the evaluation of how each of
these different security mechanisms affected the performance of the system. This thesis
presents the test results and their analysis. From this analysis a set of mechanisms were
identified that should be included in the prototype of the system. In conclusion, we found that
DNSSEC, HTTPS, VPN, AES, Memcached with SASL authentication, and elliptic curve
cryptography gave the most security, while minimizing the negative impact on the system.
Additionally, client & server mutual authentication and a multi-level distributed database
security policy were essential to provide the expected security and privacy that users would
expect under the Swedish Data Protection law and other laws and regulations.

Keywords: cloud computing, security, risk, vulnerability, performance.

iii

Sammanfattning

Molntjänster är något nytt inom informationsteknikens värld, som kan idag kan liknas vid
hur folk i stadsområden köper sin el. Människor som använder sig av molntjänster kan dela
och använda olika data (t.ex. olika nätverk, lagringsutrymme och programvara) utan att ha
djupare kunskaper om den bakomliggande, komplexa tekniken eller om infrastrukturens
uppbyggnad. Den viktigaste egenskapen hos molntjänster är hur man kan dela och komma åt
den dator man behöver när man vill och betalar bara för den dator man använder. Molntjänster
har resulterat i att företag enkelt kan anpassa sin informationsteknikens-infrastruktur baserat
på de policys och krav företaget har.

Motiveringen för denna avhandling är att det behövs lämpliga riktlinjer för företag som
t.ex. iFoodBag (och liknande företag) vid integrering av webbapplikationer i molntjänster.
Målet för denna avhandling är att ge stabilitet och säkerhet i systemet iFoodBag, ett program
som är gjort i ett annat examensarbete. För att uppnå målet började vi med att identifiera
risker, hot och sårbarheter i programmets modell och uppbyggnad i det andra examensarbetet.
Med en efterföljande undersökning tittade vi på hur flera olika säkerhetsmekanismer antingen
minskade eller eliminerade riskerna och såg även på de mest sårbara punkterna i det
föreslagna programmets utformning. Med resultaten från denna undersökning genomförde vi
tester för att välja vilka mekanismer som skulle fungera bäst med programmet. Motiveringen
till varför vi valde dessa mekanismer är baserad på testerna och våran utvärdering av dessa. Vi
valde säkerhetsmekanismer baserat på hur de påverkade prestandan i programmet. Denna
avhandling presenterar testresultaten och analyserna av dessa. Genom att studera alla resultat
valde vi ut de säkerhetsmekanismer som skulle fungera bäst i prototyp-programmet.
Sammanfattningsvis kom vi fram till att DNSSEC, HTTPS, VPN och AES, Memcached med
SASL autentisering, och elliptisk kurva kryptografi gav högst säkerhet med minst negativ
påverkat på programmet. I tillägg såg vi att klient-server ömsesidig autentisering, och flera
nivåer databas säkerhetspolicy var nödvändiga för att tillgodose de förväntningarna användare
har på programmet när det gäller säkerhet och integritet i enighet med Svenska
dataskyddslagstiftningar och andra lagar och förordningar.

Nyckelord: Molntjänster, säkerhet, risk, sårbarhet, utförande.

iv

Acknowledgements

Sarwarul Islam Rizvi
I am thankful to almighty for giving me patience while working with the thesis project. I

do remember my beloved parents who have always prayed, wished and, inspired me from
some thousand miles away. Without their unconditional love and consistent support I could
not manage to reach this stage of life. I am grateful to my lovely wife Elham Khorami, who
has always literally inspired and practically insisted me day and night to finish the thesis
work. Without her support I cannot even think of finishing my degree. I am thankful to my
father and mother-in-laws for their love and prayers for me. Besides, I am thankful to all my
friends who have inspired me time to time to finish the Master program. Special thanks to my
thesis group mate Sabrina Ali Tandra for her cooperation throughout different phases of the
thesis work.

Sabrina Ali Tandra
First of all, I am deeply grateful to almighty for bringing me this far, giving me courage

and patience for pursuing my dream. I am thankful to my parents. Without them nothing was
possible. It was their support; prayer and love which makes me fight all the odds and reach
my goal. I am very thankful to all of my friends to believing in me, supporting me and
encouraging me consistently. I am also thankful to my thesis partner Sarwarul Islam Rizvi for
his support to make this thesis successful.

v

Table of contents

Abstract .. i
Sammanfattning ... iii
Acknowledgements .. iv
Table of contents .. v
List of Figures ... ix
List of Tables .. xi
List of acronyms and abbreviations .. xiii
1 Introduction .. 1
1.1 Problem definition .. 1
1.2 Motivation ... 2
1.3 Scope ... 2
1.4 Method and methodology .. 2
1.5 Structure of this document .. 3
2 Background ... 5
2.1 What is Cloud computing? ... 5
2.2 Characteristics of Cloud Computing ... 6

2.2.1 On-demand self-service ... 6
2.2.2 Broad network access ... 6
2.2.3 Resource pooling .. 7
2.2.4 Rapid elasticity ... 7
2.2.5 Measured service .. 7

2.3 Three ways to provide cloud based services ... 7
2.3.1 Software as a Service (SaaS) ... 8
2.3.2 Platform as a Service (PaaS) .. 8
2.3.3 Infrastructure as a Service (IaaS) ... 9

2.4 Cloud Deployment Models ... 9
2.4.1 Private cloud .. 9
2.4.2 Public cloud ... 9
2.4.3 Hybrid cloud .. 9
2.4.4 Community cloud.. 10

2.5 Scalable model of the ifoogbag web application in cloud 10
2.6 How can using a cloud help a business? .. 11
2.7 Security issues in cloud ... 12

2.7.1 Confidentiality related attacks .. 12
2.7.2 Integrity related attacks .. 14
2.7.3 Accountability Check ... 14
2.7.4 Availability related attacks ... 14

3 System breakdown and analysis .. 17
3.1 Name resolving process of ifoodbag web application 17

3.1.1 What is the job of a DNS server? .. 17
3.1.2 How DNS works.. 17
3.1.3 Iterative and Recursive Queries .. 18
3.1.4 DNS name resolving process .. 19
3.1.5 Importance of DNS security ... 20
3.1.6 DNS security issues and vulnerabilities 20
3.1.7 Available solutions .. 22

vi

3.1.8 DNS Security Extension (DNSSEC) .. 23
3.2 Distributing load among application servers 25

3.2.1 Why load balancing? ... 25
3.2.2 Using squid for load balancing .. 26
3.2.3 Policies to improve squid security .. 27
3.2.4 Alternative approaches for load balancing with Squid 27

3.3 HTTP connection between a user’s browser and an ifoodbag
application server ... 28

3.3.1 Hypertext Transfer Protocol (HTTP) ... 28
3.3.2 Security issues with HTTP .. 28
3.3.3 Solutions to improve security in HTTP .. 28

3.4 Communication between the management node and other nodes 29
3.4.1 What is VPN? ... 29
3.4.2 VPN Tunnels .. 30
3.4.3 VPN Implementation ... 31
3.4.4 OpenVPN ... 31

3.5 Caching web data ... 32
3.5.1 What is a cache? .. 32
3.5.2 How does Memcached work? .. 33
3.5.3 Advantages of Memcached ... 35
3.5.4 Disadvantages of Memcached ... 35
3.5.5 Security of Memcached .. 35

3.6 Cloud storage .. 36
3.6.1 What is cloud storage? .. 36
3.6.2 Types of Cloud storage .. 36
3.6.3 Characteristics of Cloud storage .. 37
3.6.4 Advantages and disadvantages of Cloud storage 37
3.6.5 Traditional versus Cloud storage ... 38
3.6.6 Reliability and Security factors about cloud storage 38

3.7 Distributed database .. 39
3.7.1 What is distributed Database? .. 39
3.7.2 Types of distributed databases ... 39
3.7.3 Heterogeneous versus Homogenous DDB 40
3.7.4 Approaches to DDBs ... 40
3.7.5 Advantages and disadvantages of DDBs 41
3.7.6 Security Weakness of distributed database 42
3.7.7 Security Components in a DDB ... 42

3.8 Addressing DDoS attack .. 43
3.8.1 What is a DDOS attack .. 43
3.8.2 Different types of DDOS attacks ... 44
3.8.3 Review of work related to prevention, detection, and mitigation of
DDoS attack ... 45

4 Secure system design .. 49
4.1 Secure name resolving through DNSSEC ... 49
4.2 Secure browsing through HTTPS ... 50
4.3 Secure Cloud Storage ... 51
4.4 Method to Secure a DDB in the Cloud .. 52
4.5 Secure Memcached .. 52
5 Implementation .. 55
5.1 Secure browsing of ifoodbag web application 55

vii

5.2 Secure Communication between Nodes ... 57
5.3 Secure information in database .. 59
5.4 Secure information in Cloud Storage ... 60
6 Results and evaluation ... 63
6.1 Revisit design issues ... 63
6.2 Recommendations .. 64

6.2.1 For Secure Name Resolving .. 64
6.2.2 For Securing Load Balancers .. 65
6.2.3 For Secure Browsing ... 66
6.2.4 For Secure Communication between Nodes 68
6.2.5 Memcache ... 75
6.2.6 Distributed database ... 75
6.2.7 Cloud Storage .. 78

6.3 Security guidelines ... 81
6.4 General guidelines .. 81
7 Conclusions and Future Work .. 83
7.1 Conclusions ... 83
7.2 Future work .. 83
7.3 Reflections .. 84

7.3.1 Social ... 84
7.3.2 Economic .. 85
7.3.3 Legal and Ethical issues ... 85

References .. 87
Appendix A: How to set policy with IPSec .. 97
Appendix B: Set HTTP in IIS Web Server ... 115
Appendix C: Code to measure time to get response for a SQL

SELECT query through VPN Tunnel .. 117
Appendix D: Code to measure time required to download certain

content with HTTP and HTTPS ... 119
Appendix E: Download time comparison for 390MB file 121
Appendix F: Download time comparison for 3.13 MB file 123
Appendix G: SQL SELECT query time comparison for different VPN

setup ... 125
Appendix H: SQL SELECT query time (in milliseconds) comparison

for different VPN setup and for different result sizes 129
Appendix I: Code to measure AES encryption time 131
Appendix J: Time for inserting data ... 139
Appendix K: Time for selecting data .. 141
Appendix L: Analysis of data in appendices E & F 143
Appendix M. Analysis of data in appendix H 145
Appendix N. Storage security with AES and TripleDES 147
Appendix O. AES encryption-decryption time in the same machine 157
Appendix P. AES encryption-description time between networked

hosts ... 161
Appendix Q. TripleDES encryption-decryption time between

networked hosts .. 165
Appendix R. Analysis of data in Appendix P and Q 169
Appendix S. Analysis of data in Appendix J and K 171
Appendix T. Data Push and Pull time without security 173

viii

ix

List of Figures
Figure 1-1: Matt Bishop's three key aspects of security Confidentiality, Integrity, and

Availability (Adapted from Figure 1-3 of [2]) .. 1
Figure 2-1: Cloud computing logical diagram [9] ... 6
Figure 2-2: Cloud service model (Collected and edited from [12],[13]) ... 8
Figure 2-3: A dynamically scalable model for ifoodbag in cloud [3] (Appears here with the

permission of the authors.) .. 11
Figure 3-1: Host A using DNS to identify Host B in Internet (The idea for this figure is based

upon [46].) ... 17
Figure 3-2: DNS hierarchical tree structure ... 18
Figure 3-3: Recursive and iterative DNS queries ... 20
Figure 3-4: DNSSEC work process (concept taken from [62]) ... 24
Figure 3-5: Load balancing with Squid .. 26
Figure 3-6: Remote-access VPN .. 30
Figure 3-7: Memcached client is responsible for sending requests to the correct servers 34
Figure 3-8: Homogenous Distributed database (142) .. 40
Figure 4-1: System design to secure ifoodbag cloud architecture.. 49
Figure 5-1: HTTP & HTTPS experiment setup ... 56
Figure 5-2: Management Node(s) execute policy to scale up or down number of nodes in

Application tier .. 58
Figure 5-3: VPN Experiment scenario ... 58
Figure 5-4: Database experiment scenario ... 60
Figure 5-5: Cloud storage experiment scenario ... 61
Figure 6-1: Management Node(s) execute policy to scale up or down number of nodes in

application tier ... 64
Figure 6-2: HTTP & HTTPS experiment setup ... 66
Figure 6-3: Download time comparison for HTTP and HTTPS (40bit & 128bit): (a) for a

390MB file and (b) for a 3.13MB file ... 67
Figure 6-4: VPN Experiment scenario ... 68
Figure 6-5: SELECT query time comparison among IPSec, OpenVPN, and normal traffic (i.e.

without any security mechanism applied) ... 69
Figure 6-6: SQL SELECT query time for different data sizes ... 69
Figure 6-7: 24KB file Encryption/Decryption for AES and 3DES .. 79
Figure 6-8: 4MB file Encryption/Decryption for AES and 3DES ... 79

xi

List of Tables

Table 3-1: Heterogeneous versus Homogeneous DDB [145] ... 40
Table 5-1: HTTP and HTTPS experimental configuration ... 57
Table 5-2: VPN experimental configuration... 59
Table 5-3: Database experimental configuration .. 60
Table 5-4: Cloud storage experiment configuration ... 61
Table 6-1: HTTP and HTTPS data transfer times .. 67
Table 6-2: Table structure of small_database ... 76
Table 6-3: Table record information for small_database .. 76
Table 6-4: Data insert time with and without AES encryption for small_database 77
Table 6-5: SELECT data from small_database with and without AES decryption 77
Table 6-6: Table structure of big_database ... 77
Table 6-7: Table data record information for big_database .. 77
Table 6-8: Data insert time with and without AES encryption for big_database 77
Table 6-9: Data select time with and without AES decryption for big_database 78
Table 6-10: AES and 3DES encryption/decryption time for 4MB file ... 81
Table 6-11: Summary of security issues and recommendations ... 81

xiii

List of acronyms and abbreviations

AES Advanced Encryption Standard
API Application Programming Interface
CIA Confidentiality, integrity and availability
DDB Distributed database
DDBMS Distributed Database Management system
DoS Denial of Service
DNS Domain Naming System
DNSSEC Domain Naming System Security
DES Data Encryption Standard
FAT File Allocation table
IaaS Infrastructure as a Service
IDE Integrated Development Environment
IP Internet Protocol
IPsec Internet Protocol Security
IT Information Technology
LRU Least Recently Used
L2TP Layer 2 Tunneling Protocol
NIST (US) National Institute of Standards and Technology
PaaS Platform as a Service
PPTP Point-to-Point Tunneling Protocol
RR Resource Record
RSA Rivest-Shamir-Adleman
SASL Simple Authentication and Security Layer
SaaS Software as a Service
SOAP Simple Object Access Protocol
SSTP Secure Socket Tunneling Protocol
SSL Secure Socket Layer
TLS Transport Layer Security
TripleDES Triple Data Encryption Standard
VPN Virtual Private Network
WAMP Windows, Apache, MySQL, and PHP
WWW World Wide Web

1 In
Ifoo

based s
ifoodbag
design a

This
goal of
this is a
chapter

1.1 P
Acc

availabi
Integrity
preventi
desired
three asp

Figure 1-1

In th
of the m
Hossain
dynamic

In o
points i
network

* Ifoodba
Further d

ntroduct
odbag is a co
olution. Tw
g web app
and identify

s chapter de
the thesis.

an importan
ends with a

Problem
cording to M
ility (CIA)
y refers to t
ing improp
information
pects, the se

1: Matt Bisho
Figure 1-3

his thesis pr
model for a
n and Iqbal
c scaling of

our thesis pr
in their pro
k security in

ag is a Stock
details can be f

tion
ompany wh

wo KTH ma
plication in
y potential s

escribes the
The motiva
nt problem
a description

definiti
Matt Bishop

[1]. Conf
the trustwor
per or unau
n or resourc
ecurity of a

op's three key
of [2])

roject we se
computing
Hossain [3]

f ifoodbag’s

roject, we w
oposed sys
n order to pr

kholm based
found at http:/

ho aims to p
aster thesis
cloud env

ecurity issu

e problem a
ation for th
to solve. N

n of the stru

ion
p, the three
fidentiality
rthiness of d
uthorized ch
ce [1]. Figur

computer s

y aspects of se

eek to ident
system, de

]. These two
s Web Appl

will: (i) iden
tem and (i
rovide enha

startup offerin
//www.ifoodb

1

provide serv
s students h
vironment [
ues in it.

addressed in
his problem
Next, the s
ucture of the

key aspects
is the con

data or resou
hange. Ava
re 1-1 show
system cann

ecurity Confid

tify the coun
esigned by t
o students h
lication runn

ntifying pot
ii) propose

anced securi

ng weekly ho
bag.se/.

vices to its c
have propos
3]. We aim

n this thesi
is stated al

scope of the
e entire thes

s of security
ncealment
urces, and i
ailability re

ws that witho
not be ensur

entiality, Integ

ntermeasure
two other M
have design
ning in a clo

tential threa
counterme

ity for their

ome delivery

customers th
sed a design
m to invest

s project. W
long with a
e thesis pro
sis.

y are confid
of informa
t is usually

efers to the
out ensuring
red.

grity, and Ava

es necessary
Master’s pro
ned an infra
oud environ

ats, risk fac
easures wit
system.

of food with

hrough its o
n to implem
tigate the p

We also dis
a discussion
oject is stat

dentiality, i
ation or re
phrased in

e ability to
g every one

ailability (Ada

y to fortify
oject studen
astructure to
nment*.

ctors and vu
thin the co

h personalize

own web
ment the
proposed

scuss the
n of why
ted. The

integrity,
esources.
terms of
use the

 of these

apted from

the CIA
nts: Iqbal
o provide

ulnerable
ontext of

ed recipes.

2

We expect to provide comprehensive guidelines to strengthen the security for any
company who attempts to implement a dynamically scalable system designed to support
applications such as ifoodbag’s web application in a cloud.

1.2 Motivation
By using cloud-based solutions, companies do not need to have their own hardware

infrastructure to host their application. Thus, they eliminate the need for a large capital
investment to purchase this hardware. In their service contract, they of course are paying the
costs of the cloud provider purchasing and maintaining this hardware, along with some profit
margin for the cloud provider. For these reasons, more and more small companies, such as
ifoodbag, are becoming interested in using cloud-based solutions. Big companies are also
getting interested about cloud based solutions in order to make their business more scalable
and robust. However, there is often a lack of security when realizing such cloud-based
solutions. In the longer term, the problems caused by this lack of security might inhibit
companies from taking advantage of cloud-based solutions.

This thesis project aims to provide guidelines to strengthen the security of the cloud-based
infrastructure that has been designed [3] for implementing the ifoodbag web based application
in a cloud. In addition to ifoodbag, other companies can use these guidelines when they
design and implement their own solution in a cloud in order to realize a more secure solution.

1.3 Scope
This thesis focuses on information and network security. Physical security, legal

compliance, disaster recovery strategy, and risk management are not in the scope of this
thesis. We do not consider what activities the application servers (virtual machines) are
supposed to perform, thus the security of the Ifoodbag web application itself (e.g. security
holes in the application program itself) are not in the scope of this thesis. This means that we
will focus on the interaction between these servers, and client web browsers via the network.
In addition, we do not consider the policies defined in the management node to make the
system scalable, thus there could be attacks on this scaling mechanism to cause increased
expense for the company by unnecessarily scaling their system up. We consider that in the
proposed cloud architecture – load balancers are in a demilitarized zone (DMZ). Otherwise,
all other nodes in the design reside inside ifoodbag’s private network; hence we do not focus
on the security of networking devices (e.g. routers, switches, firewalls).

1.4 Method and methodology
This section presents the research approach we have taken for this thesis. We present the

necessary steps and methods we have used in order to achieve our thesis goal. Qualitative and
quantitative research approaches and Engineering design process methodology were adopted
to achieve the thesis goal. Seyyed Khandani presents five steps to solve design problems
according to the Engineering Design Process [4]:

I. Define the problem
II. Gather pertinent information

III. Generate multiple solutions
IV. Analyze and select a solution
V. Test and implement the solution

So in order to follow these steps first we must define the problem. In addition to this, we
have listed what we want to do in our thesis, what motivates us to do so and, the scope of our
work. Next, we have studied related literature and have specified a set of requirements. Based

3

on these requirements we discuss some alternative mechanisms to provide a solution. We
analyzed the alternative mechanisms and selected a set of mechanisms suitable for our thesis
project. The choice of mechanisms is based on our own empirical observation and the
observations of prior research. Finally, we present a guideline for the system implementers to
follow in order to solve the defined problem.

We can divide the whole process into three different phases:
Literature study This phase includes study on related work and background of the topic. This study

helped to understand the core of cloud computing and it´s various security issues
and their solutions. Also in this step, we have broken down the architecture of
ifoodbag´s cloud based web application into seven different modules. Based on
this breakdown we have analyzed the proposed design for implementing
ifoodbag’s web application in cloud. A deeper study was made of each module of
the design to understand the basic functionality and to identify potential security
issues for each module.

Experiment The knowledge acquired during the previous phase assisted in designing a set of
experiments. This set of experiments was conducted to acquire data that could be
used to select the appropriate security mechanism(s) for the proposed ifoodbag
cloud architecture.

Evaluation In this phase, we analyze our experimental observation as well as exploited
observation by other research (i.e. as an Ex Post Facto Study [5]). In this phase,
our focus was to design a suitable set of security guidelines for ifoodbag to
implement its web application in the cloud according to the proposed architecture.
We also present some other recommendations to improve the overall security of
the application in ifoodbag’s cloud.

1.5 Structure of this document
This structure of this thesis is as follows:

• Chapter 1 introduces the reader to the basic idea behind this thesis project. We
wrote this chapter together.

• Chapter 2 presents a detailed explanation of the scalable architecture designed for
implementing ifoodbag web application in cloud. We also present the necessary
concepts and technologies related to this thesis. Sarwarul wrote the sections
defining cloud computing, characteristics of cloud computing, different
implementation model of cloud computing, and an explanation of a scalable
architecture. While Sabrina wrote the section on security issues regarding cloud
computing.

• Chapter 3 gives a system breakdown and analysis of the ifoodbag cloud
architecture. In this chapter, we perform a step-by-step phase granular breakdown
of the architecture proposed to implement the ifoodbag web application in cloud
environment. We discuss the technologies mentioned in the design, the advantages
and disadvantages of each of the relevant technologies, and alternative approaches.
The proposed architecture is split into seven different parts based on functionality:
(i) the name resolving process of the ifoodbag web application, (ii) distributing
load among application servers, (iii) the HTTP connection between a user and
ifoodbag application server, (iv) communication between the management node
and other nodes (e.g. application server(s)), (v) caching web data, (vi) distributed
database, and (vii) cloud storage. Sarwarul wrote the parts of this chapter that
cover the first four parts, while Sabrina wrote the material covering the other three

4

parts. Sarwarul also wrote the sections concerning ifoodbag’s cloud network
security and how to address DDoS attacks on the cloud network.

• Chapter 4 presents our proposed security architecture for the ifoodbag Web
application. We present the details of the technology that we select to secure the
proposed cloud architecture. We describe the reasons for each choice. Both of us
wrote the initial parts of Chapter 4. The remainder of this chapter presents details
of our implementation (i.e. the specifics of the software used, including the version
of the software used). Sarwarul wrote the details of the implementation regarding
the first four parts of the design, while Sabrina wrote the details of the
implementation regarding the other three parts.

• Chapter 5 presents details of our implementation.

• Chapter 6 presents some experimental results and our analysis of these results.

• Chapter 7 describes how well the thesis goal was achieved, summarizes our
conclusions, offers some reflections on this thesis project, and suggests some
future work. The final three chapters were written jointly.

5

2 Background
This chapter presents a definition of cloud computing, the essential characteristics of cloud

computing, different types of clouds, and some of the security issues relevant to cloud
computing. The idea is to provide the reader with a clear understanding of cloud computing
and its security issues. This information will be essential to the subsequent chapters and is
necessary to understand the goal of this thesis project.

2.1 What is Cloud computing?
Cloud computing, often referred as just the Cloud, is a new buzzword in the IT world.

However, the concept of cloud computing is not very new, as the concept dates back to the
1950s [6]. At that time academia, as well as industry, used terminals to connect to (often
remote) mainframe computers. These terminals initially had no computing capabilities. The
idea was to share resources (e.g. CPU time) of these costly mainframe computers among
multiple users [6], and thus to make the use of a mainframe computer more cost effective.

Cloud computing can be considered as a service provided by a service provider. The user
of this service does not need to know or worry about how the service (e.g. network, storage,
application) is provided or maintained. Instead, the user is only concerned that the service is
available whenever the user needs this service.

The United States of America's National Institute of Standards and Technology (NIST) [7]
defines cloud computing as:

“… a model for enabling ubiquitous, convenient, on-demand network access to a shared
pool of configurable computing resources (e.g., networks, servers, storage, applications, and
services) that can be rapidly provisioned and released with minimal management effort or
service provider interaction.”[8]

The cloud computing approach relieves companies from needing to have their own data
centers. It avoids purchase, management, and updating costs for hardware, cooling systems,
storage, and power supplies. As a result, the use of the cloud computing enables companies to
quickly startup a new business and to scale their business efficiently (Section 2.6 gives more
discussion of how using the cloud helps business).

Figure 2-1 shows that cloud services (e.g. network, storage, application) reside inside a
cloud network. Cloud users can access the various different cloud services from
heterogeneous client platforms (e.g. smart phones, laptops, other computers in the same or
another cloud, etc.), without knowing the exact location of the services. Additionally, the
cloud service user need not know the processes to develop, manage, or maintain the services.

6

Figure 2-1

2.2 C
NIS

self-serv
Each of

2.2.1 O
On-

services
service p

On-
services
own ser
The sim
process
users to
would o
provider
respons

2.2.2 B
User

internet

1: Cloud com

Characte
T has iden
vice, broad
f these is des

On-deman
demand se
s (e.g. netw
providers e

demand se
s via a serv
rvices on de

mplified prov
agile. At t

o perform s
otherwise b
rs time an
ibilities.

Broad net
rs can be at
service pro

mputing logical

eristics o
ntified "five

network ac
scribed in m

nd self-ser
elf-service e
work, storag

very time.

elf-service
vice provide
emand. This
visioning an
the same ti
self-service
e need to b

nd money a

twork acce
t any geogr
oviders and

diagram [9]

of Cloud
e essential c
ccess, resou

more detail i

rvice
enables clo

ge, applicati

replaces th
er. A cloud
s process be
nd releasing
me from th
reduces th

be performe
and allows

ess
raphic locat
a client app

d Compu
characterist
urce poolin
in the follow

oud users t
ions) unilat

he lengthy
service pro

enefits both
g process he
he cloud se

heir workloa
ed by the cl

them to f

tion. If the
plication (e

uting
ics" of clou

ng, rapid ela
wing subsec

to provision
erally, with

process o
ovider can
h cloud user
elps the clou
ervice provi
ad and auto
loud service
focus on th

users have
.g. a web b

ud computi
asticity, and
ctions.

n and relea
hout interact

of provision
allow its us
rs and cloud
ud users to m
ider’s point
omates som
e providers.
heir strateg

network co
rowser), the

ing [8]: on-
d measured

ase differen
cting with th

ning and r
sers to han
d service pr
make their
t of view,

me of the ta
. This saves

gy and high

onnectivity
en they wil

-demand
service.

nt cloud
he cloud

releasing
ndle their
roviders.
business
enabling
asks that
s service
h-valued

via their
l be able

7

to utilize cloud services. The cloud typically supports a wide range of client platforms, such as
Windows, Linux, and Apple's OS X operating systems. As most smartphone browsers are
supported it possible for nearly any user with Internet connectivity to utilize cloud based
services.

2.2.3 Resource pooling
A cloud service provider can make their infrastructure capable of providing services

simultaneously to multiple customers. To do this, the computing resources and servers are
treated as a pool of resources from which multiple users can be assigned different physical
and virtual resources. This is a multi-tenant model. From the pool of resources, multiple cloud
users can dynamically provision and release resources according to their own needs. In such a
system, the cloud user does not have knowledge or control over the exact physical location of
a resource or know which specific resource is assigned to them.

2.2.4 Rapid elasticity
Cloud services can be provisioned and released in an elastic way. This means that at any

moment in time cloud users can rapidly acquire additional resources or release previously
acquired resource. This elasticity enables the cloud users to rapidly scale up or scale down
their IT capabilities in order to match the changes in their business requirements.

2.2.5 Measured service
Usage of resources by the cloud users can be measured, controlled, and reported

transparently to both the cloud service provider and the users of the services [10]. Using a
metering capability cloud services providers and users can optimize their resource usage.
Because the resources are being charged for as a function of usage (as measured in duration of
a resource’s assignment), this helps ensure maximum utilization of the resources that are
managed by the cloud service provider as users will return idle resources to the pool.

2.3 Three ways to provide cloud based services
The three building blocks of cloud computing, as defined by NIST [8], are:

1. Software as a Service (Saas)
2. Platform as a Service (Paas)
3. Infrastructure as a Service (IaaS)
These building blocks are also referred as cloud service models [11]. Figure 2-2 shows

each of these alternative cloud service models. The following subsections further describe
each of these models.

8

Figure 2-2

2.3.1 S
The

provide
or insta
provider
anywhe
function
using th
linear, t
users do
this way
Office3

2.3.2 P
In P

program
Users s
manage
storage)
need a p
hosting
PaaS en
develop

2: Cloud serv

Software
software th

d to the use
all the appl
r and a web

ere. Instead
nality that th
he applicati
thus there m
o not need
y, even a s
65 [14] is a

Platform a
PaaS the c

mming lang
imply host

e or control
). PaaS can
platform to
environmen

nables a so
pment and m

vice model (Col

as a Servi
hat is deliv

ers on dema
lication; rat
b browser. S
of purchasi

hey want. T
ion, then th
might be lo
to care abo
small comp

an example o

as a Servic
cloud users

guages, and
their appli

l the under
be very hel
host and tes
nt can be a
oftware org

maintenance

llected and edi

ce (SaaS)
vered as a s
nd through
ther they s
SaaS makes
ing a comp

The greater
he user stop
ower per un
out installati
pany is able
of SaaS.

ce (PaaS)
s get virtu
tools insta

ication on t
rlying infra
lpful for sof
st their softw
time consu

ganization t
e of a testing

ited from [12],

)
service is ty

a network c
simply utili
s application
plete produc
the use, the

ps paying fo
nit of usage
ion, mainten
e to use sta

ual servers
alled and co
this readym

astructure (i
ftware deve
ware produ

uming proce
to avoid th
g environme

[13])

ypically an
connection.
ize a netwo
ns available
ct, the user
e more the u
for it. The c
e price for h
nance, and
andard ente

with the
onfigured b

made enviro
i.e. network
elopment or
uct. Howeve
ess and man
he cost and
ent.

end user ap
 Users do n
ork connec
e to users at
simply pay

user pays. W
charges for
high volum
updates of

erprise appl

necessary
by the clou
onment. Us
k, servers,
rganizations
er, creating a
ny not be co
d activities

pplication, w
not need to p
ction to the
t any time a
ys per usage
When the us

usage need
me users. M
f this applic
lications. M

libraries,
ud service p
sers do not

operating
s, as they fr
and maintai
ost effectiv
 of suppor

which is
purchase
e service
and from
e for the
ser stops
d not be

Moreover,
ation. In

Microsoft

services,
provider.

need to
systems,
equently
ining the

ve. Using
rting the

9

2.3.3 Infrastructure as a Service (IaaS)
IaaS provides users with a wider variety of features than SaaS or PaaS. In IaaS a cloud

service provider provides the user with storage, network connectivity, and other necessary
computing resources. The user then uses these resources to set up a complete environment
with their own choice of operating systems and applications according to their own needs. In
IaaS the user has control over the operating system, storage, and deployed applications.
However, the users do not manage or control the underlying cloud infrastructure.

2.4 Cloud Deployment Models
According to NIST cloud computing can be deployed in four different ways [8]:

1. Private cloud
2. Public cloud
3. Hybrid cloud
4. Community cloud

2.4.1 Private cloud
A private cloud is dedicated to one organization. It is suitable for information that requires

a high level of security [15]. A private cloud is not a new idea, as it was first described by
Douglas Parkhill [16] in his 1996 book: “The Challenge of the Computer Utility”. A private
cloud can be considered a dynamically provisioned datacenter, which delivers services to a
certain business organization.

A private cloud may be on or off the premises of the organization it is utilized by. Based
on this choice, there are two different implementations of a private cloud: (i) in-house and (ii)
hosted.

Having an in-house private cloud requires one to buy, develop, maintain, and support the
cloud environment within the organization’s own infrastructure. This can be costly for some
organizations.

In contrast, a hosted private cloud is hosted by a service provider at his or her own site and
then managed by that provider for a single customer. A hosted private cloud does not utilize a
shared infrastructure. The network connection between the user and the service provider in a
hosted private cloud can be over a private network connection or a tunnel over the internet.

2.4.2 Public cloud
A public cloud consists of a datacenter owned by a service provider, who manages this

infrastructure. A public cloud is hosted at the service provider’s site and has the following
characteristics:

• It supports multiple customers;
• Often utilizes shared infrastructure;
• Supports connectivity over the internet; and
• Is best suited for information that is not sensitive.
A public cloud can be less expensive than a private cloud [2], but the downside is that all

of the data in the public cloud is beyond the organization’s firewall.

2.4.3 Hybrid cloud
A hybrid cloud is an emerging cloud deployment model and it is gradually attracting

interest. According to a survey authored by North Bridge Venture Partners [17], within the
next five years hybrid clouds will be the emphasis of 52 percent of the respondents’ cloud
strategies, while the current figure is 36 percent [18]. According to another survey by

10

Coleman Parkes Research, 69% of organizations in Asia Pacific and Japan intended to adopt a
hybrid cloud delivery model [19].

A hybrid cloud infrastructure is a composition of two or more distinct cloud
infrastructures. The aims of a hybrid cloud are to provide the most appropriate solution to an
organization, by combining the advantages of both the public and private cloud approaches.
An organization can move some data to the public cloud, especially that data that is not so
business critical. However, the organization can keep their business critical data, which makes
the company unique, in an in-house or hosted private cloud.

Some companies have a conservative approach to new technology and consequently they
are reluctant to shift to the cloud. A hybrid cloud offers them a good opportunity to make a
slow start at a low cost by shifting a small part of their data and computing infrastructure into
a cloud.

2.4.4 Community cloud
A community cloud is shared by a group of organizations, who share common computing

concerns [20], such as application performance requirements. For example, consider an
application whose different modules are developed, managed, and supported by different
organizations. In order to facilitate the integration of the different modules of this application
and to do so quickly, the separate organizations could deploy their modules into a shared
cloud, i.e., a community cloud.

A community cloud can reside on premise or off-premise. The hosting organizations or
third party cloud service providers can manage this community cloud. A community cloud
provides its users with the flavor of a public cloud, while offering the security and privacy
features of private cloud [20].

2.5 Scalable model of the ifoogbag web application in cloud
Another Master’s thesis project by Iqbal Hossain and Iqbal Hossain has designed a

dynamically scalable model for implementing the ifoodbag web application in cloud [3].
Figure 2-3 shows their proposed system model, which utilizes an IaaS model. This is generic
model can be implemented as a private, public, or even hybrid cloud.

The complete model consists of four major tiers: load balancing, application, caching, and
database. A brief explanation of these four tiers is:

Load balancing tier: In this tier a SQUID [21] proxy server is used as load balancer.
After resolving names to IP address using a DNS server, packets sent by the end user will first
reach the load balancer. The task of these load balancers is to distribute incoming requests
over the available application servers.

Application tier: In this tier, there are a number of application servers. The number of
active application servers will change based on a policy configured in the management
node/nodes. The idea is to scale up or down the application tier as necessary to meet the
organization's performance goals.

Caching tier: The caching tier consists of a distributed object caching system based upon
Memcached [22]. The purpose of this tier is to speed up the ifoodbag web application servers
by reducing the unnecessary load on the database tier.

Database tier: A distributed database realizes this tier. There are multiple slave databases,
which replicate a master database. A snapshot backup of database will be stored in cloud
storage. In the event of a failure of the database tier, this snapshot of the database provides
service continuity.

Figure 2-3

2.6 H
It is

computi
organiza
requirem

To
capabili
compan
its own
host its

In th
solution
for their
they use
from the
up their
means t
over or
retain cu

Clou
which p
are distr
problem
computi
storage,
data.

A cl
addition

3: A dynamic

How can
s a challeng
ing can he
ations scale
ments.

understand
ities; we can
ny is to prov

developers
web applica

his situation
n in a cloud
r actual am
e, which op
eir use of c
r services t
that they ca

under dim
ustomers du

ud can also
produces con
ributed over

m for XYZ
ing solution
, memory, a

loud could
nal computin

cally scalable m

 using a
ge for organ
elp organiz
e up or dow

d how clou
n consider

vide service
s. The firm
ation.

n, the use o
d service pro
mount of use

ptimizes th
loud compu
o meet the

an grow exa
mensioning
ue to always

o help large
nsumer pro
r multiple g

Z AB. The
n, as occasi
and process

provide a c
ng and/or st

model for ifood

a cloud h
nizations to
zations to
wn their IT

ud computi
a small, ne
s to its cust
is not ready

of an IaaS m
ovider’s vir
e. This mea

heir busines
uting. Furth

demands o
actly at the r
their servic
s being able

e organizati
ducts. XYZ

geographic l
e company
ionally the r
sing) to stor

cost-effectiv
torage, they

dbag in cloud [3

help a b
o make the

do so. A
T capabilitie

ing can he
ewly establi
tomers throu
y to purcha

model clou
rtual machin
ans that ifo
ss developm
hermore, if t
of their cus
rate at whic
ce infrastru
e to provide

ions. Consi
Z AB has a r
locations. C

is also lo
research de
re, process,

ve solution
y simply req

3] (Appears he

business
best use of

Additionally,
es according

elp an org
shed compa
ugh a web b
ase or maint

ud enables i
nes. Using

oodbag spen
ment costs.
they are suc
stomers. Ut
ch they need
ucture. This
e a consisten

der an imag
research dep

Collaboratio
ooking for
epartment n

and analyz

to XYZ AB
quest more

ere with the pe

s?
f their IT in
, cloud co
g to change

ganization t
any: ifoodba
based applic
tain the har

foodbag to
this cloud,

nds only for
As a resul

ccessful the
tilizing a cl
d to grow, a
s scaling sh
nt level of p

ginary orga
partment wh

on among th
a cost-effe

eeds additio
ze a large a

B. When the
from their c

ermission of th

nfrastructure
omputing c
es in their

to optimize
ag. The aim
cation devel
rdware nece

host its we
ifoodbag p
r the resour
lt ifoodbag
ey will need
loud based
avoiding th
hould help
performance

anization X
here the res

hese researc
fective stor
onal resour

amount of s

e company
cloud provid

11

e authors.)

e. Cloud
can help
business

e its IT
m of this
loped by
essary to

eb-based
ays only
rces that
benefits

d to scale
solution

he risk of
them to

e.

XYZ AB,
searchers
chers is a
age and

rces (e.g.
tatistical

requires
der, on a

12

pay per use basis. Thus, they are able to move all of their statistical data analysis and data
storage into the cloud provided by their cloud service provider. In this way XYZ AB can
reduce their costs by avoiding the need to maintain additional resources (which are only
occasionally used), and hence they can invest more in research.

For efficient collaboration among researchers distributed over different geographic
locations, XYZ AB can use cloud based online collaborative solutions (e.g. Microsoft
SharePoint Online) [23]. With all the benefits of efficient collaboration [24], researchers are
expected to achieve better research results. These results will ultimately help XYZ AB to
improve its products and/or services.

In summary, cloud computing can help both large and small organizations to optimize
their business costs and to improve their products and/or services.

2.7 Security issues in cloud
Cloud computing is a growing area of concern in the IT security community because

cloud architectures are literally popping up all over. Public clouds are available from
Google[25], Amazon[26], Microsoft[27], Oracle[28], Eucalyptus[29], and many other
vendors. This section is concerned with discovering the vulnerabilities of cloud computing
and finding appropriate security solutions. This section will also discuss what early cloud
adopters and developers have done as they became more concerned with security. While there
is no “ultimate security” solution, security experts will try to minimize the potential for
security threats as much as possible. Although they have tried to minimize security risk as
much as possible, cloud computing still possesses many security risks. Some of these security
risks are well known and some of them are new.

As described in section 1.1 confidentiality, integrity, and availability (CIA) are the three
key aspects of security. Ensuring confidentiality means that no one can read our data unless
we want them to read it, integrity ensures that no one can modify our data without the
modifications being detected, and availability means that we can access our data at any time.
Cloud computing also needs to deal with security risk/threats just as any other service. These
attacks can subvert one or more of the three key aspects of security.

In this section, we will discuss a number of potential security attacks on cloud, especially:
denial of service (DoS) attacks, authentication attacks, man-in-the middle, wrapping attacks,
malware-injection attacks, flooding attacks, and browser attacks. We will also discuss
accountability checking problems. We will first categorize these attacks based on the CIA
model, and then we will discuss the root causes of these attacks and possible solutions.

2.7.1 Confidentiality related attacks
The first category of attacks that we will consider is attacks on confidentiality. Loss of

confidentiality for a web-based service can destroy the trust which ifoodbag customers place
in the company and could lead to financial losses for both the company and the customers.
For these and other reasons, it is essential that the system preserve confidentiality. In the case
of a cloud-based service, the attacks we consider are malware injection and data stealing.

2.7.1.1 Malware Injection Attack
The use of a malware injection attack method is spreading very rapidly and many websites

have been affected. The objective of the attack can be to spread malware to anyone who
utilizes the web server or to place malware into the web server in a direct attack on the
service.

13

2.7.1.1.1 Examples of malware injection attacks
Normally a malware injection attack is done via a compromised FTP server. A virus

attempts to sniff FTP passwords and sends these passwords (and the user name) back to the
attacker. The attacker then uses this FTP user name and password to access the website in
order to add malicious iframe coding to the site’s web page. These web pages are used to
infect visitors who browse to this website.[30]

In a cloud-based system, a web client’s request is executed based on authentication and
authorization. During this authorization and authentication process a large amount of metadata
is exchanged between the web server and web browser. An attacker can take advantage of this
metadata. In another form of malware injection attack, an adversary attempts to inject
malicious service or code[31]. In this case, the injected malicious service or code appears as a
valid instance of services running in the cloud. If the attacker is successful, then the cloud
service will be vulnerable to eavesdropping and deadlocks, the later forces a legitimate user to
wait until the completion of a job, which was not generated by the user. This type of attack is
also known as a meta-data spoofing attack [32].

2.7.1.1.2 Methods of protect against malware Injection attack
When a cloud customer opens an account in the cloud, the cloud provider creates an image

of the customer’s virtual machine (VM) in the image repository system of the cloud. Some
researchers have suggested that one should exploit the integrity protection offered at the
hardware level, because if the hardware implements the trusted computing model then it is
very difficult for an attacker to intrude at the IaaS level[31]. Use of the trusted computing
model prevents unsigned code from being executed by the processor.

One of the approaches to detecting changes in files on the web server suggested by many
experts is to exploit the File Allocation Table (FAT) system architecture. This technique is
straightforward and its supported by virtually all existing operating systems [33]. In this
approach you exploit knowledge of the code (of the OS and applications) that a customer is
going to run based upon information from the FAT. This information can be compared with
the previous instances of applications that have already been executed by the customer’s VM
to determine the validity and integrity of the new instance[31].

Another approach is to store the OS type of the customer when the customer first opens an
account. Since the IaaS cloud is completely OS platform independent, it is possible to check if
the new instance of the VM that is to be run is the same type of OS before launching a VM
instance in the cloud[34].

2.7.1.2 Data Stealing
Data stealing is one of the most common approaches to breach a user account. Often the

user account and password are stolen. As a result, stealing and destroying of confidential data
can hamper the storage integrity and security of the cloud. The providers face the first strike
of such kind of problem[31].

To protect against data stealing the customer will receive an e-mail about the resource
usage and duration of the session at the end of each session. A special number (which acts as a
numeric challenge) is sent in the same email. This number is used during the next login. By
doing this, the customer will be aware of their usage & charges and due to the need to input a
new numeric challenge every time they access the system it will be possible to detect if
someone else has used the account in the meantime[35]. Note that if an attacker is able to get
a copy of the e-mail, then they have access to the numeric challenge and if they also have the
customer’s account name and password, they can login. If the attacker blocks the new e-mail
message sent at the end of this new session, then the customer will not have the correct

14

challenge for their next login and hence will detect the attacker’s usage of their account.
While if the attacker does not block the e-mail from their session, then the customer will be
informed about the attacker’s usage of their account.

2.7.2 Integrity related attacks
We will only consider one type of integrity related attack: a XML signature wrapping

attack (also known as a XML rewriting attack). Wrapping attacks aim to inject a fake element
into a message structure so that the message seems to have a valid signature, as a result the
malicious element will processed by the application logic. Using this method an attacker can
make an arbitrary web service request while the request is authenticated as coming from a
legitimate user [36].

When a user makes a SOAP web service request of the web server running on a VM
through a browser, the user signs the security header of this SOAP message. An attacker
captures this message as it pass the browser to the server and replaced the contents of the
message with their malicious payload, but copies the signature [35]. Unfortunately, unless the
message body was also signed – the web service will see a request that appears to be
legitimate and will execute it. Using this method it is easy for the adversary to run malicious
code in the cloud and interrupt the normal functioning of the cloud server [31].

To increase the security during the message passing between the web browser and web
server when using a SOAP message, a timestamp can be added to the SOAP header. This
timestamp is added in order to protect against an adversary who can intrude in the TLS layer.

2.7.3 Accountability Check
Because the customer will be charged based on their usage of resources, one attack is to

simply use lots of resources (for example to store and distribute malicious content or use lots
of cycles running malicious code) as if you were the legitimate user and generate a high bill
for the customer. Since the customer will not be aware of such an attack until the provider
charges the customer, the customer can be left with a very large bill. This can lead to various
problems since the provider believes that the customer used these resources, while the
customer believes that the provider is charging them for resources that they did not use[31].

Several methods can be used to protect against an accountability problem. One approach
is for the provider to: (1) check the identity of the user before launching any instance of a
customer’s VM, (2) securely record resource usage records, (3) perform auditing of all such
records, and (4) collect sufficient evidence concerning the usage in order to resolve potential
future accounting disputes[35]. Note that the audit should be carried out by a neutral third
party and have the following properties: (1) completeness, (2) accuracy, and (3)
verifiability[35].

2.7.4 Availability related attacks
With respect to cloud computing there are two main availability related attacks: denial of

service (DoS) and flooding. We will describe each of these in the paragraphs below

2.7.4.1 DoS attacks
In a typical DoS attack, a malicious party floods the machine or network with traffic,

causing the service to respond slowly even to make the service inaccessible to its legitimate
users. Another means of accomplishing this attach is to cause the service crash[37].

Some security experts have argued that Cloud computing is more exposed to DoS
attack[38]. Since cloud computing resources are shared by many users this approach is more
vulnerable to a DoS attack and such an attack can cause much more damage[31]. When the
operating system of cloud computing node detects the high workload on the flooded service

15

then it requests more computational power (more virtual machines) in order to cope with
additional workload. As each server has limited capacity and it takes time to allocate
additional resources, the legitimate users will experience a negative impact on the service’s
availability. Additionally, the customer will be charged for these additional resources, hence
inflicting a financial penalty on this customer. Note that the attacker need not flood all of the
servers that provide a certain service, but might flood only a single server, in order to reduce
the availability on the targeted service [39].

Consider the following two real-world incidents:

1. A Georgian blogger with multiple accounts on Twitter, Facebook, Live Journal,
Googles Blogger, and Youtube was the target of a DoS that took down Twitter´s entire
site for several hours and slowed down this whole service[40].

2. During October 2009, Amazon´s cloud customer Bitbucket experienced a 19-hour
outage during a distributed DoS attack[41]. According to one of Bitbucket’s operators,
the company was attacked with a “flood of UDP [user datagram protocol] packets
coming into our IP [internet protocol], basically eating away all bandwidth;” the attack
introduced increase latency in delivering documents stored in Bitbucket’s elastic block
storage[EBS][41].

There are some counter measures against DoS attacks against a cloud, these
countermeasures utilize several techniques: authentication, authorization, filtering, throttling
and QoS (Quality of service)[42].

According to some security experts, one of the most popular countermeasures to protect
against a DoS attack is to use an intrusion detection system (IDS). IDS will be loaded into
each cloud server and these IDS systems will exchange information. When a specific cloud
server is under attack the IDS alerts the whole set of IDSs. In this way, a DoS attack can be
detected and if appropriate actions are taken the negative impact of this attack can be
prevented [35].

Another recommendation is to ensure that the cloud provider restricts dynamic utilization
of resources to set specific levels in order to counter internal DoS attacks[38]. The service
level agreement (SLA) between the cloud provider and the customer should stipulate that the
provider cloud provider should identify all DoS or DDoS attack methods, and have
established measures (which are audited and verified) to mitigate such attacks[38].

2.7.4.2 Flooding attack:
A flooding attack attempts to cause a failure in a computer system or other data processing

entity by providing more input than the entity can process properly[43]. All the computational
servers in a cloud system work in a service specific manner and there may be internal (to the
cloud) communication between these nodes. Whenever a server is overloaded or the server
reaches its limits, then the server needs to transfer some of its load to a another server offering
the same specific service [35]. By sharing with another server, the overloaded server offloads
itself. In order to make the cloud more efficient and execute requests faster, this sharing
approach is widely used to distribute load over a set of servers all providing the same service.

In a flooding attack the adversary creates bogus requests to the cloud service. As the
server will first check the authenticity of the request before processing the request, the
attacker’s illegitimate requests must be checked to determine their authenticity, thus
consuming CPU, memory, and network resources. Legitimate service request can starve
waiting while server is busy processing the bogus request. As a result, the server will offload
some of its load to another server. If the adversary is successful in engaging the whole cloud’s

16

resource they can effectively compromise the availability of the all of the services that are
running on this cloud[31].

A flooding attack can be prevented by organizing all the servers in the cloud system as
groups of servers. Each group of servers is designated for a specific type of job. Each group of
servers is utilized for a specific type of service. In this approach, all the servers within a group
will communicate among themselves through message passing. When a specific server is
overloaded, a new server will be deployed in the group and the name server, which has a
complete record of the current states of all of the servers, will update the set of destinations
for the specific requests to include the newly included server[31].

The hypervisor [44]that supports the VMs can use introspection to check if any
unauthorized code is disrupting the usual computation. The hypervisor can also perform
scheduling over servers in a group. In this way the flooding attack can be mitigated to some
extent (if the hypervisor is locally breached, then further analysis and efforts will be required
to secure the hypervisor.)[35].

17

3 System breakdown and analysis
We split the proposed architecture for implementing the ifoodbag web application in a

cloud, into seven different parts based on functionality: (1) communication between ifoodbag
user and DNS server, (2) distributing load among application servers, (3) HTTP connection
between user and ifoodbag application server, (4) communication between the management
node and other nodes (e.g. application server), (5) caching web data, (6) distributed database,
and (7) cloud storage. Below we discuss all of these parts one by one. We also discuss about
ifoodbag’s cloud network security.

3.1 Name resolving process of ifoodbag web application
An ifoodbag user uses a web browser to access the web application. The user enters the

URL of the application (e.g. https://www.ifoodbag.com) in their browser. The browser queries
a domain name system (DNS) server to resolve the host name into an Internet Protocol (IP)
address. This section discusses DNS, how it works, security issues regarding DNS, and
available solutions to improve DNS security.

3.1.1 What is the job of a DNS server?
DNS is an application layer protocol. This means that DNS works in the application layer

of the TCP/IP protocol suite. The main function of DNS is to map user-friendly hostnames
into IP addresses. DNS enables users to indicate the network interface to a computer (e.g.
personal computer, server) by names, instead of needing to know the interface’s IP addresses.

Figure 3-1 shows, in a very simplified form, how a host (Host A) can learn the IP address
of the network interface of another host (Host B) with the help of DNS. Host A asks the DNS
server for the IP-address of Host B. The DNS server provides Host A with the IP address of
an interface to Host B. Given this IP address, Host A can now send IP packets to Host B.
Further details of DNS can be found in [45].

Network

(1) IP address of B?

(2) IP address of B is:
bb.bb.bb.bb

(3) Identify B with
IP address

DNS System

Host A
IP = aa.aa.aa.aa

Host B
IP = bb.bb.bb.bb

Figure 3-1: Host A using DNS to identify Host B in Internet (The idea for this figure is based upon [46].)

3.1.2 How DNS works
Every interface of each host in a network needs to be configured with an appropriate IP

address, in order to communicate with other hosts in the, same or another, network. However,
it is inconvenient for human being to remember the IP addresses of all the hosts they want to
communicate with. Since human beings are good at remembering names it is desirable to
utilize a simple user-friendly scheme for hostnames. A directory is used to keep track of

18

different hosts and their associated IP address. DNS provides a distributed hierarchical
caching directory service.

Figure 3-2 depicts the hierarchical tree structure of DNS. In this tree, a hostname (e.g.
www.ifoodbag.com) is a leaf, while the nodes above it in the hierarchy (e.g. .com,
ifoodbag.com) form a domain. The DNS server that is responsible for hostnames and
addresses within a certain domain is an authoritative name server for that domain.

.com.gov .edu

"."

mail.ifoodbag.com tech.ifoodbag.com

ifoodbag.com

Root

Top
Level
Domains

......

example.com

www.ifoodbag.com

......

Figure 3-2: DNS hierarchical tree structure

When a host asks for the IP address corresponding to a certain hostname, a search
logically starts from the top of the tree (i.e. the root of the DNS tree)*. The root DNS servers
keep information about the name servers responsible for top-level domains (TLDs) (e.g. .com,
.org). The authoritative name servers for top-level domains maintain information about the
name server that is responsible for next level domains (e.g. ifoodbag.com). The authoritative
name server of a domain is responsible for the hostname to (and from) IP address mapping
information for the hostnames (e.g. www.ifoodbag.com, mail.ifoodbag.com) of that particular
domain. These leaf DNS server also cache hostname-IP mapping information for hosts in
other domains. It is this caching that leads to both DNS’s good performance and to a number
of attacks on DNS severs.

3.1.3 Iterative and Recursive Queries
A DNS query can be iterative and recursive. In the case of a recursive query, after

receiving a request for resolution of a hostname (i.e., the request for an IP address associated
with this hostname), a single DNS server continues the lookup process until it successfully

* Note that we say here that the lookup starts from the root. However, in practice this is not a common case since
most internet service providers provide their own DNS servers that their customers generally use. For this
reason, most customers’ computers will contact one of their ISP’s name servers for name resolution. For this
reason the actual DNS performance is largely dependent upon these DNS servers and the root severs are only
infrequently queried by an end user’s computer.

19

resolves the name or the lookup process fails. After resolving the IP address for the hostname
that was in the DNS query, the DNS server returns this IP address (or addresses) in a response
to the host that made the request. If the lookup fails, i.e., the DNS server cannot resolve the
name, then the DNS server reports this failure to the host that made the request. In summary, a
recursive DNS server performs the hostname resolution process on behalf of the host that
made the request.

When a host queries a DNS server to resolve a hostname in iterative way, the DNS server
simply checks if it has the requested information. If it does have this information, then it
provides it. Otherwise it refers the host that send the query to another DNS server (i.e. an
authoritative DNS server at a lower level of the DNS tree structure), which may have the
information.

Usually hosts perform recursive queries, so that the DNS server performs the complete
name resolving process. In contrast, iterative queries are used by a DNS server to
communicate with other DNS servers (e.g. a root DNS server or an authoritative DNS server
for TLDs) in order to resolve the query. Each DNS query specifies whether an iterative or
recursive lookup should be performed.

3.1.4 DNS name resolving process
Figure 3-3 presents a DNS name resolving process that consists of recursive and iterative

queries. The following steps are performed in this process:

1. A DNS client, also called a resolver*, sends recursive query to a name server to request
an IP address (or several IP addresses) for a given hostname (in this case
“www.ifoodbag.com”).

2. The name server checks its cache. If it has the requested information, it immediately
replies to the resolver. However, if this server does not have this information, then it
sends iterative queries to a root DNS server it knows about.

3. The root DNS server does not know the IP address for www.ifoodbag.com, but it
knows the authoritative name server for top-level domains (TLDs). These top-level
DNS severs know an authoritative name server for the .com domain. The server replies
to the recursive name server with an IP address of the .com domain’s authoritative
name server.

4. The recursive name server communicates directly with the .com domain’s
authoritative name server.

5. This server knows the authoritative name server for the ifoodbag.com domain. So it
replies to the recursive name server with this authoritative name server’s IP address.

6. Now the recursive name server contacts the authoritative name server for the
ifoodbag.com domain, which knows the mappings for hostnames in this domain.

7. The authoritative name server for the ifoodbag.com domain replies with the IP address
(or addresses) of the web server.

8. At this point, the recursive name resolving process is finished. Now the name server
replies to the resolver by telling it the IP address (or addresses) associated with the
hostname (i.e. www.ifoodbag.com) in its request. The resolver now caches this
information for a certain period of time. The DNS response indicates how long this
answer is expected to be valid; hence, the information can be cached up to this point in
time – after which the information should be removed from the cache.

* A resolver is a program that resolves hostnames to IP addresses (or the reverse) by communicating with
appropriate name servers.

20

Resolver Recursive DNS Server

(1) What is IP address of
www.ifoodbag.com?

ifoodbag.com DNS Server

.com TLD DNS Server

Internet Root DNS Server

(8) IP address of
 www.ifoodbag.com

(2) What is IP address of
www.ifoodbag.com?

(4) What is IP address of
www.ifoodbag.com?

(6) What is IP address of
www.ifoodbag.com?

(3) Provide IP address of
 .com DNS server

(5) Provide IP address of
ifoodbag.com DNS server

(7) Provide IP address of
 www.ifoodbag.com

Figure 3-3: Recursive and iterative DNS queries

3.1.5 Importance of DNS security
DNS was designed when the internet was quite young. During this early period of time

security was not a major concern, as internet access was limited to defense organizations,
governmental agencies, and academia. This closed environment was reasonably secure, as
only trusted entities were given access to the network, therefore security issues were
frequently not considered when designing early internet protocols, including DNS.

In contrast, today the internet is used worldwide. A highly diverse population is using
internet-based services in their daily life. With this wider range of usage, security risks have
also increased. Security has become a major concern in the contemporary internet world. As a
result it has become necessary to design security measures to replace (or supplement) the
earlier fundamental internet protocols, which generally did not include any security
mechanisms.

In addition to IP, UDP, and TCP; DNS is one of the most widely used protocols in the
internet. Due to the absence of security measures in DNS itself, it is vulnerable to attacks.
Criminals and malicious users have learned to create DNS DoS [47], to perform IP spoofing
to redirect DNS queries to return answers containing the IP addresses of their own servers
(which can contain malware), and to introduce many other hazards for internet users. The next
subsection discusses these security issues.

3.1.6 DNS security issues and vulnerabilities
DNS security issues can be categorized into DNS server attacks (where the attacks are

aimed directly at the DNS server) and DNS protocol attacks. DNS protocol attacks exploit
vulnerabilities in the DNS protocol. Both of these types of attacks are discussed in detail in
the following paragraphs.

21

3.1.6.1 DNS server attacks
An application that provides DNS service is commonly called DNS software or name

server software. Bind is the most widely used name server software [48]. A server that runs
this name server software is called a DNS server or a name server. An attacker can directly
target a name server. Such an attack can of the following two types [46]:

1. Manipulating vulnerabilities in DNS software: Name server may have vulnerabilities,
bugs, and flaws. Example of vulnerabilities in the BIND name server software can be
found in [49]. Attackers seek to exploit these bugs and flaws in name server software.
Additionally, there might be other services running on the name server, of so an
attacker may take advantage of the bugs in those services also while attacking the
name server.
Most of the bugs and flaws found in name server software are fixed as quickly as
possible, by releasing updates and patches. Name server administrators can keep their
system up to date by installing these updates, and thus protect their server from known
threats.

2. DoS attack: A name server always attempts to reply to the queries it receives, without
authenticating the queries. An attacker can take advantage of this to perform
distributed denial of service (DDoS) attack on a name server. Performing a DoS attack
attacker cause the name server to be unavailable for a period of time. During this time
the attacker can use a compromised name server to reply to name resolving queries, in
place of the original DNS server. The compromised name server can provide false
responses to these queries (for example, to redirect the users to the attacker’s own
site). Detail on DDoS DNS attack are given in [47].

3.1.6.2 DNS protocol attacks
The DNS protocol possesses several vulnerabilities, as it does not contain any security

measures. Attackers can target these vulnerabilities in the DNS protocol and in
implementations of the protocol in order to perform attacks. Some of these vulnerabilities are
discussed below:

3.1.6.2.1 Zone File Compromise
A DNS zone file contains records (i.e. name and IP-address mapping information) for

domain names and subdomains in a name server. An attacker with (local or remote) access to
a name server can modify these zone files and change these records.

Security measures to prevent this type of attack include restricting access to the name
server to only authorized people, monitoring access to name server, physically securing the
computer, and limiting remote access to name server to specific authorized machines [50].

3.1.6.2.2 Zone Information Leakage
The zone file contains information about the network resources (e.g. servers, PCs, and

printers) in a certain domain. Reading a zone file an attacker might learn the list of important
servers and hence target those servers in an attack.

Sometimes, due to convenience, firewall and network access control policies are imposed
on a block of IP address, instead of individual IP address. In this case, it is helpful for an
attacker to learn the IP address allocation scheme used in a network and to know if there are
any unallocated IP addresses. If there is an unallocated IP address, then the attacker can setup
a false name server in the target network with one of these unallocated IP addresses. All of
these tasks are easier if the attacker can read the DNS zone file since the zone file contains
information about the IP addresses associated with all of the hostnames in a network.

22

Information from the zone file can leak if zone transfer is enabled for all machines in
name server configurations. In this case, the attacker can get the entire zone file via the zone
transfer process*. Details on information leakage through DNS can be found in [52].

3.1.6.2.3 Cache poisoning
During the name resolving process a name server queries other name servers (e.g. root

DNS, DNS responsible for TLDs) to get information, after resolving a name, the name server
caches the information (i.e. the mapping) for a period of time. The next time the name server
receives a query to resolve the same name it retrieves the information from its cache (if it is
available) rather than performing the lookup process.

The goal of this caching mechanism is to improve the performance of the overall DNS
infrastructure, but it also creates a security hole in the name resolving system. Attacks
exploiting this security hole are known as DNS cache poisoning.

The main idea behind a DNS cache poisoning attack is to pollute a name server’s cache
with false information. This attack is possible because a DNS server never checks the validity
of a response it receives from another name server during iterative queries nor does the name
server check if the received information is relevant to its iterative query. Attackers exploit this
failure to validate responses by sending false information (e.g. another IP address) to the name
server querying for a certain name. After receiving this false information the name server
caches it and will now provide this false information from cache for all subsequent queries for
the same name (until the cache entry expires).

Usually attackers use a mechanism called DNS spoofing in order to perform cache
poisoning. DNS spoofing is a process where the attacker configures a name server to reply to
DNS queries actually sent to another (real) name server. The response packet sent by the
attacker’s name server contains the real name server’s IP address in the source-address field,
as the receiving name server checks the source IP address of the response packet. However,
this check is not sufficient. The name server uses identity numbers to match queries and
responses. So learn the identifier number of a query, the attacker performs DNS ID hacking. A
detailed explanation of DNS ID hacking can be found in [53] and [54]. In the absence of
knowing the correct identification number the attacker can carry out a brute force attack by
sending all possible identification numbers†.

3.1.7 Available solutions
Implementing the DNS Security Extension (DNSSEC) [55] can solve most of the

problems of DNS mentioned in the sections above. Details of DNSSEC are explained in the
next section.

Due to backward compatibility issues of DNSSEC with the existing DNS
implementations, it will take time to implement DNSSEC worldwide. Until that time, name
server administrators can take some measures to improve the security of DNS. Measures to
improve security and protect against attacks on a name server have been extensively discussed
in [56]. Here we list some of these measures:

1. Bugs and security flaws found in name server software that have been corrected are
distributed as patch releases or updates. Name server administrators should keep their
system up to date by installing newly released patches and updates.

2. Forbid recursive queries to prevent spoofing.

* The term zone transfer refers to a process used to copy a DNS zone file from a primary DNS server to a
secondary DNS server [51].
† Note that since this number is carried in a 16-bit field, hence there are only 216 possible values.

23

3. Do not configure all DNS servers on the same subnet, in order to avoid a single point
failure*. If possible, do not place these servers behind the same router or connected to
the same leased line.

4. Restrict zone transfer from slave name servers, thus zone transfers should only be
provided by the master name server. Scott Rose and Anastase Nakassis [58] discusses
some measures to minimize DNS zone information leakage.

5. Configure different name servers for internal and external hosts. In that case if the
external DNS is hacked, the internal DNS server will keep providing service to the
internal hosts.

3.1.8 DNS Security Extension (DNSSEC)
DNSSEC [55] does not encrypt DNS data, so it does not provide any confidentiality,

rather it signs the DNS data using asymmetric cryptography (i.e. public-private key based
cryptography). A private key is used to digitally sign a DNS resource record in a zone or
domain, and the associated public key is published with this signed information. The public
key is used to validate the signatures on the data. The use of asymmetric cryptography
provides data integrity and origin authentication in the DNS name resolving process.

3.1.8.1 How does DNSSEC work?
DNSSEC uses a digital signature [59] and asymmetric cryptographic keys to check the

authenticity of the DNS responses [60]. Records in a zone file are individually signed, with a
DNSSEC private key, so that individual records can be added, modified, or deleted in the
zone file without resigning the entire zone file. Signatures generated for the records in a zone
file reside inside the zone file itself, as new resource records called Resource Record
Signature (RRSIG) records. The corresponding RRSIG record is returned along with the
response to a name resolution query. To validate if the response is authentic; the associated
RRSIG record is verified using a public key called the DNSKEY [60]. The operation of
DNSSEC is illustrated in Figure 3-4 and consists of the following operations:

1. After receiving a request from a resolver to provide the IP address of a name (for
example www.ifoodbag.com), a recursive DNS server follows the process previously
explained in section 3.1.4 and the resolver will receive an IP address from the
authoritative DNS server for the ifoodbag.com domain.

2. The recursive DNS server sent not only the IP address of www.ifoodbag.com, but also
sent the digital signature of the record along with the associated public key. The
recursive DNS server verifies the digital signature using the public key and to ensure
that no one has modified the resource records during transmission. Thus, the integrity
of the data is checked. The recursive DNS server also checks that the digital signature
is still valid, whether the current date is between the start date and end date of the
specified validity period.

3. However, if this was all then anyone could sign zone data with a private key and
provide the associated public key! Therefore, in order to perform origin authentication,
the recursive DNS server asks the DNS server responsible for .com domain if the
public key it has received for the ifoodbag.com domain is correct.

4. The DNS server responsible for the .com domain checks if its delegation signer (DS)
[61] information indicates that the public key has been provided by the ifoodbag.com
provider. The DNS server then provides the signed DS record along with its public
key to the recursive DNS server that sent the query.

* Note that at least one secondary name server is supposed to be operated by another party that is not in the same
geographic area, not powered by the same source or electrical supply, and not connected to the same part of the
network as the primary server. See more in [57].

24

5. Now the recursive DNS server queries the root DNS server in the same way in order to
verify the public key received in the previous step for the .com domain.

6. The root DNS server replies with a signed DS record along with the public key. The
recursive DNS server is manually configured with the public key of the root DNS
server as a trusted key. Using this public key the recursive DNS server can verify the
public key received from the root DNS server.

7. Once all of these checks are complete, the recursive DNS server provides the resolved
IP address of www.ifoodbag.com to the resolver.

Internet Root DNS Server

ifoodbag.com DNS Server

(1)

Recursive DNS Server

(3)

.com TLD DNS Server

(2)

(4)

(5)

Resolver

(6)

(7)

Figure 3-4: DNSSEC work process (concept taken from [62])

3.1.8.2 Issues raised by DNSSEC
DNSSEC consumes more computing resources than the simple (insecure) DNS name

resolution process. This additional processing and communication can have a negative impact
on the overall performance of name resolution system. Furthermore, DNSSEC uses
asymmetric key cryptography, which requires complex mathematical operations. These
cryptographic operations consume extra memory and processing power in the name servers.
In addition to this, the digitally signed records, DNSSEC resource record sets are relatively
large; thus transferring this additional information consumes more network bandwidth as do
the additional messages for origin authentication.

DNSSEC can be susceptible to DoS attack, as with DNSSEC a small DNS query can
generate a much larger response. Moreover, DNSSEC consumes a relatively large amount of
computational resources (e.g. CPU overhead, memory, bandwidth consumption, etc.) in
comparison to an ordinary DNS query. For these reasons a type of DoS attack, called a DNS
amplification attack or DNS reflection attack is discussed in [63]. A more detail discussion
about performance and security issues raised by DNSSEC can be found in [64]–[67].

3.2 D
A l

architec
load, an

3.2.1 W
Resp

e-comm
which a
these ele

Equation

The term

R
Payload

Bandwid

Round T
(RTT)
AppTurn

Concurre
Cs
Cc

A lo
applicat
reason t
that the

A lo
applicat
servers

Ther

1. S
2. D
In th

been us
use as a
thus Squ
user req
balancin
about lo

* For a w
input.

Distribut
oad balanc

cture. Below
nd several di

Why load
ponse time

merce sites.
affect a web
ements as s

3-1: Web appl

ms used in t

dth

Trip Time

ns

ency

ow value fo
tion. Conve
the goal is t
service is r

oad balancin
tion more s
can be used

re are multi

Splitting sta
Distributing
he design f
ed for load

a caching we
uid reduces

quests that m
ng without
oad balancin

web applicatio

ting load
cing mecha
w we discus
ifferent ava

balancing
e* is an i
Campbell

b applicatio
hown in the

lication respon

the above eq

Response
Total num
all resour
Minimal
between t
Amount o
server an
Total num
include im
Number o
Computa
Computa

or response
ersely, a hig
to improve

responsive (

ng mechanis
calable. Ra

d to provide

iple ways to

atic and dyn
g responsibi
for the ifood
d balancing.
eb proxy. S
s the load o
must actuall
 caching an
ng with Squ

on, response t

d among
anism has b
ss the conce
ailable soluti

g?
important c
and Alstad

on’s respon
e following

nse rate

quation are

e time
mber of bytes
rce files (e.g.
bandwidth, i
the user and
of time requi
d back.

mber of comp
mage files, C
of concurren

ation time on
ation time on
time will im

gh value wil
performanc

(i.e., they ge

sm can help
ather than us
e service to u

o split the lo

namic conte
ilities amon
dbag web a
Squid [21]

Squid can ca
on the actua
ly be served
nd reusing
uid is presen

time is charac

g applic
been incor
ept of load
ions for loa

concern fo
d have perfo
se rate. The
equation:

described b

s sent to the
. CSS files, J
in bits per se
the server.

ired for data

ponents need
CSS files, etc
nt requests a b

server side.
client side.

mprove the
ll degrade t
ce to a suff
et a respons

p improve w
sing a singl
users.

oad among m

ents across m
ng multiple
application
] is an open
ache and reu
al web appl
d by the we
frequently

nted in the n

cterized by ho

cation se
rporated in
balancing,

ad balancing

or any web
ormed resea
ey have for

below:

user’s brows
JavaScript fil
econd, throug

packet to tra

ded for rende
c.
browser mak

user’s perc
the user’s pe
ficient degre
e within the

web applicat
le applicatio

multiple app

multiple app
(identically
in the clou

n source app
use frequen
lication serv
eb server. S
requested c

next section

ow quickly th

ervers
the ifoodb

why it is n
g.

b applicati
arch [67] to
rmulated a

ser, including
les, images).
gh the netwo

averse from u

ering the pag

kes for resour

ceived perfo
erceived pe
ee that the u
e time that t

tion perform
on server, m

plication ser

plication ser
configured

ud a program
plication m

ntly requeste
ver by redu
Squid can al
contents. D
.

he application

bag scalabl
necessary to

ion, especi
o identify e
relationship

g the webpag

ork connectio

user’s brows

ge. Compone

urces.

ormance of
erformance.
user’s perce
they expect)

mance and m
multiple app

ervers [68]:

rvers.
d) servers.
am called Sq

mainly know
ed website c
ucing the nu
lso be used

Detailed info

n responds to

25

le cloud
o balance

ially for
elements
p among

ge and

on

ser to the

ents

f the web
For this

eption is
).

make the
plication

quid has
wn for its
contents,
umber of

for load
ormation

the user’s

26

3.2.2 Using squid for load balancing
While Squid is primarily thought of as a proxy server, Squid can also be configured to

balance load among multiple application servers in a round robin manner for each HTTP*
GET/POST request†. These GET and POST requested typically originate from a user’s web
browser; however they could also come from applications.

The ifoodbag web application server utilizes a collection of images, style sheets (CSS),
JavaScripts, and php scripts. Two application servers could be configured with identical
configurations and resource files. When Squid receives a HTTP request it might ask server1 to
execute the server side operations (e.g. user authentication), while it might ask server2 to
provide the information to the web browser so that it can render the web page. The load
balancer can alternately ask each of the servers to provide CSS and images until the whole
web page is delivered to the user’s web browser [68]. In this way Squid can distribute tasks
among multiple application servers and thus reduce the apparent response time and improve
the user’s perceived performance.

Squid also supports weighted round robin scheduling in order to make it possible to
process more requests using application servers with a more powerful configuration (i.e. a
larger amount of memory and higher processing speed than other application servers), while
assigning fewer requests to application servers with more limited resources.

Squid can detect if an application server is unavailable. If so, it promptly communicates
with a backup or secondary application server. In this way squid reduces the server failover
time [40].

Figure 3-5 depicts a sample network diagram using Squid for balancing load among
multiple application servers.

Internet

Firewall

Squid (Load balancer)

Application Servers

Router

Figure 3-5: Load balancing with Squid

* For further details of HTTP, see section 3.3.1.
† GET requests data from a specified resource and POST submits data to a specified resource for processing [69].

27

3.2.3 Policies to improve squid security
Eric Galarneau has done extensive work describing security considerations when using

Squid and possible actions to improve Squid’s security. We summarize some points from his
paper [70]:

1. Squid was primarily developed for UNIX based systems. However, it is available for
many other operating systems. Security guidelines should be followed to setup and
configure the host operating system for Squid. It is best to install Squid on a dedicated
machine and only the necessary services should be installed on this machine. Some
organizations provide guidelines to securing different operating systems, for example,
CERT provides guidelines to secure UNIX based systems [71]. System administrators
should consider these guidelines when configuring their system.

2. The Squid service should not run as the root user. Instead one should create a sandbox
user specifically dedicated to Squid with an invalid shell (e.g. Noshell [72]) assigned
to it. This sandbox user will have very limited access to the system’s files.

3. Squid requires directories to store cache data locally. Ensure that only the Squid user
(i.e. sandbox user) has read, write, and execute access to these directories.

4. When installing Squid, the integrity of the source file should be verified using the
MD5 checksum.

5. Change the default port (TCP port number 3128) for Squid to another available port
number in the high range, so that port scanners cannot easily detect the proxy server.

6. Use the authentication feature provided by Squid. Different methods of authentication
are supported by Squid, for details see [73].

7. Turn on logging in Squid. There can be two problems when enabling this logging:
(1) performance degradation and (2) handling large log files. Squid’s peering
capabilities can be used to improve its performance. In order to better deal with log
files Squid can be configured to save the current log file after it exceeds a defined size,
archive the previous long, and open a new log file for writing.

3.2.4 Alternative approaches for load balancing with Squid
There are other cost-effective solutions to distribute load among multiple servers. Below

we present some of these solutions.

3.2.4.1 Round-robin DNS
Round-robin DNS is a load balancing technique where a DNS server balances the load

among multiple servers with different IP addresses. All of the servers have the same hostname
and provide the same service. A DNS server can be configured with the IP addresses of
multiple identical servers each of which can perform the same function (e.g. multiple identical
web servers). When the DNS server is ask for an IP address of the web server, the DNS server
provides the IP address8es) in a round-robin fashion. Round-robin DNS is often used to
balance load among servers that are distributed in different geographical locations [74].

Round-robin DNS is very easy to implement and it is a very economical way of balancing
load for a small to medium sized organization. However, round-robin DNS has some
limitations:

1. Round-robin DNS does not provide fail-over. If a server becomes unavailable or goes
down, the IP address of that particular server needs to be manually removed from the
round-robin DNS server’s zone record.

2. For round-robin DNS to work properly the time-to-live (TTL) of the records should be
set to a very low value. Otherwise, until the TTL expires, a round-robin DNS server
will reply to all the requesting users with the IP address of a single server based upon

28

the entry in its cache, which will hamper the round-robin technique for all machines
which query this DNS server.

3.2.4.2 HAProxy and other open source load balancing platforms
HAProxy is an UNIX based open-source load balancing solution designed to provide high

availability, load balancing, and proxy functionality[75]. The official website of HAProxy
[75] claims that not a single vulnerability has been identified in HAProxy solution in the last
10 years.

There are several other open source and free to use load balancing solutions, such as: Core
Balance [76], Crossroads [77], Distributor [78], Zen Load Balancer [79], and Octopus Load
Balancer [80].

3.3 HTTP connection between a user’s browser and an
ifoodbag application server

The user’s web browser creates a HTTP connection to an ifoodbag application server.
Below we discuss the HTTP protocol, its security issues and available options to resolve the
security issues of HTTP.

3.3.1 Hypertext Transfer Protocol (HTTP)
The Hypertext Transfer Protocol (HTTP) is an application layer protocol in the TCP/IP

protocol suite. HTTP has been used for client-server communication in the World Wide Web
[81] for data communication since 1990 [82]. In order to improve the performance of HTTP,
the Internet Engineering Task Force (IETF) [83] defined HTTP protocol version 1.1 [41].
This version is currently being used (it is also called HTTP/1.1).

HTTP is one of the most widely used internet protocols. We use the HTTP protocol every
day to browse web pages in the internet. In order to browse a website or access a web
application, we provide our desired web page or web application’s Uniform (or universal)
Resource Locator (URL)* to a HTTP client. This HTTP client is commonly a web browser
(e.g. Chrome [85] or Internet Explorer [86]). The web browser sends an HTTP request to the
web server. The web server replies with an HTTP response. This response may contain the
requested content or indicate why the server is not able to process the request.

3.3.2 Security issues with HTTP
The prime security issues raised by HTTP protocol are related to the fact that HTTP

messages exchanged between a HTTP client and a HTTP server are sent in plain text. As a
result anyone with access to the network along the path that these messages pass can intercept
the HTTP packet and can read its content. In many cases this message may contain sensitive
information, such as a user name and password! Additionally, HTTP does not verify the
identity of the web server (i.e. if this is the correct server to which the HTTP message was to
be sent). As a result of these weaknesses for commercial data transactions, such as online
banking or e-commerce data transactions, HTTP is unsuitable.

3.3.3 Solutions to improve security in HTTP
To integrate security into HTTP some solutions have been developed. Below we discuss

two different technologies to make HTTP traffic secure: HTTP Secure (HTTPS) and Secure
HTTP (S-HTTP). In addition, some security considerations regarding HTTP/1.1 have been
discussed in [87].

* The URL is used to identify a network resource [84].

29

3.3.3.1 HTTP Secure (HTTPS)
HTTP Secure (HTTPS) is not a protocol itself, but rather it is a combination of HTTP with

SSL/TLS* protocol. To secure HTTP communication, HTTPS layers HTTP on top of the
SSL/TLS protocol in order to use its security services (which provide confidentiality and
authentication)[88].

Using SSL/TLS’s confidentiality service, HTTPS encrypts all the HTTP messages
communicated between a HTTP client and a HTTP server. As a result of this encryption no
unauthorized person can read the content - even if they sniff the packets. In this way data
confidentiality is ensured.

Using SSL/TLS’s authentication service, HTTPS verifies the identification of the HTTP
server, which the client wants to connect. It does this by verifying the digital certificate of the
server has been signed by a trusted certificate authority (CA). In this way a user can be
assured that they are communicating with the correct web site.

Optionally the identity of the HTTP client can also be verified using digital certificates.
This allows a HTTP client to authenticate itself to the web server by using a digital certificate
(instead of or in addition to a traditional password based authentication system).

3.3.3.2 Secure Hypertext Transfer Protocol (S-HTTP)
Secure HTTP (S-HTTP) has been developed to secure the communication between a

HTTP client and a HTTP server. This protocol was developed in order to establish secure
commercial transactions for a wide range of applications (e.g. online transactions, online
banking). S-HTTP is an extension of HTTP. It is compatible with HTTP and can work
concurrently with HTTP, but S-HTTP is not compatible with HTTPS.

S-HTTP does not require a public key or digital certificate for the HTTP client, as it
supports only symmetric key operation modes. The major difference between HTTPS and
S-HTTP is that HTTPS creates a secure communication channel between a client and a server
for preserving confidentiality and to provide authentication, while S-HTTP aims to secure
individual messages communicated between a client and a server. More information about
S-HTTP can be found in [89] and [90]. Currently, HTTPS is more commonly used than
S-HTTP, due to the support for HTTPS by major companies, such as Microsoft [48].

3.4 Communication between the management node and other
nodes

In the proposed design of the ifoodbag web application for execution in a cloud
environment, there is a special node called the Management Node. This node stores all the
policies needed to make the solution elastic and dynamically scalable. This node controls the
application servers and maintains communication with the load balancers, distributed
database, and the caching module. It is obviously important to ensure the security of the
communication between this management node and the other nodes in the different tiers of the
proposed architecture. Below we discuss how to secure the communications between the
management node and other nodes using virtual private network (VPN) technology.

3.4.1 What is VPN?
An organization can have geographically distributed brunches and datacenters, each of

which has its own separate local networks and may use one of many internet service

* Transport Layer Security (TLS) and its predecessor Secure Sockets Layer (SSL) are security protocols that
provide confidentiality and authentication through public key cryptography and use of one or more digital
certificates.

30

providers. One approach to maintain privacy and confidentiality of the data traffic between
these individual networks is to setup leased lines. However, this can be very expensive.
Instead we can create a VPN overtop of the internet connectivity between the sites, thus
providing a very simple and cost-effective solution, which also provides scalability.

A VPN connects a group of computers, located in discrete networks, that communicate
over a public network, such as the internet [91]. A VPN can be composed of separate
networks interconnected by VPN tunnels. Connections between these networks are visible,
but the actual contents of the traffic flowing through these tunnels are not visible to others.

Organizations create (site-to-site) VPN to connect remote branch office networks and
remote datacenters to the corporate network. Additionally, individuals can use a VPN for
(remote) access to network resources, even when they are not physically residing on the same
physical network – but are using an untrusted public network to reach the remote network.
Figure 3-6 depicts an example of using a VPN for remote-access.

VPN client

VPN Tunnel

Internet
VPN server

Tunnel InterfaceTunnel Interface

Figure 3-6: Remote-access VPN

3.4.2 VPN Tunnels
A VPN tunnel is a virtual tunnel created with the aid of IP packet encapsulation. IP packet

encapsulation places an IP packet into another packet. This encapsulation is done in order to
convey the encrypted contents of the inner packet via a public network (e.g. internet). Nodes
(i.e. computer or network) at both ends of the tunnel create a tunnel interface to realize the
end of the tunnel. Encapsulating an IP packet can be done by using standard encapsulation or
a special tunneling protocol [92]. Different types tunneling protocols have been described in
detail in [92]. Here we present a brief summary of these different tunneling protocols.

3.4.2.1 Point-to-Point Tunneling Protocol (PPTP)
PPTP [93] is a VPN tunneling protocol which allows encrypting and then encapsulating

an IP datagram following a new IP header for transmission via an IP network (e.g. internet).
PPTP can be used for both remote access or site-to-site VPNs. PPTP provides data
confidentiality through encryption. However, PPTP does not provide data integrity or data
origin authentication [92].

3.4.2.2 Layer 2 Tunneling Protocol (L2TP)
L2TP [94] is a link layer protocol used in the TCP/IP protocol suite. L2TP does not

provide data confidentiality itself. Instead, it relies on another encryption protocol. Often
L2TP is implemented with IPsec to provide data privacy and confidentiality [92]. Details of
IPsec will be presented in section 3.4.2.4.

31

3.4.2.3 Secure Socket Tunneling Protocol (SSTP)
SSTP uses the HTTPS protocol over TCP port 443 to transport point-to-point protocol

(PPP)* or L2TP/IPsec traffic. SSTP encapsulates PPP frames in IP datagrams and then
encrypts the traffic using the Secure Sockets Layer (SSL) 3.0 channel of the HTTPS protocol.
In this way a SSTP VPN connection provides confidentiality, integrity, and data origin
authentication [40]. More details about SSTP are given in [95].

3.4.2.4 Internet Protocol security (IPsec)
IPsec [96] provides security services at the IP layer of the TCP/IP protocol suite, in both

IPv4 and IPv6 network environments. Microsoft states that “IPsec supports network-level
peer authentication, data origin authentication, data integrity, data confidentiality (encryption)
and, replay protection” [97]. It should be noted that IPsec is a mandatory part of all IPv6
implementations.

3.4.3 VPN Implementation
A VPN can be implemented using any of the methods listed below:

1. Using built-in functionality in operating system: If the purpose of VPN is remotely
access a single computer, then using the VPN software built into operating system can
be a good option. For example, several versions of Windows and Linux servers have
built in VPN server functionality [98] [99] [100].

2. Software firewalls: Microsoft’s ISA Server [101], Check Point [102], and Symantec
Enterprise Firewall [103] provide VPN gateway functionality.

3. Dedicated VPN router or VPN concentrator: A dedicated VPN router (e.g. from
Cisco [104], Juniper [105], AEP Networks [106], etc.) can be used to create a reliable
and robust site-to-site or remote-access VPN tunnel.

4. Third-party hosted VPN provider: Some companies (e.g. Avaya Inc. [107]) provide
solutions to organizations to set up remote-access and site-to-site VPN connections.
These commercial solutions are proprietary to the solution providers.

5. Open source solution: There are several open source applications available (e.g.
OpenVPN [108]). These are widely used to provide not only a cost effective, but also
a scalable VPN solution. In the next section, we will present further details of
OpenVPN.

3.4.4 OpenVPN
OpenVPN [108] is an open source software application to implement remote-access or

site-to-site VPN connections. Some features of OpenVPN are:

1. To secure the network traffic and keep it private, OpenVPN uses encryption,
authentication, and certification features of the OpenSSL [109] library [110].

2. OpenVPN supports authentication using both secret key cryptography† as well as
public key cryptography‡. For public key cryptography based authentication, Open
VPN uses a custom security protocol, which provides the SSL/TLS connection a
reliable transport layer [58]. The custom protocol uses SSL/TLS for secure key
exchange [113]. OpenVPN protocol is explained further in [114].

3. OpenVPN uses the User Datagram Protocol (UDP) as its transport protocol and by
default it uses UDP port 1194. OpenVPN can also be configured to use TCP as its
transport protocol [58].

* PPP is a data link layer protocol used to create direct secure connection between two networking nodes [9].
† A pre-shared secret key is used for authentication. Details can be found in [111].
‡ A pair of public-private key is used for authentication. Details can be found in [112].

32

4. OpenVPN can perform Network Address Translation (NAT)[115] and firewall
traversal.
OpenVPN is free to use as it is published under the GNU General Public License
(GPL)[116] as stated in [113].

OpenVPN works in two different modes: (1) TAP and, (2) TUN. In TAP mode it is

possible to transport any network protocols (e.g. IPv4, IPv6), while in TUN mode only IPv4
can be transported. TAP mode can be used to create a bridged network where the VPN nodes
can have IP addresses from the local DHCP server. But in TUN mode it is not possible. TUN
mode has a lower traffic overhead and it does not normally transport broadcast traffic [117].

3.5 Caching web data
Caching web data from the web application of ifoodbag is provided by Memcached. In

this section we discuss the general idea of caching and memcached, the main principles of
memcached, how memcached works, the advantages and disadvantages of memcached, and
security in memcached.

3.5.1 What is a cache?
Caching pronounced “cashing”[118] is the process of storing data in a cache [9]. A cache

is a temporary storage area, frequently a reserved section of main memory or a storage
device[119]. We give a very simple example here to make the concept of a cache clearer.
Whenever any user requests data via their web browser this data is stored in a subdirectory
(which serves as a cache) under the directory used by your browser[118]. Later when this data
is needed again, the browser can access the recently cached webpages. If the content is still
available and the current time is within the time period during which this content is still valid,
then the browser will utilize the cached copy rather than make another HTTP request to the
original server[118]. Caching saves users time (hence the user’s perceives the service as more
responsive) and it also saves the network the burden of retransmitting the same content –
hence reducing the amount of network traffic[120].

3.5.1.1 What is Memcached?
In 2003, Memcached was developed by Brad Fitzpatrick for LiveJournal[121]. Today

memcached is used by Netlog[122], Facebook[123], Flicker[124], Wikipedia[121],
Twitter[125], YouTube[126], and Zynga[127]. These services use memcached as part of their
web server platform.

Memcached is a high performance, distributed memory object caching system[121]. It is
free, open source, and generic in nature [22]. One of the main uses of memcached is to speed
up dynamic web applications by reducing the load on a database[128]. Memcached is
implemented as an in-memory key-value store for small chunks of arbitrary data (strings and
other small objects) resulting from database calls, API calls, or page rendering[22].

The design of memcached is simple but powerful. Since the design of memcached is
simple it promotes quick deployment, ease of development, and solves many problems of
large data caches[22].

3.5.1.2 Main principles of Memcached
The main principles of Memcached are:

1. Memcached is distributed (it works well on one machine or one hundred
machines[129]).

2. Network access is fast (memcached servers are close to other application
servers)[121].

33

3. Memcached does not provide persistency (this means if your server goes down, data
that was stored in memcached will be lost)[129].

4. No replication (data is spread across N servers, but no key exists on more than one
server)[129].

5. No authentication in a shared environment[121].
6. A single entry cannot be larger than 1MB (but it is often possible to compress large

entities to fit into 1MB)[129].
7. Keys are limited to 250 characters[121].
8. No active clean up (memcached only cleans up when more space required, when it

deletes the Least Recently Used (LRU) item first)[129].

3.5.2 How does Memcached work?
Memcached uses client-server architecture. Jeremy Leishman, Ben Robinson, and Josh

Taylor have explained in detail how memcached works on both the server and client sides. In
the following paragraphs we have summarized the major points of their paper[130].

3.5.2.1 Server Instances
Wherever free memory is available a number of Memcached server instances are running

throughout a network. Each instance of a Memcached server listens on a specified port and IP
address. Each machine has its own locally allocated memory. Therefore, an application that is
utilizing Memcached can use all the remaining memory. It may also be advantageous to run
multiple instances of Memcached on the same machine in such case where the total memory
of a machine is greater than the amount that the kernel makes available to a single process.
These multiple instances can be handled by listening on different ports.

3.5.2.2 Client Read process
We can use Memcache on the client side just like any other cache. When an application

decides which object it needs to access it simply passes the object ID or similar identifier
through a hash function, then it checks this hash against Memcache to see if the object is
available. If the object is not available, then it fetches the object from the server and places it
in the cache.

3.5.2.3 Client Write process
Before the client write process, the object is first fetched from the server or cache. When

an object is updated the object is saved to the server and then saved in the cache. Since
memcached does not support transactions, it makes sense to pull the object from the server,
update it, and save to both the server and to the cache. By doing this we maintain the integrity
of the data. However, the lack of persistence necessitates an extra write to the server to ensure
that the updated object is preserved.

3.5.2.4 Hashing and keys
The web application maintains a hash table. This hash table contains information about

what information is stored in each instance of Memcached. Before the web application
accesses a database, an object request is sent to the appropriate server instance of the
distributed cache.

Memcached uses a set of keys to look up cached results in the hash table. Storage keys are
evenly spread out across the multiple nodes running Memcached. An application uses the
hash table to determine which server to send the request to.

34

This
applicat
needs to
data wil
steps tha
Step 1

Step 2
Step 3
Step 4

Figure 3-7

If th
object o
designe
for defin
we need

3.5.2.5
If a

each me
server c
machine
of the d

3.5.2.6
Mem

entries s
there is

s hashing a
tion which
o be retrieve
ll be asked
at are follow

The ap
determ
The m
The m
The m

7: Memcache

here is key
or we may
d applicatio
ning and us
d to recheck

5 Indepe
server fails
emcached s
cannot be re
e to go dire
ata within t

6 Expirat
mcached im
should be d
a need to s

and key sy
server stor
ed. This tw
to retrieve

wed are:
pplication req
mine which m
memcached cl
memcached se
memcached cl

ed client is resp

collision, s
overwrite s
on can prev
sing its own
k the code ag

endence
inside mem

server insta
esolved. Ho

ectly to the
that instance

tion of cac
mplements th
discarded. Th
store a new

ystem is im
es the key.

wo layer syst
an object. T

quests keys f
memcached s
lient sends pa
ervers send r
lient aggrega

ponsible for sen

simply we w
something in
vent such co
n key creatin
gain.

mcached, the
ance operate
owever, the
source of th
e will be los

ched entri
he least rec
his causes t

w item. Ove

mplemented
 A second
tem ensures
This layered

foo, bar, and
erver should
arallel reque

responses to t
ates the respo

nding requests

will lose da
n the cache
ondition. Ev
ng structure

e remaining
es complete
e client can
he data. Wh
st.

ies
cently used
the least rec
er the long t

in two lay
layer ident

s that only t
d architectu

baz. Key ha
d receive the
ests to all rele
the client.
onses for the

s to the correct

ata. It mean
e with some
very individ
e. So, once w

g active serv
ely indepen
be configu

hen a memc

(LRU) mec
cently used
term, this m

yers. The f
tifies the se
the server w
re is shown

ash values are
requests.

evant memca

application.

t servers

ns we will
ething totall
dual applica
we start run

vers functio
ndently. Req
ured to rout
cached serve

chanism to d
item to be d

means that t

first layer
erialized ob
with the app
n in Figure

e calculated

ached servers

end up wit
ly different
ation is res
nning key c

on normally
quests to th
te around th
er instance

decide whic
discarded fi
the most fr

tells the
bject that
propriate
3-7. The

to

s.

th a fake
t. A well
ponsible

collisions

 because
he failed
he failed
fails, all

ch cache
rst when
equently

35

used items will remain in the cache and the least frequently used items will be replaced by
potentially more frequently used items.

3.5.3 Advantages of Memcached
There are two main advantages of memcached: its low cost and its cross database

management system (DBMS) support. Each of these will be discussed in a paragraph below.

3.5.3.1 Low cost
One of the main advantages with Memcahed is its low cost. As stated earlier Memcached

is open source software, so it is free to download and use. Therefore, no license fees are
required. Memcached only requires some amount of RAM and some CPU cycles to operate.
Additionally, there is no limitation on how many memcached server instances can be
created[130].

3.5.3.2 Cross-DBMS
Cross-DBMS support is another advantage of Memcached, as Memcached was not

developed for a particular platform (such as MySQL, PostgreSQL, MSSQL, or any other
database). Therefore, we can use any database platform for the backend storage of our
application and memcached can easily be integrated into our application to help us to optimize
our architecture, while gaining the advantages of object caching[130].

3.5.4 Disadvantages of Memcached
There are three main disadvantages of memcached: its poor documentation, the volatility

of the contents of the cache(s), and its security. Each of these will be discussed in a paragraph
below.

3.5.4.1 Documentation
Memcached is open-source. Unfortunately it is not very well documented. There is a user

community which voluntarily gives support, but when a developer runs into real trouble there
are not many options[130].

3.5.4.2 Volatility
Memcached is a volatile storage system. This means that if a memcached server instance

crashes, all the data that was stored within it will be lost. This can have potentially negative
effects on our application. Even if the instance immediately returns to operation and runs
normally, the end users have to start their session all over again[130].

3.5.5 Security of Memcached
One of the main drawbacks of the memcached is its security. Memcached does not

provide any form of security (either authentication or encryption)[131]. So access to the
memcached server should be protected by placing them in the same private zone of our
application deployment environment[131]

We can further secure Memcached by using two common mechanisms:

Firewall We can start by firewalling everything. This firewall will only allow the data
that we want to pass through it[132].

36

SASL We can use memcached in a hostile network by using Simple Authentication
and Security Layer (SASL)[133]. In order to deploy memcached with SASL we
will need: (1) a memcached server with SASL support and (2) a client that
supports SASL[134].

SASL is a standard for adding authentication support to connection-based
protocols.[1]. The newer version of Memcached which is 1.4.3 supports
SASL.[1].

To configure SASL we need to do the following administrative operations[134].

Create a user for memcached
Saslpasswd2 –a memcached –c cacheuser

3.6 Cloud storage
In this section, we will discuss cloud storage, types of cloud storage, characteristic of

cloud storage, and the advantages and disadvantages of cloud storage.

3.6.1 What is cloud storage?
The term “cloud storage” is primarily used for storage that is remotely located, typically

called an online space. This storage can be realized using physical hard drives, USB flash
drives, optical or magnetic tape drives, etc. [135]

Cloud storage provides a user with the ability to back up data stored on a server, typically
this server is hosted by a cloud service provider [136]. An online storage facility uses a
network of virtual storage servers and generally includes tools to manage the virtual storage
space. Although data in cloud storage is located remotely, cloud storage can provide high
security [135].

Due to the online backup facility that cloud storage provides, it becomes very easy to
reach the data, a user only needs a connection to the internet and a user interface provided by
the cloud storage vendor [136]. In contrast, data which is only stored in a single physical
space can be lost or damaged (increasing risk), while cloud storage provides a data abstraction
which is not limited to a single physical space, hence cloud data is safer [136]. Cloud storage
technology can be used to provide redundant storage, thus ensuring the contents are not lost,
even if a catastrophic situation occurs and one of the datacenters goes down or is
destroyed [136]. In order to realize a redundant storage facility a minimum of three storage
spaces should be available at any time, in order to provide at least two highly secure physical
spaces together with cloud interface for the user to access their data, enabling the data to
remain available and accessible at high speed [136].

3.6.2 Types of Cloud storage
There are mainly three types of cloud storage systems: private cloud storage, public cloud

storage, and hybrid cloud storage:
Private cloud storage This type of cloud storage is primarily designed for one person or a single

company. Storage comes in two formats: on-premises and externally
hosted. Both types work well, but were mainly designed for businesses
rather than for individuals. Private cloud storage offers greater
administrative control and the customer can design the system based on
their needs [137].

Public Cloud storage Any authorized person can access a public cloud storage facility over a
network. This type of cloud storage requires (and offers) very little
administrative control. In a public cloud we get the same security as private

37

cloud, but maintaining the public cloud is much easier than the private
cloud[137].

Hybrid cloud A hybrid cloud is a combination of both public and private clouds. In this
type of cloud storage we can actually customize our features and insert
additional applications based on our needs. In hybrid cloud storage a user
can keep very important information within the private cloud, while storing
less important information in a public cloud[137].

3.6.3 Characteristics of Cloud storage
According to Kodukula and Sasidhar some of the key cloud storage characteristics

are [138]:
Manageability Cost is crucial while considering the software development process, and that is why

companies prefer a quality solution with low cost. Local storage cost may be lower in
cost compared to remote cloud storage, but the management cost of local storage is
higher in cost and remote cloud provides greater long-term benefits that can
overcome the overall costs of local storage. Cloud storage is in demand because of the
automatic scaling it provides, thus cloud storage will play a vital role in the future.

Access
Method

Unlike traditional storage which can be accessed using multiple access methods,
cloud storage uses RESTful APLs, Amazon Simple Storage Service (Amazon S3),
WindowsAzure™, and Mezeo Cloud Storage Platform. Cloud storage also uses
common access methods to provide immediate integration, such as file transfer
protocols (FTP) and block based protocols, e.g. iSCSI.

Performance Performance is a key factor when transferring data, as data needs to be reached
quickly and in the correct format. TCP is normally used for bulk data transfer, but is
not suitable for accessing chunks of data; therefore, TCP is not recommended for
cloud storage. As a result, cloud storage frequently uses Aspera’s Fast and Secure
Protocol (FASP™) protocol together with UDP.

Multi-tenancy Multi-tenancy means that data is available to several users. This is the main
functionality provided by cloud storage.

Scalability Scalability is another key quality provided by cloud storage. Cloud storage not only
provides scalability in functionality but also in terms of bandwidth (load scaling).
Another feature that cloud storage can provide is geographic distribution of data, thus
data can be delivered to the user from the nearest copy of the data and data can be
distributed appropriately using migration techniques.

Control Cloud storage provides increased control for the user over both the data and the cost
of storing and accessing this data. Cloud storage can use Reduced Redundancy
Storage (RRS) to reduce the cost of storing less critical data.

Efficiency Achieving efficiency requires using the best possible method when utilizing the
available resources. For cloud storage to be efficient, it must store more data. Cloud
storage can provide data reduction by compressing the original data in order to save
space.

Cost Cloud storage’s main purpose is to reduce the total cost of storage, which includes the
capital cost of purchasing storage devices, powering these devices, repair costs, and
storage management cost.

3.6.4 Advantages and disadvantages of Cloud storage
This subsection examines the advantages and disadvantages of cloud storage.

3.6.4.1 Advantages of Cloud storage
Cloud storage has many advantages over local (individual) and other network connected

online storage alternatives. According to Bruce Street Cloud Drive the advantages of cloud
storage over traditional storage are [139]:

38

• Cloud storage is cheap and provides unlimited data storage facility, e.g. AmazonS3.
• This type of scalable data storage is cheaper than electronic data storage.
• No need for installation.
• No need for replacements.
• Cloud storage providers provide their own backup and recovery system.
• No physical presence, so there is no need for maintaining special environmental conditions.
• No need to hire additional personnel.
• No need for electrical power.
• No extra cost for physical data storage space.

3.6.4.2 Disadvantages of Cloud storage
Cloud storage also has some disadvantages. According to Bruce Street Cloud Drive some

of the disadvantages of cloud storage are [139]:
• Performance is always bounded by the available network bandwidth.
• Cloud storage primarily relies on Internet connectivity; hence the availability of data could be

a major issue.
• Internet throughput may negatively affect performance.
• Cloud storage uses specific networking protocols; hence compatibility issues may arise when

dealing with the file access via a normal LAN.
• Cloud storage often requires ad hoc programs in order to provide compatibility between

different protocols.
• There is no common industry standard protocol for cloud storage.
• Different interfaces are needed for different cloud storage data.
• The selection of a suitable protocol is difficult.

3.6.5 Traditional versus Cloud storage
Cloud storage is different from traditional storage in that traditional storage provides

multiple options for storage[138]. For example, in memory storage as cache or RAM disks,
local block devices for direct access storage, network attached block devices for logical unit
number storage, and file systems (such as NFS & CIFS fileservers) for storage area network
or network attached storage. Additionally, FIFO structures can be used for messaging
queues[138]. In contrast, in cloud storage we must use the different providers’ techniques for
memory (e.g. Amazon’s elastic cache for memory), EC2database AMIs or Amazon simple
DB for structural storage, for messaging queues we might use Amazon’s simple queue service
(SQS), and Amazon’s Elastic Block Store (EBS) for snapshots of memory, file systems, or
backups[138]

3.6.6 Reliability and Security factors about cloud storage
The two most important concerns about data are reliability and security. Data needs to be

secure and the storage provider needs to be trustworthy and reliable. In order to secure data
while it is being transferred different techniques have been developed. Encryption is used for
this purpose together with an authentication and authorization process [140]. In order access
the files or data the end user needs to provide the appropriate key. Authentication is done by
requiring the user or applications to provide the appropriate credentials for each type of
access. After authenticating the user or application, the storage system must check that this
user or application is authorized to access the data in the requested manner.

With all these protection measures there is still a risk that hackers may steal the protected
data either directly from the storage cloud or while the data is in plain text form (i.e., when it
is vulnerable)[140]. Therefore cloud storage provider put lots of efforts into ensuring that the
data is protected at all times [140]. Reliability is especially important for cloud storage of

39

data, as an unreliable cloud storage would be a liability[140]. Data needs to be stable and
error-free, hence cloud storage systems utilize a variety of redundancy techniques[140].

3.7 Distributed database
This section describes what a distributed database is. This will complete the background

necessary for the reader to understand the components of the system that is to be secured.

3.7.1 What is distributed Database?
A distributed database (DDB) is a collection of multiple, logically interrelated databases

distributed over a computer network[141]. A DDB can be located in multiple computers that
are located in same physical location [142]. A centralize distributed database management
system (DDBMS) controls the distributed database. This DDBMS periodically synchronizes
all the data, so that if multiple users access the same data the data will be consistent. The
DDMS ensures that updates and deletions perform on the data at one location are
automatically performed elsewhere[143].

Two processes (duplication and replication) ensure that the data in the DDB is up to date.
Replication uses software to monitor changes inside the DDB. Once it identifies changes, the
replication process makes all of the separate databases look same. This process can be
complex, time consuming, and requires a lot of computer resources. These costs depend on
the size of the distributed database[142].

In contrast, duplication is less complicated. In this process, one database acts as the master
database and then duplicates are made of that database. During the duplication process, only
the master database is allowed to be changed, thus ensuring that local data will never be over
written with inconsistent data. Both duplication and replication ensure that all data are current
and up to date in the distributed locations[142]

There are a variety of distributed database design technologies, such as: local autonomy,
synchronous and asynchronous distributed database technologies. Depending on the
sensitivity or confidentiality of the data these technologies may or may not be used. An
important practical issue is the investment that a business is willing to make in order to
achieve data security, consistency, and integrity[142].

3.7.2 Types of distributed databases
There are mainly two types of distributed databases: homogenous DDBs and

heterogeneous DDBs. The following paragraphs will discuss both type of database based on
the Oracle8i distributed database system[144].

3.7.2.1 Homogenous distributed database
A homogeneous DDB is a network of two or more databases that are placed in one or

more machines. Figure 3-8 shows a distributed system that interconnects three databases: HQ,
MFG, and SALES. An application can access or modify the data at the same time in several
databases within a single distributed environment. For example, if we want to connect to the
database MFG but we want to access data in the database HQ, then we need to create a
synonym on MFG for the remote DEPT table to allow us to issue a query of the form:

select * FROM dept;

In this way, the distributed system gives the appearance of a native data access. Users on
MFG do not have to know that the data they access actually resides in a remote database.

40

Figure 3-8

3.7.2.2
If at

DDB. A
The loca

The
service
Oracle T
generic
ODBC o

3.7.3 H
Tabl

Table 3-1

Homoge
1. A
2. A

c
3. A

3.7.4 A
Ther

replicati

In d
perform
reliabili

8: Homogeno

2 Hetero
t least one o
A heterogen
al Oracle da

Oracle dat
in conjunct
Transparent
connectivit
or OLDB p

Heterogen
le 3-1 summ
: Heterogene

eneous
All sites hav
Aware of eac
cooperate fo
Appears to u

Approache
re are two p
ion and frag

data replicat
mance by co
ity; as if on

ous Distributed

ogeneous d
of the datab
neous DDB
atabase serv

abase serve
tion with a
t Gateway,
ty to access
rotocols.

neous vers
marizes the
eous versus Ho

ve identical so
ch other and
r processing

user as single

es to DDB
principle ap
gmentation.

tion data is
oping data
ne node fa

d database (142

database
bases is a n
 appears as

ver hides the

er uses the n
n agent. If
then the ag

s the non-O

sus Homo
differences

omogeneous DD

oftware.
agree to
user request

e system

s
pproaches t

replicated
to a locatio

ails, then an

2)

non-Oracle s
s a single,
e distributio

non-Oracle
the user ac

gent is a sys
Oracle data d

genous DD
s between a
DB [145]

Heterog

t

1.

2.

to store a re

across mult
on near the
nother node

system, then
local, Orac
on and heter

system usin
ccesses the
stem-specifi
database as

DB
heterogene

geneous
Different sit
software
Sites may n
may provide
cooperation

elation r in

tiple nodes.
e user. This
e with a c

n the result
le database
rogeneity of

ng the Orac
non-Oracle

ic applicatio
long as thi

ous and hom

te use differe

ot aware of e
e only limite
in transactio

a distribute

. Data repli
s replication
opy of the

t is a hetero
e to the app
f the data.

cle8i Hetero
e database u
on. We can
is database

mogenous D

ent schemes

each other an
ed facilities fo
on processing

ed database

ication can
n can also
 data can

ogeneous
plication.

ogeneous
using an
also use
supports

DDB.

and

nd
for
g

e system:

improve
improve
continue

41

processing the database transaction. The advantages of data replication are better access and reliability and potentially improved performance.
According to Holowczak[146], data fragmentation can be done by 3 different ways:
Horizontal row in a table are split up across multiple nodes
Vertical a column in a table is split across multiple nodes
Mixed a combination of both horizontal and vertical methods

According to [145], the advantages of these three fragmentation types are:
Horizontal • Allow parallel processing on fragments of a relation

• Allow a relation to be split, so that tuples will be located where they are
accessed most often

Vertical • Allow parallel processing of a relation
• Allow a tuple to be split so that each part of the tuple is stored where it is

most frequently accessed and efficient joining of vertical fragments is
allowed based upon a tuple-ID attribute

Mixed Fragment may be successfully fragmented to an arbitrary depth

3.7.5 Advantages and disadvantages of DDBs
Just as any other system, a DDB has advantages and disadvantages. In this section we will

examine the advantages and disadvantages of DDBs.
According to[147], the advantages of a DDB are:

Faster data access Often a given end user will only work with a subset of company´s
data. If this data is stored and accessed locally, then the database
can deliver faster data than a remotely located database.

Faster data processing Since the distributed database is located over several places so it is
possible to process data at several sites. Doing this spreads the
work load enabling the data to be processed faster.

 Availability A DDB is less dangerous than a single DB, as the latter is a
potential single point failure. When using a DDB if one computer
fails, processing can shift to other instances – enabling the
workload to be immediately distributed to others.

Modular growth In a DDB, new sites can be added without effecting the operations
of other sites. This modular growth helps a company to expand
easily and rapidly.

Reduce operating cost DDBs can reduce operating costs as it is more cost effective to add
a new database server to a network rather than update a large
mainframe.

42

According to [148], the disadvantages of a DDB are:

Complexity A DDB is more complex than a centralized database. In DDBs
replication of data add some additional complexity. If the
software does not handle the replication properly, thus will
negatively affect availability, reliability, and performance.

Complex database design Depending upon the design of the DDB, data fragmentation,
allocation of fragments to specific sites, and replication need to
be considered. This makes the design of the database more
complex.

Cost Since a DDB is distributed over multiple computers these
computers each require maintenance. DBMS also requires extra
hardware to establish network connections between the sites.
There are also additional labor costs due to the need to manage
and maintain each local database.

Security In a centralized database it is much easier to control data since
all the data are located in the same place. But in a DDB we must
control the access to all of the replicated data that is placed in
multiple locations and we have to secure the network between
the different sites and the users.

Additionally, the remote database together with infrastructure needs to be secured by
encrypting the traffic between the individual database servers and between the remote
sites[149].

3.7.6 Security Weakness of distributed database
Security in a DDB could be more difficult to maintain that for a centralized database. The

reason for this are [150]:

Multiple entry points A DDB has many entry points to the system. In order to address
this problem, each node needs to be secure physically and
logically.

Encryption keys Encryption requires that different parts of the system exchange
secret keys. These keys are used to encrypt network traffic
between these nodes. The more these keys are distributed, the
greater the risk that their security is compromised.

Corrupted node If a node is compromised (due to viruses or direct attacks by
hackers), then the whole system could be vulnerable.

3.7.7 Security Components in a DDB
The general term “security” means to protect something against threats. The term

“information security” means to protect information from unauthorized access, modification,
or inappropriate use of data. The basic security of a DDB requires protecting the data from
unauthorized users or malicious software (virus, worm, Trojan horse, etc.)

The four main security components of a distributed system are: (1) authentication,
(2) authorization, (3) access control, and (4) encryption. These are described in more detail by
Gupta et al. [151] as:

43

Authentication Usually a “smart token” (hardware device, such as a smart card) creates a
response to a challenge. This response is sent to an authentication server
that is connected to the network.

Authorization Following authentication, an authorization decision is made concerning
whether the user should be allowed access to specific resources.

Encryption All communication is encrypted using a cryptographic algorithm, such as
RSA, PGP, or AES. Frequently a public and private key system is used,
sometimes in conjunction with a certificate authority.

Access control Access control can be implemented via access matrices, access lists,
capabilities list, or tokens. These lists define the access permissions for
specific resources or classes of resources for each user.

3.8 Addressing DDoS attack
To understand the importance of studying a distributed denial of service (DDoS) attack,

consider the following:

• A study [152] conducted by Neustar Enterprise Services has discovered that :
“In 2012, over 1 in 5 UK Organizations Hit by DDoS Attacks”

• An advanced threat protection solutions provider Arbor Networks warns:
“DDoS attacks scaling up alarmingly!” [153]

• A report from Security firm Prolexic states that:
“Attacks became bigger and more frequent in the first three months of 2013.” [154]

After reading all the quotes above the necessity of studying DDoS attack and preparing
the ifoodbag cloud network to prevent DDoS attacks should be clear. For this reason in this
section we will discuss different types of DDoS attacks and how to prevent DDoS attacks in a
cloud environment. We will also propose a guideline for ifoodbag to prepare its network to
prevent DDoS attacks.

3.8.1 What is a DDOS attack
At first consider two definitions of a DDoS attack:

• National Institute of Standards and Technology (NIST) definition of DoS attack:
“… An attack that prevents or impairs the authorized use of networks, systems, or
applications by exhausting resources.” [155]

• Wikipedia says:
“A denial-of-service attack (DoS attack) or distributed denial-of-service attack (DDoS
attack) is an attempt to make a machine or network resource unavailable to its intended
users.” [156]

A denial of service (DoS) attack is a type of attack that is primarily focused on
interrupting availability of services of one or more victim system(s). A DDoS attack is a
variant of a DoS attack. To perform a DDoS attack on a target, the attacker utilizes multiple
computer systems in order to make it more difficult to detect or mitigate an attack. The
computer system involved in a DDoS attack can be located in geographically distributed
areas. It is possible that users of the computer systems participating in the DDoS attack do not
even know that they are participating in a DDoS attack! Exploiting these many computers is
accomplished by exploiting the flow or limitations of a protocol, network structure, or
application that the participant computer systems are normally using. In this way, a DoS or

44

DDoS attack can target one or more primary victim(s) (i.e. the target computer system that
will be attacked) and some secondary victims (i.e. the participant computer systems utilized to
carry out the attack). Performing DDoS attack exploiting peer-to-peer system (P2P) is
discussed in [157]–[159]. Whatever method is used, the purpose of a DoS or DDoS attack is
ultimately to make a service or a network resource (e.g. a website, network storage, network
access, physical memory, CPU) unavailable to its legitimate authorized users.

3.8.2 Different types of DDOS attacks
A very typical example of a DoS or DDoS attack is to flood a target server with packets

and thus overload the server’s network bandwidth and other resources (e.g. physical memory,
processor, storage), so that the users of the server cannot connect to it or get the service that
they expect from this server. Several other attack methods are presented in the following
paragraphs.

3.8.2.1 SYN Flood Attack
Many operating systems have a limit on the number of concurrent half-open TCP

connections (i.e. pending connections) on a particular port. Attackers exploit this limit to
perform a SYN Flood attack [160]. A SYN Flood attack is performed by sending an enormous
number of TCP SYNchronize (SYN) packets (often with false source IP address) to a server.
After the server receives a TCP SYNchronize packet, it replies with a TCP SYNchronize-
ACKnowledgement (SYN-ACK) packet and then waits to receive an ACKnowledge (ACK)
packet. However, since the machine at the source IP address did not wish to open a TCP
connection to this IP destination and destination port, it does not reply to the SYN-ACK
packet. In this way the attacker exhausts the half-open connections limit of the target server’s
operating system. As a consequence the server cannot respond to legitimate SYN packets,
until the half-open connections are timed out. [155], [161]

Some mitigation techniques against SYN Flood attack have been described in [153], [158]
[160] (e.g. filtering, using firewall, reducing SYN-RECEIVED timer).

3.8.2.2 Smurf Attack
A smurf attack is a kind of amplifier attack. If broadcasting is enabled in a network

device, then an attacker can exploit this to use the network as an amplifier (also called a
‘smurf amplifier’) and perform a DoS attack on a target. To perform a smurf attack, the
attacker continuously sends ICMP PING requests to the broadcast address of the smurf
amplifier network containing as their source IP address the IP address of the target. All of the
hosts in the amplifier network reply to the PING requests and as a consequence the target
starts receiving a potentially enormous number of ICMP PING response packets. These
packets very quickly consume the target’s network bandwidth, preventing legitimate users
from accessing that target’s resources. [155], [161], [162]

3.8.2.3 ICMP Flood Attack
An ICMP Flood Attack does exactly what it says. An attacker, from a network with a

greater bandwidth than the target’s network, sends an enormous number of ICMP echo
requests which the target has to respond to. In this way the attacker slows down the victim’s
network with a flood of ICMP packets. [161], [163]

3.8.2.4 Ping of Death
The default size of a PING packet is 32 bytes, but can be adjusted to be larger. However,

many operating systems cannot handle a PING packet larger than 65535 bytes. Attackers
exploit this by performing a “Ping of Death” attack by sending PING packets larger than

45

65535 bytes, through fragmentation, to a target. Since the operating system of the target
cannot handle such a large packet, it will experience buffer overflow and could even crash.

Preventing this attack can done by using a firewall to check what the PING packet size
would be after reassembling the fragmented PING packets. Another method is to increase the
size of the memory buffer to larger than 65535 bytes in order to avoid buffer overflow. [164]

3.8.2.5 Teardrops
TEARDROPS is an old type of DoS attack. It exploits a weakness in early TCP

implementations. Every network device fragments packets larger than the output link’s
maximum transmission unit (MTU). The receiver of these packets reassembles the fragmented
packets. To perform a teardrop attack, the attacker sends fragmented IP packets with
overlapping data in order to exploit the fact that the TCP/IP stack in operating systems (e.g.
Windows 95, Windows 98) did not know how to handle such packets and the operating
system would crash. However, today most operating system can correctly reassemble these
fragments. [161], [165]

3.8.3 Review of work related to prevention, detection, and mitigation of DDoS
attack

Many studies have been made of how to handle DDoS attacks and many elegant
algorithms have been suggested. Some research deals with attack prevention and/or detection,
some focus about how to filter DDoS attack and some research considers attack trace back.
Here we discuss different research papers. For each of the following research papers we point
out the proposed or deployed method and the scope of the method.

• “CBF: A Packet Filtering Method for DDoS Attack Defense in Cloud Environment” [166]
In this paper, incoming traffic packets are filtered based upon an attribute called
confidence. The filter runs during two periods, one is a non-attack period and other is
an attack period. The assumption behind this method is that mostly legitimate packets
are processing during a non-attack period, thus establishing a nominal profile. A
packet during the attack period is scored with the help of the nominal profile and
decision is being made either to discard or accept the packet. The attractive feature of
the proposed Confidence-Based Filtering (CBF) method is that it can distinguish
between flash crowds (i.e. a lot of traffic to a Web site for a popular event) and denial-
of-service attack.

• “PacketScore: A Statistics-Based Packet Filtering Scheme against Distributed Denial of
Service Attacks” [167]
The basic idea in PacketScore is Conditional Legitimate Probability (CLP). CLP
specifies the likelihood of a packet being a legitimate one by considering the attribute
values it contains in the TCP and IP headers. Packets are discarded by comparing the
CLP of each packet with a dynamic threshold. CLP is formed by comparing traffic
characteristics during the attack period with the legitimate traffic characteristics.
Packets are scored by using Bayes’ Theorem [168]. High accurate filtering and ease in
deployment make PacketScore suitable for cloud environment. But it cannot
differentiate flash crowd and attack. Also it has to perform expensive operations to
score packet, which directs to low processing efficiency in discarding packets.

• “ALPi: A DDoS Defense System for High-Speed Networks” [169]
ALPi follows the concept of PacketScore with some optimization. Implementation
complexity is reduced and performance is increased. Simple score computation is
based on a Leaky-bucket (LB) [170] overflow control scheme which makes ALPi
possible for high-speed implementation. Another scoring scheme named attribute-

46

value-variation (AV) investigates the disparity of the current packet attribute values,
and enhances the accuracy of detecting and distinguishing attacks. Combination of LB
and AV lessen the memory requirement and implementation complexity significantly
and also improve the accuracies in DDoS attack detection and packet discrimination.

• “Defense against Spoofed IP Traffic Using Hop-Count Filtering” [171]
In this Hop-Count Filtering (HCF) approach where an accurate IP-to-hop-count
(IP2HC) mapping table is created to detect and discard spoofed IP packets. Hop-count
information can be derived from TTL field of the IP header of a packet. An Internet
server can distinguish the spoofed IP packets from the legitimate packet by IP2HC
mapping. HCF is easy to setup. Their experiment shows that HCF can identify
approximately 90% of spoofed IP packets.

• “Controlling IP Spoofing through Inter-domain Packet Filters” [172]
This paper proposes an inter-domain packet filter (IDPF) architecture. The IDPF is
able to mitigate the limit of IP spoofing in the cloud. IDPFs are built from the
information that is contained in BGP route updates and are positioned in the network
border routers. Rules are set on IDPF that it does not filter out packets with legitimate
source addresses and it does not require global routing information. IDPFs can work
proactively to limit the IP spoofing capability of DDoS attackers. IDPF can also limit
the affect by localizing the source of an attack packet to a tiny number of candidate
networks.

• “A packet marking approach to protect cloud environment against DDoS attacks” [173]
Distributed Denial of Service (DDoS) can attack a cloud web services through the use
of HTTP and XML. This new form of attack is called HX-DoS attack. It is a merging
of HTTP and XML messages that are sent to flood and tear down the communication
channel of the service provider of cloud. In this paper to distinguish between the
legitimate and illegitimate messages a rule-set based detection technique CLASSIE is
used and another technique called modulo-marking method to in order to avoid the
spoofing attack. The positive side of this approach is that it has less false positive rate
and the rate of detection and filtering of DDoS attacks is high.

• “Securing Cloud Servers against Flooding Based DDOS Attacks” [161]
In this paper Average Distance estimation technique is used to detection of DDoS
attack in the cloud. Distance is calculated from the TTL field of an IP header. An
exponential smoothing technique is used to forecast the distance mean-value of a
packet in the next time period. Mean absolute deviation (MAD) determines whether
the distance is normal or not. The technique they suggest is based on MMSE
(Minimum Mean Square Error) linear predictor to support efficient traffic arrival rate
prediction for disjoint traffic. The proposed solution has high detection rate and low
false positive rate but this is implemented on a simulator with 100 nodes not in the real
cloud.

• “Security Issues in Cloud Computing Solution of DDOS and Introducing Two-Tier
CAPTCHA” [174]
In this paper a preventive measure two-tier CAPTCHA is proposed against Denial of
service attack. An attacker generally averts legitimate users of cloud services from
using their desired resources by flood the network. Graphical Turing Tests as an
authentication method is widely used to make a distinction between human users from
robots. This paper suggests using a CAPTCHA (Completely Automated Public Turing
Tests to Tell Computers and Humans Apart) method named Two-Tier CAPTCHA. An
alphanumeric CAPTCHA code with image is produced and tells the user to logon.

47

When first tier is passed, a query related to that CAPTCHA code is asked in the
second tier to interact with the service. Combination of more difficulties makes the
bot-programs difficult to guess, thus enhance the probability of preventing a bot
program to perform DDoS attack.

• “Defense of DDoS Attack for Cloud Computing” [175]
An approach SOA-Based Traceback Approach (SBTA) that uses a Service Oriented
Architecture (SOA) to trace-back and find the source of DDoS attacks is proposed in
this paper. Along with SBTA a Cloud-Filter is combined with a defensive system to
trace and recognize the source of attack messages in most cases. Another feature is
that it can decrease the numbers of attack packets needed to rebuild the attack path. It
also has a high detection rate with low false positives.

• “New Framework to Detect and Prevent Denial of Service Attack in Cloud Computing
Environment” [176]
In this approach they propose a integrated solution framework for DDoS attack
prevention, attack detection and attack trace back. The suggested approaches are
statistical method Covariance Matrix to detect attack, TTL (Time-to-Live) value
counting method to find out attack source, and using a Honeypot method to prevent an
attack. This paper only proposes a solution; it does not provide any implementation.

• “Scalable Cloud Defenses for Detection, Analysis and Mitigation of DDoS Attacks” [177]
This paper also establishes some countermeasure to Detection, Analysis and
Mitigation of DDoS Attacks. As resources become unavailable during DDoS attack, to
guarantee resource availability for different stakeholders of the cloud they propose
some solutions, such as: early and rapid detection of DDoS attack (It requires scalable
inter-Cloud Data Correlation Analysis), delay as much as possible the effects of the
DDoS attack by increasing the number of gateways under attack so that they can carry
on handling traffic, rapid migration of virtual machines from attacked physical
machines to non-attacked ones, maintainability to migrate VM during attack by
guaranteeing network bandwidth, and to end the DDoS attack as soon as possible
(requires DDoS traffic re-routing in collaboration with the traffic divert). This paper
just proposes a solution without providing any experimental result.

49

4 Secure system design
In this chapter we provide a number of guidelines to improve the security of ifoodbag’s

cloud implementation. The guidelines in initially presented in sections ordered based upon the
flow of packets from a user to the ifoodbag infrastructure.

Configured with DNSSEC

VPN tunnels used for
communication

HTTPS used

Figure 4-1: System design to secure ifoodbag cloud architecture

4.1 Secure name resolving through DNSSEC
To secure the name resolving process, we recommend ifoodbag use DNSSEC at its

authoritative name server (i.e. the authoritative name server for the ifoodbag.com domain).
However, increased security always comes at a cost. There have been several research
projects that have measured the cost of DNSSEC, for different DNS resolver implementations
(e.g. BIND [178], NSD [179], UNBOUND [180], and Microsoft DNS). BIND is the most
widely used name server software [48], hence most researches have focused on it.

The comparative performance studies of DNS and DNSSEC give an idea about how the
use of DNSSEC can affect the user’s experience of a web application (e.g., ifoodbag’s web
application). Additionally, these prior results give insights into selecting the name server
application that is best suited to implement DNSSEC.

Daniel Migault, Cédric Girard, and Maryline Laurent have empirically investigated the
performance of three different name server implementations: BIND, UNBOUND, and NSD*,
for both DNS and DNSSEC [181]. As we recommend ifoodbag use DNSSEC for its
authoritative name server, we only focus on observations regarding an authoritative name
server.

* NSD is an authoritative only, open source name server

50

Migault, Girard, and Laurent noticed that:

• To process name resolve queries DNSSEC generates greater CPU load than DNS. For BIND,
if DNS supports X number of queries per second (at maximum CPU load), then DNSSEC
supports only 79% of X number of queries per second. For NSD, DNSSEC can support 83%
of X number of queries per second. In other words, at a certain CPU load a DNSSEC server
supports ~20% fewer queries per second than a DNS server.
NSD can handle more queries per second (for a given CPU load) than BIND. For
DNSSEC, BIND at a maximum CPU load supports 43% fewer queries per second than
NSD. For DNS, BIND at maximum CPU load supports 41% fewer queries per second
than NSD. In other words, NSD can handle 2.3 more queries per second than BIND
with DNS or DNSSEC.

• Authoritative Server Processing Time or server response time is the time authoritative servers
take to receive a query, process it, and send response. This processing time is crucial as it
directly impacts the performance seen by the end users. A DNSSEC authoritative server takes
10% longer response time for BIND and 20% longer response time for NSD than the response
time of a DNS authoritative server. For DNS, the BIND response time is twice that of NSD.
For DNSSEC, the NSD response time is 45% of BIND’s response time. In both cases NSD’s
response time is always quicker than BIND.
For an authoritative server they observed that in terms of latency*, without load
considerations, NSD name server application always outperformed BIND, for both
DNS and DNSSEC. For an authoritative name server, they have not stated exactly
how the performance differs between DNS and DNSSEC. However, Figure 3(a) in
[181] clearly shows that DNSSEC has higher latency than DNS for both BIND and
NSD, which indicates that there is some performance degradation for DNSSEC.

Ager, Dreger, and Feldmann [63] focused only on BIND. They observed that DNSSEC
utilizes twice the amount of memory and 1.1 to 2 times more CPU resources than DNS.
However, they state that these amounts of CPU and memory usage should not to be a problem
for modern computer systems as these systems are generally equipped with lots of memory
and a high performance processor.

4.2 Secure browsing through HTTPS
Ifoodbag is a web application. So in a typical use case, an ifoodbag user will access and

browse the ifoodbag web application with the aid of a web browser using the HTTP protocol.
Earlier in section 3.3 we noted that HTTP is not a secure protocol and that either HTTPS or
S-HTTP should be used to provide improved security. We recommend ifoodbag use HTTPS
to secure all of the web communication with its users. Ifoodbag could also use S-HTTP, but as
this is rarely used in today’s internet community this is not a recommended solution.

HTTPS uses public key cryptography, which relies on complex mathematical operations
to implement encryption, decryption, digital signatures, etc. These operations may require
more computing resources (e.g. physical memory and CPU resources) as well as can take
some processing time, which will create a delay in the client-server request-response process.
However, the question is how large this overhead is and if the delay is acceptable to the user,
i.e, if the user experiences a satisfactory web browsing experience. We examined existing
research regarding this performance.

In [182] Arthur Goldberg, Robert Buff, and Andrew Schmitt mention that transferring
data using HTTPS has little performance penalty. They worked with Microsoft’s Internet

* Latency = query initiated by client goes to authoritative name server + authoritative name server resolve the
query and send response back to the client + client receives the response

51

Information Server (IIS) and Netscape Enterprise web server applications. They observed that
the server side encryption process in HTTPS increases the response time by at most 22% for
Netscape and 17% for Microsoft IIS. They have also observed that data transfer rate decreases
as the level of encryption increases (e.g. changing a stream cipher RC4 key length from 40-bit
to 128-bit decreases the throughput). However, they consider that their observed delay is
acceptable due to the security that HTTPS provides.

In another study [183] of the security cost of HTTPS, Xubin He observed that HTTPS
requires more system resources on the client side than standard HTTP. This is because server
certificate verification, SSL encryption, etc. are handled in the client and these functions are
not required for HTTP. He also observed that the server response time for HTTPS is always
greater than for HTTP. For HTTP, the server response time increases rapidly as the number of
concurrent clients increase. Once the server is saturated in terms of throughput, HTTPS has a
33% throughput reduction in comparison with HTTP in terms of number of the number of
new connections per second that can be handled by the server.

Based on our study of the literature we conclude that for an e-commerce business site such
as ifoodbag, where security is more important than performance, the increased response time
of HTTPS is both acceptable and prudent.

4.3 Secure Cloud Storage
In cloud storage, data resides on multiple third party servers. Cloud storage providers’ claim
that they provide appropriate security, but no one really believes them [184]. Security and
reliability are two biggest concern about cloud storage [185].Data traveling through network
or stored in the cloud storage in plain text is a serious security threat [184].

According to Vormetric [186] there are complex data security challenge in the cloud.

 The need of protect confidential business or regulatory data.
 Multiple clients are sharing the same cloud service.
 Data mobility and legal issues related to government rules as the EU Data Privacy

Directive.
 Lack of standards of how cloud service providers securely recycle disk space and erase

existing data.
 Auditing, reporting and compliance concerns
 Third party insider who doesn´t work with company and can have visibility and

control over data.

In order to maintain and insecure secure data most system uses different techniques and
combined them. These include Encryption, Authentication and Authorization[185].

Encryption: We can encrypt our data by using any different cryptographic algorithm.
Though it is possible to decrypt, encrypted file but most of the hackers do not have access to
the amount of computer processing power that requires decrypting the information[185].

Authentication: User name and password is required[185].

Authorization: Usually client will provide the list of the people who have the power to
access the stored information. There are many companies who apply multiple level of
authorization power. For example: a general employee may have limited access to data that
stored over cloud while HR manager have more extensive access on data[185]

52

Companies like ifoodbag where they have decided to placed their data in cloud yet they
want to make sure their data is safe they have to consider above techniques to ensure their
data security. We recommend ifoodbag to encrypt their data by using AES cryptographic
algorithm and also follow the Swedish Data Protection law and other laws and regulation.

4.4 Method to Secure a DDB in the Cloud
Ifoodbag is an ecommerce based company, where customer chooses products online.

Ifoodbag will manage their own database in which they store product information, customer
information, and employee information. From a general point of view we know that all of this
information is crucial for any ecommerce business, thus we have to protect the data stored in
this database.

As ifoodbag is a small e-business company, we have to keep in mind how many
customers’, employees’, and products’ information will be stored in this database and how
this information can be managed in the most secure way without taking too much time,
resources, or cost. Considering ifoodbag´s size and capability we have decided to secure
ifoodbag´s database by enforcing policy based security in a distributed database and storing
encrypted data in database.

 In [187], Neera Batra and Manpreet Singh discuss multilevel policy based security in a
distributed database. According to these authors, a distributed database system’s functions
includes distributed query management, distributed transaction processing, distributed meta
data management, and enforcing security and integrity across the multiple nodes. Database
security is the protection of the data stored inside the database from unauthorized access,
malicious attacks, or accidental mistakes made by authorized individual. The most important
issues in this security are authentication, identification, and access control. The database
provides various layers and types of information security such as access control, auditing,
authentication, and encryption. The five major security requirements for database
management systems are: multi-level access control, confidentiality, reliability, integrity, and
recovery. A complete data security solution must meet the following three requirements:
(1) secrecy or confidentiality refers to the protection of data against unauthorized disclosure,
(2) integrity refers to the prevention of unauthorized and improper data modification, and
(3) availability refers to prevention and recovery from hardware or software error.

We recommended ifoodbag to encrypt sensitive data and store in database. ifoodbag will
follow or set their own data policy to distinguish between sensitive and non sensitive data. For
this encryption, we have used the AES encryption algorithm. The reason behind choosing this
algorithm is that AES is more secure than DES[188]. Today DES is breakable through brute
force attacks because of its small key size (56 bits). On the other hand AES can utilize keys of
128, 192, or 256 bits (a 128 bit key is already very difficult to break)[188].

4.5 Secure Memcached
One of the main drawbacks with memcached is its security. Memcached does not provide

any form of security (Either authentication or encryption) [131]. Memcached is mainly built
for speed, rather than for security. This means that anyone who can discover our memcache
can read from it or write to it. If we want to secure Memcached we have to secure it by
ourselves. Even though memcached does not come with built-in security, it is widely used by
some of the most famous websites, including Facebook, Twitter, Github, etc. [189]

First, we examine why we should use memcached and then we will look at what are the
most common security features that we can enable in order to secure memcached. Memcached
has some features [190] that motivate us to choose it for ifoodbag´s web caching:

53

Easy Scalability Memcached needs minimal configuration to add a new
node, where no special interconnect requires.

Minimal impact on node
failure

When a particular node does fail, it has no almost no impact
on the overall cache other than reducing the available
memory.

Multiple available clients Memcached client API´s supported by various language like
PHP, C++, Java, Python, Ruby, Perl, .NET, Erlang,
ColdFusion and many more.

Cross-platform Memcached is available for wide variety of platform
including Linux, BSD and Windows.

Architecture flexibility Memcache have no restriction on all nodes to have a
uniform cache size. The nodes with less physical memory
can be set up to contribute 512MB of our cluster. And other
nodes may have 2GB of memory for the Memcached
instance. We can also rum more than one instance of
Memcached on a single node.

Multi-fetch Instead of querying them in a loop one by one, we can
request values for more than one key at once. If we query
one by one it takes lot of network round tips.

Constant time function It is a single key or hundred it takes same amount of time to
perform an operation in memory.

We can secure Memcached by using two common features:

Firewall We can always start with Firewall. It will only allow the data that we want to
pass through[132]. Even if we say we want to only save public information not
private information, still we will want our memcached daemon protected and not
open to any DoS attack. If we want to control access to any kind of data it´s
always advisable to use external protection like iptable or firewall rules[191].The
reason behind, memcached doesn´t come with any built-in authentication and it
does not require any sort of user name or password[191].

We can always start with Firewall. It will only allow the data that we want to
pass through[132]. Even if we say we want to only save public information not
private information, still we will want our memcached daemon protected and not
open to any DoS attack. If we want to control access to any kind of data it´s
always advisable to use external protection like iptable or firewall rules[191].The
reason behind, memcached doesn´t come with any built-in authentication and it
does not require any sort of user name or password[191].

SASL Usually deployment of memcached is within trusted network. But if we want
to place memcached in hostile network or in case administrator would like to
have control over clients in those cases we can use SASL to secure memcached
[192]. Latest Version of memcached support SASL authentication. This SASL
framework provide authentication and give data security[193].

SASL adds authentication support to connection based protocols, for
example: Memcached client binary protocol in our case. The way SASL works is
that there is function (API) call that is added to the client that provides
functionality for identifying and authenticating a given user. SASL enable
protection during the entire connection. Once a user is identified and

54

authenticated, SASL provides a security layer between the client protocol and
connection[194].

Previously Memcached had no authentication layer. Later binary protocol
and SASL was added[194] Anyone was able to read the memcached data if they
can gain the access over memcached. Therefore it was actually web developer’s
job to make sure that, their network was locked and they also design secure
application. Then the binary protocol was added to memcached for more efficient
and compact client-server connection[194]. This actually made possible to add
SASL support also. With SASL support, function was added to the server and
forced client connection to authenticate itself before the whole connection can
continue[194].This requires a client, which sent authentication information
before using SASL. At the beginning only spymemcached client (java) was
supported. But now libmemcached also has SASL support. Basically SASL uses
some sort of storage where is stores user credential. For this kind of storage it can
use LDAP or SQL database[194].

Basically user credential will be stored in a database file on the server that
memcached will be running on. When a user wants to connect to the memcached
server, it will not allow the user to connect to the server unless the user provides
their credential. And those given credential must match the user credential that
already stored in SASL database [194].

From the discussion above, we observe that memcached gives better performance than
security. However, in any e-commerce business security is the highest priority provided that
we can achieve sufficient performance. Ifoodbag´s main concern is also security. From this
discussion, we can see that, even though memcached does not come with built-in security, we
can still configure an appropriate security feature . In this case, we recommend firewall or
SASL authentication for securing memcached.

55

5 Implementation
Based on the desired functionality we have split the proposed design to implement

ifoodbag’s web application in a cloud environment into seven different modules (see Chapter
3). Then we identify potential security threats for each of these modules. Next, we study
available mechanisms to prevent the identified security threats. We wanted to know how
implementing the security mechanisms could affect the ifoodbag web application’s
performance. To learn this we have applied two different approaches: (1) studied work done
by other researchers and (2) implemented some of these mechanisms and observed their
performance empirically. This chapter presents the implementation process and our empirical
observations by splitting the investigation into the process of secure browsing (using the
ifoodbag web application), securing the communication between the nodes within the system,
and security for the database. For each of these we consider the motivation for this part of the
solution and describe an experimental setup to measure the performance of this part of the
solution.

5.1 Secure browsing of ifoodbag web application
From the background presented in Chapter 2, we see that the HTTP protocol (used

together with a browser application to realize the World Wide Web) does not have any
security mechanism. We found two alternative mechanisms to provide security in HTTP
communication: (1) HTTPS and (2) S-HTTP. HTTPS is widely used in today’s internet
world, thus we will focus on it. HTTPS provides security for HTTP communication by the use
of the Secured Socket Layer (SSL). SSL is a cryptographic protocol that uses public-key
cryptography for confidentiality, integrity, and certificates for authentication. These
mechanisms involve complex mathematical operations. These mathematical operations might
add undesirable overhead to the overall communication process performed by HTTP protocol.
We aim to measure this overhead.

Figure 5-1 shows the experiment setup to measure the performance overhead for HTTPS.
Section 6.2.3 describes the results of this test using the experimental setup listed in

56

Table 5-1.

In our experiment, we download content to an HTTP-client (running in a client machine)
from a web server and measure the total time required to perform this operation. We start
counting time when we send a request to the webserver and stop counting time when we
receive all of the content from the server. In our experiment we consider only server response-
time (i.e. time requires to receives content from server) as the matrix, while comparing
performance of HTTP and HTTPS protocol. We do not observe usage of other computing
resources (e.g., processor, memory, storage) and count them as matrices to measure
performance.

Web server providing content to usersUser requests for content using web
browser

HTTP Request

HTTP Response

Figure 5-1: HTTP & HTTPS experiment setup

57

Table 5-1: HTTP and HTTPS experimental configuration

Network Client and Server both reside in the same Local Area Network (LAN). LAN
connection speed 1.0 Gbps. Did not perform any other network transaction
(i.e. upload, download, web-site browsing) to leave the full bandwidth
available for the experiment traffic.

Web client As web client we could use any web browser (e.g. Internet Explorer, Google
Chrome). Instead we have used WebClient class library [195] from .Net
Framework 4.5. The reason was ease of measuring request/response time
easily and accurately.

Web server IIS 7.5.7600.16385

Client machine Operating System: Windows 8 (64-bit)

RAM: 8.00 GB

Processor: Intel(R) Core(TM) i7 CPU M 620 @ 2.67GHz 2.66 GHz, x64-
based processor

Server machine Operating System: Windows Server 2008 R2 Enterprise (64-bit)

RAM: 1.48 GB

Processor: Intel(R) Core(TM) i7 CPU M 620 @ 2.67GHz 2.66 GHz, x64-
based processor

Tools We have written a tool to send data to and receive data from a web server as
well as measure time required for this process. The tool writes the time in a
text file. The tool was written with the C# programming language and
Microsoft .Net framework 4.5 was used. We have used Microsoft’s Visual
studio 2012 as an Integrated Development Environment (IDE). Cached data
was cleared from the system before each session. The source code for this
tool is presented in Appendix D. The prime reason for selecting C#
programming language to develop the tool was the experience of the author
with this programming language. However, another programming language
such as Java or Python could have been used.

Plots To create plots from the collected data we have used Microsoft’s Office
Excel 2010.

5.2 Secure Communication between Nodes
In the proposed design to implement ifoodbag’s web application in a cloud environment,

nodes in different tiers are connected to each other. Management nodes are connected to
virtual machine (VM) instances in the application tier (See Figure 5-2). A management node
uses this connection to execute a policy for scaling up and down the number of nodes in the
application tier. Additionally, the nodes in the application tier have connections with nodes in
the database, caching, and load balancing tiers. In the proposed design for the ifoodbag cloud,
all of these connections are unprotected. Based upon our study we suggest that a VPN tunnel
can be used to protect all of these communication channels (see Section 3.4). However, using
a VPN might add undesired overhead to the normal communication process between nodes,
which could negatively affect the overall application’s performance and user experience. In
order to assess this effect we performed an experiment to measure the overhead for using a
VPN tunnel.

58

Management Node(s)

Application Server 1 Application Server 2 Application Server n

Management Node(s) execute policy to scale up or down number of nodes in Application Tier

Application Tier

Figure 5-2: Management Node(s) execute policy to scale up or down number of nodes in Application tier

Figure 5-3 below depicts the experiment setup.

Ifoodbag Application Server Ifoodbag Database server

VPN Client VPN Server

SELECT Query

Query Response

Figure 5-3: VPN Experiment scenario

We connect two nodes through a VPN tunnel and then from one of these nodes we send
SQL SELECT database queries to the other node, which acts as a database server. We
measure the time from sending a query until receiving a response. Section 6.2.4 describes the
results of this test using the experimental setup listed in Table 5-2. In our experiment we
consider only the time, required to receive query result from database server, as the matrix
while comparing performance of different secure connection mechanisms between nodes. We
do not observe usage of other computing resources (e.g., processor, memory, storage) and
count them as matrices to measure performance.

59

Table 5-2: VPN experimental configuration

Server machine Operating System: Windows Server 2008 R2 Enterprise (64-bit)
RAM: 1.48 GB
Processor: Intel(R) Core(TM) i7 CPU M 620 @ 2.67GHz 2.66 GHz, x64-based
processor

Client machine Operating System: Windows 8 (64-bit)
RAM: 8.00 GB
Processor: Intel(R) Core(TM) i7 CPU M 620 @ 2.67GHz 2.66 GHz, x64-based
processor

Network Client and Server both reside in the same Local Area Network (LAN). LAN
connection speed 1.0 Gbps. Did not perform any other network transaction (i.e.
upload, download, web-site browsing) to leave the full bandwidth available for
the experiment traffic.

Database Microsoft SQL Server 2008 R2

VPN application We have measured data for OpenVPN (version 2.1.3) and IPSec VPN tunnel.
We have followed [196] to configure OpenVPN for our experiment.

Tools To run the SQL query from a remote client we could use any database
administrative tool (e.g. Toad [197], Navicat [198]). Instead we have used our
own tool. This tool start counting time just after sending a SQL SELECT query
and stop just after getting query result from Database server. The reason for
using our own tool was to measure the request/response time easily. The tool was
written in the C# programming language and Microsoft .Net framework 4.5 was
used. We have used Microsoft’s Visual studio 2012 as an Integrated
Development Environment (IDE). The code for tool is presented in Appendix C.

5.3 Secure information in database
According to the proposed cloud design, ifoodbag will store all the data in a distributed

database. Part of this data will be business related, which ifoodbag would not like to make
public. For example, customers information, employees salary data. Ifoobdag can encrypt
these data in the database to keep data confidentiality. Encrypting data while writing in the
database and decrypting data while reading from database might add overhead in the data
read/write process. So we perform experiment to check if there is any overhead. We use AES
encryption in our experiment, as it is well studied and more secure than other algorithms (e.g.
DES).

Figure 5-4 shows the experiment setup. In order to avoid any limitations due to the
network our client and server were running in same local machine. We have used Windows,
Apache, MySQL, and PHP (WAMP) as our server and Toad as our Client. First we stored
plain text data and calculated the query time and then we encrypt and decrypt data and
calculate the time of for the query including the time to do encryption and decryption of data.
Section 6.2.6 describes the results of this test using the experimental setup listed in Table 5-3.

60

Table 5-3

Network

Server M

Client M
Server S
Client So
Tools

5.4 S

Ifoo
other da
storage
them [1
threats.
while tr
can encr
The file
size tak
cryptogr
algorith

: Database e

k

Machine

Machine
Software
oftware

Secure in

odbag have
ata. As we
providers’
84]. If ifodb
Since those

raveling ove
rypt those f

e that will tr
kes differe
raphic algo

hm) to see th

experimental co

The clien
no limita
Operatin
Processo
Same as
For serve
For clien
A tool w
measure
decrypted
written w
Express
code for

nformat

decided to u
know in clo
claim that

bag send al
e data are b
er network
file before s
ravel over n
ent encrypt
orithm: AES
he time diffe

Figure 5-4: D

onfiguration

nt and server
ation or delay
g system: W
r: Intel(R) C
server mach
er software W
nt software T
was written in

the time re
d data. The
with C# pro
was used to
this tool is p

tion in C

use cloud st
oud storage
they provi

l their data
business rel

and also w
send them a
network wil
tion and d
S and 3DES
ference betw

Database exper

r both reside
y due to a net

Windows 7 U
Core(TM)2 D
hine
WAMP Serve
OAD for My
n order to en
equired whe

tool writes
ogramming

run the cod
presented in A

Cloud St

torage to sto
e, data resid
ide appropr
as a plain t

lated, ifoodb
while reside
and make su
ll have diff
decryption
S (they are
ween them.

riment scenario

d in the sam
twork conne

Ultimate. Sys
Duo CPU P75

er (32 Bits &
ySQL 7.0 [19
ncrypt and de
en using pla

the time in
language. M

de and integr
Appendix I.

orage

ore their fil
des on mult
riate securit
ext file it w
bag want to

e on multipl
ure their dat
ferent size. A

time. We
well studied

o

me local mach
ction.
stem type: (3
550 @ 2.26 G

& PHP 5.3) 2
97] was used
ecrypt data in
ain text data
 a temporar

Microsoft vis
rate the envi

e, images, f
tiple third p
ty, but no

will lead to s
o make sure
le third par
ta confident
And each d

use two
d and more

hine, hence t

32bit). Ram
GHz 2.26 GH

2.2E [199]wa
d.
in database a
a and encry
ry file. The
sual studio
ironment. Th

financial rec
party server
one really

serious data
e their data
rty server. I
tiality and i

different typ
type of

e popular th

there was

2.00GB.
Hz

as used.

as well as
pted and
tool was
C# 2010
he source

cord and
rs. Cloud
believes
security
are safe

Ifoodbag
integrity.
pe of file
different

han other

Figu
to get r
express
over ne
read it i
send en
(e.g., pr
Section
5-4.

Figure 5-5

Table 5-4

Network

Client m

Server m

Tools

Plots

ure 5-5 show
real time da

.At first w
twork and
in client sid

ncrypted file
rocessor, m
6.2.7 descr

5: Cloud stora

: Cloud stora

k C
w
5
d
e

machine O

R

P

machine O
P

W
m
fi
u
p

T
E

ws the expe
ata. For this

we connecte
stored in ou
de. In our e
e over the n
memory, sto
ribe the resu

age experimen

age experimen

Client and S
we used w
54MBPs. D
download, w
experiment t

Operating Sy

RAM: 3.00

Processor: P

Operating sy
Processor: In

We have wr
measure tim
file. The too
used Micros
presented in

To create p
Excel 2010.

eriment setu
s experimen

ed two node
ur desired l
experiment

network. We
orage) and
ult of this ex

nt scenario

nt configuratio

Server both
wireless LA
Did not per
web-site bro
traffic.

ystem: Win

GB

Pentium(R)

ystem: Wind
ntel(R) Cor

ritten a tool
me required
ol was writte
soft’s Visua

n Appendix L

lots from t

up. We run
nt we used
e over netw
location. A
we consid

e do not ob
count them

xperiment a

n

reside in th
AN for thi
rform any
owsing) to l

ndows 7 Pro

DualCore C

dows 7 Ulti
re(TM)2 Du

to send file
for this pr

en with the
al C# 2010
L.

the collecte

our experim
Windows

work. Then
fter that we
er only the
serve usage
m as matri
and our exp

he same Loc
is experim
other netw

leave the fu

ofessional (6

CPU T4200

imate. Syste
uo CPU P75

e to and rece
rocess. The
C# program
Express. T

d data we

ment throug
and Micros
we encrypt

e pull the fi
time, requ

e of other co
ices to mea
perimental s

cal Area Ne
ment. LAN
work transa
ull bandwid

64-bit)

@2.00GHz

em type: (32
550 @ 2.26

eive file fro
tool writes

mming langu
he source c

have used

gh network
soft visual

pted a file p
file and dec
uired to rece
omputing r
asure perfo

setup listed

etwork (LA
connection

action (i.e.
dth available

z 2.00GHz

2bit). Ram
GHz 2.26 G

om server as
s the time i
uage. and. W
code for thi

Microsoft’

61

in order
c# 2010

push and
rypt and
eive and
esources
ormance.
in Table

AN). And
n speed
upload,

e for the

2.00GB.
GHz

s well as
in a text
We have
is tool is

s Office

63

6 Results and evaluation
The chapter begins by revisiting some of the security issues given the proposed ifoodbag

cloud design and then gives our recommendations for some security mechanisms that should
be adopted to address each of the issues. Some of our recommendations are based on the
research works previously performed by other researchers. While for some other
recommendations are based on our empirical observations. We compare our empirical
observation with other research works in case we find any other similar research has been
done. We also mention the reasons for recommending a particular security mechanism and
rejecting other alternative options. Next a set of security guidelines are given. The chapter
ends with a set of general guidelines that we suggest should be adopted by ifoodbag.

6.1 Revisit design issues
In this section, we briefly review the security issues we identified in the cloud architecture

proposed for ifoodbag web application.

The first security issue we identified is in the name resolving process. As the DNS
protocol was not designed with any security mechanisms, an attacker can exploit this lack of
security in the DNS protocol to fool ifoodbag’s customers into using the attacker’s web
service. An attacker may attack the DNS server itself or alter DNS messages between the user
(in this case an ifoodbag customer) and the DNS server. In this way, instead of original
ifoodbag web server, the user will be connected to a server of the attacker’s choice.

Another problem we identified concerned web browsing. Typically, a user will use an
HTTP client (i.e. a web browser) to connect to the ifoodbag web application. HTTP is a plain
text protocol and it does not include an appropriate security mechanism to protect the user’s
communication session, thus an attacker can read and modify the messages sent between the
user’s HTTP client and the web server.

In the proposed architecture for the ifoodbag web service, nodes in different tiers (e.g. VM
instances, database servers, and load balancers) are connected to a management node. This
management node executes the policies to manage the number of VM instances (see Figure
6-1). The VM instances in application tier are connected to and communicate with nodes in
the caching tier, as well as nodes in the database tier, in order to store and retrieve
information (e.g. order information, billing information, and user information). All of this
communication between nodes in the different tiers is crucial to provide the proper service to
ifoobag’s customers; hence the communication channel between these nodes needs to be
secured.

64

Management Node(s)

Application Server 1 Application Server 2 Application Server n

Management Node(s) execute policy to scale up or down number of nodes in Application Tier

Application Tier
Figure 6-1: Management Node(s) execute policy to scale up or down number of nodes in application tier

In the proposed cloud architecture load-balancers play an important role to uniformly
distribute load among available application servers making the cloud system scalable. Given
this important role of the load-balancers, the security of these load-blanacers also needs to be
improved.

In the proposed cloud architecture, a distributed database is used. Ifoodbag stores their
information in this database. The information that will be stored in this cloud-based
distributed database ranges from highly sensitive data to non-sensitive data. For any company,
maintaining the confidentiality and integrity of data is always top priority, thus maintaining
data security is important. We recommend that ifoodbag encrypt their data using AES
encryption, hence encrypted data is stored in the distributed database.

In the proposed design Memcached is used for caching. Memcached provides good
performance, but does not come with built-in security. We suggest that ifoodbag configure
Memcached with SASL authentication. This allows them to place the Memcached cache even
in a hostile network. Fortunately, the latest version of Memcached provides this feature.

As ifoodbag will store their data in cloud storage, their data will reside in multiple third
party servers. Data travelling through network or stored in cloud storage as plain text would
lead to serious security threats, hence we recommend that ifoodbag use AES cryptography to
encrypt and decrypt data to be stored in cloud storage.

6.2 Recommendations
We split our recommendations into seven sets of recommendations based upon the

division of the solution into seven parts. Each of these will be the topic of one of the
following subsections

6.2.1 For Secure Name Resolving
The importance of security in name resolving process and, security issues in current DNS

protocol were discussed in earlier (see Section 3.1, Chapter 3). For securing the name
resolving process we recommend ifoodbag use DNSSEC with its domain’s authoritative name
server. We recommend using the NSD name server software for implementing DNSSEC.

65

We make this suggestion since we have found that DNSSEC is the most prominent and
commonly used mechanism for securing the name resolving process. We did not find another
solution that could secure the DNS name resolving process.

The reason for selecting the NSD name server software from among the many alternatives
is based on our study of [181] where a performance comparison of NSD with other name
server software is given. This research observed that NSD performs better than BIND and
UNBOUND.

In our studies we have found that implementing DNSSEC will add overhead to the DNS
service. In addition to the added overhead to the individual DNS queries and responses,
DNSSEC also consumes more computing resources (e.g. memory and CPU time). Slower
name resolving can slow down browsing; however we recommend ifoodbag use DNSSEC
due the increased security it provides. Fortunately, browsers and hosts do DNS caching and it
is likely that the DNS responses will have a long validity; hence the practical effect of
DNSSEC’s extra overhead and additional processing will be small. Additionally, according to
Moore’s law [200] “the overall processing power of computers will double in every two
years”, hence we believe that computers will be sufficiently capable that DNSSEC can be
used without user observable performance loss.

One concern is that if ifoodbag simply uses DNSSEC for its domain’s authoritative name
server this does not ensure that the overall name resolving process is secure! This is because
many name servers (both caching and authoritative name servers) in today’s internet world are
still not using DNSSEC. As a result, clients might use a compromised caching name server
leading to a security threat in the name resolving process. Therefore, it is essential for internet
users and administrators to be aware of the importance of secure name resolving and to start
using DNSSEC by default.

6.2.2 For Securing Load Balancers
An Ifoodbag network administrator will set some policies in the management node to add

or remove VM instances in the application tier based on number of concurrent users. The
management node executes these pre-set policies to scale up or scale down the cloud
environment in order to make optimal use of available computing resources (and to avoid
unnecessary expense for the company). The load balancer uniformly distributes user requests
among the available application servers (i.e. nodes in application tier). Due to limitations in
computing resource (i.e. memory, CPU, storage) all the nodes in application tier can only
handle a certain number of concurrent user requests. If the load balancer is compromised, then
some nodes will not receive any user requests, while other nodes will be overloaded with user
requests (i.e. when the number of concurrent user requests exceed the node’s handling
capacity). It is possible that the overloaded server will not be able to respond to all the user
requests in time, which will cause a bad user experience. The network bandwidth of the
overloaded node can be fully occupied, thus the server will become inaccessible at a certain
point in this traffic load. The unavailability of this server will cause unavailability of ifoodbag
web service to the user, which as a consequence might violate the service level agreement
(SLA). Additionally, unless traffic is prioritizes the management nodes might not be able to
communicate with these overloaded servers. It is clear that in the ifoodbag cloud load
balancers play an important role in making the system scalable and hence it is important to
secure these load balancers.

We recommend that ifoodbag follow the security policies prescribed in section 3.2.3 of
this report. In addition to using squid, ifoodbag might consider the other mechanisms we have
presented in section 3.2.4.

66

6.2.3 For Secure Browsing
We recommend ifoodbag use HTTPS for the secure browsing of ifoodbag’s web

application. HTTPS uses SSL, which is a public key based security protocol. SSL uses
certificates for authentication purposes and encryption for message privacy and
confidentiality. Ifoodbag could use only authentication of server for users browsing the
website or accessing publicly available information. However, for logging-in registered
customers, ifoodbag should use strong two-factor authentication. In two-factor authentication
mode, a user has to provide the server a valid client certificate issued by a trusted certificate
authority, along with a valid username-password pair. In this way authentication is based on
‘something the user knows’ (i.e. password) as well as ‘something the user has’ (i.e. a
certificate). In this way, the client and server can mutually authenticate each other. Mutual
authentication allows the user to know that they are really communicating with the ifoodbag
web server and allows the ifoodbag web server that to know that it is communicating with a
specific ifoodbag customer. Ifoodbag can also use the security guidelines provided by a web
server software provider or developer. For example, Microsoft has security guidance for IIS
[201].

HTTPS provides transport layer security with cryptographic protocol SSL or it descendent
Transport Layer Security (TLS). This cryptographic operation adds some overhead to HTTP
browsing.

As described in section 5.1 and as shown in Figure 6-2 we use experiments to assess the
effect of using HTTPS and compare it to use HTTP. In our experiments, we download content
to an HTTP-client (running in a client machine) from a web server and measure the total time
required to perform this operation. The time counting starts when we send a request to
webserver and stops when we receive all of the content from the server. The same experiment
is being repeated multiple times (27 times for a large file and 18 times for a small file). We
wanted to observe if the overhead for HTTPS varies with content size, so we have performed
the experiment for two different sized files: one file was 3.13MB and another one was 390MB
in size (i.e., much bigger than the first file). The files’ extension was ´.mov ´.

Web server providing content to usersUser requests for content using web
browser

HTTP Request for content

HTTP Response with content

Figure 6-2: HTTP & HTTPS experiment setup

We plot our experimental results in Figure 6-3. To make the figure clearer we have plotted
only a subset of the total results (the complete set of data can be found in Appendices E and F.
In these plots, the X-axis represents different iterations of the test and the Y-axis represents
time (T) in microseconds.

67

(a) For a 390MB file (b) For a 3.13MB file

Figure 6-3: Download time comparison for HTTP and HTTPS (40bit & 128bit): (a) for a 390MB file and (b) for a
3.13MB file

In the figures above (Figure 6-3) we can clearly see that a data transfer using HTTPS takes
longer time than when using HTTP.

128 bit encryption is more secure than 40 bit encryption. Besides more than 99% of
modern web browsers support 128 bit encryption [202]. So in our analysis henceforth we only
focust on HTTPS with 128bit SSL and write just HTTPS.

We calculate average* data-transfer time for HTTP and HTTPS and present this data in
Table 6-1.
Table 6-1: HTTP and HTTPS data transfer times

From the average data transfer time we see that for a 3.13MB sized file that HTTP is three
times faster than HTTPS. However, for a 390MB file HTTP is only 1.5 times faster than
HTTPS. This indicates that with increasing amounts of data HTTPS performs proportionally
better. Our observation in this experiment is alligned with the experiment in [182] and [183]
where they have observed little performance penalty with HTTPS.

Analyzing our collected data we observe that, in our experiment required time for creating
a single HTTPS session took about 24 millisecond. After creating secured session HTTPS
took 130 millisecond for transfering per byte data. We also observe that, in our experiment,
per byte data transfer using normal HTTP protocol took about 82 millisecond. While
implementing secure cloud environment, ifoodbag can use this experiment data (e.g. secured
session creation time, per unit data transfer time) for anticipating the cost of security in their
system, based on the size and type of data they are going to secure.

From our analysis of the experiment data† we can see that the overhead of HTTPS consists
of two main parts: (1) initial additional overhead to establish the session key and (2) the
additional per SSL/TLS segment processing time. As a result, even though most users’
individual interactions with the web service will be small – the initial overhead only occurs
once per session‡.

* Average time calculation is done by the arithmatic mean formula: Average = sum of all data / total nuber of
data.
† Detail analysis available in Appendix L.
‡ Note that if the user transfers a very large amount of data it may be necessary to incur additional key exchange
overhead due to the need to re-key. However, in practice this effect is not expected to be visible to the user.

0

10000000

20000000

30000000

40000000

1 4 7 10131619

Ti
m

e
in

 m
ic

ro
se

co
nd

s

Experimental run number

HTTP (µs)

40bit-SSL (µs)

128bit-SSL (µs)

Linear (HTTP
(µs))

0
50000

100000
150000
200000
250000

1 4 7 101316

Ti
m

e
in

 m
ic

ro
se

co
nd

s

Experimental run number

HTTP (µs)

40bit-SSL (µs)

128-bit-SSL (µs)

Linear (HTTP
(µs))

File size HTTP HTTPS HTTPS overhead
3.13MB 45 millisecond 156 millisecond 156 / 45 ~ 3 times
390 MB 11 second 17 second 17 / 11 = 1.5 times

68

Reducing browsing time, by delivering content to the user as quickly as possible, is
desirable for any web application. While security is also an important concern, specially in
e-commerce. But security comes with cost. Nowadays some big IT organizations (such as
Google, Amazon, and Facebook) are using HTTPS for secure browsing of their website.
Given the magnitude of the overhead and the fact that others have adopted HTTPS we
recommend that ifoodbag use this mechanism for secure browsing of their ifoodbag web
application.

6.2.4 For Secure Communication between Nodes
To secure the communication between nodes (e.g. between the web server and database

server) ifoodbag can use IPSec. IPSec is an IETF standard for securing Internet Protocol (IP)
communications. IPSec provides data confidentiality (through encryption) and authentication
(through a cryptographic hash). IPSec works either in transport mode or in tunnel mode [203].
Tunnel mode is for use between a host (e.g. a computer) and a security gateway. For example,
a host can securely connect to a corporate network via the internet using tunnel mode.
Transport mode secures a connection between two hosts. Ifoodbag can use IPSec in transport
mode to secure connection between its nodes.

The concept of securing a connection between nodes (e.g. webserver and database server)
using IPSec is well described by Microsoft in [204]. Microsoft states that IPSec adds
additional overhead to establish & maintain secure connections and can introduce increased
network latency; hence, they do not recommend using IPSec for securing all traffic in a
network.

Alternatively, ifoodbag can also use higher layer VPN tunnel to secure the communication
between nodes. Such a VPN tunnel provides end-to-end security between nodes using higher
layer protocols, rather than operating at the IP layer as IPSec does.

We investigated the performance penalty of a VPN tunnel and IPSec empirically. From
the available alternative VPN software implementations, we selected the OpenVPN
implementation, as this is one of the most widely used open source implementations.
OpenVPN uses the OpenSSL library [205] to provide the necessary cryptographic functions
[206]. We have used an SSL certificate for authentication. However, we could use a pre-
shared key or username password based authentication. For IPSec we have used a pre-shared
key for authentication, but could also use IKE (Internet Key Exchange) X.509 certificates
[207] instead. For ease of use we have used pre-shared key.

For our experiments, we set a VPN tunnel between two nodes and then sent a SQL
SELECT query from one node to another node (which is acting as a database server). We
count the time from sending a query to the server until we receive a response from it. Figure
6-4 depicts our experiment scenario. We set OpenVPN in TUN mode. Appendix A presents
how we setup an IPSec policy for our experiment. Detailed information about setting up a
firewall and IPSec policies are available in [208].

Ifoodbag Application Server Ifoodbag Database server

VPN Client VPN Server

SELECT Query

Query Response

Figure 6-4: VPN Experiment scenario

69

In our experiment we have observed the following things:

1. Securing the communication between nodes through both OpenVPN tunnel and IPSec
imposes overhead which is reflected in the maximum data-transfer rate (see Figure 6-5
for a plot of this in terms of the query time). Appendix G contains detail data from this
experiment.

Figure 6-5: SELECT query time comparison among IPSec, OpenVPN, and normal traffic (i.e. without any security
mechanism applied)

2. We have also observed that the query time depends on the data size. In Figure 6-6
below, we see that for both IPSec and OpenVPN, the time required to send and receive
the SQL SELECT query result is higher for a bigger dataset (i.e. larger query result).
Appendix H contains detail data from this experiment.

Figure 6-6: SQL SELECT query time for different data sizes

3. OpenVPN performs much faster than IPSec*. For OpenVPN the average time required
to send a SQL SELECT query and receive result is 0.27 second, which is almost two
times faster than IPSec (average time for IPSec is 0.48 second). We can see that
OpenVPN does not add much overhead, as average time for OpenVPN is very close to
average time required without a VPN tunnel, which is 0.25 second.

From the calculation of our collected experiment data we found single session creation time
for OpenVPN is 32.93 millisecond and for IPSec it is 53.99 millisecond. We also calculate
that, after creating secured session, per byte data transfer time for OpenVPN is 0.042

* Which is also supported by [206]. But we did not find any explicit performance comparison between IPSec and
OpenVPN.

0

0.2

0.4

0.6

0.8

1 4 7 10 13 16 19 22 25 28

Ti
m

e
in

 se
co

nd
s

Experimental run number

SELECT query time comparison

IPSec

OpenVPN

Without security

0
200
400
600
800

1 4 7 10 13 16 19 22 25 28

Ti
m

e
in

 m
ill

is
ec

on
ds

)

Experimental run number

SELECT query time comparison
for different data size

OpenVPN(4.789MB)

IPSec(4.789MB)

OpenVPN(0.734MB)

IPSec(0.734MB)

70

millisecond while it is 0.078 millisecond for IPSec. Detail of the calculation is presented in
Appendix M (

71

73

4. Appendix M. Analysis of data in appendix H).
In our experiment data we observe that, regardless of the file size, per byte data transfer time
for IPSec is twice than OpenVPN. We also observe that data transfer time for both IPSec and
OpenVPN can be split into two main parts: (1) time required to create secured session and, (2)
time required to transfer the actual content. So for transferring content of any size there will
be an initial session creation time. Afterwards as the amount of the transferred data (using that
session) increase, per byte data transfer rate will gradually decrease. We present our
calculations in Appendix M (

74

75

Appendix M. Analysis of data in appendix H).

Now how it affects ifoodbag! Ifoodbag can have consistent secure connection between its
nodes, whose session length reasonably will not be very short. Once a secured session is
created, data can be transferred through that connection seamlessly*. So as a consequence, for
ifoodbag per byte data transfer time through secured connection will not make a noticable
performace penalty. While implementing secure cloud environment, ifoodbag can use our
experiment data (e.g. secured session creation time, per unit data transfer time) for
anticipating the cost of security in their system, based on the size and type of data they are
going to secure.

From our experimental observations we recommend ifoodbag use OpenVPN; as it
provides security for node-to-node communication without incuring a significant performance
penalty. Besides, OpenVPN is open source, so it is free to use. It is platform independent, so
can be used in different (e.g. Windows, Linux) environments. We have also found OpenVPN
very easy to configure.

6.2.5 Memcache
One of the main drawbacks with memcached is its poor security. Memcached does not

provide any form of security (as it provides neither authentication nor encryption.)
Memcached is built primarily for speed, not for security. However, we can configure
memcached security by ourselves. Even though memcached does not provide built-in security
but it does have many excellent features, such as scalability, multiple available clients, cross
platform, multi-fetch, etc. These many features were the main reasons why we chose
memcached for use with the ifoodbag cloud architecture.

Since our main concern is providing the best possible secure design for ifoodbag, we
choose two mechanisms to secure memcached. As we discussed earlier in section 4.5, we can
secure memcached with firewall. This is a very simple mechanism to apply. Usually
deployment of memcached is within a trusted network. However, if we deploy memcached in
an untrusted network or if an administrator wants greater control over clients, then we can use
memcached together with SASL. We discussed in section 4.5 how to deploy memcached with
SASL.

6.2.6 Distributed database
We mentioned earlier that, ifoodbag will store all their data in a database and part of that

data will be business related data that is sensitive data. For ifoodbag this data is very
important and they want to maintain confidentiality and integrity for all of their data. We
recommended in section 4.4 that ifoodbag apply a multilevel security policy for their
distributed database in order to improve the overall security of the database. A database
security policy defines authorization, authentication, and access control policies. These
policies should be designed to prevent unauthorized access, malicious attacks, or accidental
mistakes. For storing highly sensitive data, we recommend ifoodbag to store only encrypted
data in the database. For this encryption we recommend they use the Advanced Encryption
Standard (AES) [209] algorithm. Another widely used encryption algorithm is DES[210]. We
recommend AES over DES because of AES’s larger key size (with keys of 128, 192, or
256bits).Currently 128 bits are consider practically unbreakable. On the other hand, DES has
only a 56 bit key, making DES less secure than AES. In fact, DES can be broken in practice;
hence, the United States of America’s National Institute of Standards and Technology
recommends that firms not use DES.

* There can be default session timeout. In that case after a certain period of time session need to be recreated.
This session timeout can be adjusted while configuring secure connection for optimum output.

76

We performed data encryption using AES for two different size of database TABLES. We
performed this experiment using a single machine, where both the client and server were
running in same machine. In order to avoid any delay or limitations due to networking, we did
not use any network connection for this experiment. The source code for this experiment, to
measure AES encryption/ decryption time presented in Appendix I. The raw data from the
experiment are in Appendices J and K.

For this experiment, we used two identical databases. We named them as Big_database
and Small_ database. These names are based on number of rows and columns in the table of
the database. We first created a Small_database called TESTDB. Under TESTDB we created
a table called Product_ Info. In our Product_info table we created 3 columns and 100 rows,
and then we record 100 Test data entries in this table. An example of the table is shown in
Table 0-1.
Table 0-1: Table structure of small_database

Product _Info

ID (int 11) Name (VarChar 50) Price (VarChar 100)
1 Chicken 100
2 Chicken 100
3 Chicken 100
4 Chicken 100

In our experiment for small table we have observed the following things:

1. From Table 0-2 we can see that the size of the plain data and encrypted data
(encrypted using the AES algorithm) are the same.

Table 0-2: Table record information for small_database

Schema for product_info (Small table)

Number of records Total size of the table
(Unencrpted)

Total size of the table
(encrypted)

100 16384 bytes 16384 bytes

2. As shown in Table 0-3, the time difference between storing plain data and encrypted
data in database is only slightly longer for storing the data with encryption. Here we
can see clearly that, Insert Query for encrypted data takes more time than plain
data.We observed that overhead for storing data with Encryption is 0.6%. We also see
that size of the table does not play any role in this case.

77

Table 0-3: Data insert time with and without AES encryption for small_database

Table size Insert_with_encryption Insert_without_encryption
16384 244915 millisecond

244.915 second
243458 millisecond
243.458 second

3. As shown in Table 0-4 the observed time difference between performing a Select

Query with encryption and a select query without encryption is also small, although
the Select Query with encryption takes slightly more time than a select query without
encryption. Overhead for retrieving encrypted data is 1.66%.

Table 0-4: SELECT data from small_database with and without AES decryption

Table size Select_with_encryption Select_without encryption
16384 162741 millisecond

162.741 second
160084 millisecond
160.084 second

4. We observed that for small_database insert time with AES is 0.2391 milliseconds per
block (16 byte). And 0.01494 millisecond per byte.

5. Small_database select time with AES is 0.1586 milliseconds per block (16 byte) and
0.0099 milliseconds per byte.*

Now we perform the similar operations with our Big_database TESTDB, with 4 columns
and 100 rows in our Product_table. An example of some entries in this table is shown in Table
0-5.
Table 0-5: Table structure of big_database

Product_info

ID (int 11) Name (VarChar 50) Price (int 100) Image (varchar500)
1 Chicken 100 xxxxxxxxxx
2 Chicken 100 xxxxxxxxxxxxxx
3 Chicken 100 xxxxxxxx

In our experiment with Big table we observed the following:

1. From the Table 0-6 we can again see that, size of the total table is the same with or
without encryption.

Table 0-6: Table data record information for big_database

Schema for product_info (Small table)

Number of records Total size of the table
(Unencrypted)

Total size of the table
(encrypted)

100 65536 bytes 65536 bytes

2. Table 0-7 shows the observed time difference between an Insert Query with
encryption and select query without encryption. Again the Insert Query with
encryption takes slightly more time than the Insert Query without encryption.

Table 0-7: Data insert time with and without AES encryption for big_database

* Data analysis is available in Appendix S.

78

Table size Insert_with_encryption Insert_without_encryption
65536 byte

1755442millisecond
1755.442 second

218839 millisecond
218.839 second

3. Table 0-8 shows the observed time difference between a Select Query with encryption

and select query without encryption. Again the Select Query with encryption takes
slightly more time than a Select Query without encryption.

Table 0-8: Data select time with and without AES decryption for big_database

Table size Select_with_encryption Select_without encryption
65536 byte 164713 millisecond

164.713 second
161951 millisecond
161.951 second

4. We observed that for Big_database insert time with AES is 0.4285 milliseconds per
block (16 byte). And 0.0267 millisecond per byte.

5. Big_database select time with AES is 0.0402 milliseconds per block (16 byte) and
0.0025 milliseconds per byte.

Summary of the experiment:

1. This experiment utilized a client and server both running in the same machine. The
time for Select and Insert Queries might increase if the client and server were
connected via a network.

2. For our data, we stored (text and images). Storing multimedia (such as video clips)
with much larger objects would likely increase the query times, but this has not been
evaluated.

3. In both the large and the small databases, the size of the database was independent of
whether the data was encrypted or not. Similarly the time to perform an Insert or a
Select query was only slightly longer for the cases of encrypted data.

From our experiment we observe that it takes some additional time to encrypt and decrypt
the data. Since ifoodbag is a small company and the initial size of their database will be
relatively small (although with time this database will grow). The time to perform encryption
and decryption per entry is very small and the information stored in the database is one crucial
for the company, hence protection of the data inside this database is a primary concern,
therefore we recommend that the additional time cost of encrypt and decryption is worthwhile
and should be done.

6.2.7 Cloud Storage
Today nearly all companies have adopted the trend to store their data in the cloud. This

trend is motivated because cloud storage gives the company access to data at any time &
anywhere and cloud storage enables the company to outsource the effort to provider highly
reliable and safe data storage. The requirements of ifoodbag are no different from these other
companies.

In cloud storage, data resides on multiple third party servers. While cloud storage
providers claim that they provide appropriate security, there is always the possibility of a
security breach. Moreover, data traveling through a network or stored in cloud storage as plain
text enables a potentially serious security threat. In order to ensure confidentiality and
integrity of data in cloud storage, we have proposed that ifoodbag use data encryption for both
stored and transmitted data.

79

Ti
m

e
in

 S
ec

on
d

Experiment Run Time

Encrypt_Big

3DES_Big(Encrypt)AES_Big(Encrypt)

We performed data encryption by using AES and 3DES cryptographic method. And we
have run this experiment over network connection. For this experiment we choose two
different types of files. We named them as Big File (4MB) and small file (29KB). For both
file size we have encrypt and decrypt them by using AES and 3DES and compare the
time.Raw data for this experiment are presented in Apendix P and Apendix Q .

(a) 24KB file (b) 24KB file

Figure 0-1: 24KB file Encryption/Decryption for AES and 3DES

1. At first we encrypt and dectypt a small file by using two different encryption
algorithm AES and 3DES. We run this experiment 100 times. We observed from this
experiment is AES encryption and decryption is faster than 3DES encryption and
decryption. For 24KB file AES encryption takes 35, 9206 miliseconds to encrypt per
block (16 byte). It means it takes 2, 2450 milisecond to transfer one byte. Now at the
other hand for the same file size 3DES took 24, 4854 milisecond to encrypt per block
(8 byte). Which means it takes 3, 0606 milisecond to transfer one byte. Now if we
observe per byte encryption time, 3DES takes more time than AES.

2. For 24KB file AES decryption takes 48, 1905 miliseconds to decrypt per block (16
byte). It means it takes 3, 0119 milisecond to transfer one byte. At the other hand for
the same file size 3DES took 62, 7341 milisecond to encrypt per block (8 byte). Which
means it takes 7,8417 milisecond to transfer one byte. Now if we observe per byte
decryption time 3DES takes more time than AES.

(a) 4MB file size (b) 4MB file size

Figure 0-2: 4MB file Encryption/Decryption for AES and 3DES

Ti
m

e
in

 S
ec

on
d

Experiment Run Time

Decrypt_small

3DES_small(Decrypt)AES_small(Decrypt)
Ti

m
e

in
 S

ec
on

d

Experiment Run Time

Encrypt_small

3DES_small(encrypt))AES_small(encrypt)
Ti

m
e

in
 S

ec
on

d

Experiment Run Time

Decrypt_Big

3DES_Big(Decrypt)AES_Big(Decrypt)

80

Now we used 4MB file for storing and retrieving encrypted data in cloud storage by using
AES and 3DES algorithm.

1. For this big file 3DES also takes more time than AES. We observed average time for
AES to encrypt this file is 5242,861 milisecond and for 3DES is 6187,814 milisecond.
We also calculate per block encryption time for both algorithms. AES takes 19,999
milisecond to encrypt per block (16 byte) which is 1, 2499 milisecond per byte. On the
other hand 3DES takes 11,8023 milisecond to transfer per block (8 byte) which is
1,4752 milisecond per byte.It means 3DES takes little more time than AES to encrypt
per byte data.

2. Average time for AES to decrypt this file is 5852, 79 milisecond and for 3DES is
15800, 18 milisecond. We also calculate per block decryption time for both
algorithms. AES takes 22, 3266 milisecond to decrypt per block data (16 byte), which
is 1, 3954 milisecond for one byte. 3DES takes 60, 2719 milisecond to decrypt per
block (8byte), which is 3, 7670 milisecond per byte. For decrypting 3DES is taking
more time than AES.

We have also run this experiment in local machine to avoid the network related delay. But
we observed that in both case (with/ without network) there is significant time difference
between encryption and decryption. Usually Encryption and decryption time for symmetric
algorithm are often same. But the exception could happen while encrypting/decrypting
multiple blocks[211]. And also if the file has been randomly selected from the disk and
encrypt it then it will take several milliseconds to read each chunk of the file. So generally this
file will be cached in memory while writing. In this case reading this data from the disk will
not suffer the penalty[211].

We calculate average* encryption/decryption time for AES and 3DES and present this data
in the table below.

* Average time calculation is done by the arithmatic mean formula: Average = sum of all data / total nuber of
data. A detailed analysis is presented in Appendix R. AES Block size =128 bit (16 byte); 3DES Block size = 64
bit (8 byte).

81

Table 0-9: AES and 3DES encryption/decryption time for 4MB file

Cryptographic Algorithm Encryption Time Decryption Time
AES 5,242861 second 5,85279 second
3DES 6,187814 second 15,80018 second
Overhead time 6,187814/5,242861= 1.18 15,80018/5,85279 = 2.67 ~3

times

From the above discussion we oberve that in both file size AES encryption/ decryption is
faster than 3DES. For 4MB file AES encryption is 1.18 times faster than 3DES. And for the
same file size AES decryption is almost 3 times faster than 3DES.

Ifoodbag will store their data over cloud. Since data traveling through network is a serious
threat we recommended ifoodbag to encrypt their data and send over network. In this
experiment we have performed data encryption/decryption by using two cryptographic
algorithm AES and 3DES. From our observation above we saw that AES gives better
performance than 3DES and AES is also very well studied. Other researcher also have
measured the performance for AES,DES and 3DES. And according to their observation on
different crytographic algorithm ,it shows that AES gives better peformane over DES and
3DES[212].Therefore we recommend ifoodbag to use AES encryption algorithm. Also in our
observation we calculate per block data encryption/decryption time. When ifoodbag will
encrypt their data and send to the cloud storage they can use this experiment data for
measuring the cost of security based on the file size.

6.3 Security guidelines
Table 0-10 summarizes our recommendations to ifoodbag with respect to the security

issues that we have considered in the different areas (as described above).
Table 0-10: Summary of security issues and recommendations

Areas Recommendations

Load balancer Follow security policies presented in section 3.2.

Browsing web application Use HTTPS for secure browsing.

Client-server authentication Use server authentication for browsing publicly available
information in the website. However, for logging-in
registered customers, who can order services and perform
financial transactions, use strong two-factor authentication.

Communication between nodes Use VPN tunnels to secure the communication between
nodes in the same or different tiers.

Name resolving Use DNSSEC for ifoodbag.com domain’s authoritative
name server. Use authoritative-only name server software.

Distributed Database Use AES encryption to encrypt and decrypt data.

Storage data protection Use Advanced encryption standard (AES) for stored data

Memcached Use firewall or Memcached with SASL

6.4 General guidelines
We recommend ifoodbag utilize redundancy in its cloud network. For example, there

should be at least one secondary name server for ifoodbag’s domain. There should be
redundant management nodes that are periodically synchronized with the primary

82

management node, thus if the primary management node fails, the backup management node
can be used to provide seamless service to users. Similarly, redundancy is necessary for the
distributed database server. There should be extra copy of each virtual machine template
(from which new VM instances can be created) to facilitate instantiating new VMs as
necessary. Additionally, there should be sufficient redundancy of network connections. For
example, node in different tiers should be interconnected through two (or more) network
connections using different network interfaces and routed via different network providers.
Overall, the design should be such that if any interface is down then communication can
continue through another network interface, i.e., single network interface and network link
failures should not cause system failures.

Using updated software versions for all of the software and operating system can help to
improve the overall security of the complete system. However, before updating software it is
good to check the release notes and test the new release in a test environment, rather than
installing the updated directly into the production environment. This implies that there is a
need to design a secure test environment that largely duplicates the production environment in
order to perform this testing. Fortunately, using a cloud based solution facilitates this
temporary need for a larger infrastructure, as the test environment can be returned to the
cloud’s pool of resources as soon as testing is completed.

83

7 Conclusions and Future Work
This chapter discusses about how well the goal of this thesis was achieved. It also presents

further research possibilities to build upon this thesis work. We also present reflections on the
social, economic, sustainability, and ethical aspects of this thesis project at the end of this
chapter.

7.1 Conclusions
The goal of this thesis project was to identify potential threats, risk factors, and vulnerable

points of the design of ifoodbag´s cloud based web application. This proposed design was
done by two other Master’s thesis project students: Iqbal Hossain and Iqbal Hossain [3]. The
main aim of their design was to provide dynamic scaling of ifoodbag’s web application
running in a cloud environment. Our aim was to propose countermeasures to the identified
threats, risks, and vulnerabilities of the proposed system design along with a set of security
guidelines concerning network security in order to enhance the security for their proposed
system.

We have achieved our goal as we have presented a set of security guidelines that ifoodbag
should follow in order to secure its cloud environment. These guidelines are based on both our
empirical observations and the results of previous research. The security issues that we
identified in the proposed design drove the development of these guidelines. We studied all of
the identified security issues and examined possible countermeasures. From the potential set
of countermeasures, we have chosen the best solution for ifoodbag in developing our final set
of security guidelines. We also proposed some general security guidelines for ifoodbag based
upon our own observation of ifoodbag´s cloud based web application design.

During this thesis project, we have learned a great deal more about a number of different
security mechanisms and their implementations. In this thesis project, we worked not only
with a cloud environment but also with several different security mechanisms, which we had
not known about earlier. This thesis project was a good experience for both of us.

7.2 Future work
Due to the limited duration of this project, it was not possible to perform all of the tasks

that remain in the scope of this thesis project. Additionally, the observations made in the
course of this thesis project suggest some areas for further research. We plan to carry on some
of these tasks in near future. Other thesis students and researcher may want to explore one or
more of these topics.

In this thesis we presented a summary of different methods to identify and prevent DDoS
attacks in a cloud network. We presented the methods proposed in different research papers.
However, there is a clear need for empirical testing of the proposed mechanisms in order to
find an optimal solution for ifoodbag to prevent and detect DDoS attacks against its network.
Further research is needed to design a new mechanism to overcome limitations of the existing
methods.

We recommend that ifoodbag use DNSSEC in its name server software. We also
recommended that ifoodbag use the NSD name server software for its DNSSEC
implementation. Our recommendation is based the currently available research results. Further
study should investigate the performance of other (authoritative-only) name server software
(e.g. VantioTM [213], Knot DNS [214]).

84

Experiments with different numbers of concurrent users should be done to see how HTTP
and HTTPS deal with different numbers of concurrent users.

In this thesis, we recommended that ifoodbag encrypt their sensitive data in the database
by using AES encryption. In the future, a number of different cryptographic algorithms should
be compared to identify the most suitable algorithm for a database with the actual pattern of
queries that ifoodbag’s web application experience. However, since we worked with the
proposed design of the ifoodbag cloud and not with a working instance of this system we were
not able to know what the actual pattern of queries is.

We did not carry out experiments with Memcached. In future experiments should be done
to evaluate security solutions in this area.

We recommend ifoodbag to use AES cryptographic algorithm while storing data in cloud
storage. In this experiment we have considered AES and 3DES as our cryptography algorithm
and we compare the time taken between this two known algorithms. In future we can use
other algorithm such as Blowfish, RC2, and RC6 and measure the performance. Other
parameters such as CPU time, memory consumption, and battery power need to be considered
in future.

We did not empirically investigate the overall effect of implementing all of the
recommended security mechanisms in the different modules of ifoodbag’s cloud. For
example, the application server communicates with a database server through VPN tunnel and
the data is again encrypted before storing it in the database server. A future investigation
should explore if there is a way to combine these separate operations in order to reduce the
total overhead.

We performed VPN experiments with connections only between two nodes. We did not
observe the effect of implementing a VPN tunnel for every connection in the overall network
configuration of the ifoodbag architecture. We also did not check if a VPN server’s
performance has an impact on the number of concurrent clients connected to it. Both of these
types of future investigations should be done.

7.3 Reflections
In this section we explore a number of social, economic, legal and ethical aspects of this

thesis project.

7.3.1 Social
The set of security guidelines proposed in this thesis could be followed by any

organization to improve the security of their own cloud environment. This improved security
should protect the confidentiality and integrity of both the organization’s data and its
customers’ data. Providing greater protection of this data will help the company to preserve
their customer’s personal privacy.

Having reliable data about their customer’s past purchases may enable to company to both
provide more efficient purchasing and distribution of food, but could also provide input to
their suppliers that could reduce the amount of waste and loss of food. This information could
be used to suggest new, interesting, and nutritious meals to ifoodbag’s customers, potentially
providing gains in public health. When there is a problem with tainted food, ifoodbag can
potentially contact their customers to warn them of a problem.

85

7.3.2 Economic
Information security is an important concern for any business. E-commerce companies*

such as ifoodbag can use cloud-based solutions to reduce their business startup time, to make
their business more scalable, and to optimize their IT costs†. Today security remains the
biggest concern for companies who are considering adopting a cloud environment, especially
as concerns sensitive business critical data (e.g. customer information, product prices,
employee salaries). A small startup company who wants to have its own private cloud
environment often cannot use enterprise security solutions due to financial limitations. Hiring
a security specialist or trying out different network security devices lie beyond such a firm’s
capacity. The set of guidelines provided in this thesis can help these companies focus on
addressing the most urgent problems – that have well-known solution. Following these
guidelines can help the company to improve the security of their cloud based IT infrastructure.
Following these guideline can financially benefit the companies, both because these
guidelines are publicly available, hence they do not have to pay for them, and because these
security guidelines recommends the most suitable solutions from both a performance and cost
point of view for the different modules of the ifoodbag cloud environment. Other companies
can follow these recommendations to realize a solution appropriate to their own cloud
environment. These guidelines should help companies improve their security, while
optimizing their expenditures to provide overall security for their cloud environment.

As the profit margins for businesses who act as intermediaries in the sales and distribution
of food are low, earning large amounts of money depends upon large volumes of sales each
with a small profit. Increasing this sales volume requires that the company be able to scale its
IT infrastructure to match their sales volume. Failure to provide appropriate security can lead
to both loss of customer loyalty (and its accompanying loss in sales and revenue) and severe
financial problems if attackers are successful in preventing the orderly operation of the
business.

7.3.3 Legal and Ethical issues
In this thesis, we have used only publicly available information sources. We did not reveal

any commercial information. Applications used for performing experiments and developing
tools were either under GNU General Public License or with a valid license from the vendor.
We created our own tools for performing the experiments in this thesis. The experimental
results were not fabricated. All of the experimental data are available to others on request.

We did not consider issues regarding personal integrity with regard to the data mining that
is possible with the data that the business will be able to collect from its customers. However,
we believe that the set of security guidelines that we have proposed will increase the privacy
of the customers with respect to avoiding the unwanted disclosure of their data to other parties
that are not party to the transactions that they want to make. It will be up to ifoodbag to
protect their customers’ data when the company interacts with other parties, for example only
providing aggregated data – thus avoiding disclosing information about individual customers.
However, recent research results provide continuing evidence that it is very hard to provide
anonymized data. In this thesis, we did not explore the question of any requirements to
disclose business or customer information to governmental authorities.

* Businesses who provide services through internet.
† More benefits have been discussed in section 2.6

87

References
[1] Matt Bishop, Introduction to Computer Security, 1st ed. Pearson Education, 2004.
[2] C.P. Pfleeger and S.L Pfleeger. "Security in Computing / 1.3 The Meaning of Computer

Security.” [Online]. Available: http://flylib.com/books/en/4.269.1.16/1/. [Accessed: 02-May-
2013].

[3] Iqbal Hossain and Iqbal Hossain, “Dynamically scalable model for implementing web
application in cloud,” Master’s Thesis, KTH Royal Institute of Technology, Stockholm,
Sweden, (expected) 2014.

[4] Seyyed Khandani, “Engineering-Design-Process.” saylor.org, Aug-2005.
[5] “Ex Post Facto Study : SAGE Research Methods.” [Online]. Available:

http://srmo.sagepub.com/view/encyc-of-research-design/n145.xml. [Accessed: 20-Dec-2013].
[6] C. Strachey, “Time Sharing in Large Fast Computers,” presented at the Proceedings of the

International Conference on Information processing, 1959, vol. B.2.19, pp. 336–341.
[7] “National Institute of Standards and Technology.” [Online]. Available:

http://www.nist.gov/index.html. [Accessed: 02-May-2013].
[8] “NIST SP 800-145, The NIST Definition of Cloud Computing - SP800-145.pdf.” [Online].

Available: http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf. [Accessed: 02-
May-2013].

[9] “File:Cloud computing.svg - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/File:Cloud_computing.svg. [Accessed: 02-May-2013].

[10] “Essential characteristics of Cloud Computing - Essential characteristics of Cloud
Computing.pdf.” [Online]. Available: http://www.isaca.org/Groups/Professional-
English/cloud-
computing/GroupDocuments/Essential%20characteristics%20of%20Cloud%20Computing.pdf
. [Accessed: 02-May-2013].

[11] “Cloud computing service models.” [Online]. Available:
http://www.ibm.com/developerworks/cloud/library/cl-
cloudservicemodels/?cmp=dw&cpb=dwcld&ct=dwnew&cr=dwnen&ccy=zz&csr=021011.
[Accessed: 02-May-2013].

[12] “SAAS, PAAS and IAAS – Making Cloud Computing Less Cloudy | CIO Research Center.”
[Online]. Available: http://cioresearchcenter.com/2010/12/107/. [Accessed: 02-May-2013].

[13] The BPM freak, “IaaS, PaaS, SaaS – a pictorial representation” [Online]. Available:
http://thebpmfreak.wordpress.com/2012/09/28/iaas-paas-saas-a-pictorial-representation/.
[Accessed: 02-May-2013].

[14] Microsoft, “Microsoft Office - Microsoft Word, Outlook & Excel - Office.com.” [Online].
Available: http://office.microsoft.com/en-001/. [Accessed: 02-May-2013].

[15] “What is Cloud Computing? - Intec.” [Online]. Available: http://www.intec.co.uk/software-
solutions/cloud-it/what-is-cloud-computing/. [Accessed: 02-May-2013].

[16] Douglas F. Parkhill, The Challenge of the Computer Utility. Addison-Wesley, 1966.
[17] “North Bridge Venture Partners.” [Online]. Available: http://www.northbridge.com/.

[Accessed: 19-Aug-2013].
[18] “2012 Future of Cloud Computing Survey Exposes Hottest Trends in Cloud Adoption |

Business Wire.” [Online]. Available:
http://www.businesswire.com/news/home/20120620006697/en/2012-Future-Cloud-
Computing-Survey-Exposes-Hottest. [Accessed: 02-May-2013].

[19] “Survey: 69% APAC businesses intend to adopt hybrid cloud | Asia Cloud Forum.” [Online].
Available: http://www.asiacloudforum.com/content/survey-69-apac-businesses-intend-adopt-
hybrid-cloud. [Accessed: 02-May-2013].

[20] “What is community cloud? - Definition from WhatIs.com.” [Online]. Available:
http://searchcloudstorage.techtarget.com/definition/community-cloud. [Accessed: 02-May-
2013].

[21] “squid : Optimising Web Delivery.” [Online]. Available: http://www.squid-cache.org/Intro/.
[Accessed: 02-May-2013].

88

[22] “memcached - a distributed memory object caching system.” [Online]. Available:
http://memcached.org/. [Accessed: 02-May-2013].

[23] Microsoft, “Microsoft SharePoint Online.” [Online]. Available:
https://partner.microsoft.com/global/productssolutions/productsonlineservices/osofficesharepo
intonline. [Accessed: 02-May-2013].

[24] P. Loan-Clarke, “Benefits of Research Collaboration,” 2002. [Online]. Available:
http://www.rcr.emich.edu/module9/i4_benefits.html. [Accessed: 10-Jun-2013].

[25] Google, “Google Cloud Platform — Cloud Platform.” [Online]. Available:
https://cloud.google.com/. [Accessed: 21-Jul-2013].

[26] Amazon, “Amazon.com: Online Shopping for Electronics, Apparel, Computers, Books, DVDs
& more.” [Online]. Available: http://www.amazon.com/. [Accessed: 21-Jul-2013].

[27] Microsoft, “SkyDrive - Microsoft Windows.” [Online]. Available:
http://windows.microsoft.com/en-us/skydrive/download. [Accessed: 21-Jul-2013].

[28] Oracle, “Oracle Managed Cloud Services.” [Online]. Available:
http://www.oracle.com/us/solutions/cloud/managed-cloud-services/overview/index.html.
[Accessed: 21-Jul-2013].

[29] “Build AWS-compatible Private Clouds with Eucalyptus | Open Source. AWS-compatible.
Private Clouds.” [Online]. Available: http://www.eucalyptus.com/. [Accessed: 21-Jul-2013].

[30] “Malware Injection Attack - Knowledgebase - RockSoft Server Consultancy.” [Online].
Available: http://rocksoft.com.my/knowledgebase.php?action=displayarticle&id=754.
[Accessed: 02-May-2013].

[31] B.Meena, Krishnaveer Abhishek Challa, “Cloud Computing Security Issues with Possible
Solutions.”, International Journal on Computer Science and Technology (IJCST), Vol. 3, Issue
1, Jan.-March 2012. Available: http://www.ijcst.com/vol31/2/bmeena.pdf. [Accessed: 02-
May-2013].

[32] K. Zunnurhain and Susan V. Vrbsky, “Security Attacks and Solutions in Clouds”, Proceedings
of the 1st international conference on cloud computing, 2010, pp. 145–156.

[33] “A Detailed Analysis of the Issues and Solutions for Securing Data in Cloud,” IOSR Journal
of Computer Engineering (IOSRJCE), vol. 4, no. 5, pp. 11–18, Oct. 2012.

[34] K. Zunnurhain and Susan V. Vrbsky, “Security Attacks and solutions in Clouds,” The
University of Alabama, Tuscaloosa.

[35] “Security Attacks and Solutions in cloud.” .
[36] “Researchers demo cloud security issue with Amazon AWS attack - Computerworld.”

[Online]. Available:
http://www.computerworld.com/s/article/9221208/Researchers_demo_cloud_security_issue_w
ith_Amazon_AWS_attack. [Accessed: 02-May-2013].

[37] “What is a denial of service attack?” [Online]. Available:
https://www.paloaltonetworks.com/resources/learning-center/what-is-a-denial-of-service-
attack-dos.html. [Accessed: 21-Jul-2013].

[38] Neomi Antedomenico, “Optimizing security of Cloud Computing within the DOD,” Naval
Postgraduate School, Monterey,California.

[39] A. Singh and M. Shrivastava, “Overview of Attacks on Cloud Computing,” International
Journal of Engineering and Innovative Technology (IJEIT), vol. 1, no. 4, Apr. 2012.

[40] “Twitter, Facebook attack targeted one user | InSecurity Complex - CNET News.” [Online].
Available: http://news.cnet.com/8301-27080_3-10305200-245.html. [Accessed: 21-Jul-2013].

[41] “DDoS Attack Hits Amazon Cloud Customer Hard.” [Online]. Available:
http://www.thewhir.com/web-hosting-news/ddos-attack-hits-amazon-cloud-customer-hard.
[Accessed: 02-May-2013].

[42] “Security and Privacy in Cloud Computing - 600.412.lecture02.pdf.” [Online]. Available:
http://www.cs.jhu.edu/~ragib/sp10/cs412/lectures/600.412.lecture02.pdf. [Accessed: 02-May-
2013].

[43] “Flooding Attack.” [Online]. Available:
http://www.javvin.com/networksecurity/FloodingAttack.html. [Accessed: 02-May-2013].

89

[44] “What is hypervisor? - Definition from WhatIs.com.” [Online]. Available:
http://searchservervirtualization.techtarget.com/definition/hypervisor. [Accessed: 26-Jan-
2014].

[45] “Domain Name System - Wikipedia, the free encyclopedia.” [Online]. Available:
http://en.wikipedia.org/wiki/Domain_Name_System. [Accessed: 23-Jul-2013].

[46] “Security Issues with DNS,” SANS Institute InfoSec Reading Room. [Online]. Available:
http://www.sans.org/reading_room/whitepapers/dns/security-issues-dns_1069. [Accessed: 23-
Jul-2013].

[47] “Anatomy of a DNS DDoS Amplification Attack,” WatchGuard. [Online]. Available:
http://www.watchguard.com/infocenter/editorial/41649.asp. [Accessed: 23-Jul-2013].

[48] “The most widely used name server software: BIND,” Internet Systems Consortium. [Online].
Available: http://www.isc.org/downloads/bind/. [Accessed: 23-Jul-2013].

[49] “CERT® Advisory CA-2001-02 Multiple Vulnerabilities in BIND,” CERT. [Online].
Available: http://www.cert.org/advisories/CA-2001-02.html. [Accessed: 23-Jul-2013].

[50] “DNS Security (Part 1): Issues in DNS Security,” WindowsSecurity. [Online]. Available:
http://www.windowsecurity.com/articles-tutorials/misc_network_security/DNS-Security-Part-
1.html. [Accessed: 23-Jul-2013].

[51] “Explanation of a DNS Zone Transfer,” Microsoft Support. [Online]. Available:
http://support.microsoft.com/kb/164017. [Accessed: 23-Jul-2013].

[52] S. Rose, R. Chandramouli, and A. Nakassis, “Information Leakage through the Domain Name
System,” in Conference For Homeland Security, 2009. CATCH ’09. Cybersecurity
Applications Technology, 2009, pp. 16–21.

[53] “DNS ID PREDICTION AND EXPLOITATION,” Tripod. [Online]. Available:
http://c0vertl.tripod.com/text/dnsattack.txt. [Accessed: 23-Jul-2013].

[54] “Security Issues with DNS - security-issues-dns_1069.” .
[55] “Domain Name System Security Extensions,” IETF. [Online]. Available:

http://www.ietf.org/rfc/rfc2535.txt. [Accessed: 23-Jul-2013].
[56] “Securing an Internet Name Server,” VeriSign. [Online]. Available:

http://www.linuxsecurity.com/resource_files/server_security/securing_an_internet_name_serv
er.pdf. [Accessed: 23-Jul-2013].

[57] R. Elz, R. Bush, S. Bradner, and M. Patton, “Selection and Operation of Secondary DNS
Servers,” RFC 2182, Jul-1997. [Online]. Available: http://www.rfc-editor.org/rfc/rfc2182.txt.

[58] S. Rose and A. Nakassis, “Minimizing information leakage in the DNS,” 2008, vol. 22, pp.
22–25.

[59] “digital signature (electronic signature),” SearchSecurity. [Online]. Available:
http://searchsecurity.techtarget.com/definition/digital-signature. [Accessed: 23-Jul-2013].

[60] “Step-by-Step: Demonstrate DNSSEC in a Test Lab,” Step-by-Step: Demonstrate DNSSEC in
a Test Lab. [Online]. Available: http://technet.microsoft.com/en-us/library/hh831411.aspx.
[Accessed: 23-Jul-2013].

[61] “Delegation Signer (DS) Resource Record (RR),” Dec-2003. [Online]. Available:
http://www.ietf.org/rfc/rfc3658.txt. [Accessed: 23-Jul-2013].

[62] “DNSSEC course.” [Online]. Available: http://www.dnsseccourse.nl/en/player.html.
[Accessed: 23-Jun-2013].

[63] G. Lindsay, “DNSSEC and DNS Amplification Attacks,” Security TechCenter. [Online].
Available: http://technet.microsoft.com/en-us/security/hh972393.aspx. [Accessed: 24-Jul-
2013].

[64] J. Bau and C. M. John, “A Security Evaluation of DNSSEC with NSEC3.,” 2010, p. 115.
[65] R. Curtmola, Aniello Del Sorbo, and Giuseppe Ateniese, “On the performance and analysis of

DNS security extensions.,” Springer Berlin Heidelberg, pp. 288–303, 2005.
[66] B. Ager, H. Dreger, and A. Feldmann, “Exploring the Overhead of DNSSEC.,” Apr. 2005.
[67] “Scaling Strategies and Tactics for Dynamic Web Applications - 8150.pdf.” .
[68] “HOWTO: Load balance HTTP with Linux and Squid,” PARKER SAMP. [Online]. Available:

http://parkersamp.com/2010/11/howto-load-balance-http-with-linux-and-squid/. [Accessed:
23-Jul-2013].

90

[69] “HTTP Methods: GET vs. POST,” w3schools.com. [Online]. Available:
http://www.w3schools.com/tags/ref_httpmethods.asp. [Accessed: 23-Jul-2013].

[70] “Security considerations with Squid proxy server - security-considerations-squid-proxy-
server_1048.” .

[71] “UNIX Configuration Guidelines,” CERT® Coordination Center. [Online]. Available:
http://www.cert.org/tech_tips/unix_configuration_guidelines.html. [Accessed: 23-Jul-2013].

[72] “Noshell v1.2,” ticalc.org. [Online]. Available:
http://www.ticalc.org/archives/files/fileinfo/400/40005.html. [Accessed: 23-Jul-2013].

[73] “HTTP Authentication,” IETF, Jun-1999. [Online]. Available:
http://www.ietf.org/rfc/rfc2617.txt. [Accessed: 23-Jul-2013].

[74] “round robin DNS,” WEBOPEDIA. [Online]. Available:
http://www.webopedia.com/TERM/R/Round_Robin_DNS.html. [Accessed: 23-Jul-2013].

[75] “HAProxy,” HAProxy. [Online]. Available: http://haproxy.1wt.eu/. [Accessed: 23-Jul-2013].
[76] “Core Balance,” Core Balance. [Online]. Available: http://core-balance.sourceforge.net/.

[Accessed: 23-Jul-2013].
[77] “Welcome to Crossroads,” Crossroads. [Online]. Available: http://crossroads.e-tunity.com/.

[Accessed: 23-Jul-2013].
[78] “Distributor,” Distributor. [Online]. Available: http://distributor.sourceforge.net/. [Accessed:

23-Jul-2013].
[79] “ZENLOADBALANCER,” ZENLOADBALANCER. [Online]. Available:

http://www.zenloadbalancer.org/web/. [Accessed: 23-Jul-2013].
[80] “Octopus Load Balancer,” sourceforge. [Online]. Available:

http://sourceforge.net/projects/octopuslb/. [Accessed: 23-Jul-2013].
[81] “World Wide Web,” Wikipedia, the free encyclopedia. 22-Jul-2013.
[82] “Hypertext Transfer Protocol -- HTTP/1.1,” IETF. [Online]. Available:

http://www.ietf.org/rfc/rfc2616.txt. [Accessed: 23-Jul-2013].
[83] “The Internet Engineering Task Force (IETF),” IETF. [Online]. Available:

http://www.ietf.org/. [Accessed: 23-Jul-2013].
[84] “URL,” About.com Wireless / Networking. [Online]. Available:

http://compnetworking.about.com/od/internetaccessbestuses/g/bldef-url.htm. [Accessed: 23-
Jul-2013].

[85] “Get a fast, free web browser,” Chrome. [Online]. Available:
https://www.google.com/intl/en/chrome/browser/. [Accessed: 23-Jul-2013].

[86] “Fast and fluid for Windows 7,” Windows. [Online]. Available: Fast and fluid for Windows 7.
[Accessed: 23-Jul-2013].

[87] “Security Considerations,” w3. [Online]. Available:
http://www.w3.org/Protocols/rfc2616/rfc2616-sec15.html. [Accessed: 23-Jul-2013].

[88] “HTTP Secure,” Wikipedia, the free encyclopedia. 17-Jul-2013.
[89] “Secure Hypertext Transfer Protocol,” Wikipedia, the free encyclopedia. 27-May-2013.
[90] “The Secure HyperText Transfer Protocol,” IETF, Aug-1999. [Online]. Available:

http://tools.ietf.org/html/rfc2660. [Accessed: 23-Jul-2013].
[91] “Virtual private network,” Wikipedia, the free encyclopedia. 18-Jul-2013.
[92] Microsoft, “VPN Tunneling Protocols,” Microsoft Technet. .
[93] K. Hamzeh, G. Pall, W. Verthein, J. Taarud, W. Little, and G. Zorn, ‘Point-to-Point

Tunneling Protocol (PPTP)’, Internet Request for Comments, vol. RFC 2637
(Informational), July 1999, Available at http://www.rfc-editor.org/rfc/rfc2637.txt.
[Accessed: 23-Jul-2013].

[94] W. Townsley, A. Valencia, A. Rubens, G. Pall, G. Zorn, and B. Palter, ‘Layer Two Tunneling
Protocol “L2TP”’, Internet Request for Comments, vol. RFC 2661 (Proposed Standard),
August 1999, Available at http://www.rfc-editor.org/rfc/rfc2661.txt. [Accessed: 23-Jul-2013].

[95] “The Secure Socket Tunneling Protocol,” Microsoft Technet. [Online]. Available:
 http://technet.microsoft.com/en-us/magazine/2007.06.cableguy.aspx. [Accessed: 23-
Jul-2013].

91

[96] S. Kent and K. Seo, ‘Security Architecture for the Internet Protocol’, Internet Request for
Comments, vol. RFC 4301 (Proposed Standard), December 2005, Available at http://www.rfc-
editor.org/rfc/rfc4301.txt. [Accessed: 23-Jul-2013].

[97] “IPsec,” Networking and Access Technologies. [Online]. Available:
http://technet.microsoft.com/en-us/network/bb531150.aspx. [Accessed: 23-Jul-2013].

[98] “How to Setup a VPN (PPTP) Server on Debian Linux.” [Online]. Available:
http://www.howtogeek.com/51237/setting-up-a-vpn-pptp-server-on-debian/. [Accessed: 23-
Jul-2013].

[99] “Remote Access,” Networking and Access Technologies. [Online]. Available:
http://technet.microsoft.com/en-us/network/dd420463.aspx. [Accessed: 23-Jul-2013].

[100] “Configure a Remote Access VPN Server,” Windows Server. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc725734%28v=ws.10%29.aspx. [Accessed: 23-Jul-
2013].

[101] “Using an ISA Server virtual private network,” Microsoft Technet. [Online]. Available:
http://technet.microsoft.com/en-us/library/cc722838.aspx. [Accessed: 23-Jul-2013].

[102] “Check Point.” [Online]. Available: http://www.checkpoint.com/. [Accessed: 23-Jul-2013].
[103] “Configuration of a Symantec Enterprise Firewall/VPN client tunnel when the firewall/VPN

server is subjected to external NAT,” Symantec, 20-Jan-2002. [Online]. Available:
http://www.symantec.com/business/support/index?page=content&id=TECH80190. [Accessed:
23-Jul-2013].

[104] “Cisco RV180 VPN Router,” Cisco. [Online]. Available:
http://www.cisco.com/en/US/products/ps11995/index.html. [Accessed: 23-Jul-2013].

[105] “Juniper,” Juniper. [Online]. Available: http://www.juniper.net/us/en/products-
services/security/sa-series/. [Accessed: 23-Jul-2013].

[106] “AEP Series E Remote IPSec VPN,” Retec Technology (UK) Ltd. [Online]. Available:
http://www.retec-technology.co.uk/Prod_ser_E_rem.html. [Accessed: 23-Jul-2013].

[107] “Business Communications Solutions from Avaya.” [Online]. Available:
http://www.avaya.com/usa/. [Accessed: 23-Jul-2013].

[108] “OPENVPN,” OPENVPN. [Online]. Available: http://openvpn.net/. [Accessed: 23-Jul-2013].
[109] “Welcome to the OpenSSL Project,” OpenSSL. [Online]. Available: http://www.openssl.org/.

[Accessed: 23-Jul-2013].
[110] “OpenVPN Protocol (OpenVPN),” WIRESHARK, 27-Jun-2013. [Online]. Available:

http://wiki.wireshark.org/OpenVPN. [Accessed: 23-Jul-2013].
[111] “What is secret-key cryptography?,” RSA Laboratories. [Online]. Available:

http://www.rsa.com/rsalabs/node.asp?id=2166. [Accessed: 23-Jul-2013].
[112] “What is public-key cryptography?,” RSA Laboratories. [Online]. Available:

http://www.rsa.com/rsalabs/node.asp?id=2165. [Accessed: 23-Jul-2013].
[113] “OpenVPN,” Wikipedia, the free encyclopedia. 25-Jun-2013.
[114] “Security Overview,” OPENVPN. [Online]. Available: http://openvpn.net/index.php/open-

source/documentation/security-overview.html. [Accessed: 23-Jul-2013].
[115] “The IP Network Address Translator (NAT),” IETF, May-1994. [Online]. Available:

http://www.ietf.org/rfc/rfc1631.txt. [Accessed: 23-Jul-2013].
[116] “gnu.org.” [Online]. Available: https://gnu.org/licenses/gpl.html. [Accessed: 23-Jul-2013].
[117] “BridgingAndRouting – OpenVPN Community.” [Online]. Available:

https://community.openvpn.net/openvpn/wiki/BridgingAndRouting. [Accessed: 07-Jan-2014].
[118] “What is caching? - Definition from WhatIs.com.” [Online]. Available:

http://whatis.techtarget.com/definition/caching. [Accessed: 30-Jul-2013].
[119] “What is cache?” [Online]. Available: http://www.computerhope.com/jargon/c/cache.htm.

[Accessed: 30-Jul-2013].
[120] “What is cache? - Definition from WhatIs.com.” [Online]. Available:

http://searchstorage.techtarget.com/definition/cache. [Accessed: 30-Jul-2013].
[121] “Introduction to memcached.” [Online]. Available:

http://www.slideshare.net/oemebamo/introduction-to-memcached?from_search=3. [Accessed:
30-Jul-2013].

92

[122] “Database Sharding at Netlog.” [Online]. Available:
http://www.slideshare.net/oemebamo/database-sharding-at-netlog-presentation. [Accessed: 30-
Jul-2013].

[123] “Open Source - Facebook Developers.” [Online]. Available:
https://developers.facebook.com/opensource/. [Accessed: 30-Jul-2013].

[124] “High Scalability - High Scalability - Flickr Architecture.” [Online]. Available:
http://highscalability.com/flickr-architecture. [Accessed: 30-Jul-2013].

[125] “Caching with Twemcache | Twitter Blog.” [Online]. Available:
https://blog.twitter.com/2012/caching-twemcache. [Accessed: 30-Jul-2013].

[126] “Creating the YouTubeActivityViewer application using the PHP client library, memcache
and jQuery - YouTube — Google Developers.” [Online]. Available:
https://developers.google.com/youtube/articles/youtube_api_activity_php. [Accessed: 30-Jul-
2013].

[127] Zynga Engineering. “Building a scalable game server” [Online]. Available:
http://code.zynga.com/2011/07/building-a-scalable-game-server/. [Accessed: 30-Jul-2013].

[128] “Memcached: What is it and what does it do?” [Online]. Available:
http://www.slideshare.net/brianlmoon/memcached-what-is-it-and-what-does-it-do-2097515.
[Accessed: 30-Jul-2013].

[129] “memcached.” [Online]. Available: http://www.slideshare.net/hectcastro/memcached-
2536880. [Accessed: 30-Jul-2013].

[130] J. L. Josh Taylor, “Memcached.” .
[131] “Applying memcached to increase site performance.” [Online]. Available:

http://www.ibm.com/developerworks/xml/library/os-memcached/index.html. [Accessed: 30-
Jul-2013].

[132] “Memcached Security.” [Online]. Available:
http://dustin.sallings.org/2010/08/08/memcached-security.html. [Accessed: 30-Jul-2013].

[133] A. Melnikov and K. Zeilenga, ‘Simple Authentication and Security Layer (SASL)’,
Internet Request for Comments, vol. RFC 4422 (Proposed Standard), June 2006,
Available at http://www.rfc-editor.org/rfc/rfc4422.txt. [Accessed: 30-Jul-2013].

[134] “SASLHowto - memcached - HOWTO use SASL auth. - Memcached - Google Project
Hosting.” [Online]. Available: http://code.google.com/p/memcached/wiki/SASLHowto.
[Accessed: 30-Jul-2013].

[135] “Cloud Storage Definition - What is Cloud Storage.” [Online]. Available:
http://mp3.about.com/od/glossary/g/Cloud-Storage-Definition-What-Is-Cloud-Storage.htm.
[Accessed: 30-Nov-2013].

[136] “Cloud Lexicon | ProfitBricks.” [Online]. Available: http://www.profitbricks.co.uk/cloud-
lexicon. [Accessed: 30-Nov-2013].

[137] “Different Cloud Storage Types.” [Online]. Available:
http://www.cloudstoragebest.com/cloud-storage-types/. [Accessed: 30-Nov-2013].

[138] Subramanyam Kodukula, Talasila Sasidhar, “A Generalized Cloud storage Architecture with
Backup Technology for any Cloud Storage Providers,” vol. 2.

[139] “www.clouddrive.com.au - www.clouddrive.com.au-WhitePaper.pdf.” .
[140] “HowStuffWorks ‘Concerns About Cloud Storage.’”[Online]. Available:

http://computer.howstuffworks.com/cloud-computing/cloud-storage3.htm. [Accessed: 30-Nov-
2013].

[141] Johan Gamper, “Distributed Database Chapter 1:Introduction.” .
[142] “Distributed database.” [Online]. Available:

http://www.princeton.edu/~achaney/tmve/wiki100k/docs/Distributed_database.html.
[Accessed: 30-Nov-2013].

[143] “What is distributed database? - Definition from WhatIs.com.” [Online]. Available:
http://searchoracle.techtarget.com/definition/distributed-database. [Accessed: 30-Nov-2013].

[144] “Distributed Database Concepts.” [Online]. Available:
http://docs.oracle.com/cd/A87860_01/doc/server.817/a76960/ds_conce.htm#12187.
[Accessed: 30-Nov-2013].

[145] “Database system concepts.” .

93

[146] Richard Holowczak, “Database Management Systems II - Prof. Holowczak.” [Online].
Available: http://cisnet.baruch.cuny.edu/holowczak/classes/9440/distributed/.
[Accessed: 01-Dec-2013].

[147] “Client / Server Application: Distributed Database Management System: Pros and Cons.”
[Online]. Available: http://b0402131.blogspot.se/2008/04/distributed-database-management-
system.html. [Accessed: 01-Dec-2013].

[148] “What are the Advantages and Disadvantages of Distributed Database Management System?”
[Online]. Available: http://ecomputernotes.com/database-system/adv-database/advantages-
and-disadvantages-of-ddbms. [Accessed: 01-Dec-2013].

[149] “Pros and Cons of Distributed Databases.” [Online]. Available:
http://www.articlesbase.com/programming-articles/pros-and-cons-of-distributed-databases-
935835.html. [Accessed: 01-Dec-2013].

[150] “Teach-ICT OCR A2 ICT G063 Syllabus: distributed database.” [Online]. Available:
http://www.teach-
ict.com/as_a2_ict_new/ocr/A2_G063/334_applications_ict/distributed_database/miniweb/pg7.
htm. [Accessed: 01-Dec-2013].

[151] V.K. Gupta, Sheetlani Jitendra, Gupta Dhiraj, Concurrency Control and Security issues of
Distributed Databases, Research Journal of Engineering, Vol. 1(2), 70-73, August 2012 DOI:
10.ISCA-JEngS-2012-047. Avalailable: http://www.isca.in/IJES/Archive/v1i2/10.ISCA-
JEngS-2012-047.pdf

[152] “Neustar | Promote & Protect Your Brand via Neustar Enterprise Services.” [Online].
Available: http://www.neustar.biz/enterprise. [Accessed: 24-Nov-2013].

[153] “DDoS attacks scaling up alarmingly, says Arbor - Security - News & Features - ITP.net.”
[Online]. Available: http://www.itp.net/595509-ddos-attacks-scaling-up-alarmingly-says-
arbor#.UpIYvhBRyKJ. [Accessed: 24-Nov-2013].

[154] C. Dewey, “Only 2 countries have been hit with DDoS attacks every day since May. The U.S.
is one.,” Washington Post. [Online]. Available: http://www.washingtonpost.com/blogs/the-
switch/wp/2013/10/26/only-2-countries-have-been-hit-with-ddos-attacks-every-day-since-
may-the-u-s-is-one/. [Accessed: 24-Nov-2013].

[155] “Computer Security Incident Handling Guide.” National Institute of Standards and
Technology, Jan-2004.

[156] “Denial-of-service attack,” Wikipedia, the free encyclopedia. 23-Nov-2013.
[157] Naoum Naoumov and Keith Ross. 2006. Exploiting P2P systems for DDoS attacks. In

Proceedings of the 1st international conference on Scalable information systems (InfoScale
'06). ACM, New York, NY, USA, , Article 47 . DOI=10.1145/1146847.1146894
http://doi.acm.org/10.1145/1146847.1146894.

[158] El Defrawy, Karim, Minas Gjoka, and Athina Markopoulou, “BotTorrent: Misusing
BitTorrent to Launch DDoS Attacks,” in Proceedings of the 3rd USENIX workshop on Steps
to reducing unwanted traffic on the internet, 2007, pp. 1–6.

[159] “P2P Networks Hijacked for DDoS Attacks | Netcraft.” [Online]. Available:
http://news.netcraft.com/archives/2007/05/23/p2p_networks_hijacked_for_ddos_attacks.html.
[Accessed: 24-Nov-2013].

[160] W. Eddy, “TCP SYN Flooding Attacks and Common Mitigations,” Aug-2007. [Online].
Available: http://tools.ietf.org/html/rfc4987. [Accessed: 24-Nov-2013].

[161] Niraj Suresh Katkamwar, Atharva Girish Puranik, and Purva Deshpande, “Securing Cloud
Servers against Flooding Based DDoS Attacks,” International Journal of Application or
Innovation in Engineering & Management (IJ AI E M), vol. 1, pp. 50 – 55, Nov. 2012.

[162] “Smurf Attack explained - DDos Protection.” [Online]. Available:
http://www.ddosprotection.net/smurf-attack-explained/. [Accessed: 24-Nov-2013].

[163] DDoSProtection.Net, “ICMP Flood attack explained,” DDoS Protection. [Online]. Available:
http://www.ddosprotection.net/icmp-flood-attack-explained/. [Accessed: 24-Nov-2013].

[164] DDoSProtection.Net, “Ping Of Death (POD) attack explained,” DDoS Protection. [Online].
Available: http://www.ddosprotection.net/ping-of-death-attack-explained/. [Accessed: 24-
Nov-2013].

94

[165] DDoSProtection.Net, “Teardrop attack explained (Legacy attack),” DDoS Protection.
[Online]. Available: http://www.ddosprotection.net/teardrop-attack-explained-legacy-attack/.
[Accessed: 24-Nov-2013].

[166] Chen, Q., Lin, W., Dou, W., & Yu, S, “CBF: A packet filtering method for DDoS attack
defense in cloud environment.,” in Dependable, Autonomic and Secure Computing (DASC),
2011, 2011, pp. 427 – 434.

[167] Y. Kim, W. C. Lau, M. C. Chuah, and H. J. Chao, “PacketScore: a statistics-based packet
filtering scheme against distributed denial-of-service attacks.,” in Dependable and Secure
Computing, 2006, pp. 141–155.

[168] “Bayes’ Theorem: Introduction.” [Online]. Available:
http://www.trinity.edu/cbrown/bayesweb/. [Accessed: 20-Dec-2013].

[169] Paulo E. Ayres, Huizhong Sun, H. Jonathan Chao, Wing Cheong Lau, “ALPi: A DDoS
Defense System for High-Speed Networks,” Selected Areas in Communications, IEEE
Journal, vol. 24, pp. 1864–1876, Oct. 2006.

[170] Microsoft, “The Leaky Bucket Buffer Model (Windows).” [Online]. Available:
http://msdn.microsoft.com/en-us/library/windows/desktop/dd206751(v=vs.85).aspx.
[Accessed: 20-Dec-2013].

[171] Haining Wang, Cheng Jin, and Kang G. Shin. 2007. Defense against spoofed IP traffic using
hop-count filtering. IEEE/ACM Transactions on Networking (TON), Volume 15, Number 1,
February 2007, pp. 40-53. DOI:10.1109/TNET.2006.890133
http://dx.doi.org/10.1109/TNET.2006.890133

[172] Zhenhai Duan, Xin Yuan, and J. Chandrashekar, ‘Controlling IP Spoofing through
Interdomain Packet Filters’, IEEE Transactions on Dependable and Secure Computing, vol. 5,
no. 1, pp. 22–36, January 2008, DOI:10.1109/TDSC.2007.70224.

[173] E. Anitha and S. Malliga, “A packet marking approach to protect cloud environment against
DDoS attacks,” in Information Communication and Embedded Systems (ICICES), 2013, pp.
367–370.

[174] Poonam Yadav and Sujata, “Security Issues in Cloud Computing Solution of DDOS and
Introducing Two-Tier CAPTCHA,” International Journal on Cloud Computing: Services &
Architecture, vol. 3, no. 3, pp. 25–40, June 2013.

[175] L.Yang, T. Zhang, J. Song, J. S.Wang, and P. Chen, “Defense of DDoS attack for cloud
computing,” presented at the In Computer Science and Automation Engineering (CSAE), 2012
IEEE International Conference, 2012, vol. 2, pp. 626–629, DOI:
10.1109/CSAE.2012.6272848.

[176] M. N. Ismail, A. Aborujilah, S. Musa, and A. Shahzad, “New Framework to Detect and
Prevent Denial of Service Attack in Cloud Computing Environment,” International Journal of
Computer Science and Security (IJCSS), vol. 6, no. 4, pp. 226–237. Available:
http://www.cscjournals.org/csc/manuscript/Journals/IJCSS/volume6/Issue4/IJCSS-760.pdf

[177] Joseph Latanicki, Philippe Massonet, Syed Naqvi, Benny Rochwerger, Massimo Villari,
“Scalable Cloud Defenses for Detection, Analysis and Mitigation of DDoS Attacks,” IOS
Press, pp. 127–137, 2010.

[178] “Internet Systems Consortium | BIND.” [Online]. Available:
http://www.isc.org/downloads/bind/. [Accessed: 24-Nov-2013].

[179] “nlnetlabs.nl :: Name Server Daemon (NSD) ::” [Online]. Available:
http://www.nlnetlabs.nl/projects/nsd/. [Accessed: 24-Nov-2013].

[180] “Unbound.” [Online]. Available: http://unbound.net/. [Accessed: 24-Nov-2013].
[181] Daniel Migault, Cédric Girard, and Maryline Laurent, “A Performance view on DNSSEC

migration,” in Proceedings of 2010 International Conference on Network and Service
Management (CNSM), 2010, pp. 469–474, DOI: 10.1109/CNSM.2010.5691275.

[182] Arthur Goldberg, Robert Buff, and Andrew Schmitt, “A comparison of HTTP and HTTPS
performance,” Computer Science Department, Courant Institute of Mathematical Science,
New York University, 1998.

[183] Xubin He, “A Performance Analysis of Secure HTTP Protocol,” Tennessee Tech. University,
STAR Lab, Technical Report, 2003.

95

[184] A. Kumar, B. G. Lee, H. Lee, and A. Kumari, ‘Secure storage and access of data in cloud
computing’, presented at the 2012 International Conference on ICT Convergence (ICTC), Jeju
Island, 2012, pp. 336–339, DOI:10.1109/ICTC.2012.6386854, Available at
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6386854.

[185] Johan Strickland, “How Cloud Storage Works.” http://computer.howstuffworks.com/cloud-
computing/cloud-storage.htm.

[186] Vormetric, “Data security in the cloud”, http://www.vormetric.com/sites/default/files/wp-
data-security-in-the-cloud.pdf .

[187] Neera Batra and Manpreet Singh, “Multilevel Policy Based Security in Distributed Database,”
in Advances in Computing and Communications, vol. 190,2011, pp. 572–580.

[188] Jim Reavis, “Goodbye DES, Hello AES.”, NetworkWorldFusion 30 July 2001 [Online].
Available: http://www.networkworld.com/research/2001/0730feat2.html. [Accessed: 30-Dec-
2013].

[189] Nathan Malcolm,  “Securing memcached servers.” [Online]. Available:
https://coderwall.com/p/i2tcmg. [Accessed: 30-Dec-2013].

[190] Ankit Mathur, “Speed up Your Cloud with Memcached - LINUX For You.” LINUX For You,
19 March 2012 [Online]. Available: http://www.linuxforu.com/2012/03/speed-up-cloud-with-
memcached/. [Accessed: 30-Dec-2013].

[191] Marius Ducea, “Securing Memcached - MDLog:/sysadmin.” [Online]. Available:
 http://www.ducea.com/2008/01/11/securing-memcached/. 11 January 2008 [Accessed:
30-Dec-2013].

[192] “SASLAuthProtocol - memcached - SASL Authentication for Memcached - Memcached -
Google Project Hosting.” [Online]. Available:
https://code.google.com/p/memcached/wiki/SASLAuthProtocol. [Accessed: 30-Dec-2013].

[193] Isode Ltd., “SASL (Simple Authentication and Security Layer).” [Online]. Available:
http://www.isode.com/products/sasl.html. [Accessed: 30-Dec-2013].

[194] Patrick Galbraith, “SASL memcached now available!”, 7 November 2009.
[195] Microsoft, “WebClient Class (System.Net).” [Online]. Available:

http://msdn.microsoft.com/en-us/library/system.net.webclient(v=vs.110).aspx. [Accessed: 18-
Dec-2013].

[196] “Easy_Windows_Guide – OpenVPN Community,” OPENVPN Community Wiki and Tracker,
Mar-2013. [Online]. Available:
https://community.openvpn.net/openvpn/wiki/Easy_Windows_Guide. [Accessed: 18-Dec-
2013].

[197] “Toad for SQL Server - Toad World.” [Online]. Available:
http://www.toadworld.com/products/toad-for-sql-server/default.aspx. [Accessed: 23-Dec-
2013].

[198] “Navicat | DB Admin Tool for MySQL, MariaDB, SQL Server, SQLite, Oracle &
PostgreSQL.” [Online]. Available: http://www.navicat.com/. [Accessed: 23-Dec-2013].

[199] “WampServer, the web development platform on Windows - Apache, MySQL, PHP.”
[Online]. Available: http://www.wampserver.com/en/. [Accessed: 30-Dec-2013].

[200] “Moore’s Law.” [Online]. Available: http://www.mooreslaw.org/. [Accessed: 28-Dec-2013].
[201] Microsoft, “Security Guidance for IIS,” Microsoft Technet, 26-Jan-2009. [Online]. Available:

http://technet.microsoft.com/en-us/library/dd450371(v=ws.10).aspx. [Accessed: 18-Dec-
2013].

[202] GeoTrust, “The Truth About SSL Encryption Strengths,” Document number: TB-ENC-0605 ,
GeoTrust, Maidstone, Kent, UK. [Online]. Available:
http://www.trustico.com/material/techpaper_encryption.pdf. [Accessed: 07-Jan-2014].

[203] Eland Systems, “IPSEC.” [Online]. Available: http://www.elandsys.com/resources/ipsec/.
[Accessed: 28-Dec-2013].

[204] Microsoft, “What Is IPSec?: Security Policy; Security Services.” [Online]. Available:
http://technet.microsoft.com/en-us/library/cc776369(v=ws.10).aspx. [Accessed: 28-Dec-2013].

[205] “OpenSSL: The Open Source toolkit for SSL/TLS,” OpenSSL. [Online]. Available:
http://www.openssl.org/. [Accessed: 10-Jan-2014].

96

[206] “PPTP vs L2TP vs OpenVPN.” [Online]. Available:
https://www.ivpn.net/knowledgebase/62/PPTP-vs-L2TP-vs-OpenVPN.html. [Accessed: 28-
Dec-2013].

[207] B. Korver, “The Internet IP Security PKI Profile of IKEv1/ISAKMP, IKEv2, and PKIX,” RFC
4945, Aug-2007. [Online]. Available: http://www.ietf.org/rfc/rfc4945.txt. [Accessed: 10-Jan-
2014].

[208] Microsoft, “Download Windows Firewall with Advanced Security: Step-by-Step Guide:
Deploying Windows Firewall and IPsec Policies from Official Microsoft Download Center.”
[Online]. Available: http://www.microsoft.com/en-us/download/details.aspx?id=11698.
[Accessed: 28-Dec-2013].

[209] “What is Advanced Encryption Standard (AES)? - Definition from WhatIs.com.” [Online].
Available: http://searchsecurity.techtarget.com/definition/Advanced-Encryption-Standard.
[Accessed: 30-Dec-2013].

[210] “What is Data Encryption Standard (DES)? - Definition from WhatIs.com.” [Online].
Available: http://searchsecurity.techtarget.com/definition/Data-Encryption-Standard.
[Accessed: 30-Dec-2013].

[211] “Why does AES encryption take more time than decryption? - Information Security Stack
Exchange.” [Online]. Available: http://security.stackexchange.com/questions/38055/why-
does-aes-encryption-take-more-time-than-decryption. [Accessed: 26-Jan-2014].

[212] Diaa Salama Abd Elminaam, “Evaluating The Performane of symmetric Encryption
Algorithm,” International Journal of Network Security, Vol.10, No.3, May 2010, pp. 216–222.

[213] “Vantio AuthServe.” [Online]. Available:
http://nominum.com/infrastructure/engines/authoritative-dns/. [Accessed: 06-Dec-2013].

[214] “Knot DNS.” [Online]. Available: https://www.knot-dns.cz/. [Accessed: 06-Dec-2013].

Appe
Here

policy s

Hos
1. O

2. R
P

endix A
e we show
set.

st1 settings
Open Local

Right click
Policy…’

: How t
how we s

lSecurityPo

’IP Securi

to set p
et host-to-h

licy tool in

ty Policies

97

policy w
host IPSec

the server.

on Local C

with IPS
VPN tunne

Computer’

Sec
el with a ve

and select

ery simple

‘Create IP

IP filter

Security

98

3. C

4. P

Click Next

Provide a nname for thee new securiity policy.

Do n

5. C

not check th

Click Finish

he box, sele

h after chec

ect Next.

king the ’EEdit properties’.

99

100

Clic

6. C

ck ’Add’ bu

Click Next.

tton to add

a new securrity rule.

 Sele

7. S

ect ’This ru

Select netw

ule does not

work type ’A

specify a tu

All network

unnel’.

connections’.

101

102

8. A

9. C

Add a new

Click Add,

IP filter list

to open ’IP

t.

 Filter Wizaard’.

10. C

11.

Click Next.

Check the b

box.

103

104

12. S

13. S

Select sourc

Select desti

ce address ‘

ination addr

Any IP Add

ress ‘Any IP

dress’.

P Address’.

14. I

15. C

IP Protocol

Click Finish

Type ‘Any

h.

y’.

105

106

16. C

17. C

Click Ok.

Click Next.

18. C

19. C

Click Add.

Click Next.

107

108

20. P

21. S

Provide a F

Select Nego

Filter Action

otiate securi

n Name.

ity.

22. D

23. I

Do not allow

Integrity an

w unsecure

nd encryptio

d communi

on.

ication.

109

110

24. C

25. C

Click Finish

Click Next.

h.

26. U

27. C

Use pre-sha

Click Finish

ared passwo

h.

ord. For impproved secuurity, one caan use a cert

tificate.

111

112

28. C

29. I
c

30. N
w

Click Ok.

In the ‘Loc
click and se

Now when
without sec

calSecurityP
elect Assign

the policy i
ure IPSec tu

Policy’ tool
n.

is assigned
unnel.

l, select ‘Se

in server, n

ecure Datab

no other ma

base Conne

chine can c

ection’ poli

communicat

cy, right

te with it

Hos
1. O

2. F
s

st 2 settings
Open ‘Loca

Follow the
string.

s
alSecurityPo

same proce

olicy’ tool a

ess presente

and create a

ed for host1

a new IP Sec

1 configurat

curity Polic

tion. Provid

cy.

de pre-share

113

ed secret

114

3. A
a

4. P
p
c

Assign this
able to com

Policy set in
packet for c
certificate in

newly crea
mmunicate w

n this exam
certain prot
nstead of se

ated policy
with host1, t

mple works f
tocols (e.g.
ecret string.

in client m
through IPS

for any prot
ICMP, TC

machine. Now
Sec VPN tun

tocol. But c
CP). For imp

w this mach
nnel.

an also be m
proved secu

hine (host2

modified to
urity, one c

) will be

o filter IP
an use a

Appe
1. O

2. I
f
d
d

3. C

endix B:
Open IIS M

In Site Bind
for https i
dropdown.
domain cert

Click Close

: Set HT
Manager. Rig

dings click
s 443. Sel
You can u
tificate shou

e to close th

TTP in I
ght click the

‘Add…’. I
lect the SS
use either a
uld be signe

is window.

115

IIS Web
e website, s

In Add Site
SL certifica
a domain ce
ed by a root

b Serve
elect ‘Edit B

Binding, se
ate created
ertificate or
t CA.

er
Bindings…

elect Type:

for your
r a self-sign

’

 https. Def
domain, f

ned certific

fault port
from the
cate. The

116

4. O
C
R
C

5. N

6. T

7. I
c

Open SSL
Client certi
Require opt
CA, which

Now you ca

To set 128-

In section
changes.

Settings fo
ificate optio
tion. In that
the client m

an browse y

bit SSL, op

system.web

or your we
on. But if y
t case client

must use to a

your website

en Configur

bServer/sec

ebsite. Chec
you want c
t should hav
authenticate

e securely w

ration Edito

curity/access

ck Require
client-authe
ve a valid SS
e himself.

with HTTPS

or.

s, set sslF

SSL optio
ntication, th
SL certifica

S.

lag Ssl128

on. You can
then you ca
ate signed by

8. And the

n ignore
an select
y a valid

en apply

117

Appendix C: Code to measure time to get response for a
SQL SELECT query through VPN Tunnel

public static void DatabaseQueryTimeWithVPN(bool withVPN)
 {
 string vpn = string.Empty;
 if (withVPN)
 {
 vpn = "With_VPN";
 }
 else
 {
 vpn = "Without_VPN";
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
 @"C:\Temp\" + vpn + DateTime.Now.ToString("yyyyMMddhhmmss") + @".txt",
true))
 {
 for (int i = 0; i < 101; i++)
 {
 try
 {
 string _connectionstring = @"Data
Source=server_name;Initial Catalog=database_name;User
ID=user_name;Password=password";
 string _sql = "SELECT * FROM [dbo].[Object]";
 SqlConnection _connection = new
SqlConnection(_connectionstring);
 SqlCommand _command = new SqlCommand(_sql,
_connection);

 Stopwatch sw = new Stopwatch();
 sw.Start();

 SqlDataAdapter _adapter = new SqlDataAdapter(_command);
 DataTable _table = new DataTable();
 _adapter.Fill(_table);

 sw.Stop();
 long microseconds = sw.ElapsedTicks /
(Stopwatch.Frequency / (1000L * 1000L));
 file.WriteLine(microseconds);
 }
 catch
 {
 throw;
 }
 }
 }
 }

119

Appendix D: Code to measure time required to download
certain content with HTTP and HTTPS

public static void DownloadFileWithHTTP(string file_name, string protocol,
string port)
 {
 string url = protocol + @"://server_name:" + port + "/" +
file_name;
 string date = DateTime.Now.ToString("yyyyMMddhhmmss");
 string download_file = @"C:\Temp\";

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
 @"C:\Temp\" + "128bit" + protocol + file_name + date + @".txt", true))
 {
 for (int i = 0; i < 21; i++)
 {
 WebClient Client = new WebClient();
 Client.Headers.Add("Cache-Control", "no-cache");
 Stopwatch sw = new Stopwatch();
 sw.Start();
 Client.DownloadFile(url, download_file + date + i +
file_name);

 while (true)
 {
 if (File.Exists(download_file + date + i + file_name))
 {
 break;
 }
 }
 sw.Stop();
 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency
/ (1000L * 1000L));
 file.WriteLine(microseconds);
 Client.Dispose();
 System.Threading.Thread.Sleep(2000);
 }
 }
 }

120

121

Appendix E: Download time comparison for 390MB file

HTTP 40bit-SSL 128bit-SSL

(µs) (µs) (µs)
6619888 19424229 17705437
5665637 16415765 17628397
7049345 16385790 28657104
6722050 17265591 18749434

16938904 16736338 16680060
15062397 17319341 16391779
12447988 16271539 17664477
16773799 16873728 16642464
13977538 15680192 17291940
10783901 16020279 16987831
10129006 16101393 16261636
15227629 16187010 17222976
11082007 16144726 16007760
14513519 16070624 16692974
12847325 15609038 15965587
12112063 15916124 16282130
13238979 15597212 15581126
6021303 15588578 15999261
9013063 15880652 16013349
8257191 15720894 16081402
8911434 16128582 15637327

13060831 16059672 15636593
6503861 16057336 16002641
6090674 15995457 15510446
9864397 15989264 15908172
7745550 16058579 15632266
9456673 16054261 15624307

123

Appendix F: Download time comparison for 3.13 MB file

HTTP
HTTPS HTTPS

(40bit-SSL) (128-bit-SSL)
(ms) (ms) (ms)
44.4 154.82 154.81
44.03 152.41 166.1
44.97 162.17 190.56
44.96 149.83 152.06
44.18 152.63 175.64
47.15 186.6 156.38
45.33 152.52 128.23
45.39 150.88 156.65
44.69 152.93 154.24
51.12 159.25 144.65
45.48 158.91 161.43
45.02 156.71 149.14
44.7 159.39 151.88
44.68 146.77 159.87
44.45 147.65 146.17
44.77 145.87 153.27
44.61 190.17 151.77
45.5 126.54 162.25

125

Appendix G: SQL SELECT query time comparison for
different VPN setup

ipsec-with-
vpn

open-vpn-
withvpn

without-
vpn

IPSec-with-
VPN

Open-VPN-
withVPN without-VPN

(ms) (ms) (ms) (seconds) (seconds) (seconds)
542499 264456 220201 0.54 0.26 0.22

498138 292032 240466 0.5 0.29 0.24

529162 265498 285025 0.53 0.27 0.29

535560 257237 287882 0.54 0.26 0.29

527619 325463 290996 0.53 0.33 0.29

628570 283707 340699 0.63 0.28 0.34

486958 238674 257940 0.49 0.24 0.26

552691 239598 261221 0.55 0.24 0.26

537291 283773 268246 0.54 0.28 0.27

640124 243715 247224 0.64 0.24 0.25

605522 225317 253019 0.61 0.23 0.25

475507 260355 268410 0.48 0.26 0.27

454648 275642 294362 0.45 0.28 0.29

417593 216715 238874 0.42 0.22 0.24

447618 225165 257448 0.45 0.23 0.26

455745 235009 244404 0.46 0.24 0.24

455464 238878 260151 0.46 0.24 0.26

420402 245891 265660 0.42 0.25 0.27

433605 268831 249270 0.43 0.27 0.25

437959 240216 256531 0.44 0.24 0.26

433456 236971 255731 0.43 0.24 0.26

416928 253292 249677 0.42 0.25 0.25

418622 224169 249205 0.42 0.22 0.25

392940 231309 248959 0.39 0.23 0.25

438361 258923 238777 0.44 0.26 0.24

432830 235224 267288 0.43 0.24 0.27

444449 241921 241960 0.44 0.24 0.24

404964 241363 261750 0.4 0.24 0.26

126

457458 287673 247280 0.46 0.29 0.25

473775 244811 238416 0.47 0.24 0.24

459226 230502 252478 0.46 0.23 0.25

433959 234665 251870 0.43 0.23 0.25

425034 237319 260009 0.43 0.24 0.26

419331 225067 255516 0.42 0.23 0.26

392948 234249 250498 0.39 0.23 0.25

435950 227171 240628 0.44 0.23 0.24

412111 262062 263300 0.41 0.26 0.26

447693 224131 268760 0.45 0.22 0.27

444187 248484 261439 0.44 0.25 0.26

452084 250360 246344 0.45 0.25 0.25

459374 223156 261100 0.46 0.22 0.26

393309 245752 260278 0.39 0.25 0.26

408719 225175 245245 0.41 0.23 0.25

460758 240391 250151 0.46 0.24 0.25

429217 237371 252518 0.43 0.24 0.25

424170 236430 237887 0.42 0.24 0.24

470226 234145 251132 0.47 0.23 0.25

428279 237535 253394 0.43 0.24 0.25

410476 241150 266996 0.41 0.24 0.27

421197 238731 246860 0.42 0.24 0.25

400522 243599 247487 0.4 0.24 0.25

440069 239574 249984 0.44 0.24 0.25

426170 304971 248571 0.43 0.3 0.25

420002 259236 249205 0.42 0.26 0.25

436510 215632 244047 0.44 0.22 0.24

416689 235138 256050 0.42 0.24 0.26

452456 241709 265454 0.45 0.24 0.27

379916 241812 261822 0.38 0.24 0.26

427627 236804 248771 0.43 0.24 0.25

444216 258225 243298 0.44 0.26 0.24

441017 234572 243447 0.44 0.23 0.24

127

439130 234483 265675 0.44 0.23 0.27

451048 256233 262629 0.45 0.26 0.26

423616 239825 249666 0.42 0.24 0.25

451420 251121 245192 0.45 0.25 0.25

420335 267189 243221 0.42 0.27 0.24

454004 214463 254070 0.45 0.21 0.25

411791 232464 286898 0.41 0.23 0.29

463304 225509 247994 0.46 0.23 0.25

403114 224059 241330 0.4 0.22 0.24

451401 240687 253163 0.45 0.24 0.25

450725 220339 264219 0.45 0.22 0.26

436858 241593 244905 0.44 0.24 0.24

387106 232694 253263 0.39 0.23 0.25

451353 235159 253695 0.45 0.24 0.25

431619 232992 247663 0.43 0.23 0.25

432919 224119 259045 0.43 0.22 0.26

407610 226851 254580 0.41 0.23 0.25

435626 231151 257073 0.44 0.23 0.26

414602 226701 246399 0.41 0.23 0.25

422334 236668 247121 0.42 0.24 0.25

427789 224687 245325 0.43 0.22 0.25

425600 226601 264547 0.43 0.23 0.26

411528 229031 247156 0.41 0.23 0.25

453682 240930 258958 0.45 0.24 0.26

401120 234320 253269 0.4 0.23 0.25

408375 219455 249212 0.41 0.22 0.25

445874 239362 264323 0.45 0.24 0.26

416639 228631 249897 0.42 0.23 0.25

417969 228352 251777 0.42 0.23 0.25

449324 231873 253950 0.45 0.23 0.25

399127 220661 248240 0.4 0.22 0.25

403950 235152 251516 0.4 0.24 0.25

431953 246764 249933 0.43 0.25 0.25

128

427316 223550 248366 0.43 0.22 0.25

421893 237184 255176 0.42 0.24 0.26

457434 219999 242653 0.46 0.22 0.24

417518 234491 251372 0.42 0.23 0.25

403124 242826 268993 0.4 0.24 0.27

129

Appendix H: SQL SELECT query time (in milliseconds)
comparison for different VPN setup and for different
result sizes

4.789 MB 0.734 MB
OpenVPN IPSec OpenVPN IPSec

(ms) (ms) (ms) (ms)
286.5 542.5 62.3 155.75
264.46 498.14 70.61 124.25
292.03 529.16 69.3 148.03
265.5 535.56 58.05 107.5
257.24 527.62 65.6 137.39
325.46 628.57 74.35 120.28
283.71 486.96 56.88 115.52
238.67 552.69 60.98 109.64
239.6 537.29 65.12 111.74
283.77 640.12 74.2 109.83
243.72 605.52 55.36 114.8
225.32 475.51 66.4 151.03
260.36 454.65 68.69 118.11
275.64 417.59 69.07 110
216.72 447.62 60.45 113.01
225.17 455.75 77.53 114.28
235.01 455.46 75.18 128.32
238.88 420.4 61.54 118.58
245.89 433.61 68.25 110.07
268.83 437.96 80.46 109.35
240.22 433.46 61.55 111.89
236.97 416.93 55.29 124.22
253.29 418.62 63.2 143.52
224.17 392.94 93.26 115.56
231.31 438.36 55.34 109.1
258.92 432.83 61.13 123.08
235.22 444.45 63.28 120.54
241.92 404.96 81.12 116.09
241.36 457.46 65.2 112.73
287.67 473.78 68.64 109.19

131

Appendix I: Code to measure AES encryption time

Using

 System;

using

 System.Collections.Generic;

using

 System.Linq;

using

 System.Text;

using

 System.Data.SqlClient;

using

 System.Diagnostics;

using

 System.Data;

using

 MySql.Data.MySqlClient;

using

 System.Threading;

using

 System.IO;

namespace

 test_thesis

{

class Program

132

{

static void Main(string[] args)

{

DatabaseInsertQueryTime(

false); //true for encr, false for unencrp
//DatabaseSelectTime(true);

}

public static void DatabaseSelectTime(bool withEncryption)

{

string encrp = string.Empty;
if (withEncryption)

{

encrp =

"With_encryption";
using (System.IO.StreamWriter file = new System.IO.StreamWriter(

@"C:\Temp\"

 + "Select_" + encrp + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))

{

Stopwatch sw = new Stopwatch();

sw.Start();

try

{

MySqlConnection conn;
MySqlCommand cmd = new MySql.Data.MySqlClient.MySqlCommand();
string myConnectionString;

myConnectionString =

"server=127.0.0.1;uid=root;" +
"pwd=;database=testdb;";

conn =

new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

133

conn.Open();

string Name = "Test";
int Price = 200;

cmd.Parameters.AddWithValue(

"@Name", Name);

cmd.Parameters.AddWithValue(

"@Price", Price);
string SQL = "SELECT Id, AES_DECRYPT(Name, 'usa2010'), AES_DECRYPT(Price,
'usa2010') from product_info";

cmd.Connection = conn;

cmd.CommandText = SQL;

MySqlDataReader rdr = cmd.ExecuteReader();

sw.Stop();

long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

file.WriteLine(microseconds);

Thread.Sleep(1000);

}

catch

{

throw;

}

}

}

else

{

encrp =

"Without_encryption";
using (System.IO.StreamWriter file = new System.IO.StreamWriter(

134

@"C:\Temp\"

 + "Select_" + encrp + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))

{

Stopwatch sw = new Stopwatch();

sw.Start();

try

{

MySqlConnection conn;
MySqlCommand cmd = new MySql.Data.MySqlClient.MySqlCommand();
string myConnectionString;

myConnectionString =

"server=127.0.0.1;uid=root;" +
"pwd=;database=testdb;";

conn =

new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

conn.Open();

string Name = "Test";
int Price = 200;

cmd.Parameters.AddWithValue(

"@Name", Name);

cmd.Parameters.AddWithValue(

"@Price", Price);
string SQL = "SELECT Id, Name, Price from product_info";

cmd.Connection = conn;

cmd.CommandText = SQL;

MySqlDataReader rdr = cmd.ExecuteReader();

sw.Stop();

long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

135

file.WriteLine(microseconds);

Thread.Sleep(1000);

}

catch

{

throw;

}

}

}

}

public static void DatabaseInsertQueryTime(bool withEncryption)

{

string encrp = string.Empty;
if (withEncryption)

{

encrp =

"With_encryption";
using (System.IO.StreamWriter file = new System.IO.StreamWriter(

@"C:\Temp\"

 + "Insert_" + encrp + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))

{

Stopwatch sw = new Stopwatch();

sw.Start();

for (int i = 0; i < 100; i++)

{

try

{

136

MySqlConnection conn;
MySqlCommand cmd = new MySql.Data.MySqlClient.MySqlCommand();
string myConnectionString;

myConnectionString =

"server=127.0.0.1;uid=root;" +
"pwd=;database=testdb;";

conn =

new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

conn.Open();

string Name = "Test";
string Price = "200";
string image = "x";

cmd.Parameters.AddWithValue(

"@Name", Name);

cmd.Parameters.AddWithValue(

"@Price", Price);

cmd.Parameters.AddWithValue(

"@image", image);
string SQL = "INSERT into product_info(Id,Name,Price,image) VALUES (NULL,
AES_ENCRYPT(@Name, 'usa2010'),AES_ENCRYPT(@Price,
'usa2010'),AES_ENCRYPT(@image, 'usa2010'));"; //for normal insert

cmd.Connection = conn;

cmd.CommandText = SQL;

cmd.ExecuteNonQuery();

sw.Stop();

long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

file.WriteLine(microseconds);

Thread.Sleep(1000);

}

catch

{

137

throw;

}

}

}

}

else

{

encrp =

"Without_encryption";
using (System.IO.StreamWriter file = new System.IO.StreamWriter(

@"C:\Temp\"

 + "Insert_" + encrp + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))

{

Stopwatch sw = new Stopwatch();

sw.Start();

for (int i = 0; i < 100; i++)

{

try

{

MySqlConnection conn;
MySqlCommand cmd = new MySql.Data.MySqlClient.MySqlCommand();
string myConnectionString;

myConnectionString =

"server=127.0.0.1;uid=root;" +
"pwd=;database=testdb;";

conn =

new MySql.Data.MySqlClient.MySqlConnection(myConnectionString);

conn.Open();

string Name = "Test";
string Price = "200";

138

string image = "x";

cmd.Parameters.AddWithValue(

"@Name", Name);

cmd.Parameters.AddWithValue(

"@Price", Price);

cmd.Parameters.AddWithValue(

"@image", image);
string SQL = "insert into product_info(Id,Name,Price,image) values(NULL,
@Name, @Price, @image)";//for normal insert

cmd.Connection = conn;

cmd.CommandText = SQL;

cmd.ExecuteNonQuery();

sw.Stop();

long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

file.WriteLine(microseconds);

Thread.Sleep(1000);

}

catch

{

throw;

}

}

}

}

}

}

}

139

Appendix J: Time for inserting data
We ran this experiment 100 times. Client and database server were residing in the same

machine. So there was no network related delay. In this experiment in every run we got the
same value.

Insert data with
AES encryption
big_database

Insert data
without
encryption
big_database

Insert data with
AES encryption
small_database

Insert data
without
encryption
small_database

1755442 218839 243458 244915

141

Appendix K: Time for selecting data

With AES decryption
big_database

Without decryption
big_database

With AES decryption
small_database

Without decryption
small_database

164713 161951 162741 160084

143

Appendix L: Analysis of data in appendices E & F

 In Megabytes In Bytes
3.13MB file 3,282,043 0.013670601 0.046550 0.047082
390MB file 408,944,640 0.063719331 0.039271017 0.039764884

Ratios
HTTPS
(40bit-SSL)/HTTP

HTTPS
(128bit-SSL)/HTTP

1.5MB file 3.405115061 1.011428272
390MB file 0.616312451 1.012575848

File size (In Bytes) HTTP HTTP (40bit-SSL) HTTP (128bit-SSL)
Data transfer time for
initial 1.5MB (Median value) 1,572,864 44,867.50 152,779.00 154,525.00
Data transfer time for
390MB (Median value) 408,944,640 26,057,679.00 16,059,672.00 16,261,636.00
Data transfer time for
subsequent (390MB - 1.5MB) 405,662,597 26,012,811.50 15,906,893.00 16,107,111.00
Per byte data transfer time
for subsequent data (time/file size) 0.064124 0.039212 0.039706

Required time to transfer
3.13Mb sized file at the data
transfer rate of sub-sequent
data 210458.552 128695.88 130315.7583

HTTPS session creation time 24083.12001 24209.24166

File size HTTP HTTPS (40bit-SSL) HTTPS (128bit-SSL)

Per byte data transfer time in µs (using median time)
Per byte data transfer time = median time/file size

144

145

Appendix M. Analysis of data in appendix H

Per byte data transfer time in
millisecond using median time

File size

Megabytes Bytes OpenVPN IPSec
4.789 5021630.464 0.048750103 0.0907285
0.734 769654.784 0.084973161 0.150119251

File size (MB)
IPSec/OpenVPN
Ratio

4.789 1.861093523
0.734 1.766666667

 Average file transfer

time in millisecond (Median) File size
Megabytes Bytes OpenVPN IPSec

4.789 5021630.464 244.805 455.605
0.734 769654.784 65.4 115.54

Subsequent data 4251975.68

Required time
to transfer
subsequent data 179.405 340.065

Per byte data
transfer rate for
subsequent data 4.21933E-05 7.99781E-05

Ratio: per byte
transfer time

for first 0,734MB/
transfer rate for
subsequent data

OpenVPN IPSec

2013.900475 1877.00412

It shows that first 0,734MB per byte data transfer time is almost two
times higher than subsequent data transfer time.

Required time to
transfer 0,734MB
sized file at the
data transfer rate
of sub-sequent
data 32.47429593 61.55553884

Session creation
time 32.92570407 53.98446116

146

For both 4,789MB and 0,734MB sized files per byte data transfer time for IPSec is almost
two times higher than OpenVPN. We also calculate the session creation time. For OpenVPN
it is 32.93 millisecond and for IPSec it is 53.99 millisecond.

It shows that for first 0,734MB data, per byte data transfer time is almost two times higher
than subsequent data transfer time (for both IPSec and OpenVPN). It is because to create a
secured connection between nodes there is time required to create a secured session.
Regardless the file size which can be consistent. As a result due to the initial session creation
time for a small file per byte data transfer time gets higher than the time for a bigger file.

Subsequent data 4251975,68

Required time
to transfer
subsequent
data 179,405 340,065

Per byte data
transfer rate for
subsequent data 0,042193327 0,079978

OpenVPN IPSec

2,013900475 1,87700412

Ratio: per byte
transfer time

for first 0,734MB/
transfer rate for
subsequent data

147

Appendix N. Storage security with AES and TripleDES
We have used the following C# code to perform experiment with AES and TripleDES for

storage security.

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Diagnostics;
using System.Threading;
using System.IO;
using System.Security.Cryptography;
using System.Runtime.InteropServices;
using System.Configuration;

namespace ConsoleApplication1
{
 class Program
 {
 static void Main(string[] args)
 {
 move_without_security("no_security");
 AES_encrypt();
 AES_decrypt();
 tripleDES_encrypt_decrypt();
 }
 public static void move_without_security(String security)
 {
 string bigfileName = "big_file.doc";
 string smallfileName = "small_file.doc";
 string sourcePath = @"C:\Temp";
 string targetPath = @"C:\DestTemp";

 // Use Path class to manipulate file and directory paths.
 string sourceFileBig = System.IO.Path.Combine(sourcePath, bigfileName);
 string sourceFileSmall = System.IO.Path.Combine(sourcePath, smallfileName);
 string destFileBig = System.IO.Path.Combine(targetPath, bigfileName);
 string destFileSmall = System.IO.Path.Combine(targetPath, smallfileName);

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + security + "_big_" + DateTime.Now.ToString("yyyyMMddhhmmss") +
@".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 System.IO.File.Copy(sourceFileBig, destFileBig, true);
 while (System.IO.File.Exists(destFileBig))

148

 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileBig);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);
 Thread.Sleep(1000);
 }
 }

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + security + "_small_" + DateTime.Now.ToString("yyyyMMddhhmmss") +
@".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 System.IO.File.Copy(sourceFileSmall, destFileSmall, true);
 while (System.IO.File.Exists(destFileSmall))
 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileSmall);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);
 Thread.Sleep(1000);
 }
 }
 }
 public static void AES_encrypt()
 {
 string bigfileName = "big_file.doc";
 string smallfileName = "small_file.doc";
 string sourcePath = @"C:\Temp";
 string targetPath = @"\\RIZVI-PC\experiment";

 // Use Path class to manipulate file and directory paths.
 string sourceFileBig = System.IO.Path.Combine(sourcePath, bigfileName);
 string sourceFileSmall = System.IO.Path.Combine(sourcePath, smallfileName);
 string destFileBig = System.IO.Path.Combine(targetPath, bigfileName);
 string destFileSmall = System.IO.Path.Combine(targetPath, smallfileName);

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(

149

@"C:\Temp\" + "AES_encrypt" + "_small_" +
DateTime.Now.ToString("yyyyMMddhhmmss") + @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 EncryptFile(sourceFileSmall, destFileSmall);
 while (System.IO.File.Exists(destFileSmall))
 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileSmall);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);
 Thread.Sleep(1000);
 }
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + "AES_encrypt" + "_big_" + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 EncryptFile(sourceFileBig, destFileBig);
 while (System.IO.File.Exists(destFileBig))
 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileBig);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);
 Thread.Sleep(1000);
 }
 }
 }

 public static void AES_decrypt()
 {
 string bigfileName = "big_file_en.doc";
 string smallfileName = "small_file_en.doc";
 string sourcePath = @"C:\Temp";

150

 //string targetPath = @"\\RIZVI-PC\experiment";
 string targetPath = @"C:\DestTemp";

 // Use Path class to manipulate file and directory paths.
 string sourceFileBig = System.IO.Path.Combine(sourcePath, bigfileName);
 string sourceFileSmall = System.IO.Path.Combine(sourcePath, smallfileName);
 string destFileBig = System.IO.Path.Combine(targetPath, bigfileName);
 string destFileSmall = System.IO.Path.Combine(targetPath, smallfileName);

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + "AES_decrypt" + "_small_" +
DateTime.Now.ToString("yyyyMMddhhmmss") + @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 DecryptFile(sourceFileSmall, destFileSmall);
 while (System.IO.File.Exists(destFileSmall))
 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileSmall);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);
 Thread.Sleep(1000);
 }
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + "AES_decrypt" + "_big_" + DateTime.Now.ToString("yyyyMMddhhmmss")
+ @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 DecryptFile(sourceFileBig, destFileBig);
 while (System.IO.File.Exists(destFileBig))
 {
 break;
 }
 sw.Stop();
 System.IO.File.Delete(destFileBig);

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds);

151

 Thread.Sleep(1000);
 }
 }
 }

 public static void tripleDES_encrypt_decrypt()
 {
 string bigfileName = "big_file.doc";
 string smallfileName = "small_file.doc";
 string sourcePath = @"C:\Temp";
 string targetPath = @"\\RIZVI-PC\experiment";

 // Use Path class to manipulate file and directory paths.
 string sourceFileBig = System.IO.Path.Combine(sourcePath, bigfileName);
 string sourceFileSmall = System.IO.Path.Combine(sourcePath, smallfileName);
 string destFileBig = System.IO.Path.Combine(targetPath, bigfileName);
 string destFileSmall = System.IO.Path.Combine(targetPath, smallfileName);
 //Must be 64 bits, 8 bytes.
 string sSecretKey = null;

 // Get the key for the file to encrypt.
 // You can distribute this key to the user who will decrypt the file.
 sSecretKey = GenerateKey();

 // For additional security, pin the key.
 GCHandle gch = GCHandle.Alloc(sSecretKey, GCHandleType.Pinned);

 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + "threeDES_encrypt_decrypt" + "_small_" +
DateTime.Now.ToString("yyyyMMddhhmmss") + @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw = new Stopwatch();
 sw.Start();
 // Encrypt the file.
 ThreeDESEncrypt(sourceFileSmall, destFileSmall, true);

 while (System.IO.File.Exists(destFileSmall))
 {
 break;
 }
 sw.Stop();

 long microseconds = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

 sw.Start();
 ThreeDESDecrypt(destFileSmall,sourceFileSmall, true);
 while (System.IO.File.Exists(destFileSmall))

152

 {
 break;
 }
 sw.Stop();
 //System.IO.File.Delete(destFileSmall);
 long microsecondsDecr = sw.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds + " " + microsecondsDecr);
 Thread.Sleep(1000);
 }
 }
 using (System.IO.StreamWriter file = new System.IO.StreamWriter(
@"C:\Temp\" + "threeDES_encrypt_decrypt" + "_big_" +
DateTime.Now.ToString("yyyyMMddhhmmss") + @".txt", true))
 {
 for (int i = 0; i < 100; i++)
 {
 Stopwatch sw1 = new Stopwatch();
 sw1.Start();
 // Encrypt the file.
 ThreeDESEncrypt(sourceFileSmall, destFileSmall, true);

 while (System.IO.File.Exists(destFileBig))
 {
 break;
 }
 sw1.Stop();

 long microseconds = sw1.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));

 sw1.Start();
 ThreeDESDecrypt(destFileSmall, sourceFileSmall, true);
 while (System.IO.File.Exists(destFileBig))
 {
 break;
 }
 sw1.Stop();
 //System.IO.File.Delete(destFileBig);
 long microsecondsDecr = sw1.ElapsedTicks / (Stopwatch.Frequency / (1000L *
1000L));
 file.WriteLine(microseconds + " " + microsecondsDecr);
 Thread.Sleep(1000);
 }
 }
 }

 public static void EncryptFile(string inputFile, string outputFile)
 {

153

 try
 {
 string password = @"myKey123"; // Your Key Here
 UnicodeEncoding UE = new UnicodeEncoding();
 byte[] key = UE.GetBytes(password);

 string cryptFile = outputFile;
 FileStream fsCrypt = new FileStream(cryptFile, FileMode.Create);

 RijndaelManaged RMCrypto = new RijndaelManaged();

 CryptoStream cs = new CryptoStream(fsCrypt,
 RMCrypto.CreateEncryptor(key, key),
 CryptoStreamMode.Write);

 FileStream fsIn = new FileStream(inputFile, FileMode.Open);

 int data;
 while ((data = fsIn.ReadByte()) != -1)
 cs.WriteByte((byte)data);

 fsIn.Close();
 cs.Close();
 fsCrypt.Close();
 }
 catch
 {
 Console.Write("Encryption failed!", "Error");
 }
 }
 ///<summary>
 /// Steve Lydford - 12/05/2008.
 ///
 /// Decrypts a file using Rijndael algorithm.
 ///</summary>
 ///<param name="inputFile"></param>
 ///<param name="outputFile"></param>
 public static void DecryptFile(string inputFile, string outputFile)
 {

 {
 string password = @"myKey123"; // Your Key Here

 UnicodeEncoding UE = new UnicodeEncoding();
 byte[] key = UE.GetBytes(password);

 FileStream fsCrypt = new FileStream(inputFile, FileMode.Open);

 RijndaelManaged RMCrypto = new RijndaelManaged();

154

 CryptoStream cs = new CryptoStream(fsCrypt,
 RMCrypto.CreateDecryptor(key, key),
 CryptoStreamMode.Read);

 FileStream fsOut = new FileStream(outputFile, FileMode.Create);

 int data;
 while ((data = cs.ReadByte()) != -1)
 fsOut.WriteByte((byte)data);

 fsOut.Close();
 cs.Close();
 fsCrypt.Close();

 }
 }

 public static void RSAEncrypt(string sInputFilename, string sOutputFilename, string
sKey)
 {
 RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
 byte[] inputBytes = System.IO.File.ReadAllBytes(sInputFilename);

 byte[] encrBytes = RSA.Encrypt(inputBytes,true);
 File.WriteAllBytes(sOutputFilename,encrBytes);

 }
 public static void RSADecrypt(string sInputFilename, string sOutputFilename, string
sKey)
 {
 RSACryptoServiceProvider RSA = new RSACryptoServiceProvider();
 byte[] inputBytes = System.IO.File.ReadAllBytes(sInputFilename);
 byte[] decrBytes = RSA.Decrypt(inputBytes, true);
 File.WriteAllBytes(sOutputFilename,decrBytes);
 }
 // Function to generate a 64-bit key.
 public static string GenerateKey()
 {
 // Create an instance of a symmetric algorithm. The key and the IV are generated
automatically.
 DESCryptoServiceProvider desCrypto = DESCryptoServiceProvider.Create() as
DESCryptoServiceProvider;

 // Use the automatically generated key for encryption.
 return ASCIIEncoding.ASCII.GetString(desCrypto.Key);

 }
 public static void ThreeDESEncrypt(string sInputFilename, string sOutputFilename, bool
useHashing)

155

 {
 byte[] keyArray;
 byte[] toEncryptArray = System.IO.File.ReadAllBytes(sInputFilename);

 System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();
 // Get the key from config file

 string key = "sabrina ali tandra";
 //System.Windows.Forms.MessageBox.Show(key);
 //If hashing use get hashcode regards to your key
 if (useHashing)
 {
 MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
 keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
 //Always release the resources and flush data
 //of the Cryptographic service provide. Best Practice

 hashmd5.Clear();
 }
 else
 keyArray = UTF8Encoding.UTF8.GetBytes(key);

 TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
 //set the secret key for the tripleDES algorithm
 tdes.Key = keyArray;
 //mode of operation. there are other 4 modes. We choose ECB(Electronic code Book)
 tdes.Mode = CipherMode.ECB;
 //padding mode(if any extra byte added)
 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateEncryptor();
 //transform the specified region of bytes array to resultArray
 byte[] resultArray = cTransform.TransformFinalBlock
 (toEncryptArray, 0, toEncryptArray.Length);
 //Release resources held by TripleDes Encryptor
 tdes.Clear();
 File.WriteAllBytes(sOutputFilename, resultArray);
 }
 public static void ThreeDESDecrypt(string sInputFilename, string sOutputFilename,
bool useHashing)
 {
 byte[] keyArray;
 //get the byte code of the string

 byte[] toEncryptArray = System.IO.File.ReadAllBytes(sInputFilename);

 System.Configuration.AppSettingsReader settingsReader = new AppSettingsReader();
 //Get your key from config file to open the lock!
 string key = "sabrina ali tandra";

156

 if (useHashing)
 {
 //if hashing was used get the hash code with regards to your key
 MD5CryptoServiceProvider hashmd5 = new MD5CryptoServiceProvider();
 keyArray = hashmd5.ComputeHash(UTF8Encoding.UTF8.GetBytes(key));
 //release any resource held by the MD5CryptoServiceProvider

 hashmd5.Clear();
 }
 else
 {
 //if hashing was not implemented get the byte code of the key
 keyArray = UTF8Encoding.UTF8.GetBytes(key);
 }

 TripleDESCryptoServiceProvider tdes = new TripleDESCryptoServiceProvider();
 //set the secret key for the tripleDES algorithm
 tdes.Key = keyArray;
 //mode of operation. there are other 4 modes.
 //We choose ECB(Electronic code Book)

 tdes.Mode = CipherMode.ECB;
 //padding mode(if any extra byte added)
 tdes.Padding = PaddingMode.PKCS7;

 ICryptoTransform cTransform = tdes.CreateDecryptor();
 byte[] resultArray = cTransform.TransformFinalBlock
 (toEncryptArray, 0, toEncryptArray.Length);
 //Release resources held by TripleDes Encryptor
 tdes.Clear();
 File.WriteAllBytes(sOutputFilename, resultArray);
 }
 }
}

157

Appendix O. AES encryption-decryption time in the same
machine
The following table contains time required to encrypt file and store it in the same machine as
well as to read that file and decrypt it using AES cryptographic protocol. Time in the table
below is in microseconds (μs).

29KB sized file 4MB sized file
Encryption (μs) Decryption (μs) Encryption (μs) Decryption (μs)

1462724
765674
133422
138319
133042
158607
123633
140224
149282

56534
151349
309927

56632
75292

124351
65638
85950
63583

609116
59482
52287
94683
94566

106400
78908

765305
111644

95232
94791

108480
100374
107351

64519
53972
87083
49497
73836
63976
43213

754228
123369
107363

70264
93050

92700
7486

10442
15847
20372
8358

40316
10893
20001
19903
9818

34744
7686
7811

33689
9891
8247

17597
8153
8687
8364

10317
8123

21473
20233
20716
7532
8411
8547

13376
14688
7701

11417
25077
25766
11214
22005
22828
11203
8054

12050
11451
16585
10573

8354182
10322132
7315201
8767458
9244208
8715674

10494561
10400836
5984092
6793399
6698820
8148126
9742898
9971424
9311425
8568230
9207283
9461273

11483141
7148071
8868827
8569560

11906146
8684342

13436621
10995309
7997987
9893744
9911379
6390885
6058626
5725993
5751751
7349389
6701277
6644249
6711508
6611468
6511748
6457006
6938072
6181663
6343417
6038125

754689
768015
717588
796359
801317
743078
763999
753809
752841
729157
771885
740608
785465
748344
771217
763948
756567
774078
716814
734637
728639

1013893
794713
726142
749176
750342

1008354
754139
770119
749110
723742
746245

1017240
771784
763084
745041
751608
737011

1040078
757560
749179
783830
721436
721173

158

91264
95790

104905
80477
83849
92205
83489
75906

111712
123186
107857

97856
111054
129895
117286

80036
99647
57911
69884
46661
53460

423582
93415
69639
60701

428852
53652
49696
55931
96801
88075

140665
102519

65660
452650

85599
62575
57028

103654
87146

101642
48902
87535

237263
91582
86982
59844

106582
67170
59093
77037
45182
56190
43336
71263

10715
11298
7492

15175
11774
9075

24992
14570
8862
8393

28969
7707

30368
8061
8624

10827
21822
7730

25453
7615

11954
8880

10823
8995

24147
10690
21730
21039
18333
19535
11296
22099
22549
11014
27142
20703
10858
15680
20866
10482
20917
12178
7822
8017

26958
24954
21578
11000
8228

21553
7422

20783
20908
7416
7396

5627264
5953908
6033246
5905844
5377937
5097727
5863451
5854124
5690237
6152615
6664390
6227315
5770664
5956709
5690471
6044818
5283261
5239049
5435508
5902145
5794090
6063655
5854799
5446528
5685093
5753069
5421171
5349482
5377856
6691515
6232514
6313139
6370132
6130039
5653980
5724477
5664470
6310425
5791080
6111928
5709742
6602330
6533724
5910315
6601759
5614790
5762670
5761184
6709901
5480410
5684761
6004414
5713442
5553742
6067038

1007771
761315
754482
742443
739498
756822

1058466
794519
769110
745561
782113
752339

1033526
751462
774784
785910
755121
745290
759516
751064
803751
746527
772273
759736
809104
735123
754311
787379
738785
733019
758182
757672
782180
781062
754092
756460
784737
747307
737035
759188
793240
728736
746959
739121
793159
777523
758779
796688
747725
750139
760987
763703
753802
763773
783975

159

57500 19129 7143748 756553

161

Appendix P. AES encryption-description time between
networked hosts
The following table contains time required to encrypt file and store it in a remote host as well
as to read that file from remote host and decrypt it using AES cryptographic protocol. Time in
the table below is in microseconds.

29KB sized file 4MB sized file
Encryption (μs) Decryption (μs) Encryption (μs) Decryption (μs)

61679
47758
63110
38408
36051
70999
42062
40142
34211
42378
92260
48935
53119
39611
35320

142724
38020
82502
39020
65949
99040
49778
45269
45696
36715

414952
43250
53021
40451
42562
88772
38794
43912
39881
61289
41369
37043
61964
43714
38086
43604
47720
50370
43617

92654
47561
53124
67331
59202
55553
48497
45771
45042
61541

192273
42218
59405

193898
54082
83028

103747
46671

547963
154422

48174
136315
144877

36815
253035

56139
63134
46018
50461
42627
41031

122732
42573
88220
41908
40836
55674
52337
46476
87335

396878
54171
63761
66275

3765225
3838633
3981792
4521242
6352921
4015812
3843236
3287647
6844786
7665980
4326138
3739339
4000245
4549605
4127562
4111058
8774485
8570590
9298062

10214988
12617174
3912204
3379613
4014194
3652538
3583022
3444676
3677761
3891486
4087926
5829298
5339418
5432029
4280735
3305008
3863563
3614967
4086004
3514964
3065282
3168261
3250118
3496038
3725971

9252946
6337063
5323375
4780659
4327162
4912764
5028714
8359716
5052242
6822391
9043941
8205595
5408254
5835289
5670417
4328180
3830122
4349260
4334925
6583317
5034627
5385797
4894090
8152574
4417860
4232766
4344362
4620313
3721355
4460701
3632867
3821908
3900471
4233975
4388977
4908307
5262714
4973022
5308535
4195356
3830117
4801943
4769786
4590719

162

828419
38960
38284
37174
54508
61582
35433
37502
43489
59513
35401
43348
42217
44925
68374
36248
59567
45591
44310

162918
37748
36615
40203
43353
38283
40723
44255
66420
40157
39353
55132
44351
40894
38831
45426
40411
38444
52404
45165
46089
51129
41414
39880
38732
61426
37383
43208
51999
43576
80254
57239
56950
48068
51150
47224

47519
59109

299372
66714
47782
68034
48348
48463
77382
50751
47571
50219
53998
50547
53305
48716
57078
69295
50419
54823
47967

1296732
317873

74999
51745
74665

635302
65359
57254
56631
56551
43985
53906
55499
61800
64221

1247946
199872

64362
200713
758323
130346
517667
123640
173897
138103
143103
174837
118732
277993
156119
153578
510750
121845
418542

3417113
3334440
3417579
3305106
3338738
3385202
3437887
3242420
3252890
3398753
3422227
5039247
3432700
4709088
4834222
3843782
3650054
3319097
3454158
3350577
3413599
3311907
3240620
3277652
3328480
3216052
3250528
3452739
3825976
3569463
3394973
4190554
3863572
3694443
5097150
4047337
4159483
4144623
3726186
3982848
4459027
3814156
4635833
4035561
4483650
4351296
5715330
7479034
4215618
4781677
4057627
3794852
5114914
3332978
3317899

7116464
4075602
4760704
4183517
3842193
4794402
3893469
4279925
4700516
4646729
4091481
3519370
3566156
3833637
3587355
3234760
3193943
3667509
3304801
3287189
3380187
3870531
3639048
3827708
3483988
3384074
3348038
3215443
3109156
3199420
3711963
3472490
3439735
3296424
3345776
3316590
3314358
3311860
3238560
3409929
3758216
3247163
3373638
3329547
3407878
3219106
3530067
3461609
3458955
3465196
3176057
3429351
3600746
3741512
3707900

163

41850 158744 3432837 4455144

165

Appendix Q. TripleDES encryption-decryption time
between networked hosts

The following table contains time required to encrypt file and store it in a remote host as
well as to read that file from remote host and decrypt it using TripleDES. Time in the table
below is in microseconds.

29KB sized file 4MB sized file
Encryption (μs) Decryption (μs) Encryption (μs) Decryption(μs)

70333
64219
52736
63461

293766
72449
97172
51862
72629
47189
52328
63179
68929
62020
46080
69101
40668
87586
53460
39541
73116
35216

265809
39810

105434
62869
43807
41688
79719
67315

108566
68981
64197
68977
81299
59241
58752

192969
144536
184336
513226
451700
176276
193760
133322
152886
134904
148148
146847
157667
143867
147018
167344
126242
192129
154487
152434
152594
483772
369566
140788
204232
125978
139803
131692
170396
153620
190799
145131
139631
180494
174940
172605
137976

3861896
5959316
5732541
6112895
5890296
5960466
6149777
6089744
6385312
9048187
6204458
6074299
6050436
5883715
5955180
6099507
6334260
7692492
6083685
5887615
5976445
6027389
6315009
5873525
5650929
5119167
5619249
6485053
6179555
5940943
4875003
5188493
4825625
4695675
5244046
4861003
4816807

8480260
16729711
16734524
12390029
16208446
16182323
18581673
17842379
16918848
15564266
16708357
12377160
12400045
16609882
12256169
16910061
18241947
21131017
17936403
11946385
12675801
12334256
18476119
20229790
19181833
17991365
11746853
20459054
12531945
12501685
12408070
17299811
14814131
10513875
10843056
10326151
16644473

166

54764
90328
54830
68403
74116
79199
45413
92861
46351

115881
48774
62716
59753
59425
41285
70373
45169
56865
86337
47694
46986
73498
55308
53623
57547
67345
67335
47554
60880
62647
63903
63650
70944
66116
62678
57423
65934
55857
65770
91869
57965
63893
44918
61395
49068

102672

189669
182626
158332
152252
152339
177764
133718
186102
136642
243056
128397
127481
157343
144619
171549
179099
154649
141593
161200
140706
129610
178675
145851
140448
154741
189862
165951
132545
187420
167825
177489
166148
141148
176406
145317
153730
158460
148131
140782
171486
163863
154309
142441
153789
182359
150583

4939389
4432113
4869947
4791499
4936562
4869682
5848425
4809118
5084075
5072715
4450173
4948815
5192521
4930486
6081569
6146570
5750038
5281283
5280351
5449938
5392714
5112656
5073074
5390609
5293412
5639237
6264837
5550074
5502901
5203798
5814559
5628522
5664870
5453637
5642231
5778769
5331147
5303269
5283578
5356489
6263908
6273620
6186494
6151373
6517170
6469264

14592029
10101036
14534626
10588599
10318782
15320314
14669517
15809110
15427494
14858951
14561958
14758597
10856596
12821470
13117045
20773590
12218175
11777933
16108211
17154451
16397289
14192411
16267846
15988910
11531253
16180198
17002809
11956530
16092683
11588249
16104561
16041407
12117637
11890673
12446839
16976381
16736482
16372689
16258112
11571958
18319020
13844207
12878655
18940248
17665009
12619370

167

80083
64928
52878
66747
34964
74054
60856
75428
46250
46539
83590
52152
52369

109585
61009
76399
79569

170793
174319
144872
183295
127280
163615
169682
149761
172529
164663
190002
183460
219769
200940
173419
197183
167835

6100428
5754428
5504464
5668987
6019641
6747043
6103298
6568653
6275030
6145367
5627378
5679803
5709508
5520618
6430077
6408529
6375499

12414613
11938819
11956167
13240078
13753145
22869987
12485160
18371706
13314084
17430494
16152812
18221091
17257984
12691581
16825436
13094586
16912735

169

Appendix R. Analysis of data in Appendix P and Q

Small file(KB) Big

file(MB)
Small
file(Byte)

Big
file(Byte)

24 4 24576 4194304
Block size(byte)
AES 16
3DES 8

Per block time in Millisecond for
AES

Small
file(Byte)

Big
file(Byte)

Encryption 35,92067571 19,99992732
Decryption 48,19059416 22,32662301

Per block time in Millisecond for
3DES

Small
file(Byte)

Big
file(Byte)

Encryption 24,48545436 11,80231817
Decryption 62,73410088 60,2729195

Per byte time in Millisecond for
AES

Small
file(Byte)

Big
file(Byte)

Encryption 2,245042232 1,249995457
Decryption 3,011912135 1,395413938

Per byte time in Millisecond for
3DES

Small
file(Byte)

Big
file(Byte)

Encryption 3,060681795 1,475289771
Decryption 7,84176261 3,767057469

171

Appendix S. Analysis of data in Appendix J and K
 Small Table(Byte) Big

Table(Byte)

 16384 65536
Block size(byte)
AES 16

Per block time in Millisecond for AES Small Table(Byte) Big

Table(Byte)

Encryption 0,239174805 0,428574707

Decryption 0,158926758 0,040213135

Per byte time in Millisecond for AES Small file(Byte) Big file(Byte)

Encryption 0,014948425 0,026785919

Decryption 0,009932922 0,002513321

173

Appendix T. Data Push and Pull time without security

24 KB File (μs) 4 MB File (μs)

49803 4482547
65255 3937065
47722 3852489
55204 4352998
66080 4751501
68841 3446578
57827 3180194
50101 3609307
54843 3293308
46219 4875510
42176 7277629
47299 10153265
53849 7220695
54910 4906060
45629 3693896
55285 3789783
56829 3571232
46411 2869818
52504 2850159
60879 2790749
63855 3086638
48619 2694082
58809 2801652
54506 2744821
52865 2968960
54054 2923529
61292 2821214
80247 2902039
54918 2814408
55136 2971082
51546 2956447
59782 2844639
57454 3160540
49634 2805218
53315 2876336
50657 2940087
55339 2798696
60027 2774400
50834 2931202

174

50005 2845413
44269 2863441
64707 2822749
41114 2789600
52403 2819767
57124 2789292
45016 2693350
40658 2769854
59647 2582967
49500 2890855
53972 3519018
78184 3850949
54919 2759021
43292 2843998
59857 2782217
52450 2794603
55113 2695109
64380 2768217
55482 2877848
51535 2914009
45983 2883025

102258 3076615
50262 3049290
44332 2831232
44047 2972763
48847 2777171
86407 2789335
59143 3071123
54996 2802890
53205 3049093
99098 2762018
99652 2914002
54051 2718219
48678 2910523
60294 3087852
52355 2646147

177838 3405327
53598 2850370
47084 2847569
49924 2768253
89009 2890836
55848 3065164
65173 2814745
51672 2910367
61503 2670353

175

52312 2910307
61779 2960014
48220 2703699
50730 2705577
57172 3247103
70862 2771115
49261 2783321
55322 2829447
51378 2731589
43069 2696324
66209 2611655
80145 2798316

104564 3297520
64003 2937992
58401 2970796

www.kth.se

TRITA-ICT-EX-2014:3

