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Abstract 

Today one of the fast growing social services is the ability for doctors to monitor patients 
in their residences. The proposed highly scalable database system is designed to support a 
Remote Patient Monitoring system (RPMS). In an RPMS, a wide range of applications are 
enabled by collecting health related measurement results from a number of medical devices in 
the patient’s home, parsing and formatting these results, and transmitting them from the 
patient’s home to specific data stores. Subsequently, another set of applications will 
communicate with these data stores to provide clinicians with the ability to observe, examine, 
and analyze these health related measurements in (near) real-time. Because of the rapid 
expansion in the number of patients utilizing RPMS, it is becoming a challenge to store, 
manage, and process the very large number of health related measurements that are being 
collected. The primary reason for this problem is that most RPMSs are built on top of 
traditional relational databases, which are inefficient when dealing with this very large amount 
of data (often called “big data”). 

This thesis project analyzes scalable data management to support RPMSs, introduces a 
new set of open-source technologies that efficiently store and manage any amount of data 
which might be used in conjunction with such a scalable RPMS based upon HBase, 
implements these technologies, and as a proof of concept, compares the prototype data 
management system with the performance of a traditional relational database (specifically 
MySQL). This comparison considers both a single node and a multi node cluster. The 
comparison evaluates several critical parameters, including performance, scalability, and load 
balancing (in the case of multiple nodes). The amount of data used for testing input/output 
(read/write) and data statistics performance is 1, 10, 50, 100, and 250 GB. 

The thesis presents several ways of dealing with large amounts of data and develops & 
evaluates a highly scalable database that could be used with a RPMS. Several software suites 
were used to compare both relational and non-relational systems and these results are used to 
evaluate the performance of the prototype of the proposed RPMS. The results of 
benchmarking show that MySQL is better than HBase in terms of read performance, while 
HBase is better in terms of write performance. Which of these types of databases should be 
used to implement a RPMS is a function of the expected ratio of reads and writes. Learning 
this ratio should be the subject of a future thesis project. 

 

Keywords: Big data, database performance, scalability, load balancing, Remote Patient 
Monitoring System. 
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Sammanfattning 

En av de snabbast växande sociala tjänsterna idag är möjligheten för läkare att övervaka 
patienter i sina bostäder. Det beskrivna, mycket skalbara databassystemet är utformat för att 
stödja ett sådant Remote Patient Monitoring-system (RPMS). I ett RPMS kan flertalet 
applikationer användas med hälsorelaterade mätresultat från medicintekniska produkter i 
patientens hem, för att analysera och formatera resultat, samt överföra dem från patientens 
hem till specifika datalager. Därefter kommer ytterligare en uppsättning program 
kommunicera med dessa datalager för att ge kliniker möjlighet att observera, undersöka och 
analysera dessa hälsorelaterade mått i (nära) realtid. På grund av den snabba expansionen av 
antalet patienter som använder RPMS, är det en utmaning att hantera och bearbeta den stora 
mängd hälsorelaterade mätningar som samlas in. Den främsta anledningen till detta problem 
är att de flesta RPMS är inbyggda i traditionella relationsdatabaser, som är ineffektiva när det 
handlar om väldigt stora mängder data (ofta kallat "big data"). 

Detta examensarbete analyserar skalbar datahantering för RPMS, och inför en ny 
uppsättning av teknologier baserade på öppen källkod som effektivt lagrar och hanterar 
godtyckligt stora datamängder. Dessa tekniker används i en prototypversion (proof of 
concept) av ett skalbart RPMS baserat på HBase. Implementationen av det designade 
systemet jämförs mot ett RPMS baserat på en traditionell relationsdatabas (i detta fall 
MySQL). Denna jämförelse ges för både en ensam nod och flera noder. Jämförelsen 
utvärderar flera kritiska parametrar, inklusive prestanda, skalbarhet, och lastbalansering (i 
fallet med flera noder). Datamängderna som används för att testa läsning/skrivning och 
statistisk prestanda är 1, 10, 50, 100 respektive 250 GB. 

Avhandlingen presenterar flera sätt att hantera stora mängder data och utvecklar samt 
utvärderar en mycket skalbar databas, som är lämplig för användning i RPMS. Flera 
mjukvaror för att jämföra relationella och icke-relationella system används för att utvärdera 
prototypen av de föreslagna RPMS och dess resultat. Resultaten av dessa jämförelser visar att 
MySQL presterar bättre än HBase när det gäller läsprestanda, medan HBase har bättre 
prestanda vid skrivning. Vilken typ av databas som bör väljas vid en RMPS-implementation 
beror därför på den förväntade kvoten mellan läsningar och skrivningar. Detta förhållande är 
ett lämpligt ämne för ett framtida examensarbete. 

 

Nyckelord: Big data, databas, prestanda, skalbarhet, lastbalansering, Remote Patient 
Monitoring System 
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1 Introduction 
This chapter briefly introduces the area that is going to be investigated during this 

master’s thesis project. It focuses on the main problem, how the problem is going to be 
solved, what the goals of this thesis project are, and how to achieve these goals. The final 
section of the chapter explains the overall structure of this thesis. 

1.1 Overview 
For many years the demand for health care of human beings has steadily increased. 

Additionally, more and more flexible and efficient ways of treatment are being developed. 
Today the use of information technology (IT) is wide spread in health care. One of the areas 
where it is being applied is remote patient monitoring. This application area is growing 
incredibly fast [1, 2]. According to a report from Berg Insight, around 2.8 million patients 
worldwide were using a home monitored service at the end of 2012 [3], and this number was 
expected to grow to 9.4 million by 2017 [4]. 

Remote Patient Monitoring is a technology that enables health care providers to monitor 
patients' health conditions while they are in their residences. This technology collects a 
patient's vital signs (e.g. blood oxygen saturation level, blood pressure), biometric data (e.g. 
level of glucose in blood, pulse oximetry), and other data (e.g. list of medications, diet 
compliance, disease symptoms). Today much of this data is collected by medical sensors and 
transferred electronically to a specific health care provider in real-time. This health care 
provider in turn provides an interface that allows clinicians and other health care personnel to 
monitor the health of their patients in (near) real-time. Some of the expected benefits of this 
technology are increased access to health care and a decrease in healthcare delivery costs. 

Presently, a number of Remote Patient Monitoring systems (RPMS) offer a reliable 
solution which enables clinicians to monitor their patients [5, 6]. The majority of these 
systems use a traditional relational database management system (RDBMS) for data 
processing and storage. Although these systems manipulate the data through non-scalable and 
slow relational databases, they are currently able to effectively and rapidly handle this data. 
The primary reason that they are able to do so is because the number of patients that are being 
remotely monitored is still small. However, because of the rapid expansion of RPMSs, within 
a few years these systems will face a challenge managing the large amount of data that will be 
collected (and the large amount of data that was collected earlier). These collections of very 
large amounts of data are often called “big data”. As a consequence of the expected increase 
in both the number of patients and the increase in the amount of data per patient that can (and 
will) be collected, there will be a need for scalability, high performance, load balancing, 
utilization of commodity hardware, etc. Unfortunately, it has already been shown that 
relational databases are not a good solution for handling big data [7, 8]. 

The definition of big data has been elucidated and described by a number of researchers 
and entrepreneurs. They all came to the same characterization. For example, Paul C. 
Zikopoulos, et al. [9] state that big data is structured and unstructured information that comes 
from everywhere, including various types of devices, social media sites, digital world, GPS 
signals, etc. IBM defines four characteristics or dimensions of big data [10]: 
Volume terabytes and even petabytes of information; 
Velocity high speed, non-delayed information exchange between source and destination; 
Variety any type of structured and unstructured data; and 
Veracity trust establishment among different kind of enterprises. 
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Efficient data processing and handling by fulfilling the first three dimensions is a real 
challenge for RDBMS, because when the amount of data increases, none of those three 
characteristics can be satisfied by relational database systems. 

In an RPMS, big data could include any kind of health care related information, including 
health care measurements obtained from medical devices, video/audio communication 
between patients and clinicians, patients' health history, disease information, etc. Given this 
list of health related information we assume that the average amount of patient data stored per 
patient in RPM will range from a few megabytes to several gigabytes. This means that within 
a few years RPMS for a county (such as Stockholm – with ~2 million persons) will need to 
store Terabytes (1012) to Petabytes (1015) of information. Certainly new technology is needed 
for effective data processing and storing such a large amount of data [11]. 

Apache’s Hadoop ecosystem provides a flexible and efficient solution for managing big 
data. It allows distributed processing of large data sets across clusters of commodity 
computers (nodes) using a simple programming model [12]. Clusters may contain a single 
server or thousands of machines, each providing storage and computing resources. The 
Hadoop architecture contains two core components: the Hadoop Distributed File System 
(HDFS) for storage and Map-Reduce for data processing. Both components are fundamental 
for a number of other components that deal with big data at various levels. This thesis project 
will design a new scalable remote patient monitoring system (RPMS) by implementing 
Hadoop with its components and then will implement and compare this prototype with an 
existing relational database oriented RPMS. 

1.2 Problem Analysis and Definition 
This section analyzes which technologies are the most appropriate choice for scalable data 

management and identifies the problems in the chosen area. 

1.2.1 Problem Preview 

Today’s RPMSs can be divided into three parts where in the first part patients transmit 
their health measurements to the RPMS and by querying those measurements physicians 
access and monitor patients regularly. The second part contains only machines mining each 
obtained measurements and prioritize patients according to their medical records. 
Prioritization is strictly based on certain patterns which identifies the level of criticality on 
measurement results and gives highly prioritized patients to the third part. In the last part 
clinicians monitor only patients whose health is below than normal and therefore this part 
should function extremely quickly and provide real-time health measurement analysis. The 
main idea behind this thesis project is to investigate effective data management in the first part 
of today’s large RPMSs and to design a new scalable system; therefore attention has to be 
paid to reliable data storage systems and efficient data processing. 

Several techniques for building distributed systems have been proposed and implemented 
for big data handling. We will first examine the advantages and disadvantages of RPMS’s 
current storage system (traditional RDBMS [13, 14]) and then examine replacing this using 
big data techniques. Following this we explain what data storage parameters have to be 
considered in order to build a scalable RPMS. 

1.2.2 Traditional Relational Database Management System 

A traditional RDBMS is a database management system (DBMS) based on a relational 
model. This has been the predominant choice for storing information in various databases. 
These databases are mainly used to manage the organization, security, access, and integrity of 
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data. The information is stored in a set of tables, each of which has a unique identifier called a 
primary key. The tables are then related to one another using a foreign key, which is simply a 
primary key in another table. Such relation oriented tables are effective in managing relational 
data. 

Advantages of a RDBMS: 
• Support for Atomic, Consistent, Independent, and Durable (ACID) transactions. 
• Very fast for processing small data-sets – as these systems take advantage of hardware 

(latest Central Processing Units (CPUs), large memories, etc.) for processing; 
• Implement Structured Query Language (SQL) – a special purpose query language that 

fits with any type of RDBMS; 
• Comprehensive Online Transaction Processing (OLTP) support is really beneficial, 

especially for transaction-oriented applications; 
• Privileges - full authorization and privilege control can be easily realized by the 

database administrator. 

Disadvantages of a RDBMS: 
• Cost – it is expensive to set up and maintain the database system. 
• Implementing transactional, concurrency, consistency, and durability for large data-

sets become very cumbersome as the size of the data set increases. Cluster based 
implementation is hard due to the nature of ACID. 

• Unable to manage unstructured and/or semi-structured data as RDBMSs only work 
effectively with structured data. Lack of full support for unstructured and semi-
structured data such as documents, videos, images, spatial data, etc. 

• Scalability, clustering, and distributed realizations are hard as a RDBMS does not 
easily support distributed computing and clustering. Scalable data management is too 
slow. 

• Fast text searching within fields is difficult. 
• Some relational databases have limits on field lengths, which can lead to data loss if a 

data item is large. 
• Making two databases, located in different areas, to "talk" to each other can be really 

expensive. 

1.2.3 Distributed Computing Technologies 

Many different distributed computing technologies may be used to replace a traditional 
relational database when the amount of data to process becomes enormous. Each technology 
fulfills certain requirements and provides a different level of efficiency when handling big 
data. This section introduces three well known and widely used distributed computing 
techniques that can be applied to big data. 

1.2.3.1 Grid Computing: Message-Passing Interface (MPI) 

Grid computing exploits a set of computer resources, potentially in different locations, to 
achieve a common goal [15]. Together with high performance computing (HPC), Grid 
computing provides large scale data processing by using message passing interface (MPI) 
APIs [16]. MPI is a message passing programming model which utilizes standard library 
functions on a wide variety of parallel computers. Broadly speaking, the main idea behind 
HPC is to distribute tasks across a cluster of machines, which access a shared file system. The 
shared filed system is frequently hosted by a storage area network (SAN). 
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Advantages of grid computing: 
• Exploits parallel processing with different machines in the grid concurrently executing 

different parts of the task. This is a good choice for compute-intensive jobs. 
• Virtual organizations can share their resources to form a large virtual computing 

system. 
• The grid schedules grid jobs on computers with low utilization, thus achieves resource 

balancing to avoid unexpected peaks. 
• Grid computing systems can provide reliability by using graceful recovery techniques 

to address an assortment of hardware failures. Processors, power supplies, and cooling 
systems are frequently duplicated so a failed subsystem can be replaced by another 
without turning the system off. 

Disadvantages of grid computing: 
• There are problems when nodes in the grid need to access large data volumes 

(hundreds of gigabytes). This occurs because network bandwidth becomes a 
bottleneck, and therefore compute nodes may become idle. 

• MPI provides great control to developers; however, it requires them to explicitly 
handle the mechanics of data flow, using low-level C routines, sockets, and high-level 
algorithms for data analysis. 

• When a failure happens in the grid, other machines may continue processing the other 
parts of the task without knowing about the failure. While MPI may allow control 
based upon failure detection, the code to do so is much harder to write. 

• Grid computing computations may not be interoperable when different groups (with 
diverse components, policies, and mechanisms) want to share their resources. 

• Shared infrastructure services should be provided to avoid repeated development, 
installation, and configuration – otherwise program development and operations will 
be slow. 

1.2.3.2 Volunteer Computing 

Volunteer computing is a type of distributed computing which enables ordinary Internet 
users to share their computer's storage and idle processing power as part of a high-
performance parallel computing network [17]. This is a powerful distributed computing 
technique that can handle large amounts of data in an efficient manner by utilizing distributed 
resources. Volunteer computing is based on breaking the problem into chunks called work 
units, which are transmitted to idle computers around the world to be processed. When a 
client finish processing its assigned work unit, the results are sent back to a server and the 
client is assigned another work unit to process. 

There are many platforms that achieve scalability through volunteer computing. Berkeley 
Open Infrastructure for Network Computing (BOINC) is an open-source software platform 
for computing using volunteered resources. It provides an opportunity for scientists to create 
and operate public-resource computing projects. A large number of diverse applications are 
used on top of BOINC to handle enormous processing power intensive research projects [18]. 
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Advantages of volunteer computing: 
• High-performance computing is possible by breaking the problem into independent 

pieces that can be processed in parallel using a set of machines. 
• Resources can be shared among autonomous projects. This is facilitated because 

projects are never centrally authorized, thus each project operates its own servers. 
Volunteers can even participate in multiple projects. 

• Because computer owners can registered with multiple projects, when one project 
stops or is closed for repair, another projects may inherit their computing power. 

Disadvantages of volunteer computing: 
• Different parts of the project are executed on untrusted machines connected to the 

Internet. These machines may have fluctuating connection throughputs and may not 
store data locality. The machines may also be removed from service or connectivity 
may be terminated at any time. 

• Each work unit has to be sent across the network, hence the computational time should 
dwarf the transfer time, and otherwise the system will perform poorly. Because each 
volunteer donates CPU computing power the amount of computing power may not 
scale with the available aggregate bandwidth. 

• Volunteer computing is not a good solution for private and proprietary applications as 
they are unable to rely on untrusted computing power shared by volunteers. 

1.2.3.3 Apache Hadoop 

Apache Hadoop is an open source framework to manage and handle large scalable data 
processing by writing and running various distributed applications [19, 20]. Distributed 
processing of a large amount of data is done in a Hadoop cluster (a set of parallel commodity 
machines networked together in one location). Millions of client computers can submit 
diverse tasks to this computational cloud and obtain results in a short time. Hadoop is also 
referred to as Key/Value Computing. 

Advantages of Apache Hadoop: 
• This solution is highly scalable as it distributes data across clusters of commodity 

computers and exploits parallel processing. 
• A very large amount of data storage is available enabling scalability from a single 

node to hundreds of thousands of nodes in such a way that individual nodes can use 
local hard drives, processing power, CPU, and random access memory (RAM). 

• Error handling is provided in the application layer, hence when a node fails, backup 
nodes can be added dynamically. 

• When it is necessary to add more nodes to the cluster in order to make the system 
more powerful in terms of storage and performance, a few lines of refactoring code is 
sufficient to scale the machines. Unlike RDBMS, the Hadoop platform provides 
dependable performance growth proportional to the number of nodes available in the 
cluster. 

• Hadoop distributes both data and computations, but computation is done only on local 
data preventing the network from being a bottleneck. 

• Because all of the tasks are independent: 
• Partial failures can be easily handled by restarting entire nodes if they fail; 
• Propagation of failures and intolerant synchronous distributed systems can be 

avoided during data processing; and 
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• Speculative execution can be used to work around stragglers. 
• Hadoop utilizes a simple programming model, hence an end-user developer only 

writes map-reduce tasks. 
• When faults are detected by nodes, a quick automated recovery will be run 

immediately by the application layer. 
• Each node automatically maintains multiple copies of data, thus in the event of 

failures, the copies of the data will be automatically redeployed and processed. 

Disadvantages of Apache Hadoop: 
• Hadoop is not yet mature and both Map/Reduce and HDFS are under active 

development. 
• There is no central data, hence there is a restricted choice of programming models. 
• Performing a "join" operation of multiple datasets is slow and tricky, as there are no 

indices. Often entire datasets must be copied in the process of performing a join. 
• Cluster management is difficult, hence debugging distributed software and collecting 

logs of operations from the clusters is hard. 
• The optimal configuration of (number of mappers, reducers, memory limits) nodes is 

not obvious. 
• Managing job flow is not always trivial, as it is hard to manage flows when 

intermediate data should be kept. 

1.2.4 Prerequisites for a Scalable RPMS 

The basic requirements for a scalable RPMS are: 
• The system has to support efficient handling of unstructured and/or semi-

structured data, because most of the data in RPMS is not structured data (as it 
includes video/audio, individual health care measurements, etc.). 

• Setting up and maintaining the data storage system should not be expensive. 
• There is a limited need for data consistency; hence the ACID properties can be 

relaxed. 
• The system has to maintain flat scalability, because as the number of patients 

grows the number of machines in the cluster has to be increased proportionally. 
• Data storage should be sufficiently large to store and process all the incoming data. 
• Data writing, searching, and retrieval for a single patient’s data have to be very fast 

and independent of the number of patients in the system. 
• Data will be written once and read several times. In fact, most of the data that is 

stored will never be modified or deleted; hence we can exploit this property of this 
data. 

Generalizing all above requirements enables us to compare the above technologies in 
Table 1-1. Of all the systems shown in this table Apache Hadoop appears to offer the best 
solution for a scalable RPMS. All of these requirements need to be addressed during the 
development of our prototype. 
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Table 1-1: Comparison of Technologies with respect to their applicability for 
realizing an RPM 

 RDBMS Grid Computing Volunteer 
Computing Hadoop 

Efficient support of 
semi-structured and 
unstructured data 

No Yes Yes Yes 

Trustworthiness of 
system 

Yes No, because performing 
calculations on different 
organizational computers 
might not be entirely 
trustworthy 

No, because 
computing power 
shared by volunteers 
might not be as secure 
as needed 

Yes 

Simple 
programming model 

Yes No Yes Yes 

Data size Gigabytes Terabytes, mostly 
depends on 
supercomputers 

Terabytes, mostly 
depends on server 
computers 

Petabytes 

High-performance 
processing of big 
data 

Inefficient Partially efficient 
because of the network 
bandwidth 

Partially efficient 
because of the 
volunteer numbers in 
the project and 
network bandwidth 

Very Efficient 

Date updates Read and write 
many times 

Depends on the File 
System 

Depends on the File 
System 

Write once and read 
many times 

Development and 
Configuration 

Fast, requires less 
effort 

Costly and difficult 
because written 
programs have to be run 
in supercomputers which 
have customized 
operating systems 

Fast because of 
diverse applications 

Very fast because of 
diverse applications 

Scaling Nonlinear Linear Linear Linear 

Structure Static Schema Dynamic Schema Dynamic Schema Dynamic Schema 

Data Store 
Connectivity 

Fast, because of 
data locality 

Slow, because it is hard 
to provide constant high-
speed network 
connection 

Slow, because it is 
hard to provide 
constant high-speed 
network connection 

Very Fast, because of 
data locality 

Cost Expensive because 
of non-linear 
behavior 

Inexpensive because 
supercomputers do not 
need super hardware 
configuration 

Inexpensive because 
main servers do not 
need expensive 
hardware 

Inexpensive because 
ordinary computers 
may become nodes in 
clusters 

1.2.5 Problem Definition 

As said in the previous section, a scalable RPMS demands that we meet several specific 
requirements. During the designing process all of these requirements have to be considered. 
Additionally, some critical issues and missing functionality can be identified and should be 
investigated. The followings are some of the basic requirements and issues that were 
discovered and for which relevant solutions need to be found during this thesis project: 

• All of the prerequisites mentioned in section 1.2.4 should be fulfilled; 
• Currently Apache Hadoop provides a number of technologies for both HDFS and 

Map/Reduce tasks. A specific set of technologies should be chosen to fit the 
requirements of a scalable RPMS and to efficiently provide the needed function. 

• For testing of two systems (RDBMS and Hadoop) real test data has to be collected 
or similar generated and the two alternatives have to be properly benchmarked. 
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1.3 Goals 
The primary goal of this master’s thesis project is to define an efficient way to build and 

operate a reliable, highly scalable, fault-tolerant, redundant, and highly available RPMS. After 
theoretically and practically proving the inefficiency of a current relational database oriented 
system, the project proposes a design for a new RPMS that should function smoothly with any 
amount of data. In order to achieve the project’s main goals, the project is broken down into 
several tasks. These tasks are: 

• Implementing Apache Hadoop along with all necessary and suitable components 
to build a scalable RPMS. 

• Develop a scalable system that fulfills the requirements stated in section 1.2.4 and 
realize this system following professional coding standards and modern 
architectural design principles. 

• Show that existing RDBMS oriented RPMSs cannot offer efficient data 
management for big data (in the case of an RPM). Test software suites will be used 
to benchmark both RDBMS and Hadoop systems and compare them in terms of 
performance, scalability, and load balancing. 

• Clearly demonstrating the prototype system's reliability, scalability, fault-
tolerance, redundancy, and high availability. 

1.4 Methodology 
This thesis project incorporates both qualitative and quantitative research methods. As the 

thesis project is based on a scientific study utilizing experimental and empirical approaches to 
demonstrate scientific validity, a quantitative research method was the primary technique. The 
main reason for choosing an experimental approach was the absence of a theoretical means to 
accomplish the goals stated in Section 1.3. Empirical and experimental approaches were 
utilized after clarifying the research question and identifying the evaluation metrics regarding 
performance analysis. In the end, a proof of concept prototype is to be implemented to answer 
the question posed. Due to the lack of access to actual health care data, generated data was 
used to test and evaluate the two different system architectures. 

A qualitative research methodology was used to analyze earlier work done in this area. A 
design-based research approach is the most suitable technique to identify the limitations and 
issues of previous works and to design a new system. This approach provides new knowledge 
through the process of designing, implementing, and evaluating an artifact. In this thesis 
project, the artifact is an implementation of an Apache Hadoop platform. For the proper 
implementation of Hadoop, problems were specified in the first phase and then suitable 
literature was studied to characterize the implementation, deployment, and test cases in order 
to ensure that the relevant issues were examined. Eventually, a step-by-step procedure was 
proposed as a theoretical solution and a scalable system was designed and tested by following 
each step. 

1.5 Structure of the thesis 
The thesis project is organized as follows: 

Chapter 1 introduced the idea of an RPMS. This chapter described current trends, 
limitations, and future expectations. It briefly analyzed the problem by comparing the 
advantages and disadvantages of traditional relational databases with three widely used 
distributed computing techniques. The problem was defined along with its context. The goals 
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of the thesis project were presented, along with the research methodologies that will be 
utilized. 

Chapter 2 describes relevant earlier work, explains the overall architecture of RPM and 
analyzes its limitations and issues. By considering the advantages and disadvantages of prior 
work, Chapter 2 illustrates how suitable solutions should be designed to properly address the 
relevant parts of an overall solution for the stated problem. 

Chapter 3 presents scalable and reliable data management techniques by giving brief 
descriptions. The chapter explains the different ways of implementing these technologies and 
reviews their efficiency in terms of development and gives some specific use cases. 

Chapter 4 gives a detailed explanation of the architecture of the proposed scalable RPMS 
to be developed during this thesis project. This chapter describes the overall structure of the 
system, shows the interactions between the technologies that have been used and provides 
instructions of how to use them to achieve the project’s goals. Finally, the chapter shows how 
the big data characteristics were addressed in the proposed reliable and fault-tolerant RPMS. 

Chapter 5 benchmarks, analyzes, and compares two different RPMS architectures. The 
same amount of data that would be managed by an example RPMS is used for testing both 
RDBMS and Hadoop systems. A comparison of these two systems is illustrated using charts 
and graphs. 

Chapter 6 concludes the thesis, suggests some potential future work, and describes the 
economic, environmental, and social aspects of this work. 

Appendix A presents a sample data generated for the benchmarking phase of our newly 
designed prototype. Since, any kind of the medical information is considered to be security 
sensitive, we developed an application that generates “fake” medical records. 

Appendix B includes all measurement results obtained during benchmarking of our 
prototype and illustrates the results in relevant graphs. 
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2 Background 
A number of traditional RDBMS oriented systems are used to implement RPMSs. This 

chapter introduces several traditional RPMSs, explains the efficiency of data processing in 
these systems, and describes potential expectations (inefficiency of scalable data 
management) as the number of patients in the system increases. Specifically, data sorting, 
writing, and reading are considered as the main barriers when the amount of data stored in the 
system becomes very large, hence these operations are used to show the main drawbacks of 
traditional RPMSs. 

2.1 Traditional RPMSs 
As the new trend of using RPMS in modern patient care has proven valuable in a short 

period of time, the majority of RPMSs are being developed to provide simple, fast, flexible, 
and sophisticated services to both patients and clinicians. Three different RDBMS oriented 
RPMSs are presented in this section. Each system's architecture is concisely and clearly 
described in order to explain later how this system reacts when the amount of data in the 
system becomes enormous. Specific descriptions and explanations of the health measurement 
data utilized in each of these systems are outside the scope of this master's thesis. 

2.1.1 The Technology Transfer Alliance’s Carenet Services 
project: Remote Medical Records System 

The Technology Transfer Alliance’s Carenet Team has stated: “The objective of Carenet 
is to establish a research infrastructure where more cost-effective solutions to already existing 
demands can be demonstrated as well as completely new systems supporting the 
transformation of the health care work procedures to increase quality and cut costs in the 
overall process. The user scenarios addressed include teleconferencing sessions among 
medical experts, e-learning and remote patient monitoring.” [21] 

2.1.1.1 Overview 
The Carenet Services’ Remote Medical Records System (RMRS) enables patients to 

stream their health care data to a web server where clinicians can access these data and can 
monitor the patients in (near) real-time [21]. Currently, RMRS supports two kinds of medical 
sensors to measure the health conditions of patients. Additionally, Carenet Services provide 
reliable, robust, and fast high definition video conferencing (HDVC) to establish high quality 
video and audio communications session between patients and their doctors. In this system, 
three software applications were implemented to provide the services mentioned above. All of 
the information exchanged between patients and their clinicians are private and highly 
confidential. 

2.1.1.2 System Architecture 
The system includes three software applications to provide remote monitoring of patients. 

The first application is responsible for collecting health measurements from medical devices, 
performing an integrity check of the data, and securely transmitting the data to a web server 
over a network [22]. After receiving these data packets, the second application concurrently 
pushes the data to a web page to show these measurements to the relevant clinicians and 
stores the measurements in a relational database [23]. The third application provides high 
quality video/audio sessions between doctors and patients [24]. Figure 2-1 depicts the overall 
architecture of RMRS. 
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The second application handles SQL queries from the RMRS and it is considered the 
primary part of the system. The main responsibility of the application is to store all the health 
measurements, organize and present a patient’s health care situation as one or more web 
pages, and retrieve the relevant data whenever a clinician requests it. This application utilizes 
a MySQL relational database to store the data obtained from patients. Nine database tables are 
currently used to store all of the relevant patient related information, including health 
measurements from different kinds of medical sensors, disease history of patients, earlier 
treatments of each patient, etc. Expensive SQL JOIN operations are used to process specific 
advanced SQL queries. The purpose of these queries are to retrieve patient specific 
information for a relevant clinician within a given date range with stated parameters; create, 
calculate, evaluate, and validate patient records; and to gather all relevant information 
(treatments, diagnoses, etc.) regarding specific diseases and/or patients. Details of these 
queries are given in [23]. 

2.1.2 Remote Patient Monitoring System 

The Remote Patient Monitoring System (RPMS) proposed by Sherin Sebastian, et al. 
provides efficient tele-healthcare services by utilizing various hardware and software 
components [26]. The primary goal of the system is to enable cardiology healthcare services 
at a distance. 

2.1.2.1 Overview 

Various software and hardware tools were used to design RPMS. As stated above, the 
field of cardiology was the major focus for this system. Electrocardiography (ECG) was 
exploited for diagnosis. Signal processing techniques are used to analyze a constant stream of 
ECG signals (along with vital signs, various parameters, etc.). These signals were obtained as 
images from a display. Necessary information was extracted from these signals and examined 
with the help of MATLAB tools. All the processed information was then sent to a web server 
through an internet network. At the web server, all of the data was stored in a relational 
database and then pushed to the client for monitoring. As a result, clinicians were able to 
observe their patients' health conditions via a web page by using Android based smart phones 
and/or tablets. 

2.1.2.2 System Architecture 

In the initial phase of implementing the RPMS the system captured vital signs and other 
parameters from an Intensive Care Unit (ICU) which is positioned right in front of a webcam, 
the captured data was parsed, and meaningful information was extracted by analyzing the 
parsed data. The webcam continuously captures images at a rate of one image every four 
seconds from the screen of a bedside monitor. Each image contains information regarding to 
the patient's heart rate, ECG, blood oxygen saturation level (SpO2), and breathing rate. Digits 
in images represent the health conditions of patients and each digit is separately cropped out 
for analysis by utilizing MATLAB as a tool. The subtract function in MATLAB is used to 
compare a cropped digit image with a previously stored image in a MATLAB database in 
order to extract the image's numeric value. After image processing and analysis the data is 
uploaded to a web server by specifying the server's Uniform Resource Locator (URL) in the 
MATLAB commands. 

At the web application server a MySQL relational database was used to store the health-
care information extracted by MATLAB. The major tasks of the server include receiving a 
stream of data packets from multiple clients, storing the received data in a database, and 
composing this data into a web page which can subsequently be viewed using an Android 
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established through a telephone system in real-time. Another version of the WANDA 
interface is much broader than the first one and it consists of smart phones which are able to 
collect and transfer health measurement* data to a web server. 

Since the sensor tier is divided into two parts, the web server tier should provide 
appropriate processing for the data that are coming from two different types of sources and 
stores this data in a Microsoft SQL database. The reason for needing two different types of 
web server tiers is that the format of the data transmitted from the phone line version is much 
different than the data from the mobile version. Smart phones in the mobile version 
encapsulate the measurement data in a certain format and send it to the web server where 
based on the different data packet structures of each sensor these messages are parsed and the 
resulting data is stored in an SQL database. Unlike the mobile version, the phone line version 
utilizes Ideal Life, WHI PAM (Personal Activity Monitor), and WHI SMS systems which use 
incompatible data types and different databases. Data format abstraction and shared ID tables 
were used to efficiently analyze and store data transmitted using incompatible formats and 
coming from different databases. Another advantage of a shared ID table was to maintain data 
integrity of different types of medical records. In addition, when the received measurement 
results are out of normal range, the web server sends an alert message to a healthcare provider 
via an email or a text message. Details regarding data analysis, integrity maintenance, and 
specific SQL queries execution in the web server can be found in [27]. 

Even little items of medical data in an electronic medical record system can be vitally 
important; hence the data that has been collected should be actively guarded against data loss. 
The third tier in RPM for CHF, the back-end database tier, is responsible for performing data 
backups and recovery. Such a back-end database tier is incredibly helpful when it is necessary 
to restore a small number of files after they have been corrupted or accidentally deleted. The 
system uses the WHI SOPHI software to perform data backups and recovery. APIs† allow the 
SOPHI client application to communicate with a DBMS (Database Management System), to 
synchronize all new files, and to recover missing data. 

2.2 Efficient data management in traditional RPMSs 
The primary advantage of current RPMSs in terms of data management is the simplicity 

and flexibility of interaction with a RDBMS. SQL is a widely used programming language to 
query an RDBMS. Data authorization and authentication in these databases are managed in a 
very simple manner. Database setup and configuration does not require a specific operating 
system, as there are version of SQL capable databases available for most major operating 
systems and hardware platforms. Support of ACID transactions and Create, Retrieve, Update, 
and Delete (CRUD) operations are taken care efficiently. Additionally, third party database 
maintenance is available from a number of companies (some of which are quite large). Data 
processing in these databases is fast when the amount of data that is being processed is small. 

Unfortunately, data management becomes a nightmare when the amount of data in a 
database becomes very large. Processing of even simple queries may take a long time. 
Furthermore, as the amount of data increases, the amount of commodity hardware needs to 
scale up faster than linearly, this leads to very expensive hardware configurations. Another big 
drawback of above mentioned traditional RPMSs is due to their attempt to manage both 
unstructured and semi-structured data through an RDBMS. This occurs because health 
measurements and much other patient related data are semi-structured and record-oriented, 
                                                            
* Details about the health measurements for both WANDA interfaces and how they are read from 
medical sensors can be found in [27]. 
† Details of the APIs developed and used in RPM for CHF system can be found in [28]. 
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but an RDBMS is not a good candidate for such data. Additionally, all of these records are 
written only once, but read whenever clinicians or patients request them. Because all of the 
health measurements and history of patients' diseases & their treatments should be kept, there 
are no data updates or deletes required in the tables. Therefore after the initial write operation 
all subsequent operations are read only. 

The requirements and drawbacks of current RPMSs lead us to define following set of 
basic issues that need to be addressed: 

• The data store has to support advanced unstructured and semi-structured data 
processing; 

• Data management has to be very efficient and independently of the amount of data 
in the system; 

• The system should be fault-tolerant, highly available, scalable, and reliable; 
• There is no need for data updates in the data store; and 
• The system has to be able to scale out instead of scaling up (as scaling up would be 

too expensive). 

All of the above assumptions become even more relevant as the number of patients in the 
system grows, potentially reaches millions of patients (or more). As a result, the amount of 
data stored in the system is expected to be terabytes to petabytes (or more), but responses to a 
patient’s or clinician’s simple query should be perceived as being nearly real-time (for the 
purposes of this thesis project we will set an upper bound of 2 seconds on the time to process 
a user’s request – this time has been chosen as it represents the amount of time that an 
interactive user will accept as the delay for a response to a simple request). 
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3 Scalable Data Management: Apache Hadoop 
This chapter introduces Apache Hadoop along with its major components which are 

suitable candidate components to build a new scalable RPMS. Not all of the components that 
will be introduced are needed for development of such an RPMS, as it is possible to design 
the system with a smaller set of tools that each is used to develop part of the system. The main 
reason why additional components are introduced is to understand and analyze the functional 
capability of each of these components and to provide more an efficient development path. 
Because, each component deals with a given task by using a different approach, there are 
different levels of development efficiency that can be achieved. Therefore, the components 
that are chosen should reduce the time needed for development, thus producing unique 
solutions for the tasks in their given area – while maintaining high interoperability with each 
other. 

This chapter also explains one of the most important parts of a scalable data management 
system: Hadoop clusters. Assembling thousands of nodes into a single cluster and smoothly 
distributing tasks across these nodes requires great effort. Hence, appropriate cluster 
configuration and customization is vital for effective data processing. Lastly, Hadoop 
limitations and issues are examined. Designing a scalable system require deeper 
understanding of these limitations and their influences on the final system. Several methods 
are proposed to overcome these limitations. One proposed method was implemented in this 
design of a scalable remote patient monitoring backend system. Chapter 4 presents a detailed 
description of the Hadoop implementation that has been used to build a new scalable RPMS. 

3.1 Apache Hadoop 
In today’s digital world, petabytes of information from millions of users are being 

processed every single day. Therefore, the primary concern for many large internet based 
enterprises is scalable and effective management of increasing amounts of data. Although 
RDBMSs have a long history of processing enterprise data, they are thought to be unsuitable 
for “big data”. For this reason a number of new approaches and technologies have been 
proposed and implemented in order to redesign data management systems to meet the 
requirements of high availability, high scalability, and low latency; while maintaining 
application generality and exploiting weaker consistency requirements. One of the best-known 
and well-proven technologies that fulfill the above criteria is Apache’s Hadoop ecosystem. 

Hadoop is an open source platform that provides distributed storage as well as distributed 
computational capabilities. It is based on a distributed master-slave architecture which uses a 
simple communication model where one master process (a Name-Node) controls one or more 
processes called slaves (Data-Nodes) [29]. This architecture was initially inspired by Google’s 
papers that described their novel distributed file system (the Google File System (GFS) [30]) 
and Map-Reduce [31] (a computational framework for parallel processing). The successful 
implementation of these two concepts resulted in a new technology that enables parallel 
computing and data partitioning of large datasets. The Hadoop Distributed File System 
(HDFS) and Map-Reduce were modeled after Google's GFS and Map-Reduce. These two are 
considered the core components of Hadoop for storage and computation, respectively. These 
two components scale with the addition of more and more nodes to a Hadoop cluster, and can 
reach an aggregate of petabytes of data on clusters with thousands of nodes. Yahoo!* utilizes 

                                                            
* Yahoo's biggest clusters contain over 4 000 nodes each [32]. 
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Like HDFS, Map-Reduce also executes jobs in a master-slave manner: a single master 
Job-Tracker and one slave Task-Tracker per cluster-node. When Map-Reduce clients 
communicate with the Job-Tracker, the Job-Tracker starts scheduling jobs to be executed by 
Task-Trackers, monitoring these jobs, and re-executing jobs in case of failures. In other 
words, a master takes orders from clients and schedules map and reduce tasks on slaves to 
process these orders. The responsibility of a Task-Tracker, a daemon process, is to create 
child processes to perform a given map and reduce task. 

3.2.3 Apache Hive 

Apache Hive is a data warehousing technology built on top of Apache Hadoop. Initially 
Hive was developed by Facebook engineers to process large amounts of user and log data[34]. 
One of the great advantages of Hive is the creation of relational database-style abstraction that 
enables programmers to write in a dialect of SQL. Although SQL is not a good solution for 
big data problems, it is a great tool for data analysis. Hive's SQL like scripting, called 
HiveQL, is quite comfortable to use for developers who already have a good deal of 
knowledge regarding SQL, but who need to perform ad hoc queries, data summarization, and 
data analysis on big data. 

Another huge benefit of Apache’s Hive is that it provides a simple and quick way of 
writing Map-Reduce jobs. Because the Map-Reduce programming model requires the 
programmer to write code at a low-level, therefore developers tend to write custom programs 
which are very hard to maintain and reuse [34]. In contrast, HiveQL statements are able to 
execute jobs in both the map and reduce phases which are equivalent to Map-Reduce jobs. In 
terms of data analysis, Hive defines a table-like schema over a set of files stored in HDFS and 
extracts records from those files by executing HiveQL queries. The data in Hive is organized 
into three categories: 

Tables Hive tables are similar to relational database tables. Each table contains a 
corresponding HDFS directory where the data in this table is serialized and 
stored. In addition, Hive supports external data tables stored in HDFS or 
local directories. 

Partitions A partition is responsible for determining the distribution of data within 
sub-directories of the table directory. Each table can have one or more 
partitions. 

Buckets Buckets divide data in partitions. Division of data into buckets is based on 
the column's hash values in the tables. 

In general, Apache Hive can provide the following features regarding scalable data 
management: 

• Tools which allow easy data Extract, Transform, and Load (ETL); 
• A mechanism to impose structure on a number of different data formats; 
• Accessing the files stored in HDFS or other data storage systems such as HBase; and 
• Executing queries via a Map-Reduce framework. 

3.2.4 Apache Pig 

Apache Pig is a platform for analyzing very large data sets and providing high-level data 
processing while retaining Hadoop's simple scalability and reliability [35]. Similar to Apache 
Hive, Apache Pig was created to simplify Map-Reduce jobs which are difficult to program. 
Map-Reduce allows developers to specify a map function followed by a reduce function and 
to follow this pattern programmers are required to write a number of Map-Reduce stages. In 
addition to writing the mappers and reducers, compiling the code, submitting each job and 



24 
 

waiting for results requires plenty of time which is unsuitable. Apache Pig avoids such 
complications by providing much richer data structures. It comprises of two parts: 

• The Pig Latin language which is used to express data flows; and 
• A compiler that compiles and runs Pig Latin scripts in a specific environment. 

Currently there are two types of environments: distributed execution on Hadoop 
clusters and local execution in a single Java Virtual Machine (JVM). 

Pig Latin is a data flow language which allows developers to concurrently read and 
process data from one or more inputs and store results to one or more outputs. The data flows 
can be simple linear flows or complex workflows where multiple inputs can be joined to and 
split into multiple streams to be processed. In other words, data flows in Pig Latin can be 
considered operators which are applied to the input data to produce output. Taken as a whole, 
the Pig compiler translates the data flows into executable representations which are a series of 
Map-Reduce jobs, and then runs these representations. 

A number of benefits make Apache Pig a widely used “big data” processing tool. Pig can 
process relational, nested, and unstructured data, can easily be extended to operate on data 
beyond files, databases, key/value stores, etc. Additionally, Pig manages all sorts of data - 
whether there is metadata or not. Another feature of Pig is that it is not tied only to parallel 
data processing, but rather it can be utilized in other types of data management. One of most 
important advantages of Pig for developers is that using it data processing requires only a 
short development cycle and it is simple to write Pig code. Pig allows the integration of 
developer code, hence it supports user defined aggregates, field transformation functions, 
conditionals, load/store functions, etc. These functions can be written in the Java 
programming language. Despite all of these advantages, there are few drawbacks regarding 
Apache Pig. Since Pig was designed for batch data processing (just like Map-Reduce), Pig is 
not a good solution to process a small amount of data in large datasets [32], because it is set 
up to scan an entire dataset or a large portion of corresponding datasets. 

3.2.5 Apache HBase 

Apache HBase is a low-latency, distributed, non-relational, column-oriented open-source 
database built on top of Apache HDFS. HBase also can be described as a persistent 
multi-dimensional sorted map, which is indexed by a row-key, column-key, and 
timestamp[36]. HBase is modeled after Google's Bigtable[37]. HBase is the best choice when 
real-time read/write random-access is needed to very large datasets. HBase can be thought of 
as a data store that hosts very large tables containing billions of rows and millions of columns 
atop clusters of commodity hardware. Unlike relational data stores, HBase provides incredibly 
fast access to large scale data while maintaining parallelization across a cluster of machines. 
HBase scales linearly by adding nodes to the clusters. Although it does not support SQL, it 
overcomes RDBMS several problems, including operating on a large number of hosts, 
working with sparsely populated tables on clusters, etc. The following features make HBase 
and even more widely used distributed data store: 

• Linear and modular scalability; 
• Well-suited base classes for backing Map-Reduce jobs with HBase tables; 
• Stringently consistent reads/writes; 
• Configurable and automatic table sharding; 
• Simple and easy to use Java API for client access; 
• Bloom Filters and Block caches for real-time queries; and 
• XML, binary data encoding options, and Protobuf supports via REST-ful 

(Representational State Transfer) web services. 
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HBase can store any type of structured, semi-structured, or even unstructured data. HBase 
utilizes dynamic and flexible data modeling; hence there is no restriction on storing any kind 
of data. In Hadoop, both HDFS and HBase can store data in different ways. The main 
difference between them is that HDFS is a distributed file system used to store very large 
files; however it cannot provide fast individual record lookup in these files. On the other hand, 
HBase provides very fast record lookups and updates to large tables while storing all the 
tables in HDFS [32]. 

The storage model of HBase looks like a typical database, but with extra dimension. 
HBase contains a number of tables each of which consists of rows. Each row has a unique 
identifier called a row key and each row is formed from any number of columns. Usually rows 
are sorted in lexicographical order by their row key. Several columns can form a column 
family and each column in this family has multiple versions with a distinct value contained in 
a separate cell. Each value in a cell is either implicitly timestamped by the system or can be 
explicitly set by users. All columns in the column family are stored together in the same low-
level storage file, called an HFile, in HDFS. Column families are defined by a table schema 
during the creation of tables. In general, with one expression an HBase storage model can be 
represented as follows: 

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>> 

The first SortedMap in the above expression is the table that contains a List of column 
families. The column families contain another SortedMap, which characterize columns with 
their corresponding values. 

The HBase architecture can be seen in the expression of tables and their associated 
regions. As column families, regions are contiguous ranges of rows stored together. HBase 
takes advantage of regions to achieve scalability and load balancing. When regions become 
too large, the system dynamically splits them up. They can be spread across a cluster of nodes 
which distributes the load producing scalability. Each region can live on a different node and 
can contain several HDFS files and blocks. In addition, there are region servers in HBase 
which serve regions. Each region will be served only by one specific region server and region 
servers can operate on multiple regions at any time. Taken as a whole, region servers, also 
called slaves, serve data for reads and writes. Additionally, there is a master who is 
responsible for coordinating the slaves, assigning regions to slaves, and detecting failures of 
region servers. In the Hadoop ecosystem, Apache Zookeeper is one of the best tools which 
can be used as a primary helper of HBase master for managing slaves [32]. 

3.2.6 Apache HCatalog 

HCatalog is a table and storage management service for Apache Hadoop ecosystem. It 
provides table and metadata abstraction layer which means the data in HDFS can be seen as a 
set of simple relational tables each of which resides in database. According to Alan Gates, the 
designer of HCatalog, “As an integration tool, HCatalog enables interoperability through the 
table abstraction. It presents a common table layer to each tool and gives each user the same 
data model”[38]. The primary goal behind HCatalog is to reference data without using 
specific filenames, formats, or storage paths. By default, it supports RCFile (Record 
Columnar File), CSV (Comma Separated Values), JSON (JavaScript Object Notation), and 
SequenceFile formats. HCatalog includes following features: 
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• Providing a data type mechanism and shared schema; 
• Maintaining smooth interoperability among data processing tools including Map-

Reduce, Hive, and Pig; and 
• Creating an environment so that users no longer need to be concerned with how and 

where their data is stored. 

HCatalog is built on top of a Hive meta-store and includes the Data Definition Language 
(DDL) of Hive. It provides a separate read/write interface for Map-Reduce and Pig tools. 
HCatalog utilizes Hive's command line interface to provide metadata exploration commands 
and data definition. HCatalog is an environment where Hadoop components can share their 
dataset’s metadata information. For example, when a Pig user finishes their Pig Latin 
scripting and writes the data, Hive users can see these data as if it was Hive data. By using 
HCatalog developers can easily share the data written by different tools and do not need to 
care about the data types and formats used by this data. 

The data model of HCatalog is similar to HBase's data model. Data is stored in tables and 
tables are placed in a database. Tables also can be divided into several partitions based on 
unique keys. Each key represents one partition and each partition contains all of the rows that 
belong to the same key. Partitions hold records and they are multi-dimensional, but not 
hierarchical. Each record is divided into columns each of which has a name and data type. 

3.2.7 Apache Zookeeper 

Apache Zookeeper is an open-source, distributed coordination service for distributed 
applications [39]. It provides a set of tools to develop distributed applications that implement 
high-level services for synchronization, configuration maintenance, and groups/naming. 
Usually, writing and maintaining distributed applications is hard because of partial failures. In 
a distributed architecture, when a message is sent across the network between two nodes and 
the receiver node goes down or network fails, the sender is unable to know whether the 
receiver got the message, this may lead to a partial failure. The only way to learn the status of 
a message is for the sender to connect to the receiver and ask it whether a given message has 
been received. The Zookeeper tools enable developers to build distributed applications that 
safely handle partial failures. 

Although distributed applications can be managed by customized coordination services 
rather than using Zookeeper, providing such services in an appropriate way is notoriously 
difficult. Customized services are prone to race conditions and deadlock errors, thus, 
Zookeeper should be used to implement coordination services rather than building customized 
coordination services from the scratch. The operation of Zookeeper is straightforward; all 
servers that make up Zookeeper services should know each other. These services will be run 
as long as a majority of the servers are available. Clients connect to these servers to get 
served. If a server fails, then the client will connect to another server. 

The main characteristics of Zookeeper are: 
Simple Zookeeper provides a shared hierarchical namespace to coordinate 

distributed processes. This namespace is similar to a standard file system and 
it is comprised of data registers, called znodes, which look like files and 
directories. Unlike a typical file system, Zookeeper is not designed for 
persistent storage; hence its data is stored only in memory; and thus, 
Zookeeper can achieve high throughput and low latency. 
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Expressive The primitives/tools in Zookeeper are considered a rich set of building blocks 
which enable a developer to create large coordination data structures and 
protocols. 

Highly 
available 

Zookeeper operates on a cluster of machines and is designed to be highly 
available. 

Reliable Zookeeper avoids creating a single point of failure into the system and 
therefore maintains reliability. 

Replicable Zookeeper is intended to replicate itself over a set of hosts (called an 
ensemble). 

Orderable Zookeeper stamps each update with a number which orders all of its 
transactions. High-level abstractions can be implemented using this ordering. 

Fast Large clusters of machines enable a Zookeeper application to perform well, 
especially when read operations are more frequent than write operations (the 
ratio between read and write operations can be 10:1). 

Facilitator Zookeeper facilitates loosely coupled interactions. It supports processes that 
do not need to directly know each other, hence it may act as middleware for 
processes to discover and interact with one another. A process can leave a 
message in Zookeeper so that the intended receiving process can read this 
message at any time; even after the first process becomes idle or shuts down. 

3.2.8 Apache Ambari 

Apache Ambari is an open-source project providing simple and effective software tools 
for managing, monitoring, and provisioning Hadoop clusters [40]. Ambari makes Hadoop a 
single cohesive platform by simplifying the underlying operations and hiding Hadoop’s 
complexity. As a Hadoop management tool, Ambari presents an easy-to-use web user 
interface (UI) backed by REST-ful web services. This web UI allows Ambari to provide a 
single control point for examining, managing, and modernizing Hadoop services. In addition, 
Apache Ambari provides effective security and recovery services through APIs. Ambari can 
be categorized into four service parts: 
Provisioning The web UI provided by Ambari presents a step-by-step installation of 

Hadoop services across a cluster of any number of machines. It helps 
configure Hadoop services for the cluster. 

Management Ambari provides single point of management to start, stop, and 
reconfigure the Hadoop services across the cluster. 

Monitoring Ambari provides several monitoring tools to monitor and examine a 
Hadoop cluster. It leverages Ganglia for metric collection and Nagios for 
system alerts. An Ambari dashboard displays the health and the status of a 
Hadoop cluster. 

Integration All above three service capabilities can be easily integrated with Ambari 
REST APIs*. 

The Ambari architecture consists of two parts and each part contains several components. 
The first part of the architecture is an Ambari Server, while the second part is the Ambari 
Agents. The Ambari Server is responsible for controlling a Hadoop cluster and this server 
processes the commands sent by an Ambari Agent. The server contains a master, an API, a 
relational database, and an Agent Interface. Each agent sends commands to the Ambari Server 
to check the heartbeat of the master. After receiving commands, the Agent Interface transfers 
the commands to a master and the master sends command back to the agent. The time interval 

                                                            
* Details of Ambari’s APIs can found in [41]. 
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of two back-and-forth command packets between the master and the agent determines the 
heartbeat of the master. The API provides access to monitoring and metrics for a Hadoop 
cluster. An agent communicates with the master to retrieve necessary information for access 
and may also send data regarding its operations. Depending on the request, the master may 
communicate with a relational database in order to retrieve or store data in it. 

3.2.9 Apache Sqoop 

Apache Sqoop is an open-source software tool that provides efficient data transfer 
between Hadoop and structured data stores, such as relational databases [42]. The primary 
goal behind Sqoop is to enable developers to import data from an RDBMS into HDFS or 
HBase, process the data with Map-Reduce or other higher-level tools (such as Hive and Pig), 
and export the results back into a RDBMS. Sqoop enables developers to effective 
communication between Hadoop and relational data sources. For data import, Sqoop only 
needs a data schema of the database, then the data will be automatically processed and 
exported back by Map-Reduce, Hive, or Pig which operate in parallel (with fault-tolerance) 
across a cluster of machines. 

The input to import data from an RDBMS is a database table. Sqoop reads the table row-
by-row (in parallel), produces a set of files as an output of this import, and stores the resulting 
files into HDFS. Later on Sqoop may integrate the output files into Hive/HBase or simply 
perform conversions, compression, partitioning and indexing on them. Depending on the data 
in the relational database tables, these output files may be delimited text files with comma 
separated fields, binary, or SeqFiles (Sequence Files) containing serialized data. The output is 
manipulated with Map-Reduce or Hive tools in a distributed manner and the files are exported 
back to the relational database. The export process includes reading delimited files from 
HDFS, parsing them into records, create new rows in the corresponding database table, and 
insert the new records into those rows. The export process is done in parallel. 

3.2.10 Apache Solr 

Apache Solr is an ultra-fast open-source standalone enterprise search platform based on 
Lucene [43]. It is a mature software package. Solr possesses a number of capabilities 
including advanced full-text search, near real-time indexing, faceted search, geospatial search, 
a vast variety of document handling, database integration, etc. Solr is also popular as a 
scalable, highly-reliable, and fault-tolerant search server which provides distributed indexing, 
automated failover and recovery, centralized data management and configuration, load-
balancing, and query replication. 

Data indexing and searching with a Solr Server is incredibly simple because of its REST-
like API. Initially, indexing is performed via JSON (JavaScript Object Notation), XML 
(Extensible Markup Language), CSV (Comma-Separated Values), or binary data formats over 
HTTP (Hypertext Transfer Protocol). The indexed data can then be requested by querying via 
HTTP GET and received in the form of JSON, XML, CSV, or binary data format. To provide 
ultra-fast searching for specific data, Solr is optimized for high volume web traffic. Qualities 
such as comprehensive Hypertext Markup Language (HTML) administration interfaces, 
flexibility to configure XML files, linear scalability, and extensible plugin architecture make 
Solr platform even more powerful. Detailed features of Solr can be illustrated as follows: 
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Schema Defines the fields of documents and the type of each field. Fields are 
responsible for certain functions. For instance, dynamic fields provides on-the-
fly addition of new fields, copy fields enables to index a single field in multiple 
ways, or joins multiple fields into a single searchable field. 

Query HTTP interface with configurable and customizable response formats (such as 
JSON, XML, CSV, binary, etc.). Solr Query can perform a vast number of 
different search operations, perform different types of sorting, can combine 
different queries, and executes and provides ranges filters. 

Core  Dynamically adds and removes document collections without restarting. 
Provides custom index processing chains, allows customizable request handler 
with distributed search support, controls documents with missing parameters, 
etc. 

Caching Provides fast processing of data searches by caching instances of Query 
Results, Filters, and Documents. Enables lock free and high concurrency cache 
implementations, cache warming and auto-warming in background, fast and 
small filter implementation, user level caching, etc. 

SolrCloud Provides a centralized Apache Zookeeper based configuration. Enables 
automated distributed indexing/sharding, near real-time indexing, transaction 
logs which guarantees no updates are lost, automated query failover, and no 
Single Point of Failure (SPOF). 

Admin 
Interface 

Advanced monitoring tool to observe cache utilization, updates, and queries. 
Provides full logging control, text analysis debugger, dashboard which presents 
the status of nodes in a cluster, output debugging, etc. 

3.3 Hadoop Clusters 
A Hadoop cluster is a set of machines/nodes each of which shares its memory and 

processing power. The nodes in a cluster are not required to be homogeneous, which means 
they may have different sized memories, different CPU architectures, and run different 
operating systems. However, it is advisable to use a cluster running the same operating 
systems and with similar hardware capabilities, as the cluster administration will be a lot 
easier when the machines have similar hardware and software configurations [32]. When it 
comes to setting up and efficiently running an easy manageable Hadoop clusters – everything 
matters; i.e., choice of the machines, including the specific hardware, operating system, disk 
configuration, and network design. 

Hadoop nodes can be classified into masters and slave/worker classes. Master nodes run 
critical cluster services and therefore should be more robust and more resistant to hardware 
failures. Master node crashes may result in very expensive losses for companies. Slave nodes 
on the contrary, are expected to fail often. By default Hadoop replicates data on three slave 
machines, hence the data can be accessed from other machines when a given slave node 
collapses or crashes. For these reasons, to reduce the proliferation of hardware profiles many 
administrators choose a single hardware profile for all masters and a single profile for all 
slaves [44]. Another important thing for Hadoop is to determine the number of machines in a 
cluster. Usually, the cluster size is based on the amount of storage required. 

Apache Hadoop is primarily run on Linux distributions as the underlying operating 
system. Today, a huge number of production clusters are running on top of Linux distributions 
(including RedHat Enterprise Linux, CentOS, Ubuntu, SuSE Enterprise Linux, and Debian). 
The main reason for Linux distributions to be chosen as the operating system is that they 
provide enhanced administration software tools, high level security, an open-source platform, 
and support a wide range of hardware. Hadoop operates as expected on Linux's common file 
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systems (including ext3, ext4, and xfs) [44]. Based on the architecture and criteria of scalable 
systems, one of these file systems will be chosen as a file system for a Hadoop deployment. 

Because of its simplicity, the Hadoop platform is thriving in the real-world. Hadoop does 
not require any specialized hardware or network protocols to function efficiently. It runs 
equally effective in both flat layer 2 networks and routed layer 3 environments. Choosing an 
appropriate configuration of the network for Hadoop's core components plays a vitally 
important role in order to manage big data in an efficient way. In order to fulfill the scalability 
requirements, HDFS primarily focuses on three forms of traffic: Data-Node block reports and 
heartbeats to the Name-Node, block data transfer, and client metadata operations with the 
Name-Node. The Map-Reduce cluster membership and heartbeat infrastructure are similar to 
HDFS. The Task-Tracker continuously generates a heartbeat by sending a small bit of 
information to the Job-Trackers to learn if they are up and running. 

3.4 Hadoop Limitations 
No existing technologies are able to cover and fulfill all the aspects and requirements of 

real-world applications. In Hadoop, despite its advantages and strengths, observations show 
that it also has certain limitations and weaknesses. There are dozens of areas where Hadoop is 
the best choice, while in some other area it may not be well suited. The choice of a Hadoop 
framework as a core architecture depends on the requirements in a given area. 

Currently there are two major weaknesses that have been identified for HDFS and Map-
Reduce: availability and security [29]. Although both areas are under rapid development and 
enhancement, they are still unable to meet certain requirements. All of HDFS and Map-
Reduce's master processes are a SPOF (Single Point of Failure). When a master processes 
crashes or dies, the control over tens or hundreds of slaves may be lost. Security in Hadoop is 
disabled by default and the only security feature in it is HDFS file and directory-level 
permissions and ownership. Hence, malicious users can steal another user's identity or 
impersonate them; they may even kill another user's Map-Reduce jobs. Another limitation of 
Hadoop is that HDFS is inefficient when handling small files. Because of its optimization for 
sustained throughput, HDFS is unable to provide effective random reading of small files. 
Furthermore, due to its batch-based and shared-nothing architecture, Map-Reduce is not good 
for real-time data access. Jobs that need changeable data sharing or global synchronization are 
not a good fit for Map-Reduce. 

Hadoop has to be chosen based on specific criteria and the requirements of the system 
which is being developed. In our development of a scalable RPMS, Hadoop along with its 
components were chosen as a core framework. Some of Hadoop’s limitations have been 
partially solved, while the others did not affect the RPMS at all. High availability support for 
Name-Node and Job-Tracker is available in the latest 2.x versions of Hadoop, hence we will 
use the latest version to provide high availability. In order to provide the expected level of 
security, the Kerberos network authentication protocol can be run with Hadoop [29]. As 
providing high-level security in a scalable RPMS is outside the scope of this master's thesis, 
the implementation of Kerberos in the system is considered as future work. The limitation of 
HDFS is overcome by using Apache HBase which provides efficient random reads of small 
files. A scalable RPMS does not require mutable data sharing or global synchronization, so 
the limitation of Map-Reduce do not affect to the proposed RPMS. 
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management and therefore several additional components are added to facilitate the 
implementation and operation of the prototype scalable RPMS. 

As introduced in Chapter 3, Map-Reduce jobs are too complicated and time consuming for 
interactive use. Developers must write a lot of low-level code which might not be reusable. 
Additionally, code compilation, job submission, and result viewing takes a lot of time which 
hinders rapid development. To simplify Map-Reduce jobs, several complementary 
components were developed by other developers. Apache Hive and Pig are two such 
components and both are being successfully utilized by many enterprises. To handle Map-
Reduce jobs efficiently, we have chosen Apache Hive over Pig. The primary reason for this 
choice is that Hive offers more features in terms of data access than Pig. Unlike Pig, Hive 
provides the notion of partitions. Partitions allow us to process a subset of the data based on 
specific criteria (such as date, alphabet, etc.). Additionally, Hive provides an optional Hive 
server, a web interface, and JDBC/ODBC driver for integration with SQL like databases[45]. 
Pig introduces a new language, Pig Latin, for data processing, while Hive utilizes SQL like 
scripting. As a result for a programmer who already knows SQL, it is easier to develop using 
Hive as this avoids the requirement to learn yet another language. This later aspect is 
important because learning a new language and utilizing it effectively requires great effort and 
additional time. As both (Hive and Pig) components provide facilities to achieve the same 
goals, we selected Apache Hive as a complementary tool for our Map-Reduce framework. 

HDFS is not a good choice for some specific jobs. For instance, it is incapable of 
efficiently providing very fast random read/writes of a set of files. Additionally, HDFS is 
unsuitable for dealing with structured data and cannot provide effective individual record 
search over files. Fortunately, HBase, a component that is built on top of HDFS, solves these 
HDFS weaknesses. HBase provides very fast lookup and real-time random-access read/writes 
to large datasets allowing low latency access to a non-relational table structure. For these 
reasons, HBase was chosen to augment the functions of HDFS. 

Zookeeper has been selected for use as a coordination tool in the RPMS. For patient 
monitoring, it is essential to handle partial failures. The sender must ensure that the receiver 
has successfully received the desired measurements or if the operation failed, then the sender 
should immediately initiate retransmission. 

Apache Solr needs to be utilized as a search engine in the RPMS. Solr is able to provide 
ultra-fast search capabilities and a number of features that HBase cannot support. These 
features are important because RPMS has to deliver very fast record lookup to clinicians. 
Because of the shortness of period dedicated for thesis project, we could not implement 
Apache Solr in the RPMS and therefore marked it as a future work of this project. 

Additionally, the implementation of Apache HCatalog, Ambari, and Sqoop are useful, but 
not essential to the realization of a prototype scalable RPMS. The future addition of these 
components will offer many enhancements and offer greater manageability of the RPMS. In 
addition, HCatalog and Ambari are not yet mature and they are considered members of the 
Apache Incubator project (a gateway for open-source projects that need to be further 
developed). For all of these reasons adding these components is seen as future work to follow 
this master’s thesis project. 

4.3 Tables Definition in the System 
During the development of the application, we created two HBase tables to store all 

information regarding patient records and user data. The first table stores all user related 
information, while the second table stores all of the patient records (i.e., all of the health care 
measurements). Table 4-1 illustrates the first table. The unique row key is created by 
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appending the time of the record creation in nano-seconds and randomly generated 5 digit 
number. Users in the system may have various roles including patient, clinician, and 
administrator. 

Table 4-1: User HBase Table 

Row Key Column Family Timestamp Columns 

uid data 

T1 first_name 
T2 last_name 
T3 username 
T4 password 
T5 email 
T6 role 
T7 cell_phone 
T8 country 
T9 county 
T10 city 
T10 street 

Table 4-2 illustrates the second HBase table which stores all health care measurements 
obtained from patients. The row key of the table is constructed by appending a timestamp to 
the username. The timestamp for each table cell is provided implicitly, unless the developer 
enables it explicitly. New types of vital signs can be added on the fly as a new column to the 
table. Unlike RDBMS, HBase does not set a null value to the column when a corresponding 
value regarding to that column is missing. As a result, the number of columns in the column 
family may vary depending on the measurement results which need to be stored. 

Table 4-2: Vital Sign HBase Table 

Row Key Column family Timestamp Columns 

username + timestamp vital_signs 

T’
1

 blood_glucose 

T’
2 body_pressure 

T’
3 body_temperature 

T’
4 end_tidal_co2 

T’
5 forced_expiratory_flow 

T’
6 forced_inspiratory_flow 

T’
7 gait_speed 

T’
8 pulse_rate 

T’
9 respiration_rate 

T’
10 spo2 

T’
11 tidal_volume 

T’
12 vital_capacity 



 

4.4 T
As s

medical
distribut
runs on
arrives 
perform

HBa
clients c
order to
question
commun
commun
are all g
clients. 
API and
the fast
methods
measure
part of t
relevant
Hive in 

Figu

The Distr
said in earl
l records. B
ted storage 

n the Name
at the data

ms the releva

ase heavily 
communica

o retrieve th
n. After ob
nicate with
nicate with 
great tools 
For the dev

d REST. Th
test data s
s)[46]. In t
ements from
the applicat
t tables with
order to tak

ure 4-3: Dis

ributed 
lier sections
Based on th

model of n
e-Node and
a servers, in
ant indexing

 depends o
ate with a Z
he server nam
btaining the
h the releva

HBase clu
that enable

velopment o
he main rea
structure m
the first par
m patients a
ion, the HB
h particular 
ke an advan

stributed S

Storage
s, Apache H
he HDFS a
newly desig

controls a
nitially it is
g operation.

of Zookeepe
Zookeeper e
me that hos
e server’s 
ant region 

usters. HBas
e effective c
of a scalable
ason for the
models to b
rt of the ap
and to retrie

Base native A
parameters

ntage of its M

Storage Mo

e Model
HBase is b
and HBase 
gned scalab
all Region S
s written to
. 

er to mana
ensemble (a
sts a particu
address an
servers. Th

se native A
communica
e RPMS, w
eir choice is
build a sc
pplication, 
eve relevan
API provide
s. The table
Map Reduce

odel of Scal

being utilize
specificatio

ble RPMS. 
Servers on 
o the HBas

age its slav
a separate c
ular table reg
d the row 
here are nu
PI, HBase 

ation betwee
we have chos

s that both 
calable sys
REST is re

nt vital sign
es the applic
 creation pr
e facility. 

lable RPMS

ed to store 
ons, Figure
As the figu
Data-Node

se and then

es (Region 
cluster of Z
gion contain
key, the c

umber of w
Shell, REST
en HBase c
sen two of t
tools provid
tem (as co
esponsible 

ns for clinic
cation with 
rocess is als

S 

all of the 
e 4-3 illustr
ure shows, H
es. When n
n Solr subs

n Servers). 
Zookeeper n

ning the row
clients can 
ways for c
T, Avro, an
clusters and
them, HBas
de the simp
omparing t
for transmi

cians. In the
the ability 

so bound to

35 

patients’ 
rates the 
HMaster 

new data 
equently 

Initially, 
nodes) in 
w key in 
directly 

lients to 
nd Thrift 
d various 
se native 
plest and 
to other 
itting all 
e second 
to create 

o Apache 

 



36 
 

4.5 Interaction of Hadoop Components 
There are four key components in our scalable RPMS: HBase, Hive, Zookeeper, and Solr. 

Initially, the necessary tables are created in HBase using Hive and its native API. A HiveQL 
script provided by Hive, allows an application to create tables in Hive’s own data warehouse 
as well as in HBase’s store. Both data warehouse and storage are located on top of Hadoop’s 
HDFS. Here is an example HiveQL script that creates a user table in Hive and in HBase with 
one column family and a row key: 

CREATE TABLE user_hive (username STRING, password STRING, 
firstname STRING, lastname STRING) STORED BY 
‘org.apache.hadoop.hive.hbase.HBaseStorageHandler’ WITH 
SERDEPROPERTIES (‘hbase.columns.mapping’=’:key, info:val’) 
TBLPROPERTIES (‘hbase.table.name’=’user_hbase’) 

Subsequently when data is pushed to the user_hive table via the Map Reduce algorithm, 
the same data will be available when user_hbase table is requested. This interaction between 
HBase and Hive makes the system more robust. Additonally, the data analysis behavior of 
Hive becomes very helpful when analyzing large numbers of medical records and can enable 
an application to extract meaningful information in milliseconds. Here is a simple example 
script which retrieves all of the data in the user_hbase table: 

SELECT * FROM user_hive 

Note that even though the data is being read from the user_hive table, Hive actually 
retrieves all of the relevant data from the user_hbase table. 

As explained in the previous section, Zookeeper ensemble tracks down all Region Servers 
of HBase cluster, lets clients to obtain information regarding to specific slave nodes, assigns 
tasks to slaves and reassigns failed tasks to another slaves. Each Region Server in HBase 
cluster continuously sends heartbeats to Zookeeper which allows Zookeeper to know exactly 
how many nodes are up and running. Advanced ultra-fast search capability of Solr helps 
clinicians to process complex requests in relevantly small time. Right after writing new 
incoming data to HBase, Solr indexing should be performed for each of them. Since we did 
not have enough time to implement Solr with its necessary features, it should be carried out in 
the RPMS as a follow up of this master’s thesis project. 

4.6 Application Source Code and Environment Preparation 
Scalable RPM application includes several modern technologies mentioned in this section. 

The source code of the application can be found in here [47]. As the efficient data 
management is primary concern of this master’s thesis, client side (reading health 
measurements from medical devices) development of scalable RPMS is outside the scope of 
this master’s thesis. The application is divided into two parts: 

• REST web services oriented HBase storage; and 

• Apache Hive oriented  HBase storage; 

In the first part, HBase requires REST server to be ON. Clients communicate with HBase 
through REST server. On initial stage necessary tables will be created if they are not created 
yet and based on request and its type, specific operation (write or read) will be performed. 
REST receives all requests via light-weight JSON data interchange format, parses and 
processes them accordingly and sends back responses if necessary. 
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The second part of the application, is more statistics oriented, because Hive is able to 
perform complex operations through HiveQL queries. Likewise the first part, initially the 
tables are created and then specific queries are parsed. Two tables (‘user’ and ‘vital_sign’) are 
represented by two classes. Each class holds a logic belonging to the table it represents. This 
part also communicates with clients through JSON. 

 The application uses the core libraries of Hadoop version 1.0.4, HBase version 0.94.7 and 
Hive version 0.10.0. To run the application, it is necessary to install and configure Hadoop, 
HBase and Hive. Step-by-step Hadoop installation on a single-node cluster can be found in 
this guide [48] and step-by-step Hadoop installation on a multi-node cluster is described here 
[49]. HBase installation on a single node cluster can be found in here [50] and for multi-node 
cluster in here [51]. Full guidance regarding to Apache Hive installation and configuration can 
be found in here [52]. 
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5 Benchmarking & Analysis 
Benchmarking in this master’s thesis project is divided into two parts: proper test data 

generation and system’s testing with this generated data. Performance, scalability, reliability, 
fault-tolerance, and load balancing are key parameters that are considered in all rounds of this 
benchmarking. In a subsequent phase of the evaluation, these benchmarking results are 
analyzed and distinctions between the different alternatives are illustrated with charts and 
graphs. 

5.1 Overview 
Since the main goal of this thesis project is to design a scalable system that provides near 

real-time medical record data management and analysis, the benchmarks should be run in a 
way that obtained results from them have to clarify the relationship between the number of 
machines in the cluster and the amount of health data. Besides, the performance comparison 
between RDBMS and the scalable RPMS also should be considered during benchmarking. As 
Apache HBase was chosen as the storage model and tool to realize a scalable RPMS, we 
benchmarked and compared HBase against MySQL (as a representative RDBMS).  

To achieve our goals mentioned above, we designed several scenarios and utilized them 
for testing. These scenarios include data input, data output, and computing statistics over the 
collected data. In all of these scenarios, different amounts of data are processed and analyzed 
with different parameters. In the first phase, MySQL data processing is benchmarked and the 
results are compared against HBase residing on a cluster consisting of a single node. 
Subsequently, the number of nodes in the RPMS is increased by one and the performance is 
once again calculated based upon the processing time required to process the same amount of 
data. The benchmark results are combined together and relevant charts are constructed in 
order to clearly show the difference between MySQL and HBase solutions. Most importantly 
these charts illustrate how efficiently the data is managed by two systems, how the new 
system behaved when the number of machines is increased, and how much new health data 
(corresponding to the number of newly added patients) requires adding an additional machine 
to the system. 

In general, both systems store two kinds of data: user data and health care measurements. 
Once each user is authenticated by the system, he/she will continuously access the health care 
measurements table for different purposes. For instance, patients will write their latest vital 
signs; while clinicians may request large numbers of patient records, perform data analysis on 
the existing medical records, search for specific patient records collected during a specific 
range of dates, etc. In general, the number of accesses to patient records in the database is 
much greater than the number of appends of new patient data. We assume that this ratio is 
nine reads per write of a patient data record. For this reason the health care measurement table 
(with data about the vital signs of patients) is the primary focus of our system’s 
benchmarking. Before starting benchmark, MySQL database (vital sign table in this case) is 
horizontally partitioned (in other words “sharded”) [53, 54], since comparing single MySQL 
instance against several instances is not fair. Consequently, a sharded MySQL is benchmarked 
running on a single machine (it is highly efficient to split a large partitioned table over 
multiple logical database servers [55]). The proposed scalable RPMS is benchmarked with 6 
machines with identical parameters (1 master, 5 slaves, and 1 computer used for data 
generation and transmission). A testbed was setup with one or more machines each with the 
configuration described in Table 5-1. 
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Table 5-1: Configuration of Each Machine Used for Benchmarking 

CPU Six-core AMD Opteron™ Processor 2435 
CPU MHz 2592.994 MHz 
Cache Size 512 KB 
RAM 32 GB 
Hard Drive 1 TB 
Operating System Ubuntu 11.04 

5.2 Generating Test Data 
Unless patients have given consent to someone to access their medical history there 

should be no access by anyone to their individual records, therefore all medical information 
stored in electronic databases is considered as highly sensitive personally identifiable data. 
Each system used for storing patient data has its own policy to securely store this sensitive 
information. For this reason and the lack of access to actual medical data, it is impossible to 
test the two systems (Hadoop and RDBMS) using real medical data, therefore we needed to 
generate electronic medical records similar to real world medical data. According to Health 
Level 7 Clinical Document Architecture (HL7 CDA) [56, p. 7], electronic medical records can 
be categorized into five types. Each of these types of records will need to be considered when 
generating test data. These five types are: 

1. Basic information about each patient, typically: name, birthdate, gender, marital status, 
and contact information. The contact information might include mobile/home phone, 
fax, and/or e-mail address; 

2. Previous disease history may include disease name, doctor, hospital treatment, 
treatment period, treatment procedure and results, history of infectious diseases, 
history of trauma surgery, history of significant drug use, history of allergies, and 
history of vaccination. The history of vaccination includes vaccine name, inoculation 
period, inoculation hospital, name of health care personnel who administered the 
vaccine, and vaccination results; 

3. Physical examination may include heart rate/pulse, temperature, blood pressure, 
oxygen saturation (SpO2), respiration, posture, weight, etc. 

4. Specialist examination may include pediatric, adult medicine, and other examination 
records; and 

5. Medical information creation includes hospital name, creation date, and date of visit. 

The prototype RPMS covers all five types of data. As the main goal of this master’s thesis 
is to compare the efficiency of scalable data management systems with RDBMS, generating 
and testing one type of above electronic medical records was sufficient. Physical examinations 
(pulse rate, SpO2, etc.) were chosen for the benchmarking process as these types of data are 
expect to be generated much more frequently (perhaps as many as several times per day every 
day) than the other types of data. Based on this, we developed a program which generates 
“fake” physical examination medical records (a relevant range for each one of a number of 
vital signs is given and the software automatically generates a randomly value within that 
range as a hypothetic value representing a possible value for this record). This generated data 
is placed into a set of files. During testing we push data from these previously generated files 
into the proposed scalable RPMS. We calculate the throughput and latency based on the 
operation we performed. We will later compare the various alternatives by analyzing these 
throughput and latency results. The total volume of all of the generated data files was 254 
Gigabytes (more than 250 million rows). This corresponds to 30 days (1 month) of data from 
~150,000 patients which means each patient sent his/her measurements ~56 times in one day. 
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An assumption is that this amount of data should be sufficient to compare benchmarks of the 
alternatives in the various scenarios. Specifically, we generate data consisting of a unique 
identifier of a patient, measurement results, and a timestamp. Appendix A illustrates a sample 
from this generated data. The source code of the application used for generating necessary 
amount of data can be found in [57]. 

5.3 Benchmarking of the alternative Software Suites 
There are number of tools to benchmark both MySQL and HBase. We have chosen the 

most common open-source tool, Yahoo Cloud System! Benchmark (YCSB) [58, 59], as it is 
easy to configure in order to generate benchmarks. Instead of using several benchmark tools 
we decided to utilize only one tool because YCSB is purely written in Java which makes it 
relatively portable, it appears to offer support for horizontal and vertical scaling in different 
ways, it is very easy to implement, it covers several workloads, and most importantly 
developers are not required to write many lines of codes to customize YCSB to benchmark 
their systems. 

5.4 Yahoo Cloud System! Benchmark 
In the scalable RPMS benchmarking process, data reads, writes, and statistical queries are 

used to extract data from or place data into the HBase while in traditional RPMSs MySQL 
was the primary data store (see Section 2.1). The YCSB suite has been utilized to benchmark 
both a RDBMS system and our prototype of the proposed system. YCSB is an open-source 
benchmarking framework which is intended to benchmark different types of data stores. The 
framework consists of a workload generating client and a package of standard workloads that 
cover the main parts of a performance measurement, such as read-heavy workloads, write-
heavy workloads, scan workloads, etc. One of the great features of YCSB is its extensibility; 
specifically the workload generator allows developers to easily define new workload types, 
redefine the storage system that YCSB interacts with, and to adapt the client to benchmark 
new systems. YCSB’s facilities allowed us to re-implement its basic interface in order to 
interact with HBase and MySQL. There was no need to define new workloads, because the 
existing workloads in YCSB were sufficient for us to benchmark our systems. Specifically, 
four types of workloads were utilized in the benchmarking process: workloadA which 
contains from a mix of 50/50 reads and writes, workloadC which is a read only workload, 
workloadD which is read latest workload, and workloadE which is range scan workload. 
Those workloads also can be interpreted in the medical records setting as follows: 

• Workload A – at the same time patients are transmitting their health measurements 
clinicians are accessing this data; 

• Workload C – only clinicians are reading data from the system; 
• Workload D – clinicians are accessing the latest health measurements of specific 

patients and some number of patients are transmitting data packets; and 
• Workload E – clinicians are retrieving statistics concerning a specific number of 

patients concerning a specific date range and at the same time some numbers of 
patients are transmitting their health measurements data. 

  



42 
 

YCSB gave us the same output parameters with different values for each workload. 
Specifically, by running the workloads that we need we obtained values corresponding 
following set of parameters: 

• Overall runtime – elapsed time for the selected operation to be completed; 

• Overall throughput – average speed of the system related to the number of 
operations per second; 

• Operations – the number of operations (reads, inserts, updates or cleanups) 
performed during the benchmark; 

• Avg. latency – as name says average latency during performing operations. 
Calculated in 0.001 milliseconds; 

• Min. latency – the minimum achieved latency during the benchmark. Calculated 
in 0.001 milliseconds; 

• Max. latency – the maximum achieved latency during the benchmark. Calculated 
in 0.001 milliseconds; 

• 95th percentile latency – latency bound for 95% of all operations. Calculated in 
milliseconds; and 

• 99th percentile latency – latency bound for 99% of all operations. Calculated in 
milliseconds. 

For scalable RPM benchmarking we have instantiated one master and five region servers. 
Initially, we benchmark a single node cluster and compare these results with those obtained 
using MySQL running on a single machine and then we increased the number MySQL 
instances (the number of shards) as well as the number of nodes in the cluster. Therefore, we 
add one node to the cluster after performing each set of benchmarks. We expected that this 
would give us a clear picture of how many machines are necessary in the cluster to provide 
clinicians with the ability to observe the health measurements of patients in (near) real-time. 
After we achieve the expected performance with a given number of machines in the cluster, 
we increase the number of patients in the system (simulated by adding several millions of 
rows in the data stores) and then again performed benchmarks while adding machines until we 
get the expected performance. This allowed us to calculate how much patient data can be 
efficiently managed by one node and when we need to add additional nodes to the cluster (we 
need to know if all patients transmit their health data at certain times in a day, then for a given 
number of newly registered patients we need to add an additional node to meet the 
performance requirements of the system). These tests should allow us to characterize the 
performance of the system when the number of nodes is increased one by one. 

The number of tests in each stage is three. Initially we perform 500,000 operations on one 
million rows of 1KB data, calculate throughput and latency, and then we perform ten million 
operations on ten million and fifty million rows of 1KB data respectively (again calculating 
throughput and latency). After each of these tests we save the benchmark results for later 
analysis. Additionally, we used several threads to make the benchmark process faster. The 
number of threads was different at each stage. Before starting the benchmarking process, we 
loaded our generated data into both MySQL and HBase. After each stage both storage 
systems were emptied and a new data set with a different amount of data was loaded. To 
obtain more precise results, before running workloadE both the MySQL and HBase databases 
were emptied, as prior workloads inserted additional data during their writing phase, hence the 
number of rows in the system was increased. 
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5.4.1 Machine specifications 

All of the benchmarks were run on machines with identical specifications, see Table 5-2. 
Table 5-2: Machine Specifications 

Machine Dell Inc. PowerEdge 2970 

Processor Hynix Semiconductor (Hyundai Electronics), AMD Opteron™ 
Processor 2435 with six cores clocked at 2592.994 MHz 

Memory 8 x 4096 MB DDR2 with 800 MHz (1.2 ns) speed 

Disk Western Digital, 4 x 256 GB, disk cache size 512 KB, cached read 
speed 8544 Mbps, buffered disk read speed 81 Mbps 

Mother board Dell 0JKN8W 

Disk controller Dell SAS PowerEdge RAID Controller (PERC) 

Network Interface Embedded Broadcom 5708 NIC 1, NIC 2 

All machines in the cluster (in case of multi-node cluster) are interconnected by an Intel® 
Gigabit Ethernet Switch with the network interfaces configured for 1 Gbps in full-duplex 
mode and the network interfaces performed checksum computations. 

5.4.2 YCSB Benchmark on MySQL DB 

The MySQL database is sharded several times while performing the benchmarks. Initially, 
the benchmark was performed with a single instance of MySQL and for consequent 
operations the number of shards was three, four, and five. For each stage of testing the desired 
amount of data was loaded and then the workloads are run one by one. The following 
command-line script loads one million rows of data into the MySQL database with ten threads 
and writes the loading statistics to the file ‘1-mysql-load.dat’: 

./bin/ycsb load jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p 
recordcount=1000000 -p threadcount=10 -s | tee -a benchmark-results/1-mysql-load.dat 

Table 5-3 presents the statistics obtained while loading different numbers of rows of data. 
This table shows the number of threads, throughput (in operations per second - ops/sec), and 
the range of latency values per operation. 

Table 5-3: MySQL Data Load 

Million rows 1 10 50 
Elapsed Time (ms) 51,622.0 2,682,092.0 139,923,732.0 
Thread Count 10 20 100 
Throughput (ops/sec) 19,371.586 10,728.433 357.338 
Average Latency (ms) 0.435 2.165 11.534 
Minimum Latency (ms) 0 0.006 0.12 
Maximum Latency (ms) 1,009.412 38,122.511 195,333.092 
95th Percentile Latency (ms) 0 4 15 
99th Percentile Latency (ms) 0 7 25 
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After loading data, we start the benchmarking process by running workloadA. By default, 
YCSB client uses a single worker thread, but also additional threads can be specified to 
increase the amount of load offered against the database which is what we need. For this 
reason, we picked ten threads* to perform our first operation and for subsequent operations we 
increased the number of worker threads. The following script performs 500,000 read and 
update operations on a table with one million rows using ten threads: 

./bin/ycsb run jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p 
recordcount=1000000 -p threadcount=10 -p operationcount=500000 –p table=vital_sign -s | 
tee -a benchmark-results/1-mysql-workloadA-run.dat 

Table 5-4 shows the benchmark results obtained during different types of workloads. The 
number of rows in this benchmark is one million, the number of operations is 500,000, and 
ten threads concurrently perform operations. 

Table 5-4: MySQL Data Benchmark with 1 Million Rows 

 Workload A 
Update Heavy 

(50/50 read/update)

Workload C 
Read Only 

(100% read)

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write)

Elapsed Time (ms) 49,023 36,982.0 39,444.0 156,638.0

Rows (Millions) 1 1 1 1
Operations 
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10

Throughput (ops/sec) 10,199.294 13,520.09 12,676.199 3,192.073
Average Latency 
(ms) (read) 0.098 0.848 0.798 5.023

(write) 0.911 NA 0.024 0.019
Minimum Latency 
(ms) (read) 0 0 0 0.191

(write) 0 NA 0 0
Maximum Latency 
(ms) (read) 1,739.802 913.03 1,023.553 736.496

(write) 4,133.882 NA 1.992 4.904
95th Percentile 
Latency (ms) (read) 0 1 1 24

(write) 1 NA 0 0
99th Percentile 
Latency (ms) (read) 0 1 1 35

(write) 2 NA 0 0

The rest of the benchmark measurement results are given in Appendix B, Error! 
Reference source not found. and Table B.1-2. 

                                                            
* This number of worker threads was picked only to increase the load on the database. 
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As mentioned above, MySQL database is partitioned several times for the purpose to see 
the clear performance difference between HBase. Besides, it was also vital to observe how 
RDBMS offers efficiency against scalability. Below tables represent the numbers obtained 
from load phase of YCSB after increasing the number of MySQL shards. Specifically, the 
numbers of Table 5-5 are those for MySQL with four shards, while Figure 5-6 presents 
statistics for MySQL with five shards. 

 
Table 5-5: MySQL Data Load after MySQL Shard Reconfiguration (Four instances) 

Million Rows 50 100 

Elapsed Time (ms) 5,340,441.0 13,291,283.0 

Thread Count 20 20 

Throughput (ops/sec) 9,362.523 7,523.728 

Average Latency (ms) 16.412 19.002 

Minimum Latency (ms) 0.02 0.053 

Maximum Latency (ms) 64,423.982 74,912.412 

95th Percentile Latency (ms) 39 46 

99th Percentile Latency (ms) 54 67 

 
Table 5-6: MySQL Data Load after MySQL Shard Reconfiguration (Five instances) 

Million Rows 100 250 

Elapsed Time (ms) 10,845,083.0 29,387,911.0 

Thread Count 20 50 

Throughput (ops/sec) 9,220.769 8,506.899 

Average Latency (ms) 16.293 22.081 

Minimum Latency (ms) 0.038 0.061 

Maximum Latency (ms) 61,012.512 69,010.116 

95th Percentile Latency (ms) 40 58 

99th Percentile Latency (ms) 66 89 
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Like the above tables, the following tables show the statistics obtained when running 
workloadC (read-only) with several million operations on several million rows: 

Table 5-7: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration 
(Four instances) 

Million Rows 50 100 

Elapsed Time (ms) 2,705,748 16,772,404.0 

Million Operations 10 50 

Thread Count 20 20 

Throughput (ops/sec) 3,695.834 2,981.087 

Average Latency (ms) 3.444 5.228 

Minimum Latency (ms) 0 0 

Maximum Latency (ms) 14,012.992 24,792.885 

95th Percentile Latency (ms) 11 18 

99th Percentile Latency (ms) 19 27 
 

Table 5-8: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration 
(Five instances) 

Million Rows 100 250 

Elapsed Time (ms) 13,251,457.0 29,310,368.0 

Million Operations 50 100 

Thread Count 20 50 

Throughput (ops/sec) 3,773.17 3,411.762 

Average Latency (ms) 4.423 9.322 

Minimum Latency (ms) 0 0.034 

Maximum Latency (ms) 21,067.155 55,023.983 

95th Percentile Latency (ms) 15 21 

99th Percentile Latency (ms) 25 38 

5.4.3 YCSB Benchmark on a Single Node Cluster  

This is the first benchmark of our newly developed prototype and the current benchmark 
is run on a cluster consisting of a single machine. As we did earlier, initially the proper 
amount of data should be loaded to run the benchmark workloads. Table 5-9 shows the 
throughput and the latency values achieved by a cluster with a single machine. Following 
script is executed in the command-line to start the first loading process: 
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./bin/ycsb load hbase -P workloads/workloada –p table=vital_sign -p 
columnfamily=vital_signs -p recordcount=1000000 -p threadcount=10 -s | tee -a benchmark-
results/1-hbase-workloadA-load.dat 

Table 5-9: HBase Data Load on a Cluster of Single Machine 

Million rows 1 10 50 
Elapsed Time (ms) 109,916.0 1,695,569.0 151,923,732.0 
Thread Count 10 20 100 
Throughput (ops/sec) 9,097.857 5,897.725 329.112 
Average Latency (ms) 0.957 3.318 14.872 
Minimum Latency (ms) 0.005 0.005 0.12 
Maximum Latency (ms) 12,701.866 51,209.271 107,534.235 
95th Percentile Latency (ms) 0 0 4 
99th Percentile Latency (ms) 0 0 5 

Table 5-10 shows the read and write latency and throughput of the HBase data store when 
running on a single machine cluster. The benchmark parameters during this stage are the same 
as the first stage of the MySQL benchmark. The rest of the benchmark results run on a cluster 
of single and multiple machines are shown in Appendix B from Table B.1-1 to Table B.1-16. 
After each benchmark a new machine is added to the cluster and MySQL database is 
reconfigured accordingly. 

Table 5-10: HBase Benchmark on a Cluster of Single Machine with 1 million Rows 
and 500,000 Operations 

 Workload A 
 Update Heavy 
(50/50 read/update)

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 
Elapsed Time (ms) 61,513.0 135,376.0 99,101.0 409,373.0 
Rows (Millions) 1 1 1  
Operations 
(Millions) 0.5 0.5 0.5 0.5 

Thread Count 10 10 10 10 
Throughput 
(ops/sec) 8,128.363 3,693.417 5,045.358 1,221.38 

Average Latency 
(ms) (read) 2.216 2.678 2.053 8.576

(write) 0.203 NA 0.028 0.047
Minimum Latency 
(ms) (read) 0.128 0.101 0.107 0.383

(write) 0 NA 0.006 0.008
Maximum Latency 
(ms) (read) 3,100.239 3,085.358 3,135.076 1,232.78 

(write) 4,785.415 NA 3.349 10.962
95th Percentile 
Latency (ms) (read) 5 4 5 40 

(write) 0 NA 0 0 
99th Percentile 
Latency (ms) (read) 15 36 19 53 

(write) 0 NA 0 0 
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5.4.4 YCSB Benchmark on a Multi Node Cluster 

Our benchmark for the multi-node cluster is divided into two parts where the first part 
covers benchmark statistics before tuning HBase and the second part includes benchmark 
statistics after tuning HBase. The performance difference between these two parts is quite 
large. By default most of the features of HBase are disabled and administrators must enable 
them based on their specific needs. The following performance tuning operations were made 
before loading data into HBase [60]: 

• Pre-created empty regions. By default only one region was created in HBase and 
all clients were writing to the same region until it is large enough to split and 
become distributed across the cluster; 

• The auto flush value is set to false. By default it is set to true, which means every 
write to the data store was sent one at a time to the disk - which significantly 
reduces performance; 

• The Write Ahead Log (WAL) is turned off. By default it is turned on, which 
means that a Region Server writes each put operation into WAL log. In our case, 
this is already logged at the application level, so this WAL is unnecessary for us; 
and 

• JVM heap size is increased. By default the heap size is set to 1000 (megabytes) 
which is insufficient when managing a huge amount of data. 

In this section we only provide benchmark results obtained after performance tuning of 
HBase. The benchmark results before tuning HBase can be found in Appendix B. Table 5-11 
and Table 5-12 illustrates the benchmark results obtained during the loading phase and last 
two tables (Table 5-13 and Table 5-14) represent the statistics when running workloadC. As 
the key operation in scalable RPM is read/write, the load phase (which is write only) and 
workloadC (which is read only) are sufficient to compare the system’s and to give use the data 
necessary to analyze the behavior of our prototype. 
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Table 5-11: HBase Data Load on a Cluster of Four Machines after HBase Tuning 

Million Rows 50 100 

Elapsed Time (ms) 2,241,166.0 4,814,933.0 

Thread Count 20 20 

Throughput (ops/sec) 22,309.815 20,768.721 

Average Latency (ms) 2.884 4.481 

Minimum Latency (ms) 0.013 0.021 

Maximum Latency (ms) 50,121.821 63,252.173 

95th Percentile Latency (ms) 0 1 

99th Percentile Latency (ms) 0 2 

 
Table 5-12: HBase Data Load on a Cluster of Five Machines 

Million Rows 100 250 

Elapsed Time (ms) 4,161,339.0 10,368,971.0 

Thread Count 25 50 

Throughput (ops/sec) 24,030.727 24,110.395 

Average Latency (ms) 2.761 5.559 

Minimum Latency (ms) 0.001 0.019 

Maximum Latency (ms) 30,133.192 58,981.341 

95th Percentile Latency (ms) 0 3 

99th Percentile Latency (ms) 0 5 
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Table 5-13: HBase Data Read (Workload C) on a Cluster of Four Machines after 
HBase Tuning 

Million Rows 50 100 

Elapsed Time (ms) 5,693,667.0 31,251,932.0 

Million Operations 10 50 

Thread Count 20 20 

Throughput (ops/sec) 1,756.337 1,599.901 

Average Latency (ms) 11.093 14.888 

Minimum Latency (ms) 0.621 0.76 

Maximum Latency (ms) 69,423.092 78,523.633 

95th Percentile Latency (ms) 28 35 

99th Percentile Latency (ms) 99 126 

 
Table 5-14: HBase Data Read (Workload C) on a Cluster of Five Machines 

Million Rows 100 250 

Elapsed Time (ms) 27,040,260.0 53,447,319.0 

Million Operations 50 100 

Thread Count 25 50 

Throughput (ops/sec) 1,849.095 1,871.001 

Average Latency (ms) 11.981 17.821 

Minimum Latency (ms) 0.613 0.871 

Maximum Latency (ms) 70,423.523 87,423.025 

95th Percentile Latency (ms) 29 42 

99th Percentile Latency (ms) 103 177 

5.4.5 Fault-tolerance Benchmark of Scalable RPMS 

To test the fault-tolerance of our prototype, we ran the scalable RPMS on a cluster of four 
nodes. Hadoop was configured to replicate the data on three different nodes. As for all of the 
other tests initially the data was loaded into the system. The amount of data loaded was 10 
million rows x 1KB (for a total of 10 GB) and the number of operations is one million. 
Several seconds after running workloadA on the cluster four nodes, the first node was forcibly 
shut down* and later* it was brought back into operation and after 1.5-2 minutes another node 
                                                            
* The node was shutdown by executing a $HADOOP_HOME/bin/hadoop-daemon.sh --config 
$HADOOP_HOME/conf/ stop datanode command. 
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was shut down. During the each test run there were 5 simulated node failures. The main goal 
behind this test was to evaluate the fault-tolerance of our prototype. According to Hadoop’s 
documentation, after each shut down, the master node should dynamically refer to the other 
nodes and continue to operate. During this benchmark process several nodes were shut down 
one by one. The benchmark process was successfully completed without throwing exceptions, 
which means that the master node properly managed the slaves despite the corresponding 
nodes suddenly being shut down. 

Table 5-15 shows the benchmark statistics from this testing. From the table we can see 
that the elapsed time for the operations took more than when the same test was performed 
without any crashes during benchmarking (this data is shown in Table B.1-15 column 
workloadA). In total five nodes were failed one by one for around 55 seconds, thus for ~275 
seconds three nodes performed the processing of the workload. Throughput and latency 
differences between these two sets of statistics are illustrated in Figure 5-1. As shown in the 
figure, even a three node cluster performed better than a four node cluster when the cluster 
experienced individual node crashes. It takes some time for a master node to distribute part of 
the load to the other slave nodes when one slave node suddenly crashes. Part of the decrease 
in performance is due to the fact that when a slave node returns to operation it has to be 
updated from the master node, thus reducing the service rate of the master node to external 
operations. 

Table 5-15: Fault-tolerance benchmark with workloadA on a Cluster of Four 
Machines 

 Elapsed 
Time (ms) Row Count Operations Thread 

Count 
Throughput 

(ops/sec) 
Average Latency 

(ms) 

Workload 
A 1,102,512 10,000,000 1,000,000 20 907.02 

127.52 (read) 
1.19 (write)

 

Figure 5-1: HBase benchmark differences between system with repeated machine 
failures and a system without such failures 

                                                                                                                                                                                          
* 50-60 seconds later 
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5.5 Benchmark Analysis and Comparison 
In this section we collect all of the benchmark results in order to compare them with each-

other and to extract meaningful information from these results. As mentioned above, the data 
load phase was performed at the beginning of each benchmark. Initially we analyze 
benchmark results of sharded MySQL and HBase before tuning and then later we analyze the 
systems after performance tuning.  

Based on Table 5-3, Table 5-9, Table B.1-5, Table B.1-9, and Table B.1-13, Figure 5-2 
depicts the load latency versus throughput of the relevant data stores. For initial benchmarks, 
the MySQL database was horizontally partitioned into three shards and this number of shards 
was kept for several benchmarks. Figure B.2-1 and B.2-2 show the case for 10 GB (10 million 
rows) and 50 GB (50 million rows) data loads respectively. In both cases, the performance of 
the two HBase machines exceeded the performance of the MySQL implementation. 

 

Figure 5-2: 1 GB of Data Load Benchmark Statistics 

After loading the desired amount of data, the MySQL benchmark transaction phase was 
performed and subsequently the HBase benchmark was carried out. In the loading phase, 
sharded MySQL showed better performance than our prototype when running on a cluster 
with a single machine. However, as was shown in Figure 5-2, MySQL with three shards was 
out performed by HBase when the number of nodes in the cluster is greater than two. 
Additionally, the benchmarks show that the write operation in HBase is much faster than the 
write operation in MySQL. 

Figure 5-3 illustrates workloadA’s read latency of both the MySQL and HBase databases. 
The figure shows that MySQL has the lowest latency among all other benchmarks, because 
MySQL’s read operation is much faster than a read operation in HBase. Accordingly, Figure 
5-4 shows the write latency of MySQL and HBase when running the same workload. This 
figure illustrates that the write latency of MySQL is higher than the write latency of even a 
single node HBase cluster. 
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Figure 5-3: WorkloadA Read Latency vs. Throughput Benchmark Statistics 

  

 

Figure 5-4: WorkloadA Write Latency Benchmark Statistics 
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Figure 5-5 illustrates the same benchmark results with regards to elapsed time and the 
number of operations. As shown in this figure, the elapsed time for MySQL to run workloadA 
is greater than the time of the HBase running on a cluster with a single machine. However, 
after adding one node to the cluster, HBase starts to show better performance than MySQL. 

 

Figure 5-5: Elapsed Time (runtime) versus Number of Operations for WorkloadA 

Further plots of the results of the benchmarking are given in Appendix B Figure B.2-1 to 
Figure B.2-10. Specifically, Figure B.2-3 illustrates read latency and throughput comparisons 
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data increases, then the performance of MySQL starts to decrease much more quicker than 
HBase’s performance. 

Both MySQL and HBase performed poorly when the number of operations reached 
1 million or more. Even a cluster with four nodes spent much time to perform operations. 
However, after performance tuning we started to achieve more acceptable results. 

Figure 5-6 shows 100 million rows of data load on both HBase and MySQL data stores. 
As shown in the figure, the performance after tuning is much higher. The figure clearly 
illustrates that MySQL has much slower performance when it comes to data loading (i.e., 
write operations). 

 

Figure 5-6: Data Load Benchmark Statistics for 100 GB 

Subsequently, the number of rows is raised to 250 million and the benchmark is 
performed again. Figure 5-7 depicts 250 million lines of row load on MySQL and HBase. 
These results clearly indicate that the throughput of HBase is far more ahead of MySQL 
during performing load operations. From these values, we can assume that HBase cluster with 
five machines can achieve throughputs ranging from 20 to 26 thousand operations per 
seconds. 

 

Figure 5-7: Data Load Benchmark Statistics for 250 GB 
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Figure 5-8 and Figure 5-9 represent workloadC benchmark results with 50 million and 
100 million operations respectively. As shown in the figures, MySQL performed better than 
HBase which means that the read operation in MySQL is faster than in HBase. 

 

Figure 5-8: WorkloadC Benchmark Statistics on 100 million rows 

 

 

Figure 5-9: WorkloadC Benchmark Statistics on 250 million rows 
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Figure 5-10: HBase Read Latency Differences on 50 million rows 

In order to request patient data clinicians’ requests are entered into a queue in the RPMS 
and one by one the queries are processed to retrieve the relevant health records. We can 
calculate the maximum number of requests to accessing a database containing 250 million 
rows with a maximum desired latency of 2 seconds. We used the benchmark statistics 
obtained running workloadD, because we need a workload which performs both reads and 
writes. Table 5-16 represents the benchmark statistics obtained by running workloadD on a 
cluster of five machines with 250 million rows. 

Table 5-16: HBase Data Read/Write (Workload D) on a Cluster of Five Machines 

Million Rows Elapsed 
Time (ms) 

Throughput 
(ops/sec) 

Average 
Latency (ms) 

95th Percentile 
Latency (ms) 

99th Percentile 
Latency (ms) 

250 49,634,829.0 2,014.714 14.346 40 138 

From these benchmark results we extract those that we need to determine the maximum 
number of requests which could be satisfied in the bounded time. Let us assume that the 
average throughput on a five machine cluster performing workloadD is ~2,000 operations per 
second, then a maximum of 4,000 clinicians can make a query about a patient and have a 2 
seconds latency bound if each of these clinicians makes one query at a time and all of them 
make their queries at the same time and all of them make a new query every two seconds. If 
we assume that a clinician makes less than one query per second and that each query requires 
some number of operations then we can apply Little’s law [61] to our results from both HBase 
and MySQL in order to calculate the maximum number of clinicians who could be satisfied 
by a system which runs sharded MySQL or HBase as a database storage. It is obvious that 
MySQL is the best choice with regard to satisfying queries since the number of read queries 
that can be satisfied per unit time is larger than for HBase. 

Next we calculate the scalability of our prototype. Based on Figure 5-6 and Figure 5-8, we 
can compute how rapidly we can scale out our prototype. We utilized Amdahl’s law [62] for 
our analysis of scaling. Amdahl’s law says that the speedup of an application using multiple 
processors in parallel is limited by the time needed for the sequential fraction of the 
application. In other words, the law states that if each application has one part that takes t time 
to be processed and it is impossible to execute this part in parallel, then regardless of how 
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many processors are devoted to parallelize the execution of this application, the minimum 
execution time cannot be less than t. A formula for the maximum speedup, S(n), is: ܵ(݊) = ଵೞ	ା	ೝ      (1) 

where, ݎ௦ + ݎ = ݎ ,1  represents the portion of the application that can be occured in 
parallel, ݎ௦  represents the sequential portion of the application, and ݊  is the number of 
machines (processors). 

To analyze the scaling of our prototype, first we need to find ݎ௦. To calculate it, we need to 
know the elapsed time difference between two sets of machines running the same workload. 
We took runtimes of data reads (workloadC) phase with four and five nodes (represented in 
Table 5-11 and Table 5-12) and the time difference is as follows: 

Difference = t5 / t4 = 27,040,260 / 31,251,932 = ~0.865 

In ideal case, the difference would satisfy the following equation: 

  ݊ × ݐ = (݊ + 1) × ାଵ =>      ାଵݐ = ௧శభ௧  

where, n – number of machines and t – elapsed time for the operation to be finished. From 
this equation, we obtain 4 / 5 = 0.8. Now it is obvious that ݎ௦ = 0.865 − 0.8 = 0.065 =6.5%. So 6.5% of our application was sequential. From this value, we calculate ݎ which is ݎ = 1 − ௦ݎ = 0.935 = 93.5%. 

Based on (1) equation, we calculate S(5) which equals to 3.97 and S(4) = 3.35. We also 
calculated the case of a three machine cluster and the sequential portion was ݎ௦ = 6.2% =~6% which led us to gain S(3) = 2.68. 

These last calculations clearly show the speedup of our application. From those values we 
conclude that only ~94% of our application can be parallelized while the remaining portion 
(~6%) will not be processed in parallel. Equation (1) shows that even if the number of 
machines were infinite, the maximum speedup will be S(∞) = 1 / 0.06 = 16.67. From this we 
learn that by the time we have scaled up to 23 machines we are getting only a small gain in 
speedup when adding an additional machine. 
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In the prototype Apache HBase is used to store health measurements of patients and 
therefore the performance of storing and retrieving such records was measured by running 
benchmarks. In order to contrast the performance of HBase, the MySQL relational database 
was chosen as it represents one of the most widely used RDBMS. Benchmark statistics 
showed that HBase has unquestionable superiority in terms of write performance, while 
MySQL performed much better in terms of read performance. In terms of executing complex 
queries for medical record statistics, both data stores performed poorly - although HBase 
performed better than MySQL. 

It is important to note that chosen data store for our prototype, HBase, showed both 
satisfactory and unsatisfactory performance results during executing workloads. Benchmark 
tests also include two stages: before and after performance tuning of HBase. The performance 
difference after tuning was much higher than before. Another factor which is worth 
mentioning is the slowness of read operation in HBase as compared to MySQL, because the 
read operation is as critical as write operation in RPMSs. However, our system does not 
include critical patient monitoring which requires significantly high speed data reads. 
Additionally, the write rate is higher than the reading rate. Because when a patient’s health 
state is as expected, physicians usually request health measurement statistics for the last week 
or the last two weeks, etc. Considering these factors we assert that HBase is better option; 
however when it comes to provide a high fraction of data reads, MySQL is the most suitable 
candidate. 

6.2 Future Work 
As described in Section 1.2.1, current master’s thesis proposed and designed a system 

which is considered as the first part of today’s modern RPMSs and the rest two parts have to 
be developed as a future work of this project. More in detail, Figure 6-1 represents modern 
RPMS with all three parts where ‘Data Mining’ and ‘Critical Patient Monitoring’ parts 
dedicated as a future work. The health care for different kinds of patients has to be provided 
accordingly; hence intelligent analysis of measurement results is highly important for 
clinicians as well as patients. 

Another crucial functionality that should be implemented in RPMS is specific data 
searching using Solr. Since, Solr provides ultra-fast search services while keeping a simple 
programming model, its implementation in RPMS would be invaluable. Because especially, in 
the third part of RPMS, clinicians frequently request health statistics of specific patients for 
the last several days or weeks or even months and it is vital that the query should not take 
long regardless of its complexity. 

Providing security in a scalable RPMS was outside the scope of this master’s thesis 
project. As most medical records need to be securely transmitted and managed, enhanced 
security is essential to such a system in the real-world. Specifically, authentication and 
authorization mechanisms have to be made to function properly in Hadoop. User 
identification (authentication) can be done in many ways, including making changes in low-
level transport, using the Kerberos authentication protocol or token delegation among users. 
Authorization should include all types of access controls to resources and role-based 
management. 

Today the majority of current remote patient monitoring systems use traditional relational 
databases to store and manage their data. Highly scalable data management techniques were 
introduced only a few years ago due to the need to handle big data. We expect that 
increasingly there will be an integration of both scalable and relational data management 
technologies in RPMS. One of the best ways to integrate Hadoop with RDBMS is using 
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Apache Sqoop. Utilizing this data integration tool in a scalable RPMS would make the system 
even more extensible and capable. 

6.3 Reflections 
This master’s thesis project facilitates patient monitoring which helps both patients and 

clinicians. The full implementation of this project in the real-life could help to avoid long 
queues in hospitals, facilitate patients communicating with their clinicians, and enable 
clinicians to efficient access patients’ health records. Increasing the effectiveness of the 
relation between patients and physicians is considered as a beneficial social aspect of this 
master’s thesis project. The key economic aspect of this thesis project is its cost efficiency, as 
it describes a method that can be used to provide a scalable RPMS which can support very 
large amounts of medical records – especially those records which will be coming from home 
health care monitoring devices. An environmental aspect of this work is a potential reduction 
in need for emergency transport (by helicopter or ambulance) due to better observation of 
patient’s conditions. 
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Appendix A 

Sample from Generated Test Data 

Physical Examination (Vital signs) 

User Identifier 63481968342523200+62371 

Timestamp (in milliseconds) 1378375823000 

Pulse Rate 101 

SpO2 96 

Body Temperature 36.3 

Blood Pressure 120 

Respiration Rate 15 

Blood Glucose 91 

Vital Capacity 4.5 

Forced Expiratory Flow 39 

Forced Inspiratory Flow 42 

Tidal Volume 488 

End-tidal CO2 5.3 

Gait Speed 1.1 
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Appendix B 

RDBMS and Scalable RPMS Prototype Measurements and 
Chart Representation of each Measurement 

B.1 MySQL and HBase Benchmark Statistics 

Table B.1-1: MySQL Benchmark with 10 million Rows and 1 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 2,008,661.0 1,605,094.0 1,717,842.0 7,264,402.0 

Rows 
(Millions) 10 10 10 10 

Operations 
(Millions) 1 1 1 1 

Thread Count 20 20 20 20 
Throughput 
(ops/sec) 497.844 623.017 582.126 137.658

Average 
Latency (ms) 
(read) 

6.023 54.492 57.857 299.535

(write) 25.611 NA 0.042 0.101
Minimum 
Latency (ms) 
(read) 

0 0.009 0.084 0.473

(write) 0 NA 0.005 0.018
Maximum 
Latency (ms) 
(read) 

3,961.341 999.235 1,027.938 1,878.731

(write) 6,055.092 NA 1.533 501.883
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Table B.1-2: MySQL Benchmark with 50 million Rows and 10 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 
scan/write)

Elapsed Time (ms) 129,342,237.0 106,463,934.0 114,735,462.0 901,463,235.0 

Rows (Millions) 50 50 50 50 
Operations 
(Millions) 10 10 10 10 

Thread Count 100 100 100 100 
Throughput 
(ops/sec) 77.314 93.928 87.157 11.093

Average Latency 
(ms) (read) 107.593 543.088 593.003 2,209.495

(write) 156.239 NA 1.116 1.901
Minimum Latency 
(ms) (read) 0.937 0.722 0.587 1.769

(write) 1.247 NA 0.222 0.336
Maximum Latency 
(ms) (read) 21,447.352 4,052.356 7,096.456 19,346.228

(write) 34,534.082 NA 44.623 2,367.2 
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Table B.1-3: HBase Benchmark on a Cluster of Single Machine with 10 million Rows 
and 1 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 2,681,339.0 4,923,532.0 3,709,891.0 19,163,908.0 

Rows 
(Millions) 10 10 10 10 

Operations 
(Millions) 1 1 1 1 

Thread Count 20 20 20 20 
Throughput 
(ops/sec) 372.95 203.106 269.55 52.181

Average 
Latency (ms) 
(read) 

106.737 98.268 77.857 402.828

(write) 0.205 NA 0.053 0.217
Minimum 
Latency (ms) 
(read) 

0.232 0.322 0.141 0.792

(write) 0 NA 0.007 0.039
Maximum 
Latency (ms) 
(read) 

10,943.329 1,164.307 1,039.029 2,867.829

(write) 5,758.592 NA 2.814 629.926
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Table B.1-4: HBase Benchmark on a Cluster of Single Machine with 50 million Rows 
and 10 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 135,731,469.0 257,662,092.0 188,018,663.0 977,302,292.0 

Rows 
(Millions) 50 50 50 50 

Operations 
(Millions) 10 10 10 10 

Thread Count 100 100 100 100 
Throughput 
(ops/sec) 73.675 38.81 53.186 10.232

Average 
Latency (ms) 
(read) 

1,078.004 761.944 780.906 2,968.392

(write) 0.312 NA 1.442 1.618
Minimum 
Latency (ms) 
(read) 

0.639 0.893 0.796 2.266

(write) 0.141 NA 0.203 0.454
Maximum 
Latency (ms) 
(read) 

41,226.053 8,046.395 9,194.734 20,932.729

(write) 17,432.894 NA 12.321 3,021.49 
 

Table B.1-5: HBase Data Load on a Cluster of Two Machines 

Million rows 1 10 50

Elapsed Time (ms) 56,022.0 866,528.0 77,623,955.0

Thread Count 10 20 100

Throughput (ops/sec) 17,850.13 11,540.308 644.131

Average Latency (ms) 0.566 2.009 5.993

Minimum Latency (ms) 0 0.003 0.11

Maximum Latency (ms) 8,412.551 30,120.693 46,523.098
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Table B.1-6: HBase Benchmark on a Cluster of Two Machines with 1 million Rows 
and 500,000 Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 37,443.0 72,233.0 56,383.0 232,717.0 

Rows 
(Millions) 1 1 1 1 

Operations 
(Millions) 0.5 0.5 0.5 0.5 

Thread Count 10 10 10 10 
Throughput 
(ops/sec) 13,353.631 6,922.044 8,867.921 2,148.532

Average 
Latency (ms) 
(read) 

1.103 1.934 1.119 5.275

(write) 0.124 NA 0.011 0.03 
Minimum 
Latency (ms) 
(read) 

0.81 0.65 0.72 0.199

(write) 0 NA 0.004 0.004
Maximum 
Latency (ms) 
(read) 

1,834.639 1,783.246 2,204.003 795.99 

(write) 2,993.235 NA 1.8 7.118
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Table B.1-7: HBase Benchmark on a Cluster of Two Machines with 10 million Rows 
and 1 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 1,545,854.0 2,670,352.0 2,130,270.0 10,920,622.0 

Rows 
(Millions) 10 10 10 10 

Operations 
(Millions) 1 1 1 1 

Thread Count 20 20 20 20 
Throughput 
(ops/sec) 646.892 374.482 469.424 91.57 

Average 
Latency (ms) 
(read) 

56.043 53.235 40.23 222.435

(write) 0.11 NA 0.03 0.125
Minimum 
Latency (ms) 
(read) 

0.102 0.14 0.05 0.693

(write) 0 NA 0 0.019
Maximum 
Latency (ms) 
(read) 

6,239.231 784.239 701.424 1,782.093

(write) 3,664.291 NA 1.703 314.992
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Table B.1-8: HBase Benchmark on a Cluster of Two Machines with 50 million Rows 
and 10 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 75,600,725.0 139,688,149.0 107,045,603.0 563,842,224.0 

Rows 
(Millions) 50 50 50 50 

Operations 
(Millions) 10 10 10 10 

Thread Count 100 100 100 100 
Throughput 
(ops/sec) 132.274 71.588 93.418 17.736

Average 
Latency (ms) 
(read) 

555.348 429.537 399.036 2,012.436

(write) 0.138 NA 1.001 0.931
Minimum 
Latency (ms) 
(read) 

0.382 0.52 0.448 1.722

(write) 0.08 NA 0.11 0.311
Maximum 
Latency (ms) 
(read) 

25,775.359 5,192.825 5,002.372 12,523.109

(write) 9,443.892 NA 7.392 1,888.327

 
Table B.1-9: HBase Data Load on a Cluster of Three Machines 

Million rows 1 10 50

Elapsed Time (ms) 38,529.0 584,544.0 52,515,030.0

Thread Count 10 20 100

Throughput (ops/sec) 25,954.476 17,107.352 952.108

Average Latency (ms) 0.401 1.692 3.66

Minimum Latency (ms) 0 0 0.082

Maximum Latency (ms) 6,082.442 21,412.523 68,252.664
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Table B.1-10: HBase Benchmark on a Cluster of Three Machines with 1 million 
Rows and 500,000 Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 25,930.0 48,848.0 38,878.0 161,851.0 

Rows 
(Millions) 1 1 1 1 

Operations 
(Millions) 0.5 0.5 0.5 0.5 

Thread Count 10 10 10 10 
Throughput 
(ops/sec) 19,282.684 10,235.834 12,860.744 3,089.261

Average 
Latency (ms) 
(read) 

0.585 1.303 0.92 3.483

(write) 0.081 NA 0.007 0.011
Minimum 
Latency (ms) 
(read) 

0.731 0.461 0.494 0.133

(write) 0 NA 0.001 0.001
Maximum 
Latency (ms) 
(read) 

1,244.823 1,125.883 1,604.352 532.798

(write) 2,000.252 NA 1.203 5.339
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Table B.1-11: HBase Benchmark on a Cluster of Three Machines with 10 million 
Rows and 1 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 1,065,939.0 1,845,835.0 1,468,923.0 7,584,197.0 

Rows 
(Millions) 10 10 10 10 

Operations 
(Millions) 1 1 1 1 

Thread Count 20 20 20 20 
Throughput 
(ops/sec) 938.14 541.76 680.771 131.853

Average 
Latency (ms) 
(read) 

34.331 37.505 28.833 155.006

(write) 0.076 NA 0.009 0.08 
Minimum 
Latency (ms) 
(read) 

0.699 0.892 0.028 0.466

(write) 0 NA 0 0.014
Maximum 
Latency (ms) 
(read) 

4,368.384 556.844 599.34 1,380.627

(write) 2,934.227 NA 1.352 227.534
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Table B.1-12: HBase Benchmark on a Cluster of Three Machines with 50 million 
Rows and 10 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 52,161,239.0 96,420,325.0 73,354,435.0 394,456,929.0 

Rows 
(Millions) 50 50 50 50 

Operations 
(Millions) 10 10 10 10 

Thread Count 100 100 100 100 
Throughput 
(ops/sec) 191.713 103.713 136.324 25.351

Average 
Latency (ms) 
(read) 

392.593 285.522 266.747 1,402.808

(write) 0.09 NA 0.731 0.629
Minimum 
Latency (ms) 
(read) 

0.264 0.222 0.297 1.221

(write) 0.051 NA 0.767 0.184
Maximum 
Latency (ms) 
(read) 

16,648.749 3,983.002 3,034.992 7,666.521

(write) 7,500.466 NA 4.92 1,342.662
 

Table B.1-13: HBase Data Load on a Cluster of Four Machines 

Million rows 1 10 50

Elapsed Time (ms) 29,221.0 443,567.0 39,718,284.0

Thread Count 10 20 100

Throughput (ops/sec) 34,221.964 22,544.508 1,258.866

Average Latency (ms) 0.298 1.209 2.712

Minimum Latency (ms) 0 0 0.059

Maximum Latency (ms) 4,427.629 15,821.935 50,121.821
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Table B.1-14: HBase Benchmark on a Cluster of Four Machines with 1 million Rows 
and 500,000 Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 19,628.0 36,077.0 28,942.0 124,445.0 

Rows 
(Millions) 1 1 1 1 

Operations 
(Millions) 0.5 0.5 0.5 0.5 

Thread Count 10 10 10 10 
Throughput 
(ops/sec) 25,473.813 13,859.246 17,275.931 4,017.839

Average 
Latency (ms) 
(read) 

0.188 1.091 0.77 2.523

(write) 0.053 NA 0.002 0.007
Minimum 
Latency (ms) 
(read) 

0.598 0.351 0.494 0.133

(write) 0 NA 0 0 
Maximum 
Latency (ms) 
(read) 

0,844.523 813.939 1,336.72 387.552

(write) 1,681.628 NA 0.921 2.917
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Table B.1-15: HBase Benchmark on a Cluster of Four Machines with 10 million 
Rows and 1 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 819,219.0 1,426,036.0 1,139,722.0 6,035,827.0 

Rows 
(Millions) 10 10 10 10 

Operations 
(Millions) 1 1 1 1 

Thread Count 20 20 20 20 
Throughput 
(ops/sec) 1,220.675 701.245 877.407 165.677

Average 
Latency (ms) 
(read) 

21.933 28.992 21.352 112.519

(write) 0.059 NA 0.006 0.053
Minimum 
Latency (ms) 
(read) 

0.552 0.667 0.023 0.338

(write) 0 NA 0 0.009
Maximum 
Latency (ms) 
(read) 

3,209.882 384.205 470.425 992.83 

(write) 2,032.552 NA 0.91 142.098
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Table B.1-16: HBase Benchmark on a Cluster of Four Machines with 50 million 
Rows and 10 million Operations. 

 
Workload A 
Update Heavy 

(50/50 
read/update) 

Workload C 
Read Only 

(100% read) 

Workload D 
Read Latest 

(95/5 read/write) 

Workload E 
Range Scan 

(95/5 scan/write) 

Elapsed Time 
(ms) 41,026,048.0 76,139,177.0 57,634,569.0 325,590,021.0 

Rows 
(Millions) 50 50 50 50 

Operations 
(Millions) 10 10 10 10 

Thread Count 100 100 100 100 
Throughput 
(ops/sec) 243.748 285.522 173.507 30.714

Average 
Latency (ms) 
(read) 

291.423 221.258 205.811 991.004

(write) 0.067 NA 0.522 0.404
Minimum 
Latency (ms) 
(read) 

0.193 0.18 0.2 0.822

(write) 0.039 NA 0.519 0.135
Maximum 
Latency (ms) 
(read) 

13,623.56 2,422.524 2,002.516 5,622.092

(write) 5,622.552 NA 3.042 1,001.005
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B.2 Chart Representation of Benchmark Statistics 

 

Figure B.2-1: 10 GB of Data Load Performance Differences 

 

Figure B.2-2: 50 GB of Data Load Performance Differences 
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Figure B.2-3: WorkloadC Read Latency vs. Throughput Benchmark Statistics 

 

 

Figure B.2-4: Elapsed Time vs. Number of Operations Chart on WorkloadC 

0

100

200

300

400

500

600

700

800

900

0.00 2,000.00 4,000.00 6,000.00 8,000.0010,000.0012,000.0014,000.0016,000.00

R
ea

d 
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload C (100% read)

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

0 2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

E
la

ps
ed

 T
im

e 
(m

s)

Operations

Runtime vs. Operations

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines



84 
 

 

Figure B.2-5: WorkloadD Read Latency vs. Throughput Benchmark Statistics 

 

 

Figure B.2-6: WorkloadD Write Latency vs. Throughput Benchmark Statistics 
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Figure B.2-7: Elapsed Time versus the Number of Operations Chart on WorkloadD 

 

 

Figure B.2-8: WorkloadE Scan Latency vs. Throughput Benchmark Statistics 
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FigureB.2-9: WorkloadE Write Latency vs. Throughput Benchmark Statistics 

 

 

 

Figure B.2-10: Elapsed Time versus the Number of Operations Chart on WorkloadE 
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