A scalable database for a remote
patient monitoring system

&

L,
RUSLAN MUKHAMMADOV EFKTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

A scalable database for a remote
patient monitoring system

Ruslan Mukhammadov

ruslanm@kth.se

2013-07-18

Master of Science Thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract

Today one of the fast growing social services is the ability for doctors to monitor patients
in their residences. The proposed highly scalable database system is designed to support a
Remote Patient Monitoring system (RPMS). In an RPMS, a wide range of applications are
enabled by collecting health related measurement results from a number of medical devices in
the patient’s home, parsing and formatting these results, and transmitting them from the
patient’s home to specific data stores. Subsequently, another set of applications will
communicate with these data stores to provide clinicians with the ability to observe, examine,
and analyze these health related measurements in (near) real-time. Because of the rapid
expansion in the number of patients utilizing RPMS, it is becoming a challenge to store,
manage, and process the very large number of health related measurements that are being
collected. The primary reason for this problem is that most RPMSs are built on top of
traditional relational databases, which are inefficient when dealing with this very large amount
of data (often called “big data™).

This thesis project analyzes scalable data management to support RPMSs, introduces a
new set of open-source technologies that efficiently store and manage any amount of data
which might be used in conjunction with such a scalable RPMS based upon HBase,
implements these technologies, and as a proof of concept, compares the prototype data
management system with the performance of a traditional relational database (specifically
MySQL). This comparison considers both a single node and a multi node cluster. The
comparison evaluates several critical parameters, including performance, scalability, and load
balancing (in the case of multiple nodes). The amount of data used for testing input/output
(read/write) and data statistics performance is 1, 10, 50, 100, and 250 GB.

The thesis presents several ways of dealing with large amounts of data and develops &
evaluates a highly scalable database that could be used with a RPMS. Several software suites
were used to compare both relational and non-relational systems and these results are used to
evaluate the performance of the prototype of the proposed RPMS. The results of
benchmarking show that MySQL is better than HBase in terms of read performance, while
HBase is better in terms of write performance. Which of these types of databases should be
used to implement a RPMS is a function of the expected ratio of reads and writes. Learning
this ratio should be the subject of a future thesis project.

Keywords. Big data, database performance, scalability, load balancing, Remote Patient
Monitoring System.

Sammanfattning

En av de snabbast vixande sociala tjénsterna idag dr mdjligheten for likare att 6vervaka
patienter i sina bostéder. Det beskrivna, mycket skalbara databassystemet dr utformat for att
stodja ett sddant Remote Patient Monitoring-system (RPMS). I ett RPMS kan flertalet
applikationer anvdndas med hilsorelaterade mitresultat fran medicintekniska produkter i
patientens hem, for att analysera och formatera resultat, samt Gverféra dem fran patientens
hem till specifika datalager. Dérefter kommer ytterligare en uppsittning program
kommunicera med dessa datalager for att ge kliniker mojlighet att observera, undersdka och
analysera dessa hilsorelaterade métt i (ndra) realtid. P4 grund av den snabba expansionen av
antalet patienter som anviander RPMS, &r det en utmaning att hantera och bearbeta den stora
méngd hilsorelaterade métningar som samlas in. Den framsta anledningen till detta problem
ar att de flesta RPMS é&r inbyggda i traditionella relationsdatabaser, som ar ineffektiva nér det
handlar om véldigt stora méngder data (ofta kallat "big data").

Detta examensarbete analyserar skalbar datahantering for RPMS, och infor en ny
uppsittning av teknologier baserade pd Oppen kéllkod som effektivt lagrar och hanterar
godtyckligt stora datamdngder. Dessa tekniker anvdnds i1 en prototypversion (proof of
concept) av ett skalbart RPMS baserat pd HBase. Implementationen av det designade
systemet jamfors mot ett RPMS baserat pa en traditionell relationsdatabas (i detta fall
MySQL). Denna jamforelse ges for bade en ensam nod och flera noder. JimfGrelsen
utvirderar flera kritiska parametrar, inklusive prestanda, skalbarhet, och lastbalansering (i
fallet med flera noder). Datamingderna som anvénds fOr att testa ldsning/skrivning och
statistisk prestanda ar 1, 10, 50, 100 respektive 250 GB.

Avhandlingen presenterar flera sétt att hantera stora médngder data och utvecklar samt
utviarderar en mycket skalbar databas, som &ar lamplig for anvindning i RPMS. Flera
mjukvaror for att jimfora relationella och icke-relationella system anvénds for att utvirdera
prototypen av de foreslagna RPMS och dess resultat. Resultaten av dessa jdmforelser visar att
MySQL presterar bittre an HBase nér det géller lasprestanda, medan HBase har béttre
prestanda vid skrivning. Vilken typ av databas som bor viljas vid en RMPS-implementation
beror dirfor pd den forvantade kvoten mellan ldsningar och skrivningar. Detta forhdllande ar
ett lampligt &mne for ett framtida examensarbete.

Nyckelord: Big data, databas, prestanda, skalbarhet, lastbalansering, Remote Patient
Monitoring System

Acknowledgements

I would like to express my gratitude and sincere thanks to my academic advisor and
examiner Prof. Gerald Q. “Chip” Maguire Jr. for his valuable suggestions, extremely
helpful feedbacks and indispensable recommendations. From the beginning to the end of my
thesis project, he always supported me with his brilliant advices, kept me on a right track and
helped me by sharing his magnificent experience.

My grateful thanks to Tallat M. Shafaat for helping me to choose suitable benchmark
tools and his valuable support during the benchmarking of my thesis application.

Furthermore I would like to thank Jim Dowling for sharing computer resources and
allowing me to benchmark my prototype.

Special thanks to my family, in particular my parents for their unconditional affection,
moral support and lovely inspirations during the period of my study, and all through my life. I
would not be the person who I am now without their support.

In addition, I would like to thank my friends and relatives. Their moral supports helped
me to grow one pillar up and encouraged me to do the best whatever I do.

Table of contents

ADSITACT ettt e e e e et e e e e bae e s taeeeatbeeetaeeeabeeeteeeenbaeeanraaenn i

SaAMMANTALINING.cviiiiieiiieiieeie ettt ettt e et e st e ebeeetaeesbeessbeensaessseesseessseenseessseens il

ACKNOWIEAZEIMENLSeoiiiiiiiiieciee ettt e et e e et e e e te e e sabaeessseeesnseeessseeessseeenns \%

Table Of CONEENLSouviiiiiiiiiiieieee ettt et sa et st be et st e b ens vii

LISt OF FIGUIES .eeiiieiiiece ettt ettt e et e et e et e e estaeeessaeeessaeeensaeesssaeessseeennneeas X

LiSt OF TADIES .ottt ettt ettt st Xi

List of acronyms and abbreviations............cccuiieriieeiiieeiiee ettt e e xiil

1 INEEOAUCTION ...ttt ettt et sbe et s e st et et e e 1

1.1 OVETVIEW ..ttt et et etteette ettt et et e st e e stt e e et e eate et e esseesaeeenteenseenseenseesseesateenseenseenseeaseesneenseesneas 1

1.2 Problem Analysis and Definitioncccceeeriieiiiieiiieieeciee et e e ree e 2

1.2.1 Problem PreVIEWcociiiiiieieieeeeeee ettt ettt sttt e enes 2

1.2.2 Traditional Relational Database Management SyStem...........cccevvereereercreeireecreenreeneeennens 2

1.2.3 Distributed Computing Technologies...........cccveiieririiiiiiiiieieeeeee e 3

1.2.4 Prerequisites for a Scalable RPMSc.ooiiiiiiiiiiieeeecere et 6

1.2.5 Problem Definitioncoccooieiiiiiieeiee et 7

1.3 GOAIS ..ttt ettt b ettt ettt b e e bt e s bt e eat e et e e bt e be e beenbeenaeas 8

R Y (1 s To T (0] (oY 2RSSR 8

1.5 Sructure 0f the ThESISeeiviieieieiieeeee ettt sttt s 8

2 BacKground.........cooouiiiiiiiecie e e e e ennes 11

2.1 Traditional RPIMISSc..oiuiiiieeeee ettt ettt s enee e 11
2.1.1 The Technology Transfer Alliance’s Carenet Services project: Remote Medical

RECOTAS SYSIOIM.....uiiiiiiiiiiie ettt et e e tae et e e et e e stveesabaeessaeessseeensaeenes 11

2.1.2 Remote Patient Monitoring SYStEIMN.........cceevierierrierierienriesseesieeseesnesreesseesseesseesenenens 13

2.1.3 Remote Patient Monitoring for Congestive Heart Failure..........c.ccccoovevievienieniennennn, 15

2.2 Efficient data management in traditional RPMSSccccoeciiiiiiiiiiiieiieceeeee e 16

3 Scalable Data Management: Apache Hadoop.........ccoooveeviieniieiiieniieiecieeeeeeee e 19

3.1 APACKE HAAOOD ..ttt ettt et ettt e st e et sttt e b e bt e saeens 19

3.2 Major Components 0f HAAOOPcc.eeiuiiiiiiieiii ettt e e e eveesvae e 20

3.2.1 Hadoop Distributed File SYSteM........cccccuiriiriiiiiriiiiieriieniesiecre e e ere e seeesrveseneesne e 21

322 MaP-REAUCE ..ttt ettt st sttt et saee e ane e 22

3.2.3 APACKE HIVE oottt ettt e e ba e e s b e e e tae e tbaeenaaeenes 23

324 APACKE Pigu.uiiiiiiiiciiciece ettt e stbe e rbeerbeerbe e reenees 23

3.2.5 APACKE HBASE ...cviiiiieiiciieiiee ettt sttt s st naenes 24

3.2.6 APAChe HCatalog.......oovieiieiieiieeiie ettt st sttt et s 25

3.2.7 APACHE ZOOKEEPETc.vvieiiiieiiieeite ettt ettt ettt te e et e e s veeesree e tbaessbeeesaeessseeassaeessseenns 26

IR N o ¥ Te] s 1IN 1o Y 1 o F PSSP 27

RISV BN o ¥ Tod s T I To [0 1o) o FO PP SRR 28

T LN o Te] s TSI 1o) S POPUSRS 28

33 HAOOP CIUSLETSeeuvieiieiiesiie ettt ettt sttt et e bt e st e staestaessbeesseesseesaesssesnseanseenseensaessaens 29

3.4 HadoOp LAMItAtIONS ...cccueertieriieiiieeiieie et estte ettt et ettt e st e st e e teeteesteesaeesntesabeeseenseesseesneens 30

Vi

4 Scalable RPMS Architecture and Designc.eecvieriieriieniieriieeieeiie e 31

4.1 OVETVIEW ...uviieeiiie et eeteeeette ettt e eteeestaeeeabeeeteeesebeeaasseessseeaasesesssesssesansseesssasansssesseesssesensesenses 31

4.2 Technology choice for Scalable RPMS...........coooiiiiiiiiiiiiice e 32

4.3 Tables Definition in the SYSTEMc.cccveciiiriierierie ettt ereeseeesreesenessne e 33

4.4 The Distributed Storage MoOdelcocuieiiiiiieiieieceeeee et 35

4.5 Interaction of HAdoOp COMPONENLS........cccviiererieiiieeiiieeriieeiieeeveeeieeeseveeeveeesereessseeessseessseeas 36

4.6 Application Source Code and Environment Preparation.............cceeeveeveeeeenieeneeneennesveennens 36

5 Benchmarking & ANalySiS........coeeririiriiiiniineiiesteeeeee sttt 39

5.1 OVEIVIEW .ttt ettt et ettt ettt et e e tees e e et e st emtesseene e seaseemse bt emte st eneensesseensesesseentansens 39

5.2 Generating TeSt Data........c.cccveciiecieieierece ettt ettt e saaesraesnseenseenns 40

53 Benchmarking of the alternative Software SUItesccooeveiiiiieriienieree e 41

5.4 Yahoo Cloud System! Benchmarkc.ccoeeviiiiiiiiiieiiic et 41

5.4.1 Machine SPECIfICAtIONSeccvieiieiiieiieieeieetes e v e ere e b e et e e steestaestaesebeesbeesseesseesseeenas 43

5.4.2 YCSB Benchmark on MySQL DB.......c.oooiiiiiiiiiicieceeeeeeee e 43

5.4.3 YCSB Benchmark on a Single Node CIUSEETc.ccecviieiiiiriieeieeeiee e 46

544 YCSB Benchmark on a Multi Node CIUStET........cceeirrierieieieieeiee e 48

5.4.5 Fault-tolerance Benchmark of Scalable RPMScooiiiiiiiiiiieeeeeee, 50

5.5 Benchmark Analysis and COMPATISONcccvieieiiriiieeiiieeieeeereeeieeesreeeveeesereesreeesereessseens 52

6 Conclusions and Future Workccoooiiiiniiiiiiieeee e 59

6.1 CONCIUSIONS ...eeeeviieiiie ettt ettt e et ee ettt e ettt e et e e etbeeetee e tbeeeeseeessseessbeeensseesssesensasesseesnsesenseeenses 59

6.2 FULUIE WOTK ...ttt ettt et et et et e e e nae e 60

6.3 RETIECHIONS ...ttt ettt ettt et ettt et et e e sbe et e besneeneesneeneeses 61

RETEIENCES oottt e b e et e b e et be e et aeas 63

Appendix A: Sample from Generated Test Data...........coceeviiiiiiiiiiniiieieeeeeee e 67
Appendix B: RDBMS and Scalable RPMS Prototype Measurements and Chart

Representation of each Measurement...............ccceeviieciienieeiiienie e 69

B.1 MySQL and HBase Benchmark Statistics..........cccceevviiviiieniieeniieeeiieeeiee e 69

B.2 Chart Represenation of Benchmark StatiStics.........c.ccoveevierienerienienenienenn 82

viii

List of Figures

Figure 2-1: Overall Architecture of RMRS........cccooiiiiiiiiiiceeecceeeeeee 12
Figure 2-2: Overall Architecture of RPMScooiiiiiiiiiiiiiceeeeeeeeeeene 14
Figure 2-3: WANDA System architeCtureceouerieriierieniinieieeieneeiestesieeee e 15
Figure 3-1: High-level Hadoop ATChiteCturecoceevuiiviiriiniiiiiiieneeieseeseceeeeeee e 20
Figure 3-2: Hadoop’s system architecture showing technologies relevant to this thesis.....21
Figure 3-3: Logical view of map and reduce functionscccceeeeeveereroienienenrienieneeens 22
Figure 4-1: Overall Architecture of Scalable RPMScccooviiiiiiiieee e 31
Figure 4-2: High-level RPMS data platform............cccoeviieeiiiiniieeeeeeceeeee e 32
Figure 4-3: Distributed Storage Model of Scalable RPMS..........cccccooiiiiiiniiniiiiniiees 35
Figure 5-1: HBase benchmark differences between system with repeated machine

failures and a system without such failuresccoocevenininniinneneeee, 51
Figure 5-2: 1 GB of Data Load Benchmark StatiSticscccceoerieniriiniiniininienieiene 52
Figure 5-3: WorkloadA Read Latency vs. Throughput Benchmark Statistics..................... 53
Figure 5-4: WorkloadA Write Latency Benchmark StatiSticsc.ccevevvenienienieniencnnens 53
Figure 5-5: Elapsed Time (runtime) versus Number of Operations for WorkloadA 54
Figure 5-6: Data Load Benchmark Statistics for 100 GBccccoeeiiiiiiieiiiiieee e, 55
Figure 5-7: Data Load Benchmark Statistics for 250 GBccccccceviiiiniiniininiiecne 55
Figure 5-8: WorkloadC Benchmark Statistics on 100 million rowsc..cccceeverieniencnnene 56
Figure 5-9: WorkloadC Benchmark Statistics on 250 million rowscccceevevienienennens 56
Figure 5-10: HBase Read Latency Differences on 50 million rowsccccceceeverieneenennens 57
Figure 6-1: Modern RPMS Archit€Cture.........cccoevuieiiriiiiieniiniieieeienieeieseesieeeeee e 59
Figure B.2-1: 10 GB of Data Load Performance Differencescccccoeeeerieinicniieneennennnee. 82
Figure B.2-2: 50 GB of Data Load Performance Differencescccceeeeerieinieniienecnennen. 82
Figure B.2-3: WorkloadC Read Latency vs. Throughput Benchmark Statistics..................... 83
Figure B.2-4: Elapsed Time vs. Number of Operations Chart on WorkloadC........................ 83
Figure B.2-5: WorkloadD Read Latency vs. Throughput Benchmark Statistics..............c...... 84
Figure B.2-6: WorkloadD Write Latency vs. Throughput Benchmark Statistics.................... 84
Figure B.2-7: Elapsed Time versus the Number of Operations Chart on WorkloadD............ 85
Figure B.2-8: WorkloadE Scan Latency vs. Throughput Benchmark Statistics...................... 85
FigureB.2-9: WorkloadE Write Latency vs. Throughput Benchmark Statistics 86
Figure B.2-10: Elapsed Time versus the Number of Operations Chart on WorkloadE............ 86

List of Tables

Table 1-1: Comparison of Technologies with respect to their applicability for realizing an

RPM ..ttt sttt ettt ettt e se et e st e taenneenaans 7
Table 4-1: User HBase Tablecoueiiiiiriiiiiieieeeeeeeeeee e 34
Table 4-2: Vital Sign HBase Tablecccoooiiiiiiiiiiiiiicceeeee e 34
Table 5-1: Configuration of Each Machine Used for Benchmarkingccccccoeeevenenenee. 40
Table 5-2: Machine SPeCIfiCAtIONS.........ccuviiiiiriieiiieiierie ettt see e ebeesaeeesree e 43
Table 5-3: MySQL Data Load........cc.cooiiiieiiieeiiecie et vee e s 43
Table 5-4: MySQL Data Benchmark with 1 Million ROWScccccoeviiiiiiiiiniiiecieeeieeee, 44
Table 5-5: MySQL Data Load after MySQL Shard Reconfiguration (Four instances).......... 45
Table 5-6: MySQL Data Load after MySQL Shard Reconfiguration (Five instances) 45
Table 5-7: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration (Four

INSEANCES) 1eeivviieiiieeeiteeeetiee ettt e et e e e teeeeteeeebeeesabeeeeaseeesseessseesnsseessseessseeennsenas 46
Table 5-8: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration (Five

INSEATNICES) e euvvieeniiieeiieeeitee et eeetteeeteeesataeesbeeeanseeensseeesseeensseeensseeenseessssneennseenn 46
Table 5-9: HBase Data Load on a Cluster of Single Machine.............ccccoevvveeviiiiiieeecieeenen. 47
Table 5-10: HBase Benchmark on a Cluster of Single Machine with 1 million Rows and

500,000 OPETALIONSeenverurieireieeiiriienieeteeitente et ste et et sbee e s sbe e eaeesaeenees 47
Table 5-11: HBase Data Load on a Cluster of Four Machines after HBase Tuning................. 49
Table 5-12: HBase Data Load on a Cluster of Five Machines.........c.ccccceeevieniinenieneenennnn. 49
Table 5-13: HBase Data Read (Workload C) on a Cluster of Four Machines after HBase

TUNINE ©eeiiieee ettt ettt ettt e st e et e e aaeenbeessseenseenene 50
Table 5-14: HBase Data Read (Workload C) on a Cluster of Five Machines 50
Table 5-15: Fault-tolerance benchmark with workloadA on a Cluster of Four Machines........ 51
Table 5-16: HBase Data Read/Write (Workload D) on a Cluster of Five Machines................ 57
Table B.1-1: MySQL Benchmark with 10 million Rows and 1 million Operations................. 69
Table B.1-2: MySQL Benchmark with 50 million Rows and 10 million Operations............... 70
Table B.1-3: HBase Benchmark on a Cluster of Single Machine with 10 million Rows

and 1 million OPerations.cccueeeuierieerienieeieeieeree et ste et e see e ebe e 71
Table B.1-4: HBase Benchmark on a Cluster of Single Machine with 50 million Rows

and 10 million OPErations.c.ceeveeeiierieriireniieeieenieereeereesreesneeseeesseeeeeeene 72
Table B.1-5: HBase Data Load on a Cluster of Two Machines..........ccccoecevienerienieniceiennnene 72
Table B.1-6: HBase Benchmark on a Cluster of Two Machines with 1 million Rows and

500,000 OPETAtIONS. ...eecvvieeerieeirieeiieesieeesieeesreeessseeessseesssaeesseeessseeesssesesseeanns 73
Table B.1-7: HBase Benchmark on a Cluster of Two Machines with 10 million Rows and

1 Million OPErations.cc.eoueerieriiriiiieientee ettt 74
Table B.1-8: HBase Benchmark on a Cluster of Two Machines with 50 million Rows and

10 Million OPETations.c..eevvieriieiieeiieriie ettt ettt siee e eae et e saeeesee e 75
Table B.1-9: HBase Data Load on a Cluster of Three Machines............cccceeveevervienienceniennnnne 75
Table B.1-10: HBase Benchmark on a Cluster of Three Machines with 1 million Rows

and 500,000 OPETAtIONS.ueeerurreeirieerieeerieeesteeesreeesaeeessreeessreesssseesseeessseeens 76

Xi

Table B.1-11: HBase Benchmark on a Cluster of Three Machines with 10 million Rows

and 1 million OPErations.cccueevuieeieereeriiierieeeieesie e e ereereesaeeseeeeereeeee e 77
Table B.1-12: HBase Benchmark on a Cluster of Three Machines with 50 million Rows

and 10 million OPETatioNns.c..ceevvieeriieeriieerieeerieeerieeesveeereaeeeereesaeeeseaee e 78
Table B.1-13: HBase Data Load on a Cluster of Four Machines..............ccccooveeieeiiiiecieiiieneenn, 78
Table B.1-14: HBase Benchmark on a Cluster of Four Machines with 1 million Rows and

500,000 OPETALIONS. ...eervvieerieiieerieniieeteeeeeeteesteeereesseeeseesseesseesseesseesseessseenses 79
Table B.1-15: HBase Benchmark on a Cluster of Four Machines with 10 million Rows

and 1 million OPErations.ccceeevvierieerieeiieeieeieerie et ereereeereeseeeeeseeeee e 80
Table B.1-16: HBase Benchmark on a Cluster of Four Machines with 50 million Rows

and 10 million OPETatioNns.ceeevieeriieeiiieerieeerieeerieeeseeeeraeeeereesaeeessaeeens 81

xii

List of acronyms and abbreviations

ACID
API
BOINC
C2DM
CHF
CPU
GPS
CRUD
CSv
DDL
ECG
ETL
GFS
HDFS
HDVC
HiveQL
HPC
HTML
HTTP
IBM
ICU

/0
JDBC
JSON
JVM

1P
MATLAB
MPI
MS SQL
MySQL
NoSQL
ODBC
OLTP
RAM
RCFile
RDBMS
REST
RMRS
RPM
RPMBS
RPMS
SAN
SPOF
SQL

Ul

Atomic Consistent Independent Durable
Application Programming Interface

Berkeley Open Infrastructure for Network Computing

Cloud to Device Messaging
Congestive Heart Failure

Central Processing Unit

Global Positioning System

Create Retrieve Update Delete
Comma Separated Values

Data Definition Language
Electrocardiography

Extract Transform Load

Google File System

Hadoop Distributed File System
High Definition Video Conferencing
Apache Hive Query Language

High Performance Computing
Hypertext Markup Language
Hypertext Transfer Protocol
International Business Machines Corp.
Intensive Care Unit

Input/Output

Java Database Connectivity
JavaScript Object Notation

Java Virtual Machine

Internet Protocol

Matrix Laboratory

Message-Passing Interface

Microsoft Structured Query Language
Structured Query Language

Not Only Structured Query Language
Open Database Connectivity

Online Transaction Processing
Random Access Memory

Record Columnar File

Relational Database Management System
Representational State Transfer
Remote Medical Records System
Remote Patient Monitoring

Remote Patient Monitoring Backed System
Remote Patient Monitoring System
Storage Area Network

Single Point of Failure

Structured Query Language

User Interface

xiii

URL

VoIP
WANDA
WHI PAM
WHI SMS
XML
YCSB

Xiv

Uniform Resource Locator

Voice over [P

Weight and Activity with Blood Pressure Monitoring System
West Health Institute Personal Activity Monitor

West Health Institute Sign Monitoring System

Extensible Markup Language

Yahoo Cloud System Benchmark

1 Introduction

This chapter briefly introduces the area that is going to be investigated during this
master’s thesis project. It focuses on the main problem, how the problem is going to be
solved, what the goals of this thesis project are, and how to achieve these goals. The final
section of the chapter explains the overall structure of this thesis.

1.1 Overview

For many years the demand for health care of human beings has steadily increased.
Additionally, more and more flexible and efficient ways of treatment are being developed.
Today the use of information technology (IT) is wide spread in health care. One of the areas
where it is being applied is remote patient monitoring. This application area is growing
incredibly fast [1, 2]. According to a report from Berg Insight, around 2.8 million patients
worldwide were using a home monitored service at the end of 2012 [3], and this number was
expected to grow to 9.4 million by 2017 [4].

Remote Patient Monitoring is a technology that enables health care providers to monitor
patients' health conditions while they are in their residences. This technology collects a
patient's vital signs (e.g. blood oxygen saturation level, blood pressure), biometric data (e.g.
level of glucose in blood, pulse oximetry), and other data (e.g. list of medications, diet
compliance, disease symptoms). Today much of this data is collected by medical sensors and
transferred electronically to a specific health care provider in real-time. This health care
provider in turn provides an interface that allows clinicians and other health care personnel to
monitor the health of their patients in (near) real-time. Some of the expected benefits of this
technology are increased access to health care and a decrease in healthcare delivery costs.

Presently, a number of Remote Patient Monitoring systems (RPMS) offer a reliable
solution which enables clinicians to monitor their patients [5, 6]. The majority of these
systems use a traditional relational database management system (RDBMS) for data
processing and storage. Although these systems manipulate the data through non-scalable and
slow relational databases, they are currently able to effectively and rapidly handle this data.
The primary reason that they are able to do so is because the number of patients that are being
remotely monitored is still small. However, because of the rapid expansion of RPMSs, within
a few years these systems will face a challenge managing the large amount of data that will be
collected (and the large amount of data that was collected earlier). These collections of very
large amounts of data are often called “big data”. As a consequence of the expected increase
in both the number of patients and the increase in the amount of data per patient that can (and
will) be collected, there will be a need for scalability, high performance, load balancing,
utilization of commodity hardware, etc. Unfortunately, it has already been shown that
relational databases are not a good solution for handling big data [7, 8].

The definition of big data has been elucidated and described by a number of researchers
and entrepreneurs. They all came to the same characterization. For example, Paul C.
Zikopoulos, et al. [9] state that big data is structured and unstructured information that comes
from everywhere, including various types of devices, social media sites, digital world, GPS
signals, etc. IBM defines four characteristics or dimensions of big data [10]:

Volume terabytes and even petabytes of information;
Velocity high speed, non-delayed information exchange between source and destination;
Variety any type of structured and unstructured data; and

Veracity trust establishment among different kind of enterprises.

Efficient data processing and handling by fulfilling the first three dimensions is a real
challenge for RDBMS, because when the amount of data increases, none of those three
characteristics can be satisfied by relational database systems.

In an RPMS, big data could include any kind of health care related information, including
health care measurements obtained from medical devices, video/audio communication
between patients and clinicians, patients' health history, disease information, etc. Given this
list of health related information we assume that the average amount of patient data stored per
patient in RPM will range from a few megabytes to several gigabytes. This means that within
a few years RPMS for a county (such as Stockholm — with ~2 million persons) will need to
store Terabytes (10'%) to Petabytes (10'°) of information. Certainly new technology is needed
for effective data processing and storing such a large amount of data [11].

Apache’s Hadoop ecosystem provides a flexible and efficient solution for managing big
data. It allows distributed processing of large data sets across clusters of commodity
computers (nodes) using a simple programming model [12]. Clusters may contain a single
server or thousands of machines, each providing storage and computing resources. The
Hadoop architecture contains two core components: the Hadoop Distributed File System
(HDFS) for storage and Map-Reduce for data processing. Both components are fundamental
for a number of other components that deal with big data at various levels. This thesis project
will design a new scalable remote patient monitoring system (RPMS) by implementing
Hadoop with its components and then will implement and compare this prototype with an
existing relational database oriented RPMS.

1.2 Problem Analysis and Definition

This section analyzes which technologies are the most appropriate choice for scalable data
management and identifies the problems in the chosen area.

1.2.1 Problem Preview

Today’s RPMSs can be divided into three parts where in the first part patients transmit
their health measurements to the RPMS and by querying those measurements physicians
access and monitor patients regularly. The second part contains only machines mining each
obtained measurements and prioritize patients according to their medical records.
Prioritization is strictly based on certain patterns which identifies the level of criticality on
measurement results and gives highly prioritized patients to the third part. In the last part
clinicians monitor only patients whose health is below than normal and therefore this part
should function extremely quickly and provide real-time health measurement analysis. The
main idea behind this thesis project is to investigate effective data management in the first part
of today’s large RPMSs and to design a new scalable system; therefore attention has to be
paid to reliable data storage systems and efficient data processing.

Several techniques for building distributed systems have been proposed and implemented
for big data handling. We will first examine the advantages and disadvantages of RPMS’s
current storage system (traditional RDBMS [13, 14]) and then examine replacing this using
big data techniques. Following this we explain what data storage parameters have to be
considered in order to build a scalable RPMS.

1.2.2 Traditional Relational Database Management System

A traditional RDBMS is a database management system (DBMS) based on a relational
model. This has been the predominant choice for storing information in various databases.
These databases are mainly used to manage the organization, security, access, and integrity of

2

data. The information is stored in a set of tables, each of which has a unique identifier called a
primary key. The tables are then related to one another using a foreign key, which is simply a
primary key in another table. Such relation oriented tables are effective in managing relational
data.

Advantages of a RDBMS:

e Support for Atomic, Consistent, Independent, and Durable (ACID) transactions.

e Very fast for processing small data-sets — as these systems take advantage of hardware
(latest Central Processing Units (CPUs), large memories, etc.) for processing;

e Implement Structured Query Language (SQL) — a special purpose query language that
fits with any type of RDBMS;

e Comprehensive Online Transaction Processing (OLTP) support is really beneficial,
especially for transaction-oriented applications;

e Privileges - full authorization and privilege control can be easily realized by the
database administrator.

Disadvantages of a RDBMS:
e (Cost — it is expensive to set up and maintain the database system.

e Implementing transactional, concurrency, consistency, and durability for large data-
sets become very cumbersome as the size of the data set increases. Cluster based
implementation is hard due to the nature of ACID.

e Unable to manage unstructured and/or semi-structured data as RDBMSs only work
effectively with structured data. Lack of full support for unstructured and semi-
structured data such as documents, videos, images, spatial data, etc.

e Scalability, clustering, and distributed realizations are hard as a RDBMS does not
easily support distributed computing and clustering. Scalable data management is too
slow.

e Fast text searching within fields is difficult.

e Some relational databases have limits on field lengths, which can lead to data loss if a
data item is large.

e Making two databases, located in different areas, to "talk" to each other can be really
expensive.

1.2.3 Distributed Computing Technologies

Many different distributed computing technologies may be used to replace a traditional
relational database when the amount of data to process becomes enormous. Each technology
fulfills certain requirements and provides a different level of efficiency when handling big
data. This section introduces three well known and widely used distributed computing
techniques that can be applied to big data.

1.2.3.1 Grid Computing: Message-Passing Interface (MPI)

Grid computing exploits a set of computer resources, potentially in different locations, to
achieve a common goal [15]. Together with high performance computing (HPC), Grid
computing provides large scale data processing by using message passing interface (MPI)
APIs [16]. MPI is a message passing programming model which utilizes standard library
functions on a wide variety of parallel computers. Broadly speaking, the main idea behind
HPC is to distribute tasks across a cluster of machines, which access a shared file system. The
shared filed system is frequently hosted by a storage area network (SAN).

Advantages of grid computing:

e Exploits parallel processing with different machines in the grid concurrently executing
different parts of the task. This is a good choice for compute-intensive jobs.

e Virtual organizations can share their resources to form a large virtual computing
system.

e The grid schedules grid jobs on computers with low utilization, thus achieves resource
balancing to avoid unexpected peaks.

e Grid computing systems can provide reliability by using graceful recovery techniques
to address an assortment of hardware failures. Processors, power supplies, and cooling
systems are frequently duplicated so a failed subsystem can be replaced by another
without turning the system off.

Disadvantages of grid computing:

e There are problems when nodes in the grid need to access large data volumes
(hundreds of gigabytes). This occurs because network bandwidth becomes a
bottleneck, and therefore compute nodes may become idle.

e MPI provides great control to developers; however, it requires them to explicitly
handle the mechanics of data flow, using low-level C routines, sockets, and high-level
algorithms for data analysis.

e When a failure happens in the grid, other machines may continue processing the other
parts of the task without knowing about the failure. While MPI may allow control
based upon failure detection, the code to do so is much harder to write.

e Grid computing computations may not be interoperable when different groups (with
diverse components, policies, and mechanisms) want to share their resources.

e Shared infrastructure services should be provided to avoid repeated development,
installation, and configuration — otherwise program development and operations will
be slow.

1.2.3.2 Volunteer Computing

Volunteer computing is a type of distributed computing which enables ordinary Internet
users to share their computer's storage and idle processing power as part of a high-
performance parallel computing network [17]. This is a powerful distributed computing
technique that can handle large amounts of data in an efficient manner by utilizing distributed
resources. Volunteer computing is based on breaking the problem into chunks called work
units, which are transmitted to idle computers around the world to be processed. When a
client finish processing its assigned work unit, the results are sent back to a server and the
client is assigned another work unit to process.

There are many platforms that achieve scalability through volunteer computing. Berkeley
Open Infrastructure for Network Computing (BOINC) is an open-source software platform
for computing using volunteered resources. It provides an opportunity for scientists to create
and operate public-resource computing projects. A large number of diverse applications are
used on top of BOINC to handle enormous processing power intensive research projects [18].

Advantages of volunteer computing:

High-performance computing is possible by breaking the problem into independent
pieces that can be processed in parallel using a set of machines.

Resources can be shared among autonomous projects. This is facilitated because
projects are never centrally authorized, thus each project operates its own servers.
Volunteers can even participate in multiple projects.

Because computer owners can registered with multiple projects, when one project
stops or is closed for repair, another projects may inherit their computing power.

Disadvantages of volunteer computing:

Different parts of the project are executed on untrusted machines connected to the
Internet. These machines may have fluctuating connection throughputs and may not
store data locality. The machines may also be removed from service or connectivity
may be terminated at any time.

Each work unit has to be sent across the network, hence the computational time should
dwarf the transfer time, and otherwise the system will perform poorly. Because each
volunteer donates CPU computing power the amount of computing power may not
scale with the available aggregate bandwidth.

Volunteer computing is not a good solution for private and proprietary applications as
they are unable to rely on untrusted computing power shared by volunteers.

1.2.3.3 Apache Hadoop

Apache Hadoop is an open source framework to manage and handle large scalable data
processing by writing and running various distributed applications [19, 20]. Distributed
processing of a large amount of data is done in a Hadoop cluster (a set of parallel commodity
machines networked together in one location). Millions of client computers can submit
diverse tasks to this computational cloud and obtain results in a short time. Hadoop is also
referred to as Key/Value Computing.

Advantages of Apache Hadoop:

This solution is highly scalable as it distributes data across clusters of commodity
computers and exploits parallel processing.

A very large amount of data storage is available enabling scalability from a single
node to hundreds of thousands of nodes in such a way that individual nodes can use
local hard drives, processing power, CPU, and random access memory (RAM).

Error handling is provided in the application layer, hence when a node fails, backup
nodes can be added dynamically.

When it is necessary to add more nodes to the cluster in order to make the system
more powerful in terms of storage and performance, a few lines of refactoring code is
sufficient to scale the machines. Unlike RDBMS, the Hadoop platform provides
dependable performance growth proportional to the number of nodes available in the
cluster.

Hadoop distributes both data and computations, but computation is done only on local

data preventing the network from being a bottleneck.

Because all of the tasks are independent:

e Partial failures can be easily handled by restarting entire nodes if they fail;

e Propagation of failures and intolerant synchronous distributed systems can be
avoided during data processing; and

e Speculative execution can be used to work around stragglers.

e Hadoop utilizes a simple programming model, hence an end-user developer only
writes map-reduce tasks.

e When faults are detected by nodes, a quick automated recovery will be run
immediately by the application layer.

e Fach node automatically maintains multiple copies of data, thus in the event of
failures, the copies of the data will be automatically redeployed and processed.
Disadvantages of Apache Hadoop:

e Hadoop is not yet mature and both Map/Reduce and HDFS are under active
development.

e There is no central data, hence there is a restricted choice of programming models.

e Performing a "join" operation of multiple datasets is slow and tricky, as there are no
indices. Often entire datasets must be copied in the process of performing a join.

e Cluster management is difficult, hence debugging distributed software and collecting
logs of operations from the clusters is hard.

e The optimal configuration of (number of mappers, reducers, memory limits) nodes is
not obvious.

e Managing job flow is not always trivial, as it is hard to manage flows when
intermediate data should be kept.

1.2.4 Prerequisites for a Scalable RPMS

The basic requirements for a scalable RPMS are:

e The system has to support efficient handling of unstructured and/or semi-
structured data, because most of the data in RPMS is not structured data (as it
includes video/audio, individual health care measurements, etc.).

e Setting up and maintaining the data storage system should not be expensive.

e There is a limited need for data consistency; hence the ACID properties can be
relaxed.

e The system has to maintain flat scalability, because as the number of patients
grows the number of machines in the cluster has to be increased proportionally.

e Data storage should be sufficiently large to store and process all the incoming data.

e Data writing, searching, and retrieval for a single patient’s data have to be very fast
and independent of the number of patients in the system.

e Data will be written once and read several times. In fact, most of the data that is
stored will never be modified or deleted; hence we can exploit this property of this
data.

Generalizing all above requirements enables us to compare the above technologies in
Table 1-1. Of all the systems shown in this table Apache Hadoop appears to offer the best
solution for a scalable RPMS. All of these requirements need to be addressed during the
development of our prototype.

Table 1-1: Comparison of Technologieswith respect to their applicability for

realizing an RPM

RDBMS Grid Computing Vqunthr Hadoop
Computing
Efficient support of No Yes Yes Yes
semi-structured and
unstructured data
Trustworthiness of Yes No, because performing No, because Yes
system calculations on different | computing power
organizational computers | shared by volunteers
might not be entirely might not be as secure
trustworthy as needed
Simple Yes No Yes Yes
programming model
Data size Gigabytes Terabytes, mostly Terabytes, mostly Petabytes
depends on depends on server
supercomputers computers
High-performance Inefficient Partially efficient Partially efficient Very Efficient

processing of big
data

because of the network
bandwidth

because of the
volunteer numbers in
the project and

network bandwidth
Date updates Read and write Depends on the File Depends on the File Write once and read
many times System System many times
Development and Fast, requires less Costly and difficult Fast because of Very fast because of

Configuration

effort

because written
programs have to be run
in supercomputers which
have customized
operating systems

diverse applications

diverse applications

Scaling Nonlinear Linear Linear Linear
Structure Static Schema Dynamic Schema Dynamic Schema Dynamic Schema
Data Store Fast, because of Slow, because it is hard Slow, because it is Very Fast, because of
Connectivity data locality to provide constant high- | hard to provide data locality

speed network constant high-speed

connection network connection
Cost Expensive because | Inexpensive because Inexpensive because Inexpensive because

of non-linear
behavior

supercomputers do not
need super hardware
configuration

main servers do not
need expensive
hardware

ordinary computers
may become nodes in
clusters

1.2.5 Problem Definition

As said in the previous section, a scalable RPMS demands that we meet several specific
requirements. During the designing process all of these requirements have to be considered.
Additionally, some critical issues and missing functionality can be identified and should be
investigated. The followings are some of the basic requirements and issues that were
discovered and for which relevant solutions need to be found during this thesis project:

e All of the prerequisites mentioned in section 1.2.4 should be fulfilled;

e Currently Apache Hadoop provides a number of technologies for both HDFS and
Map/Reduce tasks. A specific set of technologies should be chosen to fit the
requirements of a scalable RPMS and to efficiently provide the needed function.

e For testing of two systems (RDBMS and Hadoop) real test data has to be collected
or similar generated and the two alternatives have to be properly benchmarked.

1.3 Goals

The primary goal of this master’s thesis project is to define an efficient way to build and
operate a reliable, highly scalable, fault-tolerant, redundant, and highly available RPMS. After
theoretically and practically proving the inefficiency of a current relational database oriented
system, the project proposes a design for a new RPMS that should function smoothly with any
amount of data. In order to achieve the project’s main goals, the project is broken down into
several tasks. These tasks are:

e Implementing Apache Hadoop along with all necessary and suitable components
to build a scalable RPMS.

e Develop a scalable system that fulfills the requirements stated in section 1.2.4 and
realize this system following professional coding standards and modern
architectural design principles.

e Show that existing RDBMS oriented RPMSs cannot offer efficient data
management for big data (in the case of an RPM). Test software suites will be used
to benchmark both RDBMS and Hadoop systems and compare them in terms of
performance, scalability, and load balancing.

e C(learly demonstrating the prototype system's reliability, scalability, fault-
tolerance, redundancy, and high availability.

1.4 Methodology

This thesis project incorporates both qualitative and quantitative research methods. As the
thesis project is based on a scientific study utilizing experimental and empirical approaches to
demonstrate scientific validity, a quantitative research method was the primary technique. The
main reason for choosing an experimental approach was the absence of a theoretical means to
accomplish the goals stated in Section 1.3. Empirical and experimental approaches were
utilized after clarifying the research question and identifying the evaluation metrics regarding
performance analysis. In the end, a proof of concept prototype is to be implemented to answer
the question posed. Due to the lack of access to actual health care data, generated data was
used to test and evaluate the two different system architectures.

A qualitative research methodology was used to analyze earlier work done in this area. A
design-based research approach is the most suitable technique to identify the limitations and
issues of previous works and to design a new system. This approach provides new knowledge
through the process of designing, implementing, and evaluating an artifact. In this thesis
project, the artifact is an implementation of an Apache Hadoop platform. For the proper
implementation of Hadoop, problems were specified in the first phase and then suitable
literature was studied to characterize the implementation, deployment, and test cases in order
to ensure that the relevant issues were examined. Eventually, a step-by-step procedure was
proposed as a theoretical solution and a scalable system was designed and tested by following
each step.

1.5 Structure of the thesis

The thesis project is organized as follows:

Chapter 1 introduced the idea of an RPMS. This chapter described current trends,
limitations, and future expectations. It briefly analyzed the problem by comparing the
advantages and disadvantages of traditional relational databases with three widely used
distributed computing techniques. The problem was defined along with its context. The goals

8

of the thesis project were presented, along with the research methodologies that will be
utilized.

Chapter 2 describes relevant earlier work, explains the overall architecture of RPM and
analyzes its limitations and issues. By considering the advantages and disadvantages of prior
work, Chapter 2 illustrates how suitable solutions should be designed to properly address the
relevant parts of an overall solution for the stated problem.

Chapter 3 presents scalable and reliable data management techniques by giving brief
descriptions. The chapter explains the different ways of implementing these technologies and
reviews their efficiency in terms of development and gives some specific use cases.

Chapter 4 gives a detailed explanation of the architecture of the proposed scalable RPMS
to be developed during this thesis project. This chapter describes the overall structure of the
system, shows the interactions between the technologies that have been used and provides
instructions of how to use them to achieve the project’s goals. Finally, the chapter shows how
the big data characteristics were addressed in the proposed reliable and fault-tolerant RPMS.

Chapter 5 benchmarks, analyzes, and compares two different RPMS architectures. The
same amount of data that would be managed by an example RPMS is used for testing both
RDBMS and Hadoop systems. A comparison of these two systems is illustrated using charts
and graphs.

Chapter 6 concludes the thesis, suggests some potential future work, and describes the
economic, environmental, and social aspects of this work.

Appendix A presents a sample data generated for the benchmarking phase of our newly
designed prototype. Since, any kind of the medical information is considered to be security
sensitive, we developed an application that generates “fake” medical records.

Appendix B includes all measurement results obtained during benchmarking of our
prototype and illustrates the results in relevant graphs.

2 Background

A number of traditional RDBMS oriented systems are used to implement RPMSs. This
chapter introduces several traditional RPMSs, explains the efficiency of data processing in
these systems, and describes potential expectations (inefficiency of scalable data
management) as the number of patients in the system increases. Specifically, data sorting,
writing, and reading are considered as the main barriers when the amount of data stored in the
system becomes very large, hence these operations are used to show the main drawbacks of
traditional RPMSs.

2.1 Traditional RPMSs

As the new trend of using RPMS in modern patient care has proven valuable in a short
period of time, the majority of RPMSs are being developed to provide simple, fast, flexible,
and sophisticated services to both patients and clinicians. Three different RDBMS oriented
RPMSs are presented in this section. Each system's architecture is concisely and clearly
described in order to explain later how this system reacts when the amount of data in the
system becomes enormous. Specific descriptions and explanations of the health measurement
data utilized in each of these systems are outside the scope of this master's thesis.

2.1.1 The Technology Transfer Alliance’s Carenet Services
project: Remote Medical Records System

The Technology Transfer Alliance’s Carenet Team has stated: “The objective of Carenet
is to establish a research infrastructure where more cost-effective solutions to already existing
demands can be demonstrated as well as completely new systems supporting the
transformation of the health care work procedures to increase quality and cut costs in the
overall process. The user scenarios addressed include teleconferencing sessions among
medical experts, e-learning and remote patient monitoring.” [21]

2.1.1.1 Overview

The Carenet Services’ Remote Medical Records System (RMRS) enables patients to
stream their health care data to a web server where clinicians can access these data and can
monitor the patients in (near) real-time [21]. Currently, RMRS supports two kinds of medical
sensors to measure the health conditions of patients. Additionally, Carenet Services provide
reliable, robust, and fast high definition video conferencing (HDVC) to establish high quality
video and audio communications session between patients and their doctors. In this system,
three software applications were implemented to provide the services mentioned above. All of
the information exchanged between patients and their clinicians are private and highly
confidential.

2.1.1.2 System Architecture

The system includes three software applications to provide remote monitoring of patients.
The first application is responsible for collecting health measurements from medical devices,
performing an integrity check of the data, and securely transmitting the data to a web server
over a network [22]. After receiving these data packets, the second application concurrently
pushes the data to a web page to show these measurements to the relevant clinicians and
stores the measurements in a relational database [23]. The third application provides high
quality video/audio sessions between doctors and patients [24]. Figure 2-1 depicts the overall
architecture of RMRS.

11

As shown in Figure 2-1, patients transmit measurement data to the server immediately
after the measurement . When the server receives the measurement data it automatically
pushes the data to the relevant clinicians (if there is at least one open connection to a relevant
clinician). Additionally, patients communicate with the relevant clinician(s) by exchanging
video/audio packets. Communication session data is not stored on the serwer, this server only
plays the role of a Session Initiation Protocol (SIP) proxy. All of the media within a session is
directly transferred between the patient and the relevant clinician(s). Details of this
multimedia media conferencing system are described in [24].

PATIENTS CLINICIANS

A
. A
png Qo ¥
Tus -

N
\E: SERVER | pushing data packets

P4

Requesting data packets g

Figure2-1: Overall Architecture of RMRS

Most users of the data stored in the RMRS are clinicians, rather than patients. The patients
are concerned with the privacy and security of their personal health care data, therefore only
the individual patient and their approved clinicians have access to the data uploaded by a
patient. However, specific clinicians have a wide range of access to most of the patients’ data
in the system, as they need to access the history of diseases of patients, stored health care
records, the treatments of past illnesses, etc. For these reasons certain types of requests will
require more complex queries and supporting these queries will require more data to be
processed and accessed at the database level. Details of what data a specific clinician can
access are outside of the scope of this thesis, the interested reader may refer to Alexis
Martinez Fernandez’s master’s thesis to find out more about data access control of electronic
health-care records [25].

" Details about the measurements and how they are made can be found in [22].

12

The second application handles SQL queries from the RMRS and it is considered the
primary part of the system. The main responsibility of the application is to store all the health
measurements, organize and present a patient’s health care situation as one or more web
pages, and retrieve the relevant data whenever a clinician requests it. This application utilizes
a MySQL relational database to store the data obtained from patients. Nine database tables are
currently used to store all of the relevant patient related information, including health
measurements from different kinds of medical sensors, disease history of patients, earlier
treatments of each patient, etc. Expensive SQL JOIN operations are used to process specific
advanced SQL queries. The purpose of these queries are to retrieve patient specific
information for a relevant clinician within a given date range with stated parameters; create,
calculate, evaluate, and validate patient records; and to gather all relevant information
(treatments, diagnoses, etc.) regarding specific diseases and/or patients. Details of these
queries are given in [23].

2.1.2 Remote Patient Monitoring System

The Remote Patient Monitoring System (RPMS) proposed by Sherin Sebastian, et al.
provides efficient tele-healthcare services by utilizing various hardware and software
components [26]. The primary goal of the system is to enable cardiology healthcare services
at a distance.

2.1.2.1 Overview

Various software and hardware tools were used to design RPMS. As stated above, the
field of cardiology was the major focus for this system. Electrocardiography (ECG) was
exploited for diagnosis. Signal processing techniques are used to analyze a constant stream of
ECG signals (along with vital signs, various parameters, etc.). These signals were obtained as
images from a display. Necessary information was extracted from these signals and examined
with the help of MATLAB tools. All the processed information was then sent to a web server
through an internet network. At the web server, all of the data was stored in a relational
database and then pushed to the client for monitoring. As a result, clinicians were able to
observe their patients' health conditions via a web page by using Android based smart phones
and/or tablets.

2.1.2.2 System Architecture

In the initial phase of implementing the RPMS the system captured vital signs and other
parameters from an Intensive Care Unit (ICU) which is positioned right in front of a webcam,
the captured data was parsed, and meaningful information was extracted by analyzing the
parsed data. The webcam continuously captures images at a rate of one image every four
seconds from the screen of a bedside monitor. Each image contains information regarding to
the patient's heart rate, ECG, blood oxygen saturation level (SpO2), and breathing rate. Digits
in images represent the health conditions of patients and each digit is separately cropped out
for analysis by utilizing MATLAB as a tool. The subtract function in MATLAB is used to
compare a cropped digit image with a previously stored image in a MATLAB database in
order to extract the image's numeric value. After image processing and analysis the data is
uploaded to a web server by specifying the server's Uniform Resource Locator (URL) in the
MATLAB commands.

At the web application server a MySQL relational database was used to store the health-
care information extracted by MATLAB. The major tasks of the server include receiving a
stream of data packets from multiple clients, storing the received data in a database, and
composing this data into a web page which can subsequently be viewed using an Android

13

phone/tablet. The availability of near real-time health measurement data enables doctors to

make appropriate diagnosis of their patients. Figure 2-2 illustrates the overall architecture of
the RPMS.

The RPMS includes an additional server called a Cloud to Device Messaging (C2DM)
server where Android phones register and obtain a unique identifier (ID). In critical situations,
such as when a patient's current heart rate is outside the normal range, a batch file running in
MATLAB generates an additional text file from the health information and transmits this text
file along with the health data to the web server. When the server detects this text file it
forwards this text file together with the corresponding ID of the clinician's Android phone to
the C2DM server which sends a notification directly to the doctor's phone.

ICU Monitor
‘Web Camera

Image Analysis

Image Capturing

i £\

Android Devices

'] C2DM Server B\
.‘.;"5*\

Notification \

L A

s m— s .
Figure 2-2: Overall Architectureof RPMS

14

2.1.3 Remote Patient Monitoring for Congestive Heart Failure

Remote Patient Monitoring for Congestive Heart Failure (CHF) is a system that provides a
Weight and Activity with Blood Pressure Monitoring System (WANDA) architecture which
leverages medical sensor technologies and wireless communications to monitor health related
measurements of patients with CHF [27]. The WANDA system comprises of three major
components which are sensors, a web server and a back-end database.

2.1.3.1 Overview

The core component of RPM for CHF is a WANDA system that was designed using a
three-tier architecture. The first tier consists of medical sensors for monitoring patients' health
conditions. All the health measurements are wirelessly transmitted to the second tier where a
web server stores the measurements, checks their integrity, and push these measurements to a
web application and/or a mobile application to enable the patient to be monitored. To maintain
the availability of healthcare measurements, the second tier also forwards them to a third tier
(a back-end database server). The main responsibility of the third tier is to perform database
backups and recovery. Furthermore, the data in the third tier is used for various kinds of data
analysis including linear regression, early adaptive alarms, missing data imputation, signal
search, data security, etc. Figure 2-3 shows the overall architecture and the components
interaction within this WANDA system.

@ Web Database
==
“h'_-__——'-'#

@ —

3G, Wi-fi, phone line

GSM, Internet

- Provide monitoring applications
- Alert health care providers

- Perform data integration
Wireless Sensors - Perform data abstraction

-
\"-_—'/

N—~————- Back-end Database
- Perform database backup and recovery

Figure 2-3: WANDA System ar chitecture

2.1.3.2 System Architecture

The first tier in WANDA architecture is called the sensors tier and it is comprised of
wireless sensors and mobile devices. This layer has two design versions/interfaces for two
specific types of patients. The first version uses simple Bluetooth-based devices (such as
weight scales, blood pressure monitors, personal activity monitors) together with a standard
phone line connection for elderly persons who are not accustomed to smart phones and
computers. In this version the connection between the first tier and the second tier is

15

established through a telephone system in real-time. Another version of the WANDA
interface i1s much broader than the first one and it consists of smart phones which are able to
collect and transfer health measurement data to a web server.

Since the sensor tier is divided into two parts, the web server tier should provide
appropriate processing for the data that are coming from two different types of sources and
stores this data in a Microsoft SQL database. The reason for needing two different types of
web server tiers is that the format of the data transmitted from the phone line version is much
different than the data from the mobile version. Smart phones in the mobile version
encapsulate the measurement data in a certain format and send it to the web server where
based on the different data packet structures of each sensor these messages are parsed and the
resulting data is stored in an SQL database. Unlike the mobile version, the phone line version
utilizes Ideal Life, WHI PAM (Personal Activity Monitor), and WHI SMS systems which use
incompatible data types and different databases. Data format abstraction and shared ID tables
were used to efficiently analyze and store data transmitted using incompatible formats and
coming from different databases. Another advantage of a shared ID table was to maintain data
integrity of different types of medical records. In addition, when the received measurement
results are out of normal range, the web server sends an alert message to a healthcare provider
via an email or a text message. Details regarding data analysis, integrity maintenance, and
specific SQL queries execution in the web server can be found in [27].

Even little items of medical data in an electronic medical record system can be vitally
important; hence the data that has been collected should be actively guarded against data loss.
The third tier in RPM for CHF, the back-end database tier, is responsible for performing data
backups and recovery. Such a back-end database tier is incredibly helpful when it is necessary
to restore a small number of files after they have been corrupted or accidentally deleted. The
system uses the WHI SOPHI software to perform data backups and recovery. APIs' allow the
SOPHI client application to communicate with a DBMS (Database Management System), to
synchronize all new files, and to recover missing data.

2.2 Efficient data management in traditional RPMSs

The primary advantage of current RPMSs in terms of data management is the simplicity
and flexibility of interaction with a RDBMS. SQL is a widely used programming language to
query an RDBMS. Data authorization and authentication in these databases are managed in a
very simple manner. Database setup and configuration does not require a specific operating
system, as there are version of SQL capable databases available for most major operating
systems and hardware platforms. Support of ACID transactions and Create, Retrieve, Update,
and Delete (CRUD) operations are taken care efficiently. Additionally, third party database
maintenance is available from a number of companies (some of which are quite large). Data
processing in these databases is fast when the amount of data that is being processed is small.

Unfortunately, data management becomes a nightmare when the amount of data in a
database becomes very large. Processing of even simple queries may take a long time.
Furthermore, as the amount of data increases, the amount of commodity hardware needs to
scale up faster than linearly, this leads to very expensive hardware configurations. Another big
drawback of above mentioned traditional RPMSs is due to their attempt to manage both
unstructured and semi-structured data through an RDBMS. This occurs because health
measurements and much other patient related data are semi-structured and record-oriented,

" Details about the health measurements for both WANDA interfaces and how they are read from
medical sensors can be found in [27].
T Details of the APIs developed and used in RPM for CHF system can be found in [28].

16

but an RDBMS is not a good candidate for such data. Additionally, all of these records are
written only once, but read whenever clinicians or patients request them. Because all of the
health measurements and history of patients' diseases & their treatments should be kept, there
are no data updates or deletes required in the tables. Therefore after the initial write operation
all subsequent operations are read only.

The requirements and drawbacks of current RPMSs lead us to define following set of
basic issues that need to be addressed:

e The data store has to support advanced unstructured and semi-structured data
processing;

e Data management has to be very efficient and independently of the amount of data
in the system;

e The system should be fault-tolerant, highly available, scalable, and reliable;

e There is no need for data updates in the data store; and

e The system has to be able to scale out instead of scaling up (as scaling up would be
too expensive).

All of the above assumptions become even more relevant as the number of patients in the
system grows, potentially reaches millions of patients (or more). As a result, the amount of
data stored in the system is expected to be terabytes to petabytes (or more), but responses to a
patient’s or clinician’s simple query should be perceived as being nearly real-time (for the
purposes of this thesis project we will set an upper bound of 2 seconds on the time to process
a user’s request — this time has been chosen as it represents the amount of time that an
interactive user will accept as the delay for a response to a simple request).

17

3 Scalable Data Management: Apache Hadoop

This chapter introduces Apache Hadoop along with its major components which are
suitable candidate components to build a new scalable RPMS. Not all of the components that
will be introduced are needed for development of such an RPMS, as it is possible to design
the system with a smaller set of tools that each is used to develop part of the system. The main
reason why additional components are introduced is to understand and analyze the functional
capability of each of these components and to provide more an efficient development path.
Because, each component deals with a given task by using a different approach, there are
different levels of development efficiency that can be achieved. Therefore, the components
that are chosen should reduce the time needed for development, thus producing unique
solutions for the tasks in their given area — while maintaining high interoperability with each
other.

This chapter also explains one of the most important parts of a scalable data management
system: Hadoop clusters. Assembling thousands of nodes into a single cluster and smoothly
distributing tasks across these nodes requires great effort. Hence, appropriate cluster
configuration and customization is vital for effective data processing. Lastly, Hadoop
limitations and issues are examined. Designing a scalable system require deeper
understanding of these limitations and their influences on the final system. Several methods
are proposed to overcome these limitations. One proposed method was implemented in this
design of a scalable remote patient monitoring backend system. Chapter 4 presents a detailed
description of the Hadoop implementation that has been used to build a new scalable RPMS.

3.1 Apache Hadoop

In today’s digital world, petabytes of information from millions of users are being
processed every single day. Therefore, the primary concern for many large internet based
enterprises is scalable and effective management of increasing amounts of data. Although
RDBMSs have a long history of processing enterprise data, they are thought to be unsuitable
for “big data”. For this reason a number of new approaches and technologies have been
proposed and implemented in order to redesign data management systems to meet the
requirements of high availability, high scalability, and low latency; while maintaining
application generality and exploiting weaker consistency requirements. One of the best-known
and well-proven technologies that fulfill the above criteria is Apache’s Hadoop ecosystem.

Hadoop is an open source platform that provides distributed storage as well as distributed
computational capabilities. It is based on a distributed master-slave architecture which uses a
simple communication model where one master process (a Name-Node) controls one or more
processes called slaves (Data-Nodes) [29]. This architecture was initially inspired by Google’s
papers that described their novel distributed file system (the Google File System (GFS) [30])
and Map-Reduce [31] (a computational framework for parallel processing). The successful
implementation of these two concepts resulted in a new technology that enables parallel
computing and data partitioning of large datasets. The Hadoop Distributed File System
(HDFS) and Map-Reduce were modeled after Google's GFS and Map-Reduce. These two are
considered the core components of Hadoop for storage and computation, respectively. These
two components scale with the addition of more and more nodes to a Hadoop cluster, and can
reach an aggregate of petabytes of data on clusters with thousands of nodes. Yahoo! utilizes

" Yahoo's biggest clusters contain over 4 000 nodes each [32].

19

Hadoop to scale out very efficiently. Figure 3-1 illustrates the high-level Hadoop architecture
with core functionality.

. Master Node
Data Processing Request . 5
. Name-Node (Storage)
Client 4 Job-Tracker (Computation)
Data Block Position in Data Nodes METADATA
@] v
z) ' S,
] ' 8z,
£ - ~ iy,
= A - . %
g / b T B
] / ‘.‘ qd'h;)\
Slave Node 2\ M4~ N SlaveNode
~ 2 W
Data-Node (Storage) s : % \ &"!:;W Data-Node (Srorage)
Task-Tracker (Computation) -‘:"", - ~a Task-Tracker (Computation)
DATA BLOCKS 2\ 1B DATA BLOCKS
L S
5 "_53 \ 3
/ %\
ok Y
Slave Node Slave Node
Data-Node (Storage) Data-Node (Storage)
Task-Tracker (Computation) Replication Replication Task-Tracker (Computation)
DATA BLOCKS - —

DATA BLOCKS

Figure 3-1: High-level Hadoop Architecture

Hadoop is written in the Java programming language and has been designed & is used by
a global community of contributors. Although Hadoop itself is written in Java, any
programming language can be used with Hadoop’s Streaming APIs to run Map-Reduce jobs
inside any specific system. There is wide support via a variety of libraries and extensions for

other programming languages. A set of APIs’ make all of the features of the Hadoop platform
available to other programming languages.

In general, Hadoop is an inexpensive and very powerful distributed computing tool
offering effective data management. It avoids costly transmissions of large datasets by using
distributed storage and transferring code rather than data. Furthermore, data redundancy
allows recovery in milliseconds when nodes in a cluster fail. Data partitioning,

communication between nodes and node control are managed by the system without the
intervention of application developers.

3.2 Major Components of Hadoop

This section describes Hadoop's basic components which handle RPM tasks in a very
efficient manner. Some of them provide fast data processing, while others enable effective
application development. The data format used in the system matters since certain
components behave differently when processing various types of data. For these reasons, one
component may be substituted for another based on specific criteria at the boundary of an
efficient scalable RPMS. Furthermore, interaction between the components should be secure,
fault-tolerant, highly-available and fast. Figure 3-2 shows the Hadoop Ecosystem with its

major components. The figure clearly illustrates how the components interact with each other
to build a scalable system.

" Details about the APIs for specific programming languages can be found in [33].
20

Apache Hadoop Ecosystem

-
= 2 =
= = =
2% 85 S5
- S = “ng
& S = o =
] B el
I — -]]
S E = 8 2k
E_E, R < o
< 2)
<

Figure 3-2: Hadoop’s system ar chitectur e showing technologiesrelevant to thisthesis

3.2.1 Hadoop Distributed File System

When a dataset exceeds the limits of the storage capacity of a single physical machine, it
becomes urgent to distribute this data across a number of other machines. A file system that
manages file storage across a network of machines is called distributed file system. Hadoop's
core component for storage is the Hadoop Distributed File System (HDFS). HDFS is
optimized for high throughput by leveraging large block sizes (by default 64 MB) and data
locality improvements to reduce network input and output (I/O) [29]. Therefore, HDFS is one
of the best options when it comes to reading and writing large files (gigabytes and larger). It is
designed for the most efficient data processing pattern: write-once and read-many-times. For
this reason, data modification in HDFS is impossible. Other well-known key traits of HDFS
are reliability, scalability, and availability; and all of these attributes are achieved due to data
replication and fault-tolerance. More specifically, HDFS mirrors the data to multiple (by
default 3) storage nodes and automatically re-replicates the data blocks when nodes fail (both
hardware and software failures were considered).

An HDFS cluster contains two types of nodes operating in a master-slave architecture
[33]:

e A single Name-Node - a master node that stores metadata about the file system, and
manages & controls slave nodes. A Name-Node provides a file system tree and stores
metadata concerning all the files and directories in this file system tree. Through the
metadata the Name-Node knows about the data nodes that store the data blocks of a
given file.

e Multiple Data-Nodes — the slaves create, delete, and replicate data blocks upon
instructions from the name-node and retrieve data blocks when the blocks are
requested. Periodically, data-nodes report to the name-bode with a list of what data
blocks they store.

21

The name-node in HDFS is considered the most important node and its failure may cause
a disaster for a system, as having data-nodes without a name-node is analogous to a body
without a head. Therefore, in order to maintain high reliability Hadoop provides two
mechanisms for backing up the name-node data:

e Hadoop can be configured in such a way that a name-node writes its persistent state to
multiple physical file systems, thus if a name-node fails, this data can be easily
recovered.

e A separate physical machine called a secondary name-node can be used. This
secondary name-node continuously merges image files and log files periodically from
the name-node and keeps a copy of the metadata stored in the name-node. This
secondary name-node can be substituted for the name-node when the name-node fails.
Currently the use of a secondary name-node is deprecated and similar technologies
called a checkpoint node or a backup node should be used instead [33].

3.2.2 Map-Reduce

Map-Reduce is a simple programming model for fast data processing. Map-Reduce
parallelizes work over large amount of raw data on large clusters of commodity hardware in a
fault-tolerant and reliable manner [29, 33]. The Map-Reduce framework is comprised of two
basic functions: a map function (called mapper) and a reduce function (called reducer). A
framework splits the input data-set into independent chunks, called blocks, and hands them
over in the form of a key/value pair to a map function that processes them in a parallel
manner. The map function produces zero or more key/value as output (which is simply an
input to the reduce function). Along the way from the map output to the reduce input, the
Map-Reduce framework performs shuffle and sort operations. These two operations are
responsible for the following activities:

Partitioning defining the reducer which must receive the map key/value pair; and
Rearrangement sorting all its input keys for a corresponding reducer.

Shuffle and sort operations allow the reducer to receive combined and sorted values
representing the same keys from the mapper. Each mapper output key belongs to a unique
reducer as an input key; which means that the number of unique keys in the map output is the
same as the number of reduce functions. Figure 3-3 illustrates a logical view of the map and
reduce functions. The figure shows that all of the map output values emitted from all the
mappers for the "key-2" key are collected in a "list (value-2)" list. Like the mapper, the
reducer also produces zero or more key/value pairs as output. All these pairs can be written
into flat files and stored in HDFS or insert/update rows in a NoSQL database. Basically, both
the input and the output emitted from mappers and reducers are stored in a file system (or a
database). The framework takes care of distributing the work, scheduling parts of the job on
slave nodes, monitoring them, and recovering & re-launching failed tasks.

map (key-1, value-1) —>» list (key-2, value-2)

reduce (key-2, list(value-2)) — list (key-3, value-3)

Figure 3-3: Logical view of map and reduce functions

22

Like HDFS, Map-Reduce also executes jobs in a master-slave manner: a single master
Job-Tracker and one slave Task-Tracker per cluster-node. When Map-Reduce clients
communicate with the Job-Tracker, the Job-Tracker starts scheduling jobs to be executed by
Task-Trackers, monitoring these jobs, and re-executing jobs in case of failures. In other
words, a master takes orders from clients and schedules map and reduce tasks on slaves to
process these orders. The responsibility of a Task-Tracker, a daemon process, is to create
child processes to perform a given map and reduce task.

3.2.3 Apache Hive

Apache Hive is a data warehousing technology built on top of Apache Hadoop. Initially
Hive was developed by Facebook engineers to process large amounts of user and log data[34].
One of the great advantages of Hive is the creation of relational database-style abstraction that
enables programmers to write in a dialect of SQL. Although SQL is not a good solution for
big data problems, it is a great tool for data analysis. Hive's SQL like scripting, called
HiveQL, is quite comfortable to use for developers who already have a good deal of
knowledge regarding SQL, but who need to perform ad hoc queries, data summarization, and
data analysis on big data.

Another huge benefit of Apache’s Hive is that it provides a simple and quick way of
writing Map-Reduce jobs. Because the Map-Reduce programming model requires the
programmer to write code at a low-level, therefore developers tend to write custom programs
which are very hard to maintain and reuse [34]. In contrast, HiveQL statements are able to
execute jobs in both the map and reduce phases which are equivalent to Map-Reduce jobs. In
terms of data analysis, Hive defines a table-like schema over a set of files stored in HDFS and
extracts records from those files by executing HiveQL queries. The data in Hive is organized
into three categories:

Tables Hive tables are similar to relational database tables. Each table contains a
corresponding HDFS directory where the data in this table is serialized and
stored. In addition, Hive supports external data tables stored in HDFS or
local directories.

Partitions A partition is responsible for determining the distribution of data within
sub-directories of the table directory. Each table can have one or more
partitions.

Buckets Buckets divide data in partitions. Division of data into buckets is based on

the column's hash values in the tables.
In general, Apache Hive can provide the following features regarding scalable data
management:
e Tools which allow easy data Extract, Transform, and Load (ETL);
e A mechanism to impose structure on a number of different data formats;
e Accessing the files stored in HDFS or other data storage systems such as HBase; and
e Executing queries via a Map-Reduce framework.

3.2.4 Apache Pig

Apache Pig is a platform for analyzing very large data sets and providing high-level data
processing while retaining Hadoop's simple scalability and reliability [35]. Similar to Apache
Hive, Apache Pig was created to simplify Map-Reduce jobs which are difficult to program.
Map-Reduce allows developers to specify a map function followed by a reduce function and
to follow this pattern programmers are required to write a number of Map-Reduce stages. In
addition to writing the mappers and reducers, compiling the code, submitting each job and

23

waiting for results requires plenty of time which is unsuitable. Apache Pig avoids such
complications by providing much richer data structures. It comprises of two parts:

e The Pig Latin language which is used to express data flows; and

e A compiler that compiles and runs Pig Latin scripts in a specific environment.
Currently there are two types of environments: distributed execution on Hadoop
clusters and local execution in a single Java Virtual Machine (JVM).

Pig Latin is a data flow language which allows developers to concurrently read and
process data from one or more inputs and store results to one or more outputs. The data flows
can be simple linear flows or complex workflows where multiple inputs can be joined to and
split into multiple streams to be processed. In other words, data flows in Pig Latin can be
considered operators which are applied to the input data to produce output. Taken as a whole,
the Pig compiler translates the data flows into executable representations which are a series of
Map-Reduce jobs, and then runs these representations.

A number of benefits make Apache Pig a widely used “big data” processing tool. Pig can
process relational, nested, and unstructured data, can easily be extended to operate on data
beyond files, databases, key/value stores, etc. Additionally, Pig manages all sorts of data -
whether there is metadata or not. Another feature of Pig is that it is not tied only to parallel
data processing, but rather it can be utilized in other types of data management. One of most
important advantages of Pig for developers is that using it data processing requires only a
short development cycle and it is simple to write Pig code. Pig allows the integration of
developer code, hence it supports user defined aggregates, field transformation functions,
conditionals, load/store functions, etc. These functions can be written in the Java
programming language. Despite all of these advantages, there are few drawbacks regarding
Apache Pig. Since Pig was designed for batch data processing (just like Map-Reduce), Pig is
not a good solution to process a small amount of data in large datasets [32], because it is set
up to scan an entire dataset or a large portion of corresponding datasets.

3.2.5 Apache HBase

Apache HBase is a low-latency, distributed, non-relational, column-oriented open-source
database built on top of Apache HDFS. HBase also can be described as a persistent
multi-dimensional sorted map, which is indexed by a row-key, column-key, and
timestamp[36]. HBase is modeled after Google's Bigtable[37]. HBase is the best choice when
real-time read/write random-access is needed to very large datasets. HBase can be thought of
as a data store that hosts very large tables containing billions of rows and millions of columns
atop clusters of commodity hardware. Unlike relational data stores, HBase provides incredibly
fast access to large scale data while maintaining parallelization across a cluster of machines.
HBase scales linearly by adding nodes to the clusters. Although it does not support SQL, it
overcomes RDBMS several problems, including operating on a large number of hosts,
working with sparsely populated tables on clusters, etc. The following features make HBase
and even more widely used distributed data store:

Linear and modular scalability;

Well-suited base classes for backing Map-Reduce jobs with HBase tables;

Stringently consistent reads/writes;

Configurable and automatic table sharding;

Simple and easy to use Java API for client access;

Bloom Filters and Block caches for real-time queries; and

XML, binary data encoding options, and Protobuf supports via REST-ful
(Representational State Transfer) web services.

24

HBase can store any type of structured, semi-structured, or even unstructured data. HBase
utilizes dynamic and flexible data modeling; hence there is no restriction on storing any kind
of data. In Hadoop, both HDFS and HBase can store data in different ways. The main
difference between them is that HDFS is a distributed file system used to store very large
files; however it cannot provide fast individual record lookup in these files. On the other hand,
HBase provides very fast record lookups and updates to large tables while storing all the
tables in HDFS [32].

The storage model of HBase looks like a typical database, but with extra dimension.
HBase contains a number of tables each of which consists of rows. Each row has a unique
identifier called a row key and each row is formed from any number of columns. Usually rows
are sorted in lexicographical order by their row key. Several columns can form a column
family and each column in this family has multiple versions with a distinct value contained in
a separate cell. Each value in a cell is either implicitly timestamped by the system or can be
explicitly set by users. All columns in the column family are stored together in the same low-
level storage file, called an HFile, in HDFS. Column families are defined by a table schema
during the creation of tables. In general, with one expression an HBase storage model can be
represented as follows:

SortedM ap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>

The first SortedMap in the above expression is the table that contains a List of column
families. The column families contain another SortedMap, which characterize columns with
their corresponding values.

The HBase architecture can be seen in the expression of tables and their associated
regions. As column families, regions are contiguous ranges of rows stored together. HBase
takes advantage of regions to achieve scalability and load balancing. When regions become
too large, the system dynamically splits them up. They can be spread across a cluster of nodes
which distributes the load producing scalability. Each region can live on a different node and
can contain several HDFS files and blocks. In addition, there are region servers in HBase
which serve regions. Each region will be served only by one specific region server and region
servers can operate on multiple regions at any time. Taken as a whole, region servers, also
called slaves, serve data for reads and writes. Additionally, there is a master who is
responsible for coordinating the slaves, assigning regions to slaves, and detecting failures of
region servers. In the Hadoop ecosystem, Apache Zookeeper is one of the best tools which
can be used as a primary helper of HBase master for managing slaves [32].

3.2.6 Apache HCatalog

HCatalog is a table and storage management service for Apache Hadoop ecosystem. It
provides table and metadata abstraction layer which means the data in HDFS can be seen as a
set of simple relational tables each of which resides in database. According to Alan Gates, the
designer of HCatalog, “As an integration tool, HCatalog enables interoperability through the
table abstraction. It presents a common table layer to each tool and gives each user the same
data model”[38]. The primary goal behind HCatalog is to reference data without using
specific filenames, formats, or storage paths. By default, it supports RCFile (Record
Columnar File), CSV (Comma Separated Values), JSON (JavaScript Object Notation), and
SequenceFile formats. HCatalog includes following features:

25

e Providing a data type mechanism and shared schema;

e Maintaining smooth interoperability among data processing tools including Map-
Reduce, Hive, and Pig; and

e Creating an environment so that users no longer need to be concerned with how and
where their data is stored.

HCatalog is built on top of a Hive meta-store and includes the Data Definition Language
(DDL) of Hive. It provides a separate read/write interface for Map-Reduce and Pig tools.
HCatalog utilizes Hive's command line interface to provide metadata exploration commands
and data definition. HCatalog is an environment where Hadoop components can share their
dataset’s metadata information. For example, when a Pig user finishes their Pig Latin
scripting and writes the data, Hive users can see these data as if it was Hive data. By using
HCatalog developers can easily share the data written by different tools and do not need to
care about the data types and formats used by this data.

The data model of HCatalog is similar to HBase's data model. Data is stored in tables and
tables are placed in a database. Tables also can be divided into several partitions based on
unique keys. Each key represents one partition and each partition contains all of the rows that
belong to the same key. Partitions hold records and they are multi-dimensional, but not
hierarchical. Each record is divided into columns each of which has a name and data type.

3.2.7 Apache Zookeeper

Apache Zookeeper is an open-source, distributed coordination service for distributed
applications [39]. It provides a set of tools to develop distributed applications that implement
high-level services for synchronization, configuration maintenance, and groups/naming.
Usually, writing and maintaining distributed applications is hard because of partial failures. In
a distributed architecture, when a message is sent across the network between two nodes and
the receiver node goes down or network fails, the sender is unable to know whether the
receiver got the message, this may lead to a partial failure. The only way to learn the status of
a message is for the sender to connect to the receiver and ask it whether a given message has
been received. The Zookeeper tools enable developers to build distributed applications that
safely handle partial failures.

Although distributed applications can be managed by customized coordination services
rather than using Zookeeper, providing such services in an appropriate way is notoriously
difficult. Customized services are prone to race conditions and deadlock errors, thus,
Zookeeper should be used to implement coordination services rather than building customized
coordination services from the scratch. The operation of Zookeeper is straightforward; all
servers that make up Zookeeper services should know each other. These services will be run
as long as a majority of the servers are available. Clients connect to these servers to get
served. If a server fails, then the client will connect to another server.

The main characteristics of Zookeeper are:

Simple Zookeeper provides a shared hierarchical namespace to coordinate
distributed processes. This namespace is similar to a standard file system and
it is comprised of data registers, called znodes, which look like files and
directories. Unlike a typical file system, Zookeeper is not designed for
persistent storage; hence its data is stored only in memory; and thus,
Zookeeper can achieve high throughput and low latency.

26

Expressive The primitives/tools in Zookeeper are considered a rich set of building blocks
which enable a developer to create large coordination data structures and

protocols.

Highly Zookeeper operates on a cluster of machines and is designed to be highly

available available.

Reliable Zookeeper avoids creating a single point of failure into the system and
therefore maintains reliability.

Replicable Zookeeper is intended to replicate itself over a set of hosts (called an
ensemble).

Orderable Zookeeper stamps each update with a number which orders all of its
transactions. High-level abstractions can be implemented using this ordering.

Fast Large clusters of machines enable a Zookeeper application to perform well,

especially when read operations are more frequent than write operations (the
ratio between read and write operations can be 10:1).

Facilitator Zookeeper facilitates loosely coupled interactions. It supports processes that
do not need to directly know each other, hence it may act as middleware for
processes to discover and interact with one another. A process can leave a
message in Zookeeper so that the intended receiving process can read this
message at any time; even after the first process becomes idle or shuts down.

3.2.8 Apache Ambari

Apache Ambari is an open-source project providing simple and effective software tools
for managing, monitoring, and provisioning Hadoop clusters [40]. Ambari makes Hadoop a
single cohesive platform by simplifying the underlying operations and hiding Hadoop’s
complexity. As a Hadoop management tool, Ambari presents an easy-to-use web user
interface (UI) backed by REST-ful web services. This web Ul allows Ambari to provide a
single control point for examining, managing, and modernizing Hadoop services. In addition,
Apache Ambari provides effective security and recovery services through APIs. Ambari can
be categorized into four service parts:

Provisioning The web UI provided by Ambari presents a step-by-step installation of
Hadoop services across a cluster of any number of machines. It helps
configure Hadoop services for the cluster.

Management Ambari provides single point of management to start, stop, and
reconfigure the Hadoop services across the cluster.
Monitoring Ambari provides several monitoring tools to monitor and examine a

Hadoop cluster. It leverages Ganglia for metric collection and Nagios for
system alerts. An Ambari dashboard displays the health and the status of a
Hadoop cluster.

Integration All above three service capabilities can be easily integrated with Ambari
REST APIs".

The Ambari architecture consists of two parts and each part contains several components.
The first part of the architecture is an Ambari Server, while the second part is the Ambari
Agents. The Ambari Server is responsible for controlling a Hadoop cluster and this server
processes the commands sent by an Ambari Agent. The server contains a master, an API, a
relational database, and an Agent Interface. Each agent sends commands to the Ambari Server
to check the heartbeat of the master. After receiving commands, the Agent Interface transfers
the commands to a master and the master sends command back to the agent. The time interval

" Details of Ambari’s APIs can found in [41].
27

of two back-and-forth command packets between the master and the agent determines the
heartbeat of the master. The API provides access to monitoring and metrics for a Hadoop
cluster. An agent communicates with the master to retrieve necessary information for access
and may also send data regarding its operations. Depending on the request, the master may
communicate with a relational database in order to retrieve or store data in it.

3.2.9 Apache Sqoop

Apache Sqoop is an open-source software tool that provides efficient data transfer
between Hadoop and structured data stores, such as relational databases [42]. The primary
goal behind Sqoop is to enable developers to import data from an RDBMS into HDFS or
HBase, process the data with Map-Reduce or other higher-level tools (such as Hive and Pig),
and export the results back into a RDBMS. Sqoop enables developers to effective
communication between Hadoop and relational data sources. For data import, Sqoop only
needs a data schema of the database, then the data will be automatically processed and
exported back by Map-Reduce, Hive, or Pig which operate in parallel (with fault-tolerance)
across a cluster of machines.

The input to import data from an RDBMS is a database table. Sqoop reads the table row-
by-row (in parallel), produces a set of files as an output of this import, and stores the resulting
files into HDFS. Later on Sqoop may integrate the output files into Hive/HBase or simply
perform conversions, compression, partitioning and indexing on them. Depending on the data
in the relational database tables, these output files may be delimited text files with comma
separated fields, binary, or SeqFiles (Sequence Files) containing serialized data. The output is
manipulated with Map-Reduce or Hive tools in a distributed manner and the files are exported
back to the relational database. The export process includes reading delimited files from
HDFS, parsing them into records, create new rows in the corresponding database table, and
insert the new records into those rows. The export process is done in parallel.

3.2.10 Apache Salr

Apache Solr is an ultra-fast open-source standalone enterprise search platform based on
Lucene [43]. It is a mature software package. Solr possesses a number of capabilities
including advanced full-text search, near real-time indexing, faceted search, geospatial search,
a vast variety of document handling, database integration, etc. Solr is also popular as a
scalable, highly-reliable, and fault-tolerant search server which provides distributed indexing,
automated failover and recovery, centralized data management and configuration, load-
balancing, and query replication.

Data indexing and searching with a Solr Server is incredibly simple because of its REST-
like APIL Initially, indexing is performed via JSON (JavaScript Object Notation), XML
(Extensible Markup Language), CSV (Comma-Separated Values), or binary data formats over
HTTP (Hypertext Transfer Protocol). The indexed data can then be requested by querying via
HTTP GET and received in the form of JSON, XML, CSV, or binary data format. To provide
ultra-fast searching for specific data, Solr is optimized for high volume web traffic. Qualities
such as comprehensive Hypertext Markup Language (HTML) administration interfaces,
flexibility to configure XML files, linear scalability, and extensible plugin architecture make
Solr platform even more powerful. Detailed features of Solr can be illustrated as follows:

28

Schema Defines the fields of documents and the type of each field. Fields are
responsible for certain functions. For instance, dynamic fields provides on-the-
fly addition of new fields, copy fields enables to index a single field in multiple
ways, or joins multiple fields into a single searchable field.

Query HTTP interface with configurable and customizable response formats (such as
JSON, XML, CSV, binary, etc.). Solr Query can perform a vast number of
different search operations, perform different types of sorting, can combine
different queries, and executes and provides ranges filters.

Core Dynamically adds and removes document collections without restarting.
Provides custom index processing chains, allows customizable request handler
with distributed search support, controls documents with missing parameters,
etc.

Caching Provides fast processing of data searches by caching instances of Query
Results, Filters, and Documents. Enables lock free and high concurrency cache
implementations, cache warming and auto-warming in background, fast and
small filter implementation, user level caching, etc.

SolrCloud Provides a centralized Apache Zookeeper based configuration. Enables
automated distributed indexing/sharding, near real-time indexing, transaction
logs which guarantees no updates are lost, automated query failover, and no
Single Point of Failure (SPOF).

Admin Advanced monitoring tool to observe cache utilization, updates, and queries.

Interface Provides full logging control, text analysis debugger, dashboard which presents
the status of nodes in a cluster, output debugging, etc.

3.3 Hadoop Clusters

A Hadoop cluster is a set of machines/nodes each of which shares its memory and
processing power. The nodes in a cluster are not required to be homogeneous, which means
they may have different sized memories, different CPU architectures, and run different
operating systems. However, it is advisable to use a cluster running the same operating
systems and with similar hardware capabilities, as the cluster administration will be a lot
easier when the machines have similar hardware and software configurations [32]. When it
comes to setting up and efficiently running an easy manageable Hadoop clusters — everything
matters; i.e., choice of the machines, including the specific hardware, operating system, disk
configuration, and network design.

Hadoop nodes can be classified into masters and slave/worker classes. Master nodes run
critical cluster services and therefore should be more robust and more resistant to hardware
failures. Master node crashes may result in very expensive losses for companies. Slave nodes
on the contrary, are expected to fail often. By default Hadoop replicates data on three slave
machines, hence the data can be accessed from other machines when a given slave node
collapses or crashes. For these reasons, to reduce the proliferation of hardware profiles many
administrators choose a single hardware profile for all masters and a single profile for all
slaves [44]. Another important thing for Hadoop is to determine the number of machines in a
cluster. Usually, the cluster size is based on the amount of storage required.

Apache Hadoop is primarily run on Linux distributions as the underlying operating
system. Today, a huge number of production clusters are running on top of Linux distributions
(including RedHat Enterprise Linux, CentOS, Ubuntu, SuSE Enterprise Linux, and Debian).
The main reason for Linux distributions to be chosen as the operating system is that they
provide enhanced administration software tools, high level security, an open-source platform,
and support a wide range of hardware. Hadoop operates as expected on Linux's common file

29

systems (including ext3, ext4, and xfs) [44]. Based on the architecture and criteria of scalable
systems, one of these file systems will be chosen as a file system for a Hadoop deployment.

Because of its simplicity, the Hadoop platform is thriving in the real-world. Hadoop does
not require any specialized hardware or network protocols to function efficiently. It runs
equally effective in both flat layer 2 networks and routed layer 3 environments. Choosing an
appropriate configuration of the network for Hadoop's core components plays a vitally
important role in order to manage big data in an efficient way. In order to fulfill the scalability
requirements, HDFS primarily focuses on three forms of traffic: Data-Node block reports and
heartbeats to the Name-Node, block data transfer, and client metadata operations with the
Name-Node. The Map-Reduce cluster membership and heartbeat infrastructure are similar to
HDFS. The Task-Tracker continuously generates a heartbeat by sending a small bit of
information to the Job-Trackers to learn if they are up and running.

3.4 Hadoop Limitations

No existing technologies are able to cover and fulfill all the aspects and requirements of
real-world applications. In Hadoop, despite its advantages and strengths, observations show
that it also has certain limitations and weaknesses. There are dozens of areas where Hadoop is
the best choice, while in some other area it may not be well suited. The choice of a Hadoop
framework as a core architecture depends on the requirements in a given area.

Currently there are two major weaknesses that have been identified for HDFS and Map-
Reduce: availability and security [29]. Although both areas are under rapid development and
enhancement, they are still unable to meet certain requirements. All of HDFS and Map-
Reduce's master processes are a SPOF (Single Point of Failure). When a master processes
crashes or dies, the control over tens or hundreds of slaves may be lost. Security in Hadoop is
disabled by default and the only security feature in it is HDFS file and directory-level
permissions and ownership. Hence, malicious users can steal another user's identity or
impersonate them; they may even kill another user's Map-Reduce jobs. Another limitation of
Hadoop is that HDEFS is inefficient when handling small files. Because of its optimization for
sustained throughput, HDFS is unable to provide effective random reading of small files.
Furthermore, due to its batch-based and shared-nothing architecture, Map-Reduce is not good
for real-time data access. Jobs that need changeable data sharing or global synchronization are
not a good fit for Map-Reduce.

Hadoop has to be chosen based on specific criteria and the requirements of the system
which is being developed. In our development of a scalable RPMS, Hadoop along with its
components were chosen as a core framework. Some of Hadoop’s limitations have been
partially solved, while the others did not affect the RPMS at all. High availability support for
Name-Node and Job-Tracker is available in the latest 2.x versions of Hadoop, hence we will
use the latest version to provide high availability. In order to provide the expected level of
security, the Kerberos network authentication protocol can be run with Hadoop [29]. As
providing high-level security in a scalable RPMS is outside the scope of this master's thesis,
the implementation of Kerberos in the system is considered as future work. The limitation of
HDEFS is overcome by using Apache HBase which provides efficient random reads of small
files. A scalable RPMS does not require mutable data sharing or global synchronization, so
the limitation of Map-Reduce do not affect to the proposed RPMS.

30

4 Scalable RPMS Architecture and Design

This chapter explains and illustrates a proposed new scalable RPMS architecture and
design. The implementation and design process are supported by a set of technologies to meet
the requirements, which were stated in Chapters 1 and 2. The set of technologies were
described in Chapter 3. For our system development, we have chosen the most suitable
Hadoop components of those introduced in Chapter 3 and illustrated in Figure 3-2. The
primary requirements for the proposed system are to provide linear scalability, fault-tolerance,
high availability, and reliability. Most importantly, the Hadoop components need to be
loosely-coupled and interact efficiently with each other, and fulfill all these requirements
while providing parallelization.

4.1 Overview

The scalable RPMS architecture utilizes several technologies, each of which is responsible
for handling some parts of the incoming data. The combination of these components allows
developers to process all of the incoming data in milliseconds and provides relevant outputs
when requested. For this thesis project such a combination of components should efficiently
process gigabytes of incoming data from millions of patients and push the data to clinicians
for monitoring. Additionally, clinicians may request earlier medical records regarding their
patients. No matter how many patients transmit their vital signs nor how many clinicians are
monitoring and requesting patients’ data, the system needs to process each incoming request
from a clinician in a relevantly small amount of time. The amount of time within which this
response should be received will be discussed in Section 5.5. For the purposes of this
discussion here we will assume an upper bound of 2 seconds.

Patients Clinicians

Q Bl 3

\@ Vital Signs . Data Servers ,—\g‘a
B i : s——
Status v

fedical Records

Q

Request
Medical Records g

Cluster 1 Cluster n

Request p

Medical Records

& |

- Ml
Reques \w

—

—,\/

Medical Records

Figure4-1: Overall Architecture of Scalable RPM S

Figure 4-1 illustrates the overall architecture of scalable RPMS. Data servers are
considered the core of the system, because all of the data management is accomplished in
these servers. The figure shows that as the number of patients and data increase in the system,
commodity hardware will be added to scale out the system. Data servers may consist of
several clusters and each cluster can include hundreds of machines. When a patient transmits

31

their vital signs, the data server processes this data and then sends a status message to the
patient and pushes this patient’s data to the relevant clinicians for real-time monitoring (if
needed). Unlike patients, clinicians frequently communicate with the servers. Each clinician
may request hundreds of patient records containing various kinds of medical information in
one hour and must obtain relevant medical records within a short period of time.

4.2 Technology choice for Scalable RPMS

The Hadoop ecosystem provides tens of components to handle big data in an effective
manner. Each component deals with a given problem in different ways and with different
levels of efficiency. Therefore, the choice of a specific set of components to process scalable
data depends on the system’s architecture, data management strategies, and the structure of
the data. In this thesis project the (limited) available time for development needs to be
considered, since it is vital to design, implement, and evaluate a scalable system with high
standards and high quality in the course of this thesis project. Figure 4-2 shows the set of
Hadoop components which have been selected to develop a scalable RPMS.

Scalable RPM System Data Platform

Table Storage

Apache Zookeeper
(Coordination)

Apache Hbase
(Columnar Storage)

-

Figure 4-2: High-level RPM S data platform

It is possible to build a system by utilizing only Hadoop’s core components (i.e., Map-
Reduce and HDFS). Map-Reduce can perform data computations by distributing the tasks
across a cluster of machines and store the outputs into HDFS. However, each system has its
own data structures and requirements in terms of how the data should be stored and accessed.
In RPMS, HDFS and Map-Reduce frameworks are not sufficient for efficient data

32

management and therefore several additional components are added to facilitate the
implementation and operation of the prototype scalable RPMS.

As introduced in Chapter 3, Map-Reduce jobs are too complicated and time consuming for
interactive use. Developers must write a lot of low-level code which might not be reusable.
Additionally, code compilation, job submission, and result viewing takes a lot of time which
hinders rapid development. To simplify Map-Reduce jobs, several complementary
components were developed by other developers. Apache Hive and Pig are two such
components and both are being successfully utilized by many enterprises. To handle Map-
Reduce jobs efficiently, we have chosen Apache Hive over Pig. The primary reason for this
choice is that Hive offers more features in terms of data access than Pig. Unlike Pig, Hive
provides the notion of partitions. Partitions allow us to process a subset of the data based on
specific criteria (such as date, alphabet, etc.). Additionally, Hive provides an optional Hive
server, a web interface, and JDBC/ODBC driver for integration with SQL like databases[45].
Pig introduces a new language, Pig Latin, for data processing, while Hive utilizes SQL like
scripting. As a result for a programmer who already knows SQL, it is easier to develop using
Hive as this avoids the requirement to learn yet another language. This later aspect is
important because learning a new language and utilizing it effectively requires great effort and
additional time. As both (Hive and Pig) components provide facilities to achieve the same
goals, we selected Apache Hive as a complementary tool for our Map-Reduce framework.

HDFS is not a good choice for some specific jobs. For instance, it is incapable of
efficiently providing very fast random read/writes of a set of files. Additionally, HDFS is
unsuitable for dealing with structured data and cannot provide effective individual record
search over files. Fortunately, HBase, a component that is built on top of HDFS, solves these
HDFS weaknesses. HBase provides very fast lookup and real-time random-access read/writes
to large datasets allowing low latency access to a non-relational table structure. For these
reasons, HBase was chosen to augment the functions of HDFS.

Zookeeper has been selected for use as a coordination tool in the RPMS. For patient
monitoring, it is essential to handle partial failures. The sender must ensure that the receiver
has successfully received the desired measurements or if the operation failed, then the sender
should immediately initiate retransmission.

Apache Solr needs to be utilized as a search engine in the RPMS. Solr is able to provide
ultra-fast search capabilities and a number of features that HBase cannot support. These
features are important because RPMS has to deliver very fast record lookup to clinicians.
Because of the shortness of period dedicated for thesis project, we could not implement
Apache Solr in the RPMS and therefore marked it as a future work of this project.

Additionally, the implementation of Apache HCatalog, Ambari, and Sqoop are useful, but
not essential to the realization of a prototype scalable RPMS. The future addition of these
components will offer many enhancements and offer greater manageability of the RPMS. In
addition, HCatalog and Ambari are not yet mature and they are considered members of the
Apache Incubator project (a gateway for open-source projects that need to be further
developed). For all of these reasons adding these components is seen as future work to follow
this master’s thesis project.

4.3 Tables Definition in the System

During the development of the application, we created two HBase tables to store all
information regarding patient records and user data. The first table stores all user related
information, while the second table stores all of the patient records (i.e., all of the health care
measurements). Table 4-1 illustrates the first table. The unique row key is created by

33

appending the time of the record creation in nano-seconds and randomly generated 5 digit
number. Users in the system may have various roles including patient, clinician, and
administrator.

Table4-1; User HBase Table

Row Key Column Family Timestamp Columns

T first name
T, last name
T; username
T, password
Ts email

uid data Te role
T; cell phone
Tg country
To county
Tio city
T]o street

Table 4-2 illustrates the second HBase table which stores all health care measurements
obtained from patients. The row key of the table is constructed by appending a timestamp to
the username. The timestamp for each table cell is provided implicitly, unless the developer
enables it explicitly. New types of vital signs can be added on the fly as a new column to the
table. Unlike RDBMS, HBase does not set a null value to the column when a corresponding
value regarding to that column is missing. As a result, the number of columns in the column
family may vary depending on the measurement results which need to be stored.

Table4-2: Vital Sign HBase Table

Row Key Column family | Timestamp Columns
T, blood glucose
T, body pressure
T, body temperature
T, end_tidal co2
T forced expiratory flow
T forced_inspiratory_flow
username + timestamp vital signs ’
T, gait_speed
T, pulse_rate
T respiration_rate
T’m spo2
T tidal volume
T, vital capacity

34

4.4 The Distributed Storage Model

As said in earlier sections, Apache HBase is being utilized to store all of the patients’
medical records. Based on the HDFS and HBase specifications, Figure 4-3 illustrates the
distributed storage model of newly designed scalable RPMS. As the figure shows, HMaster
runs on the Name-Node and controls all Region Servers on Data-Nodes. When new data
arrives at the data servers, initially it is written to the HBase and then Solr subsequently
performs the relevant indexing operation.

HBase heavily depends of Zookeeper to manage its slaves (Region Servers). Initially,
clients communicate with a Zookeeper ensemble (a separate cluster of Zookeeper nodes) in
order to retrieve the server name that hosts a particular table region containing the row key in
question. After obtaining the server’s address and the row key, the clients can directly
communicate with the relevant region servers. There are number of ways for clients to
communicate with HBase clusters. HBase native API, HBase Shell, REST, Avro, and Thrift
are all great tools that enable effective communication between HBase clusters and various
clients. For the development of a scalable RPMS, we have chosen two of them, HBase native
API and REST. The main reason for their choice is that both tools provide the simplest and
the fastest data structure models to build a scalable system (as comparing to other
methods)[46]. In the first part of the application, REST is responsible for transmitting all
measurements from patients and to retrieve relevant vital signs for clinicians. In the second
part of the application, the HBase native API provides the application with the ability to create
relevant tables with particular parameters. The table creation process is also bound to Apache
Hive in order to take an advantage of its Map Reduce facility.

HNMaster Server

Zookeeper
Controlling Region Servers 3 Client
- - —————————p &) >
re——t Zookeeper HBase API
Name-Node -
iBase She
METADATA Coordination Services
1
|
|
| %
—= I . &
5 | 2 R ~ QY
| 2y = g
I ' s
| \ S,
I e
I \t e
HRegion Server HRegion Server
SOLR SOLR
|.].:-'.I Manipulation R i Data Manipulation
-

Data-Node Data-Node

WKS

BLOCKS

Local Disk - HDFS Local Disk - HDFS

Figure 4-3: Distributed Storage Model of Scalable RPM S

35

4.5 Interaction of Hadoop Components

There are four key components in our scalable RPMS: HBase, Hive, Zookeeper, and Solr.
Initially, the necessary tables are created in HBase using Hive and its native API. A HiveQL
script provided by Hive, allows an application to create tables in Hive’s own data warehouse
as well as in HBase’s store. Both data warehouse and storage are located on top of Hadoop’s
HDFS. Here is an example HiveQL script that creates a user table in Hive and in HBase with
one column family and a row key:

CREATE TABLE user hive (username STRING, password STRING,
firstname STRING, lastname STRING) STORED BY
‘org.apache.hadoop.hive.hbase.HBaseStorageHandler’ WITH
SERDEPROPERTIES (‘'hbase.columns.mapping’=’:key, info:val’)
TBLPROPERTIES (‘hbase.table.name’='user hbase’)

Subsequently when data is pushed to the user_hive table via the Map Reduce algorithm,
the same data will be available when user_hbase table is requested. This interaction between
HBase and Hive makes the system more robust. Additonally, the data analysis behavior of
Hive becomes very helpful when analyzing large numbers of medical records and can enable
an application to extract meaningful information in milliseconds. Here is a simple example
script which retrieves all of the data in the user_hbase table:

SELECT * FROM user hive

Note that even though the data is being read from the user_hive table, Hive actually
retrieves all of the relevant data from the user _hbase table.

As explained in the previous section, Zookeeper ensemble tracks down all Region Servers
of HBase cluster, lets clients to obtain information regarding to specific slave nodes, assigns
tasks to slaves and reassigns failed tasks to another slaves. Each Region Server in HBase
cluster continuously sends heartbeats to Zookeeper which allows Zookeeper to know exactly
how many nodes are up and running. Advanced ultra-fast search capability of Solr helps
clinicians to process complex requests in relevantly small time. Right after writing new
incoming data to HBase, Solr indexing should be performed for each of them. Since we did
not have enough time to implement Solr with its necessary features, it should be carried out in
the RPMS as a follow up of this master’s thesis project.

4.6 Application Source Code and Environment Preparation

Scalable RPM application includes several modern technologies mentioned in this section.
The source code of the application can be found in here [47]. As the efficient data
management is primary concern of this master’s thesis, client side (reading health
measurements from medical devices) development of scalable RPMS is outside the scope of
this master’s thesis. The application is divided into two parts:

e REST web services oriented HBase storage; and
e Apache Hive oriented HBase storage;

In the first part, HBase requires REST server to be ON. Clients communicate with HBase
through REST server. On initial stage necessary tables will be created if they are not created
yet and based on request and its type, specific operation (write or read) will be performed.
REST receives all requests via light-weight JSON data interchange format, parses and
processes them accordingly and sends back responses if necessary.

36

The second part of the application, is more statistics oriented, because Hive is able to
perform complex operations through HiveQL queries. Likewise the first part, initially the
tables are created and then specific queries are parsed. Two tables (‘user’ and ‘vital sign’) are
represented by two classes. Each class holds a logic belonging to the table it represents. This
part also communicates with clients through JSON.

The application uses the core libraries of Hadoop version 1.0.4, HBase version 0.94.7 and
Hive version 0.10.0. To run the application, it is necessary to install and configure Hadoop,
HBase and Hive. Step-by-step Hadoop installation on a single-node cluster can be found in
this guide [48] and step-by-step Hadoop installation on a multi-node cluster is described here
[49]. HBase installation on a single node cluster can be found in here [50] and for multi-node
cluster in here [51]. Full guidance regarding to Apache Hive installation and configuration can
be found in here [52].

37

5 Benchmarking & Analysis

Benchmarking in this master’s thesis project is divided into two parts: proper test data
generation and system’s testing with this generated data. Performance, scalability, reliability,
fault-tolerance, and load balancing are key parameters that are considered in all rounds of this
benchmarking. In a subsequent phase of the evaluation, these benchmarking results are
analyzed and distinctions between the different alternatives are illustrated with charts and
graphs.

5.1 Overview

Since the main goal of this thesis project is to design a scalable system that provides near
real-time medical record data management and analysis, the benchmarks should be run in a
way that obtained results from them have to clarify the relationship between the number of
machines in the cluster and the amount of health data. Besides, the performance comparison
between RDBMS and the scalable RPMS also should be considered during benchmarking. As
Apache HBase was chosen as the storage model and tool to realize a scalable RPMS, we
benchmarked and compared HBase against MySQL (as a representative RDBMS).

To achieve our goals mentioned above, we designed several scenarios and utilized them
for testing. These scenarios include data input, data output, and computing statistics over the
collected data. In all of these scenarios, different amounts of data are processed and analyzed
with different parameters. In the first phase, MySQL data processing is benchmarked and the
results are compared against HBase residing on a cluster consisting of a single node.
Subsequently, the number of nodes in the RPMS is increased by one and the performance is
once again calculated based upon the processing time required to process the same amount of
data. The benchmark results are combined together and relevant charts are constructed in
order to clearly show the difference between MySQL and HBase solutions. Most importantly
these charts illustrate how efficiently the data is managed by two systems, how the new
system behaved when the number of machines is increased, and how much new health data
(corresponding to the number of newly added patients) requires adding an additional machine
to the system.

In general, both systems store two kinds of data: user data and health care measurements.
Once each user is authenticated by the system, he/she will continuously access the health care
measurements table for different purposes. For instance, patients will write their latest vital
signs; while clinicians may request large numbers of patient records, perform data analysis on
the existing medical records, search for specific patient records collected during a specific
range of dates, etc. In general, the number of accesses to patient records in the database is
much greater than the number of appends of new patient data. We assume that this ratio is
nine reads per write of a patient data record. For this reason the health care measurement table
(with data about the vital signs of patients) is the primary focus of our system’s
benchmarking. Before starting benchmark, MySQL database (vital sign table in this case) is
horizontally partitioned (in other words “sharded”) [53, 54], since comparing single MySQL
instance against several instances is not fair. Consequently, a sharded MySQL is benchmarked
running on a single machine (it is highly efficient to split a large partitioned table over
multiple logical database servers [55]). The proposed scalable RPMS is benchmarked with 6
machines with identical parameters (1 master, 5 slaves, and 1 computer used for data
generation and transmission). A testbed was setup with one or more machines each with the
configuration described in Table 5-1.

39

Table 5-1: Configuration of Each Machine Used for Benchmarking

CPU Six-core AMD Opteron™ Processor 2435
CPU MHz 2592.994 MHz

Cache Size 512 KB

RAM 32 GB

Hard Drive 1 TB

Operating System Ubuntu 11.04

5.2 Generating Test Data

Unless patients have given consent to someone to access their medical history there
should be no access by anyone to their individual records, therefore all medical information
stored in electronic databases is considered as highly sensitive personally identifiable data.
Each system used for storing patient data has its own policy to securely store this sensitive
information. For this reason and the lack of access to actual medical data, it is impossible to
test the two systems (Hadoop and RDBMS) using real medical data, therefore we needed to
generate electronic medical records similar to real world medical data. According to Health
Level 7 Clinical Document Architecture (HL7 CDA) [56, p. 7], electronic medical records can
be categorized into five types. Each of these types of records will need to be considered when
generating test data. These five types are:

1. Basic information about each patient, typically: name, birthdate, gender, marital status,
and contact information. The contact information might include mobile/home phone,
fax, and/or e-mail address;

2. Previous disease history may include disease name, doctor, hospital treatment,
treatment period, treatment procedure and results, history of infectious diseases,
history of trauma surgery, history of significant drug use, history of allergies, and
history of vaccination. The history of vaccination includes vaccine name, inoculation
period, inoculation hospital, name of health care personnel who administered the
vaccine, and vaccination results;

3. Physical examination may include heart rate/pulse, temperature, blood pressure,
oxygen saturation (SpO?2), respiration, posture, weight, etc.

4. Specialist examination may include pediatric, adult medicine, and other examination
records; and

5. Medical information creation includes hospital name, creation date, and date of visit.

The prototype RPMS covers all five types of data. As the main goal of this master’s thesis
is to compare the efficiency of scalable data management systems with RDBMS, generating
and testing one type of above electronic medical records was sufficient. Physical examinations
(pulse rate, SpO2, etc.) were chosen for the benchmarking process as these types of data are
expect to be generated much more frequently (perhaps as many as several times per day every
day) than the other types of data. Based on this, we developed a program which generates
“fake” physical examination medical records (a relevant range for each one of a number of
vital signs is given and the software automatically generates a randomly value within that
range as a hypothetic value representing a possible value for this record). This generated data
is placed into a set of files. During testing we push data from these previously generated files
into the proposed scalable RPMS. We calculate the throughput and latency based on the
operation we performed. We will later compare the various alternatives by analyzing these
throughput and latency results. The total volume of all of the generated data files was 254
Gigabytes (more than 250 million rows). This corresponds to 30 days (1 month) of data from
~150,000 patients which means each patient sent his/her measurements ~56 times in one day.

40

An assumption is that this amount of data should be sufficient to compare benchmarks of the
alternatives in the various scenarios. Specifically, we generate data consisting of a unique
identifier of a patient, measurement results, and a timestamp. Appendix A illustrates a sample
from this generated data. The source code of the application used for generating necessary
amount of data can be found in [57].

5.3 Benchmarking of the alternative Software Suites

There are number of tools to benchmark both MySQL and HBase. We have chosen the
most common open-source tool, Yahoo Cloud System! Benchmark (YCSB) [58, 59], as it is
easy to configure in order to generate benchmarks. Instead of using several benchmark tools
we decided to utilize only one tool because YCSB is purely written in Java which makes it
relatively portable, it appears to offer support for horizontal and vertical scaling in different
ways, it is very easy to implement, it covers several workloads, and most importantly
developers are not required to write many lines of codes to customize YCSB to benchmark
their systems.

5.4 Yahoo Cloud System! Benchmark

In the scalable RPMS benchmarking process, data reads, writes, and statistical queries are
used to extract data from or place data into the HBase while in traditional RPMSs MySQL
was the primary data store (see Section 2.1). The YCSB suite has been utilized to benchmark
both a RDBMS system and our prototype of the proposed system. YCSB is an open-source
benchmarking framework which is intended to benchmark different types of data stores. The
framework consists of a workload generating client and a package of standard workloads that
cover the main parts of a performance measurement, such as read-heavy workloads, write-
heavy workloads, scan workloads, etc. One of the great features of YCSB is its extensibility;
specifically the workload generator allows developers to easily define new workload types,
redefine the storage system that YCSB interacts with, and to adapt the client to benchmark
new systems. YCSB’s facilities allowed us to re-implement its basic interface in order to
interact with HBase and MySQL. There was no need to define new workloads, because the
existing workloads in YCSB were sufficient for us to benchmark our systems. Specifically,
four types of workloads were utilized in the benchmarking process: workloadA which
contains from a mix of 50/50 reads and writes, workloadC which is a read only workload,
workloadD which is read latest workload, and workloadE which is range scan workload.
Those workloads also can be interpreted in the medical records setting as follows:

e Workload A — at the same time patients are transmitting their health measurements
clinicians are accessing this data;

e Workload C — only clinicians are reading data from the system;

e Workload D — clinicians are accessing the latest health measurements of specific
patients and some number of patients are transmitting data packets; and

e Workload E — clinicians are retrieving statistics concerning a specific number of
patients concerning a specific date range and at the same time some numbers of
patients are transmitting their health measurements data.

41

YCSB gave us the same output parameters with different values for each workload.
Specifically, by running the workloads that we need we obtained values corresponding
following set of parameters:

e Overall runtime — elapsed time for the selected operation to be completed;

e Overall throughput — average speed of the system related to the number of
operations per second;

e Operations — the number of operations (reads, inserts, updates or cleanups)
performed during the benchmark;

e Avg. latency — as name says average latency during performing operations.
Calculated in 0.001 milliseconds;

e Min. latency — the minimum achieved latency during the benchmark. Calculated
in 0.001 milliseconds;

e Max. latency — the maximum achieved latency during the benchmark. Calculated
in 0.001 milliseconds;

e 95" percentile latency — latency bound for 95% of all operations. Calculated in
milliseconds; and

o 99" percentile latency — latency bound for 99% of all operations. Calculated in
milliseconds.

For scalable RPM benchmarking we have instantiated one master and five region servers.
Initially, we benchmark a single node cluster and compare these results with those obtained
using MySQL running on a single machine and then we increased the number MySQL
instances (the number of shards) as well as the number of nodes in the cluster. Therefore, we
add one node to the cluster after performing each set of benchmarks. We expected that this
would give us a clear picture of how many machines are necessary in the cluster to provide
clinicians with the ability to observe the health measurements of patients in (near) real-time.
After we achieve the expected performance with a given number of machines in the cluster,
we increase the number of patients in the system (simulated by adding several millions of
rows in the data stores) and then again performed benchmarks while adding machines until we
get the expected performance. This allowed us to calculate how much patient data can be
efficiently managed by one node and when we need to add additional nodes to the cluster (we
need to know if all patients transmit their health data at certain times in a day, then for a given
number of newly registered patients we need to add an additional node to meet the
performance requirements of the system). These tests should allow us to characterize the
performance of the system when the number of nodes is increased one by one.

The number of tests in each stage is three. Initially we perform 500,000 operations on one
million rows of 1KB data, calculate throughput and latency, and then we perform ten million
operations on ten million and fifty million rows of 1KB data respectively (again calculating
throughput and latency). After each of these tests we save the benchmark results for later
analysis. Additionally, we used several threads to make the benchmark process faster. The
number of threads was different at each stage. Before starting the benchmarking process, we
loaded our generated data into both MySQL and HBase. After each stage both storage
systems were emptied and a new data set with a different amount of data was loaded. To
obtain more precise results, before running workloadE both the MySQL and HBase databases
were emptied, as prior workloads inserted additional data during their writing phase, hence the
number of rows in the system was increased.

42

5.4.1 Machine specifications

All of the benchmarks were run on machines with identical specifications, see Table 5-2.
Table 5-2: Machine Specifications

Machine Dell Inc. PowerEdge 2970

- Hynix Semiconductor (Hyundai Electronics), AMD Opteron™
Processor Processor 2435 with six cores clocked at 2592.994 MHz
Memory 8 x 4096 MB DDR2 with 800 MHz (1.2 ns) speed
Disk Western Digital, 4 x 256 GB, disk cache size 512 KB, cached read

speed 8544 Mbps, buffered disk read speed 81 Mbps

Mother board Dell 0JKN8W
Disk controller Dell SAS PowerEdge RAID Controller (PERC)
Network Interface Embedded Broadcom 5708 NIC 1, NIC 2

All machines in the cluster (in case of multi-node cluster) are interconnected by an Intel®
Gigabit Ethernet Switch with the network interfaces configured for 1 Gbps in full-duplex
mode and the network interfaces performed checksum computations.

5.4.2 YCSB Benchmark on MySQL DB

The MySQL database is sharded several times while performing the benchmarks. Initially,
the benchmark was performed with a single instance of MySQL and for consequent
operations the number of shards was three, four, and five. For each stage of testing the desired
amount of data was loaded and then the workloads are run one by one. The following
command-line script loads one million rows of data into the MySQL database with ten threads
and writes the loading statistics to the file ‘1-mysql-load.dat’:

Jbinfycsb load jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p
recor dcount=1000000 -p threadcount=10 -s | tee -a benchmark-results/1-mysgl-load.dat

Table 5-3 presents the statistics obtained while loading different numbers of rows of data.
This table shows the number of threads, throughput (in operations per second - ops/sec), and
the range of latency values per operation.

Table5-3: MySQL Data L oad

Million rows 1 10 50
Elapsed Time (ms) 51,622.0 2,682,092.0 139,923,732.0
Thread Count 10 20 100
Throughput (ops/sec) 19,371.586 10,728.433 357.338
Average Latency (ms) 0.435 2.165 11.534
Minimum Latency (ms) 0 0.006 0.12
Maximum Latency (ms) 1,009.412 38,122.511 195,333.092
95™ Percentile Latency (ms) 0 4 15

99" Percentile Latency (ms) 0 7 25

43

After loading data, we start the benchmarking process by running workloadA. By default,
YCSB client uses a single worker thread, but also additional threads can be specified to
increase the amount of load offered against the database which is what we need. For this
reason, we picked ten threads’ to perform our first operation and for subsequent operations we
increased the number of worker threads. The following script performs 500,000 read and
update operations on a table with one million rows using ten threads:

Jbinfycsb run jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p
recordcount=21000000 -p threadcount= 10 -p operationcount=500000 —p table=vital_sign -s |
tee -a benchmark-results/1-mysgl-wor kloadA-run.dat

Table 5-4 shows the benchmark results obtained during different types of workloads. The
number of rows in this benchmark is one million, the number of operations is 500,000, and
ten threads concurrently perform operations.

Table 5-4: MySQL Data Benchmark with 1 Million Rows

Workload A Workload C Workload D Workload E
Update Heavy Read Only Read Latest Range Scan

(50/50 read/update) | (100% read) | (95/5 read/write) | (95/5 scan/write)
Elapsed Time (ms) 49,023 36,982.0 39,444.0 156,638.0
Rows (Millions) 1 1 1 1
Operations
(Millions) 0.5 0.5 0.5 0.5
Thread Count 10 10 10 10
Throughput (ops/sec) 10,199.294 13,520.09 12,676.199 3,192.073
Average Latency 0.098 0.848 0.798 5.023
(ms) (read)
(write) 0911 NA 0.024 0.019
Minimum Latency
(ms) (read) 0 0 0 0.191
(write) 0 NA 0 0
Maximum Latency 1,739.802 913.03 1,023.553 736.496
(ms) (read)
(write) 4,133.882 NA 1.992 4.904
95™ Percentile
Latency (ms) (read) 0 ! ! 24
(write) 1 NA 0 0
99™ Percentile
Latency (ms) (read) 0 ! ! 35
(write) 2 NA 0 0

The rest of the benchmark measurement results are given in Appendix B, Error!
Reference sour ce not found. and Table B.1-2.

" This number of worker threads was picked only to increase the load on the database.

44

As mentioned above, MySQL database is partitioned several times for the purpose to see
the clear performance difference between HBase. Besides, it was also vital to observe how
RDBMS offers efficiency against scalability. Below tables represent the numbers obtained
from load phase of YCSB after increasing the number of MySQL shards. Specifically, the
numbers of Table 5-5 are those for MySQL with four shards, while Figure 5-6 presents
statistics for MySQL with five shards.

Table5-5: MySQL Data L oad after MySQL Shard Reconfiguration (Four instances)

Million Rows 50 100
Elapsed Time (ms) 5,340,441.0 13,291,283.0
Thread Count 20 20
Throughput (ops/sec) 9,362.523 7,523.728
Average Latency (ms) 16.412 19.002
Minimum Latency (ms) 0.02 0.053
Maximum Latency (ms) 64,423.982 74,912.412
95™ Percentile Latency (ms) 39 46

99" Percentile Latency (ms) 54 67

Table 5-6: MySQL Data L oad after MySQL Shard Reconfiguration (Five instances)

Million Rows 100 250
Elapsed Time (ms) 10,845,083.0 29,387,911.0
Thread Count 20 50
Throughput (ops/sec) 9,220.769 8,506.899
Average Latency (ms) 16.293 22.081
Minimum Latency (ms) 0.038 0.061
Maximum Latency (ms) 61,012.512 69,010.116
95™ Percentile Latency (ms) 40 58
99™ Percentile Latency (ms) 66 89

45

Like the above tables, the following tables show the statistics obtained when running
workloadC (read-only) with several million operations on several million rows:

Table5-7: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration
(Four instances)

Million Rows 50 100
Elapsed Time (ms) 2,705,748 16,772,404.0
Million Operations 10 50
Thread Count 20 20
Throughput (ops/sec) 3,695.834 2,981.087
Average Latency (ms) 3.444 5.228
Minimum Latency (ms) 0 0
Maximum Latency (ms) 14,012.992 24,792.885
95™ Percentile Latency (ms) 11 18

99™ Percentile Latency (ms) 19 27

Table5-8: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration
(Five instances)

Million Rows 100 250
Elapsed Time (ms) 13,251,457.0 29,310,368.0
Million Operations 50 100
Thread Count 20 50
Throughput (ops/sec) 3,773.17 3,411.762
Average Latency (ms) 4.423 9.322
Minimum Latency (ms) 0 0.034
Maximum Latency (ms) 21,067.155 55,023.983
95™ Percentile Latency (ms) 15 21

99™ Percentile Latency (ms) 25 38

5.4.3 YCSB Benchmark on a Single Node Cluster

This is the first benchmark of our newly developed prototype and the current benchmark
is run on a cluster consisting of a single machine. As we did earlier, initially the proper
amount of data should be loaded to run the benchmark workloads. Table 5-9 shows the
throughput and the latency values achieved by a cluster with a single machine. Following
script is executed in the command-line to start the first loading process:

46

Jbinfycsb load

hbase

-P workloads/workloada
columnfamily=vital_signs -p recordcount=1000000 -p threadcount=10 -s | tee -a benchmark-
results/1-hbase-wor kloadA-load.dat

—-p table=vital_sign -p

Table 5-9: HBase Data L oad on a Cluster of Single Machine

Million rows 1 10 50
Elapsed Time (ms) 109,916.0 1,695,569.0 151,923,732.0
Thread Count 10 20 100
Throughput (ops/sec) 9,097.857 5,897.725 329.112
Average Latency (ms) 0.957 3.318 14.872
Minimum Latency (ms) 0.005 0.005 0.12
Maximum Latency (ms) 12,701.866 51,209.271 107,534.235
95" Percentile Latency (ms) 0 0 4
99™ Percentile Latency (ms) 0 0 5

Table 5-10 shows the read and write latency and throughput of the HBase data store when
running on a single machine cluster. The benchmark parameters during this stage are the same
as the first stage of the MySQL benchmark. The rest of the benchmark results run on a cluster
of single and multiple machines are shown in Appendix B from Table B.1-1 to Table B.1-16.
After each benchmark a new machine is added to the cluster and MySQL database is

reconfigured accordingly.

Table 5-10: HBase Benchmark on a Cluster of Single Machine with 1 million Rows

and 500,000 Oper ations

Workload A Workload C | Workload D Workload E
Update Heavy Read Only Read Latest Range Scan
(50/50 read/update) | (100% read) | (95/5 read/write) | (95/5 scan/write)
Elapsed Time (ms) 61,513.0 135,376.0 99,101.0 409,373.0
Rows (Millions) 1 1 1
Operations
(Millions) 0.5 0.5 0.5 0.5
Thread Count 10 10 10 10
Throughput 8,128.363 3,693.417 5,045.358 1,221.38
(ops/sec)
Average Latency 2.216 2.678 2.053 8.576
(ms) (read)
(write) 0.203 NA 0.028 0.047
Minimum Latency 0.128 0.101 0.107 0.383
(ms) (read)
(write) 0 NA 0.006 0.008
Maximum Latency 3,100.239 3,085.358 3,135.076 1,232.78
(ms) (read)
(write) 4,785.415 NA 3.349 10.962
95™ Percentile
Latency (ms) (read) > 4 > 40
(write) 0 NA 0 0
99™ Percentile
Latency (ms) (read) 15 36 19 >3
(write) 0 NA 0 0

47

5.4.4 YCSB Benchmark on a Multi Node Cluster

Our benchmark for the multi-node cluster is divided into two parts where the first part
covers benchmark statistics before tuning HBase and the second part includes benchmark
statistics after tuning HBase. The performance difference between these two parts is quite
large. By default most of the features of HBase are disabled and administrators must enable
them based on their specific needs. The following performance tuning operations were made
before loading data into HBase [60]:

e Pre-created empty regions. By default only one region was created in HBase and
all clients were writing to the same region until it is large enough to split and
become distributed across the cluster;

e The auto flush value is set to false. By default it is set to true, which means every
write to the data store was sent one at a time to the disk - which significantly
reduces performance;

e The Write Ahead Log (WAL) is turned off. By default it is turned on, which
means that a Region Server writes each put operation into WAL log. In our case,
this is already logged at the application level, so this WAL is unnecessary for us;
and

e JVM heap size is increased. By default the heap size is set to 1000 (megabytes)
which is insufficient when managing a huge amount of data.

In this section we only provide benchmark results obtained after performance tuning of
HBase. The benchmark results before tuning HBase can be found in Appendix B. Table 5-11
and Table 5-12 illustrates the benchmark results obtained during the loading phase and last
two tables (Table 5-13 and Table 5-14) represent the statistics when running workloadC. As
the key operation in scalable RPM is read/write, the load phase (which is write only) and
workloadC (which is read only) are sufficient to compare the system’s and to give use the data
necessary to analyze the behavior of our prototype.

48

Table5-11: HBase Data L oad on a Cluster of Four Machines after
Million Rows 50 100
Elapsed Time (ms) 2,241,166.0 4,814,933.0
Thread Count 20 20
Throughput (ops/sec) 22,309.815 20,768.721
Average Latency (ms) 2.884 4.481
Minimum Latency (ms) 0.013 0.021
Maximum Latency (ms) 50,121.821 63,252.173
95™ Percentile Latency (ms) 0 1
99" Percentile Latency (ms) 0 2

Table5-12;: HBase Data L oad on a Cluster of Five M achines

Million Rows 100 250
Elapsed Time (ms) 4,161,339.0 10,368,971.0
Thread Count 25 50
Throughput (ops/sec) 24,030.727 24,110.395
Average Latency (ms) 2.761 5.559
Minimum Latency (ms) 0.001 0.019
Maximum Latency (ms) 30,133.192 58,981.341
95™ Percentile Latency (ms) 0 3
99™ Percentile Latency (ms) 0 5

HBase Tuning

49

Table 5-13: HBase Data Read (Workload C) on a Cluster of Four

M achines after

HBase Tuning

Million Rows 50 100
Elapsed Time (ms) 5,693,667.0 31,251,932.0
Million Operations 10 50
Thread Count 20 20
Throughput (ops/sec) 1,756.337 1,599.901
Average Latency (ms) 11.093 14.888
Minimum Latency (ms) 0.621 0.76
Maximum Latency (ms) 69,423.092 78,523.633
95™ Percentile Latency (ms) 28 35
99" Percentile Latency (ms) 99 126

Table 5-14: HBase Data Read (Workload C) on a Cluster of Five Machines

Million Rows 100 250
Elapsed Time (ms) 27,040,260.0 53,447,319.0
Million Operations 50 100
Thread Count 25 50
Throughput (ops/sec) 1,849.095 1,871.001
Average Latency (ms) 11.981 17.821
Minimum Latency (ms) 0.613 0.871
Maximum Latency (ms) 70,423.523 87,423.025
95™ Percentile Latency (ms) 29 42
99™ Percentile Latency (ms) 103 177

5.4.5 Fault-tolerance Benchmark of Scalable RPMS

To test the fault-tolerance of our prototype, we ran the scalable RPMS on a cluster of four
nodes. Hadoop was configured to replicate the data on three different nodes. As for all of the
other tests initially the data was loaded into the system. The amount of data loaded was 10
million rows x 1KB (for a total of 10 GB) and the number of operations is one million.
Several seconds after running workloadA on the cluster four nodes, the first node was forcibly
shut down" and later it was brought back into operation and after 1.5-2 minutes another node

" The node was shutdown by executing a SHADOOP_HOME/bin/hadoop-daemon.sh --config
$HADOOP_HOME/conf/ stop datanode command.

50

was shut down. During the each test run there were 5 simulated node failures. The main goal
behind this test was to evaluate the fault-tolerance of our prototype. According to Hadoop’s
documentation, after each shut down, the master node should dynamically refer to the other
nodes and continue to operate. During this benchmark process several nodes were shut down
one by one. The benchmark process was successfully completed without throwing exceptions,
which means that the master node properly managed the slaves despite the corresponding
nodes suddenly being shut down.

Table 5-15 shows the benchmark statistics from this testing. From the table we can see
that the elapsed time for the operations took more than when the same test was performed
without any crashes during benchmarking (this data is shown in Table B.1-15 column
workloadA). In total five nodes were failed one by one for around 55 seconds, thus for ~275
seconds three nodes performed the processing of the workload. Throughput and latency
differences between these two sets of statistics are illustrated in Figure 5-1. As shown in the
figure, even a three node cluster performed better than a four node cluster when the cluster
experienced individual node crashes. It takes some time for a master node to distribute part of
the load to the other slave nodes when one slave node suddenly crashes. Part of the decrease
in performance is due to the fact that when a slave node returns to operation it has to be
updated from the master node, thus reducing the service rate of the master node to external
operations.

Table 5-15: Fault-tolerance benchmark with workloadA on a Cluster of Four
M achines

Elapsed . Thread | Throughput | Average Latency
Time (ms) Row Count Operations Count (ops/sec) (ms)
127.52 d
Workload | 105 515 | 10,000,000 | 1,000,000 20 907.02 (read)
A 1.19 (write)
Fault-tolerance vs. Normal Benchmarks
140
°
120
— 100
€
— 80
Z @ Fault-tolerance Benchmark
S 60
E 10 ® Normal Benchmark (4 Nodes)
® Normal Benchmark (3 Nodes)
20
0
0 200 400 600 800 1000 1200 1400

Throughput (ops/sec)

Figure 5-1: HBase benchmark differ ences between system with repeated machine
failuresand a system without such failures

" 50-60 seconds later

51

5.5 Benchmark Analysis and Comparison

In this section we collect all of the benchmark results in order to compare them with each-
other and to extract meaningful information from these results. As mentioned above, the data
load phase was performed at the beginning of each benchmark. Initially we analyze
benchmark results of sharded MySQL and HBase before tuning and then later we analyze the
systems after performance tuning.

Based on Table 5-3, Table 5-9, Table B.1-5, Table B.1-9, and Table B.1-13, Figure 5-2
depicts the load latency versus throughput of the relevant data stores. For initial benchmarks,
the MySQL database was horizontally partitioned into three shards and this number of shards
was kept for several benchmarks. Figure B.2-1 and B.2-2 show the case for 10 GB (10 million
rows) and 50 GB (50 million rows) data loads respectively. In both cases, the performance of
the two HBase machines exceeded the performance of the MySQL implementation.

Load Phase, 1 million rows

1.2
w
£ 1
~ []
%)
S 0.8
T == MySQL Sharded
_CI 0.6 —@— HBase, Single Machine
M
(% % HBase, 2 Machines
% 04 ¢ —@— HBase, 3 Machines
@®
O 0.2 HBase, 4 Machines
S o
<

0
0 10,000 20,000 30,000 40,000

Throughput (ops/sec)

Figure5-2: 1 GB of Data L oad Benchmark Statistics

After loading the desired amount of data, the MySQL benchmark transaction phase was
performed and subsequently the HBase benchmark was carried out. In the loading phase,
sharded MySQL showed better performance than our prototype when running on a cluster
with a single machine. However, as was shown in Figure 5-2, MySQL with three shards was
out performed by HBase when the number of nodes in the cluster is greater than two.
Additionally, the benchmarks show that the write operation in HBase is much faster than the
write operation in MySQL.

Figure 5-3 illustrates workloadA’s read latency of both the MySQL and HBase databases.
The figure shows that MySQL has the lowest latency among all other benchmarks, because
MySQL’s read operation is much faster than a read operation in HBase. Accordingly, Figure
5-4 shows the write latency of MySQL and HBase when running the same workload. This
figure illustrates that the write latency of MySQL is higher than the write latency of even a
single node HBase cluster.

52

Workload A - Read L atency

1200
{

1000
w
S
A
& 800
T X MySQL Sharded
-
-g 600 5 @ HBase, Single Machine
o ® HBase, 2 Machines
(%7 400 @ ® HBase, 3 Machines
O ® HBase, 4 Machines
> | J
<

200

b
X\ @®—X L @ @
0 5,000 10,000 15,000 20,000 25,000 30,000

Throughput (ops/sec)

0

Figure 5-3: WorkloadA Read L atency vs. Throughput Benchmark Statistics

Workload A - Update L atency

180

=
(o))
o

=
B
o

=
N
o

X MySQL Sharded

—
o
o

@ HBase, Single Machine

Average Update L atency (ms)

80 ® HBase, 2 Machines

60 ® HBase, 3 Machines
® HBase, 4 Machines

40

X
20
0 G» { X L L L
0 5,000 10,000 15,000 20,000 25,000 30,000

Throughput (ops/sec)

Figure 5-4: WorkloadA Write Latency Benchmark Statistics

53

Figure 5-5 illustrates the same benchmark results with regards to elapsed time and the
number of operations. As shown in this figure, the elapsed time for MySQL to run workloadA
is greater than the time of the HBase running on a cluster with a single machine. However,
after adding one node to the cluster, HBase starts to show better performance than MySQL.

Runtimevs. Operations

1,000,000,000

o
100,000,000
[]
w
é 10,000,000
g X MySQL Sharded
[® @ HBase, Single Machine
X
@ HBase, 2 Machines
o 1,000,000
© T @ HBase, 3 Machines
L
HBase, 4 Machines
100,000
o
X
10,000
o o o o o o o
o o o o o o
o o o o o o
g g g g g g
Number of Operations < S S S S S

Figure5-5: Elapsed Time (runtime) ver sus Number of Operationsfor WorkloadA

Further plots of the results of the benchmarking are given in Appendix B Figure B.2-1 to
Figure B.2-10. Specifically, Figure B.2-3 illustrates read latency and throughput comparisons
obtained running workloadC. The results show the clear difference between a traditional
RDBMS and NoSQL. As noticed in earlier benchmarks, read operations in HBase are more
expensive than a write operation, while in MySQL the reverse is true. Therefore, the
performance difference between the two data stores increases with increasing numbers of
write operations. In the first stage of the workloadC benchmark when the number of
operations performed is 500,000, the single machine MySQL configuration showed better
performance than a cluster of three machines; however, when the number of nodes in the
cluster increased to four, then HBase started to perform better. Details of this benchmark
results can be seen in Figure B.2-3 and Figure B.2-4.

Figure B.2-5 — Figure B.2-10 characterize comparisons between MySQL and HBase
cluster running workloadD and workloadE respectively. In both of them MySQL falls behind
when the number of nodes in the cluster is more than one. In the benchmarks with fewer less
operations and less data, MySQL performed much better than HBase running on a cluster
with a single machine. However, when the number of operations increases or the amount of

54

data increases, then the performance of MySQL starts to decrease much more quicker than
HBase’s performance.

Both MySQL and HBase performed poorly when the number of operations reached
1 million or more. Even a cluster with four nodes spent much time to perform operations.
However, after performance tuning we started to achieve more acceptable results.

Figure 5-6 shows 100 million rows of data load on both HBase and MySQL data stores.
As shown in the figure, the performance after tuning is much higher. The figure clearly
illustrates that MySQL has much slower performance when it comes to data loading (i.e.,

write operations).

L oad Phase, 100 million rows

20
& X
é 15 ¢
%)
§ 0 ——MySQL, 4 Shards
S —8— MySQL, 5 Shards
% 5 HBase, 4 Machines
3 ° —e— HBase, 5 Machines
0
0 5,000 10,000 15,000 20,000 25,000 30,000

Throughput (ops/sec)

Figure 5-6: Data L oad Benchmark Statisticsfor 100 GB

Subsequently, the number of rows is raised to 250 million and the benchmark is
performed again. Figure 5-7 depicts 250 million lines of row load on MySQL and HBase.
These results clearly indicate that the throughput of HBase is far more ahead of MySQL
during performing load operations. From these values, we can assume that HBase cluster with
five machines can achieve throughputs ranging from 20 to 26 thousand operations per

seconds.

L oad Phase, 250 million rows

25

) X
E 20
N
>
% 15
e
2 10 —>—MySQL, 5 Shards
bo] —@— HBase, 5 Machines
] 5 ®
o
-

0

0 5,000 10,000 15,000 20,000 25,000 30,000

Throughput (ops/sec)

Figure 5-7: Data L oad Benchmark Statisticsfor 250 GB
55

Figure 5-8 and Figure 5-9 represent workloadC benchmark results with 50 million and
100 million operations respectively. As shown in the figures, MySQL performed better than
HBase which means that the read operation in MySQL is faster than in HBase.

Workload C (100% Read), 100 million rows, 50 million

oper ations
20
(%))
E s
> °
% 0 ——MySQL, 4 Shards
= —0— MySQL, 5 Shards
%' 5 g ° HBase, 4 Machines
8 0 —@— HBase, 5 Machines
x 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Throughput (ops/sec)

Figure5-8: WorkloadC Benchmark Statistics on 100 million rows

Workload C (100% Read), 250 million rows, 100 million

oper ations

20
. °
[72)
E 15
%)
§ 10 %
S ——MySQL, 5 Shards
'g s —@— HBase, 5 Machines
o

0

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

Throughput (ops/sec)

Figure5-9: WorkloadC Benchmark Statistics on 250 million rows

Another important set of values in our benchmark are the 95™ and 99" percentile latencies.
These show the latency bound for 95% and 99% of the operations. We show this data as the
average latency values may not indicate whether the system performs as expected, because
according to our benchmark results, the difference between the average latency and these two
bounds are quite large. Specifically, as the number of operations is increased the 95™ and 99™
percentile latencies are higher than average latency, this means that the average is being
affected by the extremely small latencies of a large fraction of the operations. Figure 5-10
presents the differences among these three read latency values. As the figure shows, the
average latency values are lower than the 95" and 99" percentile latencies.

56

Read L atency Differences on 50 million rows

L0
.% 5 .]
=
g 4 . m
= :
<3 . = ¢ 95th Percentile Latency
_ﬂg 2 .] ® 99th Percentile Latency
§ 1 Average Latency

0

0 50 100 150 200

Latency (ms)

Figure5-10: HBase Read L atency Differences on 50 million rows

In order to request patient data clinicians’ requests are entered into a queue in the RPMS
and one by one the queries are processed to retrieve the relevant health records. We can
calculate the maximum number of requests to accessing a database containing 250 million
rows with a maximum desired latency of 2 seconds. We used the benchmark statistics
obtained running workloadD, because we need a workload which performs both reads and
writes. Table 5-16 represents the benchmark statistics obtained by running workloadD on a
cluster of five machines with 250 million rows.

Table 5-16: HBase Data Read/Write (Workload D) on a Cluster of Five Machines

Elapsed Throughput | Average 95" Percentile | 99™ Percentile

Million Rows Time (ms) (ops/sec) Latency (ms) | Latency (ms) | Latency (ms)

250 49,634,829.0 | 2,014.714 | 14.346 40 138

From these benchmark results we extract those that we need to determine the maximum
number of requests which could be satisfied in the bounded time. Let us assume that the
average throughput on a five machine cluster performing workloadD is ~2,000 operations per
second, then a maximum of 4,000 clinicians can make a query about a patient and have a 2
seconds latency bound if each of these clinicians makes one query at a time and all of them
make their queries at the same time and all of them make a new query every two seconds. If
we assume that a clinician makes less than one query per second and that each query requires
some number of operations then we can apply Little’s law [61] to our results from both HBase
and MySQL in order to calculate the maximum number of clinicians who could be satisfied
by a system which runs sharded MySQL or HBase as a database storage. It is obvious that
MySQL is the best choice with regard to satisfying queries since the number of read queries
that can be satisfied per unit time is larger than for HBase.

Next we calculate the scalability of our prototype. Based on Figure 5-6 and Figure 5-8, we
can compute how rapidly we can scale out our prototype. We utilized Amdahl’s law [62] for
our analysis of scaling. Amdahl’s law says that the speedup of an application using multiple
processors in parallel is limited by the time needed for the sequential fraction of the
application. In other words, the law states that if each application has one part that takes t time
to be processed and it is impossible to execute this part in parallel, then regardless of how

57

many processors are devoted to parallelize the execution of this application, the minimum
execution time cannot be less than t. A formula for the maximum speedup, S(n), is:

1
SMm)=—= (1)
s + n
where, 1, + 1, = 1, 7, represents the portion of the application that can be occured in
parallel, r; represents the sequential portion of the application, and n is the number of
machines (processors).

To analyze the scaling of our prototype, first we need to find 75. To calculate it, we need to
know the elapsed time difference between two sets of machines running the same workload.
We took runtimes of data reads (workloadC) phase with four and five nodes (represented in
Table 5-11 and Table 5-12) and the time difference is as follows:

Difference = ts5/ t4= 27,040,260 / 31,251,932 = ~0.865

In ideal case, the difference would satisfy the following equation:

n tn+1
=> - _nrl
Tlth—(n+1)th+1 1= t

where, N — number of machines and t — elapsed time for the operation to be finished. From
this equation, we obtain 4 / 5 = 0.8. Now it is obvious that r; = 0.865 — 0.8 = 0.065 =
6.5%. So 6.5% of our application was sequential. From this value, we calculate 7, which is
1, =1—17,=0.935=93.5%.

Based on (1) equation, we calculate S(5) which equals to 3.97 and S(4) = 3.35. We also
calculated the case of a three machine cluster and the sequential portion was 1, = 6.2% =
~6% which led us to gain S(3) = 2.68.

These last calculations clearly show the speedup of our application. From those values we
conclude that only ~94% of our application can be parallelized while the remaining portion
(~6%) will not be processed in parallel. Equation (1) shows that even if the number of
machines were infinite, the maximum speedup will be S(0) =1/ 0.06 = 16.67. From this we
learn that by the time we have scaled up to 23 machines we are getting only a small gain in
speedup when adding an additional machine.

58

6 Conclusions and Future Work

This chapter concludes the thesis project providing a conclusion and suggesting additional
technologies to be applied in future research. Final section of this chapter includes some
required reflections on social, economic, and ethical considerations.

6.1 Conclusions

The primary goal of this thesis was to design a new prototype of a highly efficient scalable
remote patient monitoring system which delivers near real-time health measurements of
patients to clinicians and also to compare the new system against traditional systems which
utilize relational databases. As we planned in the beginning of our thesis project, the main
attention was paid only to the realization of the first part of the RPM system where patients
transfer their health measurements and physicians monitor them in ordinary manner. Mining
obtained medical records and advanced patient monitoring (mainly for patients whose health
state is below than normal) was outside the scope of this master’s thesis. In Figure 6-1, the
area edged with blue lines shows the parts of a modern RPMS that were developed by us
during the period of this thesis project. Consequently after the development, a number of
benchmarks were performed in order to prove that the prototype delivers near real-time
measurements for analysis. The statistical analysis of these benchmark results showed the
performance difference between relational and non-relational databases when performing
write, read, and scan operations. Additionally, the fault-tolerance of the developed prototype
was evaluated using benchmarks. All of the benchmark results are presented in Chapter 5 and
Appendix B.

Ordinary Patient Monitoring

1

~NO)
) 1
K e 1
)L -
T : g
A NP
- :/// Ly Fd \’\.// i
Pt e Gl
o - L2
/’/_/ - T

Patients Data Servers

— \(—\/V ::T’;/;") g /ﬂ/\/\/“\
B N \:!}jll = Cluster | Clustern [e g
[& 2% g —— ..

] Q —

(98 42

Figure 6-1: Modern RPM S Ar chitecture

59

In the prototype Apache HBase is used to store health measurements of patients and
therefore the performance of storing and retrieving such records was measured by running
benchmarks. In order to contrast the performance of HBase, the MySQL relational database
was chosen as it represents one of the most widely used RDBMS. Benchmark statistics
showed that HBase has unquestionable superiority in terms of write performance, while
MySQL performed much better in terms of read performance. In terms of executing complex
queries for medical record statistics, both data stores performed poorly - although HBase
performed better than MySQL.

It is important to note that chosen data store for our prototype, HBase, showed both
satisfactory and unsatisfactory performance results during executing workloads. Benchmark
tests also include two stages: before and after performance tuning of HBase. The performance
difference after tuning was much higher than before. Another factor which is worth
mentioning is the slowness of read operation in HBase as compared to MySQL, because the
read operation is as critical as write operation in RPMSs. However, our system does not
include critical patient monitoring which requires significantly high speed data reads.
Additionally, the write rate is higher than the reading rate. Because when a patient’s health
state is as expected, physicians usually request health measurement statistics for the last week
or the last two weeks, etc. Considering these factors we assert that HBase is better option;
however when it comes to provide a high fraction of data reads, MySQL is the most suitable
candidate.

6.2 Future Work

As described in Section 1.2.1, current master’s thesis proposed and designed a system
which is considered as the first part of today’s modern RPMSs and the rest two parts have to
be developed as a future work of this project. More in detail, Figure 6-1 represents modern
RPMS with all three parts where ‘Data Mining’ and ‘Critical Patient Monitoring’ parts
dedicated as a future work. The health care for different kinds of patients has to be provided
accordingly; hence intelligent analysis of measurement results is highly important for
clinicians as well as patients.

Another crucial functionality that should be implemented in RPMS is specific data
searching using Solr. Since, Solr provides ultra-fast search services while keeping a simple
programming model, its implementation in RPMS would be invaluable. Because especially, in
the third part of RPMS, clinicians frequently request health statistics of specific patients for
the last several days or weeks or even months and it is vital that the query should not take
long regardless of its complexity.

Providing security in a scalable RPMS was outside the scope of this master’s thesis
project. As most medical records need to be securely transmitted and managed, enhanced
security is essential to such a system in the real-world. Specifically, authentication and
authorization mechanisms have to be made to function properly in Hadoop. User
identification (authentication) can be done in many ways, including making changes in low-
level transport, using the Kerberos authentication protocol or token delegation among users.
Authorization should include all types of access controls to resources and role-based
management.

Today the majority of current remote patient monitoring systems use traditional relational
databases to store and manage their data. Highly scalable data management techniques were
introduced only a few years ago due to the need to handle big data. We expect that
increasingly there will be an integration of both scalable and relational data management
technologies in RPMS. One of the best ways to integrate Hadoop with RDBMS is using

60

Apache Sqoop. Utilizing this data integration tool in a scalable RPMS would make the system
even more extensible and capable.

6.3 Reflections

This master’s thesis project facilitates patient monitoring which helps both patients and
clinicians. The full implementation of this project in the real-life could help to avoid long
queues in hospitals, facilitate patients communicating with their clinicians, and enable
clinicians to efficient access patients’ health records. Increasing the effectiveness of the
relation between patients and physicians is considered as a beneficial social aspect of this
master’s thesis project. The key economic aspect of this thesis project is its cost efficiency, as
it describes a method that can be used to provide a scalable RPMS which can support very
large amounts of medical records — especially those records which will be coming from home
health care monitoring devices. An environmental aspect of this work is a potential reduction
in need for emergency transport (by helicopter or ambulance) due to better observation of
patient’s conditions.

61

References

1.

10.

11.

12.

13.

14.

15.

16.

Nicole Lewis, “Remote Patient Monitoring Market To Double by 2016,” Jan-2012. [Online].
Available at: http://www.informationweek.com/healthcare/mobile-wireless/remote-patient-
monitoring-market-to-doub/240004291. [Accessed: 21-Feb-2013].

Ken Terry, “Remote Patient Monitoring Shows Strong Growth,” Jan-2012. [Online]. Available at:
http://www.informationweek.com/healthcare/mobile-wireless/remote-patient-monitoring-shows-
strong-g/232301359. [Accessed: 21-Feb-2013].

Berg Insight, “Berg Insight says 2.8 million patient are remotely monitored today,” Jan-2013.
[Online]. Available at: http://www.berginsight.com/News.aspx?m m=6&s m=1. [Accessed: 21-
Feb-2013].

lain Morris, “Remote patient monitoring systems to grow to 9.4 million by 2017: Berg Insight,”
Jan-2013. [Online]. Available at: http://www.telecomengine.com/article/remote-patient-
monitoring-systems-grow-94-million-2017-berg-insight. [Accessed: 21-Feb-2013].

Center for Aging and Technology, “Technologies for Remote Patient Monitoring for Older
Adults,” An Initiative of The SCAN Foundation and Public Health Institute, Apr-2010. [Online].
Available at: http://www.techandaging.org/RPMPositionPaper.pdf. [Accessed: 22-Mar-2013].

Pete Larson, “Remote Patient Monitoring for Home Health,” HEALTH Interlink, Jun-2012.
[Online]. Available at: http://healthinterlink.com/images/HealthInterlink HH Webinar2.pdf.
[Accessed: 22-Mar-2013].

An Oracle White Paper, “Oracle: Big Data for the Enterprise,” Jan-2012. [Online]. Available at:
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf. [Accessed: 21-
Feb-2013].

April Reeve, “Big Data and NoSQL: The Problem with Relational Databases,” Sep-2012. [Online].
Available at: http://infocus.emc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-
databases/. [Accessed: 21-Feb-2013].

Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, and George Lapis,
“Understanding Big Data,” IBM Corporation, McGraw-Hill, 2012. ISBN 978-0-07-179053-6,
pp- 3—13. Available at:
http://public.dhe.ibm.com/common/ssi/ecm/en/iml14296usen/IML14296USEN.PDF. [Accessed:
22-Feb-2013].

IBM Corporation, “Bringing Big Data to the Enterprise: What is Big Data,” Jan-2013. [Online].
Available at: http://www-01.ibm.com/software/data/bigdata/. [Accessed: 22-Feb-2013].

Dion Hinchcliffe, “10 Ways to Complement the Enterprise RDBMS using Hadoop,” Sep-2007.
[Online]. Available at:
http://www.ebizq.net/blogs/enterprise/2009/09/10_ways_to complement the ente.php.
[Accessed: 16-Mar-2013].

Hortonworks, “Understanding Hadoop Ecosystem.” [Online]. Available:
http://docs.hortonworks.com/CURRENT/index.htm#About Hortonworks Data Platform/Under
standing Hadoop Ecosystem.htm. [Accessed: 22-Feb-2013].

Deborah Lee Soltesz, “The Advantages of a Relational Database Management System.” [Online].
Available at: http://www.ehow.com/list 6121487 advantages-relational-database-management-
system.html. [Accessed: 26-Feb-2013].

Anni Martin, “Disadvantages of Relational Database.” [Online]. Available at:
http://www.ehow.com/list 5977286 disadvantages-relational-database.html. [Accessed: 26-Feb-
2013].

Bart Jacob, Michael Brown, Kentaro Fukui, and Nihar Trivedi, “Introduction to Grid Computing,”
IBM Corporation, Dec-2005. pp. 3-17. [Online]. Available at:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf. [Accessed: 12-Mar-2013].

Heli Xu and Guixin Wu, “Parallel Programming in Grid: Using MPI,” presented at the Proceedings
of the Third International Symposium on Electronic Commerce and Security Workshops, Jul-
2010. ISBN 978-952-5726-11-4. pp. 136—138. [Online]. Available at:
http://www.academypublisher.com/proc/isecs10w/papers/isecs 1 0wp136.pdf. [Accessed: 14-Mar-
2013].

63

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

33.

64

Luis F. G. Sarmenta, “Volunteer Computing,” MIT, Department of Electrical Engineering and
Computer Science, Jun-2001. [Online]. Available at: http://www.dmut.net/en/282/282078.pdf.
[Accessed: 13-Mar-2013].

David P. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” Nov-2005.
[Online]. Available at: http://www.cs.umd.edu/class/fall2005/cmsc714/Lectures/koren-boinc.pdf.
[Accessed: 14-Mar-2013].

J2EEBrain, “Hadoop - Advantages and Disadvantages,” 2012. [Online]. Available at:
http://www .j2eebrain.com/java-J2ee-hadoop-advantages-and-disadvantages.html. [Accessed: 26-
Feb-2013].

Zak Stone, “Introduction to Hadoop,” 2011. [Online]. Available at:
http://www.cs264.org/lectures/files/cs_264 hadoop lecture 2011.pdf. [Accessed: 26-Feb-2013].

Carenet Team, “Carenet Services.” Jan-2013. [Online]. Available at: http://ttaportal.org/wp-
content/uploads/2013/01/Final-Report-V-1.0.pdf. [Accessed: 23-Mar-2013].

Carenet Team, “Carenet Services: Sensor Desktop Application.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Desktop-Application-v-1.0.pdf.
[Accessed: 06-Mar-2013].

Carenet Team, “Carenet Services: Sensor Web Application.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Web-Application-v-1.0.pdf. [Accessed:
21-Mar-2013].

Carenet Team, “Carenet Services: HDVC.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Web-Application-v-1.0.pdf. [Accessed:
22-Mar-2013].

Fernandez Alexis Martinez, “Authorization schema for electronic health-care records: For
Uganda,” KTH, School of Information and Communication Technology (ICT), TRITA-ICT-EX-
2012:176, Aug-2012. [Online]. Available at: http://kth.diva-
portal.org/smash/record.jsf?pid=diva2:546619. [Accessed: 26-Mar-2013].

Sherin Sebastian, Neethu Rachel Jacob, Yedu Manmadhan, V. R. Anand, and M. J. Jayashree,
“Remote Patient Monitoring System,” presented at the International Journal of Distributed and
Parallel Systems (IJDPS), Sep-2012, pp. 99-110. DOI : 10.5121/ijdps.2012.3509. [Online].
Available at: http://airccse.org/journal/ijdps/papers/3512ijdps09.pdf. [Accessed: 26-Mar-2013].

Myung-kyung Suh, Chien-An Chen, Jonathan Woodbridge, Michael Kai Tu, Jung In Kim, Ani
Nahapetian, Lorraine S. Evangelista, and Majid Sarrafzadeh, “A Remote Patient Monitoring
System for Congestive Heart Failure,” presented at the Springer Science+Business Media, May-
2011. DOI 10.1007/s10916-011-9733-y. [Online]. Available at:
http://www.chime.ucla.edu/Evangelista-%20A%20Remote%20Patient%20Monitoring.pdf.
[Accessed: 28-Mar-2013].

Myung-kyung Suh, Lorraine S. Evangelista, Victor Chen, Wen-Sao Hong, Jamie Macbeth, Ani
Nahapetian, Florence-Joy Figueras, and Majid Sarrafzadeh, “WANDA B.: Weight and Activity
with Blood Pressure Monitoring System for Heart Failure Patients,” University of California,
Los Angeles, 2010. DOI: 10.1109/WOWMOM.2010.5534983, [Online]. Available at:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075586/. [Accessed: 30-Mar-2013].

Alex Holmes, Hadoop in Practice. Shelter Island, NY 11964: Manning Publications Co., 2012.
ISBN 9781617290237. [Accessed: 03-Apr-2013].

Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” presented
at the SOSP’03, Bolton Landing, New York, USA, Oct-2003. [Online]. Available at:
http://www.cs.rochester.edu/meetings/sosp2003/papers/p125-ghemawat.pdf. [Accessed: 01-Apr-
2013].

Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
presented at the OSDI *04: 6th Symposium on Operating Systems Design and Implementation,
2004, pp. 137-149. [Online]. Available at:
http://static.usenix.org/event/osdiO4/tech/full papers/dean/dean.pdf. [Accessed: 01-Apr-2013].

Tom White, Hadoop: The Definitive Guide, Second Edition. 1005 Gravenstein Highway North:
Sebastopol, 2010. [Accessed: 01-Apr-2013].

The Apache Software Foundation, “Hadoop Tutorial and Documentation,” Feb-2013. [Online].
Available at: http://hadoop.apache.org/docs/r1.0.4/. [Accessed: 05-Apr-2013].

34. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony,
Hao Liu, Pete Wyckoff, and Raghotham Murthy, “Hive - A Warehousing Solution Over a Map-
Reduce Framework,” presented at the VLDB Endowment, Facebook Data Infrastructure Team,
Lyon, France, Aug-2009. [Online]. Available at: http://www.vldb.org/pvldb/2/vidb09-938.pdf.
[Accessed: 05-Apr-2013].

35. Alan Gates, Data flow scripting with Hadoop: Programming Pig, First Edition. 1005 Gravenstein
Highway North, Sebastopol, CA 95472.: O’Reilly Media, Oct-2011. [Accessed: 06-Apr-2013].

36. Nick Dimiduk and Amandeep Khurana, HBase in Action. Manning Publications Co., 2013. pp. 3-
20. [Online]. Available at: http://www.manning.com/dimidukkhurana/HBiAsample chl.pdf.
[Accessed: 06-Apr-2013].

37. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” presented at the OSDI, 2006. [Online]. Available at:
http://static.googleusercontent.com/external content/untrusted dlcp/research.google.com/en//arc
hive/bigtable-0sdi06.pdf. [Accessed: 06-Apr-2013].

38. Alan Gates, “Apache Hadoop* Community Spotlight: HCatalog.” Aug-2012. [Online]. Available
at: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/hadoop-
spotlight-hcatalog-paper.pdf. [Accessed: 04-Jul-2013].

39. The Apache Software Foundation, “ZooKeeper.” 2008. [Online]. Available at:
http://zookeeper.apache.org/doc/r3.2.2/zookeeperOver.pdf. [Accessed: 27-June-2013].

40. Apache Software Foundation, “Apache Ambari.” Apr-2013. [Online]. Available at:
http://incubator.apache.org/ambari/. [Accessed: 09-Apr-2013].

41. John Speidel, “Ambari API Reference.” Feb-2013. [Online]. Available at:
https://github.com/apache/ambari/blob/trunk/ambari-server/docs/api/v1/index.md. [Accessed:
09-Apr-2013].

42. Apache Software Foundation, “Apache Sqoop,” Mar-2013. [Online]. Available at:
http://sqoop.apache.org/. [Accessed: 09-Apr-2013].

43. The Apache Software Foundation, “Apache Solr,” 2012. [Online]. Available at:
http://lucene.apache.org/solr/. [Accessed: 10-Jun-2013].

44. Eric Sammer, Hadoop Operations: A Guide for Developers and Administrators, First Edition.
1005 Gravenstein Highway North, Sebastopol, CA 95472.: O’Reilly Media, Sep-2012.

45. Lars George, “Hive vs Pig,” Oct-2009. [Online]. Available at:
http://www.larsgeorge.com/2009/10/hive-vs-pig.html. [Accessed: 16-Apr-2013].

46. Lars George, HBase: The Definitive Guide. 1005 Gravenstein Highway North, Sebartol, CA
95472.: O’Reilly Media, Inc., Sep-2011.

47 Ruslan Mukhammadov, Scalable Remote Patient Monitoring System App. Source code, Jun-2013.
[Online]. Available at: https://github.com/ruslanm/scalable-rpm. [Access: 08-Jul-2013].

48 Michael G. Noll, “Running Hadoop on Ubuntu Linux (Single-Node Cluster),” Mar-2013. [Online].
Available: http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-
cluster/. [Accessed: 12-Jun-2013].

49 Michael G. Noll, “Running Hadoop on Ubuntu Linux (Multi-Node Cluster),” Apr-2013. [Online].
Available: http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-
cluster/. [Accessed: 15-Jun-2013].

50.MapR Technologies, “Installing Apache HBase Standalone mode in Ubuntu,” Jun-2013. [Online].
Available: http://www.mapr.com/doc/display/MapR/HBase. [Accessed: 12-Jun-2013].

51.Robert Chen, “Setup Multinodes HBase/Hadoop/Zookeeper on Ubuntu,” Sep-2012. [Online].
Available: http://www.solaris11.com/?p=440. [Accessed: 04-Jun-2013].

52.Prasad Mujumdar, “Apache Hive, Developers Guide,” Mar-2013. [Online]. Available:
https://cwiki.apache.org/confluence/display/Hive/Home. [Accessed: 10-Jun-2013].

53. Oracle, “MySQL Manual: Running Multiple MySQL Servers on the Same Machine,” MySQL.
[Online]. Available: http://dev.mysql.com/doc/refman/4.1/en/multiple-servers.html. [Accessed:
06-Jul-2013].

54. Esen Sagynov, “Easy MySQL Database Sharding,” at MySQL World Conference & Expo, Apr-
2013. [Online]. Available: http://www.percona.com/live/mysql-conference-
2013/sites/default/files/slides/Esen%20Sagynov%20-

65

%20Easy%20MySQL%20Database%20Sharding%20with%20CUBRID%20SHARD%20-
%202013%20Percona%20PLMCE.pdf, [Accessed: 07-Jul-2013]

55. Petr Dvorak, “MySQL Sharding Block Series: Does Sharding Make Sense on a Single Machine,”
Scalebase, May-2013. [Online]. Available: http://www.scalebase.com/mysql-sharding-blog-
series-does-sharding-make-sense-on-a-single-machine/. [Accessed: 06-Jul-2013].

56. Robert H. Dolin, Liora Alschuler, Sandy Boyer, Calvin Beebe, Fred M. Behlen, Paul V. Biron, and
Amnon Shabo, “HL7 Clinical Document Architecture,” Journal of the American Medical
Informatics Association, DOI 10.1197/jamia.M 1888, pp. 31-39, Feb-2006. [Online]. Available
at: ssr-anapath.googlecode.com/files/CDAr2.pdf. [Accessed: 05-May-2013].

57.Ruslan Mukhammadov, “ Fake” health data genetor. Source code. Jun-2013. [Online]. Available
at: https://github.com/ruslanm/data-generator. [Access: 08-Jul-2013].

58. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, ‘Benchmarking cloud
serving systems with YCSB’, in Proceedings of the 1st ACM symposium on Cloud computing,
New York, NY, USA, 2010, pp. 143—154, DOI:10.1145/1807128.1807152, [Online]. Available
at: http://doi.acm.org/10.1145/1807128.1807152. [Accessed: 01-Jul-2013].

59. Brian F. Cooper, “YCSB,” Dec-2012. [Online]. Available:
https://github.com/brianfrankcooper/Y CSB. [Accessed: 01-Jul-2013].

60. Apache Foundation, “Apache HBase Performance Tuning,” Apr-2013. [Online]. Available:
http://hbase.apache.org/book/performance.html. [Accessed: 07-Jul-2013].

61. John D.C. Little and Stephen C. Graves, “Little’s Law,” Massachusetts Institute ofTechnology,
Building Intuition: Insights From Basic_Operations Management Models and Principles, 2008,
pp. 81-100, DOI: 10.1007/978-0-387 -73699-0, [Online]. Available at:
http://web.mit.edu/sgraves/www/papers/Little's%20Law-Published.pdf. [Accessed: Jul-13-2013].

62. Amdahl Gene, “Validity of the single processor approach to achieving large scale computing
capabilities,” in Proceedings of AFIPS Conference, IBM Sunnyvale , California, 1967, pp. 483—
485. [Online]. Available at: http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
[Accessed: Jul-13-2013].

66

Appendix A

Sample from Generated Test Data

Physical Examination (Vital signs)

User Identifier 63481968342523200+62371
Timestamp (in milliseconds) | 1378375823000
Pulse Rate 101

SpO2 96

Body Temperature 36.3

Blood Pressure 120

Respiration Rate 15

Blood Glucose 91

Vital Capacity 4.5

Forced Expiratory Flow 39

Forced Inspiratory Flow 42

Tidal Volume 488

End-tidal CO2 53

Gait Speed 1.1

67

Appendix B

RDBMS and Scalable RPMS Prototype Measurements and
Chart Representation of each Measurement

B.1

MySQL and HBase Benchmark Statistics

TableB.1-1: MySQL Benchmark with 10 million Rows and 1 million Operations.

[\JV grltdcgld A Workload C Workload D Workload E
p ég /5 g avy Read Only Read Latest Range Scan

read/update) (100% read) (95/5 read/write) (95/5 scan/write)
EL"‘SF)’SCCI Time 5 008,661.0 1,605,094.0 1,717,842.0 7,264,402.0
Rows
(Millions) 10 10 10 10
Operations
(Millions) ! ! ! !
Thread Count 20 20 20 20
Throughput 497.844 623.017 582.126 137.658
(ops/sec)
Average
Latency (ms) 6.023 54.492 57.857 299.535
(read)
(write) 25.611 NA 0.042 0.101
Minimum
Latency (ms) 0 0.009 0.084 0.473
(read)
(write) 0 NA 0.005 0.018
Maximum
Latency (ms) 3,961.341 999.235 1,027.938 1,878.731
(read)
(write) 6,055.092 NA 1.533 501.883

69

TableB.1-2: MySQL Benchmark with 50 million Rows and 10 million Oper ations.

[\JV grltd(;?d A Workload C Workload D VI\{forklosad E
P (358 /s g avy Read Only Read Latest aréges: / Scan
read/update) (100% read) (95/5 read/write) scan/write)
Elapsed Time (ms) | 129,342,237.0 | 106,463,934.0 | 114,735,462.0 901,463,235.0
Rows (Millions) 50 50 50 50
Operations
(Millions) 10 10 10 10
Thread Count 100 100 100 100
(Tolg;‘sleggp“t 77314 93.928 87.157 11.093
‘é;:)”(‘f:ag;‘tency 107.593 543.088 593.003 2.209.495
(write) 156.239 NA 1.116 1.901
Zﬁgrg‘;ﬁ}atency 0.937 0.722 0.587 1769
(write) 1.247 NA 0.222 0.336
?fn"‘s’;lggg)mency 21,447.352 4,052.356 7.096.456 19,346.228
(write) 34,534.082 NA 44.623 2.367.2

70

Table B.1-3: HBase Benchmark on a Cluster of Single Machine with 10 million Rows
and 1 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)

ae‘sgsed Time |5 681,339.0 4,923,532.0 3,709,891.0 19,163,908.0
Rows
(Millions) 10 10 10 10
Operations
(Millions) ! ! ! !
Thread Count 20 20 20 20
Throughput 372.95 203.106 269.55 52.181
(ops/sec)
Average
Latency (ms) 106.737 98.268 77.857 402.828
(read)
(write) 0.205 NA 0.053 0.217
Minimum
Latency (ms) 0.232 0.322 0.141 0.792
(read)
(write) 0 NA 0.007 0.039
Maximum
Latency (ms) 10,943.329 1,164.307 1,039.029 2,867.829
(read)
(write) 5,758.592 NA 2.814 629.926

71

Table B.1-4: HBase Benchmark on a Cluster of Single Machine with 50 million Rows
and 10 million Oper ations.

Workload A

Uodate H Workload C Workload D Workload E
P (8,'58 /5 g avy Read Only Read Latest Range Scan
read/updatc) (100% read) (95/5 read/write) (95/5 scan/write)
ae‘sgsed Time | 135 731 469.0 | 257.662.092.0 | 188.018,663.0 977,302,292.0
Rows
(Millions) >0 >0 >0 >0
Operations
(Millions) 10 10 10 10
Thread Count 100 100 100 100
Throughput 73.675 38.81 53.186 10.232
(ops/sec)
Average
Latency (ms) 1,078.004 761.944 780.906 2,968.392
(read)
(write) 0.312 NA 1.442 1.618
Minimum
Latency (ms) 0.639 0.893 0.796 2.266
(read)
(write) 0.141 NA 0.203 0.454
Maximum
Latency (ms) 41,226.053 8,046.395 9,194.734 20,932.729
(read)
(write) 17,432.894 NA 12.321 3,021.49
TableB.1-5: HBase Data L oad on a Cluster of Two M achines
Million rows 1 10 50
Elapsed Time (ms) 56,022.0 866,528.0 77,623,955.0
Thread Count 10 20 100
Throughput (ops/sec) 17,850.13 11,540.308 644.131
Average Latency (ms) 0.566 2.009 5.993
Minimum Latency (ms) 0 0.003 0.11
Maximum Latency (ms) 8,412.551 30,120.693 46,523.098

72

Table B.1-6: HBase Benchmark on a Cluster of Two M achineswith 1 million Rows
and 500,000 Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
ae‘sgsed Time 37,443.0 72,233.0 56,383.0 232,717.0
Rows
(Millions) ! : ! :
Operations
(Millions) 0.5 0.5 0.5 0.5
Thread Count 10 10 10 10
(To}gs(}‘;eggpm 13,353.631 6,922.044 8,867.921 2,148.532
Average
Latency (ms) 1.103 1.934 1.119 5.275
(read)
(write) 0.124 NA 0.011 0.03
Minimum
Latency (ms) 0.81 0.65 0.72 0.199
(read)
(write) 0 NA 0.004 0.004
Maximum
Latency (ms) 1,834.639 1,783.246 2,204.003 795.99
(read)
(write) 2,993.235 NA 1.8 7.118

73

TableB.1-7: HBase Benchmark on a Cluster of Two Machineswith 10 million Rows
and 1 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)

ae‘sgsed Time | 545 8540 2.670.352.0 2.130,270.0 10.920,622.0
Rows
(Millions) 10 10 10 10
Operations
(Millions) ! ! ! !
Thread Count 20 20 20 20
(To}gs(}‘;eggpm 646.892 374.482 469.424 91.57
Average
Latency (ms) 56.043 53.235 40.23 222.435
(read)
(write) 0.11 NA 0.03 0.125
Minimum
Latency (ms) 0.102 0.14 0.05 0.693
(read)
(write) 0 NA 0 0.019
Maximum
Latency (ms) 6,239.231 784.239 701.424 1,782.093
(read)
(write) 3,664.291 NA 1.703 314.992

74

Table B.1-8: HBase Benchmark on a Cluster of Two Machineswith 50 million Rows
and 10 million Oper ations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
ae‘sgsed Time | 25 600.725.0 | 139,688,149.0 | 107.045,603.0 563,842,224.0
Rows
(Millions) >0 >0 >0 >0
Operations
(Millions) 10 10 10 10
Thread Count 100 100 100 100
Throughput 132.274 71.588 93.418 17.736
(ops/sec)
Average
Latency (ms) 555.348 429.537 399.036 2,012.436
(read)
(write) 0.138 NA 1.001 0.931
Minimum
Latency (ms) 0.382 0.52 0.448 1.722
(read)
(write) 0.08 NA 0.11 0.311
Maximum
Latency (ms) 25,775.359 5,192.825 5,002.372 12,523.109
(read)
(write) 9,443.892 NA 7.392 1,888.327
Table B.1-9: HBase Data L oad on a Cluster of Three Machines
Million rows 1 10 50
Elapsed Time (ms) 38,529.0 584,544.0 52,515,030.0
Thread Count 10 20 100
Throughput (ops/sec) 25,954.476 17,107.352 952.108
Average Latency (ms) 0.401 1.692 3.66
Minimum Latency (ms) 0 0 0.082
Maximum Latency (ms) 6,082.442 21,412.523 68,252.664

75

TableB.1-10: HBase Benchmark on a Cluster of Three Machineswith 1 million
Rows and 500,000 Oper ations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
Elapsed Time 25.930.0 48 848.0 38.878.0 161,851.0
(ms)
Rows
(Millions) ! ! ! !
Operations
(Millions) 0.5 0.5 0.5 0.5
Thread Count 10 10 10 10
Throughput 19,282.684 10,235.834 12,860.744 3,089.261
(ops/sec)
Average
Latency (ms) 0.585 1.303 0.92 3.483
(read)
(write) 0.081 NA 0.007 0.011
Minimum
Latency (ms) 0.731 0.461 0.494 0.133
(read)
write . .

(write) 0 NA 0.001 0.001
Maximum
Latency (ms) 1,244.823 1,125.883 1,604.352 532.798
(read)
(write) 2,000.252 NA 1.203 5.339

76

TableB.1-11: HBase Benchmark on a Cluster of Three Machineswith 10 million
Rows and 1 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)

ae‘sgsed Time 1 065,939.0 1,845,835.0 1,468,923.0 7,584,197.0
Rows
(Millions) 10 10 10 10
Operations
(Millions) ! ! ! !
Thread Count 20 20 20 20
Throughput 938.14 541.76 680.771 131.853
(ops/sec)
Average
Latency (ms) 34.331 37.505 28.833 155.006
(read)
(write) 0.076 NA 0.009 0.08
Minimum
Latency (ms) 0.699 0.892 0.028 0.466
(read)
(write) 0 NA 0 0.014
Maximum
Latency (ms) 4,368.384 556.844 599.34 1,380.627
(read)
(write) 2,934.227 NA 1.352 227.534

77

TableB.1-12: HBase Benchmark on a Cluster of Three Machineswith 50 million

Rows and 10 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
ae‘sgsed Time | 55 161.239.0 96,420,325.0 73,354,435.0 394,456,929.0
Rows
(Millions) >0 >0 >0 >0
Operations
(Millions) 10 10 10 10
Thread Count 100 100 100 100
Throughput 191.713 103.713 136.324 25.351
(ops/sec)
Average
Latency (ms) 392.593 285.522 266.747 1,402.808
(read)
(write) 0.09 NA 0.731 0.629
Minimum
Latency (ms) 0.264 0.222 0.297 1.221
(read)
(write) 0.051 NA 0.767 0.184
Maximum
Latency (ms) 16,648.749 3,983.002 3,034.992 7,666.521
(read)
(write) 7,500.466 NA 492 1,342.662
TableB.1-13: HBase Data L oad on a Cluster of Four M achines
Million rows 1 10 50
Elapsed Time (ms) 29,221.0 443,567.0 39,718,284.0
Thread Count 10 20 100
Throughput (ops/sec) 34,221.964 22,544.508 1,258.866
Average Latency (ms) 0.298 1.209 2.712
Minimum Latency (ms) 0 0 0.059
Maximum Latency (ms) 4,427.629 15,821.935 50,121.821

78

Table B.1-14: HBase Benchmark on a Cluster of Four Machineswith 1 million Rows
and 500,000 Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
Elapsed Time 19.628.0 36,077.0 28.942.0 124,445.0
(ms)
Rows
(Millions) ! ! ! !
Operations
(Millions) 0.5 0.5 0.5 0.5
Thread Count 10 10 10 10
Throughput 25,473.813 13,859.246 17,275.931 4,017.839
(ops/sec)
Average
Latency (ms) 0.188 1.091 0.77 2.523
(read)
(write) 0.053 NA 0.002 0.007
Minimum
Latency (ms) 0.598 0.351 0.494 0.133
(read)
write 0 NA 0 0
(write)
Maximum
Latency (ms) 0,844.523 813.939 1,336.72 387.552
(read)
(write) 1,681.628 NA 0.921 2917

79

Table B.1-15: HBase Benchmark on a Cluster of Four Machineswith 10 million
Rows and 1 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)
aaslised Time 819,219.0 1,426,036.0 1,139,722.0 6,035,827.0
Rows
(Millions) 10 10 10 10
Operations
(Millions) ! ! ! !
Thread Count 20 20 20 20
Throughput 1,220.675 701.245 877.407 165.677
(ops/sec)
Average
Latency (ms) 21.933 28.992 21.352 112.519
(read)
(write) 0.059 NA 0.006 0.053
Minimum
Latency (ms) 0.552 0.667 0.023 0.338
(read)
write 0 NA 0 0.009
(write)
Maximum
Latency (ms) 3,209.882 384.205 470.425 992.83
(read)
(write) 2,032.552 NA 0.91 142.098

80

TableB.1-16: HBase Benchmark on a Cluster of Four Machineswith 50 million

Rows and 10 million Operations.

Workload A

Undate H Workload C Workload D Workload E
p ég /5 (? avy Read Only Read Latest Range Scan
read/update) (100% read) (95/5 read/write) (95/5 scan/write)

aassed Time | 41 026,048.0 76,139,177.0 57,634,569.0 325,590,021.0
Rows
(Millions) 50 50 50 50
Operations
(Millions) 10 10 10 10
Thread Count 100 100 100 100
Throughput 243.748 285.522 173.507 30.714
(ops/sec)
Average
Latency (ms) 291.423 221.258 205.811 991.004
(read)
(write) 0.067 NA 0.522 0.404
Minimum
Latency (ms) 0.193 0.18 0.2 0.822
(read)
(write) 0.039 NA 0.519 0.135
Maximum
Latency (ms) 13,623.56 2,422.524 2,002.516 5,622.092
(read)
(write) 5,622.552 NA 3.042 1,001.005

81

B.2

82

3.5

Average L oad L atency (ms)

o
)

L oad Phase, 10 million rows

500000 10,000.00 15,000.00 20,000.00 25,000.00
Throughput (ops/sec)

Figure B.2-1: 10 GB of Data L oad Performance Differences

[= =
N IS o

=
o

Average Scan L atency (ms)

L oad Phase, 50 million rows

200 400 600 800 1000 1200 1400
Throughput (ops/sec)

Figure B.2-2: 50 GB of Data L oad Performance Differ ences

Chart Representation of Benchmark Statistics

O MySQL Sharded
—@— HBase, Single Machine
HBase, 2 Machines
—@— HBase, 3 Machines

—@— HBase, 4 Machines

—@— MySQL Sharded

—@— HBase, Single Machine
HBase, 2 Machines

—@— HBase, 3 Machines

—@— HBase, 4 Machines

Workload C (100% read)

900
800
o
/g 700
— 600
> °
% 500 ®MySQL Sharded
= 400 ' @ HBase, Single Machine
— ® HBase, 2 Machines
e
8 300 o @ HBase, 3 Machines
@ 200 ©® ~
® HBase, 4 Machines
100 @
0 o @ L L

0.00 2,000.00 4,000.00 6,000.00 8,000.0010,000.0012,000.0014,000.0016,000.00
Throughput (ops/sec)

Figure B.2-3: WorkloadC Read Latency vs. Throughput Benchmark Statistics

Runtime vs. Oper ations

300,000,000
[)

7 250,000,000
e
Ej 200,000,000
c MySQL Sharded
i: 150,000,000 PY @ HBase, Single Machine
@ @ HBase, 2 Machines
& 100,000,000 ®
© PY @ HBase, 3 Machines
LU

50,000,000 @ HBase, 4 Machines

0 - o®
0 2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

Operations

Figure B.2-4: Elapsed Timevs. Number of Operations Chart on WorkloadC

83

Workload D (95/5 read/write) - Read Statistics

900

800 °
Ly~
9 700
£
N—r
3 600 @
3
@© 500 ® MySQL Sharded
-
o) @ HBase, Single Machine
§ 400 & ® HBase, 2 Machines
% 300 @ HBase, 3 Machines
@
beb) P ® HBase, 4 Machines
> L]
< 200

100

L3
0 o @ L o
0.00 5,000.00 10,000.00 15,000.00 20,000.00

Throughput (ops/sec)

Figure B.2-5: WorkloadD Read Latency vs. Throughput Benchmark Statistics

Workload D (95/5 read/write) - Write Statistics

1.6

1.4 *
w
é 1.2
> °®
c 10
—
© ® MySQL Sharded
—
O 0.8 @ HBase, Single Machine
= Y
g ® HBase, 2 Machines

0.6
%’.) ° @ HBase, 3 Machines
]
o 04 ® HBase, 4 Machines
>
<

0.2

S U ° ® °
0.00 5,000.00 10,000.00 15,000.00 20,000.00

Throughput (ops/sec)

FigureB.2-6: WorkloadD Write Latency vs. Throughput Benchmark Statistics

200,000,000
180,000,000
‘0 160,000,000
é 140,000,000
g 120,000,000
— 100,000,000
80,000,000
60,000,000
40,000,000
20,000,000
0

Elapsed

0

Workload D - Runtime vs. Operations

[]
: @ MySQL Sharded
@ HBase, Single Machine
P ® HBase, 2 Machines
4 ® HBase, 3 Machines
® HBase, 4 Machines
o ®
2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

Operations

Figure B.2-7: Elapsed Time versusthe Number of Operations Chart on WorkloadD

2500

2000 @

—
w
o
o

Aver age Scan L atency (ms)
5
8
o

500

®

0

Workload E (95/5 scan/write) - Scan Statistics

MySQL Sharded
@ HBase, Single Machine
@ HBase, 2 Machines
@ HBase, 3 Machines

@ HBase, 4 Machines

0.00 500.001,000.001,500.0@,000.0@,500.0C8,000.0(8,500.004,000.064,500.00

Throughput (ops/sec)

Figure B.2-8: WorkloadE Scan Latency vs. Throughput Benchmark Statistics

85

Workload E (95/5 scan/write) - Write Statistics

1.8
w5 1.6
g

1.4
g

1.2
IS MySQL Sharded
—
o 1 @ HBase, Single Machine
= Y
= @ HBase, 2 Machines
< 08
% @ HBase, 3 Machines
CU 0 6 . .
oI @ HBase, 4 Machines
>
<Los @

o
[N

% .

0 o e ®
0.00 500.00 1,000.001,500.002,000.002,500.008,000.008,500.004,000.004,500.00

Throughput (ops/sec)

FigureB.2-9: WorkloadE Write Latency vs. Throughput Benchmark Statistics

Workload E - Runtime vs. Oper ations

1,200,000,000

1,000,000,000

— o
2 °
E)’ 800,000,000
c ® MySQL Sharded
= 600,000,000 ® @ HBase, Single Machine
-§ ® HBase, 2 Machines
%_ 400,000,000 ®
©] @ HBase, 3 Machines
L

200,000,000 ® HBase, 4 Machines

0 “o®
0 2,000,000 4,000,000 6,000,000 8,000,00010,000,000.2,000,000

Operations

Figure B.2-10: Elapsed Time ver susthe Number of Operations Chart on WorkloadE

86

TRITA-ICT-EX-2013:195

www.kth.se

