
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

R U S L A N M U K H A M M A D O V

 A scalable database for a remote
patient monitoring system

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A scalable database for a remote
patient monitoring system

Ruslan Mukhammadov
ruslanm@kth.se

2013-07-18

Master of Science Thesis

Examiner and academic adviser
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology (ICT)
KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract

Today one of the fast growing social services is the ability for doctors to monitor patients
in their residences. The proposed highly scalable database system is designed to support a
Remote Patient Monitoring system (RPMS). In an RPMS, a wide range of applications are
enabled by collecting health related measurement results from a number of medical devices in
the patient’s home, parsing and formatting these results, and transmitting them from the
patient’s home to specific data stores. Subsequently, another set of applications will
communicate with these data stores to provide clinicians with the ability to observe, examine,
and analyze these health related measurements in (near) real-time. Because of the rapid
expansion in the number of patients utilizing RPMS, it is becoming a challenge to store,
manage, and process the very large number of health related measurements that are being
collected. The primary reason for this problem is that most RPMSs are built on top of
traditional relational databases, which are inefficient when dealing with this very large amount
of data (often called “big data”).

This thesis project analyzes scalable data management to support RPMSs, introduces a
new set of open-source technologies that efficiently store and manage any amount of data
which might be used in conjunction with such a scalable RPMS based upon HBase,
implements these technologies, and as a proof of concept, compares the prototype data
management system with the performance of a traditional relational database (specifically
MySQL). This comparison considers both a single node and a multi node cluster. The
comparison evaluates several critical parameters, including performance, scalability, and load
balancing (in the case of multiple nodes). The amount of data used for testing input/output
(read/write) and data statistics performance is 1, 10, 50, 100, and 250 GB.

The thesis presents several ways of dealing with large amounts of data and develops &
evaluates a highly scalable database that could be used with a RPMS. Several software suites
were used to compare both relational and non-relational systems and these results are used to
evaluate the performance of the prototype of the proposed RPMS. The results of
benchmarking show that MySQL is better than HBase in terms of read performance, while
HBase is better in terms of write performance. Which of these types of databases should be
used to implement a RPMS is a function of the expected ratio of reads and writes. Learning
this ratio should be the subject of a future thesis project.

Keywords: Big data, database performance, scalability, load balancing, Remote Patient
Monitoring System.

iii

Sammanfattning

En av de snabbast växande sociala tjänsterna idag är möjligheten för läkare att övervaka
patienter i sina bostäder. Det beskrivna, mycket skalbara databassystemet är utformat för att
stödja ett sådant Remote Patient Monitoring-system (RPMS). I ett RPMS kan flertalet
applikationer användas med hälsorelaterade mätresultat från medicintekniska produkter i
patientens hem, för att analysera och formatera resultat, samt överföra dem från patientens
hem till specifika datalager. Därefter kommer ytterligare en uppsättning program
kommunicera med dessa datalager för att ge kliniker möjlighet att observera, undersöka och
analysera dessa hälsorelaterade mått i (nära) realtid. På grund av den snabba expansionen av
antalet patienter som använder RPMS, är det en utmaning att hantera och bearbeta den stora
mängd hälsorelaterade mätningar som samlas in. Den främsta anledningen till detta problem
är att de flesta RPMS är inbyggda i traditionella relationsdatabaser, som är ineffektiva när det
handlar om väldigt stora mängder data (ofta kallat "big data").

Detta examensarbete analyserar skalbar datahantering för RPMS, och inför en ny
uppsättning av teknologier baserade på öppen källkod som effektivt lagrar och hanterar
godtyckligt stora datamängder. Dessa tekniker används i en prototypversion (proof of
concept) av ett skalbart RPMS baserat på HBase. Implementationen av det designade
systemet jämförs mot ett RPMS baserat på en traditionell relationsdatabas (i detta fall
MySQL). Denna jämförelse ges för både en ensam nod och flera noder. Jämförelsen
utvärderar flera kritiska parametrar, inklusive prestanda, skalbarhet, och lastbalansering (i
fallet med flera noder). Datamängderna som används för att testa läsning/skrivning och
statistisk prestanda är 1, 10, 50, 100 respektive 250 GB.

Avhandlingen presenterar flera sätt att hantera stora mängder data och utvecklar samt
utvärderar en mycket skalbar databas, som är lämplig för användning i RPMS. Flera
mjukvaror för att jämföra relationella och icke-relationella system används för att utvärdera
prototypen av de föreslagna RPMS och dess resultat. Resultaten av dessa jämförelser visar att
MySQL presterar bättre än HBase när det gäller läsprestanda, medan HBase har bättre
prestanda vid skrivning. Vilken typ av databas som bör väljas vid en RMPS-implementation
beror därför på den förväntade kvoten mellan läsningar och skrivningar. Detta förhållande är
ett lämpligt ämne för ett framtida examensarbete.

Nyckelord: Big data, databas, prestanda, skalbarhet, lastbalansering, Remote Patient
Monitoring System

v

Acknowledgements

I would like to express my gratitude and sincere thanks to my academic advisor and
examiner Prof. Gerald Q. “Chip” Maguire Jr. for his valuable suggestions, extremely
helpful feedbacks and indispensable recommendations. From the beginning to the end of my
thesis project, he always supported me with his brilliant advices, kept me on a right track and
helped me by sharing his magnificent experience.

My grateful thanks to Tallat M. Shafaat for helping me to choose suitable benchmark
tools and his valuable support during the benchmarking of my thesis application.

Furthermore I would like to thank Jim Dowling for sharing computer resources and
allowing me to benchmark my prototype.

Special thanks to my family, in particular my parents for their unconditional affection,
moral support and lovely inspirations during the period of my study, and all through my life. I
would not be the person who I am now without their support.

In addition, I would like to thank my friends and relatives. Their moral supports helped
me to grow one pillar up and encouraged me to do the best whatever I do.

vii

Table of contents

Abstract ... i
Sammanfattning ... iii
Acknowledgements ... v
Table of contents .. vii
List of Figures ... ix
List of Tables ... xi
List of acronyms and abbreviations ... xiii
1 Introduction ... 1

1.1 Overview ... 1
1.2 Problem Analysis and Definition .. 2

1.2.1 Problem Preview .. 2
1.2.2 Traditional Relational Database Management System ... 2
1.2.3 Distributed Computing Technologies ... 3
1.2.4 Prerequisites for a Scalable RPMS ... 6
1.2.5 Problem Definition ... 7

1.3 Goals .. 8
1.4 Methodology .. 8
1.5 Structure of the thesis .. 8

2 Background ... 11
2.1 Traditional RPMSs .. 11

2.1.1 The Technology Transfer Alliance’s Carenet Services project: Remote Medical
Records System .. 11

2.1.2 Remote Patient Monitoring System .. 13
2.1.3 Remote Patient Monitoring for Congestive Heart Failure .. 15

2.2 Efficient data management in traditional RPMSs ... 16
3 Scalable Data Management: Apache Hadoop ... 19

3.1 Apache Hadoop ... 19
3.2 Major Components of Hadoop .. 20

3.2.1 Hadoop Distributed File System ... 21
3.2.2 Map-Reduce ... 22
3.2.3 Apache Hive ... 23
3.2.4 Apache Pig .. 23
3.2.5 Apache HBase .. 24
3.2.6 Apache HCatalog .. 25
3.2.7 Apache Zookeeper .. 26
3.2.8 Apache Ambari ... 27
3.2.9 Apache Sqoop ... 28
3.2.10 Apache Solr .. 28

3.3 Hadoop Clusters .. 29
3.4 Hadoop Limitations ... 30

viii

4 Scalable RPMS Architecture and Design ... 31

4.1 Overview ... 31
4.2 Technology choice for Scalable RPMS ... 32
4.3 Tables Definition in the System .. 33
4.4 The Distributed Storage Model ... 35
4.5 Interaction of Hadoop Components ... 36
4.6 Application Source Code and Environment Preparation ... 36

5 Benchmarking & Analysis .. 39
5.1 Overview ... 39
5.2 Generating Test Data ... 40
5.3 Benchmarking of the alternative Software Suites ... 41
5.4 Yahoo Cloud System! Benchmark .. 41

5.4.1 Machine specifications ... 43
5.4.2 YCSB Benchmark on MySQL DB ... 43
5.4.3 YCSB Benchmark on a Single Node Cluster ... 46
5.4.4 YCSB Benchmark on a Multi Node Cluster... 48
5.4.5 Fault-tolerance Benchmark of Scalable RPMS .. 50

5.5 Benchmark Analysis and Comparison .. 52
6 Conclusions and Future Work .. 59

6.1 Conclusions ... 59
6.2 Future Work ... 60
6.3 Reflections ... 61

References ... 63
Appendix A: Sample from Generated Test Data ... 67
Appendix B: RDBMS and Scalable RPMS Prototype Measurements and Chart
 Representation of each Measurement ... 69
 B.1 MySQL and HBase Benchmark Statistics ... 69
 B.2 Chart Represenation of Benchmark Statistics.. 82

ix

List of Figures

Figure 2-1: Overall Architecture of RMRS .. 12
Figure 2-2: Overall Architecture of RPMS .. 14
Figure 2-3: WANDA System architecture ... 15
Figure 3-1: High-level Hadoop Architecture ... 20
Figure 3-2: Hadoop’s system architecture showing technologies relevant to this thesis 21
Figure 3-3: Logical view of map and reduce functions ... 22
Figure 4-1: Overall Architecture of Scalable RPMS ... 31
Figure 4-2: High-level RPMS data platform .. 32
Figure 4-3: Distributed Storage Model of Scalable RPMS .. 35
Figure 5-1: HBase benchmark differences between system with repeated machine

failures and a system without such failures ... 51
Figure 5-2: 1 GB of Data Load Benchmark Statistics ... 52
Figure 5-3: WorkloadA Read Latency vs. Throughput Benchmark Statistics 53
Figure 5-4: WorkloadA Write Latency Benchmark Statistics ... 53
Figure 5-5: Elapsed Time (runtime) versus Number of Operations for WorkloadA 54
Figure 5-6: Data Load Benchmark Statistics for 100 GB .. 55
Figure 5-7: Data Load Benchmark Statistics for 250 GB .. 55
Figure 5-8: WorkloadC Benchmark Statistics on 100 million rows 56
Figure 5-9: WorkloadC Benchmark Statistics on 250 million rows 56
Figure 5-10: HBase Read Latency Differences on 50 million rows 57
Figure 6-1: Modern RPMS Architecture .. 59
Figure B.2-1: 10 GB of Data Load Performance Differences ... 82
Figure B.2-2: 50 GB of Data Load Performance Differences ... 82
Figure B.2-3: WorkloadC Read Latency vs. Throughput Benchmark Statistics 83
Figure B.2-4: Elapsed Time vs. Number of Operations Chart on WorkloadC 83
Figure B.2-5: WorkloadD Read Latency vs. Throughput Benchmark Statistics 84
Figure B.2-6: WorkloadD Write Latency vs. Throughput Benchmark Statistics 84
Figure B.2-7: Elapsed Time versus the Number of Operations Chart on WorkloadD 85
Figure B.2-8: WorkloadE Scan Latency vs. Throughput Benchmark Statistics 85
FigureB.2-9: WorkloadE Write Latency vs. Throughput Benchmark Statistics 86
Figure B.2-10: Elapsed Time versus the Number of Operations Chart on WorkloadE 86

xi

List of Tables

Table 1-1: Comparison of Technologies with respect to their applicability for realizing an
RPM ... 7

Table 4-1: User HBase Table .. 34
Table 4-2: Vital Sign HBase Table ... 34
Table 5-1: Configuration of Each Machine Used for Benchmarking 40
Table 5-2: Machine Specifications .. 43
Table 5-3: MySQL Data Load ... 43
Table 5-4: MySQL Data Benchmark with 1 Million Rows .. 44
Table 5-5: MySQL Data Load after MySQL Shard Reconfiguration (Four instances) 45
Table 5-6: MySQL Data Load after MySQL Shard Reconfiguration (Five instances) 45
Table 5-7: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration (Four

instances) ... 46
Table 5-8: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration (Five

instances) ... 46
Table 5-9: HBase Data Load on a Cluster of Single Machine .. 47
Table 5-10: HBase Benchmark on a Cluster of Single Machine with 1 million Rows and

500,000 Operations ... 47
Table 5-11: HBase Data Load on a Cluster of Four Machines after HBase Tuning 49
Table 5-12: HBase Data Load on a Cluster of Five Machines .. 49
Table 5-13: HBase Data Read (Workload C) on a Cluster of Four Machines after HBase

Tuning ... 50
Table 5-14: HBase Data Read (Workload C) on a Cluster of Five Machines 50
Table 5-15: Fault-tolerance benchmark with workloadA on a Cluster of Four Machines 51
Table 5-16: HBase Data Read/Write (Workload D) on a Cluster of Five Machines 57
Table B.1-1: MySQL Benchmark with 10 million Rows and 1 million Operations. 69
Table B.1-2: MySQL Benchmark with 50 million Rows and 10 million Operations. 70
Table B.1-3: HBase Benchmark on a Cluster of Single Machine with 10 million Rows

and 1 million Operations. .. 71
Table B.1-4: HBase Benchmark on a Cluster of Single Machine with 50 million Rows

and 10 million Operations. .. 72
Table B.1-5: HBase Data Load on a Cluster of Two Machines .. 72
Table B.1-6: HBase Benchmark on a Cluster of Two Machines with 1 million Rows and

500,000 Operations. .. 73
Table B.1-7: HBase Benchmark on a Cluster of Two Machines with 10 million Rows and

1 million Operations. ... 74
Table B.1-8: HBase Benchmark on a Cluster of Two Machines with 50 million Rows and

10 million Operations. ... 75
Table B.1-9: HBase Data Load on a Cluster of Three Machines .. 75
Table B.1-10: HBase Benchmark on a Cluster of Three Machines with 1 million Rows

and 500,000 Operations. .. 76

xii

Table B.1-11: HBase Benchmark on a Cluster of Three Machines with 10 million Rows
and 1 million Operations. .. 77

Table B.1-12: HBase Benchmark on a Cluster of Three Machines with 50 million Rows
and 10 million Operations. .. 78

Table B.1-13: HBase Data Load on a Cluster of Four Machines .. 78
Table B.1-14: HBase Benchmark on a Cluster of Four Machines with 1 million Rows and

500,000 Operations. .. 79
Table B.1-15: HBase Benchmark on a Cluster of Four Machines with 10 million Rows

and 1 million Operations. .. 80
Table B.1-16: HBase Benchmark on a Cluster of Four Machines with 50 million Rows

and 10 million Operations. .. 81

xiii

List of acronyms and abbreviations

ACID Atomic Consistent Independent Durable
API Application Programming Interface
BOINC Berkeley Open Infrastructure for Network Computing
C2DM Cloud to Device Messaging
CHF Congestive Heart Failure
CPU Central Processing Unit
GPS Global Positioning System
CRUD Create Retrieve Update Delete
CSV Comma Separated Values
DDL Data Definition Language
ECG Electrocardiography
ETL Extract Transform Load
GFS Google File System
HDFS Hadoop Distributed File System
HDVC High Definition Video Conferencing
HiveQL Apache Hive Query Language
HPC High Performance Computing
HTML Hypertext Markup Language
HTTP Hypertext Transfer Protocol
IBM International Business Machines Corp.
ICU Intensive Care Unit
I/O Input/Output
JDBC Java Database Connectivity
JSON JavaScript Object Notation
JVM Java Virtual Machine
IP Internet Protocol
MATLAB Matrix Laboratory
MPI Message-Passing Interface
MS SQL Microsoft Structured Query Language
MySQL Structured Query Language
NoSQL Not Only Structured Query Language
ODBC Open Database Connectivity
OLTP Online Transaction Processing
RAM Random Access Memory
RCFile Record Columnar File
RDBMS Relational Database Management System
REST Representational State Transfer
RMRS Remote Medical Records System
RPM Remote Patient Monitoring
RPMBS Remote Patient Monitoring Backed System
RPMS Remote Patient Monitoring System
SAN Storage Area Network
SPOF Single Point of Failure
SQL Structured Query Language
UI User Interface

xiv

URL Uniform Resource Locator
VoIP Voice over IP
WANDA Weight and Activity with Blood Pressure Monitoring System
WHI PAM West Health Institute Personal Activity Monitor
WHI SMS West Health Institute Sign Monitoring System
XML Extensible Markup Language
YCSB Yahoo Cloud System Benchmark

1

1 Introduction
This chapter briefly introduces the area that is going to be investigated during this

master’s thesis project. It focuses on the main problem, how the problem is going to be
solved, what the goals of this thesis project are, and how to achieve these goals. The final
section of the chapter explains the overall structure of this thesis.

1.1 Overview
For many years the demand for health care of human beings has steadily increased.

Additionally, more and more flexible and efficient ways of treatment are being developed.
Today the use of information technology (IT) is wide spread in health care. One of the areas
where it is being applied is remote patient monitoring. This application area is growing
incredibly fast [1, 2]. According to a report from Berg Insight, around 2.8 million patients
worldwide were using a home monitored service at the end of 2012 [3], and this number was
expected to grow to 9.4 million by 2017 [4].

Remote Patient Monitoring is a technology that enables health care providers to monitor
patients' health conditions while they are in their residences. This technology collects a
patient's vital signs (e.g. blood oxygen saturation level, blood pressure), biometric data (e.g.
level of glucose in blood, pulse oximetry), and other data (e.g. list of medications, diet
compliance, disease symptoms). Today much of this data is collected by medical sensors and
transferred electronically to a specific health care provider in real-time. This health care
provider in turn provides an interface that allows clinicians and other health care personnel to
monitor the health of their patients in (near) real-time. Some of the expected benefits of this
technology are increased access to health care and a decrease in healthcare delivery costs.

Presently, a number of Remote Patient Monitoring systems (RPMS) offer a reliable
solution which enables clinicians to monitor their patients [5, 6]. The majority of these
systems use a traditional relational database management system (RDBMS) for data
processing and storage. Although these systems manipulate the data through non-scalable and
slow relational databases, they are currently able to effectively and rapidly handle this data.
The primary reason that they are able to do so is because the number of patients that are being
remotely monitored is still small. However, because of the rapid expansion of RPMSs, within
a few years these systems will face a challenge managing the large amount of data that will be
collected (and the large amount of data that was collected earlier). These collections of very
large amounts of data are often called “big data”. As a consequence of the expected increase
in both the number of patients and the increase in the amount of data per patient that can (and
will) be collected, there will be a need for scalability, high performance, load balancing,
utilization of commodity hardware, etc. Unfortunately, it has already been shown that
relational databases are not a good solution for handling big data [7, 8].

The definition of big data has been elucidated and described by a number of researchers
and entrepreneurs. They all came to the same characterization. For example, Paul C.
Zikopoulos, et al. [9] state that big data is structured and unstructured information that comes
from everywhere, including various types of devices, social media sites, digital world, GPS
signals, etc. IBM defines four characteristics or dimensions of big data [10]:
Volume terabytes and even petabytes of information;
Velocity high speed, non-delayed information exchange between source and destination;
Variety any type of structured and unstructured data; and
Veracity trust establishment among different kind of enterprises.

2

Efficient data processing and handling by fulfilling the first three dimensions is a real
challenge for RDBMS, because when the amount of data increases, none of those three
characteristics can be satisfied by relational database systems.

In an RPMS, big data could include any kind of health care related information, including
health care measurements obtained from medical devices, video/audio communication
between patients and clinicians, patients' health history, disease information, etc. Given this
list of health related information we assume that the average amount of patient data stored per
patient in RPM will range from a few megabytes to several gigabytes. This means that within
a few years RPMS for a county (such as Stockholm – with ~2 million persons) will need to
store Terabytes (1012) to Petabytes (1015) of information. Certainly new technology is needed
for effective data processing and storing such a large amount of data [11].

Apache’s Hadoop ecosystem provides a flexible and efficient solution for managing big
data. It allows distributed processing of large data sets across clusters of commodity
computers (nodes) using a simple programming model [12]. Clusters may contain a single
server or thousands of machines, each providing storage and computing resources. The
Hadoop architecture contains two core components: the Hadoop Distributed File System
(HDFS) for storage and Map-Reduce for data processing. Both components are fundamental
for a number of other components that deal with big data at various levels. This thesis project
will design a new scalable remote patient monitoring system (RPMS) by implementing
Hadoop with its components and then will implement and compare this prototype with an
existing relational database oriented RPMS.

1.2 Problem Analysis and Definition
This section analyzes which technologies are the most appropriate choice for scalable data

management and identifies the problems in the chosen area.

1.2.1 Problem Preview

Today’s RPMSs can be divided into three parts where in the first part patients transmit
their health measurements to the RPMS and by querying those measurements physicians
access and monitor patients regularly. The second part contains only machines mining each
obtained measurements and prioritize patients according to their medical records.
Prioritization is strictly based on certain patterns which identifies the level of criticality on
measurement results and gives highly prioritized patients to the third part. In the last part
clinicians monitor only patients whose health is below than normal and therefore this part
should function extremely quickly and provide real-time health measurement analysis. The
main idea behind this thesis project is to investigate effective data management in the first part
of today’s large RPMSs and to design a new scalable system; therefore attention has to be
paid to reliable data storage systems and efficient data processing.

Several techniques for building distributed systems have been proposed and implemented
for big data handling. We will first examine the advantages and disadvantages of RPMS’s
current storage system (traditional RDBMS [13, 14]) and then examine replacing this using
big data techniques. Following this we explain what data storage parameters have to be
considered in order to build a scalable RPMS.

1.2.2 Traditional Relational Database Management System

A traditional RDBMS is a database management system (DBMS) based on a relational
model. This has been the predominant choice for storing information in various databases.
These databases are mainly used to manage the organization, security, access, and integrity of

3

data. The information is stored in a set of tables, each of which has a unique identifier called a
primary key. The tables are then related to one another using a foreign key, which is simply a
primary key in another table. Such relation oriented tables are effective in managing relational
data.

Advantages of a RDBMS:
• Support for Atomic, Consistent, Independent, and Durable (ACID) transactions.
• Very fast for processing small data-sets – as these systems take advantage of hardware

(latest Central Processing Units (CPUs), large memories, etc.) for processing;
• Implement Structured Query Language (SQL) – a special purpose query language that

fits with any type of RDBMS;
• Comprehensive Online Transaction Processing (OLTP) support is really beneficial,

especially for transaction-oriented applications;
• Privileges - full authorization and privilege control can be easily realized by the

database administrator.

Disadvantages of a RDBMS:
• Cost – it is expensive to set up and maintain the database system.
• Implementing transactional, concurrency, consistency, and durability for large data-

sets become very cumbersome as the size of the data set increases. Cluster based
implementation is hard due to the nature of ACID.

• Unable to manage unstructured and/or semi-structured data as RDBMSs only work
effectively with structured data. Lack of full support for unstructured and semi-
structured data such as documents, videos, images, spatial data, etc.

• Scalability, clustering, and distributed realizations are hard as a RDBMS does not
easily support distributed computing and clustering. Scalable data management is too
slow.

• Fast text searching within fields is difficult.
• Some relational databases have limits on field lengths, which can lead to data loss if a

data item is large.
• Making two databases, located in different areas, to "talk" to each other can be really

expensive.

1.2.3 Distributed Computing Technologies

Many different distributed computing technologies may be used to replace a traditional
relational database when the amount of data to process becomes enormous. Each technology
fulfills certain requirements and provides a different level of efficiency when handling big
data. This section introduces three well known and widely used distributed computing
techniques that can be applied to big data.

1.2.3.1 Grid Computing: Message-Passing Interface (MPI)

Grid computing exploits a set of computer resources, potentially in different locations, to
achieve a common goal [15]. Together with high performance computing (HPC), Grid
computing provides large scale data processing by using message passing interface (MPI)
APIs [16]. MPI is a message passing programming model which utilizes standard library
functions on a wide variety of parallel computers. Broadly speaking, the main idea behind
HPC is to distribute tasks across a cluster of machines, which access a shared file system. The
shared filed system is frequently hosted by a storage area network (SAN).

4

Advantages of grid computing:
• Exploits parallel processing with different machines in the grid concurrently executing

different parts of the task. This is a good choice for compute-intensive jobs.
• Virtual organizations can share their resources to form a large virtual computing

system.
• The grid schedules grid jobs on computers with low utilization, thus achieves resource

balancing to avoid unexpected peaks.
• Grid computing systems can provide reliability by using graceful recovery techniques

to address an assortment of hardware failures. Processors, power supplies, and cooling
systems are frequently duplicated so a failed subsystem can be replaced by another
without turning the system off.

Disadvantages of grid computing:
• There are problems when nodes in the grid need to access large data volumes

(hundreds of gigabytes). This occurs because network bandwidth becomes a
bottleneck, and therefore compute nodes may become idle.

• MPI provides great control to developers; however, it requires them to explicitly
handle the mechanics of data flow, using low-level C routines, sockets, and high-level
algorithms for data analysis.

• When a failure happens in the grid, other machines may continue processing the other
parts of the task without knowing about the failure. While MPI may allow control
based upon failure detection, the code to do so is much harder to write.

• Grid computing computations may not be interoperable when different groups (with
diverse components, policies, and mechanisms) want to share their resources.

• Shared infrastructure services should be provided to avoid repeated development,
installation, and configuration – otherwise program development and operations will
be slow.

1.2.3.2 Volunteer Computing

Volunteer computing is a type of distributed computing which enables ordinary Internet
users to share their computer's storage and idle processing power as part of a high-
performance parallel computing network [17]. This is a powerful distributed computing
technique that can handle large amounts of data in an efficient manner by utilizing distributed
resources. Volunteer computing is based on breaking the problem into chunks called work
units, which are transmitted to idle computers around the world to be processed. When a
client finish processing its assigned work unit, the results are sent back to a server and the
client is assigned another work unit to process.

There are many platforms that achieve scalability through volunteer computing. Berkeley
Open Infrastructure for Network Computing (BOINC) is an open-source software platform
for computing using volunteered resources. It provides an opportunity for scientists to create
and operate public-resource computing projects. A large number of diverse applications are
used on top of BOINC to handle enormous processing power intensive research projects [18].

5

Advantages of volunteer computing:
• High-performance computing is possible by breaking the problem into independent

pieces that can be processed in parallel using a set of machines.
• Resources can be shared among autonomous projects. This is facilitated because

projects are never centrally authorized, thus each project operates its own servers.
Volunteers can even participate in multiple projects.

• Because computer owners can registered with multiple projects, when one project
stops or is closed for repair, another projects may inherit their computing power.

Disadvantages of volunteer computing:
• Different parts of the project are executed on untrusted machines connected to the

Internet. These machines may have fluctuating connection throughputs and may not
store data locality. The machines may also be removed from service or connectivity
may be terminated at any time.

• Each work unit has to be sent across the network, hence the computational time should
dwarf the transfer time, and otherwise the system will perform poorly. Because each
volunteer donates CPU computing power the amount of computing power may not
scale with the available aggregate bandwidth.

• Volunteer computing is not a good solution for private and proprietary applications as
they are unable to rely on untrusted computing power shared by volunteers.

1.2.3.3 Apache Hadoop

Apache Hadoop is an open source framework to manage and handle large scalable data
processing by writing and running various distributed applications [19, 20]. Distributed
processing of a large amount of data is done in a Hadoop cluster (a set of parallel commodity
machines networked together in one location). Millions of client computers can submit
diverse tasks to this computational cloud and obtain results in a short time. Hadoop is also
referred to as Key/Value Computing.

Advantages of Apache Hadoop:
• This solution is highly scalable as it distributes data across clusters of commodity

computers and exploits parallel processing.
• A very large amount of data storage is available enabling scalability from a single

node to hundreds of thousands of nodes in such a way that individual nodes can use
local hard drives, processing power, CPU, and random access memory (RAM).

• Error handling is provided in the application layer, hence when a node fails, backup
nodes can be added dynamically.

• When it is necessary to add more nodes to the cluster in order to make the system
more powerful in terms of storage and performance, a few lines of refactoring code is
sufficient to scale the machines. Unlike RDBMS, the Hadoop platform provides
dependable performance growth proportional to the number of nodes available in the
cluster.

• Hadoop distributes both data and computations, but computation is done only on local
data preventing the network from being a bottleneck.

• Because all of the tasks are independent:
• Partial failures can be easily handled by restarting entire nodes if they fail;
• Propagation of failures and intolerant synchronous distributed systems can be

avoided during data processing; and

6

• Speculative execution can be used to work around stragglers.
• Hadoop utilizes a simple programming model, hence an end-user developer only

writes map-reduce tasks.
• When faults are detected by nodes, a quick automated recovery will be run

immediately by the application layer.
• Each node automatically maintains multiple copies of data, thus in the event of

failures, the copies of the data will be automatically redeployed and processed.

Disadvantages of Apache Hadoop:
• Hadoop is not yet mature and both Map/Reduce and HDFS are under active

development.
• There is no central data, hence there is a restricted choice of programming models.
• Performing a "join" operation of multiple datasets is slow and tricky, as there are no

indices. Often entire datasets must be copied in the process of performing a join.
• Cluster management is difficult, hence debugging distributed software and collecting

logs of operations from the clusters is hard.
• The optimal configuration of (number of mappers, reducers, memory limits) nodes is

not obvious.
• Managing job flow is not always trivial, as it is hard to manage flows when

intermediate data should be kept.

1.2.4 Prerequisites for a Scalable RPMS

The basic requirements for a scalable RPMS are:
• The system has to support efficient handling of unstructured and/or semi-

structured data, because most of the data in RPMS is not structured data (as it
includes video/audio, individual health care measurements, etc.).

• Setting up and maintaining the data storage system should not be expensive.
• There is a limited need for data consistency; hence the ACID properties can be

relaxed.
• The system has to maintain flat scalability, because as the number of patients

grows the number of machines in the cluster has to be increased proportionally.
• Data storage should be sufficiently large to store and process all the incoming data.
• Data writing, searching, and retrieval for a single patient’s data have to be very fast

and independent of the number of patients in the system.
• Data will be written once and read several times. In fact, most of the data that is

stored will never be modified or deleted; hence we can exploit this property of this
data.

Generalizing all above requirements enables us to compare the above technologies in
Table 1-1. Of all the systems shown in this table Apache Hadoop appears to offer the best
solution for a scalable RPMS. All of these requirements need to be addressed during the
development of our prototype.

7

Table 1-1: Comparison of Technologies with respect to their applicability for
realizing an RPM

 RDBMS Grid Computing Volunteer
Computing Hadoop

Efficient support of
semi-structured and
unstructured data

No Yes Yes Yes

Trustworthiness of
system

Yes No, because performing
calculations on different
organizational computers
might not be entirely
trustworthy

No, because
computing power
shared by volunteers
might not be as secure
as needed

Yes

Simple
programming model

Yes No Yes Yes

Data size Gigabytes Terabytes, mostly
depends on
supercomputers

Terabytes, mostly
depends on server
computers

Petabytes

High-performance
processing of big
data

Inefficient Partially efficient
because of the network
bandwidth

Partially efficient
because of the
volunteer numbers in
the project and
network bandwidth

Very Efficient

Date updates Read and write
many times

Depends on the File
System

Depends on the File
System

Write once and read
many times

Development and
Configuration

Fast, requires less
effort

Costly and difficult
because written
programs have to be run
in supercomputers which
have customized
operating systems

Fast because of
diverse applications

Very fast because of
diverse applications

Scaling Nonlinear Linear Linear Linear

Structure Static Schema Dynamic Schema Dynamic Schema Dynamic Schema

Data Store
Connectivity

Fast, because of
data locality

Slow, because it is hard
to provide constant high-
speed network
connection

Slow, because it is
hard to provide
constant high-speed
network connection

Very Fast, because of
data locality

Cost Expensive because
of non-linear
behavior

Inexpensive because
supercomputers do not
need super hardware
configuration

Inexpensive because
main servers do not
need expensive
hardware

Inexpensive because
ordinary computers
may become nodes in
clusters

1.2.5 Problem Definition

As said in the previous section, a scalable RPMS demands that we meet several specific
requirements. During the designing process all of these requirements have to be considered.
Additionally, some critical issues and missing functionality can be identified and should be
investigated. The followings are some of the basic requirements and issues that were
discovered and for which relevant solutions need to be found during this thesis project:

• All of the prerequisites mentioned in section 1.2.4 should be fulfilled;
• Currently Apache Hadoop provides a number of technologies for both HDFS and

Map/Reduce tasks. A specific set of technologies should be chosen to fit the
requirements of a scalable RPMS and to efficiently provide the needed function.

• For testing of two systems (RDBMS and Hadoop) real test data has to be collected
or similar generated and the two alternatives have to be properly benchmarked.

8

1.3 Goals
The primary goal of this master’s thesis project is to define an efficient way to build and

operate a reliable, highly scalable, fault-tolerant, redundant, and highly available RPMS. After
theoretically and practically proving the inefficiency of a current relational database oriented
system, the project proposes a design for a new RPMS that should function smoothly with any
amount of data. In order to achieve the project’s main goals, the project is broken down into
several tasks. These tasks are:

• Implementing Apache Hadoop along with all necessary and suitable components
to build a scalable RPMS.

• Develop a scalable system that fulfills the requirements stated in section 1.2.4 and
realize this system following professional coding standards and modern
architectural design principles.

• Show that existing RDBMS oriented RPMSs cannot offer efficient data
management for big data (in the case of an RPM). Test software suites will be used
to benchmark both RDBMS and Hadoop systems and compare them in terms of
performance, scalability, and load balancing.

• Clearly demonstrating the prototype system's reliability, scalability, fault-
tolerance, redundancy, and high availability.

1.4 Methodology
This thesis project incorporates both qualitative and quantitative research methods. As the

thesis project is based on a scientific study utilizing experimental and empirical approaches to
demonstrate scientific validity, a quantitative research method was the primary technique. The
main reason for choosing an experimental approach was the absence of a theoretical means to
accomplish the goals stated in Section 1.3. Empirical and experimental approaches were
utilized after clarifying the research question and identifying the evaluation metrics regarding
performance analysis. In the end, a proof of concept prototype is to be implemented to answer
the question posed. Due to the lack of access to actual health care data, generated data was
used to test and evaluate the two different system architectures.

A qualitative research methodology was used to analyze earlier work done in this area. A
design-based research approach is the most suitable technique to identify the limitations and
issues of previous works and to design a new system. This approach provides new knowledge
through the process of designing, implementing, and evaluating an artifact. In this thesis
project, the artifact is an implementation of an Apache Hadoop platform. For the proper
implementation of Hadoop, problems were specified in the first phase and then suitable
literature was studied to characterize the implementation, deployment, and test cases in order
to ensure that the relevant issues were examined. Eventually, a step-by-step procedure was
proposed as a theoretical solution and a scalable system was designed and tested by following
each step.

1.5 Structure of the thesis
The thesis project is organized as follows:

Chapter 1 introduced the idea of an RPMS. This chapter described current trends,
limitations, and future expectations. It briefly analyzed the problem by comparing the
advantages and disadvantages of traditional relational databases with three widely used
distributed computing techniques. The problem was defined along with its context. The goals

9

of the thesis project were presented, along with the research methodologies that will be
utilized.

Chapter 2 describes relevant earlier work, explains the overall architecture of RPM and
analyzes its limitations and issues. By considering the advantages and disadvantages of prior
work, Chapter 2 illustrates how suitable solutions should be designed to properly address the
relevant parts of an overall solution for the stated problem.

Chapter 3 presents scalable and reliable data management techniques by giving brief
descriptions. The chapter explains the different ways of implementing these technologies and
reviews their efficiency in terms of development and gives some specific use cases.

Chapter 4 gives a detailed explanation of the architecture of the proposed scalable RPMS
to be developed during this thesis project. This chapter describes the overall structure of the
system, shows the interactions between the technologies that have been used and provides
instructions of how to use them to achieve the project’s goals. Finally, the chapter shows how
the big data characteristics were addressed in the proposed reliable and fault-tolerant RPMS.

Chapter 5 benchmarks, analyzes, and compares two different RPMS architectures. The
same amount of data that would be managed by an example RPMS is used for testing both
RDBMS and Hadoop systems. A comparison of these two systems is illustrated using charts
and graphs.

Chapter 6 concludes the thesis, suggests some potential future work, and describes the
economic, environmental, and social aspects of this work.

Appendix A presents a sample data generated for the benchmarking phase of our newly
designed prototype. Since, any kind of the medical information is considered to be security
sensitive, we developed an application that generates “fake” medical records.

Appendix B includes all measurement results obtained during benchmarking of our
prototype and illustrates the results in relevant graphs.

11

2 Background
A number of traditional RDBMS oriented systems are used to implement RPMSs. This

chapter introduces several traditional RPMSs, explains the efficiency of data processing in
these systems, and describes potential expectations (inefficiency of scalable data
management) as the number of patients in the system increases. Specifically, data sorting,
writing, and reading are considered as the main barriers when the amount of data stored in the
system becomes very large, hence these operations are used to show the main drawbacks of
traditional RPMSs.

2.1 Traditional RPMSs
As the new trend of using RPMS in modern patient care has proven valuable in a short

period of time, the majority of RPMSs are being developed to provide simple, fast, flexible,
and sophisticated services to both patients and clinicians. Three different RDBMS oriented
RPMSs are presented in this section. Each system's architecture is concisely and clearly
described in order to explain later how this system reacts when the amount of data in the
system becomes enormous. Specific descriptions and explanations of the health measurement
data utilized in each of these systems are outside the scope of this master's thesis.

2.1.1 The Technology Transfer Alliance’s Carenet Services
project: Remote Medical Records System

The Technology Transfer Alliance’s Carenet Team has stated: “The objective of Carenet
is to establish a research infrastructure where more cost-effective solutions to already existing
demands can be demonstrated as well as completely new systems supporting the
transformation of the health care work procedures to increase quality and cut costs in the
overall process. The user scenarios addressed include teleconferencing sessions among
medical experts, e-learning and remote patient monitoring.” [21]

2.1.1.1 Overview
The Carenet Services’ Remote Medical Records System (RMRS) enables patients to

stream their health care data to a web server where clinicians can access these data and can
monitor the patients in (near) real-time [21]. Currently, RMRS supports two kinds of medical
sensors to measure the health conditions of patients. Additionally, Carenet Services provide
reliable, robust, and fast high definition video conferencing (HDVC) to establish high quality
video and audio communications session between patients and their doctors. In this system,
three software applications were implemented to provide the services mentioned above. All of
the information exchanged between patients and their clinicians are private and highly
confidential.

2.1.1.2 System Architecture
The system includes three software applications to provide remote monitoring of patients.

The first application is responsible for collecting health measurements from medical devices,
performing an integrity check of the data, and securely transmitting the data to a web server
over a network [22]. After receiving these data packets, the second application concurrently
pushes the data to a web page to show these measurements to the relevant clinicians and
stores the measurements in a relational database [23]. The third application provides high
quality video/audio sessions between doctors and patients [24]. Figure 2-1 depicts the overall
architecture of RMRS.

12

As s
after th
pushes t
clinician
video/au
plays th
directly
multime

Figu

Mos
are conc
the indi
patient.
in the s
records,
require
processe
access
Martíne
health-c

* Details

shown in F
he measurem
the data to t
n). Addition
udio packet

he role of a
transferre

edia media c

ure 2-1: Ov

st users of th
cerned with
ividual pati
However, s

system, as t
, the treatm
more comp

ed and acc
are outside

ez Fernánde
care records

s about the m

Figure 2-1,
ment*. Whe
the relevant
nally, patie
ts. Commun
Session Init
d between
conferencin

verall Arch

he data stor
h the privac
ient and the
specific clin
they need t

ments of pas
plex querie
essed at th

e of the sc
ez’s master’
s [25].

measurements

patients tra
en the serv
t clinicians

ents commu
nication ses
tiation Proto

n the patie
ng system ar

hitecture of

red in the R
cy and secur
eir approve
nicians have
to access th
st illnesses,
es and supp
e database
ope of this
s thesis to f

s and how th

ansmit mea
ver receives
(if there is

unicate with
sion data is
ocol (SIP) p

ent and the
re described

f RMRS

RMRS are cl
rity of their

ed clinicians
e a wide ran
he history o

etc. For th
porting the
level. Deta

s thesis, th
find out mo

hey are made

asurement d
s the meas
at least one

h the releva
s not stored
proxy. All o
e relevant
d in [24].

linicians, ra
r personal h
s have acce
nge of acce
of diseases
hese reasons
se queries
ails of wha
he interested
ore about da

can be foun

data to the
urement da

e open conn
ant clinician
on the serv

of the media
clinician(s

ther than pa
health care d
ess to the d
ss to most o
of patients,

s certain typ
will requir
t data a sp
d reader m
ata access c

d in [22].

server imm
ata it autom
nection to a
n(s) by exc
ver, this ser
a within a s
s). Details

atients. The
data, theref
data upload
of the patien
, stored hea
pes of requ
re more da

pecific clini
may refer to
control of el

mediately
matically

relevant
changing
rver only
ession is
of this

e patients
fore only
ded by a
nts’ data
alth care

uests will
ata to be
cian can
o Alexis
lectronic

13

The second application handles SQL queries from the RMRS and it is considered the
primary part of the system. The main responsibility of the application is to store all the health
measurements, organize and present a patient’s health care situation as one or more web
pages, and retrieve the relevant data whenever a clinician requests it. This application utilizes
a MySQL relational database to store the data obtained from patients. Nine database tables are
currently used to store all of the relevant patient related information, including health
measurements from different kinds of medical sensors, disease history of patients, earlier
treatments of each patient, etc. Expensive SQL JOIN operations are used to process specific
advanced SQL queries. The purpose of these queries are to retrieve patient specific
information for a relevant clinician within a given date range with stated parameters; create,
calculate, evaluate, and validate patient records; and to gather all relevant information
(treatments, diagnoses, etc.) regarding specific diseases and/or patients. Details of these
queries are given in [23].

2.1.2 Remote Patient Monitoring System

The Remote Patient Monitoring System (RPMS) proposed by Sherin Sebastian, et al.
provides efficient tele-healthcare services by utilizing various hardware and software
components [26]. The primary goal of the system is to enable cardiology healthcare services
at a distance.

2.1.2.1 Overview

Various software and hardware tools were used to design RPMS. As stated above, the
field of cardiology was the major focus for this system. Electrocardiography (ECG) was
exploited for diagnosis. Signal processing techniques are used to analyze a constant stream of
ECG signals (along with vital signs, various parameters, etc.). These signals were obtained as
images from a display. Necessary information was extracted from these signals and examined
with the help of MATLAB tools. All the processed information was then sent to a web server
through an internet network. At the web server, all of the data was stored in a relational
database and then pushed to the client for monitoring. As a result, clinicians were able to
observe their patients' health conditions via a web page by using Android based smart phones
and/or tablets.

2.1.2.2 System Architecture

In the initial phase of implementing the RPMS the system captured vital signs and other
parameters from an Intensive Care Unit (ICU) which is positioned right in front of a webcam,
the captured data was parsed, and meaningful information was extracted by analyzing the
parsed data. The webcam continuously captures images at a rate of one image every four
seconds from the screen of a bedside monitor. Each image contains information regarding to
the patient's heart rate, ECG, blood oxygen saturation level (SpO2), and breathing rate. Digits
in images represent the health conditions of patients and each digit is separately cropped out
for analysis by utilizing MATLAB as a tool. The subtract function in MATLAB is used to
compare a cropped digit image with a previously stored image in a MATLAB database in
order to extract the image's numeric value. After image processing and analysis the data is
uploaded to a web server by specifying the server's Uniform Resource Locator (URL) in the
MATLAB commands.

At the web application server a MySQL relational database was used to store the health-
care information extracted by MATLAB. The major tasks of the server include receiving a
stream of data packets from multiple clients, storing the received data in a database, and
composing this data into a web page which can subsequently be viewed using an Android

14

phone/ta
make ap
the RPM

The
server w
such as
MATLA
file alon
forward
the C2D

Figu

ablet. The
ppropriate d
MS.

RPMS inc
where Andro

when a pat
AB generate
ng with the

ds this text f
DM server w

ure 2-2: Ov

availability
diagnosis of

cludes an a
oid phones
tient's curre
es an additi
e health da
file together
which sends

verall Arch

of near re
f their patie

dditional se
register and

ent heart rat
onal text fil
ta to the w
r with the c

s a notificati

hitecture of

eal-time hea
ents. Figure

erver called
d obtain a u
te is outside
le from the

web server.
correspondi
ion directly

f RPMS

alth measur
e 2-2 illustra

d a Cloud t
unique ident
e the norma

health info
When the
ng ID of th
to the doct

ement data
ates the ove

to Device M
ifier (ID). In
l range, a b
rmation and
server dete

he clinician'
or's phone.

a enables do
erall archite

Messaging
In critical si
batch file ru
d transmits
ects this tex
s Android p

octors to
ecture of

(C2DM)
tuations,

unning in
this text

xt file it
phone to

2.1.3

Rem
Weight
leverage
measure
compon

2.1.3.1

The
three-tie
conditio
web ser
web app
the avai
(a back-
backups
analysis
search,
interacti

Figu

2.1.3.2

The
wireless
specific
weight
phone l
compute

Remote

mote Patient
and Activi

es medical
ements of p
nents which

1 Over

core comp
er architectu
ons. All the
rver stores t
plication an
ilability of h
-end databa
s and recov
s including
data secur

ion within t

ure 2-3: WA

2 Syst

first tier in
s sensors an
c types of p
scales, bloo
line connec
ers. In this

e Patient

t Monitoring
ty with Blo
sensor techn
patients wit
are sensors

rview

ponent of R
ure. The firs
health mea

the measure
d/or a mobi
healthcare m
ase server).
ery. Further
linear regr

rity, etc. Fi
this WAND

ANDA Sys

tem Archi

n WANDA
nd mobile
patients. Th
od pressure
ction for el
s version t

t Monito

g for Conge
ood Pressur
nologies an
th CHF [27
s, a web serv

RPM for CH
st tier consi
asurements
ements, chec
ile applicati
measuremen
The main r
rmore, the d
ression, ear
igure 2-3 s

DA system.

tem archit

itecture

A architectu
devices. Th
he first ver

monitors,
lderly perso
the connect

oring for

estive Heart
re Monitorin
nd wireless
7]. The WA
ver and a ba

HF is a WA
ists of medi
are wireles
cks their int
ion to enabl
nts, the sec
responsibili
data in the
rly adaptive
shows the o

ecture

ure is called
his layer ha
rsion uses s
personal ac
ons who ar
tion betwee

Congest

t Failure (CH
ng System
communica
ANDA syst
ack-end dat

ANDA syst
ical sensors
ssly transmi
tegrity, and
le the patien
ond tier als
ity of the th
third tier is

e alarms, m
overall arch

d the senso
as two desi
simple Blue
ctivity moni
re not accu
en the firs

tive Hear

HF) is a sys
(WANDA)

ations to mo
tem compri
tabase.

tem that wa
for monitor
tted to the s

d push these
nt to be mon
o forwards

hird tier is t
used for va

missing data
hitecture an

ors tier and
gn versions
etooth-base
itors) togeth
ustomed to
t tier and

rt Failure

stem that pr
) architectur
onitor health
ises of thre

as designed
oring patient
second tier

e measurem
nitored. To m

them to a t
to perform
arious kind
a imputation
nd the com

d it is comp
s/interfaces

ed devices
her with a
smart pho
the second

15

e

rovides a
re which
h related
ee major

d using a
ts' health
where a

ments to a
maintain
third tier
database
s of data
n, signal

mponents

prised of
for two

(such as
standard

ones and
d tier is

16

established through a telephone system in real-time. Another version of the WANDA
interface is much broader than the first one and it consists of smart phones which are able to
collect and transfer health measurement* data to a web server.

Since the sensor tier is divided into two parts, the web server tier should provide
appropriate processing for the data that are coming from two different types of sources and
stores this data in a Microsoft SQL database. The reason for needing two different types of
web server tiers is that the format of the data transmitted from the phone line version is much
different than the data from the mobile version. Smart phones in the mobile version
encapsulate the measurement data in a certain format and send it to the web server where
based on the different data packet structures of each sensor these messages are parsed and the
resulting data is stored in an SQL database. Unlike the mobile version, the phone line version
utilizes Ideal Life, WHI PAM (Personal Activity Monitor), and WHI SMS systems which use
incompatible data types and different databases. Data format abstraction and shared ID tables
were used to efficiently analyze and store data transmitted using incompatible formats and
coming from different databases. Another advantage of a shared ID table was to maintain data
integrity of different types of medical records. In addition, when the received measurement
results are out of normal range, the web server sends an alert message to a healthcare provider
via an email or a text message. Details regarding data analysis, integrity maintenance, and
specific SQL queries execution in the web server can be found in [27].

Even little items of medical data in an electronic medical record system can be vitally
important; hence the data that has been collected should be actively guarded against data loss.
The third tier in RPM for CHF, the back-end database tier, is responsible for performing data
backups and recovery. Such a back-end database tier is incredibly helpful when it is necessary
to restore a small number of files after they have been corrupted or accidentally deleted. The
system uses the WHI SOPHI software to perform data backups and recovery. APIs† allow the
SOPHI client application to communicate with a DBMS (Database Management System), to
synchronize all new files, and to recover missing data.

2.2 Efficient data management in traditional RPMSs
The primary advantage of current RPMSs in terms of data management is the simplicity

and flexibility of interaction with a RDBMS. SQL is a widely used programming language to
query an RDBMS. Data authorization and authentication in these databases are managed in a
very simple manner. Database setup and configuration does not require a specific operating
system, as there are version of SQL capable databases available for most major operating
systems and hardware platforms. Support of ACID transactions and Create, Retrieve, Update,
and Delete (CRUD) operations are taken care efficiently. Additionally, third party database
maintenance is available from a number of companies (some of which are quite large). Data
processing in these databases is fast when the amount of data that is being processed is small.

Unfortunately, data management becomes a nightmare when the amount of data in a
database becomes very large. Processing of even simple queries may take a long time.
Furthermore, as the amount of data increases, the amount of commodity hardware needs to
scale up faster than linearly, this leads to very expensive hardware configurations. Another big
drawback of above mentioned traditional RPMSs is due to their attempt to manage both
unstructured and semi-structured data through an RDBMS. This occurs because health
measurements and much other patient related data are semi-structured and record-oriented,

* Details about the health measurements for both WANDA interfaces and how they are read from
medical sensors can be found in [27].
† Details of the APIs developed and used in RPM for CHF system can be found in [28].

17

but an RDBMS is not a good candidate for such data. Additionally, all of these records are
written only once, but read whenever clinicians or patients request them. Because all of the
health measurements and history of patients' diseases & their treatments should be kept, there
are no data updates or deletes required in the tables. Therefore after the initial write operation
all subsequent operations are read only.

The requirements and drawbacks of current RPMSs lead us to define following set of
basic issues that need to be addressed:

• The data store has to support advanced unstructured and semi-structured data
processing;

• Data management has to be very efficient and independently of the amount of data
in the system;

• The system should be fault-tolerant, highly available, scalable, and reliable;
• There is no need for data updates in the data store; and
• The system has to be able to scale out instead of scaling up (as scaling up would be

too expensive).

All of the above assumptions become even more relevant as the number of patients in the
system grows, potentially reaches millions of patients (or more). As a result, the amount of
data stored in the system is expected to be terabytes to petabytes (or more), but responses to a
patient’s or clinician’s simple query should be perceived as being nearly real-time (for the
purposes of this thesis project we will set an upper bound of 2 seconds on the time to process
a user’s request – this time has been chosen as it represents the amount of time that an
interactive user will accept as the delay for a response to a simple request).

19

3 Scalable Data Management: Apache Hadoop
This chapter introduces Apache Hadoop along with its major components which are

suitable candidate components to build a new scalable RPMS. Not all of the components that
will be introduced are needed for development of such an RPMS, as it is possible to design
the system with a smaller set of tools that each is used to develop part of the system. The main
reason why additional components are introduced is to understand and analyze the functional
capability of each of these components and to provide more an efficient development path.
Because, each component deals with a given task by using a different approach, there are
different levels of development efficiency that can be achieved. Therefore, the components
that are chosen should reduce the time needed for development, thus producing unique
solutions for the tasks in their given area – while maintaining high interoperability with each
other.

This chapter also explains one of the most important parts of a scalable data management
system: Hadoop clusters. Assembling thousands of nodes into a single cluster and smoothly
distributing tasks across these nodes requires great effort. Hence, appropriate cluster
configuration and customization is vital for effective data processing. Lastly, Hadoop
limitations and issues are examined. Designing a scalable system require deeper
understanding of these limitations and their influences on the final system. Several methods
are proposed to overcome these limitations. One proposed method was implemented in this
design of a scalable remote patient monitoring backend system. Chapter 4 presents a detailed
description of the Hadoop implementation that has been used to build a new scalable RPMS.

3.1 Apache Hadoop
In today’s digital world, petabytes of information from millions of users are being

processed every single day. Therefore, the primary concern for many large internet based
enterprises is scalable and effective management of increasing amounts of data. Although
RDBMSs have a long history of processing enterprise data, they are thought to be unsuitable
for “big data”. For this reason a number of new approaches and technologies have been
proposed and implemented in order to redesign data management systems to meet the
requirements of high availability, high scalability, and low latency; while maintaining
application generality and exploiting weaker consistency requirements. One of the best-known
and well-proven technologies that fulfill the above criteria is Apache’s Hadoop ecosystem.

Hadoop is an open source platform that provides distributed storage as well as distributed
computational capabilities. It is based on a distributed master-slave architecture which uses a
simple communication model where one master process (a Name-Node) controls one or more
processes called slaves (Data-Nodes) [29]. This architecture was initially inspired by Google’s
papers that described their novel distributed file system (the Google File System (GFS) [30])
and Map-Reduce [31] (a computational framework for parallel processing). The successful
implementation of these two concepts resulted in a new technology that enables parallel
computing and data partitioning of large datasets. The Hadoop Distributed File System
(HDFS) and Map-Reduce were modeled after Google's GFS and Map-Reduce. These two are
considered the core components of Hadoop for storage and computation, respectively. These
two components scale with the addition of more and more nodes to a Hadoop cluster, and can
reach an aggregate of petabytes of data on clusters with thousands of nodes. Yahoo!* utilizes

* Yahoo's biggest clusters contain over 4 000 nodes each [32].

20

Hadoop
with cor

Figu

Had
a globa
program
inside a
other pr
availabl

In g
offering
distribut
allows
commun
interven

3.2 M
This

efficient
applicat
compon
compon
efficient
fault-tol
major c
to build

* Details

p to scale ou
re functiona

ure 3-1: Hi

doop is writt
al commun

mming langu
any specific
rogramming
le to other p

general, Ha
g effective d
ted storage
recovery

nication be
ntion of app

Major Co
s section de
t manner. S
tion develo
nents behav
nent may be
t scalable R
lerant, high
omponents.

d a scalable s

s about the A

ut very effic
ality.

gh-level Ha

ten in the J
nity of con
uage can be
 system. Th

g languages
programmin

adoop is an
data manag
e and trans

in millise
etween nod
plication dev

omponen
escribes Ha
Some of th
opment. Th
e differently
e substitute

RPMS. Furt
hly-available
. The figure
system.

APIs for speci

ciently. Figu

adoop Arch

ava program
ntributors.
e used with
here is wide
. A set of A

ng language

n inexpens
ement. It av

sferring cod
econds whe
es and nod
velopers.

nts of H
adoop's bas
em provide
he data fo
y when pro

ed for anoth
hermore, in
e and fast.
e clearly illu

ific programm

ure 3-1 illu

hitecture

mming lang
Although

h Hadoop’s
e support vi

APIs* make
s.

ive and ve
voids costly
de rather th
en nodes

de control

Hadoop
sic compon
e fast data
ormat used
ocessing var
her based o
nteraction b

Figure 3-2
ustrates how

mming langua

strates the h

guage and h
Hadoop it
Streaming

ia a variety
all of the fe

ery powerfu
y transmissi
han data. F

in a clu
are manage

nents which
processing,

d in the s
rious types
on specific
etween the

2 shows the
w the compo

ages can be fo

high-level H

has been des
self is wri
APIs to run
of libraries

eatures of th

ul distribut
ions of larg
Furthermore
uster fail.
ed by the s

handle RP
 while othe

system mat
of data. For
criteria at t
component

e Hadoop E
onents inter

ound in [33]

Hadoop arch

signed & is
itten in Ja
n Map-Red
s and extens
he Hadoop p

ted comput
ge datasets b
e, data red
Data part

system with

PM tasks in
ers enable e

atters since
r these reas
the bounda
ts should be
Ecosystem
ract with ea

.

hitecture

 used by
ava, any
duce jobs
sions for
platform

ting tool
by using

dundancy
titioning,
hout the

n a very
effective

certain
sons, one
ary of an
e secure,
with its

ach other

Figu

3.2.1

Whe
become
manage
core co
optimiz
locality
of the b
designe
this reas
are relia
replicati
default
hardwar

An
[33]:

• A
m
m
m
g

• M
i
r
b

ure 3-2: Ha

Hadoop

en a dataset
es urgent to
es file storag
omponent f
ed for high
improveme
est options
d for the m
son, data m
ability, scal
ion and fau
3) storage n
re and softw

HDFS clus

A single Na
manages &
metadata co
metadata th
given file.
Multiple D
instructions
requested. P
blocks they

adoop’s sys

p Distrib

t exceeds th
distribute t

ge across a
for storage
h throughpu
ents to redu
when it com

most efficien
modification

ability, and
ult-toleranc
nodes and a
ware failures

ster contain

ame-Node
 controls sl
oncerning a
he Name-No

Data-Nodes
s from the
Periodically

y store.

stem archit

buted File

he limits of
this data ac
network of
is the Ha

ut by levera
uce network
mes to readi
nt data proc
n in HDFS i
d availability
e. More sp

automaticall
s were cons

ns two type

- a master n
ave nodes.

all the files
ode knows

– the slav
name-nod

y, data-node

tecture show

e System

f the storage
cross a num
f machines i
adoop Distr
aging large
k input and o
ing and wri

cessing patte
is impossib
y; and all o
pecifically,
ly re-replica
sidered).

es of nodes

node that s
A Name-N
and directo
about the d

ves create,
de and retr
es report to

wing techn

m

e capacity o
mber of othe

is called dis
ributed Fil
block sizes
output (I/O)
ting large fi
ern: write-o
le. Other w
f these attri
HDFS mir

ates the data

 operating

tores metad
Node provide
ories in this
data nodes

delete, an
rieve data
o the name-

nologies rele

of a single p
r machines
stributed fil
e System

s (by defaul
) [29]. Ther
iles (gigaby
once and rea
well-known
ibutes are ac
rrors the da
a blocks wh

in a maste

data about t
es a file sys
s file system
that store th

d replicate
blocks wh

-bode with

evant to th

physical ma
. A file sys
le system. H
(HDFS). H
lt 64 MB)
refore, HDF
ytes and larg
ad-many-tim
key traits o

achieved due
ata to mult
hen nodes f

er-slave arch

the file syst
stem tree an
m tree. Thro
the data blo

 data bloc
hen the blo

a list of w

21

is thesis

achine, it
stem that
Hadoop's
HDFS is
and data

FS is one
ger). It is
mes. For
of HDFS
e to data
tiple (by
fail (both

hitecture

tem, and
nd stores
ough the
ocks of a

ks upon
ocks are

what data

22

The
a disast
without
mechan

• H
m
r

• A
s
t
s
C
c

3.2.2

Map
paralleli
fault-tol
basic fu
framewo
over in
manner.
input to
Map-Re
respons

Part
Rear

Shu
represen
reducer
same as
reduce
mappers
reducer
into flat
the inpu
database
slave no

Figu

name-node
ter for a sy

a head. T
nisms for ba
Hadoop can
multiple ph
recovered.
A separate
secondary n
the name-n
secondary n
Currently th
called a che

Map-Re

p-Reduce is
izes work o
lerant and r
unctions: a
ork splits th
the form o

. The map
o the reduce
educe fram
ible for the
titioning
rrangement

ffle and so
nting the sa
as an input

s the numbe
functions. T
s for the "k
also produ

t files and s
ut and the o
e). The fram
odes, monito

ure 3-3: Lo

e in HDFS i
ystem, as ha
Therefore,
cking up th
n be configu
hysical file

e physical
name-node
node and k
name-node
he use of a
eckpoint nod

educe

s a simple
over large am
reliable man
map functi
he input da
of a key/va
function pr
e function).

mework perf
following a

defini
t sorting

ort operatio
ame keys fr
t key; which
er of reduce
The figure
key-2" key

uces zero or
tored in HD

output emitt
mework tak
oring them,

ogical view

is considere
aving data-n
in order t
e name-nod
ured in such

systems, t

machine c
continuousl

keeps a cop
can be subs
a secondary
de or a back

e programm
mount of ra
nner [29, 33
ion (called
ata-set into
alue pair to
roduces zer
. Along the
forms shuff
activities:
ng the redu
g all its inpu

ons allow th
rom the ma
h means tha
e functions.
shows that

y are collec
r more key/
DFS or inse
ted from m
kes care of d
 and recove

of map and

ed the most
nodes with
to maintain
de data:
h a way that
thus if a n

called a se
ly merges i
py of the m
stituted for
y name-nod
kup node sh

ming model
aw data on l
3]. The Map
mapper) an
independen

o a map fu
ro or more
e way from
ffle and sor

ucer which m
ut keys for

he reducer
apper. Each
at the numb
 Figure 3-3
t all of the
cted in a "l
/value pairs
ert/update ro

mappers and
distributing
ering & re-l

d reduce fu

t important
out a name

n high relia

t a name-no
name-node

condary na
mage files
metadata st
the name-n

de is deprec
hould be use

l for fast d
large cluster
p-Reduce fr
nd a reduce
nt chunks, c
unction that

key/value a
m the map o

rt operation

must receive
a correspon

to receive
h mapper ou
ber of uniqu
3 illustrates

map outpu
list (value-2
s as output.
ows in a No
reducers ar

g the work,
aunching fa

unctions

node and it
e-node is an
ability Had

ode writes it
fails, this

ame-node c
and log file
tored in the
ode when th
cated and s
ed instead [3

data proces
rs of comm
ramework i
e function
called block
t processes
as output (w

output to th
ns. These t

e the map k
nding reduce

 combined
utput key b
e keys in th
a logical vi

ut values em
2)" list. Lik
All these p

oSQL datab
re stored in
scheduling

ailed tasks.

ts failure m
nalogous to
doop provi

ts persisten
data can b

can be use
es periodica

he name-nod
the name-no
similar tech
33].

ssing. Map
modity hardw
is comprise
(called red
ks, and han
them in a

which is si
he reduce in
two operat

key/value pa
er.

d and sorted
belongs to a
he map outp
iew of the m
mitted from
ke the map
pairs can be
base. Basica
n a file syste
 parts of th

ay cause
o a body
des two

t state to
be easily

ed. This
ally from
de. This
ode fails.
hnologies

p-Reduce
ware in a
d of two
ucer). A

nds them
parallel

imply an
nput, the
tions are

air; and

d values
a unique
put is the
map and

m all the
pper, the
e written
ally, both
em (or a

he job on

23

Like HDFS, Map-Reduce also executes jobs in a master-slave manner: a single master
Job-Tracker and one slave Task-Tracker per cluster-node. When Map-Reduce clients
communicate with the Job-Tracker, the Job-Tracker starts scheduling jobs to be executed by
Task-Trackers, monitoring these jobs, and re-executing jobs in case of failures. In other
words, a master takes orders from clients and schedules map and reduce tasks on slaves to
process these orders. The responsibility of a Task-Tracker, a daemon process, is to create
child processes to perform a given map and reduce task.

3.2.3 Apache Hive

Apache Hive is a data warehousing technology built on top of Apache Hadoop. Initially
Hive was developed by Facebook engineers to process large amounts of user and log data[34].
One of the great advantages of Hive is the creation of relational database-style abstraction that
enables programmers to write in a dialect of SQL. Although SQL is not a good solution for
big data problems, it is a great tool for data analysis. Hive's SQL like scripting, called
HiveQL, is quite comfortable to use for developers who already have a good deal of
knowledge regarding SQL, but who need to perform ad hoc queries, data summarization, and
data analysis on big data.

Another huge benefit of Apache’s Hive is that it provides a simple and quick way of
writing Map-Reduce jobs. Because the Map-Reduce programming model requires the
programmer to write code at a low-level, therefore developers tend to write custom programs
which are very hard to maintain and reuse [34]. In contrast, HiveQL statements are able to
execute jobs in both the map and reduce phases which are equivalent to Map-Reduce jobs. In
terms of data analysis, Hive defines a table-like schema over a set of files stored in HDFS and
extracts records from those files by executing HiveQL queries. The data in Hive is organized
into three categories:

Tables Hive tables are similar to relational database tables. Each table contains a
corresponding HDFS directory where the data in this table is serialized and
stored. In addition, Hive supports external data tables stored in HDFS or
local directories.

Partitions A partition is responsible for determining the distribution of data within
sub-directories of the table directory. Each table can have one or more
partitions.

Buckets Buckets divide data in partitions. Division of data into buckets is based on
the column's hash values in the tables.

In general, Apache Hive can provide the following features regarding scalable data
management:

• Tools which allow easy data Extract, Transform, and Load (ETL);
• A mechanism to impose structure on a number of different data formats;
• Accessing the files stored in HDFS or other data storage systems such as HBase; and
• Executing queries via a Map-Reduce framework.

3.2.4 Apache Pig

Apache Pig is a platform for analyzing very large data sets and providing high-level data
processing while retaining Hadoop's simple scalability and reliability [35]. Similar to Apache
Hive, Apache Pig was created to simplify Map-Reduce jobs which are difficult to program.
Map-Reduce allows developers to specify a map function followed by a reduce function and
to follow this pattern programmers are required to write a number of Map-Reduce stages. In
addition to writing the mappers and reducers, compiling the code, submitting each job and

24

waiting for results requires plenty of time which is unsuitable. Apache Pig avoids such
complications by providing much richer data structures. It comprises of two parts:

• The Pig Latin language which is used to express data flows; and
• A compiler that compiles and runs Pig Latin scripts in a specific environment.

Currently there are two types of environments: distributed execution on Hadoop
clusters and local execution in a single Java Virtual Machine (JVM).

Pig Latin is a data flow language which allows developers to concurrently read and
process data from one or more inputs and store results to one or more outputs. The data flows
can be simple linear flows or complex workflows where multiple inputs can be joined to and
split into multiple streams to be processed. In other words, data flows in Pig Latin can be
considered operators which are applied to the input data to produce output. Taken as a whole,
the Pig compiler translates the data flows into executable representations which are a series of
Map-Reduce jobs, and then runs these representations.

A number of benefits make Apache Pig a widely used “big data” processing tool. Pig can
process relational, nested, and unstructured data, can easily be extended to operate on data
beyond files, databases, key/value stores, etc. Additionally, Pig manages all sorts of data -
whether there is metadata or not. Another feature of Pig is that it is not tied only to parallel
data processing, but rather it can be utilized in other types of data management. One of most
important advantages of Pig for developers is that using it data processing requires only a
short development cycle and it is simple to write Pig code. Pig allows the integration of
developer code, hence it supports user defined aggregates, field transformation functions,
conditionals, load/store functions, etc. These functions can be written in the Java
programming language. Despite all of these advantages, there are few drawbacks regarding
Apache Pig. Since Pig was designed for batch data processing (just like Map-Reduce), Pig is
not a good solution to process a small amount of data in large datasets [32], because it is set
up to scan an entire dataset or a large portion of corresponding datasets.

3.2.5 Apache HBase

Apache HBase is a low-latency, distributed, non-relational, column-oriented open-source
database built on top of Apache HDFS. HBase also can be described as a persistent
multi-dimensional sorted map, which is indexed by a row-key, column-key, and
timestamp[36]. HBase is modeled after Google's Bigtable[37]. HBase is the best choice when
real-time read/write random-access is needed to very large datasets. HBase can be thought of
as a data store that hosts very large tables containing billions of rows and millions of columns
atop clusters of commodity hardware. Unlike relational data stores, HBase provides incredibly
fast access to large scale data while maintaining parallelization across a cluster of machines.
HBase scales linearly by adding nodes to the clusters. Although it does not support SQL, it
overcomes RDBMS several problems, including operating on a large number of hosts,
working with sparsely populated tables on clusters, etc. The following features make HBase
and even more widely used distributed data store:

• Linear and modular scalability;
• Well-suited base classes for backing Map-Reduce jobs with HBase tables;
• Stringently consistent reads/writes;
• Configurable and automatic table sharding;
• Simple and easy to use Java API for client access;
• Bloom Filters and Block caches for real-time queries; and
• XML, binary data encoding options, and Protobuf supports via REST-ful

(Representational State Transfer) web services.

25

HBase can store any type of structured, semi-structured, or even unstructured data. HBase
utilizes dynamic and flexible data modeling; hence there is no restriction on storing any kind
of data. In Hadoop, both HDFS and HBase can store data in different ways. The main
difference between them is that HDFS is a distributed file system used to store very large
files; however it cannot provide fast individual record lookup in these files. On the other hand,
HBase provides very fast record lookups and updates to large tables while storing all the
tables in HDFS [32].

The storage model of HBase looks like a typical database, but with extra dimension.
HBase contains a number of tables each of which consists of rows. Each row has a unique
identifier called a row key and each row is formed from any number of columns. Usually rows
are sorted in lexicographical order by their row key. Several columns can form a column
family and each column in this family has multiple versions with a distinct value contained in
a separate cell. Each value in a cell is either implicitly timestamped by the system or can be
explicitly set by users. All columns in the column family are stored together in the same low-
level storage file, called an HFile, in HDFS. Column families are defined by a table schema
during the creation of tables. In general, with one expression an HBase storage model can be
represented as follows:

SortedMap<RowKey, List<SortedMap<Column, List<Value, Timestamp>>>>

The first SortedMap in the above expression is the table that contains a List of column
families. The column families contain another SortedMap, which characterize columns with
their corresponding values.

The HBase architecture can be seen in the expression of tables and their associated
regions. As column families, regions are contiguous ranges of rows stored together. HBase
takes advantage of regions to achieve scalability and load balancing. When regions become
too large, the system dynamically splits them up. They can be spread across a cluster of nodes
which distributes the load producing scalability. Each region can live on a different node and
can contain several HDFS files and blocks. In addition, there are region servers in HBase
which serve regions. Each region will be served only by one specific region server and region
servers can operate on multiple regions at any time. Taken as a whole, region servers, also
called slaves, serve data for reads and writes. Additionally, there is a master who is
responsible for coordinating the slaves, assigning regions to slaves, and detecting failures of
region servers. In the Hadoop ecosystem, Apache Zookeeper is one of the best tools which
can be used as a primary helper of HBase master for managing slaves [32].

3.2.6 Apache HCatalog

HCatalog is a table and storage management service for Apache Hadoop ecosystem. It
provides table and metadata abstraction layer which means the data in HDFS can be seen as a
set of simple relational tables each of which resides in database. According to Alan Gates, the
designer of HCatalog, “As an integration tool, HCatalog enables interoperability through the
table abstraction. It presents a common table layer to each tool and gives each user the same
data model”[38]. The primary goal behind HCatalog is to reference data without using
specific filenames, formats, or storage paths. By default, it supports RCFile (Record
Columnar File), CSV (Comma Separated Values), JSON (JavaScript Object Notation), and
SequenceFile formats. HCatalog includes following features:

26

• Providing a data type mechanism and shared schema;
• Maintaining smooth interoperability among data processing tools including Map-

Reduce, Hive, and Pig; and
• Creating an environment so that users no longer need to be concerned with how and

where their data is stored.

HCatalog is built on top of a Hive meta-store and includes the Data Definition Language
(DDL) of Hive. It provides a separate read/write interface for Map-Reduce and Pig tools.
HCatalog utilizes Hive's command line interface to provide metadata exploration commands
and data definition. HCatalog is an environment where Hadoop components can share their
dataset’s metadata information. For example, when a Pig user finishes their Pig Latin
scripting and writes the data, Hive users can see these data as if it was Hive data. By using
HCatalog developers can easily share the data written by different tools and do not need to
care about the data types and formats used by this data.

The data model of HCatalog is similar to HBase's data model. Data is stored in tables and
tables are placed in a database. Tables also can be divided into several partitions based on
unique keys. Each key represents one partition and each partition contains all of the rows that
belong to the same key. Partitions hold records and they are multi-dimensional, but not
hierarchical. Each record is divided into columns each of which has a name and data type.

3.2.7 Apache Zookeeper

Apache Zookeeper is an open-source, distributed coordination service for distributed
applications [39]. It provides a set of tools to develop distributed applications that implement
high-level services for synchronization, configuration maintenance, and groups/naming.
Usually, writing and maintaining distributed applications is hard because of partial failures. In
a distributed architecture, when a message is sent across the network between two nodes and
the receiver node goes down or network fails, the sender is unable to know whether the
receiver got the message, this may lead to a partial failure. The only way to learn the status of
a message is for the sender to connect to the receiver and ask it whether a given message has
been received. The Zookeeper tools enable developers to build distributed applications that
safely handle partial failures.

Although distributed applications can be managed by customized coordination services
rather than using Zookeeper, providing such services in an appropriate way is notoriously
difficult. Customized services are prone to race conditions and deadlock errors, thus,
Zookeeper should be used to implement coordination services rather than building customized
coordination services from the scratch. The operation of Zookeeper is straightforward; all
servers that make up Zookeeper services should know each other. These services will be run
as long as a majority of the servers are available. Clients connect to these servers to get
served. If a server fails, then the client will connect to another server.

The main characteristics of Zookeeper are:
Simple Zookeeper provides a shared hierarchical namespace to coordinate

distributed processes. This namespace is similar to a standard file system and
it is comprised of data registers, called znodes, which look like files and
directories. Unlike a typical file system, Zookeeper is not designed for
persistent storage; hence its data is stored only in memory; and thus,
Zookeeper can achieve high throughput and low latency.

27

Expressive The primitives/tools in Zookeeper are considered a rich set of building blocks
which enable a developer to create large coordination data structures and
protocols.

Highly
available

Zookeeper operates on a cluster of machines and is designed to be highly
available.

Reliable Zookeeper avoids creating a single point of failure into the system and
therefore maintains reliability.

Replicable Zookeeper is intended to replicate itself over a set of hosts (called an
ensemble).

Orderable Zookeeper stamps each update with a number which orders all of its
transactions. High-level abstractions can be implemented using this ordering.

Fast Large clusters of machines enable a Zookeeper application to perform well,
especially when read operations are more frequent than write operations (the
ratio between read and write operations can be 10:1).

Facilitator Zookeeper facilitates loosely coupled interactions. It supports processes that
do not need to directly know each other, hence it may act as middleware for
processes to discover and interact with one another. A process can leave a
message in Zookeeper so that the intended receiving process can read this
message at any time; even after the first process becomes idle or shuts down.

3.2.8 Apache Ambari

Apache Ambari is an open-source project providing simple and effective software tools
for managing, monitoring, and provisioning Hadoop clusters [40]. Ambari makes Hadoop a
single cohesive platform by simplifying the underlying operations and hiding Hadoop’s
complexity. As a Hadoop management tool, Ambari presents an easy-to-use web user
interface (UI) backed by REST-ful web services. This web UI allows Ambari to provide a
single control point for examining, managing, and modernizing Hadoop services. In addition,
Apache Ambari provides effective security and recovery services through APIs. Ambari can
be categorized into four service parts:
Provisioning The web UI provided by Ambari presents a step-by-step installation of

Hadoop services across a cluster of any number of machines. It helps
configure Hadoop services for the cluster.

Management Ambari provides single point of management to start, stop, and
reconfigure the Hadoop services across the cluster.

Monitoring Ambari provides several monitoring tools to monitor and examine a
Hadoop cluster. It leverages Ganglia for metric collection and Nagios for
system alerts. An Ambari dashboard displays the health and the status of a
Hadoop cluster.

Integration All above three service capabilities can be easily integrated with Ambari
REST APIs*.

The Ambari architecture consists of two parts and each part contains several components.
The first part of the architecture is an Ambari Server, while the second part is the Ambari
Agents. The Ambari Server is responsible for controlling a Hadoop cluster and this server
processes the commands sent by an Ambari Agent. The server contains a master, an API, a
relational database, and an Agent Interface. Each agent sends commands to the Ambari Server
to check the heartbeat of the master. After receiving commands, the Agent Interface transfers
the commands to a master and the master sends command back to the agent. The time interval

* Details of Ambari’s APIs can found in [41].

28

of two back-and-forth command packets between the master and the agent determines the
heartbeat of the master. The API provides access to monitoring and metrics for a Hadoop
cluster. An agent communicates with the master to retrieve necessary information for access
and may also send data regarding its operations. Depending on the request, the master may
communicate with a relational database in order to retrieve or store data in it.

3.2.9 Apache Sqoop

Apache Sqoop is an open-source software tool that provides efficient data transfer
between Hadoop and structured data stores, such as relational databases [42]. The primary
goal behind Sqoop is to enable developers to import data from an RDBMS into HDFS or
HBase, process the data with Map-Reduce or other higher-level tools (such as Hive and Pig),
and export the results back into a RDBMS. Sqoop enables developers to effective
communication between Hadoop and relational data sources. For data import, Sqoop only
needs a data schema of the database, then the data will be automatically processed and
exported back by Map-Reduce, Hive, or Pig which operate in parallel (with fault-tolerance)
across a cluster of machines.

The input to import data from an RDBMS is a database table. Sqoop reads the table row-
by-row (in parallel), produces a set of files as an output of this import, and stores the resulting
files into HDFS. Later on Sqoop may integrate the output files into Hive/HBase or simply
perform conversions, compression, partitioning and indexing on them. Depending on the data
in the relational database tables, these output files may be delimited text files with comma
separated fields, binary, or SeqFiles (Sequence Files) containing serialized data. The output is
manipulated with Map-Reduce or Hive tools in a distributed manner and the files are exported
back to the relational database. The export process includes reading delimited files from
HDFS, parsing them into records, create new rows in the corresponding database table, and
insert the new records into those rows. The export process is done in parallel.

3.2.10 Apache Solr

Apache Solr is an ultra-fast open-source standalone enterprise search platform based on
Lucene [43]. It is a mature software package. Solr possesses a number of capabilities
including advanced full-text search, near real-time indexing, faceted search, geospatial search,
a vast variety of document handling, database integration, etc. Solr is also popular as a
scalable, highly-reliable, and fault-tolerant search server which provides distributed indexing,
automated failover and recovery, centralized data management and configuration, load-
balancing, and query replication.

Data indexing and searching with a Solr Server is incredibly simple because of its REST-
like API. Initially, indexing is performed via JSON (JavaScript Object Notation), XML
(Extensible Markup Language), CSV (Comma-Separated Values), or binary data formats over
HTTP (Hypertext Transfer Protocol). The indexed data can then be requested by querying via
HTTP GET and received in the form of JSON, XML, CSV, or binary data format. To provide
ultra-fast searching for specific data, Solr is optimized for high volume web traffic. Qualities
such as comprehensive Hypertext Markup Language (HTML) administration interfaces,
flexibility to configure XML files, linear scalability, and extensible plugin architecture make
Solr platform even more powerful. Detailed features of Solr can be illustrated as follows:

29

Schema Defines the fields of documents and the type of each field. Fields are
responsible for certain functions. For instance, dynamic fields provides on-the-
fly addition of new fields, copy fields enables to index a single field in multiple
ways, or joins multiple fields into a single searchable field.

Query HTTP interface with configurable and customizable response formats (such as
JSON, XML, CSV, binary, etc.). Solr Query can perform a vast number of
different search operations, perform different types of sorting, can combine
different queries, and executes and provides ranges filters.

Core Dynamically adds and removes document collections without restarting.
Provides custom index processing chains, allows customizable request handler
with distributed search support, controls documents with missing parameters,
etc.

Caching Provides fast processing of data searches by caching instances of Query
Results, Filters, and Documents. Enables lock free and high concurrency cache
implementations, cache warming and auto-warming in background, fast and
small filter implementation, user level caching, etc.

SolrCloud Provides a centralized Apache Zookeeper based configuration. Enables
automated distributed indexing/sharding, near real-time indexing, transaction
logs which guarantees no updates are lost, automated query failover, and no
Single Point of Failure (SPOF).

Admin
Interface

Advanced monitoring tool to observe cache utilization, updates, and queries.
Provides full logging control, text analysis debugger, dashboard which presents
the status of nodes in a cluster, output debugging, etc.

3.3 Hadoop Clusters
A Hadoop cluster is a set of machines/nodes each of which shares its memory and

processing power. The nodes in a cluster are not required to be homogeneous, which means
they may have different sized memories, different CPU architectures, and run different
operating systems. However, it is advisable to use a cluster running the same operating
systems and with similar hardware capabilities, as the cluster administration will be a lot
easier when the machines have similar hardware and software configurations [32]. When it
comes to setting up and efficiently running an easy manageable Hadoop clusters – everything
matters; i.e., choice of the machines, including the specific hardware, operating system, disk
configuration, and network design.

Hadoop nodes can be classified into masters and slave/worker classes. Master nodes run
critical cluster services and therefore should be more robust and more resistant to hardware
failures. Master node crashes may result in very expensive losses for companies. Slave nodes
on the contrary, are expected to fail often. By default Hadoop replicates data on three slave
machines, hence the data can be accessed from other machines when a given slave node
collapses or crashes. For these reasons, to reduce the proliferation of hardware profiles many
administrators choose a single hardware profile for all masters and a single profile for all
slaves [44]. Another important thing for Hadoop is to determine the number of machines in a
cluster. Usually, the cluster size is based on the amount of storage required.

Apache Hadoop is primarily run on Linux distributions as the underlying operating
system. Today, a huge number of production clusters are running on top of Linux distributions
(including RedHat Enterprise Linux, CentOS, Ubuntu, SuSE Enterprise Linux, and Debian).
The main reason for Linux distributions to be chosen as the operating system is that they
provide enhanced administration software tools, high level security, an open-source platform,
and support a wide range of hardware. Hadoop operates as expected on Linux's common file

30

systems (including ext3, ext4, and xfs) [44]. Based on the architecture and criteria of scalable
systems, one of these file systems will be chosen as a file system for a Hadoop deployment.

Because of its simplicity, the Hadoop platform is thriving in the real-world. Hadoop does
not require any specialized hardware or network protocols to function efficiently. It runs
equally effective in both flat layer 2 networks and routed layer 3 environments. Choosing an
appropriate configuration of the network for Hadoop's core components plays a vitally
important role in order to manage big data in an efficient way. In order to fulfill the scalability
requirements, HDFS primarily focuses on three forms of traffic: Data-Node block reports and
heartbeats to the Name-Node, block data transfer, and client metadata operations with the
Name-Node. The Map-Reduce cluster membership and heartbeat infrastructure are similar to
HDFS. The Task-Tracker continuously generates a heartbeat by sending a small bit of
information to the Job-Trackers to learn if they are up and running.

3.4 Hadoop Limitations
No existing technologies are able to cover and fulfill all the aspects and requirements of

real-world applications. In Hadoop, despite its advantages and strengths, observations show
that it also has certain limitations and weaknesses. There are dozens of areas where Hadoop is
the best choice, while in some other area it may not be well suited. The choice of a Hadoop
framework as a core architecture depends on the requirements in a given area.

Currently there are two major weaknesses that have been identified for HDFS and Map-
Reduce: availability and security [29]. Although both areas are under rapid development and
enhancement, they are still unable to meet certain requirements. All of HDFS and Map-
Reduce's master processes are a SPOF (Single Point of Failure). When a master processes
crashes or dies, the control over tens or hundreds of slaves may be lost. Security in Hadoop is
disabled by default and the only security feature in it is HDFS file and directory-level
permissions and ownership. Hence, malicious users can steal another user's identity or
impersonate them; they may even kill another user's Map-Reduce jobs. Another limitation of
Hadoop is that HDFS is inefficient when handling small files. Because of its optimization for
sustained throughput, HDFS is unable to provide effective random reading of small files.
Furthermore, due to its batch-based and shared-nothing architecture, Map-Reduce is not good
for real-time data access. Jobs that need changeable data sharing or global synchronization are
not a good fit for Map-Reduce.

Hadoop has to be chosen based on specific criteria and the requirements of the system
which is being developed. In our development of a scalable RPMS, Hadoop along with its
components were chosen as a core framework. Some of Hadoop’s limitations have been
partially solved, while the others did not affect the RPMS at all. High availability support for
Name-Node and Job-Tracker is available in the latest 2.x versions of Hadoop, hence we will
use the latest version to provide high availability. In order to provide the expected level of
security, the Kerberos network authentication protocol can be run with Hadoop [29]. As
providing high-level security in a scalable RPMS is outside the scope of this master's thesis,
the implementation of Kerberos in the system is considered as future work. The limitation of
HDFS is overcome by using Apache HBase which provides efficient random reads of small
files. A scalable RPMS does not require mutable data sharing or global synchronization, so
the limitation of Map-Reduce do not affect to the proposed RPMS.

4 Sc
This

design.
the requ
describe
Hadoop
primary
high av
loosely-
while pr

4.1 O
The

for hand
develop
when re
process
for mon
patients
monitor
from a c
respons
discussi

Figu

Figu
consider
these se
commod
several

calable
s chapter e
The implem
uirements,
ed in Chap
p componen
y requiremen
vailability,
-coupled an
roviding pa

Overview
scalable RP

dling some
pers to proc
equested. Fo

gigabytes o
nitoring. Ad
s. No matter
ring and req
clinician in
e should b
ion here we

ure 4-1: Ov

ure 4-1 illu
red the cor

ervers. The f
dity hardwa
clusters and

RPMS A
explains and
mentation an
which wer

pter 3. For
nts of those
nts for the p
and reliabi

nd interact
rallelization

w
PMS archite
parts of th

ess all of th
or this thes
of incoming
dditionally,
r how many
questing pat
n a relevantl
be received
 will assum

verall Arch

ustrates the
re of the sy
figure show
are will be
d each clust

Architec
d illustrates
nd design p
re stated in

our system
e introduce
proposed sy
ility. Most
efficiently

n.

ecture utiliz
e incoming
he incoming
is project su
g data from
clinicians

y patients tr
tients’ data,
ly small am

d will be d
me an upper b

hitecture of

e overall a
ystem, beca
ws that as th
e added to
ter can incl

31

cture a
s a propose

process are s
n Chapters
m developm
ed in Chap
ystem are to

importantl
with each

zes several t
g data. The
g data in m
uch a comb

m millions o
may reques
ransmit thei
, the system

mount of tim
discussed in
bound of 2

f Scalable R

architecture
ause all of t
he number o

scale out t
lude hundre

nd Des
ed new sca
supported b
1 and 2. T

ment, we h
ter 3 and i

o provide lin
ly, the Had

other, and

technologie
combinatio

milliseconds
bination of
of patients a
st earlier m
ir vital sign

m needs to p
me. The amo
n Section 5
seconds.

RPMS

e of scalab
the data ma

of patients a
the system.
eds of mach

ign
alable RPM
by a set of te
The set of
ave chosen
illustrated i
near scalabil
doop comp

fulfill all

es, each of w
on of these

and provid
component
and push th

medical reco
ns nor how m
process eac
ount of tim
5.5. For th

ble RPMS.
anagement

and data incr
 Data serv

hines. When

MS architect
echnologies

f technologi
n the most
in Figure 3
lity, fault-to

ponents nee
these requ

which is res
component

des relevant
ts should ef
he data to c
ords regardi
many clinic

ch incoming
me within wh
he purposes

. Data serv
is accompl
rease in the

vers may co
n a patient t

ture and
s to meet
ies were
suitable

3-2. The
olerance,
ed to be
irements

ponsible
ts allows
t outputs
fficiently
linicians
ing their
cians are
g request
hich this
s of this

vers are
lished in
e system,
onsist of
transmits

32

their vit
patient
needed)
may req
one hou

4.2 T
The

manner.
levels o
data dep
the data
consider
standard
Hadoop

Figu

It is
Reduce
across a
own dat
In RPM

tal signs, th
and pushes

). Unlike pa
quest hundr
ur and must

Technolo
Hadoop ec

. Each com
of efficiency
pends on th
a. In this t
red, since i
ds and high
p componen

ure 4-2: Hi

s possible to
and HDFS

a cluster of
ta structures
MS, HDFS

he data serv
s this patien
atients, clin
reds of pati
obtain relev

ogy choi
cosystem p

mponent dea
y. Therefore
he system’s
thesis proje
it is vital to
h quality in
nts which ha

gh-level RP

o build a sy
S). Map-Re
machines a

s and requir
S and Map

ver process
nt’s data to
icians frequ
ent records
vant medica

ice for S
rovides ten
als with a g
e, the choic
s architectur
ect the (lim
o design, im
n the course
ave been sel

PMS data p

ystem by u
educe can p
and store th
rements in t
p-Reduce f

ses this data
o the releva
uently comm
s containing
al records w

Scalable
ns of compo
given probl
e of a speci
re, data ma

mited) avail
mplement, a
e of this th
lected to dev

platform

utilizing onl
perform dat
he outputs i
terms of ho
frameworks

a and then
ant clinician
municate w

g various ki
within a shor

e RPMS
onents to h
lem in diff
ific set of c

anagement s
lable time
and evaluat
esis project
velop a scal

ly Hadoop’
ta computat
nto HDFS.
w the data
s are not

sends a sta
ns for real-t

with the serv
inds of med
rt period of

handle big d
ferent ways
components
strategies, a
for develop

te a scalable
t. Figure 4-
lable RPMS

s core com
tions by di
However,

should be s
sufficient

atus messag
time monit
vers. Each
dical inform
f time.

data in an e
 and with
 to process
and the stru
pment need
e system w
-2 shows th
S.

mponents (i.e
stributing t
each system

stored and a
for efficie

ge to the
oring (if
clinician

mation in

effective
different
scalable

ucture of
ds to be

with high
he set of

e., Map-
the tasks
m has its
accessed.
ent data

33

management and therefore several additional components are added to facilitate the
implementation and operation of the prototype scalable RPMS.

As introduced in Chapter 3, Map-Reduce jobs are too complicated and time consuming for
interactive use. Developers must write a lot of low-level code which might not be reusable.
Additionally, code compilation, job submission, and result viewing takes a lot of time which
hinders rapid development. To simplify Map-Reduce jobs, several complementary
components were developed by other developers. Apache Hive and Pig are two such
components and both are being successfully utilized by many enterprises. To handle Map-
Reduce jobs efficiently, we have chosen Apache Hive over Pig. The primary reason for this
choice is that Hive offers more features in terms of data access than Pig. Unlike Pig, Hive
provides the notion of partitions. Partitions allow us to process a subset of the data based on
specific criteria (such as date, alphabet, etc.). Additionally, Hive provides an optional Hive
server, a web interface, and JDBC/ODBC driver for integration with SQL like databases[45].
Pig introduces a new language, Pig Latin, for data processing, while Hive utilizes SQL like
scripting. As a result for a programmer who already knows SQL, it is easier to develop using
Hive as this avoids the requirement to learn yet another language. This later aspect is
important because learning a new language and utilizing it effectively requires great effort and
additional time. As both (Hive and Pig) components provide facilities to achieve the same
goals, we selected Apache Hive as a complementary tool for our Map-Reduce framework.

HDFS is not a good choice for some specific jobs. For instance, it is incapable of
efficiently providing very fast random read/writes of a set of files. Additionally, HDFS is
unsuitable for dealing with structured data and cannot provide effective individual record
search over files. Fortunately, HBase, a component that is built on top of HDFS, solves these
HDFS weaknesses. HBase provides very fast lookup and real-time random-access read/writes
to large datasets allowing low latency access to a non-relational table structure. For these
reasons, HBase was chosen to augment the functions of HDFS.

Zookeeper has been selected for use as a coordination tool in the RPMS. For patient
monitoring, it is essential to handle partial failures. The sender must ensure that the receiver
has successfully received the desired measurements or if the operation failed, then the sender
should immediately initiate retransmission.

Apache Solr needs to be utilized as a search engine in the RPMS. Solr is able to provide
ultra-fast search capabilities and a number of features that HBase cannot support. These
features are important because RPMS has to deliver very fast record lookup to clinicians.
Because of the shortness of period dedicated for thesis project, we could not implement
Apache Solr in the RPMS and therefore marked it as a future work of this project.

Additionally, the implementation of Apache HCatalog, Ambari, and Sqoop are useful, but
not essential to the realization of a prototype scalable RPMS. The future addition of these
components will offer many enhancements and offer greater manageability of the RPMS. In
addition, HCatalog and Ambari are not yet mature and they are considered members of the
Apache Incubator project (a gateway for open-source projects that need to be further
developed). For all of these reasons adding these components is seen as future work to follow
this master’s thesis project.

4.3 Tables Definition in the System
During the development of the application, we created two HBase tables to store all

information regarding patient records and user data. The first table stores all user related
information, while the second table stores all of the patient records (i.e., all of the health care
measurements). Table 4-1 illustrates the first table. The unique row key is created by

34

appending the time of the record creation in nano-seconds and randomly generated 5 digit
number. Users in the system may have various roles including patient, clinician, and
administrator.

Table 4-1: User HBase Table

Row Key Column Family Timestamp Columns

uid data

T1 first_name
T2 last_name
T3 username
T4 password
T5 email
T6 role
T7 cell_phone
T8 country
T9 county
T10 city
T10 street

Table 4-2 illustrates the second HBase table which stores all health care measurements
obtained from patients. The row key of the table is constructed by appending a timestamp to
the username. The timestamp for each table cell is provided implicitly, unless the developer
enables it explicitly. New types of vital signs can be added on the fly as a new column to the
table. Unlike RDBMS, HBase does not set a null value to the column when a corresponding
value regarding to that column is missing. As a result, the number of columns in the column
family may vary depending on the measurement results which need to be stored.

Table 4-2: Vital Sign HBase Table

Row Key Column family Timestamp Columns

username + timestamp vital_signs

T’
1

 blood_glucose

T’
2 body_pressure

T’
3 body_temperature

T’
4 end_tidal_co2

T’
5 forced_expiratory_flow

T’
6 forced_inspiratory_flow

T’
7 gait_speed

T’
8 pulse_rate

T’
9 respiration_rate

T’
10 spo2

T’
11 tidal_volume

T’
12 vital_capacity

4.4 T
As s

medical
distribut
runs on
arrives
perform

HBa
clients c
order to
question
commun
commun
are all g
clients.
API and
the fast
methods
measure
part of t
relevant
Hive in

Figu

The Distr
said in earl
l records. B
ted storage

n the Name
at the data

ms the releva

ase heavily
communica

o retrieve th
n. After ob
nicate with
nicate with
great tools
For the dev

d REST. Th
test data s
s)[46]. In t
ements from
the applicat
t tables with
order to tak

ure 4-3: Dis

ributed
lier sections
Based on th

model of n
e-Node and
a servers, in
ant indexing

 depends o
ate with a Z
he server nam
btaining the
h the releva

HBase clu
that enable

velopment o
he main rea
structure m
the first par
m patients a
ion, the HB
h particular
ke an advan

stributed S

Storage
s, Apache H
he HDFS a
newly desig

controls a
nitially it is
g operation.

of Zookeepe
Zookeeper e
me that hos
e server’s
ant region

usters. HBas
e effective c
of a scalable
ason for the
models to b
rt of the ap
and to retrie

Base native A
parameters

ntage of its M

Storage Mo

e Model
HBase is b
and HBase
gned scalab
all Region S
s written to
.

er to mana
ensemble (a
sts a particu
address an
servers. Th

se native A
communica
e RPMS, w
eir choice is
build a sc
pplication,
eve relevan
API provide
s. The table
Map Reduce

odel of Scal

being utilize
specificatio

ble RPMS.
Servers on
o the HBas

age its slav
a separate c
ular table reg
d the row
here are nu
PI, HBase

ation betwee
we have chos

s that both
calable sys
REST is re

nt vital sign
es the applic
 creation pr
e facility.

lable RPMS

ed to store
ons, Figure
As the figu
Data-Node

se and then

es (Region
cluster of Z
gion contain
key, the c

umber of w
Shell, REST
en HBase c
sen two of t
tools provid
tem (as co
esponsible

ns for clinic
cation with
rocess is als

S

all of the
e 4-3 illustr
ure shows, H
es. When n
n Solr subs

n Servers).
Zookeeper n

ning the row
clients can
ways for c
T, Avro, an
clusters and
them, HBas
de the simp
omparing t
for transmi

cians. In the
the ability

so bound to

35

patients’
rates the
HMaster

new data
equently

Initially,
nodes) in
w key in
directly

lients to
nd Thrift
d various
se native
plest and
to other
itting all
e second
to create

o Apache

36

4.5 Interaction of Hadoop Components
There are four key components in our scalable RPMS: HBase, Hive, Zookeeper, and Solr.

Initially, the necessary tables are created in HBase using Hive and its native API. A HiveQL
script provided by Hive, allows an application to create tables in Hive’s own data warehouse
as well as in HBase’s store. Both data warehouse and storage are located on top of Hadoop’s
HDFS. Here is an example HiveQL script that creates a user table in Hive and in HBase with
one column family and a row key:

CREATE TABLE user_hive (username STRING, password STRING,
firstname STRING, lastname STRING) STORED BY
‘org.apache.hadoop.hive.hbase.HBaseStorageHandler’ WITH
SERDEPROPERTIES (‘hbase.columns.mapping’=’:key, info:val’)
TBLPROPERTIES (‘hbase.table.name’=’user_hbase’)

Subsequently when data is pushed to the user_hive table via the Map Reduce algorithm,
the same data will be available when user_hbase table is requested. This interaction between
HBase and Hive makes the system more robust. Additonally, the data analysis behavior of
Hive becomes very helpful when analyzing large numbers of medical records and can enable
an application to extract meaningful information in milliseconds. Here is a simple example
script which retrieves all of the data in the user_hbase table:

SELECT * FROM user_hive

Note that even though the data is being read from the user_hive table, Hive actually
retrieves all of the relevant data from the user_hbase table.

As explained in the previous section, Zookeeper ensemble tracks down all Region Servers
of HBase cluster, lets clients to obtain information regarding to specific slave nodes, assigns
tasks to slaves and reassigns failed tasks to another slaves. Each Region Server in HBase
cluster continuously sends heartbeats to Zookeeper which allows Zookeeper to know exactly
how many nodes are up and running. Advanced ultra-fast search capability of Solr helps
clinicians to process complex requests in relevantly small time. Right after writing new
incoming data to HBase, Solr indexing should be performed for each of them. Since we did
not have enough time to implement Solr with its necessary features, it should be carried out in
the RPMS as a follow up of this master’s thesis project.

4.6 Application Source Code and Environment Preparation
Scalable RPM application includes several modern technologies mentioned in this section.

The source code of the application can be found in here [47]. As the efficient data
management is primary concern of this master’s thesis, client side (reading health
measurements from medical devices) development of scalable RPMS is outside the scope of
this master’s thesis. The application is divided into two parts:

• REST web services oriented HBase storage; and

• Apache Hive oriented HBase storage;

In the first part, HBase requires REST server to be ON. Clients communicate with HBase
through REST server. On initial stage necessary tables will be created if they are not created
yet and based on request and its type, specific operation (write or read) will be performed.
REST receives all requests via light-weight JSON data interchange format, parses and
processes them accordingly and sends back responses if necessary.

37

The second part of the application, is more statistics oriented, because Hive is able to
perform complex operations through HiveQL queries. Likewise the first part, initially the
tables are created and then specific queries are parsed. Two tables (‘user’ and ‘vital_sign’) are
represented by two classes. Each class holds a logic belonging to the table it represents. This
part also communicates with clients through JSON.

 The application uses the core libraries of Hadoop version 1.0.4, HBase version 0.94.7 and
Hive version 0.10.0. To run the application, it is necessary to install and configure Hadoop,
HBase and Hive. Step-by-step Hadoop installation on a single-node cluster can be found in
this guide [48] and step-by-step Hadoop installation on a multi-node cluster is described here
[49]. HBase installation on a single node cluster can be found in here [50] and for multi-node
cluster in here [51]. Full guidance regarding to Apache Hive installation and configuration can
be found in here [52].

39

5 Benchmarking & Analysis
Benchmarking in this master’s thesis project is divided into two parts: proper test data

generation and system’s testing with this generated data. Performance, scalability, reliability,
fault-tolerance, and load balancing are key parameters that are considered in all rounds of this
benchmarking. In a subsequent phase of the evaluation, these benchmarking results are
analyzed and distinctions between the different alternatives are illustrated with charts and
graphs.

5.1 Overview
Since the main goal of this thesis project is to design a scalable system that provides near

real-time medical record data management and analysis, the benchmarks should be run in a
way that obtained results from them have to clarify the relationship between the number of
machines in the cluster and the amount of health data. Besides, the performance comparison
between RDBMS and the scalable RPMS also should be considered during benchmarking. As
Apache HBase was chosen as the storage model and tool to realize a scalable RPMS, we
benchmarked and compared HBase against MySQL (as a representative RDBMS).

To achieve our goals mentioned above, we designed several scenarios and utilized them
for testing. These scenarios include data input, data output, and computing statistics over the
collected data. In all of these scenarios, different amounts of data are processed and analyzed
with different parameters. In the first phase, MySQL data processing is benchmarked and the
results are compared against HBase residing on a cluster consisting of a single node.
Subsequently, the number of nodes in the RPMS is increased by one and the performance is
once again calculated based upon the processing time required to process the same amount of
data. The benchmark results are combined together and relevant charts are constructed in
order to clearly show the difference between MySQL and HBase solutions. Most importantly
these charts illustrate how efficiently the data is managed by two systems, how the new
system behaved when the number of machines is increased, and how much new health data
(corresponding to the number of newly added patients) requires adding an additional machine
to the system.

In general, both systems store two kinds of data: user data and health care measurements.
Once each user is authenticated by the system, he/she will continuously access the health care
measurements table for different purposes. For instance, patients will write their latest vital
signs; while clinicians may request large numbers of patient records, perform data analysis on
the existing medical records, search for specific patient records collected during a specific
range of dates, etc. In general, the number of accesses to patient records in the database is
much greater than the number of appends of new patient data. We assume that this ratio is
nine reads per write of a patient data record. For this reason the health care measurement table
(with data about the vital signs of patients) is the primary focus of our system’s
benchmarking. Before starting benchmark, MySQL database (vital sign table in this case) is
horizontally partitioned (in other words “sharded”) [53, 54], since comparing single MySQL
instance against several instances is not fair. Consequently, a sharded MySQL is benchmarked
running on a single machine (it is highly efficient to split a large partitioned table over
multiple logical database servers [55]). The proposed scalable RPMS is benchmarked with 6
machines with identical parameters (1 master, 5 slaves, and 1 computer used for data
generation and transmission). A testbed was setup with one or more machines each with the
configuration described in Table 5-1.

40

Table 5-1: Configuration of Each Machine Used for Benchmarking

CPU Six-core AMD Opteron™ Processor 2435
CPU MHz 2592.994 MHz
Cache Size 512 KB
RAM 32 GB
Hard Drive 1 TB
Operating System Ubuntu 11.04

5.2 Generating Test Data
Unless patients have given consent to someone to access their medical history there

should be no access by anyone to their individual records, therefore all medical information
stored in electronic databases is considered as highly sensitive personally identifiable data.
Each system used for storing patient data has its own policy to securely store this sensitive
information. For this reason and the lack of access to actual medical data, it is impossible to
test the two systems (Hadoop and RDBMS) using real medical data, therefore we needed to
generate electronic medical records similar to real world medical data. According to Health
Level 7 Clinical Document Architecture (HL7 CDA) [56, p. 7], electronic medical records can
be categorized into five types. Each of these types of records will need to be considered when
generating test data. These five types are:

1. Basic information about each patient, typically: name, birthdate, gender, marital status,
and contact information. The contact information might include mobile/home phone,
fax, and/or e-mail address;

2. Previous disease history may include disease name, doctor, hospital treatment,
treatment period, treatment procedure and results, history of infectious diseases,
history of trauma surgery, history of significant drug use, history of allergies, and
history of vaccination. The history of vaccination includes vaccine name, inoculation
period, inoculation hospital, name of health care personnel who administered the
vaccine, and vaccination results;

3. Physical examination may include heart rate/pulse, temperature, blood pressure,
oxygen saturation (SpO2), respiration, posture, weight, etc.

4. Specialist examination may include pediatric, adult medicine, and other examination
records; and

5. Medical information creation includes hospital name, creation date, and date of visit.

The prototype RPMS covers all five types of data. As the main goal of this master’s thesis
is to compare the efficiency of scalable data management systems with RDBMS, generating
and testing one type of above electronic medical records was sufficient. Physical examinations
(pulse rate, SpO2, etc.) were chosen for the benchmarking process as these types of data are
expect to be generated much more frequently (perhaps as many as several times per day every
day) than the other types of data. Based on this, we developed a program which generates
“fake” physical examination medical records (a relevant range for each one of a number of
vital signs is given and the software automatically generates a randomly value within that
range as a hypothetic value representing a possible value for this record). This generated data
is placed into a set of files. During testing we push data from these previously generated files
into the proposed scalable RPMS. We calculate the throughput and latency based on the
operation we performed. We will later compare the various alternatives by analyzing these
throughput and latency results. The total volume of all of the generated data files was 254
Gigabytes (more than 250 million rows). This corresponds to 30 days (1 month) of data from
~150,000 patients which means each patient sent his/her measurements ~56 times in one day.

41

An assumption is that this amount of data should be sufficient to compare benchmarks of the
alternatives in the various scenarios. Specifically, we generate data consisting of a unique
identifier of a patient, measurement results, and a timestamp. Appendix A illustrates a sample
from this generated data. The source code of the application used for generating necessary
amount of data can be found in [57].

5.3 Benchmarking of the alternative Software Suites
There are number of tools to benchmark both MySQL and HBase. We have chosen the

most common open-source tool, Yahoo Cloud System! Benchmark (YCSB) [58, 59], as it is
easy to configure in order to generate benchmarks. Instead of using several benchmark tools
we decided to utilize only one tool because YCSB is purely written in Java which makes it
relatively portable, it appears to offer support for horizontal and vertical scaling in different
ways, it is very easy to implement, it covers several workloads, and most importantly
developers are not required to write many lines of codes to customize YCSB to benchmark
their systems.

5.4 Yahoo Cloud System! Benchmark
In the scalable RPMS benchmarking process, data reads, writes, and statistical queries are

used to extract data from or place data into the HBase while in traditional RPMSs MySQL
was the primary data store (see Section 2.1). The YCSB suite has been utilized to benchmark
both a RDBMS system and our prototype of the proposed system. YCSB is an open-source
benchmarking framework which is intended to benchmark different types of data stores. The
framework consists of a workload generating client and a package of standard workloads that
cover the main parts of a performance measurement, such as read-heavy workloads, write-
heavy workloads, scan workloads, etc. One of the great features of YCSB is its extensibility;
specifically the workload generator allows developers to easily define new workload types,
redefine the storage system that YCSB interacts with, and to adapt the client to benchmark
new systems. YCSB’s facilities allowed us to re-implement its basic interface in order to
interact with HBase and MySQL. There was no need to define new workloads, because the
existing workloads in YCSB were sufficient for us to benchmark our systems. Specifically,
four types of workloads were utilized in the benchmarking process: workloadA which
contains from a mix of 50/50 reads and writes, workloadC which is a read only workload,
workloadD which is read latest workload, and workloadE which is range scan workload.
Those workloads also can be interpreted in the medical records setting as follows:

• Workload A – at the same time patients are transmitting their health measurements
clinicians are accessing this data;

• Workload C – only clinicians are reading data from the system;
• Workload D – clinicians are accessing the latest health measurements of specific

patients and some number of patients are transmitting data packets; and
• Workload E – clinicians are retrieving statistics concerning a specific number of

patients concerning a specific date range and at the same time some numbers of
patients are transmitting their health measurements data.

42

YCSB gave us the same output parameters with different values for each workload.
Specifically, by running the workloads that we need we obtained values corresponding
following set of parameters:

• Overall runtime – elapsed time for the selected operation to be completed;

• Overall throughput – average speed of the system related to the number of
operations per second;

• Operations – the number of operations (reads, inserts, updates or cleanups)
performed during the benchmark;

• Avg. latency – as name says average latency during performing operations.
Calculated in 0.001 milliseconds;

• Min. latency – the minimum achieved latency during the benchmark. Calculated
in 0.001 milliseconds;

• Max. latency – the maximum achieved latency during the benchmark. Calculated
in 0.001 milliseconds;

• 95th percentile latency – latency bound for 95% of all operations. Calculated in
milliseconds; and

• 99th percentile latency – latency bound for 99% of all operations. Calculated in
milliseconds.

For scalable RPM benchmarking we have instantiated one master and five region servers.
Initially, we benchmark a single node cluster and compare these results with those obtained
using MySQL running on a single machine and then we increased the number MySQL
instances (the number of shards) as well as the number of nodes in the cluster. Therefore, we
add one node to the cluster after performing each set of benchmarks. We expected that this
would give us a clear picture of how many machines are necessary in the cluster to provide
clinicians with the ability to observe the health measurements of patients in (near) real-time.
After we achieve the expected performance with a given number of machines in the cluster,
we increase the number of patients in the system (simulated by adding several millions of
rows in the data stores) and then again performed benchmarks while adding machines until we
get the expected performance. This allowed us to calculate how much patient data can be
efficiently managed by one node and when we need to add additional nodes to the cluster (we
need to know if all patients transmit their health data at certain times in a day, then for a given
number of newly registered patients we need to add an additional node to meet the
performance requirements of the system). These tests should allow us to characterize the
performance of the system when the number of nodes is increased one by one.

The number of tests in each stage is three. Initially we perform 500,000 operations on one
million rows of 1KB data, calculate throughput and latency, and then we perform ten million
operations on ten million and fifty million rows of 1KB data respectively (again calculating
throughput and latency). After each of these tests we save the benchmark results for later
analysis. Additionally, we used several threads to make the benchmark process faster. The
number of threads was different at each stage. Before starting the benchmarking process, we
loaded our generated data into both MySQL and HBase. After each stage both storage
systems were emptied and a new data set with a different amount of data was loaded. To
obtain more precise results, before running workloadE both the MySQL and HBase databases
were emptied, as prior workloads inserted additional data during their writing phase, hence the
number of rows in the system was increased.

43

5.4.1 Machine specifications

All of the benchmarks were run on machines with identical specifications, see Table 5-2.
Table 5-2: Machine Specifications

Machine Dell Inc. PowerEdge 2970

Processor Hynix Semiconductor (Hyundai Electronics), AMD Opteron™
Processor 2435 with six cores clocked at 2592.994 MHz

Memory 8 x 4096 MB DDR2 with 800 MHz (1.2 ns) speed

Disk Western Digital, 4 x 256 GB, disk cache size 512 KB, cached read
speed 8544 Mbps, buffered disk read speed 81 Mbps

Mother board Dell 0JKN8W

Disk controller Dell SAS PowerEdge RAID Controller (PERC)

Network Interface Embedded Broadcom 5708 NIC 1, NIC 2

All machines in the cluster (in case of multi-node cluster) are interconnected by an Intel®
Gigabit Ethernet Switch with the network interfaces configured for 1 Gbps in full-duplex
mode and the network interfaces performed checksum computations.

5.4.2 YCSB Benchmark on MySQL DB

The MySQL database is sharded several times while performing the benchmarks. Initially,
the benchmark was performed with a single instance of MySQL and for consequent
operations the number of shards was three, four, and five. For each stage of testing the desired
amount of data was loaded and then the workloads are run one by one. The following
command-line script loads one million rows of data into the MySQL database with ten threads
and writes the loading statistics to the file ‘1-mysql-load.dat’:

./bin/ycsb load jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p
recordcount=1000000 -p threadcount=10 -s | tee -a benchmark-results/1-mysql-load.dat

Table 5-3 presents the statistics obtained while loading different numbers of rows of data.
This table shows the number of threads, throughput (in operations per second - ops/sec), and
the range of latency values per operation.

Table 5-3: MySQL Data Load

Million rows 1 10 50
Elapsed Time (ms) 51,622.0 2,682,092.0 139,923,732.0
Thread Count 10 20 100
Throughput (ops/sec) 19,371.586 10,728.433 357.338
Average Latency (ms) 0.435 2.165 11.534
Minimum Latency (ms) 0 0.006 0.12
Maximum Latency (ms) 1,009.412 38,122.511 195,333.092
95th Percentile Latency (ms) 0 4 15
99th Percentile Latency (ms) 0 7 25

44

After loading data, we start the benchmarking process by running workloadA. By default,
YCSB client uses a single worker thread, but also additional threads can be specified to
increase the amount of load offered against the database which is what we need. For this
reason, we picked ten threads* to perform our first operation and for subsequent operations we
increased the number of worker threads. The following script performs 500,000 read and
update operations on a table with one million rows using ten threads:

./bin/ycsb run jdbc -P workloads/workloada -P jdbc-binding/conf/db.properties -p
recordcount=1000000 -p threadcount=10 -p operationcount=500000 –p table=vital_sign -s |
tee -a benchmark-results/1-mysql-workloadA-run.dat

Table 5-4 shows the benchmark results obtained during different types of workloads. The
number of rows in this benchmark is one million, the number of operations is 500,000, and
ten threads concurrently perform operations.

Table 5-4: MySQL Data Benchmark with 1 Million Rows

 Workload A
Update Heavy

(50/50 read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time (ms) 49,023 36,982.0 39,444.0 156,638.0

Rows (Millions) 1 1 1 1
Operations
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10

Throughput (ops/sec) 10,199.294 13,520.09 12,676.199 3,192.073
Average Latency
(ms) (read) 0.098 0.848 0.798 5.023

(write) 0.911 NA 0.024 0.019
Minimum Latency
(ms) (read) 0 0 0 0.191

(write) 0 NA 0 0
Maximum Latency
(ms) (read) 1,739.802 913.03 1,023.553 736.496

(write) 4,133.882 NA 1.992 4.904
95th Percentile
Latency (ms) (read) 0 1 1 24

(write) 1 NA 0 0
99th Percentile
Latency (ms) (read) 0 1 1 35

(write) 2 NA 0 0

The rest of the benchmark measurement results are given in Appendix B, Error!
Reference source not found. and Table B.1-2.

* This number of worker threads was picked only to increase the load on the database.

45

As mentioned above, MySQL database is partitioned several times for the purpose to see
the clear performance difference between HBase. Besides, it was also vital to observe how
RDBMS offers efficiency against scalability. Below tables represent the numbers obtained
from load phase of YCSB after increasing the number of MySQL shards. Specifically, the
numbers of Table 5-5 are those for MySQL with four shards, while Figure 5-6 presents
statistics for MySQL with five shards.

Table 5-5: MySQL Data Load after MySQL Shard Reconfiguration (Four instances)

Million Rows 50 100

Elapsed Time (ms) 5,340,441.0 13,291,283.0

Thread Count 20 20

Throughput (ops/sec) 9,362.523 7,523.728

Average Latency (ms) 16.412 19.002

Minimum Latency (ms) 0.02 0.053

Maximum Latency (ms) 64,423.982 74,912.412

95th Percentile Latency (ms) 39 46

99th Percentile Latency (ms) 54 67

Table 5-6: MySQL Data Load after MySQL Shard Reconfiguration (Five instances)

Million Rows 100 250

Elapsed Time (ms) 10,845,083.0 29,387,911.0

Thread Count 20 50

Throughput (ops/sec) 9,220.769 8,506.899

Average Latency (ms) 16.293 22.081

Minimum Latency (ms) 0.038 0.061

Maximum Latency (ms) 61,012.512 69,010.116

95th Percentile Latency (ms) 40 58

99th Percentile Latency (ms) 66 89

46

Like the above tables, the following tables show the statistics obtained when running
workloadC (read-only) with several million operations on several million rows:

Table 5-7: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration
(Four instances)

Million Rows 50 100

Elapsed Time (ms) 2,705,748 16,772,404.0

Million Operations 10 50

Thread Count 20 20

Throughput (ops/sec) 3,695.834 2,981.087

Average Latency (ms) 3.444 5.228

Minimum Latency (ms) 0 0

Maximum Latency (ms) 14,012.992 24,792.885

95th Percentile Latency (ms) 11 18

99th Percentile Latency (ms) 19 27

Table 5-8: MySQL Data Read (Workload C) after MySQL Shard Reconfiguration
(Five instances)

Million Rows 100 250

Elapsed Time (ms) 13,251,457.0 29,310,368.0

Million Operations 50 100

Thread Count 20 50

Throughput (ops/sec) 3,773.17 3,411.762

Average Latency (ms) 4.423 9.322

Minimum Latency (ms) 0 0.034

Maximum Latency (ms) 21,067.155 55,023.983

95th Percentile Latency (ms) 15 21

99th Percentile Latency (ms) 25 38

5.4.3 YCSB Benchmark on a Single Node Cluster

This is the first benchmark of our newly developed prototype and the current benchmark
is run on a cluster consisting of a single machine. As we did earlier, initially the proper
amount of data should be loaded to run the benchmark workloads. Table 5-9 shows the
throughput and the latency values achieved by a cluster with a single machine. Following
script is executed in the command-line to start the first loading process:

47

./bin/ycsb load hbase -P workloads/workloada –p table=vital_sign -p
columnfamily=vital_signs -p recordcount=1000000 -p threadcount=10 -s | tee -a benchmark-
results/1-hbase-workloadA-load.dat

Table 5-9: HBase Data Load on a Cluster of Single Machine

Million rows 1 10 50
Elapsed Time (ms) 109,916.0 1,695,569.0 151,923,732.0
Thread Count 10 20 100
Throughput (ops/sec) 9,097.857 5,897.725 329.112
Average Latency (ms) 0.957 3.318 14.872
Minimum Latency (ms) 0.005 0.005 0.12
Maximum Latency (ms) 12,701.866 51,209.271 107,534.235
95th Percentile Latency (ms) 0 0 4
99th Percentile Latency (ms) 0 0 5

Table 5-10 shows the read and write latency and throughput of the HBase data store when
running on a single machine cluster. The benchmark parameters during this stage are the same
as the first stage of the MySQL benchmark. The rest of the benchmark results run on a cluster
of single and multiple machines are shown in Appendix B from Table B.1-1 to Table B.1-16.
After each benchmark a new machine is added to the cluster and MySQL database is
reconfigured accordingly.

Table 5-10: HBase Benchmark on a Cluster of Single Machine with 1 million Rows
and 500,000 Operations

 Workload A
 Update Heavy
(50/50 read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)
Elapsed Time (ms) 61,513.0 135,376.0 99,101.0 409,373.0
Rows (Millions) 1 1 1
Operations
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10
Throughput
(ops/sec) 8,128.363 3,693.417 5,045.358 1,221.38

Average Latency
(ms) (read) 2.216 2.678 2.053 8.576

(write) 0.203 NA 0.028 0.047
Minimum Latency
(ms) (read) 0.128 0.101 0.107 0.383

(write) 0 NA 0.006 0.008
Maximum Latency
(ms) (read) 3,100.239 3,085.358 3,135.076 1,232.78

(write) 4,785.415 NA 3.349 10.962
95th Percentile
Latency (ms) (read) 5 4 5 40

(write) 0 NA 0 0
99th Percentile
Latency (ms) (read) 15 36 19 53

(write) 0 NA 0 0

48

5.4.4 YCSB Benchmark on a Multi Node Cluster

Our benchmark for the multi-node cluster is divided into two parts where the first part
covers benchmark statistics before tuning HBase and the second part includes benchmark
statistics after tuning HBase. The performance difference between these two parts is quite
large. By default most of the features of HBase are disabled and administrators must enable
them based on their specific needs. The following performance tuning operations were made
before loading data into HBase [60]:

• Pre-created empty regions. By default only one region was created in HBase and
all clients were writing to the same region until it is large enough to split and
become distributed across the cluster;

• The auto flush value is set to false. By default it is set to true, which means every
write to the data store was sent one at a time to the disk - which significantly
reduces performance;

• The Write Ahead Log (WAL) is turned off. By default it is turned on, which
means that a Region Server writes each put operation into WAL log. In our case,
this is already logged at the application level, so this WAL is unnecessary for us;
and

• JVM heap size is increased. By default the heap size is set to 1000 (megabytes)
which is insufficient when managing a huge amount of data.

In this section we only provide benchmark results obtained after performance tuning of
HBase. The benchmark results before tuning HBase can be found in Appendix B. Table 5-11
and Table 5-12 illustrates the benchmark results obtained during the loading phase and last
two tables (Table 5-13 and Table 5-14) represent the statistics when running workloadC. As
the key operation in scalable RPM is read/write, the load phase (which is write only) and
workloadC (which is read only) are sufficient to compare the system’s and to give use the data
necessary to analyze the behavior of our prototype.

49

Table 5-11: HBase Data Load on a Cluster of Four Machines after HBase Tuning

Million Rows 50 100

Elapsed Time (ms) 2,241,166.0 4,814,933.0

Thread Count 20 20

Throughput (ops/sec) 22,309.815 20,768.721

Average Latency (ms) 2.884 4.481

Minimum Latency (ms) 0.013 0.021

Maximum Latency (ms) 50,121.821 63,252.173

95th Percentile Latency (ms) 0 1

99th Percentile Latency (ms) 0 2

Table 5-12: HBase Data Load on a Cluster of Five Machines

Million Rows 100 250

Elapsed Time (ms) 4,161,339.0 10,368,971.0

Thread Count 25 50

Throughput (ops/sec) 24,030.727 24,110.395

Average Latency (ms) 2.761 5.559

Minimum Latency (ms) 0.001 0.019

Maximum Latency (ms) 30,133.192 58,981.341

95th Percentile Latency (ms) 0 3

99th Percentile Latency (ms) 0 5

50

Table 5-13: HBase Data Read (Workload C) on a Cluster of Four Machines after
HBase Tuning

Million Rows 50 100

Elapsed Time (ms) 5,693,667.0 31,251,932.0

Million Operations 10 50

Thread Count 20 20

Throughput (ops/sec) 1,756.337 1,599.901

Average Latency (ms) 11.093 14.888

Minimum Latency (ms) 0.621 0.76

Maximum Latency (ms) 69,423.092 78,523.633

95th Percentile Latency (ms) 28 35

99th Percentile Latency (ms) 99 126

Table 5-14: HBase Data Read (Workload C) on a Cluster of Five Machines

Million Rows 100 250

Elapsed Time (ms) 27,040,260.0 53,447,319.0

Million Operations 50 100

Thread Count 25 50

Throughput (ops/sec) 1,849.095 1,871.001

Average Latency (ms) 11.981 17.821

Minimum Latency (ms) 0.613 0.871

Maximum Latency (ms) 70,423.523 87,423.025

95th Percentile Latency (ms) 29 42

99th Percentile Latency (ms) 103 177

5.4.5 Fault-tolerance Benchmark of Scalable RPMS

To test the fault-tolerance of our prototype, we ran the scalable RPMS on a cluster of four
nodes. Hadoop was configured to replicate the data on three different nodes. As for all of the
other tests initially the data was loaded into the system. The amount of data loaded was 10
million rows x 1KB (for a total of 10 GB) and the number of operations is one million.
Several seconds after running workloadA on the cluster four nodes, the first node was forcibly
shut down* and later* it was brought back into operation and after 1.5-2 minutes another node

* The node was shutdown by executing a $HADOOP_HOME/bin/hadoop-daemon.sh --config
$HADOOP_HOME/conf/ stop datanode command.

51

was shut down. During the each test run there were 5 simulated node failures. The main goal
behind this test was to evaluate the fault-tolerance of our prototype. According to Hadoop’s
documentation, after each shut down, the master node should dynamically refer to the other
nodes and continue to operate. During this benchmark process several nodes were shut down
one by one. The benchmark process was successfully completed without throwing exceptions,
which means that the master node properly managed the slaves despite the corresponding
nodes suddenly being shut down.

Table 5-15 shows the benchmark statistics from this testing. From the table we can see
that the elapsed time for the operations took more than when the same test was performed
without any crashes during benchmarking (this data is shown in Table B.1-15 column
workloadA). In total five nodes were failed one by one for around 55 seconds, thus for ~275
seconds three nodes performed the processing of the workload. Throughput and latency
differences between these two sets of statistics are illustrated in Figure 5-1. As shown in the
figure, even a three node cluster performed better than a four node cluster when the cluster
experienced individual node crashes. It takes some time for a master node to distribute part of
the load to the other slave nodes when one slave node suddenly crashes. Part of the decrease
in performance is due to the fact that when a slave node returns to operation it has to be
updated from the master node, thus reducing the service rate of the master node to external
operations.

Table 5-15: Fault-tolerance benchmark with workloadA on a Cluster of Four
Machines

 Elapsed
Time (ms) Row Count Operations Thread

Count
Throughput

(ops/sec)
Average Latency

(ms)

Workload
A 1,102,512 10,000,000 1,000,000 20 907.02

127.52 (read)
1.19 (write)

Figure 5-1: HBase benchmark differences between system with repeated machine
failures and a system without such failures

* 50-60 seconds later

0

20

40

60

80

100

120

140

0 200 400 600 800 1000 1200 1400

La
te

nc
y

(m
s)

Throughput (ops/sec)

Fault-tolerance vs. Normal Benchmarks

Fault-tolerance Benchmark

Normal Benchmark (4 Nodes)

Normal Benchmark (3 Nodes)

52

5.5 Benchmark Analysis and Comparison
In this section we collect all of the benchmark results in order to compare them with each-

other and to extract meaningful information from these results. As mentioned above, the data
load phase was performed at the beginning of each benchmark. Initially we analyze
benchmark results of sharded MySQL and HBase before tuning and then later we analyze the
systems after performance tuning.

Based on Table 5-3, Table 5-9, Table B.1-5, Table B.1-9, and Table B.1-13, Figure 5-2
depicts the load latency versus throughput of the relevant data stores. For initial benchmarks,
the MySQL database was horizontally partitioned into three shards and this number of shards
was kept for several benchmarks. Figure B.2-1 and B.2-2 show the case for 10 GB (10 million
rows) and 50 GB (50 million rows) data loads respectively. In both cases, the performance of
the two HBase machines exceeded the performance of the MySQL implementation.

Figure 5-2: 1 GB of Data Load Benchmark Statistics

After loading the desired amount of data, the MySQL benchmark transaction phase was
performed and subsequently the HBase benchmark was carried out. In the loading phase,
sharded MySQL showed better performance than our prototype when running on a cluster
with a single machine. However, as was shown in Figure 5-2, MySQL with three shards was
out performed by HBase when the number of nodes in the cluster is greater than two.
Additionally, the benchmarks show that the write operation in HBase is much faster than the
write operation in MySQL.

Figure 5-3 illustrates workloadA’s read latency of both the MySQL and HBase databases.
The figure shows that MySQL has the lowest latency among all other benchmarks, because
MySQL’s read operation is much faster than a read operation in HBase. Accordingly, Figure
5-4 shows the write latency of MySQL and HBase when running the same workload. This
figure illustrates that the write latency of MySQL is higher than the write latency of even a
single node HBase cluster.

0

0.2

0.4

0.6

0.8

1

1.2

0 10,000 20,000 30,000 40,000

Av
er

ag
e

Sc
an

 L
at

en
cy

 (m
s)

Throughput (ops/sec)

Load Phase, 1 million rows

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

53

Figure 5-3: WorkloadA Read Latency vs. Throughput Benchmark Statistics

Figure 5-4: WorkloadA Write Latency Benchmark Statistics

0

200

400

600

800

1000

1200

0 5,000 10,000 15,000 20,000 25,000 30,000

Av
er

ag
e

R
ea

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload A - Read Latency

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

20

40

60

80

100

120

140

160

180

0 5,000 10,000 15,000 20,000 25,000 30,000

Av
er

ag
e

U
pd

at
e

L
at

en
cy

 (m
s)

Throughput (ops/sec)

Workload A - Update Latency

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

54

Figure 5-5 illustrates the same benchmark results with regards to elapsed time and the
number of operations. As shown in this figure, the elapsed time for MySQL to run workloadA
is greater than the time of the HBase running on a cluster with a single machine. However,
after adding one node to the cluster, HBase starts to show better performance than MySQL.

Figure 5-5: Elapsed Time (runtime) versus Number of Operations for WorkloadA

Further plots of the results of the benchmarking are given in Appendix B Figure B.2-1 to
Figure B.2-10. Specifically, Figure B.2-3 illustrates read latency and throughput comparisons
obtained running workloadC. The results show the clear difference between a traditional
RDBMS and NoSQL. As noticed in earlier benchmarks, read operations in HBase are more
expensive than a write operation, while in MySQL the reverse is true. Therefore, the
performance difference between the two data stores increases with increasing numbers of
write operations. In the first stage of the workloadC benchmark when the number of
operations performed is 500,000, the single machine MySQL configuration showed better
performance than a cluster of three machines; however, when the number of nodes in the
cluster increased to four, then HBase started to perform better. Details of this benchmark
results can be seen in Figure B.2-3 and Figure B.2-4.

Figure B.2-5 – Figure B.2-10 characterize comparisons between MySQL and HBase
cluster running workloadD and workloadE respectively. In both of them MySQL falls behind
when the number of nodes in the cluster is more than one. In the benchmarks with fewer less
operations and less data, MySQL performed much better than HBase running on a cluster
with a single machine. However, when the number of operations increases or the amount of

10,000

100,000

1,000,000

10,000,000

100,000,000

1,000,000,000
0

2,
00

0,
00

0

4,
00

0,
00

0

6,
00

0,
00

0

8,
00

0,
00

0

10
,0

00
,0

00

12
,0

00
,0

00

E
la

ps
ed

 T
im

e
(m

s)

Number of Operations

Runtime vs. Operations

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

55

data increases, then the performance of MySQL starts to decrease much more quicker than
HBase’s performance.

Both MySQL and HBase performed poorly when the number of operations reached
1 million or more. Even a cluster with four nodes spent much time to perform operations.
However, after performance tuning we started to achieve more acceptable results.

Figure 5-6 shows 100 million rows of data load on both HBase and MySQL data stores.
As shown in the figure, the performance after tuning is much higher. The figure clearly
illustrates that MySQL has much slower performance when it comes to data loading (i.e.,
write operations).

Figure 5-6: Data Load Benchmark Statistics for 100 GB

Subsequently, the number of rows is raised to 250 million and the benchmark is
performed again. Figure 5-7 depicts 250 million lines of row load on MySQL and HBase.
These results clearly indicate that the throughput of HBase is far more ahead of MySQL
during performing load operations. From these values, we can assume that HBase cluster with
five machines can achieve throughputs ranging from 20 to 26 thousand operations per
seconds.

Figure 5-7: Data Load Benchmark Statistics for 250 GB

0

5

10

15

20

0 5,000 10,000 15,000 20,000 25,000 30,000

L
oa

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Load Phase, 100 million rows

MySQL, 4 Shards

MySQL, 5 Shards

HBase, 4 Machines

HBase, 5 Machines

0

5

10

15

20

25

0 5,000 10,000 15,000 20,000 25,000 30,000

L
oa

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Load Phase, 250 million rows

MySQL, 5 Shards

HBase, 5 Machines

56

Figure 5-8 and Figure 5-9 represent workloadC benchmark results with 50 million and
100 million operations respectively. As shown in the figures, MySQL performed better than
HBase which means that the read operation in MySQL is faster than in HBase.

Figure 5-8: WorkloadC Benchmark Statistics on 100 million rows

Figure 5-9: WorkloadC Benchmark Statistics on 250 million rows

Another important set of values in our benchmark are the 95th and 99th percentile latencies.
These show the latency bound for 95% and 99% of the operations. We show this data as the
average latency values may not indicate whether the system performs as expected, because
according to our benchmark results, the difference between the average latency and these two
bounds are quite large. Specifically, as the number of operations is increased the 95th and 99th
percentile latencies are higher than average latency, this means that the average is being
affected by the extremely small latencies of a large fraction of the operations. Figure 5-10
presents the differences among these three read latency values. As the figure shows, the
average latency values are lower than the 95th and 99th percentile latencies.

0

5

10

15

20

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000R
ea

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload C (100% Read), 100 million rows, 50 million
operations

MySQL, 4 Shards

MySQL, 5 Shards

HBase, 4 Machines

HBase, 5 Machines

0

5

10

15

20

0 500 1,000 1,500 2,000 2,500 3,000 3,500 4,000

R
ea

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload C (100% Read), 250 million rows, 100 million
operations

MySQL, 5 Shards

HBase, 5 Machines

57

Figure 5-10: HBase Read Latency Differences on 50 million rows

In order to request patient data clinicians’ requests are entered into a queue in the RPMS
and one by one the queries are processed to retrieve the relevant health records. We can
calculate the maximum number of requests to accessing a database containing 250 million
rows with a maximum desired latency of 2 seconds. We used the benchmark statistics
obtained running workloadD, because we need a workload which performs both reads and
writes. Table 5-16 represents the benchmark statistics obtained by running workloadD on a
cluster of five machines with 250 million rows.

Table 5-16: HBase Data Read/Write (Workload D) on a Cluster of Five Machines

Million Rows Elapsed
Time (ms)

Throughput
(ops/sec)

Average
Latency (ms)

95th Percentile
Latency (ms)

99th Percentile
Latency (ms)

250 49,634,829.0 2,014.714 14.346 40 138

From these benchmark results we extract those that we need to determine the maximum
number of requests which could be satisfied in the bounded time. Let us assume that the
average throughput on a five machine cluster performing workloadD is ~2,000 operations per
second, then a maximum of 4,000 clinicians can make a query about a patient and have a 2
seconds latency bound if each of these clinicians makes one query at a time and all of them
make their queries at the same time and all of them make a new query every two seconds. If
we assume that a clinician makes less than one query per second and that each query requires
some number of operations then we can apply Little’s law [61] to our results from both HBase
and MySQL in order to calculate the maximum number of clinicians who could be satisfied
by a system which runs sharded MySQL or HBase as a database storage. It is obvious that
MySQL is the best choice with regard to satisfying queries since the number of read queries
that can be satisfied per unit time is larger than for HBase.

Next we calculate the scalability of our prototype. Based on Figure 5-6 and Figure 5-8, we
can compute how rapidly we can scale out our prototype. We utilized Amdahl’s law [62] for
our analysis of scaling. Amdahl’s law says that the speedup of an application using multiple
processors in parallel is limited by the time needed for the sequential fraction of the
application. In other words, the law states that if each application has one part that takes t time
to be processed and it is impossible to execute this part in parallel, then regardless of how

0
1
2
3
4
5
6

0 50 100 150 200

N
um

be
r o

f M
ac

hi
ne

s

Latency (ms)

Read Latency Differences on 50 million rows

95th Percentile Latency
99th Percentile Latency
Average Latency

58

many processors are devoted to parallelize the execution of this application, the minimum
execution time cannot be less than t. A formula for the maximum speedup, S(n), is: ܵ(݊) = ଵೞ	ା	ೝ (1)

where, ݎ௦ + ݎ = ݎ ,1 represents the portion of the application that can be occured in
parallel, ݎ௦ represents the sequential portion of the application, and ݊ is the number of
machines (processors).

To analyze the scaling of our prototype, first we need to find ݎ௦. To calculate it, we need to
know the elapsed time difference between two sets of machines running the same workload.
We took runtimes of data reads (workloadC) phase with four and five nodes (represented in
Table 5-11 and Table 5-12) and the time difference is as follows:

Difference = t5 / t4 = 27,040,260 / 31,251,932 = ~0.865

In ideal case, the difference would satisfy the following equation:

 ݊ × ݐ = (݊ + 1) × ାଵ => ାଵݐ = ௧శభ௧

where, n – number of machines and t – elapsed time for the operation to be finished. From
this equation, we obtain 4 / 5 = 0.8. Now it is obvious that ݎ௦ = 0.865 − 0.8 = 0.065 =6.5%. So 6.5% of our application was sequential. From this value, we calculate ݎ which is ݎ = 1 − ௦ݎ = 0.935 = 93.5%.

Based on (1) equation, we calculate S(5) which equals to 3.97 and S(4) = 3.35. We also
calculated the case of a three machine cluster and the sequential portion was ݎ௦ = 6.2% =~6% which led us to gain S(3) = 2.68.

These last calculations clearly show the speedup of our application. From those values we
conclude that only ~94% of our application can be parallelized while the remaining portion
(~6%) will not be processed in parallel. Equation (1) shows that even if the number of
machines were infinite, the maximum speedup will be S(∞) = 1 / 0.06 = 16.67. From this we
learn that by the time we have scaled up to 23 machines we are getting only a small gain in
speedup when adding an additional machine.

6 Co
This

technolo
required

6.1 C
The

remote
patients
utilize r
attention
transfer
obtained
state is
area edg
during t
benchm
measure
perform
write, re
was eva
Append

Figu

onclusio
s chapter co
ogies to be
d reflections

Conclusio
primary go
patient mo

s to clinicia
relational d
n was paid
their health

d medical r
below than
ged with bl
the period

marks were
ements for

mance differ
ead, and sc
aluated usin
dix B.

ure 6-1: Mo

ons and
oncludes the
e applied in
s on social,

ons
oal of this th
onitoring sy
ns and also
atabases. A
only to the

h measurem
records and
n normal) w
lue lines sh
of this the
performed
analysis. T

rence betw
an operatio

ng benchmar

odern RPM

d Future
e thesis proj
n future res
economic,

hesis was to
ystem whic
o to compar
As we plann
e realization
ments and p

advanced p
was outside
hows the pa
sis project.
in order t

The statistic
ween relation

ns. Additio
rks. All of t

MS Architec

59

e Work
ject providi
search. Fina
and ethical

o design a ne
ch delivers
re the new
ned in the b
n of the firs
physicians m
patient mon
the scope o

arts of a m
 Consequen

to prove th
cal analysis
nal and no

onally, the f
the benchm

cture

k
ng a conclu
al section o
considerati

ew prototyp
near real-

system aga
beginning o
st part of th
monitor them
nitoring (ma
of this mas

modern RPM
ntly after th

hat the prot
s of these b
on-relationa
fault-toleran

mark results

usion and su
of this chap
ons.

pe of a high
time health

ainst traditio
of our thesi
he RPM sys
m in ordina
ainly for pa
ter’s thesis

MS that wer
he develop
totype deliv
benchmark
al databases
nce of the d
are presente

uggesting ad
apter includ

hly efficient
h measurem
onal system
is project, t
stem where
ary manner.
atients whos
. In Figure
re develope

pment, a nu
vers near r
results sho

s when per
developed p
ed in Chapt

dditional
des some

scalable
ments of
ms which
the main

patients
. Mining
se health
6-1, the

ed by us
umber of
real-time
owed the
rforming

prototype
ter 5 and

60

In the prototype Apache HBase is used to store health measurements of patients and
therefore the performance of storing and retrieving such records was measured by running
benchmarks. In order to contrast the performance of HBase, the MySQL relational database
was chosen as it represents one of the most widely used RDBMS. Benchmark statistics
showed that HBase has unquestionable superiority in terms of write performance, while
MySQL performed much better in terms of read performance. In terms of executing complex
queries for medical record statistics, both data stores performed poorly - although HBase
performed better than MySQL.

It is important to note that chosen data store for our prototype, HBase, showed both
satisfactory and unsatisfactory performance results during executing workloads. Benchmark
tests also include two stages: before and after performance tuning of HBase. The performance
difference after tuning was much higher than before. Another factor which is worth
mentioning is the slowness of read operation in HBase as compared to MySQL, because the
read operation is as critical as write operation in RPMSs. However, our system does not
include critical patient monitoring which requires significantly high speed data reads.
Additionally, the write rate is higher than the reading rate. Because when a patient’s health
state is as expected, physicians usually request health measurement statistics for the last week
or the last two weeks, etc. Considering these factors we assert that HBase is better option;
however when it comes to provide a high fraction of data reads, MySQL is the most suitable
candidate.

6.2 Future Work
As described in Section 1.2.1, current master’s thesis proposed and designed a system

which is considered as the first part of today’s modern RPMSs and the rest two parts have to
be developed as a future work of this project. More in detail, Figure 6-1 represents modern
RPMS with all three parts where ‘Data Mining’ and ‘Critical Patient Monitoring’ parts
dedicated as a future work. The health care for different kinds of patients has to be provided
accordingly; hence intelligent analysis of measurement results is highly important for
clinicians as well as patients.

Another crucial functionality that should be implemented in RPMS is specific data
searching using Solr. Since, Solr provides ultra-fast search services while keeping a simple
programming model, its implementation in RPMS would be invaluable. Because especially, in
the third part of RPMS, clinicians frequently request health statistics of specific patients for
the last several days or weeks or even months and it is vital that the query should not take
long regardless of its complexity.

Providing security in a scalable RPMS was outside the scope of this master’s thesis
project. As most medical records need to be securely transmitted and managed, enhanced
security is essential to such a system in the real-world. Specifically, authentication and
authorization mechanisms have to be made to function properly in Hadoop. User
identification (authentication) can be done in many ways, including making changes in low-
level transport, using the Kerberos authentication protocol or token delegation among users.
Authorization should include all types of access controls to resources and role-based
management.

Today the majority of current remote patient monitoring systems use traditional relational
databases to store and manage their data. Highly scalable data management techniques were
introduced only a few years ago due to the need to handle big data. We expect that
increasingly there will be an integration of both scalable and relational data management
technologies in RPMS. One of the best ways to integrate Hadoop with RDBMS is using

61

Apache Sqoop. Utilizing this data integration tool in a scalable RPMS would make the system
even more extensible and capable.

6.3 Reflections
This master’s thesis project facilitates patient monitoring which helps both patients and

clinicians. The full implementation of this project in the real-life could help to avoid long
queues in hospitals, facilitate patients communicating with their clinicians, and enable
clinicians to efficient access patients’ health records. Increasing the effectiveness of the
relation between patients and physicians is considered as a beneficial social aspect of this
master’s thesis project. The key economic aspect of this thesis project is its cost efficiency, as
it describes a method that can be used to provide a scalable RPMS which can support very
large amounts of medical records – especially those records which will be coming from home
health care monitoring devices. An environmental aspect of this work is a potential reduction
in need for emergency transport (by helicopter or ambulance) due to better observation of
patient’s conditions.

63

References

1. Nicole Lewis, “Remote Patient Monitoring Market To Double by 2016,” Jan-2012. [Online].
Available at: http://www.informationweek.com/healthcare/mobile-wireless/remote-patient-
monitoring-market-to-doub/240004291. [Accessed: 21-Feb-2013].

2. Ken Terry, “Remote Patient Monitoring Shows Strong Growth,” Jan-2012. [Online]. Available at:
http://www.informationweek.com/healthcare/mobile-wireless/remote-patient-monitoring-shows-
strong-g/232301359. [Accessed: 21-Feb-2013].

3. Berg Insight, “Berg Insight says 2.8 million patient are remotely monitored today,” Jan-2013.
[Online]. Available at: http://www.berginsight.com/News.aspx?m_m=6&s_m=1. [Accessed: 21-
Feb-2013].

4. Iain Morris, “Remote patient monitoring systems to grow to 9.4 million by 2017: Berg Insight,”
Jan-2013. [Online]. Available at: http://www.telecomengine.com/article/remote-patient-
monitoring-systems-grow-94-million-2017-berg-insight. [Accessed: 21-Feb-2013].

5. Center for Aging and Technology, “Technologies for Remote Patient Monitoring for Older
Adults,” An Initiative of The SCAN Foundation and Public Health Institute, Apr-2010. [Online].
Available at: http://www.techandaging.org/RPMPositionPaper.pdf. [Accessed: 22-Mar-2013].

6. Pete Larson, “Remote Patient Monitoring for Home Health,” HEALTH Interlink, Jun-2012.
[Online]. Available at: http://healthinterlink.com/images/HealthInterlink_HH_Webinar2.pdf.
[Accessed: 22-Mar-2013].

7. An Oracle White Paper, “Oracle: Big Data for the Enterprise,” Jan-2012. [Online]. Available at:
http://www.oracle.com/us/products/database/big-data-for-enterprise-519135.pdf. [Accessed: 21-
Feb-2013].

8. April Reeve, “Big Data and NoSQL: The Problem with Relational Databases,” Sep-2012. [Online].
Available at: http://infocus.emc.com/april_reeve/big-data-and-nosql-the-problem-with-relational-
databases/. [Accessed: 21-Feb-2013].

9. Paul C. Zikopoulos, Chris Eaton, Dirk deRoos, Thomas Deutsch, and George Lapis,
“Understanding Big Data,” IBM Corporation, McGraw-Hill, 2012. ISBN 978-0-07-179053-6,
pp. 3–13. Available at:
http://public.dhe.ibm.com/common/ssi/ecm/en/iml14296usen/IML14296USEN.PDF. [Accessed:
22-Feb-2013].

10. IBM Corporation, “Bringing Big Data to the Enterprise: What is Big Data,” Jan-2013. [Online].
Available at: http://www-01.ibm.com/software/data/bigdata/. [Accessed: 22-Feb-2013].

11. Dion Hinchcliffe, “10 Ways to Complement the Enterprise RDBMS using Hadoop,” Sep-2007.
[Online]. Available at:
http://www.ebizq.net/blogs/enterprise/2009/09/10_ways_to_complement_the_ente.php.
[Accessed: 16-Mar-2013].

12. Hortonworks, “Understanding Hadoop Ecosystem.” [Online]. Available:
http://docs.hortonworks.com/CURRENT/index.htm#About_Hortonworks_Data_Platform/Under
standing_Hadoop_Ecosystem.htm. [Accessed: 22-Feb-2013].

13. Deborah Lee Soltesz, “The Advantages of a Relational Database Management System.” [Online].
Available at: http://www.ehow.com/list_6121487_advantages-relational-database-management-
system.html. [Accessed: 26-Feb-2013].

14. Anni Martin, “Disadvantages of Relational Database.” [Online]. Available at:
http://www.ehow.com/list_5977286_disadvantages-relational-database.html. [Accessed: 26-Feb-
2013].

15. Bart Jacob, Michael Brown, Kentaro Fukui, and Nihar Trivedi, “Introduction to Grid Computing,”
IBM Corporation, Dec-2005. pp. 3-17. [Online]. Available at:
http://www.redbooks.ibm.com/redbooks/pdfs/sg246778.pdf. [Accessed: 12-Mar-2013].

16. Heli Xu and Guixin Wu, “Parallel Programming in Grid: Using MPI,” presented at the Proceedings
of the Third International Symposium on Electronic Commerce and Security Workshops, Jul-
2010. ISBN 978-952-5726-11-4. pp. 136–138. [Online]. Available at:
http://www.academypublisher.com/proc/isecs10w/papers/isecs10wp136.pdf. [Accessed: 14-Mar-
2013].

64

17. Luis F. G. Sarmenta, “Volunteer Computing,” MIT, Department of Electrical Engineering and
Computer Science, Jun-2001. [Online]. Available at: http://www.dmut.net/en/282/282078.pdf.
[Accessed: 13-Mar-2013].

18. David P. Anderson, “BOINC: A System for Public-Resource Computing and Storage,” Nov-2005.
[Online]. Available at: http://www.cs.umd.edu/class/fall2005/cmsc714/Lectures/koren-boinc.pdf.
[Accessed: 14-Mar-2013].

19. J2EEBrain, “Hadoop - Advantages and Disadvantages,” 2012. [Online]. Available at:
http://www.j2eebrain.com/java-J2ee-hadoop-advantages-and-disadvantages.html. [Accessed: 26-
Feb-2013].

20. Zak Stone, “Introduction to Hadoop,” 2011. [Online]. Available at:
http://www.cs264.org/lectures/files/cs_264_hadoop_lecture_2011.pdf. [Accessed: 26-Feb-2013].

21. Carenet Team, “Carenet Services.” Jan-2013. [Online]. Available at: http://ttaportal.org/wp-
content/uploads/2013/01/Final-Report-V-1.0.pdf. [Accessed: 23-Mar-2013].

22. Carenet Team, “Carenet Services: Sensor Desktop Application.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Desktop-Application-v-1.0.pdf.
[Accessed: 06-Mar-2013].

23. Carenet Team, “Carenet Services: Sensor Web Application.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Web-Application-v-1.0.pdf. [Accessed:
21-Mar-2013].

24. Carenet Team, “Carenet Services: HDVC.” Jan-2013. [Online]. Available at:
http://ttaportal.org/wp-content/uploads/2013/01/Sensors-Web-Application-v-1.0.pdf. [Accessed:
22-Mar-2013].

25. Fernández Alexis Martínez, “Authorization schema for electronic health-care records: For
Uganda,” KTH, School of Information and Communication Technology (ICT), TRITA-ICT-EX-
2012:176, Aug-2012. [Online]. Available at: http://kth.diva-
portal.org/smash/record.jsf?pid=diva2:546619. [Accessed: 26-Mar-2013].

26. Sherin Sebastian, Neethu Rachel Jacob, Yedu Manmadhan, V. R. Anand, and M. J. Jayashree,
“Remote Patient Monitoring System,” presented at the International Journal of Distributed and
Parallel Systems (IJDPS), Sep-2012, pp. 99–110. DOI : 10.5121/ijdps.2012.3509. [Online].
Available at: http://airccse.org/journal/ijdps/papers/3512ijdps09.pdf. [Accessed: 26-Mar-2013].

27. Myung-kyung Suh, Chien-An Chen, Jonathan Woodbridge, Michael Kai Tu, Jung In Kim, Ani
Nahapetian, Lorraine S. Evangelista, and Majid Sarrafzadeh, “A Remote Patient Monitoring
System for Congestive Heart Failure,” presented at the Springer Science+Business Media, May-
2011. DOI 10.1007/s10916-011-9733-y. [Online]. Available at:
http://www.chime.ucla.edu/Evangelista-%20A%20Remote%20Patient%20Monitoring.pdf.
[Accessed: 28-Mar-2013].

28. Myung-kyung Suh, Lorraine S. Evangelista, Victor Chen, Wen-Sao Hong, Jamie Macbeth, Ani
Nahapetian, Florence-Joy Figueras, and Majid Sarrafzadeh, “WANDA B.: Weight and Activity
with Blood Pressure Monitoring System for Heart Failure Patients,” University of California,
Los Angeles, 2010. DOI: 10.1109/WOWMOM.2010.5534983, [Online]. Available at:
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC3075586/. [Accessed: 30-Mar-2013].

29. Alex Holmes, Hadoop in Practice. Shelter Island, NY 11964: Manning Publications Co., 2012.
ISBN 9781617290237. [Accessed: 03-Apr-2013].

30. Sanjay Ghemawat, Howard Gobioff, and Shun-Tak Leung, “The Google File System,” presented
at the SOSP’03, Bolton Landing, New York, USA, Oct-2003. [Online]. Available at:
http://www.cs.rochester.edu/meetings/sosp2003/papers/p125-ghemawat.pdf. [Accessed: 01-Apr-
2013].

31. Jeffrey Dean and Sanjay Ghemawat, “MapReduce: Simplified Data Processing on Large Clusters,”
presented at the OSDI ’04: 6th Symposium on Operating Systems Design and Implementation,
2004, pp. 137–149. [Online]. Available at:
http://static.usenix.org/event/osdi04/tech/full_papers/dean/dean.pdf. [Accessed: 01-Apr-2013].

32. Tom White, Hadoop: The Definitive Guide, Second Edition. 1005 Gravenstein Highway North:
Sebastopol, 2010. [Accessed: 01-Apr-2013].

33. The Apache Software Foundation, “Hadoop Tutorial and Documentation,” Feb-2013. [Online].
Available at: http://hadoop.apache.org/docs/r1.0.4/. [Accessed: 05-Apr-2013].

65

34. Ashish Thusoo, Joydeep Sen Sarma, Namit Jain, Zheng Shao, Prasad Chakka, Suresh Anthony,
Hao Liu, Pete Wyckoff, and Raghotham Murthy, “Hive - A Warehousing Solution Over a Map-
Reduce Framework,” presented at the VLDB Endowment, Facebook Data Infrastructure Team,
Lyon, France, Aug-2009. [Online]. Available at: http://www.vldb.org/pvldb/2/vldb09-938.pdf.
[Accessed: 05-Apr-2013].

35. Alan Gates, Data flow scripting with Hadoop: Programming Pig, First Edition. 1005 Gravenstein
Highway North, Sebastopol, CA 95472.: O’Reilly Media, Oct-2011. [Accessed: 06-Apr-2013].

36. Nick Dimiduk and Amandeep Khurana, HBase in Action. Manning Publications Co., 2013. pp. 3-
20. [Online]. Available at: http://www.manning.com/dimidukkhurana/HBiAsample_ch1.pdf.
[Accessed: 06-Apr-2013].

37. Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber, “Bigtable: A Distributed
Storage System for Structured Data,” presented at the OSDI, 2006. [Online]. Available at:
http://static.googleusercontent.com/external_content/untrusted_dlcp/research.google.com/en//arc
hive/bigtable-osdi06.pdf. [Accessed: 06-Apr-2013].

38. Alan Gates, “Apache Hadoop* Community Spotlight: HCatalog.” Aug-2012. [Online]. Available
at: http://www.intel.com/content/dam/www/public/us/en/documents/white-papers/hadoop-
spotlight-hcatalog-paper.pdf. [Accessed: 04-Jul-2013].

39. The Apache Software Foundation, “ZooKeeper.” 2008. [Online]. Available at:
http://zookeeper.apache.org/doc/r3.2.2/zookeeperOver.pdf. [Accessed: 27-June-2013].

40. Apache Software Foundation, “Apache Ambari.” Apr-2013. [Online]. Available at:
http://incubator.apache.org/ambari/. [Accessed: 09-Apr-2013].

41. John Speidel, “Ambari API Reference.” Feb-2013. [Online]. Available at:
https://github.com/apache/ambari/blob/trunk/ambari-server/docs/api/v1/index.md. [Accessed:
09-Apr-2013].

42. Apache Software Foundation, “Apache Sqoop,” Mar-2013. [Online]. Available at:
http://sqoop.apache.org/. [Accessed: 09-Apr-2013].

43. The Apache Software Foundation, “Apache Solr,” 2012. [Online]. Available at:
http://lucene.apache.org/solr/. [Accessed: 10-Jun-2013].

44. Eric Sammer, Hadoop Operations: A Guide for Developers and Administrators, First Edition.
1005 Gravenstein Highway North, Sebastopol, CA 95472.: O’Reilly Media, Sep-2012.

45. Lars George, “Hive vs Pig,” Oct-2009. [Online]. Available at:
http://www.larsgeorge.com/2009/10/hive-vs-pig.html. [Accessed: 16-Apr-2013].

46. Lars George, HBase: The Definitive Guide. 1005 Gravenstein Highway North, Sebartol, CA
95472.: O’Reilly Media, Inc., Sep-2011.

47.Ruslan Mukhammadov, Scalable Remote Patient Monitoring System App. Source code, Jun-2013.
[Online]. Available at: https://github.com/ruslanm/scalable-rpm. [Access: 08-Jul-2013].

48.Michael G. Noll, “Running Hadoop on Ubuntu Linux (Single-Node Cluster),” Mar-2013. [Online].
Available: http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-single-node-
cluster/. [Accessed: 12-Jun-2013].

49.Michael G. Noll, “Running Hadoop on Ubuntu Linux (Multi-Node Cluster),” Apr-2013. [Online].
Available: http://www.michael-noll.com/tutorials/running-hadoop-on-ubuntu-linux-multi-node-
cluster/. [Accessed: 15-Jun-2013].

50.MapR Technologies, “Installing Apache HBase Standalone mode in Ubuntu,” Jun-2013. [Online].
Available: http://www.mapr.com/doc/display/MapR/HBase. [Accessed: 12-Jun-2013].

51.Robert Chen, “Setup Multinodes HBase/Hadoop/Zookeeper on Ubuntu,” Sep-2012. [Online].
Available: http://www.solaris11.com/?p=440. [Accessed: 04-Jun-2013].

52.Prasad Mujumdar, “Apache Hive, Developers Guide,” Mar-2013. [Online]. Available:
https://cwiki.apache.org/confluence/display/Hive/Home. [Accessed: 10-Jun-2013].

53. Oracle, “MySQL Manual: Running Multiple MySQL Servers on the Same Machine,” MySQL.
[Online]. Available: http://dev.mysql.com/doc/refman/4.1/en/multiple-servers.html. [Accessed:
06-Jul-2013].

54. Esen Sagynov, “Easy MySQL Database Sharding,” at MySQL World Conference & Expo, Apr-
2013. [Online]. Available: http://www.percona.com/live/mysql-conference-
2013/sites/default/files/slides/Esen%20Sagynov%20-

66

%20Easy%20MySQL%20Database%20Sharding%20with%20CUBRID%20SHARD%20-
%202013%20Percona%20PLMCE.pdf, [Accessed: 07-Jul-2013]

55. Petr Dvorak, “MySQL Sharding Block Series: Does Sharding Make Sense on a Single Machine,”
Scalebase, May-2013. [Online]. Available: http://www.scalebase.com/mysql-sharding-blog-
series-does-sharding-make-sense-on-a-single-machine/. [Accessed: 06-Jul-2013].

56. Robert H. Dolin, Liora Alschuler, Sandy Boyer, Calvin Beebe, Fred M. Behlen, Paul V. Biron, and
Amnon Shabo, “HL7 Clinical Document Architecture,” Journal of the American Medical
Informatics Association, DOI 10.1197/jamia.M1888, pp. 31–39, Feb-2006. [Online]. Available
at: ssr-anapath.googlecode.com/files/CDAr2.pdf . [Accessed: 05-May-2013].

57.Ruslan Mukhammadov, “Fake” health data genetor. Source code. Jun-2013. [Online]. Available
at: https://github.com/ruslanm/data-generator. [Access: 08-Jul-2013].

58. B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan, and R. Sears, ‘Benchmarking cloud
serving systems with YCSB’, in Proceedings of the 1st ACM symposium on Cloud computing,
New York, NY, USA, 2010, pp. 143–154, DOI:10.1145/1807128.1807152, [Online]. Available
at: http://doi.acm.org/10.1145/1807128.1807152. [Accessed: 01-Jul-2013].

59. Brian F. Cooper, “YCSB,” Dec-2012. [Online]. Available:
https://github.com/brianfrankcooper/YCSB. [Accessed: 01-Jul-2013].

60. Apache Foundation, “Apache HBase Performance Tuning,” Apr-2013. [Online]. Available:
http://hbase.apache.org/book/performance.html. [Accessed: 07-Jul-2013].

61. John D.C. Little and Stephen C. Graves, “Little’s Law,” Massachusetts Institute ofTechnology,
Building Intuition: Insights From Basic_Operations Management Models and Principles, 2008,
pp. 81–100, DOI: 10.1007/978-0-387 -73699-0, [Online]. Available at:
http://web.mit.edu/sgraves/www/papers/Little's%20Law-Published.pdf. [Accessed: Jul-13-2013].

62. Amdahl Gene, “Validity of the single processor approach to achieving large scale computing
capabilities,” in Proceedings of AFIPS Conference, IBM Sunnyvale_, California, 1967, pp. 483–
485. [Online]. Available at: http://www-inst.eecs.berkeley.edu/~n252/paper/Amdahl.pdf
[Accessed: Jul-13-2013].

67

Appendix A

Sample from Generated Test Data

Physical Examination (Vital signs)

User Identifier 63481968342523200+62371

Timestamp (in milliseconds) 1378375823000

Pulse Rate 101

SpO2 96

Body Temperature 36.3

Blood Pressure 120

Respiration Rate 15

Blood Glucose 91

Vital Capacity 4.5

Forced Expiratory Flow 39

Forced Inspiratory Flow 42

Tidal Volume 488

End-tidal CO2 5.3

Gait Speed 1.1

69

Appendix B

RDBMS and Scalable RPMS Prototype Measurements and
Chart Representation of each Measurement

B.1 MySQL and HBase Benchmark Statistics

Table B.1-1: MySQL Benchmark with 10 million Rows and 1 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 2,008,661.0 1,605,094.0 1,717,842.0 7,264,402.0

Rows
(Millions) 10 10 10 10

Operations
(Millions) 1 1 1 1

Thread Count 20 20 20 20
Throughput
(ops/sec) 497.844 623.017 582.126 137.658

Average
Latency (ms)
(read)

6.023 54.492 57.857 299.535

(write) 25.611 NA 0.042 0.101
Minimum
Latency (ms)
(read)

0 0.009 0.084 0.473

(write) 0 NA 0.005 0.018
Maximum
Latency (ms)
(read)

3,961.341 999.235 1,027.938 1,878.731

(write) 6,055.092 NA 1.533 501.883

70

Table B.1-2: MySQL Benchmark with 50 million Rows and 10 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5
scan/write)

Elapsed Time (ms) 129,342,237.0 106,463,934.0 114,735,462.0 901,463,235.0

Rows (Millions) 50 50 50 50
Operations
(Millions) 10 10 10 10

Thread Count 100 100 100 100
Throughput
(ops/sec) 77.314 93.928 87.157 11.093

Average Latency
(ms) (read) 107.593 543.088 593.003 2,209.495

(write) 156.239 NA 1.116 1.901
Minimum Latency
(ms) (read) 0.937 0.722 0.587 1.769

(write) 1.247 NA 0.222 0.336
Maximum Latency
(ms) (read) 21,447.352 4,052.356 7,096.456 19,346.228

(write) 34,534.082 NA 44.623 2,367.2

71

Table B.1-3: HBase Benchmark on a Cluster of Single Machine with 10 million Rows
and 1 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 2,681,339.0 4,923,532.0 3,709,891.0 19,163,908.0

Rows
(Millions) 10 10 10 10

Operations
(Millions) 1 1 1 1

Thread Count 20 20 20 20
Throughput
(ops/sec) 372.95 203.106 269.55 52.181

Average
Latency (ms)
(read)

106.737 98.268 77.857 402.828

(write) 0.205 NA 0.053 0.217
Minimum
Latency (ms)
(read)

0.232 0.322 0.141 0.792

(write) 0 NA 0.007 0.039
Maximum
Latency (ms)
(read)

10,943.329 1,164.307 1,039.029 2,867.829

(write) 5,758.592 NA 2.814 629.926

72

Table B.1-4: HBase Benchmark on a Cluster of Single Machine with 50 million Rows
and 10 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 135,731,469.0 257,662,092.0 188,018,663.0 977,302,292.0

Rows
(Millions) 50 50 50 50

Operations
(Millions) 10 10 10 10

Thread Count 100 100 100 100
Throughput
(ops/sec) 73.675 38.81 53.186 10.232

Average
Latency (ms)
(read)

1,078.004 761.944 780.906 2,968.392

(write) 0.312 NA 1.442 1.618
Minimum
Latency (ms)
(read)

0.639 0.893 0.796 2.266

(write) 0.141 NA 0.203 0.454
Maximum
Latency (ms)
(read)

41,226.053 8,046.395 9,194.734 20,932.729

(write) 17,432.894 NA 12.321 3,021.49

Table B.1-5: HBase Data Load on a Cluster of Two Machines

Million rows 1 10 50

Elapsed Time (ms) 56,022.0 866,528.0 77,623,955.0

Thread Count 10 20 100

Throughput (ops/sec) 17,850.13 11,540.308 644.131

Average Latency (ms) 0.566 2.009 5.993

Minimum Latency (ms) 0 0.003 0.11

Maximum Latency (ms) 8,412.551 30,120.693 46,523.098

73

Table B.1-6: HBase Benchmark on a Cluster of Two Machines with 1 million Rows
and 500,000 Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 37,443.0 72,233.0 56,383.0 232,717.0

Rows
(Millions) 1 1 1 1

Operations
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10
Throughput
(ops/sec) 13,353.631 6,922.044 8,867.921 2,148.532

Average
Latency (ms)
(read)

1.103 1.934 1.119 5.275

(write) 0.124 NA 0.011 0.03
Minimum
Latency (ms)
(read)

0.81 0.65 0.72 0.199

(write) 0 NA 0.004 0.004
Maximum
Latency (ms)
(read)

1,834.639 1,783.246 2,204.003 795.99

(write) 2,993.235 NA 1.8 7.118

74

Table B.1-7: HBase Benchmark on a Cluster of Two Machines with 10 million Rows
and 1 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 1,545,854.0 2,670,352.0 2,130,270.0 10,920,622.0

Rows
(Millions) 10 10 10 10

Operations
(Millions) 1 1 1 1

Thread Count 20 20 20 20
Throughput
(ops/sec) 646.892 374.482 469.424 91.57

Average
Latency (ms)
(read)

56.043 53.235 40.23 222.435

(write) 0.11 NA 0.03 0.125
Minimum
Latency (ms)
(read)

0.102 0.14 0.05 0.693

(write) 0 NA 0 0.019
Maximum
Latency (ms)
(read)

6,239.231 784.239 701.424 1,782.093

(write) 3,664.291 NA 1.703 314.992

75

Table B.1-8: HBase Benchmark on a Cluster of Two Machines with 50 million Rows
and 10 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 75,600,725.0 139,688,149.0 107,045,603.0 563,842,224.0

Rows
(Millions) 50 50 50 50

Operations
(Millions) 10 10 10 10

Thread Count 100 100 100 100
Throughput
(ops/sec) 132.274 71.588 93.418 17.736

Average
Latency (ms)
(read)

555.348 429.537 399.036 2,012.436

(write) 0.138 NA 1.001 0.931
Minimum
Latency (ms)
(read)

0.382 0.52 0.448 1.722

(write) 0.08 NA 0.11 0.311
Maximum
Latency (ms)
(read)

25,775.359 5,192.825 5,002.372 12,523.109

(write) 9,443.892 NA 7.392 1,888.327

Table B.1-9: HBase Data Load on a Cluster of Three Machines

Million rows 1 10 50

Elapsed Time (ms) 38,529.0 584,544.0 52,515,030.0

Thread Count 10 20 100

Throughput (ops/sec) 25,954.476 17,107.352 952.108

Average Latency (ms) 0.401 1.692 3.66

Minimum Latency (ms) 0 0 0.082

Maximum Latency (ms) 6,082.442 21,412.523 68,252.664

76

Table B.1-10: HBase Benchmark on a Cluster of Three Machines with 1 million
Rows and 500,000 Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 25,930.0 48,848.0 38,878.0 161,851.0

Rows
(Millions) 1 1 1 1

Operations
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10
Throughput
(ops/sec) 19,282.684 10,235.834 12,860.744 3,089.261

Average
Latency (ms)
(read)

0.585 1.303 0.92 3.483

(write) 0.081 NA 0.007 0.011
Minimum
Latency (ms)
(read)

0.731 0.461 0.494 0.133

(write) 0 NA 0.001 0.001
Maximum
Latency (ms)
(read)

1,244.823 1,125.883 1,604.352 532.798

(write) 2,000.252 NA 1.203 5.339

77

Table B.1-11: HBase Benchmark on a Cluster of Three Machines with 10 million
Rows and 1 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 1,065,939.0 1,845,835.0 1,468,923.0 7,584,197.0

Rows
(Millions) 10 10 10 10

Operations
(Millions) 1 1 1 1

Thread Count 20 20 20 20
Throughput
(ops/sec) 938.14 541.76 680.771 131.853

Average
Latency (ms)
(read)

34.331 37.505 28.833 155.006

(write) 0.076 NA 0.009 0.08
Minimum
Latency (ms)
(read)

0.699 0.892 0.028 0.466

(write) 0 NA 0 0.014
Maximum
Latency (ms)
(read)

4,368.384 556.844 599.34 1,380.627

(write) 2,934.227 NA 1.352 227.534

78

Table B.1-12: HBase Benchmark on a Cluster of Three Machines with 50 million
Rows and 10 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 52,161,239.0 96,420,325.0 73,354,435.0 394,456,929.0

Rows
(Millions) 50 50 50 50

Operations
(Millions) 10 10 10 10

Thread Count 100 100 100 100
Throughput
(ops/sec) 191.713 103.713 136.324 25.351

Average
Latency (ms)
(read)

392.593 285.522 266.747 1,402.808

(write) 0.09 NA 0.731 0.629
Minimum
Latency (ms)
(read)

0.264 0.222 0.297 1.221

(write) 0.051 NA 0.767 0.184
Maximum
Latency (ms)
(read)

16,648.749 3,983.002 3,034.992 7,666.521

(write) 7,500.466 NA 4.92 1,342.662

Table B.1-13: HBase Data Load on a Cluster of Four Machines

Million rows 1 10 50

Elapsed Time (ms) 29,221.0 443,567.0 39,718,284.0

Thread Count 10 20 100

Throughput (ops/sec) 34,221.964 22,544.508 1,258.866

Average Latency (ms) 0.298 1.209 2.712

Minimum Latency (ms) 0 0 0.059

Maximum Latency (ms) 4,427.629 15,821.935 50,121.821

79

Table B.1-14: HBase Benchmark on a Cluster of Four Machines with 1 million Rows
and 500,000 Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 19,628.0 36,077.0 28,942.0 124,445.0

Rows
(Millions) 1 1 1 1

Operations
(Millions) 0.5 0.5 0.5 0.5

Thread Count 10 10 10 10
Throughput
(ops/sec) 25,473.813 13,859.246 17,275.931 4,017.839

Average
Latency (ms)
(read)

0.188 1.091 0.77 2.523

(write) 0.053 NA 0.002 0.007
Minimum
Latency (ms)
(read)

0.598 0.351 0.494 0.133

(write) 0 NA 0 0
Maximum
Latency (ms)
(read)

0,844.523 813.939 1,336.72 387.552

(write) 1,681.628 NA 0.921 2.917

80

Table B.1-15: HBase Benchmark on a Cluster of Four Machines with 10 million
Rows and 1 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 819,219.0 1,426,036.0 1,139,722.0 6,035,827.0

Rows
(Millions) 10 10 10 10

Operations
(Millions) 1 1 1 1

Thread Count 20 20 20 20
Throughput
(ops/sec) 1,220.675 701.245 877.407 165.677

Average
Latency (ms)
(read)

21.933 28.992 21.352 112.519

(write) 0.059 NA 0.006 0.053
Minimum
Latency (ms)
(read)

0.552 0.667 0.023 0.338

(write) 0 NA 0 0.009
Maximum
Latency (ms)
(read)

3,209.882 384.205 470.425 992.83

(write) 2,032.552 NA 0.91 142.098

81

Table B.1-16: HBase Benchmark on a Cluster of Four Machines with 50 million
Rows and 10 million Operations.

Workload A
Update Heavy

(50/50
read/update)

Workload C
Read Only

(100% read)

Workload D
Read Latest

(95/5 read/write)

Workload E
Range Scan

(95/5 scan/write)

Elapsed Time
(ms) 41,026,048.0 76,139,177.0 57,634,569.0 325,590,021.0

Rows
(Millions) 50 50 50 50

Operations
(Millions) 10 10 10 10

Thread Count 100 100 100 100
Throughput
(ops/sec) 243.748 285.522 173.507 30.714

Average
Latency (ms)
(read)

291.423 221.258 205.811 991.004

(write) 0.067 NA 0.522 0.404
Minimum
Latency (ms)
(read)

0.193 0.18 0.2 0.822

(write) 0.039 NA 0.519 0.135
Maximum
Latency (ms)
(read)

13,623.56 2,422.524 2,002.516 5,622.092

(write) 5,622.552 NA 3.042 1,001.005

82

B.2 Chart Representation of Benchmark Statistics

Figure B.2-1: 10 GB of Data Load Performance Differences

Figure B.2-2: 50 GB of Data Load Performance Differences

0

0.5

1

1.5

2

2.5

3

3.5

0.00 5,000.00 10,000.00 15,000.00 20,000.00 25,000.00

Av
er

ag
e

L
oa

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Load Phase, 10 million rows

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

2

4

6

8

10

12

14

16

0 200 400 600 800 1000 1200 1400

Av
er

ag
e

Sc
an

 L
at

en
cy

 (m
s)

Throughput (ops/sec)

Load Phase, 50 million rows

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

83

Figure B.2-3: WorkloadC Read Latency vs. Throughput Benchmark Statistics

Figure B.2-4: Elapsed Time vs. Number of Operations Chart on WorkloadC

0

100

200

300

400

500

600

700

800

900

0.00 2,000.00 4,000.00 6,000.00 8,000.0010,000.0012,000.0014,000.0016,000.00

R
ea

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload C (100% read)

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

50,000,000

100,000,000

150,000,000

200,000,000

250,000,000

300,000,000

0 2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

E
la

ps
ed

 T
im

e
(m

s)

Operations

Runtime vs. Operations

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

84

Figure B.2-5: WorkloadD Read Latency vs. Throughput Benchmark Statistics

Figure B.2-6: WorkloadD Write Latency vs. Throughput Benchmark Statistics

0

100

200

300

400

500

600

700

800

900

0.00 5,000.00 10,000.00 15,000.00 20,000.00

Av
er

ag
e

R
ea

d
L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload D (95/5 read/write) - Read Statistics

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

0.00 5,000.00 10,000.00 15,000.00 20,000.00

Av
er

ag
e

W
ri

te
 L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload D (95/5 read/write) - Write Statistics

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

85

Figure B.2-7: Elapsed Time versus the Number of Operations Chart on WorkloadD

Figure B.2-8: WorkloadE Scan Latency vs. Throughput Benchmark Statistics

0

20,000,000

40,000,000

60,000,000

80,000,000

100,000,000

120,000,000

140,000,000

160,000,000

180,000,000

200,000,000

0 2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

E
la

ps
ed

 T
im

e
(m

s)

Operations

Workload D - Runtime vs. Operations

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

500

1000

1500

2000

2500

0.00 500.00 1,000.001,500.002,000.002,500.003,000.003,500.004,000.004,500.00

Av
er

ag
e

Sc
an

 L
at

en
cy

 (m
s)

Throughput (ops/sec)

Workload E (95/5 scan/write) - Scan Statistics

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

86

FigureB.2-9: WorkloadE Write Latency vs. Throughput Benchmark Statistics

Figure B.2-10: Elapsed Time versus the Number of Operations Chart on WorkloadE

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0.00 500.00 1,000.001,500.002,000.002,500.003,000.003,500.004,000.004,500.00

Av
er

ag
e

W
ri

te
 L

at
en

cy
 (m

s)

Throughput (ops/sec)

Workload E (95/5 scan/write) - Write Statistics

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

0

200,000,000

400,000,000

600,000,000

800,000,000

1,000,000,000

1,200,000,000

0 2,000,000 4,000,000 6,000,000 8,000,00010,000,00012,000,000

E
la

ps
ed

 T
im

e
(m

s)

Operations

Workload E - Runtime vs. Operations

MySQL Sharded

HBase, Single Machine

HBase, 2 Machines

HBase, 3 Machines

HBase, 4 Machines

www.kth.se

TRITA-ICT-EX-2013:195

