
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

T H I V A N A N H P H A M

 Security of NFC applications

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Aalto University

School of Science

Degree Programme in Security and Mobile Computing

Thi Van Anh Pham

Security of NFC applications

Master’s Thesis
Espoo, June 30, 2013

Supervisors: Professor Tuomas Aura, Aalto University
Professor Gerald Q. Maguire Jr., KTH Royal Institute of
Technology

Instructor: Sandeep Tamrakar, M.Sc. (Tech.), Aalto University

Aalto University
School of Science
Degree Programme in Security and Mobile Computing

ABSTRACT OF
MASTER’S THESIS

Author: Thi Van Anh Pham

Title:
Security of NFC applications

Date: June 30, 2013 Pages: xii + 88

Professorship: Data Communication Software Code: T-110

Supervisors: Professor Tuomas Aura
Professor Gerald Q. Maguire Jr.

Instructor: Sandeep Tamrakar, M.Sc. (Tech.)

Near Field Communication (NFC) refers to a communication technology that
enables an effortless connection and data transfers between two devices by putting
them in a close proximity. Besides contactless payment and ticketing applications,
which were the original key drivers of this technology, a large number of novel use
cases can benefit from this rapidly developing technology, as has been illustrated
in various NFC-enabled application proposals and pilot trials.

Typical NFC-enabled systems combine NFC tags, NFC-enabled mobile phones,
and online servers. This thesis explores the trust relationships, security
requirements, and security protocol design in these complex systems. We study
how to apply the security features of different types of NFC tags to secure NFC
applications. We first examine potential weaknesses and problems in some novel
use cases where NFC can be employed. Thereafter, we analyze the requirements
and propose our system design to secure each use case. In addition, we developed
proof-of-concept implementations for two of our proposed protocols: an NFC-
enabled security-guard monitoring system and an NFC-enabled restaurant menu.
For the former use case, we also formally verified our proposed security protocol.

Our analysis shows that among the discussed tags, the NFC tags based on secure
memory cards have the least capability and flexibility. Their built-in three-pass
mutual authentication can be used to prove the freshness of the event when the tag
is tapped. The programmable contactless smart cards are more flexible because
they can be programmed to implement new security protocols. In addition, they
are able to keep track of a sequence number and can be used in systems that
do not require application-specific software on the mobile phone. The sequence
number enforces the order of events, thus providing a certain level of replay
prevention. The most powerful type of tag is the emulated card since it provides
a clock, greater computational capacity, and possibly its own Internet connection,
naturally at higher cost of deployment.

Keywords: NFC, security protocol, DESFire, Java card, card emulation,
restaurant, vending machine, class attendance, security guard

Language: English

iii

Aalto-universitetet
Högskolan för teknikvetenskaper
Examensprogram för datateknik

SAMMANDRAG AV
DIPLOMARBETET

Utfört av: Thi Van Anh Pham

Arbetets namn:
Säkerheten för NFC-applikationer

Datum: Den 30 Juni 2011 Sidantal: xii + 88

Professur: Datakommunikationsprogram Kod: T-110

Övervakare: Professor Tuomas Aura
Professor Gerald Q. Maguire Jr

Handledare: Sandeep Tamrakar, M.Sc. (Tech.)

Near Field Communication (NFC) hänvisar till en kommunikationsteknik som
möjliggör en enkel anslutning och dataöverföring mellan tv̊a enheter genom
att sätta dem i en närhet. Förutom kontaktlös betalning och biljetthantering
ansökningar, vilket var den ursprungliga viktiga drivkrafter för denna teknik, kan
ett stort antal nya användningsfall dra nytta av denna snabbt växande teknik,
som har visats i olika NFC-aktiverade program förslag och pilotförsök.

Typiska NFC-applikationer kombinerar NFC-taggar, NFC-kompatibla mobil-
telefoner och online-servrar. Denna avhandling utforskar förtroenderelationer,
säkerhetskrav och säkerhetsprotokoll utformning i dessa komplexa system. Vi
studerar hur man kan tillämpa de säkerhetsfunktioner för olika typer av
NFC-taggar för att säkra NFC-applikationer. Vi undersöker först potentiella
svagheter och problem i vissa nya användningsfall där NFC kan användas.
Därefter analyserar vi de krav och föresl̊a v̊art system design för att säkra
varje användningsfall. Dessutom utvecklade vi proof-of-concept implementationer
för tv̊a av v̊ara föreslagna protokoll: en NFC-aktiverad säkerhet-guard
övervakningssystem och en NFC-aktiverad restaurang meny. Dessutom, för fd
bruk fallet, kontrollerade vi formellt v̊ar föreslagna säkerhetsprotokoll.

V̊ar analys visar att bland de diskuterade taggar, NFC taggar som baseras
p̊a säkra minneskort har minst kapacitet och flexibilitet. Deras inbyggda tre-
pass ömsesidig autentisering kan användas för att bevisa färskhet av händelsen
när taggen tappas. De programmerbara beröringsfria smarta kort är mer
flexibla eftersom de kan programmeras för att genomföra nya säkerhetsprotokoll.
Dessutom kan de h̊alla reda p̊a ett löpnummer och kan användas i system som inte
kräver ansökan-specifik mjukvara p̊a mobiltelefonen. Sekvensnumret framtvingar
ordning av händelser, vilket ger en viss niv̊a av replay förebyggande. Den mest
kraftfulla typen av taggen är den emulerade kortet eftersom det ger en klocka,
större beräkningskapacitet, och möjligen sin egen Internet-anslutning, naturligtvis
till högre kostnad för utplacering.

Nyckelord: NFC, säkerhetsprotokoll, DESFire, Java kort, kort emulering,
restaurang, varuautomat, säkerhetsvakt

Spr̊ak: Engelska

iv

Acknowledgements

I sincerely thank Professor Tuomas Aura for his constant feedback, discus-
sions and his comments on my thesis. He has inspired me with his immense
knowledge and experiences in the field.

I am grateful to Professor Gerald Q. Maguire Jr. at KTH Royal Institue
of Technology for co-supervising this thesis, and giving me comments on
different draft versions of the thesis.

I would also like to gratefully thank my instructor Sandeep Tamrakar
for his guidance and comments. I also thank Correia Andrade Daniel for
discussions with him about the DESFire tag authentication procedure.

Finally, I would like to thank my family for their unconditional love and
supports.

Espoo, June 30, 2013

Thi Van Anh Pham

v

Abbreviations and Acronyms

AID Application Identifier
CC Capability Container
CPU Central Processing Unit
DoS Denial of Service
GCC GNU Compiler Collection
GPS Global Positioning System
HMAC Keyed-Hashed Message Authentication Code
HR Human Resources
HTTP Hypertext Transfer Protocol
IC Integrated Circuit
ID Identifier
IMEI International Mobile Station Equipment Identity
IMSI International Mobile Subscriber Identity
JCRE Java Card Runtime Environment
JCVM Java Card Virtual Machine
MAC Message Authentication Code
MB Message Begin
ME Message End
MIME Multipurpose Internet Mail Extensions
NDEF NFC Data Exchange Format
NFC Near Field Communication
NFCIP Near Field Communication Interface and Protocol
PCD Proximity Coupling Device
POS Point Of Sale
RF Radio Frequency
RFID Radio Frequency Identification
SE Secure Element
SMS Short Message Service
SP Service Provider
TLS Transport Layer Security

vi

TLV Type - Length - Value
TNF Type Name Field
UID Unique Identifier
URL Uniform Resource Locator
USB Universal Serial Bus

vii

Contents

Abbreviations and Acronyms vi

1 Introduction 1
1.1 Problem Statement and Methodology 2
1.2 Use cases . 3

1.2.1 NFC-enabled restaurant menu 3
1.2.2 Security guard monitoring system 3
1.2.3 Vending machines . 4
1.2.4 School attendance monitoring systems 5

1.3 Structure of the thesis . 5

2 Background 7
2.1 NFC . 7

2.1.1 NFC Active Devices 8
2.1.2 NFC Tags . 9

2.2 NFC Type 4 Tags . 9
2.3 NDEF Messages . 11

2.3.1 NDEF Records . 11
2.4 NDEF Read and Write Procedure in NFC Type 4 Tags 13
2.5 Security Mechanisms Defined in NFC 16

2.5.1 The NFC Tag Signature Mechanism 16
2.6 Security Threats Relevant to NFC 17
2.7 Mifare DESFire EV1 Tags . 19
2.8 Java Card Technology . 21

2.8.1 Programmable Contactless Smart Cards 21
2.8.2 Java cards . 21

2.9 NFC Card Emulation . 22
2.10 NFC Applications . 23

2.10.1 Service initiation . 23
2.10.2 Peer to peer . 27
2.10.3 Contactless payment and ticketing applications 27

viii

3 Secure NFC-enabled Application Designs 30
3.1 NFC-enabled security guard monitoring system 30

3.1.1 Current solutions . 30
3.1.2 Attacker Model . 32
3.1.3 Design Goals . 33
3.1.4 The general system architecture 33
3.1.5 A secure guard monitoring system using Java cards . . 34

3.1.5.1 Process . 35
3.1.5.2 Protocol analysis 36

3.1.6 A secure system using DESFire EV1 tags 39
3.1.6.1 Process . 39
3.1.6.2 Protocol analysis 41

3.2 NFC-enabled restaurant menu 42
3.2.1 Current solutions . 42
3.2.2 Design goals . 43
3.2.3 The system architecture 43
3.2.4 Process . 44
3.2.5 Protocol analysis . 46

3.3 NFC-enabled vending machines 47
3.3.1 Current solutions . 47
3.3.2 Design goals . 48
3.3.3 A system using NFC reader 49

3.3.3.1 The system architecture 49
3.3.3.2 Process . 49
3.3.3.3 Protocol analysis 51

3.3.4 A system using Java cards 51
3.3.4.1 The system architecture 52
3.3.4.2 Process . 52
3.3.4.3 Protocol analysis 53

3.4 School attendance monitoring system 54
3.4.1 Current solutions . 54
3.4.2 Design goals . 55
3.4.3 The system architecture 55
3.4.4 Process . 56
3.4.5 Protocol analysis . 57

4 Implementation 59
4.1 Devices and Programming Environments 59
4.2 NFC-enabled guard monitoring systems 60

4.2.1 Guard monitoring system using Java cards 60
4.2.2 Guard monitoring system using DESFire tags 62

ix

4.2.3 Effect of network latency 63
4.3 NFC-enabled restaurant menu 64

5 Discussion 66
5.1 Security Generalization . 66

5.1.1 Tags based on secure memory cards 68
5.1.2 Programmable contactless smart cards 69
5.1.3 Card emulation . 71

5.2 Protocol verification . 72
5.3 Summary of methodology . 74
5.4 Reflections . 74

6 Conclusion 76

A Source code 86
A.1 Security guard monitoring system 86

A.1.1 Application Server . 86
A.1.2 Guard application for the system using Java cards . . . 86
A.1.3 Guard application for the system using DESFire EV1

tags . 86
A.1.4 DESFire EV1 tag . 87
A.1.5 Java card . 87

A.2 NFC-enabled restaurant . 87
A.2.1 Java card . 87
A.2.2 Web server . 87
A.2.3 Websocket server . 88

x

List of Figures

1.1 Architecture of an NFC-enabled system 1

2.1 An NDEF application with two NDEF files 10
2.2 Structure of an NDEF message with three NDEF records . . 11
2.3 NDEF record layout [1] . 12
2.4 The NDEF detection procedure 14
2.5 The NDEF read procedure 14
2.6 The NDEF write procedure 15
2.7 NDEF signature . 16
2.8 NFC relay attack in peer-to-peer mode 18
2.9 NFC relay attack in reader/writer mode 18
2.10 DESFire mutual authentication procedure 20
2.11 The Java card architecture 22
2.12 Card emulation mode . 23
2.13 Procedures to issue an mCoupon 29

3.1 Overall architecture of the security guard system 34
3.2 Security guard monitoring system using Java card 36
3.3 Security guard monitoring system using Java card (offline case) 38
3.4 Relay attacks in the security guard use case 39
3.5 Security guard monitoring system using DESFire EV1 tags . 41
3.6 NFC Restaurant . 44
3.7 Mobile payment system for vending machines 48
3.8 NFC-enabled SMS Vending machine 50
3.9 NFC-enabled SMS Vending machine using Java cards 53
3.10 A school attendance monitoring system 56
3.11 Transitive attendance verification 58

4.1 Intent filter . 61
4.2 Activate application . 62
4.3 DESFire security guard message flow 63

xi

4.4 Experiment to measure the network latency 64

5.1 General principles of using NFC tags 67

xii

Chapter 1

Introduction

Near Field Communication (NFC) is a short-range radio communication
technology that promises to enhance our everyday tasks by the convenience
of its “tap and go” principle [2], i.e. enabling users to simply touch two
NFC-enabled devices together to establish a communication session between
them, thus making applications and data exchange easy and convenient. The
primary drivers promoting the adoption of NFC are contactless payments
and ticketing applications, but the expected success of NFC has expanded
and covered a wide variety of other applications [3], such as location-based
services, gaming, access controls, and device pairing.

A typical NFC application is a distributed system which consists of
three main components, specifically NFC tags, NFC readers or NFC-
enabled mobile phones, and online servers, as shown in Figure 1.1. These
three components communicate and coordinate their actions by passing
messages. To be more specific, the NFC readers or the NFC-enabled phones
communicate with the NFC tags over NFC, while the NFC readers or the
NFC phones and the servers can communicate over the Internet. Therefore, a
system of this type introduces a new type of security protocol which involves
the three components and the communication channels between them in
order to secure NFC applications.

Figure 1.1: Architecture of an NFC-enabled system

1

CHAPTER 1. INTRODUCTION 2

As with all modern communication systems, security and system usability
are important in NFC-enabled systems. However, since potential NFC-
enabled systems are nearly endless and various types of NFC devices can
be involved in these systems, there is no “one size fits all” security solution
for all NFC systems. Instead, the set of possible security designs for a
specific application heavily depends on the types of NFC tags used in the
application. This is because different NFC tags provide different security
features and capabilities. For example, some NFC tags are just memory
tags and thus extremely constrained in terms of computational capabilities.
On the contrary, more powerful tags, such as Java cards and NFC readers
running in card emulation mode, can provide more intelligent functionality,
such as the ability to be programmed and to perform calculations.

However, many NFC applications that have been proposed in the
literature do not carefully consider the types and capabilities of NFC tags
before applying them to the systems. This results in some designs which
exhibit poor usability and potential security flaws. Therefore, in this thesis,
we present some of the problems which we have found in several proposed
NFC applications, and then design security protocols to secure them by
considering the security requirements of the systems, user experience, and
the types of NFC tags that should be employed in the systems. In our
conclusions, we discuss the general principles of using different NFC tags for
securing NFC applications.

1.1 Problem Statement and Methodology

As presented above, there is a wide, ever expanding range of uses for NFC
that is being explored and made available in the world. The technology
promises to benefit a variety of areas via numerous applications. However,
different NFC applications have different security requirements and rely on
different security features and other capabilities of the NFC devices involved
in the applications. Therefore, the NFC tag capabilities and application
requirements should be carefully considered when designing a system. In
addition, usability is another important aspect contributing to the success of
a system, hence this too must be considered during the design process.

The problem addressed in this thesis is how to exploit the different
capabilities of NFC tags to secure NFC applications. To reach an answer,
we follow these steps:

• We study some specific use cases in which NFC can be used to make
these use cases more convenient to use and more secure.

CHAPTER 1. INTRODUCTION 3

• Study the security requirements of these specific use cases and design
security protocols for them.

• Develop proof-of-concept implementations for two of our proposed
protocols.

• Generalize the principles of using different NFC tags in the security of
NFC applications.

1.2 Use cases

The following sub-sections introduce the use cases that are examined in this
thesis.

1.2.1 NFC-enabled restaurant menu

Our proposed scenario for an NFC-supported restaurant menu is as follows:
a customer (Bob) who has an NFC-enabled Internet-connected phone goes to
a restaurant. Instead of waiting for the waiter, he taps his phone on an NFC
tag glued to a table in the restaurant and his phone’s browser is redirected
to the restaurant’s web page that lists all the meal options. He chooses some
food, submits his choice; then the restaurant’s kitchen will prepare the food
and serve him when it is ready. Before leaving the restaurant, the customer
pays for his meal by using his bank card or cash like in normal restaurants.

The security problem that we aim to solve in this scenario is the following:
the food ordering is web-based and does not require users to log in to be able
to use the service. Thus, anyone can order the food without revealing his
identity. This means that if the URL of the web page is stored or remembered,
then a dishonest person could stay at home, access the webpage and make as
many food orders as he wants. Since the kitchen does not know that these
submissions are fake, they prepare the food even though no one is there
to pay for it. Therefore, we need to prevent this problem from occurring by
applying security mechanisms. Additionally, the service is general and should
be open to all people who enter the restaurant with an NFC-enabled phone.
Therefore, our design do not require users to install a dedicated application
in their phones to be able to use the service.

1.2.2 Security guard monitoring system

Most of our workplaces and offices have information or equipment that must
be kept safe. Along with alarm systems, security guards frequently make

CHAPTER 1. INTRODUCTION 4

rounds to check that locks are locked, doors are closed, and if direct actions
need to be taken. Hence, the presence of guards at checkpoints at their
scheduled time is important and needs to be monitored. The current widely
used technique is to employ rugged readers and checkpoint tags which are
available in different forms, such as RFID tags, and barcodes [4]. There are
also some NFC-based security guard monitoring systems available on the
market that use NFC-enabled phones and NFC tags attached to checkpoints
[5–7]. At predefined intervals, each security guard uses a dedicated device
to scan the barcode or RFID tag, or uses an NFC phone with a dedicated
application to scan the NFC tag at a checkpoint, to prove his or her presence
at this checkpoint.

However, we have found that both solutions exhibit security problems,
as will be explained in detail in Section 3.1.1. Basically, these current
solutions allow dishonest security guards to make copies of the barcodes or
tags. This means that dishonest security guards could confirm their presence
at a checkpoint while they actually do not come to work. Therefore, the
main security goal in this use case is to guarantee that it is not possible
for the security guards to create fake presence confirmations without doing
their actual rounds. This scenario is different from the restaurant scenario
in that the number of users is limited and the users belong to a specialized
group. Therefore, the security guards could be provided with a dedicated
phone having a dedicated application installed.

1.2.3 Vending machines

Recently, SMS-enabled vending machines have become popular. Instead of
using coins or bank notes, a customer could use his or her phone to pay
for products from the vending machines. Specifically, in order to buy an
item from a vending machine, the customer composes an SMS message that
contains the machine ID and the item’s price, then sends the message to
a short code. However, machines of this type have two security problems.
Firstly, it allows a person who is not close to a vending machine to buy items
from it. This is a problem if we think about a situation where Alice is talking
to Bob who is a prankster. Alice goes out for several minutes and leaves her
phone on the table. Bob may use Alice’s phone to buy products from a
possibly remote vending machine without Alice’s permission. Secondly, a
dishonest person could change the machine ID written on a machine named
A to the ID of machine B. Then he waits in front of machine B to collect the
beverage which someone else purchases from machine A.

Our observation is that NFC can be used to facilitate SMS message
composition. In addition, we can design security protocols to deal with the

CHAPTER 1. INTRODUCTION 5

two security problems presented above. Specifically, there are two security
goals that we aim to achieve in this use case: (i) preventing a person who is
not close to a specific vending machine from buying items from that machine,
and (ii) preventing a malicious person from getting free items by changing
the machine ID of a machine to the ID of another machine.

1.2.4 School attendance monitoring systems

Student absenteeism is a significant problem at many educational institutions
and a major concern for educators. It results in high rates of course failure
and, over the long term, greater likelihood of dropping out of school. In
addition, at many schools where education is free, students can register for
as many courses as they want, but never show up for any of these classes. This
leads to waste of resources that have been invested in education. Therefore,
a mandatory class attendance policy has been applied in many institutions
to force students to attend all their scheduled classes. In addition, in some
countries, such as India, a teacher attendance policy is also enforced. There
are some solutions for student and employee attendance monitoring systems
that have been proposed in the literature (Section 2.10). However, these
solutions provide poor user experience, as will be explained in Section 3.4.
Therefore, in this use case, our solution aims to provide a reliable and effective
NFC-enabled system that facilitates school attendance supervision for both
students and teachers.

1.3 Structure of the thesis

The rest of this thesis is divided into four chapters. Chapter 2 starts by
describing NFC technology and NFC devices, along with an introduction to
NFC type 4 tags and NFC Data Exchange Formats (NDEF). It then discusses
the security mechanisms defined in NFC and security threats relevant to
NFC, followed by specific types of NFC tags that are used in the four specific
use cases described in Section 1.2. It concludes with an overview of NFC
applications that have been previously proposed in the literature. Chapter
3 presents detailed secure NFC-enabled application designs for the four use
case mentioned above. Specifically, in each use case, we review its current
solutions and potential security problems in these solutions. Thereafter,
we present our design goals, our proposed system design, and analysis of
the solution. Chapter 4 presents the implementation of two use cases,
specifically the NFC-enabled restaurant menu and the NFC-enabled security
guard monitoring system. Chapter 5 generalizes the uses of different NFC tag

CHAPTER 1. INTRODUCTION 6

types to secure NFC applications and explains how we verified our proposed
protocols. Finally, Chapter 6 provides a summary of the thesis and suggest
potential future work.

Chapter 2

Background

This chapter begins by describing NFC technology and NFC devices,
followed by an introduction to NFC type 4 tags and NFC Data Exchange
Formats (NDEF). Since we analyse security requirements and design security
protocols for NFC applications, the security mechanisms defined in NFC and
security threats relevant to NFC are presented. Thereafter, we discuss Mifare
DESFire EV1 secure memory cards, programmable Java card technology,
and NFC card emulation on an embedded computer, which are the three
specific tags used in this thesis. The last section of the chapter describes
NFC applications that have been proposed in the literature.

2.1 NFC

Near Field Communication (NFC) is a wireless proximity communication
technology that enables data transfers between two devices which are close
to each other, typically to a distance of less than 10 centimeters [8]. This
simple means of establishing a connection is a major advantage of NFC over
other wireless communication technologies, such as Bluetooth [9] and Wi-
Fi [10]. However, compared to connection speeds of Bluetooth and Wi-Fi,
NFC provides slower data transmission rate of up to 424 kilobits per seconds
(kbps) [8]. In addition, the communication range of NFC is shorter than
that of other communication technologies. However, this is not considered
a drawback, but an inherent characteristic and a technical advantage of this
technology. To be more specific, the close communication range enables
intuitive transfers of data by tapping one device against a desired peer
device and ignoring other devices that are outside this communication range.
This not only helps to prevent signal interference between devices, but also
secures users and applications, since users must be close enough to an NFC

7

CHAPTER 2. BACKGROUND 8

device to be able to nearly “touch” it, or in other words, in most cases, they
intentionally wish to use the application.

NFC is based on the Radio Frequency Identification (RFID) technology.
It operates at 13.56 MHz and relies on ISO14443 and ISO 18092 for low-
level data exchange between two NFC devices [8]. Specifically, these two
ISO standards specify the operating frequency, modulation, coding schemes,
anti-collision routines, and communication protocols. NFC data exchange
formats and NFC tag formats are defined by the NFC Forum1.

NFC devices can be divided into two categories: active and passive
devices. An active device, such as an NFC-enabled phone or an NFC
card reader, is always connected to a power source or has batteries
attached. Moreover, it generates an electromagnetic field when it wishes
to communicate with its desired NFC peer. On the contrary, a passive
device often does not have any power source, except the electromagnetic
field generated by active devices that is in proximity of the passive device.
Because of this, active devices must continuously poll for passive devices to
detect if there is a passive device available in its range. Examples of passive
devices are NFC tags, contactless smart cards, and NFC-enabled phones in
card emulation mode. More details about active devices and passive devices
are presented in the following sections.

2.1.1 NFC Active Devices

Active NFC devices can operate in three different modes [11]:

1. Reader/writer mode: In this mode, an active device is capable of
reading and modifying data stored in passive devices. This mode is
standardized in the ISO 14443 standard [12].

2. NFC peer-to-peer mode: The physical and data link layer of NFC
peer-to-peer mode is standardized in ISO 18092 [13]. This mode
allows a bidirectional data exchange between two active devices. For
example, Bluetooth pairing parameters or virtual business cards could
be exchanged between two NFC-enabled phones.

3. Card emulation mode: This mode uses ISO 14443 as standard for its
physical and data link layer. An active NFC device operating in this
mode appears to an external active device much the same as a passive
device. For example, a phone working in emulation mode can present
itself as a contactless credit or debit card. To make a payment, a user

1http://www.nfc-forum.org

CHAPTER 2. BACKGROUND 9

simply selects the payment application, and holds the phone in front of
a contactless reader. Therefore, we can design contactless payments
and ticketing applications on mobile phones without changing the
existing infrastructure.

2.1.2 NFC Tags

An NFC tag, for example a sticker or a wristband, is a passive device
that consists of a small microchip, a little antenna, and a small memory
to store data for transfer to active devices. Each tag is identified by its
unique identifier (UID). In addition, different tags have different memory
capacities, communication speed, and security features. For example, a
Mifare Ultralight [14] tag is able to hold at most 48 bytes of data, whereas
a Mifare DESFire EV1 tag [15] can store up to 8KB of data. A Mifare
Ultralight tag does not support authentication of the card reader before
reading or modifying of the data stored in the tag, while this feature is
provided by some other tags, such as Mifare DESFire EV1 and Mifare
Ultralight C [16] tags.

An NFC tag can store one or more application-defined data as payloads.
Usually, these payloads are encapsulated first into a single NFC Data
Exchange Format (NDEF) message, and then mapped into the data structure
specified by the tag platform. The NDEF message and the tag platform
encapsulations are used to identify the type of application data and to
guarantee interoperability and co-existence between applications [17]. More
detail about NDEF messages is presented in Section 2.2.

So far, the NFC Forum has defined four types of tags [18]. The following
section discusses the NFC type 4 tags.

2.2 NFC Type 4 Tags

An NFC type 4 tag can store one or more NDEF applications which are
identified by their application identifiers (AID). Each application contains a
Capability Container (CC) file and one or more NDEF files. Each NDEF file
can contain multiple NDEF messages [19]. Figure 2.1 illustrates an example
of an NDEF tag application that contains two NDEF files.

In an NDEF application, a CC file with value 0xE103 indicates to the
reader that the tag contains NDEF messages so that the reader can access
and modify the data accordingly. The CC file is read-only and contains the
following information:

CHAPTER 2. BACKGROUND 10

• CC Length: This field is 2 bytes long and specifies the size of the CC
file (this field included).

• Mapping Version: This field is 1 byte in length and indicates the
mapping specification version with which this CC file is compliant.

• MLe: This 2-byte field specifies the maximum data size (in bytes) that
can be read from the tag using a single read command

• MLc: This field is 2 bytes long, defining the maximum data size that
can be sent to the tag using a single update or write command

• One or more NDEF File Control TLV (Type - Length - Value) blocks:
A TLV block contains information to control and manage an NDEF file.
Specifically, an NDEF file control TLV has T equal to 0x04, L equal to
0x06, and the value field is composed of 6 bytes that specify the size,
read and write access conditions, and the identifier of the NDEF file
which points to another file in the tag file system.

Figure 2.1: An NDEF application with two NDEF files

CHAPTER 2. BACKGROUND 11

2.3 NDEF Messages

The NDEF specification [1] defines a message encapsulation format to
exchange information between NFC devices, e.g. between a reader and a
tag.

Figure 2.2 illustrates the general structure of an NDEF message. Specifi-
cally, an NDEF message contains one or more NDEF records (Section 2.3.1).
These records can be chained together to support a larger payload. Each
NDEF record uses three parameters: payload length, payload type, and an
optional payload identifier to describe its payload. The first NDEF record
in an NDEF message has the MB (Message Begin) flag set, while the last
NDEF record is marked with an ME (Message End) flag. This means that
an NDEF message with only one NDEF record has both MB and ME flags
set.

Figure 2.2: Structure of an NDEF message with three NDEF records

2.3.1 NDEF Records

An NDEF record is the unit for carrying a payload within an NDEF message.
The record layout is shown in Figure 2.3, followed by descriptions of each
field.

CHAPTER 2. BACKGROUND 12

Figure 2.3: NDEF record layout [1]

MB: Message Begin flag, set to 1 when the record is the first record of an
NDEF message, 0 otherwise.

ME: Message End flag, set to 1 when the record is the last record of an
NDEF message, 0 otherwise.

CF: Chunk flag, indicating that this is either the first record chunk or a
middle record chuck of a chunked payload.

SR: Short Record flag. If this flag is set, the PAYLOAD LENGTH is a
single octet instead of 4 octets as shown in the figure 2.3.

IL: The IL flag is a 1-bit field indicating that the ID LENGTH field is
present in the header or not.

TNF (Type Name Format): This 3-bit long field indicates the structure of
the value of the TYPE field defined in Table 2.1.

CHAPTER 2. BACKGROUND 13

TYPE LENGTH: an unsigned 8-bit integer specifying the length in octets
of the TYPE field. This field is always 0 for certain values of the TNF
field.

ID LENGTH: specifies the length in octets of the ID field. This field is
present only if the IL flag is set to 1.

PAYLOAD LENGTH: specifies the length in octets of the PAYLOAD field.
The size of this field could be 1 or 4 octets depending on the value of
the SR flag.

TYPE: describes the type of the payload. The value of TYPE field must
follow the structure, encoding and format implied by the value of the
TNF field.

ID: an identifier in the form of a URI reference.

PAYLOAD: contains the payload.

Type Name Format Value
Empty 0x00
NFC Forum well-known type 0x01
Media-type as defined in RFC 2046 0x02
Absolute URI as defined in RFC 3986 0x03
NFC Forum external type 0x04
Unknown 0x05
Unchanged 0x06
Reserved 0x07

Table 2.1: TNF field values

2.4 NDEF Read and Write Procedure in

NFC Type 4 Tags

When a tag is in the proximity of a reader, the reader starts sending
commands to the tag to detect if the tag contains any NDEF messages or
not. It is worth mentioning that in this detection process, the NDEF file
referenced by the NDEF TLV block at offset 0x0007 of the CC file is used.
The procedure is described in Figure 2.4 [1].

CHAPTER 2. BACKGROUND 14

Figure 2.4: The NDEF detection procedure

If the NDEF length returned by the tag is in a valid range, the NFC
reader knows that the tag contains at least one NDEF message. Depending
on the tag communication settings and its read and write access rights,
an authentication procedure between the reader and the tag may need to
be carried out before these operations can take place. The following parts
present read and update procedures when the NFC tag does not have any
security settings.

NDEF Read Procedure NDEF read operations (Figure 2.5) happen
after the reader successfully finds an NDEF message in the tag (Figure 2.4).
If the requested NDEF file is the NDEF file that is referenced by the NDEF
TLV block at offset 0x0007 in the CC file of the application, then the third
and the fourth steps in the read procedure illustrated in Figure 2.5 can be
skipped [1].

Figure 2.5: The NDEF read procedure

CHAPTER 2. BACKGROUND 15

NDEF Write or Update Procedure NDEF write or update operations
happen after the card NDEF detection procedure presented in Figure 2.4
is successfully completed and the NDEF length returned from the tag is
greater than or equal to 0x0000. The write or update procedure is shown in
Figure 2.6 [1]. In this procedure, if the requested NDEF file is the NDEF file
that is referenced by the NDEF TLV block at offset 0x0007 in the CC file
of the application, then the third and the fourth steps in the read procedure
can be skipped. In addition, the messages in the fifth, sixth, and seventh
steps can occur in a single update command if the desired written content
fits inside the data field of an NDEF update command [1].

Figure 2.6: The NDEF write procedure

Example of the NDEF Read Procedure The following is a an example
of the NDEF read procedure between a reader and a tag using the command
set specified in ISO 7816-4 [20].

READER: 00 a4 04 00 07 d2 76 00 00 85 01 01 00

TAG : 90 00 (CORRECT EXECUTION)

READER: 00 a4 00 0c 02 e1 03 (SELECT CC FILE (ID: 0xE103))

TAG: 90 00 (CORRECT EXECUTION)

READER: 00 b0 00 00 0f (READ CC FILE)

TAG: 00 0f 20 00 54 00 ff 04 06 e1 04 ff fe 00 00 90 00

READER:00 a4 00 0c 02 e1 04 (SELECT NDEF FILE)

TAG: 90 00 (CORRECT EXECUTION)

READER: 00 b0 00 00 02 (READ NDEF LEN)

TAG: 00 11 90 00 (NDEF LEN + CORRECT EXECUTION)

CHAPTER 2. BACKGROUND 16

READER: 00 a4 00 0c 02 e1 04

(SELECT NDEF FILE (ISO FILE IS 0xE104))

TAG: 90 00 (CORRECT EXECUTION)

READER: 00 b0 00 00 11 (READ NDEF FILE)

TAG: 00 0f d1 01 0b 55 01 67 6f 6f 67 6c 65 2e 63 6f 6d 90 00

2.5 Security Mechanisms Defined in NFC

Low-level protocols in NFC, including ISO 14443 and ISO 18092, do
not specify any specific encryption or security mechanisms to secure data
transfered between two NFC devices [21]. However, NDEF specifications
define a signature scheme for integrity and authenticity of NFC tag content,
i.e. the data records within an NFC tag can be signed. The NFC tag signature
scheme is presented in the next section.

2.5.1 The NFC Tag Signature Mechanism

A signature record is calculated over all records that start either from the first
record of the NDEF message or from the first record following the preceding
signature record, as shown in Figure 2.7. A signature record itself is not
signed. The signature applies to the Type, ID (if present), and Payload
fields of all records to be signed. However, the first byte of the NDEF
header, including MB, ME, CF, SR, IL and TNF fields, is excluded [22]. In
addition, it is worth noting that the signature scheme ignores the tag UID,
thus allowing tag cloning. Also, it does not include reader authentication for
access control.

Figure 2.7: NDEF signature

Roland et al. presented a record composition attack which aims at
composing records in such a way that the digital signature remains valid
[23]. Saeed and Walter [22] presented procedures to hide records in an

CHAPTER 2. BACKGROUND 17

NDEF message, but still keeping its signature valid. They also extend the
decomposition attacks presented by Roland et al. [23]. The attack works as
follows: the text of a smart poster states: “Do not board the train until you
have a valid ticket”. This text is digitally signed and the signature is stored
in a signature record. An attacker may split this message into two separate
records. The first record stating “Do not board the train” is visible to the
user, whereas the second record stating “until you have a valid ticket” does
not appear to the user since the NDEF type of this part has been changed
to an NFC unknown type. However, the digital signature remains valid and
the user will consider the whole message as a valid message.

2.6 Security Threats Relevant to NFC

1. Denial of Service: In NFC, a DoS attack is possible because when an
NFC reader and a tag are close enough, the reader will start reading
the tag even if the tag is empty. This is because the tag is passive
and harvests energy from the signal from the reader. Thus, the reader
must continuously poll for tags to detect if there is a tag available in
its range. This means that the NFC reader could be occupied or kept
busy by putting an NFC tag within the reader’s proximity [21]. To
avoid this, most mobile phones automatically turn off their NFC read
and write functionality when the screen is off.

2. NFC relay attack: It has been suggested that NFC systems are
particularly vulnerable to relay attacks. Francis et al. [24] presented
a practical relay attack on NFC peer-to-peer mode using Near Field
Communication Interface and Protocol (NFCIP) between two NFC-
enabled mobile phones. The set up of this relay attack is shown in
Figure 2.8. Specifically, two proxy NFC phones that are 100 meters
away from each other establish a Bluetooth connection to forward
messages from the initiator device to the target device. One of the
proxy phones presents itself as the target phone to the initiator while
the other one presents itself as the initiator to the target phone.

An NFC relay attack is possible not only in peer-to-peer mode, but also
in reader/writer mode. Francis et al. [25] presented a proof-of-concept
relay experiment. To be more specific, two proxy enabled phones
establish a Bluetooth connection between them to forward messages
between a contactless smart card and a reader. One of the proxy phones
presents itself as the contactless smart card to the original reader while
the other presents itself as the reader to the contactless smart card.

CHAPTER 2. BACKGROUND 18

Although both relay experiments used a Bluetooth connection between
the two relay phones, any high-speed and reliable communication link
between them would work.

Figure 2.8: NFC relay attack in peer-to-peer mode

Figure 2.9: NFC relay attack in reader/writer mode

3. Spoof the tag content: An attacker could supply false information, such
as a worm-URL or a false short code, to a user’s device. For example,
a tag in a smart poster which supports purchase of bus tickets via SMS
messages could be replaced with another tag that contains an SMS
message to a premium-rate service. When a user his or her phone to
tap on the tag, the phone receives a pre-composed SMS message from
the tag. After that, the user is asked if he or she wants to send the
message. However, a user in a hurry might not check the SMS message
carefully and hence might send the false SMS message.

4. Tag cloning: As presented in Section 2.2, the NDEF signature scheme
ignores the tag UID. This means that an NDEF message written on
a tag can be copied and written to another tag. However, some tags,
such as DESFire EV1, and Ultralight C [16] tags, can be set to require
user authentication before changing the data stored on them. This
mechanism helps to lower the risk of tag cloning since only readers
that share a secret key with the tag can access the data stored in the
tag. However, if one of these readers is dishonest, it can reproduce the
tag content without any obstacle.

5. Tag replacement or tag stacking: An attacker can replace a tag with
his or her own tag that contains whatever malicious contents he or she

CHAPTER 2. BACKGROUND 19

wishes. He or she could also stack a fake tag on top of the original tag
to achieve the same goal as a tag replacement attack. However, in the
latter case, if the tag supports collision detection, such as NFC type
4 tags, then NFC readers might detect the collision and take proper
counteractions [26].

2.7 Mifare DESFire EV1 Tags

NXP semiconductors2 developed the Mifare DESFire EV1 (MF3 IC D41)
tag [15] which relies on the ISO 14443 Type A specification for contactless
communication and can be formatted as a NFC type 4 tag. The Mifare
DESFire EV1 tag is a tag based on secure memory cards. Specifically, the
MF3 IC D41 chip has a central processing unit (CPU) which contains an
asynchronous CPU core and a crypto co-processor [15]. However, it does not
support customer-defined code, but only a pre-defined set of commands. In
fact, people often say “program an NDEF application in a DESFire EV1 tag”,
but this actually means “write an NDEF message to the DESFire EV1 tag”
by using the write command defined by the DESFire EV1 tag specification.

A Mifare DESFire EV1 tag can have 2KB, 4KB, or 8KB of memory
depending on its specific version and allows up to 28 different NDEF
applications to be stored on it. Each tag has a master key that is used for
authentication with readers. In addition, each NDEF application in the tag
can have up to 14 different DES/3DES keys which are used to perform three-
pass mutual authentication between the tag and its communicating reader.
After the authentication is completed, the reader and the card calculate a
session key to protect the communication channel between them. To be
more specific, three levels of communication security are supported: plain
data transfer, plain data transfer with DES/3DES cryptographic checksum,
and DES/3DES encrypted data transfer [15].

The three-pass mutual authentication procedure between a DESFire EV1
tag and a reader is shown in Figure 2.10 [27].

Specifically, the authentication steps are as follows:

1. The NFC reader starts the authentication procedure by sending
an Authenticate command with a key number as parameter of the
command. If the key number is 0x00, the master key of the tag is used
for authentication.

2. If the requested key number is not correct, then an error code is
sent back to the reader. Otherwise, the tag generates an 8-byte

2http://www.nxp.com/

CHAPTER 2. BACKGROUND 20

random number RndB, encrypts this number using DES/3DES with
the selected key K, and sends the result back to the reader.

3. The reader runs a DES/3DES deciphering operation using the key K
on the response from the tag to retrieve RndB. This RndB is then
rotated left by 8 bits to result in RndB’. In addition, the reader itself
generates an 8-byte random number RndA. This RndA is concatenated
with RndB’ and DES/3DES deciphered in CBC mode using the key K.

4. The tag performs a DES/3DES encryption on the received tokens. The
tag can now verify the sent RndB’ by comparing it with the RndB’
obtained by rotating the original RndB left by 8 bits internally. If the
verification succeeds, the tag rotates the RndA value to the left by 8
bits to gain RndA’. This RndA’ is then DES/3DES enciphered using
the key K and is sent back to the reader.

5. The reader runs a DES/3DES decryption on the response from the
tag. The result is compared with the original RndA value internally
remembered by the reader.

6. The tag sets the authentication state for the currently selected
application.

Provided that the authentication was successful, a 16 byte session key is
calculated by employing RndA and RndB:
session key = RndA1sthalf + RndB1sthalf + RndA2ndhalf + RndB2ndhalf

Figure 2.10: DESFire mutual authentication procedure

CHAPTER 2. BACKGROUND 21

2.8 Java Card Technology

This section discusses Java cards which have more capabilities and more
intelligence than the tags described above.

2.8.1 Programmable Contactless Smart Cards

A programmable contactless smart card provides portability and built-in
computational power. It has a single integrated circuit (IC) that contains
a processor, memory, and I/O support. The card can be used for securing
applications that use public-key or shared-key algorithms [28].

There are several similarities between a Mifare DESFire EV1 tag (as
described in Section 2.7) and a programmable contactless smart card. Firstly,
they are both passive devices which are powered by the electromagnetic
field generated by a card reader and remain active only during the session
with the reader. Secondly, both of them can be used for data storage and
can host multiple applications on the same card. However, the types of
applications stored in the two types of cards are different. Specifically, the
DESFire EV1 tag is capable of executing a few pre-defined operations with
limited functions. Therefore, it can store NDEF applications that do not
require computations. On the contrary, a programmable contactless smart
card can store and execute applications written in a high-level programing
language, such as Java. This is because the microprocessor inside this type
of card acts much the same as a CPU inside a personal computer and thus
can be optimized for different user-defined applications that require dynamic
computations

2.8.2 Java cards

A Java card is a programmable contactless smart card that is capable of
running Java applets. This means that it has the flexibility and intelligence
of a programmable contactless smart card. In addition, it supports a subset
of the Java programming language with a runtime environment optimized
for smart cards and other memory-constrained devices [28]. Thus, cards of
this type also have the advantages of the Java programming language, such
as security, robustness, and portability. The general architecture of a Java
card is shown in Figure 2.11. Specifically, it consists of the following main
components:

• Applets: They are Java applications which are compiled into bytecode
instructions and installed in Java cards. They process incoming

CHAPTER 2. BACKGROUND 22

command requests and respond by sending data back to the reader.

• The Java Card Virtual Machine (JCVM): This defines a subset of
the Java programming language and virtual machine specifications for
smart card applications.

• The Java Card Runtime Environment (JCRE): This defines the Java
Card runtime environment behavior, such as memory management,
application management, security enforcement, and other runtime
features.

• The Java Card API: This standardizes the set of core and extension
Java card packages and classes for programming smart card applica-
tions.

Figure 2.11: The Java card architecture

2.9 NFC Card Emulation

An NFC reader connected to an embedded computer (e.g. a micro-controller
inside a vending machine) can emulate a tag. The emulated tag acts just like
a real NFC tag, but it has more powerful capabilities and flexibility compared
to a Java card or a DESFire EV1 tag. This is because the computer can

CHAPTER 2. BACKGROUND 23

have a software installed that controls the behavior of the emulated card.
In addition, the computer has a clock and possibly Internet connectivity.
An illustration of how an emulated card works is shown in Figure 2.12.
Specifically, once the emulated card (reader A) receives messages from reader
B, the emulated card forwards these messages to the software running in the
connected computer. The software processes these messages and sends the
result back to the emulated card so that the messages can be forwarded to
reader B. Therefore, the computational capabilities of this card emulation
are the capabilities of the connected computer and the software installed in
the computer.

Figure 2.12: Card emulation mode

2.10 NFC Applications

The NFC Forum describes three key areas of NFC applications: service
initiation, peer-to-peer, and payment and ticketing applications [29]. In the
following three subsections, we describe some NFC applications presented in
the literature and in industrial pilots. We categorize these applications based
on the key areas that they belong to.

2.10.1 Service initiation

Various service initiation applications based on NFC tags and NFC-enabled
phones have been proposed. These applications are built due to the fact
that an NFC tag can store certain information, such as application-defined
data or NDEF messages. In these applications, when a phone taps a tag,
information stored in the tag is sent to the phone. Once the phone finishes
processing this information, it presents the results to the user. For example,
each exhibit in a museum can have an NFC tag that is placed close to the
exhibit. By using an NFC-enabled phone to touch this tag, visitors can
access more detailed information about the exhibit, such as photos, audio
commentary, and video content. The information provided by the tag in this

CHAPTER 2. BACKGROUND 24

case is the exhibit identifier stored in the attached tag, for example a URL
pointing to a web page that provides additional information about the object
that was touched.

Smart posters The most common NFC application of this category is
smart posters. A smart poster is a printed paper poster with an NFC tag
attached to it. The tag can store some information, such as a URL for buying
sports tickets or a timetable displayed at a bus stop [30]. However, as smart
posters are deployed in public places that are vulnerable to security attacks,
tags can be overwritten or even replaced by other tags. Therefore, Fischer
[26] suggested that owners of the tags should consider write-protecting their
tags unless the tags need to be re-written and then use an NDEF signature
to provide integrity and authenticity for the tag content. However, the fact
that anyone can place their own tags over the original tag is similar to
someone putting his advertisement over the original poster (this operation is
essentially for free in the case of normal posters). One way to protect smart
posters would be to hide the tag in such a way that it would be visually
detected that the tag was tampered with (e.g., removed). If another tag
were to just be placed on top of it, collision detection would reveal that two
tags are present [26].

Real-time reporting of security guards Incentive Lynx Security [5]
uses a system based on NFC tags to provide real-time reporting of security
guards and the locations they check when they carry out their patrols.
Basically, an NFC tag is mounted on a checkpoint in a building to represent
a location. By scanning a tag using an NFC-enabled phone with a dedicated
application to retrieve the tag UID and then sending this UID to the
application server over the Internet in real time, a security guard can prove
that he is present at the checkpoint at the time the tag is tapped. More
analysis of this use case will be presented in Section 3.1.1.

NFC-enabled restaurant A restaurant named “Pannu” in Oulu Finland
offers meal ordering via NFC-enabled phones which have installed a dedicated
application called Restaurant Pannu [30]. When a customer uses his NFC
phone to tap on an NFC tag on a table in the restaurant, the Restaurant
Pannu application is automatically run and displays a menu to the customer.
When the customer finishes choosing his food, the application sends the
customer’s order to the back-end system over the Internet. The back-end
system will notify the restaurant’s payment system and kitchen about the
order. A detailed analysis of this system will be discussed in Section 3.2.

CHAPTER 2. BACKGROUND 25

NFC-enabled vending machine Mulliner [31] described how to apply
NFC to SMS-enabled Selecta [32] vending machines. Specifically, a vending
machine of this type can feature a tag containing an SMS message consisting
of the machine ID and a short code to which the SMS message should be
sent. A customer Alice who has a paybox3 account uses her NFC-enabled
phone to tap on the tag to retrieve the SMS message inside it. Once Alice
sends the SMS message, the vending machine displays that it is ready to
dispense an item. Alice selects her desired item and the amount of money
is charged to her paybox account. This system will be analyzed in detail in
Section 3.3.

NFC-enabled slide-show presentations Andersen and Karlsen [33]
presented an NFC-based application that simplifies the user-computer
interaction to set up a slide-show presentation. The scenario is as follows:
Alice is going to have a presentation. Instead of manually connecting her
laptop to a projector or downloading her presentation file from a file hosting
service, she selects her file on her mobile phone, then taps her phone on an
NFC tag placed at the presentation location. The information exchanged
between the application and the NFC tag is not the presentation file, but
actually is a URL that directs her phone’s browser to a server running
on a local presentation computer. This server is already connected to the
projector. The application uploads the presentation file to the server specified
by the URL. The server starts the presentation and a dedicated application
on the phone can now be used to control moving slides forward, backward,
or pause.

NFC-based pervasive games Garrido et al. [34] presented a use case of
NFC-based pervasive games to encourage learning and to motivate students.
In the game, players are given NFC-enabled phones that have a dedicated
game application installed. In addition, there are hidden augmented objects
placed at several places that students have to find. Each hidden object has
an NFC tag attached to it. Once a student (Alice) finds an object, she uses
her phone to tap on the tag on that object to get a bonus questionnaire.
The tap event triggers the game application to connect to a game server over
the Internet in order to download a questionnaire. Now, she has to answer
the questions correctly in order to get points. Then the application provides
players with instructions to reach the next destination in the game.

3http://www1.paybox.com/

CHAPTER 2. BACKGROUND 26

NFC-based class attendance checking system Bueno-Delgado et
al. [35] presented an NFC-based system to check student attendance in
laboratory and theory lessons. This system includes three components:
an NFC reader connected to a computer that is already available in every
classroom, back-end systems such as servers to store user credentials, and
NFC-enabled phones with a dedicated application. When a teacher (Alice)
enters a class, she taps her phone on the reader to start the application
running on her phone. She then logs in and indicates which group she wants
to activate. This information is forwarded to the back-end server via the
NFC reader and its connected computer. Once group activation is completed,
students can enter the class. They tap their phones on the NFC reader to
activate the application running on their own phones and then fill in their
login name and password. This information is forwarded to the back-end
server via the NFC reader and its connected computer. More analysis of this
use case will be explained in Section 3.4.

NFC-based employee attendance checking system Patela et al. [36]
presented an NFC-based mobile phone attendance checking system for
employees. Basically, each employee is assigned a contactless smart card
that stores his or her information, such as employee ID and name. When an
employee (Alice) comes to work, she taps her card on an NFC reader at her
workplace. Then her personal information is sent in real time to a mobile
phone of the Human Resources (HR) department via the NFC reader. The
HR employee looks up her employee ID in a database and then records Alice’s
attendance. These steps are repeated for all employees.

NFC-based meal delivery service In 2006 in Oulu Finland, an NFC-
based meal delivery service was implemented and tested [37]. In this pilot,
elderly clients ordered meals for home delivery services by tapping their NFC-
enabled phones on the NFC tags placed on a daily menu. Later, the meals
were delivered to the meal recipients by Oulu Logistic. In addition, each
driver used a Nokia phone with a dedicated application to tap on an NFC
tag at his workplace at the start of his delivery rounds to prove that he had
started delivering food. Upon successful delivery at the recipient’s home, the
delivery man was required to tap his phone on the NFC tag glued to the
home’s door to prove that he had completed his task. He had to tap on the
NFC tag at his workplace again when he finally completed his rounds.

CHAPTER 2. BACKGROUND 27

2.10.2 Peer to peer

Among the three key areas of NFC applications, peer-to-peer applications
seem to be the least popular [3]. In this mode, NFC is used to facilitate
communication between two NFC-enabled devices. If the amount of data is
small (less than 1KB, for example when sharing business cards), the data
could be transmitted over NFC itself. Otherwise, NFC can be used to
exchange parameters required to establish another wireless connection link,
such as Bluetooth or Wi-Fi, to share information between the two devices
[29]. For example, two mobile phone users wish to share photos with each
other via a Bluetooth connection. They simply touch their two devices
against each other to establish the Bluetooth paring and keying via NFC.
After that, data can be shared over the Bluetooth connection which was just
established [38].

NFC-enabled Bluetooth pairing Steffen et al. [39] proposed that NFC
can simplify the Bluetooth pairing process between a mobile phone and a
car’s hands-free equipment. Specifically, a user taps her NFC-enabled phone
on the car’s NFC device. During this tap, the car transmits the necessary
pairing information, such as its Bluetooth Address, PIN code, and its device
name, via NFC to the mobile phone. After that, the Bluetooth interfaces
of both the car and the mobile phone are activated, the pairing process is
completed, and a secure link between two devices is established.

NFC-enabled health care service NFC could help to facilitate health-
care services by providing user-friendly remote health monitoring, tracking,
and control systems. Strommer et al. [40] observed that in off-line health
monitoring, the heath parameters of a patient, such as heart-rate, weight, or
blood pressure, can be measured off-line. After that, the data is transferred
to the terminal, then analyzed and visualized for the user. However, this
information is not utilized efficiently by many users, mostly because of
the cumbersome data transfer from the measurement device to a personal
computer or a mobile terminal. NFC could facilitate the transfer of data
from the measurement device to a mobile terminal by having the patient tap
their phone on the device.

2.10.3 Contactless payment and ticketing applications

Contactless payment and ticketing applications are currently the primary
driver for the adoption of NFC on cell phones. In these system, the ticket or
micro payment data is stored in a secure device, such as a contactless smart

CHAPTER 2. BACKGROUND 28

card or a mobile phone. When a user (Bob) wants to make a payment or
to use his stored ticket, he presents his mobile phone or his card to a reader
associated with his desired service. Usually, his card or his mobile phone
and the reader use an application-specific protocol to process the payment.
In the case of mobile phones, dedicated applications can be installed to load
money or to buy tickets.

NFC in public transportation systems We have witnessed a great
success of NFC in the area of contactless smart cards. For example, these
cards have been widely used in some Asian countries and Scandinavian
countries in public transportation systems. These systems are mostly based
on proprietary solutions which use NFC tags to store credit (i.e. value) [41].
The Smart card Alliance has proposed an open payment ticketing system. In
this system, each traveler has a travel account in a cloud, which is operated
by a service provider (SP). The travel card does not store value but simply
stores the user’s identity and credentials. This identity and credentials are
read by a reader at station gates and sent to a back-end server. The ticket
identity and travel information are sent to a back-end server. Then, the back-
end server calculates the fare based on the traveling distance and forwards
the information to the SP for payment collection [41].

Google Wallet An example of mobile NFC payment is Google Wallet. In
this system, the credit card or bank account information of a user is stored
in Google’s cloud. The secure element on the user’s phone stores a virtual
payment card identity. During payment, the user selects the payment card
from a payment application on his phone. After that, the phone presents
itself as a card to the point-of-sale (POS) terminal. Google then collects the
payment from the user’s credit card or bank account and makes the payment
to the merchant [42].

NFC-enabled coupons Dominikus et al. [43] presented an NFC-enabled
coupon application named mCoupon. This work is interesting because it
proposed an application-specific security protocol for NFC tags and mobile
phones. The authors proposed two security protocols to prevent an NFC-
enabled coupon from being used multiple times, unauthorized generation,
manipulation, and unauthorized copying by applying client authentication in
the mCoupon system, as shown in Figure 2.13. Specifically, in both protocols,
a passive NFC device plays the role of an issuer. In the simple protocol
(Figure 2.13), a user touches the issuer with his mobile device to start the
mCoupon application. After that, the application generates a challenge (RM)

CHAPTER 2. BACKGROUND 29

and sends it to the issuer. The issuer attaches some informative data (Data),
e.g. about the type, issuing time, and validity range of the coupon; and
encrypts the challenge and additional data using the secret key KI . Then, it
sends a valid mCoupon to the client’s mobile device. The mCoupon consists
of the issuer identifier (ID), the challenge, the additional informative data,
and the encryption result, which is the response to the challenge. In the
advanced protocol (Figure 2.13), a customer (Bob) uses his phone (M) to
tap on the issuer to initiate the application. After that, the application
sends a request to get a valid mCoupon containing the challenge RM for
the issuer (I). In this protocol, the issuer wants the customer’s phone to
authenticate it, so the issuer also sends a challenge (RI) to the customer’s
phone. The phone signs this challenge by using its private key (PrKM). It
sends the signature and its identifier (IDM) to the issuer. The issuer is not
able to verify the signature, but uses the authentication data as input for
an AES encryption. It attaches additional informative data (Data) and the
authentication data to the challenge and encrypts this input using AES. As
in the simple protocol, the valid mCoupon consists of the issuer ID, the client
challenge, and the encryption result.

However, these two protocols are unrealistic for the current mass-
produced passive NFC tags since these passive (i.e. batteryless) NFC tags
cannot be programmed to implement application-specific cryptographic
protocols and do not have a clock for freshness. Therefore, they cannot
be used as an issuer. In addition, the advanced protocol has a potential
security flaw in that the third message can be forwarded. However, this can
be fixed if the issuer identifier (IDI) is added to the signature in the third
message.

Figure 2.13: Procedures to issue an mCoupon

Chapter 3

Secure NFC-enabled Application
Designs

In this chapter, we present our security designs for the four use cases
which was briefly explained in Section 1.2, specifically the security guard
monitoring system, the NFC-enabled restaurant menu, the NFC-enabled
vending machine, and the student attendance monitoring system. These four
applications were chosen because they have different security requirements
and different target users. Hence, they provide different points of view re-
garding the security needed for NFC-enabled applications. Each application
is presented in a separate section in which we review its current solutions,
and potential security and usability problems in these solutions. Thereafter,
we present our design goals, our system design, and analysis of the proposed
solution.

3.1 NFC-enabled security guard monitoring

system

In this section, we first describe some current solutions for the security guard
monitoring use case that are available on the market. Thereafter, we present
an analysis of the security requirements of a guard monitoring system, our
security protocols to secure this system, and an analysis of our protocols.

3.1.1 Current solutions

Security guards have to make security rounds at non-regular intervals to
inspect certain areas of a facility to make sure that there are no intruders and
that no damage has occurred to the building or equipment. They also have to

30

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 31

guarantee that gates and doors are locked during certain times, such as after
business hours. Therefore, it is important to monitor the work attendance of
security guards. To automate the monitoring process and to enable customers
to check the time and the frequency of security guards’ visits, there are two
types of security guard monitoring systems on the market: NFC-enabled
systems and non-NFC systems.

Non-NFC guard monitoring systems These systems employ rugged
readers and checkpoint tags which are available in at least three forms: touch
memory buttons, RFID tags, and barcodes [4]. Although these checkpoint
tags are different in form, they have one property in common, i.e., each
tag has its own unique identifier (UID). Therefore, each tag can represent a
location that security guards have to visit during their patrols. To confirm
a visit at a certain place, a security guard uses his rugged reader to scan the
checkpoint tag bound to that place. During this scan, the reader records the
tag UID and stores this UID along with the current time in its memory. At
the completion of each round, the security guard uploads the data stored in
the reader memory to a computer or a server.

There are several issues in these systems. Firstly, the reader does not
prevent a dishonest security guard from changing the clock of his reader
to his future patrol schedule, scanning a tag to have several records stored
in the reader. When his reporting time comes, he can upload the record
corresponding to the report time without being present at the checkpoints.
Moreover, the dishonest security can tamper with the timestamp of the
records stored in the reader’s memory. Secondly, systems that use barcodes
are easier to attack than systems that use touch memory buttons or RFID
tags. This is because the barcodes can easily be copied. Thus, a security
guard can copy all barcodes on his round, bring them home and produce the
reports without going to work.

NFC-enabled guard monitoring systems There are NFC-enabled
security guard monitoring systems on the market, such as Incentive Lynx
Security (Section 2.10), inViu NFC-tracker [6], and NFC Patrol [7]. They
are based upon installing NFC tags at checkpoints in the guarded areas.
A security guard uses an NFC-enabled phone with a dedicated guard
application to tap on each tag on his or her patrol round. During this tapping
time (hereafter we call it a tap event), the tag UID is collected and sent to
an application server in real time over the Internet. Some systems, such as
Incentive Lynx Security, also employ the Global Positioning System (GPS)
in the phone to keep track of the positions of the security guards. Although

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 32

this solution adds more accuracy to the monitoring, it does not always work
since GPS signals are not available inside buildings.

These systems are more advanced than the non-NFC guard monitoring
systems presented above in that they provide real-time reports and do not
require the security guard to carry one more piece of equipment. However,
since the tag UID is fixed, it allows a dishonest security guard to adjust
the clock on his phone, scan a tag several times to have several records
stored locally in his phone, and upload each of them to the server when his
reporting time comes. He could also manipulate the log file or generate fake
reports if he knows the tag’s UID. In addition, advanced equipment which is
currently available to research laboratories (e.g. proxmark3 [44]) can be used
to copy and spoof the tag UIDs. Therefore, the current NFC-enabled guard
monitoring systems on the market do not guarantee that reports sent from
the guard application can be trustworthy.

3.1.2 Attacker Model

In the NFC-enabled guard monitoring system, we consider the phone used by
the security guards and the applications installed in the phone are untrusted
while the tag and the back-end server are trusted. This is because, firstly,
the phone may be lost or stolen. The 2011/12 Crime Survey for England and
Wales reported that around 2% of mobile phone owners experienced a phone
theft in 12 months [45]. Secondly, the phone may be used by a dishonest
security guard, i.e. an inside attacker, who may want to generate presence
confirmations without doing his or her actual rounds. Therefore, he or she
may compromise the security of the phone and the applications installed in
it for his or her purpose. For example, a malicious security guard can have
root access to the phone, thus having complete control of the phone and its
software stack [46]. This means that if we put secret information in the phone,
such as a secret key, then it is possible that the security guard knows the
key. Moreover, mobile malware has rapidly become a serious threat [46] and
may tamper with the secret information and applications on the phone. In
addition, it is not secure to store secret key in the phone since we do not have
access to the secure element (SE) of the phone. Specifically, the dedicated
SE embedded onto the phone during the manufacturing stage does not have
the communication to the NFC controller in the phone and only proprietary
protocols can be used so far [47]. What is more, some phones support a
UICC-based SE [47], but they do not have a public API for accessing this
SE [48].

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 33

3.1.3 Design Goals

Our proposed design aims to implement an effective and reliable security
guard monitoring system. Specifically, it solves all the problems noted in the
NFC-enabled security guard solutions explained in Section 3.1.1. In addition,
our system facilitates transparency of guard operations and provides real-
time as well as historical reporting capabilities. Moreover, it guarantees that
the reports sent from the guard application are not possible to fake.

These goals can be achieved by a challenge-response protocol between
NFC tags at the checkpoints and an application server. This leads to two
possibilities: (i) using the three-pass mutual authentication provided by tags
based on secure memory cards, such as DESFire EV1 tags (Section 2.7), or
(ii) building a challenge-response protocol using programmable contactless
smart cards, such as Java cards. Due to differences between the features
of DESFire EV1 tags and Java cards, the requirements and design of the
security guard application based on these two possibilities are different, as
will be explained in Sections 3.1.5 and 3.1.6. However, the general structure
of both system is the same as described in the next section.

3.1.4 The general system architecture

The general structure of both systems is the same and is depicted in
Figure 3.1. Specifically, they include the following main components:

• Checkpoint tags: Checkpoint tags could be DESFire EV1 tags or Java
cards. A checkpoint tag is attached to a checkpoint on a patrol round
to represent a location.

• NFC-enabled phone with a dedicated application: NFC-enabled phones
are assigned to security guards. A dedicated guard application needs
to be installed in each phone before the system is used. To activate
the guard application, a security guard uses his or her phone to
tap on a checkpoint tag. After that, the application acts as a
proxy to facilitate message exchanges between the checkpoint tag
and a remote application server. We assume that there is a server-
authenticated Transport Layer Security (TLS) [49] session between the
guard application and the application server.

• Application server: The application server on the Internet is able to
respond to requests sent from the guard application and processes these
requests. It also keeps track of all the sessions that are on-going between
it and the checkpoint tags.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 34

• Database: A database is used to store shared keys between the
application server and the checkpoint tags. In addition, the database
stores information about all the sessions that have occurred between
the server and the checkpoint tags.

Figure 3.1: Overall architecture of the security guard system

3.1.5 A secure guard monitoring system using Java
cards

In this system, the specific type of the checkpoint tags is Java card. The Java
card has an applet that keeps track of a sequence number and increases this
sequence number by one when a phone taps on the card. In addition, the
card has a shared key K (which is shared with the application server). The
applet responds to commands (see below) sent from the guard application
running in the guard’s NFC-equipped phone. Moreover, it is able to log a
number of the last events in case information about historical events needs
to be retrieved from the card.

As regards the guard application on the phone, besides the general
functions presented in Section 3.1.3, this application is also able to check
for the availability of Internet connectivity before it attempts to send data
to the application server. If an Internet connection is available, the data is
sent instantly to the application server. Otherwise, the application stores

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 35

this data locally until it senses that the connectivity status of the phone has
changed and network is reachable.

3.1.5.1 Process

An illustration of the messages exchanged between the Java card at a
checkpoint and the application server during a tap event is shown in
Figure 3.2. Specifically, it comprises the following steps:

1. The guard application is automatically activated when the phone taps
on the card. The phone receives the UID of the card once it finds the
card.

2. The guard application checks if a network connection is available or
not. If a connection to the server is available, then the application
sends the card’s UID to the server along with a request for a challenge.
Otherwise, this step and the third step are skipped.

3. When the server receives a challenge request, it generates a random
number R and sends this R back to the guard application. This
challenge is also stored in the back-end database to keep track of the
challenge-response session.

4. The guard application composes a challenge command which contains
the phone identifier, IMSI and IMEI, and the current time on the phone.
If the second and the third steps were done, then this command also
carries the challenge R received in the third step. Now, the guard
application sends this command to the Java card.

5. Once the card receives the challenge command, the applet on the
card extracts the phone identifier, IMSI, IMEI, the time, and the
challenge number R, if this value is present. It calculates a keyed
hash (HMAC) MACK([R], seq, card UID, phone ID, time, IMEI,
IMSI, time) using the shared key K. The applet writes this sequence
number seq along with the challenge command and the MAC into its
log file. Additionally, it returns the MAC value and the current value
of sequence number to the guard application. Finally, it increments the
sequence number stored in the card by one.

6. Once the guard application receives the response from the card, it
checks for the availability of Internet connectivity. If an Internet
connection is found, it forwards the response along with the card’s UID
to the application server. The server checks the MAC on the response

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 36

and updates the entry in the database that is associated with this
challenge-response session. If an Internet connection is not available,
the response from the card is locally stored in the local database of the
guard application. A beep is locally generated to inform the guard that
he or she can move the phone away from the card and continue his or
her round. Once the phone finds an Internet connection, it immediately
sends all the pending data to the server. The server checks the sequence
number, the challenge R (if this value is present) and the MAC on these
submissions. The server then updates its database accordingly.

Figure 3.2: Security guard monitoring system using Java card

3.1.5.2 Protocol analysis

In this section, we present an analysis of the protocol described above to
prove that it meets our stated goals. In addition, we explain the limitations
remaining in our design.

Reliable security guard monitoring system A challenge-response
session between the Java card and the server ensures that a tap event is
fresh, since the challenge sent by the server is a random number. In addition,
the phone identifier sent along with the challenge number helps to bind the
identity of the phone to all these sessions. Replay attacks are prevented by
using a HMAC [50] over all information that the card receives from the phone.
By this, we make maximal information available for checking consistency of
an authentication session [51].

Good usability The guard application automatically starts without any
manual action or additional inputs from security guards. In addition, the

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 37

sequence number that is maintained by each Java card and the application
server helps to deal with intermittent Internet connections between the phone
and the server. Let us assume, at time t1, the phone has Internet connectivity,
and a security guard uses this phone to scan a card. This means that, at
the end of the session, the database at the server side has an entry for this
challenge-response session which contains the time a challenge was sent to the
card, the time a response from the card was returned, the challenge number,
and the sequence number. At time t2, another guard uses the phone but there
is no Internet connectivity when it taps on the card. This second scan is not
submitted to the server until the phone can establish an Internet connection.
Once the phone is connected to the Internet, all pending submissions are sent
to the server at time t3. The server checks if the HMAC and the sequence
number that are submitted by the guard application are correct or not and
then updates its database. As part of this check, it can examine the time and
sequence numbers of guard visits to a given tag. If the sequence numbers
are not strictly increasing in time, it can generate an alert that there is a
problem.

At time t4, the phone has Internet connectivity, and another security
guard uses this phone to scan the same card. The database at the server side
has an entry for this scan. This means that, at time t2, only the sequence
number is used and the time sent in the response is from the phone, which
is not trusted. Nevertheless, we have the upper and lower bounds on the
time t2 when the off-line session took place based on its previous and next
sessions: t1 ≤ t2 ≤ min{t3, t4}.

Historical reports The log in the Java card which stores a number of last
sessions helps to provide historical information and to protect against data
loss. The server can send a special command to the phone to retrieve the log
data. This may help in situation where a phone that has some pending data
to submit breaks before it gets Internet connectivity and the pending data
is lost.

Further narrowing the time window The time window can be further
narrowed down by using the following scheme: the phone can retrieve UID-
independent challenges periodically from the server and use the last challenge
that it receives from the server if there is no Internet connectivity at the
time it taps on the tag. However, this requires a thorough investigation of
the interval between these challenge requests if we are to prevent the battery
drain problem on the phone.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 38

Limitations The system described above has some limitations that should
be understood. Let us imagine a guarded area that has no wireless Internet
coverage. In this case, messages exchanged between the Java card and the
application server occur as shown in Figure 3.3. If we assume that there is
only one security guard who performs security checks and that this guard
is dishonest, then this guard can change the clock on his phone and scan a
Java card several times to have several records stored locally in the guard
application. Later, the guard submits each of these records to the server
when the reporting time comes. This is possible since the time supplied by
the phone is not trusted and the guard can change it to any value he or she
wants. However, if at least two guards do security checks alternatingly and at
least one of them is honest, then the dishonest security guards cannot cheat.
This is because each time the tag is tapped, the sequence number stored in
it is automatically increased by one. To illustrate this, consider the case of
two security guards Eve and Bob. These guards are assigned to do checking
rounds every day at 8.00PM and 10.00PM respectively. Assume that the
current sequence number is one. Eve, who is dishonest, is performing her
check and wishes to skip her work tomorrow. She scans the Java card twice
so that she has one record to report for now, and one for tomorrow. These
two records have sequence numbers 1 and 2, respectively, and the sequence
number remembered by the Java card is now 3. At 10.00PM, Bob, who
is honest, does his check and submits to the server a record with sequence
number 3. This means that the application server has records with sequence
numbers 1 and 3, while sequence number 2 has not been submitted yet. From
that, the administrator can learn that the sequence numbers and times of
visits to this tag are not monotonically increasing. Thus the administrator
knows that one of the guards has tampered with the checking process.

Figure 3.3: Security guard monitoring system using Java card (offline case)

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 39

Another limitation of the system is that it is vulnerable to the kind of relay
attacks mentioned in Section 2.6. Specifically, the scenario is as depicted
in Figure 3.4. There can be a person with a phone that does not need
to have a security guard application installed. This phone has a reliable
Internet connection to the security guard’s phone which has a security guard
application installed. All messages exchanged between the Java card and the
application server are tunneled via both phones without being noticed by the
server since the challenge-response session still takes place between the server
and the card. However, this is not a significant problem with this use case
since this still means that at least a person is present at the checkpoint at
the checking time. It is possible that the person visiting this checkpoint does
not do any of the observations or checks that the guard is supposed to do.
However, this is just the same as the case that a non-enthusiastic security
guard does not do any checks around the checkpoint after he or she scans
the checkpoint tag to register his or her attendance.

Figure 3.4: Relay attacks in the security guard use case

3.1.6 A secure system using DESFire EV1 tags

In this system, the NFC tags are DESFire EV1 tags, which cannot
be programmed to implement arbitrary commands but have pre-defined
commands for authentication, reading, and writing NDEF messages. Each
DESFire EV1 tag has an NDEF application designed for the security guard
system. The tag shares a key K with the application server. The system is
designed based on the authentication protocol presented in Section 2.7.

3.1.6.1 Process

An illustration of the messages exchanged between a DESFire EV1 tag
at a checkpoint and the application server during a tap event is shown
in Figure 3.5. It is worth noting that this is the normal DESFire EV1
authentication protocol (Section 2.7) where the phone acts as the reader

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 40

and the secret key is stored in the remote server. To be more specific, the
process consists of the following steps:

1. The guard application on the phone is automatically activated when
the phone taps on the tag. The application receives the tag’s UID
once it finds the tag. After that, the guard application sends a select-
application command to the tag and it waits for the status response
from the tag.

2. If the response from the tag is correct, then the application sends
the authenticate command to the tag. The key number sent in this
command is the key number associated with the NDEF application
that is written in the DESFire EV1 tag.

3. The tag generates an 8-byte random number RndB and encrypts this
number using the DES algorithm with the shared key K. The result
is sent back to the guard application. When the guard application
receives the encrypted value of RndB, it forwards this value along with
the tag’s UID to the server. Based on the tag’s UID, the server looks
up the corresponding secret key K and decrypts the challenge value
from the tag to retrieve RndB. This RndB is then rotated left by 8 bits
to obtain RndB’. After that, the server generates an 8-byte random
number RndA and concatenates it with RndB’. This combination is
then decrypted using the DES algorithm with the key K. The value
decK(RndA + RndB′) is sent back to the guard application.

4. The guard application forwards decK(RndA+RndB′) to the tag. The
tag can now verify the RndB’ sent from the application by comparing
it with the RndB’ obtained by rotating the original RndB left by 8 bits
internally. If this verification succeeds, the tag rotates the RndA value
to the left by 8 bits to produce RndA’. This RndA’ is then enciphered
using DES with the key K and is sent back to the guard application on
the phone.

5. The value encK(RndA′) is forwarded to the server. The server performs
a DES decryption on that value. Finally, the result is compared with
the server’s internally rotated RndA’. The server can now store the
result of the session into its database. The verification result (Success
or Failure) is sent back to the guard application and a beep is locally
generated to notify the security guard that he can remove the phone
away from the tag.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 41

Figure 3.5: Security guard monitoring system using DESFire EV1 tags

3.1.6.2 Protocol analysis

In this section, we analyse our protocol to prove that it meets our design
goals. In addition, we explain the limitations remaining in our design.

Reliable security guard monitoring system The challenge-response
session between the tag and the server guarantees the freshness of a tap event.
This is because RndA and RndB are random numbers, thus preventing the
messages sent from the fourth step to the ninth step in Figure 3.5 from being
replayed.

The application key is used instead of the master key of the
tag As explained in Section 2.7, a DESFire tag can store multiple NDEF
applications. This means that the checkpoint tag may store some other
applications besides the NDEF guard application. Thus, in our design, the
key of the NDEF application is used instead of the master key of the card.
This is a good security practice because if the master key of the card is used
and an attacker gains access to the database of the application server, he or
she knows the master key. This allows the attacker to change the keys of all
the applications in the tags and do whatever he or she wishes.

Good usability The guard application automatically starts without any
manual action or additional inputs from security guards. In addition, based
upon our testing (Section 4.2.3), we found that adding some delay to the
message exchanges between the tag and the guard application on the phone

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 42

did not affect the session. Therefore, we do not need to worry about the
delay that may be added by network connections.

Limitations This design has some limitations that should be explained.
Firstly, it requires the guard application to have an Internet connection
during a tap event. Therefore, compared to the solution using Java cards
presented in Section 3.1.5, this design is less flexible. Secondly, just as
the case for the security guard application using Java cards, this design is
also vulnerable to relay threats as presented in Section 3.1.5 (Figure 3.4).
However, with the same reasons as presented in the system using Java cards,
this is not a serious problem since this still means that at least a person
is present at the checkpoint at the checking time. The possibility that the
person visiting this checkpoint does not do any of checks at the checkpoint
is just the same as the case that a non-enthusiastic security guard scans
the checkpoint tag to register his or her attendance but does not do any
observations.

3.2 NFC-enabled restaurant menu

In this section, we first review some current use cases of NFC in restaurants.
Following this, we present an analysis of the security requirements of an
NFC-enabled restaurant, our security protocol to secure this system, and an
analysis of our proposed design.

3.2.1 Current solutions

In Section 2.10, the Pannu [30] restaurant was described to illustrate that
NFC can be used in restaurants to facilitate the food ordering process,
especially during the peak time, thus allowing restaurants to hire fewer
waiters. What is more, assuming a person travels to a foreign country where
he does not understand the language at all, this solution will allow him to
intuitively point at and select food items. However, the Pannu restaurant
requires customers to install a dedicated application on their phones in order
to order a meal. This requirement might be a hindrance to the customers
since installation of the application might be cumbersome and complicated.
This results in poor user experience and system usability.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 43

3.2.2 Design goals

Since restaurants are frequented by many different customers, the require-
ment that customers must install a dedicated application in their NFC-
enabled phones to be able to order food is a disadvantage. Therefore, based
on the fact that most NFC-enabled phones support web browsers, our design
aims to make use of both the web browser and NFC features of the phone.
Specifically, our proposed scenario is as follows: a customer (Alice) goes to
a restaurant, she taps her NFC-enabled phone on a Java card attached on a
table in the restaurant to retrieve a URL that directs her to the restaurant’s
web page. After studying the menu, she chooses her meal and then submits
her order. The waiter will bring the food to her when the kitchen has
finished preparing her order. As already implemented in many restaurants,
the system helps the cooks to keep track of pending orders by having client
computers in the kitchen that continuously display all the pending requests
that have been submitted by customers. When an order is ready, the cooks
delete the order from the list of pending orders.

The security problem that we want to solve in our system design for
the scenario described above is the fact that the URL could be remembered
or saved. As a consequence, a malicious person could stay at home and
access the web page of the restaurant. He or she could then submit several
food orders, but never come to the restaurant to pay and take away this
food. Therefore, it is important that the system design has a mechanism to
prevent fake food orders.

3.2.3 The system architecture

An illustration of the system is shown in Figure 3.6. Specifically, the system
consists of the following components:

• Java cards: A Java card is glued onto each table in the restaurant.
It contains a shared key K (which is shared with the server). In
addition, it keeps track of a sequence number, which starts from zero
and increases this sequence number by one when a phone taps on it.

• NFC phones: NFC phones are used by customers. The phones are
not required to have any dedicated application installed but have to
support a web browser. In addition, the phones need to have Internet
connectivity.

• A web server: The web server hosts a web page that provides the menu
and further information about the restaurant.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 44

• A database: The database stores the secret keys that the Java cards
on the tables share with the web server. The database also keeps track
of all the orders that have been placed and processed.

• A websocket server: The websocket server connects to the database
to retrieve new meal orders and pushes these new orders to the client
computers in the kitchen.

• Client computers in the kitchen: There are client computers in the
kitchen that continuously update the list of the food orders that are
waiting to be served.

Figure 3.6: NFC Restaurant

3.2.4 Process

Details about the message exchanged between the components of the design
presented in Figure 3.6 are:

1. Assume that the menu URL is http://www.restaurant.com/mn.php, and
a Java card is glued to table 1. Both the Java card and the web server
keep track of the sequence number seq, which initially starts at zero.
They also share a secret key K.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 45

2. When a customer (Alice) taps her phone on the Java card, the card cal-
culates the keyed hash MACK(table number, seq, card UID) using key
K. This keyed hash and the table number (t = 1) are used to compose a
URL of the form: http://restaurant.com/mn.php?s=seq&hash=keyed-
hash-value&t=1. After that, the Java card encapsulates this URL
into an NDEF message and sends it to the phone. It is important
to note that NFC tags based on secure memory cards are not able to
generate such dynamic URLs, while the programmable smart card can
be programmed to do so. When the phone receives this NDEF message,
its web browser initiates an HTTP request to the web server using the
retrieved URL and waits for an HTTP response from the server.

3. When the server receives an HTTP request from a possible client, it
checks if the sequence number and HMAC provided by the HTTP
request are correct or not. If they are correct, a new entry corre-
sponding to this session is inserted to the database. In addition, the
server responds to the HTTP request with the menu page in an HTTP
response. Otherwise, an error is returned in the HTTP response.

4. When the customer receives the menu page, she chooses her meals and
submits her order.

5. Once the server receives a submission, it compares the sequence number
and HMAC provided in the submission with the corresponding entry
in the database to decide whether to accept the submission or not.
The server must decide whether the submitted sequence number is
valid and the keyed hash sequence is correct. Unfortunately, it is not
the case that only the last sequence number is correct. For example,
a group of people, let us say Alice and Bob, go to a table in the
restaurant. Alice and Bob both tap their phones on the tag to access
the menu. Since Alice tapped first, Alice’s sequence number is smaller
than Bob’s. However, Bob finishes his submission before Alice and the
sequence and HMAC in his submission are correct. In this case, it
is important that if Alice’s HMAC is correct, her submission should
also be considered valid even though her sequence number is smaller
than Bob’s. In addition, some users may use their phones to tap on
the card multiple times for no particular reason. Therefore, in the
protocol, we define a sliding window. The size of the the window
(WINDOW) of each table should be set to at least the number of
seats at that table. When the submission of the last sequence number
(LAST SEQ) is done, the submissions of all sequence numbers in the
range [LAST SEQ − WINDOW,LAST SEQ] within a predefined

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 46

amount of time (e.g. 20 minutes after the submission of the order with
last sequence number) are considered valid.

6. The websocket server continuously checks the database to retrieve new
meal orders. Whenever a new meal order is found, the websocket server
pushes this order to the client computers in the kitchen in real time.
When an order is completed, the cooks click on the order to delete it
from the list.

3.2.5 Protocol analysis

In this section, we analyze our system design to prove that it meets our stated
goals.

Good usability As our system is web based, customers are not required
to have a dedicated application in their phones in order to be able to place
meal orders. Therefore, the proposed design provide good system usability
and user experience.

Protection from fake orders The use of HMAC values attached to the
URL prevents dishonest people from staying home and placing orders at the
restaurant. To be more specific, the card calculates the HMAC over the
sequence number, the table number, and the card UID by using the shared
key between the card and the application server. This HMAC is different
each time the Java card is tapped due to the changes in the sequence number
maintained by the card. This means that the HMAC value enables the card
to return different URLs to the phone for different tap events. If the key
used to calculate the HMAC is cryptographically strong, it is impossible for
a malicious attacker to create a valid URL to generate fake submissions.

Error recovery Since we aim to provide customers with good service, we
need an error recovery mechanism in the design. It is possible that a user
(Bob) does not know that tapping on the tag is required for security purpose.
This leads to situation where the user goes to the restaurant and taps on a
card to order food, thus having the URL of the menu in the history of his
phone browser. Next time when he goes to the restaurant, he thinks that
the saved URL can be used, he opens it to order food. Since the sequence
number is not correct, the web server should display a message suggesting
him to speak to the waiters for confirmation of the order, or to tap on the
card again, or ask if he wants to be redirected to a home-delivery ordering
service.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 47

Tag replacement or tag stacking It is possible that the card glued onto
the table is replaced by a malicious person or another card is glued on top
of the authentic one. In this case, customers can still call waiters for help.
Therefore, in this use case, such attacks are not a serious problem.

3.3 NFC-enabled vending machines

In public places, such as schools or train stations, there are vending machines
that dispense items, such as snacks and beverages, to customers after they
have paid for the selected items. In addition to vending machines that
support traditional payment methods, such as coins, printed notes, and
bank cards, there are SMS-enabled vending machines. NFC can be used in
these SMS-enabled vending machines to facilitate SMS message composition.
Moreover, the addition of NFC can provide greater security to these vending
machines. This section presents current solutions and how we can apply NFC
to improve the usability and security of SMS-enabled vending machines.

3.3.1 Current solutions

The general architecture of an SMS-enabled vending machine is as shown in
Figure 3.7 [52, 53]. To be more specific, to buy an item, a customer sends an
SMS message with text consisting of the machine ID and payment amount
to a short code of the beverage vendor. This message is routed through the
mobile network to the mobile payment service. The mobile payment service
parses the message as the price of the item and the machine ID. Then, it may
send a confirmation request [54] or a receipt [52] to the customer. The cost
of the purchase is added to the monthly phone bill or deducted from a pre-
paid balance by the mobile phone operator. After that, the mobile payment
provider communicates with the vending machine whose ID was in the SMS
message to inform it about the credit value. The vending machine displays
the customer’s available credit (based upon the price that was sent), and the
customer chooses his or her desired item. Thereafter, a receipt message is
sent to the customer’s phone.

As presented in Section 2.10, Mulliner [31] described how to apply NFC
to SMS-enabled vending machines. Although this NFC solution facilitates
SMS message composition, it does not make the vending machines more
secure. Specifically, both the proposed NFC and non-NFC solutions exhibit
two security problems. Firstly, a dishonest person could change the machine
ID written on a vending machine A to the ID of a vending machine B. Then
this person just waits in front of machine B to receive all the beverages when

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 48

someone tries to buy a beverage from machine A. Secondly, since the short
code could be saved in the phone or remembered by people, then a person
who is not close to the vending machine could compose SMS messages to
buy items from it. This results in problems, such as a dishonest person could
borrow his friend’s phone and use the phone to pay for a soft drink from a
remote vending machine without his friend permission even if they are not
at the machine.

Figure 3.7: Mobile payment system for vending machines

3.3.2 Design goals

The aim of our proposed system is to overcome all the flaws indicated in
Section 3.3.1. To be more specific, it prevents the following threats. Firstly,
it prevents a person who is not close to a vending machine from buying items
from that machine. Secondly, it prevents a malicious person from getting
free items by changing the machine ID of a machine to the ID of another
machine. In addition, our design does not require customers to install a
dedicated application in order to buy items.

Our observation is that each vending machine already has a micro-
controller which is connected to the Internet. Therefore, we can connect
an NFC reader to this micro-controller to operate the NFC reader in card
emulation mode or peer-to-peer mode. However, if we do not want to make
change to the micro-controller (for example, making changes to the micro-
controller might be difficult and costly due to its physical design) but we
still wish to facilitate SMS composition and make the vending machine more
secure than its current solutions, then we could use Java cards. The following

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 49

subsections (Section 3.3.3 and 3.3.4) present designs for both cases: a security
design for a vending machine that uses an NFC reader connected to the micro-
controller inside the machine, and a secure design that uses Java cards.

3.3.3 A system using NFC reader

This section describes a security design for a vending machine that uses an
NFC reader connected to the micro-controller inside the vending machine.
The reader can run in card emulation mode or peer-to-peer mode.

3.3.3.1 The system architecture

The system consists of four main components as illustrated in Figure 3.8:

1. A vending machine: The vending machine is capable of payments via
SMS messages.

2. An NFC reader connected to the micro-controller in the vending
machine: This enables the reader to emulate a card or run in peer-
to-peer mode.

3. A mobile payment provider: The mobile payment provider is connected
to mobile phone network operators and to the vending machine via
secure channels. This provider implements a billing service to deduct
money from the customers’ mobile balances.

4. NFC-enabled phones: These phones are used by customers.

3.3.3.2 Process

Details about messages exchanged between the different components of the
system are depicted in Figure 3.8. Specifically, a customer (Bob) has to
follow the following steps to buy to a soft drink from the vending machine:

1. He presses the button that corresponds to the his desired item. Since
the vending machine has a list of items and their prices, the system
can look up the price of the item that Bob chose. This press event is
remembered by the micro controller in the vending machine.

2. He then taps his phone on the NFC reader attached to the micro
controller. The micro controller will generate a random number. This
random number along with the machine ID and the item price will be
put in an NDEF record for an SMS message. This record is sent to

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 50

his mobile phone via the reader that runs in card emulation mode or
peer-to-peer mode.

3. After he sends the SMS message and the message reaches the mobile
payment provider, the mobile payment provider communicates with
the vending machine whose ID number is specified in the SMS. After
that, the mobile payment provider requests the micro-controller in
that machine to return the latest random number and the time that
the micro-controller generated this number. The returned value is
compared with the random number provided in the SMS message that
was sent by Bob. The mobile payment provider also checks if the
message is received within a short period (e.g. less than 5 minutes) from
the time when the random number is generated. If everything matches,
then the mobile payment provider knows that the message is correct.
Depending on the operator’s policy, it may send back an SMS to the
customer to ask him for confirmation (for example, by replying with
a “YES” message). In addition, the mobile payment provider sends
the credit value to the micro-controller. Now, the vending machine
displays the credit value and Bob selects his desired item. If the price
of the item is equal to or smaller than the credit value, then the vending
machine dispenses the item.

Figure 3.8: NFC-enabled SMS Vending machine

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 51

3.3.3.3 Protocol analysis

In this section, we analyse our protocol to prove that it meets our stated
goals. In addition, we explain the limitations that remain in our design.

Freshness for SMS messages A random number added to each SMS
message provides a proof of freshness for the SMS message. This occurs
because different SMS messages have different random numbers, and hence
an attacker cannot guess the next random number and manually compose
a valid SMS message to buy an item from the a possibly remote vending
machine.

A malicious person cannot change the ID of a vending machine
This is because all the information needed to buy an item is sent from the
NFC reader. This reader is controlled by the micro-controller inside the
vending machine. Thus, it is impossible for a malicious person to change the
ID of a machine unless he has access to the micro-controller of the machine.

Another way to provide freshness for SMS messages It is worth
mentioning that, as the micro-controller already supports a built-in clock,
rather than using a random number in the message, we could use an HMAC
of the tapping time. This provides the same security level as the above
design. This is possible because HMAC values of different values of time are
different, hence also adding a proof of freshness to SMS messages [50].

Limitations A limitation of our solution is that it does not prevent relay
attacks: a person Charlie is far from the machine. He asks his friend Bob
who has an NFC-enabled phone to go close to the machine. Bob taps his
phone on the machine to get the SMS message and forwards that message to
Charlie, or sends the random number to Charlie and Charlie will compose the
SMS message himself. By doing this, Charlie can buy the beverage without
being close to the machine. Thus, to be precise, our protocol guarantees that
the buyer or the buyer’s agent is near the vending machine.

3.3.4 A system using Java cards

This section presents a solution for SMS-enabled vending machines that uses
Java cards. This design does not require any changes in the physical design
of the micro-controller. Instead, we only need to upgrade the software in the
micro-controller.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 52

3.3.4.1 The system architecture

In this design, the system consists of four main components (as shown in
Figure 3.9):

1. A vending machine: The vending machine is capable of payments via
SMS messages.

2. Java cards: Java cards are glued to the vending machine. Each card
maintains a sequence number and a secret key K, which is shared with
the micro-controller inside the vending machine. It is worth noting
that a Java card does not have interfaces to communicate with other
devices, except through NFC readers, and thus a card cannot know
which item the user has selected. Therefore, in this case, a separate
card represents each type of item that is sold by the vending machine.

3. A mobile payment provider: The mobile payment provider is connected
to mobile phone network operators and to the vending machine via
secure channels. This provider implements a billing service to deduct
money from the customers’ mobile balances.

4. NFC-enabled phones: These phones are used by customers.

3.3.4.2 Process

Details about messages exchanged between the different components of the
system are depicted in Figure 3.9. To be more specific, a customer (Alice)
has to follow the steps described below in order to buy to an item from the
vending machine:

1. Alice taps her phone on the Java card corresponding to her desired
item.

2. When the card is tapped, it calculates a HMAC over the current
sequence number, the machine ID, the Java card’s UID, and the credit
value using the key K : MACK(price, seq, machine ID, card UID). After
that, the card composes an SMS message consisting of the machine ID,
the item’s price, the sequence number seq, the card UID, and the MAC
value, wraps this SMS message in an NDEF message and sends it to
the phone.

3. Alice sends the message using her phone. When the message reaches
the mobile payment provider, the payment provider queries the micro-
controller of the vending machine whose ID is sent in the SMS message

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 53

to check if the sequence number and the MAC provided by the SMS
message are valid. It is worth noting that, although the sequence
numbers maintained by the Java card and by the micro-controller
initially start at the same value, they are not synchronized since there
are cases where a customer taps his phone on the card to receive the
SMS message but never sends this message. Therefore, a sequence
number in an SMS message is considered valid by the micro-controller if
it is greater than or equal to the current sequence number known by the
micro-controller. If so, the micro-controller computes an HMAC over
the machine ID, the sequence number, the card UID, and the credit
value provided by the message and then compares with the HMAC in
SMS message. If the message passes all these checks, Alice is allowed
to continue to proceed to buy the item.

Figure 3.9: NFC-enabled SMS Vending machine using Java cards

3.3.4.3 Protocol analysis

This section presents an analysis of our proposed design.

Freshness for SMS messages The HMAC value of the sequence number
added to each SMS message provides a proof of freshness for the SMS
message. This occurs because different SMS messages have different HMAC
values [50], and hence an attacker who does not have the secret key cannot

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 54

calculate an HMAC and compose a valid SMS message to buy an item from
a possibly remote vending machine.

Limitations A limitation in our solution is that it does not prevent relay
attacks as already described in the system using NFC readers (Section 3.3.3).
Therefore, to be precise, our protocol ensures that the buyer or the buyer’s
agent is near the vending machine. In addition, it is important to keep in
mind that, compared to the card emulation solution, Java cards are more
vulnerable to card replacement attacks. This means that a dishonest person
could switch Java cards between two machines. Then he just waits in front of
one machine to receive all the beverages when someone tries to buy beverages
from the other machine. Therefore, these Java cards should be glued or
placed in such a way that it is difficult to replace them. For example, we
could place these tags behind a plexiglass window so that it is difficult for a
malicious party to tamper with the cards.

3.4 School attendance monitoring system

In this section, we first review some current solutions for the school
attendance monitoring use case. Following this, we present an analysis of
the security requirements, our security protocol to secure this system, and
an analysis of our proposed design.

3.4.1 Current solutions

The traditional way to check student attendance in a class is a roll call: the
teacher has a list of students registered for his course and he calls, one by
one, the names of the students in the classroom. Alternatively, the teacher
circulates a piece of paper within the classroom and students write their
attendance directly on the paper. In the latter case, some students can write
the names of other students who are not presented in the class.

As explained in Section 2.10, Bueno-Delgado et al. [35] presented an NFC-
based system to check the attendance of students in laboratory and theory
lessons. However, this solution requires students to tap their phones on
an NFC reader to activate the application and then continue to keep their
phones within the reader’s range while entering their login information to
the application. This requirement results in poor usability since it is difficult
to keep the phone in the reader’s range while entering information into the
phone. It can happen that the connection between the student’s phone and
the reader is torn down in the middle of the session (for example, due to the

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 55

movement of the phone while typing on it). As a consequence, a second tap
is required. In addition, manually entering login names and passwords to the
application is error prone and time consuming.

The attendance checking system for employees presented by Patela et
al. [36] (see Section 2.10) is not efficient because it requires a lot of manual
work. There is no point in sending the employee information to the
HR representative’s mobile phone. Instead, during each tap event, the
information can be sent directly to a back-end server via the NFC reader.
Afterwards, the server uses this information to look up the employee in order
to do further processing. HR representatives can query the back-end server
for information whenever they want.

3.4.2 Design goals

The main goal of our proposed system is to achieve an effective and reliable
attendance checking system. Firstly, this system checks the attendance of
both teachers and students. It ensures that it is not possible for teachers
and students to report their attendance when they are not present in class.
Secondly, it is fast and does not require manual inputs from the students.
Thirdly, the system provides real-time reporting capabilities.

3.4.3 The system architecture

The system architecture is shown in Figure 3.10. To be more specific, the
system consists of five main components:

1. Location tags: A DESFire EV1 tag is glued to the door of the
classroom.

2. Each teacher and student has a DESFire EV1 tag. This tag stores a
URL which includes the ID of the tag owner, such as his or her employee
ID or his or her student ID.

3. An NFC-enabled phone: This phone is used by the teacher. The
phone has an application installed, which is similar to the application
presented in Section 3.1.6. In addition, we assume that the phone
always has Internet connectivity during the time it taps on an NFC
tag.

4. A database: This database stores the student ID and credentials, list
of courses, list of students enrolled in each course, and the name and
ID of the teacher who is responsible for the course. Moreover, it stores

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 56

the shared keys between the location tags and the server. In addition,
it stores information about all the sessions that have occurred between
the server and the location tags.

5. A server: The server has a connection to the database and processes
HTTP requests generated when a student or a teacher taps his tag on
the teacher’s phone.

Figure 3.10: A school attendance monitoring system

3.4.4 Process

Details about the messages exchanged between the different components of
the design presented in Figure 3.10 are the followings:

1. The teacher (Bob) proves that he is present at his scheduled time. This
is done as follows: each teacher is equipped with an NFC-enabled phone
with a dedicated application. In front of the door of each classroom,
there is a location tag, which the teacher taps on with her NFC phone
to prove that he has been present at the classroom. The design,
processing, and messages exchanged between the location tag and the
web server are the same as the system presented in Section 3.1.6.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 57

2. The teacher taps his phone on the tag to get the URL. The browser of
his phone sends an HTTP request to the server. The server requests the
teacher to log in before allowing him to use the system. When this log-
in is completed successfully, the server sends back an HTTP response,
which contains a session cookie. This cookie has the expiration time
set to the scheduled duration of the class.

3. When a student (Alice) enters the classroom, she taps her tag on the
teacher’s phone. Based on the URL stored in this tag, an HTTP
request with the session cookie are sent to the web server to register the
attendance of this student in the system. In this way, students do not
need to do anything other than tap their tags on the teacher’s phone.
Also only the teacher needs to have a compatible phone.

3.4.5 Protocol analysis

In this section, we analyse our protocol to prove that it provides good
usability and reliability. In addition, we explain the limitations that remain
in our design.

Good usability and reliability Firstly, the system guarantees that a
teacher must be present at the classroom in order to register his attendance
with the same reasons as presented in Section 3.1.6. Secondly, it does not
require students to have an NFC phone to be able to register their attendance,
but rather each student has to have a student tag. In addition, it does
not require additional actions from students after they tap their tag on
the teacher’s phone; thus the attendance registration process is fast and
convenient. Thirdly, since every HTTP request sent to the server to register
a student attendance has the session cookie attached, and this cookie expires
after a preset time, a student cannot create a valid attendance registration
unless he comes to the class on time.

Limitations There are some weaknesses remaining in this protocol that
should be explained. Firstly, the design poses a transitive relation between
different components as shown in Figure 3.11. Specifically, the teacher and
his phone proves his attendance by tapping on the location tag on the door
of the class room. Thereafter, the students tap their ID tags on the teacher’s
phone to prove their attendance. This means that if one component in the
chain of trust is broken, then the security of the system fails. Secondly,
a person and his tag are not fixed to each other. For example, a student
can give his ID tag to his friend to help him to register for his attendance.

CHAPTER 3. SECURE NFC-ENABLED APPLICATION DESIGNS 58

This problem can be limited if the ID tag binds more important personal
information of its owner, such as access control to the university computer
system, so that the owner may not want to give it to other people.

Figure 3.11: Transitive attendance verification

Chapter 4

Implementation

This chapter describes the implementations of two of the secure NFC-enabled
systems presented in Chapter 3: the NFC-enabled restaurant menu and the
NFC-enabled security guard monitoring system. These two systems were
selected from the four use cases because they have different requirements
and use different types of tags: a system uses DESFire EV1 tags, a system
uses Java cards which requires a dedicated application on the phone, and a
system that uses Java cards but uses web browsers in the phone instead of a
dedicated application.

4.1 Devices and Programming Environments

All applications were implemented and tested in a Google Nexus S phone
which runs Android version 4.1.2. As for all Android phones, this phone
automatically looks for NFC tags when its NFC function is enabled and its
screen is unlocked. When the phone finds an NFC tag close to it, it starts
an NDEF detection procedure, as presented in Section 2.4. Once the phone
finds an NDEF message in a tag, it encapsulates the message into an intent
which is then used to locate applications that are interested in the type of
data stored in the message [55]. If more than one application can handle the
scanned data, an Activity Chooser is displayed on the phone so that users
can choose the appropriate application.

In all proof-of-concept prototypes, we did not work on real Java cards.
Instead, we emulated the functionality of Java cards by using a reader
connected to a computer. The NFC reader used in this thesis is the ACR122U
NFC reader [56]. We first connected the reader to a 64-bit x86 Linux
machine which has the libnfc [57] library version 1.4.2 installed. This libnfc
library is an open source library written in the C programming language to

59

CHAPTER 4. IMPLEMENTATION 60

support research on the hardware and protocol levels of NFC. The purpose
of the libnfc library is to provide developers with a way to work with NFC
hardware at a higher level of abstraction, but with complete coverage of
low-level PN53x [58] chipset commands. It supports both ISO 14443 and
ISO 18092 standards; and can be used to transform an NFC device into
an active or a passive device. The program to emulate an NFC reader as
a Java card was written in the standard C99 programming language. The
code for the emulated card for the security guard monitoring use case is
provided in Appendix A.1.5. The code for the Java card emulation in the
restaurant use case is provided in Appendix A.2.1. When these two card
emulation programs were successfully implemented, we attached the reader
to a Raspberry Pi [59] (RP) model B which uses the Debian operating system
and compiled the code on this platform by using its default GNU compiler
collection (GCC).

The DESFire tags used in this thesis was the Mifare DESFire EV1 with
4KB of memory. This card was formatted to be used as an NFC type 4 tag.
The code used to format the tag and write an NDEF message to the tag is
described in Appendix A.1.4.

4.2 NFC-enabled guard monitoring systems

Since all of our systems aim to automate the work or security guards as
much as possible, we attempt to avoid the Activity Chooser in the phone from
appearing. To do so, in each system, instead of using well-known MIME types
(TNF = 0x01), we define our own MIME type (TNF = 0x02) (Section 2.3.1).
Each application registers an Intent filter to handle data of the application-
specific MIME type defined by us.

4.2.1 Guard monitoring system using Java cards

Application server The application server for this security guard use
case was implemented in a 64-bit x86 Linux machine by using the Jersey1

library for building RESTful web services. The server is able to generate
random numbers by using the SecureRandom class supported by Java. In
addition, it handles HTTP requests sent from the phone application. It is
connected to a MySQL database that stores shared keys (in this case shared
between the server and Java cards) and information about all the sessions
between the server and the Java cards. Details about the code are provided
in Appendix A.1.1.

1https://jersey.java.net/

CHAPTER 4. IMPLEMENTATION 61

The security guard application on the phone Details about the code
of this guard application are shown in Appendix A.1.2. The guard application
is automatically started when the phone finds an NDEF message of MIME
type application/guard stored in a Java card close to the phone. This is done
by an intent filter defined as shown in Figure 4.1.

Figure 4.1: Intent filter

The guard application communicates with the application server by using
HTTP GET requests. As regards the communication between the Java card
and the guard application, an illustration of commands sent between the
phone and the Java card until the guard application is activated is shown in
Figure 4.2 (extracted from our running code). After the guard application
in the phone is activated, the communication between the Java card, the
guard application, and the application server is as described in the protocol
design (Section 3.1.5). Basically, the guard application uses the HTTP GET
method to request the application server for a challenge number, if it finds
that the application server is reachable. Thereafter, it composes a challenge
command and sends this command to the Java card. In this implementation,
we defined the challenge command of form: 0x11 [number of values] [length
of each value] [values]. In this prototype implementation, the Java card and
the server use the SHA1 algorithm [60] to calculate the HMAC.

To store pending records when the application does not have Internet
connectivity, we implemented an SQLite database [61] inside the application.
In addition, the application has a connectivity-change receiver that is able to
sense changes in the Internet connectivity status of the phone. This receiver
extends the BroadcastReceiver class provided by Java, which always listens
to broadcast events sent by Android. Therefore, the application is able to
know that the network connectivity status has changed and that the network
is now reachable. Thus, the application will start to send all data stored in
its SQLite database.

The emulated Java card The code for the emulated card in this use case
is provided in Appendix A.1.5. When the phone taps on the emulated card,
the card responds to the NDEF detection procedure of Android phones (as
shown in Figure 4.2). Specifically, the NDEF message that the card sends to

CHAPTER 4. IMPLEMENTATION 62

the phone during this procedure has the MIME type application/guard ; thus
the phone knows that it has to activate our guard application. After that,
it responds to the challenge command sent from the guard application. In
addition, before the Java card responds to a challenge command sent from
the guard application, it records all of the information about this session
into its log file. Then, the card increases the sequence number stored in it
by one. In this implementation, the log file in the Java card stores the last
ten sessions between the card and the application server.

Figure 4.2: Activate application

Administrative functions There are two additional functions for admin-
istrators provided by this guard application. Firstly, it has a button to view
all pending data stored locally in the application. Secondly, the administrator
can tap a phone with the guard application installed on a Java card to get
this application run, then the administrator can press a button labelled View
Log to view the last ten records stored in the Java card.

4.2.2 Guard monitoring system using DESFire tags

DESFire tag Our DESFire tag stores an NDEF application which contains
an NDEF message with type application/guardDESFire. The key that the
NDEF application uses to do authentication with the server is key number
0x00 on the DESFire tag.

The guard application The guard application in the phone registers an
intent filter to handle NFC tags with the MIME type application/guard-

CHAPTER 4. IMPLEMENTATION 63

DESFire. Compared to the guard application presented in Section 4.2.1,
this application is much simpler; it does not have a connectivity-change
receiver nor a database inside the application. The only function of this
application is to relay messages between the tag and the server. The guard
application uses the HTTP GET method to send requests to the application
server. In addition, it uses commands defined by the DESFire specification to
communicate with the DESFire tag. Figure 4.3 is an example of a successful
session between the DESFire tag and the application server. This example
is extracted from our running code (the messages exchanged between the
phone and the application server are not shown in this figure).

Figure 4.3: DESFire security guard message flow

The application server The application server was implemented in a 64-
bit x86 Linux machine by using the Jersey library for building RESTful web
services. The server is connected to a MySQL database that stores shared
keys between the server and DESFire EV1 tags and information about all
the sessions between the server and the DESFire EV1 tags. Details about
the code are provided in Appendix A.1.1. The server is able to generate
random numbers by using the SecureRandom class supported by Java. In
addition, it handles HTTP GET requests sent from the phone application.
Details about the code are shown in Appendix A.1.3.

4.2.3 Effect of network latency

In order to measure the amount of network latency that the DESFire EV1
mutual authentication session can tolerate, we configured the Android phone
and the application server to use the same network of our department. In
addition, we delayed the messages that were sent from the server to the tag in
the authentication session. Specifically, when the guard application received
the value decK(RndA+RndB′) from the application server (the sixth message

CHAPTER 4. IMPLEMENTATION 64

in Figure 3.5), instead of instantly forwarding this value to the tag, we set
the application to sleep for a period equaling to the delay that we wanted to
add, as shown in Figure 4.4. The piece of code to make the application sleep
for predefined DELAY milliseconds: SystemClock.sleep(DELAY).

We run the experiment with different DELAY values, specifically 30
seconds, 60 seconds, and 120 seconds. For each value, we run the experiment
for 5 times. We observed that for all the experiments, the delay did not break
the session.

Figure 4.4: Experiment to measure the network latency

4.3 NFC-enabled restaurant menu

The NFC-enabled restaurant use case does not require a dedicated applica-
tion installed in the phone. Instead, it uses the browser in the phone.

Java card Our emulated Java card keeps track of a sequence number
and has a secret key that is shared with the web server. When the phone
taps on the card, the card calculates an HMAC using the SHA1 algorithm
over the sequence number, the table number and the card’s UID. The
HMAC, sequence number, and table number are appended to the URL of
the restaurant’s web page.

Web server Our web server is an Apache server version 2.2.20. The server
connect to a MySQL database, named Restaurant, that stores the secret

CHAPTER 4. IMPLEMENTATION 65

keys of the Java cards associated with the restaurant tables. This database
also stores all the orders that have been placed and processed. When an
HTTP request comes to the server and the sequence number and the HMAC
value provided by the HTTP request pass all the checks on the server, then
the server returns a menu in the HTTP response. When the customer has
decided on his meal, he submits his choice. The submission also includes the
sequence number, HMAC, and table number - as in the earlier URL. Thus,
the server can check that this is a valid submission. The idea of storing all
the orders that have been placed and processed is not new and has been
supported by many restaurants.

Websocket server The websocket server was implemented by using the
nodejs2 platform version 0.10.10. The reason for the use of websocket [62] is
that it supports bidirectional communication between a client and a server
without the need to use the polling mechanism of traditional HTTP. The
websocket server has access to the Restaurant database to get new orders and
continuously pushes these new order to the websocket-supporting browsers
in the client computers. These browsers have permanent connections to a
websocket server in order to keep them updated with new orders. Once an
order is completed, the cook selects the entry in the list and clicks on the
Delete button. This delete event is processed by the websocket server to
delete the corresponding entry in the Restaurant database.

2http://nodejs.org/

Chapter 5

Discussion

In this chapter, we generalize the uses of general NFC tags for different
security requirements and considerations. We then briefly summarize the
methodological principles used in this thesis. Thereafter, we present how we
used proverif, a protocol verifier, to verify some of our protocols. Following
this, we discuss some reflections on economic, social, and ethical issues
associated with this thesis project.

5.1 Security Generalization

In previous chapters, we presented several specific NFC-enabled use cases
using different NFC tags, specifically DESFire EV1 tags, Java cards, and
NFC card emulation using an NFC reader connected to a computer. All
presented solutions use off-the-shelf devices which are readily available on
the market. This means that our solutions can be easily deployed in real
world.

All the presented use cases illustrate that NFC-enabled systems are
distributed systems involving three main components: an NFC tag, an
NFC-enabled phone with or without a dedicated application, and a back-
end server. The NFC-enabled phone and the dedicated application help to
relay messages exchanged between the NFC tag and the back-end server.
In addition, the security of NFC-enabled systems depends on the Internet
connectivity of the phone at the time the phone taps on the NFC tag. The
general principles of using NFC tags for securing NFC-enabled systems with
different Internet connectivity status is summarized are Figure 5.1.

As explained throughout the thesis, NFC tags comprise tags based
on secure memory cards (e.g. Mifare DESFire EV1 tag), programmable
contactless smart cards (e.g. Java cards), and emulated cards. Other than

66

CHAPTER 5. DISCUSSION 67

these three types of tags, NFC tags can be simple NDEF tags that are capable
of storing NDEF messages but do not support any built-in authentication
mechanisms. For example, Mifare Ultralight tags [14] are simple NDEF tags.
These types of tags can be used in a variety of service-initiation applications,
as described in Section 2.10. It is worth mentioning that, in these systems,
we do not need a dedicated application installed on the phone. Instead, we
can use the web browser or the SMS application supported by the phone. In
addition, systems based on simple NDEF tags do not require the phone to
have Internet connectivity. They also do not provide any authentication or
replay protection.

In the following sections, we present a detailed discussion about the prin-
ciples of using the NFC tags based on secure memory cards, programmable
contactless smart cards, and card emulation.

Figure 5.1: General principles of using NFC tags

CHAPTER 5. DISCUSSION 68

5.1.1 Tags based on secure memory cards

The tag based on secure memory cards used in all the use cases presented
in Chapter 3 is the DESFire EV1 tag. Some other examples of tags based
on secure memory cards are Mifare Ultralight C [16] and Mifare Classic
[63] tags. A tag of this kind is capable of storing application-defined data
and allows application developers to control the read and write access to
this data by using the card’s built-in nonce-based shared-key three-pass
mutual authentication between the tag and the NFC reader. This built-in
authentication mechanism for read and write access controls is more advanced
than the irreversible lock-byte mechanism in some type 2 tags with static
memory structures [64], such as MiFare Ultralight [14] tags. The reason is
that a secure memory tag allows the tag owner who has the key to change
the tag content whenever he wants. In contrast, once a MiFare Ultralight
tag is set to the read-only state, its content cannot be changed any more.

Apart from the read and write access controls using the built-in authen-
tication mechanism, an authentication session between a secure memory tag
and a back-end server via an NFC phone can prove to the back-end server
that the user or its agent is close to the tag at the time the session takes
place. Since a tag can represent a location due to its unique tag UID,
an authentication session between the tag and the back-end server via the
phone can prove that the phone is at that specific location. This feature
has been employed in the security guard monitoring system presented in
Section 3.1.6, and in the school attendance monitoring system presented in
Section 3.4. This can also be used in the food delivery application presented
in Section 2.10 by using the same design as in the guard monitoring system. It
is worth noting that, in order to use this built-in authentication mechanism, a
dedicated application installed on the phone is necessary to facilitate message
exchanges between the tag and the application server. In addition, it is
compulsory to have an Internet connection between the phone and the server
at the time the tag is tapped. Our experiments (Section 4.2.3) showed that
some delay in the network connection does not break the authentication
sessions.

If the location has no wireless Internet coverage and the phone does not
have Internet connectivity at the time it taps on the tag, then the tag’s built-
in authentication between the tag and the server cannot be executed. In this
case, if we have a dedicated application on the phone, the application can
scan and store the tag’s UID and sends this data to the application server
when the phone gets connected to the Internet. However, the application on
the phone can be tampered with. Thus, data stored in the application can
be changed by attackers. In addition, if only the UID is used to verify the

CHAPTER 5. DISCUSSION 69

freshness of a session, then an attacker can manually generate this data. To
illustrate this, Henzl [65] examined several access control systems and found
that the tested systems use only the UID of the card for verifying the user
identity and that there is no authentication between the card and the reader
or encrypted communication. Therefore, the author was able to get the UID
without authenticating to the card and then replay it to get access to the
locked door.

As mentioned before, there are various tags based on secure memory
cards, such as the Mifare Classic tag [63], and the Mifare Ultralight C
tag [16]. However, it is important to examine the security strength of
the authentication protocol provided by each tag. For example, any bad
properties in the random number generator could compromise the security
of the whole authentication protocol. Merhi et al. [66] confirmed that the
random number generator of Mifare Ultralight C card is a major improvement
over that of Mifare Classic. Nohl et al. [67] performed reverse engineering on
the Mifare Classic tag and found that the nonce generated by this tag is not
random, which enables the attacker to replay the authentication. Moreover,
Koning et al. [68] exploited the weakness on the random number generator
of Mifare Classic card to recover the keystream generated by the card. In
addition, they were able to read all memory blocks of the first sector of
the card and modify memory blocks on the card. What is more, Garcia
et al. [69] were able to extract the secret key from just two eavesdropped
authentications between a card and a genuine reader. This is a significant
problem since the Mifare Classic tag is the most widely used contactless
smart card in the market (covering more than 70% of contactless cards in
the market, as claimed by Garcia et al. [70]). Oswald et al. [71] presented a
side-channel attack on Mifare DESFire (MF3ICD40 chip) tags. Specifically,
with about 1 000 000 measurements they are able to fully recover the 3DES
key stored on a Mifare DESFire card. However, their side-channel attack is
currently not applicable to the DESFire EV1 tag [27], which is the specific
DESFire tag used in this thesis.

5.1.2 Programmable contactless smart cards

As explained in Section 2.8.1, Java card is an example of programmable
contactless smart cards. It is more intelligent than a secure memory tag in
that it is programmable; thus it can keep track of a sequence number and
perform computations. However, there is no built-in authentication protocol
defined by this type of card and the security mechanism must be implemented
by the application in the card. As with the secure memory tags, security of
NFC-enabled systems using programmable contactless smart cards depends

CHAPTER 5. DISCUSSION 70

on the Internet connectivity of the phone and the applications on the phone,
as explained below.

Reliable connectivity If we have reliable wireless Internet coverage at
the location of the tags, the programmable contactless smart card enables us
to design nonce-based mutual authentication protocols that fit our security
requirements and make them as flexible as we want. In addition, as with
the secure memory tags, we need a dedicated application installed on the
phone in order to facilitate message exchanges between the card and the
application server. To illustrate that the programmable card is more flexible
than the secure memory tag, let us consider the two security guard systems
described in Section 3.1.5 and 3.1.6. Specifically, in the security guard
system using DESFire EV1 tags (Section 3.1.6), the card with its built-in
three-pass mutual authentication protocol helps to authenticate the reader
and the tag to each other. Although we understand that, in this use case,
authenticating the reader side is not necessary since it does not add more
security to the system, we cannot customize the protocol. In contrast, when
using Java cards in the same use case, we can design a challenge-response
protocol that meets our requirements with fewer round messages and more
functionality, as explained in Section 3.1.5.

This card can also be used in NFC-enabled systems that use web browser
or built-in SMS application on the phone instead of a dedicated application.
Specifically, due to the ability to keep track of a sequence number in the
programmable smart card, an authenticated message which contains an
HMAC or a signature can be sent from the card to the server to provide
replay protection. For example, in the NFC-enabled restaurant use case
presented in Section 3.2, a sequence number and its HMAC are added to
an URL to prove the freshness of an HTTP request. Another example, in
the vending machine system using Java card, the sequence number and its
HMAC are added to the SMS message to prevent replay attacks.

Intermittent connectivity Lack of reliable Internet connectivity at the
location of the tags means that we need a dedicated application installed
in the phone to buffer messages from the card to the server. If the phone
does not have Internet connectivity during the time it taps on the tag, the
sequence number maintained by the card can provide a certain level of replay
protection by verifying the causal order between taps by non-colluding users.
Specifically, the authenticated message can contain an HMAC or a signature
over the sequence number maintained by the card. This was applied and
analysed in Section 3.1.5. However, as explained in Section 3.1.5, the order

CHAPTER 5. DISCUSSION 71

of events cannot guarantee the trustworthiness of a report if all users collude
or if there is only one user using the system. In order to limit the replay
window, we can use a buffered, relatively recent nonce sent from the server
when the phone does not have Internet connectivity at the time it taps on
the tag.

In addition, to understand the general principles of using programmable
smart cards, it is important to understand and make use of security
mechanisms that are enforced by the card platform in the implementation of
the system. For example, the Java card relies on the JCVM abstraction
layer which provides several security services to the application layer.
Specifically, its firewall mechanism provides secure and isolated execution
of applets [72]. In addition, illegal memory accesses are prevented by stack
and buffer overflow checking. Moreover, in the last version of the Java
Card specifications, the bytecode verifier is embedded on card, making the
bytecode verification process mandatory. This mechanism guarantees that
an application that is not conform to the Java Card specifications cannot
be loaded onto the Java card. However, there are some attacks against this
platform, such as fault attacks [73] and combined attacks [74]. In addition,
the attacker may collect information on the card to elaborate hardware and
software attacks, or attack the virtual machine and the firewall between
applications on the card [75].

5.1.3 Card emulation

An NFC reader connected to a computer can emulate an NFC tag. This
emulated tag appears to a reader much the same as a real NFC tag, such
as a DESFire EV1 tag or a Java card, but it is more powerful than those
tags. Specifically, once an emulated card receives messages from a reader,
these messages are interpreted and processed by the computer to which the
emulated card is connected; thus, the computational capabilities of this card
emulation are the same as the capabilities of the connected computer. In
addition, the emulated card can provide a clock and possibly its own Internet
connection. However, one disadvantage of emulated cards is that the system
can be bulky since it needs to be connected to a computer, even if the
computer is as small as a Raspberry Pi. Also, not all computers have built-in
NFC support. For example, in the vending machine presented in Section 3.3,
it may be difficult to change the micro-controller inside the machine so that
we can attach an NFC reader to it for card emulation. The security of NFC-
enabled systems using NFC readers running in card emulation mode depends
on Internet connectivity of the phone, as explained below:

CHAPTER 5. DISCUSSION 72

Reliable connectivity Assuming that the location of the tags has a
reliable wireless Internet coverage, as for the programmable contactless
smart card, the emulated card allows us to design nonce-based mutual
authentication protocols that fit our security requirements and make them
as flexible as we want. In addition, as with the two types of tags mentioned
above, we need a dedicated application installed on the phone in order to
facilitate message exchanges between the card and the application server.

This card can also be used in NFC-enabled systems that use web browser
or built-in SMS application on the phone instead of a dedicated application.
Specifically, due to the ability to support timestamp, an authenticated
message, which contains an HMAC or a signature over the timestamp, can be
sent from the card to the server to provide replay protection. It is important
to note that an HMAC over the timestamp provides more security than an
HMAC over the sequence number. This is because the timestamp is more
fine-grained than the sequence number, or in other words, the replay window
of the timestamp is smaller than that of the sequence number.

Intermittent connectivity If we cannot have a reliable wireless Internet
coverage at the location of the tags, provided that the phone has a dedicated
application installed, the HMAC calculated over the timestamp can provide
replay protection. To illustrate this, in the vending machine application
(Section 3.3), timestamp in a message that is protected by HMAC guarantees
the freshness of the message. In order to limit the replay window, we can
use a buffered, relatively recent nonce sent from the server in case the phone
does not have Internet connectivity at the time it taps on the tag.

5.2 Protocol verification

In Chapter 3, we proposed several security protocols with different security
properties. In each security protocol design, we presented our theoretical
protocol analysis of the design. In order to ensure that our designs meet
the security goals, we tried to use proverif [76], a security protocol verifier,
to verify our protocols. Unfortunately, this tool does not provide recursion
or loop. Thus, we can just have an approximate model of the sequence
number. In order to simplify the verification, we verified a simpler version
of the security protocol for the guard monitoring system using Java cards
(Section 3.1.5), as shown below. Specifically, the sequence number is removed
from the protocol to simplify the verification.
1. S -> C: R

CHAPTER 5. DISCUSSION 73

2. M -> C: R, phoneInfor

3. C -> S: UID, R, phoneInfor, MACK(UID, R, phoneInfor)

The verification program assumes that the card and the server commu-
nicate with each other in a hostile environment. These two communicating
parties share a secret key which is calculated from the card’s UID and the
server’s master key by using a one-way key generator function.

The security goal that we aim to verify in this protocol is the following
correspondence property [77]: if a server accepts a message which comprises
a random number R, some information about the phone, and the card’s UID
at time t1, then the card must have sent the same information at an earlier
time t0 < t1. The protocol model is shown below. In the model, the phone
is also modeled for clarity but it has no security and can be an attacker.
Verification of the model with proverif showed that no attack was found in
our model.

free c.

free phoneInfor.

private free masterKey.

fun mac/2.

fun keygen/2.

query evinj:acceptResponse(x1,x2,x3)

==> evinj:sendResponse(x1,x2,x3).

let card =

in (c, message);

let (R, phoneInfor) = message in

event sendResponse(uid, R, phoneInfor);

out(c, mac((uid, R, phoneInfor), k)).

let phone =

in (c, R);

out (c, (R, phoneInfor)).

let server =

new R;

out (c, R);

in (c, (cardUID, =R, phoneInfor, mac1));

let key = keygen(cardUID, masterKey) in

if mac1 = mac((cardUID, R, phoneInfor), key) then

event acceptResponse(cardUID, R, phoneInfor).

CHAPTER 5. DISCUSSION 74

process

(

!(

new uid;

let k = keygen(uid, masterKey) in

card)

| !(phone)

| !(server)

)

5.3 Summary of methodology

In this thesis, to gain a general picture about how NFC tags could be used,
we started by reviewing current NFC-enabled systems and found possible
problems in them. After that, we chose four specific use cases in which
problems were found, examined their security requirements and designed new
security protocols for them. By examining specific use cases, we gathered
detailed requirements and derived details on the interactions between the
system components and users as well as other external entities interacting
with it. In addition, to deeply understand each use case, we studied its state
of the art and security threats associated with it. From that, we gained a
clear idea of the current security objectives and security requirements of the
system. Based on these security goals and knowledge about properties of
NFC tags, we chose a suitable type of tag and designed security protocols
for the system. We also developed proof-of-concept implementations for
some of the proposed protocols in this thesis. In addition, we used the
proverif security verification tool to verify one of the proposed protocols.
In Section 5.1, we generalized the principles of using NFC tags based on
knowledge gained from the designs and implementations of the specific use
cases as well as on our understanding of the features of NFC tags. In addition,
we discussed the differences between the properties of different tags as well
as the threats associated with them.

5.4 Reflections

We have witnessed over the past years how NFC technology has rapidly
evolved with a number of proposed solutions and pilot trials. This technology
has been widely used in some of our everyday applications, such as access

CHAPTER 5. DISCUSSION 75

controls, and public transportation.
As pointed out by Ozdenizci et al. [78], the most popular NFC related

research subjects are on developing new NFC enabled applications. In this
thesis, we started by examining four specific use cases that have already been
proposed in the literature and pilot trials. Our contribution is to add security
and usability to these use cases. In addition, we generalize the principles of
using different NFC tags based on these specific use cases. With regards to
ethical and social aspects, our solutions aim to prevent or discourage fraud in
the examined systems and to provide good usability to users. Moreover, our
solutions bring clear business benefits and cost savings for organisation by
automating the work and making the organizational processes more reliable.

There are some improvements that can be added to this thesis. Firstly, in
all our implementations, instead of working on real Java cards, we emulated
functions of them by using an NFC reader connected to a computer. Besides
implementations on real Java cards, we can do performance measurements
on different types of tags over Internet connections with variable latency to
evaluate the performance of different designs.

Chapter 6

Conclusion

NFC technology is evolving rapidly with various use cases that have been
proposed in the literature and a large number of pilots. Applications of NFC
have shifted from its original drivers, i.e. contactless payment and ticketing
applications, to a surprisingly diverse range of other applications, such as
authentication, education, and healthcare applications. Juniper Research
[79] predicts that in 2013 there will be 700 million owners of NFC-enabled
phones, while in 2014 one mobile user out of six in the world will own a
mobile device equipped with this technology. This large number of potential
users means that NFC promises a great potential future although it is still
in its early development phase.

Although a variety of NFC-enabled systems have been proposed, they
have many problems, such as poor usability, potential security flaws, and
even unrealistic protocols as we explained in Chapter 3. One critical
challenge in NFC is to ensure security in NFC-enabled systems. However,
we have discussed in Chapter 1 that ensuring security in NFC applications
is non-trivial because different NFC applications have different security
requirements and rely on the security features as well as computational
capabilities of the NFC devices involved in them.

The thesis illustrated that NFC applications are distributed systems
which include three main components: NFC tags, NFC readers or NFC-
enabled phones, and online servers. These systems introduce a new
type of security protocol which involves the three components and the
communication channel between them in order to secure NFC applications.

In this thesis, we focused on exploiting different capabilities of NFC
tags for securing NFC applications. We move from specific use cases to
general principles. Our analysis has shown that among the three types of
NFC tags discussed in our work, including tags based on secure memory
cards, programmable contactless smart cards, and emulated cards, the

76

CHAPTER 6. CONCLUSION 77

secure memory tags have the least capability and flexibility but they can
nevertheless be used to build secure systems for many applications. Its
built-in three-pass mutual authentication not only benefits applications that
require settings on read and write permissions, but can also be used to
prove the freshness of the event that the tag is tapped, provided that the
dedicated application installed in the phone has an Internet connection at
the time the tap event occurs. The programmable contactless smart cards are
more intelligent and flexible than tags based on secure memory cards in that
they can keep track of a sequence number and perform computations. This
sequence number is helpful when the sequence of events can provide a certain
level of trust in the freshness of the tap event. However, compared to the
emulated cards, both types of tags are more vulnerable to tag replacement
attacks. Thus, they should be placed in such a way that it is difficult to be
replaced by another tag. The most powerful type of tags used in this thesis
is the emulated card. This card provides a clock for complete protection
against replay attacks even in offline settings as well as strong computational
capacity due to the computer connected to the reader.

Our implementations in this thesis are working prototypes providing the
essential core features which are usable as a solid base for future developments
and experiments. This was a challenging and interesting project since it
involved research and development in many different areas, including working
on Raspberry Pi, writing Android applications, C programming, Java
applications, PHP programming, websocket programming, and implementing
a RESTful web service interfacing with a database. In addition, we gained
experience in programming NFC tags, card emulation, and security protocol
verification tools.

To the best of our knowledge, this is the first work that presents how
to apply the different properties of NFC tags for securing NFC applications.
Possible future work after this thesis should consider the following:

• Discover and study other use cases where NFC can be applied.

• Implement the presented use cases using real Java cards.

• Improve the applications for real-world deployments. For example,
we can add more functions to the security guard application, such as
to enable a security guard to take pictures and report equipment or
property damage or unusual occurrences at checkpoints.

Bibliography

[1] NFC Forum, “NFC Data Exchange Format (NDEF),” 2006,
http://www.nfc-forum.org/specs/spec license/document form/
custom layout?1363171338162. Accessed 12.03.2013.

[2] A. Cavoukian, Mobile Near Field Communications (NFC):” tap’n Go”:
Keep it Secure and Private. Information and Privacy Commissioner of
Ontario, Canada, 2011.

[3] K. Ok, V. Coskun, M. Aydin, and B. Ozdenizci, “Current benefits
and future directions of NFC services,” in Education and Management
Technology (ICEMT), 2010 International Conference on, 2010. doi:
10.1109/ICEMT.2010.5657642 pp. 334–338.

[4] “BCS Checkpoint/Incident/Media Tags,” http://www.bcsint.com/
cmtags.php. Accessed 15.04.2013.

[5] “Incentive Lynx Security selects SmartTask to enhance proof of
attendance and workflow management,” http://www.incentive-
lynx.com/pages/news-items/incentive-lynx-security-selects-smarttask-
to-enhance-proof-of-attendance-and-workflow-management.php.
Accessed 04.06.2013.

[6] “Real-time Guard Tour Monitoring for Security Companies with the
ENAiKOON NFC Tracking System,” http://www.eventsecurityportal.
com/eventsecurity news.asp?articleid=268721&arttitle=Real-time%
20Guard%20Tour%20Monitoring%20for%20Security%20Companies%
20with%20the%20ENAiKOON%20NFC%20Tracking%20System.
Accessed 21.04.2013.

[7] “NFC Patrol,” http://www.hotech.gr/index.php/what-we-do-en/
solutions/nfc-solutions/patrol. Accessed 21.04.2013.

[8] R. Want, “Near field communication,” Pervasive Computing, IEEE,
vol. 10, no. 3, pp. 4–7, 2011. doi: 10.1109/MPRV.2011.55

78

http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1363171338162
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1363171338162
http://www.bcsint.com/cmtags.php
http://www.bcsint.com/cmtags.php
http://www.eventsecurityportal.com/eventsecurity_news.asp?articleid=268721&arttitle=Real-time%20Guard%20Tour%20Monitoring%20for%20Security%20Companies%20with%20the%20ENAiKOON%20NFC%20Tracking%20System
http://www.eventsecurityportal.com/eventsecurity_news.asp?articleid=268721&arttitle=Real-time%20Guard%20Tour%20Monitoring%20for%20Security%20Companies%20with%20the%20ENAiKOON%20NFC%20Tracking%20System
http://www.eventsecurityportal.com/eventsecurity_news.asp?articleid=268721&arttitle=Real-time%20Guard%20Tour%20Monitoring%20for%20Security%20Companies%20with%20the%20ENAiKOON%20NFC%20Tracking%20System
http://www.eventsecurityportal.com/eventsecurity_news.asp?articleid=268721&arttitle=Real-time%20Guard%20Tour%20Monitoring%20for%20Security%20Companies%20with%20the%20ENAiKOON%20NFC%20Tracking%20System
http://www.hotech.gr/index.php/what-we-do-en/solutions/nfc-solutions/patrol
http://www.hotech.gr/index.php/what-we-do-en/solutions/nfc-solutions/patrol

BIBLIOGRAPHY 79

[9] P. McDermott-Wells, “What is bluetooth?” Potentials, IEEE, vol. 23,
no. 5, pp. 33–35, 2005. doi: 10.1109/MP.2005.1368913

[10] B. Crow, I. Widjaja, J. G. Kim, and P. Sakai, “Ieee 802.11 wireless local
area networks,” Communications Magazine, IEEE, vol. 35, no. 9, pp.
116–126, 1997. doi: 10.1109/35.620533

[11] NFC Forum, “NFC Frequently Asked Questions,” http://www.
nfc-forum.org/resources/faqs/. Accessed 12.03.2013.

[12] “ISO14443,” http://www.openpcd.org/ISO14443. Accessed 04.06.2013.

[13] “Information technology – Telecommunications and information
exchange between systems – Near Field Communication –
Interface and Protocol (NFCIP-1),” http://standards.iso.org/
ittf/PubliclyAvailableStandards/c056692 ISO IEC 18092 2013.zip.
Accessed 04.06.2013.

[14] NXP Semiconductors, “MIFARE Ultralight contactless single-ticket
IC,” http://www.nxp.com/documents/data sheet/MF0ICU1.pdf. Ac-
cessed 10.06.2013.

[15] “MIFARE DESFire EV1 contactless multi-application IC,”
2010, http://www.nxp.com/documents/short data sheet/
MF3ICDX21 41 81 SDS.pdf. Accessed 10.06.2013.

[16] “MIFARE Ultralight C,” http://www.nxp.com/products/
identification and security/smart card ics/mifare smart card ics/
mifare ultralight/series/MIFARE ULTRALIGHT C.html, Accessed
10.06.2013.

[17] “Introduction to NFC Forum Type Tags,” http://www.nfc-forum.org/
resources/white papers/NXP BV Type Tags White Paper-Apr 09.pdf.
Accessed 12.03.2013.

[18] “NFC specifications,” http://www.nfc-forum.org/specs/spec license.
Accessed 15.04.2013.

[19] NFC Forum, “Type 4 Tag Operation Specification,” 2011,
http://www.nfc-forum.org/specs/spec license/document form/
custom layout?1363171723024. Access 13.03. 2013.

[20] “ISO/IEC 7816-4:2013,” http://www.iso.org/iso/home/store/
catalogue ics/catalogue detail ics.htm?csnumber=54550. Accessed
07.06.2013.

http://www.nfc-forum.org/resources/faqs/
http://www.nfc-forum.org/resources/faqs/
http://www.openpcd.org/ISO14443
http://standards.iso.org/ittf/PubliclyAvailableStandards/c056692_ISO_IEC_18092_2013.zip
http://standards.iso.org/ittf/PubliclyAvailableStandards/c056692_ISO_IEC_18092_2013.zip
http://www.nxp.com/documents/data_sheet/MF0ICU1.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/documents/short_data_sheet/MF3ICDX21_41_81_SDS.pdf
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/mifare_ultralight/series/MIFARE_ULTRALIGHT_C.html
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/mifare_ultralight/series/MIFARE_ULTRALIGHT_C.html
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/mifare_ultralight/series/MIFARE_ULTRALIGHT_C.html
http://www.nfc-forum.org/resources/white_papers/NXP_BV_Type_Tags_White_Paper-Apr_09.pdf
http://www.nfc-forum.org/resources/white_papers/NXP_BV_Type_Tags_White_Paper-Apr_09.pdf
http://www.nfc-forum.org/specs/spec_license
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1363171723024
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1363171723024
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54550
http://www.iso.org/iso/home/store/catalogue_ics/catalogue_detail_ics.htm?csnumber=54550

BIBLIOGRAPHY 80

[21] G. Madlmayr, J. Langer, C. Kantner, and J. Scharinger, “NFC
Devices: Security and Privacy,” in Availability, Reliability and
Security, 2008. ARES 08. Third International Conference on, 2008. doi:
10.1109/ARES.2008.105 pp. 642–647.

[22] M. Saeed and C. Walter, “A Record Composition/Decomposition attack
on the NDEF Signature Record Type Definition,” in Internet Technology
and Secured Transactions (ICITST), 2011 International Conference for.
IEEE, 2011, pp. 283–287.

[23] M. Roland, J. Langer, and J. Scharinger, “Security Vulnerabilities of the
NDEF Signature Record Type,” in Near Field Communication (NFC),
2011 3rd International Workshop on, 2011. doi: 10.1109/NFC.2011.9
pp. 65–70.

[24] L. Francis, G. Hancke, K. Mayes, and K. Markantonakis, “Practical
NFC Peer-to-Peer Relay Attack Using Mobile Phones,” in Radio
Frequency Identification: Security and Privacy Issues, ser. Lecture
Notes in Computer Science, S. Ors Yalcin, Ed. Springer Berlin
Heidelberg, 2010, vol. 6370, pp. 35–49. ISBN 978-3-642-16821-5.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-16822-2 4

[25] L. Francis and G. Hancke, “Practical relay attack on contactless
transactions by using NFC mobile phones,” IACR ePrint Archive, vol.
618, 2011.

[26] J. Fischer, “NFC in cell phones: The new paradigm for an interactive
world [Near-Field Communications],” Communications Magazine,
IEEE, vol. 47, no. 6, pp. 22–28, 2009. doi: 10.1109/MCOM.2009.5116794

[27] T. Kasper, I. Maurich, D. Oswald, and C. Paar, “Chameleon: A
Versatile Emulator for Contactless Smartcards,” in Information Security
and Cryptology - ICISC 2010, ser. Lecture Notes in Computer Science,
K.-H. Rhee and D. Nyang, Eds. Springer Berlin Heidelberg, 2011,
vol. 6829, pp. 189–206. ISBN 978-3-642-24208-3. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-24209-0 13

[28] Z. Chen, Java card technology for smart cards: architecture and
programmer’s guide. Prentice Hall, 2000.

[29] Innovision Research, “Near field communication in the real
world: turning the NFC promise into profitable, everyday
applications,” 2006, http://www.nfc-forum.org/resources/
white papers/Innovision whitePaper1.pdf. Accessed 10.06.2013.

http://dx.doi.org/10.1007/978-3-642-16822-2_4
http://dx.doi.org/10.1007/978-3-642-24209-0_13
http://www.nfc-forum.org/resources/white_papers/Innovision_whitePaper1.pdf
http://www.nfc-forum.org/resources/white_papers/Innovision_whitePaper1.pdf

BIBLIOGRAPHY 81

[30] NFC Forum, “Smart Posters, How to use NFC tags and readers to create
interactive experiences that benefit both consumers and businesses,”
April 2011.

[31] C. Mulliner, “Vulnerability Analysis and Attacks on NFC-Enabled
Mobile Phones,” in Availability, Reliability and Security, 2009. ARES
09. International Conference on, 2009. doi: 10.1109/ARES.2009.46 pp.
695–700.

[32] “Vending machines,” http://www.selecta.com/vending-machines/. Ac-
cessed 04.06.2013.

[33] A. Andersen and R. Karlsen, “Experimenting with Instant Services
Using NFC Technology,” in SMART 2012, The First International
Conference on Smart Systems, Devices and Technologies, 2012, pp. 73–
78.

[34] P. Garrido, G. Miraz, I. Ruiz, and M. Gomez-Nieto, “Use of NFC-based
Pervasive Games for Encouraging Learning and Student Motivation,”
in Near Field Communication (NFC), 2011 3rd International Workshop
on, 2011. doi: 10.1109/NFC.2011.13 pp. 32–37.

[35] M. Bueno-Delgado, P. Pavon-Marino, A. De-Gea-Garcia, and A. Dolon-
Garcia, “The Smart University Experience: An NFC-Based Ubiquitous
Environment,” in Innovative Mobile and Internet Services in Ubiquitous
Computing (IMIS), 2012 Sixth International Conference on. IEEE,
2012. doi: 10.1109/IMIS.2012.110 pp. 799–804.

[36] S. B. Patela and N. K. Jainb, “Near Field Communication (NFC) based
Mobile Phone Attendance System for Employees,” International Journal
of Engineering, vol. 2, no. 3, 2013.

[37] T. Tuikka and M. Isomursu, “Touch the future with a smart touch,”
VTT Tiedotteita-Research Notes, vol. 2492, 2009.

[38] NXP Semiconductors, “NFC Connection Handover 1.2,”
http://www.nfc-forum.org/specs/spec license/document form/
custom layout?1366282155771. Access 15.04.2013.

[39] R. Steffen, J. PreiBinger, T. Schollermann, A. Muller, and I. Schnabel,
“Near Field Communication (NFC) in an Automotive Environment,”
in Near Field Communication (NFC), 2010 Second International
Workshop on, 2010. doi: 10.1109/NFC.2010.11 pp. 15–20.

http://www.selecta.com/vending-machines/
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1366282155771
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1366282155771

BIBLIOGRAPHY 82

[40] E. Strommer, J. Kaartinen, J. Parkka, A. Ylisaukko-oja, and
I. Korhonen, “Application of Near Field Communication for Health
Monitoring in Daily Life,” in Engineering in Medicine and Biology
Society, 2006. EMBS ’06. 28th Annual International Conference of the
IEEE, 2006. doi: 10.1109/IEMBS.2006.260021. ISSN 1557-170X pp.
3246–3249.

[41] “Transit and Contactless Open Payments: An Emerging Approach
for Fare Collection,” http://www.smartcardalliance.org/resources/pdf/
Open Payments WP 110811.pdf. Accessed 01.05.2013.

[42] “Google Wallet. How it works,” http://www.google.com/wallet/
how-it-works/. Accessed 01.05.2013.

[43] S. Dominikus and M. Aigner, “mCoupons: An Application for Near
Field Communication (NFC),” in Advanced Information Networking
and Applications Workshops, 2007, AINAW ’07. 21st International
Conference on, vol. 2, 2007. doi: 10.1109/AINAW.2007.230 pp. 421–
428.

[44] “Proxmark3 User Guide,” http://proxmark3.com/dl/
PM3-UserGuide-r486.pdf. Accessed 27.06.2013.

[45] “Summary - Mobile phone theft,” http://www.ons.gov.uk/ons/
rel/crime-stats/crime-statistics/focus-on-property-crime--2011-12/
rpt-section-2---focus-on-mobile-phone-theft.html. Accessed 07.06.2013.

[46] A. P. Felt, M. Finifter, E. Chin, S. Hanna, and D. Wagner, “A
survey of mobile malware in the wild,” in Proceedings of the 1st
ACM workshop on Security and privacy in smartphones and mobile
devices, ser. SPSM ’11. New York, NY, USA: ACM, 2011. doi:
10.1145/2046614.2046618. ISBN 978-1-4503-1000-0 pp. 3–14. [Online].
Available: http://doi.acm.org/10.1145/2046614.2046618

[47] M. Reveilhac and M. Pasquet, “Promising Secure Element Alternatives
for NFC Technology,” in Near Field Communication, 2009. NFC ’09.
First International Workshop on, 2009. doi: 10.1109/NFC.2009.14 pp.
75–80.

[48] M. Roland, J. Langer, and J. Scharinger, “Practical Attack
Scenarios on Secure Element-Enabled Mobile Devices,” in Near Field
Communication (NFC), 2012 4th International Workshop on, 2012. doi:
10.1109/NFC.2012.10 pp. 19–24.

http://www.smartcardalliance.org/resources/pdf/Open_Payments_WP_110811.pdf
http://www.smartcardalliance.org/resources/pdf/Open_Payments_WP_110811.pdf
http://www.google.com/wallet/how-it-works/
http://www.google.com/wallet/how-it-works/
http://proxmark3.com/dl/PM3-UserGuide-r486.pdf
http://proxmark3.com/dl/PM3-UserGuide-r486.pdf
http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-property-crime--2011-12/rpt-section-2---focus-on-mobile-phone-theft.html
http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-property-crime--2011-12/rpt-section-2---focus-on-mobile-phone-theft.html
http://www.ons.gov.uk/ons/rel/crime-stats/crime-statistics/focus-on-property-crime--2011-12/rpt-section-2---focus-on-mobile-phone-theft.html
http://doi.acm.org/10.1145/2046614.2046618

BIBLIOGRAPHY 83

[49] S. Turner and T. Polk, “The TLS protocol version 2.0,” March 2011,
http://tools.ietf.org/html/rfc6176. Accessed 04.06.2013.

[50] H. Krawczyk, R. Canetti, and M. Bellare, “HMAC: Keyed-hashing for
message authentication,” 1997.

[51] T. Aura, “Strategies against replay attacks,” in Computer Secu-
rity Foundations Workshop, 1997. Proceedings., 10th, 1997. doi:
10.1109/CSFW.1997.596787. ISSN 1063-6900 pp. 59–68.

[52] “M-Payment systems,” http://www.mobill.se/en/apps-services/
m-payment/. Accessed 21.04.2013.

[53] “What are SMS payments,” http://www.mobiletransaction.org/
what-are-sms-payments/. Accessed 21.04.2013.

[54] “Coca-Cola Mobile Vending Machine Purchase Trial,” http://support.
t-mobile.com/docs/DOC-5195. Accessed 21.04.2013.

[55] “The Tag Dispatch System in Android,” http://developer.android.
com/guide/topics/connectivity/nfc/nfc.html#tag-dispatch. Accessed
15.04.2013.

[56] “ACR122U USB NFC Reader,” http://www.acs.com.hk/index.php?
pid=product&id=ACR122U. Accessed 10.06.2013.

[57] “Libnfc Main Page,” http://nfc-tools.org/index.php?title=Main Page.
Accessed 10.06.2013.

[58] “PN53x,” http://nfc-tools.org/index.php?title=PN53x. Accessed
10.06.2013.

[59] “Raspberry Pi,” http://www.raspberrypi.org/downloads. Accessed
10.06.2013.

[60] D. Eastlake and P. Jones, “US secure hash algorithm 1 (SHA1),” 2001,
http://www.ietf.org/rfc/rfc3174.txt.

[61] “SQLiteDatabase,” http://developer.android.com/reference/android/
database/sqlite/SQLiteDatabase.html. Accssed 15.04.2013.

[62] I. Fette and A. Melnikov, “The websocket protocol,” http://tools.ietf.
org/html/rfc6455.

http://tools.ietf.org/html/rfc6176
http://www.mobill.se/en/apps-services/m-payment/
http://www.mobill.se/en/apps-services/m-payment/
http://www.mobiletransaction.org/what-are-sms-payments/
http://www.mobiletransaction.org/what-are-sms-payments/
http://support.t-mobile.com/docs/DOC-5195
http://support.t-mobile.com/docs/DOC-5195
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html#tag-dispatch
http://developer.android.com/guide/topics/connectivity/nfc/nfc.html#tag-dispatch
http://www.acs.com.hk/index.php?pid=product&id=ACR122U
http://www.acs.com.hk/index.php?pid=product&id=ACR122U
http://nfc-tools.org/index.php?title=Main_Page
http://nfc-tools.org/index.php?title=PN53x
http://www.raspberrypi.org/downloads
http://www.ietf.org/rfc/rfc3174.txt
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://developer.android.com/reference/android/database/sqlite/SQLiteDatabase.html
http://tools.ietf.org/html/rfc6455
http://tools.ietf.org/html/rfc6455

BIBLIOGRAPHY 84

[63] “MIFARE Classic - a pioneer and front runner in contact-
less smart card ICs,” http://www.nxp.com/products/identification
and security/smart card ics/mifare smart card ics/mifare classic/. Ac-
cessed 10.06.2013.

[64] NFC Forum, “Type 2 tag operation specification,” 2011,
http://www.nfc-forum.org/specs/spec license/document form/
custom layout?1370858678468. Accessed 10.06.2013.

[65] M. Henzl, “Security of Contactless Smart Cards,” in Proceedings of
the 17th Conference STUDENT EEICT 2011. Brno University of
Technology, 2011, pp. 585–589.

[66] M. Merhi, J. Hernandez-Castro, and P. Peris-Lopez, “Studying the
pseudo random number generator of a low-cost RFID tag,” in RFID-
Technologies and Applications (RFID-TA), 2011 IEEE International
Conference on, 2011. doi: 10.1109/RFID-TA.2011.6068666 pp. 381–385.

[67] K. Nohl, D. Evans, S. Starbug, and H. Plötz, “Reverse-engineering
a cryptographic RFID tag,” in Proceedings of the 17th conference on
Security symposium, 2008, pp. 185–193.

[68] G. Koning Gans, J.-H. Hoepman, and F. Garcia, “A practical
attack on the mifare classic,” in Smart Card Research and Advanced
Applications, ser. Lecture Notes in Computer Science, G. Grimaud
and F.-X. Standaert, Eds. Springer Berlin Heidelberg, 2008, vol.
5189, pp. 267–282. ISBN 978-3-540-85892-8. [Online]. Available:
http://dx.doi.org/10.1007/978-3-540-85893-5 20

[69] F. Garcia, G. Koning Gans, R. Muijrers, P. Rossum, R. Verdult,
R. Schreur, and B. Jacobs, “Dismantling MIFARE Classic,” in
Computer Security - ESORICS 2008, ser. Lecture Notes in Computer
Science, S. Jajodia and J. Lopez, Eds. Springer Berlin Heidelberg,
2008, vol. 5283, pp. 97–114. ISBN 978-3-540-88312-8. [Online].
Available: http://dx.doi.org/10.1007/978-3-540-88313-5 7

[70] F. Garcia, P. van Rossum, R. Verdult, and R. Schreur, “Wirelessly
Pickpocketing a Mifare Classic Card,” in Security and Privacy, 2009
30th IEEE Symposium on, 2009. doi: 10.1109/SP.2009.6. ISSN 1081-
6011 pp. 3–15.

[71] D. Oswald and C. Paar, “Breaking Mifare DESFire MF3ICD40:
Power Analysis and Templates in the Real World,” in Cryptographic

http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/mifare_classic/
http://www.nxp.com/products/identification_and_security/smart_card_ics/mifare_smart_card_ics/mifare_classic/
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1370858678468
http://www.nfc-forum.org/specs/spec_license/document_form/custom_layout?1370858678468
http://dx.doi.org/10.1007/978-3-540-85893-5_20
http://dx.doi.org/10.1007/978-3-540-88313-5_7

BIBLIOGRAPHY 85

Hardware and Embedded Systems - CHES 2011, ser. Lecture Notes in
Computer Science, B. Preneel and T. Takagi, Eds. Springer Berlin
Heidelberg, 2011, vol. 6917, pp. 207–222. ISBN 978-3-642-23950-2.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-23951-9 14

[72] D. Perovich and S. Antipolis, “Secure object sharing development kit
for Java Card,” in Proceedings, VerifiCard Annual Meeting, 2002.

[73] G. Barbu, G. Duc, and P. Hoogvorst, “Java Card Operand Stack:
Fault Attacks, Combined Attacks and Countermeasures,” in Smart
Card Research and Advanced Applications, ser. Lecture Notes in
Computer Science, E. Prouff, Ed. Springer Berlin Heidelberg, 2011,
vol. 7079, pp. 297–313. ISBN 978-3-642-27256-1. [Online]. Available:
http://dx.doi.org/10.1007/978-3-642-27257-8 19

[74] G. Barbu, H. Thiebeauld, and V. Guerin, “Attacks on Java Card
3.0 Combining Fault and Logical Attacks,” in Smart Card Research
and Advanced Application, ser. Lecture Notes in Computer Science,
D. Gollmann, J.-L. Lanet, and J. Iguchi-Cartigny, Eds. Springer Berlin
Heidelberg, 2010, vol. 6035, pp. 148–163. ISBN 978-3-642-12509-6.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-12510-2 11

[75] S. Chaumette and D. Sauveron, “New security problems raised by open
multiapplication smart cards,” LaBRI, Université Bordeaux, vol. 1, pp.
1332–04, 2004.

[76] B. Blanchet and B. Smyth, “Proverif 1.85: Automatic cryptographic
protocol verifier, user manual and tutorial,” 2011, http://www.hit.bme.
hu/∼buttyan/courses/BMEVIHIM132/manual.pdf.

[77] B. Blanchet, “Automatic verification of correspondences for security
protocols,” Journal of Computer Security, vol. 17, no. 4, pp. 363–434,
2009.

[78] B. Ozdenizci, M. N. Aydin, V. Coskun, and O. Kerem, “Design science
in NFC research,” in Internet Technology and Secured Transactions
(ICITST), 2010 International Conference for. IEEE, 2010, pp. 1–6.

[79] “NFC Mobile Payments and Marketing Opportunities,” http:
//juniperresearch.com/reports/NFC mobile payments and marketing
opportunities. Accessed 01.04.2013.

http://dx.doi.org/10.1007/978-3-642-23951-9_14
http://dx.doi.org/10.1007/978-3-642-27257-8_19
http://dx.doi.org/10.1007/978-3-642-12510-2_11
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM132/manual.pdf
http://www.hit.bme.hu/~buttyan/courses/BMEVIHIM132/manual.pdf
http://juniperresearch.com/reports/NFC_mobile_payments_and_marketing_opportunities
http://juniperresearch.com/reports/NFC_mobile_payments_and_marketing_opportunities
http://juniperresearch.com/reports/NFC_mobile_payments_and_marketing_opportunities

Appendix A

Source code

A.1 Security guard monitoring system

A.1.1 Application Server

The implementation of the application server is at https://guard-application-
server.googlecode.com/svn/trunk/. It consists of the main class Sec-
Guard.java and its helper classes.

A.1.2 Guard application for the system using Java
cards

The implementation of the guard application is at https://guard-application-
jc.googlecode.com/svn/trunk/. It consists of the main class Guarding JC.java
and its helper classes. Specifically, four classes: DBEntry.java, Tosend-
DatabaseHelper.java, TosendDataSource.java, and TosendTable.java, deal
with the local SQLite database in the application to store pending reports
when the phone does not have Internet connectivity. The ConnectivityChan-
geReceiver.java class handles the changes in the Internet connectivity status
of the phone. The Utility.java class facilitates data processing.

A.1.3 Guard application for the system using DESFire
EV1 tags

The implementation of the guard application is at https://guard-application-
desfire.googlecode.com/svn/trunk/. It consists of the main class Guard-
ing.java and its helper class named Utility.java

86

APPENDIX A. SOURCE CODE 87

A.1.4 DESFire EV1 tag

To write an NDEF message with a our own MIME type (for example,
application/guardDESFire in this use case), we made use of the guard
application to write an array of bytes, that we manually calculated, to
the DESFire tag. The code for this task is the writeNdef function in the
SecGuard.java class in the guard application provided in Appendix A.1.3.

An implementation to write an URL or an SMS message to a DESFire
EV1 tag is at https://write-ndef-to-desfire.googlecode.com/svn/trunk/. The
implementation provides functions to format a DESFire EV1 tag as an
NFC type 4 tag, a function to write an URL or an SMS message to the
tag, and a function to read the content of the tag. The implementation
consists of the main class, named CardReader.java, and two helper classes:
NdefMessage.java and NdefRecord.java.

A.1.5 Java card

The code to emulate an NFC reader as a Java card in this use case is at
https://javacard-emulation-security-guard.googlecode.com/svn/trunk/. To
run the code, an NFC reader connected to a Linux computer which has
the libnfc library [57] version 1.4.2 installed are needed. The implementation
consists of the main file process.c and its helper classes.

A.2 NFC-enabled restaurant

A.2.1 Java card

The code to emulate an NFC reader as a Java card in this use case is at
https://javacard-emulation-restaurant.googlecode.com/svn/trunk/. To run
the code, an NFC reader connected to a Linux computer which has the libnfc
library [57] version 1.4.2 installed are needed. The implementation consists
of the main file process.c and its helper classes.

A.2.2 Web server

The implementation of the web page for the restaurant use case is at
https://webserver-restaurant.googlecode.com/svn/trunk/. The code was
written in PHP. To run the code, an Apache1 server is needed.

1http://httpd.apache.org/

APPENDIX A. SOURCE CODE 88

A.2.3 Websocket server

The implementation of the websocket server for the restaurant use case is at
https://websocket-restaurant.googlecode.com/svn/trunk/. To run the code,
a nodejs2 library need to be installed.

2http://nodejs.org/

www.kth.se

TRITA-ICT-EX-2013:125

	Cover page
	Abbreviations and Acronyms
	Contents
	1 Introduction
	1.1 Problem Statement and Methodology
	1.2 Use cases
	1.2.1 NFC-enabled restaurant menu
	1.2.2 Security guard monitoring system
	1.2.3 Vending machines
	1.2.4 School attendance monitoring systems

	1.3 Structure of the thesis

	2 Background
	2.1 NFC
	2.1.1 NFC Active Devices
	2.1.2 NFC Tags

	2.2 NFC Type 4 Tags
	2.3 NDEF Messages
	2.3.1 NDEF Records

	2.4 NDEF Read and Write Procedure in NFC Type 4 Tags
	2.5 Security Mechanisms Defined in NFC
	2.5.1 The NFC Tag Signature Mechanism

	2.6 Security Threats Relevant to NFC
	2.7 Mifare DESFire EV1 Tags
	2.8 Java Card Technology
	2.8.1 Programmable Contactless Smart Cards
	2.8.2 Java cards

	2.9 NFC Card Emulation
	2.10 NFC Applications
	2.10.1 Service initiation
	2.10.2 Peer to peer
	2.10.3 Contactless payment and ticketing applications

	3 Secure NFC-enabled Application Designs
	3.1 NFC-enabled security guard monitoring system
	3.1.1 Current solutions
	3.1.2 Attacker Model
	3.1.3 Design Goals
	3.1.4 The general system architecture
	3.1.5 A secure guard monitoring system using Java cards
	3.1.5.1 Process
	3.1.5.2 Protocol analysis

	3.1.6 A secure system using DESFire EV1 tags
	3.1.6.1 Process
	3.1.6.2 Protocol analysis

	3.2 NFC-enabled restaurant menu
	3.2.1 Current solutions
	3.2.2 Design goals
	3.2.3 The system architecture
	3.2.4 Process
	3.2.5 Protocol analysis

	3.3 NFC-enabled vending machines
	3.3.1 Current solutions
	3.3.2 Design goals
	3.3.3 A system using NFC reader
	3.3.3.1 The system architecture
	3.3.3.2 Process
	3.3.3.3 Protocol analysis

	3.3.4 A system using Java cards
	3.3.4.1 The system architecture
	3.3.4.2 Process
	3.3.4.3 Protocol analysis

	3.4 School attendance monitoring system
	3.4.1 Current solutions
	3.4.2 Design goals
	3.4.3 The system architecture
	3.4.4 Process
	3.4.5 Protocol analysis

	4 Implementation
	4.1 Devices and Programming Environments
	4.2 NFC-enabled guard monitoring systems
	4.2.1 Guard monitoring system using Java cards
	4.2.2 Guard monitoring system using DESFire tags
	4.2.3 Effect of network latency

	4.3 NFC-enabled restaurant menu

	5 Discussion
	5.1 Security Generalization
	5.1.1 Tags based on secure memory cards
	5.1.2 Programmable contactless smart cards
	5.1.3 Card emulation

	5.2 Protocol verification
	5.3 Summary of methodology
	5.4 Reflections

	6 Conclusion
	A Source code
	A.1 Security guard monitoring system
	A.1.1 Application Server
	A.1.2 Guard application for the system using Java cards
	A.1.3 Guard application for the system using DESFire EV1 tags
	A.1.4 DESFire EV1 tag
	A.1.5 Java card

	A.2 NFC-enabled restaurant
	A.2.1 Java card
	A.2.2 Web server
	A.2.3 Websocket server

