
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

S A U L I U S  A L I S A U S K A S

 Community based testing

K T H I n f o r m a t i o n  a n d

C o m m u n i c a t i o n  T e c h n o l o g y



Community based testing 

Saulius Alisauskas 

saulius@kth.se 
Master thesis draft 

Examiner:  
Professor Gerald Q. Maguire Jr. 

School of Information and Communication Technology 
KTH Royal Institute of Technology 

Stockholm, Sweden 
 
 

 
 
 
 
 
 
 

30 of June 2013





i 
 

Abstract 
Currently, Android is the most popular operating system for mobile devices, but at the same 

time, the market for Android devices is heavily fragmented in terms of available versions, types of 
devices, models, form-factors and manufactures. As a result, it is virtually impossible to test 
applications on all existing devices. Testing on a set of the most popular devices is more realistic 
but can be expensive, which makes it much more difficult for individual developers to create high 
quality applications.  

Fortunately, each Android application developer around the world typically owns at least one 
device which is not used all the time and could be shared with other developers. This way, a 
community shared pool of Android devices can be created for automated test execution. 

This master thesis reviews existing testing frameworks that are used for testing Android 
applications and analyzes existing services that in one way or another try to solve the problem of 
providing affordable ways of performing testing on real devices.  Main result of this thesis project is 
a working distributed community based testing service that enables developers to easily connect, 
share, and execute automated test cases on devices that use Android operating system. Moreover, it 
provides ways of decreasing overall test execution time by executing parts of tests in parallel on 
multiple devices and aggregating received results.  

 





iii 
 

Sammanfattning 
För närvarande är Android det mest populära operativ system för mobila enheter, men samtidigt 

marknaden för Android-enheter är starkt splittrat i fråga om tillgängliga versioner, typ av enhet, 
modeller, form-faktorer, och tillverkar. Som ett resultat, är det praktiskt taget omöjligt att testa 
applikationer på alla befintliga enheter. Testa på en uppsättning av de mest populära produkter är 
realistiskt men kan vara dyrt, vilket gör det mycket svårare för enskilda utvecklare att skapa 
högkvalitativa ansökningar. 

Lyckligtvis äger varje Android ansökan utvecklare i världen typiskt åtminstone en enhet som 
inte används hela tiden och kan delas med andra utvecklare. På så sätt kan en gemenskap delad pool 
av Android-enheter skapas för minst automatiserade test exekvering. 

Detta examensarbete går igenom gällande testning ramverk som används för att testa Android 
applikationer och analyser liknande tjänster som på ett eller annat sätt försöka lösa problemet med 
att tillhandahålla prisvärda sätt att utföra tester på riktiga enheter. Huvudsakliga resultat av detta 
examensarbete är en fungerande distribuerad gemenskap baserad testning tjänst som gör det möjligt 
för utvecklare att enkelt ansluta, dela och exekvera automatiserade testfall på enheter som använder 
operativsystemet Android. Dessutom ger det möjligheter att accelerera övergripande testexekvering 
tid genom att utfö!ra delar om tester parallellt på flera enheter och sammanställa erhållna resultat. 

 





v 
 

Acknowledgments 
First of all I want to thank the love of my life Vaida for support, encouragements and for 

those numerous sacrificed evenings that were meant to be spent together. I wouldn’t have finished 
this without you! 

Also, this work wouldn’t have been that much fun without great ideas and suggestions from 
Professor Gerald Q. Maguire Jr.





vii 
 

Table of contents 
Abstract ................................................................................................. i 
Sammanfattning .................................................................................... iii 
Acknowledgments ................................................................................... v 
Table of contents .................................................................................. vii 
List of figures .......................................................................................viii 
List of tables ......................................................................................... ix 
List of Acronyms and Abbreviations .......................................................... xi 
1 Introduction..................................................................................... 1 
2 Background ..................................................................................... 3 

2.1 Android OS .......................................................................................... 3 
2.2 Testing Android applications ................................................................... 5 
2.2.1 Unit and function testing ............................................................................... 5 
2.2.2 System and user interface (UI) testing (uiautomator) ....................................... 6 
2.2.3 Robotium .................................................................................................... 7 
2.2.4 Monkeyrunner ............................................................................................. 7 
2.2.5 Packaging and deploying a test project ........................................................... 7 
2.2.6 Executing test ............................................................................................. 8 
2.2.7 Android emulator ......................................................................................... 8 
2.3 Continuous integration, testing automation .............................................. 9 
2.4 Existing similar services ......................................................................... 9 

3 Method ......................................................................................... 13 
4 Analysis ........................................................................................ 15 

4.1 General CBT system overview .............................................................. 15 
4.2 CBT web service ................................................................................. 16 
4.2.1 CBT user front end ..................................................................................... 17 
4.2.2 CBT RIP interface ....................................................................................... 21 
4.2.3 CBT web service’s inner workings ................................................................. 22 
4.2.4 CBT data access layer ................................................................................. 24 
4.2.5 CBT database ............................................................................................ 25 
4.3 CBT agent application ......................................................................... 26 
4.3.1 Starting the application .............................................................................. 26 
4.3.2 Device monitoring ...................................................................................... 27 
4.3.3 Downloading and executing a test package .................................................... 28 
4.3.4 Test result reporting ................................................................................... 29 
4.4 Demo application and test script ........................................................... 30 

5 Discussion ..................................................................................... 33 
5.1 Performance ...................................................................................... 33 
5.2 Limitations ........................................................................................ 35 
5.3 Required reflections ............................................................................ 36 

6 Conclusions and future work ............................................................ 37 
6.1 Conclusion ......................................................................................... 37 
6.2 Future work ....................................................................................... 37 
6.2.1 Security ................................................................................................... 37 
6.2.2 Missing features ........................................................................................ 38 
6.2.3 Coverage .................................................................................................. 38 
6.2.4 Business models ........................................................................................ 39 
6.2.5 Avoiding the need for attaching the Android device to a computer .................... 39 

References .......................................................................................... 41 
Appendix ............................................................................................. 45 

Source code ................................................................................................ 45 
Test speed-up calculations ............................................................................ 45 



viii 
 

 

List of figures 
 
Figure 2-1 Activity lifecycle in Android OS ..................................................................................................... 4 
Figure 2-2 Android testing framework hooks diagram...................................................................................... 5 
Figure 4-1 Community bases testing system components ............................................................................... 15 
Figure 4-2 CBT web service block diagram .................................................................................................... 16 
Figure 4-3 CBT web service front-end sequence diagram .............................................................................. 18 
Figure 4-4 Test file upload flow ...................................................................................................................... 20 
Figure 4-5 DEX file structure .......................................................................................................................... 23 
Figure 4-6 Fast execution mode internals ........................................................................................................ 24 
Figure 4-7 CBT agent application flow diagram ............................................................................................. 27 
Figure 4-8 Demo app screenshots ................................................................................................................... 30 
Figure 4-9 CBT demo app test flow ................................................................................................................ 31 
Figure 5-1 Performance comparison graph ..................................................................................................... 34 
Figure 5-2 Maximum speed-up in relation to test classes ............................................................................... 34 
 



ix 
 

List of tables 
 
Table 2-1 Comparison of similar existing services .......................................................................................... 10 
Table 4-1: CBT MySQL database tables ......................................................................................................... 25 
Table 4-2: CBT agent startup properties .......................................................................................................... 26 
Table 5-1: Performance comparison of different execution modes ................................................................. 33 
Table 2 Links to source code ........................................................................................................................... 45 
Table 3 Estimations of sequential process fraction .......................................................................................... 45 





xi 
 

List of Acronyms and Abbreviations 
ADB Android debug bridge 
ADT Android development kit/plug-in for Eclipse 
API Application programming interface 
APK Android package[1] 
CBT  Community based testing 
CBT agent Community based testing agent 
CBT RIP Community based testing restful interface protocol 
CBT web service  Community based testing web service 
CI Continuous integration 
CPU Central processing unit 
DEX Dalvik executable 
GPU Graphics processing unit 
HTTP Hypertext transfer protocol 
HTTPS Hypertext transfer protocol secure  
ID Identifier 
IDE Integrated development environment 
JAR Java archive 
MVC Model-view-controller software architecture pattern 
MWC Model – view – controller 
OS Operating system 
SD Secure digital 
Test-script Compiled test code packaged into a known format (JAR) 
Test-profile Information about types of devices to executed tests on and execution 

mode selection (normal, fast) 
Test-configuration Information aggregating test-script, test-profile and test-target 
Test-target Information about Android application to be tested, may refer to actual 

application. 
UI User interface 





1 
 

1 Introduction 
Android[2] is the most popular[3] operating system for mobile devices. It is based on a modified 

Linux[4] kernel. Applications run on a Java[5] compatible framework. Performance greedy 
applications, such as games, can be written in C/C++[6, 7] using NDK[8]. Android was built to 
support various types of devices differing in technical characteristics, screen sizes, pixel densities 
and screen resolutions, sensors, input devices and etc. Since possible differences in device 
properties have been thought through from beginning, it is rather easy[9] to write applications that 
can adapt to all possible variations, although that definitely makes development much more 
complicated compared to developing for only one device. Moreover, varying device properties 
complicate application testing process as well. Android OS is constantly improving, bringing a 
handful of features not only with every major release (such as 2.0, 3.0, 4.0), but also with minor 
version updates. This is great for users since they get improved software more frequently, but it 
makes developers life harder due to the addition development time needed to support new system 
features, while at the same time, keeping compatibility with older versions of the OS. 

In order to develop high quality applications, proper testing of application features on various 
types of hardware configurations must be performed before releasing an application to the public 
Even after the application is released, changes and improvements to the code will be necessary and 
testing will have to be repeated. Depending on the application, manual testing might be sufficient. 
However, most of applications today are quite complex and manual testing is not suitable simply 
because it will take too much time to re-test the whole application after every change. Therefore, 
many developers use testing automation tools and continuous integration tools. Automated test 
scripts can be written to test applications at different levels: unit tests perform testing of single 
components such as classes, while functional tests make sure that certain functionality is provided 
by higher level components. The system level testing (in case of Android applications) encompasses 
testing the functionality from a user interface perspective. Considering Android’s fragmentation in 
terms of the number of different device types and numbers of different versions of the operating 
system (OS), it becomes clear that testing of Android applications and making sure they function 
properly and that the user interface is presented as expected is a major challenge[11].  

Testing needs to be performed not only before each release, but also with each code change in 
order to detect and fix problems as soon as possible. This means, that testing routines must be able 
to be performed as fast as possible and that puts heavy requirements on automation tools and testing 
environments. Continuous integration tools like Jenkins[12] can be used in conjunction with test 
scripts in order to automate the process of test execution. Tests execution can be triggered by 
certain events such as code from one developer being committed into the code repository. Tool will 
then interpret test results and inform interested parties about success or failures and will provide 
detailed reports which will help to identify the source of the problem. Tests may take different 
amounts of time, depending on many factors such as application complexity, dependencies, testing 
environment availability and testing scope. In some situation it might be enough to run tests on 
Android emulators, but tests should be performed on real physical devices and on as many as 
possible, in order to have high enough level of confidence in applications quality. 

Developers can usually choose between few options when deciding how to perform testing on 
real device: first is to get a number of most popular devices and perform testing on them[13], 
second approach is to lease devices for the time that is needed to run the tests[14] and third is to 
hope that application will work the same on other devices same as it work on developer device. 
First option greatly increases the total cost of application development. Moreover, special software 
and infrastructure is required in order to manage devices and distribute testing routines. Second 
option decreases development and investment costs sue to the fact that costs of these services is 
determined by the usage. However, second option might still be too costly for individual developers 
and they are left with the third option. 



2 
 

This master thesis analyses the problem of testing Android applications of real physical devices, 
designs and implements a system that enables device sharing between developers for automated test 
execution. It utilizes existing devices owned by developers eliminating the need to purchase and 
maintain expensive smart devices this way dramatically decreasing cost of system deployment and 
maintenance. Additional possibilities open up when many devices are connected into a controlled 
network such as decreased test execution times using parallel execution and availability of less 
popular devices.  

The paper starts by giving background information on Android operating system, testing 
frameworks available for testing Android apps, overview of what continuous integration and testing 
automation is, and analysis of existing services, which try to solve problems of testing Android apps 
on real devices. It then analyses possible ways of solving the problem of the scarcity of Android 
devices available for automated testing, due to the high costs of hardware and what exact approach 
was taken for solving this problem as well as defines the goals of this work in chapter 3. Chapter 4 
gives a detailed description of the implemented system prototype that solves mentioned problem by 
leveraging Android devices available within developer community. Description starts from higher 
level components and dives deeper into specifics. Paper ends by discussing possible future work 
and giving conclusions in Chapter 1. 



3 
 

2 Background 
This chapter provides general information about Android OS, design and lifecycle of Android 

applications, how Android applications can be tested, and what testing frameworks and tools are 
available to support testing process. Next, subchapter 2.3 briefly presents continuous integration 
[15] and what tools are available for supporting continuous integration on the Android landscape. 
Finally, subchapter 2.4 presents and compares existing third party services which are similar to the 
prototype service that was designed and developed during this master’s thesis project. 

2.1 Android OS 
Android[2] is an open source operating system (OS) owned by Google[16] and the Open 

Handset Alliance[17]. At the time of this writing, the Android OS is the most popular OS[3] as it is 
implemented in far more handsets that other OS, such as Apple’s iOS, Symbian, RIM, and 
Microsoft’s Windows Phone. It uses a modified Linux kernel[4] and a Java based framework on top 
of which applications reside. The Android software development kit[18] (SDK) is freely available 
for application developers and provides a number of tools to facilitate development and testing. 
Although applications are mainly written in Java, these applications are quite different from 
ordinary Java applications due to concepts such as Activity[19] and Intent[20] and quite complex 
application lifecycle shown in Figure 2-1 Activity lifecycle in Android OS. Similar to other OSs, 
Android is composed of a large number of components, but, describing all of these components is 
outside the scope of this thesis. Therefore, only those parts of the Android OS that are more related 
to testing will be discussed in this section. 

Activity[19] is part of application which acts as a controller and model when referencing 
MVC[21] (model-view-controller). All activities stored in a stack are managed by OS and only one 
can be displayed at a time. Moreover, even though applications are usually composed of a number 
of activities (in fact, there might be only one activity), each activity runs in a separate process 
making it much more difficult to pass information between them. Inter-process messaging is used 
for this and container objects called bundles[22] can be exchanged. Therefore, from a system 
perspective, application is a collection of activities stacked on top of each other and user is in 
control of going up and down through the stack. In some cases, user might not even be aware that 
he is switching to an activity that belongs to another application. 

Intents are used to launch new activities and contain information such as which activity, or to be 
more precise, which action an application intends to launch and might contain a bundle with 
primitives and objects to be passed on to an activity. Depending on intent, the system might present 
a number of activities, for example, if the intent indicates that it would like to share a message, then 
a list of activities/applications such as email clients or social network clients, will pop up for a user 
to choose from. The list is constructed based on which activities have been registered to handle 
specific media types. This is a powerful feature of Android and it enables re-use and sharing of 
functionality between applications. Additionally, this design methodology de-couples and 
completely separates parts of the same application, therefore, most sophisticated code analysis 
tools[23] for Java cannot be directly used. Moreover, Android application framework uses system 
services and libraries that are available only in Android environment, therefore, applications cannot 
be run natively on development machines, hence they can only be run on simulators or real devices. 
Due to this fact, testing Android applications is quite complex and requires sophisticated 
supplementary tools. It is no surprise that a lot of these tools are provided within the Android SDK. 



 

 

Figuure 2-1 Activ

4 

vity lifecyclle in Android OS 
 



 

2.2 Tes
There a

other comm
known fram
and execu
picture of 
perform th

2.2.1 U
The A

various asp
which prov
over applic
therefore, 
application
developme
super class

 

In orde
super class
However, t
interact wi
ActivityIns

sting An
are a numb
munity ma
meworks an

uting tests b
what actio

hese actions.

Unit and
Android SDK

pects of an
vides specia
cation lifecy
a test follo

n, there is 
ent kit/plug-
ses dependin

er to perform
s. In this ca
there are m
ith a real A
strumentatio

ndroid a
er of testing

anaged open
nd tools and
based on d
ons are invo
. 

d functio
K provides

n Android a
al hooks into
ycle to the 

ows the sam
a special 

-in for Eclip
ng on the sc

Figure 2-2

m activity u
ase, activity
any limitati

Android sys
onTestCase2

pplicatio
g framewor
n source pr
d explains th
ifferent fram
olved in te

n testing
s powerful
application. 
o the system
test script. 

me principl
template f

pse called A
cope of testi

2 Android te

unit testing,
y is isolated
ions and thi
stem. Activi
2[28]. Activ

ons 
rks and tool
rojects. The
heir usage a

ameworks is
esting lifecy

g 
testing too
One of po

m and applic
This frame

les as ordin
for a test 
ADT[26]. T
ing.  

esting fram

, a test-scrip
d and thus a
s approach 
ity function
vity will be 

ls provided 
e following
and speciali
s discussed
ycle and to

ols and tes
ossible optio
cation proce

ework is bas
nary jUnit t
project wh

Test classes 

ework hook

pt must ext
a simple tes
is useful on

n testing can
run in a rea

by the And
g section di
ization. The

d in order t
o show how

t design fr
ons is to us
ess which a
sed on the w
tests. Simil

hen using E
must exten

ks diagram 

tend the Act
st can be pe
nly for testin
n be perform
al Android e

droid SDK, 
iscusses so
e process of
to present 

w complica

rameworks 
se Instrume
are used to g
well-known
larly to dev
Eclipse wit
nd one of th

tivityUnitTe
erformed m
ng methods
rmed by ex
environmen

5

along with
me of best
f packaging
a complete

ated it is to

for testing
entation[24]
give control
n jUnit[25],
veloping an
th Android
he provided

 

estCase[27]
much faster.
s that do not
tending the

nt and much

5 

h 
t 
g 
e 
o 

g 
]  
l 
, 
n 
d 
d 

] 
. 
t 
e 
h 



6 
 

more sophisticated testing can be performed, while still being able to inject mocked objects. For 
example, mocked Intent can be injected to cause an Activity start. Subclasses of 
ActivityInstrumentationTestCase2 class provide helper methods and mock objects to deal with 
different component’s lifecycles and calls to system services. However, in order to write a test 
script, the inner structure of the application must be known and even specific IDs of certain objects 
must be referenced from within the test case, hence this kind of testing represents white-box[10] 
testing. 

The test package must provide name of instrumented test runner in the application’s manifest 
file. An instrumented test runner is responsible for setting up and tearing down test cases. The 
InstrumentationTestRunner[36] is a primary Android test runner. Tests are started using a 
command line Android debug bridge (ADB)[37] tool or Eclipse with ADT. In either case the 
system loads and starts a test package, kills any running instance of the application under test, and 
starts a new instance of this application passing all control to the test runner. 

2.2.2 System and user interface (UI) testing (uiautomator) 
Luckily, there are additional tools that help to perform black-box[29] testing – a type of testing 

when the tester does not know about the application’s inner structure and hence must perform 
testing based on functionality expose by application such as buttons and text entry fields. There are 
a number of problems with UI (user interface) testing when the inner structure of an application is 
unknown. In Android, each view object is usually described in an XML file and each object has a 
label defined by the developer. When building a project, these labels are converted into numbers 
which can be used to referrer to specific UI element from the source code. When performing black-
box testing, these identification numbers are unknown to testers, then a question arises, how does a 
test-script specify which view object to perform an action on? An example could be when a script 
needs to click on a specific button testing framework would have to simulate a touch action on a 
specific part of the screen. However, the same button can be located in different places on the 
screen depending on screen-size, resolution, orientation, or even device type. One way could be to 
analyze image of the rendered screen and try to find a view object based on an image prepared 
before, but that would be extreme resource intensive operation and would slow down automated test 
radically. 

The uiautomator tools suite which is supported on devices running Android 4.1 (API level 16)  
or higher, solves the problems mentioned above. It provides access to a device similar to Monkey 
runner (described in section 2.2.4), but at the same time, sophisticated jUnit based test-scripts can 
be created. A tool called uiautomatorviewer[30] quickly builds a hierarchy of view objects and their 
properties. Then, values of the view object property named contentDescription can be used to refer 
to particular views when writing a test-script. It is important to note that tester does not have to 
examine the source code of the application nor does he actually need to have the source code, 
therefore, a test-script has no dependency on the source code, but at the same time the test script can 
avoid central processing unit (CPU) intensive operation such as analyzing images to find a specific 
spot on the screen. The testing framework can quickly find and identify a referred view and allow 
the script to perform specific actions on it. 

When a view hierarchy is known, a test-script can be written extending the 
UiAutomatorTestCase[31] class. This class provides access to device functionality such as getting 
device state properties, pressing buttons and taking screenshots. Also, a number of helper classes 
exists, one of which is UiSelector – which provides a simple way to handle a specific view object 
by providing the object’s class name or description – a value of the property contentDescription 
which can be retrieved using the uiautomatorviewer tool as mentioned earlier. 

This type of tests has a different packaging and deploying procedure than Instrumentation based 
tests. This procedure is presented in chapter 2.2.5. 



7 
 

2.2.3 Robotium 
Robotium[32] is an open source testing framework for Android applications. Currently official 

projects web site states that it is the ‟world's leading Android testing automation framework”. It is a 
collection of useful methods and classes that improve the readability of test code and provide a lot 
of commonly used functions, such as waiting for certain Activity to occur or entering text into the 
first “EditText” field. It allows loose coupling between UI components and actions performed on 
them by referring to buttons and other UI field by their displayed name. UI elements can also be 
referred to by their auto-generated identifier. However, latter approach couples the test code with 
the actual application. Tests written with Robotium still have to extend the 
ActivityInstrumentationTestCase2 since Robotium leverages Android Instrumentation[24], but, the 
features it provides greatly improve productivity when writing this kind of tests. 

Robotium can be integrated with Maven[33] or Ant[34], which are both build management 
tools. There are Maven plugins for Android, so Android applications can be managed by Maven 
and Robotium integration with Maven allows the build manager to manage the testing through 
Robotium. However, all Maven related tools are provided by the community and are not part of 
standard Android tools. It’s worth mentioning, that Ant was used as the default Android application 
build tool, but with the introduction of Android build tools version 17 Ant has been replaced by 
Gradle[38]. 

Since Robotium depends on Android Instrumentation, it is coupled together with the application 
under test and cannot be completely de-coupled and developing a test case requires having source 
code of target application. Therefore Robotium is most useful for unit testing of the inner 
components of an Android application. 

2.2.4 Monkeyrunner 
Another tool provided by the Android SDK is “monkeyrunner” which facilitates automated 

testing. Monkeyrunner enables automation of functions such as launching a new emulator instance, 
connecting to the emulator, installing an application package, running an application package, 
sending keystrokes, taking screen shots and more. All of these features are provided via an 
application programming interface (API), therefore, monkeyrunner can be used to automate device 
management and package installation. Scripts are written in Python and the tool itself uses 
Jython[36] to interact with the Android framework and to provide access to constants, classes, and 
methods. However, monkeyrunner does not allow creation of detailed test-scripts where specific 
user interface components are referenced from the source code since monkeyrunner does not 
provide a way to reference specific UI elements from within the script. 

2.2.5 Packaging and deploying a test project 
Currently, a test-script which extends the UiAutomatorTestCase can be packaged and run only 

via the command line interface. Since Android earlier build tools used Apache’s Ant[41] as a build 
manager, a test project can also use Ant. Packaging and deploying a test application involves: 

1. Generating a test project by running the command: 
android create uitest-project -n <name> -t <target-id> -p <path> 
where <name> is a test project name, <target-id> - id of existing target (targets can be 
listed with command: android list targets),<path> - path to the test projecy directory 

2. Building the project by executing: ant build 
3. Sending the generated JAR package to a target device: 

adb push <name>.jar /data/local/tmp 
The /data/local/tmp is be the default location and can be changed to any other location to 
which user has permission to write and read from. This path will later be used to launch tests from. 

After performing the above steps, a JAR package containing tests is converted into a Dalvik 
Executable (DEX) byte code file and deployed onto devices. The target application which will be 



8 
 

tested must be separately uploaded and installed following any of the available ways (e.g., using 
adb install). 

The ActivityUnitTestCase and ActivityInstrumentationTestCase2 subclass based test-script are 
packaged into an Android package [1]. APK is used for all Android applications, therefore, 
installation to a target device can be done in various ways, one of which is using the ADB tool: 

adb install -r <target-app-name>.apk 
This command can be used to install both test applications (but only Instrumentation based) and 
target applications. 

2.2.6 Executing test 
Execution differs depending on the type of test or it’s packaging. Test-scripts that extend 

UiAutomatorTestCase can only be executed using console commands, whereas Activity unit and 
function tests (extending ActivityUnitTestCase and ActivityInstrumentationTestCase2) can be 
executed directly from the Eclipse IDE with ADT. However, command line execution can be easier 
to control with a dedicated application or automated with scripts, therefore, only the process of 
executing test-script using the console will be described below. 

Test cases extending UiAutomatorTestCase can be executed with the following command: 
adb shell uiautomator runtest <name>.jar -c <package.class> 
Where <name> is the name of a package that contains the test-scripts which should be 
present in /data/local/tmp path. 

Manipulating command options, user can run all test cases in a package tree or specific class or 
even methods providing flexibility to be able to choose exactly what is to be executed. 

The following are the steps need to be done in order to execute ActivityUnitTestCase and  
ActivityInstrumentationTestCase2 subclassed tests: 

adb shell am instrument -w <package>/<InstrumentationTestRunner> 
Where <package> is the package name of the test project as specified in the AndroidManifest.xml 
file and <InstrumentationTestRunner> is the instrumentation test runner to be used.  

2.2.7 Android emulator 
Android SDK provides an emulator that can be extensively customized and used to mimic 

real Android devices. Customization includes modification of properties such as screen resolution, 
pixel density, OS version, presence of a hardware keyboard, GPU, accelerometer, SD card size, etc. 
The emulator can perform ARM[37] instruction emulation (since most of Android device up to the 
date of writing still use ARM CPU’s) or utilize special images provided for performing emulation 
on an x86 architecture. The later, runs much faster on Intel’s x86 CPUs (which are usually used by 
developers for developing applications and tests) since it can use Intel supported virtualization 
technologies. However, there is one major limitation – only one emulator can be running at a time 
using accelerated mode on Windows OS (there is no such limitation on Linux). So, if a developer, 
needs to run his or her application in emulators with different screen sizes, they either have to run 
them simultaneously on a slow ARM[37] image or x86 images have to be emulated sequentially 
one by one. In any case, running multiple Android emulators on development machine slows the 
system down marginally which hurts development process. Therefore, developers cannot have 
multiple emulators running on the development machine and would need to boot different 
configurations in sequence for compatibility testing. Moreover, it is worth noting that successfully 
running an application on the emulator does not necessarily mean that the application will run 
successfully on a real device. There also might be performance differences – which can lead to 
undetected timing errors, therefore, most developers strive to test their applications on as many 
different real devices as possible. 



9 
 

2.3 Continuous integration, testing automation 
Continuous integration[15] plays a very important role in software design these days, especially 

in bigger projects built by multiple developers. It is so important since it is a prerequisite for Agile 
software development as well as continuous deliver which enables delivery of new versions of the 
product in a matter of hours or days. According to this practice once a small change is introduced in 
software, tests should be performed in order to verify that the change does not introduce any faults 
in depended software components. Only after a change is successfully verified, should the code be 
integrated into main development line (this could be a central branch in code revision control 
system, such as Git[12]). Verification is usually done by running a suite of tests of various levels. 
However, somebody has to write the tests and in the end, the quality of these tests determines the 
level of quality assurance provided by tests. Increasing code coverage[38] increases this assurance 
level, while at the same time, increasing the time required to execute all of the tests. Therefore, 
there is always a tradeoff between the level of testing and the time required to get feedback for a 
change. The time required for integration testing not only depends on the test code coverage, but it 
also depends on the application and/or application component dependencies on other components, 
applications, and services, time needed to setup the testing environment and possibly other factors. 
As a result the verification process can consume a lot of time. One of the requirements of CI is rapid 
feedback, since the faster and at earlier stage a problem is detected, the easier and therefore, less 
expensive it is to fix the problem. In order to speed up verification or integration, tests can be 
broken into groups and performed on a number of identical environments specifically prepared for 
testing that application. However, this approach depends on a number of environments being 
available and having a lot of integration testing environments is costly no matter what kind of 
application is being tested. 

Jenkins is one of the most popular tools for CI. It is application type agnostic, meaning that 
almost any kind of application written in various programming languages can be used together with 
Jenkins. There are numerous plugins for build management tools (including Maven, Gradle, Ant 
etc.) that make CI configurations easier. Moreover, plugins for various testing frameworks can be 
added in order for a Jenkins server to be able to interpret the results of the test executions. Android 
is no exception and open source community has provided plugins for Maven. Android applications 
managed by Maven can easily be used in Jenkins and leverage all of Maven’s functionality and 
benefits. 

Nevertheless, testing Android applications requires having devices to test applications on and in 
the case of time consuming test suites, having access to a large number of devices could speed up 
the process. In order to be able to have a fully automated CI system, it is important that the tools 
used within the application’s lifecycle support automation at every step. This same requirement is 
true for "device cloud" type services that provide access to a device hosted within a cloud of 
devices for automated test execution. These kinds of device cloud services are discussed and 
compared in the next section. 

2.4 Existing similar services 
It is important to briefly review existing services that help Android developer to perform testing 

on read devices in order to understand what options, problems and benefit they provide. Table 2-1 
compares different services based on different criteria. In some cases, this comparison is subject to 
the author’s opinion. For example, in this comparison it is considered positive to have support for 
CI build managers, such as Jenkins and to support the Android instrumentation test framework 
based tests, whereas, having a proprietary test framework is a negative property. Provide social 
features, such as: enabling other developers or simply interested people to provide feedback while 
doing manual testing is also considered positive property. Naturally, in this comparison providing a 
“free” community service is also considered a benefit. 

This feature comparison table is bases on the information available at the time of writing this 
thesis. Considering the rapid development of the Android OS and surrounding tools, services will 



10 
 

most probably evolve at a similar pace in order to keep up with requirements put on them by 
application developers. 

Table 2-1 Comparison of similar existing services 

 Xamarin Test 
Cloud[39] 

TestDroid 
[14] 

PerfectoMobile
[40] 

Keynote 
device 

anywhere
[41] 

AppLover 
[42] 

Utest 
[43] 

CloudMonkey
[44] 

Support for 
Instrumentati
on * 

yes yes no no no no no 

Supports 
uiautomator 
framework 

no yes no no no no no 

Proprietary 
testing 
frameworks 

no no yes no no no yes 

Other testing 
frameworks, 
tools 

Calabash 
(Cucumber) 

Testdroid 
Recorder 

no no no no MonkeyTalk 
IDE 

Payed yes yes yes yes free yes yes 

Device cloud yes yes yes yes no no yes 

Emulators† no no no no no no yes 

Integrates 
with build 
managers 

Command line 
tool 

Cisimple[47], 
Jenkins 
REST API 

no no no no Jenkins 

Interactive 
manual 
testing, 
streaming 

no no yes yes no no no 

Manual test 
performed by 
others 

no no no no yes yes no 

 
Certain services (such as TestDroid and Xamarin Test Cloud) focus on automated test cases, 

however, a different approach is taken considering supported testing frameworks. TestDroid 
supports testing frameworks available out of the box in Android SDK (i.e., uiautomator and 
instrumentation) and their own tool which makes it easy to create a test script by recording actions 
issued on a device (clicking button, swiping,…). The Xamarin Test Cloud uses Calabash[46], which 
uses a different approach to testing. In this case the test scripts are not written in Java, which 
according to Calabash’s creators, improves readability of large test suites. However, since there is 
no other way of executing Android test cases than using Instrumentation or uiautomator, Calabash 
generates Instrumentation type tests which theoretically could be executed on any platform that 
supports Instrumentation based tests. Both TestDroid and Xamarin Test Cloud services have two 
options: use their devices hosted in a public cloud or build your own private device cloud. A public 
cloud is a shared pool of devices hosted by service provider, whereas, a private cloud is a pool of 
devices managed by the service provider’s software but hosted by a client company. In addition, 
both services provide tools for integrating with CI machinery. Neither of them supports sharing 

                                                 
* Supports tests based on Android instrumentation[34] 
† Provides ability to run tests on emulators running in cloud. 



11 
 

devices between private clouds (at least no information about such a feature was available at the 
time this paragraph was written). 

Private clouds solve one of the major issues with public clouds – testing queues. In order to be 
profitable and stay within reasonable price ranges, service providers are forced to strive to utilize 
their devices for as much time as possible, i.e., avoiding having idle devices. This leads to a tradeoff 
between device utilization and queue length (i.e., delay for test execution). Another limitation is that 
new devices have to be bought over and over again– to be used for testing which increases the 
costs. Private clouds are also useful for companies that do not want to risk exposing to the public 
their application at an early phase of development. 

Other services focus on manual testing, but in different ways. For example, PerfectoMobile and 
"Keynote device anywhere" provide ways of remotely connecting to a device that is hosted in their 
public cloud. Actions performed on the device (using mouse and keyboard) are sent and emulated 
on device and the screen view is streamed back to the human tester. This way manual testing can be 
performed on remote device interactively.  

Another type of manual testing is represented by services such as AppLover and Utest. These 
services act as mediators between professional testers or enthusiasts that want to try out new apps 
and developers. These services do not provide devices to run tests on, but rather, use devices 
provided by testers. What these services actually provide is a platform to distribute applications to 
multiple people and to collect their constructive feedback regarding the application’s usability, bugs 
and user experience. Utest is more sophisticated, partly due to a fact that it is not only mobile 
applications oriented but it provides testing service for almost any kind of applications. However, 
this service provides only manual testing. 





13 
 

3 Method 
A solution that would solve the problem of scarcity of Android devices for testing as well as 

avoiding high costs of hosting public device clouds or building private could be a platform that 
makes use of all of the devices that each Android developer and possibly even random people have. 
An assumption could be made, that each developer owns at least one Android based device, 
therefore, each new user contributes at least one new device for testing. Also, this device is 
typically used less than half of the day, for example during the night while the user is sleeping. 
While the device is not being used, another developer on another side of the globe could use the 
device, hence taking advantage of the difference in time zones. The platform could provide an 
interface similar to current social networks, where instead of sharing documents and pictures, one 
could share access to your device. The access to these shared devices could be provided in the form 
of an ability to upload test-scripts & applications, execute test-scripts, and fetch results together 
with screenshots from the device. Such a service would enable many developers to avoid buying 
expensive handsets, thus decreasing cost of testing compared to existing commercial services 
offering device cloud solutions (chapter 2.4). A ‟tit-for-tat”[50] strategy could be used to control 
the load on the system and could provide large number of different kinds of devices and lots of 
testing time, thus reducing the delay for test execution since queues would be shorter. Moreover, 
given a large pool of available devices tests could be run in parallel on a large set of devices hence 
providing wide device coverage in a short time. However, an even more interesting functionality 
could be provided by applying another assumption: since there are certain ‟popular” devices which 
tend to be sold more often than others, it seems right to assume, that the spread of device models by 
popularity in the developer community would be similar to their spread among ordinary consumers, 
thus such network would be mostly filled with ‟popular” devices and there will be large numbers of 
same model of these devices. As a result, tests could be split among a number of devices, hence 
accelerating the execution of test suites. No such service or platform exists to the author’s 
knowledge at this time. 

The main functionality of this platform would be to manage connected Android devices, 
distribute tests among available devices, and provide easy to use interface for uploading tests and 
applications. In order to be competitive feature-wise, it would also need to support integration with 
CI tools, provide useful statistics about the devices (collected in the background while tests are 
running) and collect screenshots, log files and possibly other files generated during test run. This 
platform would need to support at least Android Instrumentation tests and/or uiautomator tests. 

Due to the very large set of features mentioned above and limited time & resources, the primary 
goals of this master thesis were narrowed down to the following core features: 

• User management 
• Device management 
• Device and user authorization 
• Manual test file uploads 
• Test distribution, execution, result collection and presentation 
• Support for Android’s uiautomator based tests 
As a result, the user should be able to connect their Android device to the system and share this 

device with other users, who can subsequently upload test files and execute them on all the devices 
that have been shared with them. 

The following items are explicitly out of the scope of this master thesis: 
• Security of communication between users, devices, and system components 
• Detection of malicious applications or tests being uploaded to a device 
• Business model(s) for how this kind of service could make a profit 
• Reward system for rewarding device donors and charging device users





 

4 Ana
As a re

enables de
scripts base
of testing a
devices pro
OS can be
resources f
splits a test
therefore, r

This ch
higher leve

4.1 Gen
The sy
• Com

reso
wh
CB

• CB
con

The ov
technologi
which uses

The Ja
order to re
programmi
for choosin
used to ma
dependenc

lysis 
esult of thi
velopers fro
ed on the ui
applications
ovided volu
e connected
for testing. 
t package in
radically de
hapter descr
el and then g

neral CB
stem protot
mmunity Ba
ource that c
ich is used 

BT agent to c
BT agent - a 
nnecting the
verall system
es, tools, a
s the HTTP 

ava program
e-use code,
ing languag
ng Java was
ake the inne
cy injection 

is master th
om around 
iautomator 
s for compa
untarily by 
d to the pla

For this re
nto test clas
ecreasing th
ribes the fu
getting into

BT syste
type consist
ased Testing
can be used 
for file uplo
communica
Java applic

ese devices 
m architect

and design 
protocol an

Figure 4-1 

mming langu
, platform O
ges – hence 
s that it is th
er code stru
technique. 

hesis projec
the world t
test framew

atibility wit
other peopl
tform, this 
eason, a sp
sses and dis
e overall tim

unctionality 
o details of e

em overv
s of 2 main 

g (CBT) web
for executin

oading and t
ate with CB
cation for m
to a CBT we
ture is show
patterns. Th

nd is of a req

Community

uage was u
OS indepen
there are nu

he main lan
ucture more 

ct a web pl
to share An
work. It prov
th different 
le. Since po
platform m

pecial mode
tributes the

me required
and archite

each system

view 
n component
b service wh
ng automate
test initiatio
T service. 

managing An
eb service.

wn in Figur
he CBT we
quest-respo

y bases testi

used for bo
ndency, and
umerous op

nguage for c
readable an

latform was
droid devic
vides a way
types of A

otentially al
may provide
e of test ex
ese test class
d to execute 
ecture of th

m componen

ts: 
hich connec
ed tests. Th
on. RIP – re

ndroid devic

re 4-1. It w
eb service

onse nature.

ing system c

oth, the CBT
d because J

pen-source l
creating And
nd compone

s designed 
es and to ex

y of significa
Android devi
ll of the dev
e a nearly u
xecution wa
ses over dev
a test suite.

he prototype
nt. 

cts Android 
is compone
stful interfa

ces connecte

was build us
is a Restfu

components

T web serv
Java is one
ibraries and
droid applic
ents easier t

and implem
xecute auto
antly reduc

vices by mak
vices runnin
unlimited s
as impleme
vices of the
. 
e system st

devices int
ent provides
ace protocol

ed to the sam

sing industr
ul[48] web 

s 

vice and CB
e of the mo
d tools. Ano
cations. Gui
to test by e

15

mented that
omated test-
ing the cost
king use of
ng Android
ize pool of
nted which
 same type,

arting from

to a pool of 
s a web UI 
l is used by 

me PC and 

ry standard
service[48]

BT agent in
ost popular

other reason
ice[49] was
mploying a

5 

t 
-
t 
f 
d 
f 
h 
, 

m 

d 
] 

 

n 
r 
n 
s 
a 



 

4.2 CBT
The CB

also provid
settings, ex
logic of th
managing t

 

A data
test execut
server, thu
information
database a
techniques
system to 
master’s th
database’s 

The we
implement
The web s
with the C
industry sta

Jetty[5
since a pac
servlet con

Jersey[
implement

T web s
BT web ser
des a HTM
xecuting tes
he system: 
test executi

abase is use
tion related

us enabling e
n, such as d
a very imp
s for ensurin

ensure stab
heses and w
role and its

eb service w
t functionali
erver is use

CBT agents
andard tool
0] is an em
ckaged appl
ntainer appli
[51] framew
ting Restful

ervice 
rvice expos

ML based f
st-scripts an
from devic
ons. The ov

Figu

ed to store i
d informatio
easy scalabi
device statu
portant sys
ng stable da
ble operatio
will not be 
s structure. 
was develop
ity such as 
ed not only 
s. This app
s, for examp

mbedded Ja
lication is a
ication.  

work for Res
l API's. In 

es a CBT R
front-end fo
nd other. M
ce registrati
verall structu

ure 4-2 CBT

information
on). None o
ility. To pro

us provided 
stem compo
atabase oper
on. Details 
discussed 

ped using co
the web ser
to serve w

roach was 
ple web bro
va server a

a simple Jav

stful web in
fact, the sa

16 

Restful API
or user ope

More importa
ion to test-
ture of the C

T web servic

n (such as u
of the state
omote scala
by agents, j
onent. The
ration and r
 of scaling
further. Ho

ommon web
rver and da

web pages, b
chosen bec

owsers and 
and was use
va applicati

nterfaces pro
ame API wa

I interface, 
erations, su
antly the C
script and 

CBT web se

ce block diag

user credent
e informatio
ability a data
jobs assigne

ere are ma
eplication w

g the databa
owever, sec

b standards
atabase, so n
but it acts a
cause it lev
numerous H
ed to make
ion and doe

ovided a gre
as used by 

which is us
ch as contr
BT web ser
target appl
rvice is sho

gram 

tials, device
on is kept i
abase is use
ed to device
ny industry

which can b
ase are not
tion 4.2.5 d

. It uses fre
no software
s an interfa

verages on 
HTTP and H
e web servi
es not requir

eat code stru
the web pa

sed by CBT
rolling dev
rvice facilit
lication upl
own in Figur

e sharing se
in the mem

ed to store a
es, etc. This
y standard 

be used in a 
t in the sco
describes in

ee/open-sou
e or license 
ace for com
large selec

HTML relat
ice deploym
re being up

ucture and 
age which i

T agents. It
vice sharing
tates all the
oading and
re 4-2. 

ettings, and
mory of the
all real-time
s makes the

tools and
production

ope of this
n detail the

urce tools to
fees apply.

mmunication
ction of the
ted plugins.
ment easier,
ploaded to a

services for
is to be the

t 
g 
e 
d 

 

d 
e 
e 
e 
d 
n 
s 
e 

o 
. 

n 
e 

, 
a 

r 
e 



17 
 

main interface to the system and by the CBT agents managing Android devices in order to re-use 
the code as much as possible. 

The following sub-sections are arranged starting from the highest abstraction layer components 
to the lowest. This way, the user interface is explained first as it gives an overview of all the 
functionality that is available along with some insight into what is actually happening in the 
background.  

4.2.1 CBT user front end 
CBT user interface (shown in Figure 4-3) is a web interface for service users. It can be broken 

down into several parts based upon functionality: 
• User authentication and registration 
• Device access control – view which devices a user has access to as well as share devices 

owned with other users. 
• Test file upload – packaging and uploading of file required for test executing. 
• Test configuration – selecting which device types a test should run on, which mode, which 

test and on which target application. 
• Test execution – ordering a test execution and monitoring real-time status. 
• Test result analysis – analyzing received test results. 
• Service usage statistics 

The following sub chapter will describe each of the presented functional elements. 

4.2.1.1 User authentication 
Implemented authentication mechanism is very simple. Users begin by registering on the web 

service using a registration form. This registration form is provided as an option in a ‟login” dialog. 
Users are authenticated by providing their name and password. This information is hashed using 
MD5[52], a message digest algorithm, and sent as a Cookie[53] with each request to the web 
service. This is far from a secure implementation, but it was sufficient for prototype level 
functionality. This authentication is needed to provide a simple authorization scheme to determine 
which user can utilize which devices for test execution. Similarly authorization is used for accessing 
uploaded files and other content created by user. 

4.2.1.2 Device access control 
After logging into the system user is taken into default page called “devices” which displays a 

list of available devices. It is broken into two parts: 
• Devices that are owned by the logged in user. Information is taken from database that is 

periodically updated by CBT agents owned by that user. 
• Devices that are available for a user as other users have shared this device with him/her. 

Information that is presented for each device includes: 
Device ID This is a unique device ID used inside the system. This information is not 

particularly required or used by the user, but is presented only for the 
purpose of easier debugging. 

Serial number The serial number is a unique name for the device. Depending on the 
vendor, this information might have different formats. In the case of 
Android emulators, the name is generated for each new emulator so that all 
the emulators running on the same machine have different names. This 
information is not really used inside the system, but servers as a human 
readable identifier for the user to use when referring to a device. 

Status Device status depends on the time passed since the last status update 
received from a CBT agent. The status can be ONLINE or OFFLINE. 



 

Las
Each d

takes him 
provides a
system to 
device and

All of 
access. 
 

st updated 
device is ow

to device sh
a selection 
add them t

d will see it 
the above 

F

There is
has gone
startup a
the statu
running 
This sho

wned by a ce
haring page
box to cho
to this devi
on their dev
information

Figure 4-3 

s a backgrou
e offline or 
and all of th
us of each d
on. 

ows the time
ertain user. T
e. This pag

oose among
ice access l
vices page.
n is stored 

CBT web se
18 

und process
not. A time

he CBT age
device that 

e of the last
This user is

ge lists user
g the entire
list. Selecte

in a datab

ervice front

s running w
eout value i
ents are resp
is registere

t device stat
s provided w
s which cur

e set of exi
ed users wi

base to avoi

t-end sequen

hich period
s set in the 
ponsible for
d on the sy

tus update. 
with addition
rrently have
sting regist
ll immediat

id session 

nce diagram

dically check
CBT web se
r periodical
ystem that th

n control bu
e access to 
tered users 
tely get acc

state and p

m 

ks if device
ervice upon
ly updating
his agent is

utton which
device and
within the

cess to that

provide fast

e 
n 
g 
s 

h 
d 
e 
t 

t 

 



19 
 

4.2.1.3 Test file upload 
As it was mentioned before, a test-script written for the uiautomator testing framework is in-

depended (both code and package wise) of the actual target application. Therefore, in theory, one 
test-script can be designed to test multiple applications. For this reason, test script is treated as a 
separate entity throughout the system. As a result, the minimum that is required to perform a test on 
a device is the actual application (the target app) packaged into an APK file and uiautomator test-
script packaged into JAR file. There are separate web pages for uploading each of these. The user 
interface allows a user to provide a custom name for these two files, so that they will be able to 
identify the files later. These files are stored in a local file system of the sever hosting the web 
service application. Dedicated records in the database are created for each type of file containing 
metadata such as name and path to actual file. Currently, prototype implementation supports only 
uiautomator type test-scripts, so no other type of files is currently needed or supported. 

Figure 4-4 Test file upload flow shows how a file upload is actually performed: a HTML[54] 
form is used to encapsulate all the information and an HTTP request with POST[55] method is sent 
to certain URL belonging to a CBT RIP interface. Files are then placed according to the indicated 
file structure and the required records are inserted into the database. 

No further file management functionality is provided (such as update or delete) since this it was 
not deemed essential for the prototype. 

4.2.1.4 Test-configuration 
The test configuration part is split into two parts in order to facilitate re-usability of content 

throughout the system. First, a test-profile must be created describing test execution mode and 
targeted devices. This test profile is accessible on a per user basis. If a user does not have any 
profiles created, then the user must create the first one. This test profile can be reused in other test-
configurations.  

The web page test-profiles display all of the available test-profiles. The following information is 
displayed about each profile: 

ID database generated unique test-profile identification number 
Name custom name given by user upon creation 
Mode test execution mode chosen upon creation; either normal or fast 
Device types list of device types chosen upon creation 

This same page provides a link to a page where a new test-profile can be created. In this new 
test-profile creation page the user is requested to provide the information specified above. A list of 
available device types is displayed containing all of the different device types that are currently 
registered in the system. However, this list does not reflect the availability of devices which is 
evaluated dynamically at execution time. User selects his desired test execution mode from a drop 
down list. Once a test-profile is created, it will be listed on the test-profiles page and will be 
available for selection in other related pages, such as test-configurations: new test-configuration. 

When a test-script and a test-target are uploaded and at least one test-profile has been created, 
then user can create the last piece of information required, that is new test-configuration which 
binds together these three components. This approach was chose in order to be able to quickly 
create a new test-configuration with, for example the same test-script and test-target but a different 
test-profile.  

The test-configuration page lists all of the available test-configurations (to be more exact, all of 
the configurations created by this specific user) and provides a link to page where the user can 
create a new one. Each test-configuration is a binding between a test-script, a test-target, and a test-
profile. This page also contains an action button next to each list element entry which invokes a new 
test-execution and creates a new entry on the page test-executions. 



 

 

4.2.1.5 
New t

requested, 
information

ID 

Cre
Up
test
con
Sta
 

 

 

Test exe
est executi
a new en

n: 

eated 
pdated 
t-
nfiguration
atus 

ecution 
ion is requ
ntry appear

Uniqu
a key t
execut
Date o
Date w

n 
Refere

Status 
WAIT

ONGO

FINISH

Figure 4-4

uested via t
rs on test-

e identificat
that binds to
tion. 
of test execu
when record
ence to test-

of test exec
TING Te

sta
OING At

ex
HED Al

tes

20 

4 Test file up

the test-con
executions

tion of test 
ogether all o

ution launch
d was last up
-configurati

cution. The 
est has been
arted execut
t least one C

xecution has
ll CBT agen
st execution

pload flow

nfigurations
page. Eac

execution g
of the inform

h 
pdated 
ion informat

value can b
n requested,
ting it on ac
CBT agent h
s started. 
nts have rep
n. 

s page. On
ch entry co

generated by
mation for t

tion that wa

be:  
but none of

ctual device
has reported

ported that th

nce new ex
ontains the

y the databa
this particul

as used for t

f the CBT a
es. 
d that this te

hey have fin

xecution is
e following

ase. This is 
lar test 

the test. 

agents have

est 

nished the 

 

s 
g 



21 
 

It is important to briefly describe the internal processes of the system in order to explain how 
test execution is performed: in order to execute a test, first, system needs to find devices that are 
currently online and available for test execution. For each of these devices a test execution 
descriptor record in the database is created called device-job. CBT agents periodically poll for new 
device-job records through the CBT RIP interface. Once a new device-job record is found, CBT 
agent starts this test’s execution on a device and reports its status when process is finished. As a 
result, the test execution status and results are available per device-job. Once all device-jobs have 
been reported as finished, then the overall test execution state is changed to FINISHED. The 
detailed operations are discussed in section 4.2.3.2 on page 23. 

4.2.1.6 Test result analysis 
As it was mentioned previously, test result is available on a per device-job or device basis. 

Therefore, test-result page contains a list of test execution results of each device. These results are 
available as soon as a CBT agent publishes them via the CBT web service. Currently, results are 
displayed in a raw format: unmodified output of the uiautomator test framework test execution. 
These results are parsed to extract information, such as how many tests were executed and whether 
their outcome was pass or fail. This is sufficient to show the possibility to retrieve and interpret the 
test results. Currently this test result information is limited and includes only the output produced 
by uiautomator framework and does not include access to the device logs or screenshots, as it is 
common in similar services. This functionality was not implemented due to limited amount of time 
although no obstacles were discovered for it to be implemented in future. 

4.2.1.7 Security 
Security in a broad sense was outside the scope of this master’s thesis project. However, here 

we mention at least some of possible problems which could be addressed in future work. 
Communication between front-end and back-end (CBT RIP) as well as between CBT agent and 

CBT RIP is insecure since it simply uses HTTP. There are no additional checks performed to see if 
the user issuing a request is allowed to make such a request. For example, it would be possible to 
delete other users’ information by manipulating the information contained in a HTTP request. 

The CBT web service and CBT agent treat test scripts and test targets as packages and therefore, 
do not scan their contents for potential malicious content. These limitations are discussed further in 
chapter 0 and possible solutions are presented in section 6.2.1 on page 31. 

4.2.1.8 Service usage statistics 
Service usage statistics per individual user are very important for all modern social web services 

and the CBT web service is no exception. Depending on the business model(s) used for this service, 
it could be necessary to collect the number of test executions that a user hosted on each of his or her 
devices that have been shared with other users and to collect the number of tests per device that a 
user has executed on other users’ devices. Although no logic was implemented to make use of this 
kind of information, for example to limit the number of test executions for certain users based on 
their usage of the service, a web page showing some of the parameters that could be collected was 
implemented as an example of what information is or could be collected. This page currently 
calculates and presents the following information on a per user basis: 

• List of user owned devices with the number of tests hosted for other users. 
• Total number of hosted test executions. 
• Total number of tests executed on devices owned by other users. 

Information is update in real time after relevant actions are performed by user. 

4.2.2 CBT RIP interface 
The CBT RIP interface was build using the Jersey[51] framework as it enabled rapid 

development of Restful APs. This interface exposes all of the CBT web service’s functionality 



22 
 

through a client request – server response HTTP based protocol. A single CBT RIP serves both 
CBT agents and the CBT front-end in order to avoid duplicated functionality. The implementation 
uses JSON[56, 57] for data serialization: JSON makes it easy to read and debug HTTP requests 
with standard tools as all of the data is in clear text and human readable. 

The API’s URLs are grouped by functionality. These URLs are served by their responsible 
classes. Some examples are given here in order to briefly explain how this works: 

• In order to retrieve a list of user test-runs an HTTP GET request is made using a URL of the 
form: http://serveraddress/userid/testrun, where serveraddress and userid are replaced with 
appropriate values. This request would return a JSON array of test run objects with their 
respective properties. This request must carry a COOKIE containing the user’s credentials 
encoded so that the server can authenticate the request. Generally, a user is only be able to 
retrieve his or her own data. 

• In order to create a new test-profile, an HTTP PUT request is made using a URL of the 
form: http://serveraddress/userid/testprofile, where serveraddress and userid are replaced 
with appropriate values. This request carrying the data required for creating a new test-
profile and this data must be serialized into a JSON format and sent as a HTTP payload. As 
in the previous example, an HTTP cookie must be sent providing the user’s credentials. 

All other API calls are performed in a similar way and could be easily discovered looking at the 
source code. There are two groups of these calls – those that must carry an authentication HTTP 
cookie and those that do not. One of the unauthenticated API calls is for creating a new user. This 
API call is used by web front-end to register new users. For this reasons, it requires no initial 
authentication so that it would be accessible by un-authenticated users. 

4.2.3 CBT web service’s inner workings 
Although main function of a web service is to read and write to/from database when certain 

actions are triggered by a user or CBT agent, sometimes the server must perform a much more 
complicated task than simply adding or reading information to/from the database. One of these 
functions is analyzing tests JAR file contents (subchapter 4.2.3.1) to extract names of compiled test 
classes which serves as an input data to another function – distributing and parallelizing test 
execution (subchapter 4.2.3.2) on multiple Android devices. Another important function is to 
temporarily store (subchapter 4.2.3.3) target application and test files in servers file system. This 
section discusses these kinds of actions and describes the workflow that occurs after these actions 
are triggered.  

4.2.3.1 Analyzing UI Automator JAR file 
In order to be able to split, distribute and execute tests on many Android devices, CBT web 

service needs to be able to read and interpret the uploaded test-script package. Therefore, this 
section describes the structure of test package and compiled source code format of test classes 
written using the uiautomator framework and tools that were used to read and interpret this format. 

Although the test-script is packaged into the well-known JAR[58] package format, it does not 
contain multiple classes converted into standard Java byte code[59]. Because Android applications 
run on a Dalvik virtual machine (VM), the applications and tools written in Java must be packaged 
into format executable by the Dalvik, i.e., a Dalvik executable[60]. The details of DEX are outside 
the scope of this thesis project, but it is important to note that since DEX differs from the well-
known Java byte code[59] there are no tools embedded into the usual Java environment that can be 
used to read it. Although Android development environment does have tools[61] for dealing with 
DEX format, none of it could be used due to the fact that all of the parts of this project were 
developed outside the Android platform using standard Java tools. For this reason an open source 
library called Smali[62] was used to parse uploaded uiautomator test packages. 

Test package JAR file is an ordinary ZIP file that contains a file called classes.dex which is the 
file that is needed to be parsed. DEX file structure is shown in Figure 4-5 as well gives some hints 



 

into how t
class and n
the Smali l
and this is 

 
 

When 
these nam
describes h

4.2.3.2 
As it w

normal. 
Using n

JAR packa
called norm
when there
devices, to
among man
that tests o

Figure 
package co
case, 4 dif
front-end, 
test-profile
these devic
test classes
CBT agen
configurati

test classes 
named acco
library has a
the only inf

a new test 
mes are stor

how this me

Fast and
was mention

normal exec
age are exe
mal mode b
e are a lim
o be more e
ny devices 

of an applica
4-6 presen

ontains 4 te
fferent butto
database is 

e. A simpli
ces, as a re
s to be exec

nts to execu
ion. 

should be 
rding to the
all that it is 
formation re

package is 
red in the d
etadata is us

d normal
ned before, t

cution mode
cuted on ea

because it is
mited numbe

exact, many
and execute

ation succee
nts the steps
est classes. 
on clicks. A
queried to 

stic algorith
esult device-
cuted on ded
ute test cla

structured. 
e function th
needed to e
equired to s

Figure 4-

uploaded, i
database as
sed to speed

l executio
there are tw

e, all test cl
ach device 
s assumed th
er of device
y devices o
ed in paralle
ed on as ma
s and action
Each test c

After test ex
get all of th
hm was de
-job record
dicated And
asses on th

In presente
hat is being
extract the n
split the test

-5 DEX file

it is parsed
s metadata 
d up the exe

on modes
wo test execu

lasses conta
type which
hat this is h
es to run th

of the same
el. This is im

any differen
ns taken for
class is for
xecution in 
he available

eveloped an
ds are create
droid devic

he test-targe

ed example
g tests (nam
names of tes
t classes. 

e structure 

d in order to
associated 
cution of te

s 
ution modes

ained within
h is chosen
how tests wi
he test on. 
 type, diffe
mportant si
t types of d

r fast execu
testing diff
initiated by

e devices of
nd used to d
ed in databa
e. These de
et applicati

, each test 
ing does no
st classes fro

o extract the
with this f

ests. 

s for user to

n an uploade
in the boun

ill usually b
However, 

erent parts o
nce the goa
evices as po
tion mode. 

ferent applic
y user via t
f the types d
distribute te
ase containi
evice-job rec
ion defined

is coded in
ot matter). F
rom the clas

e test class 
file. The n

o choose fro

ed uiautoma
nd test-prof
be executed
when there
of tests can

al of testing
ossible. 
As an exam

cation featu
the CBT we
defined in t
est classes 
ing list of t
cords are la

d in the rel

23

nto separate
Fortunately,
sses.dex file

names and
next section

om: fast and

ator packed
file. This is

d, especially
e are many
n be spread

is to check

mple, a test
ures, in this
eb service’s
the relevant
over all of

the specific
ater used by
levant test-

3 

e 
, 
e 

 

d 
n 

d 

d 
s 
y 
y 
d 
k 

t 
s 
s 
t 
f 
c 
y 
-



 

4.2.3.3 
The CB

would be a
files are or
user uploa
Each new 
when creat
created wi
whether a 
{testTarget
and renam
{testTarget
database re
order to be

4.2.4 C
None o

the databas
that provid
manipulati
approach i

• Un
stub

File stor
BT web serv
able to fetc
rganized in 
ds a new fi
record is as
ting the req
ith a name 

test-script 
tId} is crea

med to matc
tId}" – for t
ecords are 

e able to loc

CBT data
of the CBT 
se through 
de access 
ing user, de
s used for s
it testing is 
bs/mocks/o

Fig

rage stru
vice needs 
h them whe
a simple hie
ile, before s
ssigned a ne
quired folde

based upo
or target 

ated. Finally
ch pattern "
target appli
updated wi

cate these fil

a access 
web servic

a special da
grouped by

evice, test-s
everal reaso
easier since
r a in memo

ure 4-6 Fas

ucture 
to store test
en executin
erarchical fo
storing it in 
ew unique i
ers and nam
on the user
application

y, uploaded 
"uiautomato
cation. Afte
ith the exac
les based on

layer 
ce compone
ata access l
y functiona
script, and t
ons: 
e the connec
ory database

24 

st execution

t-scripts an
ng tests. For
folder structu
n a local file
identifier by

ming the file
r’s ID who
n was uplo

files are pl
or-{testScrip
er placing th
ct file path 
n their meta

ents access 
ayer[63], w

ality. For e
target appli

ction to dat
e that is pre

 mode inter

nd target app
r this purpo
ure which i
e system, a 
y the databa
es. If a fold

issued the
aded, folde
laced into th
ptId}.jar" f
he files into
pointing to

adata in data

the databas
which is com
example, th
ication relat

abase can b
e-populated 

rnals 

plication fil
ose, server’s
s presented 
record is cr

ase and this 
er does not

e request. T
er named t
he folder cr
for test-scrip
o correct loc
o those files
abase. 

se directly, 
mposed of d
here are da
ted informa

be easily rep
with known

les so that C
s local file 

d in Figure 4
reated in th
identifier i

t exist, then
Then, depen
ts-{testScrip
reated in pr
ipt package
cations their
s. This is n

but rather t
data access 
ata access 
ation in dat

placed with 
n data. 

CBT agents
system and

4-4. When a
he database.
s used later

n a folder is
nding upon
ptId} or tt-
revious step
e and "app-
r respective

necessary in

they access
objects[64]
objects for
abase. This

 

s 
d 
a 
. 
r 
s 
n 
-
p 
-
e 
n 

s 
] 
r 
s 



25 
 

• Components using these data access objects are not aware of where the data is coming from, 
so the data could be store in files, memory, or any other medium. 

• This approach provides a better overall structure for the source code. 
Most of the data access objects (DAO) deal with an underlying MySQL database. There are lots 

of tools and libraries to access MySQL and other databases from Java application code, such as 
Hibernate[65], JDBC[66], jooq[67], etc. Hibernate is a very sophisticated and feature rich 
persistence library and is widely used in large scale corporate applications and its API is quite 
different from actual MySQL query language. However, not all MySQL features are supported by 
Hibernate. Jooq on the other hand, is more lightweight product and provides almost direct mappings 
to SQL[68]. Because of this, Jooq was chosen for in CBT web service application and was 
successfully used in DAO’s. 

4.2.5 CBT database 
MySQL[69] was used as the underlying database as it is one of the most popular[70] free 

databases . The database is composed of a number of tables containing information ranging from 
system’s user names to results of test executions. Table 4-1 lists the names of the tables and briefly 
describes what kind of information is stored in this table. 

Table 4-1: CBT MySQL database tables 

Table name Contains

device Information about Android device: serial number, unique ID, state 
(online, offline), the ID of the operating system version, ID of device 
type, and time of last record update 

device_job Information describing the tests to be executed on specific devices, 
including device ID, test-run ID, dates of creation and update, and 
execution status. 

device_job_result Information about the result of a device-job execution: state (passed, 
failed), number of tests run, failed, errors, and ID of the device-job. 

device_sharing Information binding user’s ID and the IDs of devices that have been 
shared with these users 

device_type Device model name, manufacture’s name 

testconfig User ID, name, test-script ID, test-target ID, test-profile ID 

testprofile User ID, mode (fast, normal), name 

testprofile_devices Binds together test-profile IDs with device IDs 

testrun User ID, test-configuration ID, status (waiting, running, finished), and 
dates when it was created and last updated. 

testscript User ID, name, file name, path to file, and list of test class names 

testtarget User ID, file name, and path to file 

user User ID, user name, and password 



26 
 

4.3 CBT agent application 
The CBT agent application was developed to run on various platforms using Java programming 

language. Android SDK must be installed on the machine where the client executes because of the 
use of Android Debug Bridge (ADB) for communication with Android devices. The agent’s main 
tasks include: 

• Detect and register new devices in CBT web service. 
• Monitoring device status and update it in the CBT web service. 
• Poll for new device-jobs's assigned for devices managed by this agent. 
• Download files required for test execution. 
• Install downloaded files on the device in order to prepare for test execution. 
• Execute the tests 
• Collect test results and publish them via the CBT web service. 
The following subsections will describe the application in detail following inner process flow 

(illustrated in Figure 4-7): will start by explaining how an application is started, what configuration 
properties can or must be given, then an explanation of how devices are monitored is given. 

4.3.1 Starting the application 
The CBT agent application requires certain information to be provided by the user prior to 

execution. This information must be present in a file called client.properties and should be 
placed in the same directory as the application itself. Table 4-2 lists and describes the properties 
contained within this file. 

Table 4-2: CBT agent startup properties 

Property name Description
path_adb Path to ADB application which is provided together with Android SDK 

path_workspace Path to a directory which will be used as a workspace for temporarily 
storing files needed for test execution. Files include test-target and test-
script 

uri_server URL to CBT web service in the form: http://address:port 

username User name for authentication 

password Password for authentication 

debug_rest Flag indicated whether debugging information for each HTTP request 
should be output. The possible values are True or False. 

 
Here is an example of such a file’s contents: 

path_adb=/home/dev/adt-bundle-linux-x86_64/sdk/platform-tools/adb 
path_workspace=/home/saulius/Documents/cbt/client_workspace/ 
uri_server=http://127.0.0.1:8081 
username=John 
password=JohnsPassword 
debug_rest=true; 

When correct information is provided in the client.properties file, the application can be 
started from the command line by executing standard Java application launching commands. 
 



 

 

4.3.2 D
A task

connected 
this comm
devices ha
registration
which acts
update me
devices are
new test ru

Device m
k that exec
to the host 

mand lists se
ave already
n procedure
s as a heartb
ssages are 
e actually on
uns and whe

Figure 

monitorin
cutes in a 
system. Thi

erial number
y been regi
e. Otherwis
beat for this
very impor
nline at a pa
en selecting

4-7 CBT ag

ng 
separate th
is is done b
rs of curren
istered and
se this task
s particular 
rtant so that
articular po
devices to 

gent applica

hread perio
by executing
ntly connect
d if a new 
k simply se

device sinc
t the system

oint in time. 
run tests on

ation flow d

odically che
g the ADB c
ted devices.

device is 
nds an upd

ce last updat
m would ha

This inform
n. 

diagram 

ecks what 
command d
. CBT agen
found it in

date request
te time is sa

ave some as
mation is us

devices ar
devices, th
nt keeps trac
nitiates a n
t to CBT w
ave in datab
ssurance of 
sed when pr

27

 

e currently
he output of
ck of which
new device
web service
base. These

f how many
reparing for

7 

y 
f 
h 
e 
e 
e 
y 
r 



28 
 

Since the CBT web service differentiates between devices based on notion of device type (which 
is actually the device name defined by the manufacturer) CBT agent needs to acquire this 
information in order to register new device. The following ADB command is executed to get this 
information from the device: shell cat /system/build.prop. This command returns 
quite a long list of various device build properties. A subset of these properties are: 
... 
ro.build.type=user 
ro.build.user= 
ro.build.host=ABM032 
ro.build.tags=release-keys 
ro.product.model=HTC Desire S 
ro.product.brand=htc_europe 
ro.product.name=htc_saga 
ro.product.device=saga 
ro.product.board=saga 
ro.product.cpu.abi=armeabi-v7a 
ro.product.cpu.abi2=armeabi 
ro.product.manufacturer=HTC 
ro.product.locale.language=hdpi 
ro.wifi.channels= 
ro.board.platform=msm7x30 
... 
 

The properties above were retrieved from a HTC Desire S Android which is evident from 
property named ro.product.model. CBT agent requires values of two highlighted properties 
which are used to define the device type. A request to the CBT web service is issued to acquire a 
unique ID number for defined device type (the ID is composed of the device model and 
manufacturer’s name). The CBT web service searches for and returns an ID of a matching record or 
creates new record and returns its ID. Now the device registration can proceed which sends another 
REST API request that creates the required records in the database this way binding device to the 
user who issues the request. 

4.3.3 Downloading and executing a test package 
CBT agents decide when and which tests to execute by periodically polling the CBT web 

service. When new test job record is found for one of the devices managed by an agent as a 
response to a polling request (response also contains the data required for further actions.) a request 
is sent to download a test package’s metadata and to download the test package itself (a ZIP file 
containing test-script and test-target files). All of the local files will simply be overwritten as no 
sophisticated management of the client’s workspace files was implemented. 

The test package contents are extracted into a workspace directory which is defined by one of 
the properties provided when the agent application was started. In order to execute a test, device 
needs to be prepared. This preparation includes: 

• Copying a uiautomator test-script JAR package to device. This is done by executing the 
ADB command: push <name>.jar /data/local/tmp. 

• Installing the target application by executing the ADB command:  
install -r <target-app-name>.apk. Since the application might already be 
present on the device because of a previous test run, the “-r” option is given which 
instructs ADB to re-install the application if it is already present. This might not always be a 
desired behavior in production level system, but it suits the purpose of this prototype and it 
ensures that the application is freshly installed at the start of each test. 



29 
 

The actual test execution occurs just after the device preparation phase is finished. The ADB 
command: shell uiautomator runtest <name>.jar -c <testclasses> is executed in 
order to start the uiautomator test execution. The agent will explicitly list all of the test classes to be 
executed based upon the device-job metadata. In this way the CBT web server controls exactly 
which test classes are executed. 

The agent does not halt during a test’s execution since each device gets its own thread for all 
operations. This enables tests to be executed in parallel on many devices managed by one agent.  

4.3.4 Test result reporting 
The uiautomator testing framework is in its early stage of development. One evidence of this is 

that test execution result comes in only one form and it is quite hard to understand and parse. The 
result is just a stream of key-value pairs returned via STDOUT. Nevertheless, this information 
includes: 

• Number of executed tests.  
• Class names of executed tests. 
• Number of failed tests.  
• Number of tests with test execution errors. 
• Stack printout in the case of assertion errors.  

In addition, custom key-value pairs can be passed from the test case to the test result output. An 
example of the test result output printout from a uiautomator test executions is presented below: 
INSTRUMENTATION_STATUS: current=1 
INSTRUMENTATION_STATUS: id=UiAutomatorTestRunner 
INSTRUMENTATION_STATUS: class=com.test.TestButton1 
INSTRUMENTATION_STATUS: stream= 
com.test.TestButton1: 
INSTRUMENTATION_STATUS: numtests=1 
INSTRUMENTATION_STATUS: test=test1 
INSTRUMENTATION_STATUS_CODE: 1 
INSTRUMENTATION_STATUS: dp-height=800 
INSTRUMENTATION_STATUS: product=sdk_x86 
INSTRUMENTATION_STATUS: msg=Test was succesfull 
INSTRUMENTATION_STATUS: dp-width=480 
INSTRUMENTATION_STATUS_CODE: -1 
INSTRUMENTATION_STATUS: current=1 
INSTRUMENTATION_STATUS: id=UiAutomatorTestRunner 
INSTRUMENTATION_STATUS: class=com.test.TestButton1 
INSTRUMENTATION_STATUS: stream=. 
INSTRUMENTATION_STATUS: numtests=1 
INSTRUMENTATION_STATUS: test=test1 
INSTRUMENTATION_STATUS_CODE: 0 
INSTRUMENTATION_STATUS: stream= 
Test results for UiAutomatorTestRunner=. 
Time: 9.284 
 
OK (1 test) 
 
 
INSTRUMENTATION_STATUS_CODE: -1 

In order to evaluate if tests passed or failed, the application needs to parse the test result output 
and extract required information. Since this information is not very well structured, regular 
expressions[71] are a great help in this situation. If one or more of the tests failed, then the overall 
test result is considered to be failure, otherwise, an indication of success is sent to the CBT web 



 

service tog
way user c

Functio
and other f
to determin
example, i
different ty
end, result 

In spite
determine 
part of the 

Publish
service and

4.4 Dem
  
 

 
In order to 
application
 An
system. It c

gether with 
can examine
onality of ap
files to the C
ne the resul
if the tests 
ypes of dev
of this test 

e of the tes
if and whic
code that fa

hed test exe
d aggregated

mo appl

test develo
n to test the 
droid demo
consists of t

the overall
e the printou
pplication i
CBT web se
lt(s) of test 

were supp
vices, screen

would prob
t result outp

ch test passe
ailed using 
ecution resu
d. 

lication 

oped system
app were d

o applicatio
two activitie

 result. All 
ut to determ
s limited an
ervice. In so
execution m

posed to ve
nshots could
bably need t
put being u
ed or failed
the stack tra
ults from e

and tes

Figure 4-8

m, an Androi
developed. 
on is a very
es:  

30 

of the test 
mine the cau
nd does not 
ome cases th
manually by
erify that ta
d be made 
to be determ
unstructured
d, as well as
ace back. 

each device

st script

Demo app 

id demo app

y primitive

result outp
se of failure
implement
his addition
y tester exam
arget applic
at certain p

mined by a t
d, it does pr
s informatio

-job are fu

 

screenshots

plication as 

 application

put is sent in
e. 
sending de

nal informat
mining coll
cation’s lay

points of tes
tester exami
rovide all in
on that could

rther proce

s 

well as uiau

n designed 

n its raw fo

evice logs, s
tion would 
lected inform
youts were 
st execution
ining the sc
nformation 
d be used to

essed by the

utomator ba

only for te

ormat - this

screenshots,
be required
mation. For
correct on

n and in the
creenshots. 

required to
o locate the

e CBT web

 

ased test 

esting CBT

s 

, 
d 
r 
n 
e 

o 
e 

b 

T 



 

Buttons of 
separately 
devices tha
Test for th
consists of
script actio
enters the 
of the class
is displaye
 

 
 

• First ac
• Second

first ac
was pre

f the first ac
on multiple

at test the fu
his app was 
f 4 test class
ons: initially
“app list”, l
ses it is, it c
d (clicked b

ctivity displ
d activity (F
ctivity are c
essed. 

ctivity can b
e devices. T
unctionality
developed 

ses each of 
y emulates 
locates dem
clicks one o
buttons nam

F

ays 4 button
Figure 4-8 
clicked and 

e interprete
Therefore, 4
y of specific 

in a way th
f them testin

a user activ
mo app by it

f the button
me) and clos

Figure 4-9 C

ns (Figure 4
right) appe
displays te

ed as differe
4 different t
 button. 
hat would e
ng different 
vating “hom
ts name and
ns, verifies t
ses applicati

CBT demo a

sses 

4-8 left) 
ars when a
xt which di

ent function
tests can be

enable best 
buttons. Fi

me” button
d launches i
that new ac
ion. 

app test flow

any of the 4
iffers depen

ns of applica
e executed i

use of CBT
igure 4-9 pr
that belong
it. Then, de
tivity appea

w 

4 buttons be
nding on wh

ation that ca
in parallel o

T system. T
resents the f
gs to Androi
epending on
ars and that 

31

elonging to
hich button

an be tested
on different

Therefore, it
flow of test
id OS, then

n which one
correct text

 

 

o 
n 

d 
t 

t 
t 
n 
e 
t 





33 
 

5 Discussion 
The main goal of this master’s thesis was to implement a prototype of a community based 

testing platform that exploits Android device sharing possibility for test execution. This goal was 
successfully reached by investigating how testing of Android applications is performed, analyzing 
similar platforms, and implementing a prototype of a web service and client application. While this 
prototype lacks some functionality, it provides the essential core features such as user and device 
management, test distribution, execution, result collection, and presentation of the testing results 
that enable multiple users to share Android devices and executed automated test suites. 

5.1 Performance 
CBT system performance can be measured by measuring performance of certain events. Events 

can be uploading files, downloading files, ordering a test execution and etc. However, most of these 
measurements depend greatly on external factors such as network connection speed, hardware used 
for hosting a web service and running CBT agent, sizes of files that need to be exchanged, load of 
the CPU and other processes that are running in parallel during execution of the test on CBT agent 
and possibly other factors. Due to variable nature to these factors, it is very hard or even impossible 
to measure exact performance of the overall system. However, some of the system performance 
aspects can be measure by making certain assumptions. The most important outcome of 
implemented system is ability to distribute test classes and run them in parallel on different Android 
devices in order to decrease the overall testing time. Therefore, this is the most important 
measurable object as well. Table 5-1 presents measured test execution times when running tests on 
varying number of devices and different execution modes (these results are plotted in Figure 5-1). 
Measurements were collected while running CBT web service, CBT agent and at most 4 Android 
emulators on the same PC (with Intel i5-2540M CPU and 8GB of RAM), therefore, measurements 
them self’s do not reflect production environment, however, can be used for comparison and 
deriving performance gains in different situations. Demo application and test script presented in 
section 4.4 were used as a system payload for measurements.  

The biggest difference can be seen when comparing results from executions on 1 and 2 devices 
in parallel which show a ~44% decrease in testing time. One could assume that if a test is split into 
two classes and executed in parallel on two identical devices, it should take half the total time 
however, measurement results were different.  Figure 5-1 shows that increasing the number of 
parallel executions do not increase execution speed linearly which is the result of certain events 
being sequential, therefore, blocking parallel execution for certain fraction of overall time. 
Amdahl’s law was applied in order to calculate what fraction of the process cannot be parallelized 
and estimates were calculated based derived fraction value. It is important to note that the 
measurements are relative to environment used for testing as well as sizes of files since these 
parameters have major impact on execution time.  

Table 5-1: Performance comparison of different execution modes 

Number of Android devices 
(same type) 

Execution mode Average overall execution time in 
seconds 

1 fast 32 
1 normal 29 
2 fast 17 
2 normal 30 
4 fast 10 
4 normal 31 

 
 



34 
 

 
Figure 5-1 Performance comparison graph 

 
Figure 5-2 Maximum speed-up in relation to test classes 

It was calculate (from measurements presented in Table 5-1) that fraction of the process that is 
sequential is around 0.12 in which case, according Amdahl’s law, maximum speed increase that can 
be achieved increasing parallel execution is equal to  1/0.12=~8 which means with each increase in 
a number of parallel executions, overall time will decrease less. Moreover, in this particular case 
(test class splitting) maximum number of parallel executions is limited by a number of test classes 
in test package. More estimation was done in order to reveal actual potential of the CBT system 

0

5

10

15

20

25

30

35

1 2 3 4

Ti
m

e 
in

 se
co

nd
s

Parallel executions

Fast mode

Normal mode

0.0

2.0

4.0

6.0

8.0

10.0

12.0

14.0

1 2 4 6 8 10 12 14 16 18 20

Sp
ee

d 
up

 c
om

pa
re

d 
to

 si
ng

le
 e

xe
cu

tio
n

Number of parralel executions

4 test classes

8 test classes

12 test classes

16 test classes

20 test classes



35 
 

which is presented in Figure 5-2. This figure presents estimated speed-up of overall test execution 
in relation to number of parallel executions and test classes available for parallelization. In order to 
calculate these estimations, it was needed to assume that fraction of sequential process events 
doesn’t change while number of test classes changes (this is valid since test package size increase 
from having 4 to 20 test cases is unnoticeable compared to packages size of application itself), also, 
that it takes same amount of time to execute each and every test class.  

Overall, performance measurements and derived estimations show that testing time can be 
dramatically decreased. Moreover, the more test classes are available, the more parallel executions 
are possible, and therefore, the higher speed increase is possible. Having tests of longer duration 
would decrease the fraction of the process that is sequential, therefore, increasing maximum speed-
up. 

5.2 Limitations 
The prototype that has been implemented is not production ready. However, this was not a goal 

of this thesis project. It does not employ HTTPS[72] or any other techniques to provide secure 
communication between the systems’ components and users. Since HTTP was chosen as the main 
communication protocol and no custom encoding is used, messages are sent in clear text and can be 
easily reverse engineered in order to find weak spots. At the same time, it is relatively straight 
forward to change from using HTTP to using HTTPS, thus this is an obvious near term 
improvement that could be made in the implementation. 

Comparing this service to other similar services additional limitations can be found. For 
example, it does not provide a way to download screenshots or any other files except for the test 
execution’s results output. Handling logs and screenshots is a necessity when testing UI layouts and 
might be a major obstacle preventing potential users from using this prototype. 

Another limiting factor is the lack of support for other testing frameworks. As was mentioned 
previously, implemented CBT web service only supports uiautomator based tests. This testing 
framework was introduced and is available since Android OS version 4.1, thus the system is 
unusable to test applications running on devices with older versions of the Android OS.  However, 
this limitation is only temporary as more and more devices are being updated to newer Android 
versions. At the time of writing, approximately 55% of all Android devices are already using 
version 4.0 or higher[73]. 

Most Android tools are compatible with three most popular operating systems (Windows, 
Linux, and OSX). Development of any new tools must take this multiplatform capability into 
consideration and should continue to support all these platforms, in order to reach all potential users 
(thus attracting a larger number and variety of volunteers who will share their Android devices for 
testing). CBT agent was built using Java so theoretically it run across a wide variety of platforms, 
however, development and testing was performed on Linux Ubuntu[74] only. Nevertheless, no 
major changes should be required in order to adjust it to run on different operating systems. The 
CBT web service was also developed on Ubuntu, but the platform for the CBT web service is not as 
important since it will most likely be deployed in datacenters which usually have no problems 
hosting a Linux application. 

No measurements were made to determine the maximum number of Android device that one 
CBT agent is capable of handling due to the need to have a large number of Android devices to test 
with. However, it successfully supported 5 Android emulators and 2 hardware devices. The same 
computer was also hosting the web service and database applications at the same time. These tests 
were performed on a laptop equipped with an Intel Core i5-2540M CPU and 8GB of RAM. 
Possible factors limiting the maximum number of devices supported by a CBT agent could be 
limitations of the Android debug bridge application (maximum number of devices supported by 
ADB is not documented). Moreover, multiple instances of ADB application could be started on the 
same computer, this way minimizing the effect of potential bottleneck. 



36 
 

The CBT web service was built to be scalable and does not have a hardcoded maximum number 
of CBT agents, Android devices, or system users defined. Since this web service uses local file 
system to store tests & applications and MySQL database for real-time data and metadata, there 
could be a limitation due to the available free space for local file storage and the database. 

No other major limitations are known to the author at the time of writing. 
 

5.3 Required reflections 
The result of this master thesis is a working prototype of the system that enables sharing of 

Android OS based devices within developer community, therefore, providing cheaper and faster 
ways of executing automated test scripts of physical and emulated devices. Cheaper, because 
service that could be deployed based on developed prototype would not need to purchase real 
physical devices, but rather, community member would give access to their owned devices. 

One of the positive social effects is increased developer satisfaction by being able to execute 
tests script on real physical devices much cheaper than using similar services. Service also opens a 
possibility to radically improve feature tests by employing parallel executions on identical devices. 
Ability to execute tests faster would lead to increased quality of application which improves overall 
user experience. 

Utilization of existing Android devices rather than purchase of new one dramatically 
decreases overall of costs of mentioned service which is a positive economic effect for developer 
community as well as service providers. 

Malicious usage of this service opens up possibility to retrieve private information from 
devices that were made available to malicious user, however, further system improvements could 
partially solve this problem, but implemented prototype relies on a fact that developers would trust 
each other or would not keep any private information on devices that have been share with other 
developers. 



37 
 

6 Conclusions and future work 
This chapter discusses possible future improvement as well as presents final conclusions. 

6.1 Conclusion 
One of the main achievements was a fast execution mode that enables testers to radically reduce 

the amount of test execution time by splitting a test suite into multiple tests, distributing these tests 
over many devices of the same type and aggregating the final results. 

The implemented platform is a working prototype. However, it is usable as a solid base for 
future developments and experiments. Further improvements, mainly in the area of security, need to 
be made in order to bring it closer to a production level when the system could be publicly 
deployed. 

This was a challenging and interesting project since it involved research and development in 
many different areas, ranging from writing Android applications and test scripts to developing a 
console Java application, followed by implementation of a full blown web service interfacing a 
database and providing a web-based user interface. 

An analysis of similar services revealed that no service offers the same core feature of prototype 
platform, i.e., none leverage existing Android devices by enabling device sharing by the platform’s 
users for automated test execution. However, the maturity of these competing services makes it hard 
to produce an adequate product during the time and resources which were be devoted for this 
master’s thesis. 

The result of this project can be used to implement and deploy a service that would greatly 
reduce the costs of testing Android applications for compatibility with many different types of 
devices, hence lowering the barrier for small companies and individual developers to produce high 
quality Android applications that work across devices with different Android OS versions, screen 
sizes, and hardware components. 

6.2 Future work 
The results of the work carried out during this master’s thesis project should provide a good 

base for future developments. Since the prototype system is in working condition, improvements 
could be made step by step, while keeping the system functional and usable. Some of the areas for 
future work are described in the following subsections. 

6.2.1 Security 
One of the most important areas to improve in order to make the CBT platform closer to 

production ready is to improve overall system security. It should be improved in order to: 
• Ensure secure communication between the web service and clients. Theoretically, 

employing the HTTPS protocol would be enough to ensure that messages could not be 
easily intercepted or read (there of course should be mutual authentication of the web 
service and the clients).  

• Improve the authorization mechanism in order to make ensure that only authenticated users 
can modify only their own data. 

• Protect devices from malicious applications. Since developers are sharing their own devices 
that might contain private data, devices must be protected from malicious applications and 
harmful test scripts. This is quite a complicated problem to solve and various techniques 
could be employed. One of these techniques would be to run applications and tests on 
dedicated devices, either on physical or virtualized emulators and analyze the code’s 
behavior in order to detect malicious access to data. Only after passing initial check, tests 
would be uploaded and executed on user devices. Additionally, a mechanism could be 



38 
 

introduced that enables developers to set permissions[75] that applications being 
downloaded to their devices must conform to. The CBT web service could analyze these 
settings and exclude applications that do not conform to the permission set by the user 
sharing his device. Another or complimentary approach could be to back-up all the 
information on device and reset it to factory defaults before making it available for testing. 
Back-up time would depend on device: assuming that device has 32GB of internal memory 
rated as Class 10 by SD[76] standard (around 10MB/s write and 30MB/s read speed) and a 
USB[77] 2.0 connection it would take around 20min for back-up and 3 times that (1 hour) to 
restore the device since write speeds are usually much slower. However, assuming wider 
spread of USB 3.0 and faster UHS-I type memory (~ 100MB/s) introduction in Android 
devices, back-up time could be decreased to 6 minutes which might be a perfectly 
acceptable time if device is being connected to CBT system for a longer period of time, for 
example, during the night. 

• Protect the CBT web service and its file storage. In the case of unauthorized actions, both 
applications and tests stored on the system could be stolen or modified. This might result in 
loss of users intellectual property, since ideas and technology used in their applications 
could be revealed without their consent. Similar event would also destroy the reputation of 
such service and would greatly decrease the number of potential users. Encrypting files 
stored within the system would probably be a good idea, along with putting more effort into 
intrusion detection & prevention. 

6.2.2 Missing features 
In order to improve the prototype to a level that could compete with existing similar (and more 

expensive) services, CBT system must provide at least functionality that is considered to be 
essential functionality based on analysis of potential competitors, this functionality includes: 

• Add a feature to be able to download screenshots made by the testing framework. There are 
no known technical obstacles for implementing this feature. Moreover, existing 
infrastructure already supports this functionality. 

• Add feature to download device logs produced during test execution. 
• Add feature to collect device resource state statistics during execution. This functionality is 

not presently available in all similar services, but would definitely improve the application’s 
usability. 

• Add support for additional testing frameworks. Currently only uiautomator based tests are 
supported and this is a relatively new framework which has not achieved high popularity 
yet. The Android instrumentation testing framework seems to be most widely supported 
framework, as there are more frameworks built on top of it (such as Robotium and 
Calabash). 

• Add the possibility to integrate CI tools such as Jenkins. Since tests provide the best value 
when executed automatically, it is highly desirable to eliminate additional human effort for 
verification of an application. It is important to provide a means of automatically uploading 
tests and applications, as well as initiating test execution. This is already possible as the CBT 
web service can be operated using a Restful API. However, it can be quite complicated to 
implement the client side for automating tasks, therefore a special command line client or 
plug-ins for Jenkins could be implemented in order to take the automation to next level. 

6.2.3 Coverage 
The prototype implementation (of the CBT web server) was only tested on Linux OS and only 

with Android devices. Theoretically this code could be used on other desktop OSs that are 
supported by the Android SDK this way increase the number of potential users. However, specific 
components were design only for executing tests on Android devices. This makes this system 
Android specific, but in general, this kind of system could be adopted for other mobile platforms 



39 
 

such as Microsoft’s Windows Phone, Blackberry, Apple’s iPhone and iPad. Since all of these 
systems suffer from varying degrees of fragmentation , developers would benefit from being able to 
run tests on devices of their friends rather than being forced to buy expensive hardware or use cloud 
services. 

6.2.4 Business models 
There are various business models that could be used in order pay the bills for the development, 

maintenance, and hosting of the CBT platform’s services. These models need to be carefully 
thought through in order to choose one that fits this system best and would keep the service running 
and expanding. 

One of the options would be to keep the platform free for basic use, but charge for value added 
features, such as increased security or private deployments for corporate clients. Organizations 
could leverage existing devices of their employees and for privacy reasons might want to use a 
privately deployed system. This business model could be further explored in order to find what 
other requirements an organization might put on the system. 

Another potential business model would be to use a point system where users get points for 
sharing their devises and points are expended for executing tests on the device provided by other 
users. Potentially, people might be interested in giving access to their devices not only to their 
friends, but to anyone who is prepared to pay for it. 

6.2.5 Avoiding the need for attaching the Android device to a 
computer 

Ideally, it would be desirable that the CBT agent was running inside the Android device, thus 
avoiding the need for a computer running the android debug bridge in between the CBT web service 
and the CBT agent. However, based on available information, Android does not provide any means 
of installing applications without manual intervention other than via the android debug bridge. This 
is a show stopper for automatically downloading applications and executing tests via some other 
means. Perhaps in the future this possibility will open-up. However until then, there must always be 
some way to perform manual testing or testing applications that are already installed on device. 
These possibilities could be explored in order to widen the scope of the platform’s use cases. 

 





41 
 

References 
[1] ‘APK (file format)’, Wikipedia, the free encyclopedia, 30-January-2013. [Online]. Available: 

http://en.wikipedia.org/w/index.php?title=APK_(file_format)&oldid=535636731. [Accessed: 
03-February-2013]. 

[2] ‘Android home page’, Android Home page. [Online]. Available: http://www.android.com/. 
[Accessed: 12-January-2013]. 

[3] ‘Gartner Mobile Sales report Q3 2012’. [Online]. Available: 
http://www.gartner.com/newsroom/id/2237315. [Accessed: 29-January-2012]. 

[4] ‘Linux official web page’. [Online]. Available: http://www.linux.org/. [Accessed: 29-January-
2012]. 

[5]  Y. D. Liang, Introduction to JAVA programming: comprehensive version. Boston: Prentice 
Hall, 2011, ISBN: 9780132130806 0132130807. 

[6]  B. W. Kernighan and D. M. Ritchie, The C programming language / ANSI C Version. 
Englewood Cliffs, N.J.: Prentice Hall, 1988, ISBN: 0131103628 : PAP 9780131103627 : PAP. 

[7]  S. Prata, C++ primer plus. Upper Saddle River, NJ: Addison-Wesley, 2012, ISBN: 
9780321776402  0321776402. 

[8] ‘Android NDK | Android Developers’. [Online]. Available: 
http://developer.android.com/tools/sdk/ndk/index.html. [Accessed: 29-January-2013]. 

[9] ‘Android - supporting multiple screens’. [Online]. Available: 
http://developer.android.com/guide/practices/screens_support.html. [Accessed: 29-January-
2012]. 

[10] ‘Software testing’, Wikipedia, the free encyclopedia, 01-February-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=Software_testing&oldid=535990302. [Accessed: 02-
February-2013]. 

[11]  D. Torres Milano, Android application testing guide build intensively tested and bug free 
Android applications. Birmingham, U.K.: Packt Pub., 2011, ISBN: 9781849513517  
1849513511  1849513503 9781849513500, Available atz http://site.ebrary.com/id/10482255. 

[12] ‘Welcome to Jenkins CI! | Jenkins CI’. [Online]. Available: http://jenkins-ci.org/. [Accessed: 
04-February-2013]. 

[13] ‘How Do Top Android Developer QA Test Their Apps ?’ [Online]. Available: 
http://techcrunch.com/2012/06/02/android-qa-testing-quality-assurance/. [Accessed: 27-
January-2013]. 

[14] ‘Automated Testing Tool for Android - Testdroid’. [Online]. Available: http://testdroid.com/. 
[Accessed: 03-February-2013]. 

[15]  P. M. Duvall, Continuous integration: improving software quality and reducing risk. Upper 
Saddle River, NJ: Addison-Wesley, 2007, ISBN: 9780321336385  0321336380. 

[16] ‘Google’. [Online]. Available: http://www.google.com/about/company/. [Accessed: 11-June-
2013]. 

[17] ‘Open Handset Alliance’. [Online]. Available: http://www.openhandsetalliance.com/. 
[Accessed: 03-February-2013]. 

[18] ‘Exploring the SDK | Android Developers’. [Online]. Available: 
http://developer.android.com/sdk/exploring.html. [Accessed: 03-February-2013]. 

[19] ‘Android API: Activity’. [Online]. Available: 
http://developer.android.com/reference/android/app/Activity.html. [Accessed: 02-February-
2013]. 

[20] ‘Android API: Intent’. [Online]. Available: 
http://developer.android.com/reference/android/content/Intent.html. [Accessed: 03-February-
2013]. 

[21] ‘GUI Architectures’. [Online]. Available: 
http://martinfowler.com/eaaDev/uiArchs.html#ModelViewController. [Accessed: 30-June-



42 
 

2013]. 
[22] ‘Android API: Bundle’. [Online]. Available: 

http://developer.android.com/reference/android/os/Bundle.html. [Accessed: 03-February-
2013]. 

[23]  N. Mirzaei, S. Malek, C. S. Păsăreanu, N. Esfahani, and R. Mahmood, ‘Testing android apps 
through symbolic execution’, ACM SIGSOFT Software Engineering Notes, vol. 37, no. 6, p. 1, 
November 2012, DOI:10.1145/2382756.2382798. 

[24] ‘Android Instrumentation class’. [Online]. Available: 
http://developer.android.com/reference/android/app/Instrumentation.html. [Accessed: 11-June-
2013]. 

[25] ‘JUnit’. [Online]. Available: http://junit.org/. 
[26] ‘ADT Plugin | Android Developers’. [Online]. Available: 

http://developer.android.com/tools/sdk/eclipse-adt.html. [Accessed: 03-February-2013]. 
[27] ‘ActivityUnitTestCase | Android Developers’. [Online]. Available: 

http://developer.android.com/reference/android/test/ActivityUnitTestCase.html. [Accessed: 04-
February-2013]. 

[28] ‘ActivityInstrumentationTestCase2 | Android Developers’. [Online]. Available: 
http://developer.android.com/reference/android/test/ActivityInstrumentationTestCase2.html. 
[Accessed: 04-February-2013]. 

[29]  R. Patton, Software Testing, 2nd ed. Sams Publishing, 2005, ISBN: 0672327988. 
[30] ‘Android UI testing’. [Online]. Available: 

http://developer.android.com/tools/testing/testing_ui.html. [Accessed: 02-February-2013]. 
[31] ‘Android API: UiAutomatorTestCase’. [Online]. Available: 

http://developer.android.com/tools/help/uiautomator/UiAutomatorTestCase.html. [Accessed: 
02-February-2013]. 

[32] ‘Robotium - Android test framework’. [Online]. Available: 
http://code.google.com/p/robotium/. [Accessed: 12-January-2013]. 

[33] ‘Maven - software project management tool’. [Online]. Available: http://maven.apache.org/. 
[Accessed: 11-June-2013]. 

[34] ‘Ant - build manager’. [Online]. Available: http://ant.apache.org/. [Accessed: 11-June-2013]. 
[35] ‘Gradle - Build Automation Evolved’. [Online]. Available: http://www.gradle.org/. [Accessed: 

25-May-2013]. 
[36] ‘The Jython Project’. [Online]. Available: http://www.jython.org/. [Accessed: 03-February-

2013]. 
[37] ‘ARM architecture’, Wikipedia, the free encyclopedia, 01-February-2013. [Online]. Available: 

http://en.wikipedia.org/w/index.php?title=ARM_architecture&oldid=535993691. [Accessed: 
03-February-2013]. 

[38] ‘Code coverage’, Wikipedia, the free encyclopedia, 09-May-2013. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=Code_coverage&oldid=554368745. [Accessed: 26-
May-2013]. 

[39] ‘Xamarin Test Cloud’. [Online]. Available: http://xamarin.com/test-cloud. [Accessed: 11-June-
2013]. 

[40] ‘PerfectoMobile’. [Online]. Available: http://www.perfectomobile.com/. [Accessed: 12-
January-2013]. 

[41] ‘KeynoteDeviceAnywhere’. [Online]. Available: http://www.keynotedeviceanywhere.com. 
[Accessed: 11-June-2013]. 

[42] ‘AppLover’. [Online]. Available: http://applover.me/. [Accessed: 11-June-2013]. 
[43] ‘uTest’. [Online]. Available: http://www.utest.com/. [Accessed: 12-January-2013]. 
[44] ‘CloudMonkey’. [Online]. Available: https://www.gorillalogic.com/cloudmonkey. [Accessed: 

11-June-2013]. 
[45] ‘cisimple’. [Online]. Available: https://www.cisimple.com/. [Accessed: 04-February-2013]. 
[46] ‘Calabash-android’, GitHub. [Online]. Available: https://github.com/calabash/calabash-



43 
 

android. [Accessed: 12-January-2013]. 
[47] ‘Tit for tat’. [Online]. Available: http://en.wikipedia.org/wiki/Tit_for_tat. [Accessed: 28-

January-2012]. 
[48] ‘Representational state transfer’, Wikipedia, the free encyclopedia, 17-May-2013. [Online]. 

Available: 
https://en.wikipedia.org/w/index.php?title=Representational_state_transfer&oldid=555343371. 
[Accessed: 19-May-2013]. 

[49] ‘Guice dependency injection’. [Online]. Available: https://code.google.com/p/google-guice/. 
[Accessed: 11-June-2013]. 

[50] ‘Jetty - Servlet Engine and Http Server’. [Online]. Available: http://www.eclipse.org/jetty/. 
[Accessed: 18-May-2013]. 

[51] ‘Jersey official web page’. [Online]. Available: https://jersey.java.net/. [Accessed: 11-June-
2013]. 

[52] ‘MD5’, Wikipedia, the free encyclopedia, 21-May-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=MD5&oldid=556112902. [Accessed: 25-May-
2013]. 

[53] ‘HTTP cookie’, Wikipedia, the free encyclopedia, 24-May-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=HTTP_cookie&oldid=555260389. [Accessed: 25-
May-2013]. 

[54] ‘HTML’, Wikipedia, the free encyclopedia, 25-May-2013. [Online]. Available: 
https://en.wikipedia.org/w/index.php?title=HTML&oldid=556707822. [Accessed: 25-May-
2013]. 

[55] ‘Hypertext Transfer Protocol’, Wikipedia, the free encyclopedia, 24-May-2013. [Online]. 
Available: 
http://en.wikipedia.org/w/index.php?title=Hypertext_Transfer_Protocol&oldid=555926626. 
[Accessed: 25-May-2013]. 

[56] ‘JSON official web page’. [Online]. Available: http://www.json.org/. [Accessed: 11-June-
2013]. 

[57] ‘JSON’, Wikipedia, the free encyclopedia, 25-May-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=JSON&oldid=556703766. [Accessed: 25-May-
2013]. 

[58] ‘JAR (file format)’, Wikipedia, the free encyclopedia, 31-January-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=JAR_(file_format)&oldid=533322895. [Accessed: 
03-February-2013]. 

[59] ‘Java bytecode’, Wikipedia, the free encyclopedia, 28-April-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=Java_bytecode&oldid=546979611. [Accessed: 20-
May-2013]. 

[60] ‘DEX format’. [Online]. Available: http://source.android.com/tech/dalvik/dex-format.html. 
[Accessed: 11-June-2013]. 

[61] ‘DexFile in Android API’. [Online]. Available: 
http://developer.android.com/reference/dalvik/system/DexFile.html. [Accessed: 11-June-
2013]. 

[62] ‘Smali library for Android’s dec format’. [Online]. Available: 
https://code.google.com/p/smali/. [Accessed: 11-June-2013]. 

[63] ‘Data access layer’, Wikipedia, the free encyclopedia, 24-February-2013. [Online]. Available: 
http://en.wikipedia.org/w/index.php?title=Data_access_layer&oldid=538071771. [Accessed: 
25-May-2013]. 

[64] ‘Core J2EE Patterns - Data Access Object’. [Online]. Available: 
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html. [Accessed: 11-June-
2013]. 

[65] ‘Hibernate - ralational persinstance’. [Online]. Available: http://www.hibernate.org/. 
[Accessed: 11-June-2013]. 



44 
 

[66] ‘JDBC’. [Online]. Available: http://www.oracle.com/technetwork/java/overview-141217.html. 
[Accessed: 11-June-2013]. 

[67] ‘JOOQ’. [Online]. Available: http://www.jooq.org/. [Accessed: 11-June-2013]. 
[68] ‘SQL’, Wikipedia, the free encyclopedia, 24-May-2013. [Online]. Available: 

http://en.wikipedia.org/w/index.php?title=SQL&oldid=556630776. [Accessed: 25-May-2013]. 
[69] ‘MySQL official web page’. [Online]. Available: http://www.mysql.com/. [Accessed: 11-June-

2013]. 
[70] ‘Database engine rankings’. [Online]. Available: http://db-engines.com/en/ranking. [Accessed: 

11-June-2013]. 
[71] ‘Regular expression’, Wikipedia, the free encyclopedia, 22-May-2013. [Online]. Available: 

http://en.wikipedia.org/w/index.php?title=Regular_expression&oldid=556241919. [Accessed: 
23-May-2013]. 

[72]  A. Freier, P. Kocher, and P. Karlton, ‘The SSL Protocol Version 3.0’. [Online]. Available: 
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00. [Accessed: 11-June-2013]. 

[73] ‘Android dashboards’. [Online]. Available: 
http://developer.android.com/about/dashboards/index.html. [Accessed: 11-June-2013]. 

[74] ‘Ubuntu official web page’. [Online]. Available: http://www.ubuntu.com/. 
[75] ‘Android Permissions’. [Online]. Available: 

http://developer.android.com/guide/topics/security/permissions.html. [Accessed: 11-June-
2013]. 

[76] ‘Home - SD Association’. [Online]. Available: https://www.sdcard.org/home/. [Accessed: 30-
June-2013]. 

[77] ‘USB.org - Welcome’. [Online]. Available: http://www.usb.org/home. [Accessed: 30-June-
2013]. 

 



45 
 

Appendix 
 

Source code 
Source code of all applications and components that were developed during this work is 

available in GitHub. Links to repositories are provided in Table 4. 

Table 4 Links to source code 

Repository description Link to Git repository 
CBT web service https://github.com/noiseoverip/cbt-ws 
Data access objects used by CBT web service 
and CBT agent 

https://github.com/noiseoverip/cbt-ws-dao 

CBT agent  https://github.com/noiseoverip/cbt-client 
Test (uiautomator) for demo Android application 
used for testing CBT system 

https://github.com/noiseoverip/cbt-example-app-
uiautomator 

Demo Android application https://github.com/noiseoverip/cbt-example-app 
 

Test speed-up calculations 
Amdahl’s law speed-up formula: ܶ(݊) = ܶ(1) ቀܤ +	ଵି஻௡ ቁ ; n – number of parallel executions, B- fraction of sequential process. 

Since we have durations of execution with 1 device which is roughly 30 seconds (Figure 5-1), 2 
devices – 17 seconds and 4 devices - 10 seconds, we can calculate the sequential process fraction. 
We can derive formula of fraction ܤ =	 ௡∗்(௡)்(ଵ)∗(௡ିଵ) − ଵ௡ିଵ. Than we can calculate that B~0.13 in 

case of 2 parallel execution and B=0.11 in case of 4 parallel executions. These numbers are 
quite similar so we can average them. Since we do not care about precision B=0.12 was taken as an 
average value and used in further calculations. Having this, we can say that it takes 3.6 seconds 
(12% of 30 seconds) to fetch and install required files and it takes 6.6 (30 seconds – sequential part 
and divide by 4 since it was executing 4 tests) seconds to execute one test. Now we can calculate 
estimated B for different number of test classes: 

Table 5 Estimations of sequential process fraction 

Number of test classes Sequential process fraction 
4 0.12 
8 0.06383 

12 0.043478 
16 0.032967 
20 0.026549 

Since we have fractions of sequential process estimates, Amdahl’s law can be used to estimate 
the potential speed-up. 



www.kth.se

TRITA-ICT-EX-2013:133


