Community based testing

o

L,
SAULIUS ALISAUSKAS EFKTHS

{E VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree project in
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden



Community based testing

Saulius Alisauskas

saulius@kth.se
Master thesis draft

Examiner:
Professor Gerald Q. Maguire Jr.

School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden

30 of June 2013






Abstract

Currently, Android is the most popular operating system for mobile devices, but at the same
time, the market for Android devices is heavily fragmented in terms of available versions, types of
devices, models, form-factors and manufactures. As a result, it is virtually impossible to test
applications on all existing devices. Testing on a set of the most popular devices is more realistic
but can be expensive, which makes it much more difficult for individual developers to create high
quality applications.

Fortunately, each Android application developer around the world typically owns at least one
device which is not used all the time and could be shared with other developers. This way, a
community shared pool of Android devices can be created for automated test execution.

This master thesis reviews existing testing frameworks that are used for testing Android
applications and analyzes existing services that in one way or another try to solve the problem of
providing affordable ways of performing testing on real devices. Main result of this thesis project is
a working distributed community based testing service that enables developers to easily connect,
share, and execute automated test cases on devices that use Android operating system. Moreover, it
provides ways of decreasing overall test execution time by executing parts of tests in parallel on
multiple devices and aggregating received results.






Sammanfattning

For narvarande dr Android det mest populéra operativ system for mobila enheter, men samtidigt
marknaden for Android-enheter dr starkt splittrat 1 fraga om tillgdngliga versioner, typ av enhet,
modeller, form-faktorer, och tillverkar. Som ett resultat, 4r det praktiskt taget omojligt att testa
applikationer pé alla befintliga enheter. Testa pa en uppsittning av de mest populédra produkter ar
realistiskt men kan vara dyrt, vilket gor det mycket svdrare for enskilda utvecklare att skapa
hogkvalitativa ansokningar.

Lyckligtvis dger varje Android ansdkan utvecklare 1 vdrlden typiskt tminstone en enhet som
inte anvénds hela tiden och kan delas med andra utvecklare. P4 sé sétt kan en gemenskap delad pool
av Android-enheter skapas for minst automatiserade test exekvering.

Detta examensarbete gir igenom géllande testning ramverk som anvénds for att testa Android
applikationer och analyser liknande tjanster som pé ett eller annat sétt forsoka 16sa problemet med
att tillhandahalla prisvdrda sétt att utfora tester pa riktiga enheter. Huvudsakliga resultat av detta
examensarbete dr en fungerande distribuerad gemenskap baserad testning tjanst som gor det mojligt
for utvecklare att enkelt ansluta, dela och exekvera automatiserade testfall pad enheter som anvénder
operativsystemet Android. Dessutom ger det mdjligheter att accelerera dvergripande testexekvering
tid genom att utfo!ra delar om tester parallellt pa flera enheter och sammanstélla erhallna resultat.

il






Acknowledgments

First of all I want to thank the love of my life Vaida for support, encouragements and for
those numerous sacrificed evenings that were meant to be spent together. I wouldn’t have finished
this without you!

Also, this work wouldn’t have been that much fun without great ideas and suggestions from
Professor Gerald Q. Maguire Jr.






Table of contents

Y 015 = Vo [
Y= T = T = 1 T T iii
ACKNOWIEAGIMENTS . ..ottt \%
Table Of CONTENTS . ... e eeeees vii
I ESY 0 T [T = viii
LIST Of Bables e e IX
List of Acronyms and AbBreviatioNS.........coviiiiiiiiiii i e Xi
O 1 0 1o T LT3 T o 1
P22 = - 1o 1o | o 1 U o 3
D220t R Y o T e T I 1 T 3
2.2  Testing Android appliCatioNS. ... ...t 5
2.2.1 UnNit and fUNCHION tESTING .. ...t aaees 5
2.2.2 System and user interface (Ul) testing (uiautomator) ........ocooiiiiiiiii i, 6
2.2.3 (0] o T 1 L5 o o 7
2.2.4 Y To] ] S(= Y4 81 ] = S 7
2.2.5 Packaging and deploying a tesSt ProjJect ........oooi i 7
2.2.6 DT U | 1 o T == 8
2.2.7 Y g T o o =1 o ¢ 111 = ] 8
2.3 Continuous integration, testing automation ... ... ...ttt 9
2.4 EXISTING SIMIlar SEIVICES. .. ettt aaaeaaeeens 9
B MO . 13
L N = 1Y £ 1 15
4.1 General CBT SYSteIM OVEIVIEW . ...t eeaeaaaeeees 15
4.2 (08 = IRV L= o BT =] V4o = 16
4.2.1 104 2 I U TSY= T gl e ) =T o o 17
4.2.2 (O I o g 1 =T =T = 21
4.2.3 CBT web service’s iNNer WOrKINGS ...ttt e e e e e eaeanas 22
4.2.4 CBT data @CCeSS lAY T ...ttt e aaaaas 24
4.2.5 L0 2 I - = o 1= 1= = 25
4.3 CBT agent application .....oooiiiii e ettt 26
4.3.1 Starting the appliCation ... 26
4.3.2 [TV o =3 [0 11 o) g o o 27
4.3.3 Downloading and executing a test package.........cooviiiiiiiiiiiiiii i 28
4.3.4 =S A =TT 1 A =] o o] o 1] T T 29
4.4 Demo application and test SCript.......oovviiiiiiiii e 30
T 5 1 o1 1] 0] o S 33
51 o 0 0 = o = 33
5.2 T g T = X T 1 35
5.3 Required refleCtioNS .....oooiiii ittt eeeeaeeas 36
6 Conclusions and fULUIe WOTIK ... e aaaaas 37
6.1 L0 od 1153 T o 0 37
6.2 FULUE WOTK e 37
6.2.1 ST o1 B 1 PP 37
6.2.2 MiISSING EATUIES ...ttt e aaee e 38
6.2.3 L0701 T =T [ 38
6.2.4 BUSINESS MOAEIS ...ttt aanans 39
6.2.5 Avoiding the need for attaching the Android device to a computer .................... 39
ST 1= =] T 41
2 ] 0 1= T |G 45
Y011 o= I o o T = T 45
Test speed-up calculations ... ... e 45



List of figures

Figure 2-1 Activity lifecycle in ANAroid OS .......cccveiiiiiiriieeie ettt see e e b e se e seessaesnseenseenseas 4
Figure 2-2 Android testing framework hooks diagram.............cccceeciieiiieiiiiiiniene e 5
Figure 4-1 Community bases testing SyStem COMPONENLS. .......cueervierereeerrrerreeeirieesreesreeesseesseessseessssessssees 15
Figure 4-2 CBT web service block dia@rami..........c.cccvieriieriierieiieiie e ereereereeseesteesseesenessseesseessesssessseesssenens 16
Figure 4-3 CBT web service front-end sequence diagram ...........ccveveerieeirriieeiieeieereeseesee et 18
Figure 4-4 Test file UPload fIOW ......coouiiiiiiiiie ettt e e e st e e etbe e s beeeebeessseesssseesnseeas 20
Figure 4-5 DEX fI1€ StIUCTUIC ... .ccuviivieiieiieiieiiestte st et et eeteeteesteesttestaeseseesseessaesseessaesssesssesssessseassessseesssensns 23
Figure 4-6 Fast execution Mode INTEINAIS............evviriiiiieeiieiieseesee e ete ettt ere et e s eseeeseaesnseenbeesseesseeseennns 24
Figure 4-7 CBT agent application flow dia@ram ...........cceereerieriiiieiiieieeieeie ettt sttt 27
Figure 4-8 Demo app SCTEENSNOLS ......ecviiiieiiiiieitiesieeete ettt ettt e s a e s b e ssbeesseesbeeseesssessaesssesssessseesseesssensns 30
Figure 4-9 CBT demo app teSt flOW .....c.eeciierieiieiiicieeie ettt ettt ettt ste et eseaesnsessseenseesseessaesnennns 31
Figure 5-1 Performance compariSOn Graph ..........cccoocuiiiieiiiiiieiiecieeeee ettt ettt et e 34
Figure 5-2 Maximum speed-up in relation tO teSt ClAaSSES........c.ocveviiiieiee e 34

viii



List of tables

Table 2-1 Comparison of SIMilar EXiStING SEIVICES.....cccuvierirererieeiiierieerrieerreesreesreeessreesseessseeessseesssesssseeenes 10
Table 4-1: CBT MySQL database tabIES ........cccuevvueiiiiiiiieiieieeieerieesiteseesereseaeeressreereesseesseesssesssesssesssesssessses 25
Table 4-2: CBT agent StartUp PrOPEITIES.....ccuvereereerrerireereeseeseesseesseesseesssessessessseesseessessseesssesssesssesssesssesssens 26
Table 5-1: Performance comparison of different execution modes...........ccceveevierieriirriieeiieeieeeeeeseeeeeen 33
Table 2 Links t0 SOUTCE COAE ... .eeiiuiriiiiitieieeie ettt ettt ettt ettt ettt ettt et e et et e s e eseensesteeseeneesneeneenseeneeneas 45
Table 3 Estimations of sequential Process fraCtion...........ccuecverierierienienieeie et e e sre e sre s eseenseeeees 45

X






List of Acronyms and Abbreviations

ADB
ADT

API

APK

CBT

CBT agent
CBT RIP
CBT web service
CI

CPU

DEX

GPU
HTTP
HTTPS

ID

IDE

JAR

MVC
MWC

oS

SD
Test-script
Test-profile

Test-configuration
Test-target

Ul

Android debug bridge

Android development kit/plug-in for Eclipse
Application programming interface

Android package[1]

Community based testing

Community based testing agent

Community based testing restful interface protocol
Community based testing web service

Continuous integration

Central processing unit

Dalvik executable

Graphics processing unit

Hypertext transfer protocol

Hypertext transfer protocol secure

Identifier

Integrated development environment

Java archive

Model-view-controller software architecture pattern
Model — view — controller
Operating system

Secure digital

Compiled test code packaged into a known format (JAR)
Information about types of devices to executed tests on and execution

mode selection (normal, fast)

Information aggregating test-script, test-profile and test-target
Information about Android application to be tested, may refer to actual

application.
User interface

X1






1 Introduction

Android[2] is the most popular[3] operating system for mobile devices. It is based on a modified
Linux[4] kernel. Applications run on a Java[5] compatible framework. Performance greedy
applications, such as games, can be written in C/C++[6, 7] using NDKJ[8]. Android was built to
support various types of devices differing in technical characteristics, screen sizes, pixel densities
and screen resolutions, sensors, input devices and etc. Since possible differences in device
properties have been thought through from beginning, it is rather easy[9] to write applications that
can adapt to all possible variations, although that definitely makes development much more
complicated compared to developing for only one device. Moreover, varying device properties
complicate application testing process as well. Android OS is constantly improving, bringing a
handful of features not only with every major release (such as 2.0, 3.0, 4.0), but also with minor
version updates. This is great for users since they get improved software more frequently, but it
makes developers life harder due to the addition development time needed to support new system
features, while at the same time, keeping compatibility with older versions of the OS.

In order to develop high quality applications, proper testing of application features on various
types of hardware configurations must be performed before releasing an application to the public
Even after the application is released, changes and improvements to the code will be necessary and
testing will have to be repeated. Depending on the application, manual testing might be sufficient.
However, most of applications today are quite complex and manual testing is not suitable simply
because it will take too much time to re-test the whole application after every change. Therefore,
many developers use testing automation tools and continuous integration tools. Automated test
scripts can be written to test applications at different levels: unit tests perform testing of single
components such as classes, while functional tests make sure that certain functionality is provided
by higher level components. The system level testing (in case of Android applications) encompasses
testing the functionality from a user interface perspective. Considering Android’s fragmentation in
terms of the number of different device types and numbers of different versions of the operating
system (OS), it becomes clear that testing of Android applications and making sure they function
properly and that the user interface is presented as expected is a major challenge[11].

Testing needs to be performed not only before each release, but also with each code change in
order to detect and fix problems as soon as possible. This means, that testing routines must be able
to be performed as fast as possible and that puts heavy requirements on automation tools and testing
environments. Continuous integration tools like Jenkins[12] can be used in conjunction with test
scripts in order to automate the process of test execution. Tests execution can be triggered by
certain events such as code from one developer being committed into the code repository. Tool will
then interpret test results and inform interested parties about success or failures and will provide
detailed reports which will help to identify the source of the problem. Tests may take different
amounts of time, depending on many factors such as application complexity, dependencies, testing
environment availability and testing scope. In some situation it might be enough to run tests on
Android emulators, but tests should be performed on real physical devices and on as many as
possible, in order to have high enough level of confidence in applications quality.

Developers can usually choose between few options when deciding how to perform testing on
real device: first is to get a number of most popular devices and perform testing on them[13],
second approach is to lease devices for the time that is needed to run the tests[14] and third is to
hope that application will work the same on other devices same as it work on developer device.
First option greatly increases the total cost of application development. Moreover, special software
and infrastructure is required in order to manage devices and distribute testing routines. Second
option decreases development and investment costs sue to the fact that costs of these services is
determined by the usage. However, second option might still be too costly for individual developers
and they are left with the third option.



This master thesis analyses the problem of testing Android applications of real physical devices,
designs and implements a system that enables device sharing between developers for automated test
execution. It utilizes existing devices owned by developers eliminating the need to purchase and
maintain expensive smart devices this way dramatically decreasing cost of system deployment and
maintenance. Additional possibilities open up when many devices are connected into a controlled
network such as decreased test execution times using parallel execution and availability of less
popular devices.

The paper starts by giving background information on Android operating system, testing
frameworks available for testing Android apps, overview of what continuous integration and testing
automation is, and analysis of existing services, which try to solve problems of testing Android apps
on real devices. It then analyses possible ways of solving the problem of the scarcity of Android
devices available for automated testing, due to the high costs of hardware and what exact approach
was taken for solving this problem as well as defines the goals of this work in chapter 3. Chapter 4
gives a detailed description of the implemented system prototype that solves mentioned problem by
leveraging Android devices available within developer community. Description starts from higher
level components and dives deeper into specifics. Paper ends by discussing possible future work
and giving conclusions in Chapter 1.



2 Background

This chapter provides general information about Android OS, design and lifecycle of Android
applications, how Android applications can be tested, and what testing frameworks and tools are
available to support testing process. Next, subchapter 2.3 briefly presents continuous integration
[15] and what tools are available for supporting continuous integration on the Android landscape.
Finally, subchapter 2.4 presents and compares existing third party services which are similar to the
prototype service that was designed and developed during this master’s thesis project.

2.1 Android OS

Android[2] is an open source operating system (OS) owned by Google[16] and the Open
Handset Alliance[17]. At the time of this writing, the Android OS is the most popular OS[3] as it is
implemented in far more handsets that other OS, such as Apple’s i0OS, Symbian, RIM, and
Microsoft’s Windows Phone. It uses a modified Linux kernel[4] and a Java based framework on top
of which applications reside. The Android software development kit[18] (SDK) is freely available
for application developers and provides a number of tools to facilitate development and testing.
Although applications are mainly written in Java, these applications are quite different from
ordinary Java applications due to concepts such as Activity[19] and Intent[20] and quite complex
application lifecycle shown in Figure 2-1 Activity lifecycle in Android OS. Similar to other OSs,
Android is composed of a large number of components, but, describing all of these components is
outside the scope of this thesis. Therefore, only those parts of the Android OS that are more related
to testing will be discussed in this section.

Activity[19] is part of application which acts as a controller and model when referencing
MVC[21] (model-view-controller). All activities stored in a stack are managed by OS and only one
can be displayed at a time. Moreover, even though applications are usually composed of a number
of activities (in fact, there might be only one activity), each activity runs in a separate process
making it much more difficult to pass information between them. Inter-process messaging is used
for this and container objects called bundles[22] can be exchanged. Therefore, from a system
perspective, application is a collection of activities stacked on top of each other and user is in
control of going up and down through the stack. In some cases, user might not even be aware that
he is switching to an activity that belongs to another application.

Intents are used to launch new activities and contain information such as which activity, or to be
more precise, which action an application intends to launch and might contain a bundle with
primitives and objects to be passed on to an activity. Depending on intent, the system might present
a number of activities, for example, if the intent indicates that it would like to share a message, then
a list of activities/applications such as email clients or social network clients, will pop up for a user
to choose from. The list is constructed based on which activities have been registered to handle
specific media types. This is a powerful feature of Android and it enables re-use and sharing of
functionality between applications. Additionally, this design methodology de-couples and
completely separates parts of the same application, therefore, most sophisticated code analysis
tools[23] for Java cannot be directly used. Moreover, Android application framework uses system
services and libraries that are available only in Android environment, therefore, applications cannot
be run natively on development machines, hence they can only be run on simulators or real devices.
Due to this fact, testing Android applications is quite complex and requires sophisticated
supplementary tools. It is no surprise that a lot of these tools are provided within the Android SDK.



Activity
launched

l

onCreate()

l

onStart()

onRestart()

Y

App process
killed

onResume()

Activity
running

onPause()

l

onStop()

Y

Activity
shut down

Figure 2-1 Activity lifecycle in Android OS




2.2 Testing Android applications

There are a number of testing frameworks and tools provided by the Android SDK, along with
other community managed open source projects. The following section discusses some of best
known frameworks and tools and explains their usage and specialization. The process of packaging
and executing tests based on different frameworks is discussed in order to present a complete
picture of what actions are involved in testing lifecycle and to show how complicated it is to
perform these actions.

2.2.1 Unit and function testing

The Android SDK provides powerful testing tools and test design frameworks for testing
various aspects of an Android application. One of possible options is to use Instrumentation[24]
which provides special hooks into the system and application process which are used to give control
over application lifecycle to the test script. This framework is based on the well-known jUnit[25],
therefore, a test follows the same principles as ordinary jUnit tests. Similarly to developing an
application, there is a special template for a test project when using Eclipse with Android
development kit/plug-in for Eclipse called ADT[26]. Test classes must extend one of the provided
super classes depending on the scope of testing.

process

Application package

InstrumentationTestRunner - Tools

Test package

N

Test case classes

—

Mock objects

Instrumentation JUnit

Figure 2-2 Android testing framework hooks diagram

In order to perform activity unit testing, a test-script must extend the ActivityUnitTestCase[27]
super class. In this case, activity is isolated and thus a simple test can be performed much faster.
However, there are many limitations and this approach is useful only for testing methods that do not
interact with a real Android system. Activity function testing can be performed by extending the
ActivitylnstrumentationTestCase2[28]. Activity will be run in a real Android environment and much

5



more sophisticated testing can be performed, while still being able to inject mocked objects. For
example, mocked Intent can be injected to cause an Activity start. Subclasses of
ActivitylnstrumentationTestCase2 class provide helper methods and mock objects to deal with
different component’s lifecycles and calls to system services. However, in order to write a test
script, the inner structure of the application must be known and even specific IDs of certain objects
must be referenced from within the test case, hence this kind of testing represents white-box[10]
testing.

The test package must provide name of instrumented test runner in the application’s manifest
file. An instrumented test runner is responsible for setting up and tearing down test cases. The
InstrumentationTestRunner[36] is a primary Android test runner. Tests are started using a
command line Android debug bridge (ADB)[37] tool or Eclipse with ADT. In either case the
system loads and starts a test package, kills any running instance of the application under test, and
starts a new instance of this application passing all control to the test runner.

2.2.2 System and user interface (Ul) testing (uiautomator)

Luckily, there are additional tools that help to perform black-box[29] testing — a type of testing
when the tester does not know about the application’s inner structure and hence must perform
testing based on functionality expose by application such as buttons and text entry fields. There are
a number of problems with UI (user interface) testing when the inner structure of an application is
unknown. In Android, each view object is usually described in an XML file and each object has a
label defined by the developer. When building a project, these labels are converted into numbers
which can be used to referrer to specific Ul element from the source code. When performing black-
box testing, these identification numbers are unknown to testers, then a question arises, how does a
test-script specify which view object to perform an action on? An example could be when a script
needs to click on a specific button testing framework would have to simulate a touch action on a
specific part of the screen. However, the same button can be located in different places on the
screen depending on screen-size, resolution, orientation, or even device type. One way could be to
analyze image of the rendered screen and try to find a view object based on an image prepared
before, but that would be extreme resource intensive operation and would slow down automated test
radically.

The uiautomator tools suite which is supported on devices running Android 4.1 (API level 16)
or higher, solves the problems mentioned above. It provides access to a device similar to Monkey
runner (described in section 2.2.4), but at the same time, sophisticated jUnit based test-scripts can
be created. A tool called uiautomatorviewer[30] quickly builds a hierarchy of view objects and their
properties. Then, values of the view object property named contentDescription can be used to refer
to particular views when writing a test-script. It is important to note that tester does not have to
examine the source code of the application nor does he actually need to have the source code,
therefore, a test-script has no dependency on the source code, but at the same time the test script can
avoid central processing unit (CPU) intensive operation such as analyzing images to find a specific
spot on the screen. The testing framework can quickly find and identify a referred view and allow
the script to perform specific actions on it.

When a view hierarchy is known, a test-script can be written extending the
UiAutomator TestCase[31] class. This class provides access to device functionality such as getting
device state properties, pressing buttons and taking screenshots. Also, a number of helper classes
exists, one of which is UiSelector — which provides a simple way to handle a specific view object
by providing the object’s class name or description — a value of the property contentDescription
which can be retrieved using the uiautomatorviewer tool as mentioned earlier.

This type of tests has a different packaging and deploying procedure than Instrumentation based
tests. This procedure is presented in chapter 2.2.5.



2.2.3 Robotium

Robotium[32] is an open source testing framework for Android applications. Currently official
projects web site states that it is the “world's leading Android testing automation framework”. It is a
collection of useful methods and classes that improve the readability of test code and provide a lot
of commonly used functions, such as waiting for certain Activity to occur or entering text into the
first “EditText” field. It allows loose coupling between Ul components and actions performed on
them by referring to buttons and other Ul field by their displayed name. Ul elements can also be
referred to by their auto-generated identifier. However, latter approach couples the test code with
the actual application. Tests written with Robotium still have to extend the
Activityl nstrumentationTestCase2 since Robotium leverages Android Instrumentation[24], but, the
features it provides greatly improve productivity when writing this kind of tests.

Robotium can be integrated with Maven[33] or Ant[34], which are both build management
tools. There are Maven plugins for Android, so Android applications can be managed by Maven
and Robotium integration with Maven allows the build manager to manage the testing through
Robotium. However, all Maven related tools are provided by the community and are not part of
standard Android tools. It’s worth mentioning, that Ant was used as the default Android application
build tool, but with the introduction of Android build tools version 17 Ant has been replaced by
Gradle[38].

Since Robotium depends on Android Instrumentation, it is coupled together with the application
under test and cannot be completely de-coupled and developing a test case requires having source
code of target application. Therefore Robotium is most useful for unit testing of the inner
components of an Android application.

2.2.4 Monkeyrunner

Another tool provided by the Android SDK is “monkeyrunner” which facilitates automated
testing. Monkeyrunner enables automation of functions such as launching a new emulator instance,
connecting to the emulator, installing an application package, running an application package,
sending keystrokes, taking screen shots and more. All of these features are provided via an
application programming interface (API), therefore, monkeyrunner can be used to automate device
management and package installation. Scripts are written in Python and the tool itself uses
Jython[36] to interact with the Android framework and to provide access to constants, classes, and
methods. However, monkeyrunner does not allow creation of detailed test-scripts where specific
user interface components are referenced from the source code since monkeyrunner does not
provide a way to reference specific UI elements from within the script.

2.2.5 Packaging and deploying a test project

Currently, a test-script which extends the UiAutomator TestCase can be packaged and run only
via the command line interface. Since Android earlier build tools used Apache’s Ant[41] as a build
manager, a test project can also use Ant. Packaging and deploying a test application involves:

1. Generating a test project by running the command:

android create uitest-project -n <name> -t <target-id> -p <path>
where <name> is a test project name, <target-1id> - id of existing target (targets can be
listed with command: android list targets),<path> - path to the test projecy directory

2. Building the project by executing: ant build

3. Sending the generated JAR package to a target device:

adb push <name>.jar /data/local/tmp
The /data/local/tmp is be the default location and can be changed to any other location to
which user has permission to write and read from. This path will later be used to launch tests from.

After performing the above steps, a JAR package containing tests is converted into a Dalvik
Executable (DEX) byte code file and deployed onto devices. The target application which will be

7



tested must be separately uploaded and installed following any of the available ways (e.g., using
adb install).

The ActivityUnitTestCase and ActivitylnstrumentationTestCase2 subclass based test-script are
packaged into an Android package [1]. APK is used for all Android applications, therefore,
installation to a target device can be done in various ways, one of which is using the ADB tool:

adb install -r <target-app-name>.apk

This command can be used to install both test applications (but only Instrumentation based) and
target applications.

2.2.6 Executing test

Execution differs depending on the type of test or it’s packaging. Test-scripts that extend
UiAutomator TestCase can only be executed using console commands, whereas Activity unit and
function tests (extending ActivityUnitTestCase and ActivitylnstrumentationTestCase?) can be
executed directly from the Eclipse IDE with ADT. However, command line execution can be easier
to control with a dedicated application or automated with scripts, therefore, only the process of
executing test-script using the console will be described below.

Test cases extending Ui Automator TestCase can be executed with the following command:
adb shell uiautomator runtest <name>.jar -c <package.class>

Where <name> is the name of a package that contains the test-scripts which should be
present in /data/local/tmp path.

Manipulating command options, user can run all test cases in a package tree or specific class or
even methods providing flexibility to be able to choose exactly what is to be executed.

The following are the steps need to be done in order to execute ActivityUnitTestCase and
Activityl nstrumentationTestCase2 subclassed tests:

adb shell am instrument -w <package>/<InstrumentationTestRunner>
Where <package> is the package name of the test project as specified in the AndroidManifest.xml
file and <InstrumentationTestRunner> is the instrumentation test runner to be used.

2.2.7 Android emulator

Android SDK provides an emulator that can be extensively customized and used to mimic
real Android devices. Customization includes modification of properties such as screen resolution,
pixel density, OS version, presence of a hardware keyboard, GPU, accelerometer, SD card size, etc.
The emulator can perform ARM[37] instruction emulation (since most of Android device up to the
date of writing still use ARM CPU’s) or utilize special images provided for performing emulation
on an x86 architecture. The later, runs much faster on Intel’s x86 CPUs (which are usually used by
developers for developing applications and tests) since it can use Intel supported virtualization
technologies. However, there is one major limitation — only one emulator can be running at a time
using accelerated mode on Windows OS (there is no such limitation on Linux). So, if a developer,
needs to run his or her application in emulators with different screen sizes, they either have to run
them simultaneously on a slow ARM[37] image or x86 images have to be emulated sequentially
one by one. In any case, running multiple Android emulators on development machine slows the
system down marginally which hurts development process. Therefore, developers cannot have
multiple emulators running on the development machine and would need to boot different
configurations in sequence for compatibility testing. Moreover, it is worth noting that successfully
running an application on the emulator does not necessarily mean that the application will run
successfully on a real device. There also might be performance differences — which can lead to
undetected timing errors, therefore, most developers strive to test their applications on as many
different real devices as possible.



2.3 Continuous integration, testing automation

Continuous integration[15] plays a very important role in software design these days, especially
in bigger projects built by multiple developers. It is so important since it is a prerequisite for Agile
software development as well as continuous deliver which enables delivery of new versions of the
product in a matter of hours or days. According to this practice once a small change is introduced in
software, tests should be performed in order to verify that the change does not introduce any faults
in depended software components. Only after a change is successfully verified, should the code be
integrated into main development line (this could be a central branch in code revision control
system, such as Git[12]). Verification is usually done by running a suite of tests of various levels.
However, somebody has to write the tests and in the end, the quality of these tests determines the
level of quality assurance provided by tests. Increasing code coverage[38] increases this assurance
level, while at the same time, increasing the time required to execute all of the tests. Therefore,
there is always a tradeoff between the level of testing and the time required to get feedback for a
change. The time required for integration testing not only depends on the test code coverage, but it
also depends on the application and/or application component dependencies on other components,
applications, and services, time needed to setup the testing environment and possibly other factors.
As a result the verification process can consume a lot of time. One of the requirements of CI is rapid
feedback, since the faster and at earlier stage a problem is detected, the easier and therefore, less
expensive it is to fix the problem. In order to speed up verification or integration, tests can be
broken into groups and performed on a number of identical environments specifically prepared for
testing that application. However, this approach depends on a number of environments being
available and having a lot of integration testing environments is costly no matter what kind of
application is being tested.

Jenkins is one of the most popular tools for CI. It is application type agnostic, meaning that
almost any kind of application written in various programming languages can be used together with
Jenkins. There are numerous plugins for build management tools (including Maven, Gradle, Ant
etc.) that make CI configurations easier. Moreover, plugins for various testing frameworks can be
added in order for a Jenkins server to be able to interpret the results of the test executions. Android
is no exception and open source community has provided plugins for Maven. Android applications
managed by Maven can easily be used in Jenkins and leverage all of Maven’s functionality and
benefits.

Nevertheless, testing Android applications requires having devices to test applications on and in
the case of time consuming test suites, having access to a large number of devices could speed up
the process. In order to be able to have a fully automated CI system, it is important that the tools
used within the application’s lifecycle support automation at every step. This same requirement is
true for "device cloud" type services that provide access to a device hosted within a cloud of
devices for automated test execution. These kinds of device cloud services are discussed and
compared in the next section.

2.4 Existing similar services

It is important to briefly review existing services that help Android developer to perform testing
on read devices in order to understand what options, problems and benefit they provide. Table 2-1
compares different services based on different criteria. In some cases, this comparison is subject to
the author’s opinion. For example, in this comparison it is considered positive to have support for
CI build managers, such as Jenkins and to support the Android instrumentation test framework
based tests, whereas, having a proprietary test framework is a negative property. Provide social
features, such as: enabling other developers or simply interested people to provide feedback while
doing manual testing is also considered positive property. Naturally, in this comparison providing a
“free” community service is also considered a benefit.

This feature comparison table is bases on the information available at the time of writing this
thesis. Considering the rapid development of the Android OS and surrounding tools, services will

9



most probably evolve at a similar pace in order to keep up with requirements put on them by
application developers.

Table 2-1 Comparison of similar existing services

Xamarin Test | TestDroid | PerfectoMaobile | Keynote | AppLover | Utest |CloudMonkey
Cloud[39] [14] [40] device [42] [43] |[44]

Support for
Instrumentati
on”

Supports
uiautomator
framework

Proprietary
testing
frameworks

Other testing | Calabash Testdroid MonkeyTalk
frameworks, |(Cucumber) Recorder IDE
tools

Payed
Device cloud
Emulators’

Integrates
with build
managers

Interactive
manual
testing,
streaming

Manual test
performed by
others

Certain services (such as TestDroid and Xamarin Test Cloud) focus on automated test cases,
however, a different approach is taken considering supported testing frameworks. TestDroid
supports testing frameworks available out of the box in Android SDK (i.e., uiautomator and
instrumentation) and their own tool which makes it easy to create a test script by recording actions
issued on a device (clicking button, swiping,...). The Xamarin Test Cloud uses Calabash[46], which
uses a different approach to testing. In this case the test scripts are not written in Java, which
according to Calabash’s creators, improves readability of large test suites. However, since there is
no other way of executing Android test cases than using Instrumentation or uiautomator, Calabash
generates Instrumentation type tests which theoretically could be executed on any platform that
supports Instrumentation based tests. Both TestDroid and Xamarin Test Cloud services have two
options: use their devices hosted in a public cloud or build your own private device cloud. A public
cloud is a shared pool of devices hosted by service provider, whereas, a private cloud is a pool of
devices managed by the service provider’s software but hosted by a client company. In addition,
both services provide tools for integrating with CI machinery. Neither of them supports sharing

" Supports tests based on Android instrumentation[34]
T Provides ability to run tests on emulators running in cloud.

10



devices between private clouds (at least no information about such a feature was available at the
time this paragraph was written).

Private clouds solve one of the major issues with public clouds — testing queues. In order to be
profitable and stay within reasonable price ranges, service providers are forced to strive to utilize
their devices for as much time as possible, i.e., avoiding having idle devices. This leads to a tradeoff
between device utilization and queue length (i.e., delay for test execution). Another limitation is that
new devices have to be bought over and over again— to be used for testing which increases the
costs. Private clouds are also useful for companies that do not want to risk exposing to the public
their application at an early phase of development.

Other services focus on manual testing, but in different ways. For example, PerfectoMobile and
"Keynote device anywhere" provide ways of remotely connecting to a device that is hosted in their
public cloud. Actions performed on the device (using mouse and keyboard) are sent and emulated
on device and the screen view is streamed back to the human tester. This way manual testing can be
performed on remote device interactively.

Another type of manual testing is represented by services such as AppLover and Utest. These
services act as mediators between professional testers or enthusiasts that want to try out new apps
and developers. These services do not provide devices to run tests on, but rather, use devices
provided by testers. What these services actually provide is a platform to distribute applications to
multiple people and to collect their constructive feedback regarding the application’s usability, bugs
and user experience. Utest is more sophisticated, partly due to a fact that it is not only mobile
applications oriented but it provides testing service for almost any kind of applications. However,
this service provides only manual testing.

11






3 Method

A solution that would solve the problem of scarcity of Android devices for testing as well as
avoiding high costs of hosting public device clouds or building private could be a platform that
makes use of all of the devices that each Android developer and possibly even random people have.
An assumption could be made, that each developer owns at least one Android based device,
therefore, each new user contributes at least one new device for testing. Also, this device is
typically used less than half of the day, for example during the night while the user is sleeping.
While the device is not being used, another developer on another side of the globe could use the
device, hence taking advantage of the difference in time zones. The platform could provide an
interface similar to current social networks, where instead of sharing documents and pictures, one
could share access to your device. The access to these shared devices could be provided in the form
of an ability to upload test-scripts & applications, execute test-scripts, and fetch results together
with screenshots from the device. Such a service would enable many developers to avoid buying
expensive handsets, thus decreasing cost of testing compared to existing commercial services
offering device cloud solutions (chapter 2.4). A “tit-for-tat”[50] strategy could be used to control
the load on the system and could provide large number of different kinds of devices and lots of
testing time, thus reducing the delay for test execution since queues would be shorter. Moreover,
given a large pool of available devices tests could be run in parallel on a large set of devices hence
providing wide device coverage in a short time. However, an even more interesting functionality
could be provided by applying another assumption: since there are certain “popular” devices which
tend to be sold more often than others, it seems right to assume, that the spread of device models by
popularity in the developer community would be similar to their spread among ordinary consumers,
thus such network would be mostly filled with “popular” devices and there will be large numbers of
same model of these devices. As a result, tests could be split among a number of devices, hence
accelerating the execution of test suites. No such service or platform exists to the author’s
knowledge at this time.

The main functionality of this platform would be to manage connected Android devices,
distribute tests among available devices, and provide easy to use interface for uploading tests and
applications. In order to be competitive feature-wise, it would also need to support integration with
CI tools, provide useful statistics about the devices (collected in the background while tests are
running) and collect screenshots, log files and possibly other files generated during test run. This
platform would need to support at least Android Instrumentation tests and/or uiautomator tests.

Due to the very large set of features mentioned above and limited time & resources, the primary
goals of this master thesis were narrowed down to the following core features:

User management
Device management
Device and user authorization
Manual test file uploads
Test distribution, execution, result collection and presentation
Support for Android’s uiautomator based tests
As a result, the user should be able to connect their Android device to the system and share this
device with other users, who can subsequently upload test files and execute them on all the devices
that have been shared with them.

The following items are explicitly out of the scope of this master thesis:

Security of communication between users, devices, and system components
Detection of malicious applications or tests being uploaded to a device
Business model(s) for how this kind of service could make a profit
Reward system for rewarding device donors and charging device users

13






4 Analysis

As a result of this master thesis project a web platform was designed and implemented that
enables developers from around the world to share Android devices and to execute automated test-
scripts based on the uiautomator test framework. It provides a way of significantly reducing the cost
of testing applications for compatibility with different types of Android devices by making use of
devices provided voluntarily by other people. Since potentially all of the devices running Android
OS can be connected to the platform, this platform may provide a nearly unlimited size pool of
resources for testing. For this reason, a special mode of test execution was implemented which
splits a test package into test classes and distributes these test classes over devices of the same type,
therefore, radically decreasing the overall time required to execute a test suite.

This chapter describes the functionality and architecture of the prototype system starting from
higher level and then getting into details of each system component.

4.1 General CBT system overview
The system prototype consists of 2 main components:

e Community Based Testing (CBT) web service which connects Android devices into a pool of
resource that can be used for executing automated tests. This component provides a web Ul
which is used for file uploading and test initiation. RIP — restful interface protocol is used by
CBT agent to communicate with CBT service.

e CBT agent - a Java application for managing Android devices connected to the same PC and
connecting these devices to a CBT web service.

The overall system architecture is shown in Figure 4-1. It was build using industry standard

technologies, tools, and design patterns. The CBT web service is a Restful[48] web service[48]
which uses the HTTP protocol and is of a request-response nature.

RIP — Restfull interface protocol
CBT - community based testing
ADB — Android debug bridge

") Web Ul \
User . CBT-web User
service |

2 - User PC‘“ _ RI_P I_User F’C_ = 2
g |andoidl | FAndroid Ph - Android | p
g ) Emulator - | - Emulator - [ (Beves) 3
£ |Android| || t | ]!/} __|Android| S
< QP \|2|cBT Ll et < ceT |a| J CEEE) <
%_ 5 < | Agent - Agent|<| 1y _—
= Android' /| | _ \. 'Android =
= Device | Device| =

Figure 4-1 Community bases testing system components

The Java programming language was used for both, the CBT web service and CBT agent in
order to re-use code, platform OS independency, and because Java is one of the most popular
programming languages — hence there are numerous open-source libraries and tools. Another reason
for choosing Java was that it is the main language for creating Android applications. Guice[49] was
used to make the inner code structure more readable and components easier to test by employing a
dependency injection technique.

15



4.2 CBT web service

The CBT web service exposes a CBT Restful API interface, which is used by CBT agents. It
also provides a HTML based front-end for user operations, such as controlling device sharing
settings, executing test-scripts and other. More importantly the CBT web service facilitates all the
logic of the system: from device registration to test-script and target application uploading and
managing test executions. The overall structure of the CBT web service is shown in Figure 4-2.

: MySQL database (MySQL) [

' "
: Data access layer :
| i
- 1:" — I
H 2 Q i '
s CBT logic '
g oD |
(B @ :
' 88 i
15 :
1 | l
g Web Ul (HTML + JS +jQuery) |
i

Figure 4-2 CBT web service block diagram

A database is used to store information (such as user credentials, device sharing settings, and
test execution related information). None of the state information is kept in the memory of the
server, thus enabling easy scalability. To promote scalability a database is used to store all real-time
information, such as device status provided by agents, jobs assigned to devices, etc. This makes the
database a very important system component. There are many industry standard tools and
techniques for ensuring stable database operation and replication which can be used in a production
system to ensure stable operation. Details of scaling the database are not in the scope of this
master’s theses and will not be discussed further. However, section 4.2.5 describes in detail the
database’s role and its structure.

The web service was developed using common web standards. It uses free/open-source tools to
implement functionality such as the web server and database, so no software or license fees apply.
The web server is used not only to serve web pages, but it acts as an interface for communication
with the CBT agents. This approach was chosen because it leverages on large selection of the
industry standard tools, for example web browsers and numerous HTTP and HTML related plugins.

Jetty[50] is an embedded Java server and was used to make web service deployment easier,
since a packaged application is a simple Java application and does not require being uploaded to a
servlet container application.

Jersey[51] framework for Restful web interfaces provided a great code structure and services for
implementing Restful API's. In fact, the same API was used by the web page which is to be the

16



main interface to the system and by the CBT agents managing Android devices in order to re-use
the code as much as possible.

The following sub-sections are arranged starting from the highest abstraction layer components
to the lowest. This way, the user interface is explained first as it gives an overview of all the
functionality that is available along with some insight into what is actually happening in the
background.

4.2.1 CBT user front end

CBT user interface (shown in Figure 4-3) is a web interface for service users. It can be broken
down into several parts based upon functionality:

e User authentication and registration

e Device access control — view which devices a user has access to as well as share devices
owned with other users.

e Test file upload — packaging and uploading of file required for test executing.

e Test configuration — selecting which device types a test should run on, which mode, which
test and on which target application.

e Test execution — ordering a test execution and monitoring real-time status.

e Test result analysis — analyzing received test results.

e Service usage statistics

The following sub chapter will describe each of the presented functional elements.

4.2.1.1 User authentication

Implemented authentication mechanism is very simple. Users begin by registering on the web
service using a registration form. This registration form is provided as an option in a “login” dialog.
Users are authenticated by providing their name and password. This information is hashed using
MD5[52], a message digest algorithm, and sent as a Cookie[53] with each request to the web
service. This is far from a secure implementation, but it was sufficient for prototype level
functionality. This authentication is needed to provide a simple authorization scheme to determine
which user can utilize which devices for test execution. Similarly authorization is used for accessing
uploaded files and other content created by user.

4.2.1.2 Device access control

After logging into the system user is taken into default page called “devices’ which displays a
list of available devices. It is broken into two parts:

e Devices that are owned by the logged in user. Information is taken from database that is
periodically updated by CBT agents owned by that user.
e Devices that are available for a user as other users have shared this device with him/her.

Information that is presented for each device includes:

DevicelD This is a unique device ID used inside the system. This information is not
particularly required or used by the user, but is presented only for the
purpose of easier debugging.

Serial number The serial number is a unique name for the device. Depending on the
vendor, this information might have different formats. In the case of
Android emulators, the name is generated for each new emulator so that all
the emulators running on the same machine have different names. This
information is not really used inside the system, but servers as a human
readable identifier for the user to use when referring to a device.

Status Device status depends on the time passed since the last status update
received from a CBT agent. The status can be ONLINE or OFFLINE.

17



access.

j | Devices |
'

; Test profiles .,
)

' Test configurations| ..
i Index

| (e
]

i

; _.=p='| Upload test script
: »

] -_l

!I ,*' op= |Upload tatgetapp|
I = D

1 ’ l

] ' -

T .

) r

F ]

P
] ]

! ]

1
1o Upload

] target

g app

[

] |

! ]

11

) L]

! [ ]

o

1 { ]

! [ ]

i

) { ]

.
Eg

B
: Upload

A g

- Script

i

]

i

]

]

i

]

]

i

F

i

| ]

!

]

]

1

i

]

‘.

Last updated

There is a background process running which periodically checks if device
has gone offline or not. A timeout value is set in the CBT web service upon
startup and all of the CBT agents are responsible for periodically updating
the status of each device that is registered on the system that this agent is
running on.

This shows the time of the last device status update.

Each device is owned by a certain user. This user is provided with addition control button which
takes him to device sharing page. This page lists users which currently have access to device and
provides a selection box to choose among the entire set of existing registered users within the
system to add them to this device access list. Selected users will immediately get access to that
device and will see it on their devices page.

All of the above information is stored in a database to avoid session state and provide fast

% ]
.,
[
¥ name and
* E
™ : Device add to
L e s ‘ :
\ Deviess | |H | sharing access list
¥ -~
¥ :
1- '
H R
e Share L | User name I
T
]
at
Y New test ]
i i~ Choose mode
HE l profile | *
T — i
H ;
=Y 3 Choose and
TN ’ add device
AN | New tst
= Test profiles profile type
:
]
i
"
it
al
nl —
1
1 ]
it New - Choose test
il S 3 rofile
| s L | 48
L) = (] n =
i A 8 al ©F Choose test
; £ ||« 2t
L] [=] (5]
d o RUN
: . [ Choose target
: = o app
i FPPTTETE L
: 3 _
- *
' +
s i
- -
. .
u| )
\ Test List ! Testrun List Ul Automator test
executions results result output

________________________________________________________________________________________________________________

Figure 4-3 CBT web service front-end sequence diagram

18

i i I R 0 e 0 U 4 e RO



4.2.1.3 Test file upload

As it was mentioned before, a test-script written for the uiautomator testing framework is in-
depended (both code and package wise) of the actual target application. Therefore, in theory, one
test-script can be designed to test multiple applications. For this reason, test script is treated as a
separate entity throughout the system. As a result, the minimum that is required to perform a test on
a device is the actual application (the target app) packaged into an APK file and uiautomator test-
script packaged into JAR file. There are separate web pages for uploading each of these. The user
interface allows a user to provide a custom name for these two files, so that they will be able to
identify the files later. These files are stored in a local file system of the sever hosting the web
service application. Dedicated records in the database are created for each type of file containing
metadata such as name and path to actual file. Currently, prototype implementation supports only
uiautomator type test-scripts, so no other type of files is currently needed or supported.

Figure 4-4 Test file upload flow shows how a file upload is actually performed: a HTML[54]
form is used to encapsulate all the information and an HTTP request with POST[55] method is sent
to certain URL belonging to a CBT RIP interface. Files are then placed according to the indicated
file structure and the required records are inserted into the database.

No further file management functionality is provided (such as update or delete) since this it was
not deemed essential for the prototype.

4.2.1.4 Test-configuration

The test configuration part is split into two parts in order to facilitate re-usability of content
throughout the system. First, a test-profile must be created describing test execution mode and
targeted devices. This test profile is accessible on a per user basis. If a user does not have any
profiles created, then the user must create the first one. This test profile can be reused in other test-
configurations.

The web page test-profiles display all of the available test-profiles. The following information is
displayed about each profile:

ID database generated unique test-profile identification number
Name custom name given by user upon creation
Mode test execution mode chosen upon creation; either normal or fast

Devicetypes list of device types chosen upon creation

This same page provides a link to a page where a new test-profile can be created. In this new
test-profile creation page the user is requested to provide the information specified above. A list of
available device types is displayed containing all of the different device types that are currently
registered in the system. However, this list does not reflect the availability of devices which is
evaluated dynamically at execution time. User selects his desired test execution mode from a drop
down list. Once a test-profile is created, it will be listed on the test-profiles page and will be
available for selection in other related pages, such as test-configurations: new test-configuration.

When a test-script and a test-target are uploaded and at least one test-profile has been created,
then user can create the last piece of information required, that is new test-configuration which
binds together these three components. This approach was chose in order to be able to quickly
create a new test-configuration with, for example the same test-script and test-target but a different
test-profile.

The test-configuration page lists all of the available test-configurations (to be more exact, all of
the configurations created by this specific user) and provides a link to page where the user can
create a new one. Each test-configuration is a binding between a test-script, a test-target, and a test-
profile. This page also contains an action button next to each list element entry which invokes a new
test-execution and creates a new entry on the page test-executions.

19



Target app Test script

APK file JAR file
., HTTP 3
T i POST _.=v=*"
' Creat new test script record.‘ -
- -
. {testScriptid}
CBT webservice Database
Creat new test target record._

- e {testTargetld}

: Save in local file system

|-“

B e,
E T = [ {userld} / tt-{testTargetld} / app-{testTargetld}.apk

Local file system

""" - [ {userld} / ts-{testScriptld} / uiautomator-{testScriptid}.apk

Figure 4-4 Test file upload flow

4.2.1.5 Test execution

New test execution is requested via the test-configurations page. Once new execution is

requested, a new entry appears on test-executions page. Each entry contains the following
information:

ID Unique identification of test execution generated by the database. This is
a key that binds together all of the information for this particular test
execution.

Created Date of test execution launch

Updated Date when record was last updated

test- Reference to test-configuration information that was used for the test.

configuration
Status Status of test execution. The value can be:

WAITING  Test has been requested, but none of the CBT agents have
started executing it on actual devices.

ONGOING At least one CBT agent has reported that this test
execution has started.

FINISHED  All CBT agents have reported that they have finished the
test execution.

20



It is important to briefly describe the internal processes of the system in order to explain how
test execution is performed: in order to execute a test, first, system needs to find devices that are
currently online and available for test execution. For each of these devices a test execution
descriptor record in the database is created called device-job. CBT agents periodically poll for new
device-job records through the CBT RIP interface. Once a new device-job record is found, CBT
agent starts this test’s execution on a device and reports its status when process is finished. As a
result, the test execution status and results are available per device-job. Once all device-jobs have
been reported as finished, then the overall test execution state is changed to FINISHED. The
detailed operations are discussed in section 4.2.3.2 on page 23.

4.2.1.6 Test result analysis

As it was mentioned previously, test result is available on a per device-job or device basis.
Therefore, test-result page contains a list of test execution results of each device. These results are
available as soon as a CBT agent publishes them via the CBT web service. Currently, results are
displayed in a raw format: unmodified output of the uiautomator test framework test execution.
These results are parsed to extract information, such as how many tests were executed and whether
their outcome was pass or fail. This is sufficient to show the possibility to retrieve and interpret the
test results. Currently this test result information is limited and includes only the output produced
by uiautomator framework and does not include access to the device logs or screenshots, as it is
common in similar services. This functionality was not implemented due to limited amount of time
although no obstacles were discovered for it to be implemented in future.

4.2.1.7 Security

Security in a broad sense was outside the scope of this master’s thesis project. However, here
we mention at least some of possible problems which could be addressed in future work.

Communication between front-end and back-end (CBT RIP) as well as between CBT agent and
CBT RIP is insecure since it simply uses HTTP. There are no additional checks performed to see if
the user issuing a request is allowed to make such a request. For example, it would be possible to
delete other users’ information by manipulating the information contained in a HTTP request.

The CBT web service and CBT agent treat test scripts and test targets as packages and therefore,
do not scan their contents for potential malicious content. These limitations are discussed further in
chapter 0 and possible solutions are presented in section 6.2.1 on page 31.

4.2.1.8 Service usage statistics

Service usage statistics per individual user are very important for all modern social web services
and the CBT web service is no exception. Depending on the business model(s) used for this service,
it could be necessary to collect the number of test executions that a user hosted on each of his or her
devices that have been shared with other users and to collect the number of tests per device that a
user has executed on other users’ devices. Although no logic was implemented to make use of this
kind of information, for example to limit the number of test executions for certain users based on
their usage of the service, a web page showing some of the parameters that could be collected was
implemented as an example of what information is or could be collected. This page currently
calculates and presents the following information on a per user basis:

e List of user owned devices with the number of tests hosted for other users.

e Total number of hosted test executions.

e Total number of tests executed on devices owned by other users.
Information is update in real time after relevant actions are performed by user.

4.2.2 CBT RIP interface

The CBT RIP interface was build using the Jersey[51] framework as it enabled rapid
development of Restful APs. This interface exposes all of the CBT web service’s functionality

21



through a client request — server response HTTP based protocol. A single CBT RIP serves both
CBT agents and the CBT front-end in order to avoid duplicated functionality. The implementation
uses JSON[56, 57] for data serialization: JSON makes it easy to read and debug HTTP requests
with standard tools as all of the data is in clear text and human readable.

The API’s URLs are grouped by functionality. These URLs are served by their responsible
classes. Some examples are given here in order to briefly explain how this works:

e In order to retrieve a list of user test-runsan HTTP GET request is made using a URL of the
form: http://serveraddress/userid/testrun, where Serveraddress and userid are replaced with
appropriate values. This request would return a JSON array of test run objects with their
respective properties. This request must carry a COOKIE containing the user’s credentials
encoded so that the server can authenticate the request. Generally, a user is only be able to
retrieve his or her own data.

e In order to create a new test-profile, an HTTP PUT request is made using a URL of the
form: http://serveraddress/userid/testprofile, where serveraddress and userid are replaced
with appropriate values. This request carrying the data required for creating a new test-
profile and this data must be serialized into a JSON format and sent as a HTTP payload. As
in the previous example, an HTTP cookie must be sent providing the user’s credentials.

All other API calls are performed in a similar way and could be easily discovered looking at the
source code. There are two groups of these calls — those that must carry an authentication HTTP
cookie and those that do not. One of the unauthenticated API calls is for creating a new user. This
API call is used by web front-end to register new users. For this reasons, it requires no initial
authentication so that it would be accessible by un-authenticated users.

4.2.3 CBT web service’s inner workings

Although main function of a web service is to read and write to/from database when certain
actions are triggered by a user or CBT agent, sometimes the server must perform a much more
complicated task than simply adding or reading information to/from the database. One of these
functions is analyzing tests JAR file contents (subchapter 4.2.3.1) to extract names of compiled test
classes which serves as an input data to another function — distributing and parallelizing test
execution (subchapter 4.2.3.2) on multiple Android devices. Another important function is to
temporarily store (subchapter 4.2.3.3) target application and test files in servers file system. This
section discusses these kinds of actions and describes the workflow that occurs after these actions
are triggered.

4.2.3.1 Analyzing Ul Automator JAR file

In order to be able to split, distribute and execute tests on many Android devices, CBT web
service needs to be able to read and interpret the uploaded test-script package. Therefore, this
section describes the structure of test package and compiled source code format of test classes
written using the uiautomator framework and tools that were used to read and interpret this format.

Although the test-script is packaged into the well-known JAR[58] package format, it does not
contain multiple classes converted into standard Java byte code[59]. Because Android applications
run on a Dalvik virtual machine (VM), the applications and tools written in Java must be packaged
into format executable by the Dalvik, i.e., a Dalvik executable[60]. The details of DEX are outside
the scope of this thesis project, but it is important to note that since DEX differs from the well-
known Java byte code[59] there are no tools embedded into the usual Java environment that can be
used to read it. Although Android development environment does have tools[61] for dealing with
DEX format, none of it could be used due to the fact that all of the parts of this project were
developed outside the Android platform using standard Java tools. For this reason an open source
library called Smali[62] was used to parse uploaded uiautomator test packages.

Test package JAR file is an ordinary ZIP file that contains a file called classes.dex which is the
file that is needed to be parsed. DEX file structure is shown in Figure 4-5 as well gives some hints
22



into how test classes should be structured. In presented example, each test is coded into separate
class and named according to the function that is being tests (naming does not matter). Fortunately,
the Smali library has all that it is needed to extract the names of test classes from the classes.dex file
and this is the only information required to split the test classes.

com.example.testButton1
Smali . _ com.example.testButton2

Classes.dex | }-===""""" | Library

com.exa mpl'éitestButtonN

Figure 4-5 DEX file structure

When a new test package is uploaded, it is parsed in order to extract the test class names and
these names are stored in the database as metadata associated with this file. The next section
describes how this metadata is used to speed up the execution of tests.

4.2.3.2 Fast and normal execution modes

As it was mentioned before, there are two test execution modes for user to choose from: fast and
normal.

Using normal execution mode, all test classes contained within an uploaded uiautomator packed
JAR package are executed on each device type which is chosen in the bound test-profile. This is
called normal mode because it is assumed that this is how tests will usually be executed, especially
when there are a limited number of devices to run the test on. However, when there are many
devices, to be more exact, many devices of the same type, different parts of tests can be spread
among many devices and executed in parallel. This is important since the goal of testing is to check
that tests of an application succeed on as many different types of devices as possible.

Figure 4-6 presents the steps and actions taken for fast execution mode. As an example, a test
package contains 4 test classes. Each test class is for testing different application features, in this
case, 4 different button clicks. After test execution in initiated by user via the CBT web service's
front-end, database is queried to get all of the available devices of the types defined in the relevant
test-profile. A simplistic algorithm was developed and used to distribute test classes over all of
these devices, as a result device-job records are created in database containing list of the specific
test classes to be executed on dedicated Android device. These device-job records are later used by
CBT agents to execute test classes on the test-target application defined in the relevant test-
configuration.

23



Ul Automator test

package
Find
TestButton1 test class available
Android
TestButton2 test class Execute Query I devices of
\ type defined
TestButton3 test class ' | by testprofile
TestButton4 tes tclass
‘|Database

Distribute test classes and
create device jobs

Device 1 of type 1| |Device 2 of type 1| |Device 3 of type 1/ Device 4 of type 1
TestButton1 ™ | TestButton2 TestButton3 TestButton4

Figure 4-6 Fast execution mode internals

4.2.3.3 File storage structure

The CBT web service needs to store test-scripts and target application files so that CBT agents
would be able to fetch them when executing tests. For this purpose, server’s local file system and
files are organized in a simple hierarchical folder structure which is presented in Figure 4-4. When a
user uploads a new file, before storing it in a local file system, a record is created in the database.
Each new record is assigned a new unique identifier by the database and this identifier is used later
when creating the required folders and naming the files. If a folder does not exist, then a folder is
created with a name based upon the user’s ID who issued the request. Then, depending upon
whether a test-script or target application was uploaded, folder named ts-{testScriptld} or tt-
{testTargetld} is created. Finally, uploaded files are placed into the folder created in previous step
and renamed to match pattern "uiautomator- {testScriptld}.jar" for test-script package and "app-
{testTargetld}" — for target application. After placing the files into correct locations their respective
database records are updated with the exact file path pointing to those files. This is necessary in
order to be able to locate these files based on their metadata in database.

4.2.4 CBT data access layer

None of the CBT web service components access the database directly, but rather they access
the database through a special data access layer[63], which is composed of data access objects[64]
that provide access grouped by functionality. For example, there are data access objects for
manipulating user, device, test-script, and target application related information in database. This
approach is used for several reasons:

e Unit testing is easier since the connection to database can be easily replaced with
stubs/mocks/or a in memory database that is pre-populated with known data.

24



e Components using these data access objects are not aware of where the data is coming from,

so the data could be store in files, memory, or any other medium.

e This approach provides a better overall structure for the source code.

Most of the data access objects (DAO) deal with an underlying MySQL database. There are lots
of tools and libraries to access MySQL and other databases from Java application code, such as
Hibernate[65], JDBC[66], jooq[67], etc. Hibernate is a very sophisticated and feature rich
persistence library and is widely used in large scale corporate applications and its API is quite
different from actual MySQL query language. However, not all MySQL features are supported by
Hibernate. Jooq on the other hand, is more lightweight product and provides almost direct mappings
to SQL[68]. Because of this, Jooq was chosen for in CBT web service application and was

successfully used in DAO’s.

4.2.5 CBT database

MySQL[69] was used as the underlying database as it is one of the most popular[70] free
databases . The database is composed of a number of tables containing information ranging from
system’s user names to results of test executions. Table 4-1 lists the names of the tables and briefly
describes what kind of information is stored in this table.

Table 4-1: CBT MySQL database tables

Table name Contains
device Information about Android device: serial number, unique ID, state
(online, offline), the ID of the operating system version, ID of device
type, and time of last record update
device job Information describing the tests to be executed on specific devices,

including device ID, test-run ID, dates of creation and update, and
execution status.

device job result

Information about the result of a device-job execution: state (passed,
failed), number of tests run, failed, errors, and ID of the device-job.

device sharing

Information binding user’s ID and the IDs of devices that have been
shared with these users

device type

Device model name, manufacture’s name

testconfig

User ID, name, test-script 1D, test-target ID, test-profile ID

testprofile

User ID, mode (fast, normal), name

testprofile devices

Binds together test-profile IDs with device IDs

testrun User ID, test-configuration ID, status (waiting, running, finished), and
dates when it was created and last updated.

testscript User ID, name, file name, path to file, and list of test class names

testtarget User ID, file name, and path to file

user User ID, user name, and password

25



4.3 CBT agent application

The CBT agent application was developed to run on various platforms using Java programming
language. Android SDK must be installed on the machine where the client executes because of the
use of Android Debug Bridge (ADB) for communication with Android devices. The agent’s main
tasks include:

Detect and register new devices in CBT web service.
Monitoring device status and update it in the CBT web service.
Poll for new device-jobs's assigned for devices managed by this agent.
Download files required for test execution.
Install downloaded files on the device in order to prepare for test execution.
Execute the tests
Collect test results and publish them via the CBT web service.
The following subsections will describe the application in detail following inner process flow
(illustrated in Figure 4-7): will start by explaining how an application is started, what configuration
properties can or must be given, then an explanation of how devices are monitored is given.

4.3.1 Starting the application

The CBT agent application requires certain information to be provided by the user prior to
execution. This information must be present in a file called client.properties and should be
placed in the same directory as the application itself. Table 4-2 lists and describes the properties
contained within this file.

Table 4-2: CBT agent startup properties

Property name Description

path_adb Path to ADB application which is provided together with Android SDK

path_workspace Path to a directory which will be used as a workspace for temporarily
storing files needed for test execution. Files include test-target and test-
script

uri_server URL to CBT web service in the form: http://address:port

username User name for authentication

password Password for authentication

debug_rest Flag indicated whether debugging information for each HTTP request
should be output. The possible values are True or False.

Here is an example of such a file’s contents:

path_adb=/home/dev/adt-bundle-1linux-x86_64/sdk/platform-tools/adb
path_workspace=/home/saulius/Documents/cbt/client _workspace/
uri_server=http://127.0.0.1:8081

username=John

password=JohnsPassword

debug_rest=true;

When correct information is provided in the client.properties file, the application can be
started from the command line by executing standard Java application launching commands.

26



Start ;
Start Main .4 Device Monitor Sca"irﬂg‘”ce
s thread
." .: v
_.: : Check for new
st devices YES b
; : Register
y 2 device
Schedule ‘g‘ : In CBT
periodic device| -~ : webservice
monitor thread :
H Found
: New ?
‘I v
% NO Schedule
W i | periodic
. device thread
Slee _/_ for detected
° e device
pamenmnavanaynas:
Start
Device Monitor Fetch test
i thread package
v
v
YES
Cgiili(c?}'or;,esw Install files
¥
Execute tests

L

Parse results

NO

\ \ i

[
[ ]
]
n
n
n
]
L)
]
[]
]
L]
]
]
n
n
N
L]
L]
]
]
L]
L]
L]
L]
L]
.

L]
[}

e Sleep < Publish results

Figure 4-7 CBT agent application flow diagram

4.3.2 Device monitoring

A task that executes in a separate thread periodically checks what devices are currently
connected to the host system. This is done by executing the ADB command devices, the output of
this command lists serial numbers of currently connected devices. CBT agent keeps track of which
devices have already been registered and if a new device is found it initiates a new device
registration procedure. Otherwise this task simply sends an update request to CBT web service
which acts as a heartbeat for this particular device since last update time is save in database. These
update messages are very important so that the system would have some assurance of how many
devices are actually online at a particular point in time. This information is used when preparing for
new test runs and when selecting devices to run tests on.

27



Since the CBT web service differentiates between devices based on notion of device type (which
is actually the device name defined by the manufacturer) CBT agent needs to acquire this
information in order to register new device. The following ADB command is executed to get this
information from the device: shell cat /system/build.prop. This command returns
quite a long list of various device build properties. A subset of these properties are:

ro.build.type=user
ro.build.user=
ro.build.host=ABM@32
ro.build.tags=release-keys
ro.product.model=HTC Desire S
ro.product.brand=htc_europe
ro.product.name=htc_saga
ro.product.device=saga
ro.product.board=saga
ro.product.cpu.abi=armeabi-v7a
ro.product.cpu.abi2=armeabi
ro.product.manufacturer=HTC
ro.product.locale.language=hdpi
ro.wifi.channels=
ro.board.platform=msm7x30

The properties above were retrieved from a HTC Desire S Android which is evident from
property named ro.product.model. CBT agent requires values of two highlighted properties
which are used to define the device type. A request to the CBT web service is issued to acquire a
unique ID number for defined device type (the ID is composed of the device model and
manufacturer’s name). The CBT web service searches for and returns an ID of a matching record or
creates new record and returns its ID. Now the device registration can proceed which sends another
REST API request that creates the required records in the database this way binding device to the
user who issues the request.

4.3.3 Downloading and executing a test package

CBT agents decide when and which tests to execute by periodically polling the CBT web
service. When new test job record is found for one of the devices managed by an agent as a
response to a polling request (response also contains the data required for further actions.) a request
is sent to download a test package’s metadata and to download the test package itself (a ZIP file
containing test-script and test-target files). All of the local files will simply be overwritten as no
sophisticated management of the client’s workspace files was implemented.

The test package contents are extracted into a workspace directory which is defined by one of
the properties provided when the agent application was started. In order to execute a test, device
needs to be prepared. This preparation includes:

e Copying a uiautomator test-script JAR package to device. This is done by executing the
ADB command: push <name>.jar /data/local/tmp.

e Installing the target application by executing the ADB  command:
install -r <target-app-name>.apk. Since the application might already be
present on the device because of a previous test run, the “-r” option is given which
instructs ADB to re-install the application if it is already present. This might not always be a
desired behavior in production level system, but it suits the purpose of this prototype and it
ensures that the application is freshly installed at the start of each test.

28



The actual test execution occurs just after the device preparation phase is finished. The ADB
command: shell uiautomator runtest <name>.jar -c <testclasses> is executed in
order to start the uiautomator test execution. The agent will explicitly list all of the test classes to be
executed based upon the device-job metadata. In this way the CBT web server controls exactly
which test classes are executed.

The agent does not halt during a test’s execution since each device gets its own thread for all
operations. This enables tests to be executed in parallel on many devices managed by one agent.

4.3.4 Test result reporting

The uiautomator testing framework is in its early stage of development. One evidence of this is
that test execution result comes in only one form and it is quite hard to understand and parse. The
result is just a stream of key-value pairs returned via STDOUT. Nevertheless, this information
includes:

e Number of executed tests.

e (lass names of executed tests.

e Number of failed tests.

e Number of tests with test execution errors.

e Stack printout in the case of assertion errors.

In addition, custom key-value pairs can be passed from the test case to the test result output. An
example of the test result output printout from a uiautomator test executions is presented below:

INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
com.test.TestButtonl:
INSTRUMENTATION_STATUS: numtests=1
INSTRUMENTATION_STATUS: test=testl
INSTRUMENTATION_STATUS_CODE: 1
INSTRUMENTATION_STATUS: dp-height=800
INSTRUMENTATION_STATUS: product=sdk_x86
INSTRUMENTATION_STATUS: msg=Test was succesfull
INSTRUMENTATION_STATUS: dp-width=480
INSTRUMENTATION_STATUS_CODE: -1

current=1
id=UiAutomatorTestRunner
class=com.test.TestButtonl
stream=

INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:
INSTRUMENTATION_STATUS:

current=1
id=UiAutomatorTestRunner
class=com.test.TestButtonl
stream=.

numtests=1

test=testl

INSTRUMENTATION_STATUS_CODE: ©
INSTRUMENTATION_STATUS: stream=

Test results for UiAutomatorTestRunner=.
Time: 9.284

OK (1 test)

INSTRUMENTATION_STATUS_CODE: -1

In order to evaluate if tests passed or failed, the application needs to parse the test result output
and extract required information. Since this information is not very well structured, regular
expressions[71] are a great help in this situation. If one or more of the tests failed, then the overall
test result is considered to be failure, otherwise, an indication of success is sent to the CBT web

29



service together with the overall result. All of the test result output is sent in its raw format - this
way user can examine the printout to determine the cause of failure.

Functionality of application is limited and does not implement sending device logs, screenshots,
and other files to the CBT web service. In some cases this additional information would be required
to determine the result(s) of test execution manually by tester examining collected information. For
example, if the tests were supposed to verify that target application’s layouts were correct on
different types of devices, screenshots could be made at certain points of test execution and in the
end, result of this test would probably need to be determined by a tester examining the screenshots.

In spite of the test result output being unstructured, it does provide all information required to
determine if and which test passed or failed, as well as information that could be used to locate the
part of the code that failed using the stack trace back.

Published test execution results from each device-job are further processed by the CBT web
service and aggregated.

4.4 Demo application and test script

I§)1 CbtTestApp1 I CbtTestApp1

button1 button2

button3 button4

buttonl

Figure 4-8 Demo app screenshots

In order to test developed system, an Android demo application as well as uiautomator based test
application to test the app were developed.

Android demo application is a very primitive application designed only for testing CBT
system. It consists of two activities:

30



e First activity displays 4 buttons (Figure 4-8 left)

e Second activity (Figure 4-8 right) appears when any of the 4 buttons belonging to
first activity are clicked and displays text which differs depending on which button
was pressed.

Buttons of the first activity can be interpreted as different functions of application that can be tested
separately on multiple devices. Therefore, 4 different tests can be executed in parallel on different
devices that test the functionality of specific button.

Test for this app was developed in a way that would enable best use of CBT system. Therefore, it
consists of 4 test classes each of them testing different buttons. Figure 4-9 presents the flow of test
script actions: initially emulates a user activating “home” button that belongs to Android OS, then
enters the “app list”, locates demo app by its name and launches it. Then, depending on which one
of the classes it is, it clicks one of the buttons, verifies that new activity appears and that correct text
is displayed (clicked buttons name) and closes application.

Click one of
Start the buttons

Click "home" Wait for Activity

Click "apps" Verify text

Locate and
launch Close app
"Cbt test app”

Figure 4-9 CBT demo app test flow

31






5 Discussion

The main goal of this master’s thesis was to implement a prototype of a community based
testing platform that exploits Android device sharing possibility for test execution. This goal was
successfully reached by investigating how testing of Android applications is performed, analyzing
similar platforms, and implementing a prototype of a web service and client application. While this
prototype lacks some functionality, it provides the essential core features such as user and device
management, test distribution, execution, result collection, and presentation of the testing results
that enable multiple users to share Android devices and executed automated test suites.

5.1 Performance

CBT system performance can be measured by measuring performance of certain events. Events
can be uploading files, downloading files, ordering a test execution and etc. However, most of these
measurements depend greatly on external factors such as network connection speed, hardware used
for hosting a web service and running CBT agent, sizes of files that need to be exchanged, load of
the CPU and other processes that are running in parallel during execution of the test on CBT agent
and possibly other factors. Due to variable nature to these factors, it is very hard or even impossible
to measure exact performance of the overall system. However, some of the system performance
aspects can be measure by making certain assumptions. The most important outcome of
implemented system is ability to distribute test classes and run them in parallel on different Android
devices in order to decrease the overall testing time. Therefore, this is the most important
measurable object as well. Table 5-1 presents measured test execution times when running tests on
varying number of devices and different execution modes (these results are plotted in Figure 5-1).
Measurements were collected while running CBT web service, CBT agent and at most 4 Android
emulators on the same PC (with Intel 15-2540M CPU and 8GB of RAM), therefore, measurements
them self’s do not reflect production environment, however, can be used for comparison and
deriving performance gains in different situations. Demo application and test script presented in
section 4.4 were used as a system payload for measurements.

The biggest difference can be seen when comparing results from executions on 1 and 2 devices
in parallel which show a ~44% decrease in testing time. One could assume that if a test is split into
two classes and executed in parallel on two identical devices, it should take half the total time
however, measurement results were different. Figure 5-1 shows that increasing the number of
parallel executions do not increase execution speed linearly which is the result of certain events
being sequential, therefore, blocking parallel execution for certain fraction of overall time.
Amdahl’s law was applied in order to calculate what fraction of the process cannot be parallelized
and estimates were calculated based derived fraction value. It is important to note that the
measurements are relative to environment used for testing as well as sizes of files since these
parameters have major impact on execution time.

Table 5-1: Performance comparison of different execution modes

Number of Android devices | Execution mode Average overall execution time in
(same type) seconds

1 fast 32

1 normal 29

2 fast 17

2 normal 30

4 fast 10

4 normal 31

33



35

30 & A A

25

20

Fast mode

15 A Normal mode

Time in seconds

10

O T T 1
1 2 3 4

Parallel executions

Figure 5-1 Performance comparison graph

14.0

12.0

10.0

4 test classes
8.0

8 test classes
6.0 m 12 test classes
a0 M 16 test classes

| 20 test classes
20—
0.0 - . .
1 2 4 6 8 10 12 14 16 18 20

Number of parralel executions

Speed up compared to single execution

Figure 5-2 Maximum speed-up in relation to test classes

It was calculate (from measurements presented in Table 5-1) that fraction of the process that is
sequential is around 0.12 in which case, according Amdahl’s law, maximum speed increase that can
be achieved increasing parallel execution is equal to 1/0.12=~8 which means with each increase in
a number of parallel executions, overall time will decrease less. Moreover, in this particular case
(test class splitting) maximum number of parallel executions is limited by a number of test classes
in test package. More estimation was done in order to reveal actual potential of the CBT system

34



which is presented in Figure 5-2. This figure presents estimated speed-up of overall test execution
in relation to number of parallel executions and test classes available for parallelization. In order to
calculate these estimations, it was needed to assume that fraction of sequential process events
doesn’t change while number of test classes changes (this is valid since test package size increase
from having 4 to 20 test cases is unnoticeable compared to packages size of application itself), also,
that it takes same amount of time to execute each and every test class.

Overall, performance measurements and derived estimations show that testing time can be
dramatically decreased. Moreover, the more test classes are available, the more parallel executions
are possible, and therefore, the higher speed increase is possible. Having tests of longer duration
would decrease the fraction of the process that is sequential, therefore, increasing maximum speed-

up.

5.2 Limitations

The prototype that has been implemented is not production ready. However, this was not a goal
of this thesis project. It does not employ HTTPS[72] or any other techniques to provide secure
communication between the systems’ components and users. Since HTTP was chosen as the main
communication protocol and no custom encoding is used, messages are sent in clear text and can be
easily reverse engineered in order to find weak spots. At the same time, it is relatively straight
forward to change from using HTTP to using HTTPS, thus this is an obvious near term
improvement that could be made in the implementation.

Comparing this service to other similar services additional limitations can be found. For
example, it does not provide a way to download screenshots or any other files except for the test
execution’s results output. Handling logs and screenshots is a necessity when testing Ul layouts and
might be a major obstacle preventing potential users from using this prototype.

Another limiting factor is the lack of support for other testing frameworks. As was mentioned
previously, implemented CBT web service only supports uiautomator based tests. This testing
framework was introduced and is available since Android OS version 4.1, thus the system is
unusable to test applications running on devices with older versions of the Android OS. However,
this limitation is only temporary as more and more devices are being updated to newer Android
versions. At the time of writing, approximately 55% of all Android devices are already using
version 4.0 or higher[73].

Most Android tools are compatible with three most popular operating systems (Windows,
Linux, and OSX). Development of any new tools must take this multiplatform capability into
consideration and should continue to support all these platforms, in order to reach all potential users
(thus attracting a larger number and variety of volunteers who will share their Android devices for
testing). CBT agent was built using Java so theoretically it run across a wide variety of platforms,
however, development and testing was performed on Linux Ubuntu[74] only. Nevertheless, no
major changes should be required in order to adjust it to run on different operating systems. The
CBT web service was also developed on Ubuntu, but the platform for the CBT web service is not as
important since it will most likely be deployed in datacenters which usually have no problems
hosting a Linux application.

No measurements were made to determine the maximum number of Android device that one
CBT agent is capable of handling due to the need to have a large number of Android devices to test
with. However, it successfully supported 5 Android emulators and 2 hardware devices. The same
computer was also hosting the web service and database applications at the same time. These tests
were performed on a laptop equipped with an Intel Core 15-2540M CPU and 8GB of RAM.
Possible factors limiting the maximum number of devices supported by a CBT agent could be
limitations of the Android debug bridge application (maximum number of devices supported by
ADB is not documented). Moreover, multiple instances of ADB application could be started on the
same computer, this way minimizing the effect of potential bottleneck.

35



The CBT web service was built to be scalable and does not have a hardcoded maximum number
of CBT agents, Android devices, or system users defined. Since this web service uses local file
system to store tests & applications and MySQL database for real-time data and metadata, there
could be a limitation due to the available free space for local file storage and the database.

No other major limitations are known to the author at the time of writing.

5.3 Required reflections

The result of this master thesis is a working prototype of the system that enables sharing of
Android OS based devices within developer community, therefore, providing cheaper and faster
ways of executing automated test scripts of physical and emulated devices. Cheaper, because
service that could be deployed based on developed prototype would not need to purchase real
physical devices, but rather, community member would give access to their owned devices.

One of the positive social effects is increased developer satisfaction by being able to execute
tests script on real physical devices much cheaper than using similar services. Service also opens a
possibility to radically improve feature tests by employing parallel executions on identical devices.
Ability to execute tests faster would lead to increased quality of application which improves overall
user experience.

Utilization of existing Android devices rather than purchase of new one dramatically
decreases overall of costs of mentioned service which is a positive economic effect for developer
community as well as service providers.

Malicious usage of this service opens up possibility to retrieve private information from
devices that were made available to malicious user, however, further system improvements could
partially solve this problem, but implemented prototype relies on a fact that developers would trust
each other or would not keep any private information on devices that have been share with other
developers.

36



6 Conclusions and future work

This chapter discusses possible future improvement as well as presents final conclusions.

6.1 Conclusion

One of the main achievements was a fast execution mode that enables testers to radically reduce
the amount of test execution time by splitting a test suite into multiple tests, distributing these tests
over many devices of the same type and aggregating the final results.

The implemented platform is a working prototype. However, it is usable as a solid base for
future developments and experiments. Further improvements, mainly in the area of security, need to
be made in order to bring it closer to a production level when the system could be publicly
deployed.

This was a challenging and interesting project since it involved research and development in
many different areas, ranging from writing Android applications and test scripts to developing a
console Java application, followed by implementation of a full blown web service interfacing a
database and providing a web-based user interface.

An analysis of similar services revealed that no service offers the same core feature of prototype
platform, i.e., none leverage existing Android devices by enabling device sharing by the platform’s
users for automated test execution. However, the maturity of these competing services makes it hard
to produce an adequate product during the time and resources which were be devoted for this
master’s thesis.

The result of this project can be used to implement and deploy a service that would greatly
reduce the costs of testing Android applications for compatibility with many different types of
devices, hence lowering the barrier for small companies and individual developers to produce high
quality Android applications that work across devices with different Android OS versions, screen
sizes, and hardware components.

6.2 Future work

The results of the work carried out during this master’s thesis project should provide a good
base for future developments. Since the prototype system is in working condition, improvements
could be made step by step, while keeping the system functional and usable. Some of the areas for
future work are described in the following subsections.

6.2.1 Security

One of the most important areas to improve in order to make the CBT platform closer to
production ready is to improve overall system security. It should be improved in order to:

e Ensure secure communication between the web service and clients. Theoretically,
employing the HTTPS protocol would be enough to ensure that messages could not be
easily intercepted or read (there of course should be mutual authentication of the web
service and the clients).

e Improve the authorization mechanism in order to make ensure that only authenticated users
can modify only their own data.

e Protect devices from malicious applications. Since developers are sharing their own devices
that might contain private data, devices must be protected from malicious applications and
harmful test scripts. This is quite a complicated problem to solve and various techniques
could be employed. One of these techniques would be to run applications and tests on
dedicated devices, either on physical or virtualized emulators and analyze the code’s
behavior in order to detect malicious access to data. Only after passing initial check, tests
would be uploaded and executed on user devices. Additionally, a mechanism could be

37



introduced that enables developers to set permissions[75] that applications being
downloaded to their devices must conform to. The CBT web service could analyze these
settings and exclude applications that do not conform to the permission set by the user
sharing his device. Another or complimentary approach could be to back-up all the
information on device and reset it to factory defaults before making it available for testing.
Back-up time would depend on device: assuming that device has 32GB of internal memory
rated as Class 10 by SD[76] standard (around 10MB/s write and 30MB/s read speed) and a
USBJ[77] 2.0 connection it would take around 20min for back-up and 3 times that (1 hour) to
restore the device since write speeds are usually much slower. However, assuming wider
spread of USB 3.0 and faster UHS-I type memory (~ 100MB/s) introduction in Android
devices, back-up time could be decreased to 6 minutes which might be a perfectly
acceptable time if device is being connected to CBT system for a longer period of time, for
example, during the night.

Protect the CBT web service and its file storage. In the case of unauthorized actions, both
applications and tests stored on the system could be stolen or modified. This might result in
loss of users intellectual property, since ideas and technology used in their applications
could be revealed without their consent. Similar event would also destroy the reputation of
such service and would greatly decrease the number of potential users. Encrypting files
stored within the system would probably be a good idea, along with putting more effort into
intrusion detection & prevention.

6.2.2 Missing features

In order to improve the prototype to a level that could compete with existing similar (and more
expensive) services, CBT system must provide at least functionality that is considered to be
essential functionality based on analysis of potential competitors, this functionality includes:

Add a feature to be able to download screenshots made by the testing framework. There are
no known technical obstacles for implementing this feature. Moreover, existing
infrastructure already supports this functionality.

Add feature to download device logs produced during test execution.

Add feature to collect device resource state statistics during execution. This functionality is
not presently available in all similar services, but would definitely improve the application’s
usability.

Add support for additional testing frameworks. Currently only uiautomator based tests are
supported and this is a relatively new framework which has not achieved high popularity
yet. The Android instrumentation testing framework seems to be most widely supported
framework, as there are more frameworks built on top of it (such as Robotium and
Calabash).

Add the possibility to integrate CI tools such as Jenkins. Since tests provide the best value
when executed automatically, it is highly desirable to eliminate additional human effort for
verification of an application. It is important to provide a means of automatically uploading
tests and applications, as well as initiating test execution. This is already possible as the CBT
web service can be operated using a Restful API. However, it can be quite complicated to
implement the client side for automating tasks, therefore a special command line client or
plug-ins for Jenkins could be implemented in order to take the automation to next level.

6.2.3 Coverage

The prototype implementation (of the CBT web server) was only tested on Linux OS and only
with Android devices. Theoretically this code could be used on other desktop OSs that are
supported by the Android SDK this way increase the number of potential users. However, specific
components were design only for executing tests on Android devices. This makes this system
Android specific, but in general, this kind of system could be adopted for other mobile platforms

38



such as Microsoft’s Windows Phone, Blackberry, Apple’s iPhone and iPad. Since all of these
systems suffer from varying degrees of fragmentation , developers would benefit from being able to
run tests on devices of their friends rather than being forced to buy expensive hardware or use cloud
services.

6.2.4 Business models

There are various business models that could be used in order pay the bills for the development,
maintenance, and hosting of the CBT platform’s services. These models need to be carefully
thought through in order to choose one that fits this system best and would keep the service running
and expanding.

One of the options would be to keep the platform free for basic use, but charge for value added
features, such as increased security or private deployments for corporate clients. Organizations
could leverage existing devices of their employees and for privacy reasons might want to use a
privately deployed system. This business model could be further explored in order to find what
other requirements an organization might put on the system.

Another potential business model would be to use a point system where users get points for
sharing their devises and points are expended for executing tests on the device provided by other
users. Potentially, people might be interested in giving access to their devices not only to their
friends, but to anyone who is prepared to pay for it.

6.2.5 Avoiding the need for attaching the Android device to a
computer

Ideally, it would be desirable that the CBT agent was running inside the Android device, thus
avoiding the need for a computer running the android debug bridge in between the CBT web service
and the CBT agent. However, based on available information, Android does not provide any means
of installing applications without manual intervention other than via the android debug bridge. This
is a show stopper for automatically downloading applications and executing tests via some other
means. Perhaps in the future this possibility will open-up. However until then, there must always be
some way to perform manual testing or testing applications that are already installed on device.
These possibilities could be explored in order to widen the scope of the platform’s use cases.

39






References

[1] “APK (file format)’, Wikipedia, the free encyclopedia, 30-January-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=APK_(file format)&oldid=535636731. [Accessed:
03-February-2013].

[2] ‘Android home page’, Android Home page. [Online]. Available: http://www.android.com/.
[Accessed: 12-January-2013].

[3] ‘Gartner Mobile Sales report Q3 2012°. [Online]. Available:
http://www.gartner.com/newsroom/id/2237315. [Accessed: 29-January-2012].

[4] ‘Linux official web page’. [Online]. Available: http://www.linux.org/. [Accessed: 29-January-
2012].

[5] Y. D. Liang, Introduction to JAVA programming: comprehensive version. Boston: Prentice
Hall, 2011, ISBN: 9780132130806 0132130807.

[6] B.W. Kernighan and D. M. Ritchie, The C programming language/ ANS C \ersion.
Englewood Cliffs, N.J.: Prentice Hall, 1988, ISBN: 0131103628 : PAP 9780131103627 : PAP.

[7] S. Prata, C++ primer plus. Upper Saddle River, NJ: Addison-Wesley, 2012, ISBN:
9780321776402 0321776402.

[8] ‘Android NDK | Android Developers’. [Online]. Available:
http://developer.android.com/tools/sdk/ndk/index.html. [Accessed: 29-January-2013].

[9] ‘Android - supporting multiple screens’. [Online]. Available:
http://developer.android.com/guide/practices/screens_support.html. [Accessed: 29-January-
2012].

[10] ‘Software testing’, Wikipedia, the free encyclopedia, 01-February-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Software testing&oldid=535990302. [Accessed: 02-
February-2013].

[11] D. Torres Milano, Android application testing guide build intensively tested and bug free
Android applications. Birmingham, U.K.: Packt Pub., 2011, ISBN: 9781849513517
1849513511 1849513503 9781849513500, Available atz http://site.ebrary.com/id/10482255.

[12] ‘Welcome to Jenkins CI! | Jenkins CI’. [Online]. Available: http://jenkins-ci.org/. [Accessed:
04-February-2013].

[13] ‘How Do Top Android Developer QA Test Their Apps ?° [Online]. Available:
http://techcrunch.com/2012/06/02/android-qa-testing-quality-assurance/. [Accessed: 27-
January-2013].

[14] ‘Automated Testing Tool for Android - Testdroid’. [Online]. Available: http://testdroid.com/.
[Accessed: 03-February-2013].

[15] P. M. Duvall, Continuous integration: improving software quality and reducing risk. Upper
Saddle River, NJ: Addison-Wesley, 2007, ISBN: 9780321336385 0321336380.

[16] ‘Google’. [Online]. Available: http://www.google.com/about/company/. [Accessed: 11-June-
2013].

[17] ‘Open Handset Alliance’. [Online]. Available: http://www.openhandsetalliance.com/.
[Accessed: 03-February-2013].

[18] ‘Exploring the SDK | Android Developers’. [Online]. Available:
http://developer.android.com/sdk/exploring.html. [Accessed: 03-February-2013].

[19] ‘Android API: Activity’. [Online]. Available:
http://developer.android.com/reference/android/app/Activity.html. [Accessed: 02-February-
2013].

[20] ‘Android API: Intent’. [Online]. Available:
http://developer.android.com/reference/android/content/Intent.html. [Accessed: 03-February-
2013].

[21] ‘GUI Architectures’. [Online]. Available:
http://martinfowler.com/eaaDev/uiArchs.html#Model ViewController. [Accessed: 30-June-

41



2013].

[22] ‘Android API: Bundle’. [Online]. Available:
http://developer.android.com/reference/android/os/Bundle.html. [Accessed: 03-February-
2013].

[23] N. Mirzaei, S. Malek, C. S. Pasareanu, N. Esfahani, and R. Mahmood, ‘Testing android apps
through symbolic execution’, ACM SIGSOFT Software Engineering Notes, vol. 37, no. 6, p. 1,
November 2012, DOI:10.1145/2382756.2382798.

[24] ‘Android Instrumentation class’. [Online]. Available:
http://developer.android.com/reference/android/app/Instrumentation.html. [Accessed: 11-June-
2013].

[25] ‘JUnit’. [Online]. Available: http://junit.org/.

[26] ‘ADT Plugin | Android Developers’. [Online]. Available:
http://developer.android.com/tools/sdk/eclipse-adt.html. [Accessed: 03-February-2013].

[27] ‘ActivityUnitTestCase | Android Developers’. [Online]. Available:
http://developer.android.com/reference/android/test/ ActivityUnitTestCase.html. [Accessed: 04-
February-2013].

[28] ‘ActivitylnstrumentationTestCase2 | Android Developers’. [Online]. Available:
http://developer.android.com/reference/android/test/ActivityInstrumentation TestCase2.html.
[Accessed: 04-February-2013].

[29] R. Patton, Software Testing, 2nd ed. Sams Publishing, 2005, ISBN: 0672327988.

[30] ‘Android Ul testing’. [Online]. Available:
http://developer.android.com/tools/testing/testing_ui.html. [Accessed: 02-February-2013].

[31] ‘Android API: UiAutomatorTestCase’. [Online]. Available:
http://developer.android.com/tools/help/uiautomator/UiAutomatorTestCase.html. [Accessed:
02-February-2013].

[32] ‘Robotium - Android test framework’. [Online]. Available:
http://code.google.com/p/robotium/. [Accessed: 12-January-2013].

[33] ‘Maven - software project management tool’. [Online]. Available: http://maven.apache.org/.
[Accessed: 11-June-2013].

[34] ‘Ant - build manager’. [Online]. Available: http://ant.apache.org/. [Accessed: 11-June-2013].

[35] ‘Gradle - Build Automation Evolved’. [Online]. Available: http://www.gradle.org/. [ Accessed:
25-May-2013].

[36] ‘The Jython Project’. [Online]. Available: http://www.jython.org/. [Accessed: 03-February-
2013].

[37] ‘ARM architecture’, Wikipedia, the free encyclopedia, 01-February-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=ARM architecture&oldid=535993691. [Accessed:
03-February-2013].

[38] ‘Code coverage’, Wikipedia, the free encyclopedia, 09-May-2013. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=Code coverage&oldid=554368745. [Accessed: 26-
May-2013].

[39] ‘Xamarin Test Cloud’. [Online]. Available: http://xamarin.com/test-cloud. [Accessed: 11-June-
2013].

[40] ‘PerfectoMobile’. [Online]. Available: http://www.perfectomobile.com/. [Accessed: 12-
January-2013].

[41] ‘KeynoteDeviceAnywhere’. [Online]. Available: http://www.keynotedeviceanywhere.com.
[Accessed: 11-June-2013].

[42] ‘AppLover’. [Online]. Available: http://applover.me/. [Accessed: 11-June-2013].

[43] “uTest’. [Online]. Available: http://www.utest.com/. [Accessed: 12-January-2013].

[44] ‘CloudMonkey’. [Online]. Available: https://www.gorillalogic.com/cloudmonkey. [ Accessed:
11-June-2013].

[45] ‘cisimple’. [Online]. Available: https://www.cisimple.com/. [Accessed: 04-February-2013].

[46] ‘Calabash-android’, GitHub. [Online]. Available: https://github.com/calabash/calabash-

42



android. [Accessed: 12-January-2013].

[47] “Tit for tat’. [Online]. Available: http://en.wikipedia.org/wiki/Tit_for tat. [Accessed: 28-
January-2012].

[48] ‘Representational state transfer’, Wikipedia, the free encyclopedia, 17-May-2013. [Online].
Available:
https://en.wikipedia.org/w/index.php?title=Representational state transfer&oldid=555343371.
[Accessed: 19-May-2013].

[49] ‘Guice dependency injection’. [Online]. Available: https://code.google.com/p/google-guice/.
[Accessed: 11-June-2013].

[50] ‘Jetty - Servlet Engine and Http Server’. [Online]. Available: http://www.eclipse.org/jetty/.
[Accessed: 18-May-2013].

[51] ‘Jersey official web page’. [Online]. Available: https://jersey.java.net/. [Accessed: 11-June-
2013].

[52] ‘MD5’, Wikipedia, the free encyclopedia, 21-May-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=MD5&01did=556112902. [Accessed: 25-May-
2013].

[53] ‘HTTP cookie’, Wikipedia, the free encyclopedia, 24-May-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=HTTP_cookie&oldid=555260389. [Accessed: 25-
May-2013].

[54] ‘HTML’, Wkipedia, the free encyclopedia, 25-May-2013. [Online]. Available:
https://en.wikipedia.org/w/index.php?title=HTML&o0ldid=556707822. [ Accessed: 25-May-
2013].

[55] ‘Hypertext Transfer Protocol’, Wikipedia, the free encyclopedia, 24-May-2013. [Online].
Available:
http://en.wikipedia.org/w/index.php?title=Hypertext Transfer Protocol&oldid=555926626.
[Accessed: 25-May-2013].

[56] ‘JSON official web page’. [Online]. Available: http://www.json.org/. [Accessed: 11-June-
2013].

[57] ‘JSON’, Wikipedia, the free encyclopedia, 25-May-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=JSON&oldid=556703766. [ Accessed: 25-May-
2013].

[58] ‘JAR (file format)’, Wikipedia, the free encyclopedia, 31-January-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=JAR (file format)&oldid=533322895. [Accessed:
03-February-2013].

[59] ‘Java bytecode’, Wikipedia, the free encyclopedia, 28-April-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Java_bytecode&oldid=546979611. [Accessed: 20-
May-2013].

[60] ‘DEX format’. [Online]. Available: http://source.android.com/tech/dalvik/dex-format.html.
[Accessed: 11-June-2013].

[61] ‘DexFile in Android API’. [Online]. Available:
http://developer.android.com/reference/dalvik/system/DexFile.html. [Accessed: 11-June-
2013].

[62] ‘Smali library for Android’s dec format’. [Online]. Available:
https://code.google.com/p/smali/. [Accessed: 11-June-2013].

[63] ‘Data access layer’, Wikipedia, the free encyclopedia, 24-February-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Data_access layer&oldid=538071771. [Accessed:
25-May-2013].

[64] ‘Core J2EE Patterns - Data Access Object’. [Online]. Available:
http://www.oracle.com/technetwork/java/dataaccessobject-138824.html. [ Accessed: 11-June-
2013].

[65] ‘Hibernate - ralational persinstance’. [Online]. Available: http://www.hibernate.org/.
[Accessed: 11-June-2013].

43



[66] ‘IDBC’. [Online]. Available: http://www.oracle.com/technetwork/java/overview-141217.html.
[Accessed: 11-June-2013].

[67] JOOQ’. [Online]. Available: http://www.jooq.org/. [Accessed: 11-June-2013].

[68] ‘SQL’, Wikipedia, the free encyclopedia, 24-May-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=SQL&o0ldid=556630776. [ Accessed: 25-May-2013].

[69] ‘MySQL official web page’. [Online]. Available: http://www.mysql.com/. [Accessed: 11-June-
2013].

[70] ‘Database engine rankings’. [Online]. Available: http://db-engines.com/en/ranking. [Accessed:
11-June-2013].

[71] ‘Regular expression’, Wikipedia, the free encyclopedia, 22-May-2013. [Online]. Available:
http://en.wikipedia.org/w/index.php?title=Regular expression&oldid=556241919. [Accessed:
23-May-2013].

[72] A. Freier, P. Kocher, and P. Karlton, ‘The SSL Protocol Version 3.0’. [Online]. Available:
https://tools.ietf.org/html/draft-ietf-tls-ssl-version3-00. [Accessed: 11-June-2013].

[73] ‘Android dashboards’. [Online]. Available:
http://developer.android.com/about/dashboards/index.html. [Accessed: 11-June-2013].

[74] ‘Ubuntu official web page’. [Online]. Available: http://www.ubuntu.com/.

[75] ‘Android Permissions’. [Online]. Available:
http://developer.android.com/guide/topics/security/permissions.html. [Accessed: 11-June-
2013].

[76] ‘Home - SD Association’. [Online]. Available: https://www.sdcard.org/home/. [Accessed: 30-
June-2013].

[77] ‘USB.org - Welcome’. [Online]. Available: http://www.usb.org/home. [Accessed: 30-June-
2013].

44



Appendix

Source code

Source code of all applications and components that were developed during this work is
available in GitHub. Links to repositories are provided in Table 4.

Table 4 Links to source code

Repository description Link to Git repository

CBT web service https://github.com/noiseoverip/cbt-ws

Data access objects used by CBT web service https://github.com/noiseoverip/cbt-ws-dao
and CBT agent

CBT agent https://github.com/noiseoverip/cbt-client

Test (uiautomator) for demo Android application | https://github.com/noiseoverip/cbt-example-app-
used for testing CBT system uiautomator

Demo Android application https://github.com/noiseoverip/cbt-example-app

Test speed-up calculations

Amdahl’s law speed-up formula:
T(n) =T(1) (B + %) ; n —number of parallel executions, B- fraction of sequential process.

Since we have durations of execution with 1 device which is roughly 30 seconds (Figure 5-1), 2
devices — 17 seconds and 4 devices - 10 seconds, we can calculate the sequential process fraction.

T 1 Than we can calculate that B~0.13 in
T(1)*(n—1) n—-1

We can derive formula of fraction B =

case of 2 parallel execution and B=0.11 in case of 4 parallel executions. These numbers are
quite similar so we can average them. Since we do not care about precision B=0.12 was taken as an
average value and used in further calculations. Having this, we can say that it takes 3.6 seconds
(12% of 30 seconds) to fetch and install required files and it takes 6.6 (30 seconds — sequential part
and divide by 4 since it was executing 4 tests) seconds to execute one test. Now we can calculate

estimated B for different number of test classes:

Table 5 Estimations of sequential process fraction

Number of test classes Sequential process fraction

410.12

0.06383

12 | 0.043478

16 | 0.032967

20 | 0.026549

Since we have fractions of sequential process estimates, Amdahl’s law can be used to estimate
the potential speed-up.

45




TRITA-ICT-EX-2013:133

www.kth.se



