
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

A M I R R O O Z B E H

 An extension to OSPF-TE

 Resource monitoring in a Network
Embedded Cloud

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Resource monitoring in a Network Embedded Cloud

An extension to OSPF-TE

Amir Roozbeh

Master of Science Thesis

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

30 Jun 2013

Examiner: Professor Gerald Q. Maguire Jr.

c© Amir Roozbeh, 30 Jun 2013

Abstract

The notions of "network embedded cloud", also known as a "network enabled
cloud" or a "carrier cloud", is an emerging technology trend aiming to integrate
network services while exploiting the on-demand nature of the cloud paradigm.A
network embedded cloud is a distributed cloud environment where data centers
are distributed at the edge of the operator’s network. Distributing data centers or
computing resources across the network introduces topological and geographical
locality dependency.

In the case of a network enabled cloud, in addition to the information regarding
available processing, memory, and storage capacity, resource management requires
information regarding the network’s topology and available bandwidth on the
links connecting the different nodes of the distributed cloud. This thesis project
designed, implemented, and evaluated the use of open shortest path first with
traffic engineering (OSPF-TE) for propagating the resource status in a network
enabled cloud. The information carried over OSPF-TE are used for network-
aware scheduling of virtual machines. In particular, OSPF-TE was extended to
convey virtualization and processing related information to all the nodes in the
network enabled cloud.

Modeling, emulation, and analysis shows the proposed solution can provide
the required data to a cloud management system by sending a data center’s
resources information in the form of new opaque link-state advertisement with
a minimum interval of 5 seconds. In this case, each embedded data centers injects
a maximum 38.4 bytes per second of additional traffic in to the network.

Keyword = network enabled cloud, network embedded cloud, carrier cloud,
Cloud LSA, data center model, opaque LSA, link-state update policy, OSPF-TE,
resource monitoring, network-aware, cloud management system, extended TED.

i

Sammanfattning

Ett network embedded cloud", även känt som ett network enabled cloud"eller
ett "carrier cloud", är en ny teknik trend som syftar till att tillhandahålla
nätverkstjänster medan on-demand egenskapen av moln-paradigmet utnyttjas.
Traditionella telekommunikationsapplikationer bygger ofta på en distributed serv-
ice model och kan använda ett network enabled cloudsom dess exekverande
plattform. Dock kommer sådana inbäddade servrar av naturliga skäl vara geograf-
iskt utspridda, varför de är beroende av topologisk och geografisk lokalisering.
Detta ändrar på resurshanteringsproblemet jämfört med resurshantering i datacen-
trum.

I de fall med ett network enabled cloud, utöver informationen om tillgängliga
CPU, RAM och lagring, behöver resursfördelningsfunktionen information om
nätverkets topologi och tillgänglig bandbredd på länkarna som förbinder de olika
noderna i det distribuerade molnet. Detta examensarbete har utformat, tillämpat
och utvärderat ett experiment-orienterad undersökning av användningen av open
shortest path first med traffich engineering (OSPF-TE) för resurshantering i
det network enabled cloud. I synnerhet utvidgades OSPF-TE till att förmedla
virtualisering och behandla relaterad information till alla noder i nätverket.

Detta examensarbete utvärderar genomförbarheten och lämpligheten av denna
metod, dess flexibilitet och prestanda. Analysen visade att den föreslagna lösningen
kan förse nödvändiga uppgifter till cloud management system genom att skicka
ett datacenters resursinformation i form av ny opaque LSA (kallat Cloud LSA)
med ett minimumintervall av 5 sekunder och maximal nätverksbelastning av 38,4
byte per sekund per inbäddade data center.

Nyckelord = network enabled cloud, network embedded cloud, carrier cloud,
Cloud LSA, data center modell, opaque LSA, link-state uppdatering policy, OSPF-
TE, resurs övervakning, cloud förvaltning systemet, förlängd TED.

iii

Acknowledgements

First of all, I would like to express my sincere gratitude to my academic supervisor
and examiner Professor Gerald Q. Maguire Jr., for all the support, feedback, and
encouragement.

I wish to thank also my Ericsson’s industrial supervisor Azimeh Sefidcon, and
a special gratitude I give to Ericsson TPA research group, Per Karlsson, Srinivasa
Vinay Yadhav, Hareesh Puthalath, Enrique Fernandez Casado, and Bob Melander
for helping, trusting, and giving me this great opportunity.

Furthermore, I would also like to acknowledge with much appreciation the
crucial role of my loving wife Paria Abedi and my sweet friend Jesika, for their
unconditional love, supports, and encouragements.

Last, but not least, I would like to express my thankfulness to my parents
Mehri Khaleghi and Alireza Roozbeh and my sister Mehrnaz Roozbeh who stood
in staunch behind me, and I have been indebted to them for making my dreams
come true.

Finally, I would like to share my favorite quotes:

"Nothing Is Impossible; The Word Itself says I’m Possible - Audrey Hepburn."

v

Contents

1 Introduction 1
1.1 Overview . 1
1.2 Problem description . 3
1.3 Solution proposal . 4
1.4 Goals . 6
1.5 Methodology . 6
1.6 Limitations . 7
1.7 Thesis outline . 8

2 Background study 11
2.1 Cloud computing . 11

2.1.1 Cloud characteristics . 12
2.1.2 Cloud service models . 13
2.1.3 Cloud Deployment Models 14
2.1.4 Varieties of Cloud . 15

2.1.4.1 Distributed Cloud 15
2.1.4.2 Carrier network and cloud 16
2.1.4.3 Network embedded cloud 16
2.1.4.4 Cloud Management System 17

2.2 Routing protocols . 19
2.2.1 Distance-Vector routing algorithms 19
2.2.2 Link-State routing algorithms 19

2.3 Open Shortest Path First . 20
2.3.1 OSPF operations . 22
2.3.2 Link-State Advertisements 22
2.3.3 Opaque Link-State Advertisement 24
2.3.4 OSPF Traffic Engineering 27

2.4 OSPF reliable flooding and flooding control 29
2.5 Link-state update policies . 31
2.6 Open source routing suite . 33

2.6.1 Quagga router . 33

vii

viii CONTENTS

2.6.2 Quagga OSPF API . 34
2.7 Related works . 38

3 Design 41
3.1 Solution architecture . 41
3.2 Cloud-OSPF module’s design . 42

3.2.1 Design issues . 42
3.2.1.1 Quagga as routing suite 42
3.2.1.2 Embedded data center 42

3.2.2 Solution Design . 43
3.2.2.1 Cloud-OSPF-Sender 43
3.2.2.2 Cloud-OSPF-Receiver 44

3.3 Cloud LSA . 44
3.3.1 Cloud LSA format . 45
3.3.2 Summery . 48

4 Implementation 51
4.1 Data center resource utilization module 51

4.1.1 Data center module’s flowchart 51
4.1.2 Data center resource utilization results 53

4.2 Cloud-OSPF-Sender module . 55
4.3 Cloud-OSPF-Receiver module 58

5 Cloud resources and updates policies 61
5.1 Immediate update policy . 62
5.2 Periodic update policy . 62
5.3 Class-based update policy . 65

5.3.1 Equal-sized classes . 66
5.3.2 Exponential-sized classes 70

5.4 Threshold-based update policy 75
5.4.1 Absolute threshold-based update policy 75
5.4.2 Relative threshold-based update policy 78

5.5 Summary . 81

6 Analysis 83
6.1 Performance of solution . 85
6.2 Evaluation based on test scenarios 87

6.2.1 Set up test environment 88
6.2.2 Expected result . 90
6.2.3 Measured results . 92
6.2.4 More observations in testing 95

CONTENTS ix

6.3 Discussion . 97

7 Conclusions 99
7.1 Conclusion . 99
7.2 Future work . 101
7.3 Required reflections . 102

Bibliography 103

A Embedded data center module source code 113

B Embedded data center model results 119

C Cloud-OSPF-Sender source code 123

D Periodic update policy performance analysis 131

E Equal-sized class-based update policy 137
E.1 Data center’s CPU . 138
E.2 Data center’s RAM . 147
E.3 Data center’s storage . 157

F Exponential-sized class-based update policy experiments 167
F.1 Data center’s CPU . 168
F.2 Data center’s RAM . 194
F.3 Data center’s storage . 221

G Absolute threshold-based update policy experiments 249
G.1 Data center’s CPU . 250
G.2 Data center’s RAM . 257
G.3 Data center’s storage . 263

H Relative threshold update policy experiments 269
H.1 Data center’s CPU . 270
H.2 Data center’s RAM . 280
H.3 Data center’s storage . 291

I Relative threshold update policy experiments (2) 301
I.1 Data center’s CPU . 303
I.2 Data center’s RAM . 311
I.3 Data center’s storage . 323

x CONTENTS

J Test results 333

List of Figures

1.1 Basic Distributed cloud topology. 2
1.2 Network embedded cloud architecture. 3

2.1 The NIST Cloud computing definitions. 12
2.2 Common LSA Header Format. 24
2.3 Opaque LSA Header Format. 25
2.4 TE-LSA header format and TLV. 28
2.5 Quagga router system architecture. 33
2.6 Quagga OSPF demon architecture. 34
2.7 The OSPF API protocol states. 37

3.1 Proposed solution architecture. 41
3.2 Design of the proposed solution 44
3.3 Cloud TLV - storing all the required data in a value portion. 46
3.4 Cloud TLV - storing the required data about an embedded data

center in different sub-TLVs. 46
3.5 A Cloud sub-TLV for a Node attribute TLV 47
3.6 Cloud LSA format. 49

4.1 Data center resource utilization modeling flowchart. 52
4.2 Data center’s mean of average CPU utilization. 54
4.3 Simulated data center’s mean available CPU capacity. 55
4.4 Cloud-OSPF-Sender module flowchart. 57
4.5 Cloud-OSPF-Receiver module flowchart. 59

5.1 Number of updates per different hold-down timer values. 63
5.2 How a cloud management system views cloud resources with

different hold-down timer values 3600, 1000, and 200 seconds. . . 64
5.3 The periodic update policy can ignore necessary LSA updates,

and send unnecessary LSA updates. 65
5.4 Number of updates per different number of classes (Neq). 66

xi

xii LIST OF FIGURES

5.5 Equal-sized class-based update policy. How the update policy
send updates due to changes in data center’s available CPU
capacity when number of classes Neq = 80. 67

5.6 Equal-sized class-based update policy. How a cloud management
system views cloud resources with different number of classes
(Neq) values 120, 200, and 400. 69

5.7 Exponential-sized class-based update policy. Number of updates
per different values for growth factor "f " and base factor β. 70

5.8 Exponential-sized class-based update policy. Number of updates
for base factor values 0.000001, 0.00001, 0.01, and 0.1 with
different growth factor values. 71

5.9 Exponential-sized class-based update policy. How the update
policy send updates due changes in CPU value when base factor
"β" = 0.01 and growth factor "f " = 1.4. 72

5.10 Exponential-sized class based update policy. How a cloud management
system views data center’s CPU resources with fix base factor
(β = 0.001) but different growth factor "f " values. 73

5.11 Exponential-sized class based update policy. How a cloud management
system views data center’s CPU resources with fix growth factor
(f = 1.2) but different base factor "β" values. 74

5.12 Absolute threshold-based update policy. Number of updates due
to CPU changes per different threshold values. 75

5.13 Absolute threshold-based update policy. How a cloud management
system views cloud resources with different threshold values 2, 3
and 4 %. 77

5.14 Relative threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s CPU
capacity. 78

5.15 Relative threshold-based update policy. How a cloud management
system views cloud resources with different threshold values 5, 20
and 50 percent. 80

6.1 The Cloud LSA traffic that a Cloud-OSPF sender sends in a
network embedded cloud for different interval values. 86

6.2 The test bed topology. 89
6.3 First test scenario - One embedded data centers in the network. . . 89
6.4 Second test scenario: Three embedded data centers in the network. 89
6.5 Third test scenario: Six embedded data centers in the network. . . 90
6.6 Comparison between expected and captured Cloud LSAs traffic. . 95
6.7 Measured OSPF protocol traffic in one test round. 96
6.8 The distribution of Cloud LSUs during one day. 97

LIST OF FIGURES xiii

B.1 Simulated data center’s mean CPU utilization per hour. 119
B.2 Simulated data center’s mean RAM utilization per hour. 120
B.3 Simulated data center’s mean storage utilization per hour. 120
B.4 Simulated data center’s CPU capacity utilized per second. 121
B.5 Simulated data center’s RAM capacity utilized per second. 121
B.6 Simulated data center’s storage capacity utilized per second. . . . 122

D.1 How a cloud management system views cloud resources with a
hold-down timer value 5 seconds. 131

D.2 How a cloud management system views cloud resources with a
hold-down timer value 25 seconds. 132

D.3 How a cloud management system views cloud resources with a
hold-down timer value 50 seconds. 132

D.4 How a cloud management system views cloud resources with a
hold-down timer value 100 seconds. 133

D.5 How a cloud management system views cloud resources with a
hold-down timer value 200 seconds. 133

D.6 How a cloud management system views cloud resources with a
hold-down timer value 500 seconds. 134

D.7 How a cloud management system views cloud resources with a
hold-down timer value 700 seconds. 134

D.8 How a cloud management system views cloud resources with a
hold-down timer value 1000 seconds. 135

D.9 How a cloud management system views cloud resources with a
hold-down timer value 3600 seconds 135

E.1 Data center sample CPU capacity per second. 139
E.2 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 2. 139
E.3 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 4. 140
E.4 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 6. 140
E.5 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 9. 141
E.6 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 12. 141
E.7 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 15. 142
E.8 Equal-sized class-based update policy. How a cloud management

system views data center’s CPU with a Neq value 20. 142

xiv LIST OF FIGURES

E.9 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 30. 143

E.10 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 50. 143

E.11 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 80. 144

E.12 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 120. 144

E.13 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 200. 145

E.14 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 400. 145

E.15 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 800. 146

E.16 Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 1500. 146

E.17 Equal-sized class-based update policy. Number of updates per
different number of classes Neq values based on changes of a data
center’s RAM capacity. 148

E.18 Data center sample RAM capacity per second. 148
E.19 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 2. . . . 149
E.20 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 4. . . . 149
E.21 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 6. . . . 150
E.22 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 9. . . . 150
E.23 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 12. . . 151
E.24 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 15. . . 151
E.25 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 20. . . 152
E.26 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 30. . . 152
E.27 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 50. . . 153
E.28 Equal-sized class-based update policy. How a cloud management

system views data center’s RAM capacity with a Neq value 80. . . 153

LIST OF FIGURES xv

E.29 Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 120. . . 154

E.30 Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 200. . . 154

E.31 Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 400. . . 155

E.32 Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 800. . . 155

E.33 Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 1500. . 156

E.34 Equal-sized class-based update policy. Number of updates per
different number of classes Neq values based on changes of a data
center’s storage capacity. 158

E.35 Data center sample storage capacity per second. 158
E.36 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 2. . . 159
E.37 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 4. . . 159
E.38 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 6. . . 160
E.39 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 9 . . 160
E.40 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 12 . . 161
E.41 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 15. . 161
E.42 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 20. . 162
E.43 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 30. . 162
E.44 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 50. . 163
E.45 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 80. . 163
E.46 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 120. . 164
E.47 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 200. . 164
E.48 Equal-sized class-based update policy. How a cloud management

system views data center’s storage capacity with a Neq value 400. . 165

xvi LIST OF FIGURES

E.49 Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 800. . 165

E.50 Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 1500. 166

F.1 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.2. 171

F.2 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.4. 171

F.3 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.6. 172

F.4 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.8. 172

F.5 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 2. 173

F.6 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.2. 173

F.7 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.4. 174

F.8 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.6. 174

F.9 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.8. 175

F.10 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 2. 175

F.11 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.2. 176

F.12 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.4. 176

LIST OF FIGURES xvii

F.13 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.6. 177

F.14 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.8. 177

F.15 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 2. 178

F.16 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.2. 178

F.17 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.4. 179

F.18 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.6. 179

F.19 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.8. 180

F.20 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 2. 180

F.21 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.2. 181

F.22 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.4. 181

F.23 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.6. 182

F.24 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.8. 182

F.25 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 2. 183

xviii LIST OF FIGURES

F.26 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.2. 183

F.27 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.4. 184

F.28 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.6. 184

F.29 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.8. 185

F.30 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 2. 185

F.31 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.2. 186

F.32 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.4. 186

F.33 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.6. 187

F.34 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.8. 187

F.35 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 2. 188

F.36 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.2. 188

F.37 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.4. 189

F.38 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.6. 189

LIST OF FIGURES xix

F.39 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.8. 190

F.40 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 2. 190

F.41 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.2. 191

F.42 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.4. 191

F.43 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.6. 192

F.44 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.8. 192

F.45 Exponential-sized class-based update policy. How a cloud management
system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 2. 193

F.46 Exponential-sized class-based update policy. Number of updates
per different growth factor and base factor values based on
changes of a data center’s RAM capacity. 197

F.47 Data center sample RAM capacity per second. 197
F.48 Exponential-sized class-based update policy. How a cloud management

system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.2. 198

F.49 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.4. 198

F.50 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.6. 199

F.51 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.8. 199

F.52 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 2. 200

xx LIST OF FIGURES

F.53 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.2. 200

F.54 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.4. 201

F.55 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.6. 201

F.56 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.8. 202

F.57 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 2. 202

F.58 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.2. 203

F.59 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.4. 203

F.60 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.6. 204

F.61 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.8. 204

F.62 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 2. 205

F.63 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.2. 205

F.64 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.4. 206

F.65 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.6. 206

LIST OF FIGURES xxi

F.66 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.8. 207

F.67 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 2. 207

F.68 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.2. 208

F.69 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.4. 208

F.70 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.6. 209

F.71 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.8. 209

F.72 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 2. 210

F.73 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.2. 210

F.74 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.4. 211

F.75 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.6. 211

F.76 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.8. 212

F.77 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 2. 212

F.78 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.2. 213

xxii LIST OF FIGURES

F.79 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.4. 213

F.80 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.6. 214

F.81 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.8. 214

F.82 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 2. 215

F.83 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.2. 215

F.84 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.4. 216

F.85 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.6. 216

F.86 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.8. 217

F.87 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 2. 217

F.88 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.2. 218

F.89 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.4. 218

F.90 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.6. 219

F.91 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.8. 219

LIST OF FIGURES xxiii

F.92 Exponential-sized class-based update policy. How a cloud management
system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 2. 220

F.93 Exponential-sized class-based update policy. Number of updates
per different growth factor and base factor values based on
changes of a data center’s storage capacity. 224

F.94 Data center sample storage capacity per second. 224
F.95 Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.2. 225
F.96 Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.4. 225
F.97 Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.6. 226
F.98 Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.8. 226
F.99 Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 2. 227
F.100Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.2. 227
F.101Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.4. 228
F.102Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.6. 228
F.103Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.8. 229
F.104Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 2. 229
F.105Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.2. 230

xxiv LIST OF FIGURES

F.106Exponential-sized class-based update policy. How a cloud management
system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.4. 230
F.107Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.6. 231
F.108Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.8. 231
F.109Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 2. 232
F.110Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.2. 232
F.111Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.4. 233
F.112Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.6. 233
F.113Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.8. 234
F.114Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 2. 234
F.115Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.2. 235
F.116Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.4. 235
F.117Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.6. 236
F.118Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.8. 236

LIST OF FIGURES xxv

F.119Exponential-sized class-based update policy. How a cloud management
system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 2. 237
F.120Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.2. 237
F.121Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.4. 238
F.122Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.6. 238
F.123Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.8. 239
F.124Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 2. 239
F.125Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.2. 240
F.126Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.4. 240
F.127Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.6. 241
F.128Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.8. 241
F.129Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 2. 242
F.130Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.2. 242
F.131Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.4. 243

xxvi LIST OF FIGURES

F.132Exponential-sized class-based update policy. How a cloud management
system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.6. 243
F.133Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.8. 244
F.134Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 2. 244
F.135Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.2. 245
F.136Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.4. 245
F.137Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.6. 246
F.138Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.8. 246
F.139Exponential-sized class-based update policy. How a cloud management

system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 2. 247

G.1 Data center sample CPU capacity per second. 251
G.2 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 0.5%251
G.3 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 1%. 252
G.4 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 2%. 252
G.5 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 3%. 253
G.6 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 4%. 253
G.7 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 5%. 254
G.8 Absolute threshold-based update policy. How a cloud management

system views CPU resources with an absolute threshold value 10%.254

LIST OF FIGURES xxvii

G.9 Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 15%.255

G.10 Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 20%.255

G.11 Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 25%.256

G.12 Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 30%.256

G.13 Relative threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s
RAM capacity. 258

G.14 Data center’s sample RAM capacity per second. 258
G.15 Absolute threshold-based update policy. How a cloud management

system views RAM resources with an absolute threshold value
0.5%. 259

G.16 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 1%. 259

G.17 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 2%. 260

G.18 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 3%. 260

G.19 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 4%. 261

G.20 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 5%. 261

G.21 Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 10%.262

G.22 Absolute threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s
storage capacity. 264

G.23 Data center sample storage capacity per second. 264
G.24 Absolute threshold-based update policy. How a cloud management

system views storage resources with an absolute threshold value
0.5%. 265

G.25 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
1%. 265

G.26 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
2%. 266

xxviii LIST OF FIGURES

G.27 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
3%. 266

G.28 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
4%. 267

G.29 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
5%. 267

G.30 Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value
10%. 268

H.1 Data center sample CPU capacity per second 271
H.2 How cloud management system views CPU resources with a

relative threshold value 5. 271
H.3 How cloud management system views CPU resources with a

relative threshold value 10. 272
H.4 How cloud management system views CPU resources with a

relative threshold value 15. 272
H.5 How cloud management system views CPU resources with a

relative threshold value 20. 273
H.6 How cloud management system views CPU resources with a

relative threshold value 25. 273
H.7 How cloud management system views CPU resources with a

relative threshold value 30. 274
H.8 How cloud management system views CPU resources with a

relative threshold value 35. 274
H.9 How cloud management system views CPU resources with a

relative threshold value 40. 275
H.10 How cloud management system views CPU resources with a

relative threshold value 45. 275
H.11 How cloud management system views CPU resources with a

relative threshold value 50. 276
H.12 How cloud management system views CPU resources with a

relative threshold value 55. 276
H.13 How cloud management system views CPU resources with a

relative threshold value 60. 277
H.14 How cloud management system views CPU resources with a

relative threshold value 65. 277

LIST OF FIGURES xxix

H.15 How cloud management system views CPU resources with a
relative threshold value 70. 278

H.16 How cloud management system views CPU resources with a
relative threshold value 75. 278

H.17 How cloud management system views CPU resources with a
relative threshold value 80. 279

H.18 How cloud management system views CPU resources with a
relative threshold value 85. 279

H.19 Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s
RAM capacity. 281

H.20 Data center sample RAM capacity per second 281
H.21 How cloud management system views RAM resources with a

relative threshold value 5. 282
H.22 How cloud management system views RAM resources with a

relative threshold value 10. 282
H.23 How cloud management system views RAM resources with a

relative threshold value 15. 283
H.24 How cloud management system views RAM resources with a

relative threshold value 20. 283
H.25 How cloud management system views RAM resources with a

relative threshold value 25. 284
H.26 How cloud management system views RAM resources with a

relative threshold value 30. 284
H.27 How cloud management system views RAM resources with a

relative threshold value 35. 285
H.28 How cloud management system views RAM resources with a

relative threshold value 40. 285
H.29 How cloud management system views RAM resources with a

relative threshold value 45. 286
H.30 How cloud management system views RAM resources with a

relative threshold value 50. 286
H.31 How cloud management system views RAM resources with a

relative threshold value 55. 287
H.32 How cloud management system views RAM resources with a

relative threshold value 60. 287
H.33 How cloud management system views RAM resources with a

relative threshold value 65. 288
H.34 How cloud management system views RAM resources with a

relative threshold value 70. 288

xxx LIST OF FIGURES

H.35 How cloud management system views RAM resources with a
relative threshold value 75. 289

H.36 How cloud management system views RAM resources with a
relative threshold value 80. 289

H.37 How cloud management system views RAM resources with a
relative threshold value 85. 290

H.38 How cloud management system views RAM resources with a
relative threshold value 90. 290

H.39 How cloud management system views RAM resources with a
relative threshold value 95. 291

H.40 Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s
storage capacity. 291

H.41 Data center sample storage capacity per second. 293
H.42 How cloud management system views storage resources with a

relative threshold value 5. 293
H.43 How cloud management system views storage resources with a

relative threshold value 10. 294
H.44 How cloud management system views storage resources with a

relative threshold value 15. 294
H.45 How cloud management system views storage resources with a

relative threshold value 20. 295
H.46 How cloud management system views storage resources with a

relative threshold value 25. 295
H.47 How cloud management system views storage resources with a

relative threshold value 30. 296
H.48 How cloud management system views storage resources with a

relative threshold value 35. 296
H.49 How cloud management system views storage resources with a

relative threshold value 40. 297
H.50 How cloud management system views storage resources with a

relative threshold value 45. 297
H.51 How cloud management system views storage resources with a

relative threshold value 50. 298
H.52 How cloud management system views storage resources with a

relative threshold value 55. 298
H.53 How cloud management system views storage resources with a

relative threshold value 60. 299
H.54 How cloud management system views storage resources with a

relative threshold value 65. 299

LIST OF FIGURES xxxi

H.55 How cloud management system views storage resources with a
relative threshold value 70. 300

H.56 How cloud management system views storage resources with a
relative threshold value 75. 300

I.1 Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s
capacity. 301

I.2 Data center sample CPU capacity per second 303
I.3 How a cloud management system views CPU resources with a

relative threshold value 5. 303
I.4 How a cloud management system views CPU resources with a

relative threshold value 10. 304
I.5 How a cloud management system views CPU resources with a

relative threshold value 15. 304
I.6 How a cloud management system views CPU resources with a

relative threshold value 20. 305
I.7 How a cloud management system views CPU resources with a

relative threshold value 25. 305
I.8 How a cloud management system views CPU resources with a

relative threshold value 30. 306
I.9 How a cloud management system views CPU resources with a

relative threshold value 35. 306
I.10 How a cloud management system views CPU resources with a

relative threshold value 40. 307
I.11 How a cloud management system views CPU resources with a

relative threshold value 45. 307
I.12 How a cloud management system views CPU resources with a

relative threshold value 50. 308
I.13 How a cloud management system views CPU resources with a

relative threshold value 55. 308
I.14 How a cloud management system views CPU resources with a

relative threshold value 60. 309
I.15 How a cloud management system views CPU resources with a

relative threshold value 65. 309
I.16 How a cloud management system views CPU resources with a

relative threshold value 70. 310
I.17 How a cloud management system views CPU resources with a

relative threshold value 75. 310
I.18 How a cloud management system views CPU resources with a

relative threshold value 80. 311

xxxii LIST OF FIGURES

I.19 How a cloud management system views CPU resources with a
relative threshold value 85. 311

I.20 How a cloud management system views CPU resources with a
relative threshold value 90. 312

I.21 Data center sample RAM capacity per second 312
I.22 How a cloud management system views RAM resources with a

relative threshold value 5. 313
I.23 How a cloud management system views RAM resources with a

relative threshold value 10. 313
I.24 How a cloud management system views RAM resources with a

relative threshold value 15. 314
I.25 How a cloud management system views RAM resources with a

relative threshold value 20. 314
I.26 How a cloud management system views RAM resources with a

relative threshold value 25. 315
I.27 How a cloud management system views RAM resources with a

relative threshold value 30. 315
I.28 How a cloud management system views RAM resources with a

relative threshold value 35. 316
I.29 How a cloud management system views RAM resources with a

relative threshold value 40. 316
I.30 How a cloud management system views RAM resources with a

relative threshold value 45. 317
I.31 How a cloud management system views RAM resources with a

relative threshold value 50. 317
I.32 How a cloud management system views RAM resources with a

relative threshold value 55. 318
I.33 How a cloud management system views RAM resources with a

relative threshold value 60. 318
I.34 How a cloud management system views RAM resources with a

relative threshold value 65. 319
I.35 How a cloud management system views RAM resources with a

relative threshold value 70. 319
I.36 How a cloud management system views RAM resources with a

relative threshold value 75. 320
I.37 How a cloud management system views RAM resources with a

relative threshold value 80. 320
I.38 How a cloud management system views RAM resources with a

relative threshold value 85. 321
I.39 How a cloud management system views RAM resources with a

relative threshold value 90. 321

LIST OF FIGURES xxxiii

I.40 How a cloud management system views RAM resources with a
relative threshold value 95. 322

I.41 Data center sample storage capacity per second 323
I.42 How a cloud management system views storage resources with a

relative threshold value 5. 323
I.43 How a cloud management system views storage resources with a

relative threshold value 10. 324
I.44 How a cloud management system views storage resources with a

relative threshold value 15. 324
I.45 How a cloud management system views storage resources with a

relative threshold value 20. 325
I.46 How a cloud management system views storage resources with a

relative threshold value 25. 325
I.47 How a cloud management system views storage resources with a

relative threshold value 30. 326
I.48 How a cloud management system views storage resources with a

relative threshold value 35. 326
I.49 How a cloud management system views storage resources with a

relative threshold value 40. 327
I.50 How a cloud management system views storage resources with a

relative threshold value 45. 327
I.51 How a cloud management system views storage resources with a

relative threshold value 50. 328
I.52 How a cloud management system views storage resources with a

relative threshold value 55. 328
I.53 How a cloud management system views storage resources with a

relative threshold value 60. 329
I.54 How a cloud management system views storage resources with a

relative threshold value 65. 329
I.55 How a cloud management system views storage resources with a

relative threshold value 70. 330
I.56 How a cloud management system views storage resources with a

relative threshold value 75. 330
I.57 How a cloud management system views storage resources with a

relative threshold value 80. 331
I.58 How a cloud management system views storage resources with a

relative threshold value 85. 331
I.59 How a cloud management system views storage resources with a

relative threshold value 90. 332
I.60 How a cloud management system views storage resources with a

relative threshold value 95. 332

xxxiv LIST OF FIGURES

J.1 The OSPF protocol traffic - bytes per 10 minute. First test
scenario: One embedded data center in network. 334

J.2 The OSPF protocol traffic - bytes per 10 minute. Third test
scenario: Six embedded data center in network. 335

J.3 The OSPF protocol traffic - Byte per minute . Test scenario one -
one embedded data center in network. 336

J.4 The OSPF protocol traffic - Byte per minute . Test scenario two -
tree embedded data center in network. 337

J.5 The OSPF protocol traffic - Byte per minute . Test scenario tree -
six embedded data center in network. 338

List of Tables

2.1 OSPF message types. 21
2.2 OSPF LSA types. 23
2.3 Different "Opaque Type" values in Opaque header. 26
2.4 IANA registered top level TLV Types for TE LSA. 28
2.5 Types for sub-TLVs of a TE Node Attribute TLV as assigned by

IANA . 29
2.6 OSPF Timers . 30
2.7 OSPF API-Server notification message types. 36

4.1 Data center job types. 53
4.2 Resource Database format . 55

6.1 Cloud LSU parts and sizes. 84
6.2 Link-state acknowledgment parts and sizes. 84
6.3 Extra Load by sending a Cloud LSA. 84
6.4 Cloud LSA worst average overhead and worst peak overhead

analysis. 87
6.5 VMs specification on test bed. 88
6.6 Relative threshold-based update policy. Expected number of

updates for a relative threshold value 20%. 91
6.7 Expected Cloud LSAs traffic for three scenarios. 92
6.8 Summery of captured pure OSPF traffic. 92
6.9 First test scenario. Summery of captured Cloud LSAs traffic. . . . 93
6.10 Second test scenario. Summery of captured Cloud LSAs traffic. . . 93
6.11 Third test scenario. Summery of captured Cloud LSAs traffic. . . . 94

E.1 Equal-sized class-based update policy. Number of Cloud LSA
updates based on changes in a proposed data center’s CPU. 138

E.2 Equal-sized class-based update policy. Number of Cloud LSA
updates based on changes in a proposed data center’s RAM. . . . 147

E.3 Equal-sized class-based update policy. Number of Cloud LSA
updates based on changes in a proposed data center’s storage. . . 157

xxxv

xxxvi LIST OF TABLES

F.1 Exponential-sized class-based update policy. Number of Cloud
LSA updates based on changes in proposed data center’s CPU. . . 168

F.2 Exponential-sized class-based update policy. Number of Cloud
LSA updates based on changes in a proposed data center’s RAM. 194

F.3 Exponential-sized class-based update policy. Number of Cloud
LSA updates based on changes in a proposed data center’s storage. 221

G.1 Absolute threshold-based update policy. Number of Cloud LSA
updates based on changes in proposed data center’s CPU. 250

G.2 Absolute threshold-based update policy. Number of Cloud LSA
updates based on changes in proposed data center’s RAM. 257

G.3 Absolute threshold-based update policy. Number of Cloud LSA
updates based on changes in proposed data center’s storage. . . . 263

H.1 Relative threshold update policy. Number of Cloud LSA updates
based on changes in a proposed data center’s CPU. 270

H.2 Relative threshold update policy. Number of Cloud LSA updates
based on changes in proposed data center’s RAM. 280

H.3 Relative threshold update policy. Number of Cloud LSA updates
based on changes in proposed data center’s storage. 292

I.1 Relative threshold update policy. Number of Cloud LSA updates
based on changes in proposed data center’s resource. 302

List of Acronyms and Abbreviations

ABR Area Border Router

Ack Acknowledgment

API Application Programming Interface

AS Autonomous System

Bps Byte per second

BGP Border Gateway Protocol

CAPEX Capital Expenses

CI Confidence Interval

CMS Cloud Management System

DB Database

DV Distance Vector

GB Gigabyte

GHz Gigahertz

IGP Interior Gateway protocol

IGRP Interior Gateway Routing Protocol

IP Internet Protocol

IS-IS Intermediate System to Intermediate System

IaaS Infrastructure as a Service

IANA Internet Assigned Numbers Authority

xxxvii

xxxviii LIST OF ACRONYMS AND ABBREVIATIONS

L1VPN Layer 1 Virtual Private Network

LS Link State

LSA Link-State Advertisement

LSDB Link-State Database

LSU Link-State Update

MB Megabytes

MBps Megabytes per second

MOSPF Multicast Open Shortest Path First

MPLS Multiprotocol Label Switching

NIST National Institute for Standard Technology

NSSA Not-so-stubby-area

NaaS Network as a Service

OPEX Operating Expenses

OSPF Open Shortest Path First

OSPF-TE Open Shortest Path First Traffic Engineering

OSR Open Source Routing

OTT Over The Top

PaaS Platform as a Service

PaaS Process Node

QoE Quality of Experience

QoS Quality of Service

RIP Routing Information Protocol

SaaS Software as a Service

SLA Service Level Agreement

SNMP Simple Network Management Protocol

LIST OF ACRONYMS AND ABBREVIATIONS xxxix

SPF Shortest Path First

TCP Transmission Control Protocol

TE Traffic Engineering

TE-LSA Traffic Engineering Link-State Advertisement

TED Traffic Engineering database

TLV Type/Length/Value

VM Virtual Machine

WAN Wide Area Network

XaaS Everything as a Service

Chapter 1

Introduction

This chapter provides an introduction to the subject of this thesis project in order
to help readers understand the scope of this study. This chapter is organized
as follows. The first section gives a summary of cloud computing and cloud
networking and provides a foundation for understanding the current challenges
of these areas. Next, the problems addressed in this thesis project are described,
followed by a proposed solution and a statement of the project’s goals. Moreover,
the limitations of this work is discussed briefly. The chapter concludes with an
outline of the thesis.

1.1 Overview

cloud technology is a hot and rapidly evolving topic. It provides scalable virtual or
physical resources over the network according to one of several different service
models. More specifically, cloud computing can be classified according to these
service models into: Infrastructure as a Service (IaaS), Platform as a Service
(PaaS), Software as a Service (SaaS), Network as a Service(NaaS), or more
generally "Everything as a service" (XaaS) [1]. Cloud characteristics include on-
demand services, broad-band network access, and pay-as-you-go charging for the
services used. These three characteristics enable companies to reduce both their
capital and operating expenses (CAPEX and OPEX) [2]. In addition, companies
can access almost unlimited resources on demand without needing to consider
the maintenance, security, and other aspect of the underlying computational
infrastructure by using cloud services.

From a topology perspective, a cloud can be classified into one of three
types [3]: Centralized cloud, Distributed cloud, and network embedded cloud
. A centralized cloud usually consists of one huge data center, while a distributed

1

2 CHAPTER 1. INTRODUCTION

Figure 1.1: Basic Distributed cloud topology.

cloud usually consists of multiple geographically dispersed medium or small size
data centers. These data centers are interconnected with customers (and each
other) using wide area network (WAN) links to serve user requests over the public
internet as shown in Figure 1.1.

The concept of a "network embedded cloud", also known as "network enabled
cloud" or "carrier cloud", is not yet fully defined. This class of cloud takes
cloud computing one step further than a "distributed cloud". In this approach
network providers add compute resources to their existing network infrastructure
in order to offer cloud services, while controlling these computing resources
and controlling the network infrastructure. A network provider can offer cloud
services based upon a large number of small size data centers, which are
embedded in their carrier network, as shown in Figure 1.2. In this Figure "PN"
stands for "process node" and depict the computational capability for network
devices (i.e., small size data center beside router).

A cloud network typically has two parts: "Compute Resources", which
provide an host for the requested resources∗ and a "Cloud Management System"
(CMS). The CMS aims to provide secure, optimal, and scalable management of
the cloud’s resources. This gives the CMS broad responsibilities. "Resource
Allocation" is one of the main responsibilities of the CMS. In order to achieve
efficient resource allocation, the CMS needs to have sufficient information about

∗The requested resources can be in the form of physical or virtual computing, storage, and
networking resources.

1.2. PROBLEM DESCRIPTION 3

the status of the cloud network (and its embedded computing resources if
applicable). A "Resource Monitoring" system is needed in order to provide this
information. The resource monitoring system provides information about all of
the available resources in the cloud network, thus helping the resource allocation
and resource management system to make the appropriate decisions.

Figure 1.2: Network embedded cloud architecture. The PN refers to a process
node and depicts a router with computational capability.

1.2 Problem description

As discussed above, resource allocation and resource monitoring play a vital role
in a network embedded cloud. Resource allocation and resource monitoring
in a centralized cloud architecture is a well understood problem with several
commercial solutions, such as Amazon web Services [4], Windows Azure [5], and
Google App Engine [6]. However, resource allocation and resource monitoring are
more complex and challenging in a distributed cloud than in a centralized cloud;
due to the larger number of both choices and constraints (e.g., geographic location
preference, cost limits, etc.) that must be taken into consideration.

4 CHAPTER 1. INTRODUCTION

A network embedded cloud is an appealing concept for telecommunication
operators because it can offer a potentially large business opportunity. Therefore,
the major telecommunication operators and telecommunication vendors are comp-
eting for leadership in network embedded clouds [3]. A network embedded cloud
provider needs advanced resource management, allocation, and monitoring in
order to achieve high performance while providing high quality cloud services.
They need to be able to provide these services efficiently in order to compete
against their competitors.

It is important emphasizing that resource allocation and resource monitoring
are much more complex and challenging for a network embedded cloud than for a
distributed cloud, since the carrier’s network infrastructure is also cloud resource.
As a result, the resource monitoring system needs to provide information about
the available resources at each of the data centers (e.g., CPU, RAM, storage, or
different classes of virtual machines (VMs)) and information about the carrier
networks (e.g., network topology and link attributes). As a result, in a network
embedded cloud more constraints (e.g., network distance, latency bounds, and
delay) need to be taken into account than in the case of a distributed cloud. In
conclusion, in a network embedded cloud network awareness is essential in order
to have efficient and optimal cloud management and resource allocation.

Due to the necessity of a resource monitoring system in a network embedded
cloud and the lack of solutions for this problem in the literature, this thesis aims
to provide a resource monitoring solution for a network embedded cloud.

1.3 Solution proposal
As discussed in section 1.2, the CMS requires information not only about reserve-
able capacity in each distributed data center, but also about network conditions
including the topology and links characteristics. To provide these details two
potential solutions are discussed briefly in this section.

The first alternative uses the traditional ways of monitoring the distributed
data center resources [7], but creates an extension on it to be able to track link
and network conditions. This solution is not feasible because the data centers
are not directly connected to each other and we cannot monitor the links within
the operator’s network. As an example, the Transmission Control Protocol (TCP)
connections from processes that are monitoring the data center’s resources can
be used by a CMS to collect the required information. In this case, we need to
find a way to provide topology and links condition information, however this is

1.3. SOLUTION PROPOSAL 5

not easy. To collect this network related information, the information provided
by a link state routing protocol can be utilized. Moreover, when the cloud
provider needs a distributed management system this solution seems inefficient
because each management system will need to collected the information. As a
result, developing and implementing a reliable flooding mechanism is required or
the management systems have to synchronize (i.e., exchange) their information.
As link-state protocols already provide a solution for collecting and distributing
topology and link state information, extending such a link-state protocol is another
potential solution.

The second alternative uses a link-state routing protocol to monitor the
network conditions and extend it in such a way that it also provides resource
information of the distributed data centers. Link-state routing protocols can be
classified in to two categories: pull-based and push-based.

In pull-based protocols, such as Simple Network Management Protocol
(SNMP) [8], network information is retrieved on-demand. As a result, this
approach is not scalable in a distributed environment, as CMS needs to explicitly
ask all nodes to provide their updated information. Cloud and network resources
are highly dynamic in nature, and the cloud provider receives many requests,
then the cloud management system needs to frequently pull all the nodes in the
network to have learn the current cloud network state. This situation can cause
excessive network traffic and it also delays operations in the CMS, as the CMS
must wait to get the information it has requested. It is worth mentioning that if the
cloud providers reserve some amount of resources as surplus resources∗ then it is
possible to greatly reduce the traffic - by taking an optimistic resource allocation
approach.

When using a push-based link-state routing protocol, such as Open Shortest
Path First (OSPF) [9], each node will send a link-state update to other nodes if
required due to a state change. In this work, we consider such a push-base protocol
in our solution. This thesis aims to provide a resource monitoring solution for
a network embedded cloud by proposing an extension to the Open Shortest Path
First-Traffic Engineering (OSPF-TE) protocols. It is worth highlighting that OSPF
and OSPF-TE is already used widely by network operators [10, 11, 12], who
are potential network embedded cloud providers, to manage their Multiprotocol
Label Switching (MPLS) network. More information about push-base link-state
protocols, particularly OSPF and OSPF-TE, are provided in Chapter 2.

∗Note that if there are not surplus resources, then the system is likely to be unacceptable for
the users at some points in time.

6 CHAPTER 1. INTRODUCTION

1.4 Goals
The goals of this master’s thesis project are:

• Investigate the current state-of-the-art for cloud networking, with a focus on
"network embedded clouds".

• Understand how OSPF-TE works and how it can be extended to support
resource management in a network embedded cloud.

• Investigate how to design and implement extensions to OSPF-TE inside an
OSPF router.

• Integrate the results into the Quagga router (As the initial target router is
Quagga [13]).

• Evaluate the solution in terms of suitability, flexibility, performance, and
robustness.

1.5 Methodology
In order to fulfill the objectives of this project, quantative and qualitative
approaches were used. The research methodology was based on the agile project
methodology, which meant that at each step, it was possible to develop and refine
the scope of the project [14]. The problems in this thesis project were addressed
in three phases as follows;

Literature study In this phase, related work and required background
material were studied. The resulting literature study
described cloud computing in general, and especially
the concept of a network embedded cloud. This
step provided the essential background knowledge
necessa-ry to obtain a state-of-the-art overview of the
subject, and to understand the resource monitoring
demands in a network embedded cloud. Different
link state routing algorithms were considered with a
focus on OSPF and OSPF-TE. The goals of this sub
phase were: First, to understand OSPF and OSPF-TE
behavior and LSA types and architecture of opaque

1.6. LIMITATIONS 7

LSA. Second, identify relevant processing metrics and
virtualization information which OSPF-TE opaque
LSAs need to convey. Third, investigate how OSP-
TE can be extend-
ed to convey cloud resource information.

Prototype implementation Using the information from the previous phase, this
phase aims to find and deploy a solution for resource
monitoring in a network embedded cloud. The resource
monitoring should provide information about link attri-
butes and network topology, plus the relevant comput-
ing metrics of each embedded data center.

Evaluation This phase examines the feasibility, suitability, flexibi-
lity, and performance of the proposed solutions(s).
The focus of the evaluation is on protocol overhead.
This phase starts with a theoretical analysis and calcul-
ating the expected protocol overhead. After that, some
test scenarios were deployed in order to collected
experimental data.

1.6 Limitations
The lack of background knowledge regarding a cloud network, the solution
proposed in this thesis, and my limited programming skills were the first
limitations. As the concept of a network embedded cloud is new and such clouds
had not be deployed at the time that this thesis project started, there was little
information available to the public in this area, and in particular there was no
related work concerning resource monitoring of a network embedded cloud. Also,
one and half months after this project started one of industrial supervisors for this
project became sick and another industrial supervisor left the company.

Furthermore, the Quagga application, which was required to be part of
solution, had some bugs. Those bugs are reported to the Quagga community
and were fixed by the author of this thesis. Unfortunately, the Quagga website
provided little information about the Quagga OSPF application programming
interface (API). Additionally, no published documents were available for a
Quagga developer. As a result, lots of time was spend to reviewing and studying
the Quagga source code to gain knowledge about this API. Moreover, the source
code of the Quagga router was not well commented which made this task harder.

8 CHAPTER 1. INTRODUCTION

After a while the author recognized that in order to implement the proposed
solution it was necessary to choose and develop an update policy which was out of
initial scope of this thesis. Subsequently, during testing we recognized that a data
center model was required in order to be able to evaluate the performance of any
solution. As a result, two unplanned tasks were add to the scope of this project.

As a result of the difficulties described above last step of the project, i.e.,
testing the performance of the extended OSPF-TE, was not completed. The author
was unable to apply this solution in a real environment. As a result, testing
was performed in a simulated environment with the goals of showing that the
solution would function properly, and to generate some statistics for a subsequent
performance evaluation. The results of this last step is biased due to our simple
test bed topology, selection and implementation of a data center model, and update
policy. Also, the test computer was unable to support more than six simulated
Quagga routers and the data center model application. Therefore, the author was
unable to create any complex scenarios.

Overcoming the limitations of this project leads to the future work proposed
in section 7.2.

1.7 Thesis outline
This thesis is organized as follows:

• "Chapter 2" provides an overview of the subjects necessary to understand
the rest of this thesis project.

• "Chapter 3" starts with a generalized solution to the problems presented
in section 1.2. This is followed by details of the design of a proposed
implementation. Also in this chapter, required considerations for the design
are described.

• "Chapter 4" describes the implementation of the proposed solution and a
data center model.

• "Chapter 5" describes different link-state update policies and contains
experimental analysis on the behavior of those policies based on a proposed
data center model in chapter 4.

• "Chapter 6" starts with a theoretic analysis of the protocol overhead of
the extended OSPF-TE. This is followed by a description of three test

1.7. THESIS OUTLINE 9

scenarios. The chapter concludes with a discussion of the test results that
were obtained in a simulated test environment.

• Chapter 7 summarizes the work and draws some conclusions. Additionally
some suggestions for future work are made.

Chapter 2

Background study

This chapter provides background for the reader and introduces the concepts that
will be utilized in the remainder of this thesis. The chapter begins by reviewing
cloud computing theory and methodologies. Since we are proposing to use
an extenstion to the open shortest path first (OSPF) protocol, we introduce the
basic concepts of routing protocols, and then focus on OSPF and some of its
extensions. Finally, some information about link-state update policy and available
Open Source Routing (OSR) implementations, which are detailed in the following
three chapters, are mentioned.

2.1 Cloud computing

The idea of cloud computing is not new. It has been around for years, in fact it
was the driving force for the original ARPAnet and the subsequent "Internet" [15].
A typical cloud consists of one centralized or multiple geo-diverse data centers
which are interconnected using WAN links. By utilizing this cloud, customers
can ask for and receive services without needing to know exactly where these
services are situated [15].

The goal of cloud computing is to shift the computing infrastructure (both
hardware and software resources) into a logical cloud in order to reduce the cost
of management and operation of these infrastructures. Cloud computing is an
evolving paradigm, hence there are many definitions for it in the literature [16].
According to The United States National Institute for Standard Technology
(NIST) [17], "Cloud Computing" is a model (not a technology), which consists of
five characteristics, four deployment models, and three distinct service models as
shown in Figure 2.1.

11

12 CHAPTER 2. BACKGROUND STUDY

Figure 2.1: The NIST Cloud computing definitions.

2.1.1 Cloud characteristics
The five characteristics of cloud computing are:

On-demand self-service Based on this characteristic, the computing resources
are provided automatically without requiring human
interaction whenever a customer makes a request.

Broad network access Based on this characteristic, the computing resources
can be accessed over the network with standard mechan-
isms. This feature provides platform-independent access
for all types of clients (e.g., mobile phones, tablets,
laptops, and workstations).

Resource pooling Based on this characteristic, the computing resources
are shared. This means that multiple customers can
use the same set of resources at the same time. The
cloud provider’s compute resources are pooled to serve
multiple consumers using a multi-tenant model [18].
Physical and virtual resources are dynamically allocated
or reallocated according to customer demand. Location
independency is an inherent part of pooling. In fact, the
location of resources (e.g., virtual machine, processing,
storage, memory, and network bandwidth) is generally
hidden from the cloud’s users. It is worth mentioning
that although the customers do not have control or
knowledge of the exact location of a resource, they may

2.1. CLOUD COMPUTING 13

be able to identify the location at a higher level (e.g.,
country, state, or data center). This location may be
part of their requirements, for example in order to meet
legal requirements regarding data protection.

Rapid elasticity Based on this characteristic, the computing resources
should appear to the customer to be infinite and available
in any quantity at any time. To achieve this goal,
the cloud provider has to be able to scale computing
resources both up and down as needed. This could
happen automatically (e.g., by turning on/off some
racks in a data center) or manually (e.g., adding some
additional infrastructure such as servers and racks into
the data centers).

Measured service Based on this characteristic, cloud computing resource
usage can be controlled, monitored, and reported based
on service type (e.g., storage, processing, bandwidth,
and active user accounts). Typically, this is done
according to a pay-per-use or charge-per-use policy.

2.1.2 Cloud service models
As discussed above, cloud providers strive to provide different services over the
cloud to their customers, however with respect to the Everything as a Service
(XaaS) [1] model, these services are not limited by NIST’s definition [19]. As
defined by NIST, the basic service models are:

Software as a Service (SaaS) In the SaaS model, applications are hosted
by cloud providers. A customer can take
advantage of an application through a user
interfaces (e.g., web browsers or program
interface) "anytime, anywhere". In this serv-
ice model, the cloud user is responsible for
managing and entering their own data, while
everything below the application is the cloud
provider’s responsibility.

Platform as a Service (PaaS) In the PaaS model, the platforms∗ and compute
∗Virtual machines, operating systems, and development framework can be considered as a

platform.

14 CHAPTER 2. BACKGROUND STUDY

capability are hosted by cloud providers.
As a result, the customer can deploy and
utilize their own software∗ on the cloud’s
platforms. In this service model, the client is
responsible for installing and managing their
own application, while the cloud provider is
responsible for everything from the platform
down, such as managing the cloud infrastruc-
ture and the operating system(s).

Infrastructure as a Service (IaaS) In the IaaS model, the computing resources
(e.g., servers, storage, and network) are host-
ed by cloud providers. The cloud provider is
only responsible for managing the infrastruc-
ture, while everything above this infrastructu-
re is the customer’s responsibility (e.g., the
operating system (OS), application, and user
interaction).

2.1.3 Cloud Deployment Models

As defined by NIST, there are four main cloud deployment models:

Private Cloud In this model, the cloud is operated exclusively for a single
organization. This organization may own and manage the
cloud by itself, the cloud can be owned by a third party,
or any combination of these. A private cloud may be on-
promises or not.

Community Cloud In this model, the cloud is operated for the exclusive use
a community of customers. These customers can be from
the same organization or independent organizations, but
with similar concerns with regard to policies, security, and
mission. A community cloud may be owned, managed, and
operated by one or more of the organizations, a third party,
or any combination of these. A community cloud may be
on-promises or not.

∗This software can be developed by the customer themselves or be acquired from a third party.

2.1. CLOUD COMPUTING 15

Public Cloud In this model, the cloud is operated for public use. The cloud
may be owned, managed, and operated by an organization
such as a business, an academic organization, or a government.

Hybrid Cloud In this model, the cloud is composed of two or more different
cloud models (i.e., private, public, or community cloud).
These clouds preserve their characteristics, but the clouds
are bounded together as one unit.

2.1.4 Varieties of Cloud

The idea behind cloud computing is to centralized as much functionality as
possible. As a result, current cloud providers typically build extremely large
data centers in order to offer low cost services to their customers. This class
of cloud architecture is known as a "centralized cloud". In this case, the cloud’s
services can be accessed via the internet and WAN links. Building such data
centers is extremely expensive with respect to the cost of servers, power, cooling,
networking, physical plant, etc. [20]. In addition, a centralized cloud inherently
increases the average distance to the end users, which many consider to be a
negative attribute of this class of cloud.

2.1.4.1 Distributed Cloud

Unlike the centralized cloud, a "Distributed Cloud" is based upon a number of
large data centers located at a number of different locations [21]. These distributed
data centers are connected both to each other and to the network at their location.
Distributed clouds have similar characteristics to centralized clouds, but offer
some additional benefits. The geo-diversity of smaller data centers can be more
attractive since they are less expensive to build and manage [20]. In addition, a
distributed cloud architecture moves services closer to end users, hence providing
low latency, while reducing the network capacity needed by each data center.

Note that there those such as Bill St. Arnaud, former Chief Research Officer
for Canada’s Advanced Internet Development Organization (CANARIE), who
believe that these computing centers should be located where power and cooling
are inexpensive and that the bits can efficiently be moved via fiber networks
to where the users are, thus achieving a more cost effective and more “green”
information technology infrastructure.

16 CHAPTER 2. BACKGROUND STUDY

2.1.4.2 Carrier network and cloud

Although a distributed cloud reduces latency for end users and reduces the
required bandwidth capacity for data centers, it still has considerable shortcomings
[22]. Fundamentally the use of a cloud assumes that the network, which connects
the cloud providers and clients, meets all the requirements of the client-cloud
interactions. However, cloud providers usually do not own the network(s) that
their cloud services travel over, as this is typically some carrier’s network (or
multiple carriers’ networks). As a result, the cloud provider does not have control
over the quality of experience (QoE) of the end user beyond the network within
their data centers. Therefore, the cloud provider cannot guarantee end-to-end
performance, if the network is a bottleneck. The solution to this problem is
generally based upon one or more Service Level Agreements (SLAs) between
the carrier and the cloud provider and between each of the end users and
their local internet service providers (ISPs). The need for SLAs and questions
about security are key reasons cited by many businesses and organizations that
utilize latency-sensitive applications (such as telecommunication application,
video conferencing, online gaming, or businesses that use Java script and XML)
for why they hesitate to migrate into clouds.

Today cloud providers try to make agreements with their network providers
to overcome the shortcomings discussed above due to the network in order
to gain advantage over their competitors. This solution may not always be
feasible, especially for mobile networks. Unfortunately networks, especially
mobile networks, have capacity limitations and upgrading the network is not
always feasible due to the required capital cost. These limitations (of the network)
and questions about security provide an opportunity for a new cloud paradigm
referred to as a "network embedded cloud".

2.1.4.3 Network embedded cloud

A "network embedded cloud", also known as a "carrier cloud" or "network
enabled cloud", has a distributed cloud architecture where the computing resources
are embedded in, and distributed across the carrier’s network. This idea is
based upon on a transformation of carrier-grade networks, which belong to cloud
providers or telecommunication operators, to cloud computing. In this model the
network resources are simply another set of cloud resources. As a result all of
the computing and network resources are viewed as being elastic and allocated
based upon demand. The concept of a network embedded cloud is appealing
for network providers, since they can enter the cloud market and increase their

2.1. CLOUD COMPUTING 17

revenue by adding cloud functionality to their existing access networks [23].

The concept of a network embedded cloud is an emerging and evolving
concept in cloud networking, and it is not yet fully defined. However, many large
vendors (including Alcatel-Lucent, Cisco Systems Inc, Ericsson AB, Huawei
Technologies Co. Ltd., and Nokia Siemens Networks) are competing for network
embedded cloud leadership [3]. As an example, Ericsson AB announced their
network embedded cloud concept at the Mobile World Congress 2013 [24] and
IBM announced its cloud strategies for virtualization of a telecommunication
infrastructure [25].

A network embedded cloud solves some of the shortcomings of cloud
networking, while retaining all of fundamental benefits of a cloud [26, 27].
network embedded cloud providers can offer end-to-end cloud services and can
also guarantee QoE by integrating their network into their cloud. In this class
of cloud architecture, both computing resources and network infrastructures are
operated by the cloud providers (i.e., a carrier), hence they can reserve network
resources and allocate compute resources on demand. In a network embedded
cloud, latency-sensitive and delay-sensitive services can be provided very close
to the users, hence these services can meet low minimum delay requirements. In
addition, the aggregate bandwidth requirements for these services will be reduced
as the traffic will flow along a shorter path.

However, there are questions of just how closely these resources need to be
provisioned and whether existing networks actually have bottlenecks that prevent
the other cloud models from providing adequate service and acceptable QoE.
Moreover, there are a variety of solutions to the security problems when utilizing
remote cloud services, hence it is not clear that a network embedded cloud has
any advantage with respect to security.

2.1.4.4 Cloud Management System

In order to achieve optimal and high performance cloud services, a cloud
network must be managed properly. A "Cloud Management System (CMS)"
is responsible for management of the cloud’s network. Cloud management
includes several tasks, such as operating and administrating the cloud, capacity
planning, performance monitoring, security management, resource management,
and virtualization. [28, chapter 11].

One of the key functions performed by the CMS is "Resource Allocation".
Resource allocation mainly focuses on allocating the resources required to satisfy

18 CHAPTER 2. BACKGROUND STUDY

user demands. In a centralized cloud architecture, resource allocation is limited
to finding the best location within the data center to instantiate a VM(s) to fulfill
the user’s requirements. This selection can be done based on various policies,
such as best effort, energy-awareness, cost, performance, or any combination of
these policies. Resource allocation has been the subject of several many papers in
recent years [29] and has been a classic issue in operating systems.

In the case of a distributed cloud architecture, due to its geo-diversity, resource
allocation faces similar, but more advanced challenges and requirements as
compared to a traditional centralized cloud architecture. The resource allocation
challenges in a distributed cloud can be addressed by resource modeling, resource
offering and treatment, resource discovery and monitoring, and resource selection
[21]. In the other words, distributed cloud providers need to do a number of tasks
in order to serve requests. First, they need to model their resources based on the
services that they are going to offer. Second, when a service request arrives, the
cloud providers need to be aware of the current status of their cloud’s network
in order to determine whether there are suitable available resources to satisfy the
request or not. Finally, if there are suitable available resources, then the cloud
provider needs to allocate these resources in the best manner to serve the service
request, while continuing to support existing allocations and preparing to handle
future requests.

A "Resource Monitoring" system is a key element in a network embedded
cloud. As mentioned earlier in a network embedded cloud the communications
network assets are parts of the cloud architecture, so efficient resource allocation
and resource placement requires network awareness. In fact, because the network
embedded cloud provider has information about both network and data centers
it can allocate services based on more constraints, including operational cost,
location, SLAs, and data center availability.

Currently there is very little literature available regarding resource monitoring
techniques for a network embedded cloud. As discussed in section 1.3, there are
some proposals for resource monitoring in a network embedded cloud. In this
thesis project we propose an extension to OSPF-TE for resource monitoring for
use with this class of cloud network. The information that will be collected will
include network topology and the link characteristics (e.g., delay, bandwidth, and
jitter), location of compute nodes, available compute resources (e.g., CPU, RAM,
and storage) in each of the data centers. This information can be used by a network
embedded cloud’s CMS to allocate resources in order to satisfy user demands.

2.2. ROUTING PROTOCOLS 19

2.2 Routing protocols

The purpose of a communication network in the simplest case is to connect two
end points. These two end points could be far from each other. As a result,
data flowing between the source and destination could pass through multiple
intermediate devices, i.e., routers. There are two ways of routing: static routing
and dynamic routing. In static routing, the network administrator is responsible
for manually specifying routing paths. In contrast, in dynamic routing the routers
exchange information in order to dynamically set up routing paths. The routers
exchange routing information and apply a routing algorithm. Distance-Vector
(DV) routing algorithms and Link-State (LS) routing algorithms are two common
classes of algorithms used by dynamic routing protocols [30].

2.2.1 Distance-Vector routing algorithms

A device using a DV routing algorithm informs its directly attached neighbors
periodically of its entire routing table. The recipient routers can use any DV
algorithm∗ to update their routing table, and then they distribute these routes to
their neighbors. In this class of algorithms, devices describe the network in terms
of adjacent neighbors and each router does not have knowledge of the network’s
complete topology. The Routing Information Protocol (RIP) [31] and Interior
Gateway Routing Protocol (IGRP) [32] are examples of DV routing protocols.

2.2.2 Link-State routing algorithms

A device using a LS routing algorithm, informs all other devices in the network of
its connectivity by broadcasting its LS information. As a result of this broadcast,
each router will have an identical view of the complete topology of the network,
hence it can construct its own connectivity map. Finally, each device can use any
LS algorithm† to compute the best logical path from itself as a source to every
other node in the network as a destination. Open Shortest Path First (OSPF) [33]
and Intermediate System to Intermediate System (IS-IS) [34] are examples of the
Link-State routing protocols.

∗Bellman-Ford algorithm, Ford-Fulkerson algorithm, and DUAL FSM are examples of DV
algorithms.

†Dijsktra and Prim’s algorithm are examples of LS algorithms.

20 CHAPTER 2. BACKGROUND STUDY

2.3 Open Shortest Path First
The Open Shortest Path First (OSPF) [33] protocol is a link-state routing protocol.
It is classified as an Interior Gateway Protocol (IGP). In an OSPF network, routing
information (e.g., the set of usable interfaces and neighbors) will be encapsulated
in a unit of data referred to as a Link-State Advertisement (LSA). The router
floods its LSAs throughout the Autonomous System (AS)∗. The participating
OSPF routers in an AS will each keep the received LSA data in a database,
which is referring to as a Link-State Database (LSDB). As a result of the flooding
of LSAs, all the OSPF routers within the AS will have the same contents in
their LSDBs. This information describes the AS’s topology. Each OSPF router
computes a Shortest Path First (SPF) tree, using Dijkstra’s Algorithm [35] using
the information in its LSDB. The SPF tree is used to populate the router’s routing
table.

OSPF is a dynamic routing protocol and it can quickly detect a topology
change. In the event of a topological change, the OSPF router notifies other
routers by flooding new LSAs (Also known as Link-State Update (LSU)). The
other OSPF routers in the AS will update their LSDBs and recalculate their routing
table when they receive topology update notifications.

The OSPF protocol allows a set of networks and hosts to be grouped together.
Such a group is called an area. The routers within an area are called intra-area
routers. The intra-area routers have identical topological information, and this
topology is hidden from the other ASs’ areas. The OSPF areas are interconnected
via a backbone area which is referred to as area zero. A router located on the
border of an OSPF area, interconnects the area(s) to the backbone area. This
router is called a Area Border Router (ABR). The ABR keeps separate topological
information for each area. The OSPF protocol runs directly over the Internet
Protocol (IP) and has five different message types to accomplish its operation.
These message types are shown in Table 2.1. Several of the OSPF message types
LSAs are responsible for passing topological information.

∗A group of routers with a common administration who exchanging routing information with
the same routing protocol.

2.3.O
P

E
N

S
H

O
R

T
E

S
T

P
A

T
H

F
IR

S
T

21
Table 2.1: OSPF message types.

Type Message Name Protocol Function Description

1 Hello Discover/maintain
neighbors

Router uses this message to discover
adjacent routers and establish
relationships between neighboring
devices.

2 Database Description Summarize database
contents

These packets are exchanged when an
adjacency is being initialized. These
messages describe the contents of the
topological database.

3 LS Request Database download Link-state request packets are used to
request a portion of the LSDB from
another router. This will send when the
router notify parts of its LSDB are out
of date.

4 LS Update (LSU) Database update These messages are sent in response
to a link-state request. They carry a
collection of link-state advertisements
routers uses these information to
update the information in the LSDBs
of routers that receive them.

5 LS ACK Flooding ACKs These messages aims to provide
reliable link-state exchange process,
by acknowledging (ACK)receipt LSU.

22 CHAPTER 2. BACKGROUND STUDY

2.3.1 OSPF operations
When an OSPF router starts up, it first checks its directly connected links and
networks and then detects which of these participate in the OSPF routing process.
In this step an OSPF router tries to create a LSA based upon the information
about its directly connected links, such as the interface’s IP address, link cost(s),
and network type. Once the OSPF router has determined which interfaces belong
to the OSPF routing process, the OSPF router attempts to discover its neighbors
using a OSPF "Hello" message. If an OSPF router receives a Hello message
in response, then it forms an adjacency. An adjacency is a relationship with
a neighboring router. After a adjacency relation established, both routers will
periodically send Hello messages to ensure that the neighboring router is alive. As
a third step, the OSPF router builds its LSA containing the link-state information
(such as neighbor routers and links). After building the LSA, the OSPF router
floods its LSA into the OSPF domain. As a result, all other OSPF routers in a
OSPF domain will receive this LSA. Finally, as a fifth step, the OSPF routers
construct their LSDB using the information from the LSAs. This LSDB is
subsequently used for calculating a SPF tree and routing table.

It is worth highlighting that, a OSPF router floods LSAs in two cases. Case
one, when the OSPF process starts; and case two, when the router state changes
(e.g., link failure, link recovery, and neighbor going down). When the OSPF
router detects a link-state change, it will create a new LSA containing information
about only the particular network or link that has changed, and then it floods this
new LSA to inform others routers about that change, see section 2.4. Other OSPF
routers in the OSPF domain will update their LSDB and recalculate their routing
table when they receive topology change notifications.

2.3.2 Link-State Advertisements
The LSAs are the basic unit of data which are used to convey information about
the local state of a router. Each LSA begins with a standard 20-byte header as
shown in Figure 2.2.

The LSA header contains information to identify the link as the combination
of LSA type, link-state ID, and Advertising Router fields. These fields in the
LSA header represent a unique identification for each LSA. The OSPF router can
originate one or more types of LSAs. Eleven distinct types of LSA are registered
for the OSPF protocol [36]. These are listed in Table 2.2.

2.3. OPEN SHORTEST PATH FIRST 23

Table 2.2: OSPF LSA types.

Value LSA type Description Reference

1 Router-LSA Describe how an area’s routers and
networks are interconnected

RFC 2328 [33]

2 Network-LSA Describe how an area’s routers and
networks are interconnected

RFC 2328 [33]

3 Summary-LSA
(IP network)

When area are used it provide information
about network

RFC 2328 [33]

4 Summary-LSA
(ASBR)

When area are used it provide information
about links and AS boundary router

RFC 2328 [33]

5 AS-external-LSA It provide information about external
links outside the AS

RFC 2328 [33]

6 Group-
membership-
LSA

This type is defined for Multicast Open
Shortest Path First (MOSPF) which is an
extention to OSPF

RFC 1584 [37]

7 NSSA AS
external LSA

Not-so-stubby-area (NSSA) routers use
this type to provide their external routes
information for ABRs

RFC 3101 [38]

8 Reserved - -
9 Link-local

Opaque LSA
This LSA conveys Opaque data. The
Link-local Opaque LSA is limited to a
single link and it never forwarded to other
links by Recipient router.

RFC 2370 [39]

10 Area-local
Opaque LSA

This LSA Conveys Opaque data. The
Area-local Opaque LSA is limited to a
single area which means it flooded by all
the router with in an area but it is never
forwarded by an ABR to other areas.

RFC 2370 [39]

11 AS Opaque LSA This LSA Conveys Opaque data.
The Type 11 Opaque LSA is flooded
throughout the OSPF domain and all
routers in all Areas will receive this LSA.

RFC 2370 [39]

24 CHAPTER 2. BACKGROUND STUDY

0 7 15 23 31

LS Age Option LS Type

link-state ID

Advertising Router

LS Sequence Number

LS Checksum Length

Figure 2.2: Common LSA Header Format.

The LSA type 1, LSA type 2, LSA type 3, LSA type 4, and LSA type 5
are an essential part of OSPF version 2 protocols and are necessary for the basic
functionality of the OSPF protocol. The remaining types were added later to the
OSPF standard in order to add new capabilities to the OSPF protocol.

The "Router LSA" (Type 1) is perhaps the most influential LSA type in the
OSPF protocol. This LSA type describes router interfaces in such a way that
other routers in the same area can use it to build a network topology and SPF
tree. This information travels through the area without any modification and all
the routers have the same copy of this information.

The LSA header is followed by a LSA body. The information in the LSA body
varies based on LSA type. The body of a "Router LSA" contains information
about the state and cost of a router’s links and details about the router. In fact,
the "Router LSA" provides most of the required topological information. The
"Network LSA" body includes a sub-net mask and information about all routers
on the network. The "Summary LSAs" (LSA type 3 and 4) includes metrics and
summarized addresses. Finally, the AS-External LSA body has some fields to
allow the exterior router to be reachable. For a more detailed description of OSPF
message formats see Appendix A of RFC 2328 [33]. Also, a brief description
of LSA types is given in Table 2.2. The opaque LSAs are explored in the next
subsection.

2.3.3 Opaque Link-State Advertisement
Opaque Link-State Advertisements (Opaque LSAs) [40] are types 9, 10, and
11 LSAs. These Opaque LSAs provide an effective way to spread arbitrary
information using the OSPF protocols into OSPF areas. In fact, an Opaque
LSA can piggyback any information and flood this information within an OSPF

2.3. OPEN SHORTEST PATH FIRST 25

network. The information contained in Opaque LSAs may be used by OSPF
protocols or any other application in the OSPF domain that can utilized OSPF as
a transport protocol. The three types of Opaque LSA differ only in their flooding
scope as shown in last three rows of Table 2.2.

An Opaque LSA has a standard LSA header, just as another OSPF LSAs, but
with minor differences in the link-state ID structure. The link-state ID syntax for
an Opaque LSA consists of two parts: "Opaque type" field (the first 8 bits) and
a "Opaque ID" (the remaining 24 bits). The packet format of an Opaque LSA is
shown in Figure 2.3.

0 7 15 23 31

LS Age Option 9, 10, or 11

Opaque Type Opaque ID

Advertising Router

LS Sequence Number

LS Checksum Length

Opaque Information
...
...
...

Figure 2.3: Opaque LSA Header Format.

The Opaque Type field identifies the application of the Opaque LSA. As
Table 2.3 shows, six type values have been allocated by the Internet Assigned
Numbers Authority (IANA) through the OSPF working group [41]. In addition, it
is important to highlight that the combination of the Opaque ID and Opaque Type
form a unique identifier for this specific type of LSA.

26
C

H
A

P
T

E
R

2.B
A

C
K

G
R

O
U

N
D

S
T

U
D

Y

Table 2.3: Different "Opaque Type" values in Opaque header.
Value Opaque Type Description References

1 Traffic Engineering Used for MPLS-TE. RFC 3630 [42]
LSA

2 Sycamore-Optical
Topology Descriptions

Used to communicate details of
optical devices.

John Moy [41]

3 Grace LSA Used for OSPF hitless restart. RFC 3623 [43]
4 Router-Information

LSA
Used for advertising optional
capabilities.

RFC 4970 [44]

5 L1VPN LSA Provide OSPF-based L1VPN
auto-discovery.

RFC 5252 [45]

6 Inter-AS-TE-v2 LSA For the advertisement of OSPFv2
inter-AS TE links.

RFC 5392 [46]

7-127 Unassigned Can be allocated by the IANA
through the OSPF working group
for future Opaque LSA types.

128-255 Reserved Used for private and experimental
use.

RFC 5250 [40]

2.3. OPEN SHORTEST PATH FIRST 27

2.3.4 OSPF Traffic Engineering
The Traffic Engineering (TE) Extensions to OSPF, also known as OSPF-TE [42],
is an extension to the OSPF protocol to add traffic engineering capabilities to it.
OSPF-TE uses Opaque LSA type 10, which has an area flooding scope, to carry
TE information.

The Opaque LSA type 10 is known as the "Traffic Engineering LSA" (TE-
LSA). This LSA performs the same function as Router LSAs. In another
words, the TE-LSA can identify the originating router, the router’s neighbors,
and TE parameters. This LSA can be used to build an extended LSDB, known
as a "Traffic Engineering Database" (TED). The TED has some additional
link attributes (e.g., bandwidth∗ and administrative constraints) compared to the
LSDB.

It is worth highlighting that non-TE capable routers in an OSPF network can
flood TE-LSAs, just as any other Opaque LSAs. Hence, an OSPF network can
have both non-TE and TE capable routers, while still providing traffic engineering
functionality. The TED is used for monitoring the extended link attributes,
local constraint base source routing, and for general traffic engineering purposes.
"Constraint Base Routing" computes a path from a source node to a destination
node that satisfies a set of constraints [47, 48].

The Traffic Engineering LSA starts with common LSA header with LSA Type
10 and Opaque Type 1. The payload portion of the TE-LSA carries information
in the format of one or more nested triplets: Type/Length/Value (TLV), as shown
in Figure 2.4.

∗These attributes can include maximum bandwidth, maximum reserveable bandwidth,
unreserved bandwidth, or any combination of these attributes.

28 CHAPTER 2. BACKGROUND STUDY

0 7 15 23 31

LS Age Option 10

1 Opaque ID

Advertising Router

LS Sequence Number

LS Checksum Length


TE
Header

Type Length

Value
...
...
...


T/L/V

Figure 2.4: TE-LSA header format and TLV.

The "Type" field of TLV shows the type of the TLV and the "Length" field
shows the length of the "Value" in octets. Table 2.4 shows the IANA registered
top level TLVs for OSPF-TE [41].

Table 2.4: IANA registered top level TLV Types for TE LSA.
Value Top Level Types Reference

0 Reserved RFC 3630 [42]
1 Router Address RFC 3630 [42]
2 Link RFC 3630 [42]
3 Router IPv6 Address RFC 5329 [49]
4 Link Local RFC 4203 [50]
5 Node Attribute RFC 5786 [51]
6-32767 Unassigned
32768-32777 Experimental use RFC 3630 [42]
32778-65535 Reserved RFC 3630 [42]

The "Router Address" TLV (Type = 1) specifies a stable IP address of the
advertising router. It is worth mentioning that some TLVs in a TE-LSA are
constructed of a series of sub-TLVs. IANA has assigned 25 sub-TLVs for the

2.4. OSPF RELIABLE FLOODING AND FLOODING CONTROL 29

Link TLV (Type value = 2) and two sub-TLVs for the Node Attribute TLV (Type
value = 5). Table 2.5 shows the two IANA assigned sub TLVs for "Node Attribute"
TLV [41].

Table 2.5: Types for sub-TLVs of a TE Node Attribute TLV (Value 5) as assigned
by IANA

Value Sub-TLV Reference

0 Reserved RFC 5786 [51]
1 Node IPv4 Local Address RFC 5786 [51]
2 Node IPv6 Local Address RFC 5786 [51]
3-32767 Unassigned
32768-32777 Experimental use RFC 5786 [51]
32778-65535 Reserved RFC 5786 [51]

2.4 OSPF reliable flooding and flooding control
The OSPF protocol uses a reliable flooding mechanism to guarantee synchronization
between routers’ LSDBs. To achieve this goal, when a router starts, it needs to
create and flood LSAs into the OSPF network. Also, the router has to regenerate
its self-originated LSAs and send them to neighbors if the router’s local states
have changed.

When one of the router’s neighbors receives a LSA, it should send an
acknowledgment and examine the LSA’s content. If the LSA contains more recent
information that than in the router’s LSDB, then the router updates its LSDB.
Next, the recipient router forwards this LSA to all interfaces except the one that
received that LSA. In this way, the OSPF protocol can ensure that all generated
LSAs will be delivered to all the nodes within the AS.

OSPF’s reliable flooding is robust in the face of errors which means the
network operates correctly even if an error happens. To achieve this robustness
LSAs are aged and include checksums. OSPF routers can examine the LSA Age
and Checksum fields to detect corrupted or out of dated LSAs. Also, OSPF
employs timers in order to control LSA flooding, as shown in Table 2.6.

30 CHAPTER 2. BACKGROUND STUDY

Table 2.6: OSPF Timers
Timer Default value Definition

MinLSArrival 1 second The minimum interval that a router can
accept LSA.

MinLSInterval 5 second The minimum interval that a router can
generate LSA.

CheckAge 5 minutes The interval that a router checks the
checksum value.

LSRefreshTime 30 minutes The maximum interval for re-originating
any particular LSA.

MaxAge 1 hour The maximum age that an LSA can
accept in a routing table calculation.

The MinLSInterval and MinLSArrival timers limit the frequency of originat-
ing or accepting LSAs, respectively. The MinLSInterval timer specifies the
minimum time interval during which an OSPF router can originate at most one
LSA. The default value of MinLSInterval is set to 5 seconds. The MinLSArrival
timer specifies the minimum time interval during which an OSPF router can accept
a new LSA if a previous copy of this LSA already exists. The default value of
MinLSArrival is set to 1 second, and LSA instances received at higher rates will
discard. These two timers act as hold-down timers for the OSPF protocol.

Although MinLSInterval and MinLSArrival timers control the LSA flooding, a
more advanced control mechanism is required to reduce unnecessary LSA updates
when resources rapidly fluctuate (e.g. TE metrics or cloud resources change). The
next subsection describe some proposed techniques to provide more advanced
control of flooding.

Suppose an OSPF network with a full mesh topology which contains "N"
routers. If one router in a network needs to send a LSA, it sends (N − 1)∗

LSAs to all the router in the area. In response, each router other than the LSA
originator router sends (N − 2) LSAs to all the routers except for itself and the
LSA originator router. As a result, the total number of the LSAs which loads
in an OSPF network by injection of one LSA can be calculated as shown in
equation 2.1.

∗ All routers except itself.

2.5. LINK-STATE UPDATE POLICIES 31

Total number o f redundant LSAs = (N−1)+(N−1)(N−2) = (N−1)2. (2.1)

As a conclusion, in a fully-connected mesh OSPF network with "N" routers
each LSA requires an order of N2 redundant messages to be flooded. This issue
known as the "LSA N-squared problem" which can lead to scalability problems
since the value of N could be very large [52]. To reduce the number of LSAs
several techniques have been proposed including an area approach, a spanning-
tree network architecture, and a configuration-information approach.

2.5 Link-state update policies
Link-state update policy concerns the methods of link-state update distribution
within the network. As the routers or third party application use link-state
information for making decisions, having up-to-date information is necessary
to make an appropriate decision. As flooding link-state information can result
in additional traffic, a good trade-off has to be found between the frequency of
updates and the extra load on the network. Several link state update policies
including Periodic, Immediate, Threshold-based, and Class-based update policy
have been proposed in literature [53, 54, 55]. Some of these update policies are
discussed below.

• Periodic update policy: In this technique, the router generates new LSAs
based upon a predetermined period "T", thus after a period "T" the router
floods LSAs into the network regardless of whether or not it has new
information. In a periodic update, the fixed period "T" is the key factor
sending updates and this period is independent of link-states. This policy
has a high blocking probability and generates a lot of update overhead in
realistic networks [53].

• Immediate update policy: When using this policy, the router floods LSA
updates as soon as new information is available. This immediate update
policy can be used for the resources which rarely change, but this policy
has a bad effect (in terms of generating a lot of traffic) when the frequency
of resources changes are high.

• Threshold-based policy: In the threshold-based policies, a new link-
state update triggers when the available resources changes by a predefined
threshold value. There are two categories for threshold-based policies:
"absolute threshold-based" and "relative threshold-based" update policy.

32 CHAPTER 2. BACKGROUND STUDY

In the absolute threshold-based policy, updates are disseminated when the
absolute change between the current and the previously advertised value of
a resource exceeds a certain threshold value (as Shown in equation 2.2) [56].

∣∣∣Rn −Rp

∣∣∣
C

≥ thr (2.2)

Where Rn represents the current value of a resource, Rp denotes the
previously flooded value, and C denotes the total capacity. With respect
to this policy, the threshold value and the capacity are the key factors
determining when updates are send. Therefore, a small threshold value
and/or small amount capacity results in an increase in the number of updates
when the resource changes a lot [57].

In the relative threshold-based policy, updates are disseminated when the
relative change between the current and the previously advertised value of
a resource exceeds a certain threshold value (as shown in equation 2.3) [56].

∣∣∣Rn −Rp

∣∣∣
Rp

≥ thr (2.3)

Where Rn represents the current value of a resource and Rp denotes the
previously flooded value. With respect to this policy, the threshold value
is the key factor determining when updates are send. Therefore, a small
threshold value results in an increase in the number of updates when the
resource changes a lot [57]. In relative threshold-based policies, updates
are sent more frequently when resources become low. This policy generates
fewer updates than a periodic update policy.

• Class-based policy: In this technique, the resource is divided into classes
and updates are flooded whenever the resource value move to a different
class from the current class. When the maximum capacity of the resource
is C, classes can described as follow:

[
0,βC

)
,
[
βC,(f+1)βC

)
,
[
(f+1)βC,(f2 + f+1)βC

)
, . . . (2.4)

2.6. OPEN SOURCE ROUTING SUITE 33

Where "β" denotes a base class factor (β < 1), and "f " denotes a class
bindery factor. The class’s size could be fixed (f = 1) or exponential (f >
1). A class-based policy performs approximately the same as the relative
change policy [58].

2.6 Open source routing suite
XORP [59], BIRD [60], and Quagga [13] are examples of software suites which
provide open source routing (OSR). These OSR suites support many different
routing protocols, including OSPF, RIP, and Border Gateway Protocol (BGP).
XORP and Quagga provide an API to access to their OSPF demon. Developers
can use this API to communicate and add additional functionality to routing suites
without making any changes in the router’s core source code.

2.6.1 Quagga router
Quagga is an OSR software suite developed for UNIX platforms. The Quagga
router consists of Zebra, OSPF, RIP, and BGP demons (see Figure 2.5). The core
demon Zebra is an abstraction layer of the underlying OS, while the OSPF, RIP,
and BGP demons are responsible for providing routing functionality for these
three different routing protocols.

Figure 2.5: Quagga router system architecture.

The "OSPF daemon" consists of an OSPF core, opaque LSA, MPLS-TE,
and OSPF API modules as shown in Figure 2.6. The "OSPF core" module
is responsible for implementing the main tasks of the OSPF protocol (such as

34 CHAPTER 2. BACKGROUND STUDY

neighbor discovery and exchanging neighbor state). The "opaque LSA" module
enables the OSPF demon to exchange opaque LSAs with other OSPF routers. The
"MPLS-TE" module and the "OSPF API" module can generate opaque LSAs and
then invoke the "opaque LSA" module to flood the LSA into the OSPF domain.

Figure 2.6: Quagga OSPF demon architecture.

2.6.2 Quagga OSPF API
The "OSPF API" consists of two parts: OSPF API-Server and OSPF API-Client.
The "OSPF API-Client" can establish a TCP connection with the "OSPF API-
Server" using "OSPF API Protocol" [61]. This connection can be utilized to
retrieve the whole or part of Quagga router’s LSDB from the Quagga router’s
OSPF daemon. Also, the OSPF API provides synchronization, which means
that whenever a new LSA arrives at the OSPF daemon the OSPF API-Server
immediately forwards this messages to the OSPF client application. In addition,
the OSPF API-Client can generates an opaque LSA and ask the server side to
flood it. The OSPF API protocol states are represented in follows and illustrated
in Figure 2.7.

• Initialize connection: There are two connections between the OSPF
API-Client and the OSPF API-Server. One connection is responsible for
handling the synchronous messages, and another is responsible for handling
the asynchronous messages. To establish these connection, first the OSPF
API-Client uses the target router IP address with any port number to

2.6. OPEN SOURCE ROUTING SUITE 35

begin the connection for synchronous messages. The OSPF API-Client
application request/reply operates synchronously, which means each OSPF
API-Client request message answered with a response message from a
OSPF API-Server. The response message indicates whether the request is
succeeded or failed. Second, when the server allowed this connection from
a OSPF API-Client, as a reaction it will open a reverse connection channel
for asynchronous messages∗. The asynchronous channel is used for sending
the notifications from a client and/or a server. These notifications are one
way messages and can point out new, updated, or deleted LSA(s). The
Quagga OSPF API-client library provides "ospf_ apiclient_ connect (char
*host, int syncport)" function for a client application to start a connection
to the OSPF-API-Server.

• Link-state database synchronization: When the connection between
OSPF API-Client and OSPF API-Server has been established, then the
client application can send link-state database synchronization request to
the server. In this case, the OSPF API-Server will send entire OSPF LSDB
in a sequence of LSAs to the OSPF API-Client.

• Opaque Type registration: When the LSDB synchronization achieved,
then the OSPF API-Client can register the opaque type which it plans to
originate as an opaque LSA.

• Origination of own opaque LSAs: when the OSPF demon learnt that an
opaque-capable neighbor’s state is full the OSPF API-Server will notify
the OSPF API-Client that it is ready to flood opaque LSAs. The OSPF
API-Client application then can originates its own opaque LSA and invoke
OSPF demon to flood it throughout the OSPF network.

• Update own opaque LSA: The OSPF API-Client can update the content
of self-originated LSA and asks OSPF API-Server to re-flood it with a new
content.

• LSA update from neighbors: Whenever any kind of LSAs picked up by
OSPF demon, the OSPF API-Server will send a copy to OSPF API-Client

∗Based on current implementation of the Quagga OSPF API the asynchronousport =
synchronousport +1

36 CHAPTER 2. BACKGROUND STUDY

to keep it synchronized with Quagga router’s LSDB.

• Deletion of own opaque LSA: The OSPF API-Client application can delete
its opaque LSA from all OSPF routers by sending the deletion request to
OSPF API-Server.

• Connection shout down: The OSPF API-Client can terminate the connec-
tion to OSPF API-Server by sending the shout down request. The client
should delete all self-originated opaque LSA before sending a shout down
request.

As discussed earlier in this section, the OSPF API-Server communicate with
the OSPF API-Client application with the sort of notifications. Different OSPF
API-Server’s notification message types are shown in Table 2.7. It is worth
highlighting that the OSPF API-Client application is responsible to handle the
notifications from the server side. To achieve this goal, the client application
should register its call back functions for each type of notifications. The
OSPF API library provides the "ospf_ apiclient_ register_ callback()" function
to register the client call back functions.

Table 2.7: OSPF API-Server notification message types.
Notification Description

MSG_ READY_ NOTIFY The OSPF demon is ready to
generate the Opaque LSA.

MSG_ LSA_ UPDATE_ NOTIFY The link-state update revived.
MSG_ LSA_ DELETE_ NOTIFY The LSA is deleted from LSDB.
MSG_ NEW_ IF New network interface is added to

the network.
MSG_ DEL_ IF An interface is deleted from the

network.
MSG_ ISM_ CHANGE The Interface state machine is

changed.
MSG_ NSM_ CHANGE The neighbor state machine is

changed.

2.6. OPEN SOURCE ROUTING SUITE 37

Figure 2.7: The OSPF API protocol states [61].

38 CHAPTER 2. BACKGROUND STUDY

2.7 Related works
The work presented in this thesis project focuses on three research areas:
monitoring of cloud resources, using opaque LSA for sending arbitrary information,
and link-state update policy.

A number of authors have proposed a distributed cloud resource allocation
system, see [21, 62, 63, 64]. These studies show that a fundamental part of
resource allocation in a distributed cloud is monitoring of distributed resources.
In fact, a cloud manager and resource allocation system needs to have up to date
information about resource availability in each of the data centers in order to be
able to make an appropriate decision. In a recent master’s thesis, V. Visockas has
shown how to visualize the interactions between services running in a data center
and between data centers based on the information that can be obtained by agents
running in the virtual machines or by information that can be observed by the
routers [65].

Resource monitoring in a cloud has been subject of many works, see [7, 66,
67]. In these works, the authors mostly consider the monitoring techniques inside
a data center and not monitoring the distributed data centers. This work dose not
consider the methods of resource monitoring inside the data center. We assume
the information about data center’s functional capacity is available. Based on this
assumption, we proposed a solution for monitoring distributed data centers plus
network and link condition in a network embedded cloud.

Taking advantage of OSPF routing protocol’s opaque LSA by proposing a
new TLV to carry arbitrary information was subject of many works. R. Keller and
B. Plattner extent OSPF protocol by proposing new opaque LSA TLV to carry
a router processing attributes for their active network control software [68]. As
another example, L.G. Zuliani and R. Pasquini proposed a new TLV to the OSPF-
TE protocol to enable the Generalized Multi-Protocol Label Switching (GMPLS)
to have most effective decision [69]. The OSPF-TE and all of its extensions
(which use opaque LSAs) can be considered as a related work in this area. The
OSPF-TE widely discussed in literature and books. In this work, the OSPF-TE
was explained in section 2.3.4.

Link-state update policy has been a subject of much research, especially in
QoS routing, see [53, 54, 55, 70, 71, 72]. These works mostly consider different
link-state update policies for distributing available link bandwidth information to
provide required information for QoS routing and TE. In a recent master’s thesis,
M. Noordermeer has shown that determining the appropriate parameters for the

2.7. RELATED WORKS 39

link-state update policy is more influential on the amount of traffic and decision
accuracy than the choice of the policy itself [73]. Link-state update policy and
some results of mentioned related work are discussed in section 2.5 and chapter 5
when it was required.

To the author knowledge, this is the first work considering resource monitoring
in a network embedded cloud. However, the works discussed above was used as a
part of proposed solution in this work or considered the resource monitoring and
resource allocation in general.

Chapter 3

Design

This chapter specifies the architecture and the design of a proposed solution. The
information required to provide an extension to OSPF-TE to convey data center’s
resources is discussed. Finally, the proposed Cloud LSA architecture is presented.

3.1 Solution architecture
In this thesis project we use the OSPF protocol to transmit information about
cloud resources and to provide the required information for a CMS. To achieve
this goal, an extension to OSPF-TE is proposed as shown in Figure 3.1.

Figure 3.1: Proposed solution architecture.

41

42 CHAPTER 3. DESIGN

The router extension module, called "Cloud-OSPF", is responsible for
collecting resource information from (an embedded) data center. This information
is distributed to the OSPF domain as Cloud LSAs via the OSPF router. The Cloud-
OSPF module also is responsible for retrieving and analyzing received Cloud
LSAs that were generated by other instance of the Cloud-OSPF module within
the OSPF area. This information can be used to update the CMS. The CMS
then can run any constrained-base algorithm to find the best instance(s) of the
requested resources in the cloud network. Finally, the CMS tells the data center’s
management system to allocate resources to a user. In the following section, more
details about the Cloud-OSPF module’s design are explained.

3.2 Cloud-OSPF module’s design
In this section, the design issues for the Cloud-OSPF protocol and router module
are explored, followed by a description of the different parts of Cloud-OSPF
protocol and router module.

3.2.1 Design issues
Two issues should be considered while designing an extension to OSPF-TE. The
first issue is, choosing an OSPF router implementation. The second issue is,
selecting a good model for an embedded data center.

3.2.1.1 Quagga as routing suite

As described in section 2.6, several OSR software implementations are available.
The project goal is to add an extension to the OSPF-TE protocol in such a way
that the extended OSPF-TE conveys information about a data center’s resources in
a new type of LSA. This goal determines the suitability of the proposed solution
from both performance and robustness perspectives. However, the choice of router
does not effect the project except the for the details of design and implementation.
Quagga was chosen as a platform because of its active development community.
Additionally, Quagga’s OSPF API enables us to develop an extension to the
OSPF-TE protocol without requiring extensive knowledge or understanding of
the Quagga source code.

3.2.1.2 Embedded data center

The resource utilization modeling of an embedded data center directly affects the
evaluation part of this project. This model should simulate the activity of a data

3.2. CLOUD-OSPF MODULE’S DESIGN 43

center. Unfortunately, neither cloud providers nor the literature in the field provide
detailed information about how a data center’s resources change during a business
day. As a result, finding a realistic model of how cloud resources change is very
important.

The author attempted to get information about the energy consumption of a
data center. The assumption was that when the data center serves more requests
that more resources are assigned and that during this time the data center will
consume more energy. Based on this hypothesis we assume the following:

During the first hours of the day, the cloud, and as a consequence the data
center, experiences a minimum number of resource allocation requests, thus the
data center resource utilization has a minimum value. In the early morning hours
as people start to work, the cloud experiences a higher rate of resource allocation
requests which leads to a higher utilization of the data center’s resources. The
utilization will reach its highest level around midday. Finally, in the evening,
users will send resource de-allocation requests which decrease the resource
utilization. Finally, during late night, the utilization returns to the lowest level.
This argument is applicable to a data center where most of users are located in
a single geographical area and assumes that the demands are largely related to
human users making requests, as opposed to batch processing.

3.2.2 Solution Design
Cloud-OSPF is an extension to the OSPF protocol to extend it in such a way that
it transmits virtualization and processing-related details of a network embedded
cloud. The implementation of Cloud-OSPF is done by implementing two separate
modules (as shown in Figure 3.2): "Cloud-OSPF-Receiver" and "Cloud-OSPF-
Sender". Utilizing two separate modules to implement the Cloud-OSPF protocol
offers flexibility, as either the Cloud-OSPF-Receiver or Cloud-OSPF-Sender can
be shut down independently. Shutting down one or the other will reduce the
router’s processing overhead.

3.2.2.1 Cloud-OSPF-Sender

The "Cloud-OSPF-Sender" is responsible for reading and examining the "Cloud
Resource DB". The Cloud Resource DB contains information about the usable
resources of an embedded data center (e.g. CPU, RAM, and storage). The
Cloud-OSPF-Sender can utilize the OSPF router to inform other OSPF nodes
by sending Cloud LSAs when significant changes occurs in this instance of
the Cloud Resource DB. The Cloud-OSPF-Sender and Cloud-OSPF-Receiver

44 CHAPTER 3. DESIGN

Figure 3.2: Design of the proposed solution

communicate with the Quagga router via the OSPF API. It is worth mentioning
that the information about network capacity (e.g., network topology and link
characteristics) will be provided by OSPF and OSPF-TE and not the Cloud-OSPF-
Sender.

3.2.2.2 Cloud-OSPF-Receiver

The Cloud-OSPF-Receiver is responsible for keeping the "Extended TED" up to
date. The Extended TED contains information about all the embedded data centers
plus the network’s topology and link attributes. To achieve this goal, the Quagga
router forwards a copy of all LSAs to the Cloud-OSPF-Receiver. The Cloud-
OSPF-Receiver analyzes and extracts information from these LSAs to update the
Extended TED. The CMS of the network embedded cloud can query the Extended
TED to obtain information required to make an appropriate decision.

3.3 Cloud LSA

As discussed in section 2.3.2, The OSPF protocol utilizes LSAs to describe the
local network’s status and to provide information about the network to other
nodes. As discussed in section 2.3.3, the OSPF router uses an opaque LSA to
support these generalized LSAs and floods this data within an OSPF area. In this
section, the details of an extension of the OSPF-TE protocol are given. A new
LSA, named "Cloud LSA", is proposed to convey information about embedded
data center resources to the CMS. This Cloud LSA is as an enhancement to OSPF-
TE protocol as it makes use of the TE LSAs, which are opaque LSAs with an area
wide flooding scope (LS type 10).

3.3. CLOUD LSA 45

3.3.1 Cloud LSA format
The Cloud LSA starts with the standard TE LSA header with LS Type 10 and
opaque Type 1. The payload portion of the Cloud LSA contains information about
a data center’s resources. There are two ways that we could store the information
about the data center resources in the payload. the first alternative is to propose
a new type of TE TLV, and another option is to extend the existing TE TLV by
adding one or more sub-TLVs.

Additionally, there are different ways to described the data center’s resources.
One approach is to place all of the information about available resources in the
value part of a top-TLV (or a sub-TLV). In this case, this top-TLV (or sub-TLV)
can supply all the required information (such as CPU, RAM, storage, and/or data
center’s location). The second approach is to introduce different sub-TLVs (or
sub-sub-TLVs) for each resource. In this second approach, one sub-TLV (or sub-
sub-TLV) is required for each data center resource. Both options have benefits
and weaknesses. Selecting the best alternative requires more research and analysis
which are out of scope of this work. Here we will utilize the first approach, thus
we place all of the available information about the data center’s resources in the
value portion of a top-TLV (or sub-TLV).

The registered top-TLV for a TE LSA was described in Table 2.4 on page 28.
We propose a new top TLV with a value 6 and with the name "Cloud TLV". This
Cloud TLV can hold a data center’s resource information in its value portion in
two ways. The first approach is to place the data entirely in the value portion of the
Cloud TLV as shown in Figure 3.3, and another approach stores the data center’s
information in different sub-TLVs of the Cloud TLV (such as a CPU-sub-TLV,
RAM-sub-TLV, and Storage-sub-TLV) as shown in Figure 3.4. In this case, the
Cloud TLV can be composed of any combination of sub-TLVs.

46 CHAPTER 3. DESIGN

0 7 15 23 31

Cloud TLV Type = 6 Length

Available CPU

Available RAM

Available Storage

Data center location
...
...
...



Cloud
TLV

Figure 3.3: Cloud TLV - storing all the required data about an embedded data
center entirely in a value portion.

0 7 15 23 31

Cloud TLV Type = 6 Length

Type = 1 Length

Available CPU

CPU
sub-TLV

{
Type = 2 Length

Available RAM

RAM
sub-TLV

{
Type = 3 Length

Available Storage
Storage
sub-TLV

{
...
...
...



Cloud
TLV

Figure 3.4: Cloud TLV - storing the embedded data center’s information in
different sub-TLVs.

It worth mentioning that the embedded data center can be realized using the
compute capability of a router. The Node attribute TLV, which has type 5, carries
the attributes associated with a router. Hence, the Node attribute TLV could
accommodate information about the compute capability of a data center in the
form of a new sub-TLV. Considering the registered sub-TLV for Node attributes
TLV shown in Table 2.5 on page 29, a new sub-TLV for a node attribute TLV is
proposed with the name of "Cloud sub-TLV" and has a type value equal to 3 (as

3.3. CLOUD LSA 47

shown in Figure 3.5). The Cloud sub-TLV can hold the embedded data center’s
resources information.

0 7 15 23 31

Type = 5 Length

Type = 3 Length

Data about data center
CPU, RAM, Storage,...

Cloud
sub-TLV


...
...
...

Other TLVs





Node
attributes
TLV

Figure 3.5: A Cloud sub-TLV for a Node attribute TLV

Each of the options to place data center resources in a TE LSA, the Cloud TLV
and Cloud sub-TLV for Node attributes TLV, has advantages and disadvantages.
Selecting the best way to encode the data center resources information requires
more research and analysis which are out of scope of this work. Here we will
assume that the data center resource are encoded in the Cloud sub-TLV of the
Node attributes TLV of a TE LSA. One reason for making this choice is that it
is easy to add new sub-TLVs if there are additional resources that we want to
describe, for example we could add a sub-TLV to indicate what type of processor
is available.

When it comes to the CMS, a data center can be described in terms of
the available CPU, RAM, and storage resources plus the data center’s location.
Another consideration is which parts of the data center’s resource information is
required by the CMS. Placing more information in the Cloud LSA provides the
CMS with more information, which might help the CMS to make a better decision.
On the other hand, adding more information increases the network overhead of
each Cloud LSA. As each OSPF router in the area must process each LSA, this
can have a negative effect on each of these OSPF router’s performance. We will
assume that the Cloud LSA contains four parameters: available CPU in units of
clock frequency in Gigahertz (GHz), available RAM in Gigabytes (GB), available
storage in Gigabytes (GB), and the location of the data center.

48 CHAPTER 3. DESIGN

The sizes of the Cloud TLV value portions for the CPU, RAM, and location
are an open question in this step. As discussed earlier, these portions represent
the data center’s available resources and the data center’s location. Finding the
optimal size for data center’s resource (i.e., CPU, RAM, and storage) requires
more information about telecommunication operators data center’s capacity,
which is not clear yet. The value portion for data center’s location could be
an index number or the physical location of the data center if World Geodetic
System 1984 (WGS84) coordinates. More research and study needed to find an
optimal size for Cloud LSA value portions which was out of scope of this work
and left for future work. In this project, we make the value parts of Cloud TLV
for cloud resources as fixed unsigned 32 bit fields which can represent at max
2,147,483,647 (i.e., 2(32) − 1). Additionally, the value portion of data center’s
location is considered as fixed 32 bits string.

3.3.2 Summery
The proposed Cloud LSA starts with a standard TE LSA header with LS type 10
and Opaque Type 1. We propose a Cloud sub-TLV for the Node attribute TLV. The
Node attribute TLV has type 5 and its Cloud sub-TLV has a type 3. This Cloud
sub-TLV contains information about data center’s resource (specifically available
CPU, RAM, storage and the data center’s location). The proposed Cloud LSA
format is shown in Figure 3.6. It is worth highlighting that the proposed Cloud
LSA contains 44 bytes of data.

3.3.C
L

O
U

D
L

S
A

49

0 7 15 23 31

LS Age Option 10

1 Opaque ID

Advertising Router

LS Sequence Number

LS Checksum Length


TE
Header

Type = 5 Length

Type = 3 Length

Available CPU

Available RAM

Available Storage

Data center location

Cloud
Sub-TLV





Node
attributes
TLV

Figure 3.6: Cloud LSA format.

Chapter 4

Implementation

This chapter explains implementation of the proposed solution design presented
in the previous chapter, including data center utilization simulator, Cloud-OSPF-
sender, and Cloud-OSPF-Receiver. Some additional concepts are discussed when
these concepts are needed to enable the reader to understand the implementation
of the proposed solution.

4.1 Data center resource utilization module
The embedded data center module simulates a data center with varying levels
of activity. The embedded data center module is written in the C programming
language. This module simulates the data center’s activity over 24 hours as
described in section 3.2.1.2. This module is only used for testing and a real-world
system would replace this module by code that would get the resource information
from a data center management system (e.g., Amazon’s CloudWatch [74],
CloudClimate [75], and CloudKick [76]).

4.1.1 Data center module’s flowchart
This module operates as shown in Figure 4.1. The embedded data center
simulation module behaves as a data center with some pre-defined capacity. We
assume that the data center’s capacity can be described by specifying the CPU’s
clock rate in GHz, the amount of RAM in GB, and the amount of storage in
GB. The data center simulator serves user requests by allocating or releasing data
center resources. The module simulates user requests based on a bounded request
arrival rate. The request arrival rate describes how often this data center receives
another request. This request arrival rate is configurable in our model.

51

52
C

H
A

P
T

E
R

4.IM
P

L
E

M
E

N
TA

T
IO

N

Figure 4.1: Data center resource utilization modeling flowchart. This chart skipped some features of application (such as
connecting to sqlite database details, biased Probability distribution mechanism, and data center’s monitoring system).

4.1. DATA CENTER RESOURCE UTILIZATION MODULE 53

A user request is described by three parameters: "job type", "instance type",
and "number of instances. The embedded data center module supports four pre-
defined job types: "Resource Allocation", "Resource Upgrade, "Resource De-
allocation", and "Resource Downgrade" as shown in Table 4.1. It is worth
mentioning that the Resource Upgrading and Resource Downgrading can apply
to CPU, RAM, storage, or any combination of them.

Table 4.1: Data center job types.
Type Job Name Description

1 Resource Allocation Request for allocating a virtual resource.
User needs to send this request before
sending a Resource de-allocation,
upgrade, or downgrade.

2 Resource De-allocation Request to release an allocated virtual
resource.

3 Resource Upgrade When the user already has some resources
they can ask the data center to increase the
allocation of these resources.

4 Resource Downgrade When the user already has some resources
they can ask the data center to de-allocate
some of these resources.

The "instance type" is one of 14 pre-defined instances. Each instance is
described by some amount of CPU, RAM, and storage. The number of instances
is a random integer value between one and six. The user request parameters will
be randomly selected from possible sets of the above options. More information
about the data center capacity, type of instances, and part of embedded data center
simulation module’s source code are presented in Appendix A.

4.1.2 Data center resource utilization results
The embedded Data Center module was executed 100 times to have results with
a confidence interval of 95%. Each round of run simulated 24 hours and the data
center module started at midnight, i.e., 00:00. This enables us to observe the
behavior of a simulated data center over one business day.

As in simulated center module the user request types are biased based the day’s
hours (e.g., in working hours the probability of resource request and resource

54 CHAPTER 4. IMPLEMENTATION

upgrade is higher than the none working hours), the data center utilization changes
frequently and it has potentially curve point in each hour. The mean (i.e., opposed
to the median values) for utilization in each hour enables us to have a general
overview on data center utilization behavior. The mean of average CPU utilization
and its upper and lower bounds of a 95% confidence interval (CI) for a simulated
data center over 24 hours is shown in Figure 4.2. The first hour in graph depicts
the mean of average CPU utilization from 12:00 A.M till 12:59 A.M and 24th
hour in graph depicts the mean of average CPU utilization from 11:00 P.M till
11:59 P.M. The red lines in graph present each hour’s upper and lower bounds of
a 95% CI for mean.

Figure 4.2: Data center’s mean of average CPU utilization per hours with upper
and lower bounds of a 95% CI.

The mean of usable CPU capacity of the data center and its upper and lower
bounds of a 95% CI per second over 24 hours is shown in Figure 4.3. The
corresponding graphs of the data center’s mean of average utilization and mean of
usable capacity for RAM and storage are given in Appendix B.

The data center resource utilization module logs the data center’s available
resources in the Resource Database as was shown in Figure 3.2 on page 44. Third
party software can use this database to learn about the current status of the data
center. The Resource Database is built upon an SQLite [77] database and contains
information about simulated data center’s resources with records such as that
shown in Table 4.2. Additionally, this module includes a live monitoring system

4.2. CLOUD-OSPF-SENDER MODULE 55

Figure 4.3: Simulated data center’s mean available CPU capacity (GHz) per
second and its upper and lower bounds of a 95% CI.

to enable a user to monitor available capacity and utilization of CPU, RAM and
storage within a simulated data center.

Table 4.2: Resource Database format
CPU RAM Storage Location

::INTEGER ::INTEGER ::INTEGER ::TEXT

4.2 Cloud-OSPF-Sender module
The Cloud-OSPF-Sender is responsible for several tasks, including monitoring the
data center’s available resources, checking the data center’s resources based on an
update policy, and sending information about the data center’s available resources
in the form of opaque LSAs into the OSPF domain, as explained in section 3.2.2.

The update policy is the most crucial part of the Cloud-OSPF-Sender as
this policy will determine how the Cloud-OSPF-Sender behaves when it detects
changes in the data center’s resources. The update policy determines whether
the change in the data center’s usable capacity is significant or not. The choice
of update policy directly affects the performance of the proposed solution. As a

56 CHAPTER 4. IMPLEMENTATION

result, it is beneficial to select a good policy in order to avoid unnecessary updates.
The Cloud-OSPF-Sender uses relative threshold update policy. More information
corresponding selecting an update policy is given in chapter 5.

The Cloud-OSPF-Sender module is written in the C programming language.
It uses threads to provide concurrency. As an example, one thread can be run for
reading the data center’s resources while another thread is responsible for packing
a Cloud LSA and sending it to the OSPF network. Also, the monitoring system
for the embedded data center is run in parallel with other threads. In addition, in
the future, we can add more threads (with different responsibilities) to this module
without effecting the functionality of other parts of it.

The Cloud-OSPF-Sender is compatible with the Quagga router and employs
the Quagga OSPF-API for low-level communications, see section 2.6.1. The
flowchart for this application is shown in Figure 4.4. The Cloud-OSPF-Sender
application allows the Cloud-OSPF system operator to configure several parameters
before execution such as:

Target router IP address defines the administrative IP address of the
target router. The application uses this IP
address to connect to Quagga OPSF API.

Port for synchronous connection define the port number that Cloud-OSPF-Sender
module uses for synchronous connection to OSPF
API-server.

Opaque ID and Opaque Type define the Opaque ID and Opaque type for
the Cloud LSA. The Opaque ID can be any
arbitrary number. Based on the discussion of
Cloud LSA in section 3.3, the Opaque Type
should be 10 (TE LSA), the top-TLV type is 5
(Node attributes TLV), and the sub-TLV type is
3 (Cloud sub-TLV).

Threshold value the module uses the threshold-based with relative
change update policy (See Chapter 5). This
parameter defines the threshold value as a percen-
tage change of the resource.

Interval value defines the interval between when the module
checks the data center’s Resource DB. The
default value for this parameter is MinLSInterval
(i.e., 5 seconds).

4.2.C
L

O
U

D
-O

S
P

F
-S

E
N

D
E

R
M

O
D

U
L

E
57

Figure 4.4: Cloud-OSPF-Sender module flowchart. This chart skip details for some parts of module (e.g., steps of connection
to Quagga router, steps of Connection to data center’s resource DB, and detail about update policy).

58 CHAPTER 4. IMPLEMENTATION

When the Cloud-OSPF-Sender starts, it will create a TCP connection to the
Target router’s IP address using "NEC-OSPF-TE∗" port number. The value of
NEC-OSPF-TE is configurable in our model. Next, it will register the given
Opaque Type and ID to OSPF API-Server. Cloud-OSPF-Sender will also register
its own call back function to OSPF API-Client libraries. The call back functions
are responsible for handling the OSPF API-Server notification messages. The
OSPF API protocol was discussed in section 2.6.2.

When the client-server connection established, the Cloud-OSPF-Sender creates
a thread for reading the data from the data center’s Resource DB. This thread is
periodically invoked based on a timer which is set to the Interval time. The Cloud-
OSPF-Sender module will re-create this thread and check the current status of data
center’s Resource DB when the timer expires. If the application finds significant
changes up on update policy for any resource, it will initialize a new thread to
generate a new Cloud LSA. This thread will ask the Quagga router to send the
Cloud LSA in the form of a LSU into the OSPF domain. The generated Cloud
LSA contains the latest information about the data center’s resources. The Cloud
LSA format was discussed in section 3.3. More information including the Cloud-
OSPF-Sender’s source code is given in Appendix C.

4.3 Cloud-OSPF-Receiver module
The Cloud-OSPF-Receiver module is written in the Python programming language.
This application is compatible with the Quagga router and uses the Quagga OSPF-
API for low-level communications, as described in section 2.6.1. The Cloud-
OSPF-Receiver synchronizes itself with the Quagga TED. Therefore, the Quagga
router forwards a copy of all LSAs received from the OSPF domain to Cloud-
OSPF-Receiver. The flowchart of this module is shown in Figure 4.5.

∗This is a port number that should register by IANA for a network embedded cloud monitoring
system

4.3.C
L

O
U

D
-O

S
P

F
-R

E
C

E
IV

E
R

M
O

D
U

L
E

59

Figure 4.5: Cloud-OSPF-Receiver module flowchart. This chart skip details for some parts of module (e.g., steps and details
of : connection to Quagga router, registering call back functions, extracting and analyzing the received LSAs, and connection
and updating the Extended TED, and detail about update policy).

60 CHAPTER 4. IMPLEMENTATION

This module allows the user to configure a target router’s IP address and
required port number. These parameters define the administrative IP address of
the target router and the port number which is used for synchronous connection
to OSPF API-server. The Cloud-OSPF-Receiver uses these IP address and port to
initial a connection to the Quagga OPSF API.

When the Cloud-OSPF-Receiver starts it creates a TCP connection to the
target router’s IP address using "NEC-OSPF-TE" port number. The value of
NEC-OSPF-TE is configurable in this module. Next, Cloud-OSPF-Receiver
will register its own call back function to OSPF API-Client libraries. The call
back functions are responsible for handling the OSPF API-Server notification
messages. The Cloud-OSPF-Receiver connection sends a link-state database
synchronization request to the OSPF API-Server over the accomplished client-
server connection. After the Quagga router received this request, it will forward
a copy each LSA that is received from the OSPF area to the Cloud-OSPF-
Receiver. The Cloud-OSPF-Receiver listens to OSP API-Server and waits for
OSPF API-Server notifications. It will execute one of its callback function when
new notification received from server side.

When the Cloud-OSPF-Receiver receives a LSA from the Quagga router,
it extracts the information from this LSA. After analyzing this, the application
updates the Extended TED as needed. The Extended TED is built upon an SQLite
database and contains information about network connectivity, TE metrics (if
applicable), and embedded data center’s resources. The CMS or any third party
software can query the Extended TED data to monitor the network’s and data
centers status.

Chapter 5

Cloud resources and updates policies

Cloud resources are dynamic in nature. As a result, having up to date information
about cloud resources in a network embedded cloud requires frequent Cloud
LSAs update. To enable good decisions by the CMS, it is essential to select
an appropriate policy for when to send Cloud LSAs. Sending very frequent
Cloud LSAs updates can result in high traffic which will negatively impact the
performance of the OSPF network. On the other hand, sending the infrequent
Cloud LSA updates may result in losing synchronization between the Extended
TEDs of the OSPF routers in the network, and as a consequence the CMS may
make "bad" decision. A bad decision can be characterizes as:

Over reservation In this case, the "bad" decision means that resource manag-
ement system assumes a data center in the network embedded
cloud has sufficient resources, according to the information in
the Extended TED, when in fact it does not have sufficient
resources.

Under reservation In this case, the "bad" decision means that resource manag-
ement system assumes a data center in the network embedded
cloud has insufficient resources, according to the information
in the Extended TED, when it actually has sufficient resources.

As discussed in section 2.5, several update policy are available, such as
immediate, periodic, threshold-based, and class-based update policy. This chapter
provides analysis on all mentioned update policies for sending a cloud resource
information and concludes with a discussion. To have these data we run a
proposed data center model (see section 4.1 for 100 times to have analysis results
with a confidence interval 95%. During the running period, we gathered the data
center’s available resource information with an interval of resource arrival rate (i.e
1 second in experiments). Next, different update policies are applied to the data

61

62 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

center’s resource information.

5.1 Immediate update policy
The immediate update policy triggers an update whenever there is a change in
available resources. This policy maximizes the accuracy of resource management
but dramatically increases the network load.

As discussed in section 2.4, the OSPF routing protocol is rate limited in
generating new LSAs by MinLSInterval timer. The default value of this timer
is 5 seconds. Hence, this policy cannot generate a new Cloud LSA less than 5
second interval. As a result, when the data center’s resources change more than
one time in 5 seconds interval this policy acts like a periodic update policy with
an interval value 5 seconds.

5.2 Periodic update policy
In a periodic update policy, the originating router periodically advertises LSA
update after the hold-down timer expires. This policy does not actually consider
the extent of available resources but simply provides updates about available
resources. As a result, in this update policy the number of updates can be
calculated beforehand. The relation between the hold-down timer value and
the number of updates for a data center’s resources in one day is shown in
Figure 5.1. It is worth mentioning that based on MinLSInterval timer of OSPF
routing protocol the minimum hold-down timer value for a periodic update policy
is limited to 5 seconds.

5.2. PERIODIC UPDATE POLICY 63

Figure 5.1: Number of updates per different hold-down timer values.

With a small value as a hold-down timer, the periodic update policy provides
more information about data center’s resources, but with a cost of sending more
updates. As shown in Figure 5.1, the maximum number of updates in one day
for a single data center is 17280 and accrues when a hold-down timer is set to 5
seconds. By increasing the hold-down timer value, the number of updates will
decrease. However, the number of updates is not a sufficient factor to make
a decision on hold-down timer value. It is also important to consider how the
receiver node(s) (e.g., CMS) in an OSPF domain will views the data center’s
resources with different hold-down timer values. Figure 5.2 shows how CMS
views a data center’s available CPU capacity with different hold-down timer
values 3600, 1000, and 200 seconds. The complete set of results for a data center’s
CPU, RAM, and storage capacity with the different hold-down timer values are
given in Appendix D.

64
C

H
A

P
T

E
R

5.C
L

O
U

D
R

E
S

O
U

R
C

E
S

and
U

P
D

A
T

E
S

P
O

L
IC

IE
S

Figure 5.2: How a cloud management system views cloud resources with different hold-down timer values 3600, 1000, and
200 seconds, the updates points are plotted a circles in each graph.

5.3. CLASS-BASED UPDATE POLICY 65

Considering that the periodic update policy triggers a new update regardless
how the data center’s resource changes, a significant change can be ignored (for a
period of time), and unnecessary LSA updates can occur often (especially if the
period is short). Figure 5.3 visualized this problem for a hold-down timer value
700 seconds. In this Figure, the periods that are pointed with red are the periods
that the periodic update send a new update while there are not significant changes,
and the periods pointed with blue shows the periods that the periodic update policy
ignores notable changes.

Figure 5.3: The periodic update policy can ignore necessary LSA updates (pointed
in blue), and send unnecessary LSA updates (pointed in red), the updates points
are plotted a circles.

5.3 Class-based update policy

As described by equation 2.4 on page 32, in a Class-based update policy the
available capacity is divided to the number of classes. This policy triggers an
update when the available capacity passed the class boundary. The classes size in
this update policy determined by two key factors: a base factor "β" (β < 1), and a
growth factor "f ".

66 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

5.3.1 Equal-sized classes
When a growth fact "f " is equal to 1, the classes are equal-sized. In this case, the
number of equal-sized classes (Neq), can be calculated as shown in equation 5.1.

Neq =
1
β

(5.1)

where the "β" denotes a base class factor and determines each class size. In
order to find an appropriate base factor, the equal-sized class based update policy
with different base factor values was applied to the data center model which was
described in section 4.1. Figure 5.4 shows how the base factor value effects on the
number of updates due to simulated data center’s CPU capacity changes.

Figure 5.4: Number of updates per different number of classes (Neq). The "X"
axis are in logarithm scale.

5.3. CLASS-BASED UPDATE POLICY 67

This experiment clearly illustrates the hypothesis that the smaller base factor
"β" value (higher Neq value) results in sending fewer updates than dose a higher
"β" value (smaller Neq value). While reducing the number of Cloud LSA updates
will reduce the network load, there is a trade-off between the update frequency
and accuracy of cloud resource management system information about cloud
resources.

As discussed earlier, in a class-based update policy a new update triggers
when the available capacity passes a class boundary, As a result, it can generate
lots of unnecessary updates when the available resources fluctuates around a
class boundary. Figure 5.5 visualized this problem for a equal-sized class-based
update policy. The periods that this update policy generates unnecessary updates
are pointed with red. The hysteresis method can be used to prevent excessive
unnecessary updates. In this method, a new update triggers when not only
the available capacity passes the class boundary but also the magnitude of the
changes are significant (e.g., the available capacity passes the middle of adjacent
classes) [78].

Figure 5.5: Equal-sized class-based update policy. How the update policy send
updates due to changes in data center’s available CPU capacity when number of
classes Neq = 80. The periods pointed in red show the duration that this policy
generates unnecessary updates.

68 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

However, the number of updates is not a sufficient factor to make a decision
on the number of classes in the equal-sized class-based update policy. It is also
important to consider how the receiver node(s) (e.g., CMS) in an OSPF domain
views the data center’s resources with different number of classes. The analysis
results enable us to see how the update policy reacts to changes in the data center’s
resources and how well updates can describe the data center’s resources. The
result for Neq values 120, 200, and 400 are shown in Figure 5.6. The complete set
of results are given in Appendix E. These Figures enable us to see the inaccuracy
of the resource management system’s view over the state of the cloud resources in
some period of the time.

5.3.C
L

A
S

S-B
A

S
E

D
U

P
D

A
T

E
P

O
L

IC
Y

69

Figure 5.6: Equal-sized class-based update policy. How a cloud management system views cloud resources with different
number of classes (Neq) values 120, 200, and 400. The updates points are plotted a circles in each graph.

70 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

5.3.2 Exponential-sized classes

When a growth factor "f " is greater than 1 (see the equation 2.4 on page 32), we
will have an exponential-sized class-based update policy. In this update policy,
the base class size finds out by a base factor "β" and the classes size increases
geometrically by a factor "f ". In an exponential-sized class-based update policy,
when a growth factor "f " decreases and/or a base factor "β" decreases, the total
capacity "C" divides in to more classes, and as a result more updates expected due
to the simulated data center’s resource changes. In order to find an appropriate
base factor "β" and growth factor "f " value, the exponential-sized class-based
update policy with different "β" value and "f " values was applied to the data center
model which was described in section 4.1. Figure 5.7 shows how these two factors
effect on the number of updates due to the data center’s CPU capacity changes.

Figure 5.7: Exponential-sized class-based update policy. Number of updates per
different values for growth factor "f " and base factor β. The "X" (base factor) axis
is in logarithm scale.

As discussed earlier in this section, fewer updates are expected when a growth
factor "f " increases. The experiment illustrates abnormal behavior for some
growth factor values. Figure 5.8 shows the number of updates for base factor
values 0.000001, 0.00001, 0.01, and 0.1 with different growth factor values. In
some points, which are pointed in red, more updates observed when the growth

5.3. CLASS-BASED UPDATE POLICY 71

factor was increased.

Figure 5.8: Exponential-sized class-based update policy. Number of updates for
base factor values 0.000001, 0.00001, 0.01, and 0.1 with different growth factor
values.

As discussed earlier, in a class-based update policy a new update triggers when
the available capacity passes a class boundary, As a result, it can generate lots
of unnecessary updates when the available resources fluctuates around a class
boundary. Figure 5.9 visualizes this problem for an exponential-sized class-based
update policy where f = 1.4 and β = 0.01. The periods that this update policy
generates unnecessary updates are pointed in red. This explanation illustrates
the reason of unexpected behavior in Figure 5.8. The hysteresis method can be
used to to prevent excessive unnecessary updates. In this method, a new update
triggers when not only the available capacity passes the class boundary but also
the magnitude of the changes are significant (e.g., the available capacity passes a
middle of adjacent classes) [78].

The number of updates is not a sufficient factor to make a decision on a growth
factor and a base factor values. It is also important to consider how the receiver
node(s) (e.g., CMS) in an OSPF domain views the data center’s resources. The
analysis results enable us to see how the update policy reacts to changes in the data
center’s resources and how well updates can describe the data center’s resources.
Figure 5.10 and Figure 5.11 show how CMS views a data center’s available CPU
capacity with different values for base factor and growth factor. The complete set

72 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

Figure 5.9: Exponential-sized class-based update policy. How the update policy
send updates due changes in CPU value when base factor "β" = 0.01 and growth
factor "f " = 1.4. The periods pointed in red show the duration that this policy
generates unnecessary updates.

of result are given in Appendix F. These Figures enable us to see the inaccuracy
of the resource management system’s view over the state of the cloud resources
and/or unnecessary updates in some period.

In an exponential-sized class-based update policy updates are sent more
frequently when there are few available resources. This phenomenon occurs
due to smaller class size in situations that we have fewer amounts of available
resources. By this means this policy can provide more accurate information when
we have limited amount of resources in a data center. This approach is beneficial
for sending a data center resource - because the CMS must be more careful in
managing available resources when they are limited.

5.3.C
L

A
S

S-B
A

S
E

D
U

P
D

A
T

E
P

O
L

IC
Y

73

Figure 5.10: Exponential-sized class based update policy. How a cloud management system views data center’s CPU
resources with fix base factor (β = 0.001) but different growth factor "f " values, the updates points are plotted a circles in
each graph.

74
C

H
A

P
T

E
R

5.C
L

O
U

D
R

E
S

O
U

R
C

E
S

and
U

P
D

A
T

E
S

P
O

L
IC

IE
S

Figure 5.11: Exponential-sized class based update policy. How a cloud management system views data center’s CPU
resources with a fix growth factor (f = 1.2) but different base factor "β" values, the updates points are plotted a circles in
each graph.

5.4. THRESHOLD-BASED UPDATE POLICY 75

5.4 Threshold-based update policy
The threshold-based update policy triggers an update when the change in a
resource’s availability exceeds a certain threshold value. In this policy the changes
in a resources can be an absolute changes or a relative changes.

5.4.1 Absolute threshold-based update policy
The threshold-based with absolute change update policy triggers an update when
the absolute change in a resource’s availability exceeds a certain threshold value
as described by equation 2.2 on page 32. In order to find an appropriate threshold
value, an absolute threshold-based policy with different threshold values was
applied to the data center model which was described in a section 4.1. Figure 5.12
shows how the threshold value effects on the number of updates due to the data
canter’s CPU capacity changes.

Figure 5.12: Absolute threshold-based update policy. Number of updates due to
CPU changes per different threshold values. The "X" axis are in logarithm scale.

76 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

This experiment clearly illustrates the hypothesis that the higher threshold
value results in sending fewer updates than dose a smaller value. While reducing
the number of Cloud LSA updates will reduce the network load, there is a tradeoff
between the update frequency and accuracy of cloud resource management system
information about cloud resources.

The number of updates is not a sufficient factor to determine a threshold value.
It is also important to consider how the receiver node(s) (e.g., CMS) in an OSPF
domain views the data center’s resources. The analysis results enable us to see
how the update policy reacts to changes in the data center’s resources and how
well updates can describe the data center’s resources. The result for threshold
values 2%, 3%, and 4% are shown in Figure 5.13. The complete set of results
are given in Appendix G. These Figures enable us to see the inaccuracy of the
resource management system’s view over the state of the cloud resources in some
period of the time. The experiments show this policy behaves a lot like an equal-
sized class-based update policy.

5.4.T
H

R
E

S
H

O
L

D
-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y
77

Figure 5.13: Absolute threshold-based update policy. How a cloud management system views cloud resources with different
threshold values 2, 3 and 4 %, the updates points are plotted a circles in each graph.

78 CHAPTER 5. CLOUD RESOURCES and UPDATES POLICIES

5.4.2 Relative threshold-based update policy
The threshold-based with relative change update policy triggers an update when
the relative change in a resource’s availability exceeds a certain threshold value
based on equation 2.3 on page 32. In order to find an appropriate threshold value, a
relative threshold-based update policy with different threshold values was applied
to the data center model which was described in section 4.1. The threshold was
set to different values between 5% and 100% in increments 5%. Figure 5.14
shows how the threshold value effects on the number of updates based on the data
center’s CPU capacity.

Figure 5.14: Relative threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s CPU capacity.

5.4. THRESHOLD-BASED UPDATE POLICY 79

This experiment clearly illustrates the hypothesis that the higher threshold
value results in sending fewer updates than dose a smaller value. While reducing
the number of Cloud LSA updates will reduce the network load, there is a tradeoff
between the update frequency and accuracy of cloud resource management system
information about cloud resources.

The number of updates is not a sufficient factor to determine a threshold value.
It is also important to consider how the receiver node(s) (e.g., CMS) in an OSPF
domain will views the data center’s resources. The analysis results enable us to
see how the update policy reacts to changes in the data center’s resources and how
well updates can describe the data center’s resources. The result for threshold
value of 5%, 20%, and 50% are shown in Figure 5.15. The complete set of results
are given in Appendix H. These Figures enable us to see the inaccuracy of the
resource management system’s view over the state of the cloud resources in some
period of the time.

80
C

H
A

P
T

E
R

5.C
L

O
U

D
R

E
S

O
U

R
C

E
S

and
U

P
D

A
T

E
S

P
O

L
IC

IE
S

Figure 5.15: Relative threshold-based update policy. How a cloud management system views cloud resources with different
threshold values 5, 20 and 50 percent, the updates points are plotted a circles in each graph.

5.5. SUMMARY 81

5.5 Summary
A periodic update policy periodically triggers a new LSA update without considering
the extent of available resources. As a result, a significant change can be ignored
and unnecessary LSA updates can occur often. On the other hand, the immediate
update policy generates a LSA update after every time there is a change in
resources. This policy maximizes the accuracy of resource management, but
dramatically increases the network load. As the type and rate of resource request
changes during the day, the available cloud resources fluctuate. In conclusion,
periodic update and immediate update policies do not allow update policy to adapt
to the availability of the data center’s resources.

A threshold-based policy regarding what is a relevant change and a class-based
policy with exponential-sized class update try to avoid unnecessary updates by
sending an update only when a significant change in resources occurs. Also, for
both these update policies, updates are sent more frequently when there are few
available resources - hence the CMS must be more careful in managing them.
Such characteristics make either of them a good candidate for this project.

The studies show that determining the appropriate parameters for the policy is
more influential on the amount of traffic and accuracy than the choice of the policy
itself [73]. For the purposes of this thesis project we will use a threshold-based
policy concerning relevant change and we try to determine the correct threshold
values for each type of resource.

Chapter 6

Analysis

As discussed earlier in a section 3.3, the Cloud LSAs distribute the cloud resource
information, thus providing the data required by the CMS to allocate resource in
the embedded data centers. It is clear that adding new Opaque LSA into OSPF-TE
results in an increase in the amount of OSPF protocol traffic. The Cloud LSA can
be described by a number of data center’s related parameters (e.g., the available
CPU, RAM, storage, etc.). It is worth emphasizing that the amount of opaque data
carried in Cloud LSAs directly increases the OSPF protocol traffic overhead in
network. However, more data carried in Cloud LSAs provides more information
for the CMS which can result in a more accurate decision, but it also results in a
more overhead due to the Cloud LSAs passing over the network.

The proposed Cloud LSA in this thesis project carries four parameters:
available CPU, RAM, storage, and data center’s location. As shown in the
Figure 3.6 on page 49, the proposed Cloud LSA has 44 bytes of data. In order
to send an OSPF LSA into the OSPF network as a link-state update (LSU), the
LSU header (28 bytes), IP header (20 bytes), and Ethernet header and trailer (18
bytes) [if applicable] should be added to Cloud LSA. As a result, sending one
Cloud LSA link-state update loads the network with an additional 110 bytes, see
Table 6.1.

83

84 CHAPTER 6. ANALYSIS

Table 6.1: Cloud LSU parts and sizes.
LSU parameters Size(Byte)

Cloud LSA 44
LSU Header 28

IP header 20
Ethernet header and trailer 18

Total size 110

Additionally, each LSU has an acknowledgment response. The link-state
acknowledgment packet consists of the OSPF header (20 bytes) plus the link-state
advertisement header (24 byte). In order to send an acknowledgment packet into
the OSPF network, IP header (20 bytes), and Ethernet header and trailer (18 bytes)
[if applicable] should be added to this packet. As a result, sending one link-state
acknowledgment loads the network with an additional 82 bytes, see Table 6.2.

Table 6.2: Link-state acknowledgment parts and sizes.
Ack parameters Size(Byte)

LSA Header 24
OSPF Header 20

IP header 20
Ethernet header 18

Total size 82

As a conclusion, when an OSPF router originates one LSU containing the
Cloud LSA the network loads with an additional 192 bytes (in a sender point of
view) as shown in Table 6.3.

Table 6.3: Extra Load by sending a Cloud LSA.
parameters Size(Byte)

Cloud LSA 110
Acknowledgment 82

Total size 192

6.1. PERFORMANCE OF SOLUTION 85

6.1 Performance of solution
As described in section 4.2, the Cloud-OSPF extension to OSPF-TE invokes the
OSPF router to send an LSU if a significant change occurs in the data center’s
resources. The link-state update policy is responsible for deciding which changes
are considered significant, see section 2.5. To evaluation the performance of
the proposed solution several test scenarios were utilized. The test scenarios are
described in next section. It is clear that the test results will be biased based on data
center model (presented in section 4.1), the update policy algorithm (presented in
section 5), and the test bed topology (given in Figure 6.2). In this part of the
evaluation, the worst case protocol overhead is calculated without considering
the data center model and update policy algorithm in a fully meshed connected
network topology with "N" number of OSPF nodes.

However, to analyze the Cloud LSA protocol traffic overhead it is not sufficient
to consider the amount of traffic that proposed Cloud-OSPF extension sends
into an OSPF network. As discussed in section 2.4, based on LSA N-squared
problem, in an OSPF network with N OSPF routers, flooding each link-state
update produces at maximum O(N2)∗ redundant LSAs. As a result, to analyze
the proposed solution protocol overhead the traffic loaded in OSPF network by
flooding Cloud LSAs will be considered (and not a traffic that a Cloud-OSPF
injects into the OSPF network). The loads due to Cloud LSAs in the OSPF
network (in receivers point of view) can be calculated using equation 6.1.

Extra loads = D×RNetwok ×NCloudLSA ×SizeCloudLSA (6.1)

Where "D" denotes the number of embedded data centers, "RNetwok" denotes
number of redundant LSAs that OSPF network generates for flooding a LSA,
"NCloudLSA" denotes number of Cloud LSAs that Cloud-OSPF injects into the
OSPF network, and "SizeCloudLSA" denotes a Cloud LSA size.

Consider a fully meshed connected network with "N" OSPF router and one
embedded data center. The Cloud-OSPF extension sends a Cloud LSA update
when a data center’s resource state changes. The update policy module of Cloud-
OSPF extension is responsible to take decisions when the CMS need to be updated
with the latest data center’s resource information. As described in section 2.4,
the OSPF router can produce a maximum of one LSA in each MinLSAInterval
period of 5 seconds. As a result, using any type of update policies, the maximum
rate for sending updates by OSPF router, is limited to one LSU per 5 seconds.

∗Order of N2

86 CHAPTER 6. ANALYSIS

Figure 6.1 shows the relation between the rate of sending Cloud LSAs and loads
that sender injects in to the network embedded cloud due to Cloud LSAs. In
this graph, we add zero line as a base (i.e., red color). Additionally, this graph
shows by increasing the interval period the Cloud LSAs loads rapidly decreases
and inclines to zero.

Figure 6.1: The Cloud LSA traffic that a Cloud-OSPF sender sends in a
network embedded cloud for different interval values. The rates also limited by
MinLSInterval (i.e., 5 seconds).

Thus, the proposed solution in this thesis work can handle cases that a data
center’s resource changes in such a way that a CMS need to be updated at a
minimum rate of 5 seconds interval. Hence, the Cloud-OSPF sender sends at
most 192 bytes per 5 seconds or 38.4 bytes per second (Bps). Considering LSA
N-squared problem, in this case the network loads by at maximum O(N2)× 192
bytes per 5 seconds or O(N2)×38.4 bytes per second (Bps).

This project concerns a network embedded cloud, which consists of a number
of distributed data centers. To provide the latest information to the CMS an
extended OSPF routers at each data center needs to send Cloud LSAs. As a result,
the number of LSUs which send in a network is a direct function of the number
of data centers in the OSPF network. In a fully meshed connected network with
"D" embedded data centers and "N" OSPF routers the average traffic due to Cloud
LSAs in receiver point of view will be (D×O(N2)×38.4) Bps. If each "D" data
centers send one LSU at the same time, then the peak overhead in traffic caused

6.2. EVALUATION BASED ON TEST SCENARIOS 87

by this protocol will be (D×O(N2)×192) bytes every 5 seconds.

However, OSPF and its flooding protocol are applicable for small and medium
sized network because of the issue of the LSA N-squared problem. Studies show
the maximum number of OSPF routers per AS is limited to around 50 [9, 79, 80].
As a consequence, if the network is fully-meshed and the number of OSPF routers
limits to 50, and if beside each OSPF routers there is an embedded data center,
the maximum average of additional protocol overhead can be calculated as around
4.610∗ Megabytes per second (MBps) with a peak of around 23.050† Megabytes
(MB) per 5 seconds (see equation 6.1, equation 2.1 on page 31, and Table 6.3).

As the network embedded cloud is not fully deployed, there is no clear
assumption about the number of embedded data centers in this cloud model.
However, the telecommunication providers, to enable cloud functionality, can
install compute resources (i.e., racks with some servers) beside each of their
network nodes. As a result, the number of embedded data center in a network
embedded cloud can be much more than 50. Summary of this theoretical analysis
is shown in Table 6.4.

Table 6.4: Cloud LSA worst average overhead and worst peak overhead analysis.
The "N" represents a number of OSPF routers and the "D" represents a number of
embedded data centers.

Number of Number of Peak Overhead Avg Overhead
OSPF nodes embedded data centers in bytes Bps

N 1 O(N2)×192 O(N2)×38.4
50 50 23,049,600 4,609,920
N D D×O(N2)×192 D×O(N2)×38.4

6.2 Evaluation based on test scenarios
In this section the description related to set up a test environment is given. Each
test scenarios were run 20 time to have results with a confidence interval (CI) of
95%. Thereafter, the results from one particular test round is given to have a better

∗The exact value is 4609920 Bps.
†The exact value is 23049600 Bytes per 5 seconds.

88 CHAPTER 6. ANALYSIS

understand the behavior of proposed solution based on selected update policy (i.e.,
relative threshold update policy) and proposed data center model.

6.2.1 Set up test environment
The test machine is a HP EliteBoook 8560p with an "Intel R© CoreTMi7-2620M
(2.70 GHz, 4 MB L3 cache)" processor. It is a dual-core processor with hyper-
threading [81], which provides 4 effective CPUs. Also, the system has 8 GB of
DDR3 (1333 MHz) SDRAM.

The test machine’s operating system (OS) is Ubuntu Linux∗. It uses the
Oracle VM VirtualBox program† [82] to create a network topology for testing.
VirtualBox hosts six virtual machines (VMs) as OSPF routers. Each VM’s
specifications are shown in Table 6.5.

Table 6.5: VMs specification on test bed.

Base memory 1024 MB
Chip-set PIX3

Number of CPU 1
Network Interface Intel PRO/1000 T server

Each VM is equipped with an instance of the Quagga software in order
to utilize an OSPF router‡. The Quagga routers are interconnecting using
VirtualBox’s internal networking component. The Quagga routers are interconnec-
ted by a simulated link and configured in area 0 (as shown in Figure 6.2).

Three different scenarios were used for testing. These scenarios all have the
same topology, but different numbers of embedded data centers were used - as
shown in Figure 6.3, Figure 6.4, and Figure 6.5. The OSPF protocol overhead
is measured in order to determine the system’s performance. The traffic on
each links was captured by Wireshark§ application [83]. In order to analyze the
collected data, the "R" statistics application [84], Microsoft Excel, and a shell
script were used.

∗Ubuntu release 12.04 (precise) 64bit, kernel Linux 3.2.0-33-generic, and GNOME 3.4.2.
†Oracle VM VirtualBox Version 4.1.12_ubunto
‡The Quagga version is 0.99.21
§Version 1.8.3 (SVN Rev 45256 from /trunk-1.8)

6.2. EVALUATION BASED ON TEST SCENARIOS 89

Figure 6.2: The test bed topology with the router ID of each of the Quagga routers.

Figure 6.3: First test scenario - One embedded data centers in the network.

Figure 6.4: Second test scenario: Three embedded data centers in the network.

As described earlier the two key factors, which can effect on the evaluation,
are the update policy and resource modeling of each data center. Based on the
analysis in Chapter 5, and the complete set of results in Appendix D, Appendix E,
Appendix F, Appendix G, and Appendix H, the relative threshold based update
policy with threshold value of 20% was selected for this project. MinLSInterval
was left at its default value (i.e., 5 seconds). The interval value for checking the
data center’s resources is set to same value as MinLSInterval (i.e., 5 seconds). In

90 CHAPTER 6. ANALYSIS

Figure 6.5: Third test scenario: Six embedded data centers in the network.

this case the Cloud-OSPF module will check the data center’s resources every 5
seconds and then it will decide if it should send out a LSU. Therefore, unnecessary
changes in the data center’s resource are ignored. Additionally, the data center
model described in the section 4.1 is used in the three test scenarios. To utilize a
connection between Cloud-OSPF and Quagga’s OSPF API the port number 8898 ∗

is used.

It is worth mentioning that the OSPF-Sender module in test scenarios sends
a new Cloud LSA when the relative changes in available CPU capacity or RAM
capacity or storage capacity exceeds the threshold value, see Algorithm 1.

Algorithm 1 Logic which is used in a Cloud-OSPF module to send a new Cloud
LSA.

if (CPU relative change ≥ Threshold Value, OR
RAM relative change ≥ Threshold Value, OR
CPU relative change ≥ Threshold Value) then

Send a new Cloud LSA
end if

6.2.2 Expected result

As discussed in section 2.4, LSA flooding in an OSPF network has N-squared
problem when a OSPF network is fully meshed. The test bed network in this work
is not a full mesh network (see Figure 6.2), so we estimates how many redundant
messages required to flood a Cloud LSA. The test bed topology contains 6 OSPF

∗This port number is not assigned by IANA [85].

6.2. EVALUATION BASED ON TEST SCENARIOS 91

routers that provide entirely 18 network interfaces. Suppose one of the OSPF
routers injects a Cloud LSA into the network. Consider to the OSPF reliable
flooding (see section 2.4), other OSPF routers in the network (i.e., 5 routers)
receive that LSA and then they forward it to all of their interfaces except the one
where that LSA was received from it. As a result, in the test bed network, sending
one Cloud LSA produces 13∗ instances of LSAs.

As discussed above, the Cloud-OSPF module sends a new cloud LSA using
a logic discussed in an Algorithm 1. Additionally, Chapter 5 described how the
number of updates can be estimated for the proposed data center model. The
expected number of updates based on Algorithm 1 for relative threshold update
policy with threshold value 20% is shown in Table 6.6. A complete set of results
are given in Appendix I.

Table 6.6: Relative threshold-based update policy. Expected number of updates
for a relative threshold value 20% due to changes in a simulated data center’s
resources based on a logic described in an Algorithm 1.

Mean 39
Lower Bound 34

95% CI for Mean
Upper Bound 43

Median 29
Variance 574
Std. Deviation 23.97
Minimum 16
Maximum 145

Finally, using equation 6.1 and the information in Table 6.3, Table 6.6, and
a expected number of redundant LSAs in a test bed network (i.e., 13 LSAs),
the expected Cloud LSAs traffic for test scenarios with 6 OSPF router can be
calculated as shown in Table 6.7.

∗Number of redundant messages = All network interfaces in a network - (Number of routers -
1)

92 CHAPTER 6. ANALYSIS

Table 6.7: Expected Cloud LSAs traffic for three scenarios.
Scenario number of Expected traffic - Bps

data center Mean Lower Bound Upper Bound Min Max
1 1 1.127 0.982 1.242 0.462 4.189
2 3 3.380 2.947 3.727 1.387 12.567
3 6 6.760 5.893 7.453 2.773 25.133

6.2.3 Measured results
Each test scenario was executed 40 times to have results with a confidence interval
of 95%. Each round of testing simulated 24 hours. In each of these scenarios the
testing starts at midnight, i.e., 00:00.

In test scenarios, the network state was remained stable, which means no
link(s) or node(s) failure occurred in test periods. In this case, the pure OSPF
protocol overhead was observed as 205.453±0.904 Bps (see Table 6.8).

Table 6.8: Summery of captured pure OSPF traffic in Bps unit.

Mean 205.453
Lower Bound 203.207

95% CI for Mean
Upper Bound 207.699

Median 205.626
Variance 0.817
Std. Deviation 0.904
Minimum 204.475
Maximum 206.258

In a first test scenario with one embedded data center, the statistical analysis
on captured OSPF traffic shows the proposed solution produces 1.214±0.885 Bps
protocol overhead (see Table 6.9). In this case the proposed solution adds at mean
0.590±0.430% extra load to pure OSPF protocols.

6.2. EVALUATION BASED ON TEST SCENARIOS 93

Table 6.9: First test scenario. Summery of captured Cloud LSAs traffic in Bps
unit.

Mean 1.214
Lower Bound 0.800

95% CI for Mean
Upper Bound 1.629

Median 0.866
Variance 0.784
Std. Deviation 0.885
Minimum 0.554
Maximum 3.537

In a second test scenarios with three embedded data centers, the statistical
analysis on captured OSPF traffic shows the proposed solution produces 3.658±1.095
Bps protocol overhead (see Table 6.10). In this case the proposed solution adds at
mean 1.780±0.533 % extra traffic to pure OSPF protocols.

Table 6.10: Second test scenario. Summery of captured Cloud LSAs traffic in Bps
unit.

Mean 3.658
Lower Bound 2.816

95% CI for Mean
Upper Bound 4.500

Median 3.505
Variance 1.200
Std. Deviation 1.095
Minimum 2.269
Maximum 5.299

In a third test scenarios with six embedded data centers, the statistical analysis
on captured OSPF traffic shows the proposed solution produces 7.024±1.325
Bps protocol overhead (see Table 6.11). In this case the solution adds at mean
3.419±0.565 % extra traffic to pure OSPF protocols.

94 CHAPTER 6. ANALYSIS

Table 6.11: Third test scenario. Summery of captured Cloud LSAs traffic in Bps
unit.

Mean 7.024
Lower Bound 6.725

95% CI for Mean
Upper Bound 7.323

Median 7.567
Variance 1.755
Std. Deviation 1.325
Minimum 4.333
Maximum 8.839

Using equation 6.1, equation 2.1 on page 31, and the analysis on Table 6.3,
the maximum expected additional load due to Cloud LSAs in a fully-meshed
connected network topology with 6 OSPF router can be calculated as: 960 Bps for
a case that we have one embedded data center, 2880 Bps for a case that we have
three embedded data centers, and 5760 Bps for a case that we have six embedded
data centers.

In a worst expected load calculation, the network topology considered as
a fully-meshed connected while the test bed topology was not fully meshed
connected. As a result we experienced less number of redundant updates (13
redundant LSAs in a network due to inject one LSA) than in full meshed topology.
Additionally, we did not consider the update policy and data center model in
worst expected load calculation, and we assumed the Cloud LSAs floods every
MinLSInterval. These factors can reduce the number of LSAs in the network
and leads to the biased results based on network topology, data center model, and
update policy.

Figure 6.6 shows the results from test scenarios has a correlation with expected
traffic. It is worth mentioning that based on OSPF protocol LSRefreshTime timer
(see Table 2.6 on page 30) if the extended OSPF router dose not generate the new
Cloud LSA within this interval the OSPF router will re-originate the Cloud LSA.
That is why the measured Cloud LSAs traffic are more than mean expected Cloud
LSAs traffic. To have more reliable data with lower variance value we need to run
the test scenarios more than 40 times, which lefts as a future work.

6.2. EVALUATION BASED ON TEST SCENARIOS 95

Figure 6.6: Comparison between expected and captured Cloud LSAs traffic.

6.2.4 More observations in testing
In this section we look in to the test results for three scenarios for one round. This
section will enable us to analyze the behavior of the proposed solution. Figure 6.7
shows the OSPF protocol traffic as measured by Wireshark application for a
second test scenario. The graphs set to shows the OSPF traffic in bytes per 10
minute interval. We shows our results in the bytes per 10 minute interval because
each scenario contained the network traffic for 24 hours (i.e., 86400 seconds). As
a result the graphs with the unit of Bps was not clear and the viewer was not able to
distinguish between different traffic patterns. The complete set of results for other
test scenarios, and also the results with a scale of bytes per minute are given in
Appendix J.

96
C

H
A

P
T

E
R

6.A
N

A
LY

S
IS

Figure 6.7: Measured OSPF protocol traffic in one test round- bytes per 10 minute. Second scenario: Three embedded data
center in network. Protocol traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic

6.3. DISCUSSION 97

The green line in the above graph shows the traffic due to the fundamental
functionality of OSPF protocol. For more information about OSPF’s main
messages, see section 2.3. The red line shows the traffic due to the Cloud LSAs
in the simulated OSPF network. More specifically this red line depicts the extra
traffic that the solution adds to the underlying OSPF traffic (shown in green).
Finally, the black line depicts the overall OSPF traffic, basic OSPF traffic plus
Cloud LSAs traffic, sent through the OSPF network.

The traffic patterns (Figure 6.7, and Figures in Appendix J) show one peak
around midday. As discussed in the section 4.1.2 and Appendix B, at midday, the
simulated data center resources are at their lowest state. In this condition, based
on the relative threshold update policy (i.e. OSPF-Sender module policy in test
scenarios), the extended OSPF router sends more frequent Cloud LSUs when the
resources state are low (see section 5.4.2). Figure 6.8 shows how the LSUs due to
changes in the data center’s resources vary during one day.

Figure 6.8: The distribution of Cloud LSUs during one day for a proposed data
center model when a relative threshold update policy with threshold value 20% is
selected.

6.3 Discussion
The statistics shows the additional traffic due to Cloud LSA has a relation with the
number of data centers in Cloud network as expected. Adding more data center to
Cloud results in more Cloud LSAs, and as a consequence more protocol overhead.
Also, the traffic that each sender injects in to the network is differ from the traffic

98 CHAPTER 6. ANALYSIS

that receiver nodes see, based on OSPF LSA N-squered problem.

Additionally, the statistics shows in a first scenario 0.590±0.430% extra
traffic, in a second scenario 1.780±0.533% extra traffic, and in a third scenario
3.419± 0.565% extra traffic are loaded into OSPF network due to Cloud OSPF
LSAs in this particular network embedded cloud. Moreover, the analysis showed
that the traffic patterns are biased based on network topology, data center model,
and update policy. As a result, by changing the data center model, data center
capacity, and update policy the traffic patterns due to Cloud LSAs and test results
may changes and these results are valid for our particular data center.

Based on the OSPF N-squared problem, in a OSPF network with N OSPF
nodes, sending one Cloud LSA can produce in order of N2 redundant messages
(particularly in our test cases sending one cloud LSA produces 13 redundant
Cloud LSAs in a network). As a result, with high value "N" the proposed
solution faces a scalability issue. To ignore unnecessary messages forwarding
in an OSPF network we propose that each router do a simple analysis on each
Cloud LSA (e.g., calculate the hash value of Cloud LSA information or look in to
the Cloud LSA information). This analysis enable the OSPF routers in a network
to recognize whether they saw that LSA before or not. As a result, the OSPF
router can discard forwarding the redundant LSAs to other interfaces if it is not
required. In this case, we can reduce the unnecessary traffic in OSPF network but
with extra cost on router processor. More research and study are required in this
area which remains for future work.

It is worth remembering that the OSPF protocol produces less protocol
overhead than OSPF-TE, when the network is stable (see section 2.3). Although
our simple test scenarios show that the proposed solution in this work produces
less protocol overhead than pure OSPF protocol, we expect the proposed solution
produces more protocol overhead than pure OSPF (but less protocol overhead
than OSPF-TE), when the network scales up (see section 6.2.2). More research
and experiments are required to prove or reject this assumption which remains for
future work.

Finally, these test scenarios showed that the solution is feasible and it functions
properly in a simulated network embedded cloud.

Chapter 7

Conclusions

This chapter summarizes the general conclusions from this thesis project. In
addition, some possible future work is proposed for improvements, extensions,
and complements to this work. Finally, this chapter ends with some relevant
required reflections.

7.1 Conclusion

Network embedded cloud systems are developing and major vendors are trying
to gain leadership regarding this new trend. To optimize resource management
in a network embedded cloud the Cloud Management System (CMS) requires
information not only about a the network conditions, but also details of the
resource available at each distributed data center. The initial idea of this project
was to understand the current state-of-the-art in network embedded clouds and
propose an extension to OSPF-TE that can provide the required virtualization
and processing information for a CMS. This project met all the initial goals
as described in section 1.4. However, there are rooms to expand upon the
performance evaluation which the author did not do, due limited time and the
limitation discussed in section 1.6.

In this work, an overview of cloud networks, OSPF, and OSPF-TE was given.
Also, in order to help a reader to understand this work, additional topics, including
data center resource modeling and link-state update policies, were discussed in
the different parts of the thesis. As a result of this master thesis, a prototype
for an OSPF-TE extension for network a embedded cloud has been proposed,
implemented, and evaluated. In this prototype, a new type of LSA was introduced.
This new LSA is referred to as a Cloud LSA. The Cloud LSA is a TE LSA
which is extended with a new sub TLV on the Node attribute TLV as was

99

100 CHAPTER 7. CONCLUSIONS

discussed in section 3.3. The Cloud LSA allows more efficient resource allocation
and resource management in a network embedded cloud by providing available
resource information (CPU, RAM, Storage, and data center’s location). This
prototype was implemented using the Quagga OSPF API.

Finally, some basic test scenarios were run to evaluate the performance,
suitability, and flexibility of this proposed solution. In order to run these tests,
two main decision were made: the data center model was implemented, and an
update policy was selected. These two decisions plus a test bed topology directly
affect the performance of the solution. Therefore, the test results are driven by
the selected data center model - which may or may not have any relevance to
the rate at which resource changes could occur in actual data centers. The test
results shows that this solution produces 7.024±0.529 Bps protocol overhead for
a scenarios with six embedded data centers (see section 6.2.3).

However, our simple model for a data center allowed us to evaluate the
feasibility and performance of our proposed solution proved in a simulated cloud
network. The author calculated the worst case performance of the proposed
solution for a mesh connected network embedded cloud with "N" OSPF routers
an "D" embedded data center. The results of worst case analysis shows that this
solution produces at most D×O(N2)× 38.4 Bps with a maximum peak value
D×O(N2)× 192 Byte per 5 seconds protocol overhead. The test and analysis
results were given in Chapter 6.

If I had to do this project again, I would have invested more time in identifying
the techniques for network resource monitoring and less time in studying different
types of cloud models. Also I would have more focused on developing more
suitable update policy, i.e., a policy specifically for Cloud resources, and to realize
a more realistic model for the data centers.

One of the most important insights to come from this work is the need
to understand the new opportunities and requirements based on use cases of a
network embedded cloud. Unfortunately, at the time that this thesis was done the
concept of network embedded cloud was not fully developed. As a result, I was
not able to consider the details of such a system in my solution. This knowledge
would help to better plan the design and implementation of solutions for problems
in this area. Future work should consider the user and provider requirement in
network embedded cloud and then try to find a solution for limitations in resource
monitoring and resource management.

7.2. FUTURE WORK 101

7.2 Future work

The solution proposed in this thesis enables available resource monitoring in
a network embedded cloud as discussed in section 1.3. There are plenty of
opportunities for future research and many improvements could be made. Some
of the suggested future work will be addressed below.

There are alternative solutions for resource monitoring in network embedded
clouds such as other pull base or push base link-state update protocols. All of
the possible solutions were not analyzed and thoroughly studied due to limited
time. As a result, the proposed solution may not be the best solution for resource
monitoring in a network embedded cloud. More research on other solutions is
required to compare the currently proposed solution, i.e., the extended OSPF-TE,
with.

Moreover, the data center resource modeling and update policy algorithm
were two key factors in our evaluation. While a relative threshold change
based update algorithm was used in this work, in the future an advanced update
policy specifically for cloud resources should be proposed. Additionally, more
information about a data center’s resource utilization would help by providing
more reliable data which could be used to evaluate different solutions for resource
monitoring.

Another compelling issue concerns what is the best way to send the data center
resource information with regard to the form of new LSUs. Is that better have
a different LSU for each cloud resource parameter or provide all the resource
parameter in one LSU? To be able to answer this question and achieve optimized
LSUs, more analysis and research are required concerning the Cloud LSA format.

Furthermore, in this thesis project tests was run with three basic scenarios. To
collect more reliable data, more advanced scenarios are required. Also, additional
work is needed to propose a cloud TLV to the Internet Engineering Task Force
(IETF) and to make it a standard.

One of the greatest future steps for this work would be to integrate the
solution with commercial routing suite, OpenStack [86], or commercial Network
Management System. Also, the current prototype does not support multiple OSPF
areas nor IPv6. Finally, the network topology (including links and data centers)
should be viewable via in a web interface.

102 CHAPTER 7. CONCLUSIONS

7.3 Required reflections
Working on this project, I gained knowledge about different types of cloud
networks and current research questions in distributed and network embedded
cloud. Also, I gained knowledge about link-state protocols specifically OSPF
and OSPF-TE routing protocol. Moreover, learning and improving my skills in
programming languages including C, C++, Python, and Shell Scripting was a
great achievement for me. Furthermore, I worked with Linux and various tools
and softwares in this project including the Virtual box, Quagga router, and R,
which enriched my knowledge and experiences. Finally, it was a great experience
and training to solve an industrial problem independently starting with a literature
study and continuing with design, implementation, and evaluation.

This project proposed a solution for resource monitoring for a network
embedded cloud. As this new cloud paradigm emerges, a network embedded
cloud provider can use this proposed solution to monitor their embedded data
center resources and network conditions in a single package. Using the information
provided by the extended OSPF-TE, a network embedded cloud provider can
realized optimal resource management. Also, the end user can take advantage
of better services from network embedded cloud providers.

The solution proposed in this work for monitoring distributed data centers in a
network embedded cloud has some privacy issues. When the OSPF traffic passes
across links that others have access to, the attackers could reveal details of the
operator’s resources, and resource usage of applications running on the network
embedded cloud.

Additionally, there are some social and ethical issues with regard to the carrier
providing both communication and processing services. In this model of cloud
network, the operator can not only monitor the user traffic, but the operator now
actually has access to and is processing the user data. There are some questions
such as: should user and/or society trust operators with this information?

In some settings, there are also social issues with regard to potential monopolistic
behavior by such a network embedded cloud operator who now not only provides
connectivity, processes the user data, but is also probably storing a copy of user
data, which could be a very dangerous security situation.

Bibliography

[1] B. Rimal, E. Choi, and I. Lumb, “A Taxonomy and Survey of Cloud
Computing Systems,” in INC, IMS and IDC, 2009. NCM ’09. Fifth
International Joint Conference on, Aug. 2009, pp. 44–51.

[2] K. Rafique, A. Tareen, M. Saeed, J. Wu, and S. Qureshi, “Cloud
computing economics opportunities and challenges,” in Broadband Network
and Multimedia Technology (IC-BNMT), 2011 4th IEEE International
Conference on, oct. 2011, pp. 401–406.

[3] Heavy Reading Service Provider IT Insider, “Big Vendors Race to Establish
Carrier Cloud,” vol. 8, NO. 1, March 2012.

[4] “Amazon Web Services, Cloud Computing: Compute, Storage, Database,”
Accessed Oct 4, 2012. [Online]. Available: http://aws.amazon.com/

[5] “Windows Azure: Microsoft’s Cloud Platform | Cloud Hosting |
Cloud Services,” Accessed Oct 4, 2012. [Online]. Available: http:
//www.windowsazure.com

[6] “Google App Engine Cloud Platform,” Accessed Oct 4, 2012. [Online].
Available: https://cloud.google.com/products/

[7] J. Ge, B. Zhang, and Y. Fang, “Research on the resource monitoring
model under cloud computing environment,” in Proceedings of the 2010
international conference on Web information systems and mining, ser.
WISM’10. Berlin, Heidelberg: Springer-Verlag, 2010, pp. 111–118.

[8] J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network
Management Protocol (SNMP),” RFC 1157 (Historic), Internet Engineering
Task Force, May 1990. [Online]. Available: http://www.ietf.org/rfc/rfc1157.
txt

[9] K. Hutton, J. Tiso, M. Schofield, and D. Teare, Designing Cisco Network
Service Architectures (ARCH): (Ccdp Arch 642-874), ser. Foundation

103

http://aws.amazon.com/
http://www.windowsazure.com
http://www.windowsazure.com
https://cloud.google.com/products/
http://www.ietf.org/rfc/rfc1157.txt
http://www.ietf.org/rfc/rfc1157.txt

104 BIBLIOGRAPHY

Learning Guides. Cisco Press, 2011, ch. 6.Designing Scalable OSPF
Design.

[10] Y. Yan, H. Wessing, M. Berger, and L. Dittmann, “Prioritized OSPF-TE
Mechanism for Multimedia Applications in MPLS Networks,” Proc. of
G/MPLS Networks 2006, 2006.

[11] K. Shuaib and F. Sallabi, “Extending OSPF for large scale MPLS networks,”
in Advances in Wired and Wireless Communication, 2005 IEEE/Sarnoff
Symposium on, 2005, pp. 13–16.

[12] Marben Company, “OSPF-TE, the most widely used protocol in
Traffic-Engineered networks,” Accessed May 2013. [Online]. Available:
http://www.marben-products.com/marben/ospf-te.html

[13] “Quagga Software Routing Suite,” Accessed Jun 2012. [Online]. Available:
http://www.nongnu.org/quagga/

[14] D. Gelperin, “Exploring agile,” in Proceedings of the 2008 international
workshop on Scrutinizing agile practices or shoot-out at the agile corral,
ser. APOS ’08, 2008, pp. 1–3.

[15] F. Van Der Molen, Get Ready for Cloud Computing, ser. Van Haren Series.
Van Haren Publishing, 2010.

[16] L. M. Vaquero, L. Rodero-Merino, J. Caceres, and M. Lindner, “A break in
the clouds: towards a cloud definition,” SIGCOMM Comput. Commun. Rev.,
vol. 39, no. 1, pp. 50–55, Dec. 2008.

[17] P. Mell and T. Grance, “The NIST definition of cloud computing,”
National Institute of Standards and Technology, Information Technology
Laboratory, Tech. Rep., September 2011. [Online]. Available: http:
//csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

[18] C. J. Guo, W. Sun, Y. Huang, Z. H. Wang, and B. Gao, “A Framework
for Native Multi-Tenancy Application Development and Management,” in
E-Commerce Technology and the 4th IEEE International Conference on
Enterprise Computing, E-Commerce, and E-Services, 2007. CEC/EEE 2007.
The 9th IEEE International Conference on, july 2007, pp. 551–558.

[19] M. Zhou, R. Zhang, D. Zeng, and W. Qian, “Services in the Cloud
Computing era: A survey,” in Universal Communication Symposium (IUCS),
2010 4th International, Oct. 2010, pp. 40–46.

http://www.marben-products.com/marben/ospf-te.html
http://www.nongnu.org/quagga/
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf

BIBLIOGRAPHY 105

[20] K. Church, A. Greenberg, and J. Hamilton, “On Delivering Embarrassingly
Distributed Cloud Services,” in HotNets, 2008. [Online]. Available:
http://conferences.sigcomm.org/hotnets/2008/papers/10.pdf

[21] P. Endo, A. de Almeida Palhares, N. Pereira, G. Goncalves, D. Sadok,
J. Kelner, B. Melander, and J. Mangs, “Resource allocation for distributed
cloud: concepts and research challenges,” Network, IEEE, vol. 25, no. 4, pp.
42–46, July-August 2011.

[22] “Empty Promises and Tough Luck: Yankee Group Exposes the
Cloud’s Fine Print,” Boston, MA Apr 21, 2010. [Online]. Available:
http://www.yankeegroup.com/about_us/press_releases/2010-04-21.html

[23] “Carrier-centric, Carrier-grade and Founded on IT and Network Innovation,”
2010, Accessed: 01/09/2012. [Online]. Available: http://www.slideshare.
net/NECIndia/nec-carrier-cloud

[24] “Ericsson announces Network-enabled Cloud concept at Mobile World
Congress - TelecomLead.com: Telecom News on Mobile, Wireless
Infrastructure, Enterprise Networking, Smartphone, Tablet, LTE, VAS.”
[Online]. Available: http://www.telecomlead.com/telecom-equipment/
ericsson-announces-network-enabled-cloud-concept-at-mobile-world-congress/

[25] “IBM: Cloud strategies for virtualization of telecom
infrastructure.” [Online]. Available: http://www.telecomlead.com/cloud/
ibm-cloud-strategies-for-virtualization-of-telecom-infrastructure-77130/

[26] Alcatel-Lucent and HP, “Cloud Ready Service Infrastructure for
Communications Service Providers,” STRATEGIC WHITE PAPER,
2011. [Online]. Available: http://www.telecoms.com/wp-content/blogs.dir/
1/files/2011/10/HP_ALU_Cloud_WhitePaper110613-3.pdf

[27] Kontron, “Cloud Evolution: The Carrier Cloud,” White Paper. [Online].
Available: http://emea.kontron.com/_etc/scripts/application/getcollateral.
php?file=kontroncarriercloudwp.pdf

[28] B. Sosinsky, Cloud Computing Bible, 1st ed. Wiley Publishing, 2011.

[29] C. Pawar and R. Wagh, “A review of resource allocation policies in
cloud computing,” World Journal of Science and Technology, vol. 2,
no. 3, 2012. [Online]. Available: http://worldjournalofscience.com/index.
php/wjst/article/view/13190/6680

http://conferences.sigcomm.org/hotnets/2008/papers/10.pdf
http://www.yankeegroup.com/about_us/press_releases/2010-04-21.html
http://www.slideshare.net/NECIndia/nec-carrier-cloud
http://www.slideshare.net/NECIndia/nec-carrier-cloud
http://www.telecomlead.com/telecom-equipment/ericsson-announces-network-enabled-cloud-concept-at-mobile-world-congress/
http://www.telecomlead.com/telecom-equipment/ericsson-announces-network-enabled-cloud-concept-at-mobile-world-congress/
http://www.telecomlead.com/cloud/ibm-cloud-strategies-for-virtualization-of-telecom-infrastructure-77130/
http://www.telecomlead.com/cloud/ibm-cloud-strategies-for-virtualization-of-telecom-infrastructure-77130/
http://www.telecoms.com/wp-content/blogs.dir/1/files/2011/10/HP_ALU_Cloud_WhitePaper110613-3.pdf
http://www.telecoms.com/wp-content/blogs.dir/1/files/2011/10/HP_ALU_Cloud_WhitePaper110613-3.pdf
http://emea.kontron.com/_etc/scripts/application/getcollateral.php?file=kontroncarriercloudwp.pdf
http://emea.kontron.com/_etc/scripts/application/getcollateral.php?file=kontroncarriercloudwp.pdf
http://worldjournalofscience.com/index.php/wjst/article/view/13190/6680
http://worldjournalofscience.com/index.php/wjst/article/view/13190/6680

106 BIBLIOGRAPHY

[30] J. Kurose and K. Ross, “Routing algorithms,” in Computer Networking: A
Top-Down Approach (Fifth Edition). Addison-Wesley, 2010.

[31] C. Hedrick, “Routing Information Protocol,” Internet Request for
Comments, vol. RFC 1058 (Historic), Jun. 1988, updated by RFCs 1388,
1723. [Online]. Available: http://www.rfc-editor.org/rfc/rfc1058.txt

[32] C. L. Rutgers, “An introduction to IGRP,” The State University of New
Jersey, Center for Computers and Information Services, Laboratory for
Computer Science Research, Tech. Rep., Aug. 1991.

[33] J. Moy, “OSPF Version 2,” Internet Request for Comments, vol. RFC 2328
(Standard), Apr. 1998, updated by RFCs 5709, 6549. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc2328.txt

[34] D. Oran, “OSI IS-IS Intra-domain Routing Protocol,” Internet Request for
Comments, vol. RFC 1142 (Informational), Feb. 1990. [Online]. Available:
http://www.rfc-editor.org/rfc/rfc1142.txt

[35] E. W. Dijkstra, “A note on two problems in connexion with graphs.”
Numerische Mathematik, vol. 1, pp. 269–271, 1959.

[36] K. Kompella and B. Fenner, “IANA Considerations for OSPF,” Internet
Request for Comments, vol. RFC 4940 (Best Current Practice), Jul. 2007.
[Online]. Available: http://www.rfc-editor.org/rfc/rfc4940.txt

[37] J. Moy, “Multicast Extensions to OSPF,” RFC 1584 (Historic), Internet
Engineering Task Force, Mar. 1994. [Online]. Available: http://www.ietf.
org/rfc/rfc1584.txt

[38] P. Murphy, “The OSPF Not-So-Stubby Area (NSSA) Option,” RFC 3101
(Proposed Standard), Internet Engineering Task Force, Jan. 2003. [Online].
Available: http://www.ietf.org/rfc/rfc3101.txt

[39] R. Coltun, “The OSPF Opaque LSA Option,” RFC 2370 (Proposed
Standard), Internet Engineering Task Force, Jul. 1998, obsoleted
by RFC 5250, updated by RFC 3630. [Online]. Available: http:
//www.ietf.org/rfc/rfc2370.txt

[40] L. Berger, I. Bryskin, A. Zinin, and R. Coltun, “The OSPF Opaque
LSA Option,” Internet Request for Comments, vol. RFC 5250 (Proposed
Standard), Jul. 2008. [Online]. Available: http://www.rfc-editor.org/rfc/
rfc5250.txt

http://www.rfc-editor.org/rfc/rfc1058.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://www.rfc-editor.org/rfc/rfc1142.txt
http://www.rfc-editor.org/rfc/rfc4940.txt
http://www.ietf.org/rfc/rfc1584.txt
http://www.ietf.org/rfc/rfc1584.txt
http://www.ietf.org/rfc/rfc3101.txt
http://www.ietf.org/rfc/rfc2370.txt
http://www.ietf.org/rfc/rfc2370.txt
http://www.rfc-editor.org/rfc/rfc5250.txt
http://www.rfc-editor.org/rfc/rfc5250.txt

BIBLIOGRAPHY 107

[41] John Moy, “Open shortest path first (OSPF) opaque link-state
advertisements (LSA) option types,” Jan. 2009. [Online]. Available: http:
//www.iana.org/assignments/ospf-opaque-types/ospf-opaque-types.xml

[42] D. Katz, K. Kompella, and D. Yeung, “Traffic Engineering (TE) Extensions
to OSPF Version 2,” Internet Request for Comments, vol. RFC 3630
(Proposed Standard), Sep. 2003, updated by RFCs 4203, 5786. [Online].
Available: http://www.rfc-editor.org/rfc/rfc3630.txt

[43] J. Moy, P. Pillay-Esnault, and A. Lindem, “Graceful OSPF Restart,” RFC
3623 (Proposed Standard), Internet Engineering Task Force, Nov. 2003.
[Online]. Available: http://www.ietf.org/rfc/rfc3623.txt

[44] A. Lindem, N. Shen, J. Vasseur, R. Aggarwal, and S. Shaffer, “Extensions to
OSPF for Advertising Optional Router Capabilities,” RFC 4970 (Proposed
Standard), Internet Engineering Task Force, Jul. 2007. [Online]. Available:
http://www.ietf.org/rfc/rfc4970.txt

[45] I. Bryskin and L. Berger, “OSPF-Based Layer 1 VPN Auto-Discovery,”
RFC 5252 (Proposed Standard), Internet Engineering Task Force, Jul. 2008.
[Online]. Available: http://www.ietf.org/rfc/rfc5252.txt

[46] M. Chen, R. Zhang, and X. Duan, “OSPF Extensions in Support of
Inter-Autonomous System (AS) MPLS and GMPLS Traffic Engineering,”
RFC 5392 (Proposed Standard), Internet Engineering Task Force, Jan. 2009.
[Online]. Available: http://www.ietf.org/rfc/rfc5392.txt

[47] O. Younis and S. Fahmy, “Constraint-Based Routing in the Internet:
Basic Principles and Recent Research,” IEEE Communications Surveys and
Tutorials, vol. 5, pp. 2–13, 2003.

[48] A. Karaman, “Constraint-Based Routing in Traffic Engineering,” in
Computer Networks, 2006 International Symposium on, 0-0 2006, pp. 1–6.

[49] K. Ishiguro, V. Manral, A. Davey, and A. Lindem, “Traffic Engineering
Extensions to OSPF Version 3,” RFC 5329 (Proposed Standard),
Internet Engineering Task Force, Sep. 2008. [Online]. Available: http:
//www.ietf.org/rfc/rfc5329.txt

[50] K. Kompella and Y. Rekhter, “OSPF Extensions in Support of Generalized
Multi-Protocol Label Switching (GMPLS),” RFC 4203 (Proposed Standard),
Internet Engineering Task Force, Oct. 2005, updated by RFCs 6001, 6002.
[Online]. Available: http://www.ietf.org/rfc/rfc4203.txt

http://www.iana.org/assignments/ospf-opaque-types/ospf-opaque-types.xml
http://www.iana.org/assignments/ospf-opaque-types/ospf-opaque-types.xml
http://www.rfc-editor.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc3623.txt
http://www.ietf.org/rfc/rfc4970.txt
http://www.ietf.org/rfc/rfc5252.txt
http://www.ietf.org/rfc/rfc5392.txt
http://www.ietf.org/rfc/rfc5329.txt
http://www.ietf.org/rfc/rfc5329.txt
http://www.ietf.org/rfc/rfc4203.txt

108 BIBLIOGRAPHY

[51] R. Aggarwal and K. Kompella, “Advertising a Router’s Local Addresses
in OSPF Traffic Engineering (TE) Extensions,” RFC 5786 (Proposed
Standard), Internet Engineering Task Force, Mar. 2010, updated by RFC
6827. [Online]. Available: http://www.ietf.org/rfc/rfc5786.txt

[52] A. V. Aho and D. Lee, “Hierarchical networks and the LSA N-squared
problem in OSPF routing,” in Global Telecommunications Conference,
2000. GLOBECOM ’00. IEEE, vol. 1, 2000, pp. 397–404 vol.1.

[53] A. Shaikh, J. Rexford, and K. G. Shin, “Evaluating the impact of
stale link state on quality-of-service (QoS) routing,” IEEE/ACM Trans.
Netw., vol. 9, no. 2, pp. 162–176, Apr. 2001. [Online]. Available:
http://dx.doi.org/10.1109/90.917073

[54] G. Apostolopoulos, R. Guerin, S. Kamat, A. Orda, and S. Tripathi,
“Intradomain QoS routing in IP networks: a feasibility and cost/benefit
analysis,” Network, IEEE, vol. 13, no. 5, pp. 42–54, 1999.

[55] X. Yuan, W. Zheng, and S. Ding, “A comparative study of QoS
routing schemes that tolerate imprecise state information,” in Computer
Communications and Networks, 2002. Proceedings. Eleventh International
Conference on, 2002, pp. 230–235.

[56] T. il Kim, J.-J. Yoo, H.-W. Jung, H.-H. Le, M. Y. Chung, and S.-I. Jin,
“Adaptive threshold-based link status update mechanism,” in Advanced
Communication Technology, 2006. ICACT 2006. The 8th International
Conference, vol. 1, feb. 2006, pp. 888–891.

[57] A. Basu and J. Riecke, “Stability issues in OSPF routing,” SIGCOMM
Comput. Commun. Rev., vol. 31, no. 4, pp. 225–236, Aug. 2001.

[58] G. Apostolopoulos, R. Guérin, S. Kamat, and S. K. Tripathi, “Improving
QoS Routing Performance Under Inaccurate Link State Information,” pp.
7–11, Proceedings of the 16th International Teletraffic Congress.

[59] M. Handley, O. Hodson, and E. Kohler, “Xorp: An open platform for
network research,” in ACM SIGCOMM Computer Communication Review,
2002, pp. 53–57.

[60] “The BIRD Internet Routing Daemon Project,” Accessed Aug 2012.
[Online]. Available: http://bird.network.cz/

[61] R. Keller, “Dissemination of Application-Specific Information Using the
OSPF Routing Protocol,” TIK Report Nr. 181, TIK, ETH Zurich, November
2003.

http://www.ietf.org/rfc/rfc5786.txt
http://dx.doi.org/10.1109/90.917073
http://bird.network.cz/

BIBLIOGRAPHY 109

[62] G. Goncalves, M. Santos, G. Charamba, P. Endo, D. Sadok, J. Kelner,
B. Melander, and J.-E. Mangs, “D-CRAS: Distributed cloud resource
allocation system,” in Network Operations and Management Symposium
(NOMS), 2012 IEEE, april 2012, pp. 659–662.

[63] Q. Zhang, Q. Zhu, M. Zhani, and R. Boutaba, “Dynamic Service Placement
in Geographically Distributed Clouds,” in Distributed Computing Systems
(ICDCS), 2012 IEEE 32nd International Conference on, june 2012, pp. 526–
535.

[64] M. Alicherry and T. V. Lakshman, “Network aware resource allocation in
distributed clouds,” in INFOCOM, 2012 Proceedings IEEE, 2012, pp. 963–
971.

[65] V. Visockas, “Comparing expected and real-time spotify service topology,”
Master’s thesis, KTH, Communication Systems, TRITA-ICT-EX-2012:63,
May 2012,http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96352.

[66] M. Dhingra, J. Lakshmi, and S. K. Nandy, “Resource Usage Monitoring
in Clouds,” in Proceedings of the 2012 ACM/IEEE 13th International
Conference on Grid Computing, ser. GRID ’12. Washington, DC,
USA: IEEE Computer Society, 2012, pp. 184–191. [Online]. Available:
http://dx.doi.org/10.1109/Grid.2012.10

[67] H. Huang and L. Wang, “P amp;P: A Combined Push-Pull Model
for Resource Monitoring in Cloud Computing Environment,” in Cloud
Computing (CLOUD), 2010 IEEE 3rd International Conference on, 2010,
pp. 260–267.

[68] R. Keller and B. Plattner, “Self-Configuring Active Services for
Programmable Networks,” in IWAN, 2003, pp. 137–150.

[69] L. Zuliani, M. Savasini, G. Pavani, R. Pasquini, F. Verdi, and M. Magalhaes,
“An implementation of an OSPF-TE to support GMPLS-controlled
all-optical WDM networks,” in Telecommunications Symposium, 2006
International, 2006, pp. 300–305.

[70] M. Zhao, H. Zhu, V. Li, and Z. Ma, “A stability-based link state updating
mechanism for QoS routing,” in Communications, 2005. ICC 2005. 2005
IEEE International Conference on, vol. 1, may 2005, pp. 33–37 Vol. 1.

[71] A. Ariza, E. Casiliari, and F. Sandoval, “Strategies for updating link states in
QoS routers,” Electronics Letters, vol. 36, no. 20, pp. 1749–1750, sep 2000.

http://urn.kb.se/resolve?urn=urn:nbn:se:kth:diva-96352
http://dx.doi.org/10.1109/Grid.2012.10

110 BIBLIOGRAPHY

[72] T. il Kim, J.-J. Yoo, H.-W. Jung, H.-H. Lee, M. Y. Chung, and S.-I. Jin,
“Link State Update Algorithm considering Traffic Variation,” in Advanced
Communication Technology, The 9th International Conference on, vol. 2,
feb. 2007, pp. 1271–1274.

[73] M. Noordermeer, “Implementing link-state update policies for
quality of service routing,” Master’s thesis, TUDelft, Electrical
Engineering, Mathematics and Computer Science, Telecommunications,
2011-11-10. [Online]. Available: http://repository.tudelft.nl/view/ir/uuid:
665d21a2-2289-4ab4-b709-8fc58de0ea95/

[74] “Amazon’s CloudWatch,” Accessed April 2013. [Online]. Available:
http://aws.amazon.com/cloudwatch/

[75] “CloudClimate, Cloud Hosting and Cloud Storage Performance Dashboard,”
Accessed April 2013. [Online]. Available: http://www.cloudclimate.com/

[76] “CloudKick,” Accessed April 2013. [Online]. Available: https://www.
cloudkick.com/

[77] “SQLite,” Accessed Jun 2013. [Online]. Available: http://www.sqlite.org/

[78] G. Apostolopoulos, R. Guérin, S. Kamat, and S. K. Tripathi, “Quality of
service based routing: a performance perspective,” SIGCOMM Comput.
Commun. Rev., vol. 28, no. 4, pp. 17–28, Oct. 1998. [Online]. Available:
http://doi.acm.org/10.1145/285243.285251

[79] ImageStream Internet Solutions, Inc., “The OSPF Routing Protocol.”
[Online]. Available: http://support.imagestream.com/OSPF.html

[80] Data Network Resource, “OSPF routing protocol, dijkstra algorithm, OSPF
stub area.” [Online]. Available: http://www.rhyshaden.com/ospf.htm

[81] Intel, “Intel R© Hyper-Threading Technology (Intel HT Technology).”
[Online]. Available: http://www.intel.com/content/www/us/en/
architecture-and-technology/hyper-threading/hyper-threading-technology.
html

[82] J. Watson, “Virtualbox: bits and bytes masquerading as machines,”
Linux J., vol. 2008, no. 166, Feb. 2008. [Online]. Available: http:
//dl.acm.org/citation.cfm?id=1344209.1344210

[83] A. Orebaugh, G. Ramirez, J. Burke, and L. Pesce, Wireshark & Ethereal
Network Protocol Analyzer Toolkit (Jay Beale’s Open Source Security).
Syngress Publishing, 2006.

http://repository.tudelft.nl/view/ir/uuid:665d21a2-2289-4ab4-b709-8fc58de0ea95/
http://repository.tudelft.nl/view/ir/uuid:665d21a2-2289-4ab4-b709-8fc58de0ea95/
http://aws.amazon.com/cloudwatch/
http://www.cloudclimate.com/
https://www.cloudkick.com/
https://www.cloudkick.com/
http://www.sqlite.org/
http://doi.acm.org/10.1145/285243.285251
http://support.imagestream.com/OSPF.html
http://www.rhyshaden.com/ospf.htm
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://www.intel.com/content/www/us/en/architecture-and-technology/hyper-threading/hyper-threading-technology.html
http://dl.acm.org/citation.cfm?id=1344209.1344210
http://dl.acm.org/citation.cfm?id=1344209.1344210

BIBLIOGRAPHY 111

[84] R Core Team, R: A Language and Environment for Statistical Computing,
R Foundation for Statistical Computing, Vienna, Austria, 2012, ISBN
3-900051-07-0. [Online]. Available: http://www.R-project.org

[85] “Service Name and Transport Protocol Port Number Registry,”
Accessed May 2013. [Online]. Available: http://www.iana.org/assignments/
service-names-port-numbers/service-names-port-numbers.xml

[86] O. Sefraoui, M. Aissaoui, and M. Eleuldj, “Article: Openstack: Toward
an open-source solution for cloud computing,” International Journal of
Computer Applications, vol. 55, no. 3, pp. 38–42, October 2012, published
by Foundation of Computer Science, New York, USA.

http://www.R-project.org
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml
http://www.iana.org/assignments/service-names-port-numbers/service-names-port-numbers.xml

Appendix A

Embedded data center module
source code

The embedded data center’s module is written with the C programming language.
This module simulates a data center with a predefined capacity. To describe the
data center’s capacity a data structure "ComputeResource" is used as below;

struct ComputeResource {
int RAM; //GB
int CPU; //GHz
int Storage; //GB

};

The simulated data center is described by following predefined values as a data
center’s capacity.

// Total Resources; Ram(GB), CPU(GHz), Storage (GB)
const struct ComputeResource TotalResource = {12000, 176000, 6600000};

// Usable capacity of data center
const struct ComputeResource Capacity = {12000*0.85 , 176000*0.85, 6600000*0.85};

// Available usable capacity
struct ComputeResource CurrentResource = {12000*0.85 , 176000*0.855, 6600000*0.85}

The "TotalResource" data structure represents the total available resources of
data center. All available capacity of data center is not utilizable by customers.
In this data center design, the policy is not to announce 15% of total resources
to customer and keep it as a surplus. This can occur due to maintenance or

113

114 APPENDIX A. EMBEDDED DATA CENTER MODULE SOURCE CODE

avoid bad decision by Resource Management System, see chapter 5. As a
result, the data center’s utilization never exceeds more than almost 85%. The
"Capacity" data structure represents the functional capacity of data center. Finally,
the "CurrentResource" represents the current functional capacity of a data center.
The CurrentResource values changes when the data center serves requests.

The data center module supports 14 different type of instances. These
instances are close upon amazon EC2 instances [4]. Each instance provides a
predictable amount of dedicated compute capacity. The instances defined by fixed
values for CPU (GHz), RAM (GB), and storage (GB) as follows;

// Instance 1
struct ComputeResource M1SmallInstance = {.RAM = 1, .CPU = 1, .Storage = 160};
// Instance 2
struct ComputeResource M1MediumInstance = {3, 2, 410};
// Instance 3
struct ComputeResource M1LargeInstance = {7, 4, 750};
// Instance 4
struct ComputeResource M1ExLargeInstance = {15, 8, 1500};

// Instance 5
struct ComputeResource M3ExLargeInstance = {15, 13, 0 };
// Instance 6
struct ComputeResource M3DoubleExLargeInstance = {30, 26, 0};

// Instance 7
struct ComputeResource MicroInstance = {0, 2, 0};

// Instance 8
struct ComputeResource HighMemExLargeInstance = {17, 6, 420};
// Instance 9
struct ComputeResource HighMem2ExLargeInstance = {34, 13, 850};
// Instance 10
struct ComputeResource HighMem4ExLargeInstance = {68, 26, 1700};
// Instance 11
struct ComputeResource HighCPUMediumInstance = {2, 5, 350};
// Instance 12
struct ComputeResource HighCPUExLargeInstance = {7, 20, 1600};

// Instance 13
struct ComputeResource Clus4ExLargeInstance = {23, 33, 1600};
// Instance 14

115

struct ComputeResource Clus8ExLargeInstance = {60, 88, 3300};

The application uses the "rand ()" function to generate the random number. To
prevent generating of the same sequence in each round, the "srand (x)" function is
used. This function sets the seed of the random number generator algorithm. The
application uses the computer’s internal clock to control the choice of the seed for
the "srand ()" function. Since time is continually changing, the "rand ()" function
generates a different sequence of random values in each run.

srand(time(NULL));

The program uses biased probability to choose the job type, see section 4.1. In
another words, in each request interval the program generates a random number
between 1 and 100. Then, based on the hour for this data center utilization and
a generated random value the application chooses one of four defined job types.
The Following show this operation:

jobbiased = (rand() % 100) +1 ; // Random value between 1 and 100

switch (dayhour) {
// first working hours of data center , 12:00 A.M - 12:59 A.M
case 1:
++hourcounter;
if (jobbiased <= 25) // 25% of allocation
job = 0;
else if (jobbiased <= 50) // 25% of de-allocation
job = 1;
else if (jobbiased <= 75) // 25% upgrading
job = 2;
else if (jobbiased <= 100) // 25% downgrading
job = 3;
// Update the information in Resource data base
MeanCpuUti = AvearageUTICalculator (MeanCPUUTI, CPUUTI(), hourcounter);
MeanRamUti = AvearageUTICalculator (MeanRAMUTI, RAMUTI(), hourcounter);
MeanStorageUti =
AvearageUtiCalculator (MeanStorageUti, StorageUti(), hourcounter);
if (TimeIsOver())) {
// the arrival rate also changes in each working hours of data center
NextHour(hour1) // set the time to next hours
}

116 APPENDIX A. EMBEDDED DATA CENTER MODULE SOURCE CODE

....

....

....

// 11 A.M - 11:59 A.M
case 11:
++hourcounter;
if (jobbiased <= 28) // 50% of allocation
job = 0;
else if (jobbiased <= 51) //30% of de-allocation
job = 1;
else if (jobbiased <= 79) // 15% upgrading
job = 2;
else if (jobbiased <= 100) // 5% downgrading
job = 3;

....

....

....

when the application makes a decision about job type, then it is a time for
completing that action. The following function is responsible for a creation of a
virtual machine(s) in a a data center.

struct ComputeResource CreateVM () {
int CreatJob, NumberofVMs;
int i = 0;
// Define number of VM
NumberofVMs = (rand() % 5) + 1;
// do we have enough available capacity in data center?
if (CreationIsAllowd()) {
for (i = 0; i < NumberofVMs; i++){
// chose Instances type randomly
CreatJob = rand() % numberofjobsVMcreation ;
Allresource(CreatJob);

}
}
else{

AllPolicy = 0; // Allocation not allowed any more
}
}

The Resource DB contains information about a data center’s resources. The
application continuously updates the Resource DB information after execution of

117

each job type. The Resource DB is build up on SQLite. The application uses
following function to update the resource data base.

int wrsqlite (int cpu, int ram, int storage){
int retval;
char string[150];
sqlite3 *conn;
//Name of data base
char *database = "resource.db";

/* Conection to database
pass a pointer to the pointer to sqlite3, in short sqlite3**

*/
retval = sqlite3_open(database,&conn);

// error handeling ---If connection failed, conn returns NULL
if(retval){
return 0;

}

// Set the string
memset(string, 0, sizeof(string));
sprintf(string, "UPDATE resource SET cpu = %d, ram = %d, storage = %d , location = ’S’", cpu,ram,storage);

// execute the string
retval = sqlite3_exec(conn,string,0,0,0);
// Execute the query for initialize the values

// Close the handle to free memory
sqlite3_close(conn);
return 1;
}

Appendix B

Embedded data center model results

In this part the mean utilization for CPU, RAM, and storage for a simulated data
center and its upper and lower bounds of a 95% CI for a simulated data center
over 24 hours, which was explained in section 3.2.1.2 and Section 4.1, are shown
in Figure B.1, Figure B.2, and Figure B.3.

Figure B.1: Simulated data center’s mean CPU utilization per hour.

119

120 APPENDIX B. EMBEDDED DATA CENTER MODEL RESULTS

Figure B.2: Simulated data center’s mean RAM utilization per hour.

Figure B.3: Simulated data center’s mean storage utilization per hour.

121

Figure B.4, Figure B.5, and Figure B.6 represent the CPU, RAM, and storage
utilized of a simulated data center per second.

Figure B.4: Simulated data center CPU (GHz) capacity utilized per second.

Figure B.5: Simulated data center RAM (GB) capacity utilized per second.

122 APPENDIX B. EMBEDDED DATA CENTER MODEL RESULTS

Figure B.6: Simulated data center’s storage (GB) capacity utilized per second.

Appendix C

Cloud-OSPF-Sender source code

The Cloud-OSPF-Sender module is written in C programming language. User
needs to run this module with some parameters to configure the application. If the
module does not detect appropriate parameters, it will conclude with the following
function.

static int usage()
{
printf("Usage:
"ospfclient <Target IP> <LSA type> <opaquetype> <opaqueid> <Threshold> <Interval>\n");
printf("Target IP :"
"router where API-enabled OSPF daemon is running\n");
printf(" LSA type : "
"either 9, 10, or 11 depending on flooding scope\n");
printf(" opaquetype: "
"0-255 (e.g., experimental applications use > 128)\n");
printf(" opaqueid : "
"arbitrary application instance (24 bits)\n");
printf(" areaid : "
"area in IP address format\n");
printf(" Threshold : "
"value for LSU policy (1 till 100)\n");
printf(" Interval : "
"Interval for cheeking data center resource DB\n");
exit(1);

}

The Cloud-OSPF-Sender supports concurrency and uses threads for its functionality.
Following line of program is used to create master thread. It is worth highlighting

123

124 APPENDIX C. CLOUD-OSPF-SENDER SOURCE CODE

that this module uses Quagga libraries for creation the and handling the threads.

master = thread_master_create ();

The application uses OSPF-API Built-in function, "ospf_ apiclient_ connect()",
to establish TCP connection to OSPF API. The Cloud-OSPF-Sender module calls
this function with Target router IP address and NEC-OSPF-TE as a port number.
This function will provide two connections between the Cloud-OSPF-Sender and
OSPF router. First connection is responsible for synchronous requests/replies to
the Quagga API by client. Then, the OSPF router opens a reverse connection for
asynchronous messages as a reaction (second connection). The following show
some lines of code which are responsible for setting up a connection.

//args[1] = Target IP , ASYNCPORT = 5000
oclient = ospf_apiclient_connect (args[1], ASYNCPORT);
if (!oclient){
printf ("Connecting to OSPF daemon on %s FAILED!\n",

args[1]);
exit (1);
}

This program uses Resource DB to access to the data center’s resource
information. To achieve this goal, the "read_ DC_ data ()" function is used. The
following show this function.

int read_DC_data(struct thread *thread)
{
int rsv;
//Read data from Resourc DB
rsv = db_resource_read();

if (rsv == 0){ // Find new data
// add lsa_inject_cloud to thread que
thread_add_timer (master, lsa_inject_cloud, oclient, 0);
//Reinitialize the read_node_data with Interval
thread_add_timer (master, read_node_data, oclient, Interval);
return 0;

}
elseif (rsv == -1){ //error on reading DB
//try reading again

125

thread_add_timer (master, read_node_data, oclient, 0);
return -1;

}
else{// No new data for DC
//Reinitilaize the read_node_data with Interval
thread_add_timer (master, read_node_data, oclient, Interval);
return 1;

}
}

Following function is responsible for reading a data from Resource DB.

int db_resource_read ()
{
int retval;
char string[150];
//handler for database connection
sqlite3 *conn;
//DB name
char *database = "resource.db";
// A prepared statement for fetching tables
sqlite3_stmt *stmt;
// number of columns of DB table
int cols;
int CPU = 0;
int RAM = 0;
int Storage = 0;
int rsv;
int i;
// try to connect to DB
retval = sqlite3_open(database,&conn);

// error handeling
if(retval){
//conection failed
return -1;

}

// Set the string
memset(string, 0, sizeof(string));
// select those all rows from DB
sprintf(string, "SELECT * from resource");
retval = sqlite3_prepare_v2(conn,string,-1,&stmt,0);

126 APPENDIX C. CLOUD-OSPF-SENDER SOURCE CODE

if(retval){
//conecction DB Failed
DBFetchFaile++;
//Function for monitoring Data center
SystemMonitor();
//SQLite finalization
sqlite3_finalize(stmt);
rsv=sqlite3_close(conn);
return -1;

}

// Read the number of rows fetched
cols = sqlite3_column_count(stmt);
while(1){
// fetch a row’s status
retval = sqlite3_step(stmt);
if(retval == SQLITE_ROW){
for(i=0 ; i<cols;i++){

// copy the value of column i to val
const char *val = (const char*)sqlite3_column_text(stmt,i);
switch(i){

case 0:
CPU = atoi(val);

break;
case 1:

RAM = atoi(val);
break;

case 2:
Storage = atoi(val);
break;

case 3:
location = *val;
break;

}
}
}
else if(retval == SQLITE_DONE){

// All rows finished
break;

}
else{

// Some error encountered
sqlite3_finalize(stmt);

127

sqlite3_close(conn);
return -1;

}
}
// Close the handle to free memory
sqlite3_finalize(stmt);
rsv=sqlite3_close(conn);
//check if data base provide new info or not
rsv = DC_changelog(CPU,RAM,Storage,location);
return rsv;
}

This function is responsible for applying update policy.

int DC_changelog(int CPU,int RAM,int Storage,char location)
{
float CpuRateChange, RamRateChange, StoRateChange;
//type casting
CpuRateChange = abs((cldata->CPU - CPU)) / (float) abs(cldata->CPU);
RamRateChange = abs((cldata->RAM - RAM)) / (float) abs(cldata->RAM);
StoRateChange = abs((cldata->Storage - Storage)) / (float) abs(cldata->Storage);

if (CpuRateChange > Threshold ||
RamRateChange > Threshold ||
StoRateChange > Threshold){

insert_new_data(CPU,RAM,Storage,location);
return 0;

}
else{
//NO CHANGE
return 1;

}
}

Cloud-OSPF-sender uses following function to invoke OSPF router to send
LSA.

static int
lsa_inject_cloud (struct thread *t)
{
struct ospf_apiclient *cl;
struct in_addr ifaddr;

128 APPENDIX C. CLOUD-OSPF-SENDER SOURCE CODE

struct in_addr area_id;
u_char lsa_type;
u_char opaque_type;
u_int32_t opaque_id;
void *opaquedata;
int opaquelen;
int rc;
struct SUB_TLV3 subtlv3;
struct TE_TLV5 tetlv5;
cl = THREAD_ARG (t);

inet_aton (args[5], &ifaddr);
inet_aton (args[6], &area_id);
lsa_type = atoi (args[2]);
opaque_type = atoi (args[3]); // it should be 10
opaque_id = atoi (args[4]);

subtlv3.type = 3;

subtlv3.router_resource.CPU = cldata->CPU;
subtlv3.router_resource.RAM = cldata->RAM;
subtlv3.router_resource.Storage = cldata->Storage;
subtlv3.router_resource.location = cldata->location;

/* Set the length part of sub TLV of node attribute TLV

which is equal to size data that carries in TLV/
subtlv3.length = sizeof (struct cloud_data);

// Set VALU part of node att TLV
tetlv5.subtlv3 = subtlv3;
tetlv5.type = 5;
/*Set the length of Node Att TLV =

length of sub TLV + length of type file + length of length field/
tetlv5.length = subtlv3.length + sizeof(u_int16_t) + sizeof(u_int16_t);

opaquedata = &tetlv5;

/* Set the length of Opaque data =
length part TLV + length of type filed + length of length field*/
opaquelen = tetlv5.length + sizeof(u_int16_t) + sizeof(u_int16_t);

//Invoke OSPF router to send LSA
rc = ospf_apiclient_lsa_originate(cl, ifaddr, area_id,

129

lsa_type,
opaque_type, opaque_id,
opaquedata, opaquelen);

OpaqueUpdateSend++;
SystemMonitor();
return 0;

}

Following data structures are used for making a Cloud LSA.

/* Our Cloud LSAs have the following format. */
struct my_opaque_lsa
{
/* include common LSA header */
struct lsa_header hdr;
/* DC data in format of TE TLV */
struct TE_TLV5 DC_data;

};

/* OSPF LSA header. */
struct lsa_header
{
u_int16_t ls_age;
u_char options;
u_char type;
struct in_addr id;
struct in_addr adv_router;
u_int32_t ls_seqnum;
u_int16_t checksum;
u_int16_t length;

};

// Our Opaque data is in format of TE TLV
struct TE_TLV5
{

u_int16_t type;
u_int16_t length;
struct SUB_TLV3 subtlv3;

};

// We propose sub TLV = 3 for DC resource
struct SUB_TLV3

130 APPENDIX C. CLOUD-OSPF-SENDER SOURCE CODE

{
u_int16_t type;
u_int16_t length;
struct cloud_data DC_resource;

};

// sen DC resources + Location
struct cloud_data
{

u_int32_t CPU;
u_int32_t RAM;
u_int32_t Storage;
char location;

};

Appendix D

Periodic update policy performance
analysis

Figure D.1: How a cloud management system views cloud resources with a hold-
down timer value 5 seconds, the updates points are plotted a circles.

131

132 APPENDIX D. PERIODIC UPDATE POLICY PERFORMANCE ANALYSIS

Figure D.2: How a cloud management system views cloud resources with a hold-
down timer value 25 seconds, the updates points are plotted a circles.

Figure D.3: How a cloud management system views cloud resources with a hold-
down timer value 50 seconds, the updates points are plotted a circles.

133

Figure D.4: How a cloud management system views cloud resources with a hold-
down timer value 100 seconds, the updates points are plotted a circles.

Figure D.5: How a cloud management system views cloud resources with a hold-
down timer value 200 seconds, the updates points are plotted a circles.

134 APPENDIX D. PERIODIC UPDATE POLICY PERFORMANCE ANALYSIS

Figure D.6: How a cloud management system views cloud resources with a hold-
down timer value 500 seconds, the updates points are plotted a circles.

Figure D.7: How a cloud management system views cloud resources with a hold-
down timer value 700 seconds, the updates points are plotted a circles.

135

Figure D.8: How a cloud management system views cloud resources with a hold-
down timer value 1000 seconds, the updates points are plotted a circles.

Figure D.9: How a cloud management system views cloud resources with a hold-
down timer value 3600 seconds, the updates points are plotted a circles.

Appendix E

Equal-sized class-based update
policy experiments

A key factor that effect on number of classes (and as a consequence number of
updates) in an equal-sized class-based update policy is a base factor β (see
section 2.5). This Appendix provides complete set of results when an equal-
sized class-based update policy with different number of equal-sized classes (i.e.,
consequence of different β values) values was applied on a proposed simulated
data center’s resources (see section 5.3.1). It is worth mentioning that, the points
that shown in circle in these graphs depict the time that the link-state update is
sent out into the network. These Figures provide an overview to help understand
how other node(s) in the network views the data center’s resources based on each
Neq value.

Additionally, information about the number of updates per different number
of equal-sized classes values based on simulated data center’s resource changes
(i.e., CPU, RAM, and storage) are given in this Appendix.

137

138
A

P
P

E
N

D
IX

E
.E

Q
U

A
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E.1 Data center’s CPU

Table E.1: Equal-sized class-based update policy. Number of Cloud LSA updates based on changes in a proposed data
center’s CPU. In this Table "Neq" refers to a "number of equal-sized classes", "LB" refers to a "95% confidence interval
Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Neq Number of updates
Mean UB LB Min Max Std.

2 9 12 7 3 61 11.449
4 17 19 14 5 65 13.139
6 22 24 19 7 71 13.424
9 36 40 32 9 127 22.088

12 44 48 39 13 131 23.390
15 50 55 46 17 133 23.435
20 65 70 60 25 171 25.531
30 84 89 78 38 174 27.790
50 117 124 111 51 211 32.273
80 194 201 186 123 293 38.453

120 318 327 309 245 489 46.383
200 623 635 611 493 798 60.505
400 1227 1244 1210 1039 1493 87.032
800 3004 3027 2980 2644 3215 118.043

1500 5943 5972 5914 5444 6213 145.513
2500 8743 8791 8694 8175 9154 245.546
5000 11649 11671 11628 11336 11837 109.197
8000 12734 12755 12714 12415 12971 103.831

E.1. DATA CENTER’S CPU 139

Figure E.1: Data center sample CPU (GHz) capacity per second

Figure E.2: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 2, the updates points are plotted
a circles.

140 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.3: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 4, the updates points are plotted
a circles.

Figure E.4: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 6, the updates points are plotted
a circles.

E.1. DATA CENTER’S CPU 141

Figure E.5: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 9, the updates points are plotted
a circles.

Figure E.6: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 12, the updates points are plotted
a circles.

142 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.7: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 15, the updates points are plotted
a circles.

Figure E.8: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 20, the updates points are plotted
a circles.

E.1. DATA CENTER’S CPU 143

Figure E.9: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 30, the updates points are plotted
a circles.

Figure E.10: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 50, the updates points are plotted
a circles.

144 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.11: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 80, the updates points are plotted
a circles.

Figure E.12: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 120, the updates points are
plotted a circles.

E.1. DATA CENTER’S CPU 145

Figure E.13: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 200, the updates points are
plotted a circles.

Figure E.14: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 400, the updates points are
plotted a circles.

146 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.15: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 800, the updates points are
plotted a circles.

Figure E.16: Equal-sized class-based update policy. How a cloud management
system views data center’s CPU with a Neq value 1500, the updates points are
plotted a circles.

E
.2.D

A
TA

C
E

N
T

E
R’S

R
A

M
147

E.2 Data center’s RAM

Table E.2: Equal-sized class-based update policy. Number of Cloud LSA updates based on changes in a proposed data
center’s RAM. In this Table "Neq" refers to a "number of equal size classes", "LB" refers to a "95% confidence interval
Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Neq Number of updates
Mean UB LB Min Max Std.

2 11 14 8 3 109 14.630
4 17 20 14 5 113 16.280
6 22 26 19 7 117 17.738
9 39 45 34 9 177 27.600

12 46 51 40 13 179 27.064
15 51 57 46 13 149 27.346
20 62 67 57 23 139 24.573
30 84 90 78 32 210 30.205
50 113 120 107 53 237 32.480
80 193 202 184 121 323 43.372

120 319 330 308 199 525 55.533
200 611 623 598 483 759 61.415
400 1210 1226 1194 1029 1418 80.597
800 2961 2983 2939 2640 3169 111.179

1500 5928 5955 5901 5581 6223 135.596
2500 8790 8837 8744 8278 9237 233.969
5000 11769 11790 11749 11529 11955 102.065
8000 12835 12853 12817 12601 13062 90.791

148 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.17: Equal-sized class-based update policy. Number of updates per
different number of classes Neq values based on changes of a data center’s RAM
capacity. The "X" axis is in logarithm scale.

Figure E.18: Data center sample RAM (GB) capacity per second.

E.2. DATA CENTER’S RAM 149

Figure E.19: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 2, the updates points
are plotted a circles.

Figure E.20: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 4, the updates points
are plotted a circles.

150 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.21: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 6, the updates points
are plotted a circles.

Figure E.22: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 9, the updates points
are plotted a circles.

E.2. DATA CENTER’S RAM 151

Figure E.23: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 12, the updates points
are plotted a circles.

Figure E.24: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 15, the updates points
are plotted a circles.

152 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.25: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 20, the updates points
are plotted a circles.

Figure E.26: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 30, the updates points
are plotted a circles.

E.2. DATA CENTER’S RAM 153

Figure E.27: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 50, the updates points
are plotted a circles.

Figure E.28: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 80, the updates points
are plotted a circles.

154 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.29: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 120, the updates points
are plotted a circles.

Figure E.30: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 200, the updates points
are plotted a circles.

E.2. DATA CENTER’S RAM 155

Figure E.31: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 400, the updates points
are plotted a circles.

Figure E.32: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 800, the updates points
are plotted a circles.

156 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.33: Equal-sized class-based update policy. How a cloud management
system views data center’s RAM capacity with a Neq value 1500, the updates points
are plotted a circles.

E
.3.D

A
TA

C
E

N
T

E
R’S

S
T

O
R

A
G

E
157

E.3 Data center’s storage

Table E.3: Equal-sized class-based update policy. Number of Cloud LSA updates based on changes in a proposed data
center’s storage. In this Table "Neq" refers to a "number of equal size classes", "LB" refers to a "95% confidence interval
Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Neq Number of updates
Mean UB LB Min Max Std.

2 8 9 7 3 33 7.233
4 8 9 7 3 33 7.233
6 18 21 15 5 77 13.099
9 19 21 16 5 77 13.573

12 23 26 20 9 75 13.853
15 23 26 20 9 75 13.853
20 40 43 37 13 87 16.523
30 58 63 54 16 126 24.449
50 78 83 73 39 151 24.593
80 104 111 97 43 225 33.737

120 164 170 159 95 231 27.574
200 359 369 349 233 503 51.794
400 741 755 728 567 929 66.913
800 1771 1791 1750 1408 2030 101.231

1500 3767 3802 3733 3367 4098 174.767
2500 5660 5701 5619 5181 6229 204.999
8000 11481 11504 11458 11207 11696 115.604

158 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.34: Equal-sized class-based update policy. Number of updates per
different number of classes Neq values based on changes of a data center’s storage
capacity. The "X" axis is in logarithm scale.

Figure E.35: Data center sample storage (GB) capacity per second.

E.3. DATA CENTER’S STORAGE 159

Figure E.36: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 2, the updates points
are plotted a circles.

Figure E.37: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 4, the updates points
are plotted a circles.

160 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.38: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 6, the updates points
are plotted a circles.

Figure E.39: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 9, the updates points
are plotted a circles.

E.3. DATA CENTER’S STORAGE 161

Figure E.40: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 12, the updates points
are plotted a circles.

Figure E.41: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 15, the updates points
are plotted a circles.

162 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.42: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 20, the updates points
are plotted a circles.

Figure E.43: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 30, the updates points
are plotted a circles.

E.3. DATA CENTER’S STORAGE 163

Figure E.44: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 50, the updates points
are plotted a circles.

Figure E.45: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 80, the updates points
are plotted a circles.

164 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.46: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 120, the updates
points are plotted a circles.

Figure E.47: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 200, the updates
points are plotted a circles.

E.3. DATA CENTER’S STORAGE 165

Figure E.48: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 400, the updates
points are plotted a circles.

Figure E.49: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 800, the updates
points are plotted a circles.

166 APPENDIX E. EQUAL-SIZED CLASS-BASED UPDATE POLICY

Figure E.50: Equal-sized class-based update policy. How a cloud management
system views data center’s storage capacity with a Neq value 1500, the updates
points are plotted a circles.

Appendix F

Exponential-sized class-based
update policy

The two key factors that effect on number of classes (and as a consequence number
of updates) in an exponential-sized class-based update policy are a base factor β

and a growth factor f (see section 2.5. This Appendix provides complete set of
results when an exponential-sized class-based update policy with different β

and f values was applied on a proposed simulated data center’s resources (see
section 5.3.2). It is worth mentioning that, the points that shown in circle in these
graphs depict the time that the link-state update is sent out into the network. These
figures provide an overview to help understand how other node(s) in the network
views the data center’s resources based on each threshold value.

Additionally, information about the number of updates per different threshold
value based on simulated data center’s resource changes (i.e., CPU, RAM, and
storage) are provided in this Appendix.

167

168
A

P
P

E
N

D
IX

F.E
X

P
O

N
E

N
T

IA
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E
X

P
E

R
IM

E
N

T
S

F.1 Data center’s CPU

Table F.1: Exponential-sized class-based update policy. Number of Cloud LSA updates based on changes in proposed data
center’s CPU. In this Table "β" refers to a "Base factor", "f " refers to growth factor, "LB" refers to a "95% confidence
interval Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard
Deviation".

β f Number of updates
Mean UB LB Min Max Std.

0.00001 1.2 134 1 1 59 303 50.635
0.00001 1.4 80 1 1 27 206 36.339
0.00001 1.6 53 2 2 11 189 29.165
0.00001 1.8 41 2 2 11 179 27.503
0.00001 2 38 2 2 7 159 25.109
0.00005 1.2 132 1 1 53 295 47.644
0.00005 1.4 81 1 1 27 191 36.624
0.00005 1.6 50 2 2 13 111 22.871
0.00005 1.8 42 2 2 9 147 24.657
0.00005 2 42 2 2 9 148 25.844
0.0001 1.2 137 1 1 39 343 48.952
0.0001 1.4 79 1 1 21 229 36.992
0.0001 1.6 49 2 2 13 203 28.686
0.0001 1.8 44 2 2 11 205 31.216
0.0001 2 42 2 2 9 146 25.852
0.0005 1.2 129 1 1 55 323 50.596
0.0005 1.4 72 1 1 21 177 30.201

Continued on next page

F.1.D
A

TA
C

E
N

T
E

R’S
C

P
U

169
Table F.1 – continued from previous page

β f Number of updates
Mean UB LB Min Max Std.

0.0005 1.6 73 2 2 17 193 37.741
0.0005 1.8 43 2 2 13 149 23.694
0.0005 2 27 2 2 5 90 17.810
0.001 1.2 187 1 1 73 342 56.320
0.001 1.4 75 1 1 15 221 34.778
0.001 1.6 49 2 2 13 165 28.519
0.001 1.8 43 2 2 11 137 25.737
0.001 2 27 2 2 5 77 15.974
0.005 1.2 115 1 1 51 229 36.632
0.005 1.4 106 1 1 25 230 42.684
0.005 1.6 60 2 2 17 171 27.762
0.005 1.8 44 2 2 9 129 22.945
0.005 2 36 2 2 5 121 19.096
0.01 1.2 106 1 1 45 211 33.326
0.01 1.4 117 1 1 36 234 37.947
0.01 1.6 41 2 2 15 103 19.207
0.01 1.8 35 2 2 9 125 20.772
0.01 2 34 2 2 9 91 17.483
0.05 1.2 63 1 1 21 131 23.399
0.05 1.4 45 1 1 11 167 23.827
0.05 1.6 34 2 2 9 107 19.968
0.05 1.8 35 2 2 5 81 19.087
0.05 2 32 2 2 5 83 17.282

Continued on next page

170
A

P
P

E
N

D
IX

F.E
X

P
O

N
E

N
T

IA
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E
X

P
E

R
IM

E
N

T
S

Table F.1 – continued from previous page
β f Number of updates

Mean UB LB Min Max Std.
0.1 1.2 113 1 1 28 270 52.684
0.1 1.4 29 1 1 10 87 17.602
0.1 1.6 29 2 2 9 120 17.950
0.1 1.8 31 2 2 7 116 19.122
0.1 2 23 2 2 5 71 15.536

F.1. DATA CENTER’S CPU 171

Figure F.1: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.2.

Figure F.2: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.4.

172
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.3: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.6.

Figure F.4: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 1.8.

F.1. DATA CENTER’S CPU 173

Figure F.5: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-05 and a growth factor f = 2.

Figure F.6: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.2.

174
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.7: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.4.

Figure F.8: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.6.

F.1. DATA CENTER’S CPU 175

Figure F.9: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 1.8.

Figure F.10: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-05 and a growth factor f = 2.

176
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.11: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.2.

Figure F.12: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.4.

F.1. DATA CENTER’S CPU 177

Figure F.13: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.6.

Figure F.14: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 1.8.

178
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.15: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
1e-04 and a growth factor f = 2.

Figure F.16: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.2.

F.1. DATA CENTER’S CPU 179

Figure F.17: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.4.

Figure F.18: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.6.

180
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.19: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 1.8.

Figure F.20: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
5e-04 and a growth factor f = 2.

F.1. DATA CENTER’S CPU 181

Figure F.21: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.2.

Figure F.22: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.4.

182
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.23: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.6.

Figure F.24: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 1.8.

F.1. DATA CENTER’S CPU 183

Figure F.25: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.001 and a growth factor f = 2.

Figure F.26: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.2.

184
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.27: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.4.

Figure F.28: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.6.

F.1. DATA CENTER’S CPU 185

Figure F.29: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 1.8.

Figure F.30: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.005 and a growth factor f = 2.

186
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.31: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.2.

Figure F.32: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.4.

F.1. DATA CENTER’S CPU 187

Figure F.33: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.6.

Figure F.34: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 1.8.

188
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.35: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.01 and a growth factor f = 2.

Figure F.36: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.2.

F.1. DATA CENTER’S CPU 189

Figure F.37: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.4.

Figure F.38: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.6.

190
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.39: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 1.8.

Figure F.40: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.05 and a growth factor f = 2.

F.1. DATA CENTER’S CPU 191

Figure F.41: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.2.

Figure F.42: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.4.

192
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.43: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.6.

Figure F.44: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 1.8.

F.1. DATA CENTER’S CPU 193

Figure F.45: Exponential-sized class-based update policy. How a cloud
management system views data center’s CPU capacity when a base factor β =
0.1 and a growth factor f = 2.

194
A

P
P

E
N

D
IX

F.E
X

P
O

N
E

N
T

IA
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E
X

P
E

R
IM

E
N

T
S

F.2 Data center’s RAM

Table F.2: Exponential-sized class-based update policy. Number of Cloud LSA updates based on changes in a proposed
data center’s RAM. In this Table "β" refers to a "base factor", "f " refers to growth factor, "LB" refers to a "95% confidence
interval Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard
Deviation".

β f Number of updates
Mean UB LB Min Max Std.

0.00001 1.2 141 1 1 47 282 53.701
0.00001 1.4 79 1 1 17 207 34.596
0.00001 1.6 56 2 2 11 143 30.709
0.00001 1.8 45 2 2 9 147 26.189
0.00001 2 38 2 2 7 113 22.773
0.00005 1.2 141 1 1 49 310 57.426
0.00005 1.4 79 1 1 19 203 35.039
0.00005 1.6 52 2 2 15 148 28.071
0.00005 1.8 42 2 2 11 122 24.355
0.00005 2 40 2 2 7 141 24.408
0.0001 1.2 140 1 1 53 287 51.221
0.0001 1.4 84 1 1 17 215 39.193
0.0001 1.6 55 2 2 11 129 27.770
0.0001 1.8 43 2 2 11 141 28.146
0.0001 2 40 2 2 7 139 24.852
0.0005 1.2 145 1 1 61 325 52.074
0.0005 1.4 73 1 1 11 157 31.439

Continued on next page

F.2.D
A

TA
C

E
N

T
E

R’S
R

A
M

195
Table F.2 – continued from previous page

β f Number of updates
Mean UB LB Min Max Std.

0.0005 1.6 73 2 2 19 186 37.119
0.0005 1.8 42 2 2 13 113 21.012
0.0005 2 31 2 2 5 121 23.444
0.001 1.2 178 1 1 65 329 50.323
0.001 1.4 70 1 1 23 156 29.052
0.001 1.6 49 2 2 13 113 25.803
0.001 1.8 40 2 2 9 112 23.161
0.001 2 30 2 2 7 125 22.715
0.005 1.2 120 1 1 57 268 35.726
0.005 1.4 106 1 1 27 209 41.497
0.005 1.6 59 2 2 15 160 25.509
0.005 1.8 42 2 2 9 95 19.383
0.005 2 37 2 2 9 143 20.035
0.01 1.2 108 1 1 41 218 35.398
0.01 1.4 113 1 1 36 267 47.877
0.01 1.6 42 2 2 11 123 19.939
0.01 1.8 38 2 2 9 115 18.625
0.01 2 36 2 2 9 93 18.086
0.05 1.2 65 1 1 17 147 25.066
0.05 1.4 49 1 1 13 111 23.715
0.05 1.6 32 2 2 11 109 21.170
0.05 1.8 35 2 2 7 139 22.192
0.05 2 32 2 2 7 123 18.515

Continued on next page

196
A

P
P

E
N

D
IX

F.E
X

P
O

N
E

N
T

IA
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E
X

P
E

R
IM

E
N

T
S

Table F.2 – continued from previous page
β f Number of updates

Mean UB LB Min Max Std.
0.1 1.2 114 1 1 22 290 49.928
0.1 1.4 25 1 1 9 85 15.414
0.1 1.6 31 2 2 7 127 18.413
0.1 1.8 29 2 2 5 87 17.987
0.1 2 25 2 2 5 95 17.794

F.2. DATA CENTER’S RAM 197

Figure F.46: Exponential-sized class-based update policy. Number of updates per
different growth factor and base factor values based on changes of a data center’s
RAM capacity. The "X" axis is in logarithm scale.

Figure F.47: Data center sample RAM (GB) capacity per second.

198
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.48: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.2.

Figure F.49: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.4.

F.2. DATA CENTER’S RAM 199

Figure F.50: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.6.

Figure F.51: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 1.8.

200
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.52: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-05 and a growth factor f = 2.

Figure F.53: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.2.

F.2. DATA CENTER’S RAM 201

Figure F.54: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.4.

Figure F.55: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.6.

202
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.56: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 1.8.

Figure F.57: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-05 and a growth factor f = 2.

F.2. DATA CENTER’S RAM 203

Figure F.58: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.2.

Figure F.59: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.4.

204
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.60: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.6.

Figure F.61: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 1.8.

F.2. DATA CENTER’S RAM 205

Figure F.62: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
1e-04 and a growth factor f = 2.

Figure F.63: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.2.

206
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.64: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.4.

Figure F.65: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.6.

F.2. DATA CENTER’S RAM 207

Figure F.66: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 1.8.

Figure F.67: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
5e-04 and a growth factor f = 2.

208
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.68: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.2.

Figure F.69: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.4.

F.2. DATA CENTER’S RAM 209

Figure F.70: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.6.

Figure F.71: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 1.8.

210
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.72: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.001 and a growth factor f = 2.

Figure F.73: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.2.

F.2. DATA CENTER’S RAM 211

Figure F.74: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.4.

Figure F.75: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.6.

212
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.76: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 1.8.

Figure F.77: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.005 and a growth factor f = 2.

F.2. DATA CENTER’S RAM 213

Figure F.78: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.2.

Figure F.79: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.4.

214
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.80: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.6.

Figure F.81: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 1.8.

F.2. DATA CENTER’S RAM 215

Figure F.82: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.01 and a growth factor f = 2.

Figure F.83: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.2.

216
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.84: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.4.

Figure F.85: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.6.

F.2. DATA CENTER’S RAM 217

Figure F.86: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 1.8.

Figure F.87: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.05 and a growth factor f = 2.

218
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.88: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.2.

Figure F.89: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.4.

F.2. DATA CENTER’S RAM 219

Figure F.90: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.6.

Figure F.91: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 1.8.

220
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.92: Exponential-sized class-based update policy. How a cloud
management system views data center’s RAM capacity when a base factor β =
0.1 and a growth factor f = 2.

F.3.D
A

TA
C

E
N

T
E

R’S
S

T
O

R
A

G
E

221
F.3 Data center’s storage

Table F.3: Exponential-sized class-based update policy. Number of Cloud LSA updates based on changes in a proposed
data center’s storage. In this Table "β" refers to a "base factor", "f " refers to growth factor, "LB" refers to a "95%
confidence interval Lower Bound", "UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a
"Standard Deviation".

β f Number of updates
Mean UB LB Min Max Std.

0.00001 1.2 49 1 1 15 127 23.448
0.00001 1.4 23 1 1 7 93 15.741
0.00001 1.6 16 2 2 5 97 13.139
0.00001 1.8 12 2 2 5 47 8.530
0.00001 2 12 2 2 3 53 12.711
0.00005 1.2 49 1 1 15 155 26.081
0.00005 1.4 28 1 1 5 93 16.797
0.00005 1.6 18 2 2 3 61 14.206
0.00005 1.8 14 2 2 3 53 10.59
0.00005 2 13 2 2 3 49 9.488
0.0001 1.2 48 1 1 13 127 20.798
0.0001 1.4 29 1 1 5 91 17.804
0.0001 1.6 12 2 2 5 41 6.480
0.0001 1.8 11 2 2 5 45 7.211
0.0001 2 13 2 2 3 49 9.364
0.0005 1.2 45 1 1 11 123 22.086

Continued on next page

222
A

P
P

E
N

D
IX

F.E
X

P
O

N
E

N
T

IA
L-S

IZ
E

D
C

L
A

S
S-B

A
S

E
D

U
P

D
A

T
E

P
O

L
IC

Y

E
X

P
E

R
IM

E
N

T
S

Table F.3 – continued from previous page
β f Number of updates

Mean UB LB Min Max Std.
0.0005 1.4 32 1 1 5 87 19.148
0.0005 1.6 26 2 2 6 67 15.745
0.0005 1.8 20 2 2 3 121 18.885
0.0005 2 9 2 2 3 41 7.952
0.001 1.2 82 1 1 17 203 37.216
0.001 1.4 26 1 1 5 89 16.044
0.001 1.6 16 2 2 5 67 12.401
0.001 1.8 13 2 2 5 53 10.569
0.001 2 9 2 2 3 45 8.505
0.005 1.2 49 1 1 17 115 21.669
0.005 1.4 51 1 1 9 129 28.323
0.005 1.6 25 2 2 5 67 14.171
0.005 1.8 13 2 2 3 65 11.375
0.005 2 10 2 2 3 99 13.520
0.01 1.2 44 1 1 13 135 22.324
0.01 1.4 62 1 1 7 170 32.904
0.01 1.6 19 2 2 3 83 15.129
0.01 1.8 16 2 2 5 75 10.771
0.01 2 10 2 2 3 61 11.767
0.05 1.2 27 1 1 7 95 16.857
0.05 1.4 23 1 1 5 85 15.298
0.05 1.6 12 2 2 5 51 8.337
0.05 1.8 12 2 2 3 53 11.299

Continued on next page

F.3.D
A

TA
C

E
N

T
E

R’S
S

T
O

R
A

G
E

223
Table F.3 – continued from previous page

β f Number of updates
Mean UB LB Min Max Std.

0.05 2 13 2 2 3 73 11.990
0.1 1.2 102 1 1 24 247 45.553
0.1 1.4 18 1 1 3 101 15.106
0.1 1.6 19 2 2 5 107 14.147
0.1 1.8 12 2 2 3 73 12.901
0.1 2 12 2 2 3 59 11.882

224
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.93: Exponential-sized class-based update policy. Number of updates per
different growth factor and base factor values based on changes of a data center’s
storage capacity. The "X" axis is in logarithm scale.

Figure F.94: Data center sample storage (GB) capacity per second

F.3. DATA CENTER’S STORAGE 225

Figure F.95: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.2.

Figure F.96: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.4.

226
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.97: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.6.

Figure F.98: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 1.8.

F.3. DATA CENTER’S STORAGE 227

Figure F.99: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-05 and a growth factor f = 2.

Figure F.100: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.2.

228
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.101: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.4.

Figure F.102: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.6.

F.3. DATA CENTER’S STORAGE 229

Figure F.103: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 1.8.

Figure F.104: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-05 and a growth factor f = 2.

230
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.105: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.2.

Figure F.106: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.4.

F.3. DATA CENTER’S STORAGE 231

Figure F.107: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.6.

Figure F.108: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 1.8.

232
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.109: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 1e-04 and a growth factor f = 2.

Figure F.110: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.2.

F.3. DATA CENTER’S STORAGE 233

Figure F.111: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.4.

Figure F.112: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.6.

234
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.113: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 1.8.

Figure F.114: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 5e-04 and a growth factor f = 2.

F.3. DATA CENTER’S STORAGE 235

Figure F.115: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.2.

Figure F.116: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.4.

236
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.117: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.6.

Figure F.118: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 1.8.

F.3. DATA CENTER’S STORAGE 237

Figure F.119: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.001 and a growth factor f = 2.

Figure F.120: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.2.

238
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.121: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.4.

Figure F.122: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.6.

F.3. DATA CENTER’S STORAGE 239

Figure F.123: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 1.8.

Figure F.124: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.005 and a growth factor f = 2.

240
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.125: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.2.

Figure F.126: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.4.

F.3. DATA CENTER’S STORAGE 241

Figure F.127: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.6.

Figure F.128: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 1.8.

242
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.129: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.01 and a growth factor f = 2.

Figure F.130: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.2.

F.3. DATA CENTER’S STORAGE 243

Figure F.131: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.4.

Figure F.132: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.6.

244
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.133: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 1.8.

Figure F.134: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.05 and a growth factor f = 2.

F.3. DATA CENTER’S STORAGE 245

Figure F.135: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.2.

Figure F.136: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.4.

246
APPENDIX F. EXPONENTIAL-SIZED CLASS-BASED UPDATE POLICY

EXPERIMENTS

Figure F.137: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.6.

Figure F.138: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 1.8.

F.3. DATA CENTER’S STORAGE 247

Figure F.139: Exponential-sized class-based update policy. How a cloud
management system views data center’s storage capacity when a base factor β

= 0.1 and a growth factor f = 2.

Appendix G

Absolute threshold-based update
policy experiments

This Appendix provides complete set of results when an absolute threshold-
based update policy with different threshold values was applied on a proposed
simulated data center’s resources (see section 5.4.1). It is worth mentioning that
the points that shown in circle in these graphs depict the time that the link-state
update is sent out into the network. These Figures provide an overview to help
understand how other node(s) (e.g., CMS) in the network views the data center’s
resources based on each threshold value.

Additionally, information about the number of updates per different threshold
value based on a simulated data center’s resource changes (i.e., CPU, RAM, and
storage) are provided in this Appendix.

249

250
A

P
P

E
N

D
IX

G
.A

B
S

O
L

U
T

E
T

H
R

E
S

H
O

L
D

-B
A

S
E

D
U

P
D

A
T

E
P

O
L

IC
Y

E
X

P
E

R
IM

E
N

T
S

G.1 Data center’s CPU

Table G.1: Absolute threshold-based update policy. Number of Cloud LSA updates based on changes in proposed data
center’s CPU. In this Table "Thr" refers to a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

0.01 32364 32415 32313 31478 32878 255.160
0.02 23368 23410 23327 22821 23802 209.775
0.04 13453 13482 13424 13152 13799 146.225
0.06 8561 8584 8538 8283 8851 117.986
0.08 5788 5806 5770 5586 5993 89.545
0.1 4238 4254 4222 4078 4469 79.131
0.5 472 476 469 429 517 18.803
1 211 213 209 188 232 10.203
2 100 101 99 87 110 5.076
3 65 66 65 56 73 3.729
4 48 49 48 40 55 2.882
5 38 38 38 32 43 2.285

10 18 18 18 16 21 1.118

G.1. DATA CENTER’S CPU 251

Figure G.1: Data center sample CPU (GHz) capacity per second

Figure G.2: Absolute threshold-based update policy. How a cloud management
system views Storage resources with an absolute threshold value 0.5%, the
updates points are plotted a circles.

252
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.3: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 1%, the updates
points are plotted a circles.

Figure G.4: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 2%, the updates
points are plotted a circles.

G.1. DATA CENTER’S CPU 253

Figure G.5: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 3%, the updates
points are plotted a circles.

Figure G.6: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 4%, the updates
points are plotted a circles.

254
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.7: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 5%, the updates
points are plotted a circles.

Figure G.8: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 10%, the updates
points are plotted a circles.

G.1. DATA CENTER’S CPU 255

Figure G.9: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 15%, the updates
points are plotted a circles.

Figure G.10: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 20%, the updates
points are plotted a circles.

256
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.11: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 25%, the updates
points are plotted a circles.

Figure G.12: Absolute threshold-based update policy. How a cloud management
system views CPU resources with an absolute threshold value 30%, the updates
points are plotted a circles.

G
.2.D

A
TA

C
E

N
T

E
R’S

R
A

M
257

G.2 Data center’s RAM

Table G.2: Absolute threshold-based update policy. Number of Cloud LSA updates based on changes in proposed data
center’s RAM. In this Table "Thr" refers to a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

0.01 33044 33095 32992 32125 33576 260.433
0.02 24934 24976 24891 24362 25350 211.849
0.04 14136 14166 14105 13806 14558 154.878
0.06 8507 8530 8485 8179 8754 115.097
0.08 5698 5716 5679 5460 5896 93.819
0.1 4141 4156 4125 3880 4294 78.694
0.5 467 470 463 424 506 19.251
1 211 214 209 188 232 10.239
2 101 102 100 89 112 5.662
3 66 67 65 56 75 3.927
4 49 49 48 42 55 2.869
5 38 39 38 34 43 2.363

10 18 18 18 16 21 1.118

258
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.13: Relative threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s RAM capacity. The
"X" axis are in logarithm scale.

Figure G.14: Data center sample RAM (GB) capacity per second

G.2. DATA CENTER’S RAM 259

Figure G.15: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 0.5%, the updates
points are plotted a circles.

Figure G.16: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 1%, the updates
points are plotted a circles.

260
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.17: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 2%, the updates
points are plotted a circles.

Figure G.18: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 3%, the updates
points are plotted a circles.

G.2. DATA CENTER’S RAM 261

Figure G.19: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 4%, the updates
points are plotted a circles.

Figure G.20: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 5%, the updates
points are plotted a circles.

262
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.21: Absolute threshold-based update policy. How a cloud management
system views RAM resources with an absolute threshold value 10%, the updates
points are plotted a circles.

G
.3.D

A
TA

C
E

N
T

E
R’S

S
T

O
R

A
G

E
263

G.3 Data center’s storage

Table G.3: Absolute threshold-based update policy. Number of Cloud LSA updates based on changes in proposed data
center’s storage. In this Table "Thr" refers to a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a "Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

0.01 30454 30504 30403 29618 31040 254.096
0.02 19158 19196 19120 18691 19624 191.118
0.04 8652 8674 8631 8423 8860 109.898
0.06 4914 4931 4897 4729 5109 85.013
0.08 3244 3257 3231 3095 3379 66.151
0.1 2352 2362 2341 2222 2466 54.955
0.5 297 299 294 262 323 13.335
1 139 141 138 120 155 7.287
2 67 68 66 60 75 3.594
3 44 45 44 36 51 2.975
4 32 33 32 26 37 2.090
5 25 25 25 20 29 1.954

10 12 12 12 10 13 0.924

264
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.22: Absolute threshold-based update policy. Number of updates per
different threshold values based on changes of a data center’s storage capacity.
The "X" axis are in logarithm scale.

Figure G.23: Data center sample storage (GB) capacity per second.

G.3. DATA CENTER’S STORAGE 265

Figure G.24: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 0.5%, the updates
points are plotted a circles.

Figure G.25: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 1%, the updates
points are plotted a circles.

266
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.26: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 2%, the updates
points are plotted a circles.

Figure G.27: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 3%, the updates
points are plotted a circles.

G.3. DATA CENTER’S STORAGE 267

Figure G.28: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 4%, the updates
points are plotted a circles.

Figure G.29: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 5%, the updates
points are plotted a circles.

268
APPENDIX G. ABSOLUTE THRESHOLD-BASED UPDATE POLICY

EXPERIMENTS

Figure G.30: Absolute threshold-based update policy. How a cloud management
system views storage resources with an absolute threshold value 10%, the updates
points are plotted a circles.

Appendix H

Relative threshold update policy
experiments

This Appendix provides complete set of results when a relative threshold update
policy with different threshold values (e.g., 5, 10, 15, 20, and etc) was applied
on a proposed simulated data center’s resources (see section 5.4.2). It is worth
mentioning that the points that shown in circle in these graphs depict the time
that the link-state update is sent out into the network. These Figures provide an
overview to help understand how other node(s) in the network views the data
center’s resources based on each threshold value.

Additionally, information about the number of updates per different threshold
value based on a simulated data center’s resource changes (i.e., CPU, RAM, and
storage) are provided in this Appendix.

269

270 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

H.1 Data center’s CPU

Table H.1: Relative threshold update policy. Number of Cloud LSA updates
based on changes in a proposed data center’s CPU. In this Table "Thr" refers
to a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a
"Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

5 140 153 126 72 539 67.814
10 66 73 60 32 285 33.282
15 43 47 39 22 173 21.422
20 31 35 28 16 143 16.955
25 25 27 22 12 104 12.846
30 20 22 18 10 92 10.996
35 17 19 15 8 80 9.599
40 15 16 13 8 72 8.501
45 13 14 11 6 64 7.679
50 12 13 10 6 54 6.786
55 10 11 9 6 48 6.142
60 9 10 8 3 44 5.767
65 9 10 8 4 40 5.160
70 7 8 6 4 36 4.803
75 6 7 6 4 29 4.381
80 6 7 5 4 30 4.282
85 6 7 5 1 29 3.874
90 5 5 4 1 26 4.021
95 3 4 2 1 24 4.147

H.1. DATA CENTER’S CPU 271

Figure H.1: Data center sample CPU (GHz) capacity per second

Figure H.2: How cloud management system views CPU resources with a relative
threshold value 5, the updates points are plotted a circles.

272 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.3: How cloud management system views CPU resources with a relative
threshold value 10, the updates points are plotted a circles.

Figure H.4: How cloud management system views CPU resources with a relative
threshold value 15, the updates points are plotted a circles.

H.1. DATA CENTER’S CPU 273

Figure H.5: How cloud management system views CPU resources with a relative
threshold value 20, the updates points are plotted a circles.

Figure H.6: How cloud management system views CPU resources with a relative
threshold value 25, the updates points are plotted a circles.

274 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.7: How cloud management system views CPU resources with a relative
threshold value 30, the updates points are plotted a circles.

Figure H.8: How cloud management system views CPU resources with a relative
threshold value 35, the updates points are plotted a circles.

H.1. DATA CENTER’S CPU 275

Figure H.9: How cloud management system views CPU resources with a relative
threshold value 40, the updates points are plotted a circles.

Figure H.10: How cloud management system views CPU resources with a relative
threshold value 45, the updates points are plotted a circles.

276 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.11: How cloud management system views CPU resources with a relative
threshold value 50, the updates points are plotted a circles.

Figure H.12: How cloud management system views CPU resources with a relative
threshold value 55, the updates points are plotted a circles.

H.1. DATA CENTER’S CPU 277

Figure H.13: How cloud management system views CPU resources with a relative
threshold value 60, the updates points are plotted a circles.

Figure H.14: How cloud management system views CPU resources with a relative
threshold value 65, the updates points are plotted a circles.

278 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.15: How cloud management system views CPU resources with a relative
threshold value 70, the updates points are plotted a circles.

Figure H.16: How cloud management system views CPU resources with a relative
threshold value 75, the updates points are plotted a circles.

H.1. DATA CENTER’S CPU 279

Figure H.17: How cloud management system views CPU resources with a relative
threshold value 80, the updates points are plotted a circles.

Figure H.18: How cloud management system views CPU resources with a relative
threshold value 85, the updates points are plotted a circles.

280 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

H.2 Data center’s RAM

Table H.2: Relative threshold update policy. Number of Cloud LSA updates
based on changes in proposed data center’s RAM. In this Table "Thr" refers to
a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a
"Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

5 150 165 134 74 395 77.692
10 72 80 64 36 193 39.218
15 48 53 42 22 139 26.813
20 35 39 31 16 110 20.092
25 27 30 24 12 84 16.078
30 22 25 20 10 77 13.979
35 19 21 17 8 60 11.726
40 17 19 15 8 56 10.330
45 15 16 13 6 50 9.709
50 13 15 11 6 45 8.785
55 12 13 10 6 41 7.911
60 10 12 9 3 35 7.213
65 10 11 8 4 32 6.657
70 9 10 7 4 31 6.312
75 7 9 6 4 25 5.662
80 7 8 6 4 24 5.319
85 7 8 6 1 24 4.876
90 6 7 4 1 21 5.129
95 4 5 3 1 19 5.019

H.2. DATA CENTER’S RAM 281

Figure H.19: Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s RAM capacity.

Figure H.20: Data center sample RAM (GHz) capacity per second

282 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.21: How cloud management system views RAM resources with a
relative threshold value 5, the updates points are plotted a circles.

Figure H.22: How cloud management system views RAM resources with a
relative threshold value 10, the updates points are plotted a circles.

H.2. DATA CENTER’S RAM 283

Figure H.23: How cloud management system views RAM resources with a
relative threshold value 15, the updates points are plotted a circles.

Figure H.24: How cloud management system views RAM resources with a
relative threshold value 20, the updates points are plotted a circles.

284 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.25: How cloud management system views RAM resources with a
relative threshold value 25, the updates points are plotted a circles.

Figure H.26: How cloud management system views RAM resources with a
relative threshold value 30, the updates points are plotted a circles.

H.2. DATA CENTER’S RAM 285

Figure H.27: How cloud management system views RAM resources with a
relative threshold value 35, the updates points are plotted a circles.

Figure H.28: How cloud management system views RAM resources with a
relative threshold value 40, the updates points are plotted a circles.

286 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.29: How cloud management system views RAM resources with a
relative threshold value 45, the updates points are plotted a circles.

Figure H.30: How cloud management system views RAM resources with a
relative threshold value 50, the updates points are plotted a circles.

H.2. DATA CENTER’S RAM 287

Figure H.31: How cloud management system views RAM resources with a
relative threshold value 55, the updates points are plotted a circles.

Figure H.32: How cloud management system views RAM resources with a
relative threshold value 60, the updates points are plotted a circles.

288 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.33: How cloud management system views RAM resources with a
relative threshold value 65, the updates points are plotted a circles.

Figure H.34: How cloud management system views RAM resources with a
relative threshold value 70, the updates points are plotted a circles.

H.2. DATA CENTER’S RAM 289

Figure H.35: How cloud management system views RAM resources with a
relative threshold value 75, the updates points are plotted a circles.

Figure H.36: How cloud management system views RAM resources with a
relative threshold value 80, the updates points are plotted a circles.

290 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.37: How cloud management system views RAM resources with a
relative threshold value 85, the updates points are plotted a circles.

Figure H.38: How cloud management system views RAM resources with a
relative threshold value 90, the updates points are plotted a circles.

H.3. DATA CENTER’S STORAGE 291

Figure H.39: How cloud management system views RAM resources with a
relative threshold value 95, the updates points are plotted a circles.

H.3 Data center’s storage

Figure H.40: Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s storage
capacity.

292 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Table H.3: Relative threshold update policy. Number of Cloud LSA updates
based on changes in proposed data center’s storage. In this Table "Thr" refers
to a "Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to a
"Standard Deviation".

Thr Number of updates
(%) Mean UB LB Min Max Std.

5 42 43 42 33 52 4.239
10 20 20 20 15 24 2.229
15 12 13 12 9 16 1.235
20 9 9 9 7 12 0.953
25 7 7 7 5 7 0.438
30 6 6 6 5 8 1.343
35 5 5 5 3 5 0.438
40 4 5 4 3 6 1.477
45 3 3 3 3 3 0.000
50 3 3 3 3 3 0.000
55 3 3 3 1 3 0.200
60 3 3 3 1 3 0.736
65 2 2 2 1 4 1.417
70 1 1 1 1 1 0.000
75 1 1 1 1 1 0.000
80 1 1 1 1 1 0.000
85 1 1 1 1 1 0.000
90 1 1 1 1 1 0.000
95 1 1 1 1 1 0.000

H.3. DATA CENTER’S STORAGE 293

Figure H.41: Data center sample storage (GB) capacity per second.

Figure H.42: How cloud management system views storage resources with a
relative threshold value 5, the updates points are plotted a circles.

294 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.43: How cloud management system views storage resources with a
relative threshold value 10, the updates points are plotted a circles.

Figure H.44: How cloud management system views storage resources with a
relative threshold value 15, the updates points are plotted a circles.

H.3. DATA CENTER’S STORAGE 295

Figure H.45: How cloud management system views storage resources with a
relative threshold value 20, the updates points are plotted a circles.

Figure H.46: How cloud management system views storage resources with a
relative threshold value 25, the updates points are plotted a circles.

296 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.47: How cloud management system views storage resources with a
relative threshold value 30, the updates points are plotted a circles.

Figure H.48: How cloud management system views storage resources with a
relative threshold value 35, the updates points are plotted a circles.

H.3. DATA CENTER’S STORAGE 297

Figure H.49: How cloud management system views storage resources with a
relative threshold value 40, the updates points are plotted a circles.

Figure H.50: How cloud management system views storage resources with a
relative threshold value 45, the updates points are plotted a circles.

298 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.51: How cloud management system views storage resources with a
relative threshold value 50, the updates points are plotted a circles.

Figure H.52: How cloud management system views storage resources with a
relative threshold value 55, the updates points are plotted a circles.

H.3. DATA CENTER’S STORAGE 299

Figure H.53: How cloud management system views storage resources with a
relative threshold value 60, the updates points are plotted a circles.

Figure H.54: How cloud management system views storage resources with a
relative threshold value 65, the updates points are plotted a circles.

300 APPENDIX H. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS

Figure H.55: How cloud management system views storage resources with a
relative threshold value 70, the updates points are plotted a circles.

Figure H.56: How cloud management system views storage resources with a
relative threshold value 75, the updates points are plotted a circles.

Appendix I

Relative threshold update policy
experiments (2)

This Appendix provides complete set of results when a relative threshold update
policy with different threshold values (e.g., 5, 10, 15, 20, and etc) was applied
on a proposed simulated data center’s resources (see section 5.4.2). It is worth
mentioning that in this Appendix we assumes the update generates when changes
in each of data center’s resources (i.e., CPU, RAM, and storage) exceed the
relative threshold value, as discussed in algorithm 1 on page 90. Table I.1 and
Figure I.1 show the relation between the relative threshold value and number of
updates.

Figure I.1: Number of updates per different threshold values for relative
threshold-based update policy based on changes of a data center’s capacity.

301

302 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Table I.1: Relative threshold update policy. Number of Cloud LSA updates based
on changes in proposed data center’s resource. In this Table "Thr" refers to a
"Threshold value", "LB" refers to a "95% confidence interval Lower Bound",
"UP" refers to a "95% confidence interval Upper Bound", and "Std." refers to
a "Standard Deviation". The updates are trigger as discussed in algorithm 1 on
page 90.

Thr Number of updates
(%) Mean UB LB Min Max Std.

5 169 187 151 76 539 91.700
10 81 90 71 36 281 46.746
15 53 59 46 22 173 31.364
20 39 43 34 16 145 23.975
25 30 34 26 12 105 18.917
30 25 28 22 10 92 16.425
35 21 24 18 8 80 13.943
40 18 21 16 8 72 12.329
45 16 18 14 6 64 11.414
50 14 16 12 6 54 10.241
55 13 15 11 6 48 9.182
60 11 13 10 3 44 8.517
65 11 12 9 4 40 7.747
70 10 11 8 4 36 7.292
75 8 10 7 4 29 6.569
80 8 9 6 4 30 6.338
85 8 9 6 1 29 5.733
90 7 8 5 1 26 5.859
95 5 6 4 1 24 5.836

Additionally, section I.1, section I.2, and section I.3 show how the receiver
node(s) views data center’s resources (i.e., CPU, RAM, and storage) with different
relative threshold values when an algorithm 1 is used for triggering a new Cloud
LSA update. The points that shown in circle in these graphs depict the time
that the link-state update is sent out into the network. These Figures provide an
overview to help to understand how other node(s) in the network views the data
center’s resources based on each threshold value.

I.1. DATA CENTER’S CPU 303

I.1 Data center’s CPU

Figure I.2: Data center sample CPU (GHz) capacity per second

Figure I.3: How a cloud management system views CPU resources with a relative
threshold value 5, the updates points are plotted a circles.

304 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.4: How a cloud management system views CPU resources with a relative
threshold value 10, the updates points are plotted a circles.

Figure I.5: How a cloud management system views CPU resources with a relative
threshold value 15, the updates points are plotted a circles.

I.1. DATA CENTER’S CPU 305

Figure I.6: How a cloud management system views CPU resources with a relative
threshold value 20, the updates points are plotted a circles.

Figure I.7: How a cloud management system views CPU resources with a relative
threshold value 25, the updates points are plotted a circles.

306 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.8: How a cloud management system views CPU resources with a relative
threshold value 30, the updates points are plotted a circles.

Figure I.9: How a cloud management system views CPU resources with a relative
threshold value 35, the updates points are plotted a circles.

I.1. DATA CENTER’S CPU 307

Figure I.10: How a cloud management system views CPU resources with a
relative threshold value 40, the updates points are plotted a circles.

Figure I.11: How a cloud management system views CPU resources with a
relative threshold value 45, the updates points are plotted a circles.

308 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.12: How a cloud management system views CPU resources with a
relative threshold value 50, the updates points are plotted a circles.

Figure I.13: How a cloud management system views CPU resources with a
relative threshold value 55, the updates points are plotted a circles.

I.1. DATA CENTER’S CPU 309

Figure I.14: How a cloud management system views CPU resources with a
relative threshold value 60, the updates points are plotted a circles.

Figure I.15: How a cloud management system views CPU resources with a
relative threshold value 65, the updates points are plotted a circles.

310 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.16: How a cloud management system views CPU resources with a
relative threshold value 70, the updates points are plotted a circles.

Figure I.17: How a cloud management system views CPU resources with a
relative threshold value 75, the updates points are plotted a circles.

I.2. DATA CENTER’S RAM 311

Figure I.18: How a cloud management system views CPU resources with a
relative threshold value 80, the updates points are plotted a circles.

Figure I.19: How a cloud management system views CPU resources with a
relative threshold value 85, the updates points are plotted a circles.

I.2 Data center’s RAM

312 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.20: How a cloud management system views CPU resources with a
relative threshold value 90, the updates points are plotted a circles.

Figure I.21: Data center sample RAM (GB) capacity per second

I.2. DATA CENTER’S RAM 313

Figure I.22: How a cloud management system views RAM resources with a
relative threshold value 5, the updates points are plotted a circles.

Figure I.23: How a cloud management system views RAM resources with a
relative threshold value 10, the updates points are plotted a circles.

314 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.24: How a cloud management system views RAM resources with a
relative threshold value 15, the updates points are plotted a circles.

Figure I.25: How a cloud management system views RAM resources with a
relative threshold value 20, the updates points are plotted a circles.

I.2. DATA CENTER’S RAM 315

Figure I.26: How a cloud management system views RAM resources with a
relative threshold value 25, the updates points are plotted a circles.

Figure I.27: How a cloud management system views RAM resources with a
relative threshold value 30, the updates points are plotted a circles.

316 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.28: How a cloud management system views RAM resources with a
relative threshold value 35, the updates points are plotted a circles.

Figure I.29: How a cloud management system views RAM resources with a
relative threshold value 40, the updates points are plotted a circles.

I.2. DATA CENTER’S RAM 317

Figure I.30: How a cloud management system views RAM resources with a
relative threshold value 45, the updates points are plotted a circles.

Figure I.31: How a cloud management system views RAM resources with a
relative threshold value 50, the updates points are plotted a circles.

318 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.32: How a cloud management system views RAM resources with a
relative threshold value 55, the updates points are plotted a circles.

Figure I.33: How a cloud management system views RAM resources with a
relative threshold value 60, the updates points are plotted a circles.

I.2. DATA CENTER’S RAM 319

Figure I.34: How a cloud management system views RAM resources with a
relative threshold value 65, the updates points are plotted a circles.

Figure I.35: How a cloud management system views RAM resources with a
relative threshold value 70, the updates points are plotted a circles.

320 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.36: How a cloud management system views RAM resources with a
relative threshold value 75, the updates points are plotted a circles.

Figure I.37: How a cloud management system views RAM resources with a
relative threshold value 80, the updates points are plotted a circles.

I.2. DATA CENTER’S RAM 321

Figure I.38: How a cloud management system views RAM resources with a
relative threshold value 85, the updates points are plotted a circles.

Figure I.39: How a cloud management system views RAM resources with a
relative threshold value 90, the updates points are plotted a circles.

322 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.40: How a cloud management system views RAM resources with a
relative threshold value 95, the updates points are plotted a circles.

I.3. DATA CENTER’S STORAGE 323

I.3 Data center’s storage

Figure I.41: Data center sample storage (GB) capacity per second

Figure I.42: How a cloud management system views storage resources with a
relative threshold value 5, the updates points are plotted a circles.

324 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.43: How a cloud management system views storage resources with a
relative threshold value 10, the updates points are plotted a circles.

Figure I.44: How a cloud management system views storage resources with a
relative threshold value 15, the updates points are plotted a circles.

I.3. DATA CENTER’S STORAGE 325

Figure I.45: How a cloud management system views storage resources with a
relative threshold value 20, the updates points are plotted a circles.

Figure I.46: How a cloud management system views storage resources with a
relative threshold value 25, the updates points are plotted a circles.

326 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.47: How a cloud management system views storage resources with a
relative threshold value 30, the updates points are plotted a circles.

Figure I.48: How a cloud management system views storage resources with a
relative threshold value 35, the updates points are plotted a circles.

I.3. DATA CENTER’S STORAGE 327

Figure I.49: How a cloud management system views storage resources with a
relative threshold value 40, the updates points are plotted a circles.

Figure I.50: How a cloud management system views storage resources with a
relative threshold value 45, the updates points are plotted a circles.

328 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.51: How a cloud management system views storage resources with a
relative threshold value 50, the updates points are plotted a circles.

Figure I.52: How a cloud management system views storage resources with a
relative threshold value 55, the updates points are plotted a circles.

I.3. DATA CENTER’S STORAGE 329

Figure I.53: How a cloud management system views storage resources with a
relative threshold value 60, the updates points are plotted a circles.

Figure I.54: How a cloud management system views storage resources with a
relative threshold value 65, the updates points are plotted a circles.

330 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.55: How a cloud management system views storage resources with a
relative threshold value 70, the updates points are plotted a circles.

Figure I.56: How a cloud management system views storage resources with a
relative threshold value 75, the updates points are plotted a circles.

I.3. DATA CENTER’S STORAGE 331

Figure I.57: How a cloud management system views storage resources with a
relative threshold value 80, the updates points are plotted a circles.

Figure I.58: How a cloud management system views storage resources with a
relative threshold value 85, the updates points are plotted a circles.

332 APPENDIX I. RELATIVE THRESHOLD UPDATE POLICY EXPERIMENTS (2)

Figure I.59: How a cloud management system views storage resources with a
relative threshold value 90, the updates points are plotted a circles.

Figure I.60: How a cloud management system views storage resources with a
relative threshold value 95, the updates points are plotted a circles.

Appendix J

Test results

In this appendix the results with a scale of bytes per minute for one round of test
scenarios are given.

333

334
A

P
P

E
N

D
IX

J.T
E

S
T

R
E

S
U

LT
S

Figure J.1: The OSPF protocol traffic - bytes per 10 minute. First test scenario: One embedded data center in network.
protocol traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic

335

Figure J.2: The OSPF protocol traffic - bytes per 10 minute. Third test scenario: Six embedded data center in network.
protocol traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic.

336
A

P
P

E
N

D
IX

J.T
E

S
T

R
E

S
U

LT
S

Figure J.3: The OSPF protocol traffic - Byte per minute . Test scenario one - one embedded data center in network. protocol
traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic

337

Figure J.4: The OSPF protocol traffic - Byte per minute . Test scenario two - tree embedded data center in network. protocol
traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic

338
A

P
P

E
N

D
IX

J.T
E

S
T

R
E

S
U

LT
S

Figure J.5: The OSPF protocol traffic - Byte per minute . Test scenario tree - six embedded data center in network. protocol
traffic for OSPF without Cloud LSA, OSPF with Cloud LSA, and the Cloud LSA traffic

www.kth.se

TRITA-ICT-EX-2013:85

	Introduction
	Overview
	Problem description
	Solution proposal
	Goals
	Methodology
	Limitations
	Thesis outline

	Background study
	Cloud computing
	Cloud characteristics
	Cloud service models
	Cloud Deployment Models
	Varieties of Cloud
	Distributed Cloud
	Carrier network and cloud
	Network embedded cloud
	Cloud Management System

	Routing protocols
	Distance-Vector routing algorithms
	Link-State routing algorithms

	Open Shortest Path First
	OSPF operations
	Link-State Advertisements
	Opaque Link-State Advertisement
	OSPF Traffic Engineering

	OSPF reliable flooding and flooding control
	Link-state update policies
	Open source routing suite
	Quagga router
	Quagga OSPF API

	Related works

	Design
	Solution architecture
	Cloud-OSPF module's design
	Design issues
	Quagga as routing suite
	Embedded data center

	Solution Design
	Cloud-OSPF-Sender
	Cloud-OSPF-Receiver

	Cloud LSA
	Cloud LSA format
	Summery

	Implementation
	Data center resource utilization module
	Data center module's flowchart
	Data center resource utilization results

	Cloud-OSPF-Sender module
	Cloud-OSPF-Receiver module

	Cloud resources and updates policies
	Immediate update policy
	Periodic update policy
	Class-based update policy
	Equal-sized classes
	Exponential-sized classes

	Threshold-based update policy
	Absolute threshold-based update policy
	Relative threshold-based update policy

	Summary

	Analysis
	Performance of solution
	Evaluation based on test scenarios
	Set up test environment
	Expected result
	Measured results
	More observations in testing

	Discussion

	Conclusions
	Conclusion
	Future work
	Required reflections

	Bibliography
	Embedded data center module source code
	Embedded data center model results
	Cloud-OSPF-Sender source code
	Periodic update policy performance analysis
	Equal-sized class-based update policy
	Data center's CPU
	Data center's RAM
	Data center's storage

	Exponential-sized class-based update policy experiments
	Data center's CPU
	Data center's RAM
	Data center's storage

	Absolute threshold-based update policy experiments
	Data center's CPU
	Data center's RAM
	Data center's storage

	Relative threshold update policy experiments
	Data center's CPU
	Data center's RAM
	Data center's storage

	Relative threshold update policy experiments (2)
	Data center's CPU
	Data center's RAM
	Data center's storage

	Test results

