Network Device Discovery

&

L,
DENYS KNERTSER EFKTHS
and %?%zm:x::go

VICTOR TSARINENKO Sde

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

Network Device Discovery

Denys Knertser and Victor Tsarinenko

June 10, 2013

Abstract

Modern heterogeneous networks present a great challenge for network operators
and engineers from a management and configuration perspective. The Tail-f
Systems’ Network Control System (NCS) is a network management framework
that addresses these challenges. NCS offers centralized network configuration
management functionality, along with providing options for extending the
framework with additional features. The devices managed by NCS are stored
in its Configuration Database (CDB). However, currently there is no mechanism
for automatically adding network devices to the configuration of NCS, thus each
device’s management parameters have to be entered manually. The goal of this
master’s thesis project is to develop a software module for NCS that simplifies
the process of initial NCS configuration by allowing NCS to automatically add
network devices to the NCS CDB.

Apart from developing the software module for discovery, this project aims to
summarize existing methods and to develop new methods for automated discovery
of network devices with the main focus on differentiating between different
types of devices. A credential-based device discovery method was developed
and utilized to make advantage of known credentials to access devices, which
allows for more precise discovery compared to some other existing methods. The
selected methods were implemented as a component of NCS to provide device
discovery functionality.

Another focus of this master’s thesis project was the development of an approach
to network topology discovery and its representation. The aim is to provide both a
logical Internet Protocol (IP) network topology and a physical topology of device
interconnections. The result is that we are able to automatically discover and
store the topology representation as a data structure, and subsequently generate a
visualization of the network topology.

11

Sammanfattning

Moderna heterogena nétverk utgor en stor utmaning for operatdrer och ingenjorer
att hantera och konfigurera. Tail-f Systems NCS produkt dr ett ramverk for
nitverks konfiguration som addresserar dessa utmaningar. NCS &r ett centraliserat
nitverks konfigurations verktyg. NCS ir anviandbart som det dr, men kan ocksa
byggas ut av anvindaren med ytterligare funktioner. De enheter som hanteras
med NCS lagras i konfigurationsdatabasen (CDB). For nédrvarande finns det ingen
automatiserad mekanism for att addera nitverksenheter till NCS, och varje enhets
parametrar maste fyllas i manuellt. Detta examensarbetes mal &r att utveckla en
mjukvarumodul for NCS som forenklar NCS konfiguration genom att automatiskt
lagga nétverksenheter till NCS CDB.

Forutom att utveckla programvara for enhetsidentifiering, syftar detta projekt till
att sammanfatta befintliga metoder och utveckla nya metoder for automatiserad
nitverksenhetsidentifiering med huvudfokus pa att skilja mellan olika typer
av enheter. En metod baserad pa forkonfigurerade autenticeringsuppgifter har
utvecklats och den anvinds for att precist kunna identifiera olika typer av
nitverkselement. De valda metoderna har implementerats som en optionell modul
till NCS som erbjuder enhetsidentifieringsfunktionalitet.

Ytterligare ett fokus for detta examensarbete har varit att utveckla metoder for
identifieraing av nitverkstopologin, och modeller for hur topologin ska repre-
senteras. Vi har syftat till att identifiera bade den logiska IP nitverkstopologin
(L3) och den fysiska topologin av sammankopplade enheter (L2). Den viktigaste
uppgiften har varit att identifiera och lagra topologi representation som en
datastruktur, och dessutom generera en visualisering av nédtverkstopologin.

11

v

Acknowledgements

We would like to thank our industrial supervisors Claes ''Klacke' Wikstrom
and Stefan Wallin for all their help and invaluable feedback, as well as great
discussions and providing us with a lot of ideas for the project. We would also like
to thank everyone at Tail-f Systems for making us feel very welcome and for the
friendly atmosphere, especially Ulf Tennander, Jan Lindblad, Jane Carlgren,
Christopher Williams.

Professor Gerald Q. '"Chip" Maguire Jr. has been a great academic

supervisor who provided us with valuable information and continuous extensive
feedback.

We are grateful to our families for their support which we felt despite the distance
from home.

Special thanks to our friends for letting us from time to time forget about the
project and making us feel happy.

vi

Contents

1 Introduction
1.1 Problem statement and project goals
1.2 Methodology
1.3 Restrictions and limitations
1.4 Structure of thereport

2 Background

2.1 Network management protocols

21.1 SNMP.

212 CLI . ..o e

213 NETCONF
22 NCSoverview L
2.3 Device discovery techniques
2.4 Link-layer discovery techniques
2.5 Link-layer neighbor discovery protocols
2.6 IPv6 discovery techniques

3 Device discovery implementation
3.1 Device discovery module description
3.2 Datamodel description L.
3.3 ImplementationbasedonNmap
3.4 Stand-alone device discovery engine
3.4.1 General logic of the stand-alone device discovery engine .
342 TCPportscanning
343 SNMPscanning L.
3.4.4 Storing device type and description
3.5 Loading devicesintoNCS
3.6 Device discovery module architectural overview
3.7 Resultsandanalysis.

Vil

4 Topology discovery implementation
4.1 Topology discovery module description

S a w »

4.2 Data model description . .
4.3 Logical topology discovery
4.4 Physical topology discovery
4.5 Topology visualization . .

4.6 Topology discovery architectural overview

4.7 Results and analysis

Conclusions and Future work
5.1 Project summary and results
5.2 Ethical considerations . . .
53 Futurework

Device discovery data model
Device discovery architecture
Topology discovery data model

Topology discovery architecture

viil

51
51
52
53
55
56
57
60

69
69
71
72

83

87

91

95

List of Figures

0NN N BN

— et e e \O
AN Nk W= O

17

18
19
20
21
22
23
24
25
26
27
28
29

NCS logical architecture
IP and TCP headers format
Possible outcomes of TCP port scanning attempt
Discovery package logical overview
Discovery data model overview
Nmap-based discovery architectural overview
Stand-alone discovery architectural overview
Loading devices into NCS architectural overview
Topology package logical overview
Topology package data model overview
L3 topology discovery architectural overview
L2 topology discovery architectural overview
Virtual network topology
Discovered L3 topology visualization
Discovered L2 topology visualization
Discovered L3 topology visualization with misconfigured device

(CiS3) . . e
Discovered L2 topology visualization includes the misconfigured

device
Discovery data model: discovery.yang
Discovery data model: discovery-types.yang
Discovery data model: discovery-base.yang
Discovery data model: discovery-config.yang
Discovery data model: discovery-devices.yang
Discovery component: Nmap-based discovery
Discovery component: Stand-alone discovery engine
Discovery component: loading devices into NCS
Topology data model: topology.yang
Topology data model: topology-base.yang
Topology data model: topology-13.yang
Topology data model: topology-12.yang

1X

30 Topology component: 1.3 topology discovery
31 Topology component: L2 topology discovery

List of Listings

0NN N BN

— e e e e e e e e e \O
O 0 IO N B W= O

Obtaining system description string using SNMPv3 14
Obtaining a routing table using SNMPv2 15
Service “banner grabbing” examples 16
A packet with a service banneronthe wire 16
TTL valuesexample 17
IPv6 multicastexample 22
HTTP service probe usedby Nmap 30
A set of Nmap flags used for the device discovery component . . . 31
Nmap-based discovery input and output example 43
Statistics of an Nmap-based discoveryrun 43
Example of discovered devices in Nmap-based discovery 44
Stand-alone discovery input and statistics 45
Example of discovered devices in stand-alone discovery 46
Adding adevicetothe NCSCDB 48
List of configured devices used in the topology discovery examples 61
L3 topology discovery action 62
L2 topology discovery action 62
L3 topology discovery results 63
L2 topology discovery results 64

X1

Xii

List of Acronyms and
Abbreviations

API
ARP
ASN.1
BER
cbB
CDP
CGA
CLI
DNS
DU
ECN
EDP
FDP
GPL
HTTP
HTTPS
ICMP
ID
IDS

Application Programming Interface
Address Resolution Protocol
Abstract System Notation One
Basic Encoding Rules
Configuration Database

Cisco Discovery Protocol
cryptographically generated address
Command Line Interface

Domain Name System

Data unit

Explicit Congestion Notification
Extreme Discovery Protocol
Foundry Discovery Protocol
General Public License

Hypertext Transfer Protocol
Hypertext Transfer Protocol Secure
Internet Control Message Protocol
identifier

Intrusion Detection System

Xiil

IEEE
IETF
10S

IPS
JunOS
L2

L3
LAN
LLDP
MAC
MIB
MPLS
NCS
NDP
NED
NETCONF
NMS
oD
oS
oul
PDU
RPC
SEND
SMI
SNMP
SSH

Institute of Electrical and Electronics Engineers
Internet Engineering Task Force
Internetwork Operating System
Internet Protocol

Intrusion Prevention System

Juniper Operating System

Layer 2

Layer 3

Local Area Network

Link Layer Discovery Protocol
Media Access Control

Management Information Base
Multi-protocol Label Switching
Network Control System

Nortel Discovery Protocol

Network Element Driver

Network Configuration Protocol
Network Management System

Object Identifier

operating system

Organizationally Unique Identifier
Protocol Data Unit

Remote Procedure Call

SEcure Network Discovery

Structure of Management Information
Simple Network Management Protocol

Secure Shell

Xiv

SSL
STP
TCP
TLS
TLV
TTL
UDP
VM
VPN
WebUI
WLAN
XML
XSD

Secure Sockets Layer
Spanning Tree Protocol
Transmission Control Protocol
Transport Layer Security
Type-Length-Value

Time to Live

User Datagram Protocol
Virtual Machine

Virtual Private Network
Web User Interface

wireless local area network
eXtended Markup Language
XML Schema Definition

XV

XVi

Chapter 1

Introduction

Network management became a non trivial task, as networks grew and
incorporated different types of devices. Manual network management of large
scale networks is unfeasible due to the need for engineers specialized in different
aspects and types of network devices and their management, limited time, need
to define a strategy for configuration management, and the effort to track the
configuration state of large number of different devices. These factors obviously
increase the costs and effort required for network management. To overcome these
difficulties Network Management Systems (NMSs) were developed.

An NMS is a tool for network operators and engineers. Such a tool
enables centralized configuration management of many different network devices,
consolidates the storage of device configuration and state information, pushes and
pulls the configuration changes to and from the devices. Additionally, an NMS
may provide visualizations of the network topology and state, provide an alert
system with notifications, and automate network service deployment. However,
designing and developing such a system is a non-trivial task. The reasons for
this are the presence of different vendors in the network equipment market, the
existence of different configuration interfaces to these network devices, and the
lack of a single generic interface for configuration management. For instance,
consider the network equipment vendors: Juniper and Cisco; both of these
vendors have proprietary operating systems (OSs) on their devices and use
proprietary configuration interfaces, which in turn requires an NMS to implement
two completely different ways to manage these devices, and, ultimately, other
configuration interfaces to manage other types of devices. Designing and
developing such interfaces for every possible device type becomes impractical
due to both the number of different devices and the evolution of their interfaces. A
possible solution is to define a model for the device configuration structure which

serves as a structured representation of the device configuration and a protocol
which provides an interface to access this model and to perform configuration
changes.

Network Control System (NCS), an NMS developed by Tail-f Systems, is a
network management system and framework based on the Network Configuration
Protocol (NETCONF) and YANG (a protocol that provides a unified interface to
different devices and a modeling language utilized by this protocol). The details of
these are discussed in the next chapter. However, NCS needs to support not only
NETCONF-enabled devices, but also devices that do not yet have NETCONF
support, or will never have NETCONF support. NCS does this by enabling
extensions to the system in the form of YANG defined models that mimic the
configuration structure of devices. For instance, a Simple Network Management
Protocol (SNMP) Management Information Base (MIB) can be defined in a
YANG model and NCS can use SNMP to manipulate the configuration data
according to the models.

1.1 Problem statement and project goals

NCS incorporates a vast number of features that enable automated and centralized
device management. However, in order to further extend NCS’s functionality and
to minimize network management effort, a suitable device discovery mechanism
is required. Currently, NCS supports manually adding devices to the system, thus
the operator has to provide the address of the device and define its type. The device
type in NCS specifies which (internal) interface NCS should use to communicate
with the device (this internal interface will utilize NETCONF, SNMP, Cisco
Command Line Interface (CLI), etc. to configure the device).

This thesis project will define a device discovery approach for use in an Internet
Protocol (IP) network that will best suit NCS and enable NCS to provide
automated device discovery functionality. However, device discovery is not a
trivial task, since it requires not only determining the address of a device and
whether it is accessible, but most importantly its type, i.e. whether the device
is a Cisco Internetwork Operating System (IOS) device, Cisco Catalyst device,
Juniper device, or some other kind of device. This is especially crucial for NCS,
since the device type specifies which interface NCS will use to manage the device.
Thus, the discovery module should be able to find NETCONF, CLI, and SNMP
enabled devices and differentiate between them.

Device discovery, as defined in the context of this thesis, is a process of finding
all the network devices in an address space specified by the network operator.
The results of this network discovery process are represented as a list of devices
defined in a YANG model (which includes device address and device type as
primary attributes, as well as additional parameters, such as port numbers for
control). The YANG model is then mapped to the NCS model and the devices are
added to the NMS.

Another focus of this thesis is network topology discovery. The implementation
of this task relies upon the SNMP and Cisco Discovery Protocol (CDP) protocols,
thus, it is desirable for the network devices to support one or more of these
protocols. Additional information about the network topology can be obtained
from the devices’ operational data, i.e. from the Media Access Control (MAC)
address table of a network switch or looking at the status of each of device’s
interfaces.

In addition to the practical implementation of network device discovery, this
project will also identify some of the common methods used for network device
discovery and evaluate each of these methods. The results can serve as an
input for further research into device and topology discovery, as well as for
network management purposes. As network scanning and discovery has specific
ethical concerns in some applications, a discussion of ethical aspects of network
discovery and possible implications will also be presented.

1.2 Methodology

The initial requirement of this thesis project was to investigate methods that can
be successfully utilized for network device and topology discovery, and as a
result produce a set of methods that would suit the discovery component of NCS.
Therefore, a significant part of this thesis project is devoted to the analysis and
evaluation of current methods for device and topology discovery. This part of
the project relies upon qualitative research methods. These qualitative research
methods were used to develop an initial understating of the problem and to provide
a foundation for further research and, in our case, implementation.

The actual implementation of the methods in the form of a discovery component
for NCS is the main focus of this master’s thesis project. The incremental
approach to software development was adapted for this implementation. The
development process mainly consists of three phases in the development of a
single software component: planning, implementation, and testing. The planning

phase defined the overall functionality and approach used to develop the software
component. The implementation phase was the actual implementation of the
required functionality. Testing included the evaluation of the correct functionality
of the component and error correction. An incremental approach was chosen due
to its simplicity and cyclic nature. This approach is useful when requirements
change or there is a need to introduce additional functionality. The development
cycle for each component may be repeated until the components satisfy the
requirements.

1.3 Restrictions and limitations

This thesis project was done at Tail-f Systems. All the source code developed
during this project is the property of Tail-f Systems. The source code listings
will be removed from the public version of this document, and will only be
present in the internal version for the company. This document mainly discusses
the ideas and approaches used during the project, describes the methods and
their implementation used during the development phase of the project, provides
suggestions for different aspects of discovery techniques, and discusses the
associated ethical concerns of device discovery.

An important point to mention is the licensing restrictions of Nmap [1]. As part
of this work makes use of the results produced by Nmap and relies somewhat
on Nmap copyrighted data files (as Nmap relies on its nmap-os-db and nmap-
service-probes for OS and service version detection), the use of this part of code
may require further licensing before it can be used in a product.

1.4 Structure of the report

This report is organized as follows:

e Chapter 1 gives an introduction to the area of research, discusses the goals
of the thesis, and the purpose of this thesis project;

e Chapter 2 discusses relevant background and summarizes the results of our
literature study;

e Chapter 3 describes the implementation of the network device discovery
component;

e Chapter 4 describes the implementation of the topology discovery
component; and

e Chapter 5 concludes the thesis project, discusses the goals which have
been reached, suggests future work, and describes the ethical considerations
related to this project.

Chapter 2 gives an overview of the protocols and software products, as well
as other information, needed to understand this thesis, or information that
is otherwise relevant to this thesis project. Among other things, Chapter 2
describes NCS; as this software was the base for the practical part of this thesis
project.

Chapter 2

Background

Several topics covered in our literature study are discussed in this chapter. One
topic is network management protocols, as these are essential to understand any
work in the area of network management. As one of the goals of this thesis project
is to develop a device discovery component for NCS, an overview of NCS is
presented in Section 2.2. Existing device discovery techniques are presented in
Section 2.3. This chapter also mentions link-layer device discovery techniques
and gives an overview of Link Layer Discovery Protocol (LLDP) and proprietary
LLDP-like protocols which are essential for the topology discovery task. The
final section gives an overview of the techniques for device discovery in an IPv6
network.

2.1 Network management protocols

Network management protocols define a means to access the configuration data of
a managed device, as well as a means to change this data. This section will focus
on the protocols which are essential in the context of working with NCS, namely
SNMP, CLI, and NETCONF.

2.1.1 SNMP

SNMP [2] is a protocol for network management developed in late 1980s.
The standard describes a protocol for exchanging management data between a
management station and a managed device, the structure of a MIB, and a simple
network management system architecture.

In its initial version SNMP assumed a centralized management system
architecture which consists of a single management station and a number of
managed nodes called SNMP agents. Later versions of SNMP added the ability of
one management system to communicate with another, thus enabling a distributed
network management system. Agents store data in the form of a tree whose leafs
are variables called objects. The branches of this tree are numbered, so that each
object can be uniquely represented by a sequence of branch numbers which leads
from the root to the leaf of the tree. This protocol allows the management station
to read a single variable or a set of variables from an SNMP agent, as well as
to modify the value of a single writable variable or a set of writable variables.
The standard also allows for asynchronous operations in which an agent sends a
special type of message called an SNMP Notification (Trap) when a defined event
happens (e.g. one of the links goes down).

MIBs define sets of management variables used by SNMP. A device can support
one or several MIBs which can be standard or proprietary. From the point of view
of the object tree, a MIB is a subtree which contains a set of leafs referenced
by unique Object Identifiers (OIDs). A MIB consists of a set of modules. A
module is a set of related management objects. A standard way to define a MIB
module is to use the Structure of Management Information (SMI) language [3], a
subset of Abstract System Notation One (ASN.1) language adapted for use with
SNMP. SNMP utilizes ASN.1 to encode objects for transmission (specifically,
Basic Encoding Rules (BER) of ASN.I is used). SMI is intended to define a
module’s semantics as well as the syntax and semantics of the management objects
and the syntax and semantics of the notifications [3].

A particular advantage of SNMP is the simplicity of the protocol and low
complexity [4] of an agent implementation. This low complexity allows an SNMP
agent to be embedded into even very limited resource devices. This feature
made SNMP ubiquitous, so that today most network devices support SNMP
agents.

However, SNMP has some disadvantages which prevent it from being the main
protocol for network management today. Initially, SNMP had weak security,
as SNMP was used primarily for reading information from the agents [4] and
there was an assumption that only authorized and trusted users had access to
the network. Even though the security model was improved in the third version
of the protocol, there are still significant security issues, thus today SNMP is
used primarily for fault management and performance management [5]. Another
problem is the limited capabilities of the protocol. For example, SNMP is
only able to read and write a single variable or a set of variables referenced

by sequences of numbers', thus making the task of developing a management
system more complex. Although there are standardized sets of managed objects
(e.g. MIB-II) which are recommended to be implemented, usually they do not
provide enough flexibility, therefore most of the functionality of many devices
is only available by using proprietary MIBs, which makes it difficult to operate
heterogeneous networks. Generally, due to its variable-oriented nature SNMP is
used to operate the devices by management software only, and SNMP is generally
unsuitable for performing operations manually by humans.

2.1.2 CLI

The prevailing way to configure network devices today is using a CLI. This can
be done locally (using wires to physically connect to a management port of the
device), but more often is performed remotely (usually using Secure Shell (SSH)
or telnet as a transport protocol). The advantage of this approach is that it offers
maximum flexibility of configuration. However, each CLI is usually proprietary
and even differs between different devices of the same manufacturer; this makes
the task of managing a heterogeneous network non-trivial and requires multiple
engineers who each specialize in different manufacturer’s equipment. Also,
although a CLI allows for automation of configuration activities to some extent, it
is primarily intended to be used by humans, which makes developing management
applications complex. However, in the context of this thesis we will speak about
using the CLI interface offered by devices as if this was a protocol, as we will be
sending CLI commands and parsing the results using software.

2.1.3 NETCONF

The Internet Engineering Task Force (IETF) NETCONF [6] is an extensible
protocol designed to provide a generic interface to configure network devices. It
is a fairly new standard and was developed to eliminate the previously discussed
issues concerning the current means of configuration. Specifically, Schonwilder,
Bjorklund, and Shafer [7] state that: “The driving force behind NETCONF is
the need for a programmatic cross-vendor interoperable interface to manipulate
configuration state”.

NETCONF adopts a document-based approach to device configuration [5], this
means that unlike SNMP and CLI it is possible to work with a device configuration

Tt is also possible to transfer a number of consequent variables with SNMP GETBULK
message by specifying the first OID in the sequence and the number of variables to retrieve

as a structured document, instead of working with a set of variables or a set of
commands. NETCONF not only allows us to retrieve or submit configuration
information to a device, but also to edit arbitrary parts of a configuration in a
single transaction.

However, NETCONF by itself does not support message passing; thus it has to
utilize some transport protocol. Relying upon standardized secure transport layers
(SSH [8], Transport Layer Security (TLS) [9], and others [10, 11]) is a good
practice from the security point of view, as these standardized protocols have
been extensively studied by the research community. Additionally, it is easier
to integrate credential management for NETCONF using an existing security
management system, as opposed to using SNMP [5].

NETCONF makes use of eXtended Markup Language (XML) to represent the
device configuration in the form of a document. The format of this document
for a device is defined using a modeling language and is customizable, thus
vendors can define their own configuration models depending on the devices
and services they offer. Not only it is possible to define the structure of the
device configuration data, but also the device’s operational state data (which will
also be accessible with NETCONF). While it is possible to specify the model
using one of the standardized XML schema languages (such as XML Schema
Definition (XSD)), the recommended language according to the IETF Network
Configuration Working Group is YANG [12]. YANG [13] was specifically
developed by the IETF NETCONF working group for this purpose.

The motivation behind YANG was to create an easily readable data modeling
language which allows for a high degree of validation of a configuration
datastore [7], which is crucial for automated network configuration management.
YANG not only allows us to define the format for a device’s configuration schema,
but also allows us to define the necessary constraints which subsequently allow
us to detect an invalid configuration, e.g. locking the “disabled” (or Cisco’s
“shutdown”) option of a remote management interface allows us to make sure
that the connection between the management station and the managed device will
not be lost because of a mistake in the configuration.

2.2 NCS overview

NETCONF provides a generic interface to manipulate configuration data for
network devices. However, in a large scale configuration management system
we not only need a generic approach, we generally need a management

10

solution which allows network operators and engineers to minimize their efforts
and to facilitate a consistent approach to configuration management. NCS
provides a single configuration interface to a heterogeneous multi-vendor network
infrastructure. NCS uses NETCONF as its primary configuration protocol and
thus it directly supports NETCONF enabled devices. NCS is not just a network
management system with specific built-in functionality, it is an extensible and
scalable framework with a modular architecture which allows it to be very flexible
and to integrate additional functionality. The modules in NCS are called packages.
A package may be a YANG model that mimics a device configuration model,
in this case such a package is called a Network Element Driver (NED). NEDs
are used to define which configuration data sets of a device NCS can manage.
Alternatively, a package may be a service model which defines how a common
service, such as Multi-protocol Label Switching (MPLS), can be deployed on
different devices. A package may also extend the functionality of NCS by adding
custom functions and actions via NCS’s Java Application Programming Interface
(API).

NCS is comprised of three major parts: the service manager, the device manager,
and the Configuration Database (CDB). Figure 1 provides a representation of

NCS’s logical architecture.
Applications @
Workflows
0SS, BSS

REST, Java, CLI JS, SNMP
CLI Web Ul

Service Manager .
lDevice Manager

@®

Cisco, Juniper, ...
NETCONF, SNMP, CLlI, ...

Figure 1: NCS logical architecture [14]
(appears here with permission from copyright owner)

The device manager functions as an interface to managed devices. It provides a
means to add a new device to the CDB (a device may be added manually from a

11

device template or from an existing device configuration); to deploy configuration
changes to managed devices in a fail-safe way, so that the changes can be applied
simultaneously to any number of devices; to perform a configuration rollback;
and to synchronize the NCS running the CDB with the actual configuration of the
managed devices, which works in two ways (both to and from the devices).

The service manager defines higher layer functionality by acting as an interface to
apply configuration changes to managed devices. It provides a means to model
services (such as a Virtual Private Network (VPN) or MPLS) and defines the
mapping of a service to managed devices via the device model.

The CDB is the core component of NCS and functions as a database for managed
device configurations. The database also manages the relationship between
service and device models. The data stored in the database may be defined as
a configuration (configurable) or operational data (as determined by a config flag
in the YANG model defined for a particular system component). Configuration
data is defined as a configurable set of parameters which have read and write
access from the NCS’s user interface; this data defines configurable parameters
both for NCS internal options and for remote device configuration management.
Operational data is defined as a read-only (from the user interface perspective)
informational data, which is useful for representing state data (such as routing
tables or system uptime).

NCS provides several northbound (i.e. upward to higher layer applications) and
southbound (i.e. downward to devices) interfaces. The northbound interfaces
include CLI, Web User Interface (WebUI), and APIs. For instance, a NETCONF
northbound interface can be used to provide access to the NCS to other
applications. A Java API can be used to add custom applications and services to
NCS in order to extend its functionality. A CLI not only provides a command line
interface to manage NCS, but also supports scripting, which enables automation of
tasks. The WebUI is a web based management interface which can be customized
via packages. The southbound interfaces, on the other hand, provide the actual
means for configuring the managed devices. The default protocol is NETCONF;
therefore, if a device is NETCONF enabled and runs a NETCONF server, then
NCS can automatically discover its capabilities and load the device model into its
database. However, since NETCONF is not the prevalent configuration protocol
at the moment, NCS provides other southbound interfaces as well. For Cisco
style CLI devices, NCS provides a CLI model that can be used to configure such
devices. NCS also has a number of commonly used MIBs as models to support
devices that can be configured over SNMP. For other types of devices NCS uses
NEDs, to represent a configuration model of a device defined in YANG.

12

2.3 Device discovery techniques

A number of approaches to discover network devices have been suggested
by the research community. The method suggested by Schonwilder and
Langendorfer [15] relies entirely on the Internet Control Message Protocol
(ICMP) protocol, specifically ICMP echo request/reply, ICMP address mask
request/reply, and ICMP port unreachable messages in order to extract a network’s
topology. However, this method will only work if ICMP traffic is not blocked
(unfortunately, the majority of the systems do not respond to ICMP address
mask messages, as they have to be explicitly configured as address mask agents,
moreover this functionality is not mandatory to implement [16]). Additionally,
ICMP provides no information about the device itself. Lin, Lai, and Chen [17]
extend this approach by connecting to the SNMP interface of routers to fetch
the configuration information, the routing tables, and contents of the Address
Resolution Protocol (ARP) cache. This method may provide much better results.
Finally, system information might also be read using SNMP, providing important
information about the detected device’s type. However, the SNMP interface may
be closed or the credentials necessary to access it may be unknown.

Liu [18] and J. Wei-hua, L. Wei-hua, and Jun [19] suggest a more sophisticated
approach to identifying the type of a network device, which includes analyzing
various parameters collected during a communication session with this device.
These parameters combined together form a so called fingerprint which identifies
the OS of the target host. These parameters include a Time to Live (TTL) value,
the default packet size, Initial Sequence Number, window size, Transmission
Control Protocol (TCP)/IP flags, etc. Different OSs implement the TCP/IP stack
differently, thus it is possible to guess the OS from these values. An analysis of the
systems and fingerprints may be required to successfully and accurately perform
OS prediction. One of the tools that can be used for OS fingerprinting is Nmap
(“Network Mapper”) [20]. Nmap contains a large database of fingerprints. It can
also be extended by adding custom fingerprints.

A number of papers [21-23] focus on protocols for multimedia service discovery
rather than device discovery. The goal of multimedia service discovery is also
to find devices in the network, however the device which provides a service, i.e.
a network printer or multimedia device, often wishes to be found and makes an
effort to be reachable, for example by announcing its presence on the network.
Although this kind of device can also be managed with NCS, the focus of this
thesis project is on network infrastructure devices, such as routers and switches,
which often do not announce their presence, or otherwise do it using standard
network protocols, such as router advertisements in IPv6, therefore different

13

methods should be used to perform the search. Multimedia service discovery
is outside the scope of this work, but may be investigated in the future in order to
include this functionality into the network device discovery module that will be
developed.

The main purpose for doing device discovery is not only to find active nodes
on a network, but also be able to differentiate between the different types of
nodes and to determine the OS or software platform running on a specific node.
Device discovery can be performed passively or actively, where passive discovery
occurs by passively listening to or “sniffing” network traffic, while active device
discovery sends specifically crafted probe packets to target devices and analyzes
the response(s). Passive discovery is a method that may require a long or
predefined amount time (the period of time should be sufficient to produce a
relatively reliable result) and is not very suitable for switched networks, hence
it is not utilized frequently. The major focus in most cases is on active probing
of network devices by sending connection requests, analyzing publicly available
data from the devices, performing service banner grabbing, SNMP information
gathering, and more in-depth network scanning.

SNMP is a prevalent protocol for gathering information about devices, including
system and operational information. However, as mentioned earlier, due to the
specific characteristics of this protocol it is mainly used for gathering statistical
data and other information, rather than for remote configuration. Nevertheless,
its prevalence makes SNMP one of the best bets for remote device discovery,
considering that the required information, such as community strings (for SNMP
version 1 and 2) or credentials (for SNMP version 3) are known. A specific OID
that holds the identity of a hardware and software platform used by a system
(i.e. sysDescr from MIB-II) can be queried and this information retrieved.
Alternatively the vendor’s identification of the system (i.e. sysObjectID from
MIB-II) may be used to retrieve the platform identifier, however, the sysDescr
object provides more extensive information. Another example of using SNMP is
to gather information from the network devices such as the contents of a CDP
neighbors list or an interface’s configuration for network topology discovery. An
example in Listing 1 demonstrates a request for a system description using SNMP
version 3 and shows that information returned can be utilized to identify the type
of a device.

denis@denis-laptop:~$ snmpwalk -v3 -1 authPriv -u <username> -a <auth method> -A
"<auth password>" -x <privacy method> -X "<privacy password>" 192.168.200.10
1.3.6.1.2.1.1.1

is0.3.6.1.2.1.1.1.0 = STRING: "Linux savannah 3.2.0-29-generic-pae #46-Ubuntu SMP
Fri Jul 27 17:25:43 UTC 2012 i686"

Listing 1: Obtaining system description string using SNMPv3

14

Due to SNMP’s simplicity and prevalence it is also very useful for topology
discovery. As JiaBin Yin [24] and Han Yan [25] point out, SNMP is
the fundamental protocol for many existing topology discovery algorithms.
Particularly useful information for topology discovery can be obtained form the
routing tables in the devices. This information can help to map the network’s
topology. An example in Listing 2 illustrates an SNMP response to a request for
routing information.

vits@y550 ~ $ snmpwalk -v 2c -c public 192.168.200.10 1.3.6.1.2.1.4.21
RFC1213-MIB::ipRouteDest.0.0.0.0 = IpAddress: 0.0.0.0
RFC1213-MIB::ipRouteDest.10.0.2.0 = IpAddress: 10.0.2.0
RFC1213-MIB::ipRouteDest.192.168.200.0 = IpAddress: 192.168.200.0
RFC1213-MIB::ipRouteIfIndex.0.0.0.0 = INTEGER: 2
RFC1213-MIB::ipRoutelIfIndex.10.0.2.0 = INTEGER: 2
RFC1213-MIB::ipRoutelfIndex.192.168.200.0 = INTEGER: 3
RFC1213-MIB::ipRouteMetricl.0.0.0.0 = INTEGER: 1
RFC1213-MIB::ipRouteMetricl1.10.0.2.0 = INTEGER: 0
RFC1213-MIB::ipRouteMetricl1.192.168.200.0 = INTEGER: 0
RFC1213-MIB::ipRouteNextHop.0.0.0.0 = IpAddress: 10.0.2.2
RFC1213-MIB::ipRouteNextHop.10.0.2.0 = IpAddress: 0.0.0.0
RFC1213-MIB::ipRouteNextHop.192.168.200.0 = IpAddress: 0.0.0.0
RFC1213-MIB::ipRouteType.0.0.0.0 = INTEGER: indirect (4)
RFC1213-MIB::ipRouteType.10.0.2.0 = INTEGER: direct (3)
RFC1213-MIB::ipRouteType.192.168.200.0 = INTEGER: direct (3)
RFC1213-MIB::ipRouteProto.0.0.0.0 = INTEGER: local (2)
RFC1213-MIB::ipRouteProto.10.0.2.0 = INTEGER: local (2)
RFC1213-MIB::ipRouteProto.192.168.200.0 = INTEGER: local (2)
RFC1213-MIB::ipRouteMask.0.0.0.0 = IpAddress: 0.0.0.0
RFC1213-MIB::ipRouteMask.10.0.2.0 = IpAddress: 255.255.255.0
RFC1213-MIB::ipRouteMask.192.168.200.0 = IpAddress: 255.255.255.0

Listing 2: Obtaining a routing table using SNMPv2

Another, although not very reliable way of determining the type of a remote device
is so called “banner grabbing”. A service, for instance an SSH daemon, that is
active and accepting connections may identify itself with a specific message or
banner that it sends when a connection to it is being established. Some services
often include platform information, thus making it easy to identify the target host.
However, this is not always the case, banners can be modified or may contain only
a standard message that identifies the service, rather than the platform it is running
on. The snippets in Listing 3 represent a couple of scenarios of such messages and
the information that can be obtained using this approach.

15

vits@y550 ~ $ telnet 192.168.200.10 22
Trying 192.168.200.10...

Connected to 192.168.200.10.

Escape character is ""]’.
SSH-2.0-OpenSSH_5.9pl1 Debian-5ubuntul

vits@y550 ~ $ telnet 10.0.0.1 80
Trying 10.0.0.1...

Connected to 10.0.0.1.

Escape character is '"]’.

...output omitted...

Date: Wed, 30 Jan 2013 08:21:15 GMT
Server: lighttpd/1.4.29

vits@y550 ~ $ telnet 172.16.10.10 22
Trying 172.16.10.10...

Connected to 172.16.10.10.

Escape character is ""]’.
SSH-2.0-Cisco-1.25

Listing 3: Service “banner grabbing” examples

The second case in the above example does not provide a lot of information about
the platform, however this response can still be useful, since a given service might
only be supported by a known set of platforms, thus narrowing down the range
of possible types of hosts to one in this set. The first and third snippets, however,
show an SSH server running on an Ubuntu server and a Cisco router respectively,
and as can be seen the platform or vendor information may also be included.

Banner grabbing can be utilized in passive discovery; however, it may be only
useful in shared media networks, such as for instance wireless local area networks
(WLAN:Ss). For example, Listing 4 shows the actual service banner on the wire for
the last snippet in Listing 3.

10:45:36.402660 IP (tos OxcO, ttl 255, id 21167, offset 0, flags [none], proto
TCP (6), length 59)
172.16.10.10.ssh > y550.1ocal.57274: Flags [P.], cksum 0x009e (correct), seq
1:20, ack 1, win 4128, length 19
0x0000: 45c0 003b 52af 0000 £f£f06 fc2l aclO0 Oala E..;R...... [

0x0010: aclO0 0a0l 0016 dfba a774 95c2 c7a0 bced teoo.
0x0020: 5018 1020 009e 0000 5353 482d 322e 302d P....... SSH-2.0-
0x0030: 4369 7363 6f2d 312e 3235 0a Cisco-1.25.

Listing 4: A packet with a service banner on the wire

A similar approach, but again not very reliable, is to analyze an index page from a
device running a web server. This may be useful, since many configurable devices
today offer a management interface over Hypertext Transfer Protocol (HTTP).
Consider, for instance, Cisco or Juniper products, where the index page often
contains information about the vendor and sometimes the platform that is being
used. However, web servers are pretty common in networks today, hence this

16

approach may produce irrelevant results, and subsequently will require more in-
depth analysis of these results.

The following paragraphs will give a brief introduction to different TCP/IP header
fields and options that can be useful in OS discovery, specifically when using an
OS fingerprinting method. The format of IP and TCP headers is shown in Figure 2
for reference.

The first interesting field is the Time to Live field of the IP packet. This field
determines the maximum amount of time the packet can exist in the network. As
the packet traverses the network, each node that processes the packet decreases
this field by one. Once the field reaches zero the packet must be discarded. [26]
The maximum possible value is 255, however, the initial value for the field is not
standardized, and it is a function of the actual implementation of the TCP/IP stack.
Different implementations define different TTL values. Consider the example in
Listing 5.

vits@y550 ~ $ ping 10.0.0.201
PING 10.0.0.201 (10.0.0.201) 56(84) bytes of data.
64 bytes from 10.0.0.201: icmp_reg=1 ttl=63 time=0.905 ms

vits@y550 ~ $ ping 172.16.10.10
PING 172.16.10.10 (172.16.10.10) 56(84) bytes of data.
64 bytes from 172.16.10.10: icmp_reg=1 ttl=255 time=3.03 ms

Listing 5: TTL values example

The recommended value for the TTL is 64 [28], hence the Linux kernel uses
this recommended value. However, Cisco or Sun use a value of 255. The above
snippets (Listing 5) show ICMP echo replies from a Linux machine and a Cisco
router respectively. Although, it is not possible to correctly identify the exact
platform of the remote system simply based upon analyzing TTL values, this
information may significantly narrow down the possibilities, considering that the
number of hops to the target device can be estimated with at least some precision
(as can be done in most cases).

Another interesting field is the TCP Window size, which defines the amount of
data the target device can accept from the sender. A given OS can utilize different
window sizes, making this test not very effective, unless the different values an
OS can set are collected.

The TCP header sequence number field can also be analyzed. Specifically, the
initial sequence number and how the target device increments this number during
the communication session.

17

Version
(4 bits)

IHL

(4 bits) TS (Bbits)

Total Length (16 bits)

Identification (16 bits)

Flags
(3 bits)

Fragment offset
(13 bits)

Time to live Protocol
(8 bits) (8 bits)

Header Checksum

(16 bits)

Source address (32 bits)

IP header fields

Destination address (32 bits)

Options (24 bits)

Padding (8 bits)

Source port (16 bits)

Destination port (16 bits)

Sequence number (32 bits)

Acknowledgement number (32 bits)

Data
Offset
(4 bits)

UAIPIRISIF
RICIS|S|Y| I
GK/HTINN

Reserved
(6 bits)

Window (16 bits)

TCP header fields

Checksum (16 bits)

Urgent Pointer (16 bits)

Options (24 bits)

Padding (8 bits)

Data

Figure 2: IP and TCP headers format [26,27]

A number of TCP options can also be analyzed to provide additional input to
the process of device discovery. One interesting option is Explicit Congestion
Notification (ECN) [29] support in the TCP stack implementation. ECN-enabled
hosts can signal the existence of congestion before starting to drop packets, so
that the overall communication performance is improved. The timestamp option

18

and window can be scaled to improve performance by minimizing the number of
retransmissions and to exploit reliable communication over high speed links [30].
These two options can also provide input to OS fingerprinting. Allen [31]
describes these and several other methods in an extensive article on remote
fingerprinting, which provides additional information on this topic.

Nmap uses these and many other options to create an OS fingerprint. An extensive
guide to the TCP/IP fingerprinting methods supported by Nmap can be found in
the official Nmap project guide [32]. Nmap maintains a large database of known
fingerprints, namely nmap-os-db, and matches the fingerprints of discovered
devices against this database. If the database does not contain an exact match of a
fingerprint, an estimated match is provided along with a corresponding accuracy
rating.

2.4 Link-layer discovery techniques

A special case occurs when a device is in the same broadcast domain as
the management station, hence there are some additional methods that the
management station can utilize to discover the device. One of the reasons is
that the management station is able to exploit link-layer protocols to discover
the device. Another reason is that both devices are able to receive broadcast
information sent by each other.

As the management station is able to receive link-layer frames from the device,
it becomes possible to discover the link-layer address of the device, for example
the MAC address is readily seen on Ethernet networks. An interesting approach
that may provide information for device type detection is analyzing the vendor
portion or the Organizationally Unique Identifier (OUI) of the MAC address [33].
The database of OUI to vendor mapping is provided by Institute of Electrical and
Electronics Engineers (IEEE) and is (mostly) publicly accessible [34]. Although
a MAC address is easy to forge, generally there is no need to do so for
network devices and the MAC addresses are usually used, therefore this method
can be usually considered fairly reliable. Note that this will not be true for
cryptographically generated addresses (CGAs) as used by IPv6 in conjunction
with the SEcure Network Discovery (SEND) protocol [35], if the MAC address is
to be extracted from the IPv6 address.

A simple and quick method to search for devices in a broadcast domain is to
employ ARP which is intended for IP address to MAC address translation. An
ARP request is issued for each IP address in each subnet which is connected to the

19

management station and the responses are collected. The MAC address contained
in the response may be used to determine the device vendor as described above.
Since the device must respond to an ARP request (otherwise it would be virtually
offline), ARP network scanning provides very reliable results. For example, arp-
scan [36] is a tool which performs network scanning with ARP and may be used
to produce these results.

As the management station is able to receive broadcast frames sent by the device,
it also makes sense to passively listen to network traffic, since the management
station already receives all of these broadcast frames. Since some network
devices utilize link-layer discovery protocols, these frames can be sniffed by
the management station and may provide an important source of information for
detecting the type of the device.

2.5 Link-layer neighbor discovery protocols

Link-layer neighbor discovery protocols are protocols which act on the link layer
of the network and allow direct neighbors to discover each other. In order for
devices to see each other the link between them does not have to be active, but it
has to be enabled, i.e. this link must participate in routing or switching, so that the
devices connected with redundant links will discover each other. These protocols
not only allow discovery of the presence of a device, they also offer some
information about the device, such as an upper-layer address (i.e. IP address),
device model, or information about what software this device is running.

LLDP is a standardized non-vendor-specific protocol which provides neighbor
discovery functionality. It is defined for the IEEE 802 protocol stack (specifically,
it carries IEEE 802.1 and 802.3 related information [37]) and operates on top of
the underlying MAC layer. Essentially, each participating device sends LLDP
Data units (DUs) out all of its LLDP-enabled interfaces and listens for incoming
LLDP DUs. This is a one-way protocol, so there is no way to request information
from a particular device, even if the device is known to be a neighbor [38].
Additionally, LLDP allows a restricted mode of operation, in which the device
only transmits LLDP DUs or only receives DUs.

An LLDP DU [38] consists of a MAC header specific destination MAC address,
an EtherType, and a body. The body is a set of Type-Length-Value (TLV) units
which contain information about the device. There are 4 mandatory TLVs and an
arbitrary number of optional TLVs. The mandatory TLVs are:

e 1st TLV: Chassis ID - device hardware identifier, i.e. MAC address

20

e 2nd TLV: Port ID - outgoing port identifier, i.e. port number

e 3rd TLV: TTL - period of time (in seconds) during which the provided
information is valid

e Last TLV: End of LLDP DU

The predecessor of LLDP was the Cisco Discovery Protocol (CDP). CDP is a
Cisco proprietary protocol for link-layer neighbor discovery. It is similar to LLDP,
however they are not interoperable. While both LLDP and CDP are supported
by many Cisco devices, other devices support only CDP. This has to be taken
into consideration when discovering the network’s topology. There are a number
of other proprietary link-layer neighbor discovery protocols from other vendors,
such as: Extreme Discovery Protocol (EDP), Nortel Discovery Protocol (NDP),
and Foundry Discovery Protocol (FDP).

Link-layer neighbor discovery protocols are essential for the task of topology
discovery since it is the easiest way to detect redundant links. Other ways of
doing so include studying the device configurations and the output from protocols
such as the Spanning Tree Protocol (STP) or routing protocols, however utilizing
this information is a much more complex task.

2.6 1IPv6 discovery techniques

Some of the discovery techniques, that can be successfully utilized for IPv4,
may not apply to IPv6. This is due to some significant differences between
IPv6 and IPv4, such as a much larger address space and the local link address
concept [39,40]. However, IPv6 has some mechanisms that may be particularly
useful for device discovery and topology discovery. The rest of this section will
provide information about particular IPv6 features that can be useful in device and
topology discovery.

There is no broadcast address support in IPv6. The broadcast concept was
completely replaced with multicast; and since multicast is now an integral part
of the protocol (while in IPv4, multicast was an extension [41]), IPv6 provides
better support and structuring for multicast addressing. For instance FF02::1 and
FF02::2 are the multicast addresses that identify all nodes within the link-local (or
interface-local) scope and all routers within site-local, link-local or interface-local
scopes respectively [42]. These multicast addresses may be utilized to discover
the hosts and routers within the defined scope (interface-local, link-local, and site-
local). An example in Listing 6 shows the effect of sending ICMPv6 requests to

21

multicast addresses accessible via the ethO interface and the information that can
be obtained.

victorts@nms:~$ ping6 -I eth0 £f£f02::1

PING f£f02::1(£f£f02::1) from fe80::8044:61ff:feb6b:14a0 eth0: 56 data bytes

64 bytes from fe80::8044:61ff:fe6b:14a0: icmp_seqg=1 ttl=64 time=0.031 ms

64 bytes from fe80::lecl:deff:fe6d:6852: icmp_seg=1 ttl=64 time=0.383 ms (DUP!)
64 bytes from fe80::3ed4a:92ff:fedb:38aa: icmp_seq=1 ttl=64 time=1.14 ms (DUP!)
64 bytes from fe80::9cd45:6eff:fe26:be9l: icmp_seqg=1 ttl=64 time=1.23 ms (DUP!)

victorts@nms:~$ ping6 -I eth0 £f£f02::2

PING f£f02::2(£f£f02::2) from fe80::8044:61ff:feb6b:14a0 eth0: 56 data bytes

64 bytes from fe80::40d5:ccff:feba:63la: icmp_seqg=1 ttl=64 time=0.424 ms

64 bytes from fe80::215:17ff:fe76:9d1l: icmp_seqg=1 ttl=64 time=1.73 ms (DUP!)

Listing 6: IPv6 multicast example

The first snippet in Listing 6 shows all the hosts that can be reached by sending
only one ICMPv6 echo request, effectively avoiding the need to “ping” each
address in the subnet. The second part of the listing shows all the routers that
can be found on the subnet, again by sending only one ICMPv6 packet.

The Neighbor Discovery protocol specified for IPv6 is a protocol that allows IPv6
enabled nodes that reside on the same link to discover each other, discover routers,
and maintain reachability information [43]. The router and neighbor discovery
mechanism relies on the multicast addresses described above. This ND protocol
utilizes a set of ICMPv6 messages to enable the nodes to perform discovery related
tasks. These messages include:

e router advertisement messages sent by the routers to announce their
presence;

e router solicitation messages sent to request a router advertisement;

e neighbor solicitation messages sent to discover the nodes within the same
scope; and

e neighbor advertisement messages as responses to the neighbor solicitation
messages.

IPv6 also provides a security extension to its Neighbor Discovery protocol called
SEND [44]. SEND introduces security related options to the original version
of the neighbor discovery protocol. These options are intended to protect the
messages. Specifically, in order to increase the level of authenticity, CGAs are
used to verify the sender of a particular neighbor discovery message. While
CGAs may not seem directly relevant to device discovery techniques, they may
be particularly useful when detecting illegitimate router advertisement messages.

22

Router advertisement messages may also be particularly useful in passive
discovery as they can be used to identify the routers in a given subnet.

It has to be noted that IPv6 stateless address autoconfiguration [45], is responsible
for generating link-local and global addresses as well as duplicate address
detection. This process relies on the neighbor discovery protocol together with
its solicitation and advertisement messages.

The next chapter discusses one of the thesis project’s tasks, namely network
device discovery. This discussion includes a description of the task, the proposed
solution, and its implementation.

23

24

Chapter 3

Device discovery implementation

The first task for this master’s thesis project was to develop a module for NCS
which performs network device discovery. The module should be able to identify
which devices in the specified address space are alive and be able to provide
some information about the device, such as device vendor, device model, and
OS running on the device. This chapter will describe the requirements defined for
the device discovery module and the process of developing this module.

3.1 Device discovery module description

The device discovery module for NCS is a component for automated discovery
of network devices within a given IP address range. This module should provide
the following functionality: discover the devices that are online and automatically
load a selected device from the set of discovered devices into the NCS operational
database with the most complete set of parameters that can be determined during
the discovery process. The module must integrate with the NCS data model and
run within the NCS Java Virtual Machine (VM). The module has to be developed
in the form of an NCS package which can be optionally loaded into NCS at
startup.

An important part of the requirements for the module was to focus on the devices
that can be managed by NCS, as opposed to finding all devices that are online.
Also, as the module is a legitimate search tool, it was assumed that network
security systems are properly configured to allow the operation of this tool,
therefore the solution proposed should not contain any techniques of firewall,
Intrusion Detection System (IDS)/Intrusion Prevention System (IPS), or other

25

network security systems bypass. Since the discovery process is assumed to be run
by the network administrator or in coordination with the network administrator, it
is also assumed that the user of the network device discovery module knows the
credentials to access the legitimate devices.

The device discovery module consists of two parts: a data model described
in YANG and executable code written in Java. The data model is a set of
instructions for NCS which defines the format of input and output parameters for
the operations performed by the module, as well as the format of the data stored by
the module in the NCS database. In turn, NCS renders its user interface (CLI and
WebUI) to the module based on this data model. The executable code receives
input parameters in the specified format and performs the necessary actions to
obtain a set of output parameters. These output parameters are then passed to the
NCS in the specified format. The code can also store necessary data in the NCS
database in the specified format. This data can later be used by the module itself
or accessed by an NCS user.

Among the initial requirements from Tail-f was to use Nmap to provide device
discovery functionality for this module. The reason behind this was that Nmap is
a widely used network scanning tool and it implements a wide variety of known
device discovery techniques. Additionally, relying on Nmap for device discovery
was expected to significantly reduce the development time for this module.
However, during an early phase of development, it appeared that additional
techniques are difficult to integrate with an Nmap-based solution; furthermore,
the company decided that a monolithic package would be more convenient to
ship to the customers than a package which includes an Nmap distribution. So,
eventually it was decided to focus on a stand-alone implementation of the device
discovery functionality.

The first version of the package was Nmap-based, but was complemented by a
stand-alone device discovery engine. The final version of the discovery module
contains both solutions and allows a user to choose between the two options.
Although the device discovery functionality is implemented differently, both
solutions share the same data model. The next section discusses the data model of
the package.

3.2 Data model description

The data model of NCS is defined in YANG, which makes it extensible by
incorporating additional modules into the main model. The data model of the

26

network device discovery component augments the NCS data model and adds a
module that defines a set of actions with associated input and output parameters as
well as a structure for storing the data collected when a specific action is executed.
An action, in this context, is an interface to call and execute specific code defined
for that action. The interface is rendered by the NCS CLI and WebU]I, so that the
action becomes an executable command that can be invoked via the user interface
(CLI or WebUI). An action may have input and output parameters that are also
modeled in YANG. Thus, the parameters may be well structured and the format
of the data predefined. The device discovery component’s data model defines five
actions: two actions to launch the device discovery process (one for the Nmap-
based component and one for the stand-alone discovery component) and three
actions to process the list of discovered devices: an action to select a specific
device and load this device into the NCS configuration database, an action to
remove a specific device from the list of discovered device, and an action to load
all discovered devices at once into the NCS configuration database. These actions
provide the required flexibility for an operator when loading discovered devices
into the configuration database.

The input parameter for the discovery launch actions is a definition of the
discovery target, which may be a single IP address (e.g. 10.0.0.24) or a domain
name (e.g. example.com), an IP subnet specification (e.g. 10.0.1.0/28), an IP
range specification (e.g. 10.0.2.14-29,82), or a set of targets in any of these forms
(e.g. [172.16.2.0/24 192.168.25.4-29 10.0.0.2]). This set of target specification
options provides the required level of flexibility to specify the target IPv4 address
space. The output parameter for these actions is a status line which indicates if
the run was successful or if there were any errors. An IPv6 target specification
is supported in the Nmap-based discovery module; but support for IPv6 in the
stand-alone module is left as future work.

The actions used to either select and load or remove a specific device from the
set of discovered devices, or select and load the whole set of discovered devices
are "pick", "forget", and "pick-all" actions. The Pick action is associated
with the list of discovered devices and is called from the context of the selected
device allowing an operator to set additional input parameters. Thus, an operator
can optionally provide a new name for the device, an authentication group, etc.
when loading the device into the CDB. The Forget action is also called from
the context of the selected device which is to be removed, this action does not
have any input parameters. The Pick-all action is called from the discovery
subtree and allows the operator to set some common parameters for all the loaded
devices. As designers we believe that the pick-all action is flexible when used in
combination with the forget action (i.e., an operator can explicitly remove those
devices that are not relevant and then quickly add all the remaining devices). The

27

output parameter for each of the actions is a status line which is used to inform
the user as to whether the operation was successful or some error occurred.

Since the main function of the device discovery module is to discover network
devices and present the discovered devices to the NCS operator, the data model
should incorporate additional structures which will define a model to store these
results. Thus, additional structures defined in the model include a list of devices
found and their associated parameters, such as device vendor, device description,
open ports, and other information that could be obtained. The list of devices is
defined as operational (non-configurable) data (marked with config false in YANG
terms), this means that this data can not be manipulated via the user interface
(CLI or WebUI) and it has a better visual representation than configurable data.
Defining the list of devices as operational data allows us to use a single API both
to fetch and store the values for the parameters defined in the model.

Additionally, the model contains a data structure to define pattern matching rules
for device discovery and a container for storing various credentials (currently SSH
usernames and associated passwords, SNMPv1 and SNMPv2 community strings,
and SNMPv3 credentials). The pattern matching data structure and credentials
container are only utilized in the stand-alone discovery module. Configurable
pattern matching rules provide a flexible way of defining platform and service
detection rules and representation with additional rules being provided directly
by NCS. Adding a list of credentials allows the stand-alone module to actually
connect to a discovered device and, thus obtain the exact information about
the device’s type, which can not be done in the Nmap-based implementation
(although Nmap provides estimated matches for the OS detection, an exact match
is not always possible). Since the stand-alone module is treated as a tool for
the NCS operator, rather than a network scanner, it is assumed that some set of
credentials are known to the operator, and, thus better results can be obtained than
with Nmap. The pattern matching data structure and credential lists are defined
as configuration data, which can be set by the operator using one of the user
interfaces.

The stand-alone component utilizes some of the techniques mentioned in
Chapter 2, thus it can provide useful results even if credential lists are not defined.
In addition to the configurable set of credentials, the model contains a container
for the valid credentials (the "working" credentials from the set of configured
credentials, i.e., those that the NCS is currently using for its operations) that
are associated with a specific device; thus, the operator can see which of the
credentials were valid for that device. This set of valid credentials is configured
as operational data.

28

The flexibility of YANG, among its other capabilities, is that it supports derived
data types. YANG allows a developer to create custom data types that rely on
the standard data types but may incorporate restrictions, such as pattern matching
based restrictions, length of string values, range of numerical values, etc. This
allows us to validate the parameters directly at input time, so that the code does
not have to implement validation methods, as the parameter values were already
validated within the model itself. Notable derived data types defined for the device
discovery model are IP range specifications and SNMP OID string specifications;
both utilize pattern matching.

The device discovery data model defines the structure for all the data that is
associated with the device discovery component, and, thus, serves the foundation
of the component. The specifics of the stand-alone and Nmap-based modules are
described in the following sections of this chapter.

3.3 Implementation based on Nmap

The first version of the network device discovery module was essentially a
wrapper for Nmap. This module operates as follows: receive the input parameters,
execute Nmap with predefined flags and the specified target, wait for Nmap to
finish, parse the results of the Nmap scan, and store the results in the NCS
database according to the model. The output generated by the module contains
informational messages, such as the number of devices found and the success
or failure of the execution. The execution is considered successful when there
are no errors while running Nmap and no errors while processing the results
or loading them into the database, even if no devices are found in the specified
address space.

The flags and parameters for Nmap execution were chosen according to the
module’s functional requirements. The major protocols for network device
management defined for the device discovery component are NETCONF, SSH,
Telnet, HTTP, and SNMP. So it was decided to limit the set of protocols to
be checked for to these protocols. To reduce the complexity of the scan and to
reduce the scan time it was assumed that these protocols run on their default
ports. Therefore the list of ports to be scanned was: 22/tcp, 23/tcp, 80/tcp,
443/tcp, 830/tcp, and 161/udp. The corresponding Nmap parameter is "-p T:22-
23,80,443,830,U:161".

Other flags instruct Nmap to try to obtain the desired information about the device.
With the "-O" and "—osscan-guess" flags Nmap will perform OS detection and try

29

to guess the OS the device is running (note that an exact match is not required,
but database entries with the closest fingerprint pattern are displayed). With the "-
sSU" flag Nmap will perform TCP SYN port scanning, as well as User Datagram
Protocol (UDP) port scanning. It is worth mentioning that among all the different
types of TCP port scanning, we are only interested in a TCP SYN scan since we
are looking for the ports that NCS should later be able to connect to. The "-sV"
flag instructs Nmap to try to determine the service version for every open port,
which is essentially a banner grabbing technique. This information can also be
useful for determining the OS running on a device. The "-T4" flag tells Nmap
to perform an aggressive, but not insane scan. In Nmap the terms aggressive and
insane scans are assumed to be the two fastest types of scans. The aggressive
scan is preferred due to its lower overall scan time, without sacrificing detection
accuracy. The insane scan may cause inaccurate OS detection (according to the
Official Nmap Project Guide [32]). Finally, "—system-dns" flag instructs Nmap to
use the Domain Name System (DNS) server configured in the system.

Initially, Nmap tries to detect open and closed TCP ports on the scanned device
by sending a TCP connection request to each of the ports. Information about the
port state is used in subsequent tests. To perform OS detection (invoked with
the "-O" flag) Nmap uses the TCP/IP stack fingerprinting technique, which was
described in Section 2.3. However, when service version detection is enabled ("-
sV") the information obtained from the ports contributes to OS detection. During
the service version detection phase Nmap establishes connections to all the open
TCP ports and performs banner grabbing, either without probes or using very
simple probes. An example of a probe used by Nmap to perform HTTP service
version detection, as captured by tcpdump, is presented in Listing 7. UDP ports
should be scanned using probes according to the protocol which is assumed to be
running on the corresponding port, e.g. a set of SNMP requests is sent to UDP
port 161 in order to determine if the port is actually open and to obtain information
about the SNMP version.

12:20:48.615336 IP denis-laptop.tail-f.com.47983 > moon.tail-f.com.http: Flags [P
.1, seq 1:19, ack 1, win 115, options [nop,nop,TS val 2137094 ecr 489454175],

length 18
0x0000: 0018 51f6 24f4 60eb 69af £9fc 0800 4500 ..Q.$. .i..... E.
0x0010: 0046 33f0 4000 4006 82b6 clOa8 018f cla8 .F3.@.Q@.........
0x0020: 012c bb6f 0050 9e94 abc7 efOc 2840 8018 .,.0.P...... (@..

0x0030: 0073 8444 0000 0101 080a 0020 9c06 1d2c .s.D....vuvn.n. ,
0x0040: 7aS5f 4745 5420 2f20 4854 5450 2£31 2e30 z_GET./.HTTP/1.0
0x0050: 0d0a 0dOa

Listing 7: HTTP service probe used by Nmap

Nmap provides different output options, including normal output, XML output,
and "grepable" output. XML output was chosen as it is easy to parse

30

automatically, and specifically the ease of extracting the required values from
the output based on their tag names. The "-0X" flag is used to specify XML
output. The output flag requires a filename of the output file as the parameter.
This filename is generated as a random string of 26 letters in the Java code. The
complete set of flags used for Nmap is shown in Listing 8 together with the output
filename (following the "-0X" flag) and the address range (10.0.0.0/24).

/usr/bin/nmap -PN --system-dns -0 --osscan-guess -sSUV -T4 -p T:22-23,80,443,830,
U:161 -oX /tmp/4jcTsh7agolmOcur5tih8pfct5.nmaprun 10.0.0.0/24

Listing 8: A set of Nmap flags used for the device discovery component

After Nmap finishes the scan, the device discovery module processes the XML
file produced by Nmap and fetches the scan results. These results are then stored
in memory for further processing. For this purpose a Device class was defined
which consists of a set of properties describing a network device found during the
device discovery process. Additionally, this class contains methods for storing
and loading the information about the device into the NCS database according
to the defined data model. When the list of discovered devices is fetched, the
latest-run subtree of the data model is replaced with the new list of discovered
devices. The information is stored as operational data, which means that it will be
reset when NCS is restarted. This information is displayed to the user and can be
further processed by another application.

The implementation based on Nmap was a good starting point as it allowed rapid
development of a working solution. However, Nmap does not have the abilities
to use a predefined set of credentials to access the devices and the precision
of device type detection in Nmap based solution is not always satisfactory (to
meet the requirements of NCS). From this perspective a stand-alone engine
for network device discovery offers greater flexibility and more implementation
options. The following section discusses the stand-alone discovery module’s
design and implementation.

3.4 Stand-alone device discovery engine

The stand-alone device discovery engine is implemented in Java as a separate
action within the network device discovery module. It provides discovery of
network devices and provides information about the device (make, model, and
OS the device is running) in a way that is more efficient, more precise, and better
satisfies the requirements of NCS than an Nmap-based solution.

31

3.4.1 General logic of the stand-alone device discovery en-
gine

The general logic of this engine is the following. First, the input parameter, which
is a target specification, is processed by the Parser object, which forms a list of
Device objects with only the IP address or addresses selected. Then a Scanner
object is created for each of the devices in a separate thread. This Scanner object
performs the scanning process, i.e. applies the scanning techniques to the defined
IP address(es). If a device is discovered to be offline, it is removed from the list of
devices, otherwise the Scanner populates the data fields in a Device object with
all the information that it is able to discover about the device. Lastly, the list of
discovered devices is stored in the NCS database as operational data for further
processing.

As an input the Parser object takes a target specification in the form described in
Section 3.2. First, it checks if the target matches the input IP address prefix regular
expression. If the target does not match, then the Parser checks if it matches an
IP address range regular expression, which also allows a single IP address. If the
target matches either an IP prefix pattern or an IP range pattern, then the Parser
iterates through all of the possible values for this prefix or this range, creates an
“empty” Device object (which has only an IP address specified) and forms a list
of Devices including all of the Device objects that have been created. If the target
does not match any of these options, then the Parser assumes that the target is a
hostname and tries to resolve its IP address. If resolution succeeds, a one-entry
list which contains an “empty” Device is created, otherwise the Parser fails and
the module halts with an “Invalid target specification” error. In case of success,
the Parser returns the list of Devices as an output.

3.4.2 TCP port scanning

The Scanner object takes a Device as an input. The Scanner has a set of
predefined TCP ports to scan. Some of the TCP ports are assumed to run specific
services, for example the Scanner expects SSH to be on port 22 and HTTP on
port 80. Initially the Scanner performs a port scan iterating through the set of
expected TCP ports. To scan a TCP port the Scanner tries to initiate a connection
using a socket whose remote endpoint is defined by the Device’s IP address and
the port to be scanned. Figure 3 illustrates all the possible outcomes of this
connection, which are essentially a successful connection or an exception. If there
is an exception, then the port is considered closed; however, the device state may

99 ¢

result in: “Up”, “Possibly down”, or “Down”. If the port is in the open or closed

32

Try to initiate connection
on socket (send TCP SYN)

. ConnectException
= (Networ s
able entry unreachable”)
TCP port . » SocketTimeout
™ s filtered >l Exception
. Host is ICMP Host » NORouteToHost
down unreachable Exception
ConnectException
- TCP port | RST received (“Connection
is closed "
refused”)
| . T.CP port Success:ﬁjl
is open connection

Figure 3: Possible outcomes of TCP port scanning attempt

state, the device is considered to be “Up”; if any expected ICMP error message
is received, then the device is considered to be “Down” and a timeout will not
change the state of the device, i.e. a port remains in the “Possibly down” state if

it is not known to be “Up” yet.

If the connection is successful, then the Scanner will try to communicate with
the device using the protocol which is assumed to be running on this port.
A set of classes which implement a Communicator interface are used for this
purpose. Currently there are communicators to communicate with a device via
SSH, HTTP, and Hypertext Transfer Protocol Secure (HTTPS) protocols. There
is a DefaultCommunicator which performs simple banner grabbing: it does not
send any probes, but listens for a service to send data which identifies the service.

33

If the service is not expected to send any data and there is no communicator for
the service, then the VoidCommunicator is applied which immediately closes the
port.

The HttpCommunicator object is created when a connection is successfully
established on one of the ports which are assumed to run HTTP. This object
implements a very basic HTTP client which sends simple HTTP/1.1 GET
requests and follows HTTP redirects. If a response is received, then the
HttpCommunicator applies a set of regular expressions to it. Specifically, we
look at the response code and Location header to follow a redirect if there is any;
we also try to fetch some information about the device by looking at the Server
header, WW W-Authentication realm, and the contents within the title tag.

The HttpsCommunicator object takes as an input a socket which is connected
to an HTTPS port. It attempts to establish an Secure Sockets Layer (SSL)/TLS
connection with the device and in case of success an HttpCommunicator
is created which communicates with the device via the newly created SSL
socket.

The Scanner employs an SSHCommunicator to communicate with devices which
have an SSH port open. Many SSH implementations send a banner in clear text
when the connection is established. This banner gives some information about
the SSH implementation and sometimes contains some information about the OS
running on the device. However, as we assume that an NCS operator has the
credentials to access the device, we will try to connect to the SSH port. The SSH
client was not implemented from scratch, but rather the Ganymed SSH-2 library
was used. Credentials to access the device are retrieved from the NCS database.
The current version of the module supports only password-based authentication.
There is a possibility to specify several username and password pairs, if different
devices in the network need to be accessed using different credentials. We assume
that the NCS is not blocked by a network security system even if there are several
unsuccessful connection attempts.

Once SSHCommunicator succeeds in being authenticated, different commands are
issued to obtain information about the device vendor, model, and OS version. An
output of a specific command usually matches some pattern of the devices made
by the same vendor, so that SSHCommunicator is able to extract the required
information from the command’s output with regular expressions, e.g. the output
of the show version command for Cisco devices is described in Cisco’s 10S
Command Reference [46] and the output of the same command for Juniper
devices is described in the Juniper technical documentation [47]. For devices
running Linux the uname command may be used. The output format of this
command is described in the Linux manual [48]. If no command matches, then

34

SSHCommunicator reports that the connection was successful and specifies the
credentials that are found to be valid for this device, but does not give any extra
information about the device.

If in any point during the Scanner operation the device appears to be in the
“Down” state, then the Scanner immediately halts and reports that the device is
offline. However, if the device appears to be in the “Up” state, then the scanning
proceeds until all of the TCP ports are scanned, because the goal of the TCP
scanning process is to obtain as much information about the device as possible,
including the list of management services that the device is running. If the device
is in the “Possibly down” state after scanning all the TCP ports, i.e. all the
connection attempts resulted in a timeout, then the Scanner attempts to send
an ICMP Echo Request to identify whether the device is up. Strictly speaking,
not receiving an ICMP Echo Response does not mean that the device is offline;
however, if the device did not respond to any of the TCP connections and does
not respond to an ICMP Echo Request, then most probably this device can not
be managed with NCS. That is why if the device does not respond, then it is
considered to be in the “Down” state. If the device responded to at least one of the
TCP connections or sent an ICMP Echo Response, it is considered in the “Up”
state and the Scanner proceeds with UDP port scanning.

3.4.3 SNMP scanning

In contrast to TCP port scanning, UDP port scanning is different due to the
connectionless nature of the UDP protocol. However, in the context of our NCS
discovery module we are most interested in only one UDP based protocol, namely
SNMP (as NCS can manage SNMP enabled devices when certain conditions
are met). For the purposes of the device discovery module, we are particularly
interested in obtaining the system description string, which is available in MIB-II
and is usually present in most devices that are SNMP enabled.

Generally, a UDP port will respond (or not respond; this is protocol specific) only
to probes that match the actual protocol listening on that port, making TCP port
scanning techniques (such as banner grabbing) inapplicable. Thus, in order to
check an SNMP port, SNMP specific probes are required. However, an important
aspect of sending the SNMP probes is to provide the correct credentials, i.e. the
community strings for SNMP version 1 and version 2, and login credentials for
SNMP version 3. For this purpose a credentials structure is defined in the data
model (see Section 3.2).

35

For the stand-alone device discovery engine, it was decided to perform SNMP
port scanning after a device was successfully determined to be online, as it is quite
unlikely that a device will have all other ports (in the set of scanned ports) filtered,
and not respond to an ICMP echo request. This allows us to decrease the overall
scanning time. Once the Scanner finishes a TCP port scan and reports a device to
be alive, the SNMP port scanning is initiated. The SNMP related functionality is
implemented in the SnmpDevice sub-class which extends the Device class.

When the SNMP scan is initiated a new SnmpDevice object is created from the
Device object that is currently being processed. The Scanner iterates through the
configured set of community strings for SNMP version 1 and version 2, and sends
GetNextRequest Protocol Data Units (PDUs) [49, 50] for the system description
object (1.3.6.1.2.1.1.1) defined in MIB-II. If the system description is successfully
obtained, then a valid community string (the one that was successfully used
to obtain the result) is stored in the valid-credentials data structure and the
information about the port is stored in the Device object. If scanning via SNMP
version 1 and 2 fails, then the Scanner tries scanning via SNMP version 3. The
scanning logic is the same: the Scanner iterates through the set of configured
SNMPv3 credentials and sends a request for a system description object.

The port along with associated information is added to the Device object if the
scanning is successful and the valid set of credentials is stored. On devices with
SNMPv3 support it is actually possible to determine if the port is open, since
SNMPv3 will respond with a specific MIB object when invalid credentials or
parameters (authentication and privacy algorithms) are used [51]. In this case,
if there is no valid credential set among the preconfigured credentials then the
port is reported as open with additional information that the credentials were not
valid. The scanning is performed sequentially: first over version 1 and 2; and
second over version 3. In some cases a device may support two versions of the
protocol (version 1 or 2 and version 3); if this is the case, system description object
is fetched via both versions, and the device is reported to support both versions of
SNMP.

SNMP scanning functionality is implemented using the SNMP4J [52] API that
ships within the standard NCS package. The SNMP4]J library handles the low
level details of SNMP communication, in particular it manages timeouts and
connection retries, as well as processes certain type of exceptions, such as an
ICMP Port Unreachable message [53].

36

3.4.4 Storing device type and description

After the scanning is completed and a list of Device objects (which contains
devices that were discovered along with their associated information which the
Scanner was able to retrieve) is created, then the type, description, and vendor
of the device are determined. This information is extracted from the data
that was discovered during port scanning. First, a vendor name or a set of
keywords associated with the vendor (such as Juniper Operating System (JunOS))
is searched for in the port information field of the Device object. It is assumed
that one vendor would not use the name of another vendor in the services their
device provides. Next, each port information field in a Device object is processed
and matched to a regular expression set that matches expected SSHCommunicator
module output as well as some of the well-known SNMP system description
formats; in this way the hardware platform and the OS information are obtained
and stored in the respective fields of the object. Once these fields are set, the
device type is determined. Determining the device type and setting appropriate
management port and management protocol are essential requirements for a
device to be successfully stored in the NCS CDB, as well as to enable the NCS to
be able to subsequently manage that device.

Currently, there are four device types in the context of NCS management
interfaces:

e NETCONTF devices that are NETCONF enabled and can be managed over
this protocol;

e CLI devices that implement a Cisco style command line interface;

e SNMP devices that do not support the above protocols, but can be managed
via SNMP; and

e generic devices that require customized interfaces.

CLI and generic devices require specifically designed NEDs loaded into NCS and
SNMP devices require MIB modules represented in YANG, while NETCONF
devices are natively supported by NCS. The type of a device is determined based
on the information that was obtained during scanning. The NETCONF device
type is set if the device is detected to be a Juniper device (as Juniper devices
support NETCONTF by default [54]) or if TCP port 830 (NETCONF over SSH [8])
is open on the device. The CLI device type is set if the device is reported to be
a Cisco device (at the moment of writing this thesis, Cisco devices are the only
devices that can be managed by NCS over a CLI management interface).

37

The management ports to use are determined using a port priority algorithm which
matches the open ports discovered on a device to a set of ports defined in the
algorithm which are listed in order of preference. The TCP port priority order for
NETCONEF devices is 830, 22, and for CLI devices: 22, 23. The first matched
port that is open is set as the management port for this device.

When a device is not detected as a NETCONF or CLI device, then the SNMP
port is checked. If UDP port 161 is reported as open, then the device type is set to
SNMP. All other devices discovered not to support any of the above mentioned
types are identified as generic devices.

Once the list of discovered devices is processed and the type and management
protocol are set, the devices are stored in the operational database. The next
section will describe the process of selecting a specific device from the set of
discovered devices and loading this device to the NCS CDB.

3.5 Loading devices into NCS

The pick action implements the functionality of fetching the full set of
information related to a discovered device from the operational data and storing
the device into the NCS configuration database. Once a device is stored in the
CDB as a managed device, NCS can connect to the device and manage it. The
pick action is defined within the device list structure of the discovery component
data model. Thus, the action is bound to a specific device in the list of discovered
devices. Calling the action from the context of a device allows us to offer an NCS
operator the option to provide additional parameters when they select a device,
such as assigning a new name or authentication group.

Since NCS requires specific NEDs for CLI and generic devices, the pick action
provides an option to select a specific NED according to the device type. However,
NCS can not manage a NED device without the respective NED, thus, if there are
no NEDs matching the device’s type, then this device can not be stored in the
CDB. In this case an operator has to load a corresponding NED prior to loading
the device into the NCS configuration.

To allow an operator to load multiple devices with a single command, the
pick-all action has been implemented. It acts essentially in the same way as
a pick action, but is called from the main discovery container (as opposed to the
pick action which is called from the device context) and loads all of the devices in
the discovery list into the configuration database. This action only allows setting
the same NED and the same authentication parameters for all the loaded devices.

38

Additionally, it allows the operator to customize automatically detected device
names by prepending a specified name prefix. The forget action enables the
operator to remove a single device from the discovery list, which offers a lot of
flexibility in combination with the pick-all action.

As a part of its functionality, the pick action scans for supported MIBs on
a device, when the device is manageable via SNMP and the credentials for
accessing it are known. The mapping of MIB names to the matching OIDs is
stored in the NCS database and defined in the data model. The software sends a
GetNextRequest PDU with the OID for each of the MIBs listed in the database.
After receiving an answer from the device, the software matches the OID in the
response with the requested OID. If the object in the response is located within the
requested subtree, it is assumed that the device supports the requested MIB. In the
current version of the module, the list of supported MIBs is displayed to the NCS
operator, but it is planned to use this information for setting SNMP management
parameters for the device when adding it to the NCS CDB.

3.6 Device discovery module architectural overview

The device discovery module consists of two main components: a data model
defined in YANG and program logic implemented in Java. The package is a
loadable module which augments and adds additional data structures into the
NCS data model. The logical overview of package integration is presented in
Figure 4. The data model is defined as a module with included submodules which
makes the model more flexible and easy to follow. The program logic is a set of
Java classes, which consists of base and extended classes reflecting the required
package functionality.

39

Morthbound Interfaces Exte

3
&
F
o

nd data model

Service Manager

Device Manager

> CDB
NCS Y

Program
logic
(Java)

.+"Di5cn'urer',r package

Data Model
(TANG)

% -
.]
+ o

* -
5, +'

e,

Southbound Interfaces Add f[jﬁEE}unalitv

Figure 4: Discovery package logical overview

The data model for the discovery package is a YANG module which consists
of several submodules. The submodules help to organize the data structures
according to their functionality in order to make the module easier to extend and
organize. The feature of including a submodule within another submodule in the
context of the same parent module allows reuse and referring to data structures
within submodules. Figure 5 represents the structural overview of the data model
defined for the discovery package. The complete structure of discovery data model

is presented in Appendix A.

[discwery-base.yang)

FILEELERTTEEY]

discovery.yang

(discwery-devices.yang]

(discwery-cnnﬁg.yangJ(discwery-types.yang)

Figure 5: Discovery data model overview

The architectural overview of the Java classes for Nmap-based discovery, stand-
alone discovery, and loading devices into NCS is presented in Figures 6, 7, and 8
respectively. The complete architectural view of the Java classes is presented in

Appendix B.

40

<<Java Class>>
G ActionNmapDiscovery

discovery

<<Java Class>>
@ ReturnValue
discoverny

.

<<Java Class>> <<Java Class>>
(3 AbstractRunAction ETEERTT (9 Scaninfo
discovery ‘_“‘-"'ﬂ“']“? discovery :
o v
<<Java Class>> #dEViDE;‘:Sl;b <<Java Class>>
(9 AbstractAction 0 (2 Device :
discovery v discovery
+mgmtPart | Q.1
ports <<Java Class>>
S Port ez

0. discoveny

Figure 6: Nmap-based discovery architectural overview

<<Java Class>>
GActionDiscavery
- discoverny
<<Java Class>>
(9 AbstractRunAction ; _
discov
= L Yy 3
Ly atestRun <<Java Class>> <<Java Class>> <<Java Class>>
(9 Scaninfo (% Scanner (9 Parser
* 0.1 discovery discoveny discovery
) -delice 4.1
V /m/grm Y
<<Java Class>> #devioegﬁ <<Java Class>> 0.1 <<Java Class>>
GAhstractA.ction (3 Device (3 Port
discoveny discoveny discovery

<<Java Class>>
@ ReturnValue

discoverny

<<Java Class>>

{9 Credentials
discovery

0.
devices \/3.7
- \ +ports
+Creds, 0.
.

Figure 7: Stand-alone discovery architectural overview

41

<<Java Class>>
(® ActionPick
disCovery
<<Java Class>> <<Java Class>>
@Ahstra ctAction @ ReturnValue
i di
ESCOVEry ESCOVEny —devi oA
#devices <<Java Class>>
@Deuice
discovery
reds, 0.1

<<Java Class>> 5.131.-'3 Class>>
(O Port Credentials
discovery discovery

Figure 8: Loading devices into NCS architectural overview

3.7 Results and analysis

The outcome of the device discovery component design and implementation
is an optional package for NCS. This package provides automated network
discovery functionality and the possibility to add newly discovered devices to
the NCS CDB. The package’s functionality minimizes the effort of the network
operator when adding a device by automatically loading the set of parameters
that were obtained during the discovery process (device type, management port,
management protocol, etc.). The device discovery module implementation utilizes
two different approaches:

e Nmap-based device discovery module
e A stand-alone device discovery module

The rest of this section will give examples of usage of this module and
associated results. A comparison between Nmap-based and stand-alone discovery
functionality and performance will be presented, as well as an analysis of
important aspects of the design and its implementation.

42

In keeping with the initial requirements from Tail-f, the first version of the
discovery module was solely Nmap-based. Relying on Nmap to provide device
discovery functionality allowed us to focus on learning about the NCS internals
and the APIs which it provides; this knowledge made the subsequent stand-
alone module design and implementation more straightforward. For the Nmap-
based module the primary goals were to choose an appropriate set of flags to use
for the Nmap scan, to become familiar with the internal structure of NCS and
its packaging concept, and most importantly understand the CDB fetching and
storing operations. The Nmap-based module is a part of the device discovery
package and can be used as soon as the package is loaded to the NCS system.
Listing 9 shows a typical invocation of the Nmap-based module with some input
parameters and output which summarizes the result of the discovery process (as it
is executed from the NCS CLI).

admin@y550> request devices discovery nmap-scan list-target [10.0.0.21,201
172.16.0.2]

result

Nmap successfully finished

XML successfully parsed. Number of devices fetched: 3

Devices successfully stored as operational data

ok

[ok][2013-03-08 15:00:45]

Listing 9: Nmap-based discovery input and output example

Once the scan is completed, various show commands may be used to view the
information about the devices discovered and some scan statistics. Listing 10
shows the statistics of the scan presented in Listing 9, and Listing 11 provides an
example of the devices which were discovered. The scan’s "duration" shown in
Listing 10 is in units of seconds.

admin@y550> show devices discovery latest-run-info

devices discovery latest-run-info params "/usr/bin/nmap -PN --system-dns -0 --
osscan-qguess -sSUV -T4 -p T:22-23,80,443,830,U0:161 -oX /tmp/5
v5jf5669bpbbjlunrgb6iujdet.nmaprun 10.0.0.21,201 172.16.0.2"

devices discovery latest-run-info time "Fri Mar 8 15:00:45 2013"

devices discovery latest-run-info hosts-up 3

devices discovery latest-run-info hosts-down 0

devices discovery latest-run-info duration 30.08

[ok][2013-03-08 15:18:29]

Listing 10: Statistics of an Nmap-based discovery run

43

admin@y550> show devices discovery device | notab
devices discovery device 172.16.0.2

address 172.16.0.2

management -port 22

management -proto ssh

device-description "Generic. Probably:Cisco 2821, 6506, or 7206VXR router (IOS
12.2)"

device-type cli

port 22

port-info "ssh Cisco SSH 1.25 "

port 23

port-info "telnet Cisco router "

port 161

"

port-info "snmp SNMPvl server
devices discovery device kepler.lab

address 10.0.0.21

management -port 161

device-description "Generic. Probably:Linux 2.6.15 - 2.6.26"
device-type snmp

port 22

port-info "ssh OpenSSH 5.1pl Debian 5 "

port 80

port-info "http Yaws httpd 1.77 "

port 161

port-info "snmp SNMPvl server "
devices discovery device 10.0.0.201

address 10.0.0.201

management -port 830

device-description "Juniper Networks JUNOS 9.0R2.10"
device-type netconf

port 22

port-info "ssh OpenSSH 4.4 "

port 161

port-info "snmp SNMPv3 server "

port 830

port-info "ssh OpenSSH 4.4 "
[0ok][2013-03-08 15:29:45]

Listing 11: Example of discovered devices in Nmap-based discovery
The Nmap-based implementation uses the following techniques to identify the
type of the scanned device:
e port scanning;
e service probing and banner grabbing; and
e OS fingerprinting.

The stand-alone discovery module has the same user interface for invoking the
discovery process and for storing statistical information. The results, however,
differ significantly as additional data model structures (mainly the credential sets)
are utilized. Listing 12 presents an example of the stand-alone module’s discovery
as performed with the same input parameters as were used in Listing 9; it also
shows the statistics of this action.

44

admin@y550> request devices discovery scan list-target [10.0.0.21,201 172.16.0.2
]

result

Input parameters parsed: 3 devices to be scanned

Devices scanned. Alive: 3

Devices successfully stored as operational data

ok

[ok][2013-03-08 16:01:29]

admin@y550> show devices discovery latest-run-info

devices discovery latest-run-info params "fast run : target = 10.0.0.21,201
172.16.0.2"

devices discovery latest-run-info time "Fri Mar 08 16:01:18 CET 2013"

devices discovery latest-run-info hosts-up 3

devices discovery latest-run-info hosts-down 0

devices discovery latest-run-info duration "10.75 sec"

[ok][2013-03-08 16:01:37]

Listing 12: Stand-alone discovery input and statistics

As it can be seen from Listing 10 and Listing 12 stand-alone discovery module is
faster (10.75 seconds) than Nmap-based implementation (30.08 seconds). There
are several reasons for this. Nmap utilizes internal timing algorithms which do
not take advantage of the additional data sets embedded in our implementation.
The only timing option we utilize for Nmap scans is the "-T4" option, which
does not specify the fastest and most aggressive scan in Nmap. Moreover,
Nmap has internal algorithms that adapt the number of probes sent based upon
network conditions (network bandwidth, security measures, etc.). The stand-
alone module is very straightforward from this perspective; it simply sends probes
to devices from parallel threads (with the default number of threads set to 20).
However, since the stand-alone module exploits credential based discovery it
produces different results. The discovery results for the same input parameters
as in Listing 9 are presented in Listing 13. Listing 13 also shows the valid
credentials, that actually worked and were used to retrieve the information (the
actual usernames, passwords, and community strings have been edited out for this
example).

45

notab

admin@y550> show devices discovery device
devices discovery device 172.16.0.2

address 172.16.0.2

management -port 22

management -proto ssh

device-vendor Cisco
device-description "HW:7200 IO0S:12.4(7h)"
device-type cli

port 22

port-info "MSG:SSH-2.0-Cisco-1.25 ; INFO: Cisco IOS Software,
C7200-JK903S-M), Version 12.4(7h), RELEASE SOFTWARE (fcl)"

port 23
port-info "telnet port is open"
port 161

port-info "SNMPvl or SNMPv2; INFO: Cisco IOS Software,

7200 Software (

7200 Software (C7200-

JK903S-M), Version 12.4(7h), RELEASE SOFTWARE (fcl)\r\nTechnical Support:
1986-2007 by Cisco

http://www.cisco.com/techsupport\r\nCopyright (c)
Systems, Inc.\r\nCompiled Thu 18-0ct-07 23:33 by
devices discovery device kepler.lab

address 10.0.0.21

management -port 161

device-vendor "Debian"

device-description "OS:Linux"

device-type snmp

port 22

port-info "MSG:SSH-2.0-OpenSSH_5.1pl Debian-5"
port 80

port-info "200; SRV:Yaws/1.77 Yet Another Web Server;
port 161

stshen™"

TITLE:Index of /"

port-info "SNMPvl or SNMPv2; INFO: Linux kepler 2.6.32-bpo.5-openvz-amd6d #1

SMP Fri Jun 11 09:56:18 UTC 2010 1i686"
devices discovery device 10.0.0.201

address 10.0.0.201

management -port 830

device-vendor Juniper

device-description "HW:olive JUNOS:10.3R2.11"

device-type netconf

port 22

port-info "MSG:SSH-1.99-OpenSSH_4.4 ; INFO: HW:olive
J11gm

port 161

port-info "SNMPv3; INFO: Wrong credentials"

port 830

port-info SSH-1.99-OpenSSH_4.4
[ok][2013-03-08 16:28:22]
admin@y550> show devices discovery valid-credentials |
devices discovery valid-credentials device 172.16.0.2
ssh username *username¥*
ssh password *password*
snmp-community *community*
devices discovery valid-credentials device kepler.lab
snmp-community *community*
devices discovery valid-credentials device 10.0.0.201
ssh username *username*
ssh password *password*
[0ok][2013-03-08 16:29:45]

; Juniper

notab

7

JUNOS:[10.3R2

Listing 13: Example of discovered devices in stand-alone discovery

46

As it can be noted, the stand-alone module is very effective in the context
of an NCS discovery component, if the correct credentials are configured.
However, if the credentials are not configured or not valid, then the Nmap-
based implementation may provide better results in terms of detection (but these
devices will require valid credentials before NCS would be able to manage
them). The purpose behind developing the stand-alone discovery module was
to offer functionality that does not rely on third-party components and can be
shipped as a monolithic package, and most importantly to integrate additional
functionality related to using credentials for discovery purposes. Thus, the
appropriate device discovery techniques were chosen from those described in
Chapter 2 and successfully applied together with exploiting credentials that can
be used for discovery, and ultimately producing more specific results with regard
to device type detection.

In comparison with the Nmap-based implementation, the stand-alone module
does not use the OS fingerprinting technique, as it would require a deep study
of the different TCP/IP stack implementations used in networking equipment.
Additionally, this technique provides little help in differentiating between
different devices from the same vendor, which occurs when testing the Nmap-
based module with different devices from the same vendor. A possible reason
behind this is that the same TCP/IP stack implementation is often used in different
devices from a single vendor.

On the other hand, the stand-alone implementation uses a more advanced service
probing technique for HTTP/HTTPS ports (the module processes not only the
Server header, but also the WWW-Authentication realm - which often provides
the name of the device and the contents of the title tag) as well as SSH and SNMP
ports, since the module can utilize its knowledge of the credentials to access the
device it can fetch an exact device description and learn the exact version of the
OS the device is running.

Once devices are discovered, it is possible to add them to the NCS CDB. As
a result NCS can connect and actually manage the devices. The pick action

described in the previous section is presented in Listing 14. This listing also shows
how the selected device looks when it is added to the NCS CDB.

47

admin@y550> request devices discovery device 172.16.0.2 pick name routerl
Value for 'cli-ned-id’ [c7200]: c7200
result
Device loaded from operational database
Device routerl stored in the running database
ok
[0k][2013-04-11 12:11:53]
admin@y550> show configuration devices device routerl
address 172.16.0.2;
port 22;
authgroup default;
device-type {
cli |
ned-1id c7200;
protocol ssh;
}
}
source {
added-by-user admin;

context "cli (added by discovery package)";
when 2013-04-11T10:11:53.193+00:00;
from-ip 127.0.0.1;

}
[ok][2013-04-11 12:12:16]

Listing 14: Adding a device to the NCS CDB

As mentioned earlier, the stand-alone module is usually more effective both in
terms of performance and precision (when used with valid credentials). The
performance of the stand-alone engine is improved due to the use of different
discovery techniques. The stand-alone engine does not implement fingerprinting
techniques, thus the time to scan each device is reduced by 6 round-trip
times (Nmap sends a series of six TCP probes for its TCP/IP fingerprinting
implementation [32]). However, credential-based discovery creates additional
overhead, especially when the configuration contains a large number of incorrect
(or inapplicable) credentials.

The scalability of the both implementations is similar. When used with large
numbers of devices (significantly larger than the number of threads) the overall
execution time grows linearly with the average time spent per single device. The
average time required to scan a device depends on several factors: whether the
number of offline devices in the specified range is large, whether the devices’ ports
are filtered, the number of incorrect credentials in the list, the implementation
of the device’s TCP/IP stack (which affects OS fingerprinting time in the case
of the Nmap based module). Due to variability of these factors it is impossible
to make a direct numerical comparison of the execution time of these two
implementations.

The main advantage of the stand-alone engine over the Nmap-based engine is
its ability to perform credential based discovery. Although Nmap can guess

48

the device’s hardware or the version of the running OS with high probability,
in most cases it can not provide an exact match. Making use of the known
credentials enables the stand-alone engine to be able to guarantee the correctness
of the fetched result. However, since stand-alone engine is not supposed to act
as a general-purpose network scanner, the accuracy of identification the device’s
parameters without knowledge of the credentials is lower than the accuracy of the
Nmap-based module.

A significant disadvantage of the Nmap-based module is the need for an extended
license for Nmap usage, as the default Nmap license [1] does not allow using
any of the Nmap source code nor executing Nmap and parsing the results in a
non-General Public License (GPL) product. The stand-alone discovery engine
eliminates this need for extended license, thus reducing the cost of the end product
for the company, while providing more relevant functionality than the Nmap-
based engine.

Among other disadvantages of Nmap-based module is its need to be run with
superuser privileges, primarily needed in order to be able to use raw sockets to
perform OS fingerprinting. In contrast, the stand-alone engine can be run by an
unprivileged user as most of its functionality is implemented with conventional
sockets. The only action that requires privileged access is checking for the host’s
availability with ICMP Echo Request/Echo Response, but this action does not
have a critical impact on the results produced and can be omitted. A possibility to
run device discovery as an unprivileged user can be useful, as it enables an NCS
operator with restricted access to the host system to be able to run the discovery
process if this action is allowed for him or her by the NCS’s security policy.

The following chapter will discuss the design and implementation of a topology
discovery module. It describes the approach used to develop the module and
results of this implementation.

49

50

Chapter 4

Topology discovery
implementation

The second task in this master’s thesis project was to develop an NCS module
to discover the topology of the network which consists of the devices managed
by NCS. The module should be able to identify both the logical network map
and physical connections between the network devices. As previously stated, it
is assumed that the topology discovery is performed by a network administrator
or on his or her behalf, so the network devices can be controlled by an NCS
operator. This chapter discusses the requirements and the development process of
the topology discovery module.

4.1 Topology discovery module description

The goal of the topology discovery module is to identify both logical and physical
topologies of the network. The topology discovery module should receive a set of
devices as an input. For the logical topology, the module should be able to identify
routing capabilities of the devices (which of the devices act as routers) and to
identify all the subnets (network addresses and network masks) connected to the
routers. For the physical topology, the module should be able to identify physical
links between the network devices wherever possible. The logical topology
discovery process should be able to identify connections between routers or Layer
3 (L3) switches (that is why such a logical topology is also referred to as an L3
topology). For parts of the logical topology (usually, a single subnet identified by
L3 topology discovery) the topology discovery module should provide a detailed
view with the help of physical topology discovery, whose primary goal is to show

51

links between Layer 2 (L2) switches (hence the physical topology is also referred
to as an L2 topology). The module must integrate with the NCS data model and
run within the NCS Java VM. The module has to be developed in the form of an
NCS package which can be optionally loaded into NCS at startup.

The initial idea was to develop a module which would perform topology discovery
based on results of the device discovery module described in the Chapter 3. After
creating an initial prototype and discussing its operation with the company, it was
decided to perform topology discovery based on the devices configured in NCS.
On one hand, this decision extends the flexibility of the input set of devices as not
only discovered devices can be used, but also existing devices that are currently
managed by the NCS. On the other hand, it leverages NCS capabilities for
retrieving the necessary data from the device which, in turn, eliminates the need to
manage the list of credentials which are necessary to access the devices and it also
avoids the need to maintain a communication channel with each of the devices.
Additionally, it removes a dependency on the device discovery module.

A part of this task is visualization by creating a network map, i.e. a graphical
representation of the topology discovery results. This representation should allow
for easy integration with the NCS WebUI. However, the integration with the
WebUI is outside the scope of this project, thus the visualization is only described
and implemented as a prototype at this stage.

The topology discovery package has its own YANG data model and executable
Java code. The description of both the model and the code is presented in the
following sections.

4.2 Data model description

The data model of the topology discovery module is defined in YANG. It
consists of 3 submodules: topology-base, topology-12, and topology-13. The first
submodule defines the position of the top node of the topology discovery subtree
in the main NCS data model tree. The latter two submodules define data models
for the physical and logical topology discovery results respectively.

Each of the submodules defines one action and a data structure to store the results
of the operation. Both actions receive one input parameter which identifies the
scope of operation. Both actions have an option to scan over all of the devices
configured in NCS or over a group of devices defined in NCS. Additionally,
the physical topology discovery action has an option to specify the scope of the
discovery in the form of a specific subnet discovered by the logical topology

52

discovery. This satisfies the requirement for providing a detailed view of parts
of the L3 topology. Both actions output a status line and save the result of their
operation as operational data in the CDB.

The data structure for storing the logical topology consists of a list of discovered
nodes and a list of discovered subnets. Each of the nodes in the list of nodes
contains the following information:

e the name of the node

e the list of this node’s IP address(es)

o the list of the subnets connected to this node

e the routing capabilities of this node (router, host, or undefined)

Each of the subnets in the list of subnets is bound to the list of nodes which
have an IP address in this subnet. This information is given explicitly for
convenience.

The data structure for storing the physical topology consists of one list of nodes.
Each of the nodes in this list contains the following information:

e the name of the node
e the identifier (system name) of this node

o the list of neighbors connected by a direct link to this node; this list includes
both the local and remote interfaces used to connect these devices

The data model of the topology discovery module defines an interface to the
topology discovery actions and the necessary data structures. This interface is
implemented in Java. The next section describes the implementation of the L3
topology discovery action.

4.3 Logical topology discovery

The logical topology discovery action is defined in the ActionL3Topology class.
The general logic of this action is as follows. First, the scope of the discovery
is identified by parsing the parameter of the action. Then the set of devices
that corresponds to the scope parameter is loaded from the NCS CDB. After
this, a set of data needed for building the topology is retrieved from each of
the devices using native NCS means for communication with the devices. The
retrieved data is stored in data structures in memory which correspond to the

53

data structures defined in the data model (see Section 4.2). Finally, this data is
stored in the NCS CDB. Additionally, the data is also stored in a temporary file
used by a visualization library for generating a graphical representation of the
topology.

The necessary data is retrieved from each device via SNMP. However, this
communication with the device is performed by means of NCS, so the topology
discovery module does not have to implement any SNMP capabilities, instead it
simply reads a corresponding part of the data tree for each particular device. The
retrieved data is not cached in CDB, so each time that NCS receives a request for
a particular piece of operational data, it fetches the data directly from the device
using SNMP.

To compute the topology we use the following data from the devices:
e [P addresses of the interfaces (both physical and logical).
e Network masks corresponding to the IP addresses.

e Operational state of the interfaces corresponding to the addresses. Inactive
interfaces do not participate in building the network map.

e [P forwarding variable, which allows the code to identify routers (we
assume that every node which has IP forwarding enabled is a router).

Using this data it is possible to calculate a network address for each of the subnets
directly connected to the node. Given a list of nodes (which is the input for this
action) we can create a list of subnets directly connected to these nodes. As we
know the connections between the nodes and the subnets, it is possible to build a
network map, essentially a graph with two types of nodes: devices (routers and
hosts) and subnets. The action does not implement visualization though, but only
stores data in a temporary file in a format compatible with the visualization library
(see Section 4.5).

It is worth mentioning that this implementation is non-vendor-specific, as it does
not rely on any proprietary MIBs. Each device should support the IF-MIB [55]
and the IP-MIB [56] and be configured as an SNMP device in NCS or have SNMP
configured as a secondary protocol for gathering operational data from the device.
If a device does not satisfy these requirements, then it may appear on a network
map as a host node in the case its management IP address falls into the address
range of any of the discovered subnets. No other data collection methods have
been implemented (for now); the main reason for this is the lack of data models
for fetching operational data via SSH (CLI) and NETCONTF in the current version
of NCS.

54

4.4 Physical topology discovery

Physical topology discovery is represented as an action defined in the L2 topology
data model. The general characteristics of the physical topology discovery
resemble those of the logical topology discovery; however, this action relies on
different data sets. The action is implemented using the Act ionL2Topology class.
There are several input choices defined for this action: all configured devices from
the NCS managed devices tree, a group of managed devices, or a subnet from a
previously run L3 topology discovery action. As in the logical topology discovery,
the physical topology discovery relies on the internal mechanisms of NCS to
retrieve the operational data via SNMP, thus, there is no need to implement any
communication specific features within the action. Once the input is specified the
L2 discovery process queries specific fields within the operational data tree of a
specific device, then retrieves and stores the data as the operational data according
to the L2 topology model (as described in Section 4.2).

Physical topology discovery relies on the CDP protocol to produce a list of nodes
with associated neighbors connected to the nodes. Thus, the current version
of the physical topology discovery supports only CDP enabled devices. The
CDPCacheTable from the Cisco-CDP-MIB [57] is queried to fetch the required
information:

e The device’s global identifier (ID) is used as an identifier set for the device
(usually represented as the device’s domain name);

e The list of neighbors connected to this device with their respective global
identifiers, and

e The local and remote interface names for the device and associated
neighbor.

Once the data is fetched, it is stored as operational data in the CDB. The data is
stored as a list of nodes with an associated list of neighbors and the information
about the interfaces. Thus, each node has a global ID and a list of connected
neighbors with respective local interface (interface on the node itself) and remote
interface (interface on the neighbor). This data is saved into a temporary file which
will subsequently be used by the visualization library to generate a graphical
representation of the physical topology.

Initially, it was planned to also utilize LLDP for building L2 topology maps;
however, due to the limited availability of hardware with LLDP support, an
LLDP based implementation was not realized in the context of this thesis project
(but should be considered for future work). Nonetheless, possible approaches to

55

utilizing LLDP were discussed and some implementation logic was developed.
The general approach is to follow the same logic as described in the CDP based
topology discovery: requesting the LLDP related data through NCS internal
mechanisms over SNMP. As the implementation may need to support devices
from different vendors, we have assumed that the specific SNMP MIBs for the
LLDP protocol are available from these vendors. Another approach, which
is more flexible and easier to implement, but unfortunately is not supported
on many devices, is to utilize the NETCONF Remote Procedure Call (RPC)
mechanism. This RPC mechanism could be used to request operational data
from a device. Juniper devices are a good example of such devices. The
advantage of this approach is that it eliminates the need for using SNMP, since
the native NETCONF functionality can be utilized. For Cisco devices a similar
approach could be developed using Cisco’s CLI to communicate with the device.
However, since there are no native data models for collecting operational data
via NETCONF and Cisco’s CLI in NCS (for now), these data models must be
developed to enable the topology discovery module to retrieve operational data
from the devices via these protocols.

4.5 Topology visualization

Topology visualization aims to provide a graphical representation of the topology
discovery data that has been collected. As NCS provides an extensible WebUI,
it was decided to implement this visualization using the Arbor.js [58] JavaScript
library to allow further integration of the visualization implementation with the
WebUI. However, the actual integration of visualization with WebUI is outside
the scope of this thesis project, thus, only a possible prototype of the visualization
implementation was developed to offer a base for further integration efforts.

The logic of the topology visualization implementation is straightforward: once
the L2 or L3 topology discovery action is completed and the discovered data
is stored in the operational database, then the data is processed and temporary
files to be used by Arbor.js are produced. These files contain descriptions of
the nodes and the edges (links between the nodes) in the format used by this
library. The library than renders the data from generated files and produces a
visual representation. A good feature of Arbor.js is that the data may be stored
with additional parameters, such as colors, shapes, and labels; and the rendering
engine may be modified to reflect the requirements of the visualization. As a
result, the actual topology data is completely separated from the visualization
logic.

56

Since it was decided to implement the visualization in a way that will potentially
facilitate further integration of the visualization into the NCS WebUI, the choice
of the visualization library had to correspond to that requirement. There are
different graph visualization libraries and software available, including the widely
used Graphviz [59], that could have been used. However, the requirement for
this library is to provide an easy solution to integrate with the WebUI, including
possibility to link the nodes in the visual topology representation to the actual
device representation in the NCS WebUI and scalability to different screen
resolutions that would be difficult to implement with static images. Hence the
JavaScript based approach has been taken that would provide all of the required
features. While Graphviz is very flexible relying on the DOT language [60]
which provides a good way of defining graphs, Graphviz generates static images
as an output, which can not be further manipulated. There is a Graphviz based
JavaScript library which also relies on the DOT language - Canviz [61]; this is a
very promising library, however, there is no support for features like mouse-over
and mouse-out events, animations, and draggable interface for now. There is also
a range of different JavaScript graph visualization libraries, and Arbor.js is one
of those. The choice for Arbor.js was motivated by the good design of the library
and by allowing us to rapidly develop a prototype for the visualization, however,
this is still an open issue, and the final choice for the library should be based on
the NCS WebUI integration requirements.

It is worth mentioning that the temporary XML file produced by Nmap during
the Nmap-based device discovery may be used to provide topology visualization
of devices discovered during the Nmap device discovery process. Nmap uses
RadialNet [62] to create visualization of discovered devices’ topology. RadialNet
is very good at producing visualizations, however, it is a tool that was developed
specifically for Nmap which makes its use with other software problematic. Since
the stand-alone device discovery engine has been chosen as a primary engine due
to the reasons described in Section 3.7, the topology visualization approach based
on Nmap was not pursued.

4.6 Topology discovery architectural overview

The topology discovery module follows the structure of the device discovery
module. It consists of two components: the data model and the program logic. The
module represents an NCS package which can optionally be loaded into NCS on
startup. Moreover, the topology discovery package relies on other NCS packages
to provide support for the required functionality by fetching the required data

57

using SNMP. The dependencies are verified at NCS startup, and the package is
disabled if the packages on which it depends are not loaded. A logical overview
of the package integration is presented in Figure 9. The packages on which
this module depends provide required functionality for the topology discovery
package; specifically the IP-MIB package allows retrieval of the IP addressing
information, while the Cisco-CDP-MIB package allows retrieval of the CDP
related information.

Morthbound Interfaces

T Ensure functionality
N - Extend data model 3
Cisco-CDP-MIB Packagel’ <
IP-MIE Package e N T
Program
_ logic
Service Manager {Java) Dats Tiadel
: (YANG)
Device Manager ;
=55 F“I’upulagy package
NCS) F
Southbound Interfaces Add fl:;r.'[f:?:'i'analitv

Figure 9: Topology package logical overview

The data model of the topology discovery package is defined as a YANG module
with included submodules. Figure 10 represents the structural overview of
the topology module. The functionality of the submodules was described in
Section 4.2. The complete structure of the topology discovery data model is
presented in Appendix C.

topology.yang

[tupnlngy-base.yang) (tnpulngy-l?.yang] (tnpulugy-liyang]

Figure 10: Topology package data model overview

58

An architectural overview of the Java classes for L3 topology discovery and L2
topology discovery is presented in Figures 11 and 12 respectively. The complete
representation is provided in Appendix D.

<<Java Clags>>
(3 ActionL3Topology
topology
K +nbdgs 0%
"
<<Java Class>> <<Java Class>> sl
(9 AbstractAction (9 ReturnValue (© L3TopologyNode
topalogy topalogy topology
#iphddr 0_%
<<Java Class>> <<Java Class>>
(5 MetAddrMask (9 TopologyNode
topology topology

Figure 11: L3 topology discovery architectural overview

<<Java Class>>
(3 ActionL2Topology
topobogy
/ \m{‘i
<<Java Class>> <<Java Classs>
(5 AbstractAction (5 L2TopologyNode
topobogy topology
L #neighbﬂri/ J]
(;;W: Clﬂf:: <<Java Class=> <<Java Class>>
eturnValue
il (& Neighbor (5 TopologyNode
PO topobogy topobogy

Figure 12: L2 topology discovery architectural overview

An architecture of the proposed solution was designed to be extensible in terms of
the protocols which could be used for communication with the different devices.
Although the current version of the module is capable of retrieving the necessary
data from devices only over SNMP, the same data could be retrieved over SSH
(CLI) or NETCONF. As the actual communication with the device is performed

59

by NCS, retrieving the data via a different protocol would be just a matter of
requesting a different object from NCS. When NCS has the necessary data
models for retrieving operational data via these protocols, then this functionality
could be exploted by making minor changes to the source code. Similarly, it is
easy to build an L2 topology using other LLDP protocols as they can provide
similar functionality by collecting additional data from other MIBs and to provide
additional OIDs in the source code.

4.7 Results and analysis

The topology discovery functionality was realized as an NCS package. This
package provides a representation of a network topology map based on the
devices in NCS configuration database. This representation includes a logical
(L3) topology, which represents logical structure of the network and a physical
(L2) topology representing the physical links between devices. This package
also contains a prototype implementation of a module to generate a visual
representation of the topology discovery process’ results. The rest of this
section provides a number of examples of the usage of the topology discovery
module, discusses the results produced by topology discovery process, and shows
examples of topology visualization, as well as mentions some important aspects
of the process of developing this module.

The primary goal for the functionality of this package was to develop an
appropriate approach for network topology representation as a data structure
and designing an appropriate YANG data model for it. Since the logical and
physical topologies of the same network may differ, it was decided to provide
both representations in the same package. The logical (L3) topology is based
on the actual IP address configuration of the devices, thus, the most suitable
protocol for gathering this data is SNMP (as it provides the greatest coverage of
different devices that we considered). However, for the physical (L2) topology,
since the data about direct link connections is not readily available from the
devices, additional protocols were required. As described in Section 2.4, some
of the link-layer discovery protocols that could be used are CDP and LLDP,
as these protocols are the most used protocols (in the context of those devices
that can currently be managed by NCS). For this reason, the L2 topology
discovery implementation relies on the CDP protocol for collecting the link-
layer interconnection data from the devices and utilizes SNMP to collect the
interconnection data from these devices by calling upon NCS. LLDP support was
not included in the package at this stage due to the unavailability of equipment

60

SW1

nio_tap:tap0

Figure 13: Virtual network topology

with LLDP support (it is planned that a later effort would target Juniper equipment
for LLDP based topology discovery). Providing a visual representation of the
discovered topology was a secondary goal.

The following listings and results of topology discovery are based on the virtual
network presented in Figure 13. This network was specifically created for
evaluating the topology discovery processes. This virtual network consists of five
emulated Cisco routers. Listing 15 shows the devices currently present in the NCS
managed devices tree that are used in these examples.

admin@y550> show configuration devices | match device | except device-type

device
device
device
device
device

cisl
cis2
cis3
cis4
cisb

{
{
{
{
{

[ok][2013-05-06 11:09:52]

Listing 15: List of configured devices used in the topology discovery examples

61

L3 and L2 topology discovery actions may be run independently of each
other; however, the L2 topology action includes an option to perform link-layer
discovery based on a subnet that was previously discovered during an L3 topology
discovery process. A typical invocation and the output of L3 and L2 topology
discovery actions is presented in Listing 16 and Listing 17 (respectively).

admin@y550> request devices topology layer3 scan

result

Devices loaded: 5

Nodes discovered: 5

Successfully stored 5 nodes

Layer 3 topology visualization data successfully stored
ok

[ok][2013-05-06 11:11:13]

Listing 16: L3 topology discovery action

admin@y550> request devices topology layer2 scan
result

Devices loaded: 5

Nodes discovered: 5

Successfully stored 5 nodes

Topology visualization data successfully stored
ok

[0k][2013-05-06 11:12:02]

Listing 17: L2 topology discovery action

The results of the actions shown in Listing 16 and Listing 17 are presented in
Listing 18 and Listing 19 (respectively). Both L3 and L2 topology discovery
actions generate a temporary file that is subsequently used to produce a graphical
representation. The temporary file is generated after the results are parsed.

62

admin@y550> show devices topology layer3 | notab

devices topology layer3 subnets 172.30.0.128/25

nodes [cisl]

devices topology layer3 subnets 172.30.10.0/30

nodes [cisl cis2]

devices topology layer3 subnets 172.30.20.0/28

nodes [cisl cis3]

devices topology layer3 subnets 172.30.30.0/28

nodes [cis2 cis3]

devices topology layer3 subnets 172.30.40.0/27

nodes [cis3 cisd]

devices topology layer3 subnets 172.30.50.0/29

nodes [cis3 cis5]

devices topology layer3 subnets 172.30.60.0/30

nodes [cisd4 cis5]

devices topology layer3 subnets 172.30.70.0/24

nodes [cisd4]

devices topology layer3 subnets 172.30.99.1/32

nodes [cisl]

devices topology layer3 subnets 172.30.99.2/32

nodes [cis2]

devices topology layer3 subnets 172.30.99.3/32

nodes [cis3]

devices topology layer3 subnets 172.30.99.4/32

nodes [cis4d]

devices topology layer3 subnets 172.30.99.5/32

nodes [cisb5]

devices topology layer3 nodes cisl

addresses [172.30.0.130/25 172.30.10.1/30 172.30.20.1/28 172.30.99.1/32]

networks [172.30.0.128/25 172.30.10.0/30 172.30.20.0/28 172.30.99.1/32]

type router

devices topology layer3 nodes cis2

addresses [172.30.10.2/30 172.30.30.1/28 172.30.99.2/32]

networks [172.30.10.0/30 172.30.30.0/28 172.30.99.2/32]

type router

devices topology layer3 nodes cis3

addresses [172.30.20.2/28 172.30.30.2/28 172.30.40.1/27 172.30.50.3/29
172.30.99.3/32]

networks [172.30.20.0/28 172.30.30.0/28 172.30.40.0/27 172.30.50.0/29
172.30.99.3/32]

type router

devices topology layer3 nodes cis4

addresses [172.30.40.2/27 172.30.60.1/30 172.30.70.1/24 172.30.99.4/32]

networks [172.30.40.0/27 172.30.60.0/30 172.30.70.0/24 172.30.99.4/32]

type router

devices topology layer3 nodes cis5

addresses [172.30.50.2/29 172.30.60.2/30 172.30.99.5/32]

networks [172.30.50.0/29 172.30.60.0/30 172.30.99.5/32]

type router

[ok][2013-05-06 11:12:31]

Listing 18: L3 topology discovery results

63

admin@y550> show devices topology layer2 | notab
devices topology layer2 nodes cisl/172.30.99.1
device-global-id Rl.test.dom

neighbor R2.test.dom 172.30.10.2 FastEthernetl/1
neighbor R3.test.dom 172.30.20.2 FastEthernet2/0
devices topology layer2 nodes c¢is2/172.30.99.2
device-global-id R2.test.dom

neighbor Rl.test.dom 172.30.10.1 FastEthernetl/0
neighbor R3.test.dom 172.30.30.2 FastEthernetl/1
devices topology layer2 nodes cis3/172.30.99.3
device-global-id R3.test.dom
neighbor Rl.test.dom 172.30.20.1
neighbor R2.test.dom 172.30.30.1
neighbor R4.test.dom 172.30.40.2 FastEthernet2/0
neighbor R5.test.dom 172.30.50.2 FastEthernet2/1
devices topology layer2 nodes cis4/172.30.99.4
device-global-id R4.test.dom

neighbor R3.test.dom 172.30.40.1 FastEthernetl/0
neighbor R5.test.dom 172.30.60.2 FastEthernetl/1
devices topology layer2 nodes cis5/172.30.99.5
device-global-id R5.test.dom

neighbor R3.test.dom 172.30.50.3 FastEthernetl/0
neighbor R4.test.dom 172.30.60.1 FastEthernetl/1
[0ok][2013-05-06 11:13:10]

FastEthernetl/1
FastEthernetl/0

FastEthernet1/0
FastEthernetl/1

FastEthernetl/1
FastEthernet1/0

FastEthernet2/0
FastEthernetl/1
FastEthernetl1/0
FastEthernet1/0

FastEthernet2/0
FastEthernetl/1

FastEthernet2/1
FastEthernetl/1

Listing 19: L2 topology discovery results

Figure 14 and Figure 15 represent the visualization of the L3 and L2 topologies
(respectively). The L3 visualization shows the devices and the networks
these devices are connected to, while the L2 visualization shows the physical
interconnections of the devices. The actual names, as they are configured in NCS,
are used for the devices, thus, they are different from the names shown in Figure 13
and the actual names that are configured on the devices (domain names). Note that
at the current stage of the project visualization package has some limitations in
representation of the actual data structure for topology discovery (see Listings 18
and 19), e.g. it does not fully support multiple links between devices.

64

172.30.89.1/32
\ 172.30.0.128/25

172.30.10.0/30

172.3-:.99.?;32 172.30.20.0/28

—— 172.30.50.0/29

| — — 172.30.30.0/28 ~
172.30.99.2/32

172.30.60.0/30
172.30.40.0i27 172.30.99.3/32

172.30.99.4i32

172.30.70.0i24

Figure 14: Discovered L3 topology visualization

Fﬂ‘ﬁﬁm —
[T

) _ - |
| ---""“»-__EEHO Fazrt ,'I
- [
_)
. _— Fa FaZit__ I'
| - - h"“‘“--q___ f
Fa/h e T /
Faz2/0 - —— {
=1 .
(=

Figure 15: Discovered L2 topology visualization

It may happen that one or more network devices are missing, not supported, or
incorrectly configured in NCS. Figure 16 and Figure 17 show an example of a
visualized network topology when cis3 device is improperly configured. Due
to the fact the L3 topology discovery "connects" a device to the discovered set
of subnets relying on its interfaces’ configuration information, it is impossible to
recover the part of the topology which includes the missing device. At a minimum
we try to utilize the device’s management IP address to connect it to one of
the discovered subnets (note that this is not the case in Figure 16 as all of the
devices in the test network are managed via their loopback interface addresses).

65

In contrast, CDP provides explicit information for L2 topology discovery as the
same information about each link can be retrieved from each of the two devices
connected via a link. Therefore, it is possible to recover part of the topology
with the missing device; however, there is no way to match this device with an
improperly configured device in the NCS configuration.

172.30.70.0/24

172.30.00 4/32

172.30.50.0/29

_ 172.30.99.5/32

S

172.30.60.0/30
/ 172.30.99.2/32

\ 172.30.30.0/28

E 7.

172.30.40.0027

172.30.10.0030

172.30.0.128/25 __ /
172.30.20.0/28

172.30.90.1/32

Figure 16: Discovered L3 topology visualization with misconfigured device (cis3)

\
Failj1

o
T Falf

_ Faino FaZ.lCl_l___.

--""..Fa1.l"| Fa2il = \
Faii1

R -

182/

cis1

Figure 17: Discovered L2 topology visualization includes the misconfigured

device

Having the topology discovery task split into a logical topology discovery and
a physical topology discovery allows more fine-grained control over the level
of detail of the network map. Additionally, it allows to simplify requirements

66

for the low-detailed L3 network map while putting greater requirements for the
highly-detailed L2 map (as generally the task of building a highly-detailed map
requires using more of the device capabilities). This approach seems natural as
L3 topology allows the operator to see the map of the core network while the L2
topology provides detailed views of different parts of what is probably an access
network.

Since NCS does not yet include native data models for retrieving the required
operational data about IP addresses and link-layer connections from a device over
NETCONEF or SSH (CLI), it is difficult to cover a wide range of different devices
which only support other protocols. While retrieving the data only via SNMP
and relying only on CDP may not seem a wide variety, including LLDP and
NETCONF RPCs would add to the diversity of data sources. Moreover, there
is an advantage in using NCS’s internal mechanisms for communication with
the devices and once there are data models for retrieving operational data via
additional protocols (such as NETCONF) then it will be possible to support a
greater variety of devices.

Another problem is the interoperability of the protocols for L2 discovery. For
example, in the case of CDP and LLDP it would be difficult to produce a topology
if some of the devices in the same network only use LLDP and others only use
CDP. The physical topology in such a case would generate two distinct maps
reflecting the data collected by the two protocols. However, although a network
may include different vendors’ networking equipment, it is unlikely that a mixture
of different equipment would be used in the same part of the network. For this
reason we do not expect that there will be a problem generating these two different
network maps. It might be possible in the future to use L3 information to connect
these two different network maps.

Network discovery, and especially network topology discovery, is a widely
discussed topic and there is a lot of work that has been done in this area
(see Chapter 2), including developing both theoretical approaches and practical
implementations of discovery tools. The topology discovery package developed
during this master’s thesis project also falls in the range of this type of tools,
however, it is difficult to compare this package to other tools, as it is specifically
designed as a component for NCS (implying the choice of devices that are to
be discovered as well as the method of communication with those devices).
Nevertheless, the methods used for topology discovery can be compared.

The general purpose topology discovery tools usually include a device discovery
functionality, since they need a starting point which is usually a range of IP
addresses or a single IP address. A popular way to proceed once the range has
been defined is to perform a so called "ping sweep" which will identify which

67

devices are online, and usually a traceroute which will provide initial mapping of
distance (i.e. number of hops) to a certain device. Argus [63] is an example of a
tool that utilizes this approach. After the initial mapping is done and the devices
to work with are found additional protocols may be used to obtain information
about the device interconnections. These protocols are mainly SNMP and link-
layer neighbor discovery protocols such as LLDP. The topology discovery
package developed for NCS does not include any device discovery component
as it works with the devices that are already configured in NCS (although the
device discovery functionality has been implemented in a separate module which
is described in Chapter 3, the topology discovery module does not depend on this
functionality). Argus relies on SNMP only, which may be a limitation with the
devices that support a link-layer discovery protocol, but do not have an SNMP
support. There are tools that rely on LLDP protocol exclusively; an example of
such a tool is an LLDP-walk [64] demonstration, which connects to devices via
SSH (CLI) and retrieves LLDP information. A distinctive feature of our topology
discovery implementation is its architecture which allows for easy integration with
other protocols, thus making it possible to have combinations of the protocols
that provide required information and the protocols that are used to retrieve this
information.

The following chapter concludes the report. It reviews the goals that have been
achieved, discusses the ethical aspects of this work, and suggests some future
work that could be done in this area.

68

Chapter 5

Conclusions and Future work

This chapter concludes the thesis. The following sections give a general summary
of the work; discuss the initial goals that were defined for the project and compare
them with the outcome of this work. The chapter also discusses some ethical
aspects related to this project, and the future work that could built upon the results
of this project.

5.1 Project summary and results

This master’s thesis project was done at Tail-f Systems. The result of this project
is two optional NCS packages that provide network device discovery and network
topology discovery functionality. This result reflects the goals originally defined
for this project.

The device discovery package provides network device discovery of devices
in the specified IP address range, while also determining the type (software
and hardware platform) of the devices whenever possible and collecting all the
additional parameters required to add the discovered device to NCS’s managed
devices tree. This package minimizes the effort required by an NCS operator
by allowing the operator to automatically save the discovered device(s) into the
NCS configuration database together with the relevant parameters and provides
an option to add multiple devices with a single command. The device discovery
package meets the requirements initially set for the package. The package
includes both requested Nmap-based device discovery and a stand-alone device
discovery engine which utilizes a credential based approach to device discovery
and is better suited for use by an NCS operator. The package’s data model is

69

defined in YANG and the structure of the package meets the requirements for an
NCS package.

The topology discovery package provides the functionality to discover a network’s
topology for those devices configured in NCS. The topology discovery package
provides two actions for topology discovery: L3 topology discovery which aims at
discovering the logical structure of the network and L2 topology discovery which
aims at discovering physical (link-layer) interconnection between devices. The
YANG data model defined for the package provides a data structure which permits
an extensive representation of the discovered topology. This representation is used
as input for an experimental visualization prototype developed for the topology
discovery package. The visualization provides a graphical representation of the
discovered topology. In the current version of the topology discovery package
L2 topology discovery is based on the CDP protocol to collect information about
link-layer interconnections between the devices.

The initially planned LLDP based topology discovery method was not realized.
The reason behind this was the limited availability of hardware with LLDP
support, particularly the unavailability of Juniper equipment; equipment from this
vendor was the primary target for this method. However, possible approaches
to LLDP based discovery were developed. An approach similar to CDP based
discovery may be utilized for LLDP based discovery, when the data is retrieved
by NCS using SNMP. Additionally, a NETCONF RPC based approach may be
utilized. An advantage of this particular approach is that it eliminates the need
for an additional protocol (SNMP in our case), but requires devices to support
NETCONF and requires developing data models which reflect the RPC structure.
While developing data models is a demanding task, it is not the primary concern
of this approach, but rather the need for the support of NETCONF on different
devices. As Juniper devices natively support the NETCONF protocol they were
considered the primary target for LLDP based discovery.

Although LLDP based topology discovery was not implemented, the architecture
of the package allows the package to easily be extended to support LLDP. The
package can be also extended to support other protocols for device communication
to cover an even wider range of different types of devices. The prerequisite for
including this functionality into the package is the presence of the relevant data
models in NCS.

The following section describes the ethical considerations behind this work. The
section also discusses the authors’ view of the intended use of software which was
developed and the use of the material presented in this thesis.

70

5.2 [Ethical considerations

Network scanning is a highly debated topic from an ethical perspective and
especially from a legal perspective. This thesis covers some aspects and
methodologies used for network scanning and discovery, additionally the software
developed during this project provides network scanning functionality. We, as the
authors of this work, highly oppose any unintended and malicious usage of the
results of this work. We expect that the software developed during this project
would be used only by network administrators in their own networks, or used
with the permission of the network’s administrator. The content of this thesis is
intended to provide research based insight into network scanning and should be
useful for other research, educational, or other legitimate purposes.

While developing the discovery components for NCS we assumed that these
components would only be used by the respective network’s operators or
otherwise persons responsible for a network. While the Nmap-based discovery
component relies on Nmap to provide its functionality, all the legal considerations
applied to Nmap should be applied to the usage of this component as well.
Moreover, the stand-alone discovery engine was not developed as a general
purpose network scanner as it utilizes credential(s) based discovery as its main
feature in order to provide precise and accurate information about the devices
that are discovered. The operator must specify the credentials to be used during
the discovery process. While this requires more effort from the operator, it
is less effort that would be required to manually configure each device. A
password guessing feature could somewhat simplify the process, however, this
seems contrary to the ethical norms of such a discovery component for NCS.
The credentials based discovery somewhat resembles a dictionary approach to
password guessing, when an operator defines a long list of credentials, as
credentials are sequentially used to access each of the devices. Although, the
module might be utilized as a tool in conjunction with a brute-force password
guessing attack, we would highly discourage potential abusers from doing so.
Additionally, the discovery component does not provide any optimizations (such
as timeouts, IDS/IPS evasion, etc.) for this task, as we have assumed that the
operator who runs this package has all the required authorizations and that this
operator is authorized to use this package.

The usage of components is controlled by NCS’s access control and security
mechanisms; the components themselves do not implement any additional usage
restrictions. Thus, in multiuser NCS environments, the NCS administrator should
configure suitable usage policies for these new components. The only security
feature implemented for these new components is the encryption of the credentials

71

stored in the configuration database and the valid credentials that worked on a
specific device when stored into the operational database. Encrypting strings
is a built-in feature of NCS, which is controlled by the NCS configuration.
The NCS administrator can specify the encryption algorithm to be used and
the associated parameters (encryption keys, initialization vectors, etc.). The
NCS administrator is advised to select an appropriate encryption algorithm and
associated parameters, while adhering to the general practice of securing access
to the encryption keys.

The following section describes some potential future work related to this project.
It also discusses some possible future work in the area of network discovery from
the perspective of this thesis project.

5.3 Future work

The device and topology discovery packages provide the required discovery
functionality - as this functionality was defined within the scope of this thesis
project. However, these packages are still an experimental feature and do not
provide the functionality which might be ultimately required. Future work should
make these new discovery components more complete in order to provide a
feature rich network discovery solution to Tail-f Systems NCS customers. The
features described below would make these new discovery components more
complete:

e Adding IPv6 support to the stand-alone discovery engine. This would
make the device discovery package compliant with the rapidly changing
industry’s demands and the increasing spread of IPv6.

e Enabling support for device communication via NETCONF while perform-
ing device discovery.

e Adding LLDP based physical discovery to the topology discovery
component. This feature would allow the topology discovery component
to cover additional device types. For Juniper equipment, it would be good
to implement the NETCONF RPC based approach in order to retrieve
additional operational data, and laying the ground for supporting future
NETCONF enabled devices. It might also be desirable to implement
Cisco’s CLI based approach to support those Cisco devices which do not
run an SNMP agent.

72

e Adding support for sequential neighbor discovery to the topology discovery
module. This feature will help to identify modifications made to the network
without a need to query all the devices again, but starting from a particular
device in the network and traversing the neighbors connected to that device.

e The experimental visualization of discovered topology representations
should be incorporated into the NCS WebUI. This will facilitate a better
overall representation of the discovered data, as well as possibly linking
the visualization elements to the NCS WebUI objects (for instance when
a device is presented on the visualized map it could be a reference to the
device actually configured in NCS), thus allowing for richer functionality
of the visual topology representation.

In general it would be interesting to follow the development of NETCONF,
including the development of the YANG language. As more devices become
NETCONF enabled it should be much easier for NCS to support them. The
development that is being done in this area includes enhancements of the
NETCONEF protocol and enabling this protocol support on different devices.

It may be beneficial to follow the development of the various graph visualization
libraries. A particularly interesting development would be a library aimed
specifically at generating network topology maps.

The development of open network equipment, such as proposed by the Open
Compute Project [65], and the increasing use of OpenFlow [66] switching both
increases the variety of network equipment that must be managed and reduces
the time scale during which management decisions have to be made. A possible
future work is to extend the results of this thesis in these areas.

73

74

References

[1]

(2]

[6]

“Nmap - Legal Notices.” [Online]. Available:
http://nmap.org/book/man-legal.html [Accessed: 12-Mar-2013].

J. Case, R. Mundy, D. Partain, and B. Stewart, “Introduction and
Applicability Statements for Internet-Standard Management Framework,”
RFC 3410 (Informational), Internet Engineering Task Force, Dec. 2002.
[Online]. Available: http://www.ietf.org/rfc/rfc3410.txt

K. McCloghrie, D. Perkins, and J. Schoenwaelder, “Structure of
Management Information Version 2 (SMIv2),” RFC 2578 (INTERNET
STANDARD), Internet Engineering Task Force, Apr. 1999. [Online].
Available: http://www.ietf.org/rfc/rfc2578.txt

R. Stadler, lectures notes for the course EP2300 Management of Networks
and Networked Systems, KTH Royal Institute of Technology, Aug.-Oct.
2012, unpublished.

J. Yu and I. Al Ajarmeh, “An Empirical Study of the NETCONF Protocol,”
in Sixth International Conference on Networking and Services (ICNS),
March 2010, pp. 253-258.

R. Enns, M. Bjorklund, J. Schoenwaelder, and A. Bierman, “Network
Configuration Protocol (NETCONF),” RFC 6241 (Proposed Standard),
Internet Engineering Task Force, Jun. 2011. [Online]. Available:
http://www.ietf.org/rfc/rfc6241.txt

J. Schonwilder, M. Bjorklund, and P. Shafer, “Network configuration
management using NETCONF and YANG,” in IEEE Communications
Magazine, vol. 48, no. 9, September 2010, pp. 166—173.

M. Wasserman, “Using the NETCONF Protocol over Secure Shell (SSH),”
RFC 6242 (Proposed Standard), Internet Engineering Task Force, Jun.
2011. [Online]. Available: http://www.ietf.org/rfc/rfc6242.txt

75

http://nmap.org/book/man-legal.html
http://www.ietf.org/rfc/rfc3410.txt
http://www.ietf.org/rfc/rfc2578.txt
http://www.ietf.org/rfc/rfc6241.txt
http://www.ietf.org/rfc/rfc6242.txt

[9] M. Badra, “NETCONF over Transport Layer Security (TLS),” RFC 5539
(Proposed Standard), Internet Engineering Task Force, May 2009. [Online].
Available: http://www.ietf.org/rfc/rfc5539.txt

[10] T. Goddard, “Using NETCONF over the Simple Object Access Protocol
(SOAP),” RFC 4743 (Historic), Internet Engineering Task Force, Dec.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4743.txt

[11] E. Lear and K. Crozier, “Using the NETCONF Protocol over the Blocks
Extensible Exchange Protocol (BEEP),” RFC 4744 (Historic), Internet
Engineering Task Force, Dec. 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4744.txt

[12] “IETF Network Configuration Working Group.” [Online]. Available:
http://datatracker.ietf.org/wg/netconf/charter/ [Accessed: 5-Feb-2013].

[13] M. Bjorklund, “YANG - A Data Modeling Language for the Network
Configuration Protocol (NETCONF),” RFC 6020 (Proposed Standard),
Internet Engineering Task Force, Oct. 2010. [Online]. Available:
http://www.ietf.org/rfc/rfc6020.txt

[14] Tail-f Systems, “NCS User Guide,” Dec. 2012, unpublished.

[15] J. Schonwilder and H. Langendorfer, “How to Keep Track of Your
Network Configuration,” in Proceedings of the 7th USENIX conference on
System administration (LISA 1993), 1993, pp. 189-193.

[16] R. Braden, “Requirements for Internet Hosts - Communication Layers,”
RFC 1122 (INTERNET STANDARD), Internet Engineering Task Force,
Oct. 1989, updated by RFCs 1349, 4379, 5884, 6093, 6298, 6633. [Online].
Available: http://www.ietf.org/rfc/rfc1122.txt

[17] Hwa-Chun Lin, Shou-Chuan Lai, and Ping-Wen Chen, “An algorithm for
automatic topology discovery of IP networks,” in IEEE International
Conference on Communications, ICC 1998, vol. 2, 1998, pp. 1192-1196.

[18] W. Liu, “Research on Remote Operating System Detection Using Libnet,”
in International Conference on Industrial and Information Systems, 11S

2009, 2009, pp. 101-103.

[19] Jiang Wei-hua, Li Wei-hua, and Du Jun, “The application of ICMP protocol
in network scanning,” in Proceedings of the Fourth International

Conference on Parallel and Distributed Computing, Applications and
Technologies, PDCAT 2003, 2003, pp. 904-906.

76

http://www.ietf.org/rfc/rfc5539.txt
http://www.ietf.org/rfc/rfc4743.txt
http://www.ietf.org/rfc/rfc4744.txt
http://datatracker.ietf.org/wg/netconf/charter/
http://www.ietf.org/rfc/rfc6020.txt
http://www.ietf.org/rfc/rfc1122.txt

[20]

[21]

[22]

[25]

[26]

[27]

[29]

[30]

“Nmap Security Scanner.” [Online]. Available: http://nmap.org [Accessed:
5-Feb-2013].

P. Dobrey, et al., “Device and service discovery in home networks with
OSGi,” Communications Magazine, IEEE, vol. 40, no. 8, pp. 86-92, 2002.

A. Wils, et al., “Device discovery via residential gateways,” International
Conference on Consumer Electronics, 2002, vol. 48, no. 3, pp. 478—483,
2002.

G.G. Richard, “Service advertisement and discovery: enabling universal
device cooperation,” Internet Computing, IEEE, vol. 4, no. 5, pp. 18-26,
2000.

JiaBin Yin et al., “SNMP-based network topology discovery algorithm and
implementation,” in Fuzzy Systems and Knowledge Discovery (FSKD),
2012, 9th International Conference, IEEE, 2012, pp. 2241-2244.

Han Yan, “The study on network topology discovery algorithm based on
SNMP protocol and ICMP protocol,” in Software Engineering and Service
Science (ICSESS), 2012, 3rd International Conference, IEEE, 2012, pp.
665—-668.

J. Postel, “Internet Protocol,” RFC 791 (INTERNET STANDARD),
Internet Engineering Task Force, Sep. 1981, updated by RFCs 1349, 2474.
[Online]. Available: http://www.ietf.org/rfc/rfc791.txt

J. Postel, “Transmission Control Protocol,” RFC 793 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated by
RFCs 1122, 3168, 6093, 6528. [Online]. Available:
http://www.ietf.org/rfc/rfc793.txt

“IP Option Numbers.” [Online]. Available:
http://www.iana.org/assignments/ip-parameters/ip-parameters.xml
[Accessed: 13-Feb-2013].

K. Ramakrishnan, S. Floyd, and D. Black, “The Addition of Explicit
Congestion Notification (ECN) to IP,” RFC 3168 (Proposed Standard),
Internet Engineering Task Force, Sep. 2001, updated by RFCs 4301, 6040.
[Online]. Available: http://www.ietf.org/rfc/rfc3168.txt

V. Jacobson, R. Braden, and D. Borman, “TCP Extensions for High
Performance,” RFC 1323 (Proposed Standard), Internet Engineering Task
Force, May 1992. [Online]. Available: http://www.ietf.org/rfc/rfc1323.txt

7

http://nmap.org
http://www.ietf.org/rfc/rfc791.txt
http://www.ietf.org/rfc/rfc793.txt
http://www.iana.org/assignments/ip-parameters/ip-parameters.xml
http://www.ietf.org/rfc/rfc3168.txt
http://www.ietf.org/rfc/rfc1323.txt

[31] J.M. Allen, “OS and Application Fingerprinting Techniques.” [Online].
Available: http://www.sans.org/reading_room/whitepapers/authentication/
os-application-fingerprinting-techniques_32923 [Accessed: 5-Feb-2013].

[32] G. Lyon, “Nmap network scanning: official Nmap project guide to network
discovery and security scanning,” 2011. [Online]. Available:
http://nmap.org/book/toc.html

[33] “IEEE std 802-2001, Standard for Local and Metropolitan Area Networks:
Overview and Architecture,” February 2002.

[34] “IEEE Public OUI List.” [Online]. Available:
http://standards.ieee.org/develop/regauth/oui/oui.txt [Accessed:
14-Feb-2013].

[35] T. Aura, “Cryptographically Generated Addresses (CGA),” RFC 3972
(Proposed Standard), Internet Engineering Task Force, Mar. 2005, updated
by RFCs 4581, 4982. [Online]. Available:
http://www.ietf.org/rfc/rfc3972.txt

[36] “Arp Scan.” [Online]. Available:
http://www.nta-monitor.com/tools-resources/security-tools/arp-scan
[Accessed: 14-Feb-2013].

[37] M. Srinivasan, “Tutorial on the Link Layer Discovery Protocol.” [Online].
Available: http://www.eetimes.com/design/communications-design/
4009357/Tutorial-on-the-Link-Layer-Discovery-Protocol/ [Accessed:
13-Feb-2013].

[38] V.Z. Attar and P. Chandwadkar, “Network Discovery Protocol LLDP and
LLDP-MED,” in International Journal of Computer Applications, vol. 1,
no. 9, 2010, pp. 93-97.

[39] Luo Junhai, Fan Mingyu, and Ye Danxia, “Research on Topology
Discovery for IPv6 Networks,” in Software Engineering, Artificial
Intelligence, Networking, and Parallel/Distributed Computing, 2007, SNPD
2007. 8th ACIS International Conference, vol. 3, 2007, pp. 804—8009.

[40] Shen Zengwei and Zhou Gang, “Research of the topology auto-discovery
approach in the ipv6 access network,” in Computers, Communications,
Signal Processing with Special Track on Biomedical Engineering, 2005,
CCSP 2005. 1st International Conference, 2005, pp. 96—100.

[41] S. Deering, “Host extensions for I[P multicasting,” RFC 1112 INTERNET
STANDARD), Internet Engineering Task Force, Aug. 1989, updated by
RFC 2236. [Online]. Available: http://www.ietf.org/rfc/rfcl1112.txt

78

http://www.sans.org/reading_room/whitepapers/authentication/os-application-fingerprinting-techniques_32923
http://www.sans.org/reading_room/whitepapers/authentication/os-application-fingerprinting-techniques_32923
http://nmap.org/book/toc.html
http://standards.ieee.org/develop/regauth/oui/oui.txt
http://www.ietf.org/rfc/rfc3972.txt
http://www.nta-monitor.com/tools-resources/security-tools/arp-scan
http://www.eetimes.com/design/communications-design/4009357/Tutorial-on-the-Link-Layer-Discovery-Protocol/
http://www.eetimes.com/design/communications-design/4009357/Tutorial-on-the-Link-Layer-Discovery-Protocol/
http://www.ietf.org/rfc/rfc1112.txt

[42]

[48]

[49]

[51]

R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,” RFC
4291 (Draft Standard), Internet Engineering Task Force, Feb. 2006, updated
by RFCs 5952, 6052. [Online]. Available:
http://www.ietf.org/rfc/rfc4291.txt

T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor
Discovery for IP version 6 (IPv6),” RFC 4861 (Draft Standard), Internet
Engineering Task Force, Sep. 2007, updated by RFC 5942. [Online].
Available: http://www.ietf.org/rfc/rfc4861.txt

J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery
(SEND),” RFC 3971 (Proposed Standard), Internet Engineering Task Force,
Mar. 2005, updated by RFCs 6494, 6495. [Online]. Available:
http://www.ietf.org/rfc/rfc3971.txt

S. Thomson, T. Narten, and T. Jinmei, “IPv6 Stateless Address
Autoconfiguration,” RFC 4862 (Draft Standard), Internet Engineering Task
Force, Sep. 2007. [Online]. Available: http://www.ietf.org/rfc/rfc4862.txt

Cisco Systems, “Cisco I0S Configuration Fundamentals Command
Reference - show protocols through showmon.” [Online]. Available:
http://www.cisco.com/en/US/docs/ios/fundamentals/command/reference/
cf_s4.html [Accessed: 04-Mar-2013].

Juniper Networks, “show version - Technical Documentation.” [Online].
Available: http://www.juniper.net/techpubs/en_US/junos/topics/reference/
command-summary/show-version.html [Accessed: 04-Mar-2013].

“uname(1) - Linux man page.” [Online]. Available:
http://linux.die.net/man/1/uname [Accessed: 04-Mar-2013].

R. Presuhn, “Version 2 of the Protocol Operations for the Simple Network
Management Protocol (SNMP),” RFC 3416 (INTERNET STANDARD),
Internet Engineering Task Force, Dec. 2002. [Online]. Available:
http://www.ietf.org/rfc/rfc3416.txt

J. Case, M. Fedor, M. Schoffstall, and J. Davin, “Simple Network
Management Protocol (SNMP),” RFC 1157 (Historic), Internet Engineering
Task Force, May 1990. [Online]. Available:
http://www.ietf.org/rfc/rfc1157.txt

U. Blumenthal and B. Wijnen, “User-based Security Model (USM) for
version 3 of the Simple Network Management Protocol (SNMPv3),” RFC
3414 (INTERNET STANDARD), Internet Engineering Task Force, Dec.

79

http://www.ietf.org/rfc/rfc4291.txt
http://www.ietf.org/rfc/rfc4861.txt
http://www.ietf.org/rfc/rfc3971.txt
http://www.ietf.org/rfc/rfc4862.txt
http://www.cisco.com/en/US/docs/ios/fundamentals/command/reference/cf_s4.html
http://www.cisco.com/en/US/docs/ios/fundamentals/command/reference/cf_s4.html
http://www.juniper.net/techpubs/en_US/junos/topics/reference/command-summary/show-version.html
http://www.juniper.net/techpubs/en_US/junos/topics/reference/command-summary/show-version.html
http://linux.die.net/man/1/uname
http://www.ietf.org/rfc/rfc3416.txt
http://www.ietf.org/rfc/rfc1157.txt

[52]

[53]

[54]
[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

2002, updated by RFC 5590. [Online]. Available:
http://www.ietf.org/rfc/rfc3414.txt

“SNMP4]J - The Object Oriented SNMP API for Java Managers and
Agents.” [Online]. Available: http://www.snmp4j.org/ [Accessed:
11-Mar-2013].

J. Postel, “Internet Control Message Protocol,” RFC 792 (INTERNET
STANDARD), Internet Engineering Task Force, Sep. 1981, updated by
RFCs 950, 4884, 6633. [Online]. Available:
http://www.ietf.org/rfc/rfc792.txt

C. Wikstrom, Tail-f Systems, Jan. 2013, private communication.

K. McCloghrie and F. Kastenholz, “The Interfaces Group MIB,” RFC 2863
(Draft Standard), Internet Engineering Task Force, Jun. 2000. [Online].
Available: http://www.ietf.org/rfc/rfc2863.txt

S. Routhier, “Management Information Base for the Internet Protocol (IP),”
RFC 4293 (Proposed Standard), Internet Engineering Task Force, Apr.
2006. [Online]. Available: http://www.ietf.org/rfc/rfc4293.txt

“Cisco CDP MIB.” [Online]. Available:
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=
2&mibName=CISCO-CDP-MIB [Accessed: 3-May-2013].

C. Swinehart, “Arbor.js: a graph visualization library using web workers
and jQuery.” [Online]. Available: http://arborjs.org/ [Accessed:
3-May-2013].

“Graphviz - Graph Visualization Software.” [Online]. Available:
http://www.graphviz.org/ [Accessed: 15-May-2013].

“The DOT Language.” [Online]. Available:
http://www.graphviz.org/doc/info/lang.html [Accessed: 15-May-2013].

“Canviz - JavaScript library for drawing Graphviz graphs to a web browser
canvas.” [Online]. Available: http://code.google.com/p/canviz/ [Accessed:
15-May-2013].

“RadialNet.” [Online]. Available:
http://www.dca.ufrn.br/~joaomedeiros/radialnet/ [Accessed:
15-May-2013].

“Project Argus - Network topology discovery, monitoring, history, and
visualization.” [Online]. Available: http://www.cs.cornell.edu/boom/
1999sp/projects/networktopology/topology.html [Accessed: 17-May-2013].

80

http://www.ietf.org/rfc/rfc3414.txt
http://www.snmp4j.org/
http://www.ietf.org/rfc/rfc792.txt
http://www.ietf.org/rfc/rfc2863.txt
http://www.ietf.org/rfc/rfc4293.txt
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CDP-MIB
http://tools.cisco.com/Support/SNMP/do/BrowseMIB.do?local=en&step=2&mibName=CISCO-CDP-MIB
http://arborjs.org/
http://www.graphviz.org/
http://www.graphviz.org/doc/info/lang.html
http://code.google.com/p/canviz/
http://www.dca.ufrn.br/~joaomedeiros/radialnet/
http://www.cs.cornell.edu/boom/1999sp/projects/network topology/topology.html
http://www.cs.cornell.edu/boom/1999sp/projects/network topology/topology.html

[64] J. Schulman, “Simple demonstration of "walking LLDP" in a Junos
network to create a connection map.” [Online]. Available:
https://gist.github.com/jeremyschulman/4546586 [Accessed:
17-May-2013].

[65] “Open Compute Project.” [Online]. Available:
http://www.opencompute.org/ [Accessed: 15-May-2013].

[66] “OpenFlow.” [Online]. Available: http://www.openflow.org/ [Accessed:
15-May-2013].

81

https://gist.github.com/jeremyschulman/4546586
http://www.opencompute.org/
http://www.openflow.org/

82

Appendix A

Device discovery data model

Namespace: httpyjtail-f.com/packages/discovery T

Prefix: disc
disc:discovery\

discovery

diﬁcuuery-cunfig\

diﬁcuvery-de\rices\

discovery-types \

diﬁcuuery-base\

<< module>>|
discovery

UML Generated : 2013-05-06 16:37

Figure 18: Discovery data model: discovery.yang

discovery'\

discovery-types

Prefix:
Belongs-to: discovery
Revision : 2013-03-12

tailf:tailf-common\

inet:ietf-inet-types\

: discovery-types \

vl

<= modlle>=>
discovery-types

== typedef>>
ipvd-range

string {pattern = (([0-8][1-9](0-8]|1...}

<< typedef>>
target-spec

<= typedef=>
oid-string

union{inet ip-prefix, inet:ip-address,..}

string {pattern = ([0-9]{1.4})*¢([0-9...}

UML Generated : 2013-04-30 15:57

(4]

Figure 19: Discovery data model: discovery-types.yang

83

discovery-base

diSCOV&W\

tailf:tailf-common\

|
N

Prefix:
Belongs-to: discovery

ncs:tailf-ncs \

Ve

:discover‘y-base\

=< module==
discovery-base

L/

/ncs

== augment=:=

idevices

1

<=container=>:=
discovery

UML Generated : 2013-04-30 15:54

Figure 20: Discovery data model: discovery-base.yang

84

96-GT 0€-¥0-ET0T - PAIBIBUSD TWN

Towpuewy G bunspacin

ioop:

s
<<y >>

St 00 FrTET
a3 ST - bas o

o) ST bas o

JuonEu
<<y ==

Sadhi-Aionoosip|

\Bruo>-Kioro5sip]

Kiznoxsp sor-sbuojen
qgoid

61yuc>-Kianodsip

Koo

-config.yang

1scovery

di

data model

1scovery

D

Figure 21

85

discovery-devices

[discovery-deviees\

\ \

L] O]
\

UML Generated : 2013-04-30 16:25

Figure 22: Discovery data model: discovery-devices.yang

86

pendix B

evice discovery architecture

<<Java Class>>
(& Returnvalue
discovery

o success: boolean
& message: String

F ReturnValus{baolean, String)

& ReturnValue(boolean, String, String)
@ getSuccess(}:boolean

@ getMessage():String

@ loglLogger):ReturnValue

<<Java Class>>
(9 ActionNmapDiscovery
discovery

ST NMAP_BIN: String
5FNMAP_PARAMS: String

5 GET_UID_COMMAND: String
5 TEMP_FOLDER: String
% TEMP_FILENAME_EXTEN: String

5 MAX_TIMEOUT: int
o tempFile: String

& ActionNmapDiscovery()

@ init(DpActionTrans) void

@ action(DpActionTrans, ConfTag C...
& runNmap{String):ReturnValue

B parseXML():ReturnValue

<<Java Class>>
(@ Device

discovery

%Flog: Logger

© name: ConfBuf

4 o ipAddr: ConflPva

o cliMgmtProto: ConfEnumeration
o vendor: ConfBuf

<<Java Class>> © devDescr: ConfBuf
(9 scaninfo o devType: ConfBuf
discovery

o p: ConfBuf

© scanOptions: String
© scanTime: String

© scanDuration: String
© hostsUp: String

© hostsDown: String

#ate;

FScaninfof)

d
<<Java Class>> /
(& AbstractRunAction

discovery

A5 AbstractRunAction()
< setDevices():ReturnValue

:

<<Java Class>>
(3 AbstractAction
discovery
<“log: Logger
< nesSock: Socket
o result: String
o success: boolean

5 AbstractAction()

& start{ DpActionTrans):void

< exec(ReturnValue):boolean
< finish() :void

< getResult{):ConfXMLParam[]

#devices

0.

o snmpVer: String
o ned: ConfldentityRef
© offiine: boolean

o creds: Credentials

" Davice()

@ storeinOperDB{CdbSession String):void
@ loadfromOperDB(CdbSession,String)void
@ storeinRunningDB{Maapi,int String) boo...
@ detsctDevicaType():boalean

@ determineMgmtPort():boolean

B determineMgmtProto():boolean

@ delectSNMPVer():boolean

@ setDeviceDescription(): void

@ storeCredentials(CdbSession AesEncry..
@ kadVaidCredentials{CdbSession):void

@ checkCreds():void

smgmikagt
0.1

Figure 23: Discovery component: Nmap-based discovery

87

+ports\, 0..*

<<Java Class>>
@ Port

discovery

o num: ConfUint16
o info: String

&Port()

& Port(Integer)

@ hashCode():int

@ equals{Objsct) bookean

<<Java Class>>
@Actionmscavery
discovery
5 MAX_THREADS: int
Ef MAX_TIMEOUT: int
o startTime: long

& ActionDisoovery()

@ init{DpActionTrans):void

@ action(DpActionTrans,Con...
@ parseTarget(String):Retur...

<< Java Classs> @ scanDevices():ReturnValue
(@ AbstractRunAction ¢
Sacovery <<Java Class=>
a5 AbstractRunAction()] Scaninfo
< setDevices():ReturnValue i covery,

HatesiRun

0.1

@ scanOptions: String
© scanTime: String

@ scanDuration: String
o hostsUp: String

o hostsDown: String

<Fseaninfo()

<<Java Class>>
(9 AbstractAction
discovery
<log: Logger
< nesSock: Socket
o result: String
o success: boolean

£ MbstractAction()

«» start{ DpActionTrans):void

» exec|ReturnValue):boolean
¢ finish{):void

< getResult():ConfXMLParam[]

Yy

<<Java Class>>
@ ReturnValue
discovery

o success: boolean
o message: String

gcReturn\«’alue[bmlean.ﬁtrmg)
ecReturn\«'aIue[mlean.strmg‘string]
@ getSuccess() boolean

@ getMessage():String

@ log(Logger):ReturnValue

<clava Class>>

@ Scanner
discovery

o log: Logger
éScanner[DewDe]

@ run():void

@ scanSNMPPorts(Devi..
@ scanTCPPorts{Devic...

<<Java Class>>
G Parser
discovery

5 |P_OCTET_REGEXP: Str...
5 |Pv4_PREFIX REGEXP: ..
5 |Pv4_RANGES REGEXP...
o devCounter: int

o success: boolean

FParser()

@ run(String):void

@ petSuccess():boolean

@ gelDeviceList(): List<Devic
@ getDeviceCounter():int

m parse|Pv4Prefie(String):int
= parselPRanges(long,Strin...
@ addDeviceTolist{InetAddr.
= Hobad(long):byte]]

<<lava Class>>
@ Device device
discoveny 0.1
%Fiog: Logger <<Java Class>>
© name: ConfBuf G Port
© ipAddr: ConflPvd discovery
o cliMgmtProto: ConfEnumeration o num: ConfUInt16
o vendor: ConfBuf o info: String
o devDesor: ConfBuf & Port()
o devType: ConfBuf ecPurt[IntegerJ
o authGroup: ConfBuf @ hashCode():int
0.7 o snmpVer: String @ equals{Object):boolean

o ned: ConfldentityRef
o offiine: boolean
ecDewoe[] -devices
@ storeinOperDB(CdbSession, String).. 0.7

@ loadfromOperDB(CdbSession, Strin

@ detectDeviceType():boolean

@ determineMgmtPort():boolean
@ determineMgmtProto():boolean
@ detectSNMPVer():boolean

@ setDeviceDescription():void

@ loadValidCredentials(CdbSession)
@ checkCreds():void

@ storeinRunningDB({Maapi,int,String...

@ storeCredentials{CdbSession AesE..

+oreds

0.1

<<Java Class>>
(3 Credentials
discovery

o sshUsername: String

o sshPassword: String

o snmpCommunity: String

o snmpv3Username: String

o snmpv3Authld: int

o snmpv3Encld: int

o snmpv3AuthPassword: String
o snmpv3EncPassword: String

& Credentials()

Figure 24: Discovery component: Stand-alone discovery engine

88

<<Java Class>>
(3 ActionPick
discovery

o maapi: Maapi

& ActionPick()
@ init{ DpActionTrans):void

@ action{DpActionTrans, ConfTag,...
@ loadDevice(String):ReturnValue

<<Java Class>>
(9 AbstractAction
discoveny

<log: Logger

4 nosSock: Socket
o result: String

o success: boolean

<<Java Class>>
G ReturnValue
discovery

<<Java Class>>

(@ Device
discoveny

o success: boolean
o message: String

-devl

=

" Abstractiction()

<» start{DpActionTrans):void

<» exec(ReturnValue):boolean
< finish() woid

<» getResult():ConfXMLParam[]

ecReturn\c’alue[bmlean.string]

ecReturn\-"aIue[bmlean.String.String]

@ getSuccess():boolean
@ getMessage():String
& log(Logger):ReturnValue

5flog: Logger

o name; ConfBuf

o ipAddr: ConflPwd

o diMgmtProto: ConfEnumeration
o vendor: ConfBuf

o devDescr: ConfBuf
o devType: ConfBuf

o authGroup: ConfBuf
o snmpVer: String

o ned: ConfldentityRef
o offine: boolean

<<Java Class>>

@ Port

discovery

z
:
o2

o num: ConfUInt16
o info: String

mgmtPort

& Port()

& Port{Integer)

@ hashCaode():int

@ equals(Object):boolean

<<Java Class>>
(9 Credentials
discoveny

N

& Device()

@ storeinOperDB(CdbSession, String):void
@ loadfromOperDB(CdbSession, String):...
@ storeinRunningDB(Maapi,int, String):bo...
@ detectDevice Type():boolean

@ determineMgmtPort().boolean

m determineMgmtProto():boolean

@ detectSNMPVer() boolean

@ setDeviceDescription() :void

@ storeCredentials{CdbSession, AesEncr...
@ loadValidCredentials(Cdb-Session):void
@ checkCreds():void

@ sshUsername: String

o sshPassword: String

o snmpCommunity: String

o snmpv3Username: String

o snmpyv3Authid: int

o snmpv3Encld: int

o snmpv3AuthPassword: String
o snmpv3EncPassword: String

& Credentials()

Figure 25: Discovery component: loading devices into NCS

89

90

Appendix C

Topology discovery data model

topology

Namespace: http:/ftail-f.com/packages/topology
Prefix: topo

f
topo:topology\

topology-lz\ topology-l3\ topology-base\

== module==
topology

UML Generated : 2013-05-02 14:11

Figure 26: Topology data model: topology.yang

91

topology-base

topology\

tailf:tailf-common\

Prefix:
I Belongs-to: topology

ncs:tailf-ncs \

Ve

N

:topology-base\

N

== module==>
topology-base

== gugments:=
fncs:devices

1

<=container==
topology

Config = false

UML Generated : 2013-05-02 14:11

Figure 27: Topology data model: topology-base.yang

92

topology-13

topology\
tailf: tailf-common o [ncsitailf-ncs §
Prefix:
Belongs-to: topology
:lopology-la\
topology-base\
<< module=:=|
topology-3
<< augment=>=>
/ncs:devices/topo:topology
1
<<container==
layer3
scanl out result)
\N
N
<< list>>
<< list=> nodes
subnets
© name : string {key}
© prefix : string {key} addresses [[: string
nodes [J: string networks [] string
type : enumeration : {undefined, host,router.} = undefined

UML Generated : 2013-05-02 14:12

Figure 28: Topology data model: topology-13.yang

93

tailf: tailf-common \

tupolngy\

topology-I12

Prefix:
Belongs-to: topology

’
;
,

rtopology-12 \
topology-IB\ topology-base\
< module==|
topology-2
. =< augment==
/ncsidevices/topo:topology!
<=<container>:|
layer2
scan(out: result)
0L.N
<= [ist==
nodes
© name : leafref : /ncs:devices/nes: device/nes:name {key}
device-global-id string
name
oLN
<< ist>>
neighbor
© neighbor-name : string {key}
© address : string {key}
© local-interface - string {key}
O remote-interface : string {key}

/ncs:devices/nes: device

ncs:tailf-ncs \

P

UML Generated : 2013-05-02 14:12

Figure 29: Topology data model: topology-12.yang

94

Appendix D

Topology discovery architecture

<<Java Class>>
(3 ActionL3Topology
topology

o subnets: Set<String>

<<Java Class>>

(9 AbstractAction
topclogy
<log: Logger

4 ncsSock: Socket

< actienTrans: DpActionTrans
o result: String

o success: boolean

4" AbstractAction()

«» start{ DpActionTrans):void

«» exec(ReturnValue):boolean

& finish{) :void

<+ getResult():ConfXMLParam[]

< badDevices(String, String):ReturnValue
<+ walkDevices():ReturnValue

< badSingleNode(NavuContainer):void
< getNodesSize{):int

< walk{NavuList, Maapi,int):void

&F ActionL3Topakogy()
@ init(DpActionTrans):void

@ action{DpActionTrans, ConfTag,ConfObject(], Conf...

< loadSingleNode({NavuContainer):void

< getNodesSize():int

» walk{NavuList, Maapi,int):void

& fetchAddresses(L3TopologyNode NavuList):void
< detectRouter(L3TopologyMode, NavuList):void

«» faceEnabled(L3TopologyNode NavuList, String):b.
m saveTopology():ReturnValue

@ storeTopologyArbor():ReturnValue

<<lava Class>>
G ReturnValue
topalogy
o success: boolean

o message: String

<<Java Class>>

(9 L3TopologyNode
topoiogy

« router: int

L3TopologyNade()
@°load(NavuContainer):L3TopologyNode
@ addAddr(String, String):void

@ setipForwarding(String):void

@ getNetworkPrefixes():List<String>

@ toString():String

@ storelnOperDB{NavulList):void

@ hashCode():int

@ equals(Object):boolean

L\

{}cRelurnValue[boolean, String)
ocReturn\lzlue[bosolean, String, String)

<<Java Class>>
(9 NetAddrMask
topology topoiogy

@ getSuccess|):boolean
@ getMessage():String
@ log(Logger):ReturnValue

© address: Inet4Address
o netmask: Inet4Address

< name: String
< address: String

ENetAddrMask(InctaAddress Inet3Add STop)

<<Java Class>>
(9 TopologyNode

& NetAddriask(String,String)
& Netaddriask(String)

@ getNetworkAddress():NetAddrMask

» fetchConfigData{NavuContainer) :void
@ getName():String
@ getAddress():String

@ contains(String):boolean
@ isLocal():boolean

@ toString():String

@ hashCode():int

Figure 30: Topology component: 1.3 topology discovery

95

<<Java Class>>

(3 ActionL2Topology
topoiogy

<<Java Class>>
(® AbstractAction
topalogy

+’log: Logger

< ncsSock: Socket

< actionTrans: DpActionTrans
o result: String

a success: boolean

e

& Actionl 2Topalogy()
@ init{DpActionTrans):void

@ action{DpActionTrans, ConfTag, ConfObject]] C...

» loadSingleNode(NavuContainer):void
< getNodesSize():int

< walk(NavuList Maapi,int):void

= saveTopology():ReturnValue

m ifaceindexToName(Maapi int, NavuContainer, St...

@ storeTopologyArbor():ReturnValue

A" AbstractAction()

«» start{DpActionTrans):void

» exec(ReturnValue):boolean

& finish{):void

> getResult{):ConfXMLParam[]

< loadDevices(String, String):ReturnValue
< walkDevices():ReturnValue

< loadSingleNode(NavuContainer):void
< getNodesSize():int

< walk{NavuList Maapi int):void

-

<<Java Class>>
(3 ReturnValue
topology
o suocess: boolean

o message: String

gcReturn\falue[boulean.string)
gcﬁeturn\falue[Doulean.smng‘smng)
@ getSuccess():boolean

@ getMessage{():String

@ log{Logger):ReturnValue

<<Java Class>>

(3 L2Topology Node
topoiogy

< globalld: String

&FL2TopolagyNade()

osbad NavuContainer):L2TopologyNode
Pronvert(Neighbor):L 2 TopologyNode:
» setGloballd(String):void

«» addNeighbor(Neighbor) void

< storelnOperDB(NavuList):void

@ hashCode():int

@ equals(Object):boolean

@ 1oString():String

#neighbprs »

<<lava Class>>
(9 Neighber

<<Java Class>>
(& TopologyNode
topology

topoiogy

< name: String

< name: String
<» address: String

< address: String
<« localinterface: String
« remotelnterface: String

oc Neighbor(String, String, String, String)

4 TopologyNode()
¢ fetchConfigData(NavuContainer):void
@ getName():String

@ getAddress():String

Figure 31: Topology component: L2 topology discovery

96

TRITA-ICT-EX-2013:90

www.kth.se

	Introduction
	Problem statement and project goals
	Methodology
	Restrictions and limitations
	Structure of the report

	Background
	Network management protocols
	SNMP
	CLI
	NETCONF

	NCS overview
	Device discovery techniques
	Link-layer discovery techniques
	Link-layer neighbor discovery protocols
	IPv6 discovery techniques

	Device discovery implementation
	Device discovery module description
	Data model description
	Implementation based on Nmap
	Stand-alone device discovery engine
	General logic of the stand-alone device discovery engine
	TCP port scanning
	SNMP scanning
	Storing device type and description

	Loading devices into NCS
	Device discovery module architectural overview
	Results and analysis

	Topology discovery implementation
	Topology discovery module description
	Data model description
	Logical topology discovery
	Physical topology discovery
	Topology visualization
	Topology discovery architectural overview
	Results and analysis

	Conclusions and Future work
	Project summary and results
	Ethical considerations
	Future work

	Device discovery data model
	Device discovery architecture
	Topology discovery data model
	Topology discovery architecture

