
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

Z H A N G Y U A N H U I

 Evaluating a publish/subscribe proxy
for HTTP

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Evaluating a publish/subscribe proxy for
HTTP

Zhang Yuanhui

yuanhui@kth.se

2013.04.20

Examiner & Supervisor: Gerald Q. Maguire Jr.

KTH Royal Institute of Technology
School of Information and Communication Technology

Stockholm, Sweden

i

Abstract
With the increasingly high speed of the Internet and its wide spread usage, the current Internet

architecture exhibits some problems. The publish/subscribe paradigm has been developed to
support one of the most common patterns of communication. It makes “information” the center of
communication and removes the “location-identity split” (i.e., that objects are at specific locations
to which you must communicate with to access the object). In this thesis project a
publish/subscribe network is built and then used in the design, implementation, and evaluation of
a publish/subscribe proxy for today’s HTTP based communication. By using this proxy users are
able to use their existing web browser to send both HTTP requests and Publish/Subscribe Internet
Routing Paradigm (PSIRP) requests. A publish/subscribe overlay is responsible for maintaining
PSIRP contents. The proxy enables web browser clients to benefit from the publish/subscribe
network, without requiring them to change their behavior or even be aware of the fact that the
content that they want to access is being provided via the publish/subscribe overlay. The use of
the overlay enables a user’s request to be satisfied by any copy of the content, potentially
decreasing latency, reducing backbone network traffic, and reducing the load on the original
content server. One of the aims of this thesis is to make more PSIRP content available, this is
done by introducing a proxy who handles both HTTP and PSIRP requests, but having received
content as a result of an HTTP response it publishes this data as PSIRP accessible content. The
purpose is to foster the introduction and spread of content based access.

Keywords: Publish/Subscribe, HTTP proxy, Blackadder, PURSUIT, Pub/sub proxy, network
metrics

iii

Sammanfattning
Med allt högre Internetshastighet och dess utbredda användning, uppvisar den aktuella Internet-

arkitekturen vissa problem. Publicera / prenumerera paradigm har utvecklats för att stödja en av de
vanligaste mönstren för kommunikation. Det gör att "information" blir centrum av kommunikation
och tar bort "plats-identitet split" (dvs att objekten är på specifika platser som du måste
kommunicera med för att komma åt objektet). i detta examensarbete byggs ett publicera /
prenumerera nätverk och sedan används i utformningen, genomförandet, och utvärdering av en
publicera / prenumerera proxy för dagens HTTP-baserad kommunikation. Genom att använda
denna proxy kan användare kan använda sin befintliga webbläsare för att skicka både HTTP-
förfrågningar och publicera / Prenumerera Internet Routing Paradigm (PSIRP) begäran. En
publicera / prenumerera överlagring är ansvarig för att upprätthålla innehåll av PSIRP. Fullmakten
gör det möjligt för klienter av webbläsare att dra nytta av publicera / prenumerera nätverket, utan
att kräva dem att ändra sitt beteende eller ens vara medvetna om det faktum att det innehållet som
de vill komma åt tillhandahålls via publicera / prenumerera överlägg. Användningen av överlägget
kan en användare begäran som skall uppfyllas av en kopia av innehållet, eventuellt minskande
latens, vilket minskar trafiken stamnät, och minska belastningen på det ursprungliga innehållet
servern. Ett av syftena med denna uppsats är att göra mer PSIRP innehåll tillgängligt och detta görs
genom att införa en proxy som hanterar både HTTP och PSIRP förfrågningar, men har fått innehåll
som en följd av en HTTP-svar offentliggörs denna data som PSIRP tillgängligt innehåll. Syftet är
att främja införandet och innehållbaserade åtkomsten.

Nyckelord: Publicera / Prenumerera, HTTP-proxy, Blackadder, PURSUIT, Pub / sub proxy,
nätverk statistik

v

Acknowledgements
I would like to express my greatest gratitude to the people who have helped and supported me

throughout my Master thesis. Firstly, I am grateful to my supervisor Professor Gerald Q. Maguire
Jr. for his continuous support and valuable comments for the project. And I wish to thank my
parents for their kindness and encouragement throughout my study. Last but not least, I would like
to express my very appreciation to my friend Zhang Wen for his valuable and constructive
suggestions during the planning and development of this thesis work.

vii

Table of Contents

Abstract .. i

Sammanfattning .. iii

Acknowledgements ... v

Table of Contents ... vii

List of Figures ... ix

List of Tables ... xi

List of acronyms and abbreviations .. xiii

1 Introduction .. 1

1.1 Current Internet and Issues ... 1
1.2 Project’s Goal ... 4
1.3 Thesis structure .. 5

2 Background.. 7

2.1 Related work .. 7

2.1.1 DONA .. 7
2.1.2 ROFL ... 8

2.2 PSIRP ... 8

3 PSIRP Concept and Architecture .. 11

3.1 Data and metadata ... 12
3.2 Scope ... 12
3.3 Identifiers .. 13

3.3.1 Application Identifiers (AIDs) .. 13
3.3.2 Rendezvous Identifiers (RIDs) .. 14
3.3.3 Scope Identifiers (SIDs) .. 14
3.3.4 Forwarding Identifiers (FIDs) .. 15

3.4 PSIRP Components ... 15

3.4.1 Rendezvous .. 15
3.4.2 Topology Management ... 17
3.4.3 Forwarding .. 18

4 HTTP Proxy and Pub/sub HTTP proxy ... 21

4.1 Hypertext Transfer Protocol ... 21
4.2 HTTP Proxy .. 21
4.3 HTTP Proxy Caching ... 22
4.4 Pub/Sub HTTP proxy towards the Internet and HTTP browsers 23

5 Publish/Subscribe Prototype Description .. 25

5.1 PURSUIT prototype ... 25

viii

5.2 API Description ... 25

5.2.1 Pub/Sub Methods ... 26

5.3 Blackadder Events ... 29

6 System Design of our prototype .. 31

6.1 Proxy operation process .. 31
6.2 Program work flow ... 32

6.2.1 HTTP Socket Server ... 34
6.2.2 PSIRP Socket Server ... 34

6.3 Java Package Diagram .. 34
6.4 Class Diagram .. 35
6.5 Firefox plugin .. 37
6.6 CouchBase ... 37
6.7 Content Transmission .. 37

6.7.1 File Transfer .. 37
6.7.2 Video and Voice .. 39

7 Evaluation .. 41

7.1 General Performance Analysis .. 41

7.1.1 Parameters of the proxy’s performance ... 41
7.1.2 Hardware and software configuration used for testing .. 42
7.1.3 General performance of random sized files ... 43
7.1.4 General performance for fixed sized files ... 50

7.2 Network related performance analysis .. 56

7.2.1 Parameter Descriptions .. 56
7.2.2 Performance of the network with random sized HTTP plus PSIRP Requests 57
7.2.3 Performance of the network with fixed size of HTTP plus PSIRP Requests 61

7.3 Summary .. 64

8 Conclusions and Future work .. 65

8.1 Conclusions .. 65
8.2 Future work .. 67
8.3 Required reflections ... 67

References .. 69

ix

List of Figures
Figure 1-1: A HTTP proxy connects to the local network and remote server 4
Figure 1-2: The topology of Pub/Sub proxy for HTTP .. 5
Figure 2-1: The basic relationship between publication, identifier, subscription, and scope.

(Adapted from figure 1 of [9]) .. 9
Figure 3-1: PSIRP Component Wheel and entities (Adapted from figures 7.1 and 7.2 of [11]).... 11
Figure 3-2: Example of PSIRP scope (Adapted from figure 6.1of [11]) ... 13
Figure 3-3 : An example of hierarchy information structure of PSIRP ... 14
Figure 3-4: Example of message exchange process ... 16
Figure 6-1: The operation process of the pub/sub proxy for HTTP ... 32
Figure 6-2: Program work flow diagram of pub/sub proxy for HTTP. .. 33
Figure 6-3: The package diagram of proxy program .. 35
Figure 6-4: The class diagram of the system ... 36
Figure 6-5: The example of file transfer with MULTIPATH strategy (Adapted from figure 18

of [22]). ... 39
Figure 7-1: Average DHR of random sized HTTP requests .. 44
Figure 7-2: Average BHR of random sized HTTP requests ... 45
Figure 7-3: Average RRT of random sized HTTP requests ... 46
Figure 7-4: The total number of random sized HTTP requests ... 46
Figure 7-5: Average DHR of random sized HTTP and PSIRP requests 47
Figure 7-6: Average BHR of random sized HTTP and PSIRP requests 48
Figure 7-7: Total number of random sized HTTP and PSIRP requests (30s) 49
Figure 7-8: Total number of random sized HTTP and PSIRP requests (60s) 49
Figure 7-9: Total number of random sized HTTP and PSIRP requests (90s) 49
Figure 7-10: Average RRT of random sized HTTP and PSIRP requests 50
Figure 7-11: Average DHR/BHR of fixed sized HTTP request .. 51
Figure 7-12: Average RRT of fixed sized HTTP requests ... 52
Figure 7-13: The total quantity of HTTP requests (Fixed size) .. 52
Figure 7-14: Average DHR/BHR of fixed size HTTP and PSIRP requests 53
Figure 7-15: Average RRT of fixed HTTP plus PSIRP requests ... 54
Figure 7-16: Total number of fixed HTTP and PSIRP requests in 30s .. 55
Figure 7-17: Total number of fixed HTTP and PSIRP requests in 120s .. 55
Figure 7-18: Total number of fixed HTTP and PSIRP request in 240s ... 56
Figure 7-19: Average Proxy Connect Time for random sized HTTP and PSIRP requests 58
Figure 7-20: Average Server Reply Time for random sized HTTP and PSIRP requests 59
Figure 7-21: Average Server Response Time for random sized HTTP and PSIRP requests 60
Figure 7-22: Average Proxy Connect Time for fixed size of HTTP and PSIRP requests 61
Figure 7-23: Average Server Reply Time for fixed size of HTTP and PSIRP requests 62
Figure 7-24: Average Server Response Time Fixed size of HTTP and PSIRP requests 63

xi

List of Tables
Table 7-1: Average DHR of random sized HTTP requests .. 44
Table 7-2: Average BHR of random sized HTTP requests .. 45
Table 7-3: Average RRT and Total number of random sized HTTP requests 45
Table 7-4: Average DHR of random sized HTTP and PSIRP requests .. 47
Table 7-5: Average BHR of random sized HTTP and PSIRP requests ... 48
Table 7-6: The total number of random sized HTTP and PSIRP requests 48
Table 7-7: Average RRT of random size HTTP and PSIRP requests ... 50
Table 7-8: Average DHR/BHR of fixed sized HTTP request ... 51
Table 7-9: Average RRT and Total quantity of fixed sized HTTP requests 52
Table 7-10: Average DHR/BHR of fixed size HTTP and PSIRP requests 53
Table 7-11: Average RRT of fixed HTTP plus PSIRP requests .. 54
Table 7-12: Total number of fixed HTTP and PSIRP requests .. 55
Table 7-13: The Average Proxy Connect Time for random size of HTTP and PSIRP

requests: .. 57
Table 7-14: The Average Server Reply Time for random sized HTTP and PSIRP requests 59
Table 7-15: The Average Server Response Time for random sized HTTP and PSIRP

requests ... 60
Table 7-16: The Average Proxy Connect Time for fixed size of HTTP and PSIRP requests 61
Table 7-17: Average Server Reply Time for fixed size of HTTP and PSIRP requests 62
Table 7-18: Average Server Response Time Fixed size of HTTP and PSIRP requests 63

xiii

List of acronyms and abbreviations
AID Application level identifier
API Application programming interface
CCN Content-Centric Networking
DDoS Distributed denial of service
DHR Document Hit Ratio
DHT Distributed hash table
DiffServ Differentiated services
DNS Domain Name System
DONA Data-Oriented Network Architecture
DoS Denial of service
FID Forwarding Identifier
FNV Fowler/Noll/Vo
FTP File Transfer Protocol
HI Host Identifier
HIP Host Identity Protocol
HTTP Hypertext Transfer protocol
ID identifier
IPsec IP security
NNTP Network News Transfer Protocol
PSIRP Publish/Subscribe Internet Routing Paradigm
Pub/Sub Publish/Subscribe
RH Resolution Handler
RFC Request for Comments
RID Rendezvous identifier
ROFL Routing on Flat Labels (ROFL)
RP Rendezvous Point
RRT Request Response Time
RSS Really Simple Syndication
SID Scope identifier
SMTP Simple Mail Transfer Protocol
URL Uniform Resource Locator
VoIP Voice over IP
WWW World wide web

1

1 Introduction
This chapter begins with a general introduction to the current Internet architecture, as well as

the problems it faces. The second section introduces the thesis project’s goal, which is to build a
publish/subscribe network and to design, implement, and evaluate a publish/subscribe proxy for
what is today HTTP based communication. The chapter ends with a summary of the structure of
this thesis.

1.1 Current Internet and Issues
In the current information technology society, the Internet is widely used in various fields, and

it is rapidly developing. During the last 20 years, the basic Internet architecture has not undergone
any major changes. Today it is very hard to completely change the core protocol, as there are so
many users and businesses that depend upon the network’s operation. Additionally, there is no
longer any central control, so a global change in protocol is difficult. Moreover, the increasing use
of information and communication technology requires reliable underlying networks – at least the
aggregate performance should be reliable. The Internet today is based on a host-to-host
communication paradigm and is packet-oriented. However, with the dramatically increasing
numbers of users and ever increasing amounts of traffic, the network environment and protocols
are becoming more and more complex. This architecture faces some serious problems, including
scalability, exhaustion of the IPv4 address space, a massive increase in traffic due to the spread of
on-demand video, etc. Also, many security issues have to be considered. Some of the threats to
security include distributed denial of service (DDoS) attacks, spam, viruses, Trojan horses, and
phishing. Moreover, these security threats are a growing problem. The result is that today the
Internet is a challenging and insecure environment. Therefore, some evolutionary approaches have
been proposed and are in various stages of development to address these problems.

IPv6 addresses are 128-bit identifiers for interfaces. IPv6 supports unicast, anycast, and
multicast. It also has improved support for extensions and options, with the IPv6 options placed in
separate headers that are located between the IPv6 header and the transport layer header. Another
improvement is that a new function has been developed to enable the labeling of packets
belonging to particular traffic flows for which the sender requests special handing, such as a
specific quality of service. IPv6 requires that network layer security (IPsec) be part of every
implementation. IPsec can be used to carry data traffic. Today developers only use IPsec’s
encapsulating Security Payload (ESP) to carry encrypted data packets.

The Host Identity Protocol (HIP) [1] defines a new global Internet name space, which fills an
important gap between the IP and DNS namespaces. The Host Identity namespace consists of
Host Identifiers (HIs). HIs decouple the name and locator roles. Each host will have at least one
Host Identity, but a host will typically have more than one HI. Each HI uniquely identifies a single
host. In this new approach the transport layer operates on HIs instead of IP addresses, while the
network layer uses IP addresses as pure locators.

Differentiated services (DiffServ)[2] are intended to provide a framework and building blocks
to enable deployment of scalable service discrimination in the Internet. The differentiated services
approach aims to speed deployment by separating the architecture into two major components.
One component is the fairly well-understood behavior of the current forwarding path and the other
is the more complex and still emerging policy and allocation component that configures

2

parameters used in the forwarding path. DiffServ is not hard to deploy and offer good
performance for Voice over IP (VoIP) and real-time video. However, DiffServ is not widely used
between operators.

A distributed hash table (DHT) is a decentralized distributed system that provides a lookup
service similar to a hash table. In this approach key-value pairs are stored in a DHT. Any
participating node can efficiently retrieve the value associated with a given key. A DHT can be
used to implement distributed databases or content delivery systems.

The Internet of today is a platform for information exchange and spreading digital content.
Because of the difference between the original Internet’s design and its actual usage, a new
Internet architecture based on a content-centric paradigm has been proposed. Such a content-
centric communication paradigm could address problems and challenges related to scalability,
quality of service, security, and mobility – as this approach decouples the object from specific
locations, thus any copy of the object offers (read) access. It should be noted that the main focus
of content centric networking is on read access to objects that once created do not change (for
example, e-mails, audio clips, video clips, photographs, etc.).

The Content-Centric Networking (CCN) [28] architecture intends to build a communication
system that encourages users to focus on their desired content. The user does not care about the
physical location of their desired content. An implementation of CCN uses a data storage cache to
avoid duplicate up-stream traffic. Once information is stored in the cache of one of the nodes, the
response time will decrease when a second request is made for this same content. This approach is
much more efficient than having a centralized server provide the content. In order to locate
specific content, each CCN packet must have a unique human-readable name that can sufficiently
define the desired content. The name should contain version information (to correctly identify the
data), a cryptographic hash (to authenticate the content), and an indication of the decoding format
(so that the user can indicate what format(s) they can decode). There are two types of CCN
packets: one of them is an interest packet and the other one is a data packet. Data is transmitted to
the user only if the subscriber sends an interest request (thus preventing spam and avoiding DoS
attacks). The two types of packets have the content name inside. When an instance of the data
satisfies an interest with a longest prefix name match, then the data packet will be delivered to the
subscriber.

The publish/subscribe Internet Routing Paradigm (PSIRP) aims to implement
publish/subscribe networking without relying on existing networking protocols. This paradigm
changes the control from a data sender to the potentially many data consumers. Information is
propagated only to a user who requests it. Information is the core element of the PSIRP
architecture; everything is information and information is everything [3]. Information is organized
in a hierarchical way, so small ‘meaningless’ pieces of data, which can be arbitrary chunks of
data, are combined into large complex information items such as files, documents, pictures, and
videos. An information item may be used as a reference to other items, providing information
such as data size, information owner, permissions, and composition elements[4]. An information
scoping mechanism is introduced to limit reachability; this allows the data source to limit the
reachability of information to only those parties having access to the particular mechanism that
implements the scoping. Scopes can be considered as the equivalent of IP topologies, because
scoping mechanisms allow the realization of information networks, while the IP structure builds
an inter-networking topology based on IP addresses. Every piece of data belongs to at least one
scope. For example, a scope “TV show” might not only belong to the scope “Science”, but also to

3

the “College Education” scope. When new content becomes available, the publisher signs a scope
identifier. For identification, a unique label identifies every piece of information. This label is
used in subscriber interests to match against published information. The function of matching a
subscriber’s interests with published information is known as the rendezvous function and for
this reason this label is referred to as the rendezvous identifier (RID). A subclass of rendezvous
identifiers is the scope identifier (SID). A SID denotes the specific scope within which the
information is reachable. RIDs and SIDs are independent of the endpoints that produce and
consume the associated information items. Flat endpoint independent labels seem to be a natural
choice for information oriented architectures, as they clearly separate location from identity —
allowing for mobility, multicasting, and multi-homing in the architecture[5].

For anyone who uses the Internet, the World Wide Web (WWW) must be a familiar thing. A
WWW connection request utilizes the Hypertext Transfer protocol (HTTP)[6]. .HTTP is an
application protocol for distributed, collaborative, hypermedia information systems, thus HTTP is
the foundation of the World Wide Web (WWW). In HTTP there are two parties: the client directly
connects to the server and the server responds to the client’s requests. Additionally, we can insert
an HTTP proxy into this communication path. The proxy acts on behalf of a client by acting as a
server, while it in turn acts as a client to a HTTP server. Proxies were designed to provide a
gateway to enable access to a website for people in closed subnets, who otherwise would only be
able to access the Internet via a firewall machine. A client first sends a URL to the proxy; the
proxy then connects to the destination server. After receiving a response from the server the proxy
forwards the results back to the client. The proxy server can also download and store the response
in a local cache. If there is a subsequent request for this same URL and this content has already
been stored in the cache of the proxy, then the proxy can immediately return the data rather than
sending the request to the target server. This caching of retrieved documents reduces the access
latency. However, if the object might change, then there is a question of if the cached version is
up-to-date or not – this may require that the proxy ask the server if the content has been modified
since the time when it was cached, if not then the cached content is valid, otherwise the proxy will
request a copy of the current content. This proxy architecture with caching is shown in Figure 1-1.

The HTTP proxy can also implement a number of functions, including filtering individual
HTTP requests and responses, characterizing sets of massages, keeping machines behind it
anonymous for security reasons, speeding up access to the resources (using caching), accessing
sites prohibited or filtered by some ISP or institution, applying access policies to network services
or content, etc.

4

1.2
The

HTTP t
(accepti
that the
with PS
the clien
to the p
packets
of this p
content
transfor
scheme.

p

The
they can

In t
impleme
function
paradigm
stack.

Fig

Proje
goal of thi

that has tw
ing HTTP r
e proxy allo
SIPR URLs
nt has two o
roxy. When
directly to

proxy is to
it receives

rms the con
. The forma
psirp://[scope

se “psirp:”
n be typed in

this project
ented for
nalities and
m. A PSIRP

ure 1-1: A HT

ect’s G
is project is

wo functions
requests and
ows a clien
s and then t
options to ob
n the proxy
a client and
generate a
as PSIRP

ntent addres
at of a psirp:
e identifier]:

URLs can
nto a brows

t, we deci
the Linux
zFilter bas

P plug-in fo

TTP proxy con

oal
s to design,
s combined
d proxying
t to query
the proxy re
btain servic
receives inf

d saves the
and cache P
content to b
ssed by HT
 URL is:
[rendezvous

be used in
er’s address

ded to use
operating

sed forward
or the Firefo

nnects to the

implement
d together.
them to the
for a publi
eturns the c
ces or resour
formation fr
content in i

PSIRP cont
be accessed
TTP URLs

s identifier]

the exactly
s bar.

e an existi
system. T

ding. Both l
fox web bro

local networ

t, and evalu
One functi

e target web
ication thro
content to th
rces: sendin

from a remo
its cache. O
tent, thus th
d by other c

into conten

y same way

ing PURSU
This prototy
local and r

owser has be

rk and remote

uate a publis
ion is to ac
b server). T
ough a pub
he client. As
ng an http://
ote server or
One of the m
he proxy cou
clients. To
nt accessib

as any oth

UIT prototy
ype include
emote publ
een develop

e server

sh/subscribe
ct as a nor

The second
blish/subscr
s shown in
… or a psir
r publisher,

most importa
uld publish
be specific,
le via the

er URL. Fo

ype, which
es the bas
lications use
ped to use t

e proxy for
rmal proxy
function is

ribe system
Figure 1-2,

rp:// request
it forwards

ant abilities
any of the

, the proxy
psirp URL

or example,

h has been
ic pub/sub
e the same
the pub/sub

We
and iden
process.
store th
identify

1.3
Foll

Publish/
Chapter
The des
impleme
prototyp
and the
econom

intend to de
ntify useful
. For examp
is video in

y the content

Thes
owing this f
/Subscribe I
r 4 describe
sign of a p
entation of
pe. Chapter
en suggests

mic, and ethic

esign a cach
chunks of i

ple, when a
the cache.

t and select

Figur

is stru
first chapter
Internet Rou
s how a HT

prototype pr
f this proto

8 summari
some futu

cal aspects o

he in the pu
information
a client asks
For this rea
what conten

re 1-2: The to

ucture
r, Chapter 2
uting Parad

TTP proxy c
roxy is giv
otype proxy
izes the con
ure work. It
of this thesi

ub/sub proxy
n needs to b
s for a real
ason, the pu
nt is to be ca

pology of Pu

2 introduces
digm (PSIRP
can enable

ven in Chap
y. Chapter

nclusions ba
t also conc
is project.

y to store u
be evaluated
-time video
ub/sub HTT
ached.

b/Sub proxy f

the reader t
P). Details o
HTTP web
pter 5. Cha

7 presents
ased upon th
cludes with

seful inform
d during the
o chat, it wi
TP proxy m

for HTTP

to related w
of PSIRP a
browser cl

apter 6 des
s the resul
he results d
 some refle

mation. How
design and

ill likely be
must have th

work and intr
are given in
ients to util
cribes the
lts of evalu

discussed in
ections on

5

w to choose
d evaluation
e useless to
he ability to

roduces the
Chapter 3.

lize PSIRP.
design and
uating this
Chapter 7,
the social,

7

2 Background
In the global Internet, the current IP model establishes a routing fabric centered on a

topological notion of the network. Packets are delivered end-to-end between two explicitly
addressed endpoints. To design and build a more adaptive network architecture experts have
proposed alternative architectures. A variety of changes have been suggested based upon
technical, social, and business arguments. In this section, we will introduce some related prior
work regarding the publish/subscribe (pub/sub) architecture that has been suggested as means for
facilitating the distribution of information. This pub/sub architecture and the need for current users
of web browsers to access information, while taking advantage of the pub/sub architecture, is the
motivation for this thesis project.

2.1 Related work
This section introduces two of the most relevant examples of prior work: the Data-Oriented

Network Architecture (DONA) and Routing on Flat Labels (ROFL). Each of these will be
described in more detail in the following subsections.

2.1.1 DONA
The Data-Oriented Network Architecture (DONA)[7] replaces the hierarchical Domain Name

System (DNS) name space with a system of flat, self-certifying names, and replaces DNS name
resolution with a name-based anycast primitive that operates above the IP layer[15]. DONA
improves data retrieval and service access by providing stronger and more architecturally coherent
support for persistence, availability, and authentication. DONA can also be extended to provide
support for caching and Really Simple Syndication (RSS) like updates. DONA has a strict
separation between naming (persistence and authentication) and name resolution (availability)[7].

DONA names are organized around principals. Each principal is associated with a public-
private key pair, and each datum, service, or any other named entity (host, domain, etc.) is
associated with a principal. The form of the name is P: L where P is the cryptographic hash of the
principal’s public key and L is a label chosen by the principal (who ensures that the name is
unique). DONA uses the route-by-name paradigm for name resolution. Rather than using DNS
servers, DONA relies on a new class of network entities called resolution handlers (RHs)[7].
Name resolution is accomplished by using two basic primitives: FIND(P: L) and REGISTER(P:
L). A client emits a FIND(P: L) packet to locate the object named P: L, and RHs route this request
towards a nearby copy. The REGISTER message is used to inform the RHs of where copies of
information are so that they can route FIND requests effectively.

8

2.1.2 ROFL
Routing on Flat Labels (ROFL) is routing protocol based on the idea of a distributed hash table

(DHT). ROFL routes based upon host identities rather than physical addresses. In order to send a
packet, the client first adds an initial source route to the packet. This initial source route points the
packet to the router with the “Closest” ID, where closest is assessed in terms of the destination
host’s ID. This route leads the packet to a router whose ID does not exceed the destination host’s
ID. During transmission, if another router has a more specific and complete route, i.e., one which
reaches a router closer to the destination, then this router will replace the original route with the
better route. ROFL utilizes a flat namespace, where the names have no semantic content. This
approach inherits the advantages of the location-identity split, such as mobility, multihoming, and
stable identities, but also has several practical advantage of its own. One of these advantages is
that developers do not need to build a separate name resolution infrastructure. The second
advantage is fate-sharing, which means that packet delivery does not depend on anything off the
data path – since there is no longer any need to contact a resolution infrastructure before sending a
packet. Compared to IP addresses, this model has simpler allocation system as it only requires
uniqueness of identities, while IP addresses must be both unique and adhere to the network
topology. Last but not least, ROFL has more appropriate access controls that are based on
identifiers [16]. Note that a disadvantage is that one can no longer know where the problem is
when a packet is not routed to the desired host, since the responsibility for forwarding is
distributed over all the routers that might be on a path from the source to the destination.
Additionally, since the uniqueness of name is still required, but no longer administratively
defined, the name space must be sufficiently large that there is a low probability of their being a
name collision.

It might be noted that there are other proposals for flat name spaces, such as HIP, AIP, and
MobilityFirst. There are also other mapping proposals, such as DHT-MAP, SLIMS, and DMap
[8].

2.2 PSIRP
Two European telecommunication vendors and several academic institutions have investigated

publish/subscribe (pub/sub) approach. The resulting Publish/Subscribe Internet Routing Paradigm
(PSIRP) [9] approach aims to build an Internet architecture around the information and to give
control to the receiver. In this architecture the receiver is in control since this node can choose
which information it wants to receive. In this approach no node receives any content to which it
has not explicitly expressed an interest in by way of a subscription. This information centric
pub/sub communication architecture decouples the sender (i.e., publisher) and the receiver (i.e., a
subscriber) in time, space, and context by putting an explicit publication operation in middle. This
basic architecture is shown in Figure 2-1. In the pub/sub model, the act of publication produces a
persistent, immutable association between an identifier and a data value (the publication) created
by the publisher. By knowing the identifier, a subscriber can search for desired information
through the PSIRP network. If subscribers keep asking for some specific topic or information, we
could number the events and encode this information in the identifiers, which will make it easier
to fetch the content. The self-certifying identifiers can be utilized to bind the content securely to
the identifiers. We can use an intermediate publisher to implement channels that have multiple
publishers. Further details of PSIRP will be given in the next chapter.

Figure

The
design p
has imp
applicat
optimiza
Internet.
network
newest
develop

e 2-1: The bas

PURSUIT
project that
proved objec
ion-level c
ation of sub
. The Black

king environ
version tha
ers. Chapte

sic relationsh

continues t
attempts to
ctives [11],
concepts, p
b-architectur
kadder is PU
nment. It ex
at we curre
er 5 will intr

ip between p

the design a
 build solut
, which inc
providing
res, providi

URSUIT’s n
xports a pu
ently use i
roduce the B

ublication, id
figure 1 of [

and develop
tions for a n
lude provid
tussles de

ing high per
new prototy
ure publish/
s supported

Blackadder p

dentifier, subs
9])

pment of PS
new form of
ding an imp
elineation
rformance a

ype impleme
subscribe s
d on Linux
prototype in

scription, and

SIRP projec
f Internetwo

proved impe
of crucial
and scaling
entation of
ervice mod

x, and prov
n detail.

d scope. (Ada

ct. It is an a
orking. The
edance mat

functions,
to the need
an informat

del to applic
vides Pub/s

9

apted from

architecture
e PURSUIT
tch towards
, enabling
ds of future
tion-centric
cation. The
sub API to

3 P
In th

The PS
identifie

Figu
function
different
classes
identifie
FIDs. T
element
the appl
contains
informat
is comp
forward
function

PSIRP
his chapter,
SIRP netwo
ers, scoping

ure 3-1 show
ns. This pub
t applicatio
of identifi

ers (RIDs), a
The metadat

s. SIDs can
lication can
s scoping in
tion to map
pleted with
ding, otherw
n and can oc

Figure 3-1:

P Co
we will intr

ork architec
information

ws the PSIR
b/sub archite
ons and net
iers: applic
and forward
ta includes
n be conside

resolve an
nformation,

p each RID t
hin a dom
wise, it is ca
ccur both on

PSIRP Comp

ncep
roduce the b
cture consis
n, subscribe

RP compone
ecture has a
tworking fu
cation iden
ding identifi
scoping inf

ered a subse
AID to a R
which is a

to FIDs, bot
ain, then t
alled inter-d
n a local sca

onent Wheel

11

pt an
basic archite
sts of seve

ers and publi

nt wheel an
application p
unctions can
ntifiers (AID
iers (FIDs).
formation a
et of RIDs. A

RID and tran
associated w
th within a
this operat
domain rou
le or all ove

and entities (

nd Ar
ectural conc
eral entities
ishers, and d

nd the relatio
programmin
n operate in
Ds), scope
AIDs are re

and other im
After an ite

nsfers the ite
with the RI
domain and
tion is call
uting and f
er the netwo

(Adapted from

rchit
cepts and se
s, including
domains.

onship betw
ng interfaces
n it success

e identifiers
esolved to R
mportant set
em is publish
em via the n
ID. The sys
d between d
led intra-d
forwarding
ork [11].

m figures 7.1

tectu
rvice model
g data and

ween identifi
s (APIs) to
sfully. Ther
s (SIDs), r
RIDs and ev
ttings for th
hed and sub
network. Th
stem uses t
omains. If t

domain ro
. Caching is

and 7.2 of [1

ure
l of PSIRP.

d metadata,

iers and the
ensure that
re are four
rendezvous
ventually to
he network
bscribed to,
he metadata
the scoping
this process
uting and
s a network

1])

12

3.1 Data and metadata
Information is the key focus of PSIRP. Everything is information [9]. In the PSIRP

architecture, the data is the center of attention. Every piece of information (item) in the
information graph is related to some application task. A rendezvous identifies an item and the
network delivers items to their destinations individually by utilizing different types of identifiers.
However, each item is usually connected to other items on the application level. Publishers send
their metadata to the rendezvous node. This metadata not only represents the relationship with
other information, but is itself data with respect to the network level. Any item could be metadata
for other items. On the network level, network metadata may represent the state of the network,
encapsulated inside a communication header, or set as separate identifiers [11].

3.2 Scope
In the pub/sub information routing paradigm, developers can set information scoping

mechanisms that limit the reachability of information with respect to a particular set of senders
and receivers of a particular piece of information. Every item has a scope identifier (see section
3.3.3). The concept of scoping can be compared to topologies in the endpoint-centric IP world.
During the publication operation, an explicitly identified scope is attached to a specific piece of
information by its publisher. Using the scoping mechanism, publishers and subscribers can select
a scope. Such a scope not only classifies the information items, but groups the interests as well.
Subscriptions may be aggregated into more scalable scopes, which bring a key benefit to
inter-domain network management. Scoping also allows separate publications to have shared
control of their dissemination, as well as separate authentication. PSIRP is also able to aggregate
operations on the scope, for instance, access control and other metadata-controlled operations;
such as defining a scope-level caching policy [11]. Every item of information could belong to
more than one scope. A video of a lecture can reside in college’s academic scope and a user’s
personal scope. In pub/sub, information is structured as a directed acyclic graph. A scope may
contain sub-scopes and information items, which means there are multiple levels of scopes. This
brings some predictable benefits when a future network requires scalability and migration. Under
a scope, everything is assigned a statistically unique ID. One or several paths starting from one or
more graph’s root can trace all scope and information items. Scopes can easily be built or
re-constructed, removing specific parts from the scope, adding new sub-scopes, or information
pieces. Also the information can easily be assigned to a new scope.

As we can see in Figure 3-2, universities or organization are responsible for different parts of
projects, to be specific: the Pursuit and PSIRP projects. The sub-scope Deliverables is available to
all these three scopes. Each scope has a governance policy attached, represented as metadata,
which includes authentication information for potential receivers of information. Scopes provide
social relations among elements, representing publisher, subscriber, and the information item
itself.

3.3
In th

structure
system m
informat
for a pat
encapsu
describe

3.3.1
From

only me
concepts
on their
applicat
At the s
the netw
before b
perform

F

Ident
he pub/sub a
e informatio
more secure
tion. A FID
th segment i

ulated in th
ed in a subse

1 Ap
m the applic
eaningful an
s, such as fl
r own needs
ions are exp

same time, o
work. An a
building a c

med either by

Figure 3-2: Ex

tifiers
architecture,
on on a hig
e, and to en

D is based on
in the netwo
e packet’s
ection below

pplicati
cation’s poi

nd can only b
flat or struct
s, AIDs are
pected to im
other applic

application n
communicat
y the applica

xample of PS

, there are f
gh level. PS
nable nodes
n a 256-bit
ork. The FID
header by

w.

ion Ide
int of view,
be applied w
tured identif
e determined
mplement th
cations may
needs to id
tion connec
ation itself o

SIRP scope (A

four types of
IRP utilizes
to independ
BLOOM fi
D encodes th

the sender

entifie
 an identifie
within a pro
fiers, and hu
d by applic
heir own ver
y rely on sh
dentify whic
tion betwee
or by some s

Adapted from

f identifiers
s self-certify
dently verify
lter. The fil
he delivery
r [9]. Each

rs (AID
er does not

ocess. Appli
uman-readab
ation devel
rsions of id

hared rules a
ch network
en sender an
service(s) in

figure 6.1of [

. AIDs can
fying RIDs
fy the authen
lter specifies
tree (i.e., th

h of these t

Ds)
t need to be
cations can
ble namesp
opers. In th

dentification
and services
k rendezvou
nd receiver
n the networ

[11])

be used to e
and SIDs to
nticity and
s the sets of
he network p
types of id

e unique, as
utilize man
aces identif

he PSIRP a
n and namin
s to collabo
us identifier
. This actio
rk.

13

express and
o make the
integrity of
f links used
path) and is

dentifiers is

s an AID is
ny identifier
fiers. Based
rchitecture,

ng schemes.
orate within
rs are used
on could be

f

14

3.3.2
In or

unique r
impossib
by rende
transmit
executin
operatio
process.
context)
establish

3.3.3
A sc

informat
can be
informat
RID cou
scope. A
publicat

2 Re
rder to comm
rendezvous
ble to direct
ezvous func
t informatio
ng at the se
ons in the ne
 Also, an R

) and lower
h communic

3 Sc
cope identifi
tion. In the
used by th
tion item w
uld be assig
As shown
tion. A pub

endezv
municate an
identifiers

tly use it for
ctions. When
on via a ren
ender or re
etwork, a RI
RID is the
layer identi
cation amon

ope Id
fier (SID) is

PSIRP arch
he rendezvo

will determin
gned to more
in the Figu
lication can

Figure 3-3 : A

vous Id
nd connect d
(RIDs). An

r routing an
n using the
ndezvous no
ceiver and
ID may be u
bridge to c
fiers (used i

ng all partici

dentifie
attached to

hitecture, SI
ous system
ne the right s
e than one S
ure 3-3, sco
n belong to m

An example o

dentifie
different app
n AID is no
nd forwardin
same seman

ode. Such a
shared wit

utilized in t
connect hig
in a network
ipants, as w

ers (SI
o each rende
IDs is consi
to aggrega

set of FIDs
SID. Every
ope 0 is a
more than on

f hierarchy in

ers (RI
plication ide
ot required
ng data. In th
ntics and RI
an RID can
th other app
the network
gher-level id
k context). T

well as when

IDs)
ezvous ident
idered a spe

ate other RI
for delivery
publication
root scope

ne scope.

nformation str

IDs)
entifiers, the
to be unive
he PSIRP n
ID, a publis
be generat

plications. R
k authenticat
dentifiers (u
The network
routing and

tifier to deli
ecialized su
IDs. The p
y of this dat
n has its own
e.The ‘Pub’

ructure of PS

e network n
ersally uniq
network, RID
sher and sub
ted by any
Regarding t
tion and acc
used in an
k uses the sa
d forwarding

imit the reac
ubclass of R
pair (RID, S
ta to a destin
n separately
’ in the fig

SIRP

needs to use
que, so it is
Ds are used
bscriber can
application
the routing
cess control
application
ame RID to
g requests.

chability of
RIDs, which
SID) of an
nation. One
y controlled
gure means

f

15

3.3.4 Forwarding Identifiers (FIDs)
In the forwarding function of PSIRP, forwarding identifiers (FIDs) are utilized to accomplish

data communication among publishers, subscribers, and system components. In order to send data
from a publisher to the subscribers, the network has to resolve each pair of RID and SID into one
or more FIDs. This function is achieved by the intra-domain and inter-domain rendezvous
systems. The rendezvous systems play an intrinsic role in generating forwarding identifier
resolution. The network can produce logical forwarding trees, which use the forwarding
identifiers. [11]

3.4 PSIRP Components
This section will present some of the components of a PSIRP network, including the

rendezvous system and the intra-domain & inter-domain routing and forwarding architecture.

3.4.1 Rendezvous
In an information-oriented internetworking architecture, the operation of finding and matching

the correct information with a client is accomplished by the rendezvous function. A rendezvous
determines the set of subscribers and publishers for a particular publication. To accomplish this
requires specific underlying transport indicators to implement the data delivery. The rendezvous
function takes place between network devices, which are called rendezvous points (RPs). RPs are
logical meeting places within the pub/sub system. A publisher creates a scope of publication and
sends this to the local RP node (in the Blackhawk and PURSUIT projects this is called a RZV
node), and then the local RP node stores scope information. When a scope is published, the
rendezvous system notifies all subscribers that have previously subscribed to this scope. A
subscriber indicates an interest in this information item by sending metadata to the local RP node.
If the requested scope does not exist, then the RP node will create a new scope. If publishers have
already published (i.e., advertised) this item, then the RP node will match the item with the
subscriber’s request. After that, the subscriber officially subscribes to the data from the publisher
through the RP node. When the publisher receives a request, it starts to publish the data
continuously. An example of such a message exchange process is shown in the Figure 3-4.

16

The
PURSU
domain-

The
to be pe
the sam
updates,
related t
manner.
a local s
proxy ac
that the

The
dissemin
how to
publicat
kinds o
switchin
that is
Network
pairs of
domain.
their con

* An RN i

collection
UIT project,
-local, and a

example, sh
erformed on

me node. In
, instead of
to topology
 To pair the

scale. In this
cts as one e
operation o

domain-loc
nation, there
search for

tions and su
of elements
ng devices),

unique wi
king (LIPSI
source/dest
 Publishers
nsumption r

is a physical in

Figu

of RPs is
the develop

a global stra

hown in Fig
a local scal
this case, lo
adding netw

y manageme
e publication
s project, w
element in a
f the rendez

cal and glob
e are two di
r the approp
ubscriptions

exist in t
 rendezvous
ithin the d
IN) mechan
tination. Ren
s send scop
requests to R

nstance of a lo

re 3-4: Examp

 called a r
pers explain
ategy for dis

gure 3-4, is
le, which m
ocal look-u
working fun
ent and netw
n and subsc

we plan to se
a pub/sub ne
zvous functi

bal rendezv
ifferences fr
priate RPs.
s between R
the network
s nodes, and

domain. By
nism[10], th
ndezvous no
e changes a
RNs. RNs m

ogical RP.

ple of messag

rendezvous
n three majo
sseminating

a scenario i
means that al
up tables cou
nctions to th
work mana
criber’s need
et up a PSIR
etwork. Init
ion is simila

vous strateg
rom node/lin
. The secon
RPs. In a d
k: forwardin
d hosts [12]
y following
e forwarder
odes (RNs)*

and adverti
match these

ge exchange

system in
or rendezvo
information

in which the
ll publicatio
uld with lo

he rendezvou
gement in g
ds, we can f

RP overlay th
tially, we us
ar to a servic

gies are mor
nk-local dis
nd differen

domain-loca
ng nodes (
. Each forw

g the Line
rs compute
* keep track
sements to
requests wi

process

the PSIRP
ous strategie
n.

e rendezvou
ons and subs
w latency s
us process.
general take
filter the irre
hat includes
se the node/
ce discovery

re complica
ssemination.
nce is the p
al scenario,
(simple, low

warder is ass
Speed Pu

the appropr
k of all activ

RNs, while
ith the adver

P architectu
es: a node/li

us function
scriptions ta
satisfy the q
Some helpe
e place in a
elevant info
s several pro
/link –local
y solution.

ated. For do
. The first d
process of
we assume

w complex
igned a nod

ublish/Subsc
riate paths b
e publicatio
e the subsc
rtisements.

ure. In the
ink-local, a

is designed
ake place in
queries and
er functions
a link-local
ormation on
oxies. Each
strategy so

omain-local
difference is

forwarding
e that three
xity, packet
de identifier
cribe Inter-
between all
ons within a
ribers send
Flooding is

17

used by the forwarders to discover an RN’s location. The RNs advertise their location to the
directly connected forwarders. These forwarders flood the RN’s information to other forwarders
within the network. End-users send their publications and subscriptions to their attached
forwarders, who will in turn transmit this information to the RNs. A rendezvous system usually
has more than one RN. Every RN generates a metric list that shows the distances between
forwarders by counting hops. When a new forwarder joins the network, it requests the list of
available forwarders attached to RNs and sends its publications or subscription requests to the
nearest one [11]. To achieve greater efficiency, RNs should be arranged around popular areas.
Popular area means the place has high frequency of PSIRP requests and more active users. If RNs
are installed in popular areas, it could reduce rendezvous delay [11].

3.4.2 Topology Management
One of the important components in the PSIRP architecture is the topology management

function. This component is responsible for building a usable and efficient delivery graph for an
established pub/sub relationship. While considering the different policies and network traffic
conditions, the topology management system searches for available forwarding paths from
publishers to subscribers, and then selects the most optimal one.

In the PSIRP project, the topology management functionality is divided into intra-domain and
inter-domain mechanisms. Intra-domain topology management works within one administrative
domain, its role is to discover topology information, computes and updates network states, and
then forwards this information to other participated nodes. Topology management is associated
with the rendezvous and forwarding functions. The PSIRP prototype allows client modules and
server modules to coexist in the same node. The client module operates on each forwarding node.
Its role is to discover local connectivity information. At the same time, the server module collects
this information and maps them to compute a complete network topology. In addition, the server
module computes the optimal forwarding paths, and then exchanges this information with
forwarding nodes. This topology management implementation is similar to link state routing
protocol link state advertisements (LSAs). More specifically, there are two scopes that exist in the
process. One of them is the “Hello” scope, which is responsible for collecting “Hello” messages.
Every node periodically publishes a “Hello message” including the node’s ID and basic
information as an announcement of its existence to the “Hello” scope. The other scope is a link
state advertisement scope. This scope collects information showing the set of neighboring nodes.
The nodes that subscribe to the same scope listen to their neighbors’ advertisement messages and
create a list of neighbors. When the topology changes, a new link state advertisement is published
[13].

In the PURSUIT project, the developers aim to fully take advantage of the information-centric
model, so they integrated the network attachment process with topology discovery. This strategy
lets the scope structure represent the link structure of the local network. Basically, every node
announces its existence by publishing a new scope, either a root scope or a sub-scope. The node’s
ID determines the scope ID. All the announcement information can be spread using a broadcast
strategy. In this way, nodes can communicate with other nodes whose location is within their
transmission range. Every node that wants to join in the network’s activities has to subscribe to
this strategy in order to get the information it wants. Eventually, the scopes not only identify the
ID of the incoming node, but also provide location information and interconnectivity with other
nodes.

18

3.4.3 Forwarding
Forwarding is one of the three most important main functions of the pub/sub model. We

assume that our network does not rely on endpoint-based end-to-end addressing, such as an IP
address. That requires the forwarding structure to be able to name information items. Senders will
not able to send any data to clients who have not sent a subscription. This rule prevents DDoS
attacks since every subscription has to follow the forwarding tree. It also requires that the
forwarding tree is scalable and has access control. The FID is not restricted to one RID, which
means that a particular FID can be used for different RIDs. When a new subscription is created,
the existing transmission trees, identified by FIDs, can be re-used. This reduces the amount of
network state. We can also divide the forwarding function into intra-domain and inter-domain
forwarding.

In a domain, the link between two forwarding nodes has a link ID, which determines the
packet forwarding. Each link between two forwarding nodes has two link IDs, one in each
direction. The PSIRP structure combines two approaches together to transmit packets. The
topology management system generates Bloom-filters-based FIDs and installs new state at the
forwarding nodes. With link IDs and interconnectivity information, the topology management
system creates a network graph. This network graph makes it possible to generate a forwarding
tree for publications, as it has the locations of all the publishers and subscribers. Using this
network graph, the topology management system creates a delivery tree for each publication. The
delivery tree includes the links and nodes through which the information will pass. A Bloom filter
encodes the entire set of link IDs as zFilters [10]. This filter is put into the packet’s header. The
rendezvous system considers all the participants (including subscriber and publishers) when the
topology management system collects the network graph. Using this information, the zFilter
defines a delivery tree. Additionally, policy restrictions and traffic engineering could also be
considered when selecting the delivery tree. However, as the number of links included in the FID
grows, Bloom filter based forwarding faces scalability issues because the proportion of falsely
routed packets grows. At the same time, a simple Bloom filter based forwarding solution is subject
to vulnerabilities, such as Bloom filter replay attacks, packet storms, forwarding loops, flow
duplication, and injection attacks. More details about forwarding security problems and solutions
are listed in the deliverable D2.2 of the PURSUIT project[10]. The developers in the PURSUIT
project proposed an advanced forwarding security solution, called a Bloom filter-based Relay
Architecture (BRA), which improves scalability in comparison with the former Bloom filter
version. BRA divides the large-scale delivery tree into hierarchically arranged sub-trees [10]. Each
sub-tree has its own Bloom filter that is used to forward a packet to the underlying sub-trees. The
sub-trees are connected using relay nodes. These relay nodes deal with the forwarding information
in the packet’s header. The solution we described above is used within a single node. The next
paragraph will describe how BRA works in a multi-area network.

If the network has several domains, we setup a rendezvous/topology node R in each domain.
The node R has full topology information for the whole network. It is responsible for generating
the delivery tree of its network and maintaining local subscriber information. The rendezvous
nodes communicate with each other. Each R calculates a Bloom filter (BF) for the path from the
rendezvous node (RN) to the receivers. The BF and the publication ID are sent to a new assigned
RN. The receivers can either be a subscriber itself or other RNs in other areas. Rp is the closest
rendezvous node to the publisher that stores publication information, while Rs is the closest R of
the subscriber that maintains the subscription information as well. In a simple scenario, a client

19

sends the subscription to Rs, the Rs checks if the subscription already exists in the local area. If
not, then the Rs generates a delivery tree from the edge router to all subscribers in the local area,
and then creates a Bloom filter. Finally, the subscription, the Bloom filter, and the number of
passed links and subscribers are sent to R in the backbone. R’s job is to generate the multicast tree
from the publisher to all the subscribers. If the number of links on a path is too great, then the R
node will create a new RN in the backbone. Rp generates the delivery tree from the publisher to
RN in the backbone with the BF created by R [11]. More examples can be found in [10].

Another solution developed to provide the forwarding function in pub/sub architecture is a
multi-stage Bloom filter solution. To avoid a high false positive rate, this solution also uses a
hierarchically organized delivery tree, but the delivery tree is arranged into several stages. In each
forwarding stage, the individual Bloom filter identifiers are calculated in the same manner as in
the LIPSIN [14] approach. This scheme utilizes a variable length FID, which reduces the
overhead. However, the variable length identifier adds additional overhead and a multi-stage
forwarding strategy is more complicated.

21

4 HTTP Proxy and Pub/sub HTTP
proxy

The Hypertext Transfer Protocol (HTTP) has been used as an application-level protocol in the
World Wide Web global information initiative since 1990 [17]. In our project, HTTP is used for
communication between user agents and proxies or gateways to other Internet systems. These
other systems may utilize SMTP, NNTP, and FTP for their communications.

4.1 Hypertext Transfer Protocol
Hypertext Transfer Protocol (HTTP) provides hypertext transfer from WWW servers to local

browsers. HTTP not only ensures that the computer correctly transfers the hypertext documents,
but also can determine which part of a document should be transferred, as well as which part of a
webpage should be displayed first (for example, text takes precedence over graphics).

The HTTP protocol is a request/response protocol. The overall operation can be described as
follows:
1. A client sets up a connection with the server.
2. The client sends a request to the server in the form of a request method, URL, and protocol version,

followed by a MIME-like message containing request modifiers, client information, and possibly a
body containing content.

3. The server responds with a status line, followed by a MIME-like message containing server
information, entity Meta information, and possible entity-body content [20].

4. The client receives the information returned by the server. If the client has no further requests, then the
client and server disconnect. If errors occur during an operation, the error information will be returned
to the client.

In the case of a web browser client, the process is now complete and the results are displayed
to the user by the browser. This webpage may also have additional content which the user might
request. In this case the user simply clicks on an object (with an associated URL) on a page with
their mouse and waits for the new information to be displayed.

4.2 HTTP Proxy
An HTTP proxy is designed to proxy HTTP requests from clients who wish to obtain

information. The proxy is a transit point between the user’s browser and a web server. The proxy
acts as an intermediary, simply passing the client’s request on to the web server. When using a
proxy the browser will not receive webpages or contents directly, but rather the client sends a
request to a proxy server. The proxy gets the information and sends the requested information
back to the client. The proxy server may also cache content (i.e., the results of earlier requests). If
the same client or other clients requests the same object before the content expires in the cache,
then the proxy directly transmits the cached data to the requesting client, rather than requesting the
data from the web server. This function not only significantly improves browsing speed and
efficiency, but accelerates the download and saves bandwidth (on the network path from the proxy
to the actual web server). In many cases, the proxy server provides additional security – for example,

22

hiding the identity of the requesting client or using a secure tunnel to get the information from the web
server (even though the client has not explicitly ask to use a secure tunnel). By using a proxy the users can
hide their real IP address from the web server, protecting them from a direct attack as the web server sees
only the IP address of the proxy. The proxy may also perform filtering of requests or filtering content to
prevent specific types of content from being accessed, to prevent clients from accessing certain web servers
(and their associated web sites), or to prevent certain types of information from being sent by the client to
the web server.

An HTTP proxy can be used to breakthrough IP access restrictions faced by clients in order to allow
the clients to access websites outside a country (or company) or to enable access to some specific
resources. For example, an FTP service could limit requests from clients to only those which are connected
to the university’s network (the proxy checks that the client’s IP address is in the scope of allowed IP
addresses), thus students could download and upload documents, share files, and access specific resources
via the proxy server operated by the university. As another example, at KTH a proxy is used to enable
students to access e-journals via the KTH Library’s subscriptions to the journals, while ensuring that only
those permitted to access the e-journal can make requests to the journal’s web site. In this case only the
web proxy needs be authorized to access the e-journal, rather than requiring that each student have their
own subscription to access the e-journal.

4.3 HTTP Proxy Caching
A web cache reduces bandwidth usage, web server load, and the user’s perceived delay by

storing documents into temporary storage (a cache). Caching proxies are usually located near
network gateways to reduce bandwidth consumption and decrease user-perceived response times.
According to specific requirements or rules, the cache stores copies of content that is passing
through it. If the requested object is in the cache, the proxy checks to see if the object is fresh
enough to serve. If it is fresh, then the proxy serves it directly to the client. If the data in the cache
may be stale, then the proxy connects to the origin server and checks if the object is still fresh. If it
is, then the proxy immediately sends the cached copy to the client and updates the time that the
object may be cached. If the object is not in the cache or if the server indicates that the cached
copy is no longer valid, then the proxy obtains the object from the origin server. The object is
passed to the client and stored in the proxy’s local cache. Subsequent requests for the object can
be served faster because the object can be retrieved directly from the cache.

HTTP defines three basic mechanisms for controlling caches: freshness, validation, and
invalidation. Freshness allows a response to be used without rechecking it on the origin server.
Both the server and the client side can control the degree of freshness. For example, the Max-age
directive determines the lifetime of an object in the cache. Validation can be used to check if a
cached response is still valid after it becomes stale. Invalidation is usually a side effect of another
request that passes through the cache [18].

In order to evaluate the performance of a proxy cache, we generally consider the hit rate and
the byte-hit rate. The hit rate indicates the percentage of all requests that can be satisfied by
searching the cache for a copy of the requested object. The byte-hit rate is the percentage of all
data that is transferred directly from the cache rather than from the origin server. If the requests
are for small objects, it is easy to increase the hit rate by storing a larger number of small objects
In contrast; caching a few large objects could increase the byte-hit rate. The proxy’s cache has to
rapidly make a decision about whether a requested object is cached to avoid increasing the latency
of the response to s request.

23

4.4 Pub/Sub HTTP proxy towards the Internet and
HTTP browsers

The PURSUIT developers have designed a Pub/Sub HTTP proxy that allows client to use a
normal HTTP web browser to request data from the Internet. The subscribe-GET and subscribe-
POST methods were implement with a publish/subscribe semantics network. On the client side the
users use a standard browser, such as Google’s chrome, Microsoft’s Internet Explorer, Mozilla’s
Firefox, or Apple’s Safari. The HTTP proxy connects to a Blackadder Information-Centric
Network (ICN). This web proxy acts as a converter since it transforms normal HTTP GET
requests to BlackAdder’s subscribe_GET format. In a BlackAdder subscribe_GET request, two
identifiers are defined by using the Fowler/Noll/Vo (FNV) hash algorithm [19]. The input to this
hash function are a domain related identifier and a subscription related identifier. The proxy
forwards the BlackAdder request to the ICN network and subscribes to the domain’s scope and
information items. The subscriber waits for a response or a time out. If the requested content is
published before the time out, then the publisher will get a notification from the topology manager
and it will publish the requested information to the subscriber. Since it is impossible for a
publisher to publish all contents in the overlay in advance of requests, the developers created a
mechanism that requires content providers to subscribe to a domain_request scope for the domain
to which they wish to provide service. This enables the publishers to response to subscription
requests. When the requested content does not exist within any scopes, then the subscriber
publishes a request to this special scope to trigger a dynamic content domain publisher. After
making this request the subscriber waits for a response from the network.

The proxy also can convert a pub/sub HTTP request to a standard HTTP request if the data has
to be fetched from a remote HTTP server. To do so the proxy connects to the remote server by
using a worker thread, setups a TCP connection, delivers the request and waits for a response.
After receiving the content, the Pub/Sub HTTP proxy publishes the object to the BlackAdder ICN.
As of the time of this writing, the development of this Pub/Sub HTTP proxy is still in progress. It
is also expected that some caching schemes will be added in the Pub/Sub HTTP proxy. Further
details about this Pub/Sub HTTP proxy can be found in [24].

Compared to this Pub/Sub HTTP proxy, the proxy we developed has a different structure and
different functions. The PURSUIT HTTP proxy simply transforms a HTTP request to pub/sub
request and forwards it to the BlackAdder Testbed ICN or reads the pub/sub requests and converts
it to HTTP format in order to send it to a remote server. Both the BlackAdder ICN and PSIRP
overlay have a publish/subscribe function. However, the former one always converts the format of
the request, and then subscribes of the content from the pub/sub network. So the proxy needs to
wait for an existing publisher to respond or time out. Our system allows a client to send both
HTTP and PSIRP requests, because the proxy can identify the type of request and it has ability to
use different threads to process the requests. Chapter 6 describes the details of the proxy operation
process.

25

5 Publish/Subscribe Prototype
Description

This section describes our use of the PURSUIT Publish/Subscribe prototype and the process of
setting up this prototype in an environment for testing. The API for different languages for an
information–centric application is introduced in section 5.2.

5.1 PURSUIT prototype
We decided to use Blackadder prototype v0.3 as our implementation of an information-centric

networking environment. Compared to the earlier Blackhawk prototype which only runs on
FreeBSD, Blackadder is supported on Linux and FreeBSD. FreeBSD is widely used by computer
science researchers. However, Linux offers some tools and drivers which are not supported by
other operating systems. In this project, we used Linux as our operating system since it was easier
to set up and there were a number of distributions to choose from. Blackadder has a C++ library
for developing applications and also provides a wrapper for this library for C, Java, Python, and
Ruby. We used Java to program our proxy. Blackadder implements the core functions of
rendezvous, topology management, and forwarding. Moreover, Blackadder provides four different
dissemination strategies within the PURSUIT functional model.

5.2 API Description
Blackadder communicates with applications through a Netlink socket [20]. First, the

application opens a Netlink socket and transfers data buffers to Blackadder. All of these data
buffers are compliant with a format which Blackadder recognizes as publish/subscribe requests.
Then, Blackadder establishes information-related events and sends results back to the applications
through a Netlink socket.

Blackadder’s C++ API includes two singleton classes. The first class, Blackadder, handles
publish/subscribe requests in a blocking fashion. The second class, NB_Blackadder, processes
publish/subscribe requests in a non-blocking fashion [21]. In the former class all the requests are
sent to the networking stack before each method unblocks in the application. For the second class,
a selector and a worker thread are created at the same time. When applications receive
publish/subscribe requests, they forward the requests to a queue.

Here, we will briefly describe Blackadder’s C++ API, the SWIG-based Java API, and a
non-SWIG binding. More details can be found in the API document in the PURSUIT prototype
description [21]. This API is an improvement over the earlier Blackhawk prototype. As noted
earlier, Blackadder provides language bindings for Java. These bindings are generated with
Simplified Wrapper and Interface Generator (SWIG). These bindings wrap some functions in the
C++ API so they can be used in other “higher level” languages. Hence, we can install SWIG
bindings for Python, Ruby, and Java - after the installation of Blackadder’s C++ API library,
depending upon which language(s) we wish to use. One can also use the independent Java
Wrapper, which is a non-SWIG Java binding for Blackadder. This later method has some classes
that can offer an object-oriented abstraction to the network functions. Additionally, this Java
wrapper reduces the number of buffer copies between the Blackadder library and the JVM, thus

26

providing higher performance. For all of these reasons we choose the independent Java wrapper to
develop our proxy. The next subsection will introduce both the C++ and Java API details that we
thought might be useful in our project.

All the basic entities are included in the classes of the eu.package.core package. When an
application wants to communicate with other elements in the ICN, it needs to create an instance of
a BlackAdderClient object. This BlackAdderClient instance provides all the methods for publishing
and subscribing to information.

5.2.1 Pub/Sub Methods
5.2.1.1 Publishing Scopes

In the pub/sub architecture, the rendezvous system maintains an information graph. Once a
publisher creates a scope by sending a publish_scope () request, the rendezvous system will send
notifications to those subscribers who have already subscribed to this scope. The publisher can
define the information’s visibility scale: within its local host (node_local), its host and a physical
neighbor (link_local), or within the domain (domain_local). Both scopes and information items
can belong to multiple paths in the information graph, which means that they can be identified by
multiple information IDs.

The relevant methods are:
C++ void publish_scope (const string &id, const string &prefix_id,

unsigned char strategy, void *str_opt, unsigned int
str_opt_len);

Java publish_scope (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
publishScope ()

5.2.1.2 Advertising Information Items
Information items could reside under more than one scope. Each information item has to be

advertised under one or more scopes. In the DOMAIN_LOCAL dissemination strategy, depending
on the existence of subscribers in the information graph, the rendezvous node may initiate the
rendezvous process during the publication and subscription matching process. The rendezvous
node could also ask the topology manager for topology formation. After receiving a request, the
topology manager will notify the publishers to publish the data for the specific information item.

The relevant methods are:
C++ void publish info (const string &id, const string &prefix id,

unsigned char strategy, void *str_opt, unsigned int str_opt_len);

Java publish_info (byte [] id, byte [] prefix_id, int strategy, byte []
data)
publishInfo ()

27

5.2.1.3 Subscribing to Scopes
A client can subscribe to a scope. If a required scope does not exist, the rendezvous node will

build a new one. When a subscriber subscribes to a scope, it means that the subscriber is interested
in all the scopes (not the whole sub-graph) and information items under that scope. The scopes
will ask the topology manager for a LIPSIN identifier. A series of LIPSIN identifiers are able to
direct the information items from publishers to the subscribers.

The relevant methods are:
C++ void subscribe_scope (const string &id, const string

&prefix id, unsigned char strategy, void *str opt, unsigned int
str_opt_len);

Java subscribe_scope (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
subscribeScope ()

5.2.1.4 Subscribing to Information Items
When a client wants to obtain an information item, the rendezvous node will match the

previously advertised item to this subscription. Then, the rendezvous node publishes a request to
the topology manager to generate LIPSIN identifiers from every available publisher to
subscribers. The topology management system selects the best paths from the publishers to the
subscribers and builds multicast trees.

The relevant methods are:
C++ void subscribe info (const string &id, const string &prefix id,

unsigned char strategy, void *str_opt, unsigned int
str_opt_len);

Java subscribe_info (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
subscribeInfo ()

5.2.1.5 Unpublishing Scopes
An existing scope can be deleted from the information graph. The subscribers of the father

scopes are notified about the unpublishing event. If the scope was published under multiple
scopes, then the unpublishing action only deletes the specified branch.

The relevant methods are:
C++ void unpublish_scope (const string &id, const string

&prefix id, unsigned char strategy, void *str opt, unsigned int
str_opt_len);

Java unpublish_scope (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
unpublishScope ()

28

5.2.1.6 Unpublishing Information Items
The publisher can delete a specific information item from the information graph. If this

publisher is the only one concerned with the information item, then this item will also be deleted
from the rendezvous system after an unpublishing request. However, if there are other publishers
who have published this item, then the topology manager will update the LIPSIN identifiers. The
relevant methods are:
C++ void unpublish_info (const string &id, const string &prefix id,

unsigned char strategy, void *str_opt, unsigned int
str_opt_len);

Java unpublish_info (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
unpublishInfo ()

5.2.1.7 Unsubscribing from Scopes
When a subscriber wants to unsubscribe from a scope, it will be removed from the list of

subscribers of this scope. The relevant methods are:
C++ void unsubscribe_scope (const string &id, const string

&prefix id, unsigned char strategy, void *str opt, unsigned int
str_opt_len);

Java unsubscribe_scope (byte [] id, byte [] prefix id, int strategy,
byte [] data)
unsubscribeScope ()

5.2.1.8 Unsubscribing from Information Items
After the subscriber send unsubscribing requests for a specific information items, the

rendezvous node will check the information graph to see if there still are other publishers and
subscribers. If nothing is left in the information graph, this information item will be deleted.
Otherwise, the forwarding identifiers will be updated. The relevant methods are:
C++ void unsubscribe_info (const string &id, const string

&prefix id, unsigned char strategy, void *str opt, unsigned int
str_opt_len);

Java unsubscribe_info (byte [] id, byte [] prefix_id, int strategy,
byte [] data)
unsubscribeInfo ()

5.2.1.9 Publishing Data
When the matching process is finished, the topology manager sends FIDs to Blackadder.

Blackadder assigns the FIDs to the information items. The relevant methods are:
C++ void publish_data (const string &id, unsigned char strategy,

void *str_opt, unsigned int str_opt_len, void *data, unsigned
int data_len);

Java publish data (byte [] id, byte [] prefix id, int strategy, byte
[] data)
publishData ()

29

Different dissemination strategies are defined by the Strategy enum in the eu.package.core
package. Specifically, NODE, LINK_LOCAL, DOMAIN_LOCAL, IMPLICIT_RENDEZVOUS,
and BROADCAST_IF strategies exist. We plan to initially utilize the NODE strategy in our
prototype. Subsequently the LINK_LOCAL and DOMAIN_LOCAL strategies could be utilized in
an experiment.

5.3 Blackadder Events
In the Independent Java Wrapper for Blackadder, the Event class expresses incoming

notifications. This method will be blocked until the next message comes from the ICN. There are
several types of events. Here, we will briefly describe their role in the process of receiving
notifications from the ICN.

START_PUBLISH

When the forwarding identifier is available for an information item,
Blackadder will send a START_PUBLISH event to an application. This
event contains the information ID, which identifies the information item to
be published.

STOP_PUBLISH

We assume that several subscribers initially subscribe to one information
item. This information item has a FID. Later the subscribers decide to
unsubscribe to this content one by one. Blackadder will send a
STOP_PUBLISH event to an application after the last subscriber ends
their interested in this information item.

SCOPE_PUBLISH

The SCOPE_PUBLISH event is a notification for the subscriber who
previously subscribed to this scope. When a new scope or sub-scope is
created under the subscribed scope, the subscriber will receive this type of
notification. Additionally, the subscriber may also get such events if there
are sub-scopes existing under the subscribed scope.

DATA Applications publish data through DATA events. The information IDs are
included in this event.

31

6 System Design of our prototype
Based on the Blackadder prototype and the requirements of pub/sub proxy for HTTP, we

designed a program to realize our own prototype. This chapter explains the system design of our
program which implements a pub/sub proxy for HTTP. We will introduce our program’s work
flow diagram and Class diagram. A Firefox browser plugin is also presented. The chapter ends
with a discussion of the kinds of information that the system can transfer.

6.1 Proxy operation process
As we can see in Figure 6-1, the proxy acts as intermediary between the clients and the PSIRP

overlay or a remote HTTP server. Each such proxy is an element in the PSIRP overlay. This
overlay is an instance of a pub/sub architecture. Initially, a client utilizes the Firefox browser to
send a content request to the proxy. In our test case, we used a command line interface to send our
requests. The request could use either a PSIRP URL or HTTP URL. The proxy recognizes one
these two types of URLs, then utilizes one of the two socket servers to process the request. If the
URL begins with “http://”, then the proxy will act as a normal HTTP proxy, thus it will first check
its local cache. If the content is available in the cache, fresh, and valid, then the proxy returns the
data directly to the client. Otherwise, it forwards the request to the origin web server. The origin
web server returns the requested content to proxy. The proxy decides whether the content is
cacheable or not. If the content is cacheable, then the content is saved in the proxy’s cache and the
proxy will publish this content to the rest of the pub/sub overlay. As a result the members of the
overlay will learn what resources are stored in this proxy’s cache. Finally, the proxy forwards the
content to the client. If the URL begins with “psirp://”, then this URL contains the RIDs and SIDs
of the information item. When the proxy receives a “psirp://” URL, it will look for the requested
content in its local cache. We utilize the RID and SID as a key to the local cache. If the requested
content is in the proxy’s cache, then the proxy returns the content to client, otherwise the proxy
needs to subscribe to this information in the pub/sub overlay based on the RID and SID. After the
content is delivered to the client, the client renders the content through the Firefox browser or
other media player.

32

6.2
We

requests
system a
is respo

Progr
developed

s. Figure 6-
as two sock
nsible for l

Figure 6-1:

ram w
a program

-2 shows h
ket servers: a
listening to

The operation

work flo
that works

how the sys
a HTTP Soc
a specific p

n process of

ow
s as a prox
stem proces
cket Server
port on the

the pub/sub

xy server to
sses request
and PSIRP
host, TCP

proxy for HTT

o handle bo
ts. Initially,
Socket Serv
port 9800

TP

oth HTTP a
, we bootst
ver. This so
and 9801 in

and PSIRP
trapped the
ocket server
n our case.

Multiple
describe

e threads ar
e the HTTP

re utilized to
socket serv

Figure 6-2: P

o process th
er and PSIR

Program work

he different
RP Socket se

k flow diagram

t tasks in pa
erver in deta

m of pub/sub

arallel. The
ail.

proxy for HT

following s

TTP.

33

subsections

34

6.2.1 HTTP Socket Server
After the HTTP socket server start running, it listens to TCP port number 9800 and waits for a

HTTP request. Once a HTTP request arrives at the proxy, it initializes a HTTP request handler,
which starts two sub-processes. The first sub-process performs the normal HTTP functions. It
parses the request and gets the requested URL. If the content associated with this URL already
exists in local cache, then the proxy directly reads the data from cache and returns this content to
client. Otherwise, the proxy sends a HTTP request to the remote server and waits for a response.
An HTTP response code 200 means the requested content can be successfully fetched from the
HTTP server. Next, the proxy reads the response data from the remote server. Then, it publishes
the content to the PSIRP overlay and saves the content in the local cache, if the content is
cacheable. The final step is to deliver the requested content to the client.

The other sub process implements the publish/subscribe function of our proxy. The proxy
starts a Publisher Event Handler, which is responsible for dealing with a PSIRP event. Once the
BlackAdder event arrives at the handler, it activates the START_PUBLISH event. Next the proxy
publishes the data to the PSIRP overlay. Other proxies will learn that this item is available from
this proxy.

6.2.2 PSIRP Socket Server
Once the PSIRP socket server is activated by the main process, it will wait for a PSIRP

request. Our program provides the catalog function to clients. The clients could request the catalog
of existing PSIRP contents in the PSIRP overlay. They can choose the information they want and
send a PSIRP URL to the proxy. When the proxy receives a PSIRP request, it initializes the
PSIRP Request Handler. The PSIRP Request Handler starts two threads. The first parses the
request and extracts the RID and SID of the content. Next, the proxy searches its local cache based
on this SID and RID. If the requested content already exists in the cache, then the proxy will read
this data and then send it to client. Otherwise, the proxy will subscribe for the content with this
SID and RID in the PSIRP overlay. At the same time, the PSIRP Request Handler starts a
Subscriber Event Handler, which should wait for a response from the overlay. After this handler
receives a BlackAdder Event, it activates a PUBLISHED_DATA Event. The next step is to
receive the data from Overlay. Eventually, the proxy returns the data to client.

6.3 Java Package Diagram
Figure 6-3 shows the Java package diagram of the proposed design. In order to make the code

and system logic clean and well organized, we divided the design into six packages and each
package includes classes which have similar functions.

The multiproxy.engine package contains a socket server class and a class that can control the
work flow of the proposed system. All of the classes that are related to publish and subscribe
activity are placed into the multiproxy.pubsub package. The classes in the
multiproxy.pubsub.workthread package are responsible for data exchange. In the
pub/subarchitecture, information recognition and forwarding is based on identifiers. We organize
the utility classes together as a multiproxy.util package. For instance, there is a class that can
generate RIDs and SIDs. The multiproxy.cache.key package and the multiproxy.cache.entity

package
package

6.4
Figu

among t

e are utilize
es are shown

Class
ure 6-4 show
the classes a

ed to implem
n in the Figu

Figu

s Diagr
ws the clas
and lists the

ment the lo
ure 6-3.

re 6-3: The pa

ram
ss diagram
main metho

ocal cache f

ackage diagra

of the prop
ods for each

functionality

am of proxy p

posed syste
h of the core

y. The relat

program

em. It illust
e classes.

tionships am

trates the re

35

mong these

elationships

36

FFigure 6-4: Thhe class diagrram of the sysstem

37

6.5 Firefox plugin
Currently, if a client wants to establish a long-term interest in an item of content, it has to

periodically poll the web server to check if there is a new version of this content. This occurs
because the rendezvous between the client and server is instantaneous, not permanent. However,
both the web server and client could benefit from a long-term association. That is one reason why
a pub/sub structure has been developed. As mentioned above, a Firefox web-browser plugin has
been designed to access publications in the PSIRP overlay. This plugin provides the functionality
necessary to retrieve publications transparently by entering a PSIRP URL into the browser’s
address bar in the same way as entering HTTP URLs. Once the client sends a PSIRP URL to the
network, the client subscribes to the content based upon a unique RID and SID pair. The
rendezvous system receives the request and returns the metadata for this publication. The client
subscribes for the publication based on this metadata. Ultimately, the publisher delivers the
resulting data to the Firefox web browser. For example, if the data is video, a VLC media player
can play the received content.

6.6 CouchBase
Here we give some details about CouchBase, which is a NoSQL document database we used

in this project. In order to implement the cache functionality of our proxy, we utilize the
Couchbase Server 2.0. The Couchbase Server supports JavaScript Object Notation, indexing and
querying, incremental Map, and cross datacenter replication. We deployed the Couchbase server
on a Linux platform. Compared to other databases, CouchBase has some advantages such as a
flexible data model, easy scalability, consistent high performance and “Always online” features.
The end users could benefit from these features when they are using applications with Couchbase.
For instance, the latency can be lower and the throughput may be higher. In our system, we
decided to do ten experiments and calculate the average of these experiments as the final result for
each data point. Initially, ten buckets are built as the cache of the experiment. Each experiment
uses one empty cache. We flushed each buckets after the experiment so that the initial status of the
cache is empty.

6.7 Content Transmission
In the following sub-sections, we present the content forms that the proxy and pub/sub overlay

supports. Each proxy has a local cache to store information items. Once a fresh information item is
received by the proxy, the proxy will determine whether the content is cacheable depending on
freshness, validation, and invalidation. If the proxy caches the content, then it not only gives the
content a key with an HTTP format, but it also assigns a PSIRP key as well. Hence, it is possible
to use both PSIRP and HTTP URLs to search for this same content. Currently, our proxy supports
file transfer, video streaming, and voice communication.

6.7.1 File Transfer
File exchange is one of the most important forms of Internet communications. The basic

interaction between a publisher and subscriber in Blackadder is a push model. Specifically, the
core components of Blackadder push data from a publisher to subscriber along a forwarding path.
Blackadder has a framework for multipath receiver-driven transport, which is utilized for file

38

transfer. This framework is pull-based. In this approach, the subscriber requests a file piece by
piece. The receiver publishes pieces in response to requests from the subscriber. Moreover, the
requested pieces can be transmitted from a publisher (or publishers) to subscriber via multiple
paths.

In our scenario, every node in the pub/sub overlay publishes the scope and announces a
content item’s availability to the rest of system. Clients simply subscribe to the scope or the
specific information item if they are interested. Based upon the identifiers, the system matches the
publication and subscriptions and generates a FID to forward the data from source to destination.
A MULTIPATH strategy has been developed. When the rendezvous node receives subscriptions,
it requires the topology manager to compute more than one available path and their associated
FIDs between the publisher and subscriber. This mechanism brings some benefit such as
increasing cache hit ratios and optimization of bandwidth usage.

The MULTIPATH content fetching process is shown in Figure 6-5. Initially, there are three
content resources in the network. Step 1, publishers publish the availability of content to the
rendezvous system. Step 2, the client is interested in this content so it subscribes to this
information item via the rendezvous node with a MULTIPATH strategy. Step 3, the rendezvous
node matches the publication and the subscription, and then asks the topology management system
to computes multiple paths between publishers and clients. Step 4, the topology manager sends
notifications to the publishers which include FIDS for each path. Finally, the publishers start
publishing data to the subscriber.

Fig

6.7.2
We

the syste
impleme
an Infor
transform
for this
content
subscrib
required

We
running
downloa
platform
PROJEC

gure 6-5: The

2 Vid
developed t
em. Howev
entation info
rmation ID.
med into a s
specific in
owner to s

ber unsubsc
d video fram

can also p
Blackadder

ad the nece
m.jar to the
CT_PATH/l

e example of f

deo an
the partly fu
er, we have

formation of
. Once a ps
subscription

nformation I
start publish
cribes from
mes and forw

publish Inte
r to transmi

essary jar fi
e paths bla
lib.

file transfer w

nd Voic
unction of p
e not evalua
f them. First
sirp:// URL
n and forwa
ID join the
hing data. T

the scope
ward them to

ernet media
it such strea
iles. Put the
ackadder-ma

with MULTIPA

ce
publishing an
ated and test
tly, the vide
 is sent to
rded to the

e pub/sub sy
The publish

which the
o a VLC cli

a streams, s
ams, we ne
e commons
aster/lib/ a

ATH strategy (

nd subscrib
ted them. H
eo provider
the proxy f
Publish/Sub
ystem, the

her could st
 video belo
ent to play.

such as rad
ed to instal

s-codec-1.7.j
and blackad

(Adapted from

ing to video
Here, we wil

advertises a
from client
bscribe over
Rendezvou

top publishi
ongs to. Su

dio and Yo
l VLC, buil
jar, vlcj-1.1

dder-master

m figure 18 of

o and media
l introduce

an available
, this video
rlay. When
us system r
ing the vide
ubscribers r

ouTube med
ld a Java bi
1.1.5.1 jar,
r/java-bindin

39

f [22]).

a streams in
some basic
video with

o request is
subscribers
equires the
eo if every
receive the

dia. Before
inding, and
jna.jar and
ng/lib/ and

40

A voice telephony application has been developed in Blackadder [24]. We plan to merge this
application code into the proxy’s functionalities in order to enable a voice conference function.
Clients can make a call over a Publish-Subscribe Internetwork (VoPSI), as it supports connection
establishment between two communicating hosts and the voice packet transmission is
bidirectional.

41

7 Evaluation
The developers of PURSUIT project have done a lot of qualitative and quantitative analysis of

their implementation of their pub/sub architecture. They evaluated the security and privacy issues
of their implementation of the Blackadder prototype. Moreover, the memory management
performance, topology management system, and network attachment performance were evaluated
in their deliverable D4.2. More details can be found in [25]. In our project, we measure the
system’s usability and performance from the client’s point of view. We also analyze the network’s
performance from the proxy’s view. The specific parameters that we will use in the evaluation are
described below.

7.1 General Performance Analysis
Due to the combination of HTTP request and PSIRP request processing of our proxy, the

performance may differ depending upon the type of the request. We will test the system with both
types of requests, sending only HTTP requests, and randomly sending HTTP and PSIRP requests.

After the proxy receives a HTTP request from a client, it will search its local cache. In our
analysis a hit means that the information requested by a client is already available in the proxy’s
cache. In some circumstances, the original server may need to be contacted to verify the freshness
of the content. Over a certain period (to be stated), we will calculate the Document Hit Ratio
(DHR) that is the number of hits divided by the total number of requests received by the proxy.
We can also compute the Byte Hit Ratio (BHR) which indicates the percentage of the bytes
delivered following hits divided by the total size of all replies sent by a proxy within a certain time
interval. For our measurements we set the timer period to different number based on the number
of requests.

A real network usually has more than one client sending requests to a proxy at the same time.
Hence, we want to assess the ability of our proxy to process multiple concurrent requests as part of
our evaluation of the proxy’s performance. The proxy needs time to respond and process each
individual request. Generally, the more concurrent requests a proxy can handle within a given time
interval, the more powerful it is. In reality, the ability to deal with concurrent requests is based on
multiple factors, such as traffic load, memory capacity, and disk capacity of the proxy.

7.1.1 Parameters of the proxy’s performance
In this subsection we consider a number of different parameters of the proxy’s performance.

This analysis looks at the caching behavior and the characteristics of the proxy’s traffic.

7.1.1.1 Cache Analysis
The Cache Hit Ratio (%) is the most important metric for measuring the effectiveness and

demonstrating the value of a proxy server. The cache hit ratio represents the percentage of client
requests that the proxy server’s local cache satisfied. The cache hit ratio indicates how many
requests are hits. Both the Document Hit Ratio (DHR) and Byte Hit Ratio (BHR) are possible to
calculate in our network. However, the measurements of effects on bandwidth and latency cannot
be seen from DHR. A higher DHR reflects a shorter request response time (RRT) while a higher
BHR means lower network bandwidth cost and more efficient disk bandwidth usage. Caching

42

large objects makes a greater contribution to the BHR than caching small objects. Some
improvements can be made by using better cache management, such as changing the caching
policy.

To estimate the network load and bandwidth requirements, we can consider the transfer sizes
of the objects as a parameter. Earlier research shows that large documents are less popular than
small sized documents. More details can be found in [26]. About 99% of transfers are smaller than
64 KB. In a real scenario, the client may send different types of data requests, such as requesting
video, files, real-time chatting, and voice. Some types of data are sensitive to variance in transit
time. Video and audio data are particularly sensitive. The type of cached content influences the
disk capacity required by the proxy to achieve a given DHR or BHR. The performance of the
proxy is also affected by the total amount of traffic; hence we should evaluate the proxy under
different traffic load conditions.

7.1.1.2 Proxy’s Traffic
The proxy acts as intermediary to pass a request from a client to a remote server. The client

can send both HTTP and PSIRP requests to the proxy, so it is easy to count the number of HTTP
and PSIRP requests. If a cache with a suitable size has been setup in the proxy, the response time
should decrease with increasing hit rate. Hence, we measure the Request Response Time (RRT) as
a function of the hit rate.

Request Response Time We calculate the Average RRT for both scenarios (HTTP and PSIRP
requests). RRT is measured from the beginning of a send function
call to the time the client receives the response from local proxy.
This metric can be a good indicator of queuing and congestion. A
change in RRT is usually an indication of a change of configuration
or congestion level.

Server request count If the content does not exist in the local cache, then the proxy will
forward the request to a remote server or subscribe to it in the PSIRP
overlay. The Server Request count is the number of requests that the
proxy sends to remote servers, including PSIRP overlay neighbor
caches. We count the total number of HTTP and PSIRP requests
individually. The server request count can be easily calculated by
using total number of requests multiplied by the DHR.

7.1.2 Hardware and software configuration used
for testing

The computer used for testing was a DELL Latitude E5520 laptop equipped with a model
Intel® Core™ i5-2540M CPU @ 2.60GHz * 4 and 8 Gbytes of memory. The computer was
running the Ubuntu operating systems version 12.10. The Java version we used for testing is
1.6.0_37 and the version of Couchbase server is 2.0. We use the Blackadder prototype v0.3 which
is released by PURSUIT project on November 2012.

43

7.1.3 General performance of random sized files
When clients want to obtain files from the Internet, they will send HTTP requests to a remote

server. In this scenario, we use the IETF’s Request for Comments (RFC) Index website for testing.
The reason that we choose this website is because the RFCs consist of more than 6 800 text (TXT)
files with different sizes. Moreover, the prefixes of the RFC URLs are same, so if client wants to
fetch a specific file and he/she knows the number of the RFC, then it is only necessary to append
the RFC number to the prefix URL. In our evaluation, the system randomly chooses a set of
optional URLs (100,200,300,400,500) in advance. After that, the client randomly sends HTTP
requests from the collection of pre-choosen URLs within a certain period of time (specifically the
three intervals: 30s, 60s, and 90s). Once a request arrives at local proxy, the system will process
the request and wait for the reply. Then the response data would return to client. In the meanwhile,
the client keeps waiting for the reply and does not send other request. Finally, the requested
information is received by client. This is a whole content request process. In our evaluation, the
client repeats this process constantly within the testing duration. The request rate is a certain
number. For example, if the client sends 3KB HTTP files within 30s, the request rate is 0.87
requests/second. The cache will be flushed after every experiment. Every data from the table does
not share any connections or testing time with each other.

For this pub/sub proxy for HTTP, we setup a context to test the hit rate of our cache. The
cache stores the files and then publishes them to the PSIRP overlay. After the PSIRP content
exists in the overlay, the proxy returns the catalog of existing contents to the client. The client
could request both HTTP URLs and the PSIRP URLs. We set the refresh interval to 1s. The
choice of the appropriate interval is based on the processing time and the traffic load. Based on the
pre-test, the frequency of cache update is 1 item per second on average. So we choose 1 second as
refresh interval to make sure the client could get the latest cache view. We compare DHR and
BHR when the client sends only HTTP requests and HTTP plus PSIRP requests.

44

7.1.3.2 Random HTTP Request
Table 7-1 and Table 7-2 (plotted in Figure 7-1and Figure 7-2) show the DHR and BHR results

of the client randomly choosing URLs from 100 URLs, 200 URLs, 300 URLs, 400 URLs, and 500
URLs each experiment. The duration of tests were 30s, 60s and 90s. For a given number of
optional HTTP URLs, we can see that the Average DHR and BHR show an increasing trend as the
testing time increases from 30s to 90s. The Couchbase server saves all the previously requested
content in the cache. A longer test duration leads to more contents are likely to already be in the
cache. When the proxy receives a HTTP request, it always searches the local cache firstly. So the
DHR and BHR are higher along as the testing time increases. If the testing time is same, the
Average DHR and BHR show a decreasing trend as the total optional number of URLs increases
from 100 to 500. The cache strategy could be changed based on the requirements of clients and
size of storage capacity.

Table 7-1: Average DHR of random sized HTTP requests

Average
DHR 100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30 s 0.2833 0.1097 0.0678 0.0594 0.03
60 s 0.2872 0.176 0.1049 0.1058 0.0643
90 s 0.554 0.2601 0.1538 0.115 0.0949

Figure 7-1: Average DHR of random sized HTTP requests

0%

10%

20%

30%

40%

50%

60%

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

Av
er

ag
e

DH
R

30s

60s

90s

45

Table 7-2: Average BHR of random sized HTTP requests

Average
BHR

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30 s 0.2805 0.1338 0.0404 0.0524 0.0157
60 s 0.279 0.1663 0.0954 0.1219 0.0592
90 s 0.5643 0.2769 0.1516 0.1289 0.0923

Figure 7-2: Average BHR of random sized HTTP requests

Table 7-3 depicts how the average RRT is influenced by the hit ratio. For a given testing time
and number of URLs, a higher hit ratio means more content can be retrieved from the local cache.
This eliminates the time required to request, retrieve, and process requests that need to be sent
between the proxy and remote server. The higher the hit ratio is, the shorter the RRT. For instance,
compared to the result of (300 URLs in 90s), the result of (200 URLs in 90s) has a higher average
DHR and a shorter average RRT. As can be seen from Figure 7-4, if the Average RRT increases,
the total number of HTTP requests will be reduced.

Table 7-3: Average RRT and Total number of random sized HTTP requests

Average RRT
(ms) / Total

HTTP Requests

100
URLs

200 URLs 300 URLs 400 URLs 500 URLs

30 s 415/651 508/529 519/522 715/378 934/291

60 s 737/736 766/707 809/668 882/615 982/551

90 s 444/1823 722/1125 830/979 925/878 896/908

0%

10%

20%

30%

40%

50%

60%

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

Av
er

ag
e

BH
R

30s

60s

90s

46

Figure 7-3: Average RRT of random sized HTTP requests

Figure 7-4: The total number of random sized HTTP requests

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Av
er

ag
e

RR
T

(m
s)

Available number of URLs

30s

60s

90s

0

200

400

600

800

1000

1200

1400

1600

1800

2000

0 100 200 300 400 500 600

To
ta

l H
TT

P
re

qu
es

ts

Available Number of URLs

30s

60s

90s

47

7.1.3.3 Random HTTP +PSIRP Request
In the former scenario, once the proxy fetches the requested content from the remote server, it

automatically saves the content in its local cache and also publishes the content to the PSIRP
overlay. However, in the previous scenario the clients only send HTTP requests. In this paragraph,
we enable the PSIRP processing function of proxy so that the client can randomly send both
HTTP and PSIRP URLs. Initially, the list of PSIRP URLs is empty. When the proxy receives a
request for HTTP content, it publish the metadata of the content to the PSIRP overlay and adds a
fresh PSIRP item to the available link catalog. The client requests and refreshes the PSIRP catalog
once every second. Every proxy in the PSIRP overlay could subscribe to a catalog from other
proxies. The proxy returns the requested catalog to the clients. The clients randomly choose either
a HTTP or PSIRP request from the catalog.

Table 7-4 and Table 7-5 (plotted in Figure 7-5and Figure 7-6) show the average DHR and
BHR when the clients randomly choose HTTP and PSIRP URLs. The average DHR and BHR
share the same trend as the results of the scenario when the clients only send HTTP requests.
When the client requests a PSIRP URL, the content already exists in the local cache or PSIRP
overlay, hence we did not include the PSIRP content hit ratio in these results (as it would always
be 100%). We only utilize one proxy in the testing process due to hardware limitations (in terms
of the number of virtual machines that we could run on the computer used for testing). However,
more proxies could be added to the PSIRP overlay, in this case the hit ratio of PSIRP content
would be another metric.

Table 7-4: Average DHR of random sized HTTP and PSIRP requests

Average
DHR

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30 s 0.2278 0.1286 0.0683 0.039 0.035
60 s 0.343 0.1544 0.1054 0.0615 0.0521
90 s 0.5809 0.2367 0.1504 0.0995 0.0832

Figure 7-5: Average DHR of random sized HTTP and PSIRP requests

0%

10%

20%

30%

40%

50%

60%

70%

100 URLs 200 URLs 300 URLs 400URLs 500 URLs

Av
er

ag
e

DH
R

30s

60s

90s

48

Table 7-5: Average BHR of random sized HTTP and PSIRP requests

Average BHR 100 URLs 200 URLs 300 URLs 400 URLs 500 URLs
30 s 0.2377 0.1277 0.0649 0.0318 0.0234
60 s 0.36 0.1666 0.0952 0.0645 0.0621
90 s 0.5798 0.2186 0.1416 0.0904 0.101

Figure 7-6: Average BHR of random sized HTTP and PSIRP requests

Table 7-6 shows the results of testing in terms of the total number of random size HTTP and
PSIRP requests under different situations. It can be seen from these three figures (Figure 7-7,
Figure 7-8, and Figure 7-9), the percentage of PSIRP requests of the total number of requests
increases as the testing time becomes longer. Consider 100URLs as an example, depending on the
testing duration, the proportion of PSIRP requests increases from 26% to 47%.

Table 7-6: The total number of random sized HTTP and PSIRP requests

PSIRP
requests/HTTP

requests

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30s 190/553 135/551 107/533 35/367 18/305
60s 457/828 201/671 105/674 82/560 40/567
90s 1715/1912 451/1085 281/955 156/835 160/904

0%

10%

20%

30%

40%

50%

60%

70%

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

Av
er

ag
e

BH
R

30s

60s

90s

Fig

Fig

Fig

gure 7-7: Tota

gure 7-8: Tota

gure 7-9: Tota

0
100
200
300
400
500
600
700
800

N
um

be
r o

f r
an

do
m

 si
ze

d
HT

TP

an
d

PS
IR

P
re

qu
es

ts

0

200

400

600

800

1000

1200

1400

N
nu

m
be

r o
f r

an
do

m
 si

ze
d

HT
TP

an

d
PS

IR
P

re
qu

es
ts

0

1000

2000

3000

4000

N
nu

m
be

r o
f r

an
do

m
 si

ze
d

HT
TP

 a
nd

 P
SI

RP
 re

qu
es

ts

l number of r

l number of r

l number of r

100
URLs

200
URLs

100
URLs

200
URL

100
URLs

200
URL

random sized

random sized

random sized

s
300

URLs
4

U

0
Ls

300
URLs

4
U

0
Ls

300
URLs

4
U

 HTTP and PS

 HTTP and PS

 HTTP and PS

400
RLs

500
URLs

400
RLs

500
URLs

400
RLs

500
URLs

SIRP request

SIRP request

SIRP request

30s

30s

60s H

60s P

90s H

90s P

ts (30s)

ts (60s)

ts (90s)

HTTP

PSIRP

HTTP

SIRP

HTTP

PSIRP

49

50

Table 7-7 depicts the Average RRT when the client sends both HTTP requests and PSIRP
requests. For the same test duration, the average RRT grows as the total number of available links
becomes bigger. This situation occurs simply because of the fact that more and more contents
need to be fetched from remote server. A higher hit ratio means a shorter RRT.

Table 7-7: Average RRT of random size HTTP and PSIRP requests

Average RRT
(ms)

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30 s 489 489 506 737 890
60 s 653 806 800 1051 959
90 s 423 746 850 972 898

Figure 7-10: Average RRT of random sized HTTP and PSIRP requests

7.1.4 General performance for fixed sized files
This subsection will evaluate how the transfer sizes of object influence the performance of the

system. To consider and estimate the network load and bandwidth requirements, we utilized
different sizes of objects as the file resource and each type of files has 200 different URLs. The
file size ranged from 3KB to 2.3MB. The test durations were 30s, 120s, and 240s. Since the size
of files is fixed, the DHR and BHR result should be same. As in the previous section we have two
groups of experiments: only HTTP requests and HTTP plus PSIRP request. For the former one,
once the proxy receives the HTTP content from remote server, it publishes the content to the
PSIRP overlay. However, the clients only ask for HTTP contents. This group of experiments will
be used as comparison for the second group.

Usually, there is a limited size for cached files. This limitation prevents users on slow
connections from storing large images and videos in the cache. The appropriate cache strategy is

0

200

400

600

800

1000

1200

0 100 200 300 400 500 600

Av
er

ag
e

RR
T

(m
s)

Available number of URLs

30s

60s

90s

51

based on the requirements of the clients. For our evaluation, we use 3KB, 55KB, 188KB, 608KB,
and 2.3MB files to represent the “normal size” of text files.

7.1.4.1 Fixed sized HTTP Requests
The results shown in Table 7-8 reflect several trends. For a given size of file, when the testing

time increases from 30s to 240s, the general trends of Average DHR or BHR appear to increase.
For instance, we can see from the first numbers of all three lines that the Average DHR has
increased remarkably from 7.23% in 30s to 44.26% in 240s. A longer testing period means more
contents are stored in the local cache. So we expect that the DHR is higher for a longer testing
period. A very noticeable trend is the steady decrease in each set of data as the test duration
increases. The graph proves that smaller size files have a higher document hit ratio. Because for a
given period of time with a stable Internet transfer rate, the throughput of the network is also
stable. No matter how big the file is, the network can only handle traffic up to the limit of the
available bandwidth (thoughput). Consider the series of tests, each with a duration of 120s; the
Average DHR for 3KB files reached nearly 26%, while the Average DHR of 2.3MB file declines
to only 7%.

Table 7-8: Average DHR/BHR of fixed sized HTTP request

Average
DHR/BHR

3KB 55KB 188KB 608KB 2.3MB

30s 0.0723 0.05618 0.02112 0.019 0
120s 0.2583 0.1755 0.1369 0.1096 0.07
240s 0.4426 0.4442 0.3404 0.2095 0.1331

Figure 7-11: Average DHR/BHR of fixed sized HTTP request

In the Figure 7-12, we can see that the Average RRT swells as we increase from 3KB, 56KB,
188KB, and 608KB, peaking at 2.3MB condition. Obviously, the growth trend happens in each set
of experiments (30s, 120s, and 240s). The reason for this trend is larger files take more time to
transfer both from remote severs to the proxy and from the proxy to a client. Hence, within a
limited period, clients could request fewer 2.3MB files compared to smaller size files. As can be
seen in Figure 7-13 the number of HTTP requests decreases as the size of files increases.

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

DH
R

Size of files (byte)

30s

120s

240s

52

Table 7-9: Average RRT and Total quantity of fixed sized HTTP requests

Average RRT
(ms) / Total

HTTP requests

3KB 55KB 188KB 608KB 2.3MB

30s 1155/261 1529/188 1959/143 2631/106 4324/66
120s 944/1341 1309/924 1879/578 2491/439 4230/258
240s 954/2266 894/2421 1316/1646 2600/841 3705/587

Figure 7-12: Average RRT of fixed sized HTTP requests

Figure 7-13: The total quantity of HTTP requests (Fixed size)

0
500

1000
1500
2000
2500
3000
3500
4000
4500
5000

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

RR
T

(m
s)

Size of files (Bytes)

30s

120s

240s

0

500

1000

1500

2000

2500

3000

0 500000 1000000 1500000 2000000 2500000 3000000

To
ta

l n
um

be
r o

f H
TT

P
re

qu
es

ts

Size of files (bytes)

30s

120s

240s

53

7.1.4.2 Fixed size of HTTP and PSIRP Request
This section represents the test result when clients randomly send HTTP requests and PSIRP

requests for fixed size text files. The DHR, BHR, total quantity of HTTP and PSIRP requests, and
the RRT are evaluated in this section. The context is similar to the requests for random sized files.
The only difference is the file resources are set to fixed size in the range from 3KB to 2.3MB.

Comparing Table 7-10 (and Figure 7-14) to Table 7-8 (Figure 7-11), the Average DHR and
BHR share same trend with the result of the situation when the clients only send HTTP requests.
When the testing period is set to 30s, the DHR of 3KB files has reached to 67.1% and the number
drops to 14.7% when the size of files increases to 2.3 MB. However, it is almost impossible to
reach such a high level of DHR for a real cache. We consider how the size of file influences the
DHR.

Table 7-10: Average DHR/BHR of fixed size HTTP and PSIRP requests

Average
DHR/BHR

3KB 55KB 188KB 608KB 2.3MB

30s 0.0657 0.0591 0.0288 0.0283 0
120s 0.248 0.1811 0.147 0.1121 0.0638
240s 0.6706 0.4494 0.3246 0.2498 0.1466

Figure 7-14: Average DHR/BHR of fixed size HTTP and PSIRP requests

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

DH
R

Size of files (byte)

30s

120s

240s

54

Table 7-11 shows the Average RRT and Table 7-12 shows the quantity of HTTP plus PSIRP
requests in the different intervals of time. As Table 7-11 shows the RRT goes up as the file size
increases. Larger files require more time to transfer from a remote server to a client or from a
publisher to a subscriber. Within a limited time period, clients could request fewer 2.3MB files as
compared to a smaller size file scenario. Moreover, if we change the testing duration, but consider
the same size of resource, the Average RRT drops to a markedly low level. For example, the 3KB
Average RRT is 1171ms (in 30s) and it declines to 426ms (in 240s), this means that more contents
are stored in the local cache or can be subscribed to from the PSIRP overlay.

Table 7-11: Average RRT of fixed HTTP plus PSIRP requests

Average RRT (ms) 0 3KB 55KB 188KB 608KB 2.3MB

30s 1129 1171 1462 1995 2646 4333
120s 894 944 1263 1855 2428 3886
240s 381 426 870 1452 2002 3753

Figure 7-15: Average RRT of fixed HTTP plus PSIRP requests

As can be seen clearly in the Table 7-12, the quantity of HTTP/PSIRP requests declined
markedly from 4586/5144 with 3KB files to only 132/581 with 2.3MB files (240s). A trend that
should be noticed is that with the same size of text file resource, the percentage of PSIRP requests
serviced in 240s of testing is much higher than during 30s of testing. This occurs because more
contents are published to the PSIRP overlay as the testing duration increases. As clients refresh
their copy of the catalog, the PSIRP request hit ratio rises.

0

500

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

Re
qu

es
t R

es
po

ns
e

Ti
m

e
(m

s)

Size of file (bytes)

30s

120s

240s

re

30
12
24

PSIRP
equests/HTT

requests
0s

0s
0s

F

Table 7-1

TP
3K

2
49

458

Figure 7-16:

Figure 7-17: T

0

50

100

150

200

250

300

N
nu

m
be

r o
f r

eq
ue

st
s

0

500

1000

1500

2000

N
nu

m
be

r o
f r

eq
ue

st
s

12: Total num

KB

23/ 233
98/1146
86/5144

Total number

Total number

3 KB 56 KB

3 KB 56 KB

ber of fixed H

55KB

19/187
334/857

1760/2482

r of fixed HTT

of fixed HTT

B 188 KB 608

B 188
KB

608
KB

HTTP and PSI

188KB

13/1
137/5

2 804/1

TP and PSIRP

P and PSIRP

KB 2.30
MB

8 2.30
MB

IRP requests

B 60

140
586
1492 3

P requests in

requests in 1

30s HT

30s PSI

120s HTT

120s PSI

08KB

7/107
91/447

347/1082

30s

120s

TTP

IRP

TP

RP

55

2.3MB

1/66
43/283

132/581

56

7.2
This

proxy’s
client an

7.2.1
In th

of the pr

7.2.1.1
A cl

Proxy C
compare
the requ

Aver
Connect

7.2.1.2
Afte

this wai
network
perform
increase
server lo

Aver
(Total n

Netw
s section des

performanc
nd proxy, as

1 Pa
his section w
roxy, specif

1 Proxy
lient sends a

Connect Tim
e the proxy

uested conten

rage Proxy
t Time) / (T

2 Serve
er the proxy
iting is the
k traffic on

mance of the
es. We mea
oads.

rage Server
number of PS

Figure 7-18:

work re
scribes othe
ce based up
s well as bet

aramet
we will con
fically: prox

y Connec
a new reque

me is the tim
connect tim
nt.

y Connect T
otal number

er Reply T
y forwards a

Server Rep
the path to

e server, etc
asure this m

r Reply Tim
SIRP reques

0
1,000
2,000
3,000
4,000
5,000
6,000
7,000
8,000
9,000

10,000

N
um

be
r o

f r
eq

ue
st

s

Total number

elated
er parameter
pon connec
tween the pr

ter Des
nsider three
xy connect ti

ct Time
est to the pr

me that the p
me for a HTT

Time = HT
r of PSIRP r

Time
a request to
ply Time. T
o the server
c. The Serv

metric for di

me = HTTP
sts + Total n

3 KB 56 KB

r of fixed HTT

perfor
rs regarding
ct time and
roxy and a r

scriptio
parameters
ime, server

roxy, and th
proxy takes
TP request a

TTP Total P
requests + T

a remote se
This time de
r, on the lo

ver Reply T
ifferent size

Total Serve
number of H

B 188
KB

60
KB

TP and PSIRP

mance
g the networ

reply time
remote serve

ons
to describe
reply time,

hen the prox
to forward

and PSIRP r

Proxy Conn
Total numbe

erver, it will
epends on t
oad on the
Time will in
es of conten

er Reply Tim
HTTP reque

8
B

2.30
MB

P request in 2

e analy
rk’s perform

for commu
er.

e the networ
and server r

xy identifies
a request to
request as a

nect Time +
er of HTTP

l wait for a
the traffic l
server (from

ncrease whe
nt and unde

me+ PSIRP
ests)

240s HT

240s PS

40s

ysis
mance. We e
unication b

rk related p
response tim

 the type of
o the origin
a function of

+ PSIRP T
requests)

reply. The
load due to
m other req
en network
er different

Server Rep

TTP

SIRP

evaluate the
between the

erformance
me.

f URL. The
server. We

f the size of

Total Proxy

duration of
competing

quests), the
congestion
traffic and

ply Time)/ /

f

f

57

7.2.1.3 Server Response Time
The Server Response Time is a measure of the total delay from when the remote server is sent

a request by the proxy and when the proxy receives a reply. It is equal to the proxy connect time
plus the server reply time.

Server Response Time = Average Server Reply Time + Average Proxy Connect Time

7.2.2 Performance of the network with random
sized HTTP plus PSIRP Requests

Through the HTTP module in the system, we measured the Total HTTP Proxy Connect Time
and Total HTTP Server Reply Time. The PSIRP module also has a function to record the Total
PSIRP Proxy Connect Time and Total PSIRP Server Reply Time. As in the earlier tests we used
the IETF RFC text files as the resources. Clients request both HTTP and PSIRP contents within a
certain period (30s, 60s, and 90s).

7.2.2.1 Average Proxy Connect Time
The proxy listens to two ports, 9800 and 9801. When a request arrives at proxy, the system will

process it including identifying the type of URL and searching the local cache. Once this operation
is finished, it forwards the request to remote server and PSIRP overlay or directly returns the
content to clients. Table 7-13 and Figure 7-19 show the average proxy connect time with different
numbers of random sized files. According to the Table 7-13, this procesings takes about 1ms.

Table 7-13: The Average Proxy Connect Time for random size of HTTP and PSIRP requests:

Average
Proxy

Connect Time
(ms)

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30s 0.9816 1.1837 0.9625 1.3209 1.3994
60s 0.9486 1.0998 0.9474 0.9050 1.1087
90s 0.6912 1.0046 1.1206 1.0555 0.8947

58

Figure 7-19: Average Proxy Connect Time for random sized HTTP and PSIRP requests

y = -0.0048x + 1.1642
R² = 0.834

y = -0.003x + 1.2751
R² = 0.9987

y = 0.0026x + 0.8521
R² = 0.679

y = -0.0044x + 1.3592
R² = 0.3971

y = -0.0084x + 1.639
R² = 0.9924

0.0000

0.2000

0.4000

0.6000

0.8000

1.0000

1.2000

1.4000

1.6000

0 20 40 60 80 100

Av
er

ag
e

Pr
ox

y
Co

nn
ec

t T
im

e
(m

s)

Testing Time

100 URLs

200 URLs

300 URLs

400 URLs

500 URLs

Linear (100 URLs)

Linear (200 URLs)

Linear (300 URLs)

Linear (400 URLs)

Linear (500 URLs)

59

7.2.2.2 Average Server Reply Time
Table 7-14 and Figure 7-20 show the average server reply tine with different numbers of

random sized files. These results indicate that the average server reply time increased dramatically
when the number of text files increases. With same testing period (30s), the average server reply
time for 100 optional URLs is 350ms, while the average time is 838ms with 500 URLs. A higher
DHR means a lower average server reply time, because more contents can be fetched from the
local cache. Since the size of files is random, the average server reply time depends on the traffic
load on the path and performance of remote server or publisher proxy in the PSIRP overlay.

Table 7-14: The Average Server Reply Time for random sized HTTP and PSIRP requests

Average Server
Reply Time (ms)

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30s 350.84 387.70 413.87 665.56 838.48
60s 419.72 616.26 690.41 915.86 893.22
90s 221.73 526.49 652.89 811.27 753.52

Figure 7-20: Average Server Reply Time for random sized HTTP and PSIRP requests

0.0000

100.0000

200.0000

300.0000

400.0000

500.0000

600.0000

700.0000

800.0000

900.0000

1000.0000

0 100 200 300 400 500 600

Av
er

ag
e

Se
rv

er
 R

ep
ly

 T
im

e
(m

s)

Available Number of URLs

30s 60s 90s

60

7.2.2.3 Server Response Time
Table 7-15 and Figure 7-22 show the average server response tine with different numbers of

random size of files.
Table 7-15: The Average Server Response Time for random sized HTTP and PSIRP requests

Average Server
Response Time

(ms)

100 URLs 200 URLs 300 URLs 400 URLs 500 URLs

30s 351.82 388.88 414.83 666.88 839.88

60s 420.67 617.36 691.36 916.77 894.32

90s 222.42 527.50 654.01 812.33 754.41

Figure 7-21: Average Server Response Time for random sized HTTP and PSIRP requests

0.00

100.00

200.00

300.00

400.00

500.00

600.00

700.00

800.00

900.00

1000.00

0 100 200 300 400 500 600

Av
er

ag
e

Se
rv

er
 R

es
po

ns
e

Ti
m

e
(m

s)

Available Number of files

30s 60s 90s

61

7.2.3 Performance of the network with fixed size
of HTTP plus PSIRP Requests

This section repeats the analysis of section 7.2.2, but with fixed sized file contents in the
response.

7.2.3.1 Average Proxy Connect Time
Table 7-16 shows a clear trend of the Average proxy connect time increasing as function of the

size of the requested files. As is illustrated in Figure 7-22, the larger the file’s size, the longer the
proxy connect time. For instance, the proxy needs 13 945 ms to process a 3KB text file (30s),
while it takes nearly 50 000 ms to process a 2.3MB. The Figure 7-23 illustrates the upward trend
in the average server reply time as the size of the file increases. The conclusion is similar to the
RRT results we presented earlier. Both parameters share the same trend as larger files require
more time to transfer, as compared to smaller files. Also, a longer testing period means a higher
hit ratio, hence the average server reply time under 240s condition is shorter than the number of
30s testing period.

Table 7-16: The Average Proxy Connect Time for fixed size of HTTP and PSIRP requests

Average
Proxy

Connect
Time (ms)

3072 56320 192512 622592 2411725

30s 1,3945 2,1553 2,1895 2,7807 3,9552
120s 0,9075 0,984 1,3112 1,3476 1,9969
240s 0,6369 0,7718 0,9512 1,0637 1,4418

Figure 7-22: Average Proxy Connect Time for fixed size of HTTP and PSIRP requests

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

Po
xy

 C
on

ne
ct

 T
im

e
(m

s)

Size of file (bytes)

30s

120s

240s

62

7.2.3.2 Average Server Reply Time Fixed Size
The following table and figure show the average server reply tine with different fixed size of

files in several testing periods.
Table 7-17: Average Server Reply Time for fixed size of HTTP and PSIRP requests

Average
Server Reply
Time (ms)

3KB 55KB 188KB 608KB 2.3MB

30s 1057.32 1313.19 1808.88 2455.57 4290.04

120s 654.95 906.23 1505.87 2028.38 3511.98

240s 217.22 509.37 947.24 1527.87 3169.56

Figure 7-23: Average Server Reply Time for fixed size of HTTP and PSIRP requests

0.00

500.00

1000.00

1500.00

2000.00

2500.00

3000.00

3500.00

4000.00

4500.00

5000.00

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

se
rv

er
 R

ep
ly

 T
im

e
 (m

s)

Size of files (Byte)

30s

120s

240s

63

7.2.3.4 Server Response Time
The following table and figure show the average server response tine with different fixed size

of files in several testing period.
Table 7-18: Average Server Response Time Fixed size of HTTP and PSIRP requests

Average Server
Response Time (ms)

3KB 55KB 188KB 608KB 2.3MB

30s 1058.7148 1315.3495 1811.0654 2458.3509 4294.0000
120s 655.8552 907.2166 1507.1826 2029.7268 3513.9755
240s 217.8586 510.1381 948.19 1528.93 3170.9972

Figure 7-24: Average Server Response Time Fixed size of HTTP and PSIRP requests

0.0000

500.0000

1000.0000

1500.0000

2000.0000

2500.0000

3000.0000

3500.0000

4000.0000

4500.0000

5000.0000

0 500000 1000000 1500000 2000000 2500000 3000000

Av
er

ag
e

Se
rv

er
 R

es
po

ns
e

Ti
m

e
(m

s)

Size of files (Byte)

30s

120s

240s

64

7.3 Summary
In this chapter, we evaluated the system with different metrics. The results show that our

system could satisfy the clients’ requirement. It successfully fetched both HTTP contents from
web server and PSIRP contents from PSIRP Overlay. According to the test results, we summaries
several conclusions listed below:
1. Under the same condition, smaller files have a higher document hit ratio.
2. The average request response time is influenced by the Hit Ratio. For a given testing time and number

of URLs, a higher hit ratio means more content can be retrieved from the local cache. Such a cache hit
saves the whole period of data request and retrieval process between the proxy and remote server. The
higher the hit ratio is, shorter the RRT is.

3. The RRT increases when the file size increases. Larger files needs more time to be retrieved from a
remote server to the client or transmitted from a publisher to subscriber.

4. A higher DHR leads to a lower average server reply time, because more contents are fetched from the
local cache. The average server reply time depends on the traffic load on the path and the performance
of remote server or publisher proxy in the PSIRP overlay.

5. The larger the file size, the longer the proxy connect time.
6. The initial cost for HTTP + PSIRP request (0KB) is 1129ms. The request rate is 0.89

65

8 Conclusions and Future work
In this chapter, we will firstly state the conclusion of this project. Then we will discuss the

limitation of our system and list the possible future work. The last subsection describes some
reflections on social, economic, and ethical issues associated with this thesis project.

8.1 Conclusions
This thesis project’s goal was to build a publish/subscribe network and use it to design,

implement, and evaluate a proxy for HTTP. The proxy includes two basic functions. One function
is to act as a normal HTTP proxy with local cache. The other function is that the proxy provides a
service that allows client query a publication through publish/subscribe network with PSIRP URL.
We implemented the BlackAdder prototype on Linux operating system and used Java as our
programing language. The application programming interface provided by PURSUIT was used in
this program to exploit the functionalities of publish/subscribe networks. In order to achieve the
caching function of the proxy, we utilized the Couchbase Server. From the Couchbase server, we
could monitor the cache status and request traffic. Compared to the pub/sub HTTP proxy
developed by PURSUIT project, our proxy has a different structure and provides different
functions. The PURSUIT HTTP proxy the proxy simply transforms HTTP request to a pub/sub
request and forwards it to the BlackAdder Testbed ICN or reads the pub/sub requests and converts
it to HTTP format in order to send it to a remote server. Both the BlackAdder ICN and PSIRP
overlay provide publish/subscribe functions. However, the former always converts the format of
request, and then subscribes to the content from the pub/sub network. So the proxy needs to wait
for an existing publisher to respond or time out. Our system allows a client to send both HTTP and
PSIRP requests. Because the proxy can identify the type of request and it has ability to use
different threads to process the requests it can support both types of requests and can make content
returned from HTTP requests into pub/sub content.

The client has two options to obtain services or resources: sending an http://… or a psirp://
request to the proxy via different ports. The proxy utilizes two socket servers in order to listen to
these two ports and to process the different incoming requests. The HTTP socket server provides
the following services: When the proxy receives a HTTP request from a client, it will first search
its local cache. The proxy will return the requested content to client if the item is stored in the
local cache. Otherwise, the proxy forwards the request to the web server. When the proxy receives
the information from a remote server, it forwards it directly to the client and saves copy of the
content in its cache. One of the most important abilities of this proxy is to generate and cache
PSIRP content. The proxy generates PSIRP content and publishes this content to the PSIRP
overlay. Once this publication is subscribed to by other clients in the overlay, the proxy will
transmit the publication to the clients who express and interest. The PSIRP socket server parsew
psirp URLs. The extracted Rendezvous Identifier (RID) and Scope Identifier (SID) can be utilized
to searching for content in the local cache and if not found to subscribe for this PSIRP content via
the PSIRP overlay. The system creates BlackAdder Events to start publishing data, stop
publishing data, start publishing scope, and to transmit data. A Subscriber Evert Handler is
responsible for receiving published data from the overlay and forwarding the content to clients.

66

We built a publish/subscribe network and tested the functions of our system while varying
several parameters. The results showed that the proxy could achieve the targets we set. The proxy
could satisfy the proposed requirements of clients. In the final part of this project, we evaluated
the system through two aspects: from the client’s point of view and from the proxy’s point of
view.

We measured the system’s usability and performance from the client’s point of view. The
general performance parameters include document hit ratio, byte hit ratio, average request
response time, and request quantity (number of HTTP requests and PSIRP requests). For certain
number of optional HTTP and PSIRP resources, we saw the Average Document Hit Ratio (HDR)
and Byte Hit Ratio (BHR) show an increasing trend as the testing time increases. If the testing
time is same, the Average DHR and BHR show a decreasing trend as the total number of URLs
increases from 100 to 500.The caching strategy could be changed based on the requirements of
clients and the local storage capacity. The average request response time is influenced by the Hit
Ratio. For a given testing time and number of URLs, a higher hit ratio means more content can be
retrieved from the local cache. Such a cache hit saves the whole period of data request and
retrieval process between the proxy and remote server. The higher the hit ratio is, shorter the RRT
is. Moreover, we evaluated how the transfer size of a TXT object influences the performance of
the system. We utilized different sizes of object as a file resource. The test results showed that
smaller files have a higher document hit ratio. This occurs because within a certain period and
with a stable Internet data rate, the transmission ability of network is also stable. No matter how
big the file is, the network can only handle transfer traffic at this data rate. Usually, there is a size
limit on the size of cached files. This limit prevents users connected via slow connection, from
storing large images and videos in the cache. The cache strategy should be based upon the
requirements of the clients. The RRT increases when the file size increases. Larger files needs
more time to be retrieved from a remote server to the client or transmitted from a publisher to
subscriber. Within a limited period of time, clients could request less big size files compared to
smaller size files scenario.

We also analyzed the network’s performance from the Proxy’s point of view. We evaluated
the proxy’s performance based upon computing the connect time and reply time for
communicating between the client and proxy, as well as between the proxy and a remote server.
The server’s response time equals the proxy’s connect time plus the server’s reply time. The test
result indicates that the average server reply time increases dramatically when the number of
optional TXT files increases. A higher DHR leads to a lower average server reply time, because
more contents are fetched from the local cache. The average server reply time depends on the
traffic load on the path and the performance of remote server or publisher proxy in the PSIRP
overlay. Furthermore, as indicated in the experiment, the larger the file size, the longer the proxy
connect time. With the same network circumstances and transmission rate, the remote server needs
more time to return larger files to the proxy.

In conclusion, a publish/subscribe proxy for HTTP based communication has been
implemented. The system supports clients sending both PSIRP and HTTP requests. Each proxy
connects to the Internet and the PSIRP overlay. The PSIRP overlay stores and maintains pub/sub
contents. This proxy can be developed by others who are interested in this topic or can be utilized
as a module in the PURSUIT project.

67

8.2 Future work
In this thesis, when we built the Publish/Subscribe network, we used a node/link –local

strategy so that the operation of the rendezvous function is similar to service discovery solutions.
There are other rendezvous strategies such as domain-local and global rendezvous strategies
which are more complicated. This implement could be further improved to better suit a real
networking environment. Secondly, our system has the ability to transmit TXT files and the
evaluation mainly focused on TXT files. Additional content types should be supported by the
proxy, such as video and voice services. Last but not least, in order to improve the document hit
ratio and byte hit ratio, more effective cache strategies could be deployed, depending on
requirements of the clients.

8.3 Required reflections
The project intends to discuss the possibility of a hybrid proxy which combined the HTTP and

PSIRP functions. In order to accommodate for the current Internet structure and Information-
centric Networking architecture, our system provides the ability that the users may benefit from
obtaining HTTP contents and publications. The purpose is to foster the introduction and spread of
content based access.

A proxy provides multiple functionalities including content-filtering, caching, accessing
services anonymously, and censorship, etc. The content-filtering feature protects the security of
users’ computer and prevents hackers from damaging the hardware and software. However, the
anonymous feature provides the possibility that allows the hackers hide their real IP, which
increases the difficulty of network security and privacy. One ethical concern of our proxy is that it
may benefit both trustful users and for the people who probably will our system to do illegal
activities such as data theft.

The Pub/Sub proxy enables clients to have the advantages of publish/subscribe network. The
publish/subscribe model decouples publisher and subscriber in time, space, and synchronization.
Publisher declares the topics on which they intend to publish and subscriber register to the topics
of interest. The new pub/sub internetworking architecture will restore the balance of network
economics incentives between the sender and the receiver. Our proxy is responsible for publishing
contents to pub/sub overlay. The content-filtering feature becomes even more crucial because
publish/subscribe network is based on trust mechanism. While the scoping function of PSIRP
could help the system accomplish access control. The establishment of our system provides a
bridge that connects the current Internet structure and Information-centric Networking
architecture, which would give clients and other developer benefits.

69

References
[1] R. Moskowitz and P. Nikander, “Host Identity Protocol (HIP) Architecture,” Internet

Request for Comments, vol. RFC 4423 (Informational), May 2006.
[2] K. Nichols, S. Blake, F. Baker, and D. Black, “Definition of the Differentiated Services

Field (DS Field) in the IPv4 and IPv6 Headers,” Internet Request for Comments, vol. RFC
2474 (Proposed Standard), Dec. 1998.

[3] Sasu Tarkoma, Mark Ain, and Kari Visala, “The Publish/Subscribe Internet Routing
Paradigm (PSIRP): Designing the Future Internet Architecture,” the Future InternetA
European Research, vol. 1, no. 37, pp. 102–111, 2009.

[4] Nikos Fotiou and Dirk Trossen, “Illustrating a Publish-Subscribe Internet Architecture,”
2010. [Online]. Available: http://www.psirp.org/. [Accessed: 22-Aug-2012].

[5] Matthew Caesar, Tyson Condie, Jayanthkumar Kannan, Karthik Lakshminarayanan, and
Ion Stoica, “ROFL,” ACM SIGCOMM Computer Communication Review, vol. 36, no. 4,
p. 363, Aug. 2006.

[6] T. Berners-Lee, R. Fielding, and H. Frystyk, “Hypertext Transfer Protocol – HTTP/1.0,”
Internet Request for Comments, vol. RFC 1945 (Informational), May 1996.

[7] Teemu Koponen, Mohit Chawla, Byung-Gon Chun, Andrey Ermolinskiy, Kye Hyun Kim,
Scott Shenker, and Ion Stoica, “A data-oriented (and beyond) network architecture,” ACM
SIGCOMM Computer Communication Review, vol. 37, no. 4, p. 181, Oct. 2007.

[8] Vu, Tam, Akash Baid, Yanyong Zhang, Thu D. Nguyen, Junichiro Fukuyama, Richard P.
Martin, and Dipankar Raychaudhuri. “DMap: A Shared Hosting Scheme for Dynamic
Identifier to Locator Mappings in the Global Internet.” In Proceedings of the 2012 IEEE
32nd International Conference on Distributed Computing Systems, 698–707. ICDCS ’12.
Washington, DC, USA: IEEE Computer Society, 2012. doi:10.1109/ICDCS.2012.50.

[9] Dmitrij Lagutin, Kari Visala, and Sasu Tarkoma, “Publish/Subscribe for Internet: PSIRP
Perspective,” Valencia FIA book, vol. 4, pp. 75–84, 2010.

[10] Dirk Trossen (ed.), George Parisis, Borislava Gajic, Janne Riihijarvi, Paris Flegkas, Pasi
Sarolahti, Petri Jokela, Xenofon Vasilakos, Christos Tsilopoulos, Somaya Arianfar, and
Martin Reed, "Deliverable 2.3: Architecture Definition, Components Descriptions and
Requirements", Publish Subscribe Internet Technology (PURSUIT) project, Deliverable
D2.3 Available at http://www.fp7-pursuit.eu/PursuitWeb/?page_id=158, October 2011.

[11] George Parisis, Kari Visala, Borislava Gajic, Janne Riihijarvi, Paris Flegkas, Pasi
Sarolahti, Petri Jokela, Xenofon Vasilakos, Christos Tsilopoulos, and Somaya Arianfar,
“Deliverable 2.2:Conceptual Architecture: Principles, patterns and sub-components
descriptions,” Publish Subscribe Internet Technology (PURSUIT) project, Deliverable
D2.2 Available at http://www.fp7-pursuit.eu/PursuitWeb/?page_id=158, May 2011.

[12] C. Tsilopoulos, D. Makris, and G. Xylomenos, "Bootstrapping a Publish/Subscribe
Information Centric Network," to appear In Future Network and Mobile Summit 2011,
2011.

[13] Petri Jokela, Janne Tuononen, Jimmy Kjallman, Pekka Nikander, Jari Keinanen, Andras
Zahemszky, Dirk Trossen, Borislava Gajic, George Xylomenos, and Dmitrij Lagutin.
Progress Report and Evaluation of Implemented Upper and Lower Layer. Publish-
Subscribe Internet Routing Paradigm FP7-INFSO-IST-216173, June 30, 2009.
http://www.psirp.org/publishcations.html.

70

 [14] Petri Jokela, András Zahemszky, Christian Esteve Rothenberg, Somaya Arianfar, and
Pekka Nikander, “LIPSIN,” ACM SIGCOMM Computer Communication Review, vol.
39, no. 4, p. 195, Aug. 2009.

[15] Arto Karila, "Publish/Subscribe Internetworking Special Course, Evolution vs.
Revolution" wiki.fp7-pursuit.eu/uploads/f/fb/02a-Evolution_vs_Revolution.ppt. Sep.
2011.

[16] Matthew Caesar, Tyson Condie, Jayanthkumar Kannan, Karthik Lakshminarayanan, and
Ion Stoica. “Rofl.” ACM SIGCOMM Computer Communication Review 36, no. 4
(August 11, 2006): 363.

[17] Paul J. Leach, Tim Berners-Lee, Jeffrey C. Mogul, Larry Masinter, Roy T. Fielding, and
James Gettys. “Hypertext Transfer Protocol -- HTTP/1.1”, n.d.
http://tools.ietf.org/html/rfc2616.

[18] Wikipedia contributors. “Web Cache.” Wikipedia, the Free Encyclopedia. Wikimedia
Foundation, Inc., August 9, 2012.
http://en.wikipedia.org/w/index.php?title=Web_cache&oldid=506602432.

[19] Landon Curt Noll, ‘FNV Hash’, FNV Hash, 14-May-2012. [Online]. Available:
http://isthe.com/chongo/tech/comp/fnv/. [Accessed: 16-February-2013].

[20] Kevin Kaichuan He. “Kernel Korner: Why and How to Use Netlink Socket.” Linux J.
2005, no. 130 (February 2005): 11–.

[21] "Blackadder Application Programming Interface", Available at https://github.com/fp7-
pursuit/blackadder. Last Access: Jan, 2013

[22] Jimmy Kjallman, Nikos Fotiou, Borislava Gajic, Dmitrij Lagutin, YiChing Liao, George
Parisis, Charilaos Stais, Dimitris Syrivelis, and Christos Tsilopoulos. Progress Report of
Component Implementations. Publish-Subscribe Internet Technology FP7-INFSO-ICT-
257217, March 05, 2012. http://www.fp7-pursuit.eu/PursuitWeb/?page_id=158.

[23] Petri Jokela, Janne Tuononen, Teemu Rintaaho, Jukka Ylitalo, Dirk Trossen, Dmitrij
Lagutin, Janne Riihijärvi, George Xylomenos, and Jimmy Kjallman. Implementation Plan
Based on Conceptual Architecture. Publish-Subscribe Internet Routing Paradigm FP7-
INFSO-IST-216173, September 30, 2008. http://www.psirp.org/publishcations.html.

[24] George Parisis (ed.), Dirk Trossen, Ben Tagger, Christos Tsilopoulos, Dimitris Syrivelis,
Martin Reed, Mays Al-Naday, Vassilios Vassilakis, Jimmy Kjallman, and Borislava Gajic,
‘Deliverable 3.4: Integration and Demonstration Plan’, Publish Subscribe Internet
Technology (PURSUIT) project, D3.4 Available at http://wiki.fp7-
pursuit.eu/uploads/f/f6/INFSO-ICT-
257217_PURSUIT_D3.4_Integration_and_Demonstration_Plan.pdf, April 2013.

[25] Janne Riihijärvi, Borislava Gajic, George Parisis, Ben Tagger, Dirk Trossen, Konstantinos
Katsaros, Alexandros Kostopoulos, Giannis F.Marias, and Nikos Fotiou. First Report on
Qualitative and Quantitative Architecture Validation. Publish-Subscribe Internet
Technology FP7-INFSO-ICT-257217, January 05, 2012. http://www.fp7-
pursuit.eu/PursuitWeb/?page_id=158.

[26] Alex Rousskov,Valery Soloviev. "A performance Study of the Squid Proxy on HTTP/1.0"
[27] Wikipedia contributors. “Packet loss.” Wikipedia, the Free Encyclopedia. Wikimedia

Foundation, Inc., Feb 11, 2013. http://en.wikipedia.org/wiki/Packet_loss
[28] CCNx Protocol Organization Website. Available at:

 http://www.ccnx.org/releases/latest/doc/technical/CCNxProtocol.html. Last Access:
April, 2013

www.kth.se

TRITA-ICT-EX-2013:68

