Software quality studies using
analytical metric analysis

&

L,
CECILIA RODRIGUEZ MARTINEZ EFKTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

Software quality studies using analytical metric
analysis

Cecilia Rodriguez Martinez

3 April 2013

Master Thesis

Industrial Supervisor: Hamidreza Yazdani
KTH Academic Supervisor: Gerald Q. Maguire Jr.
Presenter: Eloy Anguiano

Stockholm,Sweden

Abstract
Today engineering companies expend a large amount of resources on the detection and
correction of the bugs (defects) in their software. These bugs are usually due to errors and
mistakes made by programmers while writing the code or writing the specifications. No tool
is able to detect all of these bugs. Some of these bugs remain undetected despite testing of
the code. For these reasons, many researchers have tried to find indicators in the software’s
source codes that can be used to predict the presence of bugs.

Every bug in the source code is a potentially failure of the program to perform as
expected. Therefore, programs are tested with many different cases in an attempt to cover
all the possible paths through the program to detect all of these bugs. Early prediction
of bugs informs the programmers about the location of the bugs in the code. Thus,
programmers can more carefully test the more error prone files, and thus save a lot of
time by not testing error free files.

This thesis project created a tool that is able to predict error prone source code
written in C4++. In order to achieve this, we have utilized one predictor which has been
extremely well studied: software metrics. Many studies have demonstrated that there
is a relationship between software metrics and the presence of bugs. In this project a
Neuro-Fuzzy hybrid model based on Fuzzy c-means and Radial Basis Neural Network
has been used. The efficiency of the model has been tested in a software project at
Ericsson. Testing of this model proved that the program does not achieve high accuracy
due to the lack of independent samples in the data set. However, experiments did show
that classification models provide better predictions than regression models. The thesis
concluded by suggesting future work that could improve the performance of this program.

Keywords: Bugs, Fuzzy c-means, Neuro-fuzzy hybrid model, Radial basis function
neural network, Software metrics

Sammanfattning
Idag spenderar ingenjorsforetag en stor méangd resurser pa att uppticka och korrigera
buggar (fel) i sin mjukvara. Det dr oftast programmerare som infor dessa buggar pa grund av
fel och misstag som uppkommer néir de skriver koden eller specifikationerna. Inget verktyg
kan detektera alla dessa buggar. Nagra av buggarna forblir oupptéickta trots testning av
koden. Av dessa skél har manga forskare forsokt hitta indikatorer i programvarans kéllkod
som kan anvindas for att forutséga forekomsten av buggar.

Varje fel i killkoden &r ett potentiellt misslyckande som gor att applikationen inte
fungerar som forviantat. For att hitta buggarna testas koden med manga olika testfall for
att forsoka técka alla mojliga kombinationer och fall. Forutsiagelse av buggar informerar
programmerarna om var i koden buggarna finns. Saledes kan programmerarna mer noggrant
testa felbenégna filer och ddrmed spara mycket tid genom att inte behova testa felfria filer.

Detta examensarbete har skapat ett verktyg som kan forutsidga felbendgen killkod
skriven i C ++. For att uppna detta har vi utnyttjat en vilkdnd metod som heter
Software Metrics. Manga studier har visat att det finns ett samband mellan Software
Metrics och forekomsten av buggar. I detta projekt har en Neuro-Fuzzy hybridmodell
baserad pa Fuzzy c-means och Radial Basis Neural Network anvénts. Effektiviteten av
modellen har testats i ett mjukvaruprojekt pa Ericsson. Testning av denna modell visade
att programmet inte Uppnéd hog noggrannhet pa grund av bristen av oberoende urval i
datauppsédttningen. Men gjordt experiment visade att klassificering modeller ger béttre
forutsédgelser dn regressionsmodeller. Exjobbet avslutade genom att foresla framtida arbetet
som skulle kunna forbattra detta program.

Keywords: Buggar, Fuzzy c-medel, Neuro-Fuzzy hybridmodell, Radial basis funktion
neurala natverk, programvarastatistik

Resumen

Actualmente las empresas de ingenieria derivan una gran cantidad de recursos a la de-
teccién y correccion de errores en sus codigos software. Estos errores se deben generalmente a
los errores cometidos por los desarrolladores cuando escriben el cddigo o sus especificaciones.
No hay ninguna herramienta capaz de detectar todos estos errores y algunos de ellos pasan
desapercibidos tras el proceso de pruebas. Por esta razén, numerosas investigaciones han
intentado encontrar indicadores en los codigos fuente del software que puedan ser utilizados
para detectar la presencia de errores.

Cada error en un codigo fuente es un error potencial en el funcionamiento del programa,
por ello los programas son sometidos a exhaustivas pruebas que cubren (o intentan cubrir)
todos los posibles caminos del programa para detectar todos sus errores. La temprana
localizaciéon de errores informa a los programadores dedicados a la realizaciéon de estas
pruebas sobre la ubicacién de estos errores en el cdédigo. Asi, los programadores pueden
probar con méas cuidado los archivos mas propensos a tener errores dejando a un lado los
archivos libres de error.

En este proyecto se ha creado una herramienta capaz de predecir cédigo software
propenso a errores escrito en C++4-. Para ello, en este proyecto se ha utilizado un indicador
que ha sido cuidadosamente estudiado y ha demostrado su relacién con la presencia de
errores: las métricas del software. En este proyecto un modelo hibrido neuro-disfuso basado
en Fuzzy c-means y en redes neuronales de funcion de base radial ha sido utilizado. La
eficacia de este modelo ha sido probada en un proyecto software de Ericsson. Como resultado
se ha comprobado que el modelo no alcanza una alta precisién debido a la falta de muestras
independientes en el conjunto de datos y los experimentos han mostrado que los modelos de
clasificacién proporcionan mejores predicciones que los modelos de regresion. El proyecto
concluye sugiriendo trabajo que mejoraria el funcionamiento del programa en el futuro.

Keywords: FError, Fuzzy c-means, modelo hibrido neuro-difuso, Red neuronal de
funcién de base radial, métricas del software

Acknowledgements

First of all, I would like to thank my Ericsson’s industrial supervisor Hamidreza Yazdani
for trusting me and give me this great opportunity. I am also grateful to Gerald Maguire
for being my examiner and for being always available to help, and to Eloy Anguiano for
being my presenter making this possible.

I want to thank my friends from my home university because they pushed me here
making my life amazing at the EPS, specially to Guillermo Gélvez for being the best friend
and colleague during these five years. You guys brought me here!

I want to dedicate my PFC to Monica Estevez and my girls for being always proud of
me and being always there when I need it. I also want to acknowledge all my friends from
Tres Cantos for supporting me and share their lives with me even in the distance. You
simply make me happy.

I really want to thank my brother, Juan Rodriguez, for helping me and encouraging me
every time I doubt, and to my family for helping me to achieve all my goals in my life.

I want to make a special mention to Jesus Paredes for his continuous support and
confidence, to Nacho Mulas for listening to me every time I need it, to Alberto Fernandez,
and to all the friends I met in Stockholm, you made warm this cold country!

Finally I also want to thank the people from COM for making me feel one more of the
team, specially to Belén Valcarce-Pérez, Péter Dimitrov and the foosball team; I promise
"T will do something".

Contents

Contents

List of Figures

List of Tables

List of Acronyms

1

Introduction

1.1. Problem Statement
1.2. Goals
1.3, Scope
1.4. Target Audience
1.5. Methodology
1.6. Structure

Background

2.1. Software Metrics
2.1.1. Basic Concepts
2.1.2. Definition of Metrics L.
2.1.3. Software metrics measurement programs

2.2. Regression Models oL
2.2.1. Artificial Neural Networks
2.22. Clustering e

Analysis
3.0.3. Specification L
3.0.4. Selection of the model

Model implementation

4.1. Hybrid topology

4.2. Extraction of metricsand bugs oL
4.2.1. Extracting the metrics
4.2.2. Extracting information about bugs

X

XIII

X1V

XV

U W W N =

o 0 I

12
13
15
19

25
25
25

4.3. FCM Clustering o
4.4. RBFNN o
4.5. Experiments and results oL oo
5 Design of the tool
5.1. Analysisof thetool
6 Conclusion
7 Future work
7.1. Model improvements
7.2. Tool improvements
8 Required reflections
Bibliography
A Sinopsis of the tool
B Requirements of the tool
C Introduccién
C.1. Descripcién del problemao
C.2. Objetivos o e
C.3. Estructura
D Conclusiones

41
41

43

45
45
46

47

49

53

55

57
58
o8
99

61

List of Figures

1.1.

2.1.
2.2.
2.3.
2.4.
2.5.
2.6.

4.1.
4.2.
4.3.

A software development process according to the waterfall model 2
An example of an artificial neural network 15
A neuron of a generic artificial neural network 16
A neuron of a backpropagation neural network 17
Hard partitioning over a dataset 20
Soft partitioning over a dataset 20
Results of Gustafson-Kessel Algorithm over a dataset 22
Example of an hybrid topology with 5 clusters 28
ROC curve of the regression model 10-8-1 38
ROC curve of the classification model 10-10-1 39

XIII

List of Tables

2.1.
2.2.
2.3.
2.4.
2.5.

4.1.
4.2.
4.3.
4.4.
4.5.
4.6.
4.7.

Object Oriented Metrics i 9
Object Oriented CK Metrics 10
Object Oriented BUGFIXES Metric 12
Comparison between programs by the metrics they compute 13
Comparison between programs based upon their languages and license . 13
Confusion Matrix 28
CCCC metrics’ definition 31
Output functions of the neurons of the network 34
Cluster validity indexes 36
Quality validity 10-4-1 36
Quality validity 8-2-1. 37
Quality validity 38

XIV

List of Acronyms

ANN Artificial Neural Network
BPNN Back Propagation Neural Network
CBO Coupling Between Objects
CCcCC C and C++ Code Counter
CK Chidember and Kemerer

CS Compact-Separate

DIT Depth of Inheritance Tree
FCM Fuzzy c-means

FLD Fisher’s Linear Discriminant
FS Fukuyama.sugeno

GK Gustafson-Kessel algorithm
HTML HyperText Markup Language
IFc Information Flow complexity
JMT Java Measurement Tool
LCOM Lack of COhesion in Mthods
LOC Lines Of Code

NN Neural network

NOA Number Of Attributes

NOC Number Of Children

NOM Number Of Modules

o]0} Object Oriented

PC Partition.coefficient

XV

PE
PHP
PL
RBF
RBFNN
RFC
RMS
ROC
RSM
SNNS
SQL
WMC
XB
XML

Partition.entropy

Hypertext Preprocessor

Procedural language

Radial Basis Function

Radial Basis Function Neural Network
Response For a Class

Root Mean Square

Receiving Operating Characteristic
Resource Standard Metrics
Stuttgart Neural Network Simulator
Structured Query Language
Weighted Methods per Class
Xie.beni

Extendible Markup Language

Chapter 1

Introduction

These days, the telecommunication industry is an open market accessible to all
enterprises. In a market where many companies compete to be the market leaders
companies need to offer a high level of quality and reliability in their products in
order to maintain their market position. Delivering high quality and highly reliable
software is a mandatory goal for software development companies, as this reduces
the amount of resources needed to support the software after it has been delivered
and this quality helps the firm to gain a larger portion of the market. Therefore,
managers involved in the development and maintenance of software now focus on
enhancing their software development process [10].

This software development process occurs whenever a company wants to create
a new software product or improve an existing product. This development process
consists, of at least, the following steps: specification, design, implementation,
validation, documentation, delivery, and maintenance [31]. The waterfall model
of this process is shown in Figure 1.1. Due to simplicity the waterfall model is
explained but the scope of this thesis project are also applicable to different software
development models. These steps are:

Specification The customers determine the requirements and the purpose of the
software.

Design The managers of the project together with the programmers define the
methodology and design of the product.

Development The programmers develop the new software.

Testing Here the programs are tested looking for any bug that could came up
with present or future failures in the system. This stage is usually the most
resource consuming.

Documentation and Maintenance In this step the programs are documented
and maintenance starts. In the maintenance process programmers supervise

CHAPTER 1. INTRODUCTION

the proper operation of the product by fixing the bugs or improving the
product’s performance when needed.

Figure 1.1. A software development process according to the waterfall model

1.1. Problem Statement

The testing stage is designed to ensure the quality of the software products,
but it is the most resource consuming step in terms of time, effort, and costs. This
testing activity represents 50 to 70 percent of the total costs of a project [21].

Human mistakes and human-computer misunderstandings in programming are
common. When errors occur during the implementation stage they are typically not
discovered until the code is tested. These errors force the developers to implement
new code or to rewrite some of the code. Moreover, this additional code introduces
its own bugs, hence the process is an exponential (although hopefully a dampened
exponential) process.

The effort required to correct mistakes introduced during the implementation
stage is less than the effort required to correct these errors during the testing stage.
The worst scenario occurs when the end users find the errors at execution time. In
many cases the problems caused by bugs cannot be solved and a new version of
the software is necessary to remove one or more bugs. In each of these scenarios
the company spends a lot of resources to resolve the issues caused by bugs. The
resources that are expended include:

1.2. GOALS

Capital Many different tests are needed to find the errors in the code. Developing
and maintaining these tests also costs money.

Time Locating bugs usually takes a lot of time.
Effort Locating and correcting bugs is a hard task.

It is easy to see that the earlier a bug is detected and corrected, the lower the
total cost. Consequently, many companies have decided to invest in new ways to
detect and correct bugs as early in the overall process as possible [18], for example
by adopting agile programming, deriving the program from formal specification,
and other techniques.

1.2. Goals

The main goal of this thesis project is to improve the quality of software.
Improving the quality of this software implies a reduction in development and
maintenance costs, hence a reduction in the costs of the whole company. Higher
quality software might also increase customer satisfaction and confidence in the
company and its products [18]. To carry out this improvement this thesis project
will focus on predicting the presence of bugs in the early stages of the development
process. This prediction is based on computing software metrics over the software’s
source code.

With regard to studies of rapid bug prediction, this project will contribute by
showing that there is a relationship between software metrics and the presence of
bugs and that the presence of bugs can be estimated by using a neuro-fuzzy hybrid
model.

1.3. Scope

The scope of this project is a tool to predict with high accuracy the existence of
bugs in code. This tool will facilitate the detection of the most error prone modules
in a programs while the software is being developed. Furthermore, this tool will
allow users to:

= correct bugs during the development stage that would otherwise not be found
until the testing stage (this will be done by refactoring of the source code);

= be aware of which modules have to be tested carefully during the testing
process; and

» learn (by suitable training) a programming style which is less error prone.
This can be done by learning which programming styles have good feedback

CHAPTER 1. INTRODUCTION

from the tool.

1.4. Target Audience

This thesis may be interesting for those programmers who want to improve the
quality of their code. It should be interesting for all enterprises, especially those
that develop software products. The project also contributes to research on software
metrics and their relationship with bugs and to the investigations of several different
(and useful) regression models.

1.5. Methodology

This thesis project started with an analysis of the problem statement (given in
Section 1.1). Software metrics were previously identified to be predictors, thus this
thesis project considered a number of different metrics and their contribution to
bug prediction. A selection of the best means to compute these metrics was also
done. Subsequently several different regression models were examined in order to
find a model that successfully relates these metrics with bugs. Once the objective
was clear, implementation of a prototype started.

A neuro-fuzzy hybrid model was chosen because, as the literature shows, this
model has good capabilities together with regression models. Hybrid models are an
improvement over neural network models which have no initial parameters defined.
After the neuro-fuzzy hybrid model was chosed the following steps were taken:

1. Extraction of the software metrics of the source codes with the CCCC program
[23].

2. Extraction of the number of known bugs for this source code from a repository
of trouble reports.

3. Clustering of the metrics with the R program [26].
4. Implementation, training, and testing of a neural network in R.

5. Creation of a tool that would compute the software metrics and estimate the
number of bugs in source code that is input to this tool.

1.6. STRUCTURE

1.6. Structure

Chapter 1 introduces the objectives and the motivation for this thesis project.

Chapter 2 gives the background necessary for reading this thesis and the
knowledge needed to understand it. Chapter 2 starts with some definitions of
object-oriented programming for those who are not familiar with this terminology.
The chapter continues with an explanation of the most widely used software
metrics. The chapter concludes with a description of some of the most widely used
regression models, but focuses on neuro-fuzzy hybrid models, on neural networks,
and clustering techniques.

Chapter 3 gives an overview of the model followed to create the tool.
Chapter 3 begins with a brief explanation of the desired characteristics of the tool
and continues with the selection of the programs, techniques, and models used in
this thesis project to relate software metrics and bugs.

Chapter 4 describes in detail the implementation of the neuro-fuzzy hybrid
model to finalize analyzing its results and verifying its quality.

Chapter 5 explains the functionalities of the final tool and the results of using
this tool.

Chapter 6 presents some conclusions.
Chapter 7 proposes future work which can be done to improve the tool.

Furthermore, appendixes A and B contain further information about the tool.
To conclude appendixes C and D contain the introduction and conclusions of this
master thesis in spanish.

Chapter 2

Background

This chapter presents the background of the thesis. It is divided into two
sections. Section 2.1 gives the necessary knowledge to understand the selected
software metrics and how they are estimated. Section 2.2 gives an overview of
the different regression models that were considered, subsequently focusing on the
neuro-fuzzy model. A number of different clustering techniques and artificial neural
network models are explained.

2.1. Software Metrics

Software metrics are quantitative measures of the attributes of a program. There
are three kinds of software metrics: procedure metrics, project metrics, and product
metrics [16].

» Procedure metrics measure the resources (time and cost) that a program
development effort will take. They are useful for the administration and
management of the project.

= Project metrics give information about the actual situation of the project.
These metrics include costs, effort, risks, and quality. These are used to
improve the development process of the project.

= Product metrics assess quality information about the program. These metrics
focus on reliability, maintainability, complexity, and reusability of all or part
of the software developed for the program.

The reliability of these software metrics as predictors bugs has been studied
and tested by many researchers [6, 9, 3|, who have used different regression models
applied to different languages. All of these researchers have claimed software metrics
to have good capabilities as indicators of bugs.

7

CHAPTER 2. BACKGROUND

2.1.1. Basic Concepts

We will use a number of basic concepts in this thesis. Below is a short description
of each of these concepts for the reader’s reference.

OOP (Object-Oriented Programming) OOP is a programming style based on
the use of objects. Thus, programs are made of objects that are manipulated
to perform a specific task.

Object An object is an instance of a class which has been defined with some
properties, specifically: attributes and methods.

Class A class is the template used to create objects. Different objects of the same
class have a similar structure.

Method A method is subroutine of a class that performs an operation.
Attribute An attribute is a member variable of a class.

Inheritance Inheritance is the process where by an object acquires some properties
and methods of another class.

Children A child or subclass is the class that inherits properties and methods in
an inheritance process.

Ancestor An ancestor or superclass is the class from which another class inherits
properties and methods in an inheritance process.

2.1.2. Definition of Metrics

Currently, the goal of software developers is to offer the best quality in their
programs without increasing the amount of resources needed for the development of
this software. For this reason in this study we will focus on product metrics. These
metrics are summarized in Table 2.1. In despite of the metric definitions given in
the Table 2.1, many researchers claimed that software metrics lacked mathematical
strictness and other desirable properties [33, 35]. Therefore, they considered the
estimates of these metrics to be unreliable. Consequently, in 1994, Chidamber and
Kemerer described in [6] six metrics which are now called ’CK metrics’. These six
metrics have been successfully correlated with the likelihood of error in software in
many investigation (in [30] for Java language and in [3] for C++ language).

2.1. SOFTWARE METRICS

Table 2.1. Object Oriented Metrics

Name/
Acronym

Description

Lines of Code
(LOC)

Total number of lines of code. LOC may or may not take into consid-
eration blank and comment lines. LOC is related with the size of the
source code subject to bugs. The reliability of this metric has always
been questioned because although the probability of mistakes increases
with the opportunity to make them, it has been observed that when the
complexity of the code is low, the number of bugs is also small even if
there are many lines of code.

Number of

The number of public, private, and inherited attributes.

attributes

(NOA)

Number of The number of public, private, and inherited methods.

methods

(NOM)

McCabe’s This metric can be defined in a given class as the sum of the complexity
cyclomatic of the methods defined for the class. It estimates the complexity as the
complexity number of linearly independent paths that can be followed in the class.

In 1976 Thomas J.McCabe introduced this new metric in [25]. When
the value of McCabe’s metric exceeds some threshold for one module
(according to [11] a value higher than 10), then the module should be
split into smaller modules.

Fan in/ Fanout

These two metrics concern the number of classes which reference the
class/the number of classes referenced by the class. Fan in and Fanout
describe the relationship between a given class and its environment.
These metrics are related to the flow structure of the system. Sallie
Henry and Dennis Kafura introduced these new metrics in [15] in 1981.

Information
flow complexity

This metric is a measure of the complexity of the code in terms of its
fan in and its fan out. This metric is computed using equation 2.1.

IFc = (Fanin * Fanout)? (2.1)

The greater the complexity of the code the greater the probability of
there being an error. Sallie Henry and Dennis Kafura introduced this
new metric in [15] in 1981.

The CK metrics are described in Table 2.2 for a given class.

CHAPTER 2. BACKGROUND

Table 2.2. Object Oriented CK Metrics

Name/ Description
Acronym
Weighted This metric is the sum of the complexity of the methods defined in the

Methods Per
Class (WMC)

class when the complexity value assigned to each method is 1. This
metric is computed using equations 2.2 and 2.3.

WCM =>"C; (2.2)
i=1
when C; =1,WCM =n (2.3)

This metric gives an approximation of the time and effort needed to
design and maintain the class. This metric captures the observation
that the more complex the methods of a class, the more error prone this
class is.

Depth of
Inheritance
Tree (DIT)

In an inheritance tree DIT is the maximum length from a node in the
tree to the root. High values of DIT means that the classes are reusing
the methods of its ancestors, thus these classes were well defined which
enabled their reuse. However, a high value of DIT implies that the
structure of the code is more complex, and that it is more complicated
to test.

Number of

NOC is the number of direct subclasses which belong to a class. When

Children NOC is high, a change in the class can potentially affect many different
(NOC) classes.
Coupling One class is coupled with another when it uses the methods or instance

between object

classes (CBO)

variables of the latter. CBO is the number of other classes which are
coupled with a specific class. When CBO is high, then one error in the
class could affect many classes in the program. CBO is a measure of the
independency of the class.

10

2.1. SOFTWARE METRICS

Name/
Acronym

Description

Response For a
Class (RFQ)

RFC is the number of methods invoked when an object of the class
receives a message. The value is computed according to equation 2.4.

RFC = |RS|, where RS = {M} Uuy; {R;} (2.4)

Where M is the set of all methods in the class and Ri is the set of
methods invoked by method i. Classes with a low value of RFC are
simpler, hence it is easier to debug them. Classes with a high value of
RFC have a large and potentially highly distributed effect, hence they
are harder to debug as the number of messages triggered by one message
can expand rapidly.

Lack of
Cohesion in
Methods
(LCOM)

LCOM is the number of methods pairs belonging to the class that do
not share instance variables minus the number of those which do. This
metric is calculated using equation 2.5.

_J P =lQl if [P > [Q]
LCOM = { 0 otherwise (2.5)

Where P is the number of methods in the class that do not use the same
instance variables (analyzed by pairs) and @ is the number of methods
that share them. The larger the value of LCOM is, the lower the cohesion
of the class. A high value of LCOM indicates that the class should
be divided into subclasses, as its methods realize different objectives
(as they represent computations over variables that are increasingly
independent with increase LCOM value).

These metrics are only a sample of all the metrics which can be used (and have
been used) to analyze the characteristics of source code. These metrics have being
used in many studies that have attempted to predict bugs in software. Today these
metrics are used by many enterprises to estimate the quality of their programs.

An additional metric called BUGFIXES is based on the results of the datasheet
used by Marco D’Ambros and Romain Robbes in 2010. In [9] they described how
they created a datasheet for five different systems written in java: Eclipse JDT Core,
Eclipse PDE UI, Equinox framework, Mylyn, and Apache Lucene. Their goal was
to predict the efficiency of different types of metrics applied to different programs.
For this prediction, they introduced a new metric called BUGFIXES (see Table 2.3.

11

CHAPTER 2. BACKGROUND

Table 2.3. Object Oriented BUGFIXES Metric

Name/Acronym

Description

BUGFIXES

BUGFIXES is the number of the bugs that where fixed in the past for
this code. The value for this metric can be extracted from the number
of fixed trouble reports reported for the code.

In [9] and [24] it was shown that BUGFIXES is correlated with the
number of future bugs. Furthermore, the authors state that considering
the effort needed to calculate the metrics of a large system a combination
of CK and Object Oriented (OO) metrics with BUGFIXES is the best
approach to forecast the error-prone behavior. The datasheet is public
and is available at http://bug.inf.usi.ch.

2.1.3. Software metrics measurement programs

There are many programs that can be used to estimate the different software
metrics. A brief explanation of some of these programs is given below:

Java Measurement Tool(JMT) JMT is a Java application developed by Ingo
Patett and improved by Christian Kolbe. It analyzes different classes and their
relationships. JMT can be used over files or over whole projects, but only for
Java Code. The application can be downloaded from http://jmt.tigris.org/.

C and C++ Code Counter(CCCC) Created by Tim Littlefair, CCCC ana-
lyzes C/C++ and Java code. The program can be executed from the shell
on both Unix and DOS/Windows family platforms. It generates reports in
HTML and XML format. The program can be downloaded from
http://cccc.sourceforge.net /.

Eclipse Metrics Plug-in This is an Eclipse plug-in which calculates a set of
metrics every time the code is compiled. It advertises the user whenever the
value of the metrics exceeds a certain threshold. However, this plug-in only
parses source code written in Java language. The information can be exported
in XML. The plug-in can be downloaded from http://metrics.sourceforge.net/.

SONAR SONAR was developed by Sonarsource and can be downloaded from

http://www.sonarsource.org/. The program itself is written in Java, but has

plug-ins for C,

C#, PHP, Flex, Natural, PL/SQL, Cobol, and Visual Basic 6.

However, it does not compute of the same metrics for all of these languages.

Resource Standard Metrics (RSM. RSM is a commercial tool which performs
a quality analysis of code written in C, ANSI C++, C# and Java. RSM runs
under both Windows and Linux. It creates reports in HTML and/or XML.
This program can be found at http://msquaredtechnoatogies.com/.

12

2.2. REGRESSION MODELS

SD Metrics SD is a commercial tool that computes metrics of C++, Java, Delphi
and Smalltalk and generates HTML and/or XML report. The program is
available for both Windows and Unix platforms. Information about the
program is available from http://www.sdmetrics.com/.

Table 2.4 shows the metrics computed by each of the above program. Table 2.5
summarizes some of the most important features of these programs.

Table 2.4. Comparison between programs by the metrics they compute

Metric JMT | CCCC | Eclipse Sonar| RSM | SDM
plug-in

WMC v v v

DIT v v v v v v

RFC v v

NOC v v v v v v

CBO v v v

LCOM v v

Cyclomatic v v v v v

complexity

Fan in v v v

Fan out v v v

LOC v v v v v v

NOA v v v

NOM v v v v v

Table 2.5. Comparison between programs based upon their languages and license

JMT | CCCC | Eclipse | Sonar RSM SDM
plug-in
Language Java Java Java Java Java Java
C/C++ C/C++*| C/C++ | C/C++
Free license | v v v v

* The original program does not implement a C/C++ parser, but there are plug-ins
for the program that allow the users to compute metrics for those languages

2.2. Regression Models

A regression model can be used to find the relationship between metrics and
bugs. Many different regression models have been studied in the literature.

In [27], Ratzinger, et al. used a liner regression algorithm to predict defects.
Linear regression models relate the output as a linear equation of the input

13

CHAPTER 2. BACKGROUND

attributes. In their study they create a predictor for defect densities by using data
mining techniques. This predictor had good results (with a correlation coefficient
between predictions and real values greater than 0.7 over 1) in the three software
projects that they tested: ArgoUML and the Spring framework (both open source
projects with 5,000 and 10,000 classes respectively), and one commercial system
with more than 8,600 classes. All of these three programs were written in Java.

Today research about metrics and bugs no longer utilizes linear models, as recent
studies has shown that linear models do not provide good performance due to the
complexity of the relation between metrics and bugs [18, 8]. Today machine learning
based models are widely used. These models are based on the learning capacity
of algorithms which are trained with patterns. The most widely used learning
algorithms to implement bug prediction models are decision trees, classifiers, and
neural networks.

In 2012, Singh and Verma [30] utilized two different models of machine learning:
J48 (a decision tree) and naive Bayes algorithm (classifiers). With these models
they got an accuracy of 98.15% and 95.58% (respectively) using the CK metrics
as predictors. Furthermore, Ahsan and Wotawa [1] used regression models and
decision trees to predict bugs in C language programs. In their work decision trees
seemed to give better predictions (with an accuracy of 97%).

However, in [29] Gray and MacDonell claim that neuro-fuzzy hybrids are the
best regression model in comparison with neural networks and fuzzy logic models.
Gan and Harris use topology clustering techniques to define the neural networks
and to give the initial parameters [13]. A similar model was used by Jin, et al. [18]
where a Fuzzy c-means (FCM) clustering with a Fisher’s Linear Discriminant (FLD)
method is used to define the initial parameters for a Radial Basis Function (RBF)
neural network. This model was used to determine the probability of errors of 70
C++ classes. The model was trained with 106 classes and it showed an accuracy
of 90% in comparison with 87.14% for logistic regression.

In 2012, a new model was developed by Couto, et al. [8] where the Granger
Causality test was used to establish the relationship. This test was suggested by
Clive Granger to predict how the past events occurring in one series (a numerical
sequence) influenced events in other series. The model uses the next bivariate auto-
regressive model. Couto, et al. predicted with the Granger’s Causality test the
origin of 64% to 93% of the bugs detected in the systems studied by D’Ambros et
al. in their datasheet [9]. The datasheet contains 1041 classes from Eclipse JDT
Core, 1924 from Eclipse PDE Ul, 444 from Equinox, and and 889 from Lucene with
a total of 5028 (known) bugs in the four systems.

14

2.2. REGRESSION MODELS

2.2.1. Artificial Neural Networks

Artificial Neural Networks (ANN), also called Neural Network (NN), is a
mathematical model which aims to learn by training the behavior of a specific
system. This model was inspired by the behavior of the brain when learning and
this model has been used to establish relationships between a set of inputs and
outputs [7, 14].

There are two main neural network architectures. The difference is the connec-
tion between the layers. These two architectures are:

= Feed-forward networks. In this architecture the signals advance from the input
to the output only in one direction: forward. This architecture is widely used
for pattern recognition.

= Feedback networks. These networks have feedback loops so the signals move
both forward and backward until they reach an equilibrium. This equilibrium
changes every time an input is modified.

A simple example of a neural network is shown in Figure 2.1. It consists of three
layers: the input layer fed wth the input data, the hidden layer composed of multiple
processing elements working in parallel, and the output layer. All the elements
(analogous to neurons) are connected by links of different weights. Figure 2.2 shows
one neuron in such a network.

hiddenlayer
Inputlayer 7 N

outputlayer

\\; i

Figure 2.1. An example of an artificial neural network

When a neuron is activated its output contributes to the global output of the
system. The activation state is decided by analyzing the result of the activation
function over the inputs and their weights. The global output depends on the weight
of the different links and these weights are adjusted such that the system gives the

15

CHAPTER 2. BACKGROUND

correct outputs. The process responsible for this adjustment in weights is called the
learning or training process.

X1 ____Weéghts

Output

X2 s T :
— function

Activation function

Figure 2.2. A neuron of a generic artificial neural network

There are three types of learning processes:

Supervised learning In supervised learning the system knows the input data and
their expected output. Training consists of minimize the error between the
current result and the desired output. The error is defined by equation 2.6.

k
1
EZgZHyz‘—ngQ (2.6)
1

Unsupervised learning In unsupervised learning the system only has input data.
These type of algorithms are commonly used for pattern classification.

Reinforcement learning In reinforcment learning the system knows the input
data and which outputs are correct or incorrect.

16

2.2. REGRESSION MODELS

2.2.1.1. Backpropagation Neural Network

Backpropagation Neural Networks uses the backpropagation (BP) algorithm,
which is a supervised learning algorithm used in feed-forward architectures. Back-
propagation is the most widely used algorithm in ANNs. The signals travel forward
in the topology and sends backward the estimated error. A hidden neuron of this
network is shown in Figure 2.3

Weights

Qutput

o ksl VL)
function

Treshold

Figure 2.3. A neuron of a backpropagation neural network

If is & the input data and W;; are the weights between the input neurons
7 and the hidden neurons j, then the activation function of this algorithm is given
by equation 2.7.

n
hij(zi, Wi ;) = sz * W; ; > threshold (2.7)
1

The most used output function for the neuron is the sigmoidal function given in

equation 2.8
1

1 + ehij (@i, Wi)

(2.8)

17

CHAPTER 2. BACKGROUND

where h is the activation function. The BP algorithm minimizes the error function
by using the method of gradient descent, i.e., in this algorithm the sum of the
gradient of the error function for every hidden neuron is calculated in every iteration.
Once the total error is computed, then the algorithm tries to modify the weights of
the links between the hidden layer and the output layer to minimize this sum (as
described by equaiton 2.9).

OF O0F O0F oF
VE = e =0 2.9
(8w1’8w2’8w3’ ’8wn> (2.9)
The weights are incremented by
E
szz’y*aiujz,lzl, , (210)

More information about the backpropagation algorithm can be found in [28].

2.2.1.2. Radial Basis Function Neural Network

A Radial Basis Function (RBF) Neural Network is also a feed-forward network.
In this topology, the neurons are defined to be activated when the input sample
belongs to their cluster. Membership is decided by estimating the Euclidean
distance between the input data and the weight of the links with the following layer.
Unlike the BP algorithm, the RBF algorithm fixes the input weights of the hidden
neurons and tries to optimize the weights of the following layers. In this topology
hidden neurons use a non-linear activation function. There are many possibilities
for this function, but the most usual it is the Gaussian function given in equation
2.11.

H(x) = e 77 for some B > 0 (2.11)
This can be approximated as:
17 — &l
ldx)::e—A—igjl— (2.12)

This choice of function implies that when the distance to the center of the cluster
is small, then and only then does the neuron have a perceptible value. This value
decreases rapidly to zero as the distance from the center of the clusters increases.

The output function of the network is therefore of the form shown in equation

2.13.
k

F(z) =Y ¢ *h(Z) (2.13)
=1

This algorithm can implement both supervised and unsupervised learning. It
can be used for classification, times series prediction, approximation function, etc.

18

2.2. REGRESSION MODELS

The main problem of neural networks is that the topology (specifically the
number of neurons) should be defined a priori. For that reason, clustering
techniques are frequently used to extract information which is hidden in the data,
thus enabling us to make the best choice of the number of neurons. Clustering
techniques also can give initial values for the links between the two first layers.

In addition, both BP and RBF neural networks have the same major drawback
in that both are strongly dependent upon their initial parameters. This means
that the network can come trapped in a local minimum instead of finding a global
minimum if the network starts close to a local minima. In [22] both BP and RBF
neural networks were studied and compared by Leonard and Kramer. Leonard and
Kramer claim that a RBF NN performs better in terms of identifying samples (a
given combination of inputs) located far from the training data. It was also claimed
that in general, RBF NN are faster than BP NN by one decimal order of magnitude.

2.2.2. Clustering

Clustering is the task of divide a set of objects into clusters. Every cluster is
formed by a group of objects which share similarities such that objects belonging to
different cluster are as different as possible. Clustering is therefore an unsupervised
classification mechanism which aims to reduce the dimension of the input set of
data by discarding redundant information. Clustering techniques are widely used
in pattern recognition and classification, and image processing.

The objects & € R, are usually observations of a phenomenon collected from n
measurements, ¥ = (x1,x2,...,Z,). An example of a cluster in two dimensions is
shown in Figure 2.4. In this example the data has been divided into three clusters.

There are two different techniques regarding applying this kind of partitioning
to a data set: hard partitioning and soft partitioning.

Hard Clustering implements hard partitioning. In this technique the objects
of the data set belong to one and only one cluster. Figure 2.4 shows this type of
partitioning.

19

09

0.8

0,7

0,6

05

04

03

0,2

01

CHAPTER 2. BACKGROUND

0,2 04 0.6 0.8 1

Figure 2.4. Hard partitioning over a data set

Soft Clustering utilizes soft partitioning (also called fuzzy partitioning) allow-
ing objects to belong to multiple clusters. Each object can be a member of a cluster
to a certain degree, ranging from 0 to 1. An example of this is shown in Figure 2.5.

0.9

0.8

0,7

0,6

035

04

03

0,2

01

0,2 04 0.6 0.8 1

Figure 2.5. Soft partitioning over a data set

20

2.2. REGRESSION MODELS

Regarding the method used to split up the cluster, multiple algorithms can be
used. In this thesis the technique we will use is linear optimization algorithms.
These algorithms are used to search for the local minima of an objective function.

2.2.2.1. Fuzzy c-means

A fuzzy clustering algorithm that is widely used in software metric analysis
is fuzzy c-means (FCM). This agorithm divides the objects into equal spherical
clusters by using as the distance norm the Euclidean distance. This technique aims
to optimize the function shown in equation 2.14. This function was first proposed
by Bezdek in [17].

c N

Im(Z;0,V) =D (ui)|zn — vil|? (2.14)
i=1 k=1

The algorithm is based upon the following steps [2]:
1. Initialize the membership matrix.
2. Compute the clusters model.
3. Compute the distance between the sample and the clusters
4. Update the membership matrix

The output of the algorithm it is the membership matrix and the centers of the
clusters.

Due to the use of the Euclidean distance to define the clusters, this algorithm
only gives good results when the data set forms spheroids of the same size or when
the distance between the different clusters is large. As a result the applicability of
fuzzy algorithms is dependent upon the shape of the clusters. In the case of FCM
each cluster will have a spherical shape, but the cluster might also be elliptical
or rectangular. The decision upon the shape is very important as it represents a
limitation of the algorithm which forces the algorithm to find clusters with that
specific shape even when is not present in the data.

One approach to solve this problem is the use of the Gustafson-Kessel algorithm.

2.2.2.2. Gustafson-Kessel Algorithm

In contrast to FCM the Gustafson-Kessel (GK) algorithm implements an
adaptive distance norm so it can distinguish the different geometrical forms which
the patterns perform [20, 2].

21

CHAPTER 2. BACKGROUND

The operating of the algorithm is similar to FCM, but the distance used is
defined in equation 2.15.

D, = (2 — vi) " Ai(zk — vi) (2.15)

It should be noted that the GK distance is the same as the FCM distance when A is
the identity matrix. In this case, A is described by the Lagrange multiplier method

for every i cluster as:
A; = [pidet(F)]n F! (2.16)

)

Where Fj is the fuzzy covariance matrix:

sz: (pik)™ (2 — i) (2 — vi)"
F, = k=L (2.17)

N
> (pik)™

k=1

Thus the objective function is:

c N

J(Z;U,V, Ai) =) (wig)D (2.18)

i=1k=1

One example of the results that can be obtained from this algorithm is shown
in Figure 2.6. Note that this is the same data set as used in Figures 2.4 and 2.5

Som e

s kW W ® wn wm

Figure 2.6. Results of Gustafson-Kessel Algorithm over a data set

22

2.2. REGRESSION MODELS

The main problem of these algorithms is that the number of clusters, the
fuzziness exponent, and the tolerance must be determined a priori [19].

Another problem due to the choice of algorithm is that they are strongly
dependent on the initial parameters, thus they may converge to different local
minima for different initializations. This also means that the resulting NN may
not correctly predict the output for an input that is not nearly equivalent to a
sample from the training set.

The number of clusters K is the most critical parameter. This parameter is hard
to determine because it has to be defined in advanced, usually without knowledge
of the actual number of cluster that are present in the data set. Once this number
is defined, the algorithm will look for that number of cluster whether they exist or
not.

The fuzzifier exponent, m, is related to the level of fuzziness of the algorithm.
When m — oo, it is completely fuzzy and it becomes less fuzzy as m decreases. The
most frequent value for this parameter is 2.

Finally the fuzzy algorithm may or may not converge to a clear minimum. For
this reason a tolerance parameter is needed. This paramter defines the accepted
difference between two successive iterations that reflects the fact that the algorithm
has found an acceptable minimum

23

Chapter 3

Analysis

In this chapter an overview of the model followed to create the final tool. In
Section 3.1 the specifications and limitations of the tool are given. In Section 3.2
the background material is analyzed and the software metrics and regression model
are chosen.

3.0.3. Specification

The specifications of the tool are:

= The final tool should implement two functions: predict the actual number of
bugs of a given set of source code; and allow the user to train the network to
adapt it to different environments, i.e. different programming languages.

= Even though the program should work for different programming languages
the predictor in this thesis project will analyze only source code written in
C++.

= The tool should be run from the Linux shell in order to be easily incorporated
into the existing project running within the department.

= The tool should be implemented by using license free or open source programs.

3.0.4. Selection of the model

The main goal which need to be reached in order to create the tool is the creation
of a model which relates software metrics with the number of bugs in a set of C4++
source code.

The background literature described in Chapter 2 has shown that software
metrics and bugs have been related by many different models. There are also

25

CHAPTER 3. ANALYSIS

different metrics that can be used. Thus, it is necessary to select the metrics and
the model that are most useful for our goal.

Regarding the program, we have to take into consideration two main restrictions:
the first restriction is that this program should analyze C/C++ language because
this is the programming language used by the department; and the second restriction
is that the program needs to include only be license free or open source as part of
the tool. There are only two programs in Table 2.5 that fulfill these requirements:
CCCC and Sonar. Sonar has a free plug-in that parses source code written in
C/C++ but is very limited (it does not implement the same features as the original
program) so we discarded this program. Consequently, the program selected to
compute the metrics is CCCC-C and C++ Code Counter.

Regarding the metrics, CCCC calculates all of the metrics but three: RFC,
LCOM, and NOA. RFC and LCOM were also excluded in the study carried out by
Subramanyam and Krishnan in [32] due to the complexity of their computation. In
their study they claim that the effect of exclude RFC was limited and that LCOM
rather than providing useful information may cause alterations in the results owing
to the lack of a solid definition. Lastly, NOA has not been considered in many
studies. In this thesis project we will also not consider NOA. In addition, we also
eliminate NOM from our list of metrics, because NOM has the same value as WCM
when the complexity value assigned to each method is 1.

Concerning the regression model, in [22] Leonard and Kramer performed a
comparison between BPNN and RBFNN. They claim that BPNN classifies the
samples arbitrarily when the samples are far from the training data. In contrast
RBFNN classifies samples according to the distance between the samples and the
training data. Thus, Leonard and Kramer claim that a RBFNN results in better
performance in terms of identifying new samples. Therefore, in this thesis project
RBFNN is used to relate the software metrics of a code with its bugs. Furthermore,
we agreed with Gray and MacDonell [29] that a neuro-fuzzy hybrid is the best
option to implement regression models. Hybrid models implement neural networks
with the improvement that the initial parameters are defined by the prior clustering.
This model is also supported by [34], where Wang and Shang showed that fuzzy
clustering RBFNNs have better capabilities in pattern classification than normal
RBF networks.

Finally we decided to use FCM. The main reason was that RBFNN (as FCM)
utilizes the Euclidean distance to determine which samples should activate the
different hidden neurons. Consequently it will not be useful to look for any other
type of shape in the input data.

26

Chapter 4

Model implementation

In this chapter the implementation of the model is explained in detail. Section
4.1 defines how clustering techniques are related with the neural networks to
create neuro-fuzzy hybrid models. Section 4.1 finalizes with the definition of some
parameters that can be used to ensure the quality of the model. In Section 4.2 the
software metrics’ extraction is explained. In Section 4.3 and 4.4 respectively the
FCM and RBFNN implementation are specified. Finally in Section 4.5 the results
of the model are analyzed.

4.1. Hybrid topology

The creation of the final tool started with the implementation of the neuro-fuzzy
hybrid model. This hybrid topology is composed of a primary stage of clustering
followed by a neural network. The methodology is the following: first we divided the
data samples into training samples and testing samples. Each data sample contains
the software metrics of one module. We use the training samples to train the model
and the testing samples to analyze its performance. Once we have the training set
we normalized it between 0 and 1, in order to limit the upper bound of the input
data to the network. Subsequently we applied the clustering technique, in this case
fuzzy c-means, over the training set and we obtained the center of the c clusters
defined to the algorithm. Later we created the radial basis neural network where
we use the centroids of the clusters to determine the number of hidden neurons and
the initial weight of the links between the input layer and the hidden layer. Finally,
as is shown in Figure 4.1, we used the training samples to train the network.

27

CHAPTER 4. MODEL IMPLEMENTATION

Number of
clusters C
’

hidden layer

Inputlayer

A
~

Training =
data set \-/

Normalized p
M -

Figure 4.1. Example of an hybrid topology with 5 clusters

After training the model we used the testing data samples to verify its capability
as a bug predictor. The quality of the model was evaluated in terms of the following
indicators:

Confusion matrix The confusion matrix of a neural network shows its classifica-
tion results over a data sample. This matrix is shown in Table 4.1. In this
matrix a module is valuated as 0 when it is non buggy and as 1 when it is.

Table 4.1. Confusion Matrix
Predicted module=0 | Predicted module=1

Actual f 00 fo1
module=0
Actual f10 f11

module=1

From this matrix we can derive the following measures:

Accuracy Accuracy is the ratio of the correctly predicted modules to the
total predicted modules.
foo + fun

foo + for + fio+ fun

Accuracy = (4.1)

Precision Precision is the ratio of the correctly predicted buggy modules to
the total modules that are predicted to be buggy. The lower the precision,

28

4.2. EXTRACTION OF METRICS AND BUGS

the more effort is wasted in testing free error modules.

. 1
Precision = ——— 4.2
for + fu1 (42)

Recall Recall is the ratio of the correctly predicted buggy modules to the
total modules that are actually buggy. The lower the recall, the more
buggy modules go undetected.

fi

Recall = ———
fio+ fun

(4.3)

F-measure The F-measure is a combination between precision and recall. It
considers the tradeoff between both measures.
2 x Prectston * recall

F— = 4.4
measure Precision + Recall (4.4)

Receiving Operating Characteristic (ROC) The ROC curve of the network is
also plotted. The ROC shows the tradeoff between correctly predicted buggy
modules and wrongly predicted buggy modules. In [36] it is claim that the
greater the area under the curve, the greater the quality of the neural network.

Root Mean Square (RMS) RMS shows the difference between the expected
output value and the actual output value. The lower the RMS, the greater

the quality of the network. RMS is calculated in [39] as shown in Equation
4.5.

n
2
Z (yactualoutput - yexpectedoutput)

RMS =\ =L - (4.5)

4.2. Extraction of metrics and bugs

In this thesis project the extraction of the software metrics was done by two
different methods. We used the CCCC program to extract the metrics which can
be obtained from the source code and we created a simple script to extract from a
repository of trouble reports the BUGFIXES metric. The actual number of bugs
in this code was also extracted from the same repository. Note that here we are
assuming that all of the bugs have been detected in this repository. We believe
that this is a relatively safe assumption because the lifetime of the program is large
enough to have reported all the bugs.

29

CHAPTER 4. MODEL IMPLEMENTATION

4.2.1. Extracting the metrics

In order to extract the metrics we used the CCCC- C and C++ Code Counter
program. This program can be downloaded from http://cccc.sourceforge.net /.

CCCC extracts the metrics WMC, DIT, NOC, CBO, McCabe’s Cyclomatic
complexity, Fan in, Fan out, LOC, and information flow complexity from a given
file or set of files of a directory.

In order to calculate these metrics the CCCC program divides the files into
modules. Every class as well as every namespace is considered as a module (in the
C++ environment). Functions which do not belong to any of these structures are
merged as part of the module "Anonymous".

In our program we wanted to perform a class-level bug prediction because Object
Oriented programs are built over classes so we did not use the information given
by the "Anonymous" file to create our predictor. We did not use either the metrics
given by modules for which any definition or member function had been identified
or modules which triggered a parse failure in CCCC, i.e. protected classes.

It is important to notice that CCCC has some limitations in computing metrics,
therefore, a more specific definition of these metrics (as they are actually computed)
will be given in Table 4.2.

Although the measures of the CCCC program are not perfect, they are claimed
to agree with the manually calculated values of these metrics, under the same
definitions, within 2-3% (i.e., the automatic extraction of these metrics has an error
of only 2-3%).

30

4.2. EXTRACTION OF METRICS AND BUGS

Table 4.2. CCCC metrics’ definition

Name/

Acronym

Description

Lines of Code
(LOC)

The total number of lines is calculated taking into account the number
of non-blank and non-comment lines. The preprocessor lines are treated
as blank lines and declarations of global data are ignored. However the
number of lines may be overestimated as the program may count twice
the number of lines in the class definitions. This could occur because
the algorithm counts the lines of a module as the sum of the lines of the
module itself plus the lines of its member functions. Thus, declarations
and definitions of the member functions in the body of the class will be
counted twice.

McCabe’s
cyclomatic
complexity

McCabe’s Cyclomatic Complexity value is approximated by counting
the commands which create extra paths in the execution of a class. In
the case of C++ this means that it counts the number of the following
tokens: 'if’, 'while’, *for’, ’switch’, 'break’, *&&’ and ’||.

Fan in/ Fanout

These two metrics concern the number of classes which reference the
class/the number of classes referenced by the class. CCCC can only
identify the following relationships in a class: inheritance, instance of
a supplier class, and the existence of member functions which accep-
t/return instances from/to a supplier class. However, it is often one of
these relationships references a class, so both counts seems to be highly
correlated.

Methods Per
Class (WMC)

Information IF_c is calculated as the square of the product of the fan in and fan out
flow complexity | of the current module.
Weighted WMC is computed as the multiplication of the number of functions

of the current module times a weighting factor. The algorithm uses a
nominal value of 1 as weighting factor.

between object
classes (CBO)

Depth of DIT is given by the length of the longest path of the inheritance tree
Inheritance which ends at the current module.

Tree (DIT)

Number of NOC is given by the number of modules that directly inherit the current
Children module.

(NOC)

Coupling CBO is the number of modules coupled with the current module either

as clients or suppliers.

31

CHAPTER 4. MODEL IMPLEMENTATION

4.2.2. Extracting information about bugs

In order to implement supervised learning in the neural network the number
of actual bugs (the expected output of the system) has to be extracted from the
repository. This thesis project trained of the network using a released version of
a product developed in Ericsson. For this program we extracted the number of
previously fixed bugs as well as the number of actual bugs from the repository
based upon trouble reports recorded for the project.

We consider that every trouble reported indicates one bug in all the files which
had to be changed to fix this bug.

Since CCCC parses the programs by modules and we extract the number of
bugs by files there is a discrepancy that had to be resolved. Our solution was to
assign to every module the sum of bugs reported for the files which compose the
module.

4.3. FCM Clustering

We have implemented FCM in R wusing the package ’el071’ which can
be downloaded from http://cran.r-project.org/web/packages/e1071/index.
html. We applied the function 'cmeans’ with the method ’cmeans’ to the training
set. There are three parameters that have to be defined a priori: the number of
clusters, the fuzziness exponent, and the tolerance.

Number of clusters

The number of clusters is defined as the number of groups into which the data
set is split during the clustering process. The number of clusters is the most critical
parameter because the algorithm will look for this number of clusters whether they
are present or not in the data set. Determining this parameter without previous
study of the samples is, in general, a hard task. Therefore we will use some
parameters which have been used in the literature to determine the optimum number
of clusters in a data set. These parameters are:

Xie.beni Proposed by Xuanli Lisa Xie and Gerardo Beni in [37], Xie.beni (XB)
gives the ratio of the total variation of the partition and the centroids, and
the separation of the centroids vectors. Thus, it is function of the data set and
the center of the clusters. The minimum value of xie.beni under comparison
usually indicates the best partition.

c N
>3 ()l — il

XB = =tk=l 4.6
N xmingzp||vi — vgl|? (49)

32

http://cran.r-project.org/web/packages/e1071/index.html
http://cran.r-project.org/web/packages/e1071/index.html

4.3. FCM CLUSTERING

Fukuyama.sugeno Fukuyama.sugeno (FS) index, as shown in Equation 4.7, com-
putes the difference between two terms combined with the fuzziness in the
membership matrix: the compactness of the representation of the data set,
and the degree of separation between each cluster and the mean of the cluster
centroids. Low values of fukuyama.sugeno indicate good partitions [38].

c N
FS =3 (ui)(|lzx — vl —[lvi — ail[*) (4.7)

i=1 k=1

Partition coefficient and Partition entropy Proposed by Bezdek, the parti-
tion coefficient (PC) and partition entropy(PE) indexes measure the fuzziness
of the partition. This means that both parameters measure how much the
overlapping is between the clusters in the data set.

The partition coefficient is given by Equation 4.8 (and takes on values in the
range [1/c,1]).

1 c N
PC = NZZM% (4'8)
i=1k=1

The partition entropy is given by Equation 4.9 (and takes on values in the
range [0, log(c)]).

1 c N
PC = N SN pirlog, pik (4.9)
i=1 k=1
We look for a value for the number of clusters which maximizes PC and
minimizes PE [38].

Partition separation Index (CS (Compact-Separate)Index) The partition
separation index is created from the partition coefficient and the partition
entropy. It identifies compact, separate clusters. Large values of this
coefficient means that the clusters are more compact and that they are well
separated from each other [12]. However, for large data sets this index is
computationally infeasible since a distance matrix between all the data terms
has to be computed.

||vi — v
c N (2 (— i gy ————)
PS(c) = Z () _ e ’ Sr (4.10)
i=1 k=1 KM
where
N
Uy = mamlgigcz ufk (4.11)
k=1
and
- —113
> v — 9|
Br=2L (4.12)

C

33

CHAPTER 4. MODEL IMPLEMENTATION

Tolerance

Tolerance is determined by the program. The only value that is possible to
change is the number of maximum iterations. This maximum number of iterations
indicates to the program when to stop if the tolerance is not achieved. In this case,
after running FCM several times, we observed that the algorithm always converged
to a solution.

Fuzziness exponent

We set the fuzziness exponent to the value of 2, as this is its default value.

4.4. RBFNN

The RBFNN used in this thesis project was implemented in R by using the
package RSNNS [5]. This package uses the libraries of the Stuttgart Neural Network
Simulator (SNNS) [39] which allows the package to implement many different neural
networks. A further description of the package is given in [4]. In order to implement
our model we have used the low level interface of the package. The guide used to
set up the RBFNN can be followed in [39].

The procedure was the following, first of all we created a SNNS object and we
defined the neurons of the network. We defined one input neuron for each metric,
one hidden neuron for each cluster, and one unique output since we only wanted
one output.

The desired output function of the network is shown in Equation 2.13. To
compute this output, we defined the activation and the output function of the
neurons as shown in Table 4.3. Each of these functions is described below the table.

Table 4.3. Output functions of the neurons of the network

Activation function Output function
Input neurons Act_ Identity Out_ Identity
Hidden neurons Act RBF Gaussian: Out__Identity

h(q,p) = exp(e)

where ¢ = |Z —#|? and
is the bias of the neuron
Output neurons Act_ IdentityPlusBias Out_ Identity

= Act_ Identity leaves the neuron active all the time.

» Act_RBF _Gaussian activates the neuron with the distance between Z (the
sample) and ¢ (the center of the cluster defined to the neuron). Values of Z

34

4.5. EXPERIMENTS AND RESULTS

equal to ¢ yield an output of 1.0, while larger distances yield an output of 0.0.

= Act_ IdentityPlusBias activates the neuron with the weighted sum of all
incoming activations and adds the bias of the neuron.

Subsequently, we initialized the weights of the links between the input layer
and the output layer. First we initialized the network with the "RBF__Weights"
procedure to copy unchanged the centroids of the clusters and the bias into
the different hidden neurons. Afterward we initialize the network with the
"RBF_ Weights Redo" procedure which initializes the link weights between the
hidden and the output layer. The data used in this initialization process are the
training data set and their actual outcome values.

Finally, we train the network with the learning function "RadialBasisLearning".
This function can modify different parameters within the network: the center vectors
of the hidden neurons, the bias of the hidden neurons, and the weights of all the links
as well as the bias of the output network. Furthermore, this function prevents the
overtraining of the network by limiting the tolerated error in the output neuron.
This overtraining occurs when the network learns the output of specific training
samples, but fails to learn the general behavior [22] -hence this overtraining should
be avoided.

Besides the regression model used to predict the probable number of bugs in
the modules, we have implemented a classification model. This classification model
identifies whether there are or not bugs in a module. This implementation differs
from the implementation of the regression model in the expected output value of
the samples. Thus, in the classification model we assign an output value of 1 to all
the buggy modules of the training data set and an output value of -1 to the bug
free modules of the same set.

4.5. Experiments and results

In this thesis project we have parsed 1755 modules. From these modules, we
randomly selected 1492 modules to train the model and 263 to test it (15%). The
major drawback of this neuro-fuzzy hybrid model is that it is very dependent upon
the samples used to train it, therefore we selected different random combinations of
training and testing data sets.

We performed the clustering over the training samples giving different values
of the number of clusters ranging from 3 to 10. These results are shown in Table
4.4 where the optimum values according to the definitions given in Section 4.3 are
highlighted.

35

Table 4.4. Cluster validity indexes

CHAPTER 4. MODEL IMPLEMENTATION

N.clusters XB FS PC PE CS

10 0.001236 -51.1354 0.60137 0.92128 0.00966
9 0.0013346 -48.7097 0.60091 0.89828 0.00119
8 0.0003734 -50.3111 0.63003 0.81634 0.00974
7 0.0004622 -51.1411 0.63922 0.77780 0.00461
6 0.0006059 -50.1556 0.65346 0.71733 0.00500
5 0.0001928 -49.5123 0.69760 0.63600 0.00795
4 0.0000747 | -51.7349 0.76467 0.48368 0.00795
3 0.0002578 -38.9224 0.75922 0.44721 0.00877

Thus, based upon the indexes given by xie.beni, fukuyama.sugeno, and the
partition coefficient we chose 4 as the number of clusters.

Based on the result of the clustering process we implemented a 10-4-1 network
topology with 10 input neurons, 4 hidden neurons, and 1 output neuron. We used
different values of bias for the hidden units and we allow the algorithm to modify
the center of the clusters, the links, and the bias of the output neuron.

Table 4.5 shows the best results we obtained. The best performance was
achieved with a bias value of 1.5.

Table 4.5. Quality validity 10-4-1

Regression model Classification model
Accuracy 0.21673 0.84791
Recall 1.00000 0.35088
Precision 0.21673 0.86956
F-measure 0.35625 0.50000
RMSE 0.93108 0.77998
AUC 0.50000 0.66816

The threshold for predicting classes as fault-prone or non fault-prone was 0 in
the classification model since the value assigned to buggy modules was 1 and to
non buggy modules the assigned value was -1. In the case of the regression model
the threshold was 0.0125 since 0.2564103 is the output value assigned to 1 bug in a
module.

The values in Table 4.5 show that none of these configurations could be used to
predict bugs. The regression model does not predict any bug in any of the modules
of the testing set, and the quality of the classification model is not good since almost
75% of the buggy modules go undetected.

Nevertheless, we compare the results obtained with a fuzzifier exponent of 2

36

4.5. EXPERIMENTS AND RESULTS

with different values of bias and different number of clusters and we found that the
best quality of the model was achieved with 8 neurons and a bias value of 2.

Table 4.6. Quality validity 8-2-1

Regression model Classification model
Accuracy 0.84790 0.85551
Recall 0.33333 0.43860
Precision 0.90476 0.80645
F-measure 0.48718 0.56818
RMSE 0.77998 0.76023
AUC 0.66181 0.70473

The results showed in Table 4.6 supports the notion that the separation index
is the best indicator of the number of clusters in the data set.

These results are in accordance with the claims by Subramanyam and Krishnan
in [32], where they stated that "Defects are not uniformly distributed across the
modules in the system and that a few modules may account for most defects in the
system". We though that since the clusters tend to be located in regions with a high
concentration of data samples m then probably a small group of data samples that
are responsible for the defects of the program remained hidden in the data. The
idea was to find this "buggy" cluster by increasing the number of clusters. However,
increasing the number of clusters may lead to a more complicated topology, thus
making it more difficult for the learning process of the network -for this reason this
trade-off should be controlled.

Our next experiment was to calculate the results of different topologies by
changing the three parameters: the number of clusters, the fuzzifier exponent, and
the bias of the hidden network. We chose the best topology based upon their F-
measures. We decided to use the F-measure as indicator rather than the accuracy
because the model seemed to have problems identifying modules with bugs; while
working fine at identifying modules without bugs. Since the number of non buggy
modules was much greater than the number of buggy modules in our data set, the
accuracy did not provide a good evaluation of the quality of the model.

The simulations showed that the best F-measure in the regression model was
obtained with 8 clusters, a fuzzifier exponent of 2, and a bias of 2. In the
classification model the best performance was achieved with 10 clusters, a fuzzifier
exponent of 1.9, and a bias of 2. These results are shown in Table 4.7.

37

CHAPTER 4. MODEL IMPLEMENTATION

Table 4.7. Quality validity

Regression model Classification model
Accuracy 0.84790 0.8593156
Recall 0.33333 0.4912281
Precision 0.90476 0.7777778
F-measure 0.48718 0.6021505
RMSE 0.77998 0.7501584
AUC 0.66181 0.7261966

Figures 4.2 and 4.3 show the ROC curve of the regression and the classification
model respectively.

Regression model ROC curve

0.8
I

0.4
l

True positive rate

| | | | T
0.0 0.2 0.4 0.6 0.8 1.0

False paositive rate

Figure 4.2. ROC curve of the regression model 10-8-1

38

4.5. EXPERIMENTS AND RESULTS

Classification model ROC curve

True positive rate
04
]

0.0

| | I |
0.0 0.2 0.4 0.6 0.8 1.0

False paositive rate

Figure 4.3. ROC curve of the regression model 10-10-1

Furthermore we tested the performance of the regression model by dividing
the samples into five different levels depending upon their number of bugs. The
accuarcy of the model is low therefore it does not provide enough data to check the
capability of the network to distinguish between different levels of bugs and thus to
inform the programers which modules should be tested more carefully.

To summarize, our results show that the classification model provides better
predictions; however, the desired output of the tool is the number of bugs so we
implemented the regression model into our tool.

39

Chapter b

Design of the tool

The tool has been developed using bash scripting. The tool implements two
functionalities:

= Predicts the number of bugs of a given file or files of a directory, and
= Implements a new neuro-fuzzy hybrid model and trains it.

The prediction mode uses the default regression model to estimate the predic-
tions. The results can be given on a per file or per module basis. In both cases the
results are generated for every module/file with the files ranked in descendent order
of their number of bugs.

The training mode allows the user to implement the neuro-fuzzy hybrid model.
In this new implementation the data set and the parameters (in this case the number
of clusters, fuzzifier exponent, and bias of the hidden neurons) can be changed. The
parameters can be defined by the user or be selected by the program. After training,
the tool compares the new results with the original results and asks for the user’s
confirmation to save the network which achieves the best performance..

Further explanation of the commands used to run the tool can be found in
Appendix A.

The requirements to run the tool can be found in Appendix B.

5.1. Analysis of the tool

We analyzed some of the features of the tool:
User-friendly

After show a demo of the tool to its future users the tool seemed to be easy to

41

CHAPTER 5. DESIGN OF THE TOOL

use and the output information easy to understand.
Operation

The time execution of the program in both modes (prediction mode and training
mode) depends upon the data set desired to be parsed. In our case, when we use as
input data the whole project (1755 modules), it took to the program half an hour
to estimate the predictions and more than one hour to train the network. The main
reason of this waste of time was the necessity of the CCCC program to have all the
files in the same directory (at the same level) to parse them properly as a whole.
Therefore, the improvement of the execution time is related with the improvement
in the features of the CCCC program. Regarding the operation of the program any
problem was found in any of the modes.

Error handling

The tool implements error handling. The user is informed when the commands
used are not properly typed and when there have been a problem during the
execution of the program. In this case, an error message is displayed in the shell
giving some information about where the problem occurred.

Portability

The tool could be incorporated as part of the c-make of any project. In our
particular case the tool was incorporated in the c-make of the project in such way
that users had the option to run it in background mode every time they compiled
the project. When our tool was enabled all the code of the project was parsed and
predictions were estimated. The increment of time while making the project was
considerable, for that reason, by default, the tool is disables in the c-make. Future
work out of the scope of this project is to integrate the tool as part of Jenkins.
Thus, the project is monitored and the predictions are estimated every day.

Adaptability

The tool has been developed by using license free or open source programs. It
uses the R tool and the CCCC program and it can be adapted without problems
to new versions of both programs as far as the R version support the required
packages and the CCCC program does not change completely their output XML
report. Furthermore, it would be easy to add more metrics and/or new programming
languages if the CCCC supports them.

42

Chapter 6

Conclusion

In this thesis project we have written a program to predict the number of bugs
in source code. The program is based on a neuro-fuzzy hybrid model created from a
first stage clustering, followed by a Radial Basis Function Neural Network. However,
the program does not achieve high accuracy due to the lack of independent samples
in the data set. Neuro-fuzzy hybrid models are very dependent upon the data set
used to train them. Thus, large data sets across different source code should be used
to get a high level of accuracy in predicting bugs. The user must use the functions
of the program to simulate a new model and train it with different and larger data
sets.

Regarding the experiments done within this thesis project, the results have
shown that incorrect choices in the number of clusters leads to large changes in the
results of the RBFNN. Bad initializations in the clustering process and hence in the
neural network can easily lead to sub-optimal clustering and thus in not accurate
predictions. The sensitivity to initialization becomes acute when the data set is not
large enough.

It should also be mention that in our experiments the partition index seemed
to be the best indicator of number of clusters in the data set was supported by the
neural network results. In addition, should be mention that our experiments show
that fuzzifier values close to 2 lead to better predictions. This value is the most
frequent value used in previous studies.

To conclude, experiments showed that classification models produce better
predictions than regression models. This is because of the accuracy required from
the network to predict buggy/non buggy models in these two different types of
models.

43

Chapter 7

Future work

This chapter suggests future work to improve upon the results shown this
thesis project. Section 7.1 focuses on the improvements associated with the
implementation of the model used to relate metrics with bugs. Section 7.2 focuses
on the possible improvements of the tool.

7.1. Model improvements

The first task that should be done is to use larger data sets across different
sets of source code to train the neuro-fuzzy hybrid model of the tool. Larger and
more independent training data sets would lead to a more accurate tool with better
abilities to detect error-prone source code.

Regarding the software metrics more metrics can be added, or the existent
ones can be changed since the right combination of metrics could make a huge
improvement to the early prediction of bugs. It is important to adapt the software
metrics to the programming language so they can better define the quality of the
code. Programs which estimate the value of the software metrics with greater
accuracy could be used also to improve the accuracy of the model.

It would also a major improvement to modify the methodology followed when
reporting bugs. In the tool we assign different bugs to the modules as a function of
the bugs that we extract from the files, consequently, the number of bugs assigned
to each module is overestimated. Thus, we propose to report the bugs indicating
the exact modules that were necessary to modify in order to fix the bugs.

Regarding the neuro-fuzzy hybrid model, it would be interesting to have a
neural network able to detect, as the Gustafson-Kessel Algorithm, different shapes
of clusters in the data set. These shapes remain unknown and we forced them to
be gather in circular clusters.

45

CHAPTER 7. FUTURE WORK

Lastly, future studies in early bug prediction may use genetic algorithms.
Genetic algorithms can be used to set the weights of the links in a fixed architecture
and to define the number of hidden neurons. Moreover, genetic algorithms have a
more interesting application from this thesis project’s perspective: we could select
the training data of the data set which leads to the best learning by the neural
network. These genetic algorithms discard non useful information and keep only
the representative samples.

7.2. Tool improvements

The tool has multiple potential improvements that could lead make it a more
useful and complete program. We propose three major improvements:

= The tool could be implemented to run on different platforms (such as Mi-
crosoft’s Windows).

= The tool could have a more intuitive user interface.

= The tool could be improved in order to predict bugs in different programming
languages.

Furthermore, it would be a major improvement to adapt the program to predict
bugs in C language since there are many repositories with large data sets that can
be used to train the model. It would be easy for users to find an open source code
for which all the bugs have been previously reported. Thus, a better analysis of the
accuracy of the model could be carried out.

46

Chapter 8

Required reflections

Nowadays companies and customers demand an improvement in the quality of
the software products. This thesis project has shown that bug prediction is a feasible
goal that would improve the quality of the software and decrease the costs of the
software development process. In addition, bug prediction would also decrease the
cost of the customers since they may skip the costs of their own testing and the
cost of the maintenance of the product. Therefore, the tool developed in this thesis
project must be used to improve the process of detecting and correcting bugs in the
software development process.

Further development of this tool may provide

= more efficient developers since programmers using this tool will learn the least
error-prone programming styles; and with

= more efficient development process since the location of the bugs will be given
as soon as the code is written. This tool together with the new agile methods
will allow the user to resolved the bugs very fast.

47

Bibliography

S.N. Ahsan and F. Wotawa. Fault prediction capability of program file’s logical-
coupling metrics. In Software Measurement, 2011 Joint Conference of the 21st
Int’l Workshop on and 6th Int’l Conference on Software Process and Product
Measurement (IWSM-MENSURA), pages 257 —262, Nov. 2011.

Robert Babuska. Fuzzy clustering with applications in pattern recognition and
data-driven modeling. Technical report, Delft Center for Systems and Control,
Delft University of Technology, Netherlands.

V.R. Basili, L.C. Briand, and W.L. Melo. A validation of object-oriented design
metrics as quality indicators. Software Engineering, IEEE Transactions on,
22(10):751 =761, Oct. 1996.

Christoph Bergmeir and José M. Benitez. Neural networks in R using the
stuttgart neural network simulator: RSNNS. Journal of Statistical Software,
46(7):1-26, 2012.

Bergmeir C. and BenAntez J. RSNNS: Neural networks in r using the
stuttgart neural network simulator (snns). http://cran.r-project.org/web/
packages/RSNNS/index.html, 2012.

S.R. Chidamber and C.F. Kemerer. A metrics suite for object oriented design.
Software Engineering, IEEE Transactions on, 20(6):476 —493, Jun. 1994.

Dimitrios Siganos Christos Stergiou. Neural networks. http:
//www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/csil/report.
html#Asimpleneuron. Accessed:1 December 2012.

C. Couto, C. Silva, M.T. Valente, R. Bigonha, and N. Anquetil. Uncovering
causal relationships between software metrics and bugs. In Software Mainte-

nance and Reengineering (CSMR), 2012 16th European Conference on, pages
223 —232, March 2012.

49

http://cran.r-project.org/web/packages/RSNNS/index.html
http://cran.r-project.org/web/packages/RSNNS/index.html
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#A simple neuron
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#A simple neuron
http://www.doc.ic.ac.uk/~nd/surprise_96/journal/vol4/cs11/report.html#A simple neuron

[9]

[11]

[12]

[17]

18]

BIBLIOGRAPHY

M. D’Ambros, M. Lanza, and R. Robbes. An extensive comparison of bug
prediction approaches. In 7th IEEE Working Conference on Mining Software
Repositories (MSR), 2010, pages 31 —41, May 2010.

S. Dick and A. Kandel. Fuzzy clustering of software metrics. In Fuzzy Systems,
2003. FUZZ °03. The 12th IEEE International Conference on, volume 1, pages
642 — 647 vol.1, May 2003.

M. Dixon. An objective measure of code quality. Technical report, Energy
group, 2008.

C. Frelicot, L. Mascarilla, and M. Beithier. A new cluster validity index for
fuzzy clustering based on combination of dual triples. In IFEFE International
Conference on Fuzzy Systems, 2006, pages 42 —47, 0-0 2006.

Qiang Gan and C.J. Harris. A hybrid learning scheme combining em and
masmod algorithms for fuzzy local linearization modeling. Neural Networks,
IEEE Transactions on, 12(1):43 —53, Jan. 2001.

Carlos Gershenson. Artificial neural networks for beginners. http://arxiv.
org/ftp/cs/papers/0308/0308031.pdf, 2003. Accessed:1 December 2012.

S. Henry and D. Kafura. Software structure metrics based on information flow.
Software Engineering, IEEE Transactions on, SE-7(5):510 — 518, Sept. 1981.

Tu Honglei, Sun Wei, and Zhang Yanan. The research on software metrics
and software complexity metrics. In Computer Science-Technology and Appli-
cations, 2009. IFCSTA ’09. International Forum on, volume 1, pages 131 —136,
Dec. 2009.

J.C.Bezdek. Fuzzy Mathematics in Pattern Classification. PhD thesis, Applied
Math. Center, Cornell University, Ithaca, 1973.

Cong Jin, Shu-Wei Jin, Jun-Min Ye, and Qing-Guo Zhang. Quality prediction
model of object-oriented software system using computational intelligence. In
Power Electronics and Intelligent Transportation System (PEITS), 2009 2nd
International Conference on, volume 2, pages 120 —123, Dec. 2009.

Uzay Kaymak and Magne Setnes. Extended fuzzy clustering algorithms. ERIM
report series Research in Management, Erasmus nRS-2000-5 1 -LIS, Research
Institute of Management, Erasmus University Rotterdam, Netherlands, Nov.
2000.

R. Krishnapuram and Jongwoo Kim. A note on the gustafson-kessel and
adaptive fuzzy clustering algorithms. IEFEE Transactions on Fuzzy Systems,
7(4):453 —461, aug 1999.

50

http://arxiv.org/ftp/cs/papers/0308/0308031.pdf
http://arxiv.org/ftp/cs/papers/0308/0308031.pdf

[21]

[25]

[26]

[27]

28]

[29]

Hua Jie Lee, Lee Naish, and K. Ramamohanarao. Study of the relationship of
bug consistency with respect to performance of spectra metrics. In 2nd IFEE
International Conference on Computer Science and Information Technology,
2009. ICCSIT 2009., pages 501 —508, Aug. 2009.

J.A. Leonard and M.A. Kramer. Radial basis function networks for classifying
process faults. Control Systems, IEEE, 11(3):31 —38, April 1991.

Tim Littlefair. CCCC: C and C++ code counter. http://cccc.sourceforge.
net/, 1997. Accessed:1 December 2012.

Michele Lanza Marco D’Ambros and Romain Robbes. Evaluating defect
prediction approaches: a benchmark and an extensive comparison. Empirical
Software Engineering (EMSE), 17(4):531-577, 2012.

T.J. McCabe. A complexity measure. Software Engineering, IEEE Transac-
tions on, SE-2(4):308 — 320, Dec. 1976.

R Core Team. R: A Language and Environment for Statistical Computing. R
Foundation for Statistical Computing, Vienna, Austria, 2012. ISBN 3-900051-
07-0.

J. Ratzinger, H. Gall, and M. Pinzger. Quality assessment based on attribute
series of software evolution. In Reverse Engineering, 2007. WCRE 2007. 14th
Working Conference on, pages 80 —89, Oct. 2007.

R. Rojas. Neural networks, a systematic introduction. Technical report,
Springer-Verlag, Berlin, New-York, 1996.

A.R. Gray S.G. MacDonell. A comparison of modeling techniques for soft-
ware development effort prediction. In International Conference on Neural
Information Processing and Intelligent Information Systems, pages 869-872.
Springer-Verlag, 1997.

P. Singh and S. Verma. Empirical investigation of fault prediction capability
of object oriented metrics of open source software. In Computer Science and
Software Engineering (JCSSE), 2012 International Joint Conference on, pages
323 327, 30 May 2012-1 June 2012 2012.

Tan Sommerville. Software Engineering. Addison Wesley, 7 edition, May 2004.
R. Subramanyam and M.S. Krishnan. Empirical analysis of ck metrics for
object-oriented design complexity: implications for software defects. Software

Engineering, IEEE Transactions on, 29(4):297 — 310, april 2003.

51

http://cccc.sourceforge.net/
http://cccc.sourceforge.net/

[33]

[34]

BIBLIOGRAPHY

Iris Vessey and Ron Weber. Research on structured programming: An
empiricist’s evaluation. Software Engineering, IEEE Transactions on, SE-
10(4):397 —407, July 1984.

Yongxue Wang and Yan Shang. Fuzzy clustering rbf neural network applied
to signal processing of the imaging detection. In Measuring Technology
and Mechatronics Automation (ICMTMA), 2010 International Conference on,
volume 2, pages 321 —324, March 2010.

E.J. Weyuker. Evaluating software complexity measures. Software Engineering,
IEEE Transactions on, 14(9):1357 —1365, Sep 1988.

K. Woods and K.W. Bowyer. Generating roc curves for artificial neural
networks. Medical Imaging, IEEE Transactions on, 16(3):329 —337, June 1997.

X.I. Xie and G. Beni. A validity measure for fuzzy clustering. IFEE Trans-
actions on Pattern Analysis and Machine Intelligence, 13(8):841 —847, Aug
1991.

Miin-Shen Yang and Kuo-Lung Wu. A new validity index for fuzzy clustering.
In The 10th IEEE International Conference on Fuzzy Systems, volume 1, pages
89 -92, 2001.

Andreas Zell. SNNS Stuttgart Neural Network Simulator User Manual, Version
4.2. University of Stuttgart and WSI, University of Tubinga, 1998.

52

Appendix A

Sinopsis of the tool

It is possible to specify a path to a file/directory if the user wants to run the
program over one file or one directory of the project, rather than over the whole
project.

For prediction:

>ZMetriX -p [-file/-module] [path to file/directory] (path to
git repository)

Options:
-file: shows the results by file in PredictedBugreportbyfile
-module: shows the results by module in PredictedBugreportbymodule

For training:

>ZMetriX -t [-default] [path to file/directory] (path to git
repository)

Options:

-default: The program defines the number of clusters, fuzzifier exponent, and
bias of the neuro-fuzzy hybrid model. If the default mode is not selected, the
program will ask the user to define these parameters.

After the model is implemented the program compares the original model with
this new model. The program recommends saving the best network (based upon
the value of its F-measure), but the user must decide which model they want to
keep. If "yes" is typed, then the original network is deleted and the new network is
saved as the new default regression model. If "no" is typed then the new network is

93

APPENDIX A. SINOPSIS OF THE TOOL

deleted.

To run the program in training mode is necessary to have a file called Bugs.txt
with the actual number of bugs associated with each module of the data set. If the
user does not have this file, they should run first the command:

>sh Extractbugs (path to git repository)

54

Appendix B

Requirements of the tool

The requirements for the correct operation of the program are:
= The CCCC program should be installed

= The R program should be installed with the following packages: "el071",
"RSN'NS", "ROCR". The minimum version required is 2.15.

= Xmlstarlet should be installed on Linux.
= CCCC program should be installed

= The distributed version control system where the bugs are reported must be
GIT and bugs should be reported with the word "artif".

95

Appendix C

Introduccion

Actualmente, la industria de la telecomunicaciéon es un mercado abierto en
el que numerosas empresas compiten por el liderazgo; es por tanto un requisito
obligatorio para las compafiias que compiten en este tipo de mercados ofrecer una
alta calidad y confiabilidad en sus productos para mantener su posicion dentro
del mismo. Ma4és especificamente, este objetivo es obligatorio para las companias
dedicadas al desarrollo de software debido a que un software de alta calidad reduce
la cantidad de recursos necesarios para su mantenimiento y ayuda a la compania a
obtener una porciéon mayor del mercado. Consecuentemente, managers relacionados
con el desarrollo y el mantenimiento de software han decidido apostar por mejorar
el proceso de desarrollo del software en pos de obtener una mayor calidad en su
software con un coste més reducido [10].

Este ciclo de vida o proceso del desarrollo de software es emulado cada vez
que una compania decide crear un nuevo producto software o mejorar uno ya
existente. Este proceso consiste, de al menos, los siguientes pasos: especificacion,
disefio, desarrollo o implementacion, prueba o validacién, documentacion, entrega,
y mantenimiento [31]. El modelo en cascada de este proceso puede verse en la
Figura 1.1. Por simplicidad en este projecto se explica el modelo en casacada,
pero el alcance de este proyecto es también aplicable a otros modelos de desarrollo
software. Estos pasos son:

Especificacion Los clientes determinan los requerimientos y el propdsito del
software

Diseno Los responsables del proyecto en conjunto con los programadores definen
la metodologia y el disefio del producto.

Desarrollo Los programadores desarrollan el nuevo software.

Prueba Los programas son probados en busca de cualquier posible error que pueda
producir fallos en el sistema. Esta etapa suele ser la que més recursos consume.

o7

APPENDIX C. INTRODUCCION

Documentacién y Mantenimiento En esta etapa los programas son documen-
tados y comienza el proceso de mantenimiento. En este proceso se supervisa el
correcto funcionamiento del producto; cuando es necesario se corrigen errores
o/y se implementan mejoras.

C.1. Descripcion del problema

El proceso de prueba estd disenado para asegurar la calidad de los productos
software, pero es el proceso que m&s recursos consume en términos de tiempo,
esfuerzo, y coste. Esta actividad supone entre un 50 y un 70 por ciento de los costes
totales del proyecto [21]. Los errores humanos y los malentendidos entre el hombre y
la maquina son comunes en la programacion. Estos errores son producidos durante
la implementacién del cédigo, pero no son descubiertos hasta que éste es probado.
Una vez descubiertos, estos errores obligan a los desarrolladores a implementar
cbdigo nuevo o a rescribir parte del cédigo, lo que puede a su vez introducir nuevos
errores convirtiendo este proceso en un proceso exponencial. El esfuerzo necesario
para corregir estos errores mientras el codigo estd siendo implementado es mucho
menor que el necesario para corregirlos cuando el producto esta siendo probado; en
el peor de los casos son los usuarios finales lo que detectan estos errores en tiempo
de ejecucién. En muchos casos los defectos introducidos por estos errores no se
pueden resolver y es necesaria la creacién de una nueva versiéon del cédigo para
eliminarlos. En ambos escenarios, la compania gasta una gran cantidad de recursos
en corregir los errores. Es facil comprobar por tanto que cuanto antes un error
es encontrado y corregido, menor es el coste total. Asi mismo, incrementaria la
satisfaccion de los consumidores y su confianza en la empresa y sus productos [18].
En consecuencia numerosas companias han decidido invertir en nuevas formas de
deteccién y correcciéon de errores en las primeras etapas del proceso de desarrollo
[18], por ejemplo el adoptando métodos agiles, haciendo uso de especificaciones
formales u otras técnicas.

C.2. Objetivos

El objetivo principal de este proyecto es mejorar la calidad del software. Para
llevar a cabo esta mejora, este proyecto se centrara en la prediccion de la presencia
de errores en las primeras etapas del proceso de desarrollo. Asi, en este proyecto
se creard une herramienta capaz de predecir la existencia de errores en un cédigo
software basandose en sus métricas. Esta prediccién facilitara la deteccién de los
modulos més propensos a tener errores en un programa mientras este estd siendo
desarrollado. Mas especificamente, esta herramienta permitirad al usuario a:

» corregir errores durante la etapa de desarrollo que de otra forma no serian

58

C.3. ESTRUCTURA

encontrados hasta la etapa de pruebas (esto serfa posible mediante la refac-
torizacion del cédigo fuente);

= conocer que modulos deben ser probados méas cuidadosamente y cuales no; y

= aprender que estilos de programacién son menos propensos a errores a través
de los resultados de la herramienta.

C.3. Estructura

El capitulo 1 introduce los objetivos y la motivacién del proyecto.

El capitulo 2 presenta los antecedentes y conocimientos necesarios para la lectura
y entendimiento del proyecto. Este capitulo comienza con algunas definiciones
bésicas de la programaciéon orientada a objetos, continida con la descripcién de
las métricas del software mas utilizadas, y concluye con una descripciéon de algunos
de los modelos de regresion més empleados centrandose en los modelos hibridos
neuro-difusos, en las redes neuronales y en las técnicas de agrupamiento.

El capitulo 3 ofrece una vision general del modelo utilizado para la creacién
de la herramienta. Este capitulo comienza con una breve explicacién de las
especificaciones de la herramienta y contintda con la seleccién de los programas,
técnicas, y modelos empleados en este proyecto para relacionar las métricas del
software y los errores.

El capitulo 4 describe en detalle la implementacién del modelo hibrido neuro-
difuso. El capitulo finaliza analizando los resultados del modelo y su calidad.

El capitulo 5 explica las funcionalidades de la herramienta y los resultados del
uso de esta herramienta.

El capitulo 6 presenta las conclusiones del proyecto.
El capitulo 7 propone trabajo futuro para mejorar la herramienta.

Finalmente los apéndices A y B contienen informacion més detallada de la
herramienta.

59

Appendix D

Conclusiones

En este proyecto se ha creado un programa basado en un modelo hibrido neuro-
difuso que predice el nimero de errores de un cédigo fuente. Este modelo esta
compuesto por una etapa de agrupacién seguida de una red neuronal de funcién
de base radial por lo que es muy dependiente del conjunto de datos usado para
entrenarlo. Por ello, grandes bancos de datos provenientes de diferentes cédigos
fuente deben ser utilizados para alcanzar un elevado nivel de precisién. Debido a la
falta de muestras independientes en el conjunto de datos utilizado en este proyecto,
el resultado del analisis del programa ha concluido que este no ha alcanzado alta
precisién en sus predicciones. Se deja por tanto en manos del usuario, utilizar las
funciones de la herramienta para simular un nuevo modelo y entrenarlo con grandes
conjuntos de datos.

En cuanto a los experimentos realizados en este proyecto, los resultados han
mostrado que una elecciéon incorrecta del nimero de grupos en el proceso de
agrupacién produce grandes alteraciones en los resultados de la RBFNN, siendo
el indice de particién el mejor indicador de este valor. A su vez, estos resultados
mostraron que valores del exponente de difusién cercanos a 2 (que como se vio
previamente es valor mdas utilizado en estudios previos) resultaban en mejores
predicciones. Malas inicializaciones en el proceso de agrupacién, y por tanto, en
la red neuronal, conducen a agrupaciones sub-6ptimas y a predicciones poco fiables.
Esta sensibilidad a la inicializacién se ve incrementada cuando el conjunto de datos
no es lo suficientemente grande.

Por ultimo, los experimentos han mostrado que los modelos de clasificacién
hacen mejores predicciones que los modelos de regresién debido a la precisiéon
requerida para clasificar una muestra como errénea o no en ambos casos.

61

TRITA-ICT-EX-2013:52

www.kth.se

	Contents
	List of Figures
	List of Tables
	List of Acronyms
	Introduction
	Problem Statement
	Goals
	Scope
	Target Audience
	Methodology
	Structure

	Background
	Software Metrics
	Basic Concepts
	Definition of Metrics
	Software metrics measurement programs

	Regression Models
	Artificial Neural Networks
	Clustering

	Analysis
	Specification
	Selection of the model

	Model implementation
	Hybrid topology
	Extraction of metrics and bugs
	Extracting the metrics
	Extracting information about bugs

	FCM Clustering
	RBFNN
	Experiments and results

	Design of the tool
	Analysis of the tool

	Conclusion
	Future work
	Model improvements
	Tool improvements

	Required reflections
	Bibliography
	Sinopsis of the tool
	Requirements of the tool
	Introducción
	Descripción del problema
	Objetivos
	Estructura

	Conclusiones

