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Abstract 

Since its emergence, user generated content (UGC) has become the driving force 
in the growth of Internet traffic. As one of the most successful and popular UGC 
systems, YouTube contributes a great share of Internet traffic volume and has 
attracted a lot of academic interest. The continuously increasing amount of IP traffic 
motivates the need for better network design, more efficient content distribution 
mechanisms, and more sustainable system development. Web caching is one of the 
widely used techniques to reduce the inter Internet Service Provider (ISP) traffic. 
Web caching is considered an important part in the design of a content distribution 
infrastructure. 

This master’s thesis utilizes a one month trace of YouTube traffic in two 
residential networks in Sweden. Based upon a systematic and in-depth measurement 
we focus on analyzing the geographic locality of traffic patterns within small areas 
for these two networks. We summarize the YouTube traffic characteristics and user 
replay patterns, and then discuss why caching can be useful for YouTube-like 
systems. 

We present the optimal caching gain on a per area basis and also divide users 
into two groups: PC and mobile device users to show the caching gain for these two 
groups. Overall, an infinite capacity proxy cache for each small area could reduce 
the YouTube streaming data traffic by 30% to 45%. The result presented in this paper 
help us to understand YouTube traffic and user behaviors and provides valuable 
information for the ISPs to enable them to design more efficient caching 
mechanisms. 

When this work began we thought that a reduction of backhaul traffic 
(especially for mobile operators) may delay the need to make investments in 
upgrading their network capacity. However, an important conclusion from this thesis 
project is that the cache efficiency depends on the terminal type. For mobile 
terminals (smart phones, iPads, etc) a terminal cache solution is found to be the most 
efficient. For PCs in fixed networks, a network cache would be more efficient. It 
should be noted that the mobile terminals covered in the project are connected 
through home Wi-Fi, so further research is needed in order to draw definite 
conclusions for caching solutions for cellular networks.  
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Sammanfattning 

Sedan dess tillkomst har användargenererat innehåll (på engelska: User 
Generated Content UGC) blivit den drivande kraften bakom ökningen av 
internettrafiken. Ett av de mest använda och populära UGC-systemen är Youtube, 
som bidrar med en stor del av volymen i internettrafiken, och har på så sätt lockat till 
sig ett stort akademiskt intresse. Den konstant ökande mängden av IP-trafik 
motiverar behovet av bättre nätverksdesign, effektivare mekanismer för delning av 
data, och en mer långsiktig system utveckling. Mellanlagring i nätet (network 
caching) är en av de mer använda teknikerna för att reducera trafiken för 
Internetoperatörer. Mellanlagring i nätet anses vara en viktig del i designen av den 
framtida media-distributionens infrastruktur. 

Det här examensarbetet använder en månads data från Youtube-trafik i två lokala 
nätverk i Sverige. Baserat på en systematisk och detaljerad mätning, fokuserar vi på 
att analysera specifika trafikmönster geografisk små områden för dessa två nätverk. 
Vi analyserar Youtube-trafikens egenskaper och karakteristik och användarnas 
beteende mönster. Baserat på dessa analyserar vi om mellanlagring kan vara en 
nyttig lösning för att reducera trafiken för Youtube-liknande system.  

Vi presenterar den optimala lagringsvinsten (cache gain) för geografiskt 
definierade populationer och vi delar även upp användare i två grupper: PC och 
mobila enheter, för att visa lagringsvinsten individuellt för dessa grupper. Generellt 
sett, om man hade en oändlig lagringskapacitet hos en proxy cache inom ett visst 
område, så skulle man kunna reducera Youtube-trafiken med 30-45%. Resultaten 
som presenterats i detta dokument, hjälper oss att förstå Youtube trafik och användar 
beteende, och ger värdefull information till operatörer, så att de kan designa 
effektivare lagringsmekanismer.  

Some utgångspunkt för detta arbete antog vi att en minskning av 
backhaultrafiken (särskilt för mobiloperatörer) kan fördröja behovet av att göra 
investeringar för att uppgradera kapaciteten i nätet. En viktig slutsats av detta 
examensarbete är att effektiviteten hos en proxy cache beror av terminaltypen. För 
mobila terminaler (smarta telefoner, iPads, etc) ger terminal-cache högre effektivitet, 
medan en nätverks-cache är effektivare för PCs. Det bör dock nämnas att 
mätningarna i detta arbete är från terminaler uppkopplade via fast bredband. Det 
behövs vidare analys för att dra konkreta slutsatser för användarbeteende och 
cache-lösningar i mobilnät. 

 

Keywords: UGC, YouTube, geografiskt definierade populationer, mellanlagring 
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1 Introduction 

Cisco’s 2011 global IP annual forecast report revealed that IP traffic had 
increased eightfold over the past 5 years [1]. Traffic growth from non-PC devices, 
such as smart phones, tablets, and televisions (TVs) is expected to double by 2015. 
This same report also showed that in 2010, for the first time in a decade, Internet 
video (Peer-to-Peer streaming was included) traffic exceeded Peer-to-Peer (P2P) file 
sharing traffic, becoming the dominant type of Internet traffic[1]. Adoption of live 
streaming and media-on-demand services, which are the major variants of Internet 
video, increased rapidly during recent years and both have attracted tremendous 
numbers of users. According to the statistics provided by Alexa, YouTube is not only 
one of the most popular video-on-demand websites, but it ranks third in total traffic 
among websites worldwide[2]. 

The continuous increase in traffic is a double-edged sword. On the one hand, it 
shows the users’ interest in sharing media and files, both of which have promoted the 
development of new applications and technologies. On the other hand, the 
tremendous amount of data traversing the Internet incurs high transit fees for Internet 
Service Providers (ISPs) (increasing operating expenses – OPEX) and requires 
upgrades to the inter-ISP links (increasing capital expenses – CAPEX). If these links 
do not have sufficient bandwidth, then they can become a bottleneck.  

How to effectively, efficiently, and economically distribute content through the 
Internet to the end users has been a hot issue for many years. A widely used method 
to address this problem has been for content providers to contract with commercial 
content delivery networks (CDNs) to distribute content to distributed caches 
operated by the CDN provider. This solution has a number of problems: (1) the 
content provider has to identify what content should be distributed by the CDN and 
provide this content in advance of requests to the CDN and (2) the content producer 
has to pay the CDN for their services and if the content is not as popular as expected, 
then this could be an unnecessary expense. Figure 1-1 shows the topology of a 
simple CDN system. 
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Figure 1-1: CDN architecture 

An alternative to using CDNs is to exploit P2P techniques to provide a low cost 
and simplified content distribution solution. While P2P technology has been widely 
used by users for file sharing, today it is also being introduced by commercial actors 
for media streaming. PPLive is one of the most successful Chinese applications 
based on CDN-P2P technology providing both live streaming and video-on-demand 
services[3]. Using P2P distributes the traffic load over numerous users, thus 
reducing the burden on a central server (or servers). However, the P2P protocol is 
generally unaware of the network topology; hence a great deal of inter-ISP traffic is 
generated by P2P applications. This increased inter-ISP traffic leads to a significant 
concern among ISPs regarding their increased OPEX[4]. Figure 1-2 and Figure 1-3 
show the logical and the physical topologies of a P2P network, respectively. Peers 
connect to their neighbors at the application level. This means that a neighbor which 
is one hop away in the logical topology may be located multiple hops away in the 
physical topology and may even be in another ISP’s network. The dash lines in 
Figure 1-3 represent inter-ISP links. As Figure 1-3 depicts, even though both ISPs 
have two peers, each of these peers can connect to an external peer in the other ISP’s 
network – hence unnecessary inter-ISP traffic may be generated. Note that we refer 
to this inter-ISP traffic as unnecessary, since ideally the first choice for every peer 
should be to get content from another peer within the same network as it is located 
and ideally a given content object only should have to pass across a given inter-ISP 
link once. 
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caching. Additionally, we compare the cachability between PC users and mobile 
users to identify the differences in user behavior patterns thus leading to different 
caching strategies. 
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2 Background 

This chapter provides essential background knowledge for understanding this 
thesis work. Section 2.1 briefs some study results of Internet traffic usage. With the 
results suggesting that it is potential to enable cache in the network, section 2.2 
introduces the basic structures of caching system. Section 2.3 explains the definition 
of locality-aware network. Following that, in section 2.4 and 2.5, the design of 
caching algorithms and the models used for showing video popularity are presented. 
In the end, the summary of previous YouTube related studies is given in section 2.6. 

2.1 Traffic models and user behavior analysis 
Internet usage should be examined and understood in order to aid in network 

design and improve service delivered to end users. Traffic models and user behavior 
have been studied widely by academia. For example, the Traffic Measurements and 
Models in Multiservice Networks (TRAMMS) project analyzed the characteristics of 
traffic at various aggregation levels in multi-service IP networks both in Spain and 
Sweden during the period 2007 to 2009 [14]. TRAMMS utilized a traffic monitoring 
and measurement framework to gain deep insight into IP traffic, especially video and 
P2P applications. TRAMMS also built models of user behavior at the application 
level. A goal of this modeling was to improve the broadband access networks and the 
quality of service (QoS) that they provide [14]. The IP Network Monitoring for 
Quality of Service Intelligent Support (IPNQSIS) project [15] is a successor to the 
TRAMMS project. This new project focuses on probing the network performance 
from the users’ perspective in order to build a Customer Experience Management 
System (CEMS).  

User experience is a vital criterion for the service providers; hence they want to 
measure the quality of service they actually deliver to their end users and use this 
information to design their business strategies. The Telecommunications 
Management (TM) Forum is a global industry association comprised of more than 
220 of the world’s leading service providers. It aims to promote and simplify the 
complexity of the service provider’s business. Their technical report - TR148: 
Managing the Quality of Customer Experience [16] examines how to monitor and 
measure customer experience by studying a range of delivery mechanisms in real 
cases. The goal is to learn how to improve user satisfaction. In order to meet the 
requirements described in  TR148, the TM Forum proposes a holistic end-to-end 
customer experience framework which consists of six application programming 
interfaces (APIs) [17]. These APIs can be used to keep track of user experience and 
can also predict the trends of user behavior, thus the provider can make intelligent 
modifications to meet their users’ requirements. Their report emphasizes the 
importance of knowing customers’ relationships and groups the customers in order to 
further improve the customer’s satisfaction. 
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A great deal of research [18–22] has been done using different parameters to 
characterize Internet traffic usage, for example, overall traffic volumes over time 
(daily, weekly, and monthly), the composition of traffic characterized by application 
or protocol, and traffic monitoring over different time scales for specific applications 
such as Spotify, Voddler, and online gaming. The results of these studies are 
summarized in Table 2-1. 

Table 2-1:  Previous traffic analysis result 

  

source Testing network Major conclusions 

[18–20] 2600 fiber-to-the-home 
(FTTH) households and 
~200 Digital Subscriber 
Line (DSL) households in 
a Swedish municipal 
network. 

• Flash video over HTTP and BitTorrent 
dominate the traffic volumes generated by 
multimedia streaming and P2P file sharing 
services respectively [18], [20] 

• Daily traffic pattern shows the peak hour of 
traffic during a day is around 7PM to 9PM 
and it shows similar results throughout the 
week[18], [20] 

• Inbound traffic and outbound traffic 
distributions show the majority of traffic is 
generated only by a small portion of users, 
around 10% [19], [20] 

[21] 2500 FTTH households in 
Sweden 

• P2P based video streaming application 
(Voddler) dominates the number of flows 
in the streaming services due to the nature 
of the P2P protocol, but Flash video over 
HTTP dominates with regard to the total 
number of bytes. 

• The downloading traffic of streaming 
exceeds much more than uploading traffic 
in the experimental local area. Most of the 
downloading traffic is locally initiated. 

[22] More than 20,000 
residential DSL customers 
of an European ISP 

• Up to 4% of IP addresses are re-assigned 
more than 10 times a day which indicates 
that dynamic IP address allocation should 
be taken into account when identifying the 
hosts. 

• HTTP traffic exceeds P2P traffic. 
YouTube.com contributes 25% of all HTTP 
traffic. 
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complex as it depends upon the temporal distribution of the requests and the load on 
the proxy when these requests arrive – as well as the complication of having to check 
if the content in the cache is still valid (typically requiring a request to the actual web 
server to see if the content has been changed since the time the content was cached – 
thus a transport session still has to be set up to the real server). An advantage of these 
queries for content only if the content has been modified since the time that the 
content was cached is that for content which never changes (“write once”) or 
changes only infrequently the probability that the cached copy is valid is quite high. 
Additionally, the probability that the cached content will become invalid in a short 
period of time is low; hence many requests can simply be answered with content 
from the cache without checking to see if the contents have actually been modified. 
This can lead to inconsistent results, but with very large numbers of requests for the 
same highly stable content the probability of inconsistent results is low.  
Unfortunately, we cannot exploit this in our specific setting because we are looking 
at the case where there are small numbers of users in a subnet or a cell, hence there 
are not large numbers of queries. However, if there are requests that are close in time 
for the same content, then perhaps we can exploit this temporal coherence. Therefore 
some of the results that we want to look for in our collected data are the numbers of 
requests for the same item and their temporal coherence. 

Theoretically, any content which is requested more than once is cacheable. 
According to Ager, et al., if ti indicates the total downloading times for item i of size 
si, the cachability of n items can be calculated by the following formula [7]: ܿܽܥℎܾ݈݁ܽ݅݅ݕݐ = 	∑ ௜ݐ) − 1) ∙ ∑௜௜ୀଵ..௡ݏ ௜ݐ ∙ ௜௜ୀଵ..௡ݏ  

Ager, et al. found that for P2P applications, when considering only local hosts, 
cacheability is 27%; however, for UGC sites the cacheability is considerably lower, 
mostly less than 10%[7]. One explanation is that when deciding whether to cache 
content or not if the proxy obeys the cache-control header, then only if the content is 
allowed to be cached would this content be put into a cache. Additionally, they found 
that more than 89% of data chunks are uploaded to and downloaded from external 
hosts (i.e., hosts outside the local ISP, hence this traffic must pass over the inter-ISP 
link). As this content is directly uploaded to the external host, then even though the 
content is available locally it will not be seen by the proxy cache – unless the proxy 
cache is on the upload path. These results imply that if local users share the same 
interests then a local cache could potentially reduce transit traffic. Leibowitz et al. [6] 
took a deep look into P2P cachability by measuring the caching gain in terms of 
byte-hit-rate. Their results indicate that higher traffic volumes yield higher caching 
gain and their experiments show that 67% of the bytes can be served from the cache 
– even when using a cache of only 300GB. Zink et al. [8] analyzed YouTube traffic 
in detail, then proposed three kinds of caching structures and compared their caching 
performance based on a simulation of a large university campus network. The results 
of these simulations are summarized in Table 2-2. A cache hit means that the content 
required by the user has already been stored in the cache, thus the user can obtain the 
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content directly from the cache. Similarly a cache miss means that the content is not 
found in the cache, hence the proxy cache has to request the content from the source 
(or another proxy cache on the logical path to the source). 

Table 2-2:  Summary of different caching performance for YouTube video clips, in all cases the cache 

replacement policy is First-in-first-out (FIFO), delete the oldest content. 

2.3 Locality-aware network 
Other than the use of a local cache and proxy cache, which were covered in the 

previous section, users might also utilize each other’s local cache as a resource to 
search for content they want. This is implemented in P2P networks. However, as 
mentioned in Chapter 1, a peer neighbor in the P2P network can be multiple hops 
away or even in another ISP’s network in the physical topology. To cope with the 
delay and the underlying inter-ISP traffic problem, a locality-awareness P2P network 
can greatly improve network efficiency by clustering users geographically. Another 
kind of user clustering is based on user interests. Peers are selected among a group of 
users requiring similar content which could potentially reduce the content lookup 
time since if the content could be found on the peers’ end.  

Optimizing traffic locality can be implemented in a P2P system during the peer 
selection process. In [34], Ayodele Damola proposed a P2P traffic diversion 
algorithm in a broadband access network based on the McCircuit traffic separation 
mechanism which does not allow for inter-host communication. His method redirects 

Distribution 
infrastructures Cache insertion Result 

Local caching at 
the client 

All video clips which are 
firstly required by the 
user. 

With a 50MB user cache, 84% of video 
clips with multiple requests from the 
same user can be served from the local 
cache of each user. 

Peer to Peer If cache miss happens, 
look up the missing 
content in another client’s 
cache first instead of 
requesting it from the 
server and caching it 
immediately. 
Only cache content which 
cannot be found in other 
users’ caches.  

With a 1GB user cache, the hit rate can 
reach almost the same level as the case 
of a local user cache. 
However, compared with local caching, 
the performance is only marginally 
improved and may be even worse 
because requests to offline peers will 
be counted as a cache miss. 

Proxy caching 
(Single proxy 
cache) 

All video clips which are 
first required by the user. 

100GB cache can increase the hit rate 
to the maximum which is about 28%. 
This is a very efficient solution in a 
local network with thousands of 
clients. 
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traffic within the local access network in order to offload the edge nodes at higher 
aggregation levels. An important requirement is that the peer knows which local peer 
it wants to communicate with, hence Ayodele’s peer selection algorithm helps to 
select a path that avoids passing through the edge node, thus causing the traffic flow 
to be highly local within the access network. 

Based on the observation that peers who send requests to a similar set of servers 
are more likely to be closer to each other, Choffnes and Bustamante [35] gathered 
dynamic DNS redirection information for use in peer selection. Their biased peer 
selection algorithm can significantly increase the average download rates and reduce 
inter-ISP traffic. Bindal et al.[36] also proposed a biased neighbor selection method 
for BitTorrent using a parameter k to leverage the portion of internal peers versus 
external peers for each downloading process. Their method ensures more internal 
peers are used while one or two external connections remain available. (Note that is 
important that there must be non-local peers – otherwise there is a risk of content 
being unavailable when it is simply locally unavailable.) 

Other than relying on geographic factors, interest-based clustering is another 
property that can be considered when clustering. This method analyzes the 
correlation (overlap) between cache content shared by peers, then redirects queries to 
those peers who have the most files in common, these are referred to as semantic 
neighbors. Handurukande and co-workers in [37] and [38] present a study of traffic 
in the eDonkey network. They observed that the more popular files stably remained 
more popular. By clustering eDonkey users geographically or semantically they 
increased the hit ratio for rare files which are usually difficult to locate. Crespo and 
Garcia-Molina proposed a layered Semantic Overlay Network (SON) to facilitate the 
peer selection process [39]. They evaluated this approach in a music-sharing system 
which has sufficient content to be classified into a hierarchical structure based on the 
type of music. The content query messages were sharply reduced in their SON as 
compared to a general P2P system. This method requires an accurate classification 
process. However, in their experiment the queries were classified manually. 

Lindsey et al. studied the spatial locality of mobile pattern in a campus wireless 
network[40]. They categorized web content from different news websites and traced 
user requests based on these news categories. Their research mostly focused on 
individual user’s behavior which revealed that mobile users who were 
geographically close to each other had a high probability of sharing similar interests, 
namely requesting similar content. This phenomenon is called spatial locality. This 
study also showed that the popularity distribution of requests for objects matched a 
Zipf-like distribution. Furthermore, rather than showing high mobility, more than 
half of the users were relatively stationary as they connecting to only a single access 
point during a day. 

This master thesis project was greatly motivated by this earlier research. 
However, in this work we study users’ behavior in a fixed network. Rather than 
analyzing the users’ web browsing interests concerning news websites, we focused 
on YouTube, the world’s largest UGC video on demand (VoD) system. 
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2.4 Cache algorithm 
Caching algorithms have been studied with the goal of making more efficient 

caching decisions. Since the space of a cache is finite, old content in the cache needs 
to be replaced gradually. Several new caching replacement algorithms are proposed 
in[41–43]. Each algorithm is suitable for a specific type of application, such as web 
document caching, BitTorrent-like patterns, and streaming media. The performance 
of each of these algorithms was evaluated in terms of hit ratios, latency reduction, 
and byte hit ratios. The details of caching algorithms are outside the scope of this 
project. However, the popularity distribution as a function of time scale is studied in 
this project in order to estimate how long content should be kept in the cache. This 
information can also be used to design (or select) a suitable cache replacement 
algorithm. 

2.5 Zipf, Power Law, and Pareto Distributions 
The popularity distribution of media content is a major factor in cachability. For 

example, if some video clips are only occasionally requested by very small number 
of users, then the gain of caching these clips would be very low. Given the 
tremendous amount of media content, how many of these items are frequently 
requested? How is this popularity distributed? A power law is the answer to both of 
these questions. 

A power law is used to describe phenomena where the occurrences of a small 
number of events are frequent, while other events are infrequent. In the Internet there 
are quite a few small elements in the Web, but only a few large ones. Similarly a few 
sites attracted many visitors, while most sites barely get any attention. 

Sometimes these phenomena in the last paragraph are described as following a 
Zipf distribution or Pareto’s law distribution. In the following paragraphs power law, 
Zipf, and Pareto’s law distributions will be explained in detail. In fact, all these three 
terms can refer to the same phenomena described previously. 

Zipf’s law was firstly proposed by an American linguist George Kingsley Zipf 
[44]. It was initially used to describe word frequencies in text. Zipf found that only a 
few words were frequently used, while most words were rarely used. Zipf’s law 
refers to the frequency f of an event relative to its rank i. It states the frequency of 
the ith event is inversely proportional to its rank,	ߚ (where ߚ is close to 1): ݂~1/݅ఉ 

As it shown in [45], Web access also followed the Zipf law. If		0 < ߚ < 1, the 
popularity distribution is a Zipf-like model. If ߚ = 1, then the distribution exactly 
follows Zipf law. Zipf’s law is easily observed by using a log-log graph as the plot 
will be a line. A steeper slope of this line indicates that a great many requests are 
related to only a small portion of the total web content. This characteristic shows the 
benefit of deploying web caching. By caching these frequently requested objects, 
different users do not need to request the same content from the server, thus reducing 
the burden on the web server. 
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Instead of concerning the exact frequency of ith item, Pareto’s law pays attention 
to how many items have a frequency greater than f. Thus Pareto’s law is given in 
terms of the cumulative distribution function (CDF). For example, the number of 
items whose frequency is greater than f is an inverse power of f: ܲ[ܨ > ݂]~1/݂௞ 

While a power law distribution shows the number of items whose frequency is 
exactly f. This is the probability distribution function (PDF) associated with the 
CDF: ܲ[ܨ = ݂]~݂ି(௞ାଵ) = ݂ି௔ 
where a = k+1, k is the Pareto distribution shape parameter. 

 All these three models are used in this project to show statistical results, see 
Chapter 3. 

2.6 YouTube related research 
A lot of research considering YouTube has been carried out in recent years. This 

research can be mainly divided into three categories: YouTube Infrastructure and 
server selection, YouTube Video characteristics, and mobile user patterns. Each of 
these will be described in a subsection below. 

2.6.1 YouTube Infrastructure and server selection 

Google Inc. bought YouTube in 2006 and since then, YouTube has expanded its 
video distribution architecture by using Google’s infrastructure. In [46] and [47], 
Adhikari et al. conducted a thorough study of the YouTube server selection strategy. 
Unlike an earlier study by Adhikari et al. [48], the study reported in [46] and [47] 
summarized three approaches used by YouTube to distribute load across servers 
based on the new infrastructure that YouTube began using after it expanded its cache 
server into Google’s CDN, rather than analyzing the old YouTube infrastructure (as 
was done in [48]). Their later study showed that YouTube caches were located in 45 
different cities in 25 different countries spanning the world. Each location has 
different number of physical caches which formed a three-tier cache hierarchy. The 
locations with a large number of caches are referred to as the primary data centers, 
and these caches were marked as primary cached. Only a small number of caches in 
less than 10 locations were designated as secondary and tertiary caches. Their study 
elaborated how YouTube dynamically balanced the selection of these caches for 
satisfying requests. The YouTube server selection is high locality-biased, the closer 
cache is to the user the high priority it has to be chosen. However, due to load 
balancing reasons there are still a large amount of requests that are redirected to a 
more distant cache. Torres et al. did an even more detailed study into the selection 
process and used round-trip time (RTT) to estimate the distance to each cache [49]. 
The results of the research by both groups are described in the similar conclusions 
found in [47] and [48]. 
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An interesting result found by these researchers was that YouTube did not 
always pick the most optimal cache (i.e., the one that was closest to the user, usually 
a primary cache) for each request, but rather it dynamically redirect the request to 
other caches (e.g. during peak hours it redirected requests to a less busy server, or if 
the content cannot be found in the primary server, then it resorted to another server). 
In these cases, the requests are usually directed to a more distant server (in another 
city or even in another continent). These load balancing mechanisms may trigger 
multiple redirections if this target server cannot serve the video. Since each 
redirection is carried out by sending a new HTTP request and the new server is 
usually in a distant location, the delay before the video can be played back will 
increase, thus degrading the user experience. Moreover, lots of inter-ISP traffic will 
be generated. This behavior motivated me to examine this in more detail in thesis 
project. 

Looking at the statistics presented in [47], we can see that even though Google 
is trying to spread caches around the world in order to locate content close to their 
users. They are still only in 45 cities around the world. Considering the increasing 
number of YouTube users all over the world, providing additional caches for smaller 
groups of people may be a profitable venture. Our work focuses on two municipal 
networks in Sweden and we divide each network into several small geographical 
areas and study cacheability of YouTuTube content for each area. 

2.6.2 YouTube Video characteristics 

YouTube video characteristics and user patterns have been very popular research 
topics. Gill et al.[23] collected a three month trace of YouTube traffic in a campus 
network. Their analysis summarized the HTTP request statistics which indicate the 
potential for caching. The daily usage pattern is presented in terms of the number of 
requests and separately in terms of bytes. The properties of the different video clips, 
such as file size, duration, bit rate, age, and category, have also been studied. Their 
report presents some results on the temporal locality of YouTube videos in their 
campus network. Cha et al.[50] focused on two YouTube video categories: 
entertainment and science. They use the video meta data provided by YouTube to 
study the global video popularity distribution over a number of years. They also 
studied how to make the UGC distribution system be more efficient by using caching 
and P2P techniques. However, their study does not consider any individual users’ 
behavior. For example, the video request time intervals were estimated by using an 
exponential model instead of being deriving from actual user requests. In addition to 
providing YouTube video statistics as other studies have, Cheng, Dale, and Liu [51] 
pointed out a small world phenomena. On YouTube, every video clip is related to a 
list of similar video clips. They suggested that once a user plays a video clip, the 
cache should pre-fetch the directly related video clips as they are very likely to be 
watched (in the near term). Finamore et al. thoroughly compared YouTube user 
behavior between PC and mobile users[52]. 
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Our work is also based on YouTube traffic statistics collect from our target 
network rather than considering a global scope or using a campus network. As noted 
before we have focused on small areas in residential networks. Unlike previous 
studies which used the IP address to identify each user, we utilized the media access 
and control (MAC) address as a unique identifier for each household or device 
(depending on whether there is a home router installed between the home network 
and the ISP – if so we only have the MAC address of this router and cannot 
differentiate between requests that could be coming from different computers in the 
household). We also compare the behavior of IPTV and mobile users in different 
areas. Since we have considered very small groups we have data that might be used 
for predicting the behavior of individual mobile users’ behavior in each cell of a 
mobile network. 

2.6.3 Mobile users’ patterns 

Shafiq et al. [53] and Maier et al.[54] have examined traffic in a mobile network 
and they extracted dynamic temporal traffic patterns. In addition, they studied the 
traffic volume by different applications via mobile devices. Maier et al. showed that 
HTTP traffic was the dominant share of the total traffic and that Apple products had 
the largest share of the user devices in their traces. With regard to application 
penetration, the web browser was the most popular application being used, while 
about 20% of mobile users were using Google’s YouTube app. 

Gember et al.[55] collected traffic for both mobile and PC devices for three days 
in campus Wi-Fi networks. Instead of characterizing this traffic by application, they 
summarized the traffic patterns by protocol. They found that HTTP traffic comprised 
97% of the total traffic volume generated by mobile devices. More specifically, 
video data accounted for 42% of HTTP traffic to/from mobile devices. They further 
compared the content similarity between mobile devices and PCs. Their results 
showed that mobile users repeatedly requested the same content more often than did 
PC users. This suggests deploying cache mechanisms could improve the users’ 
experience. Additionally, local caching in the device could save battery and reduce 
the need for the network to retransmit the same content. 
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3.3 Data Collection 
This section elaborates how the YouTube data was collected and filtered in this 

project. In section 3.2.1, the traffic measurement equipment used in the project is 
introduced. Section 3.2.2 explains the YouTube signaling system which helps to 
understand how to set the filtering rules in PacketLogic to collect the YouTube data. 
In the latter part of section 3.2.2, it shows how the collected data is filtered before it 
can be used to calculate the caching gain.   

3.3.1 Measurement equipment 

The measurement probe that was used for measurement was a Procera 
Network’s PacketLogic (PL 8720 for the north network and PL7720 for the south 
network) probe. This device is a scalable real-time traffic management tool which 
can be exploited in all types of network environments. It can be used for traffic 
filtering, traffic shaping, or to provide statistics for traffic analysis. It supports deep 
packet and flow inspection of IP packets. Packet content classification is 
implemented by using their PacketLogic Datastream Recognition Definition 
Language (DRDL)[56]. A wide range of criteria, such as session or connection, are 
supported in order to identify which applications are responsible for each datastream. 
Other than accurately identifying the type of stream, another unique capability of 
DRDL is using connection flags to classify traffic. For example, “Asymmetric”, 
“Beginning”, and “Streaming” are typical flags. These flags provide greater 
flexibility in traffic identification. 

The PacketLogic client is a graphical user interface used to configure and 
operate the PacketLogic probe. This client enables an operator to access all 
frequently used features. For example, configuring objects and rules sets to adjust 
the monitoring criteria to meet the probe operator’s needs, browsing the real time 
traffic data through Live View module, displaying statistical charts in the Statistics 
module, and so on. 

3.3.2 Data filtering 

As described previously, YouTube is one of the most popular video-on-demand 
websites and contributes a significant amount of traffic to the Internet. As a result, in 
this project, YouTube data was chosen to analyze the cacheability of video clips. 
This specific set of data was selected because YouTube users generate a number 
requests and upload and download a lot of video data. However, due to limited 
storage on the server that was used for post processing of the collected data, two 
filtering rules were created in the PacketLogic probe (1) to filter out YouTube video 
requests which we are interested and (2) to neglect all other traffic. 

In order to properly set up filtering rules, we need to understand the basic 
signaling used when retrieving video clips from YouTube. This signaling is shown in 
Figure 3-2. We focus on the process from when the video clip starts to be 
downloaded. For PC users, Adobe Flash Player is used for video download and 
playback. When this player is ready to download the video, the player sends a 
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in the filtering rules ensured that we only record the initial part of each TCP session 
to avoid downloading the streaming media data. Thus, the number of requests was 
used to calculate a hit ratio. 

Gross gain We assume that there is a proxy cache for each area. All the users’ 
requests will be analyzed by the proxy cache to decide whether to 
forward the request to the YouTube sever or not. If the video clip 
is already stored in the cache, then the video data from the cache 
will be sent directly to the user. Otherwise, the proxy cache will 
send a request to the YouTube server to retrieve the video clip. 
Once the proxy receives the video clip, the proxy cache will store 
it in its local storage. The gross gain is the gain that can be 
obtained from a local proxy cache and is defined as: ݏݏ݋ݎܩ	݃ܽ݅݊ = ்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௤௨௘௦௧௦ି௨௡௜௤௨௘ ௡௨௠௕௘௥	௢௙	௩௜ௗ௘௢	௖௟௜௣௦்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௤௨௘௦௧௦

 

The gross gain does not reveal the individual user behavior. A high 
gross gain can be obtained when a lot of users share the same 
interests and hence request the same video clips. This can also 
occur when a few heavy users request video clips multiple times, 
even though they do not have any common interests. 

Terminal gain If we assume that each end device has an unlimited sized cache, 
then this cache can store every video which has been requested by 
this end node, hence the delay to retrieve a video from either the 
local proxy or the YouTube sever will be avoided. This gain is 
defined as: ݈ܶ݁ܽ݊݅݉ݎ	݃ܽ݅݊ = ݂݋	ݎܾ݁݉ݑ݊	݈ܽݐ݋ܶ ݏݐݏ݁ݑݍ݁ݎ − ݁ݑݍ݅݊ݑ∑ ݎܾ݁݉ݑ݊ ݂݋ ݈ܽݐ݋ܶݎ݁ݏݑ	ݎ݁݌	ݏ݌݈݅ܿ	݋݁݀݅ݒ ݎܾ݁݉ݑ݊ ݂݋ ݏݐݏ݁ݑݍ݁ݎ  

 If the terminal gain is very high, then each terminal requests the 
same video several times. 

Net gain Net gain eliminates the gain from one user’s repeated requests in 
order to show how much we can benefit from the repeated 
requests from multiple users. If we assume that the number of 
unique video clips is n, then the net gain is defined as ܰ݁ݐ	݃ܽ݅݊ = ∑ ே௨௠௕௘௥	௢௙ ௨௦௘௥௦ ௪௛௢ ௥௘௤௨௘௦௧௘ௗ ௩௜ௗ௘௢(௫)೙భ ିே௨௠௕௘௥ ௢௙	௨௡௜௤௨௘	௩௜ௗ௘௢	௖௟௜௣௦்௢௧௔௟ ௡௨௠௕௘௥ ௢௙ ௥௘௤௨௘௦௧௦

 The net gain is calculated based on the data transferred in each 
area. Our goal is to see if user in each small area request similar 
content or not. As a baseline, random groups were generated for 
comparison. These random groups were selected from among the 
customers in the whole north or south network, such that each 
group contains exactly the same number of users in each 
geographic area. This random selection was executed 50 times and 
the hit ratio shown in the graph is the mean of the 50 
corresponding hit ratios. 
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The CDF graphs in the middle represent the time interval between requests by 
two different users for the same video clip. We assume that each end device can 
cache everything and if requests for the same video clip come from different users 
within a short time period, then it may be possible to set up a P2P distribution system 
assuming that there are enough active (i.e., on-line) users who want to watch same 
video clips. We studied this possibility by measuring the time intervals between 
requests for the same content. If they are very close to each other and they are in the 
same small network, then it is feasible to set up a P2P distribution system for small 
networks which is configured to preferentially select local peers. The time between 
these users’ requests is the time from when one user requests a given video clip until 
another user requires the same video clip. According to our data, 50% of replays 
requested by different users happened within 30 hours. Unfortunately, these replay 
requests are not temporally very close to each other. This suggests that a P2P system 
is not beneficial as it will not reduce the inbound traffic (into the small network). 

The bottom graph shows the CDF of time intervals between requests for 
different video clips from the same user. It indicates how quickly one user changes 
from the current video clip to another video clip. Since not all video clips will be 
watched from the beginning to end and the cache, either proxy cache or terminal 
cache has limited storage, this result helps to determine how we should limit the 
amount of each video clip that is stored. About 75% of requests occurred within six 
minutes, with a median value of roughly 2.5 minutes for both networks. This 
matches the result in [52] as users finished watching a clip within three minutes. To 
limit the amount of the data that has be stored and to simplify the analysis process, 
the cache might only keep part of each video clip. However further investigation of 
user behavior should be done by examining which portion of the video clip are 
mostly watched by the users. This would make the cache to be more efficient, as it 
would allow a higher hit rate for the portions of the clips that are watched – by not 
caching the portions of the video clips that are not watched. 

Another interesting question is when the replay occurs. Do people repeatedly 
request the same video at a specific time or is the replay time randomly distributed? 
Figure 4-25 and Figure 4-26 show the probability of a replay of all the video clips 
from the same user since the video clip was firstly requested which have been 
observed during the data collection period. The x axis is a relative time scale with 
the time when a video clip is requested as time zero. The y axis shows how many 
repeated requests for the same video are made by the same user at a time after time x. 
This replay pattern shows the peak periodically appears every 24 hours which means 
that popular video clips are watched by the same user every day after he or she first 
requested that video clip – if they thought it was worth taking a look again. The 
number of requests drops rapidly during the following 12 hours after the replay 
happens and reaches the lowest point in 12 hours. This phenomenon suggests that 
the cache should keep track of the time when each popular video clips’ is requested 
by a user and remove these video clips after 12 hours in order to make space for new 
video clips – but the cache should put the old video clips back into the cache every 
24 hours when most users will watch their favorite video clips again. 
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4.9 Cacheability by user device type 
In our dataset the various kinds of devices could be identified by the user agent 

string included in the requests. However, the same device (such as iPhone or iPad) 
could be used by many users in a household, the user agent string is not sufficient to 
identify an end user. For example, if there are identical devices in one household, 
such as two iPhones and both are using Apple’s IOS 5 system, then we cannot 
distinguish between them and all of the requests will be considered as being from 
one user. 

Moreover in this project, a combination of MAC address and user agent string 
was used as the end device identifier in order to extract more features during the 
analysis. However, the MAC address is typically either the home router’s MAC 
address or the end device’s MAC address when it is directly connected to the home 
gateway through an Ethernet cable. Even if only one device is connected to the ISP, a 
using suing this device (typically a PC) can open several browser instances or even 
use different browsers to watch YouTube videos. In this case, more than one 
combination of MAC and user agent string will occur and these requests will be 
considered as coming from different users.  

Figure 4-27 shows the user device type distribution in both networks. Four kinds 
of user device types are considered in this project: PC, mobile device, IPTV/Play 
station, and unknown. Not surprisingly, PCs accounts for more than 70% of the 
devices. Mobile devices comprise about 20% and 10% of devices in the north and 
south network (respectively). IPTV and Play station devices were also observed in 
our dataset, although they comprised less than 1.5% of devices in either network. 
This indicates that users are starting to use the new devices to request online media 
rather than or in addition to using traditional PCs and mobile devices. However, as 
there are so few users of these devices in our collected data it is not possible to use 
this data for statistical analysis. Additionally, there were some user agent strings we 
could not properly process, these we have placed into the unknown category*. To 
ensure that we have sufficient data to perform statistical analysis this project focused 
only on two major user device types: PCs and mobile devices. 

                                                             
* A list of these unknown user agent strings are listed in Appendix A. 
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5 Conclusions and Future Work 

In this chapter, the conclusions of this project are summarized and some possible 
future work is suggested. The chapter ends with some reflections on economic, 
social, and ethical issues associated with this thesis project. 

5.1 Conclusions 
In general, this thesis project contributes to understanding YouTube traffic 

patterns, user behavior, and the potential caching gains of a proxy cache and terminal 
cache for two municipal networks in Sweden based on data collected during one 
month. The methodology used in this project can be easily customized for other 
similar traffic monitoring, data collection, and analysis; for instance to look at 
Facebook, SVT, or other highly used traffic source. Unlike previous works, the user 
identifier used in this project is a hash of the MAC address and user agent string. 
This combination has been used in an attempt to consistently identify unique user 
devices while protecting the user’s identity. This combined identifier is more precise 
than using an IP address, especially as the later are dynamically allocated to different 
devices for a certain lease time and may over the data collection period be allocated 
to many different devices. 

 This project demonstrated based upon statistical analysis of YouTube video clips 
that a large share of requests for video clips are made for a small number of distinct 
video clips. This phenomenon suggests there is a potential for gains by using caching. 
The traffic pattern of these requests was summarized by week, day, and hour. 
Weekends are the days with the greatest number of requests per day and on average 
the evening time from 18:00 to 22:00 are the peak hours. 

 The popularity distribution of the video clips was sown to follow a Zipf law 
distribution. This is easily seen as a straight line on a log-log plot of request 
frequency versus the ranked order of most popular video clips. This indicates that it 
may be possible to predict a video clip’s popularity, this helping to decide what 
content should be placed in the cache. However, the popularity drop model per week 
over the whole data collection time period suggests that only a small number of the 
video clips will still be popular over a period of weeks. These long term most 
popular video clips should be kept in the cache in order to get a higher caching gain. 

The user replay pattern has also been studied in this project. Only 10% of the 
users generated more than 100 requests over the entire data collection period 
indicating that they could be labeled as heavy users. A user replay pattern has been 
presented which suggests that people switch their interests in video clips quite 
rapidly, as within 6 minutes half of the users want to watch a different video clip. 
This tells us that it is no need to cache the entire video clip, but only a small portion 
of it which requires further analysis to be done to decide which portion of each video 
should be cached.  

Another interesting phenomenon is that people would like to replay the same 
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content every 24 hours after the first time the video was watched – if they found it 
interesting. Consequently, the lifetime of each video should be further explored, to 
decide which content to put into the cache and for how long it should remain in the 
cache. This is an obvious part of suggested future work. 

 An infinite sized proxy cache for each graphical area was assumed throughout 
this project. The cache gain was calculated based upon the hit rate. Our results show 
that people from the same area share common interests which could be a 
geographical locality property. This cache gain ranges from 30% to 45%. The cache 
gain for PC users and mobile device users were analyzed and they showed different 
user behaviors. One of the important conclusions is that is more useful to enable 
terminal caching on mobile device rather than set up a proxy cache for small groups 
of device users in the same area, i.e, proxy caching in the base station or access point 
will not be an efficient solution as it will not reduce the backhaul link traffic as 
much a terminal caching will. 

5.2 Future Work 
In this master’s thesis project, we studied the possible caching gain based on an 

infinite cache both for a proxy cache and a terminal cache. The next step is to 
determine the optimal cache size. In our work, a weekly cache has been proposed 
which is emptied at the end of each week.  However, to design a more intelligent 
cache, the video clip’s lifetime should be monitored and a model developed to 
predict its lifetime. This could be done by tracking newly watched video clips on 
YouTube within the target network, in order to see how their popularity grows and 
drops. Based on this information we might have an input that could help to decide 
how long the content should be kept in the cache. When a new video clip is 
requested by a user, if the cache is full, then the oldest entry with least number of 
requests should be deleted to release some space for the new content.  

Another question is whether it is necessary to cache the entire video clip. 
According to our results, over half of the users switch to another video clip within 
six minutes. This suggests that the viewing time of each video is more important 
than its actual duration. More accurate analysis could be done by analyzing the TCP 
sessions of each video clip. The obstacle to this analysis is that video clips are 
downloaded in chunks and each chunk opens a new TCP session. However, the 
video ID inside each request could be used to group a set of related TCP sessions, 
the viewing duration of each video clip could be calculated. This time period could 
be combined with the encoding rate to determine the amount of a video clip that has 
been request in numbers of bytes. This could be compared to the total size of the 
video clip. The encoding rate can be found in the videoplayback request in the itag 
field. 

In addition to geographical locality, understanding content locality is another 
input to designing a more efficient cache scheme for YouTube video clips. To get 
more detailed content information about each video clip, the YouTube API could be 
used to retrieve the metadata based upon the video clip’s ID. The video clip’s ID can 
be found in the request sent by the device to the YouTube server as this request starts 
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with the URL: “youtube.com/watch?v=” on a PC and 
“m.youtube.com/user_watch?app=” on a mobile device. An 11-digit string indicates 
the unique video clip ID after the label “video_id”. For example a cache could be 
designed to store a certain category of YouTube clips which has the majority of 
views. We also noticed that each video clip generally has several related video clips 
which may have a higher possibility than other video clips that a user will choose 
them to watch. For this reason pre-caching the beginning of each of these related 
video clips could potentially reduce the access delay before they can start to play and 
further reduce traffic when other users in the local network request the same video 
(as this video clip or at least part of it will now be in the proxy’s cache). 

As Figure 4-6 and Figure 4-7 shown, on average, the traffic load during the 
night is very low. Considering the energy consumption of the network and the 
caching system, this result suggests that the pre-caching could either be implemented 
during the night to release the burden during the peak hours or be achieved during 
the peak hours only and shutting down the caching system during the night to save 
energy.  

5.3 Required reflections 
This project studies the possibility and the potential benefits of using cache for 

YouTube system on the purpose of saving the Inter-ISP traffic thus to save the high 
transit fee. This is especially vital for the mobile operators to cope with the backhaul 
link limited bandwidth problem. Some of the cost savings for the operators will flow 
either to the users (in the form of low costs) or to the ISP’s shareholders in terms of 
increased profits. The method which is used to collect, filter and analyze the 
YouTube data in this project could be easily customized to do other similar studies 
for media streaming applications. Considering the limitations in the work, the 
proposal of future work is also provided which could motivate and pave the way for 
the continuous study. 
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Appendix A – Unknown user agent 

strings 

• 3gpp-gba YouTubeMobile/2.4.4 (gzip) 
• curl/7.16.3 (Linux 2.6.28 intel.ce4100 dlink.dsm380 i686; en-US; beta) 

boxee/1.5.0.23615-80d5f5b 
• curl/7.20.1 (mipsel-unknown-linux-gnu) libcurl/7.20.1 OpenSSL/0.9.8o 

zlib/1.2.3 libidn/1.19 
• DNTG-HTTPC/1.1 
• Dreambox HTTP Downloader 
• Dream Multimedia Dreambox Enigma2 Mediaplayer 
• <em>Mozilla/3.0</em> 
• Evom/0.99m CFNetwork/520.3.2 Darwin/11.3.0 (x86_64) (MacBookAir3%2C2) 
• Free%20YouTube%20Downloader/2.2.0 CFNetwork/520.0.13 Darwin/11.1.0 

(x86_64) (MacBookPro7%2C1) 
• Free%20YouTube%20Downloader/2.3.0 CFNetwork/520.3.2 Darwin/11.3.0 

(x86_64) (MacBookPro5%2C1) 
• GMF/ 
• Gnash-0.8.10dev 
• Gnash-0.8.7 
• Gnash-0.8.8 
• Lavf52.110.0 
• Lavf52.34.0 
• Lavf52.78.5 
• libcurl-agent/1.0 
• libsoup/2.26.3 
• Lynx/2.8.7dev.4 libwww-FM/2.14 SSL-MM/1.4.1 OpenSSL/0.9.8d 
• Mozilla/4.0 (compatible;)         
• Mozilla/4.0 (compatible; NativeHost) 
• Mozilla/4.0 (Windows 7 6.1) Java/1.6.0_24 
• Mozilla/4.0 (Windows 7 6.1) Java/1.6.0_25 
• Mozilla/4.0 (Windows 7 6.1) Java/1.6.0_29 
• Mozilla/5.0 
• Mozilla/5.001 (windows; U; NT4.0; en-US; rv:1.0) Gecko/25250101 
• \"Mozilla/5.0 (compatible; AMI/1.0)\" 
• Mozilla/5.0 (Windows; U; Windows NT 5.1; en-US; rv:1.9.0.17) Gecko 

Miro/4.0.5 (http://www.getmiro.com/) 
• Mozilla/5.0 (Windows; U; Windows NT 6.0; en-US; rv:1.9.2.15) 

Gecko/20090226 
• Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.0.17) Gecko 

Miro/4.0.6 (http://www.getmiro.com/) 
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• Mozilla/5.0 (Windows; U; Windows NT 6.1; en-US; rv:1.9.1.15) 
Gecko/20090226 

• Mozilla/5.0 (X11; U; Linux MIPS32; pt_PT) AZBox 
• MPlayer/SVN-r30099-4.2.1 
• MSDL (comptible; LG NetCast.Media-2011) 
• NetSurf/1.2 (NetBSD; amd64) 
• Plex/10.1 Git:c0d3aeb (Mac OS X; 11.3.0 x86_64; http://www.plexapp.com) 
• Plex/10.1 Git:Unknown (Windows; Windows 7, 64-bit (WoW) Service Pack 1 

build 7601; http://www.plexapp.com) 
• Primeport 
• PVPLAYER 04.07.00.01  
• SONY BD/2010; M03.R.769 
• SONY BD/2010; M04.R.787 
• SONY BD/2011; M07.R.0579 
• Streamium/1.0 
• Touch Diamond2 T5353 / YouTube-3.0 
• Update_Detector 
• Wget 
• Wget/1.12 
• YouTube/1.0 CFNetwork/548.0.4 Darwin/11.0.0 
• YouTubeMobile/2.4.4 (gzip) 
• YouTubeMobile/2.4.9 (gzip) 
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