
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

M U S S I E T E S F A Y E

 Securing programmable logic controllers

 Secure Reprogramming of
a Network Connected Device

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Secure Reprogramming of a
Network Connected Device

Securing programmable logic controllers

Mussie Tesfaye

mtesfaye@kth.se

2012.10.25

Academic adviser and examiner: Prof. Gerald Q. Maguire Jr.

Communication Systems
School of Information and Communications Technology

KTH Royal Institute of Technology
Stockholm, Sweden

i

Abstract

This is a master’s thesis project entitled “Secure reprogramming of network
connected devices”. The thesis begins by providing some background information to
enable the reader to understand the current vulnerabilities of network-connected
devices, specifically with regard to cyber security and data integrity. Today
supervisory control and data acquisition systems utilizing network connected
programmable logic controllers are widely used in many industries and critical
infrastructures. These network-attached devices have been under increasing attack for
some time by malicious attackers (including in some cases possibly government
supported efforts).

This thesis evaluates currently available solutions to mitigate these attacks. Based
upon this evaluation a new solution based on the Trusted Computing Group (TCG’s)
Trusted Platform Modules (TPM) specification is proposed. This solution utilizes a
lightweight version of TPM and TCG’s Reliable Computing Machine (RCM) to
achieve the desired security. The security of the proposed solution is evaluated both
theoretically and using a prototype. This evaluation shows that the proposed solution
helps to a great extent to mitigate the previously observed vulnerabilities when
reprogramming network connected devices.

The main result of this thesis project is a secure way of reprogramming these
network attached devices so that only a valid user can successfully reprogram the
device and no one else can reprogram the device (either to return it to an earlier state,
perhaps with a known attack vector, or even worse prevent a valid user from
programming the device).

Keyword: SCADA, PLC, SCADA security, SCADA networks, PLC security,
Trusted computing, TCM, TPM, Embedded security, Digital security.

iii

Sammanfattning

Avhandlingen börjar med att ge lite bakgrundsinformation för att läsaren att förstå
de nuvarande sårbarheten i nätverksanslutna enheter, särskilt när det gäller IT-
säkerhet och dataintegritet. Idag övervakande kontroll och datainsamlingssystem
använder nätverksanslutna programmerbara styrsystem används allmänt i många
branscher och kritisk infrastruktur. Dessa nätverk anslutna enheter har under ökande
attacker under en tid av illvilliga angripare (inklusive i vissa fall eventuellt regeringen
stöds insatser).

Denna avhandling utvärderar för närvarande tillgängliga lösningar för att minska
dessa attacker. Baserat på denna utvärdering en ny lösning baserad på Trusted
Computing Group (TCG) Trusted Platform Modules (TPM) specifikation föreslås.
Denna lösning använder en lätt version av TPM och TCG:s pålitliga dator (RCM) för
att uppnå önskad säkerhet. Säkerheten i den föreslagna lösningen utvärderas både
teoretiskt och med hjälp av en prototyp. Utvärderingen visar att den föreslagna
lösningen bidrar i stor utsträckning för att minska de tidigare observerade sårbarheter
när omprogrammering nätverksanslutna enheter.

Huvudresultatet av denna avhandling projektet är ett säkert sätt omprogrammering
dessa nätverksanslutna enheter så att endast ett giltigt användarnamn framgångsrikt
kan omprogrammera enheten och ingen annan kan programmera enheten (antingen att
återställa den till ett tidigare tillstånd, kanske med en känd attack vector, eller ännu
värre förhindra en giltig användare från programmering av enheten).

Nyckelord:SCADA, PLC, SCADA säkerhet, SCADA-nätverk, PLC säkerhet,
pålitlig datoranvändning, TCM, TPM, inbäddad säkerhetlösningar, datasäkerhet

iv

Acknowledgement

The events leading to this point has been full of unexpected surprise and the time
had never been easy. Even though I would like to thank all those, especially professor
Gerald Q. “Chip” Maguire Jr. and my family, who has helped me in one way or the
other. I know my simple words cannot express the sincere and humble gratitude I feel.

I would like to take this opportunity to express my heart felt gratitude and
appreciation to professor Gerald Q. “Chip” Maguire Jr., my examiner. His advice and
feedback was not only been invaluable, but also has been a personal motivation and
corner stone of my work. He has helped me express my thoughts more clearly and
inspired me to aim higher. He never hesitated to read and comment on my work nor
did he hold back from giving me important advice or answering my questions. Every
meeting I had with him inspired me to work more and harder. Thank you for
everything and may the Almighty God bless you for your help.

I would also like to extend my gratitude to my family and friends who have
always supported and comforted me. I would like to thank you all for standing by me
when I needed help and for believing in me when I had lost all hope. I am forever in
debt for all the things you did.

Sincerely,

Mussie Tesfaye

v

Table of Contents

Contents Abstract .. i Sammanfattning .. iii Acknowledgement ... iv Table of Contents... v List of Figures ... vii List of Tables .. ix List of Acronyms and Abbreviations.. xi 1 Introduction ... 1 1.1 Problem context .. 2 1.2 Problem Statement ... 4 1.3 Structure of the thesis ... 5 2 Network Connected Devices ... 7 2.1 Programmable Logic Controllers (PLC) .. 7 2.2 Remote Terminal units (RTU) ... 9 2.3 Intelligent Electronic Devices (IEDs) ... 9 2.4 Other components ... 10 2.4.1 Routers ... 10 2.4.2 Firewalls .. 10 2.4.3 Terminals .. 10 3 Digital Security .. 11 3.1 Cryptography ... 12 3.2 Authentication Certificate .. 13 3.3 Trusted Computing ... 15 3.3.1 TCG TPM Specifications .. 16 3.4 Microsoft’s Next Generation Secure Computing Base (NGSCB) 18 3.5 ARM TrustZone ... 18 3.6 Hardened Processors ... 19 4 SCADA system: Networks and Protocols .. 20 4.1 Modbus ... 20 4.2 PROFIBUS .. 21 4.3 PROFINET .. 21 4.4 High Level Data Link Control (HDLC) ... 21 4.5 Distributed Network Protocol (DNP3) ... 22 4.6 TCP/IP ... 22 5 Assuring Industrial Control System Security ... 23 5.1 SCADA Security ... 23 5.1.1 Security Analysis of SCADA ... 23 5.1.2 What are the causes of security risks? ... 24 5.1.3 Top ten SCADA vulnerabilities .. 25 5.2 Best Practices and recommendations for a secure SCADA system 26 5.3 Possible implementation (solutions) for SCADA security 27

vi

 6 Method to achieve the project’s goal .. 31 6.1 Detailed Goals and Requirements ... 31 6.2 Method .. 31 7 Integrated TCM for a Network Connected Device .. 34 7.1 The Access Controller .. 35 7.1.1 Requirements .. 35 7.1.2 Isolation of the TPM Components .. 36 7.1.3 Isolated TPM Memory ... 36 7.1.4 Implement privilege and Access Control .. 37 7.1.5 Implementation .. 37 7.2 The I/O module ... 37 7.2.1 Requirements .. 38 7.2.2 Implementation .. 38 7.3 The cryptographic engines .. 38 7.3.1 Requirements .. 40 7.3.2 Implementation .. 40 7.4 The Execution Engine ... 40 7.4.1 Requirements .. 41 7.4.2 Implementation .. 41 8 Software components ... 43 8.1 The Secured Boot Loader (SBL)... 43 8.1.1 Requirement .. 43 8.1.2 Implementation .. 43 8.2 The Secured Protocol (SP) ... 45 8.2.1 TPM as a Cryptographic Engine .. 46 8.3 Reliable Computing Machine (RCM) .. 48 9 Analysis and Implementation ... 49 9.1 Security Analysis .. 49 9.2 Implementation .. 50 9.3 Results and Measurements .. 51 9.4 Discussion ... 54 10 Conclusions and Future work ... 57 10.1 Conclusions .. 57 10.2 Future work ... 58 10.3 Required reflections ... 59 References ... 61 Appendix A. VHDL of implementation .. 65 Appendix B. Simulation results .. 83

vii

List of Figures Figure 1: Typical SCADA network .. 1 Figure 2: Public Private Key encrypted communication .. 14 Figure 3: TCP components proposed by TCG .. 17 Figure 4: Overview of the proposed system ... 32 Figure 5: Typical PLC with integrated TCM .. 35 Figure 6: SBL flow chart .. 44 Figure 7: Flow graph for secured update .. 47

ix

List of Tables Table 1: Five level ISA-97 model .. 2 Table 2: TCM area and execution time .. 52 Table 3: Siemens s7-300 CPU family execution time ... 52 Table 4: Summary of execution performance rate .. 53

xi

List of Acronyms and Abbreviations

ACL Access control list
AGA American Gas Association
AIK Attestation Identity Key
CA Certification Authorities
DCS Distributed control system
DIR Data Integrity Registers
DMA Direct Memory Access
DoD (United States of America) Department of Defense
EEPROM Electrically Erasable Programmable ROM
EK Endorsement Key
HMI Human-machine interfaces
I/O Input or Output
IP Internet protocol
ISA International Society of Automation
ISO International Organization for Standardization
OS Operating System
OSI Open Systems Interconnection
PCR Platform Configuration Register
PKI Public Key Infrastructure
PLC Programmable logic controller
Prk Private Key
Puk Public Key
RAM Random Access Memory
RCM Reliable Computing Machine
RNG Random Number Generator
ROM Read Only Memory
RSA Ron Rivest, Adi Shamir, and Leonard Adleman encryption
RTM Root of Trust for Measurement
RTR Root of Trust for Reporting
RTS Root of Trust for Storage
SBL Secured Boot Loader
SCADA Supervisory Control And Data Acquisition
SHA Secured Hashing Algorithm
SK Secret Key equivalent to EK
SP Secured Protocol
TCG Trusted Computing Group

xii

TCM Trusted Computing Module
TCP Transport Control Protocol
TCPA Trusted computing platform alliance
TPM Trusted Platform Modules
UDP User datagram protocol
VFD Variable frequency drive
VHDL VHSIC Hardware description language

1

netw
indu
for
nuc
SCA
elec
supp

occu
prog
base
CPU
and
mac
typi

ente
Aut
prod

1 Intr

A superviso
work conne
ustrial, infra
controlling
lear or coa
ADA syste
ctrical powe
ply systems

A SCADA
upying the
grammable
ed on the in
U of the PL

control sta
chine interfa
ical industri

The intern
erprises and
tomation (IS
duction mo

roduct

ory control
ecting one
astructure,

g and moni
al burning p
ems are als
er distributi
s.

A system in
bottom of
logic cont

nformation g
LC. These P
ation. The
ace (HMI).
ial SCADA

national sta
d control s
SA) in ISA
odeling. IS

tion

and data ac
or more d

and facility
itoring indu
power plant
so used to
ion grids, n

ncludes a n
a hierarchy

trollers (PL
gathered by
PLCs are co
command
Using this H
system is s

Figure 1: T

andard for
systems has
A-97[2]. Thi
SA-95 defin

cquisition sy
devices tha
y based pro
ustrial facil

nts, wind fa
o monitor a
natural gas

network of
y. These se

LCs). A PL
y sensors un
onnected ei
and contro
HMI, users

shown in Fig

Typical SCAD

developin
s been defi
is standard
nes a five

ystem (SCA
at are used
ocesses[1].
lities, such

arms, water
and contro
and oil pip

f devices w
ensors and a
LC is used
nder the con
ither to oth
ol stations u
 can progra
gure 1.

A network

ng an auto
ined by the
provides th

e-level hier

ADA) is a sp
d to contro
SCADA sy
as manufa
treatment,

l infrastruc
peline syste

with sensors
actuators ar
to control

ntrol of logic
er PLCs or
usually pro
m and contr

omated inte
e Internatio
he overall
rarchical m

pecial comp
ol and mon
ystems are
acturing pl

and refine
ctures, such
ems, and w

s and actua
re connecte
the actuato

c running in
r to a comm
ovide a hum
trol the PLC

erface betw
onal Societ
architecture

model and 1

puter
nitor
used
ants,

eries.
h as

water

ators
ed to
or(s)
n the
mand
man-
Cs. A

ween
y of
e for
lists

2

components and services to be categorized into each level. These five levels form a
triangle with level 0 at the broad base and level 4 at the tip of the triangle. The first
three of these levels were shown in Figure 1. The five levels are shown in Table 1. A
security breach at level 2 could bring down the whole production process, halt its
operation, and/or cause severe danger to the plant and/or human beings.

Table 1: Five level ISA-97 model

Level 0 Physical level containing sensors, actuators and process equipment,
such as motors and valves.

Level 1 Programmable logic controllers working on sensor output,
commands for actuators, and communicating with higher levels and
other level-1 equipment.

Level 2 Supervisory control level (SCADA) and Human-Machine Interface
(HMI) are level 2 equipment and systems that communicate with,
control, and monitoring lower level equipment’s performance.

Level 3 Manufacturing operations and control works with dispatching
production, detailed production scheduling, production material
selection, modifying production schedule, and locally optimizing
resources for individual production processes. This level is also
concerned with process management, production planning and
tracking, and performance analysis.

Level 4 Business planning and logistics level is concerned with plant
production scheduling, operational management, and collecting and
maintaining overall energy use, raw materials, spare parts, organizing
manpower, maintaining and servicing machines, and optimizing the
overall plant’s operations.

1.1 Problem context
Digital security, virus attacks, and computer hacking have moved from being an

interesting theme of a science fiction movie to reality, resulting in loss of personal
information and denial of service for major services. Today attacks are being waged
as a form of cyber warfare with attacks designed to damage industrial and
infrastructure targets.

SCADA systems used to control very critical systems such as power plants,
sewerage treatment systems, water treatment plants, and almost all industries have
been found to be quite vulnerable to many forms of security breaches. These security
breaches occur either because the SCADA networks are connected to a larger
corporate network, personnel carry in the attack code (either consciously or
unconsciously), or due to vulnerabilities in the operating system on which the HMI
applications are running. With the increasing political and social instability in the
world, SCADA systems are prime targets for attacks; hence there is an increasing
need to secure SCADA systems.

3

Owing to vulnerabilities in the design, deployment, and use of SCADA systems
the number of security breaches to SCADA systems is increasing daily. Most of these
incidents do not get into the news for security reasons. Some attacks are not even
detected until it is too late[3].

Gathering information about security breaches within such systems is difficult
because most security breaches are kept secret. There are those who wish to keep
these breaches secret for security reasons, while others wish to keep these breaches
secret because they are concerned that the public, their customers, their shareholders,
etc. might find the management or workers in the facility to be careless, negligent, or
malicious. However, there have been some publically reported incidents, such as the
Australian sewage release incident where a disgruntled employee accessed the sewage
SCADA system and released a large amount of sewage into a public area[1,4,5]. In
January 2003, an incident occurred where a Slammer worm bypassed a network
firewall and disabled the safety monitoring system of the Davis-Basse nuclear power
plant in Oak Harbor, Ohio, USA for six hours, resulting in the plant being shutdown
to avoid an accident[6]. In April 2007, the United States Nuclear Regulatory
Commission reported it had to shutdown a nuclear reactor (Unit 3) at the Browns
Ferry nuclear plant near Athens, Alabama, USA because the safety variable frequency
drive (VFD) stopped responding due to excessive traffic on the SCADA network[7].

Stuxnet is a computer worm that was designed to affect industrial control systems.
The worm managed to attack several industrial control systems in Iran, Indonesia, and
India until it was exposed in 2010. In September 2010, Iran admitted that the Stuxnet
worm had infected the Bushehr nuclear reactor facility causing a major setback in
their plans for uranium enrichment[8,9]. This worm infected around 30,000
computers in Iran and managed to reprogram PLCs connected to centrifuges in the
nuclear plant causing them to spin out of control[10].

The Stuxnet worm exploited publically known and unknown vulnerabilities in
Microsoft Windows to copy itself from one PC to another through the network and
infected removable media. It attaches itself to Step 7 (the Siemens PLC configuration
and management tool) and whenever the PLC programmer application is launched the
worm is executed. It formed a peer-to-peer (P2P) network to upgrade itself and
exchange SCADA system information with the attacker. It managed to bypass
security products and utilized a rootkit to gain privileged access to the system and its
resources. The worm replicated itself through the network searching for HMI’s
connected to specific Siemens PLCs controlling motors running at a specific
frequency. When a target was acquired the worm modified the Step 7 program sent
from the HMI to the PLC to cause the motors to spin at varying rates without causing
any alarms to occur. Had it not been detected, the worm was designed to delete itself
at a specific time so that no one would have known it had existed. The Stuxnet worm
was seen as a wakeup call to the SCADA security community and it was my personal
motivation for undertaking this thesis project. Further details of the Stuxnet work can
be found in [3, 10-12].

Stuxnet is only one example of a worm targeting SCADA systems; there are many
other unreported intrusions and attacks. Despite the knowledge that attacks are taking
place against SCADA systems, today SCADA networks are still vulnerable. The
vulnerability in SCADA systems is alarming and devising a single solution that would
address all the vulnerabilities might be impossible. However, combining different

4

security solutions at different levels of the production model[2] could help overcome
at least some of these problems.

The above are only a few of the incidents that have made the public concerning
about the security of SCADA systems and the effects of a successful attack. Even
more disconcerting is that most incidents are not reported. How to secure these
vulnerable and mission critical systems remains an unanswered question.

1.2 Problem Statement
This master’s thesis will investigate state of the art solutions for securely

reprogramming network-connected devices. The thesis will propose a solution and
evaluate it theoretically. In addition, the thesis will describe the implementation and
evaluation of a prototype of the proposed solution.

As mentioned above, SCADA systems are frequently used to control very critical
and essential systems. Unfortunately, these systems are currently vulnerable to
external attacks and exploits – as most such systems were initially designed with the
expectation that they would be completely isolated, i.e., that there would be no
connection to external networks.

One of the most devastating attacks on SCADA system involves maliciously
reprogramming the PLCs, as in this way the attacker can perform an attack where the
actual effects of the attack do not occur until later – thus making it hard to correlate
the attack with the effects of the attack. Additionally, the operator of the SCADA
system may need to reprogram specific controllers to correct flaws or add new
functionality. Finding a secure way of reprogramming these devices not only means
that a valid user successfully reprogram the device, but also that no one else can
reprogram the device (either to return it to an earlier state, perhaps with a known
attack vector, or even worse prevent a valid user from programming the device). To
fully address this problem we must devise solutions that address the following
requirements:

• The devices shall only be programed based upon commands from a valid user.
This means that commands sent from a valid user’s terminal by malicious
software or compromised commands that have penetrated the network’s
boundary should be unable to alter the programming of a device connected to
the network.

• Only valid users should be able to program the devices, i.e. neither an
imposter assuming our identity on the network nor a user without the
appropriate privilege can reprogram a device.

• We should be able to program the devices whenever we wish, i.e. no one
should be able to block us or keep us from controlling and programming the
devices.

These requirements mean that to reprogram the devices we must both have the
appropriate privileges and our network needs to be secured from external intrusions.
Furthermore, we need to protect the devices on the network from a denial of service
attack. To achieve these goals we will study the basic properties of a SCADA network
and the state of the art solutions that have been proposed by others. Following this we
will propose a solution and later design and evaluate a prototype of our proposed
solution.

5

1.3 Structure of the thesis
The four chapters, chapter 2 to chapter 5, will give a brief background explanation

of SCADA components, networks, and protocols. These chapters also address why
these systems are so vulnerable and what could be done or what is being done to
mitigate these vulnerabilities. This will be followed by an evaluation of existing
vulnerabilities and solutions. Then chapter 6 to chapter 8 will present the proposed
solution that would help mitigate these vulnerabilities, and also develop and discus
the required specifications for the solution. Chapter 9 and chapter 10 will give the
analysis and conclusion, respectively. Summary outline of each chapter is given
below.

Chapter 2 will give brief introduction of SCADA components. It will start with an
emphasis on programmable logic controllers, remote terminal units and intelligent
electronic devices then a less detailed introduction of the network components will
follow. This chapter will lay the foundation for the paper by answering what network-
connected devices mean.

Chapter 3 will give introductory review about digital security. The chapter will
dwell on cryptographic methods basic principle followed by brief explanation on
certification and authentication. The chapter also gives introduction to the Trusted
Computing principles, followed by the brief outline of the trusted computing
specifications and couple of implementations done by ARM, and Microsoft. These
sections will provide the basic concepts concerning digital security and trusted
computing that is needed to understand this paper.

Chapter 4 will briefly introduce the SCADA networks protocols. Here the critical
features of some common SCADA protocols will be presented. The chapter is
intended to give an insight to the SCADA network and protocols and to learn the
strength, weakness, and features of the protocols. The previous two chapters along
with this chapter are used to answer the basic question regarding what is network
connected devices; what is security in digital world or in network connected devices;
and how are these devices connected to the network. With these three chapters the
thesis topic “Secured Reprogramming of Network Connected Devices” would be
justified.

Chapter 5 will evaluate methods to assure SCADA networks security. To achieve
this an evaluation of security risks and causes of security breach will be presented.
This will be followed by a summary of best practices that will help to achieve the
desired level of security. Finally couple of implemented methods will be presented
and compared against the best practice and the vulnerabilities addressed.

Chapter 6 will breakdown the goals and proposes a solution to achieve these
goals. Here an overview of the proposed system is presented. This will provide the
reader with an overview of the whole system, and individual components proposed
here will be presented in the following two chapters.

Chapter 7 will present the hardware implementation proposed in this paper. It will
outline the basic components required to implement a lightweight version of the
TCM. Each components function, requirement and implementation will be presented.
This would give the hardware implementation detail and outline the requirements and
propose implementations.

6

Chapter 8 will present the software components required by the proposed
solutions. This will include the software needed to achieve a secured boot, which is a
boot loader software running on the main processor; the communication protocol
implemented on the proposed hardware; and the software needed to implement a
reliable computing machine. A detailed explanation is given on each component in
the subsequent subsections.

Chapter 9 will present the analysis and implementation. Here an informal security
analysis will be presented where the proposed system is weighed against the best
practices and top vulnerabilities proposed in chapter 5. This will be followed by
discussion on the implemented prototype and result and measurement section, which
will compare the implementation cost and execution cost against a typical PLC.
Finally a discussion on the merits and demerits of the proposed system as gathered in
the previous sections will be presented.

Chapter 10 will present a conclusion on the overall aspect of “Secure
Reprogramming of network connected device” and a discussion on possible future
work will be presented. This will be the last chapter followed by reference section and
appendix of implementation code.

7

2 Network Connected Devices

This chapter describes some of the most important elements of SCADA systems,
with a focus on the devices that are attached to the network. The chapter begins by
describing PLCs, remote terminal units, and intelligent electronic devices. The
chapter ends with a description of some of the other devices commonly found in a
SCADA network.

2.1 Programmable Logic Controllers (PLC)
A PLC is a special form of a microprocessor-based controller that uses

programmable memory to store instructions and to implement functions such as logic,
sequencing, timing, counting, and arithmetic in order to control machines and
processes[13,14]. A PLC is specifically designed to handle a harsh industrial
environment, thus it is designed to tolerate and perform despite high/low
temperatures, high humidity, and/or strong vibrations. In addition, it is designed to
connect, sample, and communicate with digital and analog sensors. A typical PLC can
communicate over several different standard networks and protocols. The device is
designed so that technicians and programmers can easily program it. These features
give a PLC high flexibility, robustness, and reliability, making it the primary means to
provide computer control of industrial applications and control systems. PLC
applications range from simple motor control to continuous process manufacturing
industries and further to monitor & control devices and processes in almost any
industry.

PLCs were originally designed to replace relays, timers, and sequencers. Prior to
PLCs these other types of devices were used to implement hard-wired control panels.
Dick Morley, known as “Father of PLC”, invented the first PLC for General Motors
Corporation’s Hydra-Matic division in 1968[15,16]. The original device was similar
to a reprogrammable relay, which overcame the problems of fixed, wired relay control
systems. The next major leap forward was the introduction of cathode ray tube (CRT)
equipped programming devices[14], followed by an expansion in the amount of
memory, an increased number of input/output (I/O) interfaces, analog I/O, and serial
point to point communication interfaces. Further improvements were introduced with
microprocessor based PLCs, local area network interfaces, universal programming
devices, and the use of improved redundant architectures. Additional improvements
continue to be introduced with regards to better programming languages, improved
security, and more flexible and higher data rate communications.

PLCs are applied in almost every industry that exists today due to the PLCs’
unique features and characteristics. According to C. T. Jones, these features are [14]:

• Solid state components,
• Flexible computer based architecture,
• Built to function in industrial environments,
• Programmable stored programs,
• Perform relay equivalent functions and more,
• High modularity,
• Easily built and maintained by plant personnel, and
• Reusable system components.

8

These features and characteristics have placed PLCs at the heart of almost every
industry, thus the vulnerabilities of PLCs can negatively affect nearly every industry!

The core components of any PLC are CPU, memory, I/O interfaces, programming
unit, power supply, and communication interfaces. For the purpose of fault tolerance,
these components might exit in triples or pairs, so that if the primary component fails
there is a backup. In some devices with triple redundancy the components vote to
ensure that a malfunctioning component will not affect the correction operation of the
system and an alarm can be raised so that maintenance personnel can replace the
defective component.

The CPU is typically a microcontroller with a small register memory of a few
kilobytes, a control unit for timing and generating events, and an interrupt controller
to deal with incoming events. The CPU’s arithmetic and logic unit (ALU) may range
from supporting simple integer addition and comparisons operations to floating point
operations.

There are several types of memory used in PLCs to store user data or instructions.
Typically a read only memory (ROM) is used to store the operating system and
permanently fixed parameters. Random access memory (RAM) is used to store user
programs while they are being executed along with their data. This data can include
input and output status and values, counters, and timer status and value. Electrically
erasable programmable read only memory (EEPROM) is frequently used to store
applications and parameters that can be modified. Not surprisingly the RAM and
EEPROM will be the main targets of attacks, as they can change the execution of the
currently running software or change the execution of software that will later be
executed. One of the advantages of making the changes to the contents of the RAM is
that when the device is restarted the contents of RAM are generally erased; hence any
malicious code that was running in RAM is gone – until the RAM is affected either by
loading malicious code or data from EEPROM or via a communication interface.
Note that the EEPROM and stable data and program storage might be implemented
by flash memories.

I/O interfaces are input or output ports used to input signals to the PLC or drive
an external load connected to the PLC. I/O interfaces provide electrical isolation from
the external devices, while allowing the PLC to sense and control these external
devices. An I/O interface could control a relay (for slow switching), a transistor (for
fast direct current (DC) switching), or a triac (for fast alternating current (AC)
switching).

The power supply unit converts industry standard AC (or in some cases DC)
power to the appropriate DC voltage level(s) to power the CPU, memory, I/O devices,
and communication interfaces.

A programming device could be special purpose device or standard personal
computer (PC) that is used to configure, program, and download programs into the
PLC.

A communication interface is used to communicate with remote PCs or other
PLCs for synchronization and communication of values and even programs. The
communication interface should support device identification, data acquisition, and
connection management[13]. Device identification can range from simply providing
information about the type of the device (make and model of the device) to
cryptographically signed proofs of unique identities.

9

2.2 Remote Terminal units (RTU)
RTUs also known as remote telemetry unit are microprocessor based standalone

data accusation and control unit used to gather data from remote points and to transfer
this data either directly to a central station or via other RTUs that act as relays[17].
RTU can range from small devices having 10-20 digital/analog inputs, through middle
range devices having 100 digital and 20-30 analog inputs, to large devices with many
more inputs and outputs. An RTU is usually equipped with a radio interface for longer
distance communications, CPU for data processing, multiple I/O interfaces for data
sensing and control, and a power supply.

The RTU’s CPU is equipped with a microprocessor, RAM, EEPROM/Flash, and
ROM. Similar to a PLC; the different memories are used to hold user programs and
data. The processor’s execution is typically controlled by a scheduler (with potentially
a number of different timers) or interrupts.

The RTU’s I/O interfaces generally include analog input interfaces that amplify,
sample, and quantize analog signals to digital values, while the digital input interfaces
count, accumulate, or sequence input signals. Conversely the output interfaces
provide electrical isolation, switching, and voltage or current references (for analog
outputs) and logical control signals (for digital outputs).

The RTU can have a variety of communication interfaces providing different link
ranges and supporting a variety of communications media, such as [17]:

• Serial communication RS-232/RS-442/RS-485,
• Ethernet,
• Dial up telephone lines/dedicated landlines,
• Microwave/MUX links,
• Satellite links, and
• Radio via trunked/VHF/UHF/900 MHz.

The RTU’s power supply unit usually supplies the RTU with one or more DC
voltages either by converting input from an AC supply or by regulating and managing
a battery. For reliable operation the RTU may combine both types of power sources.
The RTU might utilize the battery either as a backup power source or as the main
power source, while the AC mains power is either the primary power source or simply
used to recharge the battery.

An RTU is quite useful for remote and distributed systems. Each RTU can be
managed and controlled from a convenient central station. RTUs are usually found in
application areas, such as offshore oil and gas sites where the sites are located in the
middle of a sea and the control station is located hundreds of miles away on the shore.
Other application of RTUs include waste water treatment controlling a network of
pumps and valves, environmental monitoring, and the like[18].

2.3 Intelligent Electronic Devices (IEDs)
An IED is a core component in overhead (power transmission) line protection and

management for substations and power station systems. It is referred as ‘intelligent’
because it has local intelligence to control and make local decisions. Similar to an
RTU or PLC, IDEs are microprocessor-based devices, which can directly
communicate with a SCADA system.

10

IEDs represent a broad range of devices, but all IEDs must fulfill the following
functions:

• Provide (line) protection: The most common types of protection are against
different current, voltage, or earth faults, auto-re-closure faults, and different
frequency faults.

• Provide fully programmable local and remote control, including control
sequencing, breaker isolation, and generating status and information alarms.

• Monitoring internal and external events, such as: relay temperature and
circuit-breaker condition.

• Meter different parameters by measuring current, voltage, frequency, etc.
• Support both upper level SCADA communication and direct serial or optical

communication for configuration and uploading of data.

2.4 Other components
This section describes a number of other components that are frequently

connected to a SCADA network.

2.4.1 Routers
In the context of a SCADA network a router is a device that connects different

networks, such as the SCADA network, LANs, and Internet access links – generally
using the Internet protocol (IP). Routers provide inter-network communication and
isolate the individual networks by using routing tables or routing polices. There are
different types of industrial grade routers ranging from those with cable and optical
interfaces to those connecting via a wide area cellular network (such as GSM, UMTS,
LTE, etc.) or satellite link.

2.4.2 Firewalls
Firewalls are used to protect networks from outside intrusion by only allowing

certain packets to enter the network and denying other packets entrance to the
network form beyond the firewall. Packet filtering, network address translation, and
user privilege checking are some of the mechanisms implemented by firewalls to
provide security against data theft and various types of attacks[19].

2.4.3 Terminals
Terminals are special purpose computers used to configure and program PLCs or

RTUs. These devices are equipped with a high-speed processor and RAM to facilitate
reprogramming, setting configuration parameters, monitoring network connected
devices, etc. These terminals typically are running one of the common operating
systems, such as Microsoft’s Windows or Linux. Terminals integrated with the
system and used to monitor and configure the system provide operators of the plant or
other facility with a HMI.

11

3 Digital Security

The basic idea behind digital security is to protect the system, to protect personal
information, and to protect resources in the system from unauthorized access while
maintaining positive control. Different security mechanisms are implemented in
different digital systems. These mechanisms range from physically locking the system
to encrypting the programs and their data. However, in most cases the security
mechanism can be broken and secured information can be exposed, valuable
recourses abused, and mission-critical systems halted or destroyed. History has shown
us that no system is fully secure and given enough time and resources any secured
system can be breached.

Security breaches could originate from different sources. These could be inside
attacks by a disgruntled employee or for the purpose of committing fraud. In an inside
attack employee breach the security themselves or expose the system’s security
information to a third party. An example of a typical inside attack is a lunchtime
attack that can only occur during a small window of opportunity when a system is
switching between different time zones or control systems. Focused attacks are
attacks that are organized by persons who are sufficiently motivated to willfully want
to destroy and disrupt the normal operations of a system. Accidental attacks are
attacks that use breaches that occur accidentally due to incorrect configuration or
lucky guesses. Any security system has to provide good coverage against all of these
different types of security breaches.

Although a security system cannot stop attackers from trying to attack the system,
the security mechanisms must be designed in such a way that they prevent the attacker
from gaining access to the secured information or control of the secured system. This
can be achieved by anticipating the actions of an attacker. After breaching a secured
system an attacker might want to eavesdrop on communication and messages;
sabotage data by modifying or change data values; cause denial of service by blocking
others from communicating with the system; carry out a man-in-the-middle attack, or
even take over all or part of the system. By properly implementing well-designed
security policies and mechanisms one can attain the desired level of security[19].

Security policies are a set of rules that govern what security decision must realize.
One form of security policies concerns the assignment, management, and enforcement
of access rights. A basic means of implementing security policy for access rights is an
access control list (ACL). An ACL contains a list of devices and services allowed to
access the devices (perhaps specifying even the specific way each actor can access the
resource). When a service is requested by the device or other actor the ACL is
checked for an entry for this device (based upon the name or address of the device), if
a match is found then the service request is granted based upon the application of the
corresponding rule in the ACL, otherwise the service is denied. ACL based security
depends on the address or name of the device or other actor being true & accurate and
that the integrity of the ACL is maintained, if either one is compromised, then security
will be breached. Additionally, use of an ACL does not provide immunity against an
eavesdropping attack or a denial of service attack. In fact, attacks against the ACL
can be used to mount a denial of service attack. Advanced security polices utilize
cryptography and authentication of nodes by using public key certificates.

12

3.1 Cryptography
Cryptography is the science of encoding data so that someone without the secret

key cannot easily derive the coded information[19]. Cryptography has been used to
keep information secure since the time of ancient Egypt. Encoding machines ranging
from the Enigma machine built by the Germans in the WWII to the latest quantum
cryptographic machine have been used to encode and decode sensitive information.
For the encrypted data to be decrypted the receiver must have the secret key and a
suitable machine (or algorithm), which can use the key in order to decrypt the
message.

The primary shortcoming with simple symmetric key cryptography for
communication is that all the parties involved in the communication must know the
secret key to decrypt the message. An alternative solution proposed by Diffie and
Hellman, is to use a public-private key mechanism where everyone knows the public
keys of each participant, but keep his own private key secret. In order to decrypt any
message from a node the receiver uses the public key of the sender and its own private
key to sign the resulting message. The receiver uses its private key to decrypt the
message and the sender’s public key to authenticate the signature on the message. An
attacker would need to calculate the private key from the public key, which is very
challenging[20, 21].

More formally the sender publishes their public key Yi where Yi= aX mod q. For a
known a and q and a randomly selected secret key X.

For node J to get the key it uses the public key Yi and use its private key Xj to
calculate: kij = (Yi)Xj mod q = (a Xi) Xj mod q.

While an attacker has to calculate kij = Yi(log aYj) mod q.
In practice public-private key encryption provides a very reliable means of data

security. For example, if Bob and Alice want to communicate Bob publish his pubic
key in secured places were Alice could access it. Then Alice can use this key to
encrypt her message and sends the encrypted message to Bob. In this scenario as only
Bob knows the secret key, he is the only one who can decrypt the message;
theoretically not even Alice could decrypt the encrypted message. Bob use his secret
key to decrypt the message, thus Alice’s communication to Bob is secured. A similar
scheme is used in the reverse direction to secure Bob’s communication with Alice.

The advantage of this technique is that if the data is tempered with, then the
receiver cannot decrypt it. This provides additional protection against data tempering.
The shortcoming of this technique is it relies heavily on the authenticity of public key.
If the public key is tempered with or provided by an unreliable source (for example
one who has assumed another user’s identity), then the provider of the public key can
listen to the communication as it can decrypt the message using its private key and
can forward it to the intended party after encrypting with the correct public key1.
Additionally, an attacker can record a previous exchange of messages and resend
earlier messages and receiver would accept them as valid messages. To overcome
these problems different authentication mechanisms have been integrated into public-
private key security systems to better secure the communication between the intended
parties.
1 Note that if the intended receiver knows the sender’s correct public key, then they can detect that the
message is not authentic. This means that the attacker has to prevent the intended recipient and the
sender from getting the other’s true public key.

13

3.2 Authentication Certificate
As it is in real life, one is authenticated by his/ her signature and identification

card (such as an ID card or passport), A potential solution for authentication is to use
a digital signature and a certificate. Digital signatures provide authenticity, integrity,
and assert that some data is genuine. A digital signature is a mathematical scheme
that passes a block of data through a function, such as a hash function, to generate a
fixed length sequence of bytes (called a message digest) that represents the original
block of data. By encrypting the message digest with the sender’s private key and
encrypting the message with the receiver’s public key the receiver can decrypt the
message using the receiver’s private key and pass it through the same hashing
function. Separately the receiver decrypts the signature using the sender’s public key
and compares the resulting signature with the hash result that it locally computed. If
the signature matches, then the data is believed to be sent from the sender associated
with this public key. This can be summarized as shown in Figure 2.

A digital signature is a very important and useful mechanism for authentication
and integrity checking data, but it could easily be compromised if the public key used
to verify an identity was compromised. To overcome this problem we can use
certificate base authentication. This form of authentication depends upon a trusted
third party. Companies with reputable trust issue certificates. These companies are
called certification authorities (CA). VeriSign (later bought by Symantec) was one of
the early CAs. Laws such as EU Directive 1999/93/EC regulate CAs[22].

A typical digital certificate, such as an Internet X.509 certificate, contains [23]:
Serial Number Used to uniquely identify the certificate
Common Name The name of the owner of the certificate
Signature Algorithm The algorithm used to create the signature
Signature Signature value
Issuer The entity that verified the information and issued the

certificate
Valid-From The date the certificate is first valid from
Valid-To The expiration date of this certificate
Key-Usage Purpose of the public key
Public Key The public key
Thumbprint Algorithm The algorithm used to hash the public key
Thumbprint The hash itself, used as an abbreviated form of the

public key

Using the information contained in the certificate the receiver can check if the
sender is reliable by checking first the hash of the certificate. If this hash fails to
match and the name of the sender does not match the common name, then the receiver
is notified of their being an error. Date entries are checked to see if the date of use is
within the valid range. If all of the earlier tests are passed, then the public key is used
to decrypt the message’s signature. Note that the certificate message can be sent to the
CA to check if sender is who it says it is or if this certificate has been revoked.

Once individual nodes can establish communication and trust, the next logical step
is creating a group of trusted nodes that can freely and reliably exchange data. One
common solution uses a public key infrastructure (PKI) where hierarchies of trusted
certificates are created based on a reliable root certificate. Root certificates are public
keys distributed by a reliable source in order to create a trust anchor. Using the public

14

key
seve
ever
and
CA
trus
one
cert
the

Mos
Eve
don
web
the
nam
Dad
Goo

in the roo
eral CA dis
ryone such
if the root
and severa

st, though a
CA could

tificates on
others certi

Currently t
st browsers

en so most o
ne by [25]
bsites use ce
SSL certif

mely Syman
ddy Group
ogle.com, Y

ot certificate
tribution m
mechanism
is comprom

al certificate
ll CAs are
delegate an
its behalf.
ficate build

there are m
s usually co
of the marke
show not o
ertificates s

ficate (Secu
ntec Group (
p, and Glo
Yahoo.com,

Figure 2

e users com
echanisms o

m has shortc
mised all w
es are distr
equally trus
nother user
Another m

ding web of

ore than 50
ome with al
et share is d
only few C
signed by th
ured Socket
(which own
obalSign.
and Amazo

2: Public Priv

mmunicate
one is with

coming that
will be lost. A
ributed to u
sted. Anoth

r by delegat
mechanism i

trust.

0 CAs signi
ll these cert
dominated b
CA dominat
he top CAs
t layer certi
ns VeriSign
And most

on.com use

vate Key encry

with CA to
single CA
it relies hea
Another me

user and use
her mechani
ting another
s a web of

ing certifica
tificates em
by few of th
te the mark
. The surve
ificate) is i
, Thawte, a

t popular
certificates

ypted commu

o create a t
trusted by a
avily on the
echanism is
er can chos
ism is chain
r user who
trust were

ates for web
mbedded in t
he CAs in th
ket but also
ey show mo
issued by fo
nd Geotrust
site like
from Syma

nication

trust. There
all and sign
e root certifi
s using mul
se which on
ns of trust w
will sign o
everyone s

ebsite securi
their code [

he list. A su
o most pop
ore than 90%
four compan
t), Comodo
Facebook.c

antec Group

e are
s for

ficate
ltiple
ne to
were
other
signs

ities.
[24].

urvey
pular
% of
nies,

o, Go
com,
p.

15

3.3 Trusted Computing
Ascertaining identity is an important factor in computer security. Certificates and

secret keys embedded in software provide some sort of identity and security, yet they
are not without faults or vulnerabilities[26]. The United States of America
Department of Defense (DoD) defined a trusted computer system as one that would
“employ sufficient hardware and software integrity measures to allow its use in
processing multiple levels of classified or sensitive information”[27]. In trusted
computing identity and security are asserted to a higher degree and trust is established
among all involved in any communication. That is to say that all parties are who they
say they are and their identity can be attested to at any time. Special hardware called
a Trusted Platform Module (TPM) is frequently used to achieve this.

In October 1999, the first TPM specifications were developed by the trusted
computing platform alliance (TCPA), which included HP, IBM, Intel, Microsoft, and
others. These specifications become an open industry standard in 2002. In April 2003,
the TCPA was suspended and a new group called the Trusted Computing Group
(TCG) adopted the TCPA specifications and shifted their focus to expansion of the
use of the specification and maintaining its further development. Details of the
different working groups and published TPM specification can be found at the
trustedcomputing.org website. The number of TPM equipped devices is ever growing,
with 50 million TPM equipped devices in 2006 and 250 million devices in 2010; and
the number of devices is expected to grow even more in the coming year[27].

TPM are dedicated hardware modules optimized to provide security and safeguard
private and secret data. To achieve this any TPM must have the following
capabilities[26]:

• Protection capabilities and a shielded location to protect all the secrets in
the TPM from interference and prying.

• Platform attestation, which provides a proof of a TPM secret and the TPM’s
credentials and identity.

• Integrity measurement, storage, and reporting, where platform characteristic
are measured and any untrustworthiness is immediately reported and logged
(i.e., a record of this stored).

The fundamental services expected in a TPM in order to fulfill the specifications
outlined above are embedded in the following three roots of trust: Root of Trust for
Measurement (RTM), Root of Trust for Storage (RTS), and Root of Trust for
Reporting (RTR). With these roots of trust the platform can securely protect keys,
evaluate (measure) stored software and data, and report on the working and integrity
of the TPM. Together these form the basic root of trust on which all other trust chains
are built[26].

RTM is computing engine which performs integrity measurement on different
fundamental systems, including itself. The code to be checked could be stored in the
TPM or in the BIOS boot block. This forms the Core Root of Trust for Measurement.
At every boot the RTM performs a measurement of the TPM, BIOS, Master Boot
Record, and OS in sequence and the current measurement is compared with the
corresponding previous measurement in a Platform Configuration Register. Any
disagreement is reported and system bootstrapping is halted.

16

The RTS provides secured and isolated storage for storing secret keys and
measurements. Additionally, the RTS provides confidentiality and integrity to the data
used by the TPM but stored externally. The RTS also implements data binding and
data sealing by encrypting data with different keys. The RTR provides reports on
shielded locations and attests to the authenticity of stored data with an Attestation
Identity Key (AIK) when challenged. Together the RTS and RTR provide the basic
service expected from a TPM by using different components, such as non-volatile-
memory, a SHA-1 hash engine, a random number generator, a key generator, and an
input/output bus controller.

Although the TPMs provide long sought security and key protection, they are not
without limitations or shortcomings. TPM are designed to provide protection against
software attacks and software hacks, but they remain vulnerable to physical attacks.
In [28], J. Winter and K. Dietrich (presented at the 8th European workshop on Public
Key Infrastructure, Service and, Application conference in Belgium) their results
showing that at a cost of less than 100 Euro and enough knowledge that one can
successfully hack in to TPMs and compromise the root trust. In addition to this,
shortcomings regarding privacy and spying; remote censorship; loss of control of a
personal machine because keys are managed by a supplier; and issues of using open
source software and how to sign and authenticate such software remain major
concerns [29, 30].

3.3.1 TCG TPM Specifications
The TPM specification as proposed by the TCG and specified in the TPM Main

Part 1 Design Principles Specification Version 1.2[31] is partly summarized and
presented below.

Interoperability TPM must support the RSA, SHA-1, and HMAC algorithms

Components: TPM must have the major components shown in Error! Reference
source not found..

• The I/O module manages information flow over the communication bus and
implements access control.

• Cryptographic co-processor facilitates asymmetric key generation (using the
RSA module), asymmetric encryption/decryption (using the RSA module),
cryptographic hashing (using the SHA-1 module), symmetric encryption
(AES), and random number generation (using the RNG module).
• RSA module/engine provides digital signature encryption using the RSA asymmetric algorithm.
• Signatures can be computed for internal items and on request for external items.
• A symmetric encryption engine (possibly using AES or XORing with one-time pad) is used to encrypt authentication information, which provides confidentiality in transport sessions and provides internal encryption for data stored outside of the TPM2.
• Symmetric or asymmetric keys a generated using the RNG and their integrity is protect with a BIND and SEAL capability.

2 Though here the symmetric encryption engine is depicted as part of the cryptographic co-processor it
could also be implemented as a separate module.

• Key ge
nonces.
they can

• HMAC
process

• Random
key gen
subsyst
• Ent
• Stat
• Mixran

• SHA-1
• Power

support
running

• Opt-in:
This ca
physica

• Execut
received

• Non-vo
Platform
measure
which i

enerator: g
. Asymmetr
n be used as

C Engine:
sor are autho
m Number
neration, an
tems:
tropy sour
te register

xing functdom numb
engine: for
Detection:

t physical
g when syste
: used to en
an be done
al presence a
ion engine
d via the I/O

olatile mem
m Configura
ements need
is a digest su

Fig

Non-Vol
Memo

Opt-I
SHA-1 En

HMAC Engin

Cryptogra
Co-proce

generates s
ric keys mu
s private ke
calculate m

orized and t
r Generato
nd random

rce: must p
r: hold the
tion: takesber.
r hash imple
: manage T
presence a
em is physi
nable/disabl

either with
at the platfo
e: runs pro
O port.

mory: stores
ation Regist
ded for secu
ummary of

ure 3: TCP co

latile
ory
n
ngine

ne
aphic
essor

symmetric
ust be gene

eys.
message ha
they haven’

or (RNG): g
signatures.rovide as mcurrent RNs the state

ementation
TPM powe
attestation a
cally constr
le, turn on/o
th authoriza
orm.
ogram cod

 encryption
ter (PCR), w
ured booting
PCR values

mponents pro

I/

key, RSA
erated in a

ash to veri
t been tamp

generates ra
. Within thmuch unpreNG state evee register
of measure

er state and
and restrict
rained.
off, and act
ation from

de to exec

n key and sta
which is a S
g, and Data
s, are the sta

oposed by TC

/O

Ex

- asymme
protected

fy request
pered on the
andom num
he RNG areedictable den during pvalues an
ments durin

d platform
t some app

ivate/ deact
the TPM o

ute the TP

ates associa
SHA-1 dige
a Integrity R
ates associa

G

Key Genera

RNG
Power Detec

xecution Engi

Volatile Mem

etric keys,
manner so

received f
e way.

mbers for no
e the followdata as needpower-dowd generate
ng boot pha
power stat

plications f

tivate the T
owner or g

PM comm

ated with TP
est of all
Registers (D
ated with TP

ator

ction
ine

mory

17

and
that

from

once,
wing d. wn. es a
ase.
te to
from

TPM.
given

ands

PM.

DIR),
PM.

18

Endorsement Key Creation: An endorsement key (EK) is burned into the
platform and signed by the platform creator. The private portion of this key never
leaves the TPM, while the public portion is accessible.

Attestation Identity key (AIK): The AIK is asymmetric RSA key used for
signing data generated by the TPM. The AIK is an alias for the EK and certificate
authorities are used to attest to the validity of the AIK public key.

These are the major elements of the TPM specification that should be incorporated
into any system to achieve trusted computing. More detail could be found on the TCG
website [26,31]. The next sections will evaluate three TPM implementations; this
should help establish comparison between the specification presented here and actual
implementation. Microsoft, ARM, and the hardened computing described in the book
edited by Chris Mitchell have done these three implementations.

3.4 Microsoft’s Next Generation Secure Computing Base
(NGSCB)

Microsoft was one of the founding member of the TCG and an active member in
developing the TCG specification Version 1.1. In 2002, Microsoft announced their
plan to integrate a system, which combines hardware and software [26]. The system
initially was named Palladium, later renamed Next Generation Secure Computing
Base (NGSCB). It combines changes made by hardware manufacturers, a Secured
Support Component (SSC), and a minimal isolation kernel to implement TPM. In
addition to the TCG functionality, NGSCB extends to the CPU support for a minimal
kernel, a minimal isolation kernel, an extended chip to control DMA, and to secure
hardware based I/O.

The SSC is a tamper-resistant cryptographic chip implementing most of the
functionalities specified by TCG. It implements a cryptosystem, a RNG, small
memory for counters, and PCR. With this component and the isolation minimum
kernel the SSC is able to Seal/Unseal data and keys; get the Entropy of the RNG; and
manage (read or increment) monotonic counters. These capabilities enable the
NGSCB to fulfill most TCG requirements[26].

The isolation kernel utilizes modifications made by the hardware manufacturer to
execute in the CPU with higher privilege than any other OS(s). The isolation kernel
runs in mode -1 (while other OSs run at mode 0) this gives the advantages of
supporting both virtual machines and exo-kernels[32]. Additionally, a chip extension
is used to implements DMA access control. The chip contains a policy map indicating
who gets to access which region of memory and when, and this policy is enforced
using hardware. The result if that memory is partitioned for guests OSs and the
isolating kernel.

3.5 ARM TrustZone
The need for secure trusted computing platform security features in embedded

systems, such as smart phones and PDAs, is being tackled by TCG for mobile phones
and TCG for embedded system. ARM TrustedZone is security technology for
embedded system that has focused on the issues that matter most in embedded
systems, such as power, area, and performance. The TrustedZone implements an
isolated secured environment which allow a software implementation of high level
security services, such as TPM[26].

19

There are number of ways to secure embedded systems, some are complete
hardware security systems, which are based upon an inflexible, off-chip co-processor.
Such as co-processor can easily be compromised by tapping the communication line
between the co-processor and the main core[28]. Another variation of this is SIM card
based security, which suffer from both memory and bandwidth limitations. ARM saw
these shortcomings and implemented the TrustZone with two parallel execution
worlds: the non-secured normal environment and a trusted certifiable secured
world[33].

Major components in the trusted zone are the TrustZone CPU (used to run trusted
application in the trusted zone); secured on-chip boot ROM to configure the system;
on-chip non-volatile one time programmable memory to store master keys; secured
on-chip RAM used to store encryption keys; and other resources to manage
peripherals and allow access only by trusted applications. Developers can use these
components and the TrustZone APIs to get full access to the trusted hardware and to
implement TPM or even better security.

3.6 Hardened Processors
The “hardened processor” as referred in [26] is based on the Executable Only

Memory implementation proposed by [34]. This implementation takes security to a
higher level, by not only integrating the security module on chip but also by
encrypting all communications in and out of the CPU. The only reliable (and trusted)
information is that found in the executable only memory and all communication is
encrypted using a session key as a symmetric key and public private encryption using
a key embedded in the chip. Session keys are used to encrypt data using fast
symmetric encryption algorithms and each storage tag its data with some session key
identifier tag. These tags are mapped to session keys using a session key table in the
executable only memory.

The executable only memory uses hashing and a mutating session key table to
protect the system from spoofing, splitting, and replay attacks. The session key table
associates a mutating register which is changed at every interrupt, thus if a command
is replayed the deciphering table will invalidate it because its identifier will not match
any entry in the table. This mutating table protects the system from a replay attack.

20

4 SCADA system: Networks and
Protocols

Communication and networking are key elements of the infrastructure of a
supervisory and control system. Establishing fast, reliable, and easily understandable
communication relies on the protocols used for network communication. For these
reasons SCADA system designers have developed a number of different networks and
network protocols to suite their design requirements. Unlike the network protocols
one is accustomed to, SCADA protocols are simple, lightweight, and designed to
provide fast communication in a very isolated industrial environment. Commonly
supported network architectures are hierarchical networks; mesh networks; or
master/slave point-to-point networks running over serial links.

The advances in internetworking technologies have forced these simple protocols
to undergo major changes. In order to support larger numbers of nodes, the SCADA
protocol designs must address security, expansion, and modifications in order to
internetwork with corporate networks. The following sections briefly present some of
the well-known SCADA protocols in more detail. Further information can be found in
the references cited in each section.

4.1 Modbus
Modbus is a transmission protocol first developed by Gould Modicon (now

Schneider) in 1979 for a process control system. Since it was designed without a
specific interface it has been easy to adapt to different networks, each with different
interfaces. Modbus is the de facto factory standard and is utilized in more than 40% of
industrial interconnections. Originally, Modbus was designed to run with a master and
slave paradigm allowing up to 247 slaves, but variants such as Modbus TCP/IP and
Modbus plus support for more nodes and all of these nodes can initiate and participate
in communication[17,35]. All Modbus protocols come in two variants: an ASCII
version (which is slower, but printable) and an RTU version with a binary
(hexadecimal) format for fast communication. However, the binary version is
unprintable3.

A typical frame has a 1-byte address field, a 1-byte function field, a variable
length data field, and a 2-byte error check field. The ASCII format uses a colon (:) as
a header to separate each frame. In contrast, the RTU format use 3 blank signal cycles
as a separator thus if 3 cycles pass without a signal the next byte received is the
address of the slave. Each slave has a unique address and all slaves on the network
listen to the master’s messages and only the slave with the specific address in the
request will respond. The function field of the frame tells the slave what actions to
take and how long the data field is. In the error check field the RTU frame contains a
16 byte CRC checksum, while the ASCII encoding uses a longitudinal redundancy
check (LRC)[35].

3 However, it can be dumped in hexadecimal and other formats. Additionally, it can be decoded by
various tools, such as Wireshark.

21

4.2 PROFIBUS
PROFIBUS is a smart field bus technology initially designed by the German

government and German automation industries and now owned by PROFIBUS &
PROFINET International (PI). PROFIBUS specifies a three-layer implementation of
the International Organization for Standardization (ISO) Open Systems
Interconnection (OSI) model providing reliable communication, self-diagnosis, and
connection-diagnosis. The application layer provide applications, such as DP-V0, for
cyclic data exchange; DP-V1, for acyclic and alarming handling; and DP_V2, for
broadcast and slave-to-slave communication. The data link layer defines a
slave-master connection service and a “token” type connection. The physical layer
defines standards based upon RS-485, a communication standard designed to run over
twisted pairs and (in some variants of PROFIBUS) over optical fibers.

4.3 PROFINET
PROFINET is an open standard developed on top of the TCP/IP standard to

provide real-time reliable industrial Ethernet based communication system.
PROFINET provides high-speed operation, seamless operation, and support for time
critical motion control. A typical PROFINET network contains an IO-Supervisor,
typically a HMI or PC; an IO-controller, typically a PLC used to communicate with
sensors and motors IO-devices (which are mostly motors, sensors, pumps, and
valves); and of course the sensors and motor IP-devices themselves. In the network
the IO-controller maps the IO-supervisor’s commands to the appropriate IO-devices.
Network services provides a cyclic data exchange, between IO-Devices and the
IO-Controller, As with any cyclic data exchange protocol, these devices exchange
configuration and diagnosis information, alarms, and the results of message
processing.

4.4 High Level Data Link Control (HDLC)
HDLC is a predecessor of Ethernet defined by ISO for use in point-to-point and

point-to-multi-point communication. HDLC can run in unbalanced normal response
mode (NRM), which has one master initiating communication, or in asynchronous
balanced mode (ABM), where all nodes can initiate communication[17]. There are
three frame formats: unnumbered frames used for establishing a connection,
information frame sequence numbered data frames, and supervisory frames sequence
numbered frames used for flow control and error messaging.

A typical frame contains a start of frame delimiter flag that is eight bits; an
address field of eight bits to indicate the receiver node, group, or broadcast address;
an eight bit control field to indicate different frame formats and exchange status;
sixteen bits for frame check sequence number; and eight more bits for a frame
delimiter. If there are more nodes in the network, then the address field can be
extended[17].

The primary node (i.e. the sender) initiates communication by sending
unnumbered frames; this is interpreted as a request for a connection. The secondary
node (i.e., the receiver) responds by sending an unnumbered frame indicating its
status. If the receiver has data ready, then this data is transferred with a data frame and
when transfer has been completed the primary node sends an unnumbered frame
requesting that the receiver disconnect and the secondary node acknowledges this
request with an unnumbered frame. Data exchange is monitored and sequenced by the
exchange of supervisory frames.

22

4.5 Distributed Network Protocol (DNP3)
The International Electromechanical Commission (IEC) proposed a 3-layer

implementation of the OSI model and specified several different frame formats.
Harris Controls developed DNP using the IEC 870-5-1 FT3 frame format, by
modifying the three layers to four, and IEC developed IEC 60870-5-101. DNP has
significant acceptance in America and Asia while IEC 60870-5-101 has wider
acceptance in Europe[17]. Both protocols, DNP and IEC 60870-5-101, are open
communication protocols.

The 4-layers of DNP are physical layer, data link layer, pseudo-transport layer,
and application layer. The application layer organizes data into an application service
data unit (ASDU) with a maximum size of 2048 bytes and passes this ASDU to the
pseudo-transport layer. Here the ASDU is fragmented into packets of 249-bytes and a
1-byte header is added forming a transport service data unit (TSDU). TSDUs are
encapsulated with a 10 byte data link layer header and 16-bit CRC trailer to form a
link protocol data unit (LPDU). The LPDU is bit streamed using RS-232C voltage
levels and control signals by the physical layer.

4.6 TCP/IP
TCP/IP is the de-facto standard for network and transport layer implementation of

interconnections. TCP/IP was the first proposed internetworking protocol and is based
on the four-layer TCP/IP stack. TCP/IP introduces an Internet protocol (IP) for
interconnection and applications make use of a transport protocol. Applications can
use the transport control protocol (TCP) to ensure reliable in order byte stream
host-to-host communication. The four layers of this protocol stack are: application
layer which identifies the application that created the data; transport layer for
host-to-host communication with potentially flow control and error detection; internet
layer for datagram exchange across networks using internet addressing; link layer
which handles the data to electrical (or optical) signal conversion and framing; and a
physical connection - commonly using Ethernet’s many different physical layers. TCP
provides reliable communication between different physical networks. The user
datagram protocol (UDP) can be used to provide low overhead unreliable datagrams
over an Internet.

23

5 Assuring Industrial Control System
Security

This chapter will try to answer the following two questions: “What are the
security risks associated with SCADA systems? What are current best practices?”
Then the chapter ends with a presentation of a number of systems and solution that
implement these best practices.

5.1 SCADA Security
Industrial control systems, be it a SCADA or distributed control system (DCS),

typically control a mission critical process, thus any security breach may result in
havoc, destruction, or service interruption. Unlike other cyber security breaches,
which may result in a loss of personal information or money, a security breach of a
SCADA network can cause damages ranging from introducing a flaw in the products
to a complete plant shut down or loss of life and environmental damage. With the
increasing political and social instability in the world threats against SCADA systems
are increasing every year[36]. As a result the need to ensure the security of SCADA
systems and protecting them from exploits has become a national security matter[37].

5.1.1 Security Analysis of SCADA
SCADA systems were designed for high availability and reliability as expected by

large industries and utilities. The major design requirements are safety, reliability,
efficiency, durability (i.e. surviving in a harsh industrial environment), and constant
availability (i.e., around the clock and throughout the year). These systems were
traditionally designed to work in isolated industrial environments using custom made
interfaces and protocols running over serial links. Therefore the need for security was
seen as being limited to physical security. However, with the advances offered by the
Internet and the cost savings offered by interconnecting this isolated control system to
other networks, the benefits were believed to outweigh the imposed security risks
[38,39]. But the lack of robust security feature such as encryption and the fact they
control critical infrastructures has made SCADA systems and ideal target for attack.

Security analysis, tests, and countermeasures in SCADA systems are very
complex and special consideration is necessary. For example, patching a SCADA
system in the same way as is commonly done for PC software would require a system
restart; however, this is almost impossible because a system restart would require
shutting an entire plant down, removing all the waste caught in the system, and
restarting it. In the case of a power plant a shutdown might black out an entire region.
Implementing encryption and introducing complicated network filtering rules could
delay communication via the network causing a critical system failure[39]. So finding
appropriate methods to test and performing security analysis on an operating SCADA
network becomes important, as we cannot simply blindly apply the methods used with
non-critical systems.

Unfortunately, there is no cure-all solution to SCADA security problems, i.e., a
solution that would solve all the security problems. As a result security risk analysis
and testing must be carried out on individual plants to come up with plant specific
solutions (although it is possible to replicate the solutions as one replicates instances
of a specific plant design). Munro [38] and Ralston, et al. [40] provide good insights
into testing and risk assessment.

24

5.1.2 What are the causes of security risks?
To calculating the risk associated with any security breach in a SCADA system,

we have to consider the likelihood of an event and its impact, as Risk is a product of
the likelihood of event and its subsequent Impact[1]. It is evident that the potential
risk is generally high due to the type of industry that the SCADA system is serving, as
the impact is generally quite large – even if the likelihood of a specific event is small
without an intruder. Unfortunately, these systems are often large and complex and a
loss of control can easily happen, so it is very difficult to know what caused the
impact. In his book, Munro says “Would we ever know if a power cut was a result of
a normal system overload, or was the result of a hacking event?” [38] For these
reasons we can understand that the goal of an attacker is to turn a naturally unlikely
event, i.e., an event which is very unlikely to happen during normal operations, into
an actual event. Byres and Lowe[36] study different known incidents concerning SCADA
systems and categorize the cause of the incident into three categories. These are
internal cause - usually due to a disgruntled employee; accidents - due to human or
machine failure; and external cause – such as an attack by hackers. Their study
shows that in the years 1980 to 2000 the proportions of these three causes of incidents
was about the same for all three categories: external 31%, internal 38%, and
accidental 31%. However, after the year 2001 the trends changed with external causes
doubling to 70% while internal causes shrank to 5%; and accidental causes remained
roughly constant at 25%. This shows that external causes and threats have become
more significant as the cause for an incident. As a result the risk associated with
external causes is increasing every year. To make matters worse the risk is also
increasing because the impact of an incident is increasing due to growing plant sizes,
increased plant efficiency, and consolidation of industries.

The reasons suggested for the increase in external attacks are the networking
within and the external network connections to the SCADA system; the increasing use
of common operating systems, which have well known vulnerabilities and are readily
available to hackers for experimentation and development; and the advances in the
development of worm and viruses. A study by Byers and Lowe [36], further analyzes
the threat imposed from increased networking. The primary entryways for attacks are
remote Internet and remote dial-up connection access, followed by VPN connections.
Most of the vulnerability of SCADA systems originates from mixing the business
network with SCADA network. According to Byres and Lowe this mixing of
networks alone accounts for 43% of all incidents they studied, followed by faults and
security breaches in the HMI that accounted for 29% of all the incidents they
studied[36].

It is clear that security threats and breaches will increase every year unless the
vulnerabilities due to increasing networking and weaknesses in the HMI are
adequately addressed. For this reason, a thorough investigation into these
vulnerabilities and possible mitigation methods is mandatory. However, in this thesis
we will focus on the networking aspects of the problem.

25

5.1.3 Top ten SCADA vulnerabilities
The top ten common vulnerabilities of SCADA system, as presented by the North

American Electrical Reliability Council are [41 ,39]:
• Inadequate policies, procedures, and culture that govern control system

security. The policies and procedures implemented do not address the overall
security needs or might be outdated. Additionally, most employees are
unaware of these policies.

• Inadequately designed control system networks that lack sufficient
defense-in-depth mechanisms. Most SCADA networks were initially
designed for availability and reliability, thus addressing security might require
redesigning or integration of additional components into the system.

• Remote access to the control system without appropriate access control.
Two of the major causes are inappropriate use of dial-up modems and poor
passwords.

• System administration mechanisms and software used in control systems
are not adequately scrutinized or maintained. Inadequate patch
management, lack of up to date virus protection, failure to remove
unnecessary or obsolete accounts and removing former user’s privileges, and
obsolete software can expose the system to easy worm and malware attacks.

• Use of inadequately secured wireless communication for control. Using
off-the-shelf devices, which do not fulfill industry standard quality and
security requirements could expose SCADA network to easy exploitation.

• Use of a non-dedicated communications channel for command and
control and/or inappropriate use of control system network bandwidth
for non-control purposes. Internet based SCADA; using the control channel
for non-control purposes; and having devices connecting to Internet from the
control network could easily expose the system to a denial of service attack.

• Insufficient application of tools to detect and report on anomalous or
inappropriate activity. Under-utilization of intrusion detection systems,
network management systems, and network filtering/system isolation are
common in security incidents.

• Unauthorized or inappropriate applications or peripheral devices on
control system networks. Unauthorized peripherals, laptops, USB-memory
sticks, and PDAs used with access to SCADA network.

• Control systems command and control data not authenticated. Using
protocols that do not support authentication or no/poorly implement
authentication.

• Inadequately managed, designed, or implemented critical support
infrastructure. Insufficiently tested or maintained redundant systems; poorly
protected communication or power supply lines; and inadequate fire
suppression system are examples of inadequate critical supporting
infrastructures.

These vulnerabilities can be summarized and categorized in five main groups as
follow. Network and communication vulnerabilities, vulnerabilities due to lack of
security in the communication protocol; lack of security in the communication media,
such as radio and dialup; and lack of access control on the communication network.
Data vulnerabilities, vulnerabilities due to data being stored or communicated
unencrypted and due to bad encryption key management. Underlying OS and software

26

vulnerabilities, vulnerabilities due to faults in the OS; due to faults in the software
used to manage and program the PLCs; and due to lack of mechanism to check
anomalies. Authentication and access right vulnerabilities, vulnerabilities due to poor
password management; due to poor encryption key management; and due to poor
access privilege policy. Policy and culture vulnerabilities, vulnerabilities due to poor
security policy that does not address all security needs; due to lack of security policy
awareness among workers; and due to lack of policy to regulate use of peripheral
device.

Any good SCADA practices for producing a secure SCADA system must
implement methods to address the above vulnerabilities.

5.2 Best Practices and recommendations for a secure SCADA
system

SCADA systems are rapidly being integrated with corporate networks and the
Internet, thus isolation is no longer an option. Not only is physical isolation
impractical, but also increasingly it is infeasible from a business point of view as the
operations of the facility are more tightly coupled to external actors (due to the desire
for increased efficiency and to reduce pollution and waste). However, this
increasingly open access facilitates accidental attacks. VLANs based on IEEE 802.1q
using dynamic trunks can easily be exploited[38], dial-up and serial modem
connections can easily be tapped, and worms and malwares create even more holes in
the system thus exposing the system to farther attacks. These attacks can reprogram
one or more of the network connected devices. Vulnerabilities in the operating
systems of the HMI can easily be exploited to provide access to the SCADA system;
all it takes is a single malicious e-mail to a SCADA administrator or field engineer.
Additionally, it is often easy for an attacker to connect their own laptop to the network
and have free access to any of the networked systems (if they connect to the network
inside the firewall).

A combination of polices, rules, and security mechanisms must be utilized to
achieve the desired SCADA security. Eric Luiijf has offered a few suggestions for
best practice[42] in SCADA systems and these practices can also be used to evaluate
suggested implementations:

• Develop security policies and regulations to address security issues throughout
all the four levels of the production model.

• Outline security procedures and safety regulations to be taken in case a
security breach is detected.

• Establish a good code of practice for information security at both the third and
second level of the production model.

• Establish a responsible body to make sure that the security policies and
security code of practice are implemented. This body should also run regular
security checks and present their estimate of the achieved protection level.

• Schedule and run regular audits of the network, devices on the network,
software running on the HMI, and access rights and privileges of both
operators and applications.

• Outline the security rules and requirements expected from all devices and
software before it can be allowed to join the SCADA system. Make sure that
each provider adheres to these rules and regulations.

27

• Establish mechanisms for managing, testing, and evaluating maintenance and
upgrades of software and hardware before they are applied to the SCADA
system.

• Implement proper network segregation using firewalls and gateways.
• Implement proper minimal privilege rights and remove unused links. Filtering

and monitoring should be done on all packets going to and from SCADA
systems.

• Implement encryption, authentication mechanisms, and regular changing of
passwords and security procedures.

• Document SCADA system processes, configurations, and modifications to
help monitor anomalies and unauthorized changes.

• Establish a process database and run regular check to make sure the running
process conforms to routine and schedules.

• Control what goes in and out of the SCADA system by controlling network
traffic and regulating or prohibiting use of removable media.

Increased environmental security; establishing security-sharing centers;
exchanging security threat information; and continuous studies on potential security
threats would also help strengthen security.

5.3 Possible implementation (solutions) for SCADA security
SCADA systems are vulnerable and critical, so proper solutions must be

implemented to secure these systems. Any solution must implement sufficient
isolation; implement policies and regulations for protection against misuse;
implement rules for encryption and key distribution; and assure reliability and
accountability by logging system reports and alarms. A few selected solutions
proposed by different scholars and companies are briefly described in the following
paragraphs.

In [43], Vinh Ich Nguyen, Watit Benjapolakul, and Krisada Visavateeranon
proposed an Internet based SCADA system using low cost embedded TCP/IP boards
and a server PC. Their solution is implemented using a sever computer connected to
the Ethernet network of the SCADA system. Low cost Ethernet interfaces connect the
PLCs and the SCADA network with the server computer. A router and modems are
used to connect the SCADA network to the Internet. Client/server applications are run
both on client computers and the server computer. These applications are used to
manage resources, add or remove modules, and display the status of any of the
components of the SCADA network. The server computer serves as a middleman
between the PLCs and an operator who controls and configures the PLCs through the
Internet. The server computer runs a database containing the set of allowed
commands and every command sent to the PLCs is checked against this database.
And only if the command is permitted for the specific user then command is
forwarded to the PLC. Additionally, the server computer checks the user’s privileges
allowing the implementation of different access levels based on password
authentication.

A typical usage scenario would be, a client running a client application with the
correct privilege securely sends a command to the server computer and the server
computer decrypts the command and checks it against list of allowed commands for
this user. If the user is permitted to issue this command, then the command is sent to
the PLC and PLC takes some action. Security between the client and the server

28

computers is implemented using password authentication, MD5 encryption, and
network filtering. Additional filtering is done on the Ethernet interface to hide the IP
addresses of the PLCs and to protect against direct access from the Internet.

This is a simple and low cost solution, but it suffers from some shortcomings. The
security mechanism is distributed among different modules of the system (the server,
network routers, and Ethernet interface), thus for an attacker to find loopholes would
not be difficult. The system relies heavily on the server computer making it a
common-point failure and any breach of the server computer would cripple the system
or might even put the plant out of operation (or even control). Simply checking each
command against a list of allowed commands does not guarantee security as
combinations of allowed commands could cause fatal damage to the plant.
Nonetheless, their solution proposes a system module management and monitoring
mechanism.

In [44], I. Nai Fovino, A. Carcano, and M. Masera propose a secure and
survivable SCADA system utilizing the Modbus protocol. Their solution is
implemented using multiple level signed communications, a SCADA firewall, and a
reliability voting mechanism. The system uses Modbus with a limited packet size of
256 bytes and timestamps each packet to prevent a replay attack. The master HMI is
connected to multiple hardware modules, each of which is called a filtering unit.
These filtering units are in turn connected to the PLCs. Communication between the
master HMI and the filtering unit, as well as communication between the filtering unit
and PLCs, is always encrypted. Additionally, multiple filtering units are used and
voting is done to make sure that the filtering units are not compromised.

The filtering unit implements a rule database, which determines which user, can
issue which command. The filtering unit uses the system description, an event tracker,
and a Modbus analyzer engine to generate an overall picture of what is going on in the
network and to filter out malicious activities. The system provides protection against
unauthorized command execution, man-in-the-middle-attacks, replay attacks, and
malicious packets from a corrupt master while maintaining delay within an acceptable
range.

This is a very robust solution, but suffers from high cost of multiple filtering units
and key management and distribution might be difficult especially if the PLC or RTU
are distributed over a wide geographic region (as might occur in the case of smart
grids and meters). Additionally, voter reliability, and computational cost of drawing
the whole network inside the filtering units are other disadvantages of this system.

In [45], S. Bagaria, B.Prabhakar, and Z. Saquib propose a mechanism to secure
existing SCADA networks running the DNP3 protocol. Their solution is implemented
with DNP3 version DNP3sec and a bump in the wire (BITW) hardware module,
which can be directly integrated into an existing SCADA network. Their solution uses
fixed size 256 byte DNP3 frames. In an ideal scenario the BITW modules will be
connected to each HMI and PLC, so that data is always be routed between pairs of
BITWs. The BITW module connected to the HMI takes apart the plain text DNP3
message and encrypts the payload and places this encrypted payload into a new
DNP3sec frame and forwards it toward the destination. Just before the destination the
BITW connected to the PLC receives the DNP3sec frame message, decrypts the
message, and re-encapsulate it as DNP3 plaintext and passes it to the attached PLC.

29

Using lightweight encryption and efficient key exchange the solution was able to
achieve the needed security and meet the bounded delay requirement. This solution is
especially useful if the SCADA system is distributed over a large geographic region
and running over private or leased lines (as might be done in a smart grid and meter
system) or when the SCADA system uses lines leased from telecommunication
companies. However, the system does not address the security risks from a
compromised HMI or security threats due to malicious software. There is no access
privilege based command filtering or flagging of unauthorized commands and
malicious activities. This solution simply secures the DNP3 traffic between two
BITWs.

In [46], L.Katzir and I. Schwartzman propose a unique way of securely updating
nodes in a SCADA system used in the electrical grid with smart meter IEDs. Their
solution uses the unique behavior of electrical grids and the grid frequency. They
suggest that traditional key based encryption and authentication mechanisms are
inefficient and vulnerable, so it is better to use a known frequency pattern on the grid
for authentication. A frequency detector is attached to each smart meter and could be
used to detect specific frequency patterns and if a specific pattern is detected, then the
system firmware could be updated.

Their system was proposed as an efficient update mechanism for fast recovery
after major incidents and all systems could be automatically updated with no loss of
time as would be required for an authentication exchange. They propose a mechanism
to generate the triggering frequency without affecting the grid’s frequency and the
attached frequency detector could easily detect the triggering. When choosing a
triggering frequency, the chosen frequency must be unique and hard to generate
externally. Unfortunately, the system suffers from lots of security issues, but it
presents a unique solution to the authentication problem using a case specific
approach.

In [47], Todd Mander, Richard Chenng, and Farhad Nabhani proposed using rule
based security to block unauthorized access to a SCADA network running DNP3.
Their solution proposes classifying the stakeholders and implementing restriction
rules based on privilege. Restriction rules include functional code restriction; data
object restriction, and temporal constraints. Functional code restrictions limit different
privilege users from engaging in various activities such as read/write operations. Data
object restriction prevents users from creating some data types, while allowing them
to create other data types. Temporal constraints define restrictions based on
circumstances such as no data access from the PLC at a specific time. The security
rules are evaluated in sequence starting with identifying the user’s privilege(s),
checking functional code rules, followed by data object rule checking, and finally
temporal rules.

Applying these rules with properly designed network security can lower or even
eliminate the vulnerability of SCADA networks. The major drawback of such a
system is that a compromised primary master could endanger the whole system.
Additionally, security rules could become too complex to handle as the networks
grow and the delay due to processing them could compromise the performance of the
system. Combining this solution with the solution proposed by A. Mahboob and J.
Zubairi [39] which involves several layers of firewall, DMZ, intrusion detection,
system segregation, and continuous network monitoring for network anomalies could
help reduce the size of the set of rules.

30

A service-based mechanism to secure SCADA networks was proposed by Ray
Hunt and Jill Slay [48]. Their solution proposes securing the SCADA network with
the help of digital forensic services, along with the standard security mechanisms.
Their solution implements security using forensic tools that monitor the network by
running intrusion detection and malicious activity filtering; using tools that analyze
the network for threats and vulnerability; and using tools that manage and report
security events. Using these techniques their solution strives to achieve real-time
forensically sound traffic monitoring, logging, and alerting.

Norman AS’s Norman SCADA Protection (NSP) system proposes network-based
protections that prevent any malware from executing any feasible attack. They intend
to do this by using a hardware module, which is placed in between the SCADA
network and the corporate network, and software running on all PCs and HMI for
managing thumb drives and providing protection against malware over the air attacks.
The hardware module called Norman Network Protection (NNP) runs real time
malware scans, blocks suspicious links, and filters packets based on protocol and
MAC address. The software called Norman Device Control is run on all PCs and HMI
and is used to securely manage thumb drives so that no malware could attach itself
when the thumb drives are moved from computer to computer. Endpoint Norman is
run on PCs to provide protection against the latest malware, viruses, and spyware[49].

An application level solution proposed by Sidney Valentine and Csilla Farkas [50]
creates a database of PLC code and checks the code against a predefined set of rules.
This is useful to check for code anomalies such as one to many mapping and other
parametric violations. More work can be found at [51-54].

31

6 Method to achieve the project’s goal

The overall goal of this thesis project, as mentioned in the problem statement in
section 1.2on page 4 is to provide a secure means to reprogram devices connected to a
SCADA network.

6.1 Detailed Goals and Requirements
The overall goal is broken down into the following sub goals:
• Assuring secured communication in a SCADA network by implementing

TCM’s specification in PLCs.
• Assuring code and update reliability in SCADA system using signature and

authentication.
• Mitigating changes by malicious code by means of an Access Controller and

state measurement.
• Improving system reliability by means of software redundancy.
• Inter-operability with other machines running TPM.
• Security that will not degrade the operation’s timing, system performance, and

system resources (such as the power and area of integrated circuits used to
realize the system elements).

6.2 Method
The need to secure SCADA networks and the state of the art solutions that have

been proposed and implemented have been covered in the previous chapters. This
chapter and in the subsequent chapters will present the solutions proposed in this
thesis project; explain why this solution has been chosen; and how this solution
compares with previous solutions. A generalized summary of the solution proposed
by this thesis is presented below.

As described in the previous chapters the vulnerabilities in SCADA system come
from either vulnerabilities in the underlying OS or vulnerabilities in the hardware
(inabilities of the PLCs to support and implement efficient secure network). To
address these problems we propose both hardware and software based solutions. The
hardware solution will provide data security and integrity on the PLCs, while the
software solution will provide code reliability and provide a reliable computing
machine, which can be used as reference. An overview of the system is shown in
Figure 4.

The hardware solution is based on the principles of TCM, where a lightweight
version of TPM is implemented and used to provide security and key management
functions. The major required functionalities are: secure communication; secure key
management; secure memory protection; secret key generation; and an attestation
service. The TPM generates keys for encrypted communication with other modules on
the network. Additionally, the TPM performs tests and measurements to make sure
that the secret keys are not compromised and that the operating system is not changed
at runtime. This ensure that the OS can only be changed through secure
communication with a module having the correct key, thus preventing changes by
malicious applications or applications that try to change the OS at runtime by directly
accessing the OS’s memory resident code or data.

32

over
vuln
cont
usin
that
the
rem
assu
the
scen
be a
thes
add
gen

spec
cryp
to lo
spec
rega
the
env
tech
of t
4 The
prob
their

TCM are u
rcome the v
nerabilities
trol softwar

ng a Reliabl
t the code s

RCM is n
movable med
umed to be

code’s inte
nario where
able to com
se elements
ition to cer
erate a repo

Although m
cification h
ptographic t
ook the oth
cification an
ards to the s
other way b
ironment o

hnique are i
the low spe
e probability

bability of com
r product is a n

Update to RCM

used to reali
vulnerabilit
due to the
re). The pr
le Computin
ent to the P
never direc
dia (CD or
very low. T
egrity and
e an infrastr
mpromise bo

reduces th
rtifying cod
ort wheneve

many [29, 5
has many
techniques,
er way by s
nd that the s
shortcoming
by arguing
of the dev
inaccessible
eed serial n
of a comprom

mpromising th
number that is

Fi

Un-compiled
Ud

RCM
R

HM

ize secure c
ties in the P
e underlying
roposed sof
ng Machine

PLCs is the
ctly connec
r USB stick
The RCM c
attesting to

ructure syst
oth the HM
e probabilit
e the RCM

er there is a

5, 56] argue
shortcomi

privacy, an
saying that t
shortcoming
gs of the cry
that their sh

vices. The
e in the wor
network tha
mise is reduce
he RCM. As
s (much much

igure 4: Overv

RCM

MI

communica
PLCs thems
g OS and a
ftware solut
e (RCM), w
 same code

cted to the
ks) the pro

can serve as
o the valid
tem is comp

MI and the
ty of compr

M could mai
change in tr

e that imple
ings assoc
nd computa
there is gre
gs are mino
yptographic
hortcoming
resources

rking enviro
at is genera

ed to the prob
the probabilit

h) smaller than

view of the pr

ation across
selves. This
application
tion tries to

which is use
e written by

Internet o
obability of
s a certificat
dity of an
promised, t
RCM. Mak
romise in a
intain a data
rends.

ementation o
ciated with
ational freed
at advantag

or compared
c techniques
gs are insign

needed to
onment, wh
ally used to

bability of co
ties of both s
n either of them

roposed syste

the networ
s leaves us
software (

o address th
ed to compa
y the privile
or accessed
f it being c
te authority
update. In
the attacker
king proper

multiplicat
abase of up

of TCM bas
h the RSA
dom; others
ge and secur
d to these ad
s this solutio
nificant due

break the
ich is isolat
connect th

ompromising t
hould be (mu
m.

em

rk, this help
to consider

(specifically
his problem
are and con
eged user. S
d directly u
compromise
y that can ve

the worst-
r would hav
r use of bot
tive fashion
pdate codes

sed on the T
A and SH
s [57-60] pr
rity in the T
dvantages. W
on tends to
e to the wor
e cryptogra
ted and bec
he devices.

the HMI time
uch) less than

PLC

ps to
r the
y the
m by
nfirm
Since
using
ed is
erify
-case
ve to
th of
n4. In
 and

TCG

HA-1
refer

TCM
With
look

rking
aphic
ause
The

es the
n one,

33

physical isolation and general physical security of the plant makes it difficult to
physically attack the proposed augmented device without detection, while the low
speed links limits the amount of visible traffic making it difficult to mount one of the
known attacks against the cryptographic techniques.

Even though this solution does not propose any solution to overcome the
cryptographic shortcomings, the problems of privacy and computational freedom will
be addressed. The legitimate user has full rights and complete access to the secret
keys; this is achieved by allowing the user to enter secret keys either using a trusted
device or by connecting directly to the device. Both solutions require physical
presence at the device, thus making the solution more secure as secrets are configured
before installation or these secrets are configured by personal who have legitimate
access5 to the devices. Similar solutions can be found in [61, 62], 60].

The next chapter will briefly outline the TCG TPM specification and present
several working implementations. This will be followed by a description of the
proposed lightweight implementation. Each component of the proposed solution will
be reviewed, along with the software needed for the implementation.

5 Legitimate access here refers to physical access to the PLCs.

34

7 Integrated TCM for a Network
Connected Device

The previous chapter presented a TCM specification by TCG and described some
implementations of TCM for PCs and embedded devices. However, these
implementations were not designed for resource-constrained applications. This
chapter and the subsequent chapters will present a TCM for resource-constrained
components. In an attempt to minimize the TCM implementation costs & complexity
some modules are removed and some modules’ functionality is implemented inside
other modules. The advantage of an integrated TPM is that the components could be
distributed over different physical locations and still be integrated in the system,
helping to provide security while reducing the size (in mm2) of the implementation –
hence reducing the cost. Additionally, placing the components close to or in the
system helps reduce the cost of communication over a bus system, avoiding
degradation in performance. Similar implementation for wireless sensor networks
have been done reported in [59] and also another implementation in [60]. The first of
these two implementations is based on a 32-bit architecture and the second lacks the
security benefits presented here. A typical implementation is depicted in Figure 5.

Below are fundamental points worth noting when seeking to minimize the TCM:
• The only thing we rely is on is physical security, but given physical security

there is no need to implement security in all I/O modules as they are assumed
to operate in a secure physical environment. The exception to this is I/O
module(s) that are connected to the network.

• There is no need to implement or encrypt the memory contents as the memory
is also embedded in the system, thus no one can access it unless they have
physical access.

• The TPM components also serve as a crypto engine if the CPU wants to
encrypt stored data and backup it on removable media (such as a flash drive).
This gives the TPM an additional use other than security within the running
system.

• The TPM must be able to communicate and listen to the network in order to
perform a secured TPM configuration and update. Drivers and functions
should be provided to facilitate such use of the TPM.

• The alias-key generation (AIK) mechanism could be excluded from the system
to save on space and make the TPM as lightweight as possible. Since SCADA
systems do not need as many identities as typical PCs, the SK could be used
on permanent base.

• The Secret Key (SK) could be configured in the system by using a smart card
or other trusted device or trusted application running on the machine. This
could be used to set up the primary configuration, which precludes direct
visibility.

7.1

com
the
acce
mem
shou
gran
reso

syst
cert
inte
mec
com
roun
with
asso
both

7.1.

RTR
cont
requ
requ
imp
isol

1 The A
Moving fro

mpletely con
internal sec
ess control
mory and re
uld be base
nt or deny
ource, and th

The access
tem bus. Ac
tain part of
errupt reque
chanism to

mponents. A
nd robin, an
h the selec
ociated with
h priority an

.1 Requ
As mention
R, and RT
troller to c
uirements o
uirements o
plementation
ation, and h

F

Access Co
om the phy
ncerned wit
curity of sto
ller implem
esources fro
ed on the us

access by
he mode of

s controller
ccess rights
f memory, I
ests are pro

selected re
A typical pr
nd the desig
ted priority

h the mecha
nd access rig

uirements
ned in sectio

TS. In this
control acc

of an RTS
outlined bel
n the acce
helping to m

Figure 5: Typic

ontroller
ysical secur
th external
ored data an

ments an in
om unauthor
ser’s privile

considerin
f the request

r controls a
are policies

I/O subsyste
ocessed on
equests in
riority impl
gner must c
y mechanism
anism. A ful
ghts manag

on 3.3 page
thesis proj

cess to the
as specified
low in ord

ess controll
minimize th

cal PLC with i

rity of the n
security; th
nd internal

nternal secu
rized acces

ege and the
ng the privi
ted resource

all access r
s that gover
em, or othe
a priority
the case o
lementation
onsider adv
m and acc
lly function

gement.

e 15, the ma
ject the RT
e system m
d in the TC

der to achie
ler plays a
he TPM. Th

integrated TC

network co
he next secu

resources.
urity policy
s. The acce
current TPM
ilege of the
e[32].

rights to re
rn which req
er compone
base. Prior

of concurren
n could be
vantages and
count for th
ning access

ajor compon
TS is impl
memory. T
CG specific
eve the des
a major ro
hese specifi

M

nnected de
urity require
In our prop

y that shou
ss control p
M state. Th
e requester

esources co
quest is allo
ent. An acce
rity is used
nt requests
first come
d disadvant
he bus and
controller m

nents of TPM
lemented u

The RTS m
cation and
sired servic
ole in prov
ications are

evices, whic
ement conc
posed mode
uld protect
policy decis
he policy sh
r, the reque

onnected to
owed access
ess request

d as a selec
from diffe
first serve

tages associ
d time pena
must implem

M are the C
using an ac
must fulfill
must fulfill

ce. In the T
viding secu
e organized

35

ch is
cerns
el an
t the
sions
hould
ested

o the
s to a

and
ction
erent
ed or
iated
alties
ment

CRT,
ccess

the
l the
TPM
urity,

into

36

three requirements, as listed below. This list is followed by a detailed explanation of
each of these requirements.

1. The access controller must help isolate the TPM from any unauthorized
access.

2. The access controller must help isolate privileged memory for the TPM to
utilize exclusively.

3. The access controller must implement the access rights and policies that are
specified by the TPM.

7.1.2 Isolation of the TPM Components
The primary requirements of TPM are isolation of system and protection of

secrets. The TPM must be isolated from the rest of the system. TPM components
such as the key generator, private keys, configuration registers, and measurements
should be isolated and protected at all times from any application running on the
processor.

Components such as the encryption engines and public keys need to be accessed
by both the CPU and the network module(s). This will allow the TPM to serve as both
a security module and provide encryption engines. A network module should take full
advantage of the cryptographic engines, so that encryption can be enforced for all
external communications without burdening the CPU. As a result the cost of
encrypting external communications should be invisible to the execution time of
applications running on the CPU.

7.1.3 Isolated TPM Memory
Instead of using a separate memory in the TPM this proposed solution implements

the memory using part of the main memory as an isolated memory for the TPM’s
exclusive use. Working memory for storing configuration register values, storing
random number generator state, private keys, and encryption keys must be allocated
and the protection policy must be enforced.

Part of the ROM could be used for storing the SK, part of the flash memory could
be used to storing other sensitive information such as private keys and RNG random
numbers. These locations have to be available all of the time and the protection policy
must be implemented to protect these locations from being over written or read by
other than the TPM. These design decisions reduce the need for external or additional
memory in the TPM to store sensitive information. However, the TPM must itself
implement sufficient volatile memory so that all the stored data can be copy to it at
runtime6. The goal is that the TPM can work without interrupting the CPU plus the
reverse operation (copying from volatile memory to primary memory) should take
place when there is a change in measurements due to update or new configuration or
before any shutdown. Additionally, this design reduces the number of times that the
ROM or flash is written, which is a major power savings and prevents component
degradation due to multiple write cycles.

6 The copy operation occurs when the system changes from powered off to power on state.

37

7.1.5 Implement privilege and Access Control
By implementing a set of rules and policies that specify a memory range, access

type, TPM state, and user identity - a set of privilege levels can be configured. These
privilege levels govern the access rights to memory and peripheral I/O. The proposed
solution implements at least 4-privilege levels. These privilege levels are:

1. Non-secured privilege: cannot access any secured section, only allowed to
access the non-secured and unprotected sections of memory.

2. Secure working privilege levels: no read or write access to the TPM’s secure
memory; no write access to protected OS memory; can only request access to
public key for secured communication. This would be the privilege level the
CPU runs in when running a secured OS.

3. Trusted users levels: user has established trust to exchange keys and
certificates with the TPM. With this privilege the user can change the
protected OS, i.e. there is no read or write access to the TPM’s secured
memory, but the user can read and write protected to the memory containing
the OS and the other parts of memory. This would be the privilege level the
secured boot loader (SBL) would be running in when updating the protected
OS. Further details of the SBL will be given in section 8.1 pages 43.

4. Trusted machine level: is the TPM privilege level where access to all secrets
and memory locations is granted. The TPM needs to be able to access every
memory location in order to perform measurements and check the integrity of
stored data (including the OSs and applications).

7.1.6 Implementation
For fast and reliable implementation the access controller must be implemented in

hardware and placed in or near the bus controller. The access controller could be
implemented on the bus as a separate module or integrated it in the bus controller
subsystem. In the latter case the designer would implement the policies in the bus
controller. Implementing the controller in the bus controller takes advantage of the
closeness to the bus and reduces the cost of communication over the bus. However,
implementing the policies in the bus controller could be challenging, as one has to
work within the limited configurability of the bus controller. Implementing the access
controller as a separate module has an advantage of modularization and openness for
versatility, but lacks the advantages of the integrated approach mentioned above. As a
result perhaps a hybrid of the two approaches would be ideal, i.e., implementing some
of the functionality of the access controller in the bus controller, while implementing
some of the functions in a separate module to offer greater flexibility while saving
resources.

In either implementation the access controller must take the TPM state, the
requester’s identity, the requested address range, and access type (read or write) as
inputs to its decision. The access controller’s output is a granted or denied indicator.
The memory ranges could be defined in the ROM and the controller could read these
values and enforce the required memory isolation.

7.2 The I/O module
In contrast to the TCG specification where the I/O module provide access control

and system isolation, in this implementation the I/O module serves as only isolates the
TPM bus from the rest of the system. The I/O module is used as an interface between

38

the TPM components, the CPU, and the shared memory. The I/O module must
interface with the bus system in such a way that (controlled) memory access is easily
achieved. A request for access to a special TPM component is channeled to the
appropriate module. In general the I/O module serves as communications interface
between the CPU and TPM. The I/O module structure also defines how the TPM is
organized, connected, and commanded. If the TPM is also to be used as a network
encryption accelerator, then the I/O module must implement an interface to
communicate with the Network module.

7.2.1 Requirements
The I/O module must fulfill the following requirements:
1. Isolate the TPM bus system from the rest of the system.
2. Interface TPM components with the main bus system.
3. Facilitate inter-communication among TPM devices.

7.2.2 Implementation
The I/O module could be implemented as a bus bridge isolating the local TPM bus

from the system bus. This bridge would accept the address of the sub module to be
accessed, the address of memory operations that will take place; and an op-code
instructing the TPM what to do from the main system bus. A driver and API could be
provided for higher layer applications to take advantage of the TPM’s resources.
Since the bus arbiter provides isolation there is no need to enforce isolation policies.
However, the I/O module must provide a means to facilitate encryption and
decryption to implement encrypted communications over the network, while off-
loading these tasks from the CPU.

7.3 The cryptographic engines
The cryptographic engine must provide encryption and decryption, key

generation, data signing, and implement hashing. Data-sealing and memory
management could also be implemented. As the working memory of the TPM is
limited the available working RAM must be managed and monitored. The engines can
be made to serve both the TPM and the CPU with priority given to the TPM. The
TPM performs data sealing and unsealing at boot time and after any update with the
help of a SBL and the TPM execution engine. The components of the crypto engine
are:

• RSA engine,
• SHA-1 engine,
• RNG engine, and
• Key Generator (optional).

The Secured Hash Algorithm (SHA) was developed by U. S. National Institute of
Standard and Technology (NIST) in 1995 published in [63]. It remains the most
widely used hashing function [64] throughout the world. NIST published SHA-0 in
1993, but it has been deprecated because it was found to have serious security flaws.
Even SHA-1 has shortcomings that were discovered in recent years. For example,
work by [55] argues that with enough resources the hash could be broken in a couple
of weeks. To mitigate these shortcomings NIST has published SHA-2 (also known as
SHA-256 or SHA-512) that generates a larger digest output.

39

The SHA-1 algorithm work by first adding a bit ‘1’ and ‘0’ to the message to
make the total size similar to 448 mod 512. Next the messaged is chopped into chunks
of 512 bits, which are then grouped into 16 groups of 32 bit words. The 16 groups of
32 bits are converted into 80 bits by applying some logical operations, such as
Exclusive OR and left rotation. Then the 80 groups of 32 bits are hashed and
appended to either the initial vector or a previous hash output resulting in a 160-bit
hash of the message. It has been estimated that it would require 1.4 x 1048 guesses to
recover the data from the hash through a brute-force attack and 1.4 x 1024 guesses
with birthday attack[65].

SHA-1 was chosen over other hashing functions by TCG because of three main
reasons. First TCG specifies the need for SHA-1 hashing for interoperability[31].
Second the long usage of SHA-1 has shown the reliability and superiority of SHA-1
over other hashing algorithm such as MD5[65]. Third SHA-1’s modular
implementation makes it easy to upgrade, modify, and replace it with no or little
changes to the rest of the system.

The RSA module must implement encryption and decryption of data using the
private public key (asymmetric) encryption. Although the TCG specification[31]
recommend keys with a length of 2048, the specification also supports smaller keys,
which is advantageous for reducing the RSA size. The specification and the detail of
the implementation should be left to designer as should the selection of key size these
is to allow the designer to take advantage of the tradeoff on the performance speed
and implementation area size. Since RSA works using the difficulty of factoring large
number, the larger the key size the more difficult it is to guess the key.

The encryption technique in the RSA encryption algorithm is based on the
difficulty of factoring a large number. The public key is puk(n, e), where ‘n’ is a
product of two distinct prime number q and p and ‘e’ is any number between 1 and (p-
1)(q-1) where the greatest common factor for e and the upper bound (ϕ(n)=(p-1)(q-1))
is 1. And the private key is prk(n, d), where ‘d’ is the modular multiplicative inverse
of e (mod ϕ(n)). Encryption on message ‘m’ is done c= me (mod n) and decryption is
done m= cd (mod n). So the RSA engine must be able to do both encryption and
decryption by loading the appropriate keys required.

Although analysis for wireless sensor network done by [56] argue other
cryptographic solutions such as elliptic curve digital signature algorithm provide
better protection than RSA for equivalent key size. Performance comparison done in
[66] argue though elliptic curve and Diffie-Hellmen provide smaller area
implementation than RSA, RSA provide faster certificate authentication for
comparable security.

The RNG must provide random values for nonces, key generation, and
randomness in signatures. The specification and requirement for providing entropy
and maintaining randomness are specified in detail in the TCG specification. The
nonce could be used to XOR the data before or after encryption and to ensure that
data is not encrypted several times with the same key. This is useful to mitigate replay
attacks that could be attempted by capturing and retransmitting previously sent
packets. The other output of the RNG is to provide the key generator with a random
number to generate new keys to be used as the AIK.

40

The key generator is responsible for generating the AIK key, which will be used
as an alias to the primary key or SK. The key generator generates a private-public pair
of keys and the private part is encrypted with SK and stored in memory, while the
public part is sent to the CA for certification and authentication. In the TCG
implementation the TPM could register multiple AIKs and use them for different
communications. However, to make the TPM more lightweight one can remove (these
solution propose removing) the key generator and use the nonce as an alias by
ciphering data using either XOR or one time AES keys generated by the RNG. Data
could be encrypted or ciphered by XORing with a nonce making the system more
secure. The nonce could be stored in the RCM with the PLC’s public key and other
parameters. This implementation takes less memory space than storing a complete
AIK, thus making it ideal for a memory-constrained implementation. The proposed
solution removes the AIK capabilities and uses nonce instead. This design decision
saves a lot of resources.

7.3.1 Requirements
The requirements of the cryptographic engine and its subcomponents are:
1. The crypto engine generates measurements to be used as CRT.
2. The SHA-1 module must provide hashing for measurements and integrity

tests. The individual requirements are:
• Hashing the stored secrets keys and private keys.
• Hashing of all stored measurements to prove integrity of measurements.
• Hashing for different memory sections, such as SBL and secured OS, to generate measurement.
• Hashing of secured update to verify integrity.

3. The RAS module must encrypt data using the private key or using an alias key
generated in the TPM.

4. The RNG must generate random numbers to be used in the signing and alias
key generation.

7.3.2 Implementation
There exist several hardware based lightweight and fast implementations of the

SHA-1 algorithm, RAS, and RNG; therefore integrating any compatible version
would be a choice for the designer. The designer should choose and limit the number
of keys needed for encryption and decryption based on the nature of the network that
is implemented on the system. The choice of key length is always a tradeoff against
area, power consumption, computational burden, and data security. As mentioned in
the future work section exploring other cryptographic techniques and evaluating the
performance and advantage each offers would help to further reduce the TPM size,
while maintaining the desired security level.

7.4 The Execution Engine
The execution engine supports all the operations taking place on the TPM. The

execution engine also runs in parallel with the CPU to facilitate secured
communications. Since the TPM is implemented as a master in the system (with
respect to the system bus), the execution engine can initiate memory read and write
with the rights and privileges governed by the Access Controller. Although not part of
this thesis project, the execution engine could be configured as an encryption engine
to encrypt and decrypt communications over the network. With direct access to the

41

network module of the system more advanced key management schemes and system
updates could be possible.

7.4.1 Requirements
The requirements of the execution engine in this system are:
1. Implement a means to measure the reliability of the TPM,
2. Implement a means to measure the secret keys and SBL,
3. Implement a means to protect unsecured boot, and
4. Implement an interface for higher-level applications to establish secured

updates and communication with other connected devices.

7.4.2 Implementation
The execution engine should be implemented as a set of op-codes to be interpreted

with the help of an address generator and a program counter. The pseudo code of the
execution engine is given below.
Boot
Measure execution op-code
Compare with previous measurement
If okay
 Set boot flag bit0 to high
 Measure the secret key
 Compare with measurement
 If okay
 Measure the SBL
 Compare with previous measurement
 If okay
 Set boot flag bit1 to high
 Go to Execute
 else
 Set boot flag bit1 to low
 Go to Exit
 else
 Set boot flag bit1 to low
 Go to Update
else
 Set boot flag bit0 to low
 Go to Exit
Endboot

Update
If physical presence bit set high
 Measure secret key
 Store measurement
Go to Exit
Endupdate

Execute
Listen for a request via the I/O module
Respond to request

42

 /* request could be measure_data,
 encrypt_data,
 decrypt_data,
generate_AIK,
generate_nonce, …

 that use the services provided by the TPM*/
loop back to listen for another request.
endexecute

Exit
Save RNG random state.
Clear RAM
Exit
endExit

43

8 Software components

In the previous chapter, the hardware solutions proposed was presented in detail.
The necessary requirements and implementation criterions were outlined. This chapter
will address the secured boot loader (SBL) that will be loaded on the main processor
and the reliable computing machine (RCM) that will monitor the overall performance
of the system. And also the implementation detail of the secured protocol (SP), the
software that is run by the TCM execution engine will be presented.

8.1 The Secured Boot Loader (SBL)
The SBL is a measured application with known trust and integrity. It might never

be updated or updateable only with known trustworthy version. In order to ensure the
later, each current version must be able to check the signature of the next version. The
SBL establishes the secured I/O and secured memory that will be used as the security
based for all secured applications. The SBL initiates the TPM measurements of the
TPM’s secured memory locations, including the SBL and secured OS. The boot
loader will use these measurements to make other decisions. The SBL will also
communicate via the network to update a secured OS. After a secured boot the SBL
will pass ownership of the system to the secured OS and the secured OS will be
responsible for the remaining secured communications. As noted previously ideally
the network module could be configured to encrypt and decrypt all communication
without involving the CPU.

8.1.1 Requirement
The requirements of the SBL are:
1. Become the RTR by reporting discrepancies in measurements stored in the

RTS,
2. Establish the root of trust for higher level application such as OSs by assuring

secret and measurement integrity,
3. Establish trust and run secured communication with other machines in order to

securely update the OS,
4. Securely update RTS and CRT measurements, and
5. Securely boot the OS.

8.1.2 Implementation
In addition to the standard boot loader algorithm the implementation of the SBL

should incorporate the following algorithm. This algorithm is summarized by its
operations in the following scenarios:

1. TPM initiate
Initiate the TPM by asking if it is ready. The TPM runs integrity
measurements on all stored secrets, measurements, and data stored in the
isolated memory. If all of the secrets are intact, this means that the CRT is
established and then the TPM measures the SBL. If the results of this
measurement concur with the stored measurement, then the TPM responds to
the boot loader’s requests.

44

2. Check
The SB
error re
OS and
establis

3. Secured
After m
the netw
listen fo
exiting.
updater
commu
After th
After th
OS and
the upd
aborted
respons
be the r

A flowchar

and Repor
BL requests
eport (if nec
d then gener
sh the RTR

d updating
making sure
work interfa
for some pe
. If an upd
r is verified
unicate with
he update i
his the TPM
d the SBL ju
date there is
d and the S
sibility for r
responsibilit

rt showing t

No
No

rting
the integrit

cessary). Th
rates an erro
would repo

g
that the SB

ace for a po
eriod of tim
date reques
d through

h the RCM
is received

M updates it
umps to the
s a disagree
BL reports

running secu
ty of the OS

the SBL’s o

Figur

ty of secret
he SBL req
or report bef
ort errors oc

BL and all s
ossible upda

me before ei
t is receive
a secured
and verify
is measure

ts measurem
e start of the
ement betwe
 an error a
ured applica
S.

operation is

re 6: SBL flow

s and measu
quests the in
fore exiting
curring in th

secrets are
ate request.
ither jumpi
ed the requ
protocol. T
the updater

ed, then the
ments with
e protected
een measur

and exits. O
ation and se

shown in F

w chart

urements an
ntegrity of T
 (if necessa
he TPM.

intact, the S
The SBL w

ng to the p
uest is pro
The secured
r and the up
e protected
a new meas
OS. If at an

rements, the
Once the OS
ecured comm

igure 6.

nd generate
TPM, SBL,
ary). This w

SBL checks
will continu
protected O
ocessed and
d protocol
pdate signa
OS is upda
surement of

any point du
en the upda
S is started
munication

es an
 and

would

s via
ue to

OS or
d the

will
ature.
ated.
f the
uring
ate is
d the

will

45

8.2 The Secured Protocol (SP)
The SP is a set of requirements and procedures followed by the trusted machine

for secure exchange of updates, certificates, and keys. The SP is proposed with the
intention of minimizing the number of keys and certificates that need to be stored in
the PLCs in order provide secured communication. The SP usage diagram and
message exchange is summarized in Figure 7. In a typical scenario the Updater will
communicate with the RCM, establish trust, and acquire PLC public key and nonce.
When trying to update the PLC the updater will send the signature of the update to the
PLC and the un-compiled code to the RCM to compile the code and generate a
signature. After this the PLC will forward the update signature to the RCM to verify
the update. If this signature is verified, then updater is allowed to update the PLC and
the update is sent to PLC in encrypted form with the public key and nonce offered to
the updater.

The implementation of the SP could take advantage of the fact that the
authentication and key distribution are handled by the RCM in two ways. The first
would be to run different encryptions such as RAS 512 on the PLC and RAS 2048
between the HMI and RCM. This would enable the TPM module to be even smaller
and reduce the processing burden on the TPM. The second is the PLC does not have
to store any certificate or key other than that of the RCM, thus relieving the problem
of constrained memory.

The format of the messages exchanged could be:
Request for update PLC message

Encryption with PLC public key begin
Updater ID (MAC)
Receiver ID
Nonce unique random update number
Update SHA-1 hash
Message hash

Encryption end.
Request to verify updater message to RCM

Encryption with RCM public key begin
Updater ID (MAC)
Sener ID
Nonce unique random update number
Update SHA-1 hash
Message hash

Encryption end.
Response Updater verified

Encryption with PLC public key begin
Updater ID (MAC)
Updater public key
Update validity (update valid or not)
Nonce unique random number
Update SHA-1 hash by RCM
Message hash

Encryption end.

46

Response updating Granted to HMI
Encryption with HMI public key begin

PLC ID
Nonce unique random number
Message hash

Encryption end.
Request to register nonce or AIK

Encryption with RCM public key begin
PLC ID
Nonce unique random number OR AIK
Valid until number
Message hash

Encryption end.
Response to request to register nonce or AIK

Encryption with PLC public key begin
Request accepted or rejected
Message hash

Encryption end.

8.2.1 TPM as a Cryptographic Engine
As described earlier, the TPM module could also serve as a cryptographic engine

facilitating encrypted communication between components. The resources such as the
RSA and SHA engines could be available for the users to take full advantage of these
components. The opportunities presented to the user through the TPM cryptographic
engine range from secured reporting to encrypted backup and secured network
communications7. This functionality would help the TPM achieve the desired features
implemented in “position embedded ” as mentioned in [67], [68]. Although these
implementations are very attractive, they suffer from a loss of integrity and having an
extra module in the communication path would further degrade the communication
speed. However, using the TPM side by side with the CPU to provide the “position
embedded” features profit by accessing data before transmission is started, which
could save a lot of time.

7 The secured communication can be achieved either by using the TPM as a full time encryption
engine, which could result in slow communication. Or using the TPM to exchange a symmetric key,
which afterward could be used to continuously exchange data.

ReqPLC
RPUp

HMI

Re

Unda

quest to UpdC
Request to PLC Grantepdate

equest Cert

n-compiledata
Figure 7: Flow

PL
date
Update ed

tificate

d Update

w graph for se

LC
RequeUpdatUpdatUpdaPublsent

Request rnonce RequRCM

CertificaHMI regtrusted

RequePLC pu

ecured update

est to verifyer ID and e signatureater ID veriic Key of U
register AIK
uest GranteM key updat

ate Grantedgistered as partner.

est granted ublic key se
Re-compilgenerate n

e

y e ified and pdater
K or
ed and ed

d and

and ent

R

e data and new signatu

Typical Secured update RCM PUK update
and PLC certificate
registered

RCM and HMI
exchange certificate Exchange of update between HMI and

RCM to establish reliability by Software
redundancy

RCM

ure.
47

48

8.3 Reliable Computing Machine (RCM)
The reliable computing machine lies at the center of the proposed security

solution. The RCM implements the core security mechanisms proposed by this
solution, specifically: updater attestation and software redundancy. The RCM is to be
executed on a more robust machine with greater capabilities and more advanced
communication with the HMI and updaters. The RCM can attest to the
trustworthiness of the updater. Additionally, by using a redundant software module
the RCM could verify code integrity, but making any code breach more difficult.

The RCM communicates with the PLCs and the HMI. The RCM could use
different security polices for communicating with the PLCs than when
communicating with the HMI.As a result one could implement a less complex
security for the communication between PLC and RCM and more complex security
policy between the HMI and RCM. Sharing the security polices between the RCM
and the PLC allows for simpler security policy implementation in the PLC. This is a
greatly desired as the PLCs are constrained in all aspects, including memory and
computational power. Any updater has to be verified by the RCM, which can utilize a
more complex security policy, while relieving the computation burden of the PLCs.

The RCM executes a redundant software module, which attests to the update
code’s integrity by recompiling the update from source code. The RCM also
maintains a database of update code and generates a report on the trends and changes
in the updates. The database can compare the previous and current update and notify
users of the difference and changes. These reports could be used as additional system
monitoring mechanisms, while the primary security based upon recompiling the
update and generating a signature is used to verify that the signature sent to the PLCs
matches the authoritative version received by the RCM.

We achieve the security goals and requirements that we desire by combining the
solutions implemented on the RCM and PLCs, i.e. exploiting software redundancy,
the update trend database, and TPM. By using encryption together with a nonce the
proposed solution tries to mitigate the vulnerabilities of SCADA networks. By
implementing user authentication and software redundancy the proposed solution tries
to mitigate the vulnerabilities imposed by the control software and underlying OS.
With the help of the database and update history the proposed solution tries to monitor
and counter check the system’s conformance to its expected changes in operation. The
next chapter will analyze the security protection that can be achieved and evaluate the
implementation cost and feasibility of the proposed solution.

49

9 Analysis and Implementation

This chapter analyzes the security protections offered by the proposed system in
comparison with the vulnerabilities presented in previous chapters. Although most of
the security analysis is informal, it should serve as a good starting point to design a
more formal analysis and it should provide a sufficient base to analyze the strengths
and weakness of the system. The sections following the security analysis describe the
implementation of a simple prototype of the proposed system and measure the cost of
this implementation with respect to system resources, system performances, power,
and area.

Comparing this simple implementation against the NGSCB and TrustZone, the
proposed solution has fewer components and these components are more tightly
integrated into the system. Although the solution strongly adheres to the specification
and requirements outlined by TCG, there are some deviations regarding key size,
memory arrangement, the functions of some modules, and key utilization. However,
the proposed solution shares the techniques of the TCG specification common to
NGSCB and TustZone. These shared techniques include CRT, RTR, and RTS, which
are implemented using the strategies presented in the previous chapters.

9.1 Security Analysis
Although a formal security analysis has not been made of the proposed solution an

informal analysis is given below. A formal analysis would include defining attack
vectors for the various types of security breaches mentioned earlier in the thesis. A
complete formal security analysis is left as future work. Our informal analysis
indicates that the proposed solution offers the following:

Suitable polices to control and manage secrets: as the secrets keys are entered
into the PLC only once and are never accessible by any means8, managing and
keeping the secrets intact is relatively easy. In addition, the keys could be configured
using another key generating device such as smart card or key generator making key
configuration even more secure.

Adequately designed control system: the proposed PLCs implement adequate
cryptographic capability to encrypt and decrypt all external communication. Since the
security module is already embedded in the system there will be no need for an
additional module. The additional memory control imposed by the Access Controller
provides greater security and internal data integrity than a system without such an
access controller.

Secured remote access: remote access is more secure than current PLCs as
anyone trying to access the PLC has to verify their identity and use encrypted
communications. This makes remote communication more secure and reliable
because once the remote host is authenticated other protocols can be used to make
communication reliable. Additionally, the use of an encrypted hash and nonce makes
the data communicated more reliable. An attacker would have to establish trust with
the RCM, which is much more difficult than the case when attacking existing
solutions where the attacker only has to authenticate itself using password and dialup
security.
8 As per section 6.2 we assume that there is sufficient physical security to prevent physical attacks on
the device itself.

50

Adequate control of the software used in the control system: although not
formally tested, the software redundancy seems to provide adequate control of the
software used in the control system. Any successful attacks would now have to
compromise two different machines running in different environments. In addition,
the attack has to lead to an identical signed hash in order to be accepted by the
redundant software security.

Mechanism to detect anomalies: there are two means of detecting anomalies:
using the database history of updates and code signing. The database utilizes a trend-
detecting algorithm and any variation outside of prior trends will generate a message
to a technician. Code signing is used to detect any changes in code while in transit.

Data and update authentication: all communication is authenticated using
cryptographic techniques and the RCM. Reliability of every update is authenticated
using a signature, nonce, and encryptions. This should make a malicious update
infeasible. Additionally, there is a restriction of unauthorized reading of memory that
when combined with encrypted communications makes it impossible for any
malicious application to gather information about the PLC.

The fact that keys are isolated, the OS is protected, and updates are encrypted and
verified gives the system better security that systems without these features. These
features guarantee that the proposed solution fulfills the requirements and
recommendations outlined by AGA and TCG [69], [31].

9.2 Implementation
Prototyping a fully functional PLC with all the redundant features and modules is

difficult for several reasons. Most PLCs are built based upon specification and
modules that are only accessible to a specific company. Additionally, most designs
incorporate modules that are protected by intellectual property rights owned by their
respective companies. Furthermore, PLCs designed for harsh industrial environments
implement several redundant modules to minimize fault and downtime. So
implementing all of these modules simply for laboratory testing would require a great
deal of resources. For these reasons the implementation and testing were done by
simulating a simple soft-core processor with limited I/O and memory.

This approach to implementation has its own advantages and disadvantages. The
advantages include simplicity of implementation, versatility of operating speed and
frequency, flexibility of bus width and word size, etc. The major disadvantage is that
the soft-core CPU is not as optimized as the CPUs commonly found in PLCs, thus the
size of the soft-core CPU might be more or less than an actual CPU in a commercial
PLC. The operating frequency of simulation could be much faster than the typical
PLC’s operating frequency; hence the timing evaluation needs to be taken with a
grain of salt. In addition to the soft-core CPU itself, the proposed solution was
implemented with open source components, which are designed for general-purpose
applications and small (home) projects. For this reason most components are only a
simple implementation of the algorithms and solutions proposed, hence these
components have not been optimized for size or power. However, as stated above this
implementation serves as ideal ground to test basic functionality and to evaluate the
proposed solution’s overall performance.

51

The prototype was developed using two proprietary software packages, namely
ModelSim® and Quartus II®. Both programs were accessed using the student
university license found on the server license.imit.kth.se. Since these licenses are for
limited functionality there were problem compiling files when using larger FPGA
libraries. ModelSim® is a simulation program from Mentro Graphics®, it was
extensively used to develop simulation and measure execution time. Quartus II® is a
synthesis and analysis tool for hardware designs from Altera®, it was used to convert
the VHDL code in to register transfer level. It was also used to generate the circuit
layout of the prototype and estimate the size9 of the components. Additionally, two
sub-components of Quartus II®, the SOPC builder and MegaWizard, were used to
develop standard components such as soft core CPU, RAM, ROM, Flash interfaces,
and I/O components.

For the implementation and evaluation a 32 bit soft core CPU called NIOS II/e
from Altera was used as the core processor. This processor has no hardware multiplier
nor branch prediction mechanism and most of its implemented features are rather
basic; additional details can be found in [70]. 4KB of RAM, 4KB ROM, and 512KB
of flash memory were incorporated. To implement the TPM open source cores from
Opencores.org were used. The TPM was implemented using open source SHA, RSA,
and RNG components found in the Opencores.org library. A 512 key RSA engine was
used as a compromise, which has the advantage of reduced execution time and area at
the cost of somewhat weaker security. The Access Controller and Execution Engine
were prototyped and simulated. Although the RCM was not implemented, sufficient
simulations and timing measurements were done on the prototyped system to
understand the system’s overall performance. In the next section we will examine and
evaluate the size and response time of the implemented system.

9.3 Results and Measurements
For sake of comparison the proposed solution’s performance was compared with

the performance and specification of Siemen’s SIMATIC S7-300 gathered from [71].
The SIMATIC S7-300 host features a CPU with a clock speed ranging from 30 MHz
to 750 MHz; memory capacity ranging from 42 KB to 2.6 MB; and communication
support for PROFINET and Ethernet. Typical communication speed is 12 Mbps via
PROFIBUS interface and 19.2 Kbps single duplex (38.4 Kbps double duplex) Point-
to-Point serial line communication. The instruction processing time ranges, depending
on the type of process (bit operation to floating point operation), from 0.1 μs to 1.1 μs
on the slowest CPU to 0.004 μs to 0.04 μs on the fast CPU.

The implemented prototype is estimated to use 15K logic elements, 10K dedicated
registers, and 129K memory bits when implemented in an Altera FPGA. Of these
resources the CPU takes 22.58% of the total logic elements, 18.30% of the total
dedicated registers, and 85.3% of the total memory bits. The area of the TPM is large
when compared with the area of the CPU. However, it should be emphasized that the
implemented CPU lacks most of the critical features found in PLC (such as analog to
digital converters, analog and digital I/Os, network communication interfaces, several
timers, and multiple counters). Additionally the CPU that has been used has no
replication or voting to support higher reliability. For all these reasons the area
requirements of the TPM might in practice be insignificant, if all these features were
included in a commercial CPU. Most of the area is taken by the RSA engine, which
9 Size meaning areal size, which is measured in terms of registers, logic elements and memory bits.

52

takes 58.4% of the total logic elements, 81.1% of the total dedicated registers, and
10.3% of the total memory bits. These numbers show there is a room for farther
reduction of the size of the TPM by improving and optimizing the RSA engine.
Table 2: TCM area and execution time

Component

Area

Execution
time in
cycles

Logic
element

Dedicated
register

Memory
bit

RSA engine 8 895 7 362 7 744 100K

SHA-1 engine 1 309 984 0 88

RNG 512 512 0 1

I/O module <100 <100 0 1

Execution engine 481 181 10 240 1

Volatile-RAM 0 0 34 304 1

Access Controller <100 <100 0 1

CPU 3 325 1 839 77 312 1

Comparing the execution time on a SIMATIC S7-300 CPU, the fastest
communication interface, which is the PROFINET interface, is typically 12 Mbps and
the slowest communication interface, which is the Point-to-Point interface, is 38Kbps
at full duplex [71]. On the fastest link speed it would take 42.6 μs (512 bits/12*106
bit/sec) to send 512 bits of data while it takes 13.47 ms (512bit/38*1000bit/sec) on the
slow link. The fastest operation (which is a bit wise operation) on the slowest
SIMATIC S7-30010 CPU takes 0.1 μs (corresponding to simulation clock rate of
30 MHz) while on the fastest CPU it only takes 0.004 μs (corresponding to simulation
clock rate of 750MHz). In contrast the slow operations (such as a floating point
operation) take 1.1 μs and 0.04 μs on the slowest and fastest SIMATIC S7-300 CPU
(respectively). In the implemented prototype it takes 88 clock cycles to fully load
512 bits of data to the SHA and to retrieve a 160 bit hash data. In contrast it takes
about 100K clock cycles to perform a RSA encryption on 512 bits of data and to
retrieve the resulting 512 bits of encrypted data.
Table 3: Siemens s7-300 CPU family execution time

Process execution CPU 312 CPU 315-2 DP CPU 319-3

Bit operation 0.1μs 0.05μs 0.004μs

Word operation 0.24μs 0.09μs 0.01μs

Fixe-point operation 0.32μs 0.12μs 0.01μs

Floating point operation 1.1μs 0.45μs 0.04μs

10 All the data used here or used for the table can be found on the manufacturer website and also on
[71].

53

Using the clock rate as a limiting bound, the effect of adding the TPM on the
typical operation of the PLC is evaluated as follow. As a typical scenario, 512 bits of
data after a bit-operation are hashed and sent through the PROFINET interface. Since
PROFINET is a serial interface, while the rest of the system performs operations on
words, producing outputs faster than the communication speed should guarantee
smooth operations (i.e., that the required processing would not constitute a
bottleneck). A bit-operation at the slow clock rate of 30 MHz can produce 512bits in
1.6 μs, which would equivalent to serial communication at 320 Mb/s. In comparison,
the slow floating point operations at a clock rate of 30 MHz would take 17.6 μs to
produce 512 bits corresponding to a serial communication rate of 29.09 Mb/s. The
SHA-1 engine takes 2.931 μs (88 cycle at 30MHz) to produce a 160 bit-hashed value,
corresponding to a serial communication rate of 229.27 Mb/s. As the PROFINET
connection is running at 12 Mb/s it takes 56 μs to send the 512 bits of data. Since both
operations (bit or floating point operation and SHA-1 operation) are faster than the
communication link speed adding SHA-1 hashing will not introduce any significant
delay even for the slowest clock rate CPU.

Considering the same scenario using the RSA engine rather than the SHA-1
engine, we find that encrypting 512 bits of data takes 3.33 ms and 133 μs on the
slowest and fastest SIMATIC S7-300 CPU (respectively). This speed is very slow in
comparison to the typical PROFINET communication. Even if a low speed of
3.84 Mb/s could be negotiated for the fastest CPU the rate for the slowest CPU
153.75 Kb/s is unacceptable for PROFINET communication. However, this data rate
is fairly fast for point-to-point, asynchronous, or dial-up modem, whose speed is
typically only a few Kbps (typical dial-up modem speed being 56Kb/s and point-to-
point speed is 38Kb/s for full duplex). One should also take in to consideration the
fact that the RSA engine is using a 512 bit key encryption so using smaller keys
would farther enhance the execution time, while using longer keys would farther
degrade the performance.
Table 4: Summary of execution performance rate

Execution scenario CPU 312 CPU 319-3
CPU Bit operation ≥ SHA-1 hash ≥ PROFINET
network.

Not affected
12Mbps

Not affected
12Mbps

CPU Bit operation ≥ SHA-1 hash ≥ Point-to-Point
network.

Not affected
38Kbps

Not affected
38Kbps

CPU floating point operation ≥ SHA-1 hash ≥
PROFINET network.

Not affected
12Mbps

Not affected
12Mbps

CPU floating point operation ≥ SHA-1 hash ≥
Point-to-Point network.

Not affected
38Kbps

Not affected
38Kbps

CPU Bit operation ≥ RSA Encryption ≥
PROFINET network.

Affected
153.75Kbps

Affected
3.84Mbps

CPU Bit operation ≥ RSA Encryption ≥ Point-to-
Point network.

Not affected
38Kbps

Not affected
38Kbps

CPU floating point operation ≥ RSA Encryption ≥
PROFINET network.

Affected
153.75Kbps

Affected
3.84Mbps

CPU floating point operation ≥ RSA Encryption ≥
PROFINET network.

Not affected
38Kbps

Not affected
38Kbps

54

It would be interesting to evaluate the time taken by the RSA engine in the same
scenario, but in the reverse direction – i.e., when data is being received instead of
being sent. Now the slow communication speed will be the major factor in the timing,
no matter how fast all the components run they cannot run faster than the input rate
(i.e., the communication link speed). Even with the fast communication speed of
12Mb/s of PROFINET it takes 2.667 μs to deliver a word to the RSA engine. This
would limit the operating speed of the RSA to 0.375 MHZ (1/2.667 MHz). The RSA
engine takes 100K cycles to deliver a 512-bit cipher (in this case decrypted data)
taking a total time of 0.2667 s corresponds to a serial link data rate of 2 Kb/s.
Unfortunately, this is a very low data rate and the performance is even worse if a
slower link data rate is used.

Applying the same calculations for SHA-1 and PROFINET running at 12 Mb/s,
the operation rate of the SHA-1 engine will be 2.182 Mb/s. Although this is also a
very slow rate compared with the slowest operation (the slow floating point operation
taking 1.1 μs) of the CPU, the SHA-1 performance does not degrade the system’s
performance. Unlike RSA a decryption hash calculation could be run in parallel with
other operations. However, if the immediate result of the SHA-1 is requested the
response time might be as large as 240 μs.

The above are preliminary results. In an actual implementation by using pipelining
and hardware optimization the size of the TPM could be farther reduced and the
performance enhanced. Although these results show that the SHA-1 engine does not
cause any constraints on the communication performance, the RSA engine severely
degrades the PROFINET communication but it dos not affect slower communication
links. As shown in this thesis the security benefits and flexibility outweigh the
additional cost of the increased area and lower performance. Once a reliable
trustworthy boot and update mechanism is standardized other faster encryption and
security mechanisms can be used. This would result in somewhat slower boot and
reprogramming times, but allow rapid communication and more secure execution.

One possible mechanism to tackle the latency is to run the RSA engine with faster
speed than the CPU. In this scenario the speed of the RSA engine could be several
times faster than either the CPU or the communication interface making the RSA not
the bottleneck. Even though it is impossible for the RSA engine to take data faster
than provided by the slower modules (now the CPU and the communication
interface), but the computation speed will be highly enhanced. For instance the RSA
running at 1GHz would only need about 100μs to complete a 512bit RSA operation
requiring 100k cycles. This is assuming that all the data is available at the given
speed. Plus all outputs are collected at the same speed.

9.4 Discussion
As it can be seen in section 9.3 the area cost of the cryptographic engine is several

times more than the cost of the CPU and these costs are farther enhanced when
several redundant modules are used. Most PLCs must implement several versions of
the modules and components to provide reliability and fault tolerance. As the cost of
the TCM so high the actual cost would be several times this as multiple versions of it
are implemented. However, I would like to argue that the security benefits and the
performance speed of the proposed implementation outweigh the shortcomings. This
is affirmed by the two alternative solutions proposed below.

55

One alternative solution is to replace the RSA engine with a small core processor.
Using this small core the RSA algorithm could be implemented in software. This
solution has the primary advantage of reduced size, which was the major drawback in
the proposed system. But it is argued in [72] that though the area cost of
implementation for RSA is high, the cost in execution time and power is even higher
when implemented in software. The latency of the software implementation of the
RSA stated in [72] is very high and when combined with the slow PLC
communication the performance of the system would be unacceptably slow. There
could be a middle ground where both cost of area and latency are tradeoff. Doing part
of the computation in software and part of it in hardware could do this, but this will be
left for future work.

A second alternative is using a RSA server, which is used to do the RSA
computation. The PLC and the server can communicate with each other using a
shared symmetric key. The PLC can either send its private key and the message it
want to be encrypted/decrypted or all the private keys will be stored on the server and
the PLC only sends a message for encryption/decryption (a similar implementation is
given in [73]). This is a far better solution than the above because it is saves both time
and implementation area. The shortcomings include the fact that the PLCs will be
dependent on and tied to the RSA server. Also by placing the private keys on the RSA
server this server might be a valuable target and hence farther exposer the system
attacks. If an attacker manages to gain access to this server it would gain access to not
one but potentially all the PLCs private keys making the server a clear target for
attacks. This solution lacks the benefit of the TPM, which stores the key in hardware
and never exposes or shares it with anyone.

57

10 Conclusions and Future work

10.1 Conclusions
Regardless of the many security solutions and polices implementations the need to

protect SCADA system remains a large task. The vulnerabilities in SCADA systems
and the fact that SCADA systems control very critical systems make SCADA systems
an ideal target for attack. The vulnerabilities, as mentioned in chapter 1 and chapter 5,
emanate from two sources, namely the network communication used in the SCADA
network and the OS that is used to monitor and control the SCADA system.

The fact that the network system typically uses simple text to communicate, the
fact that the current SCADA systems depend on password protection, and the fact that
the SCADA network is frequently connected to the corporate network all increase the
vulnerability of the SCADA system. The integration of a gateway device that
connects the SCADA network to the Internet breaks the isolation on which SCADA
system security relied. The propriety network protocols running on low speed serial
links made it hard to implement protection that is more advanced than simple
passwords. Additionally, the exchange of messages using standard messages makes it
easy for anyone to eavesdrop on the network communication if they can get physical
access to the network.

Exacerbating these problems the underlying OS and management software also
added to the system’s vulnerability. Even with complex security policies and
advanced antivirus software protection, malicious worms and Trojan horses have
managed to gain access to and managed to compromise SCADA systems. In addition
to viruses, cyber attackers have been launching deliberate attacks to exploit the
vulnerabilities of the OS. These attacks have managed to cripple SCADA networks
forcing the termination of normal operations. Attackers have not only exploited the
vulnerabilities via Internet, but also they have compromised SCADA systems using
compromised removable media devices, such as USB sticks containing flash memory.

Mitigating these vulnerabilities within the limitations of the system has been the
abstract goal of this work. To achieve this goal, two different solutions were
proposed. The first is integrating TCM into the PLCs and utilizing a RCM that
implement software redundancy to reliably verify the trustworthiness of each update.
With the features of the TCM most of the vulnerabilities due to the network
communication were mitigated to a very large extent. Mitigation techniques include
data encryption, memory protection, secret and key isolation, and measurements of
the data to attest to its integrity. The software redundancy mitigates to some extent the
ability of an attacker to compromise the PLC as the attacker must compromise both
the updater and RCM to be successful. This software redundancy offers a good error
detector; thus although the attacker might be able to compromise the PLCs or the
RCM - the updater will prevent the system from updating the PLC unless both are
compromised such that they yield the same answer. Compromising only one of the
two will lead to error, which the human operators can address. However, ensuring that
the human operators actually address all of the flagged errors is crucial to securing the
SCADA system. Overall the proposed solution provides very good security, while
mitigating most of the vulnerabilities of existing SCADA systems.

58

Especially with the limited resources and constraints imposed by PLCs, when it
comes to designing a secure system one should understand that implementing a
foolproof system with a single module is very challenging. However, by focusing on
the most significant vulnerabilities we believe that the proposed solution mitigates the
majority of attacks and improves the overall system security of a SCADA system. In
the proposed solution the combination of the RCM and TCM can also mitigate some
of the major vulnerabilities due to network communication. However, this is not
sufficient in itself to fully protect the PLCs, there must also be a suitable gateway that
prevents unauthorized and inappropriate communication between nodes outside the
SCADA network and nodes inside the SCADA network.

Although in the previous chapters, there were many suggestions for improving
SCADA security one important aspects is the need to design the security knowing the
details of the system that is to be secured and knowing the most likely security threats
against this system. By using this knowledge the security of the system could be
optimized, minimized, and made more cost effective. In this thesis project we have
tried to follow this approach throughout the project, by studying SCADA system and
the security threats facing these systems. Thus we believe that we have come up with
a solution that is both cost effective and minimal. Further suggestions and best
practices for securing SCADA system can be found in section 5.2 pages 26.

Even though it is left as future work, exploiting the propriety network protocols to
take full advantage of the TPM would be very interesting approach to take.
Combining the TPM features and the communication protocols there could be
opportunities to further minimize the TPM. Exploring this potential could be very
promising and interesting.

10.2 Future work
Despite trying to address this vast problem there are several things that have not

been covered due to limitations in resources and time. As mentioned in the analysis
section the security analysis is informal method, hence a proper study of attack
vectors should be made and the system’s performance should be analyzed in detail. In
addition, the database system that is supposed to run on the RCM should be studied
and suitable algorithms that would fit the system’s requirements should be proposed.
Finally using the TPM, as a cryptographic engine should also be evaluated,
specifically the time constraints and efficiency should be evaluated.

Additionally, other cryptographic techniques, which is less hardware demanding
and more secure, should be investigated. The cryptographic techniques were chosen
with the primary intention of compatibility with the TCG specification, but finding
other techniques that achieves these requirements while consuming less power and
area would be interesting. Optimizing the system for speed and size is also an
interesting next topic. Another obvious thing to do would be using an updater (or
HMI), which has a trusted computing module and the PLC with the embedded trusted
computing module and removing the RCM completely or reducing its role in the
updating and reprogramming process. Since both the updater and PLC, having a
TCM, would be running in a reliable manner there would be no need to have a RCM
to verify things but the RCM could be kept as an overseer to monitor and alarm
deviation from common trends.

59

Plus it would be interesting to implement the other two alternatives, which are the
solution, which use the RSA server and the solution, which implement the RSA on
small processor. It would be interesting to evaluate their performance and cost against
the complete hardware implementation proposed here. It would be interesting to study
the solutions they present to overcome the major drawbacks in the full hardware
implementation.

10.3 Required reflections
Having completed this project I have enhanced my knowledge and understanding

regarding scientific writing, arguing a point in writing, supporting my arguments with
appropriate references and citations. I have followed the scientific method of doing
research, utilizing observations, formulating a hypothesis, reasoning, and
experimentation. With this project I have enhanced my engineering skills by
formulating unique solutions to obstacles I faced while doing the project.

While doing this project I have greatly enhanced my personal skill of time
management, project design, and my ability to model and simulate prototypes. I have
used timing charts and Gantt charts to manage my time. I formulated daily tasks,
weekly goals, and set project milestones, which were very useful in achieving my
goal.

With regards to social and ethical issues, no violation of values and norms
occurred. Since most of the experiment was done on simulators it could also be
argued that the project development had strong consideration for the environment. It
is my personal belief that if vendors implemented the results of this thesis into their
PLC, this would contribute to the enhancement and protection of society.

An analysis of the area costs of alternatives has been made. This analysis shows
that it is feasible to implement a secure reprogramming solution in PLCs. Given the
very high risks to society due to a successful attack, I will also argue that it is clearly
cost-effective to include this secure reprogramming into PLCs being used for critical
infrastructures. The cost effectiveness of implementing this for all PLCs in
non-critical infrastructures remains to be seen in future work.

61

References

[1] Fortinet Inc., “Securing SCADA Infrastructure,” Fortinet Inc., Sunnyvale,
California, USA, White paper WP-SCADA-R1-201010, Oct. 2010.

[2] I. S. of America, Enterprise-control System Integration: Models and
Terminology. Part 1. The International Society of Automation (ISA), 2000.

[3] Eric Chien, “Stuxnet: A Breakthrough.” 16-Nov-2010.
[4] “Aussie hacker jailed for sewage attacks.” [Online]. Available:

http://news.hitb.org/node/4303. [Accessed: 07-Sep-2012].
[5] Tony Smith, “Hacker jailed for revenge sewage attacks,” 31-Oct-2001.
[6] Kevin Poulsen, “Slammer worm crashed Ohio nuke plant network,” 19-Aug-

2003. [Online]. Available: http://www.securityfocus.com/news/6767. [Accessed:
29-Jul-2012].

[7] United States Nuclear Regulatory Commission, Office of Nuclear Reactor
Regulation, “Effects of Ethernet-based, Non-Safety Related Controls on the Safe
and Continued Operation of Nuclear Power Stations,” United States Nuclear
Regulatory Commission, Office of Nuclear Reactor Regulation, Washington, DC
20555-0001, USA, NRC Information Notice 2007-15, Apr. 2007.

[8] M. Clayton, “Stuxnet: Ahmadinejad admits cyberweapon hit Iran nuclear
program,” Christian Science Monitor, 30-Nov-2010.

[9] “Iran confirms Stuxnet found at Bushehr nuclear power plant.” [Online].
Available: http://warincontext.org/2010/09/26/iran-confirms-stuxnet-found-at-
bushehr-nuclear-power-plant/. [Accessed: 22-Aug-2012].

[10] N. Falliere, L. O. Murchu, and E. Chien, “W32. stuxnet dossier,” White paper,
Symantec Corp., Security Response, 2011.

[11] C. A. Theohary, P. K. Kerr, and J. Rollins, The Stuxnet Computer Worm:
Harbinger of an Emerging Warfare Capability - CRS Report. Congressional
Research Service, 2010.

[12] D. E. Sanger, “Obama Ordered Wave of Cyberattacks Against Iran,” The New
York Times, 01-Jun-2012.

[13] W. Bolton, Programmable Logic Controllers. Newnes, 2009.
[14] C. T. Jones, Programmable Logic Controllers: The Complete Guide to the

Technology. Brilliant-Training, 2006.
[15] R. E. Morley, “United States Patent: 3761893 - DIGITAL COMPUTER,” U.S.

Patent 376189325-Sep-1973.
[16] Alison Dunn, “The father of invention: Dick Morley looks back on the 40th

anniversary of the PLC,” 12-Sep-2008.
[17] G. R. Clarke, D. Reynders, and E. W. (BSc.), Practical Modern Scada

Protocols: Dnp3, 60870.5 and Related Systems. Newnes, 2004.
[18] YOKOGAWA electrical corporation, “Reliable and low-cost SCADA-RTU

communications using GPRS and DYNAMIC IP,” Jul. 2007.
[19] T. J. Stapko, Practical Embedded Security: Building Secure Resource-

Constrained Systems. Elsevier, 2007.
[20] G. J. Pottie and W. J. Kaiser, Principles Of Embedded Networked Systems

Design. Cambridge University Press, 2005.
[21] Whitfield Diffie and Martin E. Hellman, “New Directions in Cryptography.”

62

[22] “EUR-Lex - 31999L0093 - EN,” Official Journal L 013 , 19/01/2000 P. 0012 -

0020; [Online]. Available: http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31999L0093:EN:HTML.
[Accessed: 04-May-2012].

[23] Housley, et. al., “Internet X.509 Public Key Infrastructure Certificate and CRL
Profile.”

[24] Mozilla.org, “Included Certificate List.”
[25] W3Techs, “Usage of SSL certificate authorities for websites.”
[26] C. Mitchell, Trusted Computing. IET, 2005.
[27] K. J. Knapp, Cyber-Security and Global Information Assurance: Threat

Analysis and Response Solutions. Idea Group Inc (IGI), 2009.
[28] J. Winter and K. Dietrich, “A hijacker’s guide to the LPC bus,” Pre-

Proceedings of the, p. 126, 2011.
[29] S. Pearson, “Trusted Computing: Strengths, Weaknesses and Further

Opportunities for Enhancing Privacy,” in Trust Management, vol. 3477, P.
Herrmann, V. Issarny, and S. Shiu, Eds. Springer Berlin / Heidelberg, 2005, pp.
91–117.

[30] S. J. Vaughan-Nichols, “How trustworthy is trusted computing?,” Computer,
vol. 36, no. 3, pp. 18 –20, Mar. 2003.

[31] T. P. M. M. Part, “1—Design Principles, Specification Version 1.2,” Trusted
Computing Group, 2006.

[32] Y. Chen, P. England, M. Peinado, and B. Willman, “High assurance computing
on open hardware architectures,” Microsoft re-Rearch Technical Report MSR-
TR-2003-20, 2003.

[33] T. Alves and D. Felton, “Trustzone: Integrated hardware and software security,”
ARM white paper, 2004.

[34] D. Lie, C. Thekkath, M. Mitchell, P. Lincoln, D. Boneh, J. Mitchell, and M.
Horowitz, “Architectural support for copy and tamper resistant software,” ACM
SIGPLAN Notices, vol. 35, no. 11, pp. 168–177, 2000.

[35] B. Drury, The Control Techniques Drives and Controls Handbook. IET, 2001.
[36] Eric Byres and Justin Lowe, “The Myths and Facts behind Cyber Security Risks

for Industrial Control Systems,” 2004.
[37] U. S. P. C. on C. I. Protection, Critical foundations: protecting America’s

infrastructures : the report of the President’s Commission on Critical
Infrastructure Protection. The Commission, 1997.

[38] K. Munro, “SCADA – A critical situation,” Network Security, vol. 2008, no. 1,
pp. 4–6, Jan. 2008.

[39] A. Mahboob and J. Zubairi, “Intrusion avoidance for SCADA security in
industrial plants,” in Collaborative Technologies and Systems (CTS), 2010
International Symposium on, 2010, pp. 447 –452.

[40] P. A. S. Ralston, J. H. Graham, and J. L. Hieb, “Cyber security risk assessment
for SCADA and DCS networks,” ISA Trans, vol. 46, no. 4, pp. 583–594, Oct.
2007.

[41] U.S. Department of Energy National SCADA Test Bed Program, “Top 10
vulnerabilities of control system and their associated mitigation– 2007,” Dec.
2006.

[42] Eric Luiijf, “SCADA Security Good Practices for the Drinking Water Sector,”
TNO, The Hague, TNO-DV 2008 C096, Mar. 2008.

63

[43] V. I. Nguyen, W. Benjapolakul, and K. Visavateeranon, “A high-speed, low-
cost and secure implementation based on embedded ethernet and internet for
SCADA systems,” in SICE, 2007 Annual Conference, 2007, pp. 1692 –1699.

[44] I. N. Fovino, A. Carcano, and M. Masera, “A Secure and Survivable
Architecture for SCADA Systems,” in Dependability, 2009. DEPEND ’09.
Second International Conference on, 2009, pp. 34 –39.

[45] S. Bagaria, S. B. Prabhakar, and Z. Saquib, “Flexi-DNP3: Flexible distributed
network protocol version 3 (DNP3) for SCADA security,” in Recent Trends in
Information Systems (ReTIS), 2011 International Conference on, 2011, pp. 293 –
296.

[46] L. Katzir and I. Schwartzman, “Secure firmware updates for smart grid
Devices,” in Innovative Smart Grid Technologies (ISGT Europe), 2011 2nd
IEEE PES International Conference and Exhibition on, 2011, pp. 1 –5.

[47] T. Mander, R. Cheung, and F. Nabhani, “Power system DNP3 data object
security using data sets,” Computers & Security, vol. 29, no. 4, pp. 487–500,
Jun. 2010.

[48] R. Hunt and J. Slay, “Achieving critical infrastructure protection through the
interaction of computer security and network forensics,” in Privacy Security and
Trust (PST), 2010 Eighth Annual International Conference on, 2010, pp. 23 –30.

[49] Norman ASA, “The Norman SCADA Protection system protects against cyber-
attacks that target critical SCADA systems.”

[50] S. Valentine and C. Farkas, “Software security: Application-level vulnerabilities
in SCADA systems,” in Information Reuse and Integration (IRI), 2011 IEEE
International Conference on, 2011, pp. 498 –499.

[51] E. B. Fernandez and M. M. Larrondo-Petrie, “Designing Secure SCADA
Systems Using Security Patterns,” in System Sciences (HICSS), 2010 43rd
Hawaii International Conference on, 2010, pp. 1 –8.

[52] O. Rysavy, J. Rab, P. Halfar, and M. Sveda, “A Formal Authorization
Framework for Networked SCADA Systems,” in Engineering of Computer
Based Systems (ECBS), 2012 IEEE 19th International Conference and
Workshops on, 2012, pp. 298 –302.

[53] D. K. Holstein and K. Stouffer, “Trust but Verify Critical Infrastructure Cyber
Security Solutions,” in System Sciences (HICSS), 2010 43rd Hawaii
International Conference on, 2010, pp. 1 –8.

[54] H. Eren and D. Hatipoglu, “Security issues and quality of service in real time
wireless PLC/SCADA process control systems,” in Sensors Applications
Symposium, 2008. SAS 2008. IEEE, 2008, pp. 161 –165.

[55] A. Satoh and T. Inoue, “ASIC-hardware-focused comparison for hash functions
MD5, RIPEMD-160, and SHS,” Integration, the VLSI Journal, vol. 40, no. 1,
pp. 3–10, 2007.

[56] F. Amin, A. Jahangir, and H. Rasifard, “Analysis of public-key cryptography
for wireless sensor networks security,” in Proceedings of world academy of
science, engineering and technology, 2008, vol. 31.

[57] H. Hartig, M. Hohmuth, N. Feske, C. Helmuth, A. Lackorzynski, F. Mehnert,
and M. Peter, “The Nizza secure-system architecture,” in Collaborative
Computing: Networking, Applications and Worksharing, 2005 International
Conference on, 2005, p. 10–pp.

[58] A. Böttcher, B. Kauer, and H. Härtig, “Trusted computing serving an anonymity
service,” Trusted Computing-Challenges and Applications, pp. 143–154, 2008.

64

[59] Y. M. Yussoff and H. Hashim, “Trusted Wireless Sensor Node Platform,”
memory, vol. 3, p. 6.

[60] K. El Defrawy, D. P. AurAl’lien Francillon, and G. Tsudik, “Smart: Secure and
minimal architecture for (establishing dynamic) root of trust,” in Proceedings of
the Network & Distributed System Security Symposium (NDSS), San Diego, CA,
2012.

[61] K. Dietrich and J. Winter, “Implementation aspects of mobile and embedded
trusted computing,” Trusted Computing, pp. 29–44, 2009.

[62] V. Costan, L. Sarmenta, M. Van Dijk, and S. Devadas, “The trusted execution
module: Commodity general-purpose trusted computing,” Smart Card Research
and Advanced Applications, pp. 133–148, 2008.

[63] J. H. Burrows, “Secure hash standard,” DTIC Document, 1995.
[64] A. G. Konheim, Computer security and cryptography. Jossey-Bass, 2007.
[65] J. Docherty and A. Koelmans, “Hardware Implementation of SHA-1 and SHA-2

Hash Functions,” 2011.
[66] M. J. Wiener, “Performance comparison of public-key cryptosystems,” RSA

Laboratories’ CryptoBytes, vol. 4, no. 1, p. 1, 1998.
[67] A. Wright, J. Kinast, and J. McCarty, “Low-latency cryptographic protection for

SCADA communications,” in Applied Cryptography and Network Security,
2004, pp. 263–277.

[68] V. M. Igure, S. A. Laughter, and R. D. Williams, “Security issues in SCADA
networks,” Computers & Security, vol. 25, no. 7, pp. 498–506, 2006.

[69] A. T. Group and others, “Cryptographic protection of scada communications
general recommendations,” Draft3, AGA Report, no. 12.

[70] I. NIOS, Processor Reference Handbook, 2008, Altera Corporation. .
[71] H. Berger, Automating with SIMATIC: integrated automation with SIMATIC

S7-300/400: controllers, software, programming, data communication, operator
control and process monitoring. Wiley-VCH, 2003.

[72] A. S. Alkalbani, T. Mantoro, and A. O. M. Tap, “Comparison between RSA
hardware and software implementation for WSNs security schemes,” in 2010
International Conference on Information and Communication Technology for
the Muslim World (ICT4M), 2010, pp. E84 –E89.

[73] B. C. Neuman and T. Ts’o, “Kerberos: an authentication service for computer
networks,” IEEE Communications Magazine, vol. 32, no. 9, pp. 33 –38, Sep.
1994.

65

Appendix A. VHDL of implementation

The Execution Engine
 --
**
**
-- Execution Engine for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**

library IEEE, work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use work.my_library.all;
--use work.my_library.MEMORY_RW.all;

-- naming "_n" implies active low
--
ENTITY ExecutionEngine IS
 GENERIC (NumberOfMasters: int :=1);
 PORT (OPCODE :IN STD_LOGIC_VECTOR (39 DOWNTO 0);-- load the opcode from the execution
memory
 RESET_n : IN STD_LOGIC;
 CLK : IN STD_LOGIC;

 --OPCODE_OUT : OUT STD_LOGIC_VECTOR (39 DOWNTO 0);
 --
 --
 SLCT_DEVICE :OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 --
 --
 EEROM_ADDRS : OUT STD_LOGIC_VECTOR (7 downto 0);-- address from operands
 --------------COMMUNICATION WITH MAIN MEMORY
 MM_WREN : OUT STD_LOGIC;
 MM_BRST_SIZE: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MM_RAM_ADDRS: OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 MM_MEM_ADDRS: OUT STD_LOGIC_VECTOR (19 DOWNTO 0);
 MM_DONE : IN STD_LOGIC;
 -------------------------COOMUNICATION WITH MAIN MEMORY END------------------------------
--
 COMP_LENGTH :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS2 :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS1 :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_DONE :IN STD_LOGIC;
 COMP_RST :IN STD_LOGIC;
 --
 --
 SHA_START : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_END : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_RSLT : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_DONE : IN STD_LOGIC;
 --
 --
 RSA_START : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_END : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_RSLT : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_DONE : IN STD_LOGIC;
 --
 --
 RNG_SEED : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_LENGTH : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_OUT_ADD : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_DONE : IN STD_LOGIC);
END ExecutionEngine;
ARCHITECTURE EE OF ExecutionEngine IS

66

SIGNAL OPERATION : STD_LOGIC_VECTOR (39 DOWNTO 0);

SIGNAL nxt_addr : STD_LOGIC_VECTOR (7 DOWNTO 0):=(OTHERS=>'0');
SIGNAL COMP_FLAG : STD_LOGIC;
SIGNAL BOOT_FLAG : STD_LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL BOOT_REG : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL DONE_m : STD_LOGIC;
BEGIN
 OPERATION <= OPCODE;
 SLCT_DEVICE<= OPERATION(39 DOWNTO 37);
 --DONE_m<= DONE;
 SET_BOOT_REG: PROCESS (CLK, RESET_n, BOOT_FLAG)
 BEGIN
 IF(RISING_EDGE(CLK)AND RESET_n= '1')THEN
 CASE BOOT_FLAG IS
 WHEN "000" =>
 BOOT_REG<= BOOT_REG(7 DOWNTO 1)& '1';
 WHEN "001" =>
 BOOT_REG<= BOOT_REG(7 DOWNTO 2)&'1'& BOOT_REG(0 DOWNTO 0);
 WHEN OTHERS =>
 BOOT_REG<= BOOT_REG;
 END CASE;
 ELSIF (RESET_N='0')THEN
 BOOT_REG<= (OTHERS=>'0');
 END IF;
 END PROCESS SET_BOOT_REG;

DECODE: PROCESS(CLK, RESET_n)
VARIABLE rtn_addr : STD_LOGIC_VECTOR (7 DOWNTO 0):= (OTHERS=>'0');
VARIABLE JUMP_FLAG : STD_LOGIC;
VARIABLE REG : STD_LOGIC_VECTOR (7 DOWNTO 0):=(OTHERS=>'0');
VARIABLE ADDRS_r: STD_LOGIC_VECTOR (15 DOWNTO 0):= (OTHERS=>'0');
VARIABLE ADDRS_w: STD_LOGIC_VECTOR (15 DOWNTO 0):=(OTHERS=>'0');

BEGIN
 IF(RESET_n = '1' AND RISING_EDGE(CLK)AND DONE_m='1') THEN -- not reseted
 CASE OPERATION (39 DOWNTO 37) IS -- DECODE THE EXECUTION CODE
 WHEN "000" =>
 JUMP_FLAG:='1';
 WHEN "001" => -- read /write to/from ram to main memory
 MM_WREN <=OPERATION (36);
 MM_BRST_SIZE <=OPERATION(35 DOWNTO 30);
 MM_RAM_ADDRS <=OPERATION(29 DOWNTO 20);
 MM_MEM_ADDRS <=OPERATION(19 DOWNTO 0);
 DONE_m<=MM_DONE;
 -- // MIGHT BE WORTH CHECKING BEFOR USE // MEMORY_RW (OPCODE (29 DOWNTO 28), OPCODE (27
DOWNTO 25), GRANT_n , CLK , nxt , ADDRS_r , ADDRS_w);-- ADDRS_r/w CAN BE EXCHANGED AS
DESIRED
 WHEN "010" => -- compare two MEMEORY BLOCKES bit values
 COMP_LENGTH <= OPERATION (29 DOWNTO 20);
 COMP_ADDRS2 <= OPERATION (19 DOWNTO 10);
 COMP_ADDRS1 <= OPERATION (9 DOWNTO 0);
 DONE_m<= COMP_DONE;
 WHEN "011" => -- SHA-1 USED TO HASH DATA RECIVE MEMORY RANGE WITH FORMAT START ADDRESS AND
END ADDRESS
 SHA_START <= OPERATION (29 DOWNTO 20);
 SHA_END <= OPERATION (19 DOWNTO 10);
 SHA_RSLT <= OPERATION (9 DOWNTO 0);
 DONE_m <= SHA_DONE;
 WHEN "100" => -- RSA-512 key
 RSA_START <= OPERATION (29 DOWNTO 20);
 RSA_END <= OPERATION (19 DOWNTO 10);
 RSA_RSLT <= OPERATION (9 DOWNTO 0);
 DONE_m <= RSA_DONE;
 WHEN "101" => -- RNG
 RNG_SEED <=OPERATION (29 DOWNTO 20);
 RNG_LENGTH <=OPERATION (19 DOWNTO 10);
 RNG_OUT_ADD <= OPERATION (9 DOWNTO 0);
 DONE_m <= RNG_DONE;
 WHEN "110" => -- WRITE KEY RAM
 MM_WREN <=OPERATION (36);
 MM_BRST_SIZE <=OPERATION(35 DOWNTO 30);
 MM_RAM_ADDRS <=OPERATION(29 DOWNTO 20);

67

 MM_MEM_ADDRS <=OPERATION(19 DOWNTO 0);
 DONE_m<=MM_DONE;

 WHEN OTHERS => DONE_m <= '1';
 END CASE;
--
--
--ADDRS_GNR : PROCESS (CLK, RESET_n, OPERATION,DONE_m)
--VARIABLE nxt_addr : STD_LOGIC_VECTOR (7 DOWNTO 0);
--VARIABLE rtn_addr : STD_LOGIC_VECTOR (7 DOWNTO 0);
--VARIABLE JUMP_FLAG : STD_LOGIC;
--BEGIN
-- IF(RESET_n = '1' AND CLK ='1' AND DONE_m='1') THEN -- not reseted AND OPERATION WAS DONE
 IF(JUMP_FLAG= '1') THEN
 JUMP_FLAG := '0';
 CASE OPERATION (36 DOWNTO 30) IS
 WHEN "0000000"=> -- SIMPLE JUMP
 nxt_addr <= nxt_addr + OPERATION(7 DOWNTO 0);-- since opcode is 40bit long we read
every five bits
 WHEN "0000001" => -- CONDITIONAL JUMP -- JUMP IF NOT OKAY
 IF (COMP_DONE = '1' AND COMP_FLAG='0')THEN -- COMPARISON
 nxt_addr <= nxt_addr + OPERATION (7 DOWNTO 0);
 ELSE
 nxt_addr <= nxt_addr + x"01";-- CONDITON OKAY
 BOOT_FLAG <= OPERATION (29 DOWNTO 27); --SINCE BOOT FLAG IS INITALIZE TO ZERO WE
ONLY NEED TO SET IT BACK TO 1
 END IF;
 WHEN "0000010"=> -- FORKING BOOT
 IF (COMP_DONE = '1' AND COMP_FLAG='0')THEN -- COMPARISON
 nxt_addr <= nxt_addr + OPERATION (7 DOWNTO 0);-- HERE BOOT FLAG IS LEFT ZERO
 ELSE
 nxt_addr <= nxt_addr + OPERATION (15 DOWNTO 8);-- CONDITON OKAY
 BOOT_FLAG <= OPERATION (29 DOWNTO 27); --SINCE BOOT FLAG IS INITALIZE TO ZERO WE
ONLY NEED TO SET IT BACK TO 1
 END IF;
 WHEN "0000011" => --- JUMP WITH RETURN ADDRESS
 rtn_addr:= nxt_addr + x"01";
 nxt_addr <= nxt_addr + OPERATION (7 DOWNTO 0);
 WHEN "0000100" => -- JUMP TO RETN ADDRS
 nxt_addr <= rtn_addr;
 rtn_addr := (OTHERS =>'0');
 WHEN OTHERS =>
 nxt_addr <= nxt_addr + x"01";
 END CASE;
 ELSE
 nxt_addr <= nxt_addr + x"01";
 END IF;-- for jump
 DONE_m<= '1';
 EEROM_ADDRS<= nxt_addr;
-- END IF;
--
--END PROCESS ADDRS_GNR;
--
--
 ELSE -- reseted
 DONE_m <='1';
 END IF; --END FOR RESET AND CLK
END PROCESS DECODE;
END EE;

Avalon Master Interface
--
**
**
-- Top TCM I/O for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**

library IEEE, work;

68

use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
--use work.my_library.all;
--use work.my_library.MEMORY_RW.all;

ENTITY AVALON_MM_BRUST_MASTER IS
 GENERIC (MM_BASE_ADDRS : STD_LOGIC_VECTOR(11 DOWNTO 0):= x"000");
 PORT (CLK : IN STD_LOGIC;
 RESET_n : IN STD_LOGIC;
 MM_WREN : IN STD_LOGIC;
 MM_BRST_SIZE: IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 MM_RAM_ADDRS: IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 MM_MEM_ADDRS: IN STD_LOGIC_VECTOR (19 DOWNTO 0);
 MM_DONE : OUT STD_LOGIC;

 RAM_ADDRS :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RAM_DATA :OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 RAM_Q :IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 RAM_WREN :OUT STD_LOGIC;

 MASTER_BEGINTRANSFER: OUT STD_LOGIC;
 -- MASTER_BYTEENABLE : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); -- IGNORED CAUSE DEFAULT IS 32
BIT

 MASTER_RD :OUT STD_LOGIC;
 MASTER_RD_ADDRS:OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_RD_DATA: IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_DATA_VALID: IN STD_LOGIC;
 MASTER_RD_WAIT_RQST : IN STD_LOGIC;

 MASTER_WR :OUT STD_LOGIC;
 MASTER_WR_ADDRS: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_WR_DATA: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_WAIT_RQST :IN STD_LOGIC
);
END ENTITY ;

ARCHITECTURE MM_RW OF AVALON_MM_BRUST_MASTER IS
SIGNAL RD_DATA : STD_LOGIC_VECTOR(31 DOWNTO 0);
SIGNAL WR_DATA : STD_LOGIC_VECTOR (31 DOWNTO 0);
SIGNAL NXT_RAM_ADDRS_R: STD_LOGIC_VECTOR (9 DOWNTO 0);
SIGNAL NXT_RAM_ADDRS_W: STD_LOGIC_VECTOR (9 DOWNTO 0);
SIGNAL BURST_STARTED_R: STD_LOGIC:='0';
SIGNAL BURST_STARTED_W: STD_LOGIC:='0';
SIGNAL COUNT :STD_LOGIC_VECTOR (5 DOWNTO 0):= "000000";
SIGNAL MM_DONE_R:STD_LOGIC;
SIGNAL MM_DONE_W:STD_LOGIC;
SIGNAL MASTER_BEGINTRANSFER_R: STD_LOGIC;
SIGNAL MASTRR_BEGINTRANSFER_W: STD_LOGIC;

BEGIN
RAM_DATA<=MASTER_RD_DATA;
MASTER_WR_DATA<= RAM_Q;
RAM_WREN<= NOT MM_WREN; -- WHEN NOT MM_WREN I.E RD_MAIN_MEMEORY AND WRITE RAM
MASTER_WR<= MM_WREN;
MASTER_RD<= NOT MM_WREN;
MASTER_WR_BURST_COUNT <= MM_BRST_SIZE WHEN RESET_n='1' ELSE "000000";
MASTER_RD_BURST_COUNT <= MM_BRST_SIZE WHEN RESET_n='1' ELSE "000000";
MM_DONE<= '1' WHEN MM_DONE_R='1'OR MM_DONE_W='1'ELSE '0';
MASTER_BEGINTRANSFER <= MASTRR_BEGINTRANSFER_W WHEN MM_WREN='1' ELSE MASTER_BEGINTRANSFER_R;
RAM_ADDRS<= NXT_RAM_ADDRS_W WHEN MM_WREN='1' ELSE NXT_RAM_ADDRS_R;
RD_MASTER: PROCESS (CLK, RESET_n, MASTER_RD_DATA_VALID,MASTER_RD_WAIT_RQST, MM_WREN)

BEGIN
 IF(RESET_n='0') THEN
 NXT_RAM_ADDRS_R<="0000000000";
 BURST_STARTED_R<='0';
 ELSIF (RESET_n='1' AND (RISING_EDGE(CLK)) AND MM_WREN = '0') THEN
 --RAM_ADDRS<= NXT_RAM_ADDRS_R;
 IF (BURST_STARTED_R ='0' AND MASTER_RD_WAIT_RQST='1') THEN

69

 MASTER_BEGINTRANSFER_R <='1';
 MASTER_RD_ADDRS<= MM_BASE_ADDRS & MM_MEM_ADDRS;
 ELSIF (BURST_STARTED_R ='0' AND MASTER_RD_WAIT_RQST='0') THEN
 BURST_STARTED_R<= '1';
 NXT_RAM_ADDRS_R<= MM_RAM_ADDRS;
 MASTER_BEGINTRANSFER_R<='0';
 ELSIF (BURST_STARTED_R='1' AND MASTER_RD_WAIT_RQST='1') THEN
 NXT_RAM_ADDRS_R<= NXT_RAM_ADDRS_R;
 ELSE
 IF(MASTER_RD_DATA_VALID= '1')THEN
 NXT_RAM_ADDRS_R<= NXT_RAM_ADDRS_R + "0000000001";
 END IF;
 END IF;
 IF(NXT_RAM_ADDRS_R = (MM_RAM_ADDRS +("0000" & MM_BRST_SIZE))) THEN
 MM_DONE_R<= '1';
 ELSE
 MM_DONE_R<='0';
 END IF;
 END IF;
END PROCESS RD_MASTER;

WR_MASTER: PROCESS (CLK, RESET_n, MASTER_WR_WAIT_RQST, MM_WREN)
BEGIN
 IF(RESET_n='0') THEN
 NXT_RAM_ADDRS_W<="0000000000";
 BURST_STARTED_W<='0';
 ELSIF (RESET_n='1' AND RISING_EDGE(CLK) AND MM_WREN = '1') THEN
 --RAM_ADDRS<= NXT_RAM_ADDRS_W;
 IF (BURST_STARTED_W ='0' AND MASTER_WR_WAIT_RQST='1') THEN
 MASTRR_BEGINTRANSFER_W <='1';
 MASTER_WR_ADDRS<= MM_BASE_ADDRS & MM_MEM_ADDRS;
 ELSIF (BURST_STARTED_W ='0' AND MASTER_WR_WAIT_RQST='0') THEN
 BURST_STARTED_W<= '1';
 NXT_RAM_ADDRS_W<= MM_RAM_ADDRS;
 MASTRR_BEGINTRANSFER_W<='0';
 ELSIF (BURST_STARTED_W='1' AND MASTER_WR_WAIT_RQST='1') THEN
 NXT_RAM_ADDRS_W<= NXT_RAM_ADDRS_W;
 ELSE
 NXT_RAM_ADDRS_W<= NXT_RAM_ADDRS_W + "0000000001";
 END IF;
 IF(NXT_RAM_ADDRS_W = (MM_RAM_ADDRS +("0000" & MM_BRST_SIZE))) THEN
 MM_DONE_W<= '1';
 ELSE
 MM_DONE_W<='0';
 END IF;

 END IF;
END PROCESS WR_MASTER;
END MM_RW;

IO module
--
**
**
-- Top TCM I/O for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**

library IEEE, work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use work.my_library.all;
--use work.my_library.MEMORY_RW.all;

ENTITY TOP_TCM IS
GENERIC (BASE_ADDRS: STD_LOGIC_VECTOR(11 DOWNTO 0):= X"000");
PORT (CLK_IN : IN STD_LOGIC;
 CLK_RSA: IN STD_LOGIC;

70

 RESET_n : IN STD_LOGIC;
 MASTER_BEGINTRANSFER: OUT STD_LOGIC;
 -- MASTER_BYTEENABLE : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); -- IGNORED CAUSE DEFAULT IS
32 BIT

 MASTER_RD :OUT STD_LOGIC;
 MASTER_RD_ADDRS:OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_RD_DATA: IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_DATA_VALID: IN STD_LOGIC;
 MASTER_RD_WAIT_RQST : IN STD_LOGIC;

 MASTER_WR :OUT STD_LOGIC;
 MASTER_WR_ADDRS: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_WR_DATA: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_WAIT_RQST :IN STD_LOGIC
);
END ENTITY;

ARCHITECTURE rtl OF TOP_TCM IS
--
--
COMPONENT ExecutionEngine IS
 GENERIC (NumberOfMasters: int :=1);
 PORT (OPCODE :IN STD_LOGIC_VECTOR (39 DOWNTO 0);-- load the opcode from the execution
memory
 RESET_n : IN STD_LOGIC;
 CLK : IN STD_LOGIC;

 --OPCODE_OUT : OUT STD_LOGIC_VECTOR (39 DOWNTO 0);
 --
 --
 SLCT_DEVICE :OUT STD_LOGIC_VECTOR (2 DOWNTO 0);
 --
 --
 EEROM_ADDRS : OUT STD_LOGIC_VECTOR (7 downto 0);-- address from operands
 --------------COMMUNICATION WITH MAIN MEMORY
 MM_WREN : OUT STD_LOGIC;
 MM_BRST_SIZE: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MM_RAM_ADDRS: OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 MM_MEM_ADDRS: OUT STD_LOGIC_VECTOR (19 DOWNTO 0);
 MM_DONE : IN STD_LOGIC;
 -------------------------COOMUNICATION WITH MAIN MEMORY END-------------------------------
 --
 COMP_LENGTH :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS2 :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS1 :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_DONE :IN STD_LOGIC;
 COMP_RST :IN STD_LOGIC;
 --
 --
 SHA_START : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_END : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_RSLT : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_DONE : IN STD_LOGIC;
 --
 --
 RSA_START : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_END : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_RSLT : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_DONE : IN STD_LOGIC;
 --
 --
 RNG_SEED : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_LENGTH : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_OUT_ADD : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RNG_DONE : IN STD_LOGIC);
END COMPONENT ;
--
--
COMPONENT AVALON_MM_BRUST_MASTER IS
 GENERIC (MM_BASE_ADDRS : STD_LOGIC_VECTOR :=x"000");
 PORT (CLK : IN STD_LOGIC;

71

 RESET_n : IN STD_LOGIC;
 MM_WREN : IN STD_LOGIC;
 MM_BRST_SIZE: IN STD_LOGIC_VECTOR (5 DOWNTO 0);
 MM_RAM_ADDRS: IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 MM_MEM_ADDRS: IN STD_LOGIC_VECTOR (19 DOWNTO 0);
 MM_DONE : OUT STD_LOGIC;

 RAM_ADDRS :OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 RAM_DATA :OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 RAM_Q :IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 RAM_WREN :OUT STD_LOGIC;

 MASTER_BEGINTRANSFER: OUT STD_LOGIC;
 -- MASTER_BYTEENABLE : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); -- IGNORED CAUSE DEFAULT IS 32
BIT

 MASTER_RD :OUT STD_LOGIC;
 MASTER_RD_ADDRS:OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_RD_DATA: IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 MASTER_RD_DATA_VALID: IN STD_LOGIC;
 MASTER_RD_WAIT_RQST : IN STD_LOGIC;

 MASTER_WR :OUT STD_LOGIC;
 MASTER_WR_ADDRS: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_BURST_COUNT: OUT STD_LOGIC_VECTOR (5 DOWNTO 0);
 MASTER_WR_DATA: OUT STD_LOGIC_VECTOR(31 DOWNTO 0);
 MASTER_WR_WAIT_RQST :IN STD_LOGIC
);
END COMPONENT;
--
--

COMPONENT EE_instruction_ROM IS
 PORT
 (
 address : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
 clock : IN STD_LOGIC := '1';
 q : OUT STD_LOGIC_VECTOR (39 DOWNTO 0)
);
END COMPONENT ;
--
--
COMPONENT SHA1_wrap IS
 PORT (SHA_START : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_END : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_DONE : OUT STD_LOGIC;
 SHA_RSLT : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RESET_n : IN STD_LOGIC;
 DATA_ADDRS : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0);
 DATA : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 WREN : OUT STD_LOGIC;
 --OUT_ADDRS : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 CLK : STD_LOGIC);
 END COMPONENT;

--
--
COMPONENT Volatile_memory_RAM IS
 PORT
 (
 address : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 clock : IN STD_LOGIC := '1';
 data : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 wren : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
);
END COMPONENT ;
--
--
COMPONENT Comparator IS
 GENERIC (NumberOfMasters: int :=1);

72

 PORT(COMP_LENGTH : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS2 : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_ADDRS1 : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 COMP_DONE : OUT STD_LOGIC;
 COMP_RSLT : OUT STD_LOGIC;
 RESET_n : IN STD_LOGIC;
 DATA_ADDRS : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 DATA : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 WREN : OUT STD_LOGIC;
 COMP_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 CLK : IN STD_LOGIC);
END COMPONENT ;
--
--
COMPONENT RSA_wrap IS
 PORT (RSA_START : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_END : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_DONE : OUT STD_LOGIC;
 RSA_RSLT : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RESET_n : IN STD_LOGIC;
 DATA_ADDRS : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0);
 DATA : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 WREN : OUT STD_LOGIC;
 RSA_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 RSA_RAM_ADDRS: IN STD_LOGIC_VECTOR (6 DOWNTO 0);-- ADDRESS TO WRITE THE KES ADDRESS
RANGE 0000000 TO 0011111 ADDRESS THE KEYS
 RSA_RAM_DATA: IN STD_LOGIC_VECTOR (31 DOWNTO 0);--WHILE 0100000 TO 0111111 ADDRESS THE
M VALUES and 1000000 TO 1011111 THE R_C
 RSA_RAM_WREN: IN STD_LOGIC;
 RSA_CLK : IN STD_LOGIC;
 CLK : IN STD_LOGIC);
 END COMPONENT;
--
--
SIGNAL ADDRS_m : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL CLK_m : STD_LOGIC;
SIGNAL Q_m : STD_LOGIC_VECTOR (39 DOWNTO 0);
SIGNAL SHA_CABLE : STD_LOGIC_VECTOR(31 DOWNTO 0);-- START_ADDRES 9TO0, END_ADDRS 19TO10,
OUT_ADDRESS 29TO 20, RESET_n AT 30, DONE AT 31
SIGNAL RSA_CABLE : STD_LOGIC_VECTOR (31 DOWNTO 0);
SIGNAL MEM_CABLE : STD_LOGIC_VECTOR (37 DOWNTO 0);----MM_WREN (0)MM_BRST_SIZE(6
TO1)MM_RAM_ADDRS(16 TO7)MM_MEM_ADDRS(36 TO 17)MM_DONE(37)
SIGNAL RAM_CABLE : STD_LOGIC_VECTOR (74 DOWNTO 0);-- 9 DOWNTO 0 ADDRESS, FROM 41 DOWNTO 10
INDATA WRITE , FROM 73 DOWNTO 42 OUTDATA, 74 WREN
SIGNAL COMP_CABLE : STD_LOGIC_VECTOR(32 DOWNTO 0);-- 9 TO 0 LENGTH 19 TO 10 ADDRES2 29 TO 20
ADDRS1 30 DONE 31 RESET 32 RESULT
SIGNAL SHA_TO_RAM: STD_LOGIC_VECTOR (74 DOWNTO 0);
SIGNAL RAM_TO_MEM: STD_LOGIC_VECTOR (74 DOWNTO 0); -- 9 DOWNTO 0 ADDRESS, FROM 41 DOWNTO 10
INDATA WRITE , FROM 73 DOWNTO 42 OUTDATA, 74 WREN
SIGNAL MEM_TO_RSA_RAM : STD_LOGIC_VECTOR (74 DOWNTO 0);
SIGNAL MEM_DATA : STD_LOGIC_VECTOR (74 DOWNTO 0);
SIGNAL RSA_TO_RAM: STD_LOGIC_VECTOR (74 DOWNTO 0);
SIGNAL COMP_TO_RAM: STD_LOGIC_VECTOR(74 DOWNTO 0);
SIGNAL SLCT_DEVICE : STD_LOGIC_VECTOR (2 DOWNTO 0);
SIGNAL DEVICE : STD_LOGIC_VECTOR (3 DOWNTO 0);
SIGNAL RAM_SLCT_m :STD_LOGIC;
--
--
BEGIN
WITH SLCT_DEVICE SELECT
 DEVICE <= "0010" WHEN "010",--COMP
 "0100" WHEN "011",-- SHA
 "1000" WHEN "100",-- RSA
 "0001" WHEN OTHERS;--EE
SHA_CABLE(31)<= DEVICE (2);
RSA_CABLE(31)<= DEVICE (1);
WITH SLCT_DEVICE SELECT
 RAM_CABLE <= SHA_TO_RAM WHEN "011",--SHA
 RSA_TO_RAM WHEN "100",-- RSA
 RAM_TO_MEM WHEN OTHERS; --MEM
WITH RAM_SLCT_m SELECT
 MEM_DATA <= MEM_TO_RSA_RAM WHEN '0',
 RAM_TO_MEM WHEN OTHERS;
MEM_DATA<= MEM_TO_RSA_RAM WHEN SLCT_DEVICE= "110" ELSE RAM_TO_MEM;

73

ROM: EE_instruction_ROM PORT MAP (address =>ADDRS_m ,clock =>CLK_IN , q => Q_m);
RAM: Volatile_memory_RAM PORT MAP (address =>RAM_CABLE(9 DOWNTO 0),clock =>CLK_IN, data =>
RAM_CABLE(41 DOWNTO 10),wren => RAM_CABLE(74),q => RAM_CABLE (73 DOWNTO 42));

EE: ExecutionEngine PORT MAP (OPCODE => Q_m,
 RESET_n =>RESET_n,-- : IN STD_LOGIC,
 CLK =>CLK_IN,-- : IN STD_LOGIC,

 --OPCODE_OUT : OUT STD_LOGIC_VECTOR (39 DOWNTO 0),
 --
 --
 SLCT_DEVICE =>SLCT_DEVICE,
 --
 --
 EEROM_ADDRS => ADDRS_m,
 --------------COMMUNICATION WITH MAIN MEMORY -----------------------------
 MM_WREN =>MEM_CABLE(0),
 MM_BRST_SIZE =>MEM_CABLE(6 DOWNTO 1),
 MM_RAM_ADDRS =>MEM_CABLE(16 DOWNTO 7),
 MM_MEM_ADDRS =>MEM_CABLE(36 DOWNTO 17),
 MM_DONE =>MEM_CABLE(37),
 -------------------------COOMUNICATION WITH MAIN MEMORY END-------------
 --
 COMP_LENGTH =>COMP_CABLE(9 DOWNTO 0),
 COMP_ADDRS2 =>COMP_CABLE (19 DOWNTO 10),
 COMP_ADDRS1 =>COMP_CABLE (29 DOWNTO 20),
 COMP_DONE => COMP_CABLE (30),
 COMP_RST => COMP_CABLE(32),
 --
 --
 SHA_START => SHA_CABLE(9 DOWNTO 0),
 SHA_END => SHA_CABLE(19 DOWNTO 10),
 SHA_RSLT => SHA_CABLE(29 DOWNTO 20),
 SHA_DONE => SHA_CABLE(30),
 --
 --
 RSA_START =>RSA_CABLE (9 DOWNTO 0),-- : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0),
 RSA_END =>RSA_CABLE(19 DOWNTO 10),-- : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO
0),
 RSA_RSLT =>RSA_CABLE (29 DOWNTO 20),-- : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO
0),
 RSA_DONE => RSA_CABLE(30),-- : IN STD_LOGIC,
 --
 --
 RNG_SEED =>OPEN,
 RNG_LENGTH =>OPEN,
 RNG_OUT_ADD =>OPEN,
 RNG_DONE =>'0');

SHA1: SHA1_wrap PORT MAP (SHA_START => SHA_CABLE(9 DOWNTO 0),
 SHA_END => SHA_CABLE(19 DOWNTO 10),
 SHA_DONE => SHA_CABLE(30),
 SHA_RSLT => SHA_CABLE (29 DOWNTO 20),
 RESET_n => SHA_CABLE (31),
 DATA_ADDRS => SHA_TO_RAM(9 DOWNTO 0),
 DATA => SHA_TO_RAM (73 DOWNTO 42),
 WREN => SHA_TO_RAM (74),
 --OUT_ADDRS : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_OUT => SHA_TO_RAM (41 DOWNTO 10),
 CLK => CLK_IN);

RSA : RSA_wrap PORT MAP (RSA_START => RSA_CABLE (9 DOWNTO 0),
 RSA_END => RSA_CABLE (19 DOWNTO 10),
 RSA_DONE => RSA_CABLE (30),
 RSA_RSLT => RSA_CABLE (29 DOWNTO 20),
 RESET_n => RSA_CABLE(31),
 DATA_ADDRS => RSA_TO_RAM (9 DOWNTO 0),
 DATA => RSA_TO_RAM (73 DOWNTO 42),
 WREN => RSA_TO_RAM (74),
 RSA_OUT => RSA_TO_RAM (41 DOWNTO 10),
 RSA_RAM_ADDRS => MEM_TO_RSA_RAM(6 DOWNTO 0),-- ADDRESS TO WRITE THE KES ADDRESS RANGE
0000000 TO 0011111 ADDRESS THE KEYS
 RSA_RAM_DATA => MEM_TO_RSA_RAM(41 DOWNTO 10),--WHILE 0100000 TO 0111111 ADDRESS THE M
VALUES and 1000000 TO 1011111 THE R_C

74

 RSA_RAM_WREN => MEM_TO_RSA_RAM(74), -- 9 DOWNTO 0 ADDRESS, FROM 41 DOWNTO 10 INDATA
WRITE , FROM 73 DOWNTO 42 OUTDATA, 74 WREN
 RSA_CLK => CLK_RSA,
 CLK => CLK_IN);

COMPR: Comparator
 GENERIC MAP (NumberOfMasters => 1)
 PORT MAP(COMP_LENGTH => COMP_CABLE (9 DOWNTO 0),
 COMP_ADDRS2 => COMP_CABLE (19 DOWNTO 10),
 COMP_ADDRS1 => COMP_CABLE (29 DOWNTO 20),
 COMP_DONE => COMP_CABLE(30),
 COMP_RSLT => COMP_CABLE (32),
 RESET_n => COMP_CABLE (31),
 DATA_ADDRS => COMP_TO_RAM(9 DOWNTO 0),
 DATA => COMP_TO_RAM(73 DOWNTO 42),
 WREN => COMP_TO_RAM(74),
 COMP_OUT => COMP_TO_RAM (41 DOWNTO 10),
 CLK => CLK_IN);
MEM :AVALON_MM_BRUST_MASTER
 GENERIC MAP (MM_BASE_ADDRS => x"000")
 PORT MAP (CLK =>CLK_IN,
 RESET_n => RESET_n,
 MM_WREN =>MEM_CABLE(0),
 MM_BRST_SIZE =>MEM_CABLE(6 DOWNTO 1),
 MM_RAM_ADDRS =>MEM_CABLE(16 DOWNTO 7),
 MM_MEM_ADDRS =>MEM_CABLE(36 DOWNTO 17),
 MM_DONE =>MEM_CABLE(37),
 -- 9 DOWNTO 0 ADDRESS, FROM 41 DOWNTO 10 INDATA WRITE , FROM 73 DOWNTO 42 OUTDATA, 74 WREN
 RAM_ADDRS =>MEM_DATA(9 DOWNTO 0),
 RAM_DATA =>MEM_DATA(41 DOWNTO 10),
 RAM_Q =>MEM_DATA(73 DOWNTO 42),
 RAM_WREN =>MEM_DATA(74),

 MASTER_BEGINTRANSFER=> MASTER_BEGINTRANSFER,
 -- MASTER_BYTEENABLE : OUT STD_LOGIC_VECTOR (3 DOWNTO 0); -- IGNORED CAUSE DEFAULT IS 32
BIT

 MASTER_RD => MASTER_RD,
 MASTER_RD_ADDRS=> MASTER_RD_ADDRS,
 MASTER_RD_BURST_COUNT=>MASTER_RD_BURST_COUNT,
 MASTER_RD_DATA=> MASTER_RD_DATA,
 MASTER_RD_DATA_VALID=> MASTER_RD_DATA_VALID,
 MASTER_RD_WAIT_RQST => MASTER_RD_WAIT_RQST,

 MASTER_WR =>MASTER_WR,
 MASTER_WR_ADDRS=> MASTER_WR_ADDRS,
 MASTER_WR_BURST_COUNT=> MASTER_WR_BURST_COUNT,
 MASTER_WR_DATA=>MASTER_WR_DATA,
 MASTER_WR_WAIT_RQST => MASTER_WR_WAIT_RQST
);
END ARCHITECTURE;

Access controller
--
**
**
-- Memory controller for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**
library IEEE, work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use work.my_library.all;
--use work.my_library.small_int;

-- naming "_n" implies active low so in WR_n write is when WR_n=0
--
ENTITY MemoryController is

75

 GENERIC (
 Memory1End: std_logic_vector
(MemoryAddressSize downto 0):= CONV_STD_LOGIC_VECTOR(128,(MemoryAddressSize + 1));

 Memory1Start: std_logic_vector
(MemoryAddressSize downto 0):= CONV_STD_LOGIC_VECTOR(0,(MemoryAddressSize + 1));
 Memory2End: std_logic_vector
(MemoryAddressSize downto 0):= CONV_STD_LOGIC_VECTOR(1024,(MemoryAddressSize + 1));
 Memory2Start: std_logic_vector
(MemoryAddressSize downto 0):= CONV_STD_LOGIC_VECTOR(128,(MemoryAddressSize + 1));
 Memory3End: std_logic_vector
(MemoryAddressSize downto 0):= CONV_STD_LOGIC_VECTOR(2048,(MemoryAddressSize + 1));
 Memory3Start: std_logic_vector (MemoryAddressSize downto 0):=
CONV_STD_LOGIC_VECTOR(128,(MemoryAddressSize + 1)));
 PORT(
 TPMState : IN STD_LOGIC_VECTOR (2 downto 0);--
the state of the tpm are 00-TPM boot,01-update, 10-SEC-exe,11-exit
 BUSREQ_n : IN STD_LOGIC_VECTOR (NumberOfMasters
downto 0);-- which master or slave has requested bus like requester id with the TPM with ID=0;
 TRANSType : IN STD_LOGIC_VECTOR (1 downto
0);-- type of transfer weather it is 00-IDEL; 01-BUSY; 10-NONSEQ; 11-SEQ
 ADDRS : IN STD_LOGIC_VECTOR (MemoryAddressSize downto 0);-- the
address of the memory requested
 SIZE : IN STD_LOGIC_VECTOR(2 downto
0);-- size of the transfer need to be checked for brust operation
 WR_n : IN STD_LOGIC;-- inform weather the
operation is a read or a write
 GRANT_n : OUT STD_LOGIC_VECTOR(NumberOfMasters
downto 0));
END MemoryController ;

ARCHITECTURE MC of MemoryController is
BEGIN
 PROCESS (TPMState, BUSREQ_n, TRANSType,ADDRS)
 VARIABLE address:STD_LOGIC_VECTOR(MemoryAddressSize downto 0):=ADDRS;
 VARIABLE switch : STD_LOGIC_VECTOR(1 downto 0):="11";
 BEGIN
 IF(TRANSType >"01") THEN -- the brust type of operation
 address := (ADDRS + SIZE);
 END IF;
 IF ((address > Memory1Start) AND (address < Memory1End)) THEN
 switch:="00";
 END IF;
 IF ((address > Memory2Start) AND (address < Memory2End)) THEN
 switch:= "01";
 END IF;
 IF ((address > Memory3Start) AND (address < Memory3End)) THEN
 switch:= "10" ;
 END IF;
 CASE switch IS
 WHEN "00" =>
 -- BEGIN
 IF (BUSREQ_n = "10") THEN
 GRANT_n<= "10";
 ELSE
 GRANT_n<= "11";
 END IF;
 --END
 WHEN "01" =>
 --BEGIN
 IF (BUSREQ_n = "10") THEN
 GRANT_n<= "10";
 ELSIF (((BUSREQ_n = "01")AND (TPMState= "01"))) THEN
 GRANT_n <= "01";
 ELSE
 GRANT_n <= "11";
 END IF;
 --END
 WHEN "10" =>
 --BEGIN
 IF (BUSREQ_n = "10") THEN
 GRANT_n<= "10";
 ELSIF (BUSREQ_n = "01" AND TPMState > "01") THEN
 GRANT_n<= "01";

76

 ELSE
 GRANT_n<= "11";
 END IF;
 -- END
 WHEN OTHERS =>
 GRANT_n<="11";
 END CASE;
END PROCESS;
END MC;

RSA engine
--
**
**
-- RSA_Wrap for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**
library IEEE, work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use work.my_library.all;

ENTITY RSA_wrap IS
 PORT (RSA_START : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_END : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RSA_DONE : OUT STD_LOGIC;
 RSA_RSLT : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RESET_n : IN STD_LOGIC;
 DATA_ADDRS : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0);
 DATA : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 WREN : OUT STD_LOGIC;
 RSA_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 RSA_RAM_ADDRS: IN STD_LOGIC_VECTOR (6 DOWNTO 0);-- ADDRESS TO WRITE THE KES ADDRESS
RANGE 0000000 TO 0011111 ADDRESS THE KEYS
 RSA_RAM_DATA: IN STD_LOGIC_VECTOR (31 DOWNTO 0);--WHILE 0100000 TO 0111111 ADDRESS THE
M VALUES and 1000000 TO 1011111 THE R_C
 RSA_RAM_WREN: IN STD_LOGIC;

 RSA_CLK : IN STD_LOGIC;
 CLK : IN STD_LOGIC);
 END ENTITY;

ARCHITECTURE BHV OF RSA_wrap IS
COMPONENT rsa_top is
 port(
 clk : in std_logic;
 reset : in std_logic;
 valid_in : in std_logic;
 start_in : in std_logic;
 x : in std_logic_vector(15 downto 0); -- estos 3 son x^y mod m
 y : in std_logic_vector(15 downto 0);
 m : in std_logic_vector(15 downto 0);
 r_c : in std_logic_vector(15 downto 0); --constante de montgomery r^2 mod m
 s : out std_logic_vector(15 downto 0);
 valid_out : out std_logic;
 bit_size : in std_logic_vector(15 downto 0) --tamano bit del exponente y (log2(y))
);
END COMPONENT;

COMPONENT RSA_Key_RAM IS
 PORT
 (
 address : IN STD_LOGIC_VECTOR (4 DOWNTO 0);
 clock : IN STD_LOGIC := '1';
 data : IN STD_LOGIC_VECTOR (15 DOWNTO 0);
 wren : IN STD_LOGIC ;
 q : OUT STD_LOGIC_VECTOR (15 DOWNTO 0)
);

77

END COMPONENT ;
SIGNAL RSA_RAM_DATA_m: STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL RSA_RAM_ADDRS_m: STD_LOGIC_VECTOR (4 DOWNTO 0);
SIGNAL SW : BIT;
SIGNAL WREN_MOD_m : STD_LOGIC;
SIGNAL WREN_KEY_m : STD_LOGIC;
SIGNAL WREN_R_C_m : STD_LOGIC;
SIGNAL M_m : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL M_m_i : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL M_m_c : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL Y_m : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL R_C_m : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL RESET :STD_LOGIC;
SIGNAL START_IN :STD_LOGIC;
SIGNAL VALID_IN :STD_LOGIC;
SIGNAL VALID_OUT_m: STD_LOGIC;
SIGNAL S_m : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL RSA_OUT_m: STD_LOGIC_VECTOR (31 DOWNTO 0);
SIGNAL DATA_m :STD_LOGIC_VECTOR (31 DOWNTO 0);
SIGNAL X_m : STD_LOGIC_VECTOR (15 DOWNTO 0);
SIGNAL OUT_FLAG :STD_LOGIC;
SIGNAL BIT_SIZE_m :STD_LOGIC_VECTOR (15 DOWNTO 0):= x"0011";
BEGIN
RESET <= NOT RESET_n;
RSA_RAM_ADDRS_GNRT : PROCESS (RSA_CLK, RESET_n)
VARIABLE ADDRS_m : STD_LOGIC_VECTOR(4 DOWNTO 0);
VARIABLE START_IN_m : STD_LOGIC:='0';
VARIABLE START_COUNT : STD_LOGIC_VECTOR(2 DOWNTO 0) := "000";
BEGIN
 IF (RESET_n = '0') THEN
 ADDRS_m:= (OTHERS =>'0');
 SW<='0';
 START_IN_M:= '0';
 START_COUNT:= "000";
 M_m_i <= x"b491";
 ELSIF (RSA_CLK'EVENT AND RSA_CLK='1') THEN
 IF (START_IN_m='0')THEN -- CONDTION TO START THE RSA ENGINE REQUIRED BY THE DEVELOPER
 IF (START_COUNT = "000")THEN
 START_IN <='1';
 START_IN_m:='0';
 ELSIF (START_COUNT >= "110")THEN
 START_IN_m := '1';
 START_COUNT:="000";
 START_IN <='0';
 ELSE
 START_IN<='0';
 START_IN_m:='0';
 END IF;
 START_COUNT := START_COUNT + "001";
 END IF;-- END OF CONDTION
 IF(START_IN_m = '1') THEN
 SW<= NOT SW;
 IF (ADDRS_m = "11111")THEN
 ADDRS_m:= "00000";
 ELSIF (VALID_OUT_m='0')THEN
 ADDRS_m := ADDRS_m + "00001";
 ELSE
 ADDRS_m:= ADDRS_m;
 END IF;
 IF (RSA_RAM_WREN = '1')THEN -- IF THE EE WANT TO LOAD KEYS TO THE RAM
 RSA_RAM_ADDRS_m <= RSA_RAM_ADDRS(4 DOWNTO 0);
 IF (SW = '0') THEN
 RSA_RAM_DATA_m <= RSA_RAM_DATA (15 DOWNTO 0);
 ELSE
 RSA_RAM_DATA_m <= RSA_RAM_DATA (31 DOWNTO 16);
 END IF ;
 IF (RSA_RAM_ADDRS(6 DOWNTO 5)= "01") THEN
 WREN_KEY_m<= '0';
 WREN_MOD_m<='1';
 WREN_R_C_m<='0';
 ELSIF (RSA_RAM_ADDRS(6 DOWNTO 5)= "10") THEN
 WREN_KEY_m<= '0';
 WREN_MOD_m<='0';
 WREN_R_C_m<='1';

78

 ELSE
 WREN_KEY_m<= '1';
 WREN_MOD_m<='0';
 WREN_R_C_m<='0';
 END IF;
 ELSE -- KEYS ARE ALREADY LOADDED SO KEEP ON READING

 OUT_FLAG <= '1';
 END IF;
 IF (OUT_FLAG = '1')THEN
 IF (VALID_OUT_m= '0') THEN
 WREN_KEY_m<= '0';
 WREN_MOD_m<='0';
 WREN_R_C_m<='0';
 RSA_RAM_ADDRS_m<= ADDRS_m;
 IF (SW= '0') THEN
 X_m <= DATA_m(15 DOWNTO 0);
 ELSE
 X_m <= DATA_m(31 DOWNTO 16);
 END IF;
 ELSE
 IF(SW = '0') THEN
 RSA_OUT(15 DOWNTO 0) <= S_m;
 ELSE
 RSA_OUT(31 DOWNTO 16) <= S_m;
 END IF;
 END IF;
 END IF;
 END IF;
 END IF;-- END CLK EVENT
END PROCESS RSA_RAM_ADDRS_GNRT;
RAM_MOD : RSA_Key_RAM PORT MAP(address=>RSA_RAM_ADDRS_m, clock => RSA_CLK,data =>
RSA_RAM_DATA_m, wren => WREN_MOD_m, q => M_m_c);
RAM_KEY : RSA_Key_RAM PORT MAP(address=>RSA_RAM_ADDRS_m, clock => RSA_CLK,data =>
RSA_RAM_DATA_m, wren => WREN_KEY_m, q => Y_m);
RAM_R_C : RSA_Key_RAM PORT MAP(address=>RSA_RAM_ADDRS_m, clock => RSA_CLK,data =>
RSA_RAM_DATA_m, wren => WREN_R_C_m, q => R_C_m);
RSA : rsa_top PORT MAP (clk => RSA_CLK, reset=> RESET, valid_in => VALID_IN, start_in =>
START_IN,
 x =>X_m,y => Y_m, m => M_m,r_c =>R_C_m,s => S_m, valid_out =>
VALID_OUT_m,
 bit_size => BIT_SIZE_m);
M_m<= M_m_i WHEN RESET_n = '0' ELSE M_m_c;
RSA_DATA_ADDRS_GNRT: PROCESS (CLK, RESET_n)
VARIABLE DATA_ADDRS_m :STD_LOGIC_VECTOR (9 DOWNTO 0);
VARIABLE RTRN_ADDRS_m: STD_LOGIC_VECTOR (9 DOWNTO 0);
VARIABLE OUT_COUNT:STD_LOGIC_VECTOR (4 DOWNTO 0):= "00000";
VARIABLE DONE_m: STD_LOGIC;
VARIABLE VALID_IN_m : STD_LOGIC:='0';
BEGIN
 IF (RESET_n = '0') THEN
 DATA_ADDRS_m := (OTHERS=> '0');
 RTRN_ADDRS_m := (OTHERS => '0');
 VALID_IN_m :='0';
 DONE_m := '0';
 ELSIF (CLK'EVENT AND CLK= '1') THEN
 DATA_ADDRS <= DATA_ADDRS_m;
 RSA_DONE <= DONE_m;
 DATA_m<= DATA;
 RSA_OUT<= RSA_OUT_m;
 IF(VALID_OUT_m ='0') THEN -- NO OUT PUT IS READY SO IT IS OKAY TO READ
 DONE_m := '0';
 OUT_COUNT :="00000";
 IF (DATA_ADDRS_m = "0000000000") THEN
 DATA_ADDRS_m := RSA_START;
 VALID_IN_m :='1';
 ELSIF (DATA_ADDRS_m >"0000000000" AND DATA_ADDRS_m< RSA_END)THEN
 DATA_ADDRS_m := DATA_ADDRS_m + "0000000001";
 VALID_IN_m := '1';
 ELSE
 VALID_IN_m := '0';
 END IF;
 END IF; --END THE CONDTION THAT CHECKS THE WRITE AND READ

79

 IF (VALID_OUT_m= '1') THEN

 END IF;

 IF (VALID_OUT_m = '1') THEN -- OUT ADDRESS COUNTING
 WREN <='1';
 RTRN_ADDRS_m:= DATA_ADDRS_m;
 IF (OUT_COUNT = "11111")THEN
 DONE_m:='1';
 WREN<= '0';
 DATA_ADDRS_m:= RTRN_ADDRS_m;
 -- END;
 ELSIF (OUT_COUNT = "00000") THEN
 WREN <='1';
 RTRN_ADDRS_m:= DATA_ADDRS_m;
 DATA_ADDRS_m := RSA_RSLT;
 ELSE
 -- BEGIN
 DATA_ADDRS_m := RSA_RSLT + "0000000001";
 END IF;
 OUT_COUNT := OUT_COUNT +"00001";
 END IF;-- END OUT ADDRESS COUNTING IF

 END IF; ---CLK EVENT AND RESET

END PROCESS RSA_DATA_ADDRS_GNRT;

END BHV;

SHA-1 engine
--
**
**
-- Top TCM for TCM
-- Version 0.1
-- Designed by Mussie Tesfaye
-- Modified 01/08/2012
--
**
**

library IEEE, work;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
use work.my_library.all;

ENTITY SHA1_wrap IS
 PORT (SHA_START : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_END : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_DONE : OUT STD_LOGIC;
 SHA_RSLT : IN STD_LOGIC_VECTOR (9 DOWNTO 0);
 RESET_n : IN STD_LOGIC;
 DATA_ADDRS : OUT STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0);
 DATA : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
 WREN : OUT STD_LOGIC;
 --OUT_ADDRS : OUT STD_LOGIC_VECTOR (9 DOWNTO 0);
 SHA_OUT : OUT STD_LOGIC_VECTOR (31 DOWNTO 0);
 CLK : IN STD_LOGIC);
 END ENTITY;

ARCHITECTURE BHV OF SHA1_wrap IS
COMPONENT sha1 is
 port(
 m : in bit_vector (31 downto 0); -- 32 bit data path require 16 clock to
load all 512 bits of each block
 init : in bit; -- initial message
 ld : in bit; -- load signal
 h : out bit_vector (31 downto 0); -- 5 clock after active valid signal
is the message hash result
 v : out bit; -- hash output valid signal one clock
advance

80

 clk : in bit; -- master clock signal
 rst : in bit -- master reset signal
);
END COMPONENT;
SIGNAL OUT_m : BIT_VECTOR (31 DOWNTO 0);
SIGNAL DATA_m : BIT_VECTOR (31 DOWNTO 0);
SIGNAL LD_m :BIT;
SIGNAL INIT_m : BIT;
SIGNAL DONE_m: STD_LOGIC;
SIGNAL RST_m :BIT;
SIGNAL V_m :BIT;
SIGNAL CLK_m:BIT;
BEGIN
 CLK_m<= To_Bit(CLK);
PROCESS (CLK, RESET_n)
 VARIABLE DATA_ADDRS_m :STD_LOGIC_VECTOR (9 DOWNTO 0);
 VARIABLE RTRN_ADDRS_m: STD_LOGIC_VECTOR (9 DOWNTO 0);
 VARIABLE OUT_FLAG: STD_LOGIC;
 VARIABLE OUT_COUNT:INTEGER RANGE 0 TO 10;
 BEGIN
 IF (RESET_n = '0')THEN
 -- BEGIN
 DATA_ADDRS_m := (OTHERS=> '0');
 RTRN_ADDRS_m := (OTHERS => '0');
 INIT_m <= '1';
 RST_m <= '1';
 WREN <='0';
 DONE_m<= '0';
 -- END ;-- END RESET BEGIN
 ELSIF (CLK'EVENT AND CLK= '1') THEN
 -- BEGIN
 RST_m <='0';
 DATA_ADDRS <= DATA_ADDRS_m;
 --OUT_ADDRS <= OUT_ADDRS_m;
 SHA_DONE <= DONE_m;
 DATA_m<= To_BitVector(DATA);
 SHA_OUT<= To_StdLogicVector(OUT_m);
 IF(OUT_FLAG ='0') THEN -- NO OUT PUT IS READY SO IT IS OKAY TO READ
 IF (DATA_ADDRS_m = "0000000000") THEN
 -- BEGIN
 DATA_ADDRS_m := SHA_START;
 LD_m<='1';
 -- END;
 ELSIF (DATA_ADDRS_m >"0000000000" AND DATA_ADDRS_m< SHA_END)THEN
 --BEGIN
 DATA_ADDRS_m := DATA_ADDRS_m + "0000000001";
 LD_m<='1';
 INIT_m <='0';
 -- END;
 ELSE
 LD_m<='0';
 END IF;
 END IF; --END THE CONDTION THAT CHECKS THE WRITE AND READ
 IF (V_m= '1') THEN
 OUT_COUNT :=0;
 OUT_FLAG:='1';
 WREN <='1';
 RTRN_ADDRS_m:= DATA_ADDRS_m;
 END IF;
IF (OUT_FLAG = '1') THEN -- OUT ADDRESS COUNTING
 -- BEGIN
 IF (OUT_COUNT = 4)THEN
 --BEGIN
 OUT_FLAG:='0';
 DONE_m<='1';
 WREN<= '0';
 DATA_ADDRS_m:= RTRN_ADDRS_m;
 -- END;
 ELSIF (OUT_COUNT = 0) THEN
 DATA_ADDRS_m := SHA_RSLT;
 ELSE
 -- BEGIN
 DATA_ADDRS_m := SHA_RSLT + "0000000001";
 END IF;

81

 OUT_COUNT := OUT_COUNT +1;
 END IF;-- END OUT ADDRESS COUNTING IF
 END IF; ---CLK EVENT AND RESET
 END PROCESS;
 SHA1_U1 : sha1 PORT MAP (DATA_m, INIT_m , LD_m, OUT_m, V_m, CLK_m, RST_m);
END BHV;

My_Library
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.std_logic_unsigned.all;
use IEEE.std_logic_arith.all;
package my_library is
-- collection of types and components to be used through out the project
TYPE ARY IS ARRAY (0 TO 3) OF STD_LOGIC_VECTOR (31 DOWNTO 0);
SUBTYPE int IS INTEGER RANGE -128 TO 127; -- might consider range -512 to 512
constant MemoryAddressSize: int :=9;-- for memory address of width of 10 bit RAM
CONSTANT NumberOfMasters : int :=1; --represent two manster one TCM and the other is the CPU
CONSTANT DATA_WIDTH : int :=7; -- FOR AN 8 BIT DATA RANGING FROM 7 DOWNTO 0
PROCEDURE MEMORY_RW (SIGNAL TRANSType : IN STD_LOGIC_VECTOR (1 downto 0);-- type of
transfer weather it is 00-IDEL; 01-BUSY; 10-NONSEQ; 11-SEQ
 SIGNAL SIZE : IN STD_LOGIC_VECTOR(2 downto 0);--
size of the transfer need to be checked for brust operation
 SIGNAL GRANT_n : IN STD_LOGIC_VECTOR(NumberOfMasters downto 0);
 SIGNAL CLK : IN STD_LOGIC;
 VARIABLE DONE : OUT STD_LOGIC;
 VARIABLE ADDRS_r : INOUT STD_LOGIC_VECTOR (MemoryAddressSize downto
0);
 VARIABLE ADDRS_w : INOUT STD_LOGIC_VECTOR (MemoryAddressSize downto
0));
end my_library;

PACKAGE BODY my_library IS

 PROCEDURE MEMORY_RW (SIGNAL TRANSType : IN STD_LOGIC_VECTOR (1 downto 0);-- type of
transfer weather it is 00-IDEL; 01-BUSY; 10-NONSEQ; 11-SEQ
 SIGNAL SIZE : IN STD_LOGIC_VECTOR(2 downto 0);--
size of the transfer need to be checked for brust operation
 SIGNAL GRANT_n : IN STD_LOGIC_VECTOR(NumberOfMasters downto 0);
 SIGNAL CLK : IN STD_LOGIC;
 VARIABLE DONE : OUT STD_LOGIC;
 VARIABLE ADDRS_r : INOUT STD_LOGIC_VECTOR (MemoryAddressSize downto
0);
 VARIABLE ADDRS_w : INOUT STD_LOGIC_VECTOR (MemoryAddressSize dOWNTO
0)) IS
 VARIABLE TEMP_r, TEMP_w : STD_LOGIC_VECTOR (MemoryAddressSize DOWNTO 0);
 VARIABLE i:STD_LOGIC_VECTOR (2 DOWNTO 0);
 BEGIN
 i:=SIZE;
 -- WHILE i>"000" LOOP
 IF (GRANT_n = "00" AND CLK = '1') THEN
 IF (TRANSType ="11") THEN
 IF (i/= "000") THEN --FOR i IN 0 TO CONV_INTEGER (UNSIGNED(SIZE)) LOOP
 TEMP_r:=ADDRS_r;
 TEMP_w:=ADDRS_w;
 ADDRS_r := TEMP_r + "0000000001";
 ADDRS_w := TEMP_w + "0000000001";
 i:= i-"001";
 ELSE
 DONE := '1';
 END IF; -- FOR LOOP
 ELSE
 DONE := '1';
 ADDRS_r := ADDRS_r;
 ADDRS_w := ADDRS_w;
 END IF; -- END SEQUENTIAL TRANSFER
 END IF; -- ACCESS NOT GRANTED
 -- END LOOP;
 END MEMORY_RW;
END my_library;

Ap

TC

ppend

CM Netlist

dix B.

t

Simmulatioon ressults

83

www.kth.se

TRITA-ICT-EX-2012:229

