
Degree project in
Communication Systems

First level, 15.0 HEC
Stockholm, Sweden

G I L B E R T  L I D H O L M
a n d

M A R C U S  N E T T E R B E R G

 Evaluating an IPv4 and IPv6 Network

K T H I n f o r m a t i o n  a n d

C o m m u n i c a t i o n  T e c h n o l o g y



 
 

KTH Royal Institute of Technology 

Evaluating an IPv4 and 
IPv6 Network 

      
 

Gilbert Lidholm & Marcus Netterberg 

2012-09-08 

 

Bachelor’s thesis 

 

 

 

 

Examiner & supervisor: 

Professor Gerald Q. Maguire Jr. 
 

  



i 
 

Abstract 
This thesis is the result of the bachelor’s thesis project “Evaluating an IPv4 and IPv6 network”.   

The IPv6 protocol was created with the main purpose of solving the problem of the depletion of IP-

addresses that IPv4 is currently facing. This thesis gives an introduction to the differences between 

IPv4 and IPv6 and when one should use one protocol rather than the other. It describes the services 

that we will use in order to evaluate what kinds of problems IPv4 may experience and if these 

problems can be solved by using IPv6. We also show how to set up a network with both protocols for 

each service that we examine. We will subsequently evaluate the performance of these two protocols 

for each of these services. We found that there were no significant differences in the performance of 

any of the applications that we tested with both IPv4 and IPv6. Due to the depletion of IPv4 addresses 

and the continuing rapid growth of the Internet, this thesis describes a very current and a relevant issue 

for computer networks today. 

Abstrakt 
Denna avhandling är resultatet utav högskoleingenjörsexamensarbetet ”Utvärdera ett IPv4- och IPv6 

nätverk”. 

IPv6-protokollet skapades huvudsakligen för att lösa bristen på IP adresser som IPv4 står inför. 

Avhandlingen ger en introduktion till skillnaden mellan IPv4 och IPv6 och när det skulle vara mer 

lämpligt att använda det ena protokoll framför den andra. Den beskriver de tjänster som vi kommer att 

använda och utvärdera vilka typer av problem som IPv4 kan erfara och om dessa problem kan lösas 

med hjälp av IPv6. Vi förklarar också hur man sätter upp ett nätverk med de två protokollen för varje 

tjänst som vi utvärderar. Vi kommer sedermera utvärdera prestandan för båda protokollen för dessa 

tjänster. Vi kom fram till att det inte var några signifikanta skillnader i prestanda för någon av de 

applikationer som vi testade med både IPv4 och IPv6. På grund av utarmningen av IPv4-adresser och 

den snabba tillväxten av internet, så beskriver denna avhandling ett väldigt aktuellt och relevant 

problem i datornätverk idag. 

  



ii 
 

The intended audience 
This thesis is mainly written for people with average to advanced knowledge in computer networking 

that wishes to gain an insight in the difference between IPv4 and IPv6 in the aspect of structure, 

performance and implementation. There are a lot to be learned as a novice but many parts will be hard 

to follow.  

 

  



iii 
 

Acknowledgments 
We would like to extend our sincere thanks and appreciation to our supervisor and examiner Professor 

Gerald Q. Maguire Jr. for providing us with this topic and his extensive feedback throughout the entire 

course of this thesis. 

Furthermore our thanks go out to our families and friends, both at KTH and at home, for all the 

support. These three years could never have been completed without you. 

  



iv 
 

Table of contents 
Abstract .................................................................................................................................................... i 

Abstrakt .................................................................................................................................................... i 

The intended audience ............................................................................................................................. ii 

Acknowledgments .................................................................................................................................. iii 

List of figures ....................................................................................................................................... viii 

List of tables ........................................................................................................................................... ix 

List of acronyms and abbreviations ......................................................................................................... x 

1.     Introduction ..................................................................................................................................... 1 

2.     IPv6 compared to IPv4 .................................................................................................................... 3 

2.1     Address space ............................................................................................................................ 3 

2.2 Address notation ...................................................................................................................... 3 

2.3     Simpler header ........................................................................................................................... 3 

2.4     Version ...................................................................................................................................... 4 

2.5     Traffic class ............................................................................................................................... 4 

2.6     Flow Label ................................................................................................................................. 4 

2.7     Payload length ........................................................................................................................... 4 

2.8     Next header................................................................................................................................ 4 

2.9     Hop limit.................................................................................................................................... 4 

2.10     Source and destination ............................................................................................................. 5 

2.11     Extension headers .................................................................................................................... 5 

2.11.1     Fragmentation header ....................................................................................................... 5 

2.11.2     Hop-by-Hop Options header ............................................................................................ 6 

2.11.3     Routing header.................................................................................................................. 6 

2.11.4     Destination Options header .............................................................................................. 6 

2.12     Multicast, unicast, and anycast ................................................................................................ 6 

2.12.1     Multicast ........................................................................................................................... 6 

2.12.2     Unicast .............................................................................................................................. 7 

2.12.3     Anycast ............................................................................................................................. 7 

2.13     ICMPv6 ................................................................................................................................... 7 

2.13.1     Neighbor Discovery .......................................................................................................... 7 

2.13.2     Router discovery ............................................................................................................... 8 

2.13.3     Duplicate Address Detection ............................................................................................ 9 

2.13.4     Autoconfiguration............................................................................................................. 9 

2.14     IPv6 and DNS ........................................................................................................................ 10 

2.15     Avoiding NATs ..................................................................................................................... 10 



v 
 

2.16     IPv6 Security ......................................................................................................................... 11 

2.16.1     IPsec ............................................................................................................................... 12 

3.     Routing protocols and IPv6 ........................................................................................................... 15 

3.1     RIPng ....................................................................................................................................... 15 

3.2     OSPFv3 ................................................................................................................................... 15 

3.3     Integrated IS-IS ....................................................................................................................... 16 

3.4     BGP-4 ...................................................................................................................................... 16 

3.5     MPLS ...................................................................................................................................... 16 

4.     Upper layer protocols .................................................................................................................... 17 

5.     Transition....................................................................................................................................... 18 

5.1     Dual-stack ................................................................................................................................ 18 

5.2     Tunneling................................................................................................................................. 18 

5.3     6to4 .......................................................................................................................................... 18 

5.4     IPv6 rapid deployment ............................................................................................................ 19 

5.5     Bump in the Stack ................................................................................................................... 19 

5.6     IPv6 Tunnel Broker ................................................................................................................. 20 

5.7     Teredo ...................................................................................................................................... 20 

5.8     ISATAP ................................................................................................................................... 20 

6.     Software support ............................................................................................................................ 22 

6.1     Operating systems ................................................................................................................... 22 

6.2     Applications............................................................................................................................. 22 

6.2.1     Web servers ...................................................................................................................... 22 

6.2.2     Web browsers ................................................................................................................... 22 

6.2.3     Mail servers ...................................................................................................................... 22 

6.2.4     Mail clients ....................................................................................................................... 23 

6.2.5     DNS servers ...................................................................................................................... 23 

6.2.6     Firewalls ........................................................................................................................... 23 

6.2.6     Other popular applications ............................................................................................... 23 

7.     Background ................................................................................................................................... 24 

7.1     Autonomous Systems announcing IPv6 prefixes .................................................................... 24 

7.2     What have others already done ................................................................................................ 24 

7.2.1 IPv4 and IPv6 performance differences ........................................................................ 24 

7.2.2 TCP/UDP performance in different operating systems with IPv4 and IPv6 ................. 24 

7.2.3 Performing measurements during World IPv6 Day ...................................................... 25 

7.3     Test you can do from home ..................................................................................................... 25 

8. Hardware and topology ................................................................................................................. 26 



vi 
 

9. Ubuntu Server ................................................................................................................................ 28 

9.1 Setting up the network ........................................................................................................... 28 

9.1.1 Enable IPv4 and IPv6 Routing ...................................................................................... 28 

9.1.2 Set up a 6to4 Tunnel ...................................................................................................... 28 

9.1.3 Addressing ..................................................................................................................... 29 

9.1.4 IPv6 Routing .................................................................................................................. 29 

9.1.5 NAT ............................................................................................................................... 29 

9.1.6 Configure interface with static IPv4 address ................................................................. 30 

9.2 Setting up services ................................................................................................................. 30 

9.2.1 Implementing a DHCP server ....................................................................................... 30 

9.2.2 Install and configure radvd ............................................................................................ 32 

9.2.3 BIND9 ........................................................................................................................... 33 

9.2.4 DNSSEC ........................................................................................................................ 35 

9.2.5 Web server ..................................................................................................................... 37 

9.2.6 Network File System ..................................................................................................... 37 

9.2.7 File Transport Protocol .................................................................................................. 37 

9.2.8 Streaming ....................................................................................................................... 38 

9.2.9 SSH ................................................................................................................................ 38 

9.2.10  VoIP .............................................................................................................................. 39 

9.2.11  Subversion .................................................................................................................... 39 

9.2.12  Mail .............................................................................................................................. 40 

10. Windows Server 2008 R2 .......................................................................................................... 43 

10.1 Setting up the network ........................................................................................................... 43 

10.1.2     NAT ................................................................................................................................ 43 

10.1.3     Enable IPv6 .................................................................................................................... 43 

10.1.4     Tunnel ............................................................................................................................. 43 

10.2 Setting up services ................................................................................................................. 44 

10.2.1     Internet Information Server (IIS) .................................................................................... 44 

10.2.2     DHCP ............................................................................................................................. 44 

11. Performance tests ...................................................................................................................... 46 

11.1 Local test ............................................................................................................................... 46 

11.2 Ping test ................................................................................................................................. 47 

11.3 Traceroute test ....................................................................................................................... 48 

11.4 Web server performance test ................................................................................................. 50 

12. Routing protocols ...................................................................................................................... 52 

13. Conclusion, future work and reflections ................................................................................... 53 



vii 
 

13.1 Conclusion ................................................................................................................................. 53 

13.2 Future work ........................................................................................................................... 53 

13.3     Required reflections .............................................................................................................. 54 

References ............................................................................................................................................. 55 

Appendix A - Configuration files .......................................................................................................... 63 

A.1 Routing Protocols .............................................................................................................. 63 

A.2 DHCPD ............................................................................................................................. 64 

A.3 DHCPD6 ........................................................................................................................... 64 

A.4 Radvd ................................................................................................................................. 65 

A.5 DNS ................................................................................................................................... 65 

A.6 vlm.conf ............................................................................................................................. 68 

Appendix B - Hardware ........................................................................................................................ 69 

Appendix C - Data collected with PCATTCP ....................................................................................... 70 

Appendix D – Mathematica applied to PCATTCP measurements ....................................................... 71 

Appendix E - Data collected with iperf ................................................................................................. 77 

Appendix F – Mathematica analysis of iperf measurements ................................................................. 78 

Appendix G – Ping test ......................................................................................................................... 83 

Appendix H – Web server performance test ......................................................................................... 84 

Appendix I – Mathematica calculations of web server test ................................................................... 85 

Appendix J – Trace test ......................................................................................................................... 89 

Appendix K – Data collected from DHCP leases tests ......................................................................... 90 

Appendix L – Mathematica calculations of DHCP leases tests ............................................................ 91 

Appendix M – Calculations of the theoretical speed limits for IPv6 .................................................... 92 

 

  

file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334794301
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334794302
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334794304


viii 
 

List of figures 
Figure 2.15.1 Example NAT translation table for a simple network configuration .............................. 11 

Figure 2.16.1.1 BITW ........................................................................................................................... 14 

Figure 8.1 Topology of the LAN ........................................................................................................... 26 

Figure 8.2 Connection to the Internet .................................................................................................... 27 

Figure 11.3.1 Latency towards xbox.com ............................................................................................. 49 

Figure 11.3.2 Latency towards different destination servers................................................................. 50 

Figure 11.4.1 Graph of the delay time distribution ............................................................................... 51 

Figure 12.1 Topology for testing routing protocols .............................................................................. 52 

 

 

 

  

file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796278
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796279
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796280
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796283
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796284
file:///C:/Users/Isostall/Dropbox/Exjobb/Draft/Draft.docx%23_Toc334796285


ix 
 

List of tables 
Table 11.1.1 Bandwidth (in KB/sec) results with PCATTCP ............................................................... 46 

Table 11.1.2 Bandwidth (in KB/sec) results with iperf ......................................................................... 47 

Table 11.4.1 Results (in seconds) from the web server tests ................................................................. 50 

  



x 
 

List of acronyms and abbreviations 
AD   Active Directory 

AH   Authentication Header 

APNIC  Asia Pacific Network Information Centre 

APT   Advanced Packaging Tool 

ARIN   American Registry for Internet Numbers 

ARP   Address Resolution Protocol 

ARPA   Advanced Research Project Agency 

AS   Autonomous System 

AfriNIC  African Network Information Centre 

BGP   Border Gateway Protocol 

BIND   Berkeley Internet Name Domain 

BIND9  Berkeley Internet Name Domain version 9 

BITS   Bump In The Stack 

BITW   Bump In The Wire 

CD   Checking Disabled 

CDN   Content Delivery Network 

CERNET  China Education and Research Network 

DAD   Duplicate Address Detection 

DAV   Distributed Authoring and Versioning 

DHCP   Dynamic Host Configuration Protocol 

DHCPv4  Dynamic Host Configuration Protocol for Internet Protocol version 4 

DHCPv6  Dynamic Host Configuration Protocol for Internet Protocol version 6 

DNS   Domain Name System 

DNSKEY  Domain Name System Public Key 

DNSSEC  Domain Name System Security Extensions 

DS   Delegation Signer 

DoD   Department of Defense 

DoS   Denial of Service 

ESP   Encapsulation Security Payload 

FEC   Forwarding Equivalence Class 

FTP   File Transfer Protocol 

GUI   Graphical User Interface 

GWS   Google Web Server 

HTTP   Hypertext Transfer Protocol 

IANA   Internet Assigned Numbers Authority 

ICMP   Internet Control Message Protocol 

ICMPv4  Internet Control Message Protocol for Internet Protocol version 4 

ICMPv6  Internet Control Message Protocol for Internet Protocol version 6 

IEEE   Institute of Electrical and Electronics Engineers 

IETF   Internet Engineering Task Force 

IIS   Internet Information Server 

IKE   Internet Key Exchange 

IP   Internet Protocol 

IPIP   IP in IP 

IPsec   Internet Protocol Security 

IPv4   Internet Protocol version 4 

IPv6   Internet Protocol version 6 

IS-IS   Intermediate System to Intermediate System 

ISATAP  Intra-Site Automatic Tunnel Addressing Protocol 

ISC   Internet System Consortium 

ISP   Internet Service Provider 

KB   Kilobyte 

KSK   Key Signing Key 



xi 
 

LACNIC  Latin America and Caribbean Network Information Centre 

LAN   Local Area Network 

LDP   Label Distribution Protocol 

LSP   Label Switched Path 

MAC   Media Access Control 

MB   Megabyte 

mDNS   Multicast Domain Name System 

MPLS   Multiprotocol Label Switching 

MTA   Mail Transfer Agent 

MTU   Maximum Transmission Unit 

MX   Mail Exchange Record 

NA   Neighbor Advertisement 

NAT   Network Address Translation 

ND   Neighbor Discovery 

NDIS   Network Driver Interface Specification 

NFS   Network File System 

NLRI   Network Layer Reachability Information 

NS   Neighbor Solicitation 

NSEC   Next Secure 

NUD   Neighbor Unreachability Detection 

OS   Operation System 

OSPF   Open Shortest Path First 

OSPFv2  Open Shortest Path First version 2 

OSPFv3  Open Shortest Path First version 3 

OpenLDAP  Lightweight Directory Access Protocol 

P2P   Peer-to-Peer 

PCATTCP  Printing Communications Association Port of Test Transmission Control Protocol 

PI   Provider Independent 

PTR   Domain Name Pointer 

QoS   Quality of Service 

RA   Router Advertisement 

RFC   Request For Comments 

RIP   Routing Information Protocol 

RIPE NCC  Réseaux IP Européens Network Coordination Center 

RIPng   Routing Information Protocol next generation 

RIR   Regional Internet Registry 

RR   Resource Record 

RRSIG  Resource Record Signature 

RS   Router Solicitation 

RSA   Rivest Shamir Adleman 

RSVP   Resource Reservation Protocol 

SA   Security Association 

SEND   Secure Neighbor Discovery 

SFTP   Secure Shell File Transfer Protocol 

SHA1   Secure Hash Algorithm 1 

SIIT   Stateless IP/ICMP Translation 

SIT   Simple Internet Transition 

SMTP   Simple Mail Transfer Protocol 

SOA   Start Of Authority 

Juniper SSG  Juniper Secure Service Gateway 

SSH   Secure Shell 

ST-II   Internet Stream Protocol version 2 

SVN   Subversion 

TCP   Transmission Control Protocol 

TLV   Type Length Value 



xii 
 

TTL   Time To Live 

UDP   User Datagram Protocol 

URL   Uniform Resource Locator 

VLC   VideoLAN Client 

VPN   Virtual Private Network 

VSFTPD  Very Secure File Transfer Protocol Daemon 

VoIP   Voice over IP 

WAN   Wide Area Network 

WINS   Windows Internet Name Service 

XMPP   Extensible Messaging and Presence Protocol 

ZSK   Zone Signing Key 

 

 

 

 



1 
 

1.     Introduction 
The Internet is a vast and continuously growing network of networks through which the entire world is 

interconnected and exchanging information. Large investments have been made by countries all over 

the world to ensure that as large of a portion as possible of each country is able to connect to a reliable 

and fast Internet connection. As this expansion progresses the individual computers, cell phones, and 

other devices that now can connect to the Internet gain in speed, functionality, and accessibility. This 

in turn leads to companies and private people developing their business, and even their life, around 

this connectivity. Even the low cost alternative of IP telephony is starting to be favored over regular 

telephone handsets connected to the public switched telephony network. The rapid development in 

recent decades has led to an ever-growing need for more IP addresses. Having an IP address is crucial 

to connect to the Internet. Additionally, more and more devices need (or desire) constant connectivity 

in order to provide the proper functionality to its user or users.  

The Internet today relies on the Internet Protocol version 4 (IPv4) protocol. When originally 

developed in the late 1960s, the need for an enormous number of addresses that we see now was not 

anticipated. At that time computers had just started to appear but, just like now, they were much more 

useful if they were able to communicate with each other. A demand for a network that would 

interconnect and make computer resources available grew. The United States Department of Defense 

(DoD) needed to make a distributed set of computer recourses available to researchers that were 

working on contracts for them. A packet switching network was developed by the Advanced Research 

Project Agency (ARPA) of DoD in 1969, and it was called ARPAnet[1]. After further developments 

and trials this eventually grew into the modern Internet utilizing IPv4. Initially only universities, large 

companies with military contracts, and the military could utilize this network, hence only a small 

number of computers needed an IP address. The approximately 4.3 billion addresses that IPv4 

provides seemed like an endless amount when IPv4 was introduced on January 1 1983[2], and even if 

only 3.7 billion addresses can be allocated to ordinary devices (2
7
*2

24
 + 2

14
*2

16
 + 2

21
*2

8
 = 

3,758,096,384), it was considered enough to cover all future needs. 

But in the early 1990s, with the increasing number of IP addresses being requested, it was clear that 

they would eventually run out. As of 31 January 2011, the pool of unallocated IPv4 addresses 

officially ran out[3]. The last two blocks of addresses were assigned by the Internet Assigned Numbers 

Authority (IANA) to the Asia Pacific Network Information Centre (APNIC)[4]. This does not mean 

that there are no more IPv4 addresses whatsoever, but it does mean that each regional Internet registry 

(the registry is responsible for allocating Internet number resources in its own region) cannot request a 

new block of addresses to allocate. This means that when a registry runs out of addresses that it cannot 

allocate any additional addresses within its region. 

As a result of the realization that the addresses would eventually be depleted, the Internet Engineering 

Task Force (IETF) was assigned the task to develop a successor to IPv4. The 32-bit IP address space 

was simply not going to be sufficient as large numbers of devices each needed one or more unique IP 

address assigned to it. The decision on this successor took some time, but it was decided that a 128-bit 

address scheme would be adopted. Improvements, in addition to extending the address space, were 

made based upon the long experience with IPv4. These improvements include autoconfiguration of 

devices for easier administration and built-in security with IPsec. As a result the specifications of IP 

version 6 (IPv6) were established in RFC 1883[5] in December 1995. 



2 
 

What happened to IPv5 then? The original thought was that the Internet Stream Protocol version 2 

(ST-II) protocol was to become IPv5. These packets were identified with Internet Protocol version 

number 5; however, the Resource Reservation Protocol (RSVP) was favored over ST-II[6]. 

  



3 
 

2.     IPv6 compared to IPv4 
This chapter will discuss some differences between the two protocols and what is new in IPv6. 

2.1     Address space 
The most obvious difference between IPv4 and IPv6 is the size of the addresses. In the IPv4 protocol 

addresses are 32 bits long. This leads to a theoretical limit of 2
32

 = 4,294,967,296 addresses. In the 

IPv6 protocol the addresses is 128 bit long. This makes the total number of possible addresses to 2
128

 

~3.4 * 10
38

 addresses. 

As the set of available IPv4 addresses were being rapidly depleted there was a clear need to migrate to 

another Internet protocol. The very large number of addresses that would be available with IPv6 would 

hopefully last for quite a while. Additionally, these addresses were to be allocated in a hierarchic 

manner to minimize the size of the global routing tables[7]. However, there are exceptions where this 

hierarchical structure is not followed. An organization can be assigned Provider Independent (PI) 

addresses if they intend to use multihoming. These PI addresses are smaller blocks assigned separately 

directly from Regional Internet Registry (RIR)[8]. To be assigned PI addresses from the Réseaux IP 

Européens Network Coordination Center (RIPE NCC) the organization must demonstrate that it will 

be multihomed[9]. Another advantage is that the organization does not need to change all its IP 

addresses when changing Internet Service Provider (ISP). 

2.2 Address notation 
There are some differences in the notation between IPv4 and IPv6 addresses. IPv4 is represented in a 

dot-decimal notation where every byte in the address is represented by a decimal number. These 

numbers are demarcated with dots. In IPv6 two bytes are represented as a four digit hexadecimal 

number separated with colons. As the addresses are 128 bit, or 16 byte, long there can be up to seven 

colons. Leading zeros can be omitted in both IPv4 and IPv6. In IPv6 one or several fields of zeroes 

can be compressed and represented with two colons. However, this can only be done once. 

Example:  

IPv4 address:  192.168.10.5 

IPv6 address:  2001:db8:0000:0102:0033:0000:0000:00ab 

  2001:db8:0:102:33:0:0:ab 

  2001:db8::102:33:0:0:ab 

  2001:db8:0:102:33::ab 

Prefix length is represented by a slash and the length in number of bits in both IPv4 and IPv6. 

IPv4 prefix: 192.168.10.0/24 

IPv6 prefix: 2001:db8:0:102::/64 

2.3     Simpler header 
The header of IPv6 was made a fixed size of 40 bytes, while the IPv4 header could be between 20 and 

60 bytes depending on the options used. Some fields have been removed from the header, such the 

header length (which is unnecessary as it is constant), identification, flags, fragment offset, header 

checksum, specifically and the options field[10]. 



4 
 

The identification field along with the fragment offset field has been moved to a fragment header 

extension header[11]. The third bit in the flag field that indicates if there are more fragments[12] or 

not is replaced by an M flag in the fragment header extension header[11]. In IPv4 fragmentation is 

done if needed by the routers along the way, whilst with IPv6 fragmentation is only allowed at the 

source.  

The header checksum is removed, as IPv6 relies on upper level protocols, lower layer checksums and 

error correction schemes, or security extensions for data integrity[11]. This also means that 

recalculation of the checksum at every hop, as the Time To Live field is changed at every hop, is no 

longer needed. 

Options are no longer defined in the IPv6 header, but rather there are extension headers that are 

equivalent to IPv4 options. 

2.4     Version 
The version field is a 4 bit field that indicates the version of the Internet Protocol. For IPv6 the version 

field is of course 6 and for IPv4 it is 4. 

2.5     Traffic class 
An 8 bit traffic class field can be used by hosts or routers to mark packets so theses packets can be 

distinguished and given special treatment[11]. It replaces the Type of Service field in IPv4. Nodes are 

allowed to change all of these bits. Nodes that do not support a specific use should ignore this field 

and leave it unchanged. There are proposed standards for using the bits in this field, see RFC 

2474[13]. 

2.6     Flow Label 
A 20 bit flow label field may be used to label packets from a source as belonging to a certain flow that 

all require the same treatment[11]. Nodes that do not support a specific use of this field should ignore 

this field and leave it unchanged. Nodes that do not support flow labels shall set the field to zero when 

sending any packets. RFC 6437[14] is a proposed standard specifying the use of this field. No 

equivalent field is present in the IPv4 header. 

2.7     Payload length 
A 16 bit payload length field specifies the length of the data carried, including any extension headers, 

in numbers of bytes[11]. This mean that up to 65,535 bytes of payload can be carried. However, there 

is  a Jumbogram extension header that allows for even larger packets, for details see RFC 2675[15]. 

2.8     Next header 
An 8 bit next header field identifies the type of the header directly after the IPv6 header. It replaces the 

protocol field in the IPv4 header[11]. The values corresponding to different protocols are specified in 

RFCs (the latest being RFC 1700), but have been replaced with an online database[16], [17]. 

2.9     Hop limit 
An 8 bit hop limit field indicates how many hops are left before the packet should be dropped[11]. The 

value is decreased by one every time it passes through a router. The time to live field in the IPv4 

header has the same functionality, but the field was renamed to reflect the actual use of the field. 



5 
 

2.10     Source and destination 
The source and destination IP address fields simply indicate the source and destination addresses of 

the packet. The fields are 128 bits for IPv6. One difference from IPv4 is that in IPv6 the address in the 

destination field might not be the final destination if a Routing header extension header is used[13]. 

2.11     Extension headers 
IPv4 allows for options that are carried inside the header. The minimum size of the IPv4 header is 20 

bytes and the maximum 60 bytes. This limitation is due to the fact that the Internet Header Length 

field that specifies the total header length in 32 bit words, but is only 4 bits in size. The maximum 

value is 15, thus 15 * 4 bytes = 60 bytes. This poses restrictions on some of the options, such as the 

strict source and record route options. The record route option records the IP addresses of the routers 

the packet traversed. That means that only (60 - 20 - 4)/4 = 9 IP addresses can be recorded which is a 

serious limitation. 

Instead of carrying options inside the header, IPv6 exploits extension headers that are placed between 

the IPv6 header and the next protocol header. Not only are options dealt in this way, but also 

fragmentation. As a result all the special fields in the IPv4 header used for fragment are no longer 

needed, making the header simpler and of a constant size. The next header type is indicated by the 

next header field. An IPv6 datagram can have an arbitrary number of extension headers. The extension 

headers are always a multiple of 8 octets long. If there is more than one extension header, then RFC 

2460 states that the following order should be used: 

1. IPv6 header 

2. Hop-by-Hop Options header 

3. Destination Options header (if the options are to be processed by the first router and 

succeeding) 

4. Routing header 

5. Fragment header 

6. Authentication header 

7. Encapsulating Security Payload header 

8. Destination Options header (if the options are only to be processed by the final destination) 

9. upper layer header 

2.11.1     Fragmentation header 

With IPv6 fragmentation is only allowed at the source and not by any router along the path, unlike 

IPv4 which permitted routers to fragment packets. Fragmentation is only to be done if the application 

cannot adjust the packet size to the measured path maximum transmission unit (path MTU). A next 

header value of 44 indicates that the next header is a fragment header[11]. Otherwise fragmentation 

functions much as in IPv4. There are six fields in the header: next header, fragment offset, M, 

identification, and two reserved fields. The next header field is 8 bits and indicates of what type the 

next header is. Fragment offset is 13 bits and indicates the fragment’s offset in units of 8 octets to the 

start of the fragmented packet, just as the field with same name in the IPv4 header does[12]. The M 

field is 1 bit in size and indicates if there are more fragments or if this was the last fragment[11]. The 

last fragment is indicated by the third bit in the flags field in the IPv4 header. The identification field is 

32 bits as opposed to the IPv4 16 bit field. An identification value is generated for all packets that need 

to be fragmented. This helps with the reassembly at the end node and has the same function as in the 

IPv4 header. The increased size of the identification field is to accommodate more simultaneously 

outstanding packets, due to the might higher link data rates today than when IPv4 was defined. 



6 
 

2.11.2     Hop-by-Hop Options header 

The Hop-by-Hop Options header is used to carry options that all nodes the packets traverse must 

examine[11]. A next header value of 0 identifies the next header as a Hop-by-Hop Options header. 

There are three fields in the Hop-by-Hop Options header: next header, hdr ext len, and options. The 

next header field is 8 bits and identifies the immediately following header. The hdr ext len field is 8 

bits and indicates the length of the whole header in units of 8 octets excluding the first 8 octets. The 

options field is of variable length containing Type Length Value (TLV) encoded options. 

One of the options defined is the Jumbo Payload option that allows a source to send packets with 

payloads ranging from 65,536 octets to 4,294,967,295 octets (4 Gigabyte)[15]. There is also a Tunnel 

Encapsulation Limit option that specify how many times the packet is allowed to be encapsulated[18]. 

2.11.3     Routing header 

The routing header contains a list of nodes that the packet should traverse[11]. This option is very 

similar to the IPv4 Loose Source Route option. A next header value of 43 identifies the next header as 

a Routing header. The routing header consists of the fields: next header, hdr ext len, routing type, 

segments left, and type-specific data. The next header field as usual indicates what type the following 

header is and the field is 8 bits long. The value of the hdr ext len field is the size of the header in 8 

octet units, excluding the first 8 octets, and this field is 8 bits long. The routing type is an 8 bit field 

and identifies a routing header variant. The segments left field is the number of nodes left to visit or 

the number of segments left in the type-specific data field. The segments left field is 8 bits long. The 

type-specific data is of variable length and the format depends on the routing type that is used. 

2.11.4     Destination Options header 

This header carries options that only need to be examined by the destination node(s)[11]. A next 

header value of 60 means that the immediately following header is a Destination Options header. The 

Destination Options header is made up of the fields: next header, hdr ext len, and options. As with the 

previous extension headers the next header field is an 8 bit filed that indicates the type of the 

immediate following header. The 8 bit hdr ext len field that indicates the length of the header, 

expressed in 8 octet units excluding the first 8 octets. The options field is of variable length and 

contains TLV encoded options. 

2.12     Multicast, unicast, and anycast 
Multicast, unicast, and anycast addresses are types of addresses that are used for different purposes. 

Each will be described below. Broadcast, multicast, and unicast addresses are used with IPv4. Anycast 

is a new type, and the functionality that broadcast addresses served in IPv4 has been replaced by 

multicast addresses in IPv6.  

2.12.1     Multicast 

One way of transferring, and replicating, a packet to multiple destination addresses is to multicast the 

packet. Duplicates of the packet will be created as the packet traverses the network, thus distributing 

the load over the nodes (and as a byproduct of distributing the load over the physical network itself). 

The replication can be performed by routers and/or switches and the source sends each packet only 

once.  

A multicast address identifies a set of, usually different nodes’, IPv6 interfaces. A packet sent to such 

an address is delivered to all the interfaces belonging to that set[19]. 



7 
 

In IPv6, multicast has been made a mandatory part of the protocol[20] (unlike IPv4 where it is 

optional). Along with improvements to widen the support for multicast addressing, multicasting has 

replaced broadcast addressing in IPv4 – as broadcasts cause problems in most networks[13].   

2.12.2     Unicast 

A unicast address identifies a single IPv6 interface. A packet destined to such an address is delivered 

to the interface that is identified by this address[19]. 

2.12.3     Anycast 

One of the new concepts introduced in IPv6 is anycast addresses. The definition of multicast is to send 

to all the interfaces in a group and unicast sends to a specific interface, while anycast packets are 

routed to any interface in the group. This routing of an anycast packet should be done as efficiently as 

possible, thus the packet will be routed to the nearest interface (the distance is calculated according to 

the routing protocol that is being used). The key concept is that the anycast group consists of any 

interface that can respond to a request sent to a single anycast IP address[20]. 

2.13     ICMPv6 
Just as in IPv4, the Internet Control Message Protocol (ICMP) in IPv6 provides very useful 

information about the network. For example, Traceroute[21] makes use of control messages. ICMP 

error messages for destination network/host/port unreachable are well known. Probably one of the 

most fundamental diagnostic functions is to test the connectivity between nodes in a network via ping 

using ICMP Echo Request/Reply.  

ICMPv6 is a requirement for every node that is to run IPv6[13]. ICMPv6 has a set of new features not 

in ICMPv4. An important new feature is Neighbor Discovery (ND). ND handles a variety of 

operations such as address autoconfiguration, determining the link layer address of nodes on the local 

network, and detecting routers and any alteration of link-layer addresses. ND provides resolution of 

network layer addresses into link layer addresses, similar to the Address Resolution Protocol (ARP) of 

IPv4. Further details of ND are given in the following subsection. 

2.13.1     Neighbor Discovery 

Neighbor Discovery (ND)[22] comes with modifications, improvements, and new features when 

compared to the related IPv4 protocols. The ND protocol performs functions similar to ARP, ICMP 

Router Discovery, and Router Redirect, but with improvements. The function of Neighbor 

Unreachability Detection (NUD) has been implemented which serves the purpose its name suggests: it 

is a mechanism for detecting if a neighbor is reachable or not. This could have been done with ICMP 

Echo Request and Reply in IPv4. Another function that has been introduced is Duplicate IP Address 

Detection (DAD) which will be described in section 2.12.3. 

In order for nodes to be able to communicate over a local network they must discover each other on 

the local link. To do this ND[13] provides the following services: 

 Resolves layer 2 addresses of nodes on the same link, 

 Discovers adjacent routers that can forward packets, and 

 Monitors the neighbor’s reachability and changes in link-layer addresses. 

 

 



8 
 

Improvements that have been made over the IPv4 version of the similar functions include[13]: 

 No need to get Router Discovery information from the routing table since router discovery is 

now a part of the base ICMP protocol. 

 No need to send an additional ARP request (in IPv4) for a node that has received a Router 

Advertisement in order to get the router’s link-layer address since it is included in the packet. 

The same is true for an ICMPv6 redirect message, as this message contains the link-layer 

address of the new next-hop router interface. 

 No need to configure subnet masks since that information (the prefix of a link) is carried by Router 

Advertisements. 

 Easy renumbering of a network by using ND’s functionalities. Ability to set up new prefixes 

and addresses, with the old ones automatically deprecated and removed. 

 Router Advertisements are used in stateless autoconfiguration and can notify hosts when to 

use stateful address configuration (e.g., DHCPv6). 

 The MTU of the link can be advertised by routers. 

 NUD is implemented to detect failed connectivity (i.e., that a neighbor is unreachable). Detects any 

alteration of link-layer addresses on interfaces and traffic will not be sent to a neighbor that is 

unreachable. It will also detect if a router is down and switch to an active router. This 

eliminates the problems that arise with old entries in ARP caches. 

 Routers are identified by its link-local addresses sent in router advertisements and ICMP 

redirects. Hosts will therefore be able to keep their associations even if renumbering or use of 

a new global prefixes occurs. 

 ND messages have a hop limit set to the maximum permitted value of 255. ND datagrams 

routed over one (or several) hop(s) are not valid, hence datagrams with a hop limit that differs 

from 255 are discarded. Since it is not possible to set a higher value than 255, packets will be 

ignored following a decrement of the hop limit. ND is thus immune to a denial-of-service 

attack coming from the outside the local link. 

 DAD is implemented to detect IP address conflicts on a link. 

 Application of standard IP authentication and security mechanisms. 

Neighbor Solicitation  

A Neighbor Solicitation (NS) message is sent when a host connects to the network. It is sent to the 

multicast address of other hosts, asking for their link-layer (MAC) address. This replaces ARP in IPv4.  

When performing the NUD function, the NS is sent to a unicast address, a response verifies 

reachability.  

Neighbor Advertisement 

Upon receiving a NS, the host responds with a Neighbor Advertisement (NA) message containing its 

link-layer (MAC) address.   

NSs and NAs are also used in the DAD mechanism. 

2.13.2     Router discovery 

The router discovery process discovers active routers on the local link[23]. A router sends out Router 

Advertisement (RA) messages periodically to inform nodes that it is active. The waiting time between 

the advertisements can be skipped by the host by sending a Router Solicitation (RS), which will 

trigger the router to send a RA regardless of the interval between the regular RAs. 



9 
 

Router Solicitation 

A Router Solicitation (RS) message is sent to the “all routers” multicast address of FF02::2 which all 

routers have to listen to. Hosts will ignore these messages, as they do not belong to this multicast 

group. 

Router Advertisement 

The Router Advertisement (RA) message contains the link-layer address of the router (source) and a 

value for the Maximum Transmission Unit (MTU). A RA is sent regularly (unsolicitated) to the “all 

nodes” multicast address of FF02::1 for the local network as its destination. It can also be sent as a 

unicast response (towards the requestor) when a RS arrives. 

2.13.3     Duplicate Address Detection 

Duplicate (IP) Address Detection (DAD) is used to ensure that the temporary address that a host has 

chosen is indeed a unique IPv6 address[24]. The validation is performed by the host multicasting NSs 

to the temporary address it has chosen for itself. If the host then receives a NA with the temporary 

address as a source address, then the address is not unique. In that case another node has received the 

NS, detected that the temporary address is used by itself and sent a NA. If the NA response does not 

come, then the temporary address is unique and can be assigned to the interface. In the case of a Cisco 

router the number of DAD attempts before the address is established as unique can be specified with 

the command ipv6 nd dad attempts <value>[25]. 

2.13.4     Autoconfiguration 

Hosts (that are not manually configured) need a Dynamic Host Configuration Protocol (DHCP) server 

in IPv4 to provide an automated mean to assign an IP address to the host and for the host to get the 

other information needed to communicate via the network. The IP address, subnet mask, and default 

gateway are the most fundamental information that is usually provided by DHCP. The address of a 

Domain Name Service (DNS) sever is another example of information that the host may need. It is up 

to the network administrator to decide what is the best (and maybe the most convenient) solution to 

implement.  

Autoconfiguration in IPv6 was defined so that there is no need for a DHCP server and the hosts will 

still be automatically configured. This simplifies administration, therefore hosts will be less time 

consuming to configure and hosts can communicate via a link local IPv6 address even in the absence 

of any infrastructure. ISPs use DHCP servers in order to dynamically allocate addresses. Eliminating 

the need for DHCP servers improves reliability, as only the router infrastructure is necessary and it is 

located nearer the host and has better fault tolerance[26]. However, autoconfiguration in IPv6 does not 

provide DNS information. This is a severe drawback since a lot of commonly used applications rely 

on DNS. Fortunately they are multiple ways to bootstrap DNS operations (for example, using public 

DNS server, anycast discovery of authoritative DNS servers – see RFC3258 [27], Multicast DNS 

(mDNS),…). 

The host (or any other “network-aware” device) creates a temporary (“tentative”) address that is to be 

used as its final address if the DAD process is successful[24]. When the DAD mechanism is 

completed and no NA has come in response, then the address is assigned to the node’s interface (now 

called a “preferred address”). The address is valid during its lifetime and should not be used in new 

connections if it has expired (i.e., if its state is “deprecated”). The lifetime of an address will usually 

not expire since new RAs update the lifetime. However, lack of RAs will cause the lifetime to 

eventually expire. 



10 
 

2.14     IPv6 and DNS 
The Domain Name System (DNS) maps domain names to IP addresses. These mappings are stored in 

resource records. A new record was needed for storing IPv6 addresses mapped to domain names[28]. 

The type of record mapping IPv4 addresses is called an A record so, naturally IPv6 addresses being 

four times as long as an IPv4 address, the records for IPv6 are called AAAA or quad-A records. The 

type value for AAAA records is 28.  

An example AAAA record is: 

example.com.     IN    AAAA     2001:db8:0:1:2:3:45:6789 

An AAAA query has also been defined for fetching AAAA records from DNS servers[29]. When 

making a query such as MX type queries, this means that you want the canonical name of a mail 

server with a certain alias, then the DNS server sends in the additional section of the answer an A 

record providing the IP address for the mail server[6]. These types of queries are redefined to add both 

relevant A and AAAA records[29]. Returning both answers when possible is done for efficiency 

reasons[30]. 

For reverse lookups the special domain in-addr.arpa is defined for IPv4[31]. The domain name is 

suffixed to the IPv4 address represented in dotted-decimal form in reversed order in a PTR record 

type. For example the domain example.com with the IPv4 address 10.15.20.25 would have the 

following PTR record[28]: 

25.20.15.10.in-addr.arpa.     IN     PTR     example.com 

For IPv6, the corresponding special domain is IP6.ARPA[29]. The domain name is suffixed to the 

IPv6 address in hexadecimal form with every digit in reverse order in a PTR record type. Worth noting 

is that no zeroes are compressed. The domain example.com with the IPv6 address 

2001:db8:0:1:2:3:45:6789 would be represented like this: 

9.8.7.6.5.4.0.0.3.0.0.0.2.0.0.0.1.0.0.0.0.0.0.0.8.b.d.0.1.0.0.2.IP6.ARPA.   IN   PTR   example.com. 

There was a record called A6 that also was used for representing  IPv6 addresses, but RCF 2874 

defining A6 records has been moved to historical status as of March 2012 by RFC 6563[32]. This 

means that A6 records should not be implemented nor deployed by operators. The code for A6 record 

(38) has been updated from experimental to obsolete in the parameters registry for DNS. Some of the 

reasons to deprecate A6 records are that it is confusing when deploying IPv6 to have two types of 

records to choose from and having two types of records leads to greater security risks, increased 

difficulty with respect to maintenance, and increased resolution latency. 

One important fact is that DNS servers do not need to be addressable by an IPv6 address to retrieve an 

AAAA record and vice versa[29]. This is very useful during the transition from IPv4 to IPv6. 

2.15     Avoiding NATs 
Network Address Translation (NAT) provides the ability to hide a realm of private IP addresses 

behind a single public IP address[6][33]. 

Given a private network behind a NAT-enabled router, the IP address within the private network 

serves only a local purpose and cannot be used outside of it. The router appears as single device with 

its public IP address. The packets leaving the network all have the router’s IP address as their source 

address, and all packets destined towards the network will have the router’s IP address as their 



11 
 

destination address. Since all traffic has the same destination address arriving at the router, the router 

must use a NAT translation table to be able to forward the data to the correct host within the private 

network. The NAT translation table consists of a pair of internal and external IP addresses and port 

numbers. It is the port number that is used as the key to translation. As a result if there are a large 

number of hosts behind the NAT there can be problems due to the limited port number address space 

(2
16

) for a given protocol. 

As an example:  

NAT translation table 

WAN side LAN side 

85.255.31.209, 5555 

… 

192.168.0.2, 3333 

… 

 

If a host with private IP address 192.168.0.2 sends a request to a web server with the public IP address 

173.194.32.31 and port number 80. The host sets the source port number of the datagram to some local 

TCP port number, such as 3333 and sends it. When the router receives the datagram, it replaces the 

original source IP address with its own public IP address 85.255.31.209 and allocates a new entry in 

its NAT translation table, perhaps with a new source port number 5555, in which case it replaces the 

source TCP port number with 5555, recomputes the checksums, and sends the resulting packets 

towards the web server. When the web server responds it sends a packet towards the router (IP address 

85.255.31.209, port 5555). When the router receives this packet it looks in the translation table to find 

the corresponding IP address and port number of the host using the destination IP address and port 

number in the packet that the web server sent. In this case the router will find a matching entry, thus it 

will replace the destination IP address with 192.168.0.2 and it will replace the port number 5555 with 

port number 3333, recomputes the checksums, and forwards the resulting packet towards the host. 

People within the IETF argued against the use of NAT for several reasons (see pages 387-388 of [6]). 

One of them being that IPv6 should be used instead of this short term, and patchy, solution to the 

shortage of IPv4 addresses. More importantly, NAT breaks the end to end property of IP 

communication, hence NAT causes problems for services such as peer-to-peer (P2P) file-sharing 

applications and voice over IP (VoIP) applications when both endpoints are behind different NATs. 

2.16     IPv6 Security 
There was only limited consideration of security when IPv4 was designed. IPv4 was meant for use by 

a closed community and it was not thought that IPv4 would be as widely deployed as it is today. 

However, security became a very important part of the specification of IPv6. This meant that security 

mechanisms, that were not part of the original IPv4 protocol, had to be applied in order to provide the 

desired security.  

Figure 2.15.1 Example NAT translation table for a simple network configuration 



12 
 

With this in mind when designing IPv6, built-in security was considered a requirement. This is 

achieved with IPsec. However, IPv4 is also able to use IPsec, but unlike the case for IPv4 – Ipv6 

requires that every implementation of IPv6 include support for IPsec. 

There are an extremely large number of attacks that can be performed on networks today. Some of the 

most common are[13]: denial of service; fabrication, modification, or deletion; and eavesdropping. 

Each of these types of attacks is described in the paragraphs below. 

Denial of Service 

A denial of service (DoS) attack is used to prevent the targeted service from being available. A DoS 

attack is easy to detect when the service becomes unavailable. Unfortunately, it is difficult to prevent a 

DoS attack and it is even difficult to detect the onset of such an attack. Common DoS attacks include 

overloading the target, i.e., to subject it to a load that is greater than it is capable of handling (thus 

slowing down valid service requests or perhaps even blocking them being handled at all), or disrupting 

vital network information (such as routing information) which can cause unexpected behavior of the 

network if nodes do not receive information that is current and operates based upon obsolete 

information. 

Fabrication, modification, or deletion of information 

These attacks be can used to forge information in order to fool someone/something to behave the way 

the attacker wants or just delete certain (or all) information. These attacks are hard to detect unless 

there is some form of sequence number and authentication. 

Eavesdropping 

Eavesdropping is often impossible to detect. An attacker can simply intercept packets and hence gain 

information without the knowledge of the victims, just as a person would eavesdrop on a conversation 

between two unsuspecting individuals. The man-in-the-middle attack is performed by a person 

identifying himself as “person B” in the conversation between person A and B in the eyes of “person 

A” and vice versa.  A and B (who each think that they are talking directly to each other) sends their 

information to the man in the middle who relays the information flowing to and from them to the other 

party, the real person B. The two parties (A and B) will not discover that there is something wrong 

since they are getting all the information (as is the intruder). The intruder is now able to learn 

information that can be used against the victims, such as passwords. 

While IPv6 provides new security features, it is still not flawless. Its new mechanisms also introduce 

new security issues. A host that has been able to gain access to a network could still cause a lot of 

damage by exploiting messages sent within a network. This includes forgery of neighbor 

advertisements (to conduct a man-in-the-middle-attack) and flooding of packets on the link and 

generating false router advertisements (two forms of DoS-attacks). The latter could even cause the 

target host to crash (i.e., fail to continue to operate correctly)[34].  

The vulnerability of the ND protocol has caused the introduction of the Secure Neighbor Discovery 

(SEND) protocol[35]. Its purpose is to protect against threats when the link does not have physical 

security. To protect the ND protocol messages, SEND utilizes cryptographically generated addresses, 

RSA signatures, and nonces. 

2.16.1     IPsec 

IPsec is a framework that provides secure communication in networks at the network layer. IPsec is a 

mandatory component for all implementations of IPv6[36]. However, IPsec can be used with both 

IPv4 and IPv6; as it was designed for both protocols, but it needs to be retrofitted to IPv4 stacks 



13 
 

already in existence[13]. There are two types of IPsec headers: Authentication Header (AH) and 

Encapsulation Security Payload (ESP) header. 

AH authenticates parts of the header and the payload[37]. AH can only protect the fields that are not 

intended to be changed, so called immutable fields. The AH header is in the same format as the other 

extension headers. It has a field indicating what type of the immediately following header is and the 

length of the AH header. However, the payload length field indicates the length in 4 octet units instead 

of 8 as with the other extension headers. The AH header is inserted between the payload and the IPv4 

or IPv6 header[37].  The value of 51 in the next header field in case of IPv6 or the protocol field in 

case of IPv4, indicates that the next header is a AH header[38]. 

ESP does encryption and/or authentication of the payload of an IPv4 or IPv6 packet[37].  If you want 

only integrity protection you could use ESP for that by using the null encryption algorithm for your 

encryption. The ESP header and trailer, with the encrypted payload in between, are located after the 

IPv4 or IPv6 header. The value of 50 in the next header or protocol field indicates that the 

immediately following header is an ESP header[38].  

AH and ESP can be used in two different modes: transport mode and tunnel mode[37]. In transport 

mode the IPsec information is added directly after the IP header in IPv4. In IPv6 the IPsec information 

is positioned after the IP header and the extension headers (except for the Destination Options header 

under certain circumstances mentioned in the extension header section), and before any upper layer 

protocols. Transport mode is mostly used when two end systems directly communicate – thus 

providing end-to-end security. In tunnel mode there is an IP header added outside the original header 

specifying the IPsec source and destination. In tunnel mode the IPsec information is added directly 

after the outer IP header and before the inner IP header. Tunnel mode is often used to create a secure 

tunnel between firewalls or between an end node and a firewall. The latter case can occur when a 

mobile user wishes to access the corporate network when they are away from their office. In this case 

the user will use IPsec to secure their communication to the corporate firewall thus creating an IPsec 

based virtual private network (VPN). 

Before you can start securely sending packets a security association (SA) needs to be established[37]. 

The SA can be manually configured or established with IKE (Internet Key Exchange). The details of 

IKE are outside the scope of this report. For details about IKE see [37]. 

Implementation 

IPsec can be implemented in three different ways:  

 Integrated structure, 

 Bump-in-the-stack (BITS), and 

 Bump-in-the-wire (BITW). 

Of these alternatives, the integrated structure is considered to be the best way, while BITS and BITW 

require software and hardware solutions[39]. 

Integrated structure 

The preferred way of implementing IPsec is integrated into the IP stack, as the IPsec protocols are 

integrated with IP which will result in an easy implementation. As mentioned, IPsec a mandatory part 

of IPv6 thus making it an integrated part of any IPv6 implementation.  



14 
 

Bump-in-the-stack 

Bump-in-the-stack (BITS) is a technique that is usually applied by IPv4 hosts. This approach 

implements IPsec as a separate layer between IP and the data link layer. IPsec perform its security 

transformation on the datagrams as they pass from the IP layer to the data link layer and the reverse at 

the destination. 

The benefit of using BITS is that any IP device can adopt IPsec with the addition of suitable software. 

The downside is that using software to intercept the datagrams requires extra computing compared to 

the integrated structure. For example, in Windows one can implement an NDIS Device Driver that 

provide IPsec functionality (see the Windows OS file “ipsec.sys”). 

Bump-in-the-wire 

Bump-in-the-wire (BITW) relies on hardware to implements IPsec functionality. Consider the scenario 

in Figure 2.2. In this scenario the routers do not implement IPsec (Network 1 and 2). Therefore we 

introduce an IPsec device (IPsec device 1 and 2) between the router and the Internet to provide IPsec 

functionalities. As datagrams passes out though the IPsec device, IPsec is applied; as datagrams passes 

in through the IPsec device, IPsec is removed. The existence of an IPsec tunnel between the two IPsec 

devices is invisible to the routers. 

The benefits of BITW are the same as for BITS. The downside is complexity and cost: new hardware 

needs to be bought, integrated into the existing network and configured. However, an advantage is that 

no other changes need to be made in the network. This assumes that R1 and R2 only want to 

communicate with each other. If they also way to send packets to and from the rest of the internet, then 

there needs to be a way to tell the IPsec devices which packets to not tunnel. 

Both BITS and BITW provides the same functional outcome in the end, but one has to decide which 

alternative is best suited to a given application scenario. As mentioned earlier, the integrated structure 

(IPv6) is the preferred way of implementing IPsec. However, when IPsec has not been integrated – 

BITW and BITS provide a way of adding IPsec after the fact.  

Figure 2.16.1.1 BITW 



15 
 

3.     Routing protocols and IPv6 
To be able to send IP packets to other subnets the router needs to know where to forward the packets 

so they get to the correct destination. Routing protocols solves this problem. In this section we are 

going to go through the routing protocols available to distribute connectivity information for IPv6. 

3.1     RIPng 
The Routing Information Protocol (RIP) is a commonly used intra domain routing protocol in small to 

moderate size networks (the maximum diameter of a network is 15 hops). RIP uses a Bellman Ford or 

other type of distance vector algorithm to calculate the best path in a network. RIP has its limitations, 

such as the low maximum number of hops for a path, the path cost is based only on the number of 

hops, and it has slow convergence[6]. Despite these limitations RIP is used because it is generally 

available and easy to configure. 

RIPng is based on RIP, and thereby suffers from the same limitations, but is intended for IPv6 

networks[40]. RIPng is not intended to be used in networks with both IP protocols. RIPng send its 

messages over UDP to port 521. Unsolicited response messages are sent every 30 seconds containing 

the whole routing table. Messages are also sent when triggered by route changes. There are two timers 

per route in the routing table, a timeout and a garbage-collector time. When the timeout expires the 

route is invalid, but it is kept in the routing table for a short amount of time so neighbors can be 

notified. When the garbage-collector time expires, the route is removed from the table. When a route is 

established the timeout timer is set and every time an update message received the timeout timer is 

reset. If the timeout is not reset after 180 seconds, then the route is expired and deleted. 

3.2     OSPFv3 
OSPF (Open Shortest Path First) is a widely used intra domain routing protocol based on Dijkstra's 

least-cost path algorithm for calculating the best paths to subnets[6]. Every router running OSPF 

makes its own complete map of the network before calculating the best path with itself as the root 

node. When routing information changes, or upon initialization, the router generates a link-state 

advertisement representing all link-states of the router. Link-states are exchanged by flooding. Every 

router that receives a link-state update saves it in its database and sends a copy to its neighboring 

routers. Then the best path is recalculated. 

With OSPF an Autonomous System (AS) can be divided into areas[41]. Subsets of the routers are 

assigned to different areas. One, or more, of the border routers are set to be part of a backbone area 

that all communication between the areas goes through. 

With OSPFv3, also known as OSPF for IPv6, much of the fundamental mechanism of OSPFv2 (OSPF 

for IPv4) remains unchanged[42]. In OSPFv3 protocol packets and in the main link-state 

advertisement types addresses are removed, making the core independent of the network-layer 

protocol. However, OSPFv3 is carried directly over IPv6, so IPv6 must be enabled on the interface. IP 

addresses are only present in the payload section. Authentication has been removed, instead the idea is 

to rely on the authentication provided by IPsec in IPv6. 

With OSPFv3 on Cisco routers, one router process per address family (IPv4, IPv6, etc.) is allowed on 

the same interface[43]. This means that OSPFv3 can pass IPv4 and IPv6 routing information over the 

same network with dual stacks. 



16 
 

3.3     Integrated IS-IS 
Integrated Intermediate System to Intermediate System (IS-IS) is another intra domain routing 

protocol[13]. The integrated part means that you can use the same routing protocol for several address 

families. This is possible by using a data field containing TLV (Type Length Value) entries. In the 

TLV entry the type of protocol is specified, the length, and the value. The number of the type of the 

network layer protocol is specified by ISO (International Organization for Standards). The value for 

IPv6 is 142. 

Integrated IS-IS uses the same algorithm for all address families[44]. This routing protocol advertises 

link-state information to create a topology of the network, just as was the case for OSPF. As with 

OSPF, routers can be divided into areas[45]. Communication between the areas is made by level 2 

routers that form a backbone. Routers that only know the topology within an area are level 1 routers. 

3.4     BGP-4 
Border Gateway Protocol 4 (BGP-4) is a inter domain routing protocol. It is used to transfer 

information about reachability to other networks between Autonomous Systems (ASs). BGP speaking 

routers peer with each other over TCP, thus BGP can be used over both IPv4 and IPv6[46]. The 

Network Layer Reachability Information (NLRI) field in the update message carries the prefixes and 

some attributes associated with them, such as the mandatory NEXT_HOP attribute, hence they are still 

IPv4 specific[47]. Fortunately, there exist multiprotocol extensions that define two new attributes: 

Multiprotocol Reachable NLRI and Multiprotocol Unreachable NLRI. These new attributes are able to 

carry information about what destination is reachable as well as not longer reachable. All BGP 

speakers still need to have an IPv4 address for certain functions[47]. 

3.5     MPLS 
Multiprotocol Label Switching (MPLS) can forward packets from any network layer protocol, but 

MPLS is not really a routing protocol. Incoming packets are assigned to a Forwarding Equivalence 

Class (FEC). A FEC is a subset of all the packets that the router can forward. A FEC can be all packets 

destined to a specific address or all packets destined to this address that have a particular priority or 

distinguishing characteristic. All packets belonging to a FEC are assigned a specific label. 

A MPLS header is inserted between the link layer header and the IP header. Subsequent forwarding is 

based on the label in the MPLS header. The route or Label Switched Path (LSP) is set up in advance 

with help from signaling protocols, such as RSVP, LDP, or BGP. RSVP can operate over both IPv4 

and IPv6[48]. LDP and BGP use TCP or UDP as a transport protocol, so they can also operate over 

both network layer protocols[46], [49]. MPLS can thus be used to transport IPv6 packets over an IPv4 

only network or vice versa. 

MPLS is often used to create Virtual Private Networks (VPN). MPLS is mainly used in provider 

networks for traffic engineering[50].  



17 
 

4.     Upper layer protocols 
The effects of changing the network layer protocol to IPv6 from IPv4 on upper layer protocols are 

minimal. 

Where this change does matter is when transport protocols use the IP header to calculate 

checksums[13]. Application layer protocols may compute checksums that include elements of the IP 

header. TCP, UDP, and DCCP uses a pseudo-header to calculate their checksum. In the specification 

for IPv6 there is also a pseudo-header specified for TCP and UDP (DCCP uses the same pseudo-

header for IPv6[51]). The pseudo-header contains source address, destination address, upper layer 

packet length, zero, and next header fields[11]. The zero field is padding. Extension headers are not 

included in the pseudo-header. If the routing header extension header is used, then the destination 

address is the address for the ultimate destination. The checksum in a UDP packet is not optional when 

the UDP packet is originated by an IPv6 node. 

FTP was designed to be used over IPv4[13]. Some of the commands use address information so they 

needed to be replaced for use over IPv6. RFC 2428 specifies an extension to enable FTP to work over 

IPv6. However, FTP works for both IPv4 and IPv6 with the extension. 

Another popular protocol is Jabber or Extensible Messaging and Presence Protocol (XMPP). Jabber is 

used in a variety of applications, such as: instant messaging, presence, multi-party chat, voice and 

video calls, etc.[52]. No change to jabber is necessary to support IPv6[53]. 

  



18 
 

5.     Transition 
Since there is such a large difference between IPv4 and IPv6, they cannot communicate directly with 

each other. A system that is capable of handling IPv6 traffic can be made backward compatible, but an 

already deployed system that handles only IPv4 is not able to handle IPv6 datagrams. This means that 

a major upgrade process would need to take place, involving hundreds of millions of machines, in 

order to make a complete transition to IPv6. This is way too expensive and time consuming and in any 

case will not happen overnight. The network world will most likely see a gradual transition to IPv6, 

where IPv6 will be integrated into the IPv4 world that exists today. As an owner of a network, you can 

run IPv6 while others (such as your ISP) still run IPv4 or vice versa. Slowly, IPv4 nodes will be 

phased out leading to an all IPv6 network.  

In order to make the transition smoother and to facilitate the coexistence of the two protocols when 

possible, several transition techniques have been introduced.  

5.1     Dual-stack 
Dual-stack[54], or dual IP layer, requires that a node implement both IPv4 and IPv6. The node can 

therefore communicate with IPv4 nodes as well as IPv6 nodes. The node has full support for both 

protocols and has the ability to turn one of the stacks off, thus making it into an IPv4- or IPv6-only 

node. In order to be configured with addresses, the node uses static or DHCP configuration for IPv4 

and static or autoconfiguration and/or DHCP for IPv6. A so called IPv6/IPv4 node will have at least 

one address for each version of IP. 

The Domain Name System (DNS) is usable with both IPv6 and IPv4. An IPv6/IPv4 node that wants to 

resolve a domain name and IP address requires a DNS sever that supports both A and AAAA records.  

5.2     Tunneling 
Tunneling IPv6 traffic over an IPv4 network is another possibility. This approach allows the IPv6 

traffic to be encapsulated in an IPv4 packet and forwarded, creating an IPv6 tunnel over the IPv4 

infrastructure[54]. A scenario where that would be useful would be if you as an IPv6 network user 

want to reach another IPv6 network, but have to traverse an IPv4-only network. A tunnel can be 

created as a solution for transporting your IPv6 traffic, from your IPv6 node to the destination IPv6 

node, over the IPv4-only network. A “virtual link” is created and, from the perspective of the two 

establishing IPv6 nodes, this appears as a point-to-point link[18]. 

The different types of tunneling techniques can be categorized into two types: manually configured- 

and automatic tunneling. A point-to-point link has to be manually configured, as the name suggests. 

For automatic tunneling, an IPv6 node can dynamically tunnel packets by using a 6to4 address (see the 

next section).  

5.3     6to4 
One problem is that ISPs do not deploy IPv6 unless there is a great demand for it from their 

customers; however, the customers do not demand it since their applications work well on the current 

infrastructure (IPv4 with NATs)[55]. The current infrastructure is what the developers of applications 

adapt to since ISPs have not deployed IPv6. Fortunately, 6to4 is a technique that meets (most of) the 

IPv6 user’s requirements, while meeting the ISP’s requirements in terms of costs and administration.  

As mentioned above, 6to4 is an automatic type of tunneling that does not require configuration of 

explicit tunnels. Between the so called 6to4 gateways (6to4 routers) the communication treats the 

intermediate IPv4 network as a point-to-point link[56]. The gateway, not the host, encapsulates the 



19 
 

IPv6 packet as the payload of an IPv4 packet. Configuration will therefore have to take place at the 

gateway, but this will make the 6to4 tunneling mechanism an automated process from the host’s point 

of view. One, or more, unique IPv4 unicast address must be available to make this configuration 

work[13]. 

The address prefix reserved for the 6to4 mechanism is defined in RFC 3056[56] as 2002::/16. 

Following after these 16 bits are 32 bits containing the global IPv4 address converted to its 

hexadecimal representation. The IPv4 address 85.255.31.209 would be written as 55ff:1fd1 which 

when combined with the prefix yields the final address 2002:55ff:1fd1::/48. This address specifies a 

valid IPv6 prefix that can be used to support IPv6 subnets and hosts attached to these subnets. 

This type of tunneling is not meant to last, merely used during the coexistence period of IPv4 along 

with IPv6. 

5.4     IPv6 rapid deployment 
IPv6 rapid deployment, or 6rd, addresses a limitation of the 6to4 technique: the encapsulation in a 6to4 

relay router has to be done in order for the packet to reach hosts of an ISP that has implemented 6to4. 

The native IPv6 sites that do not route towards a 6to4 relay will not be able to communicate with that 

ISP’s customers.  

What has been done in 6rd, compared to 6to4, is that (1) only packets, coming from the global 

Internet, destined to customer sites of an ISP traverse its 6rd gateway and (2) all IPv6 packets traverse 

its 6rd gateway if they are destined to 6rd customer sites of this ISP and come from anywhere else on 

the IPv6 Internet[55]. 

5.5     Bump in the Stack 
In the initial phase of IPv6 we cannot expect applications to have the same availability for IPv6 as for 

IPv4. The more widely used applications will likely start (and already have started) to support IPv6, 

but it will take a long time before we will see an equal deployment of supported applications for each 

protocol. The “Bump-in-the-Stack” mechanism provides IPv6 hosts (dual-stack hosts really) the 

ability to use existing IPv4 applications. Its goal is, as with all the other transition techniques, to ease 

the transition between the two protocols. It may also be a potential way in the future to use old IPv4 

applications that do not have an IPv6 successor[57]. 

RFC 2767[58] specifies three modules that are to be used by the hosts: a translator, an extension name 

resolver, and an address mapper. These are each described in detail in the following paragraphs. 

The translator implements the Stateless IP/ICMP Translation Algorithm (SIIT)[59] to do the 

translation between IPv4 and IPv6 packet headers. The IPv4 packet that is to be sent gets its header 

translated into an IPv6 packet header, the IPv6 packet is fragmented (due to the header’s larger size) 

and then sent out. The translator works the same way when receiving an IPv6 packet, but the packet 

does not need to be reassembled (as the final destination will do this).  

The extension name resolver creates a query based on the query sent by the application to resolve “A” 

records. The new query resolves both “A” and “AAAA” records and the new query is sent to the DNS 

server. The resolver returns an “A” record to the application (since it is an IPv4 application) as the 

application acts differently based on whether the “A” or the “AAAA” record is resolved. If the “A” 

record is the one that gets resolved, then the translator does not need to get involved and the record is 

returned to the application. If, however, the “AAAA” record is resolved, then the mapper is requested 



20 
 

to assign an IPv4 address that corresponds to this IPv6 address before returning the “A” record to the 

application. 

The address mapper returns an IPv4 address upon request by the resolver or translator. It has an IPv4 

address pool and a table that contain pairs of IPv4 and IPv6 addresses. When requested, the address 

mapper will return an IPv4 address from its pool that corresponds to the IPv6 address. If the request is 

for an IPv6 address that has no mapping entry, then a new entry will be dynamically inserted into the 

table. Since the pool contains private addresses, a translation of IP addresses (just like NAT provides) 

needs to take place[58]. 

5.6     IPv6 Tunnel Broker 
To set up and administer a tunnel can be difficult. An IPv6 tunnel broker provides a tunnel service to 

its customers with the intention of helping them to connect to an existing IPv6 network[60]. As 

described in the tunneling section, the tunnel routes IPv6 traffic over IPv4. 

5.7     Teredo 
The Teredo service is a service that makes IPv6/IPv4 nodes behind IPv4 NATs able to experience 

IPv6 connectivity. This is done by encapsulating the IPv6 packet within an IPv4 UDP packet and 

thereby enabling it to be routed through NATs and over IPv4[61].  

The problem with Teredo addresses is that NATs usually do not translate protocols other than TCP or 

UDP; hence an IPv6 packet encapsulated in an IPv4 packet has its protocol field in the header set to 41 

(i.e., Protocol 41)[62]. This requires manual configuration of the NAT. However, since NATs translate 

UDP traffic, Teredo encapsulates the IPv6 packet within an IPv4 UDP packet and thereby enabling it 

to pass through NATs (as long as a valid mapping exists in the NAT). 

Teredo is, like 6to4, an automatic type of tunneling technique. However, 6to4 does not solve all the 

issues introduced by NATs. RFC 4380[61] rejects the use of tunnel brokers as a way of solving this 

since the quality of service (QoS) may suffer. The traffic has to traverse the broker before reaching its 

destination point. This means that the broker must provide enough capacity to act as a relay and the 

traffic may have to make a substantial detour to traverse the broker’s link(s). It would therefore be 

better to locate relays within the ISP’s network to provide a direct path from source to destination 

without the need for a broker. 

5.8     ISATAP 
Intra-Site Automatic Tunnel Addressing Protocol (ISATAP) is a mechanism that connects nodes with 

a dual-stack over IPv4[63]. ISATAP uses the IPv4 network as a virtual link layer. It does not assume 

that IPv4 multicast is generally available, so it does not support IPv6 multicast. ISATAP is supposed 

to be used only within sites. 

ISATAP creates an IPv6 address out of a specific prefix and the interface's IPv4 address [64]. The 

addresses is built up in the form ::0:5efe:W.X.Y.Z for private IPv4 addresses and in the form  

::200:5efe:W.X.Y.Z if the IPv4 address is globally unique. The W.X.Y.Z part is the IPv4 address. 

ISATAP addresses can be merged with any valid 64 bit prefix. ISATAP supports both manual 

configuration and auto-configuration. The IPv4 address used to create the IPv6 address must only be 

unique on the network that the service is implemented in. 

The Neighbor Discovery (ND) protocol that is used for IPv6 is specified in RFC 4861. This ND 

protocol is also used by ISATAP interfaces, but with some additions. For address resolution, router 

solicitations, and router advertisement multicast is usually used[65]. Neighbor discovery is trivial 



21 
 

since the IPv4 address is part of the IPv6 address. For a host to be able to send a router solicitation 

message it needs to know the IPv4 address of one or more ISATAP routers. This can be done through 

DHCP, DNS, manual configuration, etc. Once this address is known the router solicitation can be sent 

as unicast packet. The routers will only send router advertisements in response to solicitation messages 

and only as a unicast packet. Solicitation messages are sent regularly to known ISATAP routers by 

ISATAP hosts. 

 

  



22 
 

6.     Software support 
To be able to send IPv6 packets, operating systems need to have an IPv6 stack and applications needs 

to have support for IPv6. In this section we examine the state of IPv6 support in the most widely used 

software. 

6.1     Operating systems 
Linux kernel 2.2 (released in 1999) optionally implemented IPv6 although support for generating 

options and IPsec was initially missing[66]. Modern Linux kernels support IPv6[67]. Linux kernel 3.2 

added support for transmitting IPv6 over IEEE 802.15.4 networks[68]. Windows XP implements IPv6, 

but IPv6 needs to be manually installed (with the command "netsh init ipv6 install")[69]. Windows 

Vista also includes a implementation for IPv6, but it is installed and enabled by default[70]. The same 

applies for Windows 7 and Windows Server 2008 R2[71]. This probably applies to Windows 8 as 

well. Windows 8 Consumer Preview and Windows 8 Server Beta are even said to have improved IPv6 

functionality[72]. 

Apple’s Mac OS X has had IPv6 support since Mac OS X v10.1 Puma[73], which was released 

September 25, 2001[74]. Mac OS X v10.3 Panther, released October 24, 2003[74] has IPv6 enabled 

by default[73]. FreeBSD has had "out-of-the-box" support for IPv6 since FreeBSD 4.0 was released in 

2000[75]. In 2008 FreeBSD even released a kernel with only IPv6 support as a research project[76]. 

Solaris has supported IPv6 since March 2000 in Solaris 8[77]. In summary we can say that IPv6 dual 

stack support exists in all of the most widely used operating systems, and has existed in them for some 

time. 

6.2     Applications 
Having a network and an operating system that are compatible with IPv6 are not much good if your 

applications are not compatible with IPv6. We will examine some of the most common network 

applications and see if they support IPv6. 

6.2.1     Web servers 

According to Netcraft, a company that does regular web server surveys, in their survey of March 2012 

420,337,139 sites utilize Apache web servers. This is 65.24% of all sites. While 13.81% of  sites 

utilize Microsoft's IIS web servers, 10.15% utilize the nginx web server, and a further 3.28% of sites 

utilize Google's web server GWS[78]. Their survey results do not say what versions of these servers 

are in use. Google's web server is not open source[79] and they apparently do not discuss GWS[80], 

but it is probably compatible with IPv6 because Google's sub-domain ipv6.google.com is only 

accessible with IPv6. Apache has had IPv6 support since version 2.0[81] released on April 6 2002[82]. 

Microsoft's IIS server has had IPv6 support since IIS 6.0. The nginx web server does also support 

IPv6[83]. However, many sites such as www.kth.se are not accessible via IPv6. 

6.2.2     Web browsers 

If you want to fetch content from sites on a IPv6 only web server, or simply want to do it over IPv6 

(on a web server with a dual-stack), your web browser needs to support IPv6. Today the most popular 

web browsers, such as Mozilla Firefox[84], Opera, Safari[85], Internet Explorer[86], and Chrome[87], 

all support IPv6. 

6.2.3     Mail servers 

Some of the most common mail servers are Microsoft's Exchange server, Sendmail, and Postfix. 

Exchange has had IPv6 support since Exchange 2007[88]. Sendmail has supported IPv6 since version 



23 
 

4.95[89]. Postfix has had IPv6 support since Postfix 2.0[90]. Other mail servers that support IPv6 

natively are Exim, ZMailer, and the Courier mail server[84]. 

6.2.4     Mail clients 

Popular mail client such as Microsoft's Outlook 2007[91] and Mozilla's Thunderbird[84] support IPv6. 

Other mail clients such as Apple Mail[92], Mutt, Sylpheed, KMail, Novel Evolution, Alpine, and Pine 

all support IPv6 as well[84]. 

6.2.5     DNS servers 

Berkeley Internet Name Domain (BIND) is by far the most commonly DNS software used on the 

Internet[93]. BIND has had support for IPv6 since version 8.4.1[84]. Microsoft's DNS server is 

another common DNS server, with full IPv6 support from the version released with Windows server 

2008[94]. The Windows 2000 DNS server also supports IPv6, but Windows 2000 did not include a 

native IPv6 stack[95]. Other DNS servers that support IPv6 natively are MaraDNS, NSD, and 

PowerDNS[84]. 

6.2.6     Firewalls 

Firewalls that supports IPv6 first emerged in 2001 in the various operating systems, but more complete 

versions appeared in 2004[96]. 

There exist several open-source IPv6 firewalls[97]: 

 MFfirewall based in Linux[98] 

 M0n0wall based on FreeBSD[99] 

 pfSense based on FreeBSD[100] 

 FWBuilder provides a tool for filter setups[101] 

 Checkpoint FW1 NGX R65 on SecurePlatform 

 FortiGate/Fortinet (FortiOS 3.0 and up)[102] 

 Juniper SSG (formerly Netscreen) (ScreenOS 5.4 and up) 

 Cisco ASA (formerly PIX) (version 7.0 and up) 

6.2.6     Other popular applications 

One very popular Voice over IP (VoIP) application is Skype. Skype had in December 2010 around 

663 million registered users of which an average of 145 million users connected every month the three 

months prior[103]. However, Skype does not currently have any inherent support for IPv6[104]. 

 

  



24 
 

7.     Background 
In this chapter we examine how many autonomous systems that announces one or more IPv6 prefixes, 

compare IPv4 and IPv6 performance measurements done by others, and explain what you can do 

yourself at home to compare the performance of the two protocols. 

7.1     Autonomous Systems announcing IPv6 prefixes 
Réseaux IP Européens Network Coordination Center (RIPE NCC) has statistics on how many 

Autonomous Systems (ASs) announce IPv6 prefixes[105]. In the Asia-Pacific Network Information 

Centre (APNIC) region 17% of all ASs announce one or several IPv6 prefixes. The corresponding 

figures for the Latin America and Caribbean Network Information Centre (LACNIC) region is 15%, 

the RIPE NCC region: 15%, the African Network Information Centre (AfriNIC) region: 12%, and in 

the American Registry for Internet Numbers (ARIN) region 10% of the ASs announce one or several 

IPv6 prefixes. In Norway 48.9% of the ASs announce IPv6 prefixes. In Sweden 31.3% of all ASs 

announces a IPv6 prefix. 

However, this information does not give any insight into how far the ASs have come in their 

deployment of IPv6, nor the size of the their network[106]. They could be announcing the prefix just 

for a test lab or for a full production network. My
1
 ISP, for example, announces a IPv6 prefix[107], 

but they do not offer IPv6 to their customers[108]. Although some ISPs provides transition solutions, 

such as 6to4 and 6rd, pending their deployment of native IPv6. 

7.2     What have others already done 
In this section we look at some work done by others regarding IPv6 performance compared to IPv4 

performance, in networks and in operating systems. 

7.2.1     IPv4 and IPv6 performance differences 

T. Bilski writes in [109] that router tests carried out by Cisco in 2007 came to the conclusion that IPv6 

does not perform better than IPv4 in a dual-stack environment. With smaller datagram sizes (256 bytes 

and less) smaller software based routers showed a lower throughput with IPv6 than with IPv4. The 

highest rate without packets being dropped was for IPv4 75% of the link bandwidth and 50% for IPv6. 

With larger packet sizes the throughput was about the same. Larger hardware based routers showed no 

variance in throughput even with smaller packet sizes. 

He also writes that similar tests by Spirent Communication in 2006 concludes that the increased 

header size together with IPsec  in IPv6 uses up more bandwidth and that the packet sizes are linked to 

the relative amount of overload. In one of the tests to transport a 100 byte file over HTTP, IPv6 

needed approximately 8% more bandwidth. With a file of 1 MB the excess bandwidth needed was 

below 1%. 

He also writes that other studies of TCP connections between China Education and Research Network 

(CERNET) and approximately 1000 dual-stack web servers in 44 different countries confirms that 

performance is not improved with IPv6. They also noticed that connections with IPv6 had a packet 

loss rate of above 3% while the packet loss rate for IPv4 was less than 1%. 

7.2.2     TCP/UDP performance in different operating systems with IPv4 and IPv6 

Shaneel Narayan has done several performance analysis of TCP and UDP traffic over IPv4 and IPv6 

with several different operating systems. In one of his papers [110] he compares several Windows 

                                                           
1
 Gilbert Lidholm 



25 
 

operating systems (Windows XP, Windows Server 2003, Windows Vista, Windows Server 2008 and 

Windows 7). He concludes that the operating systems performance differ from 2 to 5% in throughput 

between the two protocols for TCP connections with IPv4 providing greater throughput. For UDP 

traffic the difference was almost 3% to the advantage of IPv4. Windows Server 2008 and Windows 7 

throughput are compatible with Microsoft's earlier operating systems. The latency with TCP traffic 

varies between the two Internet protocols and operating system. However, Windows 7 on IPv6 did 

stand out with substantially higher latency values. 

7.2.3     Performing measurements during World IPv6 Day 

During World IPv6 Day on June 8, 2011, the RIPE NCC performed measurements of the performance 

of IPv4 and IPv6 [111]. Their measures were done between 48 participants, together with other dual-

stack sites, and 40 vantage points. They listed a number of factors that can affect the performance 

between IPv4 and IPv6. These factors are: 

Forwarding: 

 If routing is done by hardware for one protocol and by software for the other. If routing is 

performed by software for IPv6 and by hardware for IPv4, then the routing for IPv6 is going 

to be a lot slower. 

 More parts of the IPv4 header needs to be changed at each hop than in the IPv6 header, which 

should give IPv6 a relative performance advantage. 

 The IPv6 header is larger than the IPv4 header, if no options are used, that could make IPv6 

relatively slower than IPv4. 

End nodes: 

 The IPv4 and IPv6 addresses returned by DNS for a given hostname, could be in completely 

different networks, possibly leading to differences in performance. 

Network: 

 IPv6 packets may be forced to take another AS path in order to circumvent ASs without IPv6 

compatibility. 

 IPv4 and IPv6 packets may be treated differently inside an AS. 

The relative performance between IPv4 and IPv6 was measured from one vantage point to one 

destination throughout a interval of ten minutes[111]. The data showed that IPv4 more often 

outperforms IPv6 than vice versa. However, there was still a significant chance that IPv6 could 

outperform IPv4. 

This information could benefit applications that want real-time traffic, such as voice over IP (VoIP), 

games, and video. These applications could, for dual-stacked hosts, choose between IPv4 and IPv6 for 

the best performance to a dual-stack end host. 

7.3     Test you can do from home 
The site ipv6-test.com offers a free service where you can test you IPv6 and IPv4 connectivity, speed 

tests to servers around the globe, as well as latency tests[112]. The tests are done for both protocols at 

the same time so that you can compare the results between IPv4 and IPv6. 

  



26 
 

8. Hardware and topology 
We used a computer with a server operating system to act as our gateway from our local network 

(shown in Figure 8.1) to our ISP. The gateway is directly connected to the IPv4 internet and connected 

to the IPv6 internet via a tunnel (see Figure 8.2). The gateway is connected to the LAN via a 

10/100Mbps Ethernet switch. The clients are connected to the LAN via the same Ethernet switch. The 

full details of all of the hardware that was used for our testing are given in Appendix B. 

 

Figure 8.2 illustrates how we, and other IPv6 “islands”, will be connected to the Internet. We will not 

initially connect to another IPv6 island, but will connect to IPv6 hosts connected to the IPv6 Internet. 

Figure 8.1 Topology of the LAN 



27 
 

 

Figure 8.2 Connection to the Internet 

  



28 
 

9. Ubuntu Server 
Ubuntu server is a Linux based open source free server operating system without any pre-installed 

GUI. We installed Ubuntu server 12.04 64-bit on the computer that we used as a gateway and will run 

all of the services on this machine. 

9.1     Setting up the network 
In this section we will explain the configuration of the server’s IPv4 and IPv6 internet connection. In 

order to enable our clients to connect to the IPv4 internet we configured the server as a Network 

Address Translation (NAT). To enable our clients reach the IPv6 internet, we setup a 6to4 tunnel from 

this server to a 6to4 relay. 

9.1.1     Enable IPv4 and IPv6 Routing 

The process begins by modifying the file /etc/sysctl.conf to enable routing (as it is disabled by 

default). The required configuration lines are in the file; we simply needed uncomment one line for 

each protocol to enable IPv4 and IPv6 routing. The lines should look like this after the modification: 

# Uncomment the next line to enable packet forwarding for IPv4 

net.ipv4.conf.default.forwarding=1 

 

# Uncomment the next line to enable packet forwarding for IPv6 

net.ipv6.conf.default.forwarding=1 

 

If you want to immediately (and only temporarily) enable forwarding, you can simply type: 

# echo 1 > /proc/sys/net/ipv4/ip_forward 

# echo 1 > /proc/sys/net/ipv6/conf/all/forward 

which will replace the content of ip_forward and forward (which is initially 0) with a 1. This 

will only last until the next reboot (hence this change is only “temporary”). 

9.1.2     Set up a 6to4 Tunnel 

A global IPv4 address is required to set up the tunnel. This IPv4 address should have been assigned to 

your interface dynamically based upon the DHCP response sent by your ISP. You can see this IPv4 

address by using the ifconfig command (we assume that the external interface is eth0): 

# ifconfig -a 

eth0   Link encap:Ethernet  HWaddr 00:24:54:09:46:59   

       inet addr:83.251.55.125  Bcast:83.251.63.255  Mask:255.255.240.0 

A new network interface is created with a tunnel type called Simple Internet Transition (SIT) that 

utilizes IP in IP (IPIP) to interconnect isolated IPv6 networks[113]. IPIP is a simple type of tunnel 

with low overhead, but it has some limitations - such as not being able to support multicast-based 

protocols.  

The interface can be named with a name of your own choice (in this case we call it tun6): 

# ip tunnel add tun6 mode sit remote any local 83.251.55.125 

Bring up the interface to activate it: 



29 
 

# ip link set dev tun6 up 

The output from ifconfig for tun6 will look something like this: 

tun6      Link encap:IPv6-in-IPv4   

          inet6 addr: ::83.251.55.125/128 Scope:Compat 

          UP RUNNING NOARP  MTU:1480  Metric:1 

          RX packets:0 errors:0 dropped:0 overruns:0 frame:0 

          TX packets:0 errors:0 dropped:0 overruns:0 carrier:0 

          collisions:0 txqueuelen:0 

          RX bytes:0 (0.0 B)  TX bytes:0 (0.0 B) 

9.1.3     Addressing 

Next we need to assign global IPv6 addresses to the interfaces. As mentioned in the 6to4 section, the 

IPv6 address is derived from the 6to4 prefix (2002::/16) and the 32 bit hexadecimal representation of 

the global IPv4 address (83.251.55.125  53fb:377d). Following this is the site-level aggregator (0 

for the WAN interface and 1 for the LAN interface), yielding a /64 prefix, and lastly the host’s 

interface specific address. The following lines configure the tunnel’s IPv6 address and the gateway’s 

LAN (eth1) address. 

# ip -6 addr add dev tun6 2002:53fb:377d:0::1/64 

# ip -6 addr add dev eth1 2002:53fb:377d:1::1/64 

It is not necessary to use a global IPv6 address on the LAN interface since the link-local addresses 

(which are generated by the autoconfiguration process) are used when forwarding packets. However, it 

simplifies administration to be able to use the configured address. However, in order to make it work 

without the global address, you have to add a default route for the incoming packets: 

# sudo ip -6 route add 2002:53fb:377d:1::/64 dev eth1 

Otherwise the incoming packets will be dropped since they are destined for a network that is not 

present in the routing table.  

9.1.4     IPv6 Routing 

The default gateway must be set to a 6to4 relay in order to route the traffic to the IPv6 Internet. You 

can set the address of a specific relay if you know its IPv4 address. But a simple way is to send 

packets to the anycast address of 6to4 relays (192.88.99.1):  

# ip -6 route add ::/0 via ::192.88.99.1 dev tun6 metric 1 

::/0 matches all IPv6 addresses and ::192.88.99.1 is a IPv4-compatible IPv6 address written in 

mixed notation.  

9.1.5     NAT 

We are using the software iptables to provide NAT-functionalities which was described in the section 

2.14. The required commands to apply masquerading and forwarding are: 

# iptables --table nat --append POSTROUTING --out-interface eth0 -j 

MASQUERADE 

# iptables --append FORWARD --in-interface eth1 -j ACCEPT 



30 
 

Explanations of the above commands are: 

--table: specify the table to use 

 nat:  alter IP address 

--append: specify the chain which to append the rule(s) to: 

 POSTROUTING: apply after routing, just before sending out  

 FORWARD: filter packets that are to be forwarded 

--out-interface: specifies the interface that the packet is going to be sent to 

--in-interface: specifies the interface that the packet was received on 

-j: if the packet matches the rule, then jump to specified target 

MASQUERADE: Mapping to the specified IP address of the outgoing interface. The 

source address is modified (source NAT) 

 ACCEPT: packet is let through 

9.1.6     Configure interface with static IPv4 address 

Next we configure our eth1 (LAN) interface with a static IPv4 address. This is done with the following 

command:  

# ifconfig eth1 192.168.1.1 netmask 255.255.255.0 

9.2     Setting up services 
We implemented and tested several services on the Ubuntu server. These include DHCP, DNS, 

DNSSEC, and FTP among others. The configurations for these services are described in the following 

subsections. 

9.2.1     Implementing a DHCP server 

To automatically assign IPv4 and IPv6 addresses, we implemented a DHCP server. We used the 

Internet System Consortium (ISC) DHCP server version 4.1.1-P1. To enable the ISC DHCP server to 

hand out IPv6 addresses a configuring file specific for IPv6 is needed. Unfortunately, ISC DHCP 

server cannot hand out both IPv6 addresses as well as IPv4 addresses at the same time. To hand out 

addresses for the two protocols, two instances of the ISC DHCP server need to be run. 

To install the ISC DHCP server on a Linux machine using the Advanced Packaging Tool (APT) you 

simply type: 

# apt-get install isc-dhcp-server 

To manually start the ISC DHCP server from the command line, you use the dhcpd command. To 

specify that DHCPv6 should be used you add the -6 option. With the -cf option you can specify 

which configuration file should be used (see appendix A.2 for the DHCPv4 configuration file and A.3 

for the DHCPv6 configuration file). You need to specify on what interface the server should listen, if 

you do not it will attempt to listen on all interfaces. Note that the interface(s) specified must have an IP 

address belonging to a subnet declared in the configuration file, otherwise the DHCP server will not 



31 
 

listen on that interface. When we start the instance for handing out IPv4 addresses we only need to 

specify the configuring file and the interface to listen on. Starting the two servers from the command 

line is shown below. 

For IPv6: 

# dhcpd -6 -cf /etc/dhcp/dhcpd6.conf eth1 

 

For IPv4: 

# dhcpd -cf /etc/dhcp/dhcpd.conf eth1 

 

Upon starting dhcpd6, the following message might appear: 

Can’t open lease database /var/lib/dhcp/dhcpd6.leases: no such file 

or directory -- 

This can be solved by creating that file in /var/lib/dhcp/ and changing its owner to dhcpd: 

# touch dhcpd6.leases 

# chown dhcpd:dhcpd dhcpd6.leases 

The file dhcpd6.leases contains the database for leases that the server has assigned. New entries 

are appended at the end of the file when a new lease is added or when an old one is renewed or 

released. This means that there will be duplicates of leases after a while. When this occurs, the last 

entry in the file is the one that is in effect. 

In order to find out the cost in time for dhcpd to search through the lease file, we compared the time 

it took for a client to obtain a lease from the server when the file was empty and when it contained a 

lot of leases (462 entries). The testing showed that the size of the lease file might have a slight effect 

on the time (in this case it was under a millisecond greater). However, the difference that we saw was 

less than the standard deviation so we cannot draw that conclusion (for all the data and calculations see 

appendices K and L respectively). We have been unable to find out the behavior of the search 

algorithm so we do not know if the order of the leases has a theoretical effect on the performance. If 

the entire lease file is not searched through every time, e.g. it might start from the bottom and stop as 

soon as it finds a valid lease, it will not matter if there are many leases in the rest of the file. But even 

with and without a valid lease in the file, the time did not change noticeable. A new lease file is 

created periodically by dhcpd so that the old one does not get too large[114]. The potentially 

increased time will probably not be an issue because of this. But it is not stated in the manual how 

large the file can get before it is replaced. 

Unlike DHCPv4, DHCPv6 cannot assign the gateway a host should use[115]. Other than this, a 

DHCPv6 server and a DHCPv4 server do not differ much in what they do. In order for an IPv6 client 

to get a default gateway, router advertisements have to be sent by a router. We installed a router 

advertisement daemon (radvd) on our Ubuntu Linux gateway. This program is an open source 

program that sends out router advertisements. A client can obtain an IPv6 address by 

autoconfigurating an interface with the help of these router advertisements. This is an alternative to 

having a DHCP server assigning the client a gateway and address. You can specify with DHCP from 

what range the addresses should be allocated from and reserve addresses for specific hosts based upon 

the interface’s MAC address. 



32 
 

9.2.2     Install and configure radvd 

The stateless autoconfiguration process requires information that Router Advertisements (RA) can 

provide. In order to periodically send out these RAs, we use thw radvd (RA deamon), which is an 

open-source program. In order to install this software you simply give the following command:  

# apt-get install radvd 

The radvd configuration file (/etc/radvd.conf) is empty so it needs to be edited after the 

installation. In this case we have placed the following into the file:  

interface eth1 {  

        AdvSendAdvert on; 

        MinRtrAdvInterval 3;  

        MaxRtrAdvInterval 10; 

 AdvManagedFlag on; 

 AdvDefaultLifetime 600; 

        prefix 2002:53fb:377d:1::/64 {  

                AdvOnLink on;  

                AdvAutonomous on;  

                AdvRouterAddr on; 

        }; 

}; 

The daemon will not start after the installation (since the configuration file is empty), therefore you 

have to manually start the daemon with the following command: 

# /etc/initd.d/radvd start 

If any modifications have to be made in the file, the daemon has to be restarted before the changes 

takes effect. This can be done with the following command: 

# /etc/initd.d/radvd restart 

DHCPv6, as well as DHCPv4, can tell the client what DNS servers to use. This can, for IPv6, also be 

accomplished with router advertisements. In the radvd configuring file, located in 

/etc/radvd.conf, a list of DNS servers can be specified to be advertised. However, the client needs 

a program that listens to this information and updates it own list of name servers to use. 

In the configuration file for radvd we set the M flag in the router advertisement to indicate that IPv6 

addresses are available via DHCPv6[22]. There is also an O flag that indicates that additional 

configuration information is available via DHCPv6 such as DNS information. However, with the M 

flag set, DHCPv6 will return DNS information as well. With the variable AdvAutonomous set to “off” 

in the radvd configuration file, hosts are not allowed to autoconfigure their own addresses with the 

announced prefix, but rather they must instead rely on DHCPv6 or manually configured addresses. 

The default value for this option is “on”. 

One problem that we encountered was that the IPv6 default gateway kept disappearing in Windows 7. 

The gateway disappeared if an IPv6 connection was idle for a while. However, in Ubuntu 11.10 this 

problem did not appear. To counteract this we made the default router advertised by radvd valid for 10 

minutes instead of 3 times the maximum time between advertisements (30 seconds in our case) as our 

default value. However, this is not a general fix to the problem, but rather provided an ease of the 

symptoms exhibited by a Windows 7 host. 



33 
 

9.2.3     BIND9 

The Domain Name System (DNS) is used to map names to IP addresses. As a DNS server we installed 

BIND9 version 9.8.1-P1. To install Bind9 on a Linux machine using APT you simply type: 

# apt-get install bind9 

BIND9 is configured as a caching server by default (for complete configuration see appendix A.5). All 

you need to do to use it as a caching server is to add forwarders to forward the queries to. You do this 

by modifying the file /etc/bind/named.conf.options. Simply uncomment and edit the 

following lines: 

forwarders { 

 <IPAddressToDNS1> 

 <IPAddressToDNS2> 

 ... 

}; 

 

Because we do not have a domain name at the moment we simply added ComHem's DNS servers IPv4 

address and Google's IPv6 address for their DNS server (2001:4860:4860::8888 and 

2001:4860:4860::8844) to forward the queries to. Nothing needed to be altered in the default 

configuration to enable IPv6. 

Later we added a fictitious domain in /etc/bind/named.conf.local called ex.jobb. To add a 

domain or zone you add: 

zone "ex.jobb" { 

 type master; 

 notify no; 

 file "/etc/bind/ex.jobb.db"; 

}; 

type master: Defines that the DNS server is the primary server for the zone. 

notify no: NOTIFY should not be sent to anyone upon alteration. 

file: Specifies where the zone file (see below) is located. 

ex.jobb.db 

/etc/bind/ex.jobb.db defines the names belonging to specific addresses. 

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

   20120531 ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

ex.jobb. IN NS ns1.ex.jobb. 

gateway IN A 192.168.1.1 

gateway IN AAAA 2002:53fb:377d:1::1 



34 
 

ns1 IN A 192.168.1.1 

www IN CNAME gateway 

 

NS: Name server record. The IP address or CNAME of the name server of the domain. 

A: IPv4 Address record. Maps the name to an IPv4 address. 

AAAA: IPv6 address record. Maps the name to an IPv6 address. 

CNAME: Canonical name record. An alias’ canonical name.  

Reverse lookups 

Reverse lookups are used when you want to know the name associated with a certain address. Add the 

following to /etc/bind/named.conf.local to make reverse lookups possible for the subnet 

192.168.1.0/24: 

zone "1.168.192.in-addr.arpa" { 

 type master; 

 notify no; 

 file "/etc/bind/1.168.192.in-addr.arpa"; 

}; 

 

The zone has to be the subnet typed backwards. 

1.168.192.in-addr-arpa 

Add the following to /etc/bind/1.168.192.in-addr.arpa to define what address belongs 

to a specific name:  

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

   20120531 ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

1 IN PTR gateway.ex.jobb. 

 

PTR: A domain name pointer. Defines the (last octet of the) address on the subnet for which a certain 

name belongs to. 

Equivalent for IPv6 

Add the following to /etc/bind/named.conf.local in order to make reverse lookups for IPv6 

possible for the subnet 2002:53fb:3271:1::/64: 



35 
 

zone "1.0.0.0.1.7.2.3.b.f.3.5.2.0.0.2.ip6.arpa" { 

 type master; 

 notify no; 

 file "/etc/bind/ipv6.ip6.arpa"; 

}; 

 

Add the following to /etc/bind/ipv6.ip6.arpa to define the address on the subnet for which 

a certain name belongs to:  

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

         1  ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR gateway.ex.jobb. 

 

9.2.4     DNSSEC 

Domain Name System Security Extensions (DNSSEC)[116] adds security to some of the data sent by 

DNS. DNSSEC utilizes public-key cryptography in order to sign the records used in DNS lookups. 

Four new record types are introduced: Resource Record Signature (RRSIG), DNS Public Key 

(DNSKEY), Delegation Signer (DS), and Next Secure (NSEC). Two header bits, Checking Disabled 

(CD) and Authenticated Data (AD), are also added. An RRSIG record contains a digital signature that 

can be associated with a DNS resource record (RR) set. The signature is created by using a DNSKEY. 

The DS record is used in authenticating DNSKEYs. The NSEC record provides security against 

spoofing. These signatures can be used to prove that certain names do exist in the domain. We 

implemented DNSSEC using BIND9. 

To enable DNSSEC we add the following lines to /etc/bind/named.conf.options: 

dnssec-enable yes; 

dnssec-validation yes; 

dnssec-lookaside auto; 

 

include "/etc/bind/bind.keys"; 

 

dnssec-enable enables DNSSEC, while dnssec-validation enables DNSSEC validation. 

Next we need to generate a key using the following command: 

zonesigner -genkeys -usensec3 -zone ex.jobb ex.jobb.db 

-genkeys means that a new key signing key (KSK), a new active zone signing key (ZSK), and a 

passive ZSK are to be generated. The default algorithm is RSA SHA1. NSEC3 is used (-usensec3) 

to avoid zone walking. Specify the name of the domain that is to be signed after –zone, and then the 



36 
 

name of the zone file. New files will be created. These include a signed zone file 

(ex.jobb.db.signed). 

Replace “ex.jobb.db” with “ex.jobb.db.signed” in /etc/bind/named.conf.local: 

zone "ex.jobb" IN { 

 type master; 

 notify no; 

 file "/etc/bind/ex.jobb.db.signed"; 

}; 

In order to add or modify RRs you alter the original zone file and then sign the file with: 

zonesigner -zone ex.jobb ex.jobb.db 

To see if it works you can use the dig command. First you need to copy the keys to a file. You can 

get the keys by simply typing: 

# dig @127.0.0.1 ex.jobb –t dnskey 

We make sure that we query our own DNS server by adding @ and the IP address (in this case the IP 

address is the loopback address). Then create a file and copy the keys to the file so it looks like this: 

ex.jobb.  86400 IN DNSKEY 257 3 8 

AwEAAcM2rjIOhWl5bQISXvKKeA4OG4ZUdGQbzuyL4Va9ULWXhitA3c4y 

DYeRu1TeDoUnDyyhKohDxrR9+u0CoR0eQYZ4yWdRb9yiPhsu4m42iSL1 

1lChSWOr1SKOYqvF7zBFtG6ZovU2Ea7BBh455Hhss45aVuauXXfgZtX6 

riFvbOGQUoVEMaNghXbhqx4/2MTju33tmlEu0FwhBei+ieQvXOE9rfbm 

PIJGmb74kcstGhuTWlMcb6xAxHIXUONHR4OH/dP1CTBwnWfklEHC/cXH 

aE6V20OAKsYwaU+Phzqsp2qDqDamV3aA6vf55xdukPIIiT3tR8Y6LI7F 

RNSaXu1ALdc= 
ex.jobb.  86400 IN DNSKEY 256 3 8 

AwEAAbYahFxwvcNsdHwrrL45L2YyHYcpM8I1CDiQ+ErhLTPELkcUtz+U 

aMTQzAQ/69xMH+UBrzVnn11vYxTYU+/ZHKS05n6iIV/CTKoqhVOp6GgZ 

OWfHn13fhB4rXKgV/jDrZ04rnwdJWzZMkdJzd2WRZuMIW6DMXKeDnulM lt8IUu/V 

ex.jobb.  86400 IN DNSKEY 256 3 8 

AwEAAcRj8vKnyZy9Sfv5oDIKO3f3Sx+yRZmV7wY1fu6CPQC3ixJTmjFF 

rggY6rXKGmwhn0ph6VAvzx40RbmPm/iJ5R9h1sh0fIL+8jCGsPYxbJmg 

L2Z5WJSn4NfG8RjQUQpzmjdC0dfSDm+8HwPjFPP0DU8dOj8kb89WxaYX 34HwVZdR 

 
Run the following command to verify that it works correctly: 

 
# dig @127.0.0.1 +sigchase +trusted-key=./key ex.jobb. any 

 

The option +sigchase means that dig should verify the records and try to climb the trust chain 

until it finds a record signed by a trusted key. The +trusted-key=./key option  specifies the 

key(s) that we trust and that it is in the file “key”. In this example ex.jobb is the domain we want 

to fetch records from and the any option means that we want to fetch all types of records. The only 

record we got is the SOA record for ex.jobb. To verify that record, dig will fetch the RRSIG record 

belonging to the SOA record which is a digital signature for the SOA record[117]. The signature was 

made by our Zone Signing Key (ZSK) so dig fetches the DNSKEY set of resource records. Given the 

response, dig verifies the ZSK by fetching the ZSKs RRSIG record. The RRSIG for the ZSK is 



37 
 

signed by itself or one of the other keys in the DNSKEY set. Normally dig then fetches a DS record 

for the domain from the parent zone that includes a digest of the Key Signing Key (KSK), signed by 

the parent zone’s key. However, there is no job domain that dig can fetch a DS record from as our 

domain is phony. Now dig has enough material to start verifying the records. As the trusted keys are 

the DNSKEY set that dig fetched from the server, the validation will ultimately be successful. 

9.2.5     Web server 
As a web server we installed Apache version 2.2.20. To install it with APT you type: 

# apt-get install apache2 

In the /etc/apache2/ports.conf you can specify on what address(es) and on what port(s) the 

server should listen. You can specify both IPv4 and IPv6 addresses. IPv6 addresses are specified in 

brackets []. If only an IPv4 address is specified, then the instance of the apache server will only listen 

on this specific IPv4 address. In the default configuration only port 80 is specified which means that it 

listens on all of this host’s addresses, i.e., both IPv4 and IPv6 for all interfaces.  

9.2.6     Network File System 

The Network File System (NFS) is a protocol that allows a user to access a storage device over the 

network similar to the way they would access a local device. To add a device or directory to be 

remotely accessed in Linux you edit the /etc/exports file of the NFS server. To make a local 

directory remotely accessible you add the line: 

/my/directory <IPAddress> (options) 

Both IPv4 and IPv6 addresses work in a standard configuration. To mount a remote directory on a 

Unix type operating system you type: 

# mount <IP address>:/path/to/directory/ /path/to/local/directory/ 

To mount a device over IPv6 you add brackets around the address. 

To unmount a device you type: 

# umount /path/to/local/directory 

However, when we tried to unmount a device that was mounted over IPv6 it returned an error saying 

that the mount was not found in /proc/mounts even though it was there. We never encountered this 

problem when mounting over IPv4, but it occurred every time we mounted the device over IPv6. This 

is a known bug, see [118]. For some reason this problem stopped occurring by itself without any 

action on our part. 

9.2.7     File Transport Protocol 

The File Transfer Protocol (FTP) allows users to send and retrieve files over the network. We installed 

a couple of the commonly used FTP servers to test if they supported IPv6, specifically we installed the 

Very Secure FTP Daemon (VSFTPD) version 2.3.5, Pure-FTPd, and ProFTPD version 1.3.4a. All of 

these supported IPv6 in their default configuration. 

To access the content shared by the FTP server in Linux you type: 

# ftp <UserName>@<IPAddressOrServerName> 



38 
 

Alternatively to use SSH FTP (SFTP): 

# sftp <UserName>@<IPAddressOrServerName> 

To use an IPv6 address you simply put brackets around the address. 

We tested the FileZilla FTP client in Windows 7. The FileZilla client supports IPv6 by default, but we 

needed to be specific about which port to use and what protocol to use (FTP or SFTP). 

9.2.8     Streaming 

To test streaming we installed vlc-noX, which is a non-graphical version of VideoLAN, on our 

gateway with Ubuntu Server 12.04. To stream media you need to create a vlm.config file. The 

vlm.conf file is a text file with a list of commands that say how to stream, what to stream, and how 

to access it from the outside (see appendix A.6 for the configuration file that was used for our testing). 

We chose to stream over HTTP. To launch the server you type: 

# cvlc -I http --vlm-conf /path/to/vlm.conf 

cvlc stand for Console VLC which is VLC without a graphical user interface. The option -I http 

means that it should use the HTTP interface. This starts a small HTTP server that is used both for 

streaming and remote control. Further details can be found in [119]. With the --vlm-conf option you 

can specify a specific vlm configuration file. 

To access the stream via VLC running on a client computer you press on the Media tab and choose 

Open Network Stream or you can simply press Ctrl + N. In the window that pops up you type 

http://<ServerIP>:<PortNumber>/<PathSpecifiedInConfigurationFile>. To access 

the stream over IPv6 you simply put brackets around the IPv6 address.  

If you want to access the stream using the Microsoft Windows Media Player you right click in the 

upper part of the window and select File and choose Open URL or press Ctrl + U. In the window that 

pops up type http://<ServerIP>:<PortNumber>/<PathSpecifiedInConfigurationFile>. 

To access the stream over IPv6 you put brackets around the IPv6 address just as in VLC. 

9.2.9     SSH 

Secure Shell (SSH) allows for secure communication between computers over an insecure network. 

Our test setup consisted of three machines: an Ubuntu machine that acted as the server and two clients, 

running Windows and Ubuntu. We used SSH to remotely executing commands on the server from the 

clients. A connection is established via either IPv4 or IPv6 depending on which type of address you 

specify in the command.  

On the Ubuntu client you simply enter the command: 

# ssh <UserNameOnServer>@<IPAddress> 

It will prompt you to enter the password for the user and then the connection is established.  

As a Windows client we used putty and specified the IP address in the Host Name (or IP address) field 

and port number (22) in the Port field. Putty will prompt you to enter the username and then the 

password. A secure connection is established upon receiving the correct credentials. 

For our testing we monitored the traffic sent between the client and the server to see that IPv4 or IPv6 

addresses were being used as you expect. Note that it is not possible to see inside the encrypted 



39 
 

payloads, unless you have the server’s private key. If you do, then it is possible to tell Wireshark to 

use this key, thus enabling you to see all of the actual communications. See for example [120]. 

9.2.10      VoIP 

As stated earlier in the report, Skype has no support for IPv6. It works well on IPv4, but if only an 

IPv6 address is present on the computer, then you are unable to connect. 

Mumble is an open source VoIP program mainly focused on the gaming community. It has IPv6 

support by default. 

A server can be set up that clients can connect to. We are using an Ubuntu machine that is running the 

Mumble server. The server is installed with the command: 

# apt-get install mumble-server 

Next add a folder is created to store the user database: 

# mkdir /etc/murmur 

Next we change to this directory and add a password for the super user to the database with the 

following commands: 

# cd /etc/murmur 

# murmurd –supw <password> 

To install the mumble client you type: 

# apt-get install munmble 

Now you can start the client. Go to Server and press Connect or press Ctrl + O. At the server you add 

the name for the “connection”, IP address, port number, and user name. To connect to an IPv6 server 

you simply type the IPv6 address without brackets. Select the connection you just created and click 

connect to connect to the server. 

Mumble was able to use both IPv4 and IPv6, as was confirmed by monitoring the traffic and checking 

which version of addresses were being used. 

9.2.11      Subversion 

Apache Subversion (SVN) is a popular open source program that allow version controlled storage and 

retrieval of files. Little concern was given to security in SVN. Here we merely test for IPv6 

compatibility. Passwords are sent in plaintext unless you use encryption. 

Subversion is installed by typing: 

# apt-get install subversion 

Create a directory for the files that you want to keep under version control: 

# mkdir /home/userName/svn/projectName 

Create a group with the name subversion: 

# sudo groupadd subversion 



40 
 

Add your user and the Apache user (in this case www-data) to the subversion group: 

# sudo usermod –a –G subversion www-data 

# sudo usermod –a –G subversion userName 

Change ownership of the file and set the permissions by typing: 

# sudo chown –R www-data:subversion projectName 

# sudo chmod –R g+rws projectName 

Create a repository: 

# sudo svnadmin create /home/userName/svn/projectName 

In order to get access to these files via HTTP, /etc/apache2/mods-

available/dav_svn.conf needs to be edited to contain the following lines: 

<Location /svn/projectName> 

     DAV svn 

     SVNPath /home/userName/svn/projectName 

     AuthType Basic 

     AuthName "myproject subversion repository" 

     AuthUserFile /etc/subversion/passwd 

     <LimitExcept GET PROPFIND OPTIONS REPORT> 

        Require valid-user 

     </LimitExcept> 

  </Location> 

Restart the web server in order for the changes to take effect: 

# sudo /etc/initd.d/apache2 restart 

Users should be added with passwords to provide authentication. When a new copy of SVN is 

installed, the /etc/subversion/passwd file does not exist. Use the -c switch when adding the 

first user in order to create it:  

# sudo htpasswd –c /etc/subversion/passwd userName 

Remove the -c switch when adding additional users. 

9.2.12      Mail 

We will be using Postfix which is an open source mail transfer agent (MTA). A MX (Mail exchange 

record) record has to be added in the zone file (our: /etc/bind/ex.jobb.db)in order for this to 

work. The MX maps a domain name to MTAs. An example of such a record is shown in DNS server 

entry below: 

 

 

 



41 
 

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

   20120533 ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

gateway IN A 192.168.1.1 

gateway IN AAAA 2002:53fb:377d:1::1 

ns1 IN A 192.168.1.1 

mail IN A 192.168.1.1 

mail IN AAAA 2002:53fb:377d:1::1 

www IN CNAME gateway 

ex.jobb. IN MX 10 mail.ex.jobb. 

Proceed with the installation of Postfix: 

# sudo apt-get install postfix 

During the installation we chose “Internet Site” as the general configuration, followed by the domain 

name “ex.jobb”. 

The mailx package contains the mail command that will be used later on: 

# sudo apt-get install mailutils 

During the installation we chose “no” when asked if we should force synchronous updates on the mail 

queue. 

Test setup 

To perform our testing we added an initial user that can be used to receive the mails sent: 

# sudo useradd –m –s /bin/bash testuser 

# sudo passwd testuser 

This will prompt you to enter a password for testuser. 

Make sure that postfix is running, by testing to see if it is working correctly: 

# telnet localhost 25 

Type the following SMTP commands in the terminal (each line is followed by enter) to create the mail 

and end with “.”: 

ehlo localhost 

mail from: root@localhost 

rcpt to: testuser@localhost 

data 

Subject: A test mail 

 

A test mail 



42 
 

.  

quit 

 

Change to your created user (testuser) and check if the mail has arrived: 

# su – testuser 

# mail 

You should be able to see the new mail and can choose to read it by entering the number of the mail 

message. 

Adding own domain 

Your domain has to be added to mydestinations (this will overwrite the previous content): 

# sudo postconf –e “mydestination = mail.ex.jobb, localhost.ex.jobb, 

localhost, ex.jobb” 

Adding local network 

Adding the LAN to Postfix allows remote clients connecting from these addresses to have greater 

privileges than clients connecting from other addresses [121]. This addition is done for several LANs 

with a command of the form: 

# sudo postconf –e “mynetworks = 127.0.0.0/8, 192.168.1.0/24, 

[::1]/128,[2002:53fb:377d:1::]/64” 

Receive on all interfaces: 

# sudo postconf –e “inet_interfaces = all” 

The “inet_protocols = all” is set by default, this enables the use of both IPv4 and IPv6. 

Restart Postfix to apply the changes: 

# sudo /etc/init.d/postfix restart 

It should now be possible to send mail from one computer to another computer in the LAN using both 

IPv4 and IPv6. We confirmed this by sending mail from a computer using the following lines: 

netcat mail.ex.jobb 25 

ehlo ex.jobb 

mail from: aUser@ex.jobb 

rcpt to: testuser@ex.jobb 

data 

Subject: A mail from me to you 

 

I like carrots! 

. 

quit 

Check the mail of testuser: 

#su – testuser 

#mail  



43 
 

10.     Windows Server 2008 R2 
Windows Server 2008 R2 is a Microsoft 64-bit server operating system. We installed Windows Server 

2008 R2 Enterprise with service pack 1 on a computer as our gateway to the network and to run all the 

test services on. 

10.1     Setting up the network 
As on the Ubuntu server we setup a NAT so that the clients connected to the internal LAN could have 

IPv4 internet connectivity and setup a tunnel to provide IPv6 internet connectivity. 

10.1.2     NAT 

We use the “Add Roles” wizard to add the role “Routing and remote access service” (includes 

subcategories: “Routing” and “Remote access service”). No configuration options were entered during 

the initial setup with the wizard. 

In the Server Manager, go to “Roles” and select “Network Policy and Access Services”. Right click on 

“Routing and Remote Access” and click on “Configure and Enable Routing and Remote Access”. This 

will bring up the “Routing and Remote Access Server Setup” wizard. After the welcome screen, select 

“NAT” and click “Next”. Mark the interface towards the Internet and then select “Finish”. 

10.1.3     Enable IPv6 
In the Server Manager, go to “Roles” and select “Network Policy and Access Services”. Right click on 

“Routing and Remote Access” and click on “Properties”. Check “IPv6 routing LAN only”.  

Add an IPv6 address on the LAN interface. 

10.1.4     Tunnel 

By default, several versions of Windows (including Server 2008 R2), automatically add a 6to4 tunnel. 

But for some reason ours disappeared, so we added our own. A lot of the configuration options are 

similar to that in Ubuntu. Refer to that set up section for further explanations.  

In PowerShell (using our current public IPv4 address 83.251.48.135 as our example), type: 

# netsh 

# interface ipv6 

# add v6v4tunnel tun6 83.251.48.135 192.88.99.1 

to set up a 6to4 tunnel with the name “tun6”, with the entry point 83.251.48.135 and exit point 

192.88.99.1. Add an IPv6 address: 

# add address tun6 2002:53fb:3087:0::1 

Add a default route: 

# add route ::/0 tun6 ::192.88.99.1 metric=1 

Advertise the default gateway on the LAN interface in order for clients to be able to automatically 

configure it: 

# set interface INT_NR adv=enabled managed=enabled other=disabled 

# set interface INT_NR advertisedefaultroute=enabled 



44 
 

In order for you to be able to ping the Windows Server 2008 R2 over IPv4 and IPv6, its firewall must 

accept inbound ICMPv4 and ICMPv6 packets. Details for this are given in many places, such as [122]. 

10.2     Setting up services 
On Windows server 2008 R2 we setup and tested a web server and a DHCP server. 

10.2.1     Internet Information Server (IIS) 

In the Windows service manager add the role “Webserver (IIS)” and click next a few times until 

finished. It works without needing further configuration. 

10.2.2     DHCP 

To be able to automatically assign IP addresses to hosts attached to the LAN we implemented a DHCP 

server. To setup a DHCP server use the Server Manager and click on add a role. After the Add Roles 

wizard comes up, check the option “DHCP Server” and press next. First we configured the server for 

IPv4. Select which interface the server should use to serve clients and press next. Add the parent 

domain, preferred DNS IP, alternate DNS IP address, and press next. Check "WINS is not required for 

applications on this network", as we do not have a Windows Internet Name Service (WINS) server or 

any applications that require WINS, and press next. Press “add” to add a scope, add a name to the 

scope, specify the range of addresses that should be handed out, the subnet mask, and the default 

gateway for the clients; then press OK and next. 

Next we configured the server for IPv6. We chose to configure the server for IPv6 without using the 

Add Roles wizard as the wizard did not give any options for specifying the range of addresses to 

allocate to the clients. For this reasons we simply check "Disable DHCPv6 stateless mode for this 

server" and press next. Then click “install” to install the server. 

To configure the server for IPv6 you need to open the Server Manager, click on “roles”, click on 

“DHCP Server”, click on the computer name, right click on IPv6 and select “New Scope” then press 

next. Enter the name of the scope and description and press next (the name of the scope was LANET 

and we left the description field blank). Enter the prefix of the subnet (in this case we entered 

“2002:53fb:3087:1”) and the preference (we used the default value of 0). The preference tells the 

client what server to use if there are multiple DHCPv6 servers on the network[123]. The client 

chooses the server with the highest preference value first, but the client may choose a server with a 

lower value if it has better advertised parameters. Click next. You can add a range of addresses to 

exclude from being distributed. Click next. Leave the lease time values as they are set by default and 

press next. Check yes to activate the scope and press finish. 

To select which interface the server should serve IPv6 addresses on you open the Server Manager, 

click on “Roles”, “DHCP Server”, click on the computer name, right click on IPv6 and select 

Properties. Click on the advanced tab and click on bindings. Select the interface in the list and press 

OK and OK again. 

You optionally distribute a list of DNS servers for the clients to use. We chose not to as the server 

already distributes a list of DNS servers via DHCPv4. Although the clients cannot communicate with 

these servers via IPv6, AAAA records can be fetched via IPv4 instead. 

There is no option in DHCPv6 to tell the client what default gateway to use. This is instead done 

automatically based upon the router advertisements. To configure Windows Server to send routing 

advertisements you simply open a PowerShell and type: 



45 
 

PS C:\Users\Administrator> netsh 

netsh>interface ipv6 

netsh interface ipv6>set interface INT_NR adv=enabled managed=enabled 

other=disabled 

To see the numbers of the interfaces you type: 

netsh interface ipv6>show interface 

  



46 
 

11. Performance tests 
In this chapter we will describe a series of tests that we conducted to see how IPv4 and IPv6 perform, 

both locally and from locally to remote computers. 

11.1     Local test 
To compare TCP and UDP performance between IPv4 and IPv6 we started by using a program called 

pcattcp. This is the Windows version of ttcp, which is a UNIX benchmarking tool. The command 

interface to the program and its options are shown below.  

# pcattcp –t transmitter 
  -r receiver 
  -6 IPv6 (default: IPv4) 
  -u UDP (default: TCP) 

The setup consisted of two computers running Windows 7 (acting as transmitter and receiver) 

interconnected by an Ethernet switch (this is the same switch as described in Chapter 8). We divided 

the test into four groups: IPv4 with TCP, IPv4 with UDP, IPv6 with TCP, and IPv6 with UDP, and ran 

each test-group 50 times (for a total of 200 tests). We calculated the estimated expected value and the 

standard deviation for each group. The results are shown in Table 11.1.1 (expressed in KB/sec). 

Table 11.1.1 Bandwidth (in KB/sec) results with PCATTCP 

 Expected value (mean µ) Standard deviation (σ) 

IPv4 TCP 10333 56 

IPv4 UDP 11597 37 

IPv6 TCP 9779 744 

IPv6 UDP 11400 19 

 

During the test we noticed that TCP for IPv6 was highly unstable in that the throughput jumped 

between about 10400 KB/sec and roughly 9000 KB/sec between the tests (see appendix C). This 

caused a huge standard deviation and an unreliable result (see results in table 11.1.1 and calculations 

in appendix D). Given this behavior we chose not to draw any conclusions other than not to 

recommend pcattcp as a testing tool since its measurements seem to be unreliable, and decided to 

change to testing with iperf, another network testing tool. The command interface to this program and 

its options are shown below. 

# iperf –c client (transmitter) 

        -s server (receiver) 

        -V IPv6 (default: IPv4) 

        -u UDP (default: TCP) 

        -i interval between bandwidth reports (in seconds) 

        -t  time to transmit for (in seconds) 

The test consisted of the same setup, only this time the OS on each of the computers was Ubuntu. Here 

we ran the test groups for 250 seconds and iperf reported back every 5 seconds (yielding 50 reports per 

group) with the average throughput of the past 5 seconds. The results (expressed in KB/sec) are shown 

in Table 11.1.2. 

 



47 
 

Table 11.1.2 Bandwidth (in KB/sec) results with iperf 

 Expected value (mean µ) Standard deviation (σ) 

IPv4 TCP 11493 0.5 

IPv4 UDP 11679 6.4 

IPv6 TCP 11334 0.7 

IPv6 UDP 10874 5.1 

 

As we can see in Table 11.1.2, these results here are much more stable (see details of the calculations 

in appendix F). UDP was not faster than TCP (as might have been expected since UDP is more 

lightweight than TCP). TCP for IPv4 was ever so slightly faster than TCP for IPv6, with almost an 

identical standard deviation. UDP for IPv4 was slightly faster than UDP for IPv6, with a very similar 

standard deviation. 

During the test the speed of the interface was negotiated to 100Mbit full duplex mode and the NICs 

was configured to do checksums. The Ethernet frames were 1514 byte with TCP and 1512 byte with 

UDP. However, we noticed that the packets got fragmented during the tests for UDP over IPv6 so the 

frame size alternated between 1510 and 92 bytes. This might affect the speed. We did not succeed in 

making iperf work without fragmenting the packets. The computer acting as server was Client 2 and 

the computer sending was Client 3 (see appendix B for the hardware specifications). The UDP 

datagram size was set to 1470 byte for both IPv4 and IPv6. The TCP Window size was set to 85.3 KB 

for both IPv4 and IPv6. Timestamps were used for TCP with both IPv4 and IPv6. 

We believe that the difference is marginal and the fluctuation so similar between the protocols, that we 

cannot draw any conclusions as to whether IPv4 or IPv6 would be faster or better, performance wise, 

than the other. The two protocols seem to be on a par with each other. 

We also concluded that the switch was a major bottleneck in this setup by running a few tests without 

it. The throughput was much higher (see appendix E). As a result in our subsequent testing we focused 

on the relative difference and stability, rather than the absolute maximum throughput, by keeping the 

switch. 

The theoretical upper bound in our test topology for IPv4 would be[124]: 

 11,767,896 bytes/second for TCP with timestamps 

 11,865,420 bytes/second for TCP without timestamps 

 11,963,589 bytes/second for UDP 

The theoretical upper bound in our test topology for IPv6 as we calculated (see appendix M) would be: 

 11,605,356 bytes/second for TCP with timestamps 

 11,702,880 bytes/second for TCP without timestamps 

 11,800,404 bytes/second for UDP 

11.2     Ping test 
To compare our IPv6 connection to our IPv4 connection we created a script that pinged and traced the 

route to different dual stacked websites. An instance of the script ran every hour from 11 am to 3 pm 

during working days. The data showed that IPv6 was almost always some milliseconds slower (from 

about 1 to about 30 milliseconds), except to www.xbox.com where the latency varied much more 

(from about 1 to about 95 milliseconds). Only on some rare occasions was IPv6 faster than IPv4. This 



48 
 

performance difference is probably because the IPv6 traffic is tunneled to a 6to4 relay before it is 

routed to its destination, thus incurring added delay at the gateway and possibly the traffic has to take 

a suboptimal route. The delay and route to the relay itself was relatively stable. See the results in 

appendix G. 

11.3     Traceroute test 
Due to the results (described above) of the ping test (the varying latency) we made a traceroute test. 

This test was performed using two computers, to collect a traceroute to two different dual-stacked sites 

at the same time. By doing so we wanted to see whether it was changes in the tunnel or if it was 

competing traffic outside of the tunnel that caused the latency spikes. If the spikes occur at the same 

time on both traceroutes, it is more likely that a common denominator is the cause, which could be due 

to something that is happening in the tunnel. The trace towards the relay was always consistent in 

terms of the paths chosen, so we assumed that the path to and from the relay does not change during 

the tests. 

We were not able to replicate the latency spikes to a degree that we feel would give a definitive 

answer, but the data points towards the tunnel not being the cause of the difference in the traceroute 

results. Consider the following excerpt from the data at hop 9 (this is a sample from one of all the 

traces we made): 

9  2001:428::205:171:203:158 (2001:428::205:171:203:158)  118.687 ms  

215.261 ms  119.297 ms  119.73 ms  120.996 ms 

Here we see a spike of 100ms in the latency of the trace towards Xbox, but nothing of the sort occurs 

in the entire trace towards FreeBSD (see appendix J for the whole example). This indicates that the 

delay is caused somewhere outside of the tunnel on the path from the gateway to the xbox.com server.  

After observing the highly fluctuating latency, we wanted to see if there was any pattern to it. We 

compiled all the data into a graph illustrating the latency towards xbox.com. This data is shown in 

figure 11.3.1 – where the vertical bars represent one sample of the ten samples collected at every hour, 

starting at 11:00 am and ending at 3:00 pm. 



49 
 

 

Figure 11.3.1 Latency towards xbox.com 

As shown in the graph, there is no definite pattern to the latency. Sometimes it is elevated and spiking, 

but not consistently during a particular time of the day or part of the day (for example towards later in 

the afternoon). The high latency is probably caused by heavy load during some random hours of the 

day. This could also explain why the trace we did was very inconsistent, with different destination 

servers, which we believe is due to load balancing as a result of the DNS lookup, i.e., different IP 

addresses are being returned for the same host name at different times. 



50 
 

This graph illustrates the latency towards each individual destination server. Each vertical bar is the 

mean of the ten pings sent at each time and the colors represents IP addresses. It is clear that the 

latency is dependent on the server that is being used. E.g. the servers in green and blue responds a lot 

faster than the server in yellow. 

11.4     Web server performance test 
To measure if there is any performance difference in serving a webpage over IPv4 or IPv6, we made a 

test using a very simple webpage with one large picture and fetched it over both IPv4 and IPv6 from a 

laptop running Windows Vista. We did the tests 20 times for each protocol and when running both the 

IIS and Apache web servers. Afterwards we calculate the estimated expected value and the standard 

deviation. The results are shown in Table 11.4.1 (with the time measured in seconds). 

 

Table 11.4.1 Results (in seconds) from the web server tests 

 Expected value (mean µ) Standard deviation (σ) 

Apache IPv4 0.2333 0.0181 

Apache IPv6 0.2373 0.0168 

IIS IPv4 0.2324 0.0278 

IIS IPv6 0.2373 0.0167 

 

Figure 11.3.2 Latency towards different destination servers 



51 
 

The results, presented in table 11.4.1, show that the estimated expected value for IPv4 is a bit smaller 

than IPv6 when fetching the page from both servers. For the Apache server the estimated expected 

value for IPv4 is 4 milliseconds less than for IPv6. For the IIS server the corresponding difference is 

4.93 milliseconds. The estimated expected values for IPv4 on IIS and Apache differed by 0.85 

milliseconds. For IPv6 the estimated expected value differed only with 0.08 milliseconds. The 

estimated standard deviation was greater for IPv4 than it was for IPv6 on both servers. On the IIS 

server it was 66.3% greater, i.e., 2.78 milliseconds. However, on the Apache server it was only 7.4% 

greater, i.e., 1.68 milliseconds. A small number of measurements were much greater than the others 

during the test, causing the distribution for IPv4 on the IIS server to become wider. One should note 

that even if the values are small, the relative difference is noticeable. Since the observed difference 

between IPv4 and IPv6 is less than the standard deviation, we concluded that there is no significant 

difference in performance between IPv4 and IPv6 (for all the data and calculations see appendices H 

and I respectively). A very interesting result of this test is the nearly identical performance for both IIS 

and Apache for IPv6. 

Figure 11.4.1 Graph of the delay time distribution Figure 11.4.1 Graph of the delay time distribution 



52 
 

12. Routing protocols 
Vyatta is free, software-based (Linux) program that acts as a virtual router. We will use it in order to 

test the IPv6 compatibility of the routing protocols RIP, RIPng, OSPF, OSPFv3, and BGP. 

The network consists of three computers (from now on: Routers A, B, and C) acting as routers each 

running Vyatta. Router A is connected to Router B which is also connected to Router C (as illustrated 

in Figure 12.1).  

Enter configure at the Vyatta prompt to enter configuration mode. Use edit to enter (in order to 

edit) existing elements and set to add new ones. Show will show all the elements from the level that 

you are currently in. Using Tab will provide the possible commands that can follow what you have 

already typed. To apply the changes, type commit. 

Below is an example of how to set the IP addresses of Router B (see appendix A.1 and A.1.1 for the 

complete configuration of Router B, the addresses are changed when configuring routers A and C): 

$ configure 

# edit interfaces 

# edit Ethernet eth1 

# set address 192.168.1.1/24 

# set address 2001:1::1/64 

# up 

# edit Ethernet eth2 

# set address 192.168.2.1/24 

# set address 2001:2::1/64 

 

RIPng and OSPFv3 worked as desired with IPv6, although we had trouble making BGP work 

properly. BGP peering was successfully set up and working, but we were unable to figure out how to 

make the peers distribute IPv6 networks properly to each other. The manual pages referred to elements 

that did not seem to exist. However, it is possible to distribute IPv6 networks using BGP as well as 

other network protocols, such as IPX, using multiprotocol extensions. 

  

Figure 12.1 Topology for testing routing protocols 



53 
 

13. Conclusion, future work and reflections 
This chapter will bring this thesis to a close with conclusions, suggestions for future work, and 

required reflections. 

13.1     Conclusion 
IPv6 has many advantages over IPv4, such as a larger address space, streamlined header, extension 

headers, and no need for NATs. Almost all of the most used software for implementing services in a 

network support IPv6 with their default configuration. Although it is a bit more complicated to 

implement automatic configuration of IP addresses, DNS server addresses, and default gateways for 

clients -- as you need software to transmit router advertisements as well as a DHCP server. 

One big issue is the transition from IPv4 to IPv6. The support from hardware and software vendors is 

there, but the demand from customers generally controls the rate at which something changes. While 

everything works well over IPv4 there will be little demand for IPv6. At least in the beginning phase 

when (and where) there still are addresses left. Given the “IPv6 world launch” occurred on 6 June 

2012, we will hopefully see a larger and larger scale of implementation of IPv6 in order to 

accommodate the need for addresses. IPv6 will soon be the only viable option for growing networks. 

The transition should be as transparent for the end users as possible. We noticed for instance that an 

IPv6 compatible router (not part of the lab setup) had suddenly set up a 6to4 tunnel automatically. This 

might have occurred in association with the IPv6 launch, but we are not certain of this.  

As we saw in the local performance test of IPv4 and IPv6 (UDP and TCP traffic) there is little that 

indicates that one protocol would be preferable over the other in terms of throughput. Both protocols 

seem to be on par with each other. Regarding performance towards distant sites there is also not a lot 

of difference. Any difference seems to be due to the route that is chosen and the amount of competing 

traffic. 

Tests can easily be made from locally to remote sites by users visiting test sites. One should consider 

that a route can be highly unstable (as shown in the trace test), fluctuate, and perform differently on a 

daily or even hourly basis. 

With the knowledge we gained during this project we are not sure if there is anything that we would 

have done differently if we had to do it again. We chose to work as independent as possible and search 

for information ourselves rather than asking for help. This might have caused the project to progress 

slower, as we encountered several problems along the way, but we feel that it has been very 

educational to solve the majority of them by ourselves. 

Our goal was to examine if there were any differences in implementing services in an IPv6 and IPv4 

network, if there was any performance differences as well as how you implement the network itself. 

We think that we achieved that goal. There are still several more services that you can implement and 

test and other ways of setting up the network. 

13.2     Future work 
As for future work, there are some things that have been left undone that could be investigated and 

tested further. First an expansion of the test network could be made to add several routers, subnets, 

additional services, and to utilize components that do not cause bottlenecks as did our switch as we 

described in section 11.1). Services such as active directory, OpenLDAP, content delivery network 

(CDN), additional web servers, Kerberos, databases, DNS running on a Microsoft Windows server, 



54 
 

and firewalls could be implemented and tested. For details about configuring an IPv6 firewall with 

ip6tables see [125]. Transition techniques other than 6to4 could also be evaluated. 

13.3     Required reflections 
Regarding the economical aspect we relied solely on our own and borrowed equipment. We did not 

need to invest in any new equipment. This limited the size of our test network and we used an ordinary 

computer(s) to act as a router(s). Using our existing equipment caused problems by limiting 

performance in some of our test cases, but all of these could be resolved to a satisfactorily level with 

the exception of our switch. However, our tests showed us that an IPv4 and IPv6 network with Internet 

connectivity can be achieved using existing equipment and does not require investing in newer 

equipment. For this reason we believe that our results should have wide applicability by others and 

should facilitate others deciding to utilize IPv6. However, better results in terms of performance could 

be achieved with more modern equipment. 

No issues were encountered throughout the course of this thesis regarding social and ethical aspects. 

Considerations were taken to avoid any real harm occurring outside of the test network while we were 

implementing and testing the components.  

 

  



55 
 

References 
[1] “ARPAnet - The First Internet.” [Online]. Available: 

 http://inventors.about.com/library/weekly/aa091598.htm. [Accessed: 02-Apr-2012]. 

[2] “IANA — Number Resources.” [Online]. Available: http://www.iana.org/numbers/. [Accessed: 

 05-Aug-2012]. 

[3] “Free Pool of IPv4 Address Space Depleted | The Number Resource Organization.” [Online]. 

 Available: http://www.nro.net/news/ipv4-free-pool-depleted. [Accessed: 02-Apr-2012]. 

[4] “APNIC - Two /8s allocated to APNIC from IANA.” [Online]. Available: 

 http://www.apnic.net/publications/news/2011/delegation. [Accessed: 02-Apr-2012]. 

[5]  S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” Internet 

 Request for Comments, vol. RFC 1883 (Proposed Standard), Dec. 1995. 

[6]  J. F. Kurose and K. W. Ross, Computer networking : a top-down approach. Boston, Mass.: 

 Pearson, 2010. 

[7] “Unicast IPv6 addresses: IPv6.” [Online]. Available: http://technet.microsoft.com/en-

 us/library/cc759208(v=ws.10).aspx. [Accessed: 03-Apr-2012]. 

[8] “FAQ: ISPs — RIPE Network Coordination Centre.” [Online]. Available: 

 http://www.ripe.net/lir-services/member-support/info/faqs/isp-related-questions. [Accessed: 09-

 Aug-2012]. 

[9] “IPv6 Address Allocation and Assignment Policy — RIPE Network Coordination Centre.” 

 [Online]. Available: http://www.ripe.net/ripe/docs/ripe-481#_8._IPv6_Provider. [Accessed: 09-

 Aug-2012]. 

[10] “IBM i information center masthead.” [Online]. Available: 

 http://publib.boulder.ibm.com/infocenter/aix/v6r1/topic/com.ibm.aix.doc/doc/base/banner.htm. 

 [Accessed: 02-Apr-2012]. 

[11]  S. Deering and R. Hinden, “Internet Protocol, Version 6 (IPv6) Specification,” Internet 

 Request for Comments, vol. RFC 2460 (Draft Standard), Dec. 1998. 

[12]  J. Postel, “Internet Protocol,” Internet Request for Comments, vol. RFC 791 (Standard), Sep. 

 1981. 

[13]  S. Hagen, IPv6 essentials [integrating IPv6 into your IPv4 network. Beijing; Cambridge 

 [Mass.]; Farnham [England]: O’Reilly, 2002. 

[14]  S. Amante, B. Carpenter, S. Jiang, and J. Rajahalme, “IPv6 Flow Label Specification,” 

 Internet Request for Comments, vol. RFC 6437 (Proposed Standard), Nov. 2011. 

[15]  D. Borman, S. Deering, and R. Hinden, “IPv6 Jumbograms,” Internet Request for Comments, 

 vol. RFC 2675 (Proposed Standard), Aug. 1999. 

[16]  J. Reynolds, “Assigned Numbers: RFC 1700 is Replaced by an On-line Database.” [Online]. 

 Available: http://tools.ietf.org/html/rfc3232. [Accessed: 02-Apr-2012]. 



56 
 

[17] “Protocol Numbers.” [Online]. Available: http://www.iana.org/assignments/protocol-

 numbers/protocol-numbers.xml. [Accessed: 09-Apr-2012]. 

[18]  A. Conta and S. Deering, “Generic Packet Tunneling in IPv6 Specification,” Internet Request 

 for Comments, vol. RFC 2473 (Proposed Standard), Dec. 1998. 

[19]  R. Hinden and S. Deering, “IP Version 6 Addressing Architecture,” Internet Request for 

 Comments, vol. RFC 2373 (Proposed Standard), Jul. 1998. 

[20] “The TCP/IP Guide - IPv6 Multicast and Anycast Addressing.” [Online]. Available: 

 http://www.tcpipguide.com/free/t_IPv6MulticastandAnycastAddressing.htm. [Accessed: 02-

 Apr-2012]. 

[21]  G. Malkin, “Traceroute Using an IP Option,” Internet Request for Comments, vol. RFC 1393 

 (Experimental), Jan. 1993. 

[22]  T. Narten, E. Nordmark, W. Simpson, and H. Soliman, “Neighbor Discovery for IP version 6 

 (IPv6),” Internet Request for Comments, vol. RFC 4861 (Draft Standard), Sep. 2007. 

[23]  S. Deering, “ICMP Router Discovery Messages,” Internet Request for Comments, vol. RFC 

 1256 (Proposed Standard), Sep. 1991. 

[24]  S. Thomson and T. Narten, “IPv6 Stateless Address Autoconfiguration,” Internet Request for 

 Comments, vol. RFC 2462 (Draft Standard), Dec. 1998. 

[25] “Cisco Security Appliance Command Line Configuration Guide, Version 8.0 - Configuring 

 IPv6  [Cisco ASA 5500 Series Adaptive Security Appliances] - Cisco Systems.” [Online]. 

 Available: http://www.cisco.com/en/US/docs/security/asa/asa80/configuration/guide/ipv6.html. 

 [Accessed: 02-Apr-2012]. 

[26]  M. Blanchet, Migrating to IPv6 : a practical guide to implementing IPv6 in mobile and fixed 

 networks. Chichester, England; Hoboken, NJ: J. Wiley & Sons, 2006. 

[27]  T. Hardie, “Distributing Authoritative Name Servers via Shared Unicast Addresses,” Internet 

 Request for Comments, vol. RFC 3258 (Informational), Apr. 2002. 

[28] “DNS Records Explained with Syntax and examples, DNS Records Tutorials.” [Online]. 

 Available: http://www.debianhelp.co.uk/dnsrecords.htm. [Accessed: 02-Apr-2012]. 

[29]  S. Thomson, C. Huitema, V. Ksinant, and M. Souissi, “DNS Extensions to Support IP Version 

 6,” Internet Request for Comments, vol. RFC 3596 (Draft Standard), Oct. 2003. 

[30] “The TCP/IP Guide - DNS Message Processing and General Message Format.” [Online]. 

 Available: 

 http://www.tcpipguide.com/free/t_DNSMessageProcessingandGeneralMessageFormat-3.htm. 

 [Accessed: 02-Apr-2012]. 

[31]  P. V. Mockapetris, “Domain names - implementation and specification,” Internet Request for 

 Comments, vol. RFC 1035 (Standard), Nov. 1987. 

[32]  B. Carpenter, S. Jiang, and D. Conrad, “Moving A6 to Historic Status.” [Online]. Available: 

 http://tools.ietf.org/html/rfc6563. [Accessed: 02-Apr-2012]. 



57 
 

[33]  P. Srisuresh and M. Holdrege, “IP Network Address Translator (NAT) Terminology and 

 Considerations,” Internet Request for Comments, vol. RFC 2663 (Informational), Aug. 1999. 

[34]  Fredrik Folke and Netterberg Marcus, “Neighbor Discovery,” 17-May-2011. [Online]. 

 Available: http://dl.dropbox.com/u/15473045/ND%20IPv6%20Security.pdf. 

[35]  J. Arkko, J. Kempf, B. Zill, and P. Nikander, “SEcure Neighbor Discovery (SEND),” Internet 

 Request for Comments, vol. RFC 3971 (Proposed Standard), Mar. 2005. 

[36] “IPv6.com - IPv6 and IPSec - Securing the Next Generation Internet.” [Online]. Available: 

 http://ipv6.com/articles/security/IPsec.htm. [Accessed: 02-Apr-2012]. 

[37]  C. Kaufman, R. Perlman, and M. Speciner, Network security : private communication in a 

 public world. Upper Saddle River, NJ: Prentice Hall PTR, 2002. 

[38]  S. Kent and K. Seo, “Security Architecture for the Internet Protocol,” Internet Request for 

 Comments, vol. RFC 4301 (Proposed Standard), Dec. 2005. 

[39] “IPsec architectures and implementation methods.” [Online]. Available: 

 http://searchenterpriselinux.techtarget.com/feature/IPsec-architectures-and-implementation-

 methods. [Accessed: 02-Apr-2012]. 

[40]  G. Malkin and R. Minnear, “RIPng for IPv6,” Internet Request for Comments, vol. RFC 2080 

 (Proposed Standard), Jan. 1997. 

[41] “OSPF Design Guide - Cisco Systems.” [Online]. Available: 

 http://www.cisco.com/en/US/tech/tk365/technologies_white_paper09186a0080094e9e.shtml. 

 [Accessed: 02-Apr-2012]. 

[42]  R. Coltun, D. Ferguson, J. Moy, and A. Lindem, “OSPF for IPv6,” Internet Request for 

 Comments, vol. RFC 5340 (Proposed Standard), Jul. 2008. 

[43] “Cisco IOS IPv6 Configuration Guide, Release 12.4 - Implementing OSPF for IPv6 &nbsp; 

 [Cisco IOS Software Releases 12.4 Mainline],” Cisco. [Online]. Available: 

 http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-ospf.html. [Accessed: 03-

 Apr-2012]. 

[44] “Cisco IOS IPv6 Configuration Guide, Release 12.4 - Implementing IS-IS for IPv6 &nbsp; 

 [Cisco IOS Software Releases 12.4 Mainline],” Cisco. [Online]. Available: 

 http://www.cisco.com/en/US/docs/ios/ipv6/configuration/guide/ip6-is-is.html. [Accessed: 02-

 Apr-2012]. 

[45] “Introduction to Intermediate System-to-Intermediate System Protocol.” [Online]. Available: 

 http://www.cisco.com/warp/public/cc/pd/iosw/prodlit/insys_wp.pdf. [Accessed: 03-Apr-2012]. 

[46]  Y. Rekhter, T. Li, and S. Hares, “A Border Gateway Protocol 4 (BGP-4),” Internet Request for 

 Comments, vol. RFC 4271 (Draft Standard), Jan. 2006. 

[47]  T. Bates, R. Chandra, D. Katz, and Y. Rekhter, “Multiprotocol Extensions for BGP-4,” 

 Internet Request for Comments, vol. RFC 4760 (Draft Standard), Jan. 2007. 



58 
 

[48]  R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, “Resource ReSerVation Protocol 

 (RSVP) – Version 1 Functional Specification,” Internet Request for Comments, vol. RFC 2205 

 (Proposed Standard), Sep. 1997. 

[49]  L. Andersson, I. Minei, and B. Thomas, “LDP Specification,” Internet Request for Comments, 

 vol. RFC 5036 (Draft Standard), Oct. 2007. 

[50] “What is MPLS? Multi-Protocol Label Switching stack software, a mechanism for packet 

 forwarding in network routers.” [Online]. Available: http://network-

 technologies.metaswitch.com/mpls/what-is-mpls-and-gmpls.aspx. [Accessed: 02-Apr-2012]. 

[51]  E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control Protocol (DCCP),” 

 Internet Request for Comments, vol. RFC 4340 (Proposed Standard), Mar. 2006. 

[52] “About – The XMPP Standards Foundation.” [Online]. Available: http://xmpp.org/about-

 xmpp/. [Accessed: 12-Apr-2012]. 

[53] “amessage: Protocol for Jabber over IPv6.” [Online]. Available: 

 https://web.amessage.eu/IPv6/protokoll. [Accessed: 12-Apr-2012]. 

[54]  E. Nordmark and R. Gilligan, “Basic Transition Mechanisms for IPv6 Hosts and Routers,” 

 Internet Request for Comments, vol. RFC 4213 (Proposed Standard), Oct. 2005. 

[55]  R. Despres, “IPv6 Rapid Deployment on IPv4 Infrastructures (6rd),” Internet Request for 

 Comments, vol. RFC 5569 (Informational), Jan. 2010. 

[56]  B. Carpenter and K. Moore, “Connection of IPv6 Domains via IPv4 Clouds,” Internet Request 

 for Comments, vol. RFC 3056 (Proposed Standard), Feb. 2001. 

[57]  Jivika Govil, Jivesh Govil, N. Kaur, and H. Kaur, “An examination of IPv4 and IPv6 

 networks : Constraints and various transition mechanisms,” in IEEE Southeastcon, 2008, 2008, 

 pp. 178–185. 

[58]  K. Tsuchiya, H. Higuchi, and Y. Atarashi, “Dual Stack Hosts using the ‘Bump-In-the-Stack’ 

 Technique (BIS),” Internet Request for Comments, vol. RFC 2767 (Informational), Feb. 2000. 

[59]  E. Nordmark, “Stateless IP/ICMP Translation Algorithm (SIIT),” Internet Request for 

 Comments, vol. RFC 2765 (Proposed Standard), Feb. 2000. 

[60]  A. Durand, P. Fasano, I. Guardini, and D. Lento, “IPv6 Tunnel Broker,” Internet Request for 

 Comments, vol. RFC 3053 (Informational), Jan. 2001. 

[61]  C. Huitema, “Teredo: Tunneling IPv6 over UDP through Network Address Translations 

 (NATs),” Internet Request for Comments, vol. RFC 4380 (Proposed Standard), Feb. 2006. 

[62] “Teredo Overview.” [Online]. Available: http://technet.microsoft.com/en-

 us/library/bb457011.aspx. [Accessed: 02-Apr-2012]. 

[63]  F. Templin, T. Gleeson, and D. Thaler, “Intra-Site Automatic Tunnel Addressing Protocol 

 (ISATAP),” Internet Request for Comments, vol. RFC 5214 (Informational), Mar. 2008. 



59 
 

[64] “Windows Server 2008 IPv6 Transition Technologies,” Feb-2008. [Online]. Available: 

 http://download.microsoft.com/download/1/2/4/124331bf-7970-4315-ad18-

 0c3948bdd2c4/IPv6Trans.doc. [Accessed: 03-Apr-2012]. 

[65] “An IPv6 Deployment Guide.” The 6NET Consortium, Sep-2005. 

[66] “ipv6(7) - Linux manual page.” [Online]. Available: http://www.kernel.org/doc/man-

 pages/online/pages/man7/ipv6.7.html. [Accessed: 02-Apr-2012]. 

[67] “IPv6-ready kernel.” [Online]. Available: http://mirrors.bieringer.de/Linux+IPv6-

 HOWTO/systemcheck-kernel.html. [Accessed: 11-Apr-2012]. 

[68] “Linux 3.2 - Linux Kernel Newbies.” [Online]. Available: http://kernelnewbies.org/Linux_3.2. 

 [Accessed: 11-Apr-2012]. 

[69] “How to install and uninstall IPv6 in Windows XP.” [Online]. Available: 

 http://support.microsoft.com/kb/2478747. [Accessed: 02-Apr-2012]. 

[70] “The Cable Guy - May 2006.” [Online]. Available: http://technet.microsoft.com/en-

 us/library/bb878057.aspx. [Accessed: 02-Apr-2012]. 

[71] “Support for IPv6 in Windows Server 2008 R2 and Windows 7.” [Online]. Available: 

 http://technet.microsoft.com/sv-se/magazine/2009.07.cableguy(en-us).aspx. [Accessed: 02-

 Apr-2012]. 

[72] “IPv6 - Technology overview.” [Online]. Available: 

 http://technet.microsoft.com/library/hh831730.aspx. [Accessed: 02-Apr-2012]. 

[73] “Configuring IPv6 in Mac OS X v10.6.7 or later.” [Online]. Available: 

 http://support.apple.com/kb/HT4667. [Accessed: 02-Apr-2012]. 

[74] “Robservatory » Blog Archive » A useless analysis of OS X release dates.” [Online]. 

 Available: http://www.robservatory.com/?p=46. [Accessed: 02-Apr-2012]. 

[75] “IPv6 in FreeBSD.” [Online]. Available: http://www.freebsd.org/ipv6/. [Accessed: 02-Apr-

 2012]. 

[76] “FreeBSD IPv6-only Support.” [Online]. Available: 

 http://www.freebsd.org/ipv6/ipv6only.html. [Accessed: 02-Apr-2012]. 

[77] “IPv6 Support in Solaris.” [Online]. Available: 

 http://www.softpanorama.org/Net/Internet_layer/ipv6.shtml. [Accessed: 02-Apr-2012]. 

[78] “2012 | Netcraft.” [Online]. Available: http://news.netcraft.com/archives/2012/. [Accessed: 02-

 Apr-2012]. 

[79] “Can you use Google Web Server (GWS) in your projects? - O’Reilly Answers.” [Online]. 

 Available: http://answers.oreilly.com/topic/2473-can-you-use-google-web-server-gws-in-your-

 projects/. [Accessed: 02-Apr-2012]. 

[80] “Google mystery server runs 13% of active websites • The Register.” [Online]. Available: 

 http://www.theregister.co.uk/2010/01/29/google_web_server/. [Accessed: 02-Apr-2012]. 



60 
 

[81] “Overview of new features in Apache HTTP Server 2.0 - Apache HTTP Server.” [Online]. 

 Available: http://httpd.apache.org/docs/trunk/new_features_2_0.html. [Accessed: 02-Apr-

 2012]. 

[82] “Apache Week. Apache 2 Release.” [Online]. Available: 

 http://www.apacheweek.com/features/ap2. [Accessed: 02-Apr-2012]. 

[83] “Enabling IPv6 Support in nginx,” Oleksiy Kovyrin. [Online]. Available: 

 http://kovyrin.net/2010/01/16/enabling-ipv6-support-in-nginx/. [Accessed: 02-Apr-2012]. 

[84] “Current Status of IPv6 Support for Networking Applications.” [Online]. Available: 

 http://www.deepspace6.net/docs/ipv6_status_page_apps.html. [Accessed: 02-Apr-2012]. 

[85]  I. van Beijnum, Running IPV6 : [a practical guide to configuring IPV6 for Windows XP, 

 MacOS X, FreeBSD, Red Hat Linux, Cisco routers, DNS and BIND, Zebra and Apache 2]. 

 Berkeley, Calif: Apress, 2006. 

[86] “Using Internet Explorer to Access IPv6 Websites.” [Online]. Available: 

 http://msdn.microsoft.com/en-us/library/windows/desktop/ms740593(v=vs.85).aspx. 

 [Accessed: 02-Apr-2012]. 

[87] “How To Enable IPV6 Using Google Chrome.” [Online]. Available: 

 http://chromestory.com/2011/02/how-to-enable-ipv6-using-google-chrome/. [Accessed: 02-

 Apr-2012]. 

[88] “MSDN Blogs.” [Online]. Available: 

 http://blogs.msdn.com/b/exchangefaqs/archive/2008/02/01/will-there-be-any-support-for-ipv6-

 in-exchange-2003.aspx. [Accessed: 02-Apr-2012]. 

[89] “How-to: IPv6 workstation.” [Online]. Available: 

 http://www.viagenie.qc.ca/en/ipv6/fullipv6ws/how-to.shtml. [Accessed: 02-Apr-2012]. 

[90] “Postfix IPv6 Support.” [Online]. Available: http://www.postfix.org/IPV6_README.html. 

 [Accessed: 02-Apr-2012]. 

[91] “Outlook 2007 supports Internet Protocol version 6 (IPv6).” [Online]. Available: 

 http://support.microsoft.com/kb/924469. [Accessed: 02-Apr-2012]. 

[92] “National Advanced IPv6 Centre of Excellence.” [Online]. Available: 

 http://www.nav6.org/Research/ipv6%20application%20support.php. [Accessed: 02-Apr-2012]. 

[93] “BIND | Internet Systems Consortium.” [Online]. Available: http://www.isc.org/software/bind. 

 [Accessed: 02-Apr-2012]. 

[94] “What’s New in DNS in Windows Server 2008.” [Online]. Available: 

 http://technet.microsoft.com/en-us/library/cc753143(WS.10).aspx. [Accessed: 02-Apr-2012]. 

[95] “Domain Name Service (DNS).” [Online]. Available: 

 http://technet.microsoft.com/library/bb726935. [Accessed: 02-Apr-2012]. 

[96] “IPv6firewallsandSecurity_eng - Campus IPv6 Wiki.” [Online]. Available: 

 http://ipv6.niif.hu/m/IPv6firewallsandSecurity_eng. [Accessed: 02-Apr-2012]. 



61 
 

[97] “IPv6 Firewalls - ARIN IPv6 Wiki.” [Online]. Available: 

 http://www.getipv6.info/index.php/IPv6_Firewalls. [Accessed: 02-Apr-2012]. 

[98] “mf-firewall - Linux Full Firewall for IPv6 and IPv4, Routing, Interface setup, and QOS - 

 Google Project Hosting.” [Online]. Available: http://code.google.com/p/mf-firewall/. 

 [Accessed: 02-Apr-2012]. 

[99] “m0n0wall - Screenshots.” [Online]. Available: http://m0n0.ch/wall/screenshots.php. 

 [Accessed: 02-Apr-2012]. 

[100] “pfSense Open Source Firewall Distribution - Home.” [Online]. Available: 

 http://pfsense.com/index.php?id=26. [Accessed: 02-Apr-2012]. 

[101] “Screenshots | Firewall Builder.” [Online]. Available: 

 http://www.fwbuilder.org/4.0/screenshots.html. [Accessed: 02-Apr-2012]. 

[102] “FortiGate IPv6 support Technical Note.” 03-Oct-2008. 

[103] “Amendment No. 2 To The Registration Statement On Form S-1/A about Skype.” [Online]. 

 Available: http://www.sec.gov/Archives/edgar/data/1498209/000119312511056174/ds1a.htm. 

 [Accessed: 12-Apr-2012]. 

[104]  J. Arkko and A. Keranen, “Experiences from an IPv6-Only Network.” [Online]. Available: 

 http://tools.ietf.org/html/draft-arkko-ipv6-only-experience-05. [Accessed: 12-Apr-2012]. 

[105] “Networks with IPv6 - One Year Later — RIPE Labs.” [Online]. Available: 

 https://labs.ripe.net/Members/mirjam/networks-with-ipv6-one-year-later. [Accessed: 11-Apr-

 2012]. 

[106] “Interesting Graph - Networks with IPv6 over Time — RIPE Labs.” [Online]. Available: 

 https://labs.ripe.net/Members/emileaben/interesting-graph-networks-with-ipv6-over-time. 

 [Accessed: 11-Apr-2012]. 

[107] “RIPEstat — Internet Measurements and Analysis.” [Online]. Available: 

 https://stat.ripe.net/AS39651. [Accessed: 11-Apr-2012]. 

[108] “För dig som undrar vad som gäller med övergången till IPv6 - Com Hem.” [Online]. 

 Available: http://www.comhem.se/comhem/bredband/bredband-fran-comhem/overg-ng-till-

 ipv6/-/6260/611416/-/index.html. [Accessed: 11-Apr-2012]. 

[109]  T. Bilski, “Network performance issues in IP transition phase,” in Networked Computing and 

 Advanced Information Management (NCM), 2010 Sixth International Conference on, 2010, pp. 

 39 –44. 

[110]  S. Narayan and Y. Shi, “TCP/UDP network performance analysis of windows operating 

 systems with IPv4 and IPv6,” in Signal Processing Systems (ICSPS), 2010 2nd International 

 Conference on, 2010, vol. 2, pp. V2–219 –V2–222. 

[111] “Measuring World IPv6 Day - Comparing IPv4 and IPv6 Performance — RIPE Labs.” 

 [Online]. Available: https://labs.ripe.net/Members/emileaben/measuring-world-ipv6-day-

 comparing-ipv4-and-ipv6-performance. [Accessed: 10-Apr-2012]. 



62 
 

[112] “IPv6 test - IPv6/4 connectivity and speed test.” [Online]. Available: http://ipv6-test.com/. 

 [Accessed: 11-Apr-2012]. 

[113] “tunneling | The Linux Foundation.” [Online]. Available: 

 http://www.linuxfoundation.org/collaborate/workgroups/networking/tunneling. [Accessed: 16-

 Jul-2012]. 

[114] “dhcpd(8): Dynamic Host config Protocol Server - Linux man page.” [Online]. Available: 

 http://linux.die.net/man/8/dhcpd. [Accessed: 07-Sep-2012]. 

[115] “Various DHCPv6 Server and Client Configuration Examples.” [Online]. Available: 

 http://linux.ardynet.com/ipv6setup.php. [Accessed: 16-Jul-2012]. 

[116]  R. Arends, R. Austein, M. Larson, D. Massey, and S. Rose, “DNS Security Introduction and 

 Requirements,” Internet Request for Comments, vol. RFC 4033 (Proposed Standard), Mar. 

 2005. 

[117] “DNSSEC verification with dig « \1.” [Online]. Available: 

 http://backreference.org/2010/11/17/dnssec-verification-with-dig/. [Accessed: 03-Aug-2012]. 

[118] “Bug #1000202 ‘Unable to unmount NFSv3 or NFSv4 mounts when mount...’ : Bugs : ‘util-

 linux’ package : Ubuntu.”[Online]. Available: https://bugs.launchpad.net/ubuntu/+source/util-

 linux/+bug/1000202. [Accessed: 09-Aug-2012]. 

[119] “Chapter 4.  Advanced use of VLC.” [Online]. Available: http://www.videolan.org/doc/play-

 howto/en/ch04.html#id590873. [Accessed: 16-Jul-2012]. 

[120] “Decrypt HTTPS Traffic Using Wireshark And Key File,” segfault.in. [Online]. Available: 

 http://segfault.in/2010/11/decrypt-https-traffic-using-wireshark-and-key-file/. [Accessed: 21-

 Aug-2012]. 

[121] “Postfix Configuration Parameters.” [Online]. Available: 

 http://www.postfix.org/postconf.5.html#mynetworks. [Accessed: 16-Jul-2012]. 

[122] “Configure Packet Filters to Allow ICMP Traffic.” [Online]. Available: 

 http://technet.microsoft.com/en-us/library/ee649189%28v=ws.10%29. [Accessed: 08-Aug-

 2012]. 

[123]  R. Droms, J. Bound, B. Volz, T. Lemon, C. Perkins, and M. Carney, “Dynamic Host 

 Configuration Protocol for IPv6 (DHCPv6),” Internet Request for Comments, vol. RFC 3315 

 (Proposed Standard), Jul. 2003. 

[124] “LAN Ethernet Maximum Rates, Generation, Capturing & Monitoring - NST Wiki.” [Online]. 

 Available: 

 http://wiki.networksecuritytoolkit.org/nstwiki/index.php/LAN_Ethernet_Maximum_Rates,_Ge

 neration,_Capturing_%26_Monitoring. [Accessed: 07-Sep-2012]. 

[125]  F. Folke, “Security for home, small and medium sized enterprises IPv6 networks.” [Online]. 

 Available: http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/120621-

 Fredrik_Folke-with-cover.pdf. [Accessed: 17-Aug-2012]. 

 



63 
 

Appendix A - Configuration files 

A.1 Routing Protocols 

 

interfaces { 

 Ethernet eth1{ 

 address 192.168.1.1/24 

 address 2001:1::1/64 

  } 

 Ethernet eth2{ 

 address 192.168.2.1/24 

address 2001:2::1/64 

} 

} 

protocols { 

 ospf { 

  area0 { 

   network{ 

192.168.1.0/24 

192.168.2.0/24 

          } 

        } 

      } 

 ospfv3 { 

  area 0.0.0.0 { 

interface eth1 

interface eth2 

    } 

parameters { 

router-id 1.1.1.1 

      } 

 redistribute { 

connected {} 

    } 

       } 

 bgp 1 { 

neighbor 2001:2::2 { 

remote-as 2 

} 

network 192.168.5.0/24{} 

parameters { 

router-id 1.1.1.1 

} 

redistribute { 

connected {} 

} 

} 

} 

 

  



64 
 

A.1.1 With RIP and RIPng 

 

Protocols { 

 rip { 

  networks 192.168.1.0/24 

  networks 192.168.2.0/24 

 } 

 ripng { 

  network 2001:1::/64 

  network 2001:2::/64 

 } 

} 

 

A.2 DHCPD 

Location: /etc/dhcp/dhcpd.conf 

Content: 

option domain-name-servers 130.237.72.246, 130.237.72.250, 8.8.8.8, 

8.8.4.4; 

option ip-forwarding off; 

 

default-lease-time 600; 

max-lease-time 7200; 

 

subnet 192.168.1.0 netmask 255.255.255.0 { 

 range 192.168.1.10 192.168.1.50; 

 option routers 192.168.1.1; 

} 

 

A.3 DHCPD6 

Location: /etc/dhcp/dhcpd6.conf 

Content: 

default-lease-time 600; 

max-lease-time 7200; 

log-facility local7; 

option dhcp6.name-servers 2620:0:ccc::2; 

subnet6 2002:53fb:377d:1::/64 { 

        # Range for clients 

        range6 2002:53fb:377d:1::20 2002:53fb:377d:1::50; 

        # Additional options 

        #option domain-name-servers 2620:0:ccc::2; 

        #option dhcp6.domain-search "domain.example"; 

        # Prefix range for delegation to sub-routers 

        #prefix6 2001:db8:0:100:: 2001:db8:0:f00:: /56; 

        # Example for a fixed host address 

        #host specialclient { 



65 
 

        #       host-identifier option dhcp6.client-id 

00:01:00:01:4a:1f:ba:e3:60:b9:1f:01:23:45; 

        #       fixed-address6 2001:db8:0:1::127; 

        #} 

} 

 

A.4 Radvd 

Location: /etc/radvd.conf 

Content: 

interface eth1 {  

        AdvSendAdvert on; 

        MinRtrAdvInterval 3;  

        MaxRtrAdvInterval 10; 

 AdvManagedFlag on; 

 AdvDefaultLifetime 600; 

        prefix 2002:53fb:377d:1::/64 {  

                AdvOnLink on;  

                AdvAutonomous on;  

                AdvRouterAddr on; 

        }; 

}; 

 

A.5 DNS 

A.5.1 1.168.192.in-addr.arpa 

Location: /etc/bind/ 

Content: 

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

   20120531 ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

1 IN PTR gateway.ex.jobb. 

 

A.5.2 ex.jobb.db 

Location: / 

Content: 

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

   20120533 ; Serial 

    604800  ; Refresh 

     86400  ; Retry 



66 
 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

gateway IN A 192.168.1.1 

gateway IN AAAA 2002:53fb:377d:1::1 

ns1 IN A 192.168.1.1 

www IN CNAME gateway 

 

A.5.3 ipv6.ip6.arpa 

Location: /etc/bind/ 

Content: 

$TTL 86400 

@ IN SOA ns1.ex.jobb. daboss.ex.jobb. ( 

         1  ; Serial 

    604800  ; Refresh 

     86400  ; Retry 

   2419200  ; Expire 

     86400 ) ; Negative Cache TTL 

; 

 IN NS ns1.ex.jobb. 

1.0.0.0.0.0.0.0.0.0.0.0.0.0.0.0 IN PTR gateway.ex.jobb. 

 

A.5.4 named.conf 

Location: /etc/bind/ 

Content: 

include "/etc/bind/named.conf.options"; 

include "/etc/bind/named.conf.local"; 

include "/etc/bind/named.conf.default-zones"; 

 

A.5.5 named.conf.local 

Location: /etc/bind/ 

Content: 

zone "ex.jobb" { 

 type master; 

// allow-transfer {192.168.1.21;}; 

// also-notify {192.168.1.21;}; 

 notify no; 

 file "/etc/bind/ex.jobb.db.signed"; 

}; 

 

zone "1.168.192.in-addr.arpa" { 

 type master; 

 notify no; 

 file "/etc/bind/1.168.192.in-addr.arpa"; 

}; 



67 
 

 

zone "1.0.0.0.1.7.2.3.b.f.3.5.2.0.0.2.ip6.arpa" { 

        type master; 

        notify no; 

        file "/etc/bind/ipv6.ip6.arpa"; 

}; 

 

A.5.6 named.conf.options 

Location: /etc/bind/ 

Content: 

options { 

 directory "/var/cache/bind"; 

 

 // If there is a firewall between you and nameservers you want 

 // to talk to, you may need to fix the firewall to allow multiple 

 // ports to talk.  See http://www.kb.cert.org/vuls/id/800113 

 

 // If your ISP provided one or more IP addresses for stable  

 // nameservers, you probably want to use them as forwarders.   

 // Uncomment the following block, and insert the addresses replacing  

 // the all-0's placeholder. 

 

  forwarders { 

   83.255.245.11; 

  2001:4860:4860::8888; 

  }; 

 

 //====================================================================

==== 

 // If BIND logs error messages about the root key being expired, 

 // you will need to update your keys.  See https://www.isc.org/bind-

keys 

 //====================================================================

==== 

 

 

 auth-nxdomain no;    # conform to RFC1035 

 listen-on-v6 { any; }; 

 dnssec-enable yes; 

        dnssec-validation auto; 

        dnssec-lookaside auto; 

        //bindkeys-file "/etc/bind/bind.keys"; 

}; 

 

//include "/etc/bind/bind.keys"; 

 

managed-keys { 

 "ex.jobb." initial-key 257 3 8 

"AwEAAbq8RkyJ+8ie87JjHBDfxAqlKxAzfk9cJT/s0Tk4ljlgC9rSRnu1 

prwwcNBfX1CcwCU3pQoXEIApiO/PiEA4Alq04KjUpEmUYvi7O3t3h8iV 

Zy+9HaFQdqbpTGuAjhu5ojzU1K9MIJKNk4kS95iIQDOc6Sqh4ohAgSat 

Pj/RKt0wCqDkYkzjeDSjSGml2lqcDPaNDaNjJZtEfetFcN1Gk1EZ+Amx 

k5VF1S1bQQFMdMnsP/e0eLPeXAmzfSzdmpUCVRMriPXdkpXQX3FWUgjr 

K1LxaBMSvxwuXo3YMbukpqDe9M0ltawnRCzc0qQz4EKZzuiSm06tBe5T TAaypMBGBx8="; 

}; 

 



68 
 

A.6 vlm.conf 

Location: wherever suitable 

Content: 

new channel1 broadcast enabled 

load playlist.conf 

setup channel1 output #http{mux=asf,dst=:8090/live1} 

 

setup channel1 option http-reconnect 

setup channel1 option no-sout-rtp-sap option no-sout-standard-sap 

option ttl=1 option sout-keep 

 

control channel1 play 

 

 

 

  



69 
 

Appendix B - Hardware 
Server and gateway: 

Processor: Intel Core i5-2500 3.30GHz 

Motherboard: ASUS P8 Z68-V LX 

Chipset: Intel Z68 

RAM: Kingston 2 x 4GB 1600MHz DDR3 

Graphics card: AMD Radeon HD 6870 1GB GDDR5 

Hard drive: Western Digital Caviar Green 1 TB 

NIC: Realtek 8111E Gigabit LAN Controller 

Operating System: Ubuntu Server 12.04 64-bit and Windows Server 2008 R2 Enterprise 

Client 1: 

Brand: HP Compaq 6710b 

Processor: Intel Core 2 Duo T9300 2.5GHz 

Chipset: Mobile Intel® GM965 

RAM: 2GB DDR2 SDRAM, 667-MHz 

Graphics card: Mobile Intel 965 express chipset family 

Hard drive: Fujitsu MHZ2250BH G2 SATA 250GB 5400rpm 

NIC: Broadcom NetLink Gigabit Ethernet 10/100/1000Mbps 

Operating System: Windows Vista Business Service Pack 2 and Xubuntu Linux 

Client 2: 

Brand: Samsung NC10 

Processor: Intel Atom N270 1.60GHz 

RAM:  1GB SO-DIMM DDR2 667 MHz 

Graphics card: GMA 950 128MB 

Hard drive: HM160HI 160GB SATA 5400rpm 

NIC: Marvell Yukon 88e8040 PCI-E Fast Ethernet controller 10/100Mbps 

Operating System: Windows XP Home Edition Service Pack 3 and Ubuntu Desktop 12.04 

Client 3: 

Brand: Acer Aspire 5739G 

Processor: Intel Core 2 Duo P8700 2.53GHz 

RAM: 4GB DDR3 SDRAM 

Graphics card: GeForce GT 240M 

Hard drive: Seagate 500GB 5400rpm SATA-II 

NIC: Atheros AR8131 PCI-E Gigabit Ethernet Controller 

OS: Windows 7 Professional, 64-bit (SP1) 

 

Switch: 

Brand: Zonet ZFS3008 

Ports: 8 x 10/100Mbps 

 

 

  



70 
 

Appendix C - Data collected with PCATTCP 

Expressed in KB/s. 

IPv4 

  

IPv6 

 TCP UDP 

 

TCP UDP 

10556.10 11578.13 

 

10468.41 11432.69 

10252.23 11578.13 

 

10508.71 11416.77 

10329.81 11602.73 

 

9011.59 11400.88 

10408.55 11556.40 

 

8996.74 11385.04 

10233.02 11610.96 

 

8981.94 11424.73 

10310.30 11578.13 

 

8986.87 11385.04 

10336.31 11586.32 

 

8996.74 11424.72 

10323.29 11521.14 

 

10495.23 11408.82 

10323.29 11569.97 

 

10495.24 11392.96 

10303.81 11553.64 

 

8942.72 11400.88 

10297.34 11586.32 

 

10448.38 11432.71 

10297.34 11602.74 

 

10481.82 11432.69 

10252.23 11627.43 

 

10428.43 11385.03 

10329.80 11635.70 

 

9001.68 11377.12 

10310.30 11594.53 

 

8972.10 11385.04 

10329.81 11586.32 

 

8986.87 11400.87 

10355.91 11496.89 

 

8972.11 11377.13 

10355.92 11627.44 

 

10475.10 11432.71 

10233.01 11594.53 

 

10488.51 11385.03 

10271.51 11594.53 

 

9011.59 11369.24 

10401.95 11594.52 

 

10349.38 11392.96 

10349.37 11569.95 

 

8942.72 11424.73 

10336.31 11610.96 

 

10435.07 11377.13 

10375.59 11594.52 

 

8899.00 11377.12 

10336.32 11569.97 

 

8972.11 11392.96 

10316.79 11594.52 

 

10395.35 11400.88 

10369.03 11488.82 

 

10336.32 11392.96 

10290.87 11537.37 

 

10349.38 11392.96 

10428.43 11594.52 

 

10481.82 11392.94 

10355.92 11578.13 

 

9016.55 11392.96 

10388.75 11586.33 

 

9011.59 11392.96 

10316.80 11643.97 

 

8991.80 11424.73 

10362.47 11602.74 

 

10481.80 11408.82 

10277.96 11610.96 

 

10488.51 11385.04 

10355.91 11643.97 

 

10501.97 11424.72 

10271.51 11643.97 

 

10475.10 11424.72 

10362.46 11652.25 

 

10415.17 11424.73 

10355.92 11610.95 

 

10481.80 11392.96 

10233.01 11619.19 

 

8932.97 11385.04 

10323.30 11610.96 

 

10475.10 11377.12 

10329.81 11619.20 

 

10461.73 11392.96 

10355.91 11594.53 

 

8962.29 11377.12 

10388.75 11610.95 

 

10475.10 11432.71 

10382.17 11635.70 

 

9026.48 11392.94 

10329.80 11660.53 

 

8967.19 11385.04 

10369.03 11610.96 

 

9036.44 11392.96 

10303.82 11602.74 

 

10488.51 11392.69 

10277.96 11586.33 

 

10508.70 11400.88 

10375.60 11635.70 

 

10461.73 11385.03 

10323.29 11660.53 

 

8972.11 11424.73 



71 
 

Appendix D – Mathematica applied to PCATTCP measurements 
Performance test IPv4 TCP 

 

x1={10556.10,10252.23,10329.81,10408.55,10233.02,10310.30,10336.31,10323.29,10323.29

,10303.81,10297.34,10297.34,10252.23,10329.80,10310.30,10329.81,10355.91,10355.92,102

33.01,10271.51,10401.95,10349.37,10336.31,10375.59,10336.32,10316.79,10369.03,10290.8

7,10428.43,10355.92,10388.75,10316.80,10362.47,10277.96,10355.91,10271.51,10362.46,10

355.92,10233.01,10323.30,10329.81,10355.91,10388.75,10382.17,10329.80,10369.03,10303.

82,10277.96,10375.60,10323.29}; 

 

n=50; 

 

Calculating the estimated expected value for the IPv4 TCP test. 


   
 

 
         

 

   



 

10333.1 

 

Calculating the estimated standard deviation for the IPv4 TCP test. 

 

    
 

   
                

 

   

  

 

56.0711 

 

ipv4tcp=Plot[PDF[NormalDistribution[ 1,  1], t], {t, 9500, 11000}, PlotRange -> All] 

 
 

  

9600 9800 10000 10200 10400 10600 10800 11000

0.001

0.002

0.003

0.004

0.005

0.006

0.007



72 
 

Performance test IPv4 UDP 

 

x2={11578.13,11578.13,11602.73,11556.40,11610.96,11578.13,11586.32,11521.14,11569.97

,11553.64,11586.32,11602.74,11627.43,11635.70,11594.53,11586.32,11496.89,11627.44,115

94.53,11594.53,11594.52,11569.95,11610.96,11594.52,11569.97,11594.52,11488.82,11537.3

7,11594.52,11578.13,11586.33,11643.97,11602.74,11610.96,11643.97,11643.97,11652.25,11

610.95,11619.19,11610.96,11619.20,11594.53,11610.95,11635.70,11660.53,11610.96,11602.

74,11586.33,11635.70,11660.53}; 

 

n=50; 

 

Calculating the estimated expected value for the IPv4 UDP test. 
 

   
 

 
         

 

   

 

 

11597.2 

 

Calculating the estimated standard deviation for the IPv4 UDP test. 


    
 

   
                

 

   

  

 

36.5246 

 

ipv4udp=Plot[PDF[NormalDistribution[ 2,  2], t], {t, 11000,12000}, PlotRange -> All] 

 
 

  

11200 11400 11600 11800 12000

0.002

0.004

0.006

0.008

0.010



73 
 

Performance test IPv6 TCP 

 

x3={10468.41,10508.71,9011.59,8996.74,8981.94,8986.87,8996.74,10495.23,10495.24,8942.

72,10448.38,10481.82,10428.43,9001.68,8972.10,8986.87,8972.11,10475.10,10488.51,9011.

59,10349.38,8942.72,10435.07,8899.00,8972.11,10395.35,10336.32,10349.38,10481.82,9016

.55,9011.59,8991.80,10481.80,10488.51,10501.97,10475.10,10415.17,10481.80,8932.97,104

75.10,10461.73,8962.29,10475.10,9026.48,8967.19,9036.44,10488.51,10508.70,10461.73,89

72.11}; 

 

n=50; 

 

Calculating the estimated expected value for the IPv6 TCP test. 


   
 

 
         

 

   

 

 

9778.89 

 

Calculating the estimated standard deviation for the IPv6 TCP test. 


    
 

   
                

 

   

  

 

743.88 

 

ipv6tcp=Plot[PDF[NormalDistribution[ 3,  3], t], {t, 7000,12000}, PlotRange -> 

All,PlotStyle Red] 

 
 

  

8000 9000 10000 11000 12000

0.0001

0.0002

0.0003

0.0004

0.0005



74 
 

Performance test IPv6 UDP 

 

x4={11432.69,11416.77,11400.88,11385.04,11424.73,11385.04,11424.72,11408.82,11392.96

,11400.88,11432.71,11432.69,11385.03,11377.12,11385.04,11400.87,11377.13,11432.71,113

85.03,11369.24,11392.96,11424.73,11377.13,11377.12,11392.96,11400.88,11392.96,11392.9

6,11392.94,11392.96,11392.96,11424.73,11408.82,11385.04,11424.72,11424.72,11424.73,11

392.96,11385.04,11377.12,11392.96,11377.12,11432.71,11392.94,11385.04,11392.96,11392.

69,11400.88,11385.03,11424.73}; 

 

Calculating the estimated expected value for the IPv6 UDP test. 


   
 

 
         

 

   

 

 

11400.1 

 

Calculating the estimated standard deviation for the IPv6 UDP test. 


    
 

   
                

 

   

  

 

18.8595 

 

ipv6udp=Plot[PDF[NormalDistribution[ 4,  4], t], {t, 11000,11800}, PlotRange -> 

All,PlotStyle Red] 

 
  

11200 11400 11600 11800

0.005

0.010

0.015

0.020



75 
 

The IPv6 UDP and the IPv4 UDP distribution plotted. 

 

Show[ipv6udp,ipv4udp] 

 
  

11200 11400 11600 11800 12000

0.005

0.010

0.015

0.020



76 
 

The IPv6 TCP and the IPv4 TCP distribution plotted. 

 
Show[ipv4tcp,ipv6tcp] 

 

  

7000 8000 9000 10000 11000 12000

0.001

0.002

0.003

0.004

0.005

0.006

0.007



77 
 

Appendix E - Data collected with iperf 
Expressed in KB/s. 

IPv4 

  

IPv6 

 TCP UDP 

 

TCP UDP 

11494 11679 

 

11329 10870 

11493 11680 

 

11334 10875 

11492 11681 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10864 

11492 11682 

 

11334 10875 

11493 11681 

 

11334 10875 

11493 11681 

 

11334 10875 

11493 11671 

 

11334 10875 

11492 11666 

 

11334 10875 

11493 11681 

 

11334 10875 

11492 11652 

 

11334 10875 

11493 11682 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10872 

11493 11682 

 

11334 10875 

11492 11683 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11492 11680 

 

11334 10875 

11493 11682 

 

11334 10875 

11492 11682 

 

11334 10875 

11492 11672 

 

11334 10864 

11493 11663 

 

11334 10875 

11492 11678 

 

11334 10875 

11493 11668 

 

11334 10875 

11493 11683 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10871 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10843 

11493 11682 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11666 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10875 

11493 11683 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10868 

11493 11682 

 

11334 10875 

11493 11682 

 

11334 10873 

11493 11670 

 

11334 10875 

11492 11682 

 

11334 10875 

11492 11682 

 

11334 10875 

11493 11682 

 

11334 10875 



78 
 

Appendix F – Mathematica analysis of iperf measurements 
Speed test with iperf with TCP over IPv4. 

 

x1={11494,11493,11492,11493,11493,11492,11493,11493,11493,11492,11493,11492,11493,

11492,11493,11493,11492,11493,11493,11493,11492,11493,11492,11492,11493,11492,1149

3,11493,11492,11493,11493,11493,11492,11493,11493,11492,11493,11493,11493,11492,11

493,11493,11492,11493,11493,11493,11493,11492,11492,11493}; 

 

n=50; 

 

Calculating the estimated expected value for TCP over IPv4. 

 

   
 

 
         

 

   

    

 

11492.7 

 

Calculating the estimated standard deviation for TCP over IPv4. 

 

    
 

   
                

 

   

  

 

0.512696 

 

ipv4tcp=Plot[PDF[NormalDistribution[ 1,  1], t], {t, 11470, 11500}, PlotRange -> All] 

 
 

  

11475 11480 11485 11490 11495 11500

0.2

0.4

0.6

0.8



79 
 

Speed test with iperf with UDP over IPv4. 

 

x2={11679,11680,11681,11682,11682,11682,11681,11681,11671,11666,11681,11652,11682,

11682,11682,11682,11683,11682,11682,11682,11680,11682,11682,11672,11663,11678,1166

8,11683,11682,11682,11682,11682,11682,11682,11682,11682,11666,11682,11682,11682,11

682,11683,11682,11682,11682,11682,11670,11682,11682,11682}; 

 

n=50; 

 

Calculating the estimated expected value for UDP over IPv4. 

 

   
 

 
         

 

   

    

 

11679.2 

 

Calculating the estimated standard deviation for UDP over IPv4. 

 

 

    
 

   
                

 

   

  

 

6.35995 

 

ipv4udp=Plot[PDF[NormalDistribution[ 2,  2], t], {t, 11600,11800}, PlotRange -> All] 

 
  

11650 11700 11750 11800

0.01

0.02

0.03

0.04

0.05

0.06



80 
 

Speed test with iperf with TCP over IPv6. 

 

x3={11329,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,

11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,1133

4,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11334,11

334,11334,11334,11334,11334,11334,11334,11334,11334,11334}; 

 

n=50; 

 

Calculating the estimated expected value for TCP over IPv6. 

 

   
 

 
         

 

   

    

 

11333.9 

 

Calculating the estimated standard deviation for TCP over IPv6. 

 

 

    
 

   
                

 

   

  

 

0.707107 

 

ipv6tcp=Plot[PDF[NormalDistribution[ 3,  3], t], {t, 11300,11350}, PlotRange -> 

All,PlotStyle->Red] 

 
  

11310 11320 11330 11340 11350

0.1

0.2

0.3

0.4

0.5



81 
 

Speed test with iperf with UDP over IPv6. 

 

x4={10870,10875,10875,10875,10864,10875,10875,10875,10875,10875,10875,10875,10875,

10875,10872,10875,10875,10875,10875,10875,10875,10875,10875,10864,10875,10875,1087

5,10875,10875,10875,10875,10871,10875,10843,10875,10875,10875,10875,10875,10875,10

875,10875,10875,10868,10875,10873,10875,10875,10875,10875}; 

 

n=50; 

 

Calculating the estimated expected value for UDP over IPv6. 

 

   
 

 
         

 

   

    

 

10873.5 

 

Calculating the estimated standard deviation for UDP over IPv6. 

 

 

    
 

   
                

 

   

  

 

5.06388 

 

ipv6udp=Plot[PDF[NormalDistribution[ 4,  4], t], {t, 10800,10900}, PlotRange -> 

All,PlotStyle->Red] 

 
  

10820 10840 10860 10880 10900

0.02

0.04

0.06

0.08



82 
 

The IPv6 UDP and the IPv4 UDP distribution plotted. 

 

Show[ipv6udp,ipv4udp] 

 
 

The IPv6 TCP and the IPv4 TCP distribution plotted. 

 

Show[ipv4tcp,ipv6tcp] 

 

 

 

  

11000 11200 11400 11600 11800

0.02

0.04

0.06

0.08

11300 11350 11400 11450 11500

0.2

0.4

0.6

0.8



 

 
www.freebsd.org www.glesys.se www.isc.org www.teddy.ch www.xbox.com 

6to4 relay (192.88.99.1) 

 
PING (ms) PING6 (ms) Traceroute Traceroute6 PING (ms) PING6 (ms) Traceroute Traceroute6 PING (ms) PING6 (ms) Traceroute Traceroute6 PING (ms) PING6 (ms) Traceroute Traceroute6 PING (ms) PING6 (ms) Traceroute Traceroute6 PING (ms) Traceroute 

"2012-05-09  12:02:00" 178.970 187.288 13 14 24.670 32.528 11 12 184.728 188.906 13 12 37.839 57.016 17 13 8.592 56.536 8 5 19.753 5 

"2012-05-09  12:21:00" 175.242 185.807 13 14 25.254 34.907 11 12 183.568 189.683 13 12 37.828 56.822 17 13 9.731 11.177 7 5 9.406 5 

"2012-05-09  13:00:00" 175.150 188.251 13 14 21.125 33.429 11 12 184.763 189.679 13 12 39.708 68.798 17 13 12.366 10.007 8 5 22.788 5 

"2012-05-09  14:00:00" 176.942 185.095 14 14 20.280 33.112 11 12 183.028 182.683 13 12 37.141 68.800 17 13 9.256 37.008 7 5 9.835 5 

"2012-05-09  15:00:00" 178.645 187.931 14 14 25.636 34.343 11 12 184.372 186.896 13 12 39.016 70.825 17 13 9.530 9.816 7 5 10.320 5 

"2012-05-10  11:12:00" 179.375 185.334 13 14 23.538 35.144 11 12 184.599 185.276 13 12 38.612 69.124 17 13 11.392 10.885 8 5 9.212 5 

"2012-05-10  12:00:00" 180.592 187.307 13 14 23.398 35.533 11 12 184.010 185.313 13 12 38.768 70.219 17 13 9.856 11.772 7 5 10.559 5 

"2012-05-10  13:00:00" 178.494 185.953 13 14 22.640 34.938 11 12 190.308 187.518 13 12 38.668 72.363 17 13 10.941 11.427 7 5 12.455 5 

"2012-05-10  14:00:00" 180.467 189.027 13 14 24.263 36.646 11 12 189.451 186.946 13 12 37.710 69.743 17 13 12.015 93.735 7 5 12.269 9 

"2012-05-10  15:00:00" 184.444 189.174 13 14 25.116 37.970 11 12 189.275 190.401 13 12 41.121 70608 17 13 12.623 106.492 8 5 12.980 5 

"2012-05-11  11:02:00" 175.326 184.360 13 14 22.671 34.068 11 12 182.665 184.420 13 12 39.590 70.860 17 13 8.839 11.486 8 5 16.171 5 

"2012-05-11  12:00:00" 174.922 186.898 13 14 22.614 34.982 11 12 184.293 185.479 13 12 39.034 69.758 17 13 10.701 37.351 7 5 8.931 5 

"2012-05-11  13:00:00" 175.699 192.794 13 14 22.958 34.426 11 12 186.119 185.769 13 12 40.012 69.019 17 13 9.130 97.801 7 5 30.887 5 

"2012-05-11  14:00:00" 177.688 188.278 13 14 25.626 35.452 11 12 185.531 192.654 13 12 41.421 75.447 17 13 12.943 13.250 8 5 10.719 5 

"2012-05-11  15:00:00" 175.628 186.462 13 14 24.418 34.736 11 12 187.168 186.386 13 12 38.189 57.984 17 13 12.399 67.070 8 5 29.368 5 

"2012-05-14  11:20:00" 180.332 193.056 13 14 22.375 37.033 11 12 184.143 189.488 13 12 42.961 71.843 17 13 10.450 13.152 8 5 9.027 5 

"2012-05-14  12:46:00" 181.854 192.121 13 14 22.851 38.303 11 12 185.249 190.406 13 12 39.458 68.912 17 13 9.908 41.198 8 5 12.328 5 

"2012-05-14  13:00:00" 176.183 190.955 11 14 22.261 37.623 11 12 184.684 190.079 13 12 37.854 69.485 17 13 9.646 10.891 7 5 29.132 5 

"2012-05-14  14:00:00" 175.899 193.404 12 14 25.796 37.283 11 12 184.363 191.000 13 12 39.288 70.507 17 13 9.678 10.121 8 5 9.041 5 

"2012-05-14  15:00:00" 176.311 192.980 13 14 24.276 38.781 11 12 186.350 191.157 13 12 37.644 70.969 17 13 12.695 9.774 8 5 11.069 5 

"2012-05-15  12:13:00" 175.751 191.037 13 14 22.018 35.609 11 12 183.614 189.644 13 12 37.288 69.188 17 13 10.707 13.546 7 5 9.127 5 

"2012-05-15  13:00:00" 176.088 191.106 13 14 23.322 38.217 11 12 189.194 189.216 13 12 37.680 70.010 17 13 9.785 10.417 7 5 9.768 5 
"2012-05-15  14:00:00" 

175.815 192.791 13 14 23.817 38.461 11 12 190.959 189.272 13 12 39.148 71.530 17 13 9.093 10.483 8 5 8.693 5 

"2012-05-15  15:00:00" 183.132 193.443 13 14 29.175 39.297 11 12 189.660 190.724 13 12 39.934 69.416 17 13 8.805 37.165 8 5 10.247 5 

"2012-05-16  10:46:00" 177.144 191.148 13 14 22.129 36.025 11 12 187.963 190.066 13 12 38.151 70.637 17 13 9.205 10.626 7 5 11.782 5 

"2012-05-16  11:00:00" 177.392 190.351 13 14 22.027 41.045 11 12 189.464 190.155 13 12 37.925 69.955 17 13 9.574 43.419 8 5 9.145 5 

"2012-05-16  12:00:00" 178.446 191.440 13 14 24.186 36.452 11 12 189.353 190.046 13 12 40.244 70.848 17 13 12.776 13.127 7 5 10.212 5 

"2012-05-16  13:00:00" 177.150 192.887 13 14 22.839 38.857 11 12 190.131 189.661 13 12 37.485 68.746 17 13 9.337 11.574 7 5 10.577 5 

"2012-05-16  14:00:00" 177.704 190.464 13 14 23.232 36.037 11 12 188.743 190.893 13 12 38.746 70.118 17 13 8.911 9.970 8 5 10.935 5 

"2012-05-16  15:00:00" 181.149 190.215 13 14 26.401 40.098 11 12 189.670 189.913 13 12 39.858 69.851 17 13 10.032 37.691 7 5 9.454 5 

 

 

 

 

A
p

p
e

n
d

ix
 G

 –
 P

in
g

 t
e

st
 

8
3

 

http://www.freebsd.org/
http://www.glesys.se/
http://www.isc.org/
http://www.teddy.ch/
http://www.xbox.com/


 

Expressed in seconds 

 

IPv4 Apache 2.2.20 

 

IPv6 

   

IPv4 IIS 7.5 

  

IPv6 

  GET 200 OK Difference 

 

GET 200 OK Difference 

 

GET 200 OK Difference 

 

GET 200 OK Difference 

1.799791 2.054842 0.255051 

 

4.177618 4.405910 0.228292 

 

0.024256 0.316205 0.291949 

 

4.177618 4.405910 0.228292 

0.015326 0.248507 0.233181 

 

0.247153 0.470831 0.223678 

 

0.033858 0.352257 0.318399 

 

0.247153 0.470831 0.223678 

1.086806 1.308566 0.221760 

 

0.228884 0.461123 0.232239 

 

0.017170 0.243508 0.226338 

 

0.228884 0.461123 0.232239 

0.015998 0.241060 0.225062 

 

0.597767 0.820580 0.222813 

 

0.019225 0.242280 0.223055 

 

0.597767 0.820580 0.222813 

0.018645 0.264008 0.245363 

 

2.557280 2.777084 0.219804 

 

0.028025 0.239899 0.211874 

 

2.555728 2.777084 0.221356 

0.577569 0.797521 0.219952 

 

0.015666 0.239809 0.224143 

 

0.016376 0.222884 0.206508 

 

0.015666 0.239809 0.224143 

0.990334 1.239562 0.249228 

 

0.015339 0.249713 0.234374 

 

0.791343 1.004756 0.213413 

 

0.015339 0.249713 0.234374 

0.015261 0.247970 0.232709 

 

2.700591 2.930594 0.230003 

 

0.027185 0.251618 0.224433 

 

2.700591 2.930594 0.230003 

0.017561 0.247601 0.230040 

 

1.544999 1.812002 0.267003 

 

0.018059 0.231906 0.213847 

 

1.544999 1.812002 0.267003 

0.014542 0.234200 0.219658 

 

0.881586 1.113496 0.231910 

 

0.016970 0.235927 0.218957 

 

0.881586 1.113496 0.231910 

0.674533 0.896927 0.222394 

 

0.015585 0.239259 0.223674 

 

0.016076 0.259675 0.243599 

 

0.015585 0.239259 0.223674 

0.014076 0.233567 0.219491 

 

0.372334 0.625076 0.252742 

 

0.017395 0.241786 0.224391 

 

0.372334 0.625076 0.252742 

0.016230 0.238724 0.222494 

 

0.014523 0.282975 0.268452 

 

0.016670 0.234598 0.217928 

 

0.014523 0.282975 0.268452 

0.015439 0.239381 0.223942 

 

0.014040 0.239201 0.225161 

 

0.016407 0.235114 0.218707 

 

0.014040 0.239201 0.225161 

0.385996 0.630266 0.244270 

 

0.016240 0.260927 0.244687 

 

0.016269 0.235709 0.219440 

 

0.016240 0.260927 0.244687 

0.014049 0.308813 0.294764 

 

0.189437 0.443555 0.254118 

 

0.017487 0.244829 0.227342 

 

0.189437 0.443555 0.254118 

0.015067 0.237829 0.222762 

 

0.013871 0.285535 0.271664 

 

0.017345 0.271296 0.253951 

 

0.013871 0.285535 0.271664 

0.017423 0.244907 0.227484 

 

0.014177 0.239248 0.225071 

 

0.558498 0.786745 0.228247 

 

0.014177 0.239248 0.225071 

0.017929 0.237925 0.219996 

 

0.036453 0.278160 0.241707 

 

0.873272 1.118925 0.245653 

 

0.036453 0.278160 0.241707 

0.016159 0.251865 0.235706 

 

2.385795 2.609579 0.223784 

 

0.654045 0.874232 0.220187 

 

2.385795 2.609579 0.223784 

               

               

 

Mean: 0.2332654 

  

Mean: 0.237266 

  

Mean: 0.232411 

  

Mean: 0.237344 

A
p

p
e

n
d

ix
 H

 –
 W

e
b

 s
e

rv
e

r 
p

e
rf

o
rm

a
n

ce
 t

e
st

 



85 
 

Appendix I – Mathematica calculations of web server test 
GET over IPv4 time differences. Apache 2.2.20 

 

x1={0.255051,0.233181,0.22176,0.225062,0.245363,0.219952,0.249228,0.232709,0.23004,0.

219658,0.222394,0.219491,0.222494,0.223942,0.24427,0.294764,0.222762,0.227484,0.2199

96,0.235706}; 

 

n=20; 

 

 
Calculating estimated expected value for IPv4 on Apache. 

 

   
 

 
         

 

   

 

 

0.233265 

 
Calculating estimated standard deviation for IPv4 on Apache. 
 

    
 

   
                

 

   

  

 

0.0180473 

 

ipv4apache=Plot[PDF[NormalDistribution[ 1,  1], t],{t,0,.5},PlotRange -> All,PlotStyle-

>{Blue}] 

 
 

  

0.1 0.2 0.3 0.4 0.5

5

10

15

20



86 
 

GET over IPv6 time differences. Apache 2.2.20 

 

x2={0.228292,0.223678,0.232239,0.222813,0.219804,0.224143,0.234374,0.230003,0.267003

,0.23191,0.223674,0.252742,0.268452,0.225161,0.244687,0.254118,0.271664,0.225071,0.24

1707,0.223784}; 

 

n=20; 

 
Calculating estimated expected value for IPv6 on Apache. 
 

   
 

 
         

 

   

 

 

0.237266 

 
Calculating estimated standard deviation for IPv6 on Apache. 
 

 

    
 

   
                

 

   

  

 

0.016806 

 

ipv6apache=Plot[PDF[NormalDistribution[ 2,  2], t],{t,0,.5},PlotRange -> All,PlotStyle-

>{Red}] 

 
  

0.1 0.2 0.3 0.4 0.5

5

10

15

20



87 
 

Get a picture over IPv4 time differences. IIS 

 

x3={0.291949,0.318399,0.226338,0.223055,0.211874,0.206508,0.213413,0.224433,0.213847

,0.218957,0.243599,0.224391,0.217928,0.218707,0.21944,0.227342,0.253951,0.228247,0.24

5653,0.220187}; 

 

n=20; 

 
Calculating estimated expected value for IPv4 on IIS. 
 

   
 

 
         

 

   

 

 

0.232411 

 
Calculating estimated standard deviation for IPv4 on IIS. 
 

    
 

   
                

 

   

  

 

0.0278087 

 

ipv4iis=Plot[PDF[NormalDistribution[ 3,  3], t],{t,0,.5},PlotRange -> All,PlotStyle-

>{Blue,Dashed}] 

 
  

0.1 0.2 0.3 0.4 0.5

2

4

6

8

10

12

14



88 
 

Get a picture over IPv6 time differences. IIS 

 

x4={0.228292,0.223678,0.232239,0.222813,0.221356,0.224143,0.234374,0.230003,0.267003

,0.23191,0.223674,0.252742,0.268452,0.225161,0.244687,0.254118,0.271664,0.225071,0.24

1707,0.223784}; 

 

n=20; 

 
Calculating estimated expected value for IPv4 on IIS. 
 

   
 

 
         

 

   

 

 

0.237344 

 
Calculating estimated standard deviation for IPv4 on IIS. 
 

    
 

   
                

 

   

  

 

0.0167245 

 

ipv6iis=Plot[PDF[NormalDistribution[ 4,  4], t],{t,0,.5},PlotRange -> All,PlotStyle-

>{Red,Dashed}] 

 
 

 

 

 

 

 

 

0.1 0.2 0.3 0.4 0.5

5

10

15

20



 
 

 
Trace to xbox.com: 

1  gateway.ex.jobb (2002:53fb:3271:1::1)  0.587 ms  0.335 ms  0.388 ms  0.304 ms  0.284 ms 
 2  * * * * * 
 3  * * * * * 
 4  * * * * * 
 5  10gigabitethernet1-4.core1.lon1.he.net (2001:470:0:3f::1)  43.903 ms  41.225 ms  48.689 ms  50.121 ms * 
 6  10gigabitethernet7-4.core1.nyc4.he.net (2001:470:0:128::1)  109.118 ms  113.199 ms  108.019 ms  116.575 ms  109.185 ms 
 7  10gigabitethernet2-3.core1.ash1.he.net (2001:470:0:36::1)  121.7 ms  127.171 ms  121.363 ms  124.936 ms  129.945 ms 
 8  dcp-brdr-04-xe-0-2-0.qwest.com (2001:504:0:2::209:1)  119.125 ms  120.511 ms  130.43 ms  120.142 ms  129.022 ms 
 9  2001:428::205:171:203:158 (2001:428::205:171:203:158)  118.687 ms  215.261 ms  119.297 ms  119.73 ms  120.996 ms 
10  2001:428:2402:107::4179:d123 (2001:428:2402:107::4179:d123)  118.615 ms  119.72 ms  120.149 ms  121.556 ms  120.059 ms 
 

 

Trace to freebsd.org: 

 

1  gateway.ex.jobb (2002:53fb:3271:1::1)  0.269 ms  0.289 ms  0.396 ms  0.399 ms  0.4 ms 
 2  * * * * * 
 3  * * * * * 
 4  * * * * * 
 5  * 10gigabitethernet1-4.core1.lon1.he.net (2001:470:0:3f::1)  54.117 ms *  48.145 ms * 
 6  10gigabitethernet7-4.core1.nyc4.he.net (2001:470:0:128::1)  121.7 ms  109.54 ms  114.358 ms  109.668 ms  115.316 ms 
 7  10gigabitethernet2-3.core1.ash1.he.net (2001:470:0:36::1)  140.548 ms  124.455 ms  124.679 ms  126.356 ms  124.431 ms 
 8  10gigabitethernet1-2.core1.atl1.he.net (2001:470:0:1b5::2)  141.24 ms  132.713 ms  141.935 ms  133.146 ms  140.602 ms 
 9  isc.gige-g2-1.core1.atl1.he.net (2001:470:0:ce::2)  187.227 ms  187.899 ms  187.566 ms  188.804 ms  188.99 ms 
10  iana.r1.atl1.isc.org (2001:500:61:6::1)  188.596 ms  198.803 ms  187.909 ms  192.637 ms  188.393 ms 
11  int-0-5-0-1.r1.pao1.isc.org (2001:4f8:0:1::49:1)  193.359 ms  198.506 ms  192.712 ms  191.555 ms  198.553 ms 
12  2001:4f8:1:13::84 (2001:4f8:1:13::84)  189.147 ms  189.384 ms  197.948 ms  190.261 ms  189.795 ms 
13  ipv6gw-isc.freebsd.org (2001:4f8:0:1::3e:2)  190.707 ms  192.166 ms  190.753 ms  191.872 ms  189.978 ms 
14  red.freebsd.org (2001:4f8:fff6::22)  190.207 ms  190.592 ms  191.035 ms  191.407 ms  191.406 m

8
9 

A
p

p
e

n
d

ix
 J

 –
 T

ra
ce

 t
e

st
 



90 
 

Appendix K – Data collected from DHCP leases tests 
 

 

 

 

 

 

 

 

 

 

 

 

  

Many entries 
   

Few entries 
  Discover Offer Difference 

 
Discover Offer Difference 

14.760184 15.762160 1.001976 
 

2.08947 3.09163 1.00216 

0.000000 1.002070 1.002070 
 

5.96602 6.96797 1.00195 

0.000000 1.002524 1.002524 
 

2.18639 3.18837 1.00199 

0.000000 1.002069 1.002069 
 

0.00000 1.00174 1.00174 

0.000000 1.002080 1.002080 
 

3.93013 4.93191 1.00178 

0.000000 1.002041 1.002041 
 

2.12814 3.13013 1.00199 

0.000000 1.002037 1.002037 
 

13.78850 14.79050 1.00201 

0.000000 1.002098 1.002098 
 

8.57196 9.57313 1.00117 

0.000000 1.002063 1.002063 
 

9.02820 10.03020 1.00200 

0.000000 1.002018 1.002018 
 

9.76295 10.76440 1.00141 



91 
 

Appendix L – Mathematica calculations of DHCP leases tests 
DHCP leases test. 

 

few={1.002161,1.001947,1.001987,1.001738,1.001781,1.001986,1.002012,1.001171,1.00199

8,1.001405}; 

n =10; 

 

Calculating the estimated expected value for few entries. 

 

     
 

 
          

 

   

 

 

1.00182 

 

Calculating the estimated standard deviation for few entries. 


      
 

   
                   

 

   

  

 

0.000308771 

 

many={1.001976,1.00207,1.002524,1.002069,1.00208,1.002041,1.002037,1.002098,1.00206

3,1.002018}; 

 

Calculating the estimated expected value for many entries. 


      
 

 
           

 

   

 

 

1.0021 

 

Calculating the estimated standard deviation for many entries. 


       
 

   
                     

 

   

  

 

0.000153804 

  



92 
 

Appendix M – Calculations of the theoretical speed limits for IPv6 
MTU: 1500 

 

Ethernet frame plus MAC preamble, plus Start Frame Delimiter, plus CRC, plus inter-frame gap are 

1538 bytes. 

Ethernet frame = 1514 bytes 

MAC preamble = 7 bytes 

Start Frame Delimiter = 1 byte 

CRC = 4 bytes 

inter-frame gap = 12 bytes 

1514 + 7 + 1 + 4 + 12 = 1538 

 

(100Mb/second) / ((8 bits) * (1538 bytes/frame)) = 8,127 frames/second 

Max data per frame over IPv6 with TCP and time stamps: 

1538 - 40 - 32 - 38 = 1428 

∴ 

8127 * 1428 = 11,605,356 bytes/second 

 

Max data per frame over IPv6 with TCP without time stamps: 

1538 - 40 - 20 - 38 = 1440 

∴ 

8127 * 1440 = 11,702,880 bytes/second 

 

Max data per frame over IPv6 with UDP: 

1538 - 40 - 8 - 38 = 1452 

∴ 

8127 * 1452 = 11,800,404 bytes/second 



www.kth.se

TRITA-ICT-EX-2012:191


