
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

M U H A M M A D  F A H D  A Z E E M I

A Parallel Discrete Event Simulator

 HydraNetSim

K T H I n f o r m a t i o n  a n d

C o m m u n i c a t i o n  T e c h n o l o g y



 

HydraNetSim: a Parallel 

Discrete Event Simulator 
 

Muhammad Fahd Azeemi 
mfahad@kth.se 

 

 

 

 

 
Master’s Thesis 

7/4/2012 

 

 

 
 

 

Examiner  : Professor G. Q. Maguire Jr. 

Supervisors: Professor G. Q. Maguire Jr. 

  and 

  Christof Leng 

 

 

 

 

 

 

School of Information and Communication Technology 

KTH Royal Institute of Technology 

Stockholm, Sweden 





  

i  
 

 

Abstract 

 Discrete event simulation is the most suitable type of simulation for analyzing a 

complex system where changes happen at discrete time instants. Discrete event simulation is 

a major experimental methodology in several scientific and engineering domains. 

Unfortunately, a conventional discrete event simulator cannot meet with increasing demands 

of computational or the structural complexities of modern systems such as peer-to-peer (P2P) 

systems; therefore parallel discrete event simulation has been a focus of researchers for 

several decades. 

 Unfortunately, no simulator is regarded as a standard which can satisfy the demands 

of all kinds of applications. Thus while given a simulator yields good performance for a 

specific kind of applications, it may failed to be efficient for other kinds of applications. 

Furthermore, although technological advancements have been made in the multi-core 

computing hardware, none of the mainstream P2P discrete event simulators is designed to 

support parallel simulation that exploits multi-core architectures. The proposed HydraNetSim 

parallel discrete event simulator (PDES) is a step toward addressing these issues. 

 Developing a simulator which can support very large numbers of nodes to realize a 

massive P2P system, and can also execute in parallel is a non-trivial task. The literature 

review in this thesis gives a broad overview of prevailing approaches to dealing with the 

tricky problems of simulating a massive, large, and rapidly changing system, and provides a 

foundation for adopting a suitable architecture for developing a PDES.  

 HydraNetSim is a discrete event simulator which allows parallel simulation and 

exploits the capabilities of parallelization of modern computing hardware. It is based on a 

novel master/slave paradigm. It divides the simulation model into a number of specific slaves 

(a cluster of processes) considering the number of cores provided by the underlying 

computing hardware. Each slave can be assigned to a specific CPU on a different core. 

Synchronization of the slaves is achieved by proposing a variant of the classic Null-Message 

Algorithm (NMA) with a focus on keeping the synchronization overhead as low as possible. 

Furthermore, HydraNetSim provides log information for debugging purposes and introduces 

a new mechanism of gathering and writing simulation results to a database. 

 The experimental results show that the sequential counterpart of HydraNetSim 

(SDES) takes 41.6% more time than HydraNetSim-2Slave and 23.6% than 

HydraNetSim-3Slave. HydraNetSim-2Slave is 1.42 times faster, consumes 1.18 times more 

memory, and supports 2.02 times more nodes than a sequential discrete event simulator 

(SDES). Whereas, HydraNetSim-3Slave executes 1.24 times faster, consumes 2.08 times 

more memory, and supports 3.04 times more nodes than SDES. The scaling factor of 

HydraNetSim is ⌈(β-1)*102.04%⌉ of the maximum numbered of nodes supported by SDES; 

where β is the number of slaves. 

  



 

  



  

iii  
 

Sammanfattning 

 Diskret händelsesimulering är den mest passande typen av simulering för att analysera 

ett komplext system där förändringar sker i diskreta tidpunkter. Diskret händelsesimulering är 

en stor experimentell metod i flera vetenskapliga och tekniska områden. Tyvärr kan en 

konventionell diskret händelse simulator uppfyller inte med ökande krav på 

beräkningsprogram eller strukturella komplexiteten av moderna system som peer-to-peer 

(P2P) system, och därför parallellt diskret händelse simulering har varit ett fokus för forskare 

under flera årtionde. 

 Tyvärr ingen simulator ansåg som en standard som kan uppfylla kraven på alla typer 

av applikationer. Så samtidigt få en simulator ger bra prestanda för en specifik typ av 

applikationer kan det inte vara effektivt för andra typer av applikationer. Även om tekniska 

framsteget har gjorts i multi-core datorhårdvara, är ingen av de vanliga P2P händelsestyrd 

simulatorer för att stödja parallella simulering som utnyttjar flera kärnor arkitekturer. Den 

föreslagna HydraNetSim parallella diskret händelse simulator (PDES) är ett steg mot att 

fokusera på dessa frågor. 

 Utveckla en simulator som kan stödja ett mycket stort antal noder för att realisera en 

massiv P2P-system, och kan även utföra parallellt är en icke-trivial uppdrag. Litteraturstudien 

i denna tesen ger en bred översikt över aktuell metoder för att hantera de svåra problem som 

simulerar en massiv, stor och snabbt ändra system och ger en grund för att adoptera en 

passande struktur för att utveckla ett PDES. 

 HydraNetSim är en diskret händelse simulator som gör det möjligt parallellt 

simulering och utnyttjar funktionerna i parallellisering av modern datorhårdvara. Det är 

baserat på en ny master / slav paradigm. Den delar simuleringsmodellen i ett antal specifika 

slavar (ett kluster av processer) med tanke på antalet kärnor som tillhandahålls av den 

underliggande datorhårdvara. Varje slav kan tilldelas en specifik CPU på en annan kärna. 

Synkronisering av slavarna uppnås genom att föreslå en variant av det klassiska Null-

Message Algorithm (NMA) med fokus på att hålla simuleringen overhead så lågt som 

möjligt. Dessutom ger HydraNetSim log information för felsökning ändamål och inför en ny 

mekanism för att samla in och skriva simuleringar resultat till en databas. 

 De experimentella resultaten visar att den sekventiella motsvarigheten till 

HydraNetSim (SDES) tar 41,6% mer tid än HydraNetSim-2Slave och 23,6% mindre än 

HydraNetSim-3Slave. HydraNetSim-2Slave är 1,42 gånger snabbare, förbrukar 1,18 gånger 

mer minne, och stöder 2.02 gånger fler noder än en sekventiell händelsestyrd simulator 

(SDES). I HydraNetSim-3Slave kör 1.24 gånger snabbare, förbrukar 2,08 gånger mer minne, 

och stöder 3,04 gånger fler noder än SDES. Skalfaktorn av HydraNetSim är ⌈(β-1)*102.04%⌉ 

av den maximala numrerade noder som stöds av SDES; där β är antalet slavar. 

  



 

  



  

v  
 

 

 

 

 

 

 

 

 

 

  Dedicated to… 

 

my guiding light  



  



  

vii  
 

Acknowledgements 

 All praises and thanks to Allah the Almighty. This thesis would not have been 

possible without His blessings.  

 I would like to acknowledge the support, wisdom, and encouragement given by many 

respected and loving people around me. I would like to start by expressing my deepest 

gratitude to my immediate supervisor Mr. Christof Leng, currently a PhD candidate at the 

Databases and Distributed Systems Group (DVS) at TU-Dramstadt, for his invaluable 

assistance, guidance, and mentorship from the preliminary to the finale phase of this work. 

His willingness to give his time so generously has been very much appreciated. I am grateful 

for having the opportunity to learn from him and work with him. 

 I owe my deepest gratitude to Prof. Gerald Q. Maguire Jr., my supervisor at KTH, for 

guiding me all the way through my thesis. His valuable comments helped me a lot in 

improving and polishing the whole thesis and the overall format of the report in general and 

some steps such as the analysis, in particular. 

 I would like to extend my thanks to DVS for providing me the opportunity and 

necessary facilities to conduct my thesis project. 

 My grateful thanks are also extended to all the people that I got to know during my 

stay in Stockholm. Among these people, I wish to express my special thanks to 

Abd-ur-Raheem, Ahmad Kamal Mirza, Waqas Liaqat, Shaqriq Mobeen and Muhammad 

Muaz for their moral support and guidance. I also wish to express my gratitude to 

Muhammad Rashid Idress for his valuable recommendations to improve this thesis. 

 Special thanks to my family, in particular to my parents for their support and 

unconditional love. I would not be the same without their support and encouragement. 

Thank you, really. 

 

 

 

 

 

 

 

 

Stockholm, Sweden 

July 2012 

Muhammad Fah’d Azeemi 

  



  



  

ix  
 

Table of Contents 

 

INTRODUCTION ..................................................................................................................................................... 1 

1.1 Computer Simulation .............................................................................................................................. 2 

1.1.1 Types of Computer Simulation ........................................................................................................ 3 

1.2 Problem Statement ................................................................................................................................. 9 

1.2.1 Hypotheses .................................................................................................................................... 10 

1.2.2 Goals ............................................................................................................................................. 10 

1.2.3 Blueprint ....................................................................................................................................... 11 

1.2.4 Scope ............................................................................................................................................. 11 

1.2.5 Target Audience ............................................................................................................................ 12 

1.2.6 Contribution .................................................................................................................................. 12 

1.2.7 Outline .......................................................................................................................................... 12 

LITERATURE REVIEW ............................................................................................................................................ 14 

2.1 Parallel Discrete Event Simulator ......................................................................................................... 14 

2.1.1 Architecture .................................................................................................................................. 15 

2.1.2 Core Challenges to PDES ............................................................................................................... 16 

2.1.3 Optimistic Approach ..................................................................................................................... 21 

2.1.4 Pessimistic (conservative) Approach ............................................................................................. 25 

2.2 Comparison of Optimistic and Conservative approaches ..................................................................... 29 

RELATED WORK ................................................................................................................................................... 32 

3.1 PeerSim ................................................................................................................................................. 32 

3.2 OMNet++ .............................................................................................................................................. 33 

3.3 OverSim ................................................................................................................................................ 33 

3.4 NS-2 ...................................................................................................................................................... 33 

3.4.1 PDNS (Parallel/Distributed NS) ..................................................................................................... 34 

3.5 PlanetSim .............................................................................................................................................. 34 

3.6 DSIM ..................................................................................................................................................... 34 

3.7 Summary ............................................................................................................................................... 35 

DESIGN AND ARCHITECTURE................................................................................................................................ 36 

4.1 Objectives ............................................................................................................................................. 36 

4.1.1 Primary Objectives ........................................................................................................................ 36 

4.1.2 Secondary Objectives .................................................................................................................... 37 

4.2 Architecture .......................................................................................................................................... 37 

4.2.1 Partitioning ................................................................................................................................... 38 

4.2.2 Support User behavior .................................................................................................................. 43 

4.2.3 Determinism.................................................................................................................................. 44 

4.2.4 Major components of a slave ........................................................................................................ 44 

4.2.5 Message Routing .......................................................................................................................... 47 

4.2.6 Synchronization of slaves .............................................................................................................. 49 

4.2.7 Gathering and writing simulation results to the database ........................................................... 57 

EVALUATION AND ANALYSIS ............................................................................................................................... 62 



5.1 Environment setup ............................................................................................................................... 62 

5.2 Parameter configuration ...................................................................................................................... 63 

5.3 Performance test .................................................................................................................................. 63 

5.4 Scalability test ....................................................................................................................................... 67 

5.5 Summary of results ............................................................................................................................... 68 

5.6 Analysis of results ................................................................................................................................. 69 

CONCLUSION & FUTURE WORK ........................................................................................................................... 76 

6.1 Conclusion ............................................................................................................................................ 76 

6.2 Future Work .......................................................................................................................................... 78 

REFERENCES ......................................................................................................................................................... 80 

 

  



  

xi  
 

Table of Figures 
Figure 1: Ways to Analyze a System [adopted from 13] ......................................................................................... 2 

Figure 2: Models of Computer simulation (adopted from figure 1.5 in [9]) ........................................................... 5 

Figure 3: Flow Chart of Serial Discrete Event Simulation [adopted from 15] ......................................................... 7 

Figure 4: Space Parallel Partitioning ..................................................................................................................... 15 

Figure 5: Lifetime of a peer (adopted from figure 20.2 in [4]) ............................................................................. 17 

Figure 6: Amdahl's Law [88].................................................................................................................................. 18 

Figure 7: Deadlock Situation (Cyclic Dependency) ............................................................................................... 27 

Figure 8: LCM ........................................................................................................................................................ 40 

Figure 9: Master/Slave Communication ............................................................................................................... 41 

Figure 10: fully connected MESH topology........................................................................................................... 41 

Figure 11: Salient components of a Slave ............................................................................................................. 44 

Figure 12: message handling stack ....................................................................................................................... 45 

Figure 13: Conversation channel between LPs ..................................................................................................... 46 

Figure 14: LP components .................................................................................................................................... 47 

Figure 15: Routing the message to a local receiver .............................................................................................. 48 

Figure 16: Routing the message to a remote receiver ......................................................................................... 48 

Figure 17: Simulation Model topology: Fully connected mesh topology ............................................................. 51 

Figure 18: Message Types ..................................................................................................................................... 51 

Figure 19: (partial) State diagram of slave ........................................................................................................... 54 

Figure 20: Synchronous simulation of four slaves ................................................................................................ 55 

Figure 21: Null message format ............................................................................................................................ 55 

Figure 22: Application message ............................................................................................................................ 56 

Figure 23: Flip-Flop of Simulation states .............................................................................................................. 57 

Figure 24: Writing log messages to the DB ........................................................................................................... 59 

Figure 25: Statistic-Measurements ....................................................................................................................... 60 

Figure 26: Sending and receiving measurements ................................................................................................. 60 

Figure 27: Sending-Receiving-Storing a statistics measurement .......................................................................... 61 

Figure 28: Memory Consumption by SDES as a function of time ......................................................................... 65 

Figure 29: %CPU consumotion by SDES as a function of time .............................................................................. 65 

Figure 30: Memory consumption by HydraNetSim-1Slave as a function of time ................................................ 65 

Figure 31: Memory consumption by HydraNetSim-2Slave as a function of time ................................................ 66 

Figure 32: Memory consumption by HydraNetSim-3Slave as a function of time ................................................ 67 

Figure 33: Memory Consumption by HydraNetSim-3Slave (39,600 nodes)  as a function of time ...................... 68 

Figure 34: Memory Consumption by HydraNetSim-2Slave (39,600 nodes)  as a function of time ...................... 68 

Figure 35: Comparison of (physical) time for completing a simulation run ......................................................... 69 

Figure 36: Comparison of memory consumption for a complete simulation run ................................................ 69 

Figure 37: Lookahead inadequacy ........................................................................................................................ 72 

Figure 38: zero-lookahead cycles ......................................................................................................................... 72 

 

  



  



  

xiii  
 

Table of Tables 
Table 1: Effects of adding processors on execution time of a given problem ...................................................... 19 

Table 2: Comparison of optimistic and conservative approaches [43]................................................................. 31 

Table 3: Detailed summary of different P2P simulators (based on [65] and [66]) ............................................... 35 

Table 4: LIT ............................................................................................................................................................ 40 

Table 5: LCM Description ...................................................................................................................................... 40 

Table 6: Node Assignment Scheme ...................................................................................................................... 42 

Table 7: Important properties of the local version of a simulator node .............................................................. 43 

Table 8: Important properties of remote version of a simulator node ................................................................ 43 

Table 9: System details of the two platforms that have been used to run the simulations ................................. 63 

Table 10: Parameters settings for the simulations ............................................................................................... 63 

Table 11: Resource utilization by SDES ................................................................................................................. 64 

Table 12: Resource utilization by HydraNetSim-1Slave ........................................................................................ 65 

Table 13: Resource utilization by HydraNetSim-2Slave ........................................................................................ 66 

Table 14: Resource utilization by HydraNetSim-3Slave ........................................................................................ 66 

Table 15: Resource utilization by HydraNetSim-2Slave ........................................................................................ 67 

Table 16: Summary of experimental results ......................................................................................................... 68 

Table 17: Execution time of a given program by different number of processors ............................................... 71 

Table 18: Execution time of a given program by different number of processors ............................................... 73 

 



  



  

xv  
 

List of Acronyms and Abbreviations 
  

ATM Automatic Teller Machine 

CAD Computer Aided Design 

CMB Chandy-Misra-Bryant (protocol) 

CPU Central Processing Unit 

CUSP Channel-based Unidirectional Stream Protocol 

DB Database 

DVS Databases and Distributed Systems Group 

EIT Estimated Input Time 

EOT Estimated Output Time 

FEL Future Event List 

GB Gigabytes 

GVT Global Virtual Time 

IP Internet Protocol 

LBTS Lower Bound on Time Stamp 

LCM LP Configuration Message 

LH Lookahead 

LP Logical Process 

MTW Moving Time Window 

NMA Null-Message Algorithm 

PDES Parallel Discrete Event Simulator 

RAM Random Access Memory 

RNG Random Number Generator 

RPC  Remote Procedure Calls 

SCTP Stream Control Transmission Protocol 

SDES Sequential Discrete Event Simulator 

SST Structured Stream Transport 

TCP Transmission Control Protocol 

TU D Technische Universität Darmstadt 

UDP User Datagram Protocol  

 

http://en.wikipedia.org/wiki/Structured_Stream_Transport




  

1  
 

 

Chapter 1. 
 

Introduction 
 Distributed systems and computer networks have sparked the zeal of a huge 

community, and today applications of distributed systems range from telecommunication to 

the air traffic control systems [1]. This diverse range of applications exhibits the growing 

popularity of distributed systems. This ever growing popularity has been a continuous source 

of attraction for computer scientists to explore the new dimensions of this field. Different 

reasons can be cited for the need of such distributed and networked systems, some of these 

are: 

 The nature of the application may require it to be run on a communication network. 

 To avoid a single point of failure. 

 Economics: a collection of several multiprocessors offers better price-performance 

ratio than a large mainframe [3]. 

 However, the sharing of resources is considered the main motivation behind the 

construction of distributed systems [2]. 

Unmitigated access and a complete control over a real network or distributed system is 

presently only a dream for researchers [22], due to the very turbulent and complex nature of 

such systems. Evaluation and analysis of the operational behavior of a system has always 

been an essential part of gaining an ample grasp of such a system, both in industry and 

academia. Managers and analysts need to estimate the expected operational behavior of the 

system in order to make correct and timely decisions, and to make changes in the architecture 

of existing systems or a system under development. Three different methodologies are 

usually applied for this purpose [4]: 

1. Conducting experiments with prototypes or real systems, 

2. applying mathematical analysis, and 

3. simulation. 

There are financial and technical constraints involved with the first approach, as it is not an 

easy task to prototype a heterogeneous system which is highly dynamic in its nature. It is also 

not convincing to disturb the individual components of a real system as the risk of failure of 

the experiment for one reason or the other may be high, and the modifications may seriously 

disrupt the system altogether. Further, there may be some situations which cannot be 

explored by experimental means, such as the study of evolution of galaxies as this cannot be 

done pragmatically by experiments [23]. 



The other two techniques (i.e., analytical modeling or analytical analysis and simulation 

model) are the specialized forms of mathematical modeling which enable an experiment with 

the model of the system.  Figure 1 shows several different choices of how to analyze a 

system. 

 
Figure 1: Ways to Analyze a System [adopted from 13] 

An analytical solution refers to as analyzing the system by finding solutions of equations and 

evaluating functions. However, some systems may be too complex to represent by 

mathematical formulas and accordingly it may be difficult to find analytic solutions [24]. 

Real-time experiments can also cause safety risks in some situations. For example, testing of 

new equipment and procedures on avionic systems are not possible without imperiling safety. 

Thus, this evaluation is usually done by simulation. Simulation is a technique of imitating a 

system or process by another system or process [23]. 

For these reasons, simulation is a preferred choice for analysis particularly for the systems 

whose characteristics cannot be easily captured in a mathematical way [4]. Additionally, 

(computer) simulation is thought by many to more helpful even if analytical methods are 

available [23], as computer simulation can give more comprehensive insight into the system’s 

behavior than complicated formulas written down on a paper. 

Simulation plays an indispensable part in research as it offers a controlled environment for 

researchers to perform their experiments, enabling them to gain deeper insight into a complex 

system under investigation. Another important characteristic of computer simulation is its 

repeatability, as simulation offers the ability to test a range of designs under exactly the same 

environment conditions or to make random parameter changes to the simulation or the 

environment. 

1.1 Computer Simulation 

Computer simulation is a specialized form of simulation derived from the generic approach 

of using a simulation model to analyze a system. Computer simulation refers to the imitation 

by a computer of a real-time system or process over time [5, 6]. Computer simulation has 



  

3  
 

become an essential technique in various fields over the years, including engineering, 

architecture, production management, entertainment, business, military, government, logistics 

/ transportation [7], etc. Computer simulation supports simulation of large scale events which 

are not possible or even imaginable to be simulated by using traditional pen-and-paper 

mathematical modeling. This power and support for scalability has made computer 

simulation an essential part of ongoing research in almost every field of life. A biology 

project simulating 2.64 million atoms in motion to model the complex and intricate structure 

of ribsomes [44] is just one example of the support for large scale events that currently can be 

simulated by using computer simulation.  

1.1.1 Types of Computer Simulation 

Computer simulation has a truly wide range of simulation types varying from a computer 

program that may run for a few minutes, to a network-based group of computers or cluster of 

computers running for hours, to simulations which may run for days or even years. There are 

several types of computer simulations which are used for academic as well as for industrial 

purposes. Continuous simulation, Monte Carlo simulation, discrete event simulation are a few 

types from a vast range of types of simulations currently being employed in different fields. 

1.1.1.1 Continuous Simulation 

Continuous simulation represents a system over time. Wouter Duivesteijn states: “Continuous 

simulation concerns the modeling over time of a system by a representation in which state 

variables change continuously with respect to time” [8]. This type of simulation may utilize 

game theoretic models, algebraic systems, statistical models, or differential equations. A 

continuous simulator applies these equations in the context of the system’s environment and 

generates a continuous output (often represented as a graph) reflecting the changes in the 

state of the system with respect to time (see the section on Continuous Simulation of C. 

Craig’s master’s thesis [9]) and thus, this type of simulations exhibits how the system would 

behave if realized. Typically, differential equations are used for describing the rate of change 

of state variables of the system over time. 

A popular example of a continuous simulation is the predator-prey model: a biological model 

of competition between two populations called predators and prey, in which both populations 

interact with each other. The population size of predators depends upon the population size of 

prey and vice versa. The number of prey will decrease if number of predators increase, and 

will increase if the number of predators decreases. This relationship is usually examined with 

continuous simulation by employing partial derivatives [8]. 

Some other suitable candidates for continuous simulation include urban growth, population 

growth, weather forecasting, fermentation models, disease spread, and hurricane prediction. 

Continuous simulations are usually used within mathematical modeling software packages 

such as MATLAB
®
 [54] or in conjunction with a computer aided design (CAD) system. 

Continuous simulation is often computationally intensive, particularly when there are 

thousands of interconnected elements. In such a setting, continuous simulation yields slow 



performance and is, therefore, only useful for simulating a relatively small number of 

components. 

1.1.1.2 Monte Carlo Simulation 

In Monte Carlo simulation, repeated random sampling is employed to compute the results of 

the simulation. This type of simulation is defined as, “a scheme employing random numbers, 

which is used for solving certain stochastic or deterministic problems where the passage of 

time plays no role” [10]. This approach is useful to simulate scenarios with considerable 

uncertainty in their inputs, such as calculating the risks in a business to support decision 

making. This approach is widely used in a diverse range of fields including mathematics, 

applied sciences, project management, finance, research and development, engineering, 

transportation, oil and gas exploration, environment, insurance, etc. 

The use of random sampling numbers makes it possible to yield results which were not 

possible by using continuous simulation. Such a simulation generates possible results by 

substituting a range of possible random values derived from a random distribution over the 

estimated domain of input values, for a factor having a degree of uncertainty. Each simulation 

run uses a different set of random values from one or more random distributions to calculate a 

result. A typical Monte Carlo simulation run will utilize thousands or tens of thousands of 

recalculations, depending upon the number of uncertainties and the specified ranges for each 

them [11]. 

A disadvantage of Monte Carlo simulation is that it is computational intensive and uses a 

great amount of computational resources which is undesirable as a day-to-day routine 

practice [12]. 

1.1.1.3 Discrete Event Simulation (DES) 

Discrete event simulation is a dominant simulation technique in the field of computer 

networks [4]. This approach is employed when significant changes occur in the system at 

discrete time instances; these distinct changes at specific time points are referred to as events. 

Discrete event simulation represents the operations of a system as a chronological chain of 

events, thus every event represents some change in the state of the system. 

A classic example of discrete event simulation is a queuing model of a bank’s customer’s use 

of the services of an Automatic Teller Machine (ATM).  In this example, we consider the 

customers’ arrival and departure as events, the customers and ATM machine as entities of 

the system, and the number of customers in a queue and the ATM machine's status (idle 

or busy) as states of the system which are changed by the events. 

Although both Monte Carlo and discrete event simulation techniques conceptually overlap as 

shown in figure 2, Monte Carlo simulation does not care about time and removes time from 

the model whereas discrete event simulation is based on the passage of time, although the rate 

of passage of time need not be uniform as in continuous simulation [7].  



  

5  
 

 
Figure 2: Models of Computer simulation (adopted from figure 1.5 in [9]) 

The fact that an event in a discrete-event simulation can only occur at a distinct unit of time 

during the simulation distinguishes it from continuous simulation in which events can also 

occur between the time units (see the section on Discrete-Event Simulation in C. Craig’s 

master’s thesis [9]). 

Discrete event simulation is more popular than continuous simulation not only because it 

provides faster results, but also because it imitates the system’s behavior in a generally 

convincingly accurate manner (see the section on Discrete-Event Simulation in C. Craig’s 

master’s thesis [9]). That is why, today, discrete event simulation is employed for research on 

any layer of computer networks, including signal processing in the physical layers, medium 

access in the data-link layer, routing in the network layer, protocol concerns in the transport 

layer, and design questions in the application layer [4]. This popularity is due to the fact that 

the discrete event simulation paradigm fits very well with nearly any system under 

investigation and it is also relatively easy to implement in comparison with the other 

techniques. 

1.1.1.4 Terminologies and Components of Discrete Event Simulator 

Unfortunately there is no standardized set of terms and thus the naming of the components in 

a discrete simulator may vary in the literature [4]. The definitions employed in [5, 6] are 

loosely adapted in this thesis, in the paragraphs below we give a definition of the terms and 

components that will be used for the rest of this thesis. 

An entity is an abstraction in the system of a particular interest, and can be described by its 

attributes. For example, the entity ‘packet’ can be described by its length, source address, 

destination address, etc.  

A system is composed of a set of entities and their relationships which fulfils a certain 

purpose (i.e., in order to achieve some desired goal of the system). A network, for example, 

may be considered as a system having routers, hosts, and links as entities and a common goal 

to provide end-to-end connectivity. 

A discrete system is a system whose states only change at discrete points of time. These 

changes are triggered by the occurrence of some event.  

All discrete-event simulators, in general, share the following components [4]: 

1. System state is a set of variables that describe the state of the system. 

2. Clock represents the current time during the simulation. 



3. Future event list (FEL) is a data structure which is used to manage the events (which 

will occur in the future.). Events are recorded as an event notice in the FEL. Each 

such event is composed of a Time and Type of event. 

These three components are realized as data structures and formulate the core of any discrete 

event simulator. A discrete event simulator may also need some other data structures to 

perform simulation: 

4. Time-stamp: The simulated time of the occurrence of the event is called a 

time-stamp of that event. 

5. Statistical counters: A set of variables which contain statistical information about the 

performance of the system. 

6. Initialization routine: This routine is used to initialize the simulation model and to 

set the clock to 0. 

7. Timing routine: This routine retrieves the next event from the FEL and advances the 

clock to the time of occurrence of this event. 

There are, usually, three flavors of time when dealing with the simulation: 

1. Physical Time: This is the real (physical) time of the simulated real system. 

2. Wall clock Time: This is the execution time during simulation. 

3. Simulation Time: This is an abstraction of time used within the simulation for 

performing its operations, such as processing events. 

The simulation clock keeps the current time during simulation. The value of this clock is 

advanced when an event is retrieved from the FEL. The system states change over time 

during the simulation. All the events are maintained in the FEL sorted by their time of 

occurrence. During the execution of the simulation, the scheduler of the simulator removes 

the event(s) with the smallest time-stamp from the event list and updates the simulation clock 

to this time. 

The core algorithm of a discrete event simulator has three phases [4]: 

 Initialization phase, 

 Event processing phase, and 

 Output phase. 

During initialization the state variables, entities, and the clock are initialized. The simulator, 

then, enters the next phase based upon executing an event processing loop. The events are 

retrieved from the FEL, for processing, and an appropriate event handler is called to process 

each specific event on the basis of its type. The event handler may generate new events, can 

change the state variables or entities, and update the statistics as the result of processing an 

event. 



  

7  
 

During this event processing loop, the oldest events (the events with the smallest time-stamp) 

are removed from the event list. Choosing the event with the smallest time stamp (i.e., Emin) 

from the event list is crucial, as the event must be processed in the context (in terms of the 

system's state variables) of its time. Processing the events out of time order would simulate a 

system in which the future could affect the past, which is generally unacceptable [17], thus 

leading to a causality violation. 

According to Van Hoai Tran the algorithm for the event processing loop is (slide 15 from 

[19]): 

 while simulation_in_progress do 

  Remove smallest time stamp event from event_list; 

  Set simulation_time_clock to the time-stamp of this event; 

  Execute event_handler to process this event; 

 end  

In the last phase of the algorithm, statistics are computed, updated, and stored (if necessary). 

After doing the operations required in this phase, the simulator terminates. Figure 3 shows the 

flow chart of a simple sequential discrete event simulator (SDES). 

 
Figure 3: Flow Chart of Serial Discrete Event Simulation [adopted from 15] 

This generic description of the core algorithm of discrete event simulator is not sufficient to 

deal with the increasing complexity of the modern (communication) systems and accordingly 

dealing with their models. In the next section, we will discuss the need to devise an approach 

to deal with the complexity of structure and increasing computational requirements of the 

simulation of communication systems. 



1.1.1.5 Case study  

The Databases and Distributed Systems (DVS) group of Technischen Universität Darmstadt, 

Germany has developed a testbed for network (mainly peer-to-peer) applications which offers 

some simple interfaces for event scheduling and user datagram protocol (UDP) messaging. 

The implementation of these interfaces is done in two ways: 

i. For real networks, i.e., for building actual applications or 

ii. To support a large number of nodes running in a virtual network, i.e., running in a 

discrete event simulator.  

These implementation schemes are used to test the same application code in: 

1. a real network for getting maximum realism, and  

2. a virtual environment to allow maximum configurability. 

DVS has already implemented several applications, such as the  BubbleStorm P2P overlay 

[50], CUSP: a TCP-like transport protocol [46], Kademlia peer-to-peer (P2P) overlay [51], 

and even a P2P multiplayer game called Planet PI4 [52] on the top of these interfaces. All of 

these applications run both in the simulator as well as on real networks. The simulator allows 

testing the applications on large networks with a high degree of realism [53]. 

This simple testbed can be used to simulate an application developed by using the interfaces 

provided by this testbed. Furthermore, the application must be written in an asynchronous, 

event-driven fashion. This requirement for asynchronous, event-driven operation of the 

application allows the simulator to run many nodes in parallel without having any time 

conflicts. For further details about this testbed, please read [53]. 

1.1.1.6 Limitations of Sequential Discrete Event Simulation 

Modern communication systems are becoming increasingly complex which is accordingly 

increasing the complexity of the evaluation tools used to study them. This complexity can 

either be computational complexity or structural complexity. Structural complexity of a 

simulation model is due to the growing size of a simulated network. 

Distributed systems and massive peer-to-peer systems have caused a gigantic boost in the 

size of communication systems that researchers wish to simulate. The complex behavioral 

characteristics of such large systems are impossible to observe by using a smaller sized 

network as a test-bed or when the researcher lacks an accurate analytical model. This 

complexity requires a network simulation model and approach which can support a huge 

number of simulated network nodes. Here a problem arises: all of these network nodes need 

to be represented in memory and they will trigger events in the network simulation model. 

Both of these factors will significantly increase memory consumption and makes the network 

simulation model computationally intensive. Furthermore, the simulation of complex 

real-time systems, such as air traffic control systems may require hours to complete, whereas 

the decisions need to be made within minutes. 



  

9  
 

The shortcomings of classic or sequential discrete event simulation can be classified under 

the following two perspectives [17]:  

 Academic and 

 Industrial or pragmatic 

However, both settings (academic and industrial) have their own reasons for developing a 

Parallel Discrete Event Simulators (PDESs). From an academic point of view, a PDES 

represents a problem domain which may offer substantial parallelism [17]. From an industrial 

point of view, to evaluate the large and complex models in sectors such as engineering, 

military, economics, defense, government, etc. by employing sequential simulation tools may 

take hours (see slide # 2 from [19]) which is unacceptable as the insight from the simulation 

is too late to be relevant. Therefore, industrial users want to have an efficient solution which 

can address the growing computational and structural complexities of the systems that they 

wish to consider in time to enable them to make critical decisions. 

All these issues are addressed by enabling the simulation to be executed in parallel or on 

multiple processing units. We can only meet the demand for extremely large amounts of 

memory either by employing a cluster of processors or by combining the memory and 

computational resources of a number of processing units. Additionally, we can utilize these 

many processors to provide the computational resources required for processing simulations 

of specific applications. Luckily, modern hardware developments and technological 

advancements have greatly reduced the cost for parallel computing hardware, thus making 

such hardware available to a larger research community. These different aspects have all 

contributed to the development of PDES. 

1.2  Problem Statement 

A case study was explained in detail in section 1.1.1.5. Although this testbed works well for 

small applications, it does not perform sufficiently to allow simulation of larger applications. 

This poor performance is due to the fact that currently the simulator is single-threaded, 

making it very slow when simulating larger networks. Furthermore, the simulator can only 

scale up to a couple of thousands nodes because of the relatively low-level interfaces that 

have made few simplifications from an actual program. 

These limitations limit the ability to examine the behavior of extremely large networks, such 

as massively multiplayer online games (MMOG) or peer-to-peer (P2P) systems. Therefore, 

there is a need for a means to evaluate large applications running on very large distributed 

systems. 

The increasing complexity of P2P applications demands a parallel version of the simulator to 

run on many processors or even on clusters of computers. This parallel simulator should 

support hundreds of thousands of nodes in the simulator. This parallelization will allow 

exploring large-scale scenarios with hundreds of thousands of nodes with a relatively high 

degree of realism, and will enable researchers to realistically evaluate the behavior of larger 

P2P networks. 



Furthermore, technology advances have made relatively powerful multi-core computing 

hardware available to a larger research community. According to recent surveys [65 - 68], 

none of the main stream P2P simulators has been designed to exploit the multi-core 

capabilities of modern computing hardware [64]. Therefore, a PDES should be designed to 

exploit such multi-core architectures. 

The research question for this thesis is to design, develop, and evaluate a PDES for 

examining the behavior of larger network applications and P2P systems, which can exploit 

the multi-core architecture of modern computing hardware while keeping all the Logical 

Processes (LPs) in synchronization. 

1.2.1 Hypotheses 

Studies [4, 33, and 64] suggest that the parallelization of a (sequential) discrete event 

simulator boosts the simulation speed and enable simulations on a larger scale (in terms of 

the number of simulated nodes). Therefore, our hypotheses for this research will be: 

1. HydraNetSim (a PDES) speeds up simulation in comparison with the SDES given that 

the experiment settings are same, and 

2. HydraNetSim scales up the simulation by enabling the simulation of more nodes than 

SDES for a given hardware platform. 

1.2.2 Goals 

The overall goals of this master’s thesis project will, therefore, be to design, develop, and 

evaluate a parallel version of existing testbed so it can be run on many processors utilizing 

different cores or computing clusters. 

This PDES will preserve the correct simulation semantics by ensuring that all the processors 

are fully synchronized. The simulator’s output will be collected and aggregated from all the 

distributed processes. This output will then be written to a database so that these results will 

be available for future verification and so that the behavior of the system can be examined 

thoroughly. 

We can categorize the goals of this master’s thesis project as: 

 The designed simulator must be capable of exploiting the multi-core architecture of 

modern computing hardware, 

 To increase the scalability of the existing simulator in such a way that it can support 

extremely large numbers of nodes (where extremely large is defined as hundreds of 

thousands of nodes), 

 The nodes should be distributed in the simulator over a cluster of simulation 

processes,  

 The random number generators must generate the same sequence of numbers, for 

each simulated node, independent of the number of processes used for the simulation 

(This is necessary for getting same simulation results independent of the partitioning 

over one or more machines), and 



  

11  
 

 The output of the simulation run must be collected and aggregated from the worker 

processes. 

We will examine of all of these goals and elaborate the challenges in Chapter 3 of this thesis. 

1.2.3 Blueprint 

The starting point for developing the proposed PDES will be a literature review and related 

work done by other researchers. This review will not only provide a comprehensive 

illustration of general concepts of the field, but will also provide an ample description of the 

architecture and necessary components of a PDES.  

We will explore the underlying approaches proposed and adopted by different researchers for 

developing a PDES in general. Next, we will analyze and compare all of these state-of-the-art 

approaches while considering all of their design aspects in the context of our thesis goals. In 

this way, the literature study will provide a foundation for implementing and evaluating our 

proposed architecture. 

This literature review and study of contemporary design approaches will assist us in 

formulating a systematic approach to design the architecture of our PDES, along with 

procedures for keeping all partitions synchronized, and for gathering and writing the 

simulation results into a database (DB). Consequently, we will implement our proposed 

PDES (to be called HydraNetSim) in order to achieve our goals. 

Finally, we will evaluate HydraNetSim in order to examine the behavior and performance of 

our adopted approach. We will examine the performance improvements after parallelization 

and validate our hypotheses as defined in section 1.2.1. 

The proposed plan for this thesis project consists of: 

 A literature review, 

 Analytic study of contemporary approaches, 

 A study of related work, 

 Design our proposed PDES architecture, 

 Implement this proposed architecture, 

 Conduct a performance evaluation of our proposed PDES, and 

 Analysis of this evaluation will be performed in order to draw some conclusions and 

to suggest future work. 

1.2.4 Scope 

This thesis will provide a comprehensive understanding of how a SDES actually works, what 

its key components are, what are the core challenges, and most importantly what the core 

challenges are in developing a PDES to be run on a multi-core computing platform, and how 

to deal with the relevant challenges. 



This thesis provides an analytic study of popular approaches for developing a PDES. This 

study examines the advantages and disadvantages of all these approaches. All of these 

approaches belong one of two broader categories:  

1. Conservative, and  

2. Optimistic.  

For this reason, a comprehensive comparison of these two categories is provided for 

researchers to understand the advantages and disadvantages of each approach. This study will 

assist researchers for preferring one on the other category of PDES. 

Furthermore, a brief overview of some recent surveys [65-68] of existing mainstream P2P 

simulators has also been included in terms of their scalability, architecture, programming 

language, and PDES capabilities. 

1.2.5 Target Audience 

This thesis, primarily, will assist researchers from the area of PDES in particular and 

computer simulation in general. The developers of PDESs in general might utilize the results 

presented in this thesis due to its novel architecture, synchronization technique (which 

minimizes the synchronization overhead), its new idea of gathering simulation results over a 

specific log period before writing them directly to the DB, and more importantly its 

capabilities of exploiting the parallelization capabilities of the underlying computing 

hardware. 

1.2.6 Contribution 

The main contribution of this thesis is its novel and innovative overall design and 

architecture. This thesis should spark the interest of the research community because of its 

novelty regarding: 

 Capability of exploiting the multi-core architecture of modern computing hardware, 

 Architecture, 

 Synchronization technique, 

 Approach to rely on null messages as little as possible, 

 Effort to minimize synchronization overhead, and 

 Mechanism of gathering simulation results over a specific log period before directly 

outputting them. 

1.2.7 Outline 

The structure of this thesis work is as follows: Chapter 2 includes comprehensive details of a 

PDES (its core components and concepts, its working), core challenges to developing a 

PDES, popular approaches for coping with these challenges, and comparison of these 

approaches. Chapter 3 provides the overview of some recent surveys on existing mainstream 

P2P simulators. Chapter 4 provides the objectives and goals of this thesis project, proposed 

model and design solutions, along with implementation details (of its architecture, core 

components and concepts, and proposed approaches for completing the established objectives 



  

13  
 

and goals such as strategies for message routing, synchronization, determinism, etc.). The 

experiment details, performance and scalability evaluation, and analysis of results are 

presented in chapter 5. Finally, Chapter 6 offers some conclusions and suggests some future 

work.  



 Chapter 2. 
 

Literature Review 
 The benefits promised by computer simulation and the shortcomings of SDES have 

caused a lot of research attempting to devise techniques to meet the challenges posed by the 

need to simulate complex and large communication systems. PDES emerged from this 

research and has been the focus of researchers for several decades [20]. The main motivations 

behind the development of a PDES can be summarized as:  

 To simulate systems which are highly complex in their structure and turbulent in their 

nature, such as the internet [18], 

 To use the simulator as a forecasting tool for making time critical decisions, such as in 

the case of air traffic control systems, 

 The high computational demands posed by simulation of complex, large, and 

high-resolution applications [16], 

 Enabling interoperability, i.e., in order to connect a number of autonomous simulators 

running on geographically distributed machines, with each of these distributed 

machines simulating a different and distinct component of a large and complex 

system, 

 To achieve a better resource sharing, by connecting and running multiple of 

simulators in parallel in order to execute a single over-all model, 

 To reduce the execution time of a complex model. The time required for a simulation 

run can be reduced in proportion to the number of nodes or processors it is allocated 

[16], 

 Larger models can be simulated by combining the memory capacity of all processors, 

and 

 To exploit the great resources of some special nodes, for example to meet high 

graphics requirements or handle very large amounts of data. 

We will first discuss the basic concepts and architecture of a PDES and then will give an 

overview of some contemporary approaches to deal with the challenges of developing a 

PDES. 

2.1 Parallel Discrete Event Simulator 

A parallel version of a sequential discrete event based simulator can be viewed as a collection 

of a number of sequential discrete event based simulators, executing on different processors 

which communicate with each other only through time-stamped messages (called events). 

Such a PDES can be defined as a PDES “which divide[s] a simulation model into multiple 

parts which execute on independent processing units in parallel.” [4] 



  

15  
 

2.1.1 Architecture 

The model of the system is decomposed into sub-models. These sub-models are usually 

called partitions, which are finite in number and they are created by applying some specific 

partitioning scheme. These partitioning schemes are generally categorized into the following 

three classes [4]: 

1. Channel Parallel Partitioning: The channel parallel partitioning scheme is based on 

the assumption that the data which is transmitted on different radio channels or media 

does not interfere, and hence remain independent. Thus, the events occurring on 

non-interfering nodes are considered independent. On the basis of this assumption, the 

simulation model is decomposed into finite groups of non-interfering nodes. The 

problem, nonetheless, involved with this scheme is that we cannot generally apply this 

scheme to every simulation model, as its paradigm suits only some special models [4]. 

2. Time Parallel Partitioning Scheme: The time parallel partitioning scheme divides 

the simulation time of a simulation run into equally sized time-intervals. It assumes 

that the state of the simulation model is already known at the beginning of each 

interval and, thus, simulation of each interval is considered independent from other 

intervals. The drawback of this scheme is that a network simulation usually has 

significant complexity and thus its state at specific points in time is hard to know in 

advance. Therefore, this scheme is in general impracticable for network simulation 

[4]. 

 Space Parallel Partitioning: The simulation model is divided, in this scheme, into 

multiple finite partitions by considering the connections between simulated nodes. 

The result of this partition scheme is that each cluster of nodes that tightly 

communicate is placed into a single partition (see Figure 4). This paradigm suits the 

network simulation model in general and can be applied to any complex simulation 

model [4]. 

 
Figure 4: Space Parallel Partitioning 

The system under examination is usually referred as a physical system. This physical system 

is viewed as being composed of some finite number of physical processes which interact with 



each other at various discrete points in simulated time. The simulation model is partitioned 

with respect to these physical processes in such a way that each partition is mapped to exactly 

one physical process. These partitions are subsequently executed by a run-time component 

called a Logical Process (LP) [4]; each LP models a different part of the (physical) system. 

Furthermore, each LP maintains its own time-stamped event list, local clock, and state 

variables. Thus, an LP resembles a SDES by suitably maintaining all these three data 

structures.  

The inter-LP communication is restricted to sending time-stamped messages, usually through 

FIFO channels to preserve the local FIFO characteristics. These FIFO characteristic ensures 

that the messages will arrive at the receiving LP in exactly the same order in which they were 

sent. 

Limiting communication to time-stamped messages facilitates parallelization of 

asynchronous system simulation where events occur at irregular time intervals and are not 

synchronized to any global clock. However, this requires some mechanism to avoid possible 

causal violations and to address the synchronization overheads. Further, this paradigm 

demands concurrent execution of events, which may also cause synchronization problems. In 

the next section, we will discuss the challenges to creating a PDES and describe some of the 

prevailing schemes that have been introduced to deal with these challenges. 

2.1.2 Core Challenges to PDES 

In this section, we will discuss some important challenges to developing a PDES and some 

proposed solutions to deal with these challenges. 

2.1.2.1 Support user behavior 

The modeling of systems is a crucial challenge for obtaining realistic results when estimating 

the performance of large scale P2P systems [4]. A proper evaluation of a system must also 

take user behavior into account, along with modeling of the underlying network.  A good 

model of user behavior is an important factor for modeling network applications in general 

and for P2P applications (where participating peers are consumers and providers at the same 

time, in their nature) in particular. Therefore, a PDES should support the inherent property of 

user behavior modeling of a (P2P) system to provide realistic results. 

The behavior of P2P users is rather complex [4] and for simplicity it can be broken down into 

the following three independent components: 

1. Churn 

 Users join the network, leave, and may rejoin several times. Sometimes they 

even leave the system for-ever and do not return. For example, the users of systems 

such as BitTorrent [61] are interested in exactly one download per torrent and after 

downloading that particular torrent they usually do not rejoin that particular 

distribution overlay. 

Churn consists of the complete lifetime of a P2P node which starts when that node 

initially joins the system and ends when the node permanently leaves the system.   



  

17  
 

During this lifetime, however, the node may go through several online and offline 

cycles as shown in figure 5. 

 

Figure 5: Lifetime of a peer (adopted from figure 20.2 in [4]) 

The time span a node is online is referred to as a session [4], and the time between 

sessions is called an intersession. In general when a node orderly leaves the system it 

informs and sends the notifications to its neighbors assisting them to reorganize their 

state, routing table, etc. But it may also happen that a node simply crashes, i.e., it 

disappears from the overlay without any notification (because of a software crash, 

hardware crash, loss of connectivity, etc.). 

2. Workload 

 A realistic workload model is very important for the performance evaluation 

of any system. Workload specifies the provision and consumption of resources in the 

given system. Interestingly, workload is not uniform over all the resources [60], as 

some resources are scarce and many are abundant. Furthermore, many resources may 

be far more popular than others.  

3. Use properties 

 Generally a user does not have uniform interest in all resources rather s/he 

consumes very specific resources. This interest clustering is very important for the 

reputation system and has been used to build specialized content-clustered overlays 

[61]. Furthermore, many users are not willing to cooperate and try to maximize their 

own benefit, e.g., by not uploading anything in return for downloading some content. 

Yet, in contrast there are many users who do not leave the system immediately after a 

complete download [62], thus their resources continue to be available. That is how 

user strategy influences both the workload and churn [4]. 

Modeling of all the above mentioned components is crucial to obtain realistic results from a 

simulation run, and for evaluation of a model of a (network or P2P) system. Therefore, 

support of user behavior is a critical challenge in developing a PDES. 

2.1.2.2 How much speedup? 

Equally important challenge in developing a PDES is to understand how much speedup one 

can achieve by running the simulation in parallel? The developers/researchers should keep in 



mind that one cannot improve the rate of completion of a (simulation) task by merely adding 

more processors or by running the program by multiple processors in parallel.   

Each program can be divided into two fundamental parts: sequential and parallel. Parallel 

portions are the fractions of a program which can be run on many processors at the same 

time, and independent of each other. Sequential portion is the fraction of the program which 

cannot be run in parallel and concurrently. For example, if task B is dependent on some task 

A for any reason such as lock retrieval, synchronization etc., then they must be run 

sequentially (i.e., task B can only be processed after task A) [87].  

It is inferred by the arguments of G.M Amdahl [85] that the speedup of a program using 

multiple processors in parallel processing (computing) is limited by the sequential portion of 

that program.  For example, if a parallelized implementation of an algorithm (for a given 

problem size) can run 25% of the algorithm’s operations quickly while the remaining 75% of 

the operations is not parallelizable, then Amdahl’s law states that the maximum speedup of 

the parallelized version of the algorithm is 1/(1 - 0.25) = 1.33 times faster than the 

non-parallelizable version. In the case of parallelization, if P is the fraction of the program 

that can be made parallel and (1 - P) is the fraction that remain serial, then the maximum 

speedup that can be gained by using N processors is  

 
       

 

      
 
 

 3.1  

By solving the equation 2.1 with various values of N and keeping P constant, we can observe 

the diminishing return effect, i.e., at some point
1
 it will not be speedup any faster than the 

sequential portion of the program ( 1 - P), as shown in Figure 6. 

 
Figure 6: Amdahl's Law [88] 

In the words of Fred Brooks, “When a task cannot be partitioned because of sequential 

constraints, the application of more effort has no effect on the schedule.  The bearing of a 

child takes nine months, no matter how many women are assigned.” [86]. Although Brooks 

made this statement to illustrate the management of software projects, yet the principle 

                                                                 
1
 If we increase the value of N and keep the value of P fixed, then ultimately for the 

bigger values of N (approaches to infinity) P / N will approach to zero, and thus will 
not have any (significant) effect on speedup from that point on. 



  

19  
 

applies in hardware/software architectures, as well. To establish the fact, let’s use a simple 

Gedanken-experiment to see how adding more and more processors for the execution of a 

program does not help much in speeding up the rate of time of execution. Assume that a 

given program takes 30 minutes for the execution of its parallel portion and 10 minutes for 

the execution of sequential portion. Intuitively, running the program on a single processor 

will take 40 minutes, whereas if we run the program on 10 processors in parallel then the 

execution time significantly drops to the 13 minutes. Now, if we run the program on 30 

processors, then the execution time will drop to 11 minutes; the addition of 20 more 

processors just reduces 2 minutes. Table 1 illustrates the effects on the execution time of a 

given problem by adding more and more processors. Note that by increasing the number of 

processors from 100 to 1000 (a 10 times increase) we can achieve only 0.97 times speedup. 

Table 1: Effects of adding processors on execution time of a given problem  

 

Number of 

Processors 

Execution 

Time (in minutes) 

1 10 30 100 1000 

Parallel Portion 30 3 1 0.3 0.03 

Sequential 

Portion 
10 10 10 10 10 

Total 40 13 11 10.3 10.03 

The researchers/developers should pay due intention on the fact whether there simulation 

model has much potential for parallelism or not; equally important, they should also consider 

the Amdahl’s law while designing the architecture of PDES, and should adopt a scheme that 

facilitates the parallel execution of simulation model rather than hindering it. For example, if 

task A is dependent on task B for any reason such as lock retrieval etc., then the developers 

should not split the simulation model in such a way that task A and task B are assigned to two 

different LPs. As if they do so, then an LP can (unnecessarily) become dependent on some 

other LP, such as waiting for the retrieval of the lock etc., which will cause additional delay 

and will affect the overall execution time of the simulation run; by assigning both the tasks to 

the same LP can save this unnecessary block. 

2.1.2.3 Adherence to the causality constraint 

Another crucial challenge in developing a PDES is to adhere to the causality constraint. The 

algorithm described earlier for a sequential discrete event simulator, and accordingly its 

model, does not support parallel execution of processes. Naïvely attempting to use this 

algorithm in parallel may yield frequent causal violations. To illustrate this, consider the 

following scenario (taken from [4]): we have N number of processors to run the discrete 

event simulation in parallel. The central scheduler will be continuously removing events from 

the event list. Thus, k events may be processed by k processors in parallel at any time t. 



Consider that we have two events E1 and E2 with time stamps T(E1) and T(E2) respectively 

such that 

T(E1) < T(E2) 

Both events are assigned to different CPUs to process them, in time stamp order. Now 

suppose a new event E3 is generated by the processing of E1, with time stamp T(E3) such that 

T(E1) < T(E3) and T(E3) < T(E2) 

Then a problem will arise because E2 has already been scheduled to be processed and the 

processing of E2 may cause changes in the system variables that E3 depends on, thus leading 

to a causality violation. Hence, the fundamental challenge is to decide upon the execution of 

two events E1 and E2 in such a way that  

i. If both events do not interfere then they may be executed in parallel, and 

ii. If they have a dependency, then they must be executed in the correct sequential order. 

FIFO channels (queues) are used for inter-LP communication in the underlying PDES 

architecture, to take the advantage of the FIFO characteristics of a queue [4]. This FIFO 

characteristic suggests a means to prevent the causal violation in the parallel execution of a 

discrete event simulation. This idea is called Local Causality Constraint, and is defined by 

Overeinde, et al. as: 

“A discrete-event simulation, consisting of logical processes that interact 

exclusively by exchanging time stamped messages obeys the local causality 

constraint if and only if each LP processes events in non-decreasing time 

stamp order.” [31] 

This constraint assures no causality violations if one adheres to this local causality constraint. 

Intuitively, this constraint ensures that ‘cause must precede the effect’. To illustrate this, 

consider two events E1 and E2 with time stamps 10 and 20 and scheduled on LP1 and LP2 

respectively. Now consider that the processing of E1 may generate another event E3 having a 

timestamp lower than 20, say 16 and that execution of this event is scheduled on LP2. The 

local causality constraint demands the processing of E3 before E2, and thus ensures sequential 

execution of all three events in non-decreasing time stamp order. 

It is important to note that the local causality constraint is a sufficient condition and not a 

necessary condition [32] as two events in the same LP may have different timestamps 

without any direct or indirect dependency between them. Thus, the execution of such events 

in parallel will not cause any causality violation.  

The two fundamental properties of correctness called liveliness and safety, of a PDES can be 

defined by taking local causality constraint as an underlying condition: 

Liveliness: Each event in the event list will eventually be processed successfully in correct 

timestamp order. 



  

21  
 

 Safety: Cause must always precede the Effect; each LP should process events in 

non-decreasing time stamp order. 

The liveliness property ensures that the PDES proceeds, whereas safety guarantees that no 

causal violation will happen in the overall execution of the PDES. Both properties 

complement the technique of using a local causality constraint to tackle the challenge of 

causal violation. However, some questions still needed to be answered, such as whether two 

events E1 and E2 with the same timestamps, should be executed in parallel or in sequence? 

Another question is how can we know the events' outputs (i.e., whether any of them will 

produce another event having a timestamp lower than another event's or not?) in advance, i.e., 

without processing the events. A concrete example of this fundamental dilemma can be 

illustrated by a battlefield simulation in which two tanks A & B are on opposite sides of the 

battle. Assume that the time taken by the bomb shell from one tank to reach its enemy is one 

second. Now, suppose that in event E1: tank A fires at tank B with a 97% probability of a hit 

at timestamp 00152 and E2: tank B fires at tank A with a 99% probability of a hit at 

timestamp 00170 (with both timestamps in units of seconds). If processing of E1 succeeds in 

annihilation of tank B, then there is no sense in processing E2. But this fact can be known 

only after processing the E1, thus the decision to process or discard E2 is causally dependent 

on the processing of E1.  

Questions, such as how can we know about the system’s state beforehand and without 

actually performing the simulation? How to avoid causal violations? How to decide about the 

concurrent execution of events? How to achieve a synchronous execution of parallel discrete 

event simulation? have been the focus of researchers for decades. Many approaches have 

been proposed to deal with these challenges. These approaches can broadly be categorized 

under the following two categories [17]: 

1. Optimistic 

2. Conservative 

Optimistic approaches relax the local causal constraint and allow the causal violation to 

happen for a while. They use a ‘detect and recover’ approach to deal with these causal 

violations, then a rollback mechanism is invoked to recover the earlier (correct) system state 

whenever a causal violation is detected [31]. The conservative approach, on the other hand, 

adopts a strategy where any causal violation is strictly avoided during simulation by using 

some mechanism to determine when it is safe to process an event in order to avoid the 

possibility of any causal violation ever occurring. 

2.1.3 Optimistic Approach 

In this group of protocols, the synchronization mechanism does not restrict LPs from 

receiving and processing events as they arrive. As this approach does not enforce a local 

causality constraint, it may cause a causality violation. The aim of this approach is greedy 

execution and the maximum utilization of the partitioning by allowing the LPs to advance 

based upon an optimistic assumption that no event will cause a causal violation. 



The advantages of this approach are that it offers a potentially larger speedup than 

conservative approaches and needs no prior knowledge about the possible interactions 

between LPs. The disadvantage of this approach, however, is that a possible causal violation 

will leave the system in an incorrect state. To address this shortcoming, the optimistic 

algorithms offer a mechanism to recover from this incorrect state by requiring that the PDES 

engine continuously stores the simulation state, then whenever a causal violation is detected 

the recovery mechanism rollbacks the system to the last state which is known to be correct. 

1. Time-warp algorithm 

A well known optimistic algorithm is the Time-Warp Algorithm proposed by Jefferson 

Sowizral in 1985 [33]. In this approach, each LP is allowed to aggressively process its local 

events and to send new messages generated by the event being executed, to other LPs. 

However, when an event arrives at any LP, which has a timestamp smaller than the local 

simulation time of that LP, then a causality error is triggered; such an event is called 

straggler. To understand the algorithm that is used, consider an LP, say LPi whose local 

clock is T(LPi) = 025. Now assume that it receives an event Ek with timestamp T(Ek) = 023, 

thus 

T(Ek) < T(LPi) 

This means that the simulation state may be incorrect following the simulated timestamp 

T(Ek). To recover from this potential error, LPi needs to restore the simulation to a correct 

state by performing a rollback to the saved state of a simulation time no later than T(Ek) then 

restarting the simulation from that state. This latest known correct state is also referred to as 

the last well known checkpoint [20]. These checkpoints are maintained by periodically saving 

the state of each LP. 

It may happen that LPi has already sent messages to other LPs after the simulation time T(Ek), 

thus potentially causing them to be in an incorrect state. Clearly, the subsequent rollback 

operation must include those LPs as well. Hence, LPi sends a special message called an 

anti-message to all such LPs. When an LP receives an anti-message, it examines whether it 

has processed the corresponding positive message or not. If it has not processed the 

corresponding positive message, then the anti-message and the (original) positive message 

will cancel each other. Otherwise, the given LP will have to perform a similar rollback 

operation and may have to send anti-massages to other LPs as well. This process ensures 

correctness at the cost of recursively throwing out all the incorrect states and messages out of 

the system. 

Performance considerations 

One major drawback of this class of protocols is that it requires a significant amount of 

hardware resources for storing the simulation state checkpoints. Further, some operations 

such as input and output operations cannot be rolled-back [32]. 

This problem, however, is handled by introducing the notion of Global Virtual Time (GVT) 

which is determined by the smallest timestamp of all the unprocessed events in the 

simulation. The track of GVT is kept for ensuring that there will be no roll-back to prior to 



  

23  
 

GVT. Intuitively, all but one of the saved states with timestamps smaller than GVT can be 

safely discarded safely and thus it is sufficient to save only one state having a timestamp no 

greater than GVT. Using this approach, I/O operations can be committed only when GVT 

will have advanced beyond the simulated occurrence times of these operations [32]. 

A significant decrease in simulation performance is caused by the overhead of anti-messages 

and frequent roll-back operations. Many improvements have been suggested by researchers; 

we will briefly overview some of these suggestions. 

2. Lazy cancellation 

The original Time-Warp algorithm uses the aggressive approach employing cancellation and 

a rollback strategy which causes an extra influx of anti-messages and recurrent rollback 

calls. In contrast, Lazy Cancellation does not send the anti-messages immediately after 

receiving a straggler message, but rather asks the LP to rerun the simulation after rollback 

and examine if this rerun also generates the same positive message or not. It sends 

anti-messages to other LPs only if this rerun does not generate the same positive message, 

otherwise there is no need to send anti-messages. 

The drawbacks of this approach are: 

 It may allow erroneous computations to advance further. 

 It requires additional time to determine whether the same messages are created or 

not. 

 It requires additional storage to record the positive message(s) sent. 

3. Lazy Reevaluation 

The lazy reevaluation scheme is also known as lazy rollback and jump forward, and in some 

sense is similar to lazy cancellation [32]. But this scheme deals with state variables whereas 

lazy cancellation deals with messages. It examines if there is some change in the state of the 

LP between the timestamp of the straggler message and the current local clock of the LP. A 

rollback operation is called if some change in the state of LP has occurred during that period, 

otherwise the LP jumps forward directly to the new state. 

Although this scheme prevents the simulator from performing unnecessary rollbacks, it 

demands additional storage and requires additional bookkeeping overhead, thus coding of 

optimistic protocols can be significantly complex. 

4. Wolf calls 

The wolf calls scheme was proposed with the intention of preventing erroneous 

computations from spreading widely. In this scheme, a control message is sent by the LP to 

all other LPs as soon as it receives the straggler. All the LPs freeze their computation 

immediately after receiving this control message. 

A disadvantage of this scheme is that some correct computations may be frozen 

unnecessarily. In order to avoid this, application specific knowledge is required to know the 

speed of propagation of an erroneous computation and the speed at which the control 



message may be broadcast [32]. However, extracting this application specific information is 

a non-trivial task. 

5. Optimistic time windows 

In order to reduce the number of causality errors, another scheme was introduced by Sokol, 

Briskoe, and Wieland [34]. They proposed an approach called Moving Time Window 

(MTW) to use a time window with a fixed size, say W. They suggested that the number of 

causality errors can be reduced if LPs are allowed to process events only within the interval 

GVT and GVT + W. 

However, critics question how the size of the window should be determined. Additionally, it 

is not easy to distinguish correct computations from the erroneous ones within this interval. 

It has been found that MTW provides better results only in some specific cases and offers 

little improvement in performance in general [32]. 

6. Direct cancellation 

An optimized approach was presented by Fujimoto for an architecture where multiprocessors 

share memory with each other [35]. This scheme, called direct cancellation, keeps track of 

the set of events which are the causal effect of an event's processing. To illustrate this, 

assume that a set of events E are scheduled as the result of processing an event Ek. The 

simulator keeps a pointer from Ek to E. If LPk needs to rollback and to cancel the effect of 

processing event Ek, then it can easily track the events E generated by the processing of Ek 

and can thus cancel them. 

This scheme is a good alternative to the anti-message approach, and exhibits good 

performance results on shared memory multiprocessors [35]. The disadvantage of this 

approach is that it is specific to multiprocessors with shared memory architecture, thus it 

cannot be applied broadly. 

7. Filter algorithm 

An improvement, called the filter algorithm, was proposed in conjunction with time-warp to 

reduce the cascaded rollbacks with respect to the spread of erroneous computation [36]. 

Unlike the wolf call scheme, the filter algorithm does not require freezing the correct 

computation; rather it requires each LP to keep the track of some information, such as the 

rollbacks carried out, total number of messages sent so far, etc. 

Although this scheme reduces the number of cascaded rollbacks, it adds additional 

overheads to the standard time-warp approach by introducing requirements to track some 

additional information [36]. 

All of the above different flavors of synchronization algorithms belong to the optimistic 

approach, in that all attempt to exploit the non-zero probability of having no causal error by 

not strictly sticking with the local causality constraint, thus allowing LPs to process the 

events as they arrive. In next section we will discuss another set of synchronization protocols 

called conservative, which firmly enforce the local causality constraint. 



  

25  
 

2.1.4 Pessimistic (conservative) Approach 

The first parallel simulation mechanism was based on the pessimistic or conservative 

approach [17]. In the late 1970s, Chandy, Misra, and Bryant independently developed the 

algorithms which are often referred to as Chandy-Misra-Bryant (CMB) protocols [32]. Since 

that time, a wide range of improvements, optimizations, and variations have been proposed, 

but all of them share a common requirement that ‘cause must precede the effect’. 

The principal idea of the conservative approach is to strictly avoid causal violations. Hence, 

the local causal constraint is the focal point of the protocols belonging to this group of 

synchronization algorithms, which implies processing events strictly in a non-decreasing 

timestamp order. This approach is also called pessimistic, as it pessimistically considers the 

non-zero probability of causality violations occurring as a result of processing an event. 

Hence, all LPs avoid processing an event until a set of events is determined to be processed 

safely. 

The CMB mechanism is based on the following assumptions (see slide #22 of [37]): 

 The simulation model is comprised of a finite set of LPs. 

 Communication between all the LPs only occurs through the exchange of time-stamped 

messages. 

 The network topology will be static, thus LPs will not be created dynamically. 

 All LPs will be linked via some channels. 

 Messages will be sent in timestamp order through each channel. 

 The network will preserve the global message order and will provide reliable delivery. 

Intuitively, it can be concluded from above assumptions that timestamp Tk of the last 

message Ek on a specific link will be the Lower Bound on the Time Stamp (LBTS) of all 

subsequent messages on that link. This LBTS ensures that the LP having the current 

simulation time T(LP) = Tk will not receive an event at any time in the future whose 

timestamp will be less than T(LP) = Tk. Hence, the LP can safely process Ek without fear of 

any future causal violation. The events which can be processed safely are referred to as safe 

events. 

It is assumed, further, for the architecture of simulator that there is a FIFO queue and a clock 

is associated with each link. The primary characteristics of the FIFO queue ensure that the 

messages will be received by the LP in exactly the same order as they were sent and that 

messages will be sent in a non-decreasing order of their timestamps over a link. If the 

associated FIFO queue is empty for a particular link, then its clock will be set to the 

timestamp of the last received message; otherwise, the clock will be set to the message which 

is at the front of the queue [32]. 

The basic conservative algorithm can be expressed as (based on slide #23 of [37]): 

While simulation is not over do 

 Wait until there is at-least one message in each FIFO 

 Remove the event with the smallest time stamp from its FIFO 



 Process that event 

End 

An interesting question that may be raised here is: How can an LP determine this set of so 

called safe events whose execution will not cause any causal violation? To determine this set 

of safe events, the conservative algorithms depend on the following simulation properties [4]. 

 Estimated Input Time (EIT)  

 EIT is the smallest time stamp of all the events that will be received by a given 

LP in the future through any channel. 

 Estimated Output Time (EOT)  

 EOT is the smallest time stamp of all the events that will be sent in the future 

by a given LP to any other LP. 

 Lookahead 

 Lookahead is the difference between the current simulation time of a given LP 

and the timestamp of the earliest event that it will cause at any other LP in future. It 

can be determined either, for example, by calculating the delay of the associated link 

between two LPs in the delivery of a message, or the time taken by an LP to process 

an event. Suppose if an LPk having current simulation time T(LPk), requires T units of 

simulation time to process an event then it can be guaranteed that the LPk will not 

generate any event with a timestamp less than T(LPk) +  T. 

Based on these properties, an LP can now safely process the events which have a smaller 

timestamp than its current EIT as it is guaranteed that no message will arrive later having a 

smaller timestamp. But if an LP does not have events with a smaller timestamp than its 

current EIT, then it will be blocked and must wait for having some. This means that LPs 

which contain no safe events or have an empty queue must be blocked from processing
2
 until 

they get some safe messages to be processed. Enforcing these properties ensures that each LP 

will execute events only in non-decreasing order and consequently will adhere to the local 

causal constraint. However, this simple mechanism may lead to a deadlock situation if 

appropriate precautions have not been taken while designing the mechanism. Many 

approaches to keep causality constraint have been suggested by researchers; we will briefly 

overview some of these suggestions. 

1. Null-message algorithm (deadlock avoidance approach) 

Consider a situation where a number of LPs are cyclically dependent upon each other. Since 

the LPs can only process events which are safe to be executed, these cyclically dependent 

LPs may lead to a deadlock where all these LPs are blocked and waiting to receive a 

message from another LP in the cycle. This situation is illustrated in Figure 7. 

                                                                 
2
 Because the given LP may receive a message via this empty queue which will have 

a smaller timestamp than all of its other input messages via other channels. 



  

27  
 

 
Figure 7: Deadlock Situation (Cyclic Dependency) 

In the scenario illustrated in the figure 7, each LP's current EIT is less than the time of the 

event in its local event queue. Hence, no LP can process an event from their local event 

queue nor process any incoming message. As a result, each LP waits for a message from its 

direct neighboring LP, to increase its EIT. This situation is called a circular dependency and 

clearly results in a deadlock. 

A mechanism called the Null-Message Algorithm (NMA) was introduced by Misra and 

Chandy [39]. The Null Message Algorithm is also referred to as a deadlock avoidance 

approach, as it prevents the simulation model from falling into a deadlock. They proposed to 

use null messages in order to avoid deadlocks. In this algorithm, whenever an LP finishes the 

execution of an event, it sends a null message with a timestamp Tnull on each of its outgoing 

links with a pledge that it will not send any message with timestamp smaller than Tnull. These 

null messages are sent for only synchronization purposes and thus do not contain any 

simulation model related information, rather they are used to increase the EIT of all the 

neighbors of a specific LP. The time stamp Tnull of a null message, in fact, corresponds to the 

LP’s current EOT as determined by adding the value of lookahead to its current local time. 

Upon receiving a null message, each LP updates its EIT to a potentially greater value with 

respect to the Tnull and sends this information to its direct neighboring LPs; if this updated 

EIT has advanced beyond the events in the LP's event queue then these events can now be 

considered as safe events. 

This explains how null messages and the lookahead approach considerably reduce the 

possibilities of deadlock. The extended version of the basic conservative algorithm will be 

(based on slide # 26 from [37]): 

While simulation is not over do 

 Wait until there is at-least one message in each FIFO 

 Remove the event with the smallest time stamp from its FIFO 

 Process that event 

 Send null-messages to all direct neighboring LPs with Timestamp (Current Time + 

 Lookahead)  

End 

 



Performance considerations 

The performance of synchronization algorithms based on the conservative approach is highly 

dependent on the size of the lookahead. Intuitively, excessively large numbers of null 

messages will be exchanged by the LPs without making any actual progress if the size of the 

lookahead is small. This unnecessary flood of null-messages is due to the lookahead creep 

problem. To illustrate this, assume that we have two LPs. Both of these LPs are blocked at 

some simulation time say T = 0125, while their next events are scheduled at simulation time 

T = 0250. Now suppose that the value of lookahead is only 0001. This small value of 

lookahead will result in the transmission of 125 null messages in order to get next safe event. 

It is, nevertheless, argued that the actual size of lookahead is an inherent property of the 

simulation model rather than the synchronization model [4]. In a network simulation model, 

this size is usually determined by the link delay between nodes. This scheme works well 

with wired networks with large link delays, but fails with wireless networks when the link 

delay is relatively small. As a result, extensive research has been carried out to develop some 

techniques to maximize the size of lookahead for a simulation model. 

2. Deadlock Detection and Recovery 

Another alternative for dealing with deadlock was introduced by Chandy and Misra [41]. 

They suggest allowing simulation to enter deadlock rather than trying avoiding such a 

situation. In order to deal with deadlock situation, two complementary mechanisms were 

proposed: 

1. detect a deadlock, then 

2. resolve this deadlock. 

A deadlock can be detected by following an approach similar to that followed in general 

distributed computing [32]. The fact that messages with the smallest time stamp are always 

safe to execute, can be helpful in breaking the deadlock; or, alternatively, the lower bound 

can be computed to enlarge the set of safe events for execution. More details on these 

mechanisms can be found in [40, 41, and 42]. 

The deadlock detection and recovery method has the advantage that it completely avoids the 

null message traffic, and further it does not prohibit cycles with zero timestamp increment; 

although it may give poor performance if there exist many such cycles. Critics say that a 

deadlock, nonetheless, may occur frequently if there are relatively few messages compared 

to the number of links in the network [32]. Furthermore, this scheme often results in 

sequential execution prior to occurrence of a deadlock. These facts can adversely affect the 

overall performance if the simulation model is prone to the deadlocks. 

3. Synchronous methods and conservative time windows 

Several researchers have proposed synchronous conservative methods which employ those 

LPs who cooperate within some interval of simulation time in order to: 

1. Determine their safe events, and 

2. then to process these safe events. 



  

29  
 

The focal point of these mechanisms is the notion of distance which is a subpart of the 

concept of lookahead. The distance can be defined as minimum amount of the simulated 

time taken by an event at one LP to affect the state of another LP [32]. This is the lower 

bound of the increment of the simulated time for an unprocessed event.  

A scheme employing a moving simulated time window was introduced by Lubachevsky [55] 

for reducing the overhead associated with the determination of safe events. The lower edge 

of the window is defined, in this scheme, as the smallest timestamp of the any unprocessed 

event. Hence, only those events whose timestamps fall into this window are considered as 

safe for execution. 

The problem with this Moving Simulated Time Window scheme is to determine the size of 

the window. If, for example, the size is too small, then there will be too few safe events; 

while if this size is too large then the simulation may behave the same way as it would 

without the time window. Application specific information, however, can be used to tackle 

this problem. This information can be obtained either from monitoring the simulation at run 

time, extracted by the compiler, or supplied by the programmer. 

4. Conditional events 

Another scheme, to determine the safe events, called conditional events was introduced 

which classifies the events into two categories: 

1. Definite events: The events which have smaller time stamps will be considered as 

definite events. Such events will definitely be processed and will not be disabled or 

canceled by other events. 

2. Conditional events: All the other events are considered to be conditional events and 

will be processed when some specific condition are fulfilled. To implement this some 

predicates are associated with the events; when the predicate is satisfied then the 

event is considered as a definite event. 

2.2 Comparison of Optimistic and Conservative approaches 

Many analytical and investigative studies have been conducted to explore and to evaluate the 

performance and other features of various strategies associated with either optimistic or 

conservative approaches. Some of the important findings are [32]: 

 There is no single approach which can satisfy all or most applications. An approach 

which provides good performance results for one kind of application may perform 

poorly for others. 

 Conservative approaches are criticized because of their poor performance due to the 

fact: 

o They cannot fully exploit the degree of parallelism available in the simulation 

model.  

o They rely heavily on the lookahead value, thus their performance is sensitive 

to small changes in the system which can affect the lookahead values and can 

potentially negatively affect the overall performance. 



o They are subject to an “avalanche effect”, where the efficiency is poor for a 

small message population but dramatically increases with growing input size. 

o The performance is modestly affected by the amount of computation required 

for each event. 

o Most of the techniques require the programmer to have an ample 

understanding of the system. 

o They require static configuration between the LPs, so LPs cannot be created 

dynamically. 

 Optimistic approaches inherently have greater overhead than conservative 

approaches. These overheads are rollbacks, periodically saving the state, fossil 

collection, calculation of GVT, etc. 

 Optimistic approaches are criticized because: 

o They are much more complex and harder to implement. 

o They are memory intensive. 

o They must be able to recover from infinite loops and arbitrary errors. 

o Their performance can be affected by factors such as the frequency of state 

saving, the granularity of each LP, etc. 

A very good comparison is presented in [43] by considering some operational principles of 

both approaches and some critiques of them. Table 2 explains the comparison of optimistic 

and conservative approaches. 

  



  

31  
 

Table 2: Comparison of optimistic and conservative approaches [43] 

Strategy 

Feature 
Optimistic approaches Conservative approaches 

Principle Relax the local causality 

constraitnt; a rollback mechanism is 

provided if a causality violation 

occurs. 

Strictly adhere to the local 

causality constraint. 

Synchronization If the local causal constraint is 

violated then some roll back 

mechanism is utilized to recover 

from this erroneous state. This adds 

state saving overhead. 

The solutions require blocking 

LPs to avoid the violation of 

local causal constraint. 

However, if appropriate 

precautions are not taken, then 

deadlock may occur. 

Parallelism Allow maximum exploitation of the 

parallelism provided by the 

simulation model. 

Do not allow the maximum 

exploitation of the parallelism 

provided by the simulation 

model. 

Lookahead No dependency on lookahead to 

achieve good performance. 

Relies heavily on lookahead 

for achieving good 

performance and to avoid 

deadlocks. 

Deadlock No deadlock problem Adopt detection and recovery 

strategy, avoidance strategy, or 

synchronous approaches. 

Memory 

Requirement 

Memory intensive Require less memory 

Configuration of 

LPs 

Network configuration may be 

changed dynamically 

Most existing approaches 

require static configuration 

Implementation Notoriously harder to implement; 

complex data manipulations. 

Easier to implement; 

straightforward 

implementation and data 

structures. 

Another study [84] presents a very good comparative study of optimistic vs. conservative 

simulation. Nonetheless, selecting an approach is a matter of choice; however, if state-saving 

overhead is managed appropriately then optimistic approaches are good for general purpose 

simulation. Nonetheless, if one has deep and complete application specific knowledge of the 

system to be simulated, then the conservative approach offers greater potential performance 

[32].  



Chapter 3. 
 

Related Work 
 In this chapter, we will analyze a selection of contemporary simulators in terms of 

their PDES capabilities, architecture, programming language, and scalability.  

3.1 PeerSim  

PeerSim [14] is considered to be the most used simulator at present. A recent survey [65] 

concludes by saying “Among in these surveyed simulators PeerSim is best for p2p 

researchers…” PeerSim is a Java-based overlay network simulator for P2P, which has been 

designed to support scalability and dynamicity [65]. It offers two models of simulation: 

i. Cycle-based and 

ii. Event-based 

In cycle-based mode, PeerSim sequentially executes all node protocols in one cycle, and 

developers can add control objects between two cycles. These control objects are used to 

add/remove nodes or to monitor the values of specified variables. In event-based simulations, 

events are defined along a time-axis and there may be zero or more events for each tick of 

time. 

A cycle-based engine simulation is simplified as it ignores the transport layer in the protocol 

stack and it lacks support for concurrency [66], whereas an event-based engine simulation is 

more realistic as it supports dynamics and can simulate protocol stacks but decreases 

simulation  scalability [14, 67, 68]. Some of the advantages and disadvantages [based on 66] 

of PeerSim are given below: 

Advantages:  

1. Offers very high scalability
3
, 

2. two modes (cycle-based and event-based) of simulation model, 

3. supports some well known models, and 

4. supports dynamic networks. 

Disadvantages:  

1. No support for distributed simulation, 

2. poor documentation (only the cycle based engine is documented), and 

3. no details of underlying communication protocols. 

 

 

                                                                 
3
 Cycle-based engine offers support for 10

6
 nodes [65]. 



  

33  
 

3.2 OMNet++ 

OMNet++ [26, 70] is a discrete event simulation environment, which is written in the C++ 

programming language. OMNeT++ itself does not provide components for simulations, 

instead there are simulation frameworks and models which are used with OMNet++ [65]. It 

has extensive GUI support, and its modular architecture makes the simulation kernel easy to 

embed into one’s own applications. It has been successfully used in other areas such as 

simulation of IT systems, queuing networks, business processes, and hardware architectures 

[65]. It natively supports PDES by implementing the conservative NMA and the 

Ideal-Simulation-Protocol [26]. 

For distributing a simulation model to a set of LPs, OMNet++ uses a placeholder scheme [4]. 

In this scheme, a simple placeholder module is automatically created for each module which 

is assigned to a remote LP. When a message arrives at a placeholder module, it transparently 

marshals that message and sends it to the real module in the particular LP; that particular LP 

then un-marshals the message and processes it. Some advantages and disadvantages of 

OMNet++ [65] are given below: 

Advantages: 

1. Extensive GUI support, 

2. Support for multitier topologies, and 

3. Reusability of simulation models. 

Disadvantage: Low scalability
4
 

3.3 OverSim 

OverSim [69] is an open source overlay and P2P network simulation framework for the 

OMNeT++ [26, 70] simulation environment. The programming language of OverSim is C++. 

This P2P simulator contains several models for structured (such as Chord [71], Kademlia [51] 

etc.) and unstructured (such as GIA) P2P protocols. It is a widely used P2P simulator and is 

reported [64] to simulate up to 100,000 nodes in an event-driven fashion. It shares many 

characteristics with OMNet++ such as GUI interface for validation and debugging of new or 

existing overlay protocols [65].  

3.4 NS-2 

NS-2 [73, 74] is a discrete event simulator which provides substantial support for simulation 

of TCP, routing, and multicast protocols over wired and wireless networks [65]. NS-2 

performs simulation using a mixture of C++ and OTCL [76] (an object oriented version of 

TCL [75]). NS-2 uses Network animator [78] (Nam) to provide visualization. Nam also 

allows the users of NS-2 to arrange network graphs to aid in debugging and designing of 

network protocols. Because of its realistic nature, the major drawback of NS-2 is scalability 

[66] and the simulation of larger networks is very difficult (if not impossible) [77]. 

                                                                 
4
 OMNet++ can be scaled up to 1000 nodes [65] 



3.4.1 PDNS (Parallel/Distributed NS) 

PDNS [72, 77] constitutes the parallel simulation architecture of NS-2 [4]. It coordinates 

distributed instances of NS-2 (which executed the partitions of the parallel simulation model) 

by employing a conservative synchronization algorithm [4]. These instances (or LPs) are 

called federates in PDNS terminology, and the links between nodes in different federates are 

replaced by dedicated ‘remote links ’, which implement PDES functionality. PDNS is built 

upon two communication libraries (LibSynk and RTIKIT) for providing actual inter-federate 

communication. 

3.5 PlanetSim 

PlanetSim [79] is an object oriented simulation framework for P2P overlay networks and 

supports structured and unstructured P2P simulation [66]. It is written in Java and is based on 

the query-cycle approach which makes its parallelization rather straightforward [64] as each 

process has to be processed separately, at each simulation step. It is, however, criticized for 

not providing any mechanism for statistics gathering [65], and for limited simulation of the 

underlying network [66]. 

3.6 DSIM 

DSIM [80, 81] is a PDES which is based on an optimistic synchronization approach, and 

designed to run on a large scale simulation cluster comprised of hundreds of thousands of 

independent CPUs [4]. DSIM employs a variant of time warp synchronization algorithm. 

Resource management is performed by a local garbage collection algorithm, which increases 

locality by immediately reusing freed memory. 

A comprehensive survey and comparison of a wide range of contemporary P2P simulators is 

given in the 8
th

 chapter of [4], and in [65-68]. Interestingly, none of the P2P simulator 

reviewed in the cited surveys [65-68] seems to support parallel simulation to exploit 

multi-core architectures. One reason for this fact is explained in [64] as: 

“In our opinion, the relative failure of PDES in this context 

comes from the fact that the simulation of distributed systems 

(such as P2P protocols) is different from the simulations 

classically parallelized in the PDES literature.” 

  



  

35  
 

3.7 Summary 

Table 3 presents a detailed summary of all the above explained P2P simulators. 

Table 3: Detailed summary of different P2P simulators (based on [65] and [66]) 

Simulator 

Feature 
PeerSim OMNet++ OverSim NS-2 PlanetSim DSIM 

Architecture 

Query-Cycle 

and 

Discrete event 

a modular 

simulation 

framework, 

Discrete 

event 

a modular 

simulation 

framework, 

Discrete- 

event 

discrete 

event 

an object 

oriented 

simulation 

framework 

discrete 

event 

Programming 

Language 
Java C++ C++ C++ Java C++ 

Scalability 

(Max. nodes) 
10^ 6 nodes

5
 1000 100,000 NA 100,000 NA 

Statistics 

Gathering 

Components 

can  be 

implemented 

for gathering 

statistical 

data 

NA 

A Global 

Observer 

module can 

be used as 

a statistics 

collector 

NA 

no 

mechanism 

for 

collecting 

statistics 

NA 

URL 

http://peersim.

sourceforge.n

et/ 

http://www

.omnetpp.o

rg/ 

http://www

.oversim.or

g/ 

http://n

snam.is

i.edu/ns

nam/in

dex.php

/Main_

Page 

http://proje

cts-

deim.urv.ca

t/trac/plane

tsim/ 

http://ass

assin.cs.r

pi.edu/~c

heng3/dsi

m/ 

 

  

  

                                                                 
5
 Only by using cycle based engine. 

http://peersim.sourceforge.net/
http://peersim.sourceforge.net/
http://peersim.sourceforge.net/
http://www.omnetpp.org/
http://www.omnetpp.org/
http://www.omnetpp.org/


Chapter 4. 
 

Design and Architecture 
 In this chapter, we will describe the overall architecture of our proposed PDES, 

“HydraNetSim”. We will first identify the objectives and the challenges to achieve our 

ultimate goal of parallelization of discrete event simulator, and then we will describe our 

proposed architecture. 

4.1 Objectives 

We have formulated a couple of steps (primary and secondary objectives) by identifying 

main challenges to achieve the desired parallelization. The primary objectives are essential 

components required to develop a fully functional simulator; whereas the secondary 

objectives are improved efficiency and improved performance as compared to the current 

SDES. 

4.1.1 Primary Objectives 

The primary objectives can also be seen as milestones. These objectives are stated and 

classified in the following paragraphs. 

1. Partitioning 

The first challenge in developing a parallel simulator is to choose a specific type of scheme 

for exploiting parallelism. This scheme must ensure the division of simulation model into 

multiple, but finite number of parts in such a way that all these parts can be executed in 

parallel on independent processing units on different cores. To achieve this partitioning we 

need to consider the issues described in the following paragraphs. 

a) Interoperability 

Once the simulation model is decomposed into a finite number of sub-modules called 

partitions, the next challenge is to properly manage and organize these partitions to 

ensure cohesion. Since each of these partitions represents a different and distinct part 

of the simulation model, therefore they must work cohesively in coordination with 

each other to ensure interoperability. This challenge of managing the partitions can be 

further broken-down into the following tasks: 

 Coordination of partitions, 

 Collecting and aggregating the simulation output from them, and 

 Writing this output to the database 

b) Experiment definition 

Another important challenge is how to distribute the experiment set (or simulation 

scenario) over these LPs? How should LPs read and write to the database? 



  

37  
 

c) Assignment of nodes 

The simulation is run by simulated nodes on each LP. The configuration and 

definitions of these nodes will be loaded from a database, and then the nodes will be 

assigned to each LP. A crucial challenge is how to assign simulated nodes to each LP? 

Further, how should we balance the subsequent load on the processors as we assign 

the nodes to different LPs?  

2. Support User behavior 

It is necessary to support the user behavior
6
 to obtain realistic results when running a 

simulation of a (P2P) system. HydraNetSim should be capable of supporting node churn, 

workload, and use properties. 

3. Determinism 

The random number generator (RNG) must generate the same sequence of numbers for each 

simulated node; no matter how many processes are used for simulation. 

4. Synchronization among all the LPs 

The core and real challenge when building a functional PDES is to keep all the LPs fully 

synchronized. Synchronization among all the LPs is critical for getting correct results from 

the simulation. The simulator may produce erroneous results if the LPs are not synchronized 

with each other, and thus the simulation will fail to exhibit the desired behavior. 

5. Message Routing 

Equally important challenge is correctly and reliably routing of each message to its intended 

recipient(s), regardless of whether the receiving node is running on a local LP or on a remote 

LP with respect to the sender. 

6. Gathering and writing of simulation results 

Another fundamental objective is to gather the output results from each LP and then to store 

these results into a database. 

4.1.2 Secondary Objectives 

A couple of secondary objectives have been proposed for refining the architecture of 

HydraNetSim. These additional objectives are: 

 Balancing the subsequent load between LPs while assigning the nodes, 

 Adopting an optimal synchronization scheme which yields synchronous LPs, and 

 Minimizing the synchronization overhead. 

In the next section, we will explain the architecture of our simulator. 

4.2 Architecture 

We have discussed different optimistic as well as conservative approaches in chapter 2. 

While choosing an approach is purely a matter of choice, there are some characteristics of 

                                                                 
6
 Explained in chapter 2. 



these two alternatives which can lead to a particular approach being more attractive for one to 

adopt. 

The implementation of a conservative approach is easier and more straightforward in 

comparison with the implementation of an optimistic approach [43]. Furthermore, a 

conservative approach offers greater potential performance, especially when developer is 

fully aware of application specific knowledge about the system to be simulated [32]. 

We have decided to adopt a conservative approach because: 

 It promises to completely avoid the possibility of getting erroneous results, rather than 

producing incorrect results and then recovering using a roll back from an erroneous 

state. 

 Since we have a deep understanding of the system that we wish to simulate, we can 

exploit the potential promises of a conservative approach. 

 Implementation of a conservative approach is relatively easy in comparison to 

implementation of an optimistic approach. 

 Optimistic approaches intrinsically have greater overheads (such as GVT, rollbacks, 

periodically saving states, etc.) in comparison with conservative approaches. 

In the following subsections, we will explain the architecture of our simulator based on a 

conservative approach. 

4.2.1 Partitioning 

A PDES can be depicted as a collection of a finite number of sequential discrete event 

simulators each executing on different processers and which can communicate with others 

only through time-stamped messages called events. Therefore, the very first challenge in 

developing a PDES is to divide the simulation model into a finite numbers of partitions in 

such a way that each of them can be executed on a separate processing unit in parallel with 

the other partitions. 

We have explained, in section 2.1.1, space parallel partitioning divides the system into a 

finite number of partitions called LPs, where each LP is composed of a cluster of nodes 

which in turn is mapped to a different processer. This paradigm offers great potential for both 

execution speed and network size scaling up in proportion to the number of processors. Thus, 

we will adopt the space parallel decomposition paradigm for decomposing our network 

model. The implementation details of this will be explained in the paragraphs below. 

A subsequent challenge which arouse as the result of partitioning is how to coordinate and 

manage the LPs. This management and coordination will actually tackle the challenges of 

how to assign an experiment to each LP, how these LPs will be set up for an experiment, how 

these LPs will read/write to the database, and how results will  be obtained from each LP. 

Master/Slave paradigm 

We have devised a master/slave approach to tackle all these challenges. In this simple 

scheme, we have formulated two types of processes: 



  

39  
 

1. Master: The master will coordinate all the LPs and will send instructions to each of 

the LPs for loading the experiment and it will write the simulation results to the 

database as they are received from the LPs. 

2. Slave: The simulation model will be divided into a finite number of LPs which will 

carry out the simulation.  These LPs will be called slaves
7  and will be managed by a 

master. 

The master does not run any part of the simulation; its only job is to instruct the slaves how to 

set up a simulation run, to initiate the simulation run, and to write the simulation results to a 

database after receiving results from the slaves. The slaves and the master will each have 

their own local copies of the database. In spite of having their own copies of database, the 

slaves will not write anything to their own copy of the database, but rather they will send all 

their simulation results directly to the master. On the other hand, the master will receive these 

simulation results and will write these results to the database. The master will adopt some 

scheme to avoid redundancy and to preserve correctness; this scheme will be explained in 

section 4.2.7. Slaves will not set up the experiment on their own, instead the master will send 

them instructions about the name of an experiment that the slave is to load from the database, 

and then the slave will start processing its own part of the simulation. 

The master will be started by giving it appropriate arguments, such as: 

 Database name, 

 Experiment name for simulation run, and 

 Total number of slaves. 

The format of the command to start the master will be: 

-mode master -database <dbName> -experiment <expName> -slaves <numberOfLPs> 

As a result of this command, the master will be started and will remain in ‘waiting mode’ to 

receive the connection requests from the slaves. By using the term ‘waiting mode’, we mean 

that a process is although active, but is waiting for some other process to perform some 

activity so that it can continue its processing. 

Each slave that is started will be given the network address of the master. Each slave will 

send the master its IP address (and port number) in a connection request in order to 

establishing a channel to the master. The master and slaves will communicate with each other 

using a channel-based communication protocol CUSP [46]. CUSP is briefly explained in 

subsequent paragraphs. 

A typical command for starting a slave will be: 

-connectTo <Network Address of master> < port number> 

As the result of this command, the slave will be connected to the master and will wait to 

receive instructions to set up the simulation run from the master. 

                                                                 
7
 ‘LP’ and ‘slave’ have same meanings and concept in our model. Therefore, we will 

use slave and LP alternatively for our convenience, in rest of the report. 



The master will receive connection requests and populate an ‘LP information table’ (LIT) 

containing the network addresses and port number of each of the slaves. The master will 

assign a unique ‘id’ to each LP in this table. This LIT will help a slave to establish a 

connection with its peer slaves. The format of LIT is shown in Table 4. 

Table 4: LIT 

 

Id Network Address of LP entryPoint 

X x.x.x.x:x X 

 

 
 

N z.z.z.z:z z 

Once the master receives a connection requests from all of the slaves, it will reject any further 

connection requests, and will send a copy of the LIT to each and every slave along with its 

simulation set up instructions. The format of the LP configuration message (LCM) sent by 

the master is shown in figure 8. 

                

assignedID dbName expName LPInfoTable 

 

 
 

Id Network Address of LP entryPoint 
Figure 8: LCM 

The details of LCM are as follows: 

Table 5: LCM Description 

assignedID  
The assignedID is the ‘id’ of a given slave as assigned by the 

master in the LIT. 

dbName The dbName is the name of the database. 

expName 
The expName is the name of the experiment which will be loaded 

by the slave, for simulation. 

LPInfoTable  

The LPInfoTable will act as an ‘LP lookup table’, and will contain 

the necessary information about all the slaves participating in the 

simulation run. 

Although each slave will now have all the necessary information for starting the simulation it 

will not start the simulation yet, as it first needs to establish a channel with: 

i. peer slaves for sending/receiving messages, and with  

ii. the master for sending log entries.  

  



  

41  
 

The communication between master and peer slaves is depicted in Figure 9. 

Slave Master

connect: <entry point>

registered <lpInfoMessage>

get logForwarder: remoteLog

PeerSlave

remoteLog <outStream>
connect: startConversation

connected <outStream>

 

 Figure 9: Master/Slave Communication 

The network topology, as a result of using this paradigm, will be a fully connected mesh 

topology where each slave will be connected with every other slave and with the master as 

well as shown in figure 10.  

 
 Figure 10: fully connected MESH topology 

Communication Protocol 

We will use a channel-based, TCP like protocol called CUSP [46], as communication 

protocol for exchanging messages between different components of our model over the 

network. CUSP is a transport protocol implemented on top of UDP. CUSP is specifically 

designed for complex and dynamic network applications. It has been built on the ideas of 

SST [47] and SCTP [48]; it divides the transportation connection into channels. These 

different channels are then responsible for low-level packet management and streams. 

Streams in CUSP are unidirectional, because not all messages expect an immediate or direct 

response; bidirectional streams are based on two streams. In spite of its feature-richness, 

CUSP can be implemented in few lines of code because of its simplicity. Please see [46] or 

[49] for further details. 

 



Partitioning scheme 

Once the slave has established conversation channels to communicate with the master as well 

as with its peer slaves, the next step is to load the named experiment from the database as per 

the instructions received from the master and to start the simulation. Each slave will create 

simulated nodes based upon the node definitions from the database. 

A crucial challenge here is to balance the load when assigning the nodes. We will follow a 

simple scheme to ensure this load balance. We compute mod of ‘node id’ from ‘total 

numbers of LPs’; if the remainder is equal to the id of this LP, then we create a local version 

of the ‘simulatorNode’. Otherwise, if the remainder is not equal to this LP, then we create a 

remote version of this ‘simulatorNode’ by setting the value of the remoteNode’s 

‘runningOnLP’ to the remainder. The node, in this way, is allocated based on: 

      

                    
 

If there are 3 LPs (having ids 0, 1, 2 respectively) participating in a simulation, then the slave 

with id 0 will read node definitions from the database and will instantiate the nodes shown in 

Table 6. 

 Table 6: Node Assignment Scheme 

<Node id> mod <total LPs> Remainder Running on LP 

0 mod 3 0 0 

1 mod 3 1 1 

2 mod 3 2 2 

3 mod 3 0 0 

 

N mod 3 X X 

This scheme will be followed by each LP giving a uniform and identical way of node 

creation. Additionally, this scheme provides additional, but handy information about which 

node is running on which LP. Note that since each node follows the same algorithm, it also 

knows which node every LP is assigned to. 

Simulator Node Structure 

This partitioning scheme yields two kinds of nodes: local and remote nodes. 

1. Local nodes are assigned to a given LP and will be local for that LP. 

2. Remote nodes have been assigned to other LPs, hence they will be remote relative to 

that LP. 

Each LP, consequently, will have to create two versions of simulator nodes: 

i. Local version: for local nodes 

ii. Remote version: for remote nodes 

The local version of the simulator node structure will provide the full structure of a simulator 

node and contains all the information associated with this simulator node. Table 7 shows 



  

43  
 

some of the most important information provided by a local version of a simulator node’s 

structure. 

Table 7: Important properties of the local version of a simulator node 

Property Description 

id Node's identifier. 

current address Current IP address of a node, if available. 

location Geographical location of a node. 

random Random number generator (RNG) of a node.  

isActive If node is currently active. 

isOnline If node is currently online. 

isRunning If node is both active and online, only then it is actually running 

the application and connected to the database. 

The remote version of a simulator node’s structure will only be used to maintain an 

up-to-date mapping of the remote node's ‘node ID’ and ‘IP address’. This remote simulator 

node’s structure acts as a stub for nodes running on remote LPs. The remote simulator node's 

structure is shown in Table 8. 

Table 8: Important properties of remote version of a simulator node 

Property Description 

id Node's identifier. 

current address Current IP address of a node, if available. 

location Geographical location of a node. 

running on LP LP’s identifier which is responsible to create and run the 

given node. 

We need these two versions of simulator nodes because of the turbulent behavior of nodes 

when simulating the churn in a P2P network. This remote version of a simulator node 

provides all the necessary information about a remote node, thus it is used to route a message 

to a node running on a remote LP. 

4.2.2 Support User behavior 

User behavior must be considered when designing a P2P system in order to obtain realistic 

results [4]. Therefore, a simulator must also be capable of supporting different aspects of user 

behavior. We have introduced a new component named the ‘churn manager’ to provide this 

capability. 

Churn manager Each LP will have a special component called churn manager to 

simulate churn, workload, and use properties of each node that is assigned to that particular 

LP. The churn manager will read the nodes’ properties from the DB and then simulate churn, 

workload, and use properties of each node accordingly. The churn manager will be 

responsible for the joining of simulated nodes, going on-line/off-line (scheduled leaves), or 

terminating (i.e., a crash) of nodes, assigning/removing the addresses of nodes into/from the 

address table, and assigning the workload to simulated nodes. 



The churn manager reads the information specific to a particular simulated node such as the 

random number generator (RNG), session/intersession duration, the ratio of on-line time vs. 

total (on-line + off-line time), workload, etc. The churn manager assigns an IP address to a 

node when that node will be created and joins the system; it removes these addresses from the 

address table when the nodes go off-line or crash. 

4.2.3 Determinism 

Determinism is a very important feature for any simulator, because otherwise simulation 

results will not be reproducible. In order to achieve determinism, we utilize a strategy based 

upon two flavors of RNGs: 

1. Global  

One central RNG will be used for everything that all LPs simulate synchronously, 

such as churn.  

2. Local 

Each node will have its own individual RNG that will be used for all simulation 

operations of that particular node. Importantly, the Global RNG will be used to seed 

the local RNGs of the nodes.  

By using a common scheme of RNGs we can ensure that when simulating churn of nodes all 

nodes run identically on each LP. If we initialize the global RNG to a given value, then we 

can re-run the simulation and expect to get the same results as for an earlier run with this 

same initial global RNG value. 

4.2.4 Major components of a slave 

After describing the underlying principles of our design, in this section we will explain the 

salient components of a slave. Figure 11 depicts the general skeleton of a slave: 

 

Figure 11: Salient components of a Slave 

Each LP will have its own copy of the DB; it will load the experiment from DB as per the 

instructions sent by the master. Furthermore, each LP communicates with all other LPs using 

CUSP as a communication protocol. We have explained the details about both (the DB and 

the CUSP) in previous sections. Now we will explain the details about components specific 

to a slave.  



  

45  
 

 Message handling stack 

The message handling stack is a container of components which directly deal with 

messages. This message handling stack consists of: 

o In-queue 

The ‘Message-Router’ adds any incoming event for a slave to its in-queue. 

These received events are placed into the event-queue for execution. 

o Event-queue 

Each slave maintains a central queue for execution of events. This event queue 

holds all the events (either local or remote) sorted by their timestamps for 

execution. The ‘Executer’ removes an event from the front of the event queue 

and processes that event. 

o Out-queue 

Any event which is meant to be sent is added to this queue. The ‘Executer’ 

will remove an event from the front of out-queue and forwards it to the 

‘Message-Router’ which will route the message to its designated receiver.  

o Message-Router 

The ‘Message-Router’ takes the message from the out-queue of a sending 

node and if the message is designated for a node on same LP then it puts that 

message into the in-queue of receiving node, otherwise it consults the ‘address 

table’ and routes the message to the LP which hosts the destination node. 

Furthermore, the message-router determines the delay or loss based upon a 

network model that is loaded from DB as part of the simulation. This delay is 

added to the local clock value to determine the timestamp which this message 

should have upon arrival at the destination. 

o Address Table  

Address table serves as a look up table for the ‘Message-Router’. This table 

associates each simulator node with an IP address (and UDP port number). It 

also stores information about which LP is responsible for a particular node. 

This information can be used to determine whether the node is running on a 

local LP or on some specific remote LP.  Figure 12 illustrates the message 

handling stack. 

 
Figure 12: message handling stack 

 



 Conversation channels 

 Each LP has two types of conversation channels: 

i. With peer slaves, and 

ii. With the master. 

o Conversation channels with peer slaves  

 As explained in section 4.2.1, each LP establishes a connection with 

every other LP. Figure 13 depicts the conversation channel between two 

slaves. The conversation channel is comprised of two streams: 

 incoming stream  

 Incoming stream will receive messages from peer slaves. 

 outgoing stream 

 Messages will be sent to the peer slaves via the outgoing stream. 

 
Figure 13: Conversation channel between LPs  

o Conversation channel with master 

 Each slave will establish, as stated in section 4.2.1, a conversation channel 

with the master. This channel is unidirectional in that a slave will not receive 

acknowledgements or any other message from the master rather it will simply send 

(Log) messages to the master. The master, on the other hand, will receive these (Log) 

messages and will perform the required operations on them, for example either print 

them out or writing them into the database. 

 Clocks 

Each LP has two types of clocks: 

o Local clock 

  Each slave has a ‘local clock’ for keeping the track of current 

simulation time. 

o Remote clock 

 A remote clock is associated with each conversation channel 

established with every other peer slave. This clock will be used to keep the 

track of LBTS from the specific peer slave associated with a given channel. 

 Churn manager 

 The churn manager is responsible for bringing the simulator nodes online and 

taking them offline. It assigns an address whenever a simulator node comes online or 

joins the system and registers that address in the address table. Similarly it removes 

the address from the address table when that node goes offline or leaves
8
 the system. 

Global RNG is used to assign addresses to a simulator node, in order to ensure 

                                                                 
8
Either it is planned or unplanned. 



  

47  
 

identical and synchronized information about nodes’ addresses. The details about the 

functionality of the churn manager have been explained in section 4.2.2. 

 Executer 

 Executer executes events and updates all the other components. 

The components of a slave can be, thus, categorized into the following two categories: 

localLP The localLP contains the components which are specific to this particular LP, 

such as executer, message handling stack, local clock, etc. 

remoteLP The remoteLP contains the components which are meant to communicate with 

peer LPs, such as outgoingStream, remote clock associated with a specific (remote) LP, etc. 

To realize all of this state information the local LP contains an array of RemoteLPs. Each 

element contains all the required components to communicate with and to keep track of the 

LBTS from this specific (remote) LP. The size of this RemoteLP array will be equal to the 

maximum number of peer (remote) slaves. Figure 14 shows the specialized components of a 

slave. 

 
Figure 14: LP components  

4.2.5 Message Routing 

The previous sections have described the skeleton for ‘HydraNetSim’. This section describes 

how the simulated nodes exchange time-stamped messages via message routers. There are 

two cases to consider: 

i. How to forward a message when both sender and receiver reside on the same LP? 

ii. How to forward a message when the receiver resides on a remote LP with respect 

to the sender? 

Whenever a simulator node needs to send a message to another simulated node (regardless of 

whether it is local or remote), it adds the message into its ‘out-queue’. If network congestion 

is to be simulated, then a delay is added and the message is forwarded to the ‘Message 

Router’. The ‘Message Router’ consults the ‘Address Table’ to determine the network 

address of receiver and the responsible LP which is hosting that receiver, for this message. 

The ‘Message Router’ determines the backbone delay or network delay and adds this to the 

message's timestamp. 

i. Routing a message to a local receiver 

If the receiver is also running on the local LP, then the ‘Message Router’ connects the 

bottom of sender’s message handling stack to the bottom of receiver’s message handling 



stack. The message is then added to the in-queue of the receiving node. This process is 

shown in Figure 15. 

 
Figure 15: Routing the message to a local receiver 

ii. Routing a message to a remote receiver 

If a message is destined to a receiver which is running on a remote LP, then the 

‘Message-Router’ determines this responsible (remote) LP. The ‘Message-Router’ 

identifies the outStream associated with that LP, based upon this (remote) LP's entry in 

‘RemoteLP’ (as explained in section 4.2.4). As it is already explained that each LP is 

connected with every other LP through a conversation channel, the message will be 

transferred through this channel over the network to the target LP (as shown in Figure 16).  

 
 Figure 16: Routing the message to a remote receiver 

The receiving LP will forward this message to its ‘Message Router’ which in turn 

forwards it to the ‘in-queue’ of receiving node. The receiving node will subsequently take 

the message out of the in-queue an place it into the ‘event-queue’; from where ‘Executer’ 

will extract it and process it. 

The ‘Message Router’ learns the current network address of a destination node from the 

‘Address Table’. As noted earlier we assume that churn for all simulated nodes is 

implemented globally (and synchronously) on each LP, hence the ‘Address Table’ will 

always contain an up-to-date address of a node irrespective of that this node is local or 

remote. The stub version of simulatorNode, as explained in section 4.2.1, will inform the 

‘Message Router’ which peer LP is responsible for as the destination node of a given 

message. This information (‘current address’ and ‘target LP’) is critical for ‘Message 

Router’ to successfully route the message to its destined receiver. 



  

49  
 

iii. Handling a received message 

Whenever a slave receives an application message, it will extract it from the in-queue and 

store it in its event execution queue by following a specific scheme. The following 

properties are useful to ensure a total order of events and to address the problem of 

concurrently arriving events, thus enabling all of the parallel executions to preserve the 

‘Local Causality Constraint’. 

 Departure time 

  Departure time is the timestamp when the message actually leaves the 

out-queue of the sender. If network congestion is to be simulated, then a delay is 

added into the sending timestamp of message. The ‘departure time’ is therefore: 

Departure time = message sending time + out-queue delay 

 Arrival time  

Arrival time is the timestamp when the message is received by the in-queue of 

receiver. The ‘Message Router’ adds the appropriate network delay to the timestamp 

of message before sending it through the physical network. Therefore, a message 

received in the in-queue of the receiver has a timestamp of the form: 

Arrival time = Departure time + network delay 

 Sender’s id  

The sender’s id is the identifier of the simulator node which originated the message. 

Whenever a message arrives at the in-queue of receiver, it is stored in the event queue 

according to its arrival time. If two events having the same ‘arrival time’ arrive at the 

receiver, then we sort and store them by comparing their ‘departure time’; if this 

‘departure time’ is also the same then we compare their originator’s ids and use this as the 

basis of sorting them. This scheme ensures consistent handling of the concurrently arriving 

events as all the received events are ‘totally ordered’ (as defined by Leslie Lamport in 

[45]) by following this scheme. 

Furthermore, repeating the simulation will give a consistent output. However, we should 

note that this result is not the same results as would occur if messages arriving at the same 

time and with the same departure times were randomly ordered when placing them in the 

event queue. 

4.2.6 Synchronization of slaves  

All the slaves will have loaded the experiment from the database and have started their 

simulation after creating simulator nodes; each slave can, also, now route messages to its peer 

slaves through established channels. Now, we need to enforce some synchronization scheme 

to prevent the slaves from producing erroneous simulation results.  

We have already explained that we will follow a conservative approach to avoid any causal 

violation. Before describing our proposed synchronization algorithm; it is helpful to illustrate 

a few concepts according to our model: 

 



o Estimated Input Time (EIT) 

 EIT is the smallest timestamp of all the events that will be received by a given 

LP in the future through any channel. For a slave, in our model, ‘EIT’ will be the 

minimum value of all ‘remoteClocks’ from the array ‘RemoteLP’, where each 

‘remoteClock’ is associated with a conversation channel to a specific remote LP, and 

represents the timestamp of last received event through that specific link. 

o Estimated Output Time (EOT) 

 EOT is the smallest timestamp of all the events that will be sent in the future 

by a given LP to any other LP. ‘EOT’ can rightly be replaced with LBTS; as, in our 

model, all the messages from a given LP to any other peer LP will be sent in a 

non-decreasing timestamp order, so each message will contain the lower bound on 

timestamps of all future messages from that LP. 

o Lookahead 

 Lookahead (LH) is the difference between the current simulation time of a 

given LP and the timestamp of the earliest event that it will cause at any other LP in 

the future. It is, in fact, the ability to look into future that yields the earliest time in the 

future when a given slave may send a message to any other peer slave. This prediction 

helps to determine the EOT. EOT can be computed as: 

EOT = current time + LH 

Here the ‘current time’ represents neither the EIT nor the current simulation time. We will 

explain this in detail when we explain the details of our algorithm. 

Assumptions for the Model 

As explained in section 4.2, we will follow a conservative approach to avoid any causal 

violation. We have devised a variant of NMA to ensure sticking with causality constraint. 

Therefore, all LPs are blocked from processing an event until a set of events is determined to 

be processed safely. 

The implementation of any algorithm belonging to the conservative family of 

synchronization approaches demands a deep understanding of system, and ample knowledge 

of the topology a priori. We will explain the salient features of our model here, in spite of the 

fact that some aspects have already been explained earlier in this chapter. Our model is based 

on following assumptions: 

o The simulation system will be consisting of ‘N’ LPs, where each LP will be 

connected with every other LP and thus can communicate directly to it. This means 

that we use a fully connected mesh topology as shown in Figure 17. 



  

51  
 

 
Figure 17: Simulation Model topology: Fully connected mesh topology 

o Each LP can send two kinds of messages to any other peer LP: 

Null message carries only the ‘current EOT’ of the sending LP. 

Application message contains application specific data and the ‘current EOT’ of the 

sending LP. 

o There will be further two sorts of ‘Application messages’ in our model: 

UDP messages These messages are meant to exchange application specific data 

between nodes. 

ICMP messages the purpose of these messages is to notify nodes about errors, 

such as receiver is unreachable (when a receiver goes offline while the message is 

in flight), receiver has not bound to the given port, etc. 

o These ‘Application messages’ can be further classified into: 

Local The designated receiver of given message resides on the same LP as 

the message sender. 

Remote The designated receiver of the given message resides on a different 

(peer) LP of the sender.  

All of these message types and their relationships are shown in Figure 18. 

 
Figure 18: Message Types 

o Each LP will have N-1 ‘clocks’ called ‘remoteClocks’; where each ‘remoteClock’ is 

associated with a communication channel established with a peer LP. 

o The only way to communicate between LPs will be through time-stamped messages. 

o LPs will send messages to each other only through streams over already established 

conversation channels. 



o Each LP has a ‘Local Clock’, which reflects its current simulation time. 

o There will be a central queue for each LP called the ‘event queue or execution queue’ 

in which all the local as well as remote events will be stored in  a ‘total order’ 

following the approach used for the ‘Lamport Clock’ [45]. 

o Messages will be sent strictly in a non-decreasing timestamp order. The network will 

preserve this order and will provide reliable delivery. 

o Each message in the queue will eventually be processed (the liveliness property as 

described in section 2.1.2.3). 

o All LPs will be started with same simulation time as their starting time. 

o Churn for all nodes will be simulated identically on each LP. Hence, a remote version 

of the ‘simulatorNode’ and ‘address table’ will have up-to-date information about all 

nodes. 

Synchronization algorithm 

We have designed our synchronization algorithm based on the objective: 

“Wait; until it is safe to process” 

Each LP remains in blocked mode (by default), i.e., it will not simulate any event, until it has 

one or more events which are safe for execution. To determine this set of safe events, we 

have formulated a set of properties for our model as explained at the start of section 4.2.6. 

The events in the event-queue of a given LP which have a timestamp less than its current 

‘EIT’ are safe to execute, because this prerequisite assures that there will not be any event in 

the future triggered by any remote LP that can have a  timestamp less than the current EIT of 

the given LP.  

As it has been already described that each LP will have a special component called 

‘Executer’ to execute the events, this ‘Executer’ waits for the current ‘EIT’ to be greater than 

the timestamp of the event which is currently at the front of the event-queue. Whenever ‘EIT’ 

is greater, then the executer will extract the event out of event-queue and process that event. 

It will continue this processing until it finds no event having a timestamp less than ‘EIT’. 

When an LP has finished execution of this set of safe events, it will stop its simulation and 

compute its current ‘EIT’. If this new ‘EIT’ is greater than the timestamp of events in the 

event-queue, then the LP will start simulating again, otherwise it will remain in ‘block mode’ 

until it determines a new set of safe events. 

To handle deadlocks we follow the deadlock avoidance scheme with some variations to the 

conventional CMB Null-Message-Algorithm [39]. In true spirit of CMB NMA, whenever an 

LP finishes the execution of an event, it sends a null message with its current simulation time 

as the timestamp Tnull on each of its outgoing links as a pledge that it will not send any 

message with a timestamp smaller than Tnull. This null message contains the current ‘EOT’ of 

the sending LP, and thus it is a LBTS of subsequent messages from that LP. Upon receiving a 

null message, each LP updates it’s ‘EIT’ to a potentially greater value with respect to that 

contained in Tnull and sends this information to its direct neighboring LPs. If the updated EIT 



  

53  
 

has advanced beyond the timestamp of events (at least the first event) in its event-queue, then 

these events can be considered as safe events, and therefore can be processed. 

Lazy Push mechanism 

Although this strategy is good for keeping the LPs in synchronization with each other and for 

minimizing the probability of a deadlock, it comes with a high synchronization overhead as 

many null messages must travel through the network after execution of each event. For this 

reason, we have changed the scheme to minimize the synchronization overhead. We call our 

strategy “Lazy Push” as it ‘sends a null message only when it is necessary’. During 

simulation a LP will either be in ‘block mode’ or in ‘simulation mode’, therefore we have 

divided our strategy into two parts, one to deal with each state. The details of this will be 

described in below. 

i. Simulation mode 

 A null message will not be sent eagerly, rather a null message will only be sent before 

starting the execution of safe events; specifically null messages will be sent only once 

before determining the set of safe events for execution. 

 No null message will be sent during the execution of safe events. 

 Each LP will send its current ‘EOT’ along with every application message to other 

LPs. 

This variant of classic NMA considerably decreases the frequency of null messages in the 

network, especially when there will be more safe events to execute.  

ii. Blocked mode 

This decrease in null messages is directly proportional to the magnitude of safe events. 

Therefore this scheme will work well until there are ‘some’ events to execute safely, 

otherwise it will continuously sending null messages when there are no more safe events 

for execution. This will produce a large number of null messages when the LPs are 

blocked. To address this overhead problem (which only occurs in ‘blocked mode’), we 

have made following additional change into our scheme: the null message will not be sent 

unless it can carry useful information. Therefore, if a null message ‘x’ contains an ‘EOT’ 

equal to the ‘EOT’ sent in its preceding null message ‘y’, then the LP will cancel the 

sending of message ‘x’. 

In this way, the LP will not continuously send null messages when it is in ‘blocked mode’, 

which will decrease the number of null messages in network.  

Implementation details 

In this section, we will discuss all the operational activities of a slave in general and the 

activities of a ‘simulation run’ in particular. We will further explain the implementation 

details of our scheme for synchronization. 

Each slave has established connections with the master and with every other peer slave in the 

network. This activity, termed as ‘make connections’, has been explained in detail in section 

4.2.1.  



The major sub-activities, nonetheless, in this phase are: 

 Establish a conversation channel with master, and 

 Establish a conversation channel with all peer slaves 

In next step, each slave creates the simulator nodes and initializes all of the necessary 

components, as explained in sections 4.2.1 and 4.2.4. This activity can be termed as 

‘initialization’. The major sub-activities in this phase are: 

 Create all components, such as ‘remoteLP’, ‘local clock’, etc. 

 Load the named experiment from the database. 

 Initialize all of the components, such as clocks with ‘some’ initial value. 

 Create node groups and local or remote versions for each simulatorNode. 

After creation and initialization, the slave is ready to start the simulation run. This is where 

we will enforce our synchronization scheme, in order to ensure correct (and consistent) 

simulation results. This step is termed as ‘start simulation’. The state diagram for a slave (up 

to this point) is shown in Figure 19. 

make connections

initialization

start simulation

 

Figure 19: (partial) State diagram of slave 

Simulation run details 

Initially the value of ‘Local clock’ will be set to some fixed value as the experiment’s starting 

time: 

Local clock = experiment’s starting time 

The slave will send its ‘EOT’ to every other slave before computing the EIT and determining 

the set of safe events. Initially, this ‘EOT’ will be 

EOT = LH + Local clock (experiment starting time) 

Intuitively, at this point ‘EIT’ will be equal to ‘EOT’ because the lookahead is a fixed value 

(and same for all slaves), and the local clock of all slaves is set to ‘experiment starting time’. 

Therefore, each slave will send the same value of ‘EOT’ to its peer slaves. This value is: 



  

55  
 

EOT = LH + Local clock (experiment starting time) = EIT 

Each LP will compute ‘EIT’ and will simulate the events having a timestamp less than this 

computed value. After reaching ‘EIT’, it will stop its simulation and examine the value of 

‘EIT’.  It will start simulating events having a timestamp less than this newly computed 

‘EIT’; if there are no such events, then it will remain in ‘block mode’ until it receives either 

some application specific message or a null message which potentially increases its current 

‘EIT’. 

Each LP, in this way, will simulate for a specific simulation time (until it is not safe to 

simulate further) and thus will advance beyond their peer LPs, then it will stop its simulation 

when there are no more safe events to process. At this point, the node will wait for its peer 

LPs to reach that same simulation point and to exchange their ‘EOT’ in order to allow the LP 

to start its simulation from that point. This synchronous behavior of slaves is depicted in the 

Figure 20. 

 
 Figure 20: Synchronous simulation of four slaves 

Sending null messages 

Each LP will send a null message to advance the simulation of every peer LP, before 

computing ‘EIT’. This message transmission is subject to the constraint introduced earlier, 

i.e., a null message will only be sent when it will have a new value of ‘EOT’ (i.e., different 

from its immediate preceding one null message). As pseudo code this can be stated as:  

    IF Tnull (y) NOT EQUAL Tnull (x) THEN 

     Send Tnull (y) 

    ELSE 

     Cancel Tnull (y) 

    ENDIF   

Where, Tnull (y) is the current null message, while Tnull (x) is its immediately preceding 

message. The format of the null message is shown in Figure 21. 

message type: null EOT 
Figure 21: Null message format 

 



Each null message and application message will contain the current ‘EOT’ of a given LP. It 

is already explained that each slave will be exclusively in one of two modes: simulation or 

block. So, we have introduced two different ways to compute the value of current EOT 

according to the current mode of given LP. 

Computing EOT 

‘EOT’ is a pledge of a given LP that it will not send any event in the future on a specific 

link to a specific peer LP containing timestamp less than this ‘EOT’. The value of ‘EOT’ 

will be computed in one of two ways (depending upon whether this LP is blocked or not). 

Case 1: Blocked Mode 

When the LP is in blocked mode, then ‘EOT’ will be equal to 

EOT = LH + EIT 

This is because the local clock will not be advancing in blocked mode, thus if we 

replace ‘EIT’ with the ‘current simulation time’ in this mode then it will try to send 

(one or more) ‘EOT’ each time containing the same timestamp. As should be apparent 

there is no need to do this more than once, because CUSP guarantees a reliable and 

ordered delivery of messages
9
. Furthermore, our proposed algorithm cancels sending 

of all such null messages containing the same value of EOT. Therefore, no peer LP 

will receive null messages from the given LP. There may be a deadlock in case of 

cyclic dependency (a worst case scenario). 

Case 2: Resume Mode 

When an LP is not in blocked mode, then ‘EOT’ will be 

EOT = LH + Local Clock (current simulation time) 

This is because the local clock will be advancing with the execution of events. 

Furthermore, in our design, ‘EIT’ will only be computing before starting the execution 

of safe events. So if we had chosen to send ‘EIT’ in place of the local clock value, 

then all messages would contain the same timestamp for that span of simulation 

mode. Instead we send a new pledge (‘EOT’) as it may advance the simulation time. 

Sending application messages 

Each LP can send application specific messages to its peer LPs at any point in simulation 

time. Such an application message will contain the current ‘EOT’ and some application 

specific data. The format of an application message is shown in Figure 22: 

EOT Application specific data 
Figure 22: Application message 

Since application messages will only be sent in resume mode, therefore 

EOT = LH + Local Clock (current simulation time) 

 

                                                                 
9
 It is claimed that, “The standard reliable transport TCP does not offer anything 

that CUSP cannot do equally well or better.” [46] 



  

57  
 

Receiving a Null/Application Message 

Whenever a slave receives a message, regardless of whether this message is a null or 

application message, it updates the clock associated with the link of the LP which sent this 

message (as a result, this may also update ‘EIT’). After updating its remote clock, it will 

re-compute its ‘EIT’, and if this new ‘EIT’ is greater than the previous value of ‘EIT’, then 

if it is blocked, it examines if it is now safe to resume and if so, then it switches itself to the 

simulation mode from blocked mode, otherwise it remains in the blocked state. 

In simulation mode, the ‘Executer’ removes safe events from the execution queue and 

processes them until it reaches the check bound, i.e., the computed value of ‘EIT’. Upon 

reaching the check bound, the ‘Executer’ stops its simulation and examines if it has received 

messages that have already increased ‘EIT’ and subsequently the check bound, as well; if 

so, then it resumes simulation until the new check bound and repeats its behavior; otherwise 

it remains in ‘blocked mode’ and waits for other LPs to reach the same simulation time 

point.  

The simulation state of each slave will flip-flop between two states: block and resume (as 

shown in Figure 23). 

 
     Figure 23: Flip-Flop of Simulation states 

Consequently, all the LPs will simulate in a synchronized fashion, and the simulation will not 

produce erroneous results as all simulations will only occur within the safe limits.  

This is how our scheme fulfils the desired properties of system, as discussed in section 

2.1.2.3, and preserves correctness: 

 Liveliness: Each event in the event list will eventually be processed successfully in 

the correct timestamp order. 

 Safety: Cause always precedes the effect; each LP processes events in non-decreasing 

timestamp order and thus adheres to the ‘local causality constraint’. 

4.2.7 Gathering and writing simulation results to the database 

Slaves will produce simulation results during a simulation run. These results are critical as 

this is the only way to analyze the behavior of an experiment running on the simulator. The 

simulator nodes produce log entries for debugging purposes, and/or to report some 

measurements (such as transmission speed, number of bytes uploaded, etc.). These 

measurements will be referred to as “statistics” because the simulation results will be in the 

form of statistical data, such as an average of values, sum of squared values for calculating 



standard deviation, etc. These statistical results are very important to realistically evaluate the 

behavior of any (P2P or network) application. 

As per our model, the slaves will run the named experiment and will produce simulation 

output. This output will not be written to the database by the slaves themselves, but rather 

each slave will send its results to the master. Additionally, the master will not be running any 

simulation and therefore will not generate any output of its own, instead it will simply gather 

the outputs from all the slaves and write this information to the database. 

There will be two types of output produced and sent by slaves: log message and statistics. We 

have proposed two different schemes for dealing with these two types of output. We will 

describe them separately in following paragraphs. 

i. Log messages 

Log messages are generated to keep the track of the simulation run’s output and are expected 

to be used mainly for debugging purpose. These log messages must be stored somewhere 

(usually into the database) to produce a persistent record. 

The processing of an event, in our model, may generate many log messages. This means that 

all such log messages will share the same timestamp as the event which originates them. The 

slaves will send these messages to the master for writing into the database. These log 

messages must be written in the same order as they were issued, but unfortunately there will 

be no information in these messages which could assist the master in ordering these 

messages. The gravity of problem further increases when more than one log message is 

generated and sent by a slave during the processing of a single event. 

We have already described in section 4.2.1, a slave will establish a conversation channel 

with the master before starting its simulation. This will create an outStream for sending 

messages through the network. Furthermore, we have stated that an assumption of our model 

is that the network and CUSP will preserve the order of the messages as they were sent and 

will also provide reliable delivery. So, whenever a log message is generated it will be sent to 

the master using the established connection and by sending it through an outStream. This 

outStream will ensure that all messages will be received in the same order as they were sent. 

This integrity of log messages provided by outStream and network jointly solves the 

problem of writing the log messages into the database in the correct order by the master. So, 

all a slave needs to do is to send the log message as soon as it is generated; then the 

outStream and the network will jointly ensure that the master will receive all these messages 

in the same order as they were originally sent. The master can write these messages in the 

order it receives them. This ensures that the master will write the log messages to the 

database in the correct order. This process is shown in Figure 24. 



  

59  
 

 
Figure 24: Writing log messages to the DB 

ii. Statistics information 

Simulation results are frequent measurements (such as transmission speed, number of bytes 

uploaded, etc.) produced as the result of a simulation run. This information is accumulated to 

give a meaningful result. This accumulated information is referred to as statistics in our 

model. 

These statistics are essential to visualize the simulation results in a graphical format. They 

are stored and aggregated in a collector within a logging period and then are sent to a 

statistics writer in aggregated form. Subsequently, they will be written to the database. The 

goal is to have a single record per statistic and log period in the database. Such an entry, in 

our model, is called a measurement.  

At the start of each simulation run, a ‘new’ statistic of the given name will be written to the 

DB and its values (measurements) will be updated periodically. Subsequently, multiple 

measurements may be generated corresponding to one specific statistic. A ‘measurement’ 

consists of: 

1. Average of all values since the last update. Following two measures are computed for 

calculating the average: 

i. Sum of all values since the last reset. 

ii. Count of all datapoints or values since the last reset. Both these values are 

needed to compute an average, i.e., 

Average = Sum / count 

2. Minimum and Maximum of values since the last update. 

3. Standard deviation of all values added since the last update. Additionally, following 

measure is computed to aid in calculating standard deviation. 

i. Sum of Squared values for calculating the standard deviation. 

A ‘statistic’ consists of: 

 Name of the statistic, 

 Label associated with this particular statistic, and 

 Type of the statistic. 

All measurements are categorized with respect to their ‘name’, ‘label’, and ‘type’ (statistic). 

So, there must be some mechanism for writing all measurements into the database based 



upon their particular category (as identified by the statistic's triple). The relationship between 

a statistic and a set of measurements is shown in Figure 25. 

 
Figure 25: Statistic-Measurements 

In Figure 25, ‘Stat id’ is used to couple all the measurements with their corresponding 

statistic, for writing into the database. This scheme should work if each slave itself writes 

these measurements into the database, but in our model the slaves sends all this information 

to the master which in turn stores the measurements into the database. All these 

measurements must be updated corresponding to the category they belong to. Therefore, 

there must be a consistent ‘Stat id’ on both master and slaves to ensure storage of the correct 

simulation results. For example, measurements sent by a slave under the category of 

‘statistic 1’ must be received and updated by the master as measurements belong to ‘statistic 

1’, and so on. This is illustrated in Figure 26. 

 
Figure 26: Sending and receiving measurements 

Nevertheless, this master/slave paradigm raises problems of how to handle multiple 

measurements belonging to the same category on the master’s side; i.e., how should the 

master will map a given measurement to its corresponding category? The severity of the 

problem increases due to the fact that the identifier ‘Stat id’ is provided by the database 

which, in turn is, accessible only to the master.  

We have formulated a novel systematic approach for sending/receiving simulation results 

over the network and writing them into the DB. Whenever a slave needs to send 

measurements to the master, it will first send the ‘statistic’ corresponding to that 

measurement. The master will, then, check whether it already has stored this category 

(‘statistic’) into the DB, if so then it will send the identifier ‘Stat id’ to the slave; if this is the 



  

61  
 

first time that it has received this ‘statistic’ then the master will store this ‘statistic’ into the 

DB and will send the ‘Stat id’ corresponding to that particular ‘statistic’. The slave will send 

measurements along with this ‘Stat id’ to the master; this additional information (‘Stat id’) 

assists the master in associating this received measurement with its corresponding ‘statistic’ 

and to correctly store the measurement into the DB. This process is shown in Figure 27. 

SLAVE MASTER

create Statistic: statistic

Stat id

measurement , stat id

DB

measurement , stat id

create Statistic: statistic

Stat id
{OR}

find statistic: stat id

 
Figure 27: Sending-Receiving-Storing a statistics measurement 

Statistic forwarding and storage into the DB is a four step activity: 

1. A slave will forward a ‘statistic’ to the master in order to store this in the DB. 

2. The master will receive this statistic  and examine whether it has already registered 

such a statistic: 

a. If so, then it will retrieve its corresponding id; 

b. Otherwise, it will store this new ‘statistic’ into the DB. 

In either case, it will send the corresponding ‘Stat id’ to the slave. 

3. The slave will then send a ‘measurement’ along with the ‘Stat id’ corresponding to a 

particular ‘statistic’. 

4. The master will receive and store this measurement into the DB, under its appropriate 

‘statistic’ based upon the ‘Stat id’. 

In this way, we store simulation results accumulated within a logging period in order to 

collect meaningful information. 

  



Chapter 5. 
 

Evaluation and Analysis 
 This chapter presents an evaluation of the HydraNetSim (based on our proposed 

architecture explained in chapter 4). As explained in section 1.2.1, we are interested in 

examining the: 

1. simulation speed of HydraNetSim in comparison with an SDES given the same 

(settings of  the) experiment, and the 

2. scalability (in terms of support for multiple parallel simulation nodes) of 

HydraNetSim in comparison with an SDES. 

5.1 Environment setup 

To explore the above mentioned features of HydraNetSim, we have chosen a simulation 

scenario of BuubleStrom [50] as our test scenario. BubbleStorm is defined as “a rendezvous-

based peer-to-peer search overlay” [57]. It is a probabilistic platform for exhaustive search 

based on random multi-graphs [58]. Generally, a rendezvous system is a distributed system 

that ensures that a query must meet every datum available in the system (it means that at least 

one node that has a copy of the data item will execute the query in its local dataset) [57 - 58]. 

The underlying topology of Bubblestorm can easily deal with crashes and node churn by 

connecting to different participants, as there is no need to maintain a particular tree shape 

[56]. The novel communication primitive (bubblecast) of the BubbleStorm on this topology 

provides optimal per-node bandwidth complexity even when every query must rendezvous 

with every datum [58]. For further details, please read [50], and [56 - 58]. 

We will consider the following two potential modes of the simulator: 

1. Non-parallel/ sequential (i.e. SDES), and 

2. Parallel (i.e.) with 2x cores slaves. 

The non-parallel mode is a SDES. This mode will provide a point of reference for evaluating 

the simulation speed and scalability of HydraNetSim. We will test the HydraNetSim under 

the following three modes: 

1. HydraNetSim -1Slave, 

2. HydraNetSim-2Slave, and 

3. HydraNetSim-3Slave. 

The tests are run on two different machines. The system details of both machines are given in 

table 9. 

 

 



  

63  
 

Table 9: System details of the two platforms that have been used to run the simulations 

 Processor 
No. of 

Cores 

No. of 

Threads 

RAM 

(in GB) 
Operating System 

1.  Intel® Core™ i5-2410M [59] 2 4 6 
Windows 7 

Professional – 64 bit 

2.  Intel® Core™ i7- 920 [83] 4 8 6 
Windows 7 

Professional– 64 bit 

5.2 Parameter configuration 

Tests are based on a simulation scenario using BubbleStorm, which is referred to as KV-BS. 

The tests are performed with the parameters settings as shown in Table 10. 

Table 10: Parameters settings for the simulations 

Parameters 
Values 

Performance test Scalability test 

Experiment scenario 

name 
KV-BS  KV-BS  KV-BS 

Average Number of 

online nodes 
1,000 2,000 3,000 

Number of fixed
10

 

nodes 
19 19 19 

Simulation time for 

accomplishing the 

scenario 

5h 5h 5h 

LH Last hop delay Last hop delay Last hop delay 

Total (online + offline) 

number of nodes 
19,600 39,600 59,600 

As explained in section 4.2.7, the simulation results are sent by the slaves to the master when 

running the simulator (HydranetSim) in parallel mode. This sending of results may incur 

network delay and is also dependent on the capacity of communication protocol (CUSP in 

this case), which is not the case when running the simulator (as a SDES) in single mode. For 

the sake of a fair analysis, therefore, we run our all tests (whether running in SDES mode or 

HydraNetSim) by factoring out the time taking by sending, receiving, and storing the 

simulation results to the DB. Furthermore, all experiments are run on multi-core computers, 

where each slave is assigned to a different core and to a specific CPU. 

5.3 Performance test 

In this section, we will examine the resource usage (specifically the memory consumption 

and CPU utilization) and actual execution time for completing a given simulated scenario. At 

                                                                 
10

 Bootstrap + Default Login nodes 



first, we will run KV-BS in the non-parallel mode of HydraNetSim (to investigate the 

behavior of a SDES) and then we will compare these results with different parallel modes of 

HydraNetSim. The test case scenario for all tests is KV-BS with 19,600 total (online + 

offline) nodes, and 5 runs of the given scenario are made for each mode. Because of using 

(global & local) RNGs, the resources (CPU and memory) consumption was identical in each 

run for a given mode of simulator. However, we have presented the readings in the following 

three statistical measurements
11

:  

Maximum The maximum value of memory utilization at any point in a complete 

simulation run. 

Minimum The minimum value of memory consumption in a complete simulation run. 

Usually this value comes when the simulation nodes were not created at their full strength (at 

start of the simulation). 

Average The average consumption of memory by the given mode in a specific 

simulation run. 

1) Non-parallel mode (SDES) 

Table 11 shows the resource utilization during a specific simulation run by SDES (in 

non-parallel mode) on different points of time.  

Table 11: Resource utilization by SDES 

 
SDES 

CPU Memory 

Maximum 99.844% 1.4772GB 

Average 99.484% 1.4372GB 

Minimum 98.659% 0.7590GB 

The memory consumption by SDES is shown in figure 28, and the CPU utilization is 

shown in figure 29. 

                                                                 
11

 Rounded to 5 significant digits. 



  

65  
 

 
Figure 28: Memory Consumption by SDES as a 

function of time 

 
Figure 29: %CPU consumotion by SDES as a function of 

time 

To complete the given simulation scenario, SDES took 3 hours, 13 minutes and 51 

seconds
12

 (~194 minutes in total). 

2) HydraNetSim – 1Slave 

HydraNetSim-1Slave took 3 hours, 14 minutes and 43 seconds (~195 minutes in total) to 

complete the KV-BS simulation scenario. The memory consumption as a function of time 

is shown in figure 30. 

 
Figure 30: Memory consumption by HydraNetSim-1Slave as a function of time 

The resource utilization by HydraNetSim-1Slave is given in table 12. 

Table 12: Resource utilization by HydraNetSim-1Slave 

 
Memory(GB) %CPU 

Master Slave Slave 

Maximum 0.02566 1.4733 99.431 

Average 0.02564 1.3782 99.283 

Minimum 0.02563 0.6173 98.610 

 

                                                                 
12

 The simulation run completion time is physical time. 



3) HydraNetSim-2Slave 

Both slaves run on two specific CPUs on different cores. Table 13 represents the resources 

utilization by both slaves. 

Table 13: Resource utilization by HydraNetSim-2Slave 

 
%CPU Memory (GB) 

Slave1 Slave2 Slave1 Slave2 Master 

Maximum 99.874 99.870 1.4716 1.4732 0.02565 

Average 99.771 99.801 1.3140 1.2782 0.02564 

Minimum 99.407 99.615 0.6358 0.5776 0.02561 

The memory consumption by ‘HydraNetSim-2Slave’ as a function of time is shown in 

figure 31. 

 
Figure 31: Memory consumption by HydraNetSim-2Slave as a function of time 

HydraNetSim-2Slave took 2 hours and 17 minutes and 14 seconds (~137 minutes in 

total) for completing the simulation run of KV-BS. 

4) HydraNetSim-3Slave 

All three slaves were assigned to 3 different CPUs on different cores; it took 2 hours and 

37 minutes and 43 seconds (~157 minutes
13

 in total) for completing the simulation 

scenario of KV-BS. The resource utilization is shown in table 14. 

Table 14: Resource utilization by HydraNetSim-3Slave 

 
%CPU Memory (GB) 

Slave1 Slave2 Slave3 Slave1 Slave2 Slave3 Master 

Maximum 99.894 99.527 99.756 1.0889 1.4622 1.1143 0.02566 

Average 99.835 99.406 99.651 0.9797 1.0070 0.9851 0.02139 

Minimum 99.665 99.051 99.340 0.3783 0.3735 0.3734 0.00957 

                                                                 
13

 Note this value is longer than the results of HydraNetSim-2Slave. We will analyze 
this fact in analysis section of this chapter. 



  

67  
 

Figure 32 shows the overall memory consumption as a function of time by 

HydraNetSim-3Slave. 

 
Figure 32: Memory consumption by HydraNetSim-3Slave as a function of time 

5.4 Scalability test 

To test the maximum of nodes supported by HydraNetSim, we ran the same simulation 

scenario
14

 as explained in section 5.1, but with different parameter settings. First we 

increased: 

 the total number of participating nodes from 19,600 to 39,600, and 

 the number of average online nodes from 1000 to 2000. 

Then we further increased the 

 total number of participating nodes to 59,600, and 

 the number of average online nodes to 3000. 

The SDES version did neither support 39,600 nodes nor 59,600 nodes and simply crashed. 

The same results occurred with the HydraNetSim-1Slave. Whereas, HydraNetSim-2Slave 

supported the simulation scenario of 39,600 total nodes and took 5 hours, 4 minutes and 50 

seconds (~305 minutes in total) for completing the simulation run. However, the 

HydraNetSim-2Slave did not support the scenario of 59,600 total participating nodes and 

simply crashed. The resource utilization by HydraNetSim-2Slave is shown in table15. 

Table 15: Resource utilization by HydraNetSim-2Slave 

 
%CPU Memory (GB) 

Slave1 Slave2 Slave1 Slave2 Master 

Maximum 99.899 99.899 1.4692 1.4687 0.03114 

Average 99.664 99.611 1.3882 1.4319 0.02798 

Minimum 98.918 98.762 0.1735 0.8809 0.02771 

HydraNetSim-3Slave supported both simulation scenarios of 39,600 and 59,600 total 

participating nodes, and took 4 hours, 52 minutes and 48 seconds (~293 minutes in total) for 

                                                                 
14

 KV-BS 



completing the scenario with 39,600 nodes. The memory consumption by HydraNetSim-

3Slave and HydraNetSim-2Slave are shown in figure 33 and figure 34, respectively. 

 

 
Figure 33: Memory Consumption by 

HydraNetSim-3Slave (39,600 nodes)  as a function 
of time 

 
Figure 34: Memory Consumption by 

HydraNetSim-2Slave (39,600 nodes)  as a function 
of time 

5.5 Summary of results 

In this section, we analyze the test results and validate our hypotheses
15

. Table 16 shows a 

summary of the all tests that were performed. 

Table 16: Summary of experimental results 

 SDES 
HydraNetSi-1

Slave 

HydraNetSi-2

Slave 

HydraNetSi-3

Slave 

No. of CPUs 

(~100% utilization) 
1 1 2 3 

Support 

(No. of 

Participating 

nodes) 

19,600 ✓ ✓ ✓ ✓ 

39,600 ✕ ✕ ✓ ✓ 

59,600 ✕ ✕ ✕ ✓ 

Memory 

consumption 

(avg. in GB) 

19,600 1.4372 1.40384 2.61784 2.99319 

39,600 - - 2.84808 4.25100 

Physical 

Time(min) 

19,600 194 195 137 157 

39,600 - - 305 293 

We can see by carefully examining the results that HydraNetSim-1Slave performs no better 

than SDES and utilizes almost the same amount of resources, whereas HydraNetSim-2Slave 

performs 1.42 times faster than SDES, and consumes 1.18 times more memory than SDES. 

Furthermore, it can support 20,000 more nodes than SDES. HydraNetSim-3Slave performs 

1.24 times faster than SDES, and consumes 2.08 times more memory than SDES. It supports 

3.04 times more nodes than SDES. 

                                                                 
15

 These hypotheses were explained in section 1.2.1. 



  

69  
 

SDES takes 41.6% more time than HydraNetSim-2Slave and 23.6% more (physical) time 

than HydraNetSim-3Slave, to complete a simulation run with same settings. 

HydraNetSim-3Slave takes 14.6% more (physical) time
16

 than HydraNetSim-2Slave to 

complete a simulation scenario consists of 19,600 total participating nodes, and takes 1.14 

times more memory than HydraNetSim-2Slave. But when we increased the (total) number of 

participating nodes, then HydraNetSim-3Slave takes 3.93% less (physical) time than 

HydraNetSim-2Slave and takes 1.49 times more memory than HydraNetSim-2Slave for 

completing a simulation scenario consists of 39,600 total participating nodes. 

HydraNetSim-2Slave needs only 1.09 times more memory, and takes 2.23 times more 

(physical) time when we double
17

 the scale of simulation scenario, whereas 

HydraNetSim-3Slave needs 1.42 times more memory, and it takes 1.87 times more (physical) 

time when we increase the scale of simulation scenario from 19,600 to 39,600. 

HydraNetSim-3Slave took 1.007 times more memory, and 1.49 times more (physical) time 

more time when we increase the scale of simulation scenario from 39,600 to 59,600. Figure 

35 and figure 36 show the comparison in (physical) time and memory consumption 

respectively, by different modes of HydraNetSim and SDES for completing a given 

simulation scenario. 

 

Figure 35: Comparison of (physical) time for 
completing a simulation run  

 

Figure 36: Comparison of memory consumption for 
a complete simulation run  

5.6 Analysis of results 

Results validate our both hypotheses that 

i. HydraNetSim performs faster than SDES, and 

ii. HydraNetSim supports a greater number of simulation nodes and runs a larger 

simulation scenario than SDES. 

As we have noticed that HydraNetSim-3Slave performs slower (in executing the simulation 

scenario of 39,600 simulated nodes) than HydraNetSim-2Slave, but still it is 1.24 times faster 

than SDES and can support 3.04 times more nodes than SDES. Amdahl’s law
18

 explains this 

                                                                 
16

 We will analyze the fact in subsequent paragraphs. 
17

 Here, by double we mean to increase the average number of nodes from 1,000 to 
2,000, and to increase total number of participating nodes from 19,600 to 39,600. 
18

As explained in section 12.1.2.2 



to a degree that the speed up of a program using multiple processors in parallel computing is 

limited by the sequential portion of that program. But, in case of HydraNetSim, this 

sequential portion belongs to the simulation model instead of our proposed architecture of 

HydraNetSim, because the application code of each slave is completely independent and 

there is no sharing of components or data structures in slaves. Furthermore, each slave has its 

own virtual memory, event handling routines, data structures, etc, and runs its part of the 

simulation model independently of other slaves. All the dependency of slaves lies into the 

adherence to causality constraint
19

. Therefore, the simulation speed is limited to the two 

factors: 1) the sequential fraction of the simulation model, and 2) the synchronization 

overhead
20

. 

In section12.1.2.2, we have discussed the implications of Amdahl’s law in detail and 

analyzed the relation of the sequential portion of a given program to the execution time with 

respect to the increasing number of processors. But note that Amdahl’s law does not consider 

different overheads (such as setup time, data communication time, synchronization overhead, 

etc.) associate with parallelization. In some situations, these overheads can cause the worst 

performance of a program (as discussed in subsequent paragraphs) running in parallel on 

multi-cores. 

Let’s use a simple thought experiment to see the effects of synchronization overhead on the 

overall speedup of a given program by running it parallel on different processors. Assume 

that the execution of the parallel fraction of a given program takes 50 minutes and the 

execution of the sequential portion takes 25 minutes. Therefore, the execution time for 

running the given program by 1 processor is 75 minutes. However, if we run the program on 

10 processors, then the execution time reduces to 30 minutes (i.e., 5 minutes for the parallel 

portion and 25 minutes for the sequential portion); by running the program in parallel on 50 

processors reduces the time to 26 minutes (i.e., 1 minute for the parallel portion and 25 

minutes for the sequential fraction) which is 1.15 times faster than 10 processers and 2.88 

times faster than 1 processor. Unfortunately, things are not so simple; running a program in 

parallel usually labor with some overheads such as setup time, data communication time, 

synchronization, etc. Now, assume that the synchronization overhead is 1 minute for each 

processor. Surprisingly, the total execution time (as shown in table 17) taken by 10 

processors rises to the 40 minutes, and by 50 processors rises to the 76 minutes which is even 

worse than running the program on a single processor. 

 

 

 

 

                                                                 
19

 Each slave waits for getting EOT from other slaves to increase its EIT, to determine 
the set of safe events. 
20

 The magnitude of synchronization overhead depends on the algorithm used for 
the synchronization. 



  

71  
 

 

Table 17: Execution time of a given program by different number of processors  

Number of Processors 

Execution 

Time (in minutes) 

1 10 50 

Parallel Portion 50 5 1 

Sequential Portion 25 25 25 

Synchronization overhead
21

 0 10 50 

Total 75 40 76 

The ratio of sequential and parallel fractions is an inherited property of the simulation model, 

yet the synchronization overhead is a property of synchronization algorithm. In our proposed 

algorithm, we have tried to keep this synchronization overhead as low as possible. For this, 

we rely more on application specific messages (as we piggyback the EOT information on an 

application message) to reduce the magnitude of synchronization overhead in the network as 

much as possible, to improve performance. It means that higher the number of application 

messages (containing a unique EOT) being sent between LPs, lower the number of 

block-resume-block cycles; this leads to a relatively faster simulation speed of simulator. 

Therefore, another reason that HydraNetSim-2Slave performs faster than 

HydraNetSim-3Slave may be because there are only 2 LPs which communicates with each 

other frequently, therefore they go into block mode less frequently and thus most of the 

(physical) time the HydraNetSim remains in simulation mode. But in case of 

HydraNetSim-3Slave, there are 3 LPs and each LP may not have sufficient application 

specific messages for both other LPs all the time. Therefore, the LP which has an EIT less 

than the timestamp of the event T (Ex) to be executed next, goes into block mode and has to 

wait until its EIT is greater than T(Ex); which ultimately limits the overall simulation 

performance as HydraNetSim remains in blocked mode. 

It is possible that an LP can be less dependent on other LPs (and can simulate partly 

independent of other LPs for a period of simulation time), but under the current settings of 

our proposed design that LP has to wait for EOTs from other LPs to determine (and the 

execution of) its safe events. This wait and resume cycle of an LP effects the overall 

performance of HydraNetSim. This may also be a reason for the relatively poor performance 

of HydraNetSim-3Slave. This also yields that our proposed variant of NMA performs better 

when LPs communicates with each other more frequently and there are less 

block-resume-block cycles which is possible if there are more application specific messages 

sent in between LPs or the value of lookahead is great enough to produce  a larger set of safe 

events. 
                                                                 
21

 The synchronization overhead is directly proportional with the number of 
processors, in this experiment. 



Another potential reason for this behavior of HydraNetSim-3Slave can be the inadequate 

lookahead value. Consider figure 37 which illustrating this.  

 
Figure 37: Lookahead inadequacy 

In figure 37, all three LPs are blocked on simulation time 50, 70, and 25 respectively. Now, 

according to our synchronization protocol, each LP will send null messages containing its 

EOT
22

. Intuitively, all three LPs will pass null messages containing EOT of LP3 because 

EIT of LP2 = EIT of LP1 = EOT of LP3 

The gravity of the problem increases when the next event scheduled on LP3 and LP1 has a 

timestamp at least equal to the event scheduled on LP2, and the value of LH is relatively 

small such as 2ms; then, there must be many rounds of null message passing between the LPs 

before they can resume and start simulation.  

However, if we do not have two choices for EOT with respect to the LP’s modes
23

 then we 

may get into the zero-lookahead cycles. To illustrate this, consider figure 38. 

 
Figure 38: zero-lookahead cycles 

In figure 38, three LPs are shown in block mode having the same current simulation time, i.e. 

52.  Now, if we set the  

EOT = current simulation time
24

 +LH 

even in the blocked mode, then all null messages from each LP would have contained the 

same information; this scheme may cause a deadlock. That is why we adopted the previously 

explained scheme for null message passing. However, the given scheme experiences 

                                                                 
22

 If the LP is in block mode, then 
  EOT = EIT + LH 
otherwise, 
  EOT = Current Simulation time + LH 
23

 As we have explained in chapter 4, each LP will be exactly in one of two modes: 
Block or Resume. 
24

 Here the current simulation time depicts the timestamp of the last executed 
(application) event. 



  

73  
 

problems with an inadequate lookahead value, and ultimately negatively affects the overall 

performance of HydraNetSim. Furthermore, that scheme results in all of the LPs simulating 

at the pace of the slowest LP; which also slows the pace of HydraNetSim. There may be 

many workarounds for this problem; however, we leave solving this problem to future work. 

Another important finding is that the execution time by a given mode (2Slave or 3Slave) of 

HydraNetSim for completing the simulation scenario at a greater scale (39,600 simulated 

nodes) is more than the execution time for smaller scale (19,600 simulated nodes) of the same 

mode (2Slave or 3Slave). It is because of the fact that the complexity of the simulation model 

and the message density of the simulation model also increases due to the increase in the 

number of participating nodes. Hence, simulation of a larger scenario takes more physical 

time and more physical memory than the simulation of a smaller scenario. 

An interesting point to note here is that HydraNetSim-3Slave performs relatively better than 

HydraNetSim-2Slave when we increase the size of simulation scenario from 19,600 

simulated nodes to the 39,600 simulated nodes. This increase in the number of simulated 

nodes also increases the message density of the simulation model, which yields more 

application specific messages in the simulation model. Hence, we observe an improvement in 

performance by HytdraNEtSim-3Slave, as we have explained in above paragraphs that our 

proposed parallel solution performs better on running more processers when there are a 

higher number of application specific messages in the simulation model. 

Interestingly, we can gain benefit from parallel processing to a specific limit, even by 

increasing the problem size. To illustrate the reason, assume that the problem size explained 

in table Table 17 is increased
25

 to 15 times. Now, 1 processor will execute the program in 

1125 minutes; the use of 10 processors will dramatically decrease the time to 460 minutes (a 

2.45 times speedup); the use of 50 processors reduces the time to 440 minutes (2.56 times 

faster than single processor). If we compare the results shown in table 18 with results of table 

17, then we can observe a speedup in performance of running a larger program on 50 

processors. 

Table 18: Execution time of a given program by different number of processors  

Number of Processors 

Execution 

Time (in minutes) 

1 10 50 100 

Parallel Portion 750 75 15 7.5 

Sequential Portion 375 375 375 375 

Synchronization overhead 0 10 50 100 

Total 1125 460 440 482.5 

                                                                 
25

 Keeping all other factors (such as overhead ratio, parallel to sequential portion 
ratio, etc.) constant. 



However, note (in table 18) a decrease in performance by increasing the number of 

processors from 50 to 100, as the execution time rises to 1.097 times more than the execution 

time by 50 processors. It shows that we can gain benefit from parallel processing only to a 

certain limit
26

 which depends upon different factors such as ratio of parallel and sequential 

fractions of the given program, overheads
27

 associated with parallel execution, number of 

processors, computing power of given hardware, etc. 

Table 18, also demonstrates the behavior described by the Gustaffson’s law that we can solve 

larger problems in the same time by using more parallel equipment. A 10 times larger 

problem than the one assumed in table Table 17, takes 750 minutes by running on a single 

processor, whereas table 18 shows that by using 50 processors we can solve a 15 times larger 

problem in 440 minutes, and even a 25 times larger program needs only 650 minutes by 50 

processors. HydraNetSim-3Slave has also shown the same behavior: SDES takes 194 minutes 

for running a simulation scenario of 19,600 nodes, and when we increase the scenario to 

39,600 (i.e., ~ 2x times larger than the previous scenario) then intuitively it should have taken 

~(2 x 194 = 388) minutes
28

 whereas HydraNetSim-3Slave takes 293 minutes to simulate the 

scenario of 39,600 nodes. 

From all above discussion, we can identify the relation of execuation time of HydraNetSim to 

complete a given simulation scenario with different influencing factors 

 
    

    

     
 6.1  

 

Where,  

 PH represents the performance of HydraNetSim (in terms of Physical time for 

executing a given scenario),  

 α represents the non-parallelizable fraction of the simulation model, 

 ρ represents the synchronization overhead, 

 τ represents the message latency of the physical simulation hardware, 

 δ represents the complexity (i.e., in terms of participating simulated nodes) of the 

simulation model, 

 E represents the event density of simulation model, 

 n represents the number of slaves, 

 P represents the computing power of physical simulation hardware in terms of 

processing events per second,  

 λ represents the coupling factor of LPs in terms of application messages, and 

                                                                 
26

 We leave this to future research, to find this limit and the influence of the 
underlying factors (such as overheads, the computing power of the given hardware, 
ratio of parallel and sequential fraction, etc.) on this limit. 
27

 Such as synchronization overhead, setup time, etc. 
28

 We recommend, this must be verified in future by increasing the scalability of 
sequential counterpart of HydraNetSim (SDES) to at least 39,600 nodes.  



  

75  
 

 L represents the lookahead. 

All these factors affect the performance of HydraNetSim in terms of (physical) time to 

complete a given simulation run. More importantly, blocking of LPs is affected by the 

fluctuations of E, τ, λ, and L (as we have discussed above). However, the effect of all these 

factors must be analyzed in terms of the overall performance of HydraNetSim and the degree 

of proportionality must also be determined in detail; we leave this to future work. 

Furthermore, we can also identify a pattern in increase in scalability of HydraNetSim
29

by 

incrementing the numbers of slaves. 

                     6.2  

Where, 

     is number of (maximum number of) nodes supported by HydraNetSim- β slave, 

 α represents the (maximum number of) nodes
30

 supported by SDES, 

 β represents the (total) number of slaves, and 

 k represents a constant value
31

. 

And the scalability factor is ⌈             ⌉ of α. 

 

                                                                 
29

 Under the parameter settings given in Table 10: Parameters . 
30

 19,600 under the current settings. 
31

 This constant value is determined by the ratio of online_time and offline_time of 
the nodes. However, this constant value is 20,000 according to the settings given in 
Table 10: Parameters  



Chapter 6. 
 

Conclusion & Future work 

6.1 Conclusion 

Computer simulation has become an essential part of research and development (R&D) in 

various fields [7] over the years, including communication systems, architecture, engineering, 

production management, military, business, government, logistics, transportation, etc. 

Discrete event simulation is more popular than any other type of simulation because it 

provides faster results and also imitates the system’s behavior in a convincingly accurate 

manner. The evaluation and analysis of complex systems, such as P2P mostly rely on 

simulation [64]. Parallel Discrete Event Simulation (PDES) has been an active area of 

research for at least three decades, to deal with the continuously growing computational 

complexity and structural complexity of systems such as P2P networks. Recent technological 

advances have greatly reduced the prices for parallel computing hardware and thus have 

made such hardware available to a larger research community. Although many P2P discrete 

event simulators32 can support thousands of thousands simulated nodes, surprisingly none of 

the main stream P2P discrete event simulator (covered in surveys [65-68]) support parallel 

simulation to exploit the multi-core architecture of the modern computing hardware [64]. 

Furthermore, the P2P simulators such as PlanetSim do not provide any mechanism for 

collecting statistics. 

In this thesis, we have explored the fundamental challenges in developing a PDES and 

proposed a new design for a discrete event simulator focusing on parallelization, specifically 

suited for multi-core machines. We have divided the simulation model into a cluster of 

processes (several partitions) called slaves, which are managed and coordinated by a master. 

The master does not directly participate in the simulation, rather the role of the master is to 

instruct the slaves what simulation to load, and then to write the simulation results into a DB 

after receiving them from slaves. Furthermore, we have proposed a variant of classic NMA 

for keeping all partitions in synchronization with a focus on keeping the network overhead 

for synchronization (the traffic of null messages) as low as possible. Another contribution is a 

novel mechanism for gathering the log information for debugging purposes and for collecting 

statistics over a specific period of simulation time in order to get meaningful simulation 

results. 

We evaluated the performance of HydraNetSim (our proposed PDES) in terms of resource 

utilization, such as memory and CPU consumption and the (physical) time to complete a 

given simulation scenario, and then we explored HydraNetSim's scalability in comparison 

                                                                 
32

 Such as PeerSim 



  

77  
 

with SDES, in different modes - specifically 1Slave, 2Slave, and 3Slave. Importantly, each 

slave is run on a specific CPU on a different core. 

The results show that HydraNetSim-1Slave is no better than SDES and exhibits similar 

behavior to SDES in terms of memory consumption, (physical) time for completing a given 

scenario, and scalability. Additionally, SDES takes 41.6% more (physical) time than 

HydraNetSim-2Slave and 23.6% than HydraNetSim-3Slave. HydraNetSim-2Slave is 1.42 

times faster, consumes 1.18 times more memory, and supports 2.02 times more nodes than 

SDES. Whereas, HydraNetSim-3Slave performs 1.24 times faster, consumes 2.08 times more 

memory, and supports 3.04 times more nodes than SDES. The scaling factor of HydraNetSim 

is ⌈             ⌉ of the maximum nodes supported by its sequential counterpart33. 

One reason that HydraNetSim-3Slave performs relatively slower than HydraNetSim-2Slave 

(although it still performs 1.24 times faster than its sequential counterpart) to complete the 

simulation scenario of 19,600 nodes can be the inherited property of sequential portion of the 

KV-BS. This sequential fraction may limit the speedup by running the simulation on multiple 

processors in parallel, as explained by Amdahl’s law. But, we have noticed the limitation of 

Amdahl’s law in addressing the negative effects of overheads associated with parallel 

execution on expected speedup by using parallel computing. We have analyzed the drastic 

effects of these overheads on the overall performance of parallel processing and discussed a 

worst case scenario when the parallel execution may prove even worse than the sequential 

execution because of these overheads. 

Furthermore, we analyzed the relative slow performance of HydraNetSim-3Slave for small 

problem size, and observed the fact that our synchronization approach is based on highly 

coupled LPs (in terms of application messages). This means, greater the number of 

application messages sent in between LPs, the lower the number of block-resume-block 

cycles, yielding the higher performance for HydraNetSim. However, not all the slaves can 

have application specific messages for others at all times. So, increasing the number of slaves 

there is an increase in block-resume-block cycles which relatively slows the relative 

performance of HydraNetSim-3Slave more than HydraNetSim-2Slave. Another reason can be 

the smaller value of lookahead, as there may be the situations when LPs may have gone 

through many null messages rounds before resuming even a smaller set of safe events. This 

can also lead to a relatively larger number of block-resume-block cycles. 

Additionally, we observed that we can gain benefit from HydraNetSim by running larger 

simulation scenarios on multi-core architecture. As we have seen that, HydraNetSim-3Slave 

performs relatively better and faster than HydraNetSim-2Slave when we increase the size of 

simulation scenario to double. One reason that we observed for this fact is the increase in the 

message density, as we discussed that a higher number of application specific messages 

results into the higher performance of HydraNetSim. An interesting fact that we noticed is 

that we can gain benefit from parallel processing even by enlarging the complexity of the 

given problem to a certain limit which depends upon various factors such as the magnitude of 

                                                                 
33

 Where, β is the number of slaves. 



overheads associated with parallelization, number of processors, computing power of given 

hardware, ratio of parallel and sequential portions of the given program, etc. 

We have also examined the influence of an increase in number of participating nodes and 

resultantly increase in message density in the simulation model by increasing the number of 

nodes and concluded that HydraNetSim needs more memory and more physical time34 to 

complete a simulation run due to the increased complexity of the simulation model due to 

increase in number of participating nodes. 

6.2 Future Work 

By and large, in this thesis we have addressed the difficulties concerning fine-grain level 

details in developing a parallel version of a discrete event simulator that proves to be faster 

than its sequential counterpart, and have proposed a novel solution (HydraNetSim) for these 

problems by focusing on exploiting the multi-core architecture modern computing hardware. 

Furthermore, we have identified that the potential speedup by running the simulation in 

parallel using multi-core architecture depends upon the inherited property of 

non-parallelizable fraction of the simulation model. We have identified equally important 

factors in limiting the performance of parallel execution, i.e., the overheads (such as 

synchronization, setup, etc.) associated with parallelization. These overheads play an 

important role in limiting the potential speedup expected by using a multi-core computing 

hardware. The future research must analyze the role of these overheads in detail. 

Additionally, we have found that we can gain benefit from existing faster (multi-core) 

architecture by running larger programs on it. This potential benefit is restricted to a certain 

limit imposed by different factors (as discussed in section 5.6) for a given scenario. The 

future research must explore this limit and the influence of underlying factors on this limit. 

Following paragraphs highlights some important areas to explore for future research. 

As future work, first of all we recommend improving the node assignment technique 

following the space-parallel-partitioning scheme. One suggestion is to consider the 

geo-location proximity. For example, if we are going to simulate the world as a network 

topology, then the nodes belonging to a particular country should be assigned to the same LP, 

in this way the neighbors of a given LP belong in the same continent. This scheme may 

decrease the coupling factor in between LPs. 

Another important consideration for the future work is to increase the virtual memory size of 

the sequential counter part of the HydraNetSim, so it can support more simulated nodes. 

Then, the behavior of HydraNetSim (with x-Slave mode) must be analyzed on comparison 

with SDES for very large scale (in terms of simulated nodes) simulation scenario. 

Equally important area of improvement for future work is to find a better scheme for 

determining the value of EOT, because the current scheme causes all the LPs to simulate at 

                                                                 
34

 In comparison with the time taken by the same mode (2Slave or 3Slave) to 
execute a scenario of smaller scale. 



  

79  
 

the pace of the slowest LP. Furthermore, this work should also suggest a workaround for the 

problem of inadequate lookahead as discussed in the section 5.6. One suggestion is to set  

EOT = currentSimTime + L 

for both (block and resume) modes, and then each slave should report its EOT to the master 

only rather than reporting every other slave. The master will then determine the lowest EOT 

of the system and will broadcast this information to all slaves. To avoid the zero-lookahead 

cycles and the simulation at the pace of the slowest LP, we can use the conditional events in 

such a way that while reporting its EOT to the master each LP will also inform the master 

about its state (i.e., block or resume), and the timestamp of the next scheduled event. This 

additional information will help in identifying the minimum of the estimated minimum 

timestamp of next event in the system and can then be utilized to inform the LPs to execute 

the events having timestamp less than that estimated next event. However, the implications of 

this proposed scheme must be studied in more detail. 

Future work must also include visualization and/or GUI support for topology representation, 

visualization of the simulation through graphs, and customization of HydraNetSim (such as 

setting the path to the DB, exporting simulation results into a customize form (such as 

bar-chart, histograms, etc), selection of number of slaves, etc.). 

The coupling factor between LPs must also be explored so that the LPs which have 

significantly few application messages for each other can resume their simulation without 

waiting for null messages (so frequently) from each other. This is very important for 

improving the simulation speed of HydraNetSim in greater than 2Slave mode. 

Furthermore, the effects of all the factors (as described in equation number 5.1) must be 

explored in detail to understand their effect upon the performance of HydraNetSim. The 

dependency of these factors on each other must also be examined. For example, how do the 

fluctuations in λ affect the PH and how does the variation of n affect PH. Furthermore, the 

relationship between event density and λ must be examined and then their effects on PH must 

be studied. The degree of proportionality of each factor must also be examined individually 

to identify the most influential factor. Lookahead is a very important parameter of the 

proposed synchronization algorithm. The effects on PH of lookahead in relation to λ and n 

must be examined. This future study must also analyze the effects of increasing the value of 

lookahead on the overall performance of HydraNetSim by keeping all other factors constant. 

These studies will be useful for improving the overall performance of HydraNetSim at a 

larger scale. 

 

  



References 
 

[1] Gregory R. Andrews, Foundations of Multithreaded, Parallel, and Distributed Programming, 

Addison Wesley, 2000 

[2] George Coulouris, Jean Dollimore and Tim Kindberg, Distributed Systems: Concepts and Design, 

3
rd

 edition, Pearson Education ltd. , 2001 ISBN 0201-619-180 

[3] Saranya Saetang, Distributed System, Peer-to-Peer and Privacy Policy,  Slide presentation for a 

seminar, HCI Research Group,  Department of Computer Science  University of Bath, 17 January 

2006. [Online]. Available: 

http://www.cs.bath.ac.uk/~hci/HCI-Seminars/Ay_06.pdf 

[Accessed on 2011-04-16]  

[4] Wehrle Klaus, Günes Mesut, and Gross James, Modeling and Tools for Network Simulation, 1
st
 

edition Springer, 2010 

[5] Jerry Banks, John S. Carson II, Barry L. Nelson, and David M. Nicol, Discrete-Event System 

Simulation, Prentice Hall, 4
th
 edition, 2005 

[6] Averill M. Law, Simulation Modeling and Analysis, McGrawHill, 4
th
 edition 2007 

[7] Roger Mchaney, Understanding computer simulation, Roger Mchaney and Ventus Publishing 

ApS 2009 

[8] Wouter Duivesteijn, Continuous Simulation, Slides for a presentation in a course on Simulation, 

Department of Information and Computing Sciences, Faculty of Science, Utrecht University, 6 

June 2006. [Online]. Available: 

http://www.cs.uu.nl/docs/vakken/sim/continuous.pdf 

[Accessed on 2011-04-17] 

[9] Donald C. Craig, "Extensible Hierarchical Object-Oriented Logic Simulation with an Adaptable 

Graphical User Interface", Department of Computer Science, School of Graduate Studies, 

Memorial University of Newfoundland, St. John's Newfoundland, Canada. [Online]. Available: 

http://web.cs.mun.ca/~donald/msc 

[Accessed on 2011-04-17] 

[10] Avrill M. Law and W. David Kelton, Simulation Modeling and Analysis, 3rd Edition, 

McGraw-Hill, Boston, MA. , 2000 

[11] “Monte Carlo simulation”, Palisade Corporation, [Online]. Available:  

http://www.palisade.com/risk/monte_carlo_simulation.asp 

[Accessed on 2012-02-10] 

[12] Alex F. Bielajew, “Monte Carlo Modeling in External Electron-Beam Radiotherapy - Why 

Leave it to Chance?”, Proc. 11th Conference on the Use of Computers in Radiotherapy, 1994 

[13] Avrill M. Law and W. David Kelton, Simulation Modeling and Analysis, 3rd Edition, McGraw-

Hill, Boston, MA. , 2000, Figure 1.1 

[14] Alberto Montresor and Márk Jelasity, “PeerSim: A scalable P2P simulator”, presented at the 

IEEE Ninth International Conference on Peer-to-Peer Computing, 2009. P2P ’09, Seattle, WA, 

USA, 2009, pp. 99–100, DOI:10.1109/P2P.2009.5284506, [Online]. Available:  

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5284506 

[15] Wehrle Klaus, Günes Mesut, and Gross James, Modeling and Tools for Network Simulation, 1
st
 

edition Springer, 2010, fig 1.2 



  

81  
 

[16] Bernard P. Zeigler, Herbert Praehofer and Tag G. Kim, Theory of Modeling and Simulation, 2
nd

 

edition, Academic Press, January 2000 

[17] Richard M. Fujimoto, “Parallel Discrete Event Simulation”, Communication of the ACM, vol. 

33 Issue 10, Oct. 1990 

[18] Richard M. Fujimoto, Slides for tutorial: Parallel & Distributed Simulation Systems: From 

Chandy/Misra to the High Level Architecture and Beyond, “Slide # 5: Reasons to use Parallel / 

Distributed simulation”, College of Computing Georgia Institute of Technology Atlanta, 17 June 

2008, [Online]. Available: 

http://www.slidefinder.net/t/tutorial_parallel_distributed/simulation_systems_chandy_misra/202693 

[Accessed on 2012-02-10] 

[19] Tran, Van Hoai, Slides parallel Discrete Event Simulation, Department of Computer Science and 

Engineering, HCMC University of Technology, 15 October 2007, [Online]. Available: 

http://www.cse.hcmut.edu.vn/~hoai/download/parallel-computing/2010-2011/talk_parallel-discrete-

simulation.pdf, 

[Accessed on 2012-02-10] 

[20] B. W. Hollocks, “Forty years of discrete-event simulation—a personal reflection”, Journal of 

the Operational Research Society  volume 57, pp. 1383–1399, 2006 

[21] Cheng-Hong Li, Alfred J. Park, and Eugen Schenfeld, “Analytical Performance Modeling for 

Null Message-Based Parallel Discrete Event Simulation”, in 19th Annual IEEE International 

Symposium on Modelling, Analysis, and Simulation of Computer and Telecommunication 

Systems, pp. 349-358, 2011 

[22] H. Ringberg, M. Roughan, and J. Rexford, “The need for simulation in evaluating anomaly 

detectors”, SIGCOMM Computer Communication Review, 2008 

[23] Stephan Hartmann, “The world as a process: Simulations in the natural and social sciences”, In: 

Modelling and simulation in the social sciences from a philosophy of science point of view (eds. 

R. Hegselmann, U. Mueller and K. G. Troitzsch) Kluwer: Dordrecht. pp. 77-100,  1996 

[24] Steven Strogatz, “The end of insight”, In: What is Your Dangerous Idea? Today's Leading 

Thinkers on the Unthinkable (eds. J. Brockman, H. Perennial) New York, 2007, pp.130-131. 

[25] Jonathan Gabbai, Areas of flight simulator applications, The Art of Flight Simulation [Internet]. 

Version 6. Knol.  29 Jul 2008. [Online]. Available: 

http://knol.google.com/k/jonathan-gabbai/the-art-of-flight-simulation/1brpsoyxacwpz/2, accessed on 2011-

04-21 

[26] Ahmet Y. Şekercioğlu, András Varga, and Gregory K. Egan, “Parallel Simulation made easy 

with OMNeT++”. In Proc. of European Simulation Symposium, Delft, Netherlands, 2003 

[27] Rajive   L.  Bagrodia, “Perils and Pitfalls of Parallel Discrete-Event Simulation”, in Proc. of the 

1996 Winter Simulation Conference, IEEE 1996 

[28] Larry Soule and Anoop Gupta, “An Evaluation of the Chandy-Misra-Bryant Algorithm for 

Digital Logic Simulation”, ACM Transactions on Modeling and Computer Simulation, Vol.1 No. 

4, October 1991, pp. 308-347 

[29] Gilbert Chen and Boleslaw K. Szymanski. “DSIM: Scaling Time Warp to 1,033 processors”, In 

Proceedings of the 37th Winter Simulation Conference, pp. 346–355, 2005 

[30] Rimon Barr, Zygmunt J. Haas, and Robbert van Renesse, “JiST: An Efficient Approach to 

Simulation using Virtual Machines”, Software Practice & Experience, 35(6):539–576, 2005 



[31] Benno Overeinder, Bob Hertzberger, and Peter Sloot, “Parallel discrete event simulation”, Third 

workshop on design and realization of computer systems, Eindhoven, pp 19-30, ISBN 90-6144-

995-2, May 1991 

[32] Von-Yee Vee and Wen-Jing Hsu, “Parallel Discrete Event Simulation: A Survey”, Technical 

report, Centre for Advanced Information Systems, Nanyang Technological University, 

Singapore, 1999 

[33] Gilbert Chen and Boleslaw K.  Szymanski,  “Lookahead,  Rollback and  Lookback  Searching  

for Parallelism  in  Discrete Event Simulation” , in Proc. Summer Computer Simulation 

Conference, 2002 

[34] Lisa M. Sokol, Duke P. Briscoe, and Alexis P. Wieland, “MTW: A strategy for scheduling 

discrete simulation events for concurrent execution”,  in Proc. Summer Computer Simulation 

Conference, 2002 

[35] Richard M. Fujimoto, “Time warp on a shared memory multiprocessor”, Transactions Society 

for Computer Simulation, Volume 6 Issue 3, Jul. 1989 

[36] A. Prakash and R. Subramanian, “Filter: An algorithm for reducing cascaded rollbacks in 

optimistic distributed simulations”, In Proc. 24th Annual Simulation Symposium, pp. 123-132, 

1991 

[37] Richard M. Fujimoto, Slides for tutorial: Parallel & Distributed Simulation Systems: From 

Chandy/Misra to the High Level Architecture and Beyond, College of Computing Georgia 

Institute of Technology Atlanta, 17 June 2008, [Online]. Available: 

http://www.slidefinder.net/t/tutorial_parallel_distributed/simulation_systems_chandy_misra/202693/p2, 

accessed on 2011-27-04 

[38] Rimon Barr, Haas J. Zygmunt, and Robbert van Renesse, “JiST: Embedding Simulation Time 

into a Virtual Machine”, In Proc. of EuroSim Congress on Modelling and Simulation, 2004 

[39] J. Misra and K. M. Chandy, “Distributed Simulation: A Case Study in Design and Verification 

of Distributed Programs”, IEEE Transactions on Software Engineering, SE-5(5):440–452, 1978 

[40] Jayadev Misra, “Distributed discrete-event simulation”, ACM Computing Surveys, 18(1):39- 65, 

1986 

[41] K. Mani Chandy and Jayadev Misra, “Asynchronous distributed simulation via a 

sequence of parallel computations”, Communications of the ACM, 24(11):198- 205, 1981 

[42] L. Z. Liu and C. Tropper, “Local deadlock detection in distributed simulations”, Proceedings of 

the SCS Multi-conference on Distributed Simulation, 22(1):64 - 69, 1990 

[43] Von-Yee Vee and Wen-Jing Hsu, “Parallel Discrete Event Simulation: A Survey”, Technical 

report, Centre for Advanced Information Systems, Nanyang Technological University, 

Singapore, 1999, pp. 13, Table 1 

[44] Los Alamos National Laboratory, "Largest Computational Biology Simulation Mimics Life's 

Most Essential Nanomachine." ScienceDaily, 1 Nov. 2005. [Online]. Available: 

http://www.sciencedaily.com/releases/2005/11/051101223046.htm, accessed on 2011-04-28 

[45] Leslie Lamport, “Time, Clocks, and the Ordering of Events in a Distributed 

System” ,Communication of the ACM , 21(7): 558-565(1978) 

[46] Wesley W. Terpstra, Christof Leng, Max Lehn, Alejandro P. Buchmann, “Channel-based 

Unidirectional Stream Protocol (CUSP)”, Proceedings of the IEEE, INFOCOM Mini Conference, 

March 2010 

[47] B. Ford, “Structured Streams: a New Transport Abstraction”, in SIGCOMM, 2007 

[48] R. Stewart, “Stream Control Transmission Protocol”, IETF RFC 4960, September 2007 



  

83  
 

[49] “Channel-based Unidirectional Stream Protocol (CUSP)”, Database and Distribute Systems 

Research Projects, DVS: Technische Universität Darmstadt. [Online]. Available: 

 http://www.dvs.tu-darmstadt.de/research/cusp/, accessed on 2012-01-26 

[50] W. W. Terpstra, J. Kangasharju, C. Leng and A. P. Buchmann, “BubbleStorm: Resilient, 

Probabilistic, and Exhaustive Peer-to-Peer Search.” In Procs. Of SIGCOMM, 2007, pp. 49–60. 

ACM Press, New York (2007) 

[51] P. Maymounkov and D. Mazi`eres, “Kademlia: A Peer-to-Peer Information System Based on the 

XOR Metric.” In Procs. of IPTPS, 2001 

[52] M. Lehn, T. Triebel, C. Leng, A. Buchmann and W. Effelsberg, “Performance Evaluation of 

Peer-to-Peer Gaming Overlays.” In Procs. of P2P, 2010 

[53] C. Leng, M. Lehn, R. Rehner and A. Buchmann, “Designing a Testbed for Large-scale 

Distributed Systems”, in Proc. of ACM SIGCOMM'11, ACM, August 2011 

[54] MATLAB version 7.10.0 (R2010a). Natick, Massachusetts: The MathWorks Inc., 2010. 

[55] B.D. Lubachevsky, “Efficient distributed event-driven simulations of multiple-loop networks” 

Communications of the ACM, Volume 32 Issue1, January, 1989 

[56] “BuubleStorm”, Database and Distribute Systems Research Projects, DVS: Technische 

Universität Darmstadt. [Online]. Available: 

http://www.dvs.tu-darmstadt.de/research/bubblestorm/, accessed on 2012-05-07 

[57] C. Leng, and W. W. Terpstra, “Distributed SQL Queries with BubbleStorm”, in Active Data 

Management to Event-Based Systems and More (Lecture Notes in Computer Science 6462), 1
st
 

ed. K. Sachs, I. Petrov, and P Guerrero, Eds. Springer, November 2010, ISBN 978-3-642-17225-

0 

[58] W. W. Terpstra, C. Leng and A. P. Buchmann, “BubbleStorm: Analysis of Probabilistic 

Exhaustive Search in a Heterogeneous Peer-to-Peer System”, Dept. Fach. Info. Tech. Univ. 

Darmstadt, Germany, Tech. Rep. TUD-CS-2007-2, May 2007 

[59] Intel® Core™ i5-2410M Processor, Intel Corporation, [Online]. Available:  

http://ark.intel.com/products/52224, accessed on 2012-05-26 

[60] S. Gundavelli, K. Leung, V. Devarapalli, K. Chowdhury, and B. Patil. Proxy Mobile IPv6. RFC 

5213, IETF, August 2008. 

[61] B. Cohen, Incentives build robustness in bittorrent. In Proceedings of the Workshop on 

Economics of Peer-to-Peer Systems, Berkeley, CA, USA, 2003. 

[62] Crespo, A., Garcia-Molina, H.:  Semantic overlay networks for P2P systems. In: Moro, G., 

Bergamaschi, S., Aberer, K. (eds.) AP2PC 2004. LNCS (LNAI), vol. 3601, pp. 1–13. Springer, 

Heidelberg (2005) 

[63] Uichin Lee, Min Choi, Junghoo Cho, M. Y. Sanadidi, and Mario Gerla. Understanding pollution 

dynamics in p2p file sharing. In 5th International Workshop on Peer-toPeer Systems (IPTPS’06), 

2006. 

[64] Martin Quinson, Cristian Rosa, Christophe Thiéry, "Parallel Simulation of Peer-to-Peer 

Systems" ccgrid, pp.668-675, 2012 12th IEEE/ACM International Symposium on Cluster, Cloud 

and Grid Computing (ccgrid 2012), 2012, ISBN: 978-0-7695-4691-9, DOI: 

10.1109/CCGrid.2012.115 

[65] R. Bhardwaj, V. Dixit, and A. K. Upadhyay. “An Overview on Tools for Peer to Peer Network 

Simulation” in International Journal of Computer Applications, 1(1):70–76, Feb. 2010. 

http://www.dvs.tu-darmstadt.de/research/cusp/
http://www.dvs.tu-darmstadt.de/research/bubblestorm/
http://ark.intel.com/products/52224


[66] H. Xu, S. Wang, R. Wang, and P. Tan, “A Survey of Peer-to-Peer Simulators and Simulation 

Technology” in JCIT: Journal of Convergence Information Technology, 6(5):260–272, May 

2011. 

[67] A. B. Stirling and M. K. Stirling, “Tools for Peer to Peer Network Simulation”, IRTF P2pRG 

[68] S. Naicken, A. Basu, B. Livingston, and S. Rodhetbhai, “A Survey of Peer-to-Peer Network 

Simulators,” Proceedings of The Seventh Annual Postgraduate Symp., Liverpool, UK, 2006 

[69] I. Baumgart, B. Heep, and S. Krause, "OverSim: A Flexible Overlay Network Simulation 

Framework", In Proceedings of the 10th IEEE Global Internet Symposium (GI '07) in 

conjunction with IEEE INFOCOM 2007, Anchorage, AK, USA, pp. 79-84, 2007 

[70] OMNet++,  OMNeT++ Community, ] [Online]. Available: 

http://www.omnetpp.org/, accessed on 2012-05-22 

[71] I. Stoica, R. Morris, D. Liben-Nowell, D. Karger, M. Kaashoek, F. Dabek, and H. Balakrishnan, 

“Chord: a scalable peer-to peer lookup protocol for internet applications,” 

IEEE/ACMTransactions on Networking, vol. 11, no. 1, pp. 17–32, Feb.2003. 

[72] G. F. Riley, R. M. Fujimoto, and M. H. Ammar. “A Generic Framework for Parallelization of 

Network Simulations”, In Proc. of the 7th International Symposium on Modeling, Analysis and 

Simulation of Computer and Telecommunication Systems, 1999. 

[73] The Network Simulator - ns-2, ns, [Online]. Available: 

http://www.isi.edu/nsnam/ns/, accessed on 2012-05-22 

[74] User Information, ns-2, [Online]. Available: 

http://nsnam.isi.edu/nsnam/index.php/User_Information, accessed on 2012-05-22 

[75] Welcome, TCL Developer Xchange, Tcl community, [Online]. Available: 

http://www.tcl.tk/, accessed on 2012-05-22 

[76] Object-Oriented Programming in Tcl, TCL Developer Xchange, Tcl community, [Online]. 

Available: 

http://www.tcl.tk/about/oo.html, accessed on 2012-05-22 

[77] PDNS - Parallel/Distributed NS, [Online]. Available: 

http://www.cc.gatech.edu/computing/compass/pdns/, accessed on 2012-05-22 

[78] Nam: Network Animator, Tim Buchheim, [Online]. Available: 

http://www.isi.edu/nsnam/nam/, accessed on 2012-05-22 

[79] J. Pujol-Ahull´o, P. Garc´ıa-L´opez, M. S`anchez-Artigas, and M. Arrufat-Arias. “An extensible 

simulation tool for overlay networks and services”, In SAC ’09: Proceedings of the 2009 ACM 

symposium on Applied Computing, pages 2072–2076, New York, NY, USA, 2009 ACM. 

[80] G. Chen and B. K. Szymanski. “DSIM: Scaling Time Warp to 1,033 processors” In Proc. of the 

37th Winter Simulation Conference, pp 346–355, 2005. 

[81] DSIM: A Distributed Optimistic Parallel Discrete Event Simulator, Gilbert Chen and Boleslaw 

Szymanski, Center for Pervasive Computing and Networking, Rensselaer Polytechnic Institute, 

[Online]. Available: 

http://assassin.cs.rpi.edu/~cheng3/dsim/, accessed on 2012-05-22 

[82] András Varga, Ahmet Y. Şekercioğlu, and Gregory K. Egan, “A Practical Efficiency Criterion 

for the Null-Message-Algorithm” In Proc. of European Simulation Symposium, Delft, The 

Netherlands, 2003. 

[83] Intel® Core™ i7-920 Processor, Intel corporation, [Online]. Available: 

http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-

QPI),  accessed on 2012-05-26 

http://www.omnetpp.org/
http://www.isi.edu/nsnam/ns/
http://nsnam.isi.edu/nsnam/index.php/User_Information
http://www.tcl.tk/
http://www.tcl.tk/about/oo.html
http://www.cc.gatech.edu/computing/compass/pdns/
mailto:buchheim@isi.edu
http://www.isi.edu/nsnam/nam/
http://assassin.cs.rpi.edu/~cheng3/dsim/
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI)
http://ark.intel.com/products/37147/Intel-Core-i7-920-Processor-(8M-Cache-2_66-GHz-4_80-GTs-Intel-QPI)


  

85  
 

[84] S. Jafer, “PARALLEL SIMULATION TECHNIQUES FOR LARGE-SCALE 

DISCRETE-EVENT MODELS”, Ph.D. dissertation, Dep.  Sys. Comp. Eng., Carleton 

University, Ottawa, Ontario, Canada, 2011, [Online]. Available: 

http://www.sce.carleton.ca/~sjafer/PhD_Thesis_Shafagh_V6_Final.pdf, accessed on 2012-05-28 

[85] G. M. Amdahl. Validity of the single processor approach to achieving large scale computing 

capabilities. In Proc. of the April 18-20, 1967, spring joint computer conference (AFIPS '67 

(Spring)) ACM, New York, NY, USA 1967, pp 483-485. DOI=10.1145/1465482.1465560 

[86] F. P. Brooks Jr., The Mythical Man-Month, Addison Wesley Longman, Inc., 1995, ISBN:  0-

201-83595-9  

R.J Lorimer (2006- 11-08), Performance: Understanding Amdahl’s Law, [Online]. Available: 

http://www.javalobby.org/java/forums/t84101.html 

Accessed on 2012-06-10 

[87] Daniel, SVG Graph Illustrating Amdahl's Law, Permission={{cc-by-sa-3.0}} [Online]. Available: 

http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg 

Accessed on 2012-06-12 

http://www.sce.carleton.ca/~sjafer/PhD_Thesis_Shafagh_V6_Final.pdf
http://www.javalobby.org/java/forums/t84101.html
http://en.wikipedia.org/wiki/File:AmdahlsLaw.svg


www.kth.se

TRITA-ICT-EX-2012:125


