
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

A L B E R T L Ó P E Z
a n d

F R A N C I S C O J A V I E R S Á N C H E Z

 A gateway for 868 MHz sensors

Exploiting Wireless Sensors

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Exploiting Wireless Sensors

A gateway for 868 MHz sensors

Albert López
albertlg@kth.se

Francisco Javier Sánchez
fjsg@kth.se

2012-06-20

Supervisor and Examiner: Gerald Q. Maguire Jr.

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

mailto:albertlg@kth.se
mailto:fjsg@kth.se

i

Abstract
The great interest in monitoring everything around us has increased the number of

sensors that we utilize in our daily lives. Furthermore, the evolution of wireless

technologies has facilitated their ubiquity. Moreover, is in locations such as homes and

offices where exploitation of the data from these sensors has been more important. For

example, we want to know if the temperature in our home is adequate, otherwise we

want to turn on the heating (or cooling) system automatically and we want to be able to

monitor the environment of the home or office remotely. The knowledge from these

sensors and the ability to actuate devices, summon human assistance, and adjust

contracts for electrical power, heating, cooling, etc. can facilitate a myriad of ways to

improve the quality of our life and potentially even reduce resource consumption.

This master‘s thesis project created a gateway that sniffs wireless sensor traffic in

order to collect data from existing sensors and to provide this data as input to various

services. These sensors work in the 868 MHz band. Although these wireless sensors are

frequently installed in homes and offices, they are generally not connected to any

network. We designed a gateway capable of identifying these wireless sensors and

decoding the received messages, despite the fact that these messages may use a vendor‘s

proprietary protocol. This gateway consists of a microcontroller, a radio transceiver

(868-915 MHz), and an Ethernet controller.

This gateway enables us to take advantage of all the data that can be captured.

Thinking about these possibilities, simultaneously acquiring data from these various

sensors could open a wide range of alternatives in different fields, such as home

automation, industrial controlling… Not only can the received data be interesting by

itself; but when different sensors are located in the same environment we can exploit

this data using sensor fusion. For example, time differences in arrival and differences in

signal strength as measured t multiple receivers could be used to locate objects.

The final aim of this thesis project is to support diverse applications that could be

developed using the new gateway. This gateway creates a bridge between the

information that is already around us and our ability to realize many new potential

services. A wide range of opportunities could be realized by exploiting the wireless

sensors we already have close to us.

iii

Sammanfattning
Det stora intresset för att övervaka allt omkring oss har ökat antalet sensorer som vi

använder i vårt dagliga liv. Dessutom har utvecklingen av trådlösa tekniker underlättat

de har stor utbredning. Dessutom är på platser som hem och kontor där utnyttjandet av

data från dessa sensorer har varit viktigare. Till exempel vill vi veta om temperaturen i

vårt hem är tillräcklig, annars vill vi slå på värmen (eller kyla) automatiskt och vi vill

kunna övervaka miljön i hemmet eller på kontoret på distans. Data från dessa sensorer

och förmåga att aktivera enheter kalla mänsklig assistans och justera avtal för el, värme,

kyla, osv. kan underlätta en myriad av olika sätt att förbättra kvaliteten på våra liv och

potentiellt även minska resursförbrukningen.

Detta examensarbete syftar till att sniffa trådlösa sensorn trafik i syfte att samla in

data från befintliga sensorer och att tillhandahålla sådan information som underlag till

olika tjänster. Dessa sensorer arbetar i 868 MHz-bandet. Även om dessa ofta installeras

i hem och kontor, är de i allmänhet inte ansluten till något nätverk. För att förverkliga

vårt mål kommer vi att utforma en gateway som kan identifiera dessa trådlösa sensorer

och avkoda den mottagna meddelanden, trots att dessa meddelanden kan använda en

leverantör egenutvecklade protokoll. Denna brygga består av en mikrokontroller, en

sändtagare (868 till 915 MHz), och en Ethernet-styrenhet.

Gateway bör göra det möjligt för oss att dra nytta av alla de uppgifter som möjligen

kan fångas. Funderar om dessa möjligheter, samtidigt insamling av data från dessa olika

sensorer kan öppna ett brett spektrum av alternativ i olika områden, såsom hem

automation, industriell kontrollerande ... Inte bara kan de mottagna uppgifterna vara

intressant i sig självt, men när olika sensorer finns i samma miljö kan vi utnyttja detta

data med hjälp av sensor fusion. Till exempel skulle tidsskillnader i ankomst och

skillnader i signalstyrka uppmätt med flera mottagare användas för att lokalisera

föremål.

Det slutliga målet med denna avhandling är att stödja olika applikationer som skulle

kunna utvecklas med hjälp av utformade gateway. Denna gateway kommer att skapa en

initial brygga mellan all information omkring oss och vår förmåga att förverkliga många

tjänsteleverantörer möjligheter. Ett brett utbud av möjligheter kan realiseras genom att

utnyttja de trådlösa sensorerna vi redan har nära till oss.

v

Table of Contents

Abstract ... i

Sammanfattning .. iii

Table of Contents ... v

List of Figures .. ix

List of Tables ... xi

List of Acronyms and Abbreviations .. xiii

1 Introduction .. 1

1.1 General introduction to the area .. 1

1.2 Problem statement .. 1

1.3 Goals .. 1

1.4 Structure of this thesis .. 3

2 Background ... 5

2.1 Wireless and Wired Sensor Networks ... 5

2.2 Wireless technologies ... 6

2.3 ISM band .. 11

2.3.1 Short Range Devices operating at 868 MHz .. 12

2.4 The Internet Protocol Suite ... 12

2.5 Ethernet and IEEE 802.3 .. 13

2.6 Internet Protocol ... 14

2.6.1 IPv4 ... 14

2.7 User Datagram Protocol ... 15

2.8 Other protocols ... 16

2.8.1 Address Resolution Protocol .. 16

2.8.2 Internet Control Message Protocol ... 18

2.8.3 Dynamic Host Configuration Protocol .. 18

2.9 Power over Ethernet ... 20

2.9.1 Advantages of PoE .. 22

2.10 Related work ... 23

3 Method (Implementation) ... 25

3.1 Hardware and Software tools .. 25

3.1.1 TFA radio-controlled clock and wireless temperature transmitter 25

3.1.2 Spectrum Analyzer .. 26

vi

3.1.3 The Universal Software Radio Peripheral .. 26

3.1.4 GNU Radio .. 27

3.1.5 Code Composer Studio ... 28

3.1.6 Easily Applicable Graphical Layout Editor .. 28

3.2 Gateway specifications ... 28

3.2.1 MSP430 Microcontroller .. 29

3.2.2 Powering ... 30

3.2.3 Ethernet controller ... 30

3.2.4 User interface .. 30

3.2.5 RF interface ... 30

3.3 Gateway„s final look .. 32

4 Applying the Method (Operation) ... 35

4.1 Breaking the proprietary protocol .. 35

4.1.1 Initially capturing data from the sensor... 35

4.1.2 Decoding the received signal ... 37

4.1.3 Analyzing data ... 39

4.1.4 Temperature field .. 40

4.1.5 Identifier field ... 41

4.1.6 Last byte .. 42

4.1.7 Rest of frame ... 42

4.1.8 Comparative with Bossard‟s work .. 42

4.2 Gateway operation.. 43

4.2.1 Radio Frequency interface: operation .. 45

4.2.2 Ethernet interface: operation .. 46

5 Analysis and Evaluation ... 49

5.1 Radio Frequency interface: evaluation .. 49

5.2 Ethernet interface: evaluation ... 50

5.3 System: evaluation ... 52

5.4 Power over Ethernet: evaluation ... 55

6 Conclusions ... 57

6.1 Discussion of the results ... 57

6.2 Future work... 57

6.3 Required reflections .. 59

References ... 61

A. Python scripts .. 69

B. MATLAB scripts to decode FSK encoded signal .. 71

vii

C. Bit fields from the spreadsheet „Temperatures.xls‟ ... 73

D. Schematic of the motherboard and the daughterboard 75

E. Layout of the motherboard and the daughterboard .. 79

F. Source code for the gateway ... 81

ix

List of Figures
Figure 1-1: An overall view of how the sensor gateway might fit into a networked

solution .. 2

Figure 2-1: WSN structure ... 5

Figure 2-2: Structure of smart sensor .. 5

Figure 2-3: Wireless technologies compared according to data rate and range 7

Figure 2-4: Typical network structure when using SimpliciTI [12] 8

Figure 2-5: 868-870 MHz band. Blue bands are reserved for particular

occupancies .. 12

Figure 2-6: IEEE 802.3 and Ethernet encapsulation .. 13

Figure 2-7: IP encapsulation .. 14

Figure 2-8: IPv4 header ... 15

Figure 2-9: UDP encapsulation.. 16

Figure 2-10: UDP header .. 16

Figure 2-11: Pseudo-header for UDP checksum computation (IPv4) 16

Figure 2-12: ARP encapsulation .. 17

Figure 2-13: ARP header... 17

Figure 2-14: ICMP encapsulated within an IP datagram .. 18

Figure 2-15: ICMP header ... 18

Figure 2-16: DHCP encapsulation ... 19

Figure 2-17: DHCP algorithm .. 19

Figure 2-18: DHCP header .. 20

Figure 2-19: Power over Ethernet connection .. 21

Figure 2-20: ENC28J60 RX and TX flowchart ... 24

Figure 3-1: Initial hardware configuration to decode the temperature messages

distributed by a TFA temperature sensor. .. 25

Figure 3-2: TFA radio-controlled clock (left) with a wireless temperature

transmitter (right) ... 25

Figure 3-3: Circuit board from within the temperature transmitter 26

Figure 3-4: USRP Motherboard ... 27

Figure 3-5: General overview of the gateway .. 28

Figure 3-6: The motherboard‟s front .. 32

Figure 3-7: The motherboard's back .. 33

Figure 3-8: The daughterboard‟s front ... 33

Figure 3-9: The daughterboard‟s back ... 34

Figure 3-10: The gateway's front ... 34

Figure 4-1: Spectrum analyzer designed with the script “usrp_fft.py” 36

Figure 4-2: Two different transmissions separated 4 seconds 37

Figure 4-3: One piece of frame .. 37

Figure 4-4: Spectrum of one frame .. 38

Figure 4-5: Part of one frame (data once extracted) .. 39

Figure 4-6: Some known positive temperature values - the fields where the bits

varied is highlighted in orange ... 40

Figure 4-7: Part of the spreadsheet showing the bits for some negative

temperatures values .. 41

Figure 4-8: All the fields of a frame .. 43

x

Figure 4-9: Gateway operation represented as a finite state machine (FSM) 44

Figure 4-10: SPI bus. Master/Slave model with interrupt lines 45

Figure 4-11: Stack process .. 47

Figure 4-12: DHCP process .. 47

Figure 5-1: Processing of the incoming frame on the wireless interface 49

Figure 5-2: Evaluation of the Ethernet interface ... 50

Figure 5-3: Analyzing the DHCP process – highlighting the DHCP ACK from the

router ... 51

Figure 5-4: Analyzing ICMP and ARP processes .. 51

Figure 5-5: Ping test (100 packets) .. 52

Figure 5-6: Request for sniffed wireless sensor‟s data .. 53

Figure 5-7: Reply with the sniffed wireless sensor‟s data .. 53

Figure 5-8: PackETH: packet generation ... 54

Figure 5-9: Analysis of multiple frames .. 54

Figure 5-10: PoE injector and gateway .. 55

xi

List of Tables
Table 2-1: Comparison of several wireless networking technologies 7

Table 2-2: ISM frequency band ... 11

Table 2-3: The TCP/IP stack ... 13

Table 2-4: Power over Ethernet: classification ... 22

Table 3-1: Comparison of MPS430F54xx .. 29

Table 3-2: Comparison of potential Texas Instruments RF receivers 31

Table 4-1: Summary of the parameters of the transmission ... 45

Table 5-1: Statistics of ping test (100 packets) .. 52

xiii

List of Acronyms and Abbreviations
AC Alternating Current

ADC Analog-to-Digital Converter

AES Advanced Encryption Standard

ASK Amplitude Shift Keying

BCD Binary Coded Decimal

CCS Code Composer Studio

CEPT European Conference of Postal and Telecommunications

CRC Cyclic Redundancy Check

CRT Cathode Ray Tube

CSMA/CA Carrier Sense Multiple Access/Collision Avoidance

CSMA/CD Carrier Sense Multiple Access/Collision Detection

DAC Digital-to-Analog Converter

DC Direct Current

DCF77 Deutschland Long Wave Frankfurt 77.5 kHz

DCO Digitally Controlled Oscillator

DMA Direct Memory Access

DSSS Direct Sequence Spread Spectrum

DVD Digital Versatile Disc

EIR Ethernet Interrupt Request

ERP Equivalent Radiated Power

ETSI European Telecommunications Standards Institute

FIFO First In First Out

FM Frequency Modulation

FPGA Field Programmable Gate Array

FSK Frequency Shift Keying

FSM Finite State Machine

GFSK Gaussian Frequency Shift Keying

GNU GNU‘s Not Unix

GSM Global System for Mobile Communications

HART Highway Addressable Remote Transducer Protocol

IEEE Institute of Electrical and Electronics Engineers

IP Internet Protocol

ISA International Society of Automation

ISM Industrial, Scientist, and Medical

ITU-R International Telecommunication Union (Radiocommunication)

IT+ Instant Transmission

LCD Liquid Crystal Display

LMRS Land Mobile Radio System

LR-WPAN Low-Rate Wireless Personal Area Network

MAC Medium Access Control

MCU Microcontroller Unit

MSK Minimum Shift Keying

NFC Near Field Communication

OOK On Off Keying

PC Personal Computer

PD Powered Device

PHY Physical Layer

http://wireless.per.nl/reference/chaptr05/cdma/dscdma.htm

xiv

PoE Power over Ethernet

PSE Power Sourcing Equipment

PSTN Public Switched Telephone Network

RAM Random Access Memory

RF Radio Frequency

RFID Radio Frequency IDentification

RISC Reduced Instruction Set Computing

RoHS Restriction of Use of Hazardous Substances

RX Receive

SDR Software Defined Radio

SNMP Simple Network Management Protocol

SoC System on Chip

SPI Serial Peripheral Interface

SRD Short Range Device

TCP Transmission Control Protocol

TFTP Trivial File Transfer Protocol

TI Texas Instruments

TX Transmit

UART Universal Asynchronous Receiver Transmitter

UDP User Datagram Protocol

UHF Ultra High Frequency

UPS Uninterruptible Power Supply

USB Universal Serial Bus

USCI Universal Serial Communication Interface

USRP Universal Software Radio Peripheral

UWB Ultra-wideband

Wi-Fi Wireless Fidelity (a branding effort for IEEE 802.11 WLANs)

WiMAX Worldwide Interoperability for Microwave Access

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSN Wireless Sensor Network

1

1 Introduction
In this first chapter we will present our work exposing the environment where it will

be located. We will also clarify what is the big problem we have to face to as well as the

initial goals to achieve. Finally we will expose the organization of the chapters of this

thesis.

1.1 General introduction to the area
In the last twenty years, networks have changed the way in which people and

organizations exchange information and coordinate their activities. In the next several

years we will witness another revolution; as new technology increasingly observes and

controls the physical world. The latest technological advances have enabled the

development of distributed processing, using tiny, low cost, and low-power processor

that are able to process information and transmit it wirelessly. The availability of

microsensors and wireless communications will enable the development of sensor

networks for a wide range of applications, rather than the limited applications of sensor

networks today.

Nowadays consumers want to know what is happening around them, especially in

specific areas, for example, in their home or office. The number of commonly used

electronic devices is increasing and these devices are increasingly connected to some

network or communicating across point to point wireless links. Technology is making

smart environments possible, i.e., the conditions and the state of ones surroundings is

monitored and controlled by utilizing a smart device. It is precisely in such areas where

wireless sensor networks are most meaningful.

A very common sensor in homes and offices is a temperature sensor. Today there

are many devices that show not only the temperature, but also the time, date, humidity,

etc. Many of these sensors use the Industrial, Scientific, and Medical (ISM) band to

transmit information from the sensor to another device which frequently is equipped

with a display. This display can be placed inside the building, while the sensor(s) might

be located both inside and outside the building. A person can read the information on

the display but generally there is no way to neither interact with the sensor nor that this

data can be easily used by other applications.

1.2 Problem statement
Because some of these wireless sensors use a proprietary protocol to transmit their

data we may need to decode this proprietary protocol in order to extract the relevant

information before we can send this data to another computer, where an application

could use this data (for example, temperature sensors could provide input for a home

automation system).

We are starting with an existing wireless sensor, hence we must first reverse

engineer the protocol being used by this proprietary sensor(s) and then with this

information we will ―recycling‖ (or repurpose) the data that already deployed sensors

are transmitting.

1.3 Goals
The ultimate goal is to take advantage of the ―closed‖ wireless point-to-point links

by connecting them to the potentially global network, specifically a home or office

internet. To achieve this is necessary to build a gateway that listens for data transmitted

by sensors transmitting in the ISM band. This gateway will receive and if necessary

2

decrypt the information that the various wireless sensors are transmitting and then pass

this information on to other computers for further processing. Because some sensors use

a proprietary protocol to transmit their data we may need to decode this proprietary

protocol in order to extract the relevant information before we can send this data to

another computer, where an application could use this data (for example, temperature

sensors could provide input for a home automation system). The many potential

applications which could take advantage of such a gateway are outside the scope of this

project – although for testing purposes we will create a sink application to receive this

data and store time stamped records into a file. The overall context of this gateway is

illustrated in Figure 1-1.

IP Network

Wireless Sensor

Wireless Sensor

Wireless Sensor

Ethernet

Gateway

Host Host

Router IP

Server

Figure 1-1: An overall view of how the sensor gateway might fit into a networked solution

This thesis project begins by considering only one specific temperature sensor

which transmits in the 868 MHz ISM band, but the goal is to be able to identify all

kinds of sensors, thus creating a global gateway (which operates within the frequency

band(s) of the radio receiver in the gateway). This means that we have to consider how

to recognize new sensors and how (and where) to decode the received messages. The

gateway presented in this thesis is initially used to connect only a specific type of

temperature sensor that could be used in a home or office automation application. The

range of this sensor‘s wireless link is less than 100 meters (hence it is a Short Range

Revice (SRD)).

We have divided this project in two functional parts:

1. Sniff and decode the information from one temperature sensor using a commercial radio

receiver and appropriate software (The details of this sensor are given in section 3.1.1.).

This temperature sensor contains a transmitter and comes together with a receiver built

into a clock that displays the measured temperature. We assumed that the information

transmitted by these sensors follows the typical link layer frame structure: header, data,

and trailer. We will verify our decoding of the received temperature messages by

comparing our results with the temperature shown on the receiver‘s display.

2. Design a gateway with a radio receiver, a microcontroller, and an Ethernet interface.

The data will be presented in a format suitable for distributed to other services. Note

that some of the processing may be done in the gateway and some in another computer

connected to the network, but at some other physical location. The most appropriate

partitioning of this processing will be examined in this part of the project. Since the

gateway will be permanently connected to the network, we can consider other

alternatives for powering such as Power over Ethernet (PoE).

3

1.4 Structure of this thesis
This thesis is divided into five chapters following a logical sequential order. The

Chapter 1, ―Introduction‖, describes the area within which the problem is addressed and

defines the goals to be achieved by this thesis. Chapter 2, ―Background‖, provides

general overview of most of the protocols, concepts, and previous work related to or

relevant to the subsequent chapters. Chapter 3, ―Method (Implementation)‖, examines

the requirements of our application and offers a detailed specification for the operation

of the gateway. We will describe the needed tools and the different parts of the gateway.

Chapter 4, ―Applying the Method (Operation)‖, explains how we are going to evaluate

all what we have done. The process of decoding the proprietary protocol is explained

here as well as the gateway has been configured to perform its work. Chapter 5,

―Analysis and Evaluation‖, evaluates the appropriateness of its performance. We will do

some experiments and tests to evaluate if the gateway executes its task as we expect.

The last chapter (Chapter 6), ―Conclusions‖, analyses the results obtained in Chapter 5

and summarizes the conclusions reached as result of the work performed during this

thesis project. Finally, some future work is recommended.

5

2 Background
This chapter will provide some background about both wired and wireless sensors

network (see section 2.1). Following this, in section 2.2 we will introduce a number of

wireless technologies that are relevant to this thesis project. A majority of the wireless

sensors that we will be concerned with utilize one of the ISM bands, so we will review

what the ISM bands are in section 2.3. Although any reader with basic knowledge about

computer networks can successfully understand this report, we will explain Internet

Protocol Suite and the most important protocols in the next sections (sections 2.4, 2.5,

2.6, 2.7, and 2.8) .The gateway will be connected to an Ethernet and the gateway needs

some source of electrical power, hence to simply the installation of the gateway we will

utilize power over Ethernet technology (see section 2.9). Finally, in section 2.10 we will

describe some related work and what others have already done.

2.1 Wireless and Wired Sensor Networks
A Wireless Sensor Network (WSN) is a system with numerous spatially distributed

devices. Each node of such a sensor network contains a sensor and we will use these

sensors to monitor various conditions at different locations. The conditions that may be

monitored include temperature, sound, vibration, pressure, motion, and pollutants.

These sensor nodes are part of a network with many other nodes. There is at least one

and typically more than one gateway sensor node that is used to connect the WSN to

other networks or computers (as shown in Figure 2-1). These sensor nodes typically

consist of a microcontroller, a power source (usually a battery), a radio

transmitter/receiver (transceiver), and one or more sensors. An example of such a node

is shown in Figure 2-2. The individual nodes are also called motes because they are tiny

and light [1].

Figure 2-1: WSN structure

MEMORY
POWER

SUPPLY

CPU RF

TRANSCEIVER
ADC

A
N

A
L

O
G

Y
C

 S
E

N
S

O
R

Antenna

E
n

v
ir

o
n

m
en

t

Figure 2-2: Structure of smart sensor

6

These sensors nodes are capable of processing a limited amount of data. However,

when a large number of nodes are coordinated, they have the ability to measure a given

physical environment in great detail. Thus, a sensor network application can be

described as the coordinated use of a collection of motes that to perform a specific

application. Sensor networks perform their tasks more accurately with a high density of

node deployment and careful coordination. The coordinated use of sensor data enables

sensor fusion. For example, using two cameras in a coordinated fashion to perform

stereo imaging is based upon combining the data from the two two-dimensional image

sensors to determine the three dimensional location of objects.

Sensor networks can consist of a small number of nodes connected by cable to a

central data processing unit or they may be distributed WSNs. When the location of a

physical phenomenon is unknown in advance, distributing the sensors means that some

of these sensors will be close to the event. The data from multiple sensors can often be

used to estimate the sensor value that would be measured if there were a sensor at the

location of the event. Furthermore, in many cases sensors need to be distributed in order

to avoid physical obstacles that would block of the communication links or when it is

not possible to locate a single sensor at the desired measurement location.

Another requirement for sensor networks is distributed processing. This distributed

processing is necessary because communication is the major consumer of energy, hence

performing some local processing reduces the need for communication leading to lower

total power consumption. Generally it is a good idea to process data locally as much

possible in order to minimize the number of bits transmitted – especially when the

sensor nodes are battery powered. However, if the sensor node has a ready supply of

power, then it may be better to transmit all of the sensor data to a remote node for

processing.

The deployment of sensor networks is increasing day by day. The number of

applications that can be built using such sensor network is almost endless, limited only

by our imagination and the data itself. Technology is making possible smart

environments, where the conditions and the state of surroundings is monitored and

controlled in an intelligent way. Example of applications are home and office

automation, increased energy efficiency of building, remote patient monitoring, public

safety monitoring, the monitoring of physical structures (such as buildings and bridges),

the monitoring of equipment (such as motors and turbines), etc.

Today we are seeing lots of wired and wireless sensors networks being deployed.

One of the important trends is that networks are no longer being deployed simply for a

single application, but instead the sensor networks are being used by multiple

applications (either in a serial time sharing fashion or in parallel). A key motivation for

this thesis project is to exploit the data already being generated by wireless sensor

nodes to enable new applications that the original designer of the sensor node had not

thought of. The first step in this process is to receive and decode the data sent over the

wireless link. The next section will describe some of the technology underlying these

wireless links. The actual processes of receiving and decoding the transmissions from

an example wireless sensor will be described in the next chapter.

2.2 Wireless technologies
In addition to the processor, battery, and sensor technologies, the development of

WSNs also relies on wireless networking technologies. The Institute of Electrical and

Electronics Engineers (IEEE) 802.11 standard [2] was the first standard for Wireless

Local Area Networks (WLANs). This standard was first introduced in 1997. This

7

standard is based on a Carrier Sense Multiple Access with Collision Avoidance

(CSMA/CA) Medium Access Control (MAC) protocol [3]. The initial version of the

standard was subsequently revised leading to the IEEE 802.11b standard which allows

increased data rates. Although the IEEE 802.11 family of standards were designed to

create WLANs, i.e., to connect laptop computers and PDAs, the IEEE 802.11 family of

interfaces has also been used in WSNs. However, the high power consumption and high

data rates are unsuited to the needs of many WSNs.

Since each wireless application may have its own constraints (in terms of power

consumption, desired data rate, number of nodes, communication range, reliability,

security, etc.), several different types of wireless links have been developed in order to

fulfill these requirements and expectations (see Table 2-1). The characteristics of these

technologies affect the design of systems, devices, and applications that may be built.

Figure 2-3 shows the differences between these solutions in terms of their maximum

range versus peak data rate.

Table 2-1: Comparison of several wireless networking technologies

 ZigBee Bluetooth UWB Wi-Fi Proprietary

Standard
IEEE 802.15.4

[4]

IEEE 802.15.1

[5]

IEEE

802.15.3a

IEEE

802.11a,b,g,n
Proprietary

Industry

organizations

ZigBee

Alliance
Bluetooth SIG

UWB Forum

and WiMedia

Alliance

Wi-Fi Alliance N/A

Topology Mesh, star, tree Star Star Star P2P, star, mesh

RF frequency
868/915 MHz,

2.4 GHz
2.4 GHz

3.1 to 10.6

GHz (U.S.)

2.4 GHz, 5.8

GHz

433/868/900

MHz, 2/4 GHz

Data rate 250 kbits/s 723 kbits/s
110 Mbits/s to

1.6 Gbits/s

11 to 105

Mbits/s

10 to 250

kbits/s

Range 10 to 300 m 10 m 4 to 20 m 10 to 100 m 10 to 100 m

Power Very low Low Low High
Very low to

low

Nodes 65,000 8 128 32 100 to 1000

Figure 2-3: Wireless technologies compared according to data rate and range

8

The sensors that we are concerned within this thesis project operate at a short range

(less than 100 meters) and do not require high bandwidth. These characteristics are

typical of a Wireless Personal Area Network (WPAN). WPANs were conceived to

integrate and interconnect nearby devices or ―objects‖. Today WPANs are increasingly

interconnected with other networks leading to the generalized concept of ―The Internet

of things‖ [6]. These ―things‖ can be placed anywhere in a building, factory, the human

body itself, etc. Because there is a need for flexible deployment wireless links are

essential. Additionally, because there are multiple types of networks involved there is a

need for one or more types of gateways to interconnect these networks.

In terms of low power WPANs, the ZigBee™ platform developed by the ZigBee

Alliance [7] has become quite popular. ZigBee makes use of the IEEE 802.15.4

standard [4]. The IEEE 802.15.4 standard defines the MAC and physical layer of a

WPAN. ZigBee defines a set of protocols (at layer 3 and higher) to manage

communication among ZigBee nodes. ZigBee is sufficiently flexible that it can handle

applications in numerous markets: industrial, health care, positioning, surveillance

systems, etc. [8]. ZigBee is supported by several commercial sensor node products,

including MICAz [9], TelosB [10], and IRIS [11].

Nevertheless, ZigBee is not the only option when it comes to WPANs. Currently,

there are many other proprietary solutions
*
:

 SimpliciTI [12] is an open-source software network protocol developed by

Texas Instruments. It is a low-power protocol aimed at simple and small RF

networks. Texas Instruments provides some hardware that together with this

software enables an easy implementation of a WPAN. Figure 2-4 shows a

typical network structure using this technology. As we can see, the

communication range can be extended through repeaters. Alarm controls, smoke

detectors, and automatic meter reading are the main applications that currently

utilize this protocol.

Figure 2-4: Typical network structure when using SimpliciTI [12]

 MiWi [13] was designed by Microchip Technologies. MiWi is based on IEEE

802.15.4. MiWi is designed for Low-Rate Wireless Personal Area Networks

(LR-WPANs). The main advantage of MiWi is the ease in developing wireless

applications and the ease in portability of these applications across different

*
 Note that ZigBee is a proprietary solution controlled and licensed by the ZigBee Alliance.

9

Microchip RF transceivers and different wireless protocols depending on the

application‘s requirements, without having to change the application firmware.

However, this protocol does not support large networks (as the maximum

number of nodes is only 1,000 while ZigBee supports 65,000 nodes). While

MiWi is an open specification, the microcontrollers and transceivers have to be

from Microchip.

 Synkro [14] is a networking protocol software stack running on top of the IEEE

802.15.4 standard. Synkro is designed for use in home entertainment products,

such as digital televisions, Digital Versatile Disc (DVD) players, audio/video

receivers, etc. This solution is owned by Freescale, although it has been opened

up since 2008. Freescale provides a software and hardware migration path for

future product line extensions designed to revolutionize the way consumers

control their home entertainment devices.

 PopNet™ [15] is a networking protocol and operating environment designed for

use with IEEE 802.15.4 transceiver in low-power sensor and control

applications. PopNet is owned by San Juan Software. It is a very flexible

protocol, so it suits nearly any wireless application. This protocol utilizes

Advanced Encryption Standard (AES) in 128-bit model to protect the

transmitted data and to make communications more robust.

 Z-Wave [16] is a proprietary wireless communications protocol designed for

home automation, specifically remote control applications in residential and

light commercial environments. The technology uses a low-power RF radio

embedded into home electronics devices and systems, such as lighting, home

access control, entertainment systems, and household appliances. Z-Wave

operates in the sub-gigahertz frequency range, typically around 900 MHz
†
. The

Z-Wave Alliance is an international consortium of manufacturers that provide

interoperable Z-Wave enabled devices.

 ONE-NET [17] is an open-source standard for wireless networking. ONE-NET

was designed for low-cost, low-power (battery-operated) control networks for

applications such as home automation, security & monitoring, device control,

and sensor networks. ONE-NET is not tied to any proprietary hardware or

software, and can be implemented with a variety of low-cost off-the-shelf radio

transceivers and microcontrollers from a number of different manufacturers. It

uses Ultra High Frequency (UHF) ISM radio transceivers and currently operates

in the 868 MHz and 915 MHz bands. The ONE-NET standard allows for

implementation in other frequency bands, and some work is being done to

implement it in the 433 MHz and 2.4 GHz frequency ranges.

 ANT and ANT+ [18] are proprietary wireless sensor network technologies

featuring a wireless communications protocol stack that enables radios operating

in the 2.4 GHz (ISM band) to communicate by establishing standard rules for

coexistence, data representation, signaling, authentication, and error detection.

†
 In Europe the operating frequency is 868.42 MHz.

10

The ANT and ANT+ protocols were designed and are currently marketed by

Dynastream Innovations Inc.

 DASH7 [19] is an open source wireless sensor networking standard for wireless

sensor networking, which operates in the 433 MHz unlicensed ISM band.

DASH7 provides multi-year battery life, range of up to 2 km, low latency for

connecting with moving things, a very small open source protocol stack, 128-bit

AES encryption support, and data transfer at up to 200 kbit/s. DASH7 is the

name of the technology promoted by the non-profit consortium called the

DASH7 Alliance.

 WirelessHART [20] is a wireless sensor networking technology based on the

Highway Addressable Remote Transducer Protocol (HART). The protocol

supports operation in the 2.4 GHz ISM band using IEEE 802.15.4 standard

radios.

 ISA100.11a [21] is an open wireless networking technology standard developed

by the International Society of Automation (ISA). The official description is

"Wireless Systems for Industrial Automation: Process Control and Related

Applications".

In addition to wireless technologies there are several operating systems or sets of

libraries for building applications that can run in wireless sensors nodes. Some

examples of these are:

 TinyOS [22] is an open source operating system designed for low-power

wireless devices such as WPANs. Written in nesC [23] (a dialect of C), it

provides interfaces, modules, and specific configurations, which allow

developers to build programs as a series of modules that do specific tasks.

 Contiki [24] is a small, open source, highly portable multitasking computer

operating system developed for use on a number of memory-constrained

networked systems ranging from 8-bit computers to embedded systems on

microcontrollers, including sensor network motes. It is often called ―The

Operating System for the Internet of Things‖. The name Contiki comes from

Thor Heyerdahl's famous Kon-Tiki raft.

All of these technologies establish a framework, i.e., they define network

topologies, ranges, sensors, compatibilities, and the rest of the information and

documentation needed to build a complete WPAN from scratch. However, this thesis

starts by going in exactly in the opposite direction in the meaning that we must first

reverse engineer the protocol being used by this proprietary sensor(s).

The study of WSNs involves an enormous variety of disciplines. When a developer

designs a WSN they have to think about the topology, routing, hierarchy, type of nodes,

protocol, multiple access, etc. While designing a WSN is not our goal, since we are

faced with an existing sensor node using an unknown communication protocol, we will

need knowledge of many of these areas in order to exploit the existing transmission of

wireless sensor nodes. In the rest of this chapter we will focus on the background areas

related to our thesis project, specifically those technologies that could be useful as we

carry out our work.

http://en.wikipedia.org/wiki/Battery_life
http://en.wikipedia.org/wiki/Protocol_stack
http://en.wikipedia.org/wiki/DASH7_Alliance

11

2.3 ISM band
The ISM bands are defined by the International Telecommunication Union

Radiocommunication (ITU-R) [25] in their 5.138, 5.150, and 5.280 Radio Regulations

(see Table 2-2). Individual countries' use of the bands designated in these sections may

differ due to variations in national radio regulations. Because communication devices

using the ISM bands must tolerate any interference from ISM equipment, unlicensed

operations are typically permitted to use these bands hence unlicensed operation needs

to be tolerant of interference from other devices. The ISM bands do have licensed

operations; however, due to the high likelihood of harmful interference, licensed use of

the bands is typically low or uses much higher power than unlicensed use.

In Europe the 900 MHz frequencies are part of the Global System for Mobile

communications (GSM) allocation [26]. This implies that 900 MHz ISM equipment

(illegally) imported from the U.S., Asia, or South Africa cause and suffers substantial

interference. Instead, Europe uses the 868-870 MHz band (see section 2.3.1). Similarly,

the use of the 433-435 MHz in the USA is replaced by the 340-354 MHz band.

A drawback of the ISM band is the lack of any protection against interference. To

ensure some coexistence between new communication users and users already

occupying the band, spread-spectrum transmission is mandatory, except for extremely

low power applications. Spread-spectrum techniques offer some protection both for the

licensed narrowband users of the bands (since the average spectral power density of the

new users is low in their existing channels) and also to protect new users (since the

processing gain of spread-spectrum systems mitigates interference from existing

intentional and non-intentional radiators).

Table 2-2: ISM frequency band

Frequency range Center frequency Availability

6.765 MHz 6.795 MHz 6.780 MHz Subject to local acceptance

13.553 MHz 13.567 MHz 13.560 MHz

26.957 MHz 27.283 MHz 27.120 MHz

40.660 MHz 40.700 MHz 40.680 MHz

314.000 MHz 317.000 MHz 315.500 MHz Japan

340.000 MHz 354.000 MHz 347.000 MHz Region 2
‡
 only and subject to local acceptance

433.050 MHz 434.790 MHz 433.920 MHz Region 1
§
 only and subject to local acceptance

868.000 MHz 870.000 MHz 869.000 MHz Region 1

902.000 MHz 928.000 MHz 915.000 MHz Region 2

2.400 GHz 2.500 GHz 2.450 GHz

5.725 GHz 5.875 GHz 5.800 GHz

24.000 GHz 24.250 GHz 24.125 GHz

61.000 GHz 61.500 GHz 61.250 GHz Subject to local acceptance

122.000 GHz 123.000 GHz 122.500 GHz Subject to local acceptance

244.000 GHz 246.000 GHz 245.000 GHz Subject to local acceptance

‡ North and South America and Pacific (East of the International Date Line)
§ Europe, Middle East, Africa, the former Soviet Union, including Siberia; and Mongolia and China

http://en.wikipedia.org/wiki/ITU-R
http://en.wikipedia.org/wiki/Radio_Regulations

12

 Some critics argue that technically it is a harder problem to protect a wanted signal

from only a few interferers than to separate it from many weak interferers. Direct

Sequence Spread Spectrum (DSSS) transmission typically spreads all signals over a

wide bandwidth, so it also makes it likely that more users experience interfere than in

narrowband scenarios – however, because the signal is spread over a wide bandwidth

the power in any narrow frequency band is low.

2.3.1 Short Range Devices operating at 868 MHz

The term ―Short Range Device‖ (SRD) covers radio transmitters which provide

either unidirectional or bidirectional communications at low power, hence they are

unlikely to cause interference to other radio equipment. SRDs use either integral,

dedicated, or external antennas.

The 868 MHz radio spectrum was recommended and adopted by the European

Conference of Postal and Telecommunications Administrations (CEPT) [27], especially

by the Frequency Management, Regulatory Affairs and Spectrum Engineering Working

Groups [28]. This recommendation sets out the general position on common spectrum

allocation for ―Short Range Devices‖ for countries within CEPT.

The European Telecommunications Standards Institute (ETSI) [29][30] developed

standards for the majority of these devices and governs their use. The respective radio

spectrum is specific to the European market and falls within the 868.000 - 870.000 MHz

frequencies and is separated into four sections: G1-G4. The effective radiated power or

Equivalent Radiated Power (ERP) in Watts is the radio frequency energy radiated by a

device after taking into consideration all sources of losses and gains.

G1 G2

G4

G3

8
6
8
.0

0

8
6
8
.6

0

8
6
8
.7

0

8
6
9
.2

0

8
6
9
.4

0

8
6
9
.6

5

8
6
9
.7

0

8
7
0
.0

0 Frequency [MHz]

P
o

w
er

 (
E

R
P

)
[m

W
]

25 mW 25 mW

5 mW

500 mW

Figure 2-5: 868-870 MHz band. Blue bands are reserved for particular occupancies

2.4 The Internet Protocol Suite
The Internet Protocol Suite is a term used to describe the set of communication

protocols, developed individually by the IT community, that implement the protocol

stack on which the Internet runs. It is often called the TCP/IP protocol suite, which

refers to the most important protocols in it: the Transmission Control Protocol (TCP)

and the Internet Protocol (IP). These were also the first two protocols in the suite to be

developed.

A protocol stack is a complete set of protocols layers that work together to provide

networking capabilities. It is called a stack because it is typically designed as a

hierarchy of layers, each supporting the one above it and using those below it. Each of

these layers is designed to solve a specific issue affecting the transmission of data.

Higher layers are closer to the user and deal with more abstract data, relying on lower

layers to convert data into forms that can be physically manipulated for transmission.

http://wireless.per.nl/reference/chaptr05/cdma/dscdma.htm
http://wireless.per.nl/reference/chaptr05/cdma/dscdma.htm

13

According to RFC 1122 [31], the Internet Protocol Suite is divided into four

abstraction layers, in contrast with the seven layers of the Open Systems Interconnect

(OSI) reference model [32]. Table 2-3 illustrates the TCP/IP protocol stack.

Table 2-3: The TCP/IP stack

Network layer Description

Application Layer
The set protocols involved in the process-to-process

communication

Transport Layer
Responsible for dictating format of data sent, exactly where it is

sent and maintaining data integrity

Internet Layer Delivery data packets across network boundaries

Link Layer Used to interconnect host or nodes in a network

Sometimes due to the usual mapping of the TCP/IP stack onto the OSI model, it is

also common to refer to the Physical Layer as a hardware layer at the lowest part of the

Link Layer.

2.5 Ethernet and IEEE 802.3
Ethernet is the predominant form of local area network (LAN) technology used with

TCP/IP today. It uses an access method called Carrier Sense Multiple Access with

Collision Detection (CSMA/CD). Moreover, it uses 48-bit addresses and originally

operated at 10 Mbits/sec.

A few years later the IEEE 802 Committee published a standards, the 802.3 [33],

which covers an entire set of CSMA/CD networks and defines the physical layer and

data link layer‘s MAC of wired Ethernet. The MAC layer consists on the channel-

access portion of the link layer used by Ethernet, but does not define a logical link

control protocol. As for the physical layer, it supports several media, such as different

types of coaxial cable, shielded and unshielded twisted pair, or Fiber-Optics. The

supported transmission data rates range from 10 Mbits/s to 100 Gbits/s. Some media

support half or full-duplex transmission.

The standard defines the mapping between IEEE 802.3 and Ethernet. In particular,

Ethernet‘s data link-layer protocol can be encapsulated within the MAC Client Data

field of IEEE 802.3 packets. Figure 2-6 illustrates this Ethernet data link-layer into

IEEE 802.3 MAC field encapsulation.

Preamble SFD IEEE 802.3 MAC

Destination Address Source Address
Length

/Type

CRC

6 bytes 6 bytes 2 bytes

46 - 1500 bytes 0 - 46 bytes 4 bytes

64 - 1518 bytes

7 bytes 1 byte 14 bytes

PaddingPayload

Figure 2-6: IEEE 802.3 and Ethernet encapsulation

 Preamble: Indicates that the frame is about to begin.

 Start Frame Delimiter: Indicates the end of the preamble and the start of the

packet data. Always set to 0xAB.

14

 Destination Address: 48-bit IEEE 802.3 MAC address of the destination

node. This may be a unicast, multicast or broadcast address.

 Source Address: The unicast 48-bit IEEE 802.3 MAC address of the source

node.

 Length/Type: If the field value is less than 1500, it indicates the length of the

payload. If its value is greater than 1500, then it indicates the type of the next

higher protocol. Some of the most used values are 0x0800 for IP and 0x0806

for ARP.

 Payload: The data being transmitted.

 Padding: Required if the payload is less than 46 bytes.

 CRC: Cyclic Redundancy Check for integrity verification. This is also called

the Frame Check Sequence (FCS).

2.6 Internet Protocol
The Internet Protocol (IP) is the workhorse protocol of the TCP/IP protocol suite. It

provides an unreliable, connectionless datagram delivery service. There are no

guarantees that an IP datagram successfully gets to its destination. However, IP

provides a best effort service (through ICMP messages). Moreover, IP does not

maintain any state information about successive datagrams. Each datagram is handled

independently from all other datagrams. This also means that IP datagrams can get

delivered out of order.

MAC header IP header Payload

Figure 2-7: IP encapsulation

The IP was first defined on IEEE journal paper entitled ―A Protocol for Packet

Network Interconnection‖ [34]. The protocol was later revised and updated to its fourth

version (IPv4) and its sixth version (IPv6).

2.6.1 IPv4

Internet Protocol version 4 (IPv4) is defined in RFC 791 [35] and it is the most used

version of IP. It uses 32-bit addresses which restricts the total number of addresses to

2
32

. Its header is illustrated in Figure 2-8. The normal size is 20 bytes, unless options are

present.

The most significant bit is numbered 0 at the left, and the least significant bit of a

32-bit value is numbered 31 on the right. The 4 bytes in the 32-bit value are transmitted

in the order: bits 0-7 first, then bits 8-15, then 16-23, and bits 24-31 last. This is called

big endian byte ordering, which is the byte ordering required for all binary integers in

the TCP/IP headers as they traverse a network.

15

Version IHL Differentiated Services Total length

Identification Flags Fragment offset

TTL Protocol Header checksum

Source IP address

Destination IP address

Options and padding

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-8: IPv4 header

 Version: Specifies the version of the IP. It has a value of 4 for IPv4.

 IHL: Internet Header Length in 32-bit words. The minimum value is 5 (20

bytes header, with no options).

 Differentiated Services: RFC 2474 [36] defines this field.

 Total length: Contains the length of the datagram including the header.

 Identification: Used to identify the fragments of one datagram from those of

another.

 Flags: Used for fragmentation control to indicate whether a fragment is the

last fragment or not of a datagram or if fragmentation is allowed for a

datagram.

 Fragment offset: Used to direct the reassembly of a fragmented datagram.

 TTL: Time to Live. A timer field used to track the lifetime of the datagram.

When the TTL field is decremented down to zero, the datagram is discarded.

 Protocol: Specifies the next encapsulated protocol.

 Header checksum: A 16-bit one‘s complement checksum of the IP header

and IP options.

 Source IP address: 32-bit IP address of the sender.

 Destination IP address: 32-bit IP address of the intended receiver.

 Options: Optional field with variable length.

 Padding: Needed to ensure that the header contains an integral number of

32-bit words.

2.7 User Datagram Protocol
The User Datagram Protocol (UDP) is a simple, datagram-orientated, transport layer

protocol defined in RFC 768 [37]. It offers a minimal transport service, with no

guaranteed datagram delivery. It gives applications direct access to the datagram service

of the IP.

Figure 2-9 shows the encapsulation of a UDP datagram as an IP datagram.

16

MAC header IP header UDP header Payload

Figure 2-9: UDP encapsulation

UDP provides no reliability: it sends the datagrams that the application writes to the

IP layer, but there is no guarantee that they ever reach their destination. Sometimes it is

considered almost a null protocol; the only services it provides over IP are

checksumming of data and multiplexing by port number.

Figure 2-10 illustrates the fields in the UDP header.

Source port Destination port

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Length Checksum

Figure 2-10: UDP header

 Source port: The port number of the sender. Cleared to zero if not used.

 Destination port: The port this packet is addressed to.

 Length: The length in bytes of the UDP header and the UDP data. The

minimum value is 8.

The next field is a checksum computed as the 16-bit one‘s complement of the one‘s

complement sum of a pseudo-header of information from the IP header, the UDP

header, and the data, padded as needed with zero bytes at the end to make a multiple of

two bytes [38]. Figure 2-11 shows this pseudo-header.

Total length0 Protocol

Source IPv4 address

Destination IPv4 address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-11: Pseudo-header for UDP checksum computation (IPv4)

The checksum field in UDP is not mandatory for IPv4. If this field is cleared to zero,

then checksumming is disabled. If the computed checksum is zero, this field must be set

to 0xFFFF. However, it is mandatory when transported by IPv6.

2.8 Other protocols
In this section we introduce other important protocols of the TCP/IP protocol suite

that we have worked with along our thesis.

2.8.1 Address Resolution Protocol

The Address Resolution Protocol (ARP) provides a dynamic mapping between

network layer addresses and link-layer addresses. In our case, it is used for resolution of

IPv4 addresses into IEEE 802.3 MAC addresses. Its description is in the RFC 826 [39].

17

MAC header ARP header Payload

Figure 2-12: ARP encapsulation

Essential to the efficient operation of ARP is the maintenance of an ARP table on

each host. This table maintains the recent mappings from Internet addresses to hardware

addresses and it is updated frequently.

Figure 2-13 shows the format of an ARP packet.

Hardware type Protocol type

Hardware address length Protocol address length Opcode

Source hardware address

Destination hardware address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Source protocol address

Destination protocol address

Figure 2-13: ARP header

 Hardware type: Specifies the type of hardware address. Its value is 1 for

Ethernet.

 Protocol type: Specifies the type of protocol address being mapped. Its value

is 0x0800 for IP addresses.

 Hardware address length: Length in bytes of the hardware address. Its value

is 6 for MAC addresses.

 Protocol address length: Length of the protocol address in bytes. Its value is

4 for IP addresses.

 Opcode: Specifies the operation to realize. Its value is 1 for ARP request and

2 for ARP reply.

The next four fields that follow are the sender‘s hardware address, the sender‘s

protocol address, the target hardware address, and the target protocol address. Note that

in our case we refer the hardware address as the MAC address (48-bit address) and the

protocol address as the IPv4 address (32-bit address).

Below we expose the mechanism used by the ARP.

1. Node A (with IP address x) wants to send a packet to node B (with IP address

y.

2. A look for B‘s MAC address in its ARP table.

18

3. If found, the packet can be sent directly (go to step 8). If not, then A sends an

ARP request packet to the MAC broadcast address.

4. B receives the ARP request and identifies its IP address (y) in the packet‘s

target address field.

5. B stores the pair <A, x> in its ARP table and responds to A with an ARP

reply packet including its MAC address.

6. A receives the ARP reply from B and stores the pair <B, y> in its ARP table.

7. Receiver and sender know each other‘s MAC address. A goes back to step 1.

8. A sends it packet to B.

Address Resolution Protocol is not used in IPv6. Instead of, it is used the Neighbor

Discovery protocol.

2.8.2 Internet Control Message Protocol

The Internet Control Message Protocol (ICMP) is defined in the RFC 792 [40]. It is

often considered part of the IP layer. It communicates error messages and other

conditions that require attention over IP datagrams.

MAC header IP header ICMP header Payload

Figure 2-14: ICMP encapsulated within an IP datagram

The purpose of these control messages is to provide feedback about problems in the

communication environment, not to make IP reliable. The higher levels protocols that

use IP must implement their own reliability procedures if reliable communication is

required. Figure 2-15 shows the header of an ICMP message.

Type ICMP header checksumCode

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 2-15: ICMP header

 Type: Specifies the format of the ICMP message. The reader can get a large

list of ICMP messages in the RFC 792 [40].

 Code: Further qualifies the ICMP message.

 ICMP header checksum: Checksum that covers the entire ICMP message.

The algorithm used is the same as we described for the IP header checksum

in section 2.6.1.

The Payload field contains the data specific to the message type indicated by the

Type and Code fields.

2.8.3 Dynamic Host Configuration Protocol

The Dynamic Host Configuration Protocol (DHCP) is a network configuration

protocol for hosts on IPv4 networks. Originally it was first defined in RFC 951 [41] as

part of the Bootstrap Protocol (BOOTP) but later was redefined as protocol itself in

RFC 2131 [42]. Hosts that are connected to TCP/IP networks must be configured before

they can communicate with other hosts. DHCP eliminates the manual task by a network

19

administrator. There has to be almost one server in the TCP/IP network to be able to

realize DHCP tasks.

DHCP uses UDP as its transport layer protocol. The port 67 is reserved for sending

data to the server, whereas the port 68 is reserved for data to the client. Due to the

features of UDP, DCHP communications are connectionless in nature.

IP header DHCP header PayloadMAC header UDP header

Figure 2-16: DHCP encapsulation

Its operation involves interchanging four packets between the host being configured

and a DHCP server: DHCP Discovery, DHCP Offer, DHCP Request, and DHCP

Acknowledgement.

CLIENT SERVER

DISCOVERY

OFFER

REQUEST

ACKNOWLEDGEMENT

Figure 2-17: DHCP algorithm

After this procedure, the host may acquire a variable set of network parameters like

its IPv4 address, subnet mask, and router‘s IPv4 address. This address assignment is for

a limited lease time. When half of the time has expired, the host initiates the DHCP

renewal process by sending a new DHCP Request to renew its lease. Figure 2-18

illustrates the DHCP header.

 Opcode: Indicates if it is a Boot Request (1) or Boot Reply (2).

 Hardware type: The same as for ARP header. For Ethernet, its value is 1.

 Hardware address length: The same as for ARP header. Its value is 6 for

Ethernet addresses.

 Hop count: Used by relay agents.

20

 Transaction ID: It contains a random number chosen by the client, used by

the client and server to associate messages and responses between a client

and a server.

 Number of seconds: The elapsed time in seconds since the client began an

address acquisition or renewal process.

 Flags: Defined in RFC 1542 [43].

Opcode Hop countHardware address lengthHardware type

Transaction ID

Number of seconds

Your IP address

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Client IP address

Client hardware address

Flags

Server IP address

Gateway IP address

Server host name

Boot filename

Options

Figure 2-18: DHCP header

The next four fields are 32-bit addresses and indicate the IP address that will be

assigned to the client, the temporary IP address of the host, the IP address of the server

as well as the IP address of the gateway. The follow field is the Client hardware

address expressed in 16 bytes. The Server host name and the Boot filename fields

normally are filled with zeros. Finally, the Options field has a variable length depending

on the DHCP message that is being transmitted.

2.9 Power over Ethernet
Power over Ethernet (PoE) is a technology that integrates power into a standard

LAN infrastructure. PoE enables power to be provided to a network device, such as an

IP phone or a network camera, using the same cable as that used for network

21

connectivity. Power is supplied in common mode over two or more of the differential

pairs found in Ethernet cables.

PoE technology was standardized in 2003 by the IEEE into a standard called IEEE

802.3af [44]. The mechanism for delivering power via PoE is similar to the way in

which the Public Switched Telephone Network (PSTN) [45] provides power to

telephone handsets. PoE delivers Direct Current (DC) power of up to a theoretical

maximum of about 15 W per cable. However, in practice a maximum power of 12.95 W

is available, due to losses in the cable. In 2009, IEEE 802.3at updated the PoE standard

(also known as PoE+ or PoE plus) to provide up to 25.5 W of power.

The PoE requires a standard network cable of category 5 (CAT5) or higher for high

power levels, but can operate with category 3 (CAT3) cable for low power levels. A

category 5 cable has four twisted pairs, but only two of these pairs are used for data.

The IEEE 802.3af specification allows either of the spare pairs to be used (i.e., pins 4

and 5, or 7 and 8) or the data pairs (pins 1 and 2, or 3 and 6) to carry the power.

Typically a PoE system consists of both Power Sourcing Equipment (PSE) and a

Powered Device (PD). The PSE may either be an Endspan (i.e. PoE Switch) or a

Midspan (i.e. PoE hub). The PD is a PoE-enabled terminal such as an IP phone. PoE

systems are deployed in a ―star topology‖, so each PD is connected to a separate

channel of the central PSE. The configuration when using a switch is shown in Figure

2-19.

Figure 2-19: Power over Ethernet connection

PoE technology supports a point-to-multipoint power distribution architecture,

parallel to the data network. This star topology enables use of a single Uninterruptible

Power Supply (UPS) at the network‘s core to power multiple devices attached to the

LAN. The LAN also provides remote access and management via Simple Network

Message Protocol (SNMP) [46]. SNMP is used in many cases to monitor and control

the UPS device in addition to the LAN switch.

The IEEE 802.3af specification defines a process for safely powering a PD over a

cable, and then removing power if a PD is disconnected. The process proceeds through

three operational states: detection, classification and operation. The intent behind the

process is to leave a non-terminated cable unpowered while the PSE periodically checks

for a plugged-in device; this is referred to as detection. The low power levels used

during detection are unlikely to cause damage to devices not designed for PoE. If a valid

PD signature is present, then the PSE may optionally inquire how much power the PD

requires; this is referred to as classification (see Table 2-4). The PD may return a default

full-power signature, or one of four other choices. Knowing the power demand of each

http://en.wikipedia.org/wiki/Category_5_cable

22

PD allows the PSE to intelligently allocate power between PDs, and also to protect itself

against overload. The PSE powers up a valid PD, and then monitors its output for

overloads. The maintain power signature (MPS) is presented by the powered PD to

assure the PSE that it is there. The PSE monitors its output for the MPS to see if the PD

is removed, and turns the port off, if it loses the MPS. Loss of MPS returns the PSE to

the initial state of detection.

Table 2-4: Power over Ethernet: classification

CLASS PD POWER(W) NOTE

0 0.44 – 12.95 Default class

1 0.44 – 3.84

2 3.84 – 6.49

3 6.49 – 12.95

4 - Reserved for future use

2.9.1 Advantages of PoE

Sometimes, devices requires more power than Universal Serial Bus (USB) offers

and very often the device must be powered over longer runs of cable than USB permits.

Field-spliced outdoor category 5 Ethernet cable can power radios and other low-power

devices, for instance, through over 100 m of cable, an order of magnitude further than

USB's theoretical maximum.

In addition, PoE uses only one type of connector, a RJ45, whereas there are

numerous types of USB connectors and each new USB standard has added additional

types of connectors. PoE is presently deployed in applications where USB is unsuitable

and where Alternating Current (AC) power would be inconvenient, expensive, or

infeasible to supply.

However, even where USB or AC power could be used, PoE has several benefits

over either, including:

 Cheaper cabling — even high quality outdoor category 5 cable is much cheaper

than USB repeaters or mains voltage AC wiring (note that the major cost of AC

mains wiring is not the wire, but rather the requirement in many locations to

have this wiring installed by an electrician).

 Global organizations can deploy PoE everywhere without concern for any local

variance in AC power standards, outlets, plugs, or reliability.

 While USB devices require a host computer or router to control the bus, and still

require switches or routes for Internet connections, a powered Ethernet device

requires only a switch, which can be unmanaged and can provide both power

and network connectivity.

 Symmetric distribution is possible. Unlike USB and AC outlets, power can be

supplied at either end of the cable or outlet. This means the location of the

power source can be determined after cables and outlets are installed.

The arrival of PoE changes the network design possibilities. This technology is

especially useful for powering IP telephones, networks routers, WLAN access points,

23

remote cameras, Ethernet switches, industrial devices, embedded computers, and Liquid

Crystal Displays (LCDs). In the scope of this project we will use it to power our sniffing

gateway.

2.10 Related work
A variety of previous research is related to our master thesis project. In this section

we will summarize some of the most relevant work.

There are many papers that describe the decryption of unknown wired and wireless

link protocols. Some of these papers focus exclusively on Internet protocols [47][48],

although the studies reported in [49] and [53] focused on wireless sensor networks. For

example, Rubén Martín Sánchez in [51] discusses sniffing frames in a ZigBee sensor

network.

Yu Zhuanghui and others [52] define a system, called Catcher, which is capable of

extracting information from unknown protocols. The process has 3 steps. First, simple

packets are captured, and the program lists them. Then, the fields of the frames are

located and the length of each field is calculated. In the final step, Catcher identifies

static and dynamic fields, in order to extract data that changes for each frame, i.e., the

higher layer information or the message itself. This article suggested the procedure that

we followed in our work.

The research described in [53] and [54] uses the same RF transceiver and

microcontroller unit (MCU) that we will use, although their aims are quite different than

ours. These two articles give us information about the communication between MSP430

and CC1101.

The topic of paper [55] is not related to our thesis, however it gives us useful

information because the author uses the same Ethernet controller that we plan to use,

but applies it to a networked three-phase electric power meter. In particular this article

shows the interface between a Texas Instruments microprocessor, the Ethernet

controller, and a RJ45 jack. In addition, it explains the procedures necessary to initialize

the ENC28J60 chip (initialization of receiving and sending buffers and the initialization

of MAC and Physical Layer (PHY) modules), the steps in receiving and transmitting

data, and the flow chart of their network software (see Figure 2-20). According to this

figure, when the main procedure processes an interrupt from the Ethernet controller, the

following steps are determined by reading the Ethernet Interrupt Request register (EIR).

This flow chart might be interesting for us when developing our gateway´s software.

Zhou and Shen [56] describe a realization of a ZigBee – Wireless Fidelity (Wi-Fi)

wireless gateway. The hardware platform of the gateway is made up of two parts: a 2.4

GHz radio frequency (RF) chip (that comprises incorporates an IEEE 802.15.4

transceiver and a microprocessor) and a Wi-Fi module. The communications between

this chip and the Wi-Fi module is achieved through a Universal Asynchronous Receiver

Transmitter (UART) interface. The software architecture includes system control,

software design of the RF chip, software design of Wi-Fi module, and a wireless

gateway application layer protocol. The paper explains the interaction procedures

between the ZigBee network and the WLAN (and in the reverse direction) using this

gateway. This design has many similarities with ours. Although we do not use Wi-Fi

and we only implement the communication from the sensor to the LAN, we can utilize

this paper as a good pattern for our work.

24

Read EIR

New frame

received?

Read buffer memory

Frame to

transmit

termination?

Check AND

compute

termination?

Receive buffer

memory is

vacant?

Obliterate PKTIF

symbol of EIR

Set receive data

marker furnish

upper layer software

use

Mid back

Obliterate TKIF

symbol of EIR

Obliterate DMAIF

symbol of EIR

Read EDMACSL

and EDMACSH

memory

Reinstall formation

pointer

Read state vector of

ESTAT memory

and data frame

Set passes the status

to upper layer

software

Transmit next data

frame

Transmit

formation

termination?

N

NN

Y

N

Y

Y

N

Y

Y

Figure 2-20: ENC28J60 RX and TX flowchart

There is a really interesting discussion in the forum of JeeLabs [57]. The topic is the

use of the radio module RFM12B [58] to sniff data from weather station transmitters

distributed by La Crosse Technology [59]. As well as our sensor under study, they are

catalogued as Instant Transmission (IT+) transmitters. This indicates that they could

work similarly. Furthermore, some users have found out how the messages are encoded

so we can benefit of this information to our project.

Finally, there are also more general works that address the above (a frame analyzer

and design of a specific receiver) [60]. However, in the case of these papers the

communication protocol is well known.

25

3 Method (Implementation)
In this chapter we will explain how to achieve our proposed goal. Basically, we

need to do two things: design the gateway and decode the communication protocol of

the wireless sensor network. The sort of doing these tasks is irrelevant. It is possible to

design firstly the gateway and after that study the wireless sensor network. However, we

will follow the opposite sort. We will first study the wireless sensor network in order to

figure out how the communication protocol is implemented (developed in section 4.1).

The hardware and the tools used to achieve this goal will be described in section 3.1.

After that in section 3.2 we will describe our gateway clarifying briefly all of its

integrated parts.

3.1 Hardware and Software tools
In order to carry out this thesis project, some hardware and software are required.

Professor Maguire provided all the necessary hardware. The first device was the target

wireless sensor (see section 3.1.1). To determine the sensor‘s transmission frequency

we used a spectrum analyzer (see section 3.1.2). The next piece of equipment was a

software radio to enable us to receive and decode the sensor‘s transmission (see section

3.1.3). In order to use this software radio we made use of the GNU Radio software (see

section 3.1.4).

Figure 3-1: Initial hardware configuration to decode the temperature messages distributed by a TFA
temperature sensor.

3.1.1 TFA radio-controlled clock and wireless temperature transmitter

The TFA Dostmann GmbH & Co. KG (TFA) 'Wave' wireless thermometer with

radio-controlled clock (catalog part number 30.3016.54.IT) is a wireless thermometer

solution [61] that operates in the 868 MHz band. The radio controlled clock (shown in

Figure 3-2 on the left) consists of a 868 MHz receiver, a 77.5 kHz radio receiver to

receive timing information from the DCF77 (D=Deutschland, C=long wave signal,

F=Frankfurt, 77=frequency: 77.5 kHz) transmitter in Germany [62], a microprocessor,

battery, internal temperature sensor, and a display that shows the date, time, and outside

and inside temperature. The outside temperature is provided by an associated

temperature-transmitter 868 MHz/IT module with no human-machine interface (catalog

part number 30.3164.IT) (shown in Figure 3-2 on the right). This temperature

transmitter module will be the initial sensor that we will consider.

Figure 3-2: TFA radio-controlled clock (left) with a wireless temperature transmitter (right)

26

The gateway will sniff the traffic sent by the wireless temperature transmitter in

order to detect frames and decode the contents of these frames. Within these frames we

must locate where the data field is and decode it. The visual interface on the receiver

will be used in our analysis as it displays the temperature reported by the sensor. As

alternative we could study the signal present on the chips of the transmitter but these

chips cannot be identified, as the picture in Figure 3-3 shows. There are two chips on

this board underneath large drops of epoxy. Decoding the messages by doing that seems

not to be feasible.

Figure 3-3: Circuit board from within the temperature transmitter

3.1.2 Spectrum Analyzer

We need a spectrum analyzer to determine the frequency of the signal sent by the

transmitter. Specifically, we will a HP Agilent model 8595E Portable spectrum analyzer

[63]. Although today this model is obsolete, this spectrum analyzer was located in the

same laboratory where we are carrying out our thesis project.

This spectrum analyzer is a very sensitive receiver that can work with signals whose

frequency is between 9 kHz and 6.5 GHz. It works on the principle of a "super-

heterodyne receiver" to convert higher frequencies to measurable quantities. The

received frequency spectrum is slowly swept through a range of pre-selected

frequencies, converting the selected frequency to a measurable DC level (usually

logarithmic scale), and displaying this quantity on the Cathode Ray Tube (CRT) screen.

The CRT displays received signal strength (y-axis) as a function of frequency (x-axis).

3.1.3 The Universal Software Radio Peripheral

For development purposes an Ettus Research LLC Universal Software Radio

Peripheral (USRP) [64] will be used to receive the data from the TFA temperature

transmitter. This function will later be performed by the sniffer gateway that we will

design. The particular model of the USRP that we will use is the USRP1 [65]. The

USRP1 is a very flexible device that allows a developer to quickly design and

implement flexible radio systems. It requires an external 6 volt DC power supply. The

USRP can be connected to a computer via a USB port.

The motherboard, shown in Figure 3-4, basically consists of:

 An Altera Cyclone Field Programmable Gate Array (FPGA) to perform high

sample rate processing

 4 high-speed Analog-digital Converters (ADC) connected to the FPGA

 4 high-speed Digital-Analog Converters (DAC) connected to the FPGA

 A USB 2.0 interface chip

On the motherboard there are 4 slots to plug in daughterboards: 2 receivers (RXA

and RXB) and 2 transmitters (TXA and TXB). Each daughterboard has access to 2 of

the 4 high-speed converters, specifically DACs for transmitters and ADCs for receivers.

27

Figure 3-4: USRP Motherboard

There are several different kinds of daughterboards [66], but in this thesis we have

used the ―DBSRX‖ daughterboard. The DBSRX is a complete receiver system for 800

MHz to 2.4 GHz, and the noise figure is between 3 and 5. As the initial sensor utilizes a

frequency of 868 MHz, this daughterboard was appropriate.

3.1.4 GNU Radio

GNU Radio [67] is a free open-source software development toolkit that provides

signal processing blocks to implement software radios. It can be used together external

RF hardware to create software-defined radios, or without hardware, as a simulation

environment.

A Software Defined Radio (SDR) is a radio system which performs the required

signal processing in software instead of using dedicated integrated circuits to do the

processing in hardware. The advantage of SDR is that you can create different kinds of

radio using the same hardware simply by modifying the software.

GNU radio applications are written mainly in Python [68]. Python is a high-level

multi-paradigm programming language (which is free and open-source) first

implemented in late 1980s. It uses indentation to delimit blocks, making Python a very

readable programming language.

The GNU Radio software includes a number of different tools to facilitate the work

of a developer. One of them is GNU Radio Companion [69], a graphical tool for

creating signal flow graphs and generating flow-graph source code. There are many pre-

existing blocks that you can use when developing an application. Using the GNU Radio

Companion development of an application is very intuitive and it does not require much

knowledge to create efficient signal flow graphs.

28

Combining GNU Radio with the USRP (described in section 3.1.3) a powerful SDR

is created. For example, with the suitable hardware, you can receive TV signals and

view TV channels, or you can listen to various Frequency Modulation (FM) radio

channels, receive satellite signals, etc. With a suitable RF front end almost any kind of

radio transceiver that you can think of can be created with this combination of hardware

and software. The USRP hardware provides the input and output to a signal flow graph

and the GNU Radio tools can be used to augment the default functions of the USRP.

3.1.5 Code Composer Studio

Code Composer Studio (CCS) is an integrated development environment for Texas

Instruments digital signal processors, microcontrollers, and application processors. It

includes a suite of tools used to develop and debug embedded applications. It also

includes compilers for each of Texas Instruments (TI) device families, a source code

editor, a project build environment, a debugger, a profiler, simulators, and many other

features.

There are different versions of CCS in use today. In this thesis project, we are going

to work with version v5 of this tool. This tool can be downloaded for free from TI‘s

webpage [70]. Information, examples, guides, and support can be also found from this

webpage.

We will use CCS to program the MCU. Using CCS, we will develop the application

that the microprocessor has to run to control the receiver and the Ethernet controller,

and to send the decoded data that has been receiver to a remote computer. All of our

software will be written using the C language. We will also leverage the earlier work

done with this processor and Ethernet controller by Luis Maqueda Ara [71].

3.1.6 Easily Applicable Graphical Layout Editor

The Easily Applicable Graphical Layout Editor (EAGLE) is a user-friendly,

powerful and affordable software for efficient printed circuit board (PCB) design and

combines the modules schematic editor, layout editor and autorouter on one single

interface. It is very easy to use and includes a set of libraries with the schematics and the

footprints of a lot of commercial devices. A freeware version of EAGLE is available on

the CadSoft webpage [72].

With this tool we will design the PCB of our gateway and let it ready to be

manufactured.

3.2 Gateway specifications
The sniffer gateway that we will design, make, and evaluate consists of a

microcontroller, a transceiver or a receiver, and an Ethernet controller. Figure 3-5

illustrates an overall view of the gateway.

Powering

Ethernet interface

Radio

Frequency

interface

User

interface

MCU

Figure 3-5: General overview of the gateway

29

3.2.1 MSP430 Microcontroller

The MCU is the core of our gateway. We chose one from the Texas Instruments

MSP430 family of microcontroller. The manufacturer‘s website states the following as

the main specifications of this family of microcontrollers:

 Ultra low-power consumption

 Several peripherals

 16 bit Reduce Instruction Set Computer (RISC) architecture

 Five low-power modes

 Digitally Controlled Oscillator (DCO)

 Fast wake up from low-power modes

We decided to use the MPS430F54xx [73] based upon a previous thesis project

done by Joaquin Toledo [74] within the same department where we are doing our thesis.

The MPS430F54xx can be clocked at up to 25 MHz and includes three 16-bit timers, a

high performance 12-bit ADC with 16 analog channels, hardware multiplier 32x32,

Direct Memory Access (DMA), a real-time clock module with alarm capabilities, and

various Universal Serial Communication Interfaces (USCI).

Today Texas Instruments offers various MPS430F54xx MCUs. Table 3-1 shows the

main differences between them.

Table 3-1: Comparison of MPS430F54xx

MSP430F54XX
Flash

(KB)
SRAM (B) GPIO Pin/Package

USCI_A USCI_B

UART/LIN/IrDA/SPI I2C & SPI

MSP430F5418A 128 16384 67 80LQFP 2 2

MSP430F5419A 128 16384 87 100LQFP 4 4

MSP430F5435A 192 16384 67 80LQFP 2 2

MSP430F5436A 192 16384 87 100LQFP 4 4

MSP430F5437A 256 16384 67 80LQFP 2 2

MSP430F5438A 256 16384 87 100LQFP 4 4

For our gateway we needed serial communication between the MCU and the

transceiver and the Ethernet controller. So only two independent serial interfaces were

necessary. Furthermore, no additional signals will be required. For these reasons, we

chose to work with the MSP430F5437A [75].

A major feature of this microcontroller is that it provides two Serial Peripheral

Interface (SPI) buses. These will be used to simultaneously connect to the Ethernet

controller and the 868 MHz transceiver. Additional features that make it particularly

suitable for use in the sniffer gateway are its ultralow power consumption (enabling it to

be powered using PoE) and the ease of developing and debugging programming using

Texas Instruments‘ Code Compose Studio tool.

30

3.2.2 Powering

As we explained in section 1.3, we have considered powering the gateway through

PoE (see section 2.9). The main advantages are exposed in section 2.9.1.

In order to carry out this we need incorporate a device responsible of applying the

correct voltage according with the IEEE 802.3af [44]. The selected device was the

TPS2375 of Texas Instruments [76] and it contains all the features needed to envelop an

IEEE 802.3af compliant PD. We chose working with this device because it is from

Texas Instruments, as the microcontroller is.

In addition to use PoE for supply power to the gateway we also included in our

design an auxiliary DC connector for use with an external DC Power Supply. These

typical suppliers usually provide 5V, 9V or 12V.

To select among these two different ways for powering, we added a 3-position

jumper. Thus, the user can choose with only changing the jumper position.

3.2.3 Ethernet controller

The Ethernet controller module is responsible for connecting the gateway with other

network attached devices. The physical Ethernet connector will also be used supply

power to the sniffer gateway using PoE technology. The Microchip ENC28J60 [77] has

been chosen due to its SPI which will be used to communicate with the MCU. To

control and monitor this Ethernet controller we read and write to the control registers

via SPI. This Ethernet controller also integrates a dual port Random Access Memory

(RAM) buffer for received and transmitted data packets avoiding the need for external

memory for packets. Additionally, this Ethernet controller includes all the necessary

MAC and PHY modules.

3.2.4 User interface

The function of this part is to ease the communication between the user and the

gateway. It is composed of a couple of buttons and light emission devices (LEDs). One

button is programmed to reset the MCU while as the other one has a general purpose

and it is configurable by the user. The LEDs are also user programmable.

This interface also incorporates the part related to the programming the MCU. We

inspired in The Wasa Board Project [78], created by Professor Mark T. Smith (professor

of the same department where we developed this work). We used the MSP-FET430UIF

to load our software onto the MCU. This tool was borrowed from Professor Smith. It is

a powerful flash emulation tool that includes USB debugging interface used to program

and debug the MSP430 in-system through the JTAG interface. It works in conjunction

with the CCS and supports development with all MSP430 flash devices. We can erase

and program the flash memory in seconds.

3.2.5 RF interface

This radio frequency interface consists of the transceiver (or only receiver in our

initial case) and all the auxiliary circuitry (i.e. an antenna).

There are a lot of commercial solutions that can be used to design and implement

the RF receiver. To simplify the design process, we will use a transceiver or receiver

from the same manufacturer as the MCU. Texas Instruments offers a set of transceivers

and receivers in the sub-gigahertz band that could suit our design. After studying each

of these receivers, we created a table (see Table 3-2) that summarizes the main features

of each of them in order to decide which is the most suitable for sniffer gateway.

31

Based upon the analysis that is described in the next chapter, we choose the C1101

[79]. This transceiver has high receiver sensitivity, supports high data rates, and can

work with several types of modulation. This chip can also work as a transmitter, but

initially in this thesis we will design a receiver only gateway. (Note that the Ethernet

interface is bi-direction and it is only the radio that we are limiting to being a receiver.)

Texas Instruments offers another solution for the receiver based on a System On

Chip (SoC). For example, the CC430F6137 [80] integrates a MPS430 microcontroller

and a RF transceiver based on the CC1101. This is an interesting option because it

avoids the need for external wiring between the MCU and the RF transceiver. However,

in order to build directly on the work of Joaquin Toledo we will use separate devices for

the MCU and RF transceiver for the first version of our sniffer gateway.

Table 3-2: Comparison of potential Texas Instruments RF receivers

Features

Frequencies Modulations Function

Maximum

data rate

Maximum

output

power

Maximum

signal to

noise ratio

Other

features

C
C

1
1

0
L

315/433/868/

915 MHz
ISM/SRD

2-FSK, 4-FSK,

GFSK, OOK

Value Line

Transceiver
600 kbps +12 dBm -116 dBm

64-byte RX

and TX FIFO

Bands: 300-
348, 387-464,

779-928 MHz

C
C

1
1

3
L

315/433/868/

915 MHz
ISM/SRD

2-FSK, 4-FSK,

GFSK, OOK

Value Line

Receiver
600 kbps -116 dBm

64-byte RX

FIFO

Bands: 300-
348, 387-464,

779-928 MHz

C
C

1
0

0
0

315/433/868/

915 MHz

ISM/SRD

FSK

Single-Chip

Very Low

Power RF
Transceiver

76.8 kBaud +10 dBm -100 dBm

Programmabl

e frequencies:

300-1000
MHz

C
C

1
0

5
0

315/433/868/
915 MHz

ISM/SRD

FSK

Single-Chip

Very Low

Power RF
Transmitter

76.8 kBaud +10 dBm

Programmabl

e frequencies:

300-1000
MHz

C
C

1
1

0
1

315/433/868/

915 MHz

ISM/SRD

2-FSK, 4-FSK,

GFSK, MSK, OOK,

ASK

Low-Power

Sub-1 GHz
RF

Transceiver

600 kbps +12 dBm -116 dBm

64-byte RX
and TX FIFO

Bands: 300-

348, 387-464,
779-928 MHz

C
C

1
1

2
0

170/433/868/

915/950 MHz

ISM/SRD

2-FSK, 4-FSK,

2-GFSK, 4-GFSK,

MSK, OOK

High

Performance

RF

Transceiver

for

Narrowband
Systems

200 kbps +16 dBm -123 dBm

Channel

spacing down
to 12.5 kHz

128-byte RX

and TX FIFO
Bands: 164-

192, 410-480,

820-960 MHz

C
C

1
1

2
1

170/433/868/

915/950 MHz
ISM/SRD

2-FSK, 4-FSK,
2-GFSK, 4-GFSK,

MSK, OOK,

analog FM

High

Performance

Low Power
RF

Transceiver

200 kbps +16 dBm -117 dBm

128-byte RX

and TX FIFO

Bands: 410-
480, 820-960

MHz

32

3.3 Gateway‘s final look
The gateway has been built over two PCB. The main board (motherboard)

incorporates the MCU, the powering circuitry, the user interface, and the Ethernet part.

The RF part is embedded on another smaller board. We chose build two boards instead

of only one because thus the gateway can be used within a different WSN with only

replacing the RF board. This determination opens a wide range of opportunities because

of the different wireless technologies (as we explained in section 2.2). For example, if

the user wants to sniff sensors following the IEEE 802.15.1 [5] he only has to redesign

the RF board in order to work within the correct frequency (2.4 GHz instead of 868

MHz).

The design of the gateway is symbolized with its schematic (see Appendix D on

page 75) and its layout (see Appendix E on page 79). The motherboard‘s front and back

sides are shown in Figure 3-6 and Figure 3-7 (respectively). The front and back of

daughterboard are shown in Figure 3-8 and Figure 3-9.

Figure 3-6: The motherboard’s front

33

Figure 3-7: The motherboard's back

Figure 3-8: The daughterboard’s front

34

Figure 3-9: The daughterboard’s back

Finally the entire gateway is shown in Figure 3-10. The antenna (a 10 cm dipole)

placed on the daughterboard was borrowed from one of the wireless routers available in

the lab.

Figure 3-10: The gateway's front

35

4 Applying the Method (Operation)
This chapter describes the implementation details of the application specified in the

previous chapter (Chapter 3). First, in section 4.1, we will explain how what we have

done to decrypt the proprietary protocol used in the wireless communication of the

sensor under study (Chapter 3, section 3.1.1). After that we will describe how the

gateway works. An evaluation test will be described in Chapter 5.

4.1 Breaking the proprietary protocol
In this section we are going to explain the procedure we have followed to decode the

proprietary protocol of our sensor under study and extract the information sent by the

transmitter. We will illustrate this with various figures (some of them are output from

MATLAB
**

) to facilitate our explanation of the procedure we followed to decode the

received frames.

Section 4.1.1 describes how we sniffed the transmissions of the temperature

transmitter with the USRP. To do this, we used software written in Python to visualize

the spectrum of the signal and to store the digitized signal in a file that we analyzed

later.

In section 4.1.2 this file is read and the digitize signal was analyzed with MATLAB.

Once we had the appropriate signal samples, we analyzed this data in order to

distinguish bits and to determine the data rate and the length of each transmission (how

many bits were transmitted in each transmission by the temperature transmitter). We

wrote some scripts to determine the time intervals at which the data is transmitted by the

transmitter and removed all of the other samples from the digitized signal (i.e., we kept

only the samples during the times when the transmitter was actively transmitting). In the

following sections we describe the details of how we determined where the data fields

were in each transmission and how we identified the purpose of each of these data

fields.

4.1.1 Initially capturing data from the sensor

The first problem to overcome is to determine the operating frequency of this

wireless sensor. This first problem is relatively easy to solve with a spectrum analyzer.

The next (and more major) problem is to receive the transmitted signal and to decode

the proprietary protocol. Each such protocol may have its own frames, fields, and even

encryption.

Before capturing data, it is necessary to understand roughly how the sensor works.

Initially, based upon the documentation that came with the transmitter we only knew

that the transmission frequency was at roughly 868 MHz and that the transmitter only

transmits every 4 seconds, in order to save battery power. Therefore we did not expect

to find a continuous transmission, but simply a fast burst of data every 4 seconds.

We used the spectrum analyzer to visualize the frequency components and to learn

the exact frequency of the device‘s transmissions. As it was expected, nearly all of the

time only noise was detected by the spectrum analyzer, but sometimes a peak appeared

at approximately 868.265 MHz. Most of these peaks were missed or hard to see because

of their short duration. However, a longer peak was displayed when the sensor was

**

 © 2012 The MathWorks, Inc. MATLAB and Simulink are registered trademarks of The MathWorks,

Inc. See www.mathworks.com/trademarks for a list of additional trademarks. Other product or brand

names may be trademarks or registered trademarks of their respective holders.

36

initialized, that is, when the batteries were first put into the transmitter. Thus it was

possible to determine the approximate center frequency and the bandwidth of our signal.

However, the long sweep time (i.e., the time it takes the spectrum analyzer to sweep

through a range of frequencies) and the lack of a digital interface to the analyzer made

this analysis quite complicated.

To overcome the difficulties of collecting the data that we wanted using the

spectrum analyzer we used the USRP with the DBSRX daughterboard, together with the

GNU Radio software to receive transmissions between 800 MHz and 2.4 GHz. Since

this wide range contained the temperature transmitter‘s transmission frequency we tried

to visualize the frequency components of the signal in real-time with the GNU Radio

file ‘usrp_fft.py’ (see Appendix A starting on page 69). This script works as a spectrum

analyzer, and it showed the RF frequencies that the USRP received. Figure 4-1 shows

an example of the output from this script when the center frequency of the receiver was

set to 868.265 MHz. Note that this figure does not show the output for the whole

spectrum from 800 MHz to 2.4 GHz, although the received power in this range could

have been computed and displayed to estimate the center frequency of the transmitter -

we used the knowledge learned from using the HP spectrum analyzer to skip this step.

Additionally, we might have used another input to the USRP to know when the

microcontroller in the temperature transmitter actually sent data to the transmitter chip

and used this to trigger our data capture – thus increasing the easy of collecting samples

during the device‘s transmission.

Given what we have learned, the next step was record the signal. This objective was

achieved with the python file ―usrp_rx_cfile.py‖ (see Appendix A). This script takes

several arguments that specify: the frequency, the number of samples you wanted to

collect, the gain of the amplifier, the data type of the samples, and the decimation (this

value fixes the bandwidth of the capture). Executing this script in a Linux terminal

creates a file containing the data collected from our temperature sensor.

Figure 4-1: Spectrum analyzer designed with the script “usrp_fft.py”

37

4.1.2 Decoding the received signal

A software tool to deal with the captured samples of the signal was required.

Although there were a number of different possibilities, we chose MATLAB as it is a

very powerful tool that offers to the user many possibilities for signal processing. It

allowed us to read the information recorded with the USRP and GNU Radio software,

and to easily analyze this data.

We first attempted to view the signal. The MATLAB function

―read_complex_binary.m‖ converts the binary samples into a complex vector. As the

data type is complex, we will display in Figure 4-2 the real value of the vector‘s

elements. As we expected, a short transmission is visible above the noise level every 4

seconds.

Figure 4-2: Two different transmissions separated 4 seconds

Figure 4-3 shows the details of part of one such transmission. This picture shows

only a fraction of one of the transmissions in order to give a better view of how the

signal changes with time.

Figure 4-3: One piece of frame

38

As can be seen in this figure, there are two different frequencies of oscillations,

which lead us to believe that the transmitter is using Frequency Shift Keying

modulation (FSK). If so, one of those frequencies corresponds with a logical ‗1‘ and the

other with a logical ‗0‘. As the transmitter has only a very limited amount of

information to communicate to the intended receiver, we expect that the modulation and

coding used will be simple (otherwise the required computational power and the battery

power consumption at the transmitter would both be larger). Furthermore, the

transmission time can be determined at this point. A frame lasts about 3.7 milliseconds.

We can also count 64 different fields so we assumed that each frame is composed of 64

bits. This gives duration for each bit of 58 microseconds, which corresponds to a bitrate

of 17241 bps.

Figure 4-4 shows the spectrum of the signal. We can see two main frequency

contributions (f1 and f2) and some harmonics. It is possible to compute the frequency

deviation as a (f2 - f1)/2.

Figure 4-4: Spectrum of one frame

Once the modulation is known to be FSK, a considerable number of samples of

different temperature were recorded in order to compare the received signals, hence

enabling us to extract meaningful data from the received signal. To do this

automatically, it is first necessary to automatically extract ones and zeros from the

recorded signal. We developed a MATLAB script to perform this task (see Appendix B

starting on page 71). The main idea is first, to detect the different frames (appearing

each 4 seconds approximately), and after that, to process each bit separately, based upon

the oscillation frequency determine if the bit is a ‗1‘ or ‗0‘.

Figure 4-5 illustrates the same part of a frame showed in the previous figure (the

signal is shown in red) and the extracted bits (shown in the figure as blue balls). We

assumed that high frequency corresponds to ‗1‘ and the low frequency, to ‗0‘, but when

analyzing the data we will check if it this assumption is correct or not.

39

Figure 4-5: Part of one frame (data once extracted)

4.1.3 Analyzing data

In this point, we can capture the signal and extract the bit information. Now, some

questions emerge. What do these ones and zeros represent? Which field of the frame

contains the temperature data? How is the message encoded and how is the data coded?

All of these questions and more are analyzed and answered in this section.

Before this analysis, we spent a little time thinking about what could be in the

frame. At the beginning of the frame we expect to find a preamble. Such a preamble is

employed to synchronize the receiver, that is, when the station receives the preamble, it

knows that a frame is being sent and the receiver can synchronic its clock to the

transmitter. The frame might also contain an identifier of the transmitter, in order to

distinguish between various transmitters sending information simultaneously in the

same environment. The frame also needs to contain the temperature. Finally at the end

of the frame might be a field to be used to detect errors that may have been introduced

during the frame‘s transmission. This final field might be a checksum, hash sum, or a

CRC. All of these fields were expected to be found in the frame.

To be able to decode the frame a number of frames were captured. As the range of

temperature that this temperature transmitter was supposed to be able to measure ranged

from – 39.9º to 59.9º Celsius we carried out a set of measurements to cover as much of

this range as possible. Some temperatures were not easy to obtain naturally, so the

sensor needed to be heated and cooled artificially (using light bulbs and a refrigerator,

respectively) to reach the desired temperature for the measurement.

While exposing the temperature sensor to a range of temperatures we recorded its

transmissions using the USRP and stored this data in a file – while simultaneously

noting the temperature displayed on the TFA receiver. Then, we loaded the resulting file

is into MATLAB and applied the scripts that we had developed. The MATLAB output

(i.e., the bit corresponding to each of the frames) was stored in a spreadsheet, enabling

us to easily organize this information. This spreadsheet (shown in Figure 4-6) helps us

to carefully examine these frames.

40

Figure 4-6: Some known positive temperature values - the fields where the bits varied is highlighted in orange

Figure 4-6 shows only a portion of our spreadsheet. The complete set of bit fields

from the file ‗Temperatures.xls‘ are shown in Appendix C starting on page 73. The

bytes and different fields have been colored to facilitate examining the frames. The first

thing to note is changing and unchanging fields. When different measurements are made

when changing the temperature between the different measures, we notice the orange

colored bits (in the spreadsheet) and the last byte are the only changing fields. At first

sight, the last byte does not seem to follow any logical order; hence we assumed that

this field corresponds to a checksum or a CRC-8. Now that we have identified the bits

that seem to carry the temperature value we need to decode these bits, the procedure to

do this is explained in the next subsection.

4.1.4 Temperature field

Our analysis started with the positive temperature values. Focusing on the orange

colored bit cells, if we look at the values received when the temperature was reported to

range from 25.0 to 25.9, we notice that when temperature increases by a tenth of a

degree (Centigrade) that this field increases by 1 when decoded as decimal digits.

Further when the temperature increases from 25.9 to 26.0, the last 4 bits (the 4 right

most bits, bits in columns 45th to 48th) change from ‗1001‘ (in decimal: 9) to ‗0000‘ (in

decimal code: 0). This indicates that the last 4 bits of the orange cells represent the tenth

of the degree encoded as a Binary Coded Decimal (BCD) digit. Applying this

hypothesis about the encoding to the rest of the data collected for positive numbers, we

determine that this hypothesis is correct.

Following this pattern, when now focus on the bits in columns 41
st
 to 44

th
. Between

25.0 and 25.9, the unit‘s digit is 5, and we see a ‗0101‘, i.e., a decimal 5 in these bits. A

similar pattern occurs for the range between 26.0 and 26.9, but with the decimal digit

six. Applying this decoding to all of the positive temperature values in the spreadsheet

we see that all the units place of all positive numbers are encoded in BCD.

Following the previous deductions, we might think that the value of the tens digit

must be represented in BCD in the 4 first orange cells (bits 37th to 40
th

). However,

between 10.0 and 19.9, that field is ‗0101‘ (5 decimal), from 20.0 to 29.9, is ‗0110‘ (6

decimal), between 30.0 and 39.9, is ‗0111‘ (7 decimal), and so on. When the tens rises

one, the value in that field also increases by 1, but the value does not give us the

expected decimal value for the corresponding temperature. To solve this difficulty, we

examine these bits that are associated with negative temperature values (some of these

are shown in Figure 4-7).

41

Figure 4-7: Part of the spreadsheet showing the bits for some negative temperatures values

The lowest temperature value that we acquired was -12.2º. However, this was

sufficient to deduce how the tens digit of the temperature is codified. By considering the

lowest temperature value which can be measured by this sensor: -39.9º, then according

to the pattern observed, we realized that this temperature would be codified as ‗0000

0000 0000‘. While the highest temperature, +59.9º, would be ‗1001 1001 1001‘. Based

upon this conclude that each group of 4 bits works as a counter mod-10, taking the carry

to the next group of 4 bits. The algorithm to extract the temperature value from the bit

field is:

 Decode the temperature field as BCD, divide it by 10 and subtract 40 to the

result. Example: ‗0100 0010 0001‘ (421 in BCD) corresponds with 2.1º.

(421/10) – 40 = 2.1.

 If the result of the first step is smaller than 0, add one tenth.

Checking this algorithm against all the data that we recorded, it is always correct;

hence we have found out how the temperature field is encoded.

4.1.5 Identifier field

Another changing field is the bits from 29
th

 to 36
th

. As we have 2 sensors, we

collected data from both to examine the differences between their transmissions for the

same temperature value. It turned out that some bits in this field vary depending on the

transmitter, as was expected. However, when we removed and inserted the batteries in a

given sensor, we realized that the identifier field changes, too. Our conclusion is that a

random 8 bit identifier is generated when the sensor is initialized. In this way, it is

unlikely that two sensors will chose the same identifier. It is for this reason that the

temperature transmitter has to be initialized before the TFA receiver and that if the

temperature transmitter‘s battery is changed then the TFA receiver has to be

re-initialized.

This sensor identifier field is important for our thesis. As multiple transmitters could

be within range of the gateway, the gateway will use this identifier field to differentiate

between these sensors. Therefore, theoretically our gateway could listen to up to 255

temperature sensors of this type. However, as a practical matter it is unlikely that there

will be this number of such temperature transmitters within range and if there were this

large a number of devices, then the probability that a given temperature transmitter

would choose an identifier value that is already utilized by another transmitter would be

quite high. Since the temperature transmitters do not listen for other transmitters nor

42

does the temperature transmitter handshake with the TFA receiver, hence the

temperature transmitters would not know that they had chosen the same identifier.

4.1.6 Last byte

The last byte appears to always be random, i.e., it does not follow a logical order. As

noted earlier we assume that this is some sort of CRC-8 checksum, however the

algorithm or the polynomial employed is not (yet) known.

Hence at the present time we have not decoded this field. Of course, it would be

useful to find know how this byte is generated. For the purposes of the gateway, the

most important fields for us are the temperature and the identifier and we have now

figured out how to decode them.

4.1.7 Rest of frame

The rest part of the frame does not change. It is always the same, so we can do not

know what it represents. We guess it is a code indicating the company and the family of

products, but it is not (yet) possible to determine this. However, we do note that the first

byte is always ‗1010 1010‘, hence we assume that these alternating bits are a preamble

that is used by the receiver to synchronize itself to the transmitter.

Later we may acquire another IT+ device from this same vendor, but with a

different type of sensor to see if we can decode more of the rest of the frame.

Additionally, we should obtain another IT+ sensor from another vendor to see which

fields change.

4.1.8 Comparative with Bossard’s work

After finishing decoding the transmissions, we found an interesting related work

that could have helped us. Fred Bossard [81] uses the transmitter TX29-IT+ [82]

working in the 868 MHz band with the associated weather station WS-7014-IT [83].

These devices belong to La Crosse family.

In his works, Bossard analyzes and decodes the messages received in the weather

station. The transmitter works as ours, transmitting burst data every 4 seconds. After

some experiments, Bossard deduces all the fields of the received messages.

 The first byte is always a preamble (‗1010 1010‘) and may be used to

synchronize the receiver clock.

 The second byte is ‗0010 1101‘and the third is ‗1101 0100‘. These fields are

another synchronize pattern and they appear in all the frames.

 Bits from 25
th

 to 28
th

 are always ‗1001‘. This gives information about the

message length in number of quartets that follows.

 Bits from 29
th

 to 34
th

 are the sensor identification. These 6 bits allows up to

64 different transmitters and it is random generated when the transmitter is

power up.

 Bit 35
th

 is a new battery indicator. When the transmitter is power up, this bit

is set to ‗1‘ during a little time.

 Bit 36
th

 is unused and it is always ‗0‘.

 Temperature field (bits 37
th

 to 48
th

) is BCD coded (as we reasoned).

43

 Bit 49
th

 is a weak battery indicator. We assumed that it is ‗1‘ when the

batteries are too old. In our experiments, this bit is always ‗0‘. This is

because we used new batteries for the transmitters.

 Bits from 50th to 56
th

 are a special field that changes depending on the kind

of transmitter. If the sensor can also measure the humidity (i.e. it is an

hygrometer), the value in % is shown in this field, hence the maximum

value is 0x64 in hexadecimal (100 in decimal). However, if the sensor has

not this option, this field does not change and its value is always 0x6A in

hexadecimal. That is the case of our transmitter.

 The last byte is a CRC-8 checksum that follows the polynomial x
8
+x

5
+x

4
+1.

This polynomial it is applied on 40 bits of data, from 25
th

 to 56
th

. To check

the CRC-8 of the recorded frames, we used an online CRC calculator [84].

1010 1010 1101 0100 1001 SENSOR ID 0010 1101 CRC-8Tens 110 1010Units Tenths0 wn

New batteries indicator Weak batteries indicator

1 9 17 25 29 3735 36 41 45 49 50 57 64

Figure 4-8: All the fields of a frame

We compared the Bossard‘s work and ours and we totally agree. However, the way

we obtained the result was really different than Bossard did. Although some of the

fields were not necessary to be identified, we now have a complete knowledge of how

the IT+ transmitters work.

4.2 Gateway operation
After decoding the proprietary protocol used by the initial sensor the next step is to

let the gateway totally ready to start working.

The gateway basically has to perform two tasks: it has to sniff wireless data from

sensors in the environment and transmit it over Ethernet to an IP network. We can

choose if we are going to process this data (disassembly the packet and keep only the

necessary fields) before transmitting or transmit the raw packet. This last option frees

the gateway to do complex operations but force the user to perform this task; hence we

decided to do this alternative. Finally, the gateway also has to implement all the

functions to handle Ethernet packets according with the Internet Protocol Suite (Chapter

2, section 2.4).

An overall gateway operation is represented in Figure 4-9. It has been thought as a

Finite State Machine (FSM). The process changes from one state to another if the right

requirement has been accomplished. Designing the gateway tasks as a FSM makes this

performance more transparent and easy to understand. The Ethernet and the RF

interface become independent.

44

Start
Sniff wireless

data

Low Power

Mode

Process sniffed

data

Process

Ethernet

packets

Push button S2

Hard reset or push button S1

Transm
iss

ion detected

Ethernet packet received

Figure 4-9: Gateway operation represented as a finite state machine (FSM)

The first state, Start, is reached when the gateway receives enough power to be able

to work. After that, the MCU enters in a low-power state, reducing its consumption.

Some of peripherals and functions are disabled in this state. The gateway remains in

low-power mode until the button S2 is pressed. It activates all the functionalities and the

MCU returns to the default active state. In this phase, the gateway initializes the

Ethernet controller as well as the transceiver, writing in the own registers. Below, the

MCU waits for some interrupt from or the RF transceiver or the Ethernet controller.

Depending on the source of this interrupt, the MCU will process the packet incoming

from the corresponding interface. If the button S1 is pressed at any time, a reset will be

performed and the gateway will return at the Start state.

The microcontroller gets access to the Ethernet controller and the transceiver though

a SPI bus. This is a synchronous serial data link standard operating in full duplex mode.

It is based in master/slave model where is the master who always initiates the

communication. Multiple slaves are allowed with individual slave select (chip select)

lines. The SPI bus is composed of four lines: serial clock (SCLK), master output - slave

input (MOSI), master input – slave output (MISO), and slave select (SS). To begin a

communication, the master first selects the slave device (SS line, active low). After that,

the master has to output the clock via SCLK and a full duplex data transmission occurs:

the master write a bit on the MOSI line and reads a bit on the MISO line in the same

clock cycle. The frequency of the SPI clock is limited by the maximum frequency that

each slave device can support. It is possible to select different frequencies for each slave

device using prescaler with the same clock source or selecting different clock sources.

On the other hand, when the slaves wish to communicate with the microcontroller

they have to use some interrupt line. The slaves devices considered in the gateway are

the ENC28J60 (Ethernet controller) and the CC1101 (transceiver) and both are provided

with interrupt lines that can be programmed to be activated after special events had

occurred. Figure 4-10 illustrates these procedures.

45

Master
(MCU)

Slave 1
(ENC28J60)

Slave 2
(CC1101)

SCLK

MOSI

MISO

SS

INTERRUPT 2

INTERRUPT 1

Figure 4-10: SPI bus. Master/Slave model with interrupt lines

In the following sections we are going to explain the different procedures the

gateway executes for each interface.

4.2.1 Radio Frequency interface: operation

This interface corresponds to the part of the gateway responsible for sniffing and

processing data from the wireless sensors. We are going to explain the steps that the

gateway carries out in order to collect data.

The first task to realize is to configure the transceiver properly. Following the

manufacturer datasheet and some application notes it is not complicated to do this task.

In section 4.1.2 we figure out the modulation as well as the bitrate. Table 4-1

summarizes the most relevant parameters.

Table 4-1: Summary of the parameters of the transmission

Parameters

Frequency 868 MHz

Modulation FSK

Bitrate 17241 bps

Frequency deviation 53.3 kHz

Total length 64 bits

The transceiver chose for the gateway (CC1101) has some configuration registers

(more details can be found in [79]). They have to be written with the right values for a

properly performance. The easiest way to do this is using the SmartRF
™

 Studio software

[85]. It is highly recommended for obtaining optimum register settings.

Moreover, the CC1101 has built-in hardware support for packet oriented radio

protocols. In receive mode, the packet handling support will de-construct the data

packet implementing the following:

 Preamble detection

 Synchronization word detection

 Packet length check

 One byte address check

 CRC computation and CRC check

46

The transceiver will wait for a valid preamble and synchronization word. The

synchronization word is a two-byte value that provides byte synchronization of the

incoming packet. When found, the transceiver has obtained both bit and byte

synchronization and will receive the first payload byte. As we saw in section 4.1.8, the

sensor uses a synchronization pattern ‗00101101 11010100‘ (0x2DD4). So the CC1101

has to be programmed for receiving this two-byte value after the preamble.

The packet length check is useful for discard packets with another length that the

expected. In section 4.1.8, the length information was in the 4-bit field following the

synchronization pattern (‗1001‘). The packet length checking used by the CC1101 is

designed for one entire byte but it is easy to handle with a bit mask on the upper 4-bit

and shifting the bits.

Information about the address is not relevant for our sensor. The transmitter always

sends its identification number. But this identification is a random number generated

when the batteries are put. So we cannot predict this number and the address check will

not be used. Furthermore, CRC check and computation will also not used because the

CC1101 only supports CRC-16. As we saw, the sensor uses a CRC-8.

Using this packet handle, receiving a right packet is very easy. Moreover, the

CC1101 can be programmed to generate an interrupt on the MCU (through one of its

general purpose outputs) when a packet has been received. It prevents the MCU of

polling continuously for a new packet incoming.

4.2.2 Ethernet interface: operation

This part of the gateway is responsible for the communication between our gateway

and the IP network it is connected to. As we mentioned earlier, hosts that wish to

communicate with this gateway can be located on the same network, hence the gateway

has to have implemented the Internet Protocol suite. The different protocols that the

gateway supports are described in section 2.4 and onwards.

The Ethernet controller (ENC28J60) communicates with the MCU similarly to the

way that the transceiver does. The ENC28J60 needs to be properly configured before

using it to communicate. It supports packet filtering of incoming packets (based upon a

MAC address filter, frame length filter, and CRC filter). The bytes received and the

bytes to be transmitted are written into a buffer inside the Ethernet controller. This

buffer is divided in two parts: memory reserved for received bytes and memory reserved

for bytes to be transmitted. The MCU accesses the appropriate portion of the buffer

through read and write pointers (more details can be found in [77]). Once a valid packet

has been received, an interrupt request is generated by the ECN28J60 to the

microcontroller.

We designed a set of functions which implement a minimal IP stack. This stack is

executed periodically by the CPU. Each header is processed individually. These

processes follow a layered model through encapsulation and decapsulation. When an

interrupt from the ENC28J60 occurs, the MCU starts processing as described in Figure

4-11. If the packet received is an ARP Request, then the gateway will process the packet

and will reply with an ARP Reply packet. If the packet is an IP packet, the higher

protocol can only be ICMP or UDP. In case of ICMP, only an ICMP Request is

expected with its subsequent ICMP Reply is generated by the gateway. Finally, if the

transport protocol is UDP a counter will be incremented and the datagram passed to

higher layer protocols. The counter will be used by the higher level protocols.

47

Packet RCV?

ICMP processICMP?

IP or ARP?

UDP process

ARP process

UDP?

ARP

IP

N

Y

Y

Y

N

Figure 4-11: Stack process

One of these application layer protocols is DHCP. A DHCP request will be used by

the gateway to request a new IP address from a DHCP server. The gateway will make a

DHCP when the gateway starts up and when the IP should be renewed according to the

lease time given by the DHCP server. We designed a DHCP process (shown in Figure

4-12) that it is executed concurrently with the stack process (previously shown in Figure

4-11).

Start

DHCP

Discovery

DHCP Bound

DHCP Request

DHCP Offer

RCV?

DHCP ACK

RCV?

Timeout?

Timeout?

Lease time

expired?

Y

Y

N

N

Y

Y

N

N

N

Figure 4-12: DHCP process

48

Once the gateway gets an IP address it will be able to communicate with other hosts

in the network. We created a very simple application protocol called UDP-

SniffedPacket to enable hosts to request sensor data and for the gateway to send the

most recent sensor value. The gateway replies to requests from hosts. In each request

the host sends one byte (a command). The gateway will reply with the entire packet

sniffed by the CC1101. The procedure for decoding the packet will be performed by the

host who made the request. In the next chapter, Chapter 5, we will examine these

operations in greater depth.

49

5 Analysis and Evaluation
This chapter will describe the different procedures that have been used to evaluate

the gateway‘s compliance with its requirements in terms of both correctness and

performance. In section 5.1 we will evaluate the RF interface by analyzing the wireless

sniffed data. In section 5.2 the network traffic will be examined in order to check how

the implemented protocols work. The interoperation of both interfaces will be tested in

section 5.3. Finally, in section 5.4 we will evaluate the entire system by powering the

gateway by PoE.

5.1 Radio Frequency interface: evaluation
Since we are using only one sensor, for evaluating this part we do not need anything

more than the gateway and the sensor (the transmitter and the receiver). The TFA

receiver‘s display will be used as the correct value of the temperature that the

transmitter is sending.

We have programmed one of the LEDs on the motherboard to blink for each new

incoming radio frame. When the transceiver sniffs a wireless frame it generates an

interrupt on the MCU. We assumed that the incoming frame follows the structure that

we described in section 4.1 (i.e. the preamble, a synchronization word, and the address

field are correct). After processing this interrupt the yellow LED on the motherboard

blinks once. This LED blinks every 4 seconds as expected from the earlier

measurements of the radio‘s activity with a spectrum analyzer.

After performing a lot of experiments, we saw that sometimes this LED blinked

every 8 seconds instead of 4 seconds. In addition, the display of the TFA receiver did

not change immediately. Since the CC1101 seemed to work well, we decided to

compare the frames received by the gateway with the frame received in the USRP. To

our surprise, the USRP also received the frames every 8 seconds. We assume that if the

temperature measured by the transmitter does not change for a large period of time, the

sensor node increases the transmit interval from 4 seconds to 8 seconds. We validated

this assumption by changing the placement of the transmitter, placing it in a new hotter

environment caused it to transmit again at 4 second intervals.

Initially we processed the incoming frame in order to extract the temperature field

and compared it with the value on the TFA receiver‘s display. Since the different fields

are grouped in quartets of bit, we had to apply bit masks and perform shifts to extract

the correct values. Figure 5-1 shows a capture done while executing the program using

the debugger. We can observe in the figure the raw incoming frame (―sniffedData‖) and

the processed frame (―sensor‖). Once we could decode all the fields properly, we

removed this code from the MCU and the incoming frame is no longer processed.

Figure 5-1: Processing of the incoming frame on the wireless interface

50

5.2 Ethernet interface: evaluation
The scenario in this case involves the gateway and a router. The router will act as a

DHCP server. The router can assign a private IP address to the gateway based upon the

device‘s DHCP request. The particular model of the router that was used is the Cisco

LinkSys BEFSR41 [86]. To examine all the relevant protocols we used Wireshark [87]

to capture and observe these transmissions in real-time. The scenario where we

performed this evaluation is composed by the gateway, the router, and a Personal

Computer (PC) running Wireshark (see Figure 5-2).

Figure 5-2: Evaluation of the Ethernet interface

This made it very easy to check the proper operation of the DHCP process. The four

DHCP packets are shown in Figure 5-3. Initially, the gateway has an IP address of zero.

The DHCP Discover request is sent to the link local IP broadcast address

(255.255.255.255). For testing purposes we have used the Ethernet MAC address

00:04:a3:00:00:00. This address belongs to the Microchip ENC28J60 Ethernet interface

chip – before it has been configured with a specific MAC address. The router, which

has an IP address of 192.168.1.1, sends a DHCP Offer packet back to the gateway. In

this packet the router offers a private IP address to the gateway. The process continues

until the router sends a DHCP ACK. In this case, the IP address offered is the

192.168.1.2. The green LED on the gateway motherboard was programmed to light up

after finishing the DHCP process, i.e., when the gateway gets a new IP address. If the

LED does not light, this indicates that the gateway does not (yet) has an IP address.

51

Figure 5-3: Analyzing the DHCP process – highlighting the DHCP ACK from the router

Once the gateway has an IP address we checked how the gateway responds when

receives an ICMP Request or an ARP Request. For example, we investigated what

happens when we execute a ping command on the PC directed to the gateway. By

default, in Windows the command ping sends four ICMP requests. We observe in

Figure 5-4 the ARP Request performed for the PC (which has an Asustek Ethernet

MAC address) in order to learn the MAC address of the target. The gateway replies

with its MAC address (in this case Microchip_00:00:00). Then the ICMP process occurs

with its respective requests and replies.

Figure 5-4: Analyzing ICMP and ARP processes

From this simple experiment we can see that the time it takes the gateway to

respond to the ARP request is 9.147 ms. The observed median time to respond to a

ICMP echo request is 8.088 ms with a standard deviation of 2.431 ms. Figure 5-5 shows

an experiment with 100 ICMP request/replies to get a better estimate for these numbers.

52

Figure 5-5: Ping test (100 packets)

In Table 5-1 we can observe different statistics of the experiment. The standard

deviation measure should not be too high. The time within which the CPU processes a

packet should be the same (or nearly the same) for each packet. In our case it is not true.

After debugging the microprocessor we figured out the following: during the time

within which the CPU is processing a packet it receives several interrupts incoming

from the transceiver. These interrupts are generated (and processed) while the CPU is

processing an Ethernet packet and they usually are generated in a shorter time (less than

the time required for processing an Ethernet packet); hence before finishing processing

an Ethernet packet, many interrupts are requested and processed. It should be fixed in

order to reduce the deviation in the time of processing an Ethernet packet.

Table 5-1: Statistics of ping test (100 packets)

Minimum time 1.952 ms

Maximum time 11.851 ms

Average time 6.372 ms

Median time 6.669 ms

Standard deviation 2.709 ms

5.3 System: evaluation
Finally we tested all the features analyzed in the previous sections operating at the

same time. The most important requirement is that the gateway replies to requests to

forward sniffed wireless frames as UDP packets. This is done by the UDP-

SniffedPacket protocol. It utilizes UDP with the ports 50000 for the server and 50001

for the client respectively. It is based on a request packet being sent from any host in the

network to request a reply from the gateway with the latest sensor value. The request

packet contains only one byte as the payload of the UDP datagram. This is considered a

command byte. Currently we have only implemented one command (with the value

0x01) to request the entire sniffed wireless sensor packet. When the gateway receives

this request (incoming on UDP port 50001), it replies with an UDP packet whose

payload contains the following:

53

 1-byte reply command (value 0x02),

 1-byte length of the data that follows, and

 n-bytes with the whole sniffed wireless sensor frame.

The sensor we are using transmits 5 bytes of data (not including the preamble or

synchronization word), hence the total length of the payload for the gateway‘s reply will

be of 7 bytes. Figure 5-6 shows the request and Figure 5-7 shows the reply containing

the sniffed wireless sensor‘s data. In this case, the payload of the reply is

0x02059906376a97. The sniffed packet is 0x9906376a97. Taking a look to Chapter 4,

section 4.1, we can deduce that the temperature value is 23.7 ºC.

Figure 5-6: Request for sniffed wireless sensor’s data

Figure 5-7: Reply with the sniffed wireless sensor’s data

54

In these experiments the UDP packets from the PC to the gateway have been

generated using the software PacketETH available from [88]. Figure 5-8 shows the

interface where the user can generate the packet.

Figure 5-8: PackETH: packet generation

After performing these tests and evaluations, we observe that the gateway properly

responds (in 7.127 ms), hence it meets the original project requirements. Multiple

requests are showed in Figure 5-9. For each request the gateway replies with the last

sniffed packet.

Figure 5-9: Analysis of multiple frames

55

5.4 Power over Ethernet: evaluation
One of the objectives of this project was that the gateway should be able to be

powered using power over Ethernet (PoE) technology. The board was designed so that

it would be manually configured to be powered from either PoE or an external DC

power supply. The board is indeed capable of being power by either means (as selected

by two jumpers on the board). For testing purposes the system has been tested with a

TP-LINK model TL-POE150S PoE power injector. The PoE subsystem of the board is

capable of powering not only the board and the daughterboard, but could even power

other devices – as the current design is able to support a total load of 3.84 W (Class 1).

The final gateway with daughterboard is shown in Figure 5-10 being powered using

the PoE power injector.

Figure 5-10: PoE injector and gateway

57

6 Conclusions
This chapter explains the conclusions obtained throughout the design, development

and evaluation described in this thesis and proposes a number of improvements or

complements that may be of interest in order to continue this work.

6.1 Discussion of the results
In this section we will state the conclusions and we will analyze the achieved goals

proposed in the beginning of this thesis (Chapter 1, section 1.3).

We explained that our main goal was to build a gateway capable of sniff wireless

sensor traffic in order to collect sensor data from existing sensors. This temperature,

humidity, etc. sensors are frequently installed in homes and other locations, but are

generally not connected to devices that are connected to the network. The gateway we

designed along this project allows working with all kind of wireless sensors working at

868 MHz (915 MHz in USA). Whether you wish to work with sensors running in

another frequency range it is only needed redesign the daughterboard modifying the

external components following the manufacture datasheet.

The initial difficulty and the first big problem was that these sensors typically

communicate using proprietary protocols that are not known by users. Although we

could sniff wireless transmissions it would be impossible to know exactly the contents.

However, as we demonstrated in section 4.1, it is possible to decode the

communications. Knowing only the approximate working frequency, we were able to

detect transmissions between the temperature transmitter and the TFA display. We

assumed that these short range devices did not utilize complex circuitry and they would

use simple forms of modulation. After examining the sniffed transmissions we realized

that the modulation used was FSK. This suggests that probably most of these types of

sensors use the same modulation or another equally simple scheme (i.e., Amplitude

Shift Keying (ASK)).

Once we discovered the contents of these frames they could be processed. We did

this in two ways. We considered whether this processing should be done in the gateway

itself or perhaps in the final host. This later alternative would reduce the amount of

work that the MCU has to support, hence reducing the energy consumption of the

gateway, but would increase the amount of traffic from this gateway via the fixed

network. Because the gateway can be powered by PoE decoding the frames remotely

was not necessary. The final choice is reserved to the programmer.

We did some tests as explained in Chapter 5. These experiments demonstrated that

the gateway successfully performs all the tasks related with the radio interface and the

Ethernet interface. This last part requires a special mention. We have been able to build

an autonomous system capable of connecting to a network with automatic configuration

and operation. Additionally, the PoE subsystem can power the board and

daughterboard.

Finally, all the results exposed above reveal that we have succeeded in achieving the

main goal of this thesis project.

6.2 Future work
There have been several aspects that have been left out of scope of this thesis.

Although sufficiently complete for the purpose of our study there are several

58

improvements that could be made to the current implementation in order to extend its

functionality or applicability. This section enumerates some of these features that have

been left out or work that has been left undone, together with some related work that

may be of interest for future thesis projects.

 Adapt the gateway for IPv6. Our initial implementation only implements an

IPv4 protocol stack. Although this is the most common IP protocol, IPv6 is

becoming quite popular in home networks. Furthermore, according with The

Internet of the things [6], in a short time things (objects) are expected to

become active and capable of interacting and communicating among

themselves and with the environment. Some sources suggest that each object

should have its own IPv6 address. Converting our gateway to work via IPv6

will only require a small adjustment of the software in the MCU.

 There is no security implemented for the Ethernet interface. This was

adequate for our testing since we performed our experiments in a private

network with only our gateway, one router, and one PC. If this gateway is to

be connected to a larger network where the authenticity of hosts is not

guaranteed, then the gateway should implement IPv6‘s SEcure Neighbor

Discover (SEND) [89] protocol.

 We only worked with one sensor. The gateway is capable of working with

different types of sensors working at 868 MHz (if the frequency is different

it is necessary to change the daughterboard) with the appropriate software. It

would be interesting to test the gateway with different sensors in the

868 MHz band.

 We initially designed our gateway to sniff and receive wireless packets, but

no transmit. However, during the course of this thesis project we have done

some experiments to transmit a fake temperature value to the TFA display.

The first packet received by the TFA was properly displayed, but the rest of

the frames were lost. We suggest that this problem be investigated in order

to enable the gateway to transmit to the TFA (or other) displays. In addition,

the transmitter could be used with sensors that can be remotely controlled

(this would be a long term objective).

 As we mentioned in section 3.2, our gateway is composed of two PCBs. One

of them, called the daughterboard, incorporates the radio frequency part of

the gateway with the transceiver, the antenna, and some external

components. We did that because to facilitate adapting the gateway to

different wireless sensor networks that might use a different working

frequency. This is facilitated adaptation of the hardware. It would be

interesting if the software could be remotely updated. For example, if the

software related to the radio frequency part could be downloaded from a

server. This server could contain several different programs already

compiled and ready to be loaded into the MCU. Each one of these programs

would be associated with different wireless sensor s. Once the gateway is

connected to the IP network, it would request the appropriate program from

the server, download it, and load it onto the flash memory of the MCU. The

process of downloading this ―program file‖ could be done using the Trivial

Transfer File Protocol (TFTP) [90], by using HTTP, or some other protocol.

 The MSP430, the Ethernet controller, and the CC1101 provide low power

modes of operation. We have thus far only implemented low power modes

59

on the MCU, but not in the other devices. Making use of the low power

modes for the other subsystems can be done with slight modifications to the

existing software.

6.3 Required reflections
During the course of this project we considered the economic and environmental

aspects of this research by designing a low cost and low power gateway that can exploit

existing sensors. As a result making these existing sensors more value and extending

the applications that can utilize this existing data. As noted earlier in the thesis the data

from these sensors could potentially be used to reduce the energy consumption of a

home or other business, while providing a comfortable working environment when

people are present; however, details of implementing such a solution are not part of this

thesis – but have been considered in other work on context-awareness. The gateway has

been developed with parts that are in compliance with the EU‘s Restriction of Use of

Hazardous Substances (RoHS) regulations, although a small amount of lead-tin solder

has been used to attach parts to the circuit boards. The circuit boards were mechanically

milled out, rather than being photoetched – so there was no liquid chemical waste

produced. The issues associated with mass production of such a gateway are outside the

scope of this thesis.

We have not encountered any significant ethical issues when carrying out this thesis

project. The data that is being sniffed contains temperature measurements made by

wireless sensors, rather than human communication. At present only the capability of

providing gateway functions has been demonstrated, the use of such a gateway or

multiple gateways together with sensor fusion could have the potential to violate the

expected privacy of individuals, but this work lies outside the scope of this thesis

project.

61

References

[1] D. J. Cook and S. K. Das, Smart environments: technologies, protocols, and applications,

vol. 43. Wiley-Interscience, 2005.

[2] ‗IEEE 802.11, The Working Group Setting the Standards for Wireless LANs‘. [Online].

Available: http://www.ieee802.org/11/. [Accessed: 23-November-2011].

[3] ‗Federal Standard 1037C: Glossary of Telecommunications Terms‘. [Online]. Available:

http://www.its.bldrdoc.gov/fs-1037/fs-1037c.htm. [Accessed: 09-March-2012].

[4] ‗IEEE 802.15.4‘. [Online]. Available: http://www.ieee802.org/15/pub/TG4.html.

[Accessed: 21-October-2011].

[5] IEEE Computer Society. LAN/MAN Standards Committee, Institute of Electrical and

Electronics Engineers, IEEE-SA Standards Board, and American National Standards

Institute, IEEE standard for information technology telecommunications and information

exchange between systems-- local and metropolitan area networks-- specific

requirements. Part 15.1, Wireless Medium Access Control (MAC) and Physical Layer

(PHY) specifications for Wireless Personal Area Networks (WPANs). New York, N.Y.:

Institute of Electrical and Electronics Engineers, 2005, ISBN: 0738147079

9780738147079 0738147087 9780738147086, Available at

http://ieeexplore.ieee.org/servlet/opac?punumber=9980.

[6] J. M. Bohli, C. Sorge, and D. Westhoff, ‗Initial observations on economics, pricing, and

penetration of the internet of things market‘, ACM SIGCOMM Computer

Communication Review, vol. 39, no. 2, pp. 50–55, 2009.

[7] ‗ZigBee Alliance > Home‘. [Online]. Available: http://www.zigbee.org/. [Accessed: 21-

October-2011].

[8] A. Wheeler, ‗Commercial Applications of Wireless Sensor Networks Using ZigBee‘,

IEEE Communications Magazine, vol. 45, no. 4, pp. 70–77, April 2007,

DOI:10.1109/MCOM.2007.343615.

[9] MEMSIC, ‗MICAz Wireless Measurment System‘. [Online]. Available:

http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-

datasheets.html?download=147%3Amica2. [Accessed: 24-November-2011].

[10] MEMSIC, ‗TelosB Mote Platform‘. [Online]. Available:

http://www.memsic.com/support/documentation/wireless-sensor-networks/category/7-

datasheets.html?download=152%3Atelosb.

[11] MEMSIC, ‗IRIS Wireless Measurement System‘. [Online]. Available:

www.memsic.com/support/documentation/wireless-sensor-networks/category/7-

datasheets.html?download=135%3Airis. [Accessed: 29-November-2011].

62

[12] ‗SimpliciTI
TM

 - RF software protocol‘. [Online]. Available:

http://www.ti.com/corp/docs/landing/simpliciTI/index.htm?DCMP=hpa_rf_general&HQ

S=NotApplicable+OT+simpliciti. [Accessed: 21-October-2011].

[13] ‗Wireless Solutions‘. [Online]. Available:

http://www.microchip.com/stellent/idcplg?IdcService=SS_GET_PAGE&nodeId=2664&

param=en520414. [Accessed: 21-October-2011].

[14] ‗SynkroRF‘. [Online]. Available:

http://www.freescale.com/webapp/sps/site/overview.jsp?code=PROTOCOL_SYNKRO.

[Accessed: 21-October-2011].

[15] ‗San Juan Software - PopNet
TM

 The Easy, Economical Wireless Sensor and Control

Network‘. [Online]. Available: http://www.sanjuansw.com/?p=15. [Accessed: 21-

October-2011].

[16] ‗Z-Wave.com - ZwaveStart‘. [Online]. Available: http://www.z-

wave.com/modules/ZwaveStart/. [Accessed: 24-November-2011].

[17] ‗Everything One-Net: one-net.info‘. [Online]. Available: http://www.one-net.info/.

[Accessed: 01-November-2011].

[18] ‗This is ANT, the Wireless Sensor Network Solution‘. [Online]. Available:

http://www.thisisant.com/. [Accessed: 22-November-2011].

[19] ‗Home | dash7.org‘. [Online]. Available: http://www.dash7.org/. [Accessed: 24-

November-2011].

[20] ‗HART Communication Protocol - Wireless HART Technology‘. [Online]. Available:

http://www.hartcomm.org/protocol/wihart/wireless_technology.html. [Accessed: 22-

November-2011].

[21] ‗Home | ISA‘. [Online]. Available:

http://www.isa.org//MSTemplate.cfm?MicrositeID=1134&CommitteeID=6891.

[Accessed: 22-November-2011].

[22] ‗TinyOS Home Page‘. [Online]. Available: http://www.tinyos.net/. [Accessed: 21-

October-2011].

[23] ‗nesC: A Programming Language for Deeply Networked Systems‘. [Online]. Available:

http://nescc.sourceforge.net/. [Accessed: 23-November-2011].

[24] ‗The Contiki OS‘. [Online]. Available: http://www.contiki-os.org/. [Accessed: 22-

November-2011].

[25] ‗Radiocommunication Sector (ITU-R) - ITU-R Home‘. [Online]. Available:

http://www.itu.int/ITU-R/index.asp?category=information&rlink=rhome&lang=en.

[Accessed: 23-November-2011].

[26] ‗GSM World Coverage Map- GSM Country List by frequency bands‘. [Online].

Available: http://worldtimezone.net/gsm.html. [Accessed: 23-November-2011].

63

[27] ‗CEPT.ORG‘. [Online]. Available: http://www.cept.org/. [Accessed: 23-November-

2011].

[28] ERC Recommendation 70-03, ‗Relating to the use of short range devices (SRD)‘.

Available at http://www.erodocdb.dk/docs/doc98/official/pdf/rec7003e.pdf, [accessed

November 29, 2011].

[29] ‗ETSI‘. [Online]. Available: http://www.etsi.org/WebSite/homepage.aspx. [Accessed: 23-

November-2011].

[30] ETSI, ‗ETSI EN 300 220-2 v2.3.1‘. Available at http://www.rfm.com/company/etsi.pdf,

[accessed November 1, 2011].

[31] R. Braden, ‗Requirements for Internet Hosts - Communication Layers‘. [Online].

Available: http://tools.ietf.org/html/rfc1122. [Accessed: 17-May-2012].

[32] I.-I. O. for Standardization, ‗ISO - International Organization for Standardization‘,

Available at

http://www.iso.org/iso/iso_catalogue/catalogue_tc/catalogue_detail.htm?csnumber=2026

9, [accessed May 17, 2012].

[33] Institute of Electrical and Electronics Engineers, IEEE standard for information

technology telecommunications and information exchange between systems : local and

metropolitan area networks : specific requirements. Part 3, Carrier sense multiple access

with collision detection (CSMA/CD) access method and physical layer specifications :

section five. New York: Institute of Electrical and Electronics Engineers, 2008, ISBN:

9730738157979 9730738157962, Available at

http://ieeexplore.ieee.org/servlet/opac?punumber=4726157.

[34] V. Cerf and R. Kahn, ‗A Protocol for Packet Network Intercommunication‘,

Communications, IEEE Transactions on, vol. 22, no. 5, pp. 637 – 648, May 1974,

DOI:10.1109/TCOM.1974.1092259.

[35] J. Postel, ‗Internet Protocol‘. [Online]. Available: http://tools.ietf.org/html/rfc791.

[Accessed: 22-May-2012].

[36] K. Nichols, D. L. Black, S. Blake, and F. Baker, ‗Definition of the Differentiated

Services Field (DS Field) in the IPv4 and IPv6 Headers‘. [Online]. Available:

http://tools.ietf.org/html/rfc2474. [Accessed: 22-May-2012].

[37] J. Postel, ‗User Datagram Protocol‘. [Online]. Available: http://tools.ietf.org/html/rfc768.

[Accessed: 24-May-2012].

[38] W. R. Stevens, TCP/IP illustrated. 1, The protocols. Reading, Massachusetts [etc.]:

Addison-Wesley, 2000, ISBN: 0201633469 9780201633467.

[39] D. Plummer, ‗Ethernet Address Resolution Protocol: Or Converting Network Protocol

Addresses to 48.bit Ethernet Address for Transmission on Ethernet Hardware‘. [Online].

Available: http://tools.ietf.org/html/rfc826. [Accessed: 22-May-2012].

[40] J. Postel, ‗Internet Control Message Protocol‘. [Online]. Available:

http://tools.ietf.org/html/rfc792. [Accessed: 23-May-2012].

64

[41] J. Gilmore and W. J. Croft, ‗Bootstrap Protocol‘. [Online]. Available:

http://tools.ietf.org/html/rfc951. [Accessed: 22-May-2012].

[42] R. Droms, ‗Dynamic Host Configuration Protocol‘. [Online]. Available:

http://tools.ietf.org/html/rfc2131. [Accessed: 22-May-2012].

[43] W. Wimer, ‗Clarifications and Extensions for the Bootstrap Protocol‘. [Online].

Available: http://tools.ietf.org/html/rfc1542. [Accessed: 22-May-2012].

[44] ‗IEEE 802.3 ETHERNET‘. [Online]. Available: http://ieee802.org/3/. [Accessed: 24-

November-2011].

[45] ‗PSTN‘, About.com Wireless / Networking, Available at

http://compnetworking.about.com/od/voipvoiceoverip/g/bldef_pstn.htm, [accessed

March 9, 2012].

[46] D. Harrington, B. Wijnen, and R. Presuhn, ‗An Architecture for Describing Simple

Network Management Protocol (SNMP) Management Frameworks‘. [Online].

Available: http://tools.ietf.org/html/rfc3411. [Accessed: 09-March-2012].

[47] M. Gebski, A. Penev, and R. K. Wong, ‗Protocol Identification of Encrypted Network

Traffic‘, in Web Intelligence, IEEE / WIC / ACM International Conference on, Los

Alamitos, CA, USA, 2006, pp. 957–960,

DOI:http://doi.ieeecomputersociety.org/10.1109/WI.2006.139.

[48] K. Gopalratnam, S. Basu, J. Dunagan, and H. J.Wang, ‗Automatically Extracting Fields

from Unknown Network Protocols‘, Available at

http://research.microsoft.com/pubs/69364/sysml_114_cameraready.pdf, [accessed

November 1, 2011].

[49] Yong-Sik Choi, Young-Jun Jeon, and Sang-Hyun Park, ‗A study on sensor nodes

attestation protocol in a Wireless Sensor Network‘, in 2010 The 12th International

Conference on Advanced Communication Technology (ICACT), 2010, vol. 1, pp. 574–

579.

[50] T. Hådén, ‗IPv6 Home Automation‘, KTH Royal Institute of Technology, School of

Information and Communication Technology (ICT), Department of Communication

Systems, TRITA-ICT-EX-2009, 28 June 2009, Available at

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090601-

Thor_Haaden.pdf, [accessed November 24, 2011].

[51] R. Martín Sánchez, ‗Desarrollo de un sniffer para redes de sensores basadas en ZigBee‘,

Thesis, Telecommunications Engineering, specializing in Telematics, Universitat

Politècnica de Catalunya, UPC. Castelldefels School of Telecommunications and

Aerospace Engineering (EETAC), 18 March2011, Available at

http://upcommons.upc.edu/pfc/bitstream/2099.1/11946/1/memoria.pdf, [accessed

November 24, 2011].

[52] Zhuanghui Yu, Yongzhong Huang, Shaozhong Guo, Bei Zhou, and Hua Ren, ‗Extracting

Information from Unknown Protocols On CampusNet‘, in First IEEE International

65

Symposium on Information Technologies and Applications in Education, 2007. ISITAE

’07, 2007, pp. 535–539, DOI:10.1109/ISITAE.2007.4409343.

[53] Cheng Zhang, Shuran Song, Canxi Li, and Tiansheng Hong, ‗Long-distance data

communication based on wireless communication technology‘, 2011, pp. 4045–4048,

DOI:10.1109/AIMSEC.2011.6010054, Available at

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6010054.

[54] Hao Haohao and Xiong Junqiao, ‗Design of wireless sensor networks for density of

natural gas‘, 2011, pp. 141–143, DOI:10.1109/ICSSEM.2011.6081166, Available at

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6081166.

[55] Chen Xiao-long and Zhou Wen-hua, ‗ENC28J60 Ethernet controller applied in the

network‘s three-phase Electric Energy meter‘, in 2010 6th International Conference on

Networked Computing (INC), 2010, pp. 1–4.

[56] Chaoli Zhou and Jianhua Shen, ‗The design and realization of ZigBee—Wi-Fi wireless

gatway‘, in 2011 International Conference on Electric Information and Control

Engineering (ICEICE), 2011, pp. 1786–1790, DOI:10.1109/ICEICE.2011.5777502.

[57] ‗RFM12B and Weather station transmitters | JeeLabs.net Forum‘. [Online]. Available:

http://forum.jeelabs.net/node/110. [Accessed: 01-December-2011].

[58] Hope Microelectronics, ‗RFM12B Datasheet‘. Available at

http://www.hoperf.com/upload/rf/RFM12B.pdf, [accessed December 1, 2011].

[59] ‗Welcome to La Crosse Technology‘. [Online]. Available:

http://www.lacrossetechnology.com/. [Accessed: 01-December-2011].

[60] B. da Silva Campos, J. J. P. C. Rodrigues, L. M. L. Oliveira, L. D. P. Mendes, E. F.

Nakamura, and C. M. S. Figueiredo, ‗Design and construction of a wireless sensor and

actuator network gateway based on 6LoWPAN‘, 2011, pp. 1–4,

DOI:10.1109/EUROCON.2011.5929390, Available at

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=5929390.

[61] ‗Funk-Themometer‘. Available at http://tfa-dostmann.de/index.php?id=61, [accessed

October 21, 2011].

[62] Linum Software GmbH, ‗Alles über das DCF77 Signal‘. [Online]. Available:

http://www.dcf77.de/. [Accessed: 07-June-2012].

[63] ‗8595E Portable Spectrum Analyzer, 9 kHz to 6.5 GHz [Obsolete] | Agilent‘. [Online].

Available: http://www.home.agilent.com/agilent/product.jspx?nid=-

536902970.536881804.00&lc=eng&cc=SE. [Accessed: 29-November-2011].

[64] ‗Ettus Research LLC | Home‘. [Online]. Available: http://www.ettus.com/. [Accessed: 21-

October-2011].

[65] Ettus Research, ‗Universal Software Radio Peripheral‘. Available at

http://www.ettus.com/downloads/ettus_ds_usrp_v7.pdf, [accessed October 21, 2011].

66

[66] Ettus Research, ‗TX and RX Daughterboards‘. Available at

http://www.ettus.com/downloads/ettus_daughterboards.pdf, [accessed November 24,

2011].

[67] ‗GNU Radio‘. [Online]. Available: http://gnuradio.org. [Accessed: 24-November-2011].

[68] ‗Python Programming Language – Official Website‘. [Online]. Available:

http://python.org/. [Accessed: 24-November-2011].

[69] ‗GNU Radio - GNURadioCompanion - gnuradio.org‘. Available at

http://gnuradio.org/redmine/projects/gnuradio/wiki/GNURadioCompanion, [accessed

November 24, 2011].

[70] ‗Code Composer Studio (CCStudio) Integrated Development Environment (IDE) v5 -

CCSTUDIO - TI Tool Folder‘. [Online]. Available: http://www.ti.com/tool/ccstudio.

[Accessed: 24-November-2011].

[71] L. Maqueda, ‗Neighbor Discovery Proxy-Gateway for 6LoWPAN-based Wireless Sensor

Networks‘, KTH Royal Institute of Technology, School of Information and

Communication Technology (ICT), Department of Communication Systems, TRITA-

ICT-EX-2011:221, December 2011 2012, Available at

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/111221-Luis_Maqueda-

with-cover.pdf.

[72] ‗CadSoft - Home of CadSoft EAGLE PCB Design Software- Best PCB Design Software‘.

[Online]. Available: http://www.cadsoftusa.com/. [Accessed: 07-June-2012].

[73] ‗MSP430 5xx/6xx 16-bit microcontrollers from Texas Instruments‘. [Online]. Available:

http://focus.ti.com/paramsearch/docs/parametricsearch.tsp?familyId=1615§ionId=95

&tabId=2229&family=mcu. [Accessed: 29-November-2011].

[74] Joaquín Juan Toledo, ‗Wireless Sensor Architecture for a Home Event Management

System‘.

[75] Texas Instruments, ‗MSP430f5437 Datasheet‘. Available at

http://www.ti.com/lit/ds/symlink/msp430f5437a.pdf, [accessed November 29, 2011].

[76] ‗Power Over Ethernet (PoE)/LAN Solutions - Powered Device - TPS2375 - TI.com‘.

[Online]. Available: http://www.ti.com/product/tps2375. [Accessed: 07-June-2012].

[77] Microchip, ‗ENC28J60 Datasheet‘. Available at

http://ww1.microchip.com/downloads/en/DeviceDoc/39662c.pdf, [accessed November

24, 2011].

[78] ‗Wasa Board Project‘. [Online]. Available:

http://web.it.kth.se/~msmith/wasa/wasa_board_project.html. [Accessed: 08-June-2012].

[79] Texas Instruments, ‗CC1101 Datasheet‘. Available at

http://www.ti.com/lit/ds/symlink/cc1101.pdf, [accessed November 24, 2011].

[80] Texas Instruments, ‗CC430F6137 Datasheet‘. Available at

http://www.ti.com/lit/ds/symlink/cc430f6137.pdf, [accessed November 29, 2011].

67

[81] F. Bossard, ‗Wireless Temperature Sensor: CRC‘. [Online]. Available:

http://fredboboss.free.fr/tx29/tx29_crc.php. [Accessed: 11-December-2011].

[82] La Crosse Technology, ‗TX29U-IT‘. [Online]. Available:

http://www.lacrossetechnology.com/tx29/index.php. [Accessed: 13-December-2011].

[83] La Crosse Technology, ‗WS-7014‘. [Online]. Available:

http://www.lacrossetechnology.com.au/WS7014.html. [Accessed: 13-December-2011].

[84] GHS Infotronic, ‗Online CRC Calculation‘. [Online]. Available: http://ghsi.de/CRC/.

[Accessed: 01-December-2011].

[85] ‗SmartRF Studio - SMARTRFTM-STUDIO - TI Software Folder‘. [Online]. Available:

http://www.ti.com/tool/smartrftm-studio. [Accessed: 09-June-2012].

[86] ‗Linksys BEFSR41‘. [Online]. Available: http://homesupport.cisco.com/en-

eu/support/routers/BEFSR41. [Accessed: 11-June-2012].

[87] ‗Wireshark · Go deep.‘ [Online]. Available: http://www.wireshark.org/. [Accessed: 11-

June-2012].

[88] ‗packETH - ethernet packet generator‘, packETH - Ethernet packet generator. [Online].

Available: http://packeth.sourceforge.net/. [Accessed: 11-June-2012].

[89] J. Kempf, J. Arkko, P. Nikander, and B. Zill, ‗SEcure Neighbor Discovery (SEND)‘.

[Online]. Available: http://tools.ietf.org/html/rfc3971. [Accessed: 11-June-2012].

[90] K. Sollins, ‗The TFTP Protocol (Revision 2)‘. [Online]. Available:

http://tools.ietf.org/html/rfc1350. [Accessed: 08-June-2012].

69

A. Python scripts
The Python scripts of the application developed as part of this master thesis is

publicly available in the following repository:

http://gateway868mhz.googlecode.com/svn/trunk/Python_scripts/

http://gateway868mhz.googlecode.com/svn/trunk/Python_scripts/

71

B. MATLAB scripts to decode FSK encoded signal
The MATLAB scripts of the application developed as part of this master thesis is

publicly available in the following repository:

http://gateway868mhz.googlecode.com/svn/trunk/MATLAB_scripts/

http://gateway868mhz.googlecode.com/svn/trunk/MATLAB_scripts/

73

C. Bit fields from the spreadsheet ‘Temperatures.xls’

75

D. Schematic of the motherboard and the daughterboard
Motherboard (sheet 1):

76

Motherboard (sheet 2):

77

Motherboard (sheet 3):

78

Daughterboard:

79

E. Layout of the motherboard and the daughterboard
Motherboard:

80

Daughterboard:

81

F. Source code for the gateway
The source code of the application developed as part of this master thesis is publicly

available in the following repository:

 http://gateway868mhz.googlecode.com/svn/trunk/GW868MHz/

http://gateway868mhz.googlecode.com/svn/trunk/GW868MHz/

www.kth.se

TRITA-ICT-EX-2012:110

	Abstract
	Sammanfattning
	Table of Contents
	List of Figures
	List of Tables
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 General introduction to the area
	1.2 Problem statement
	1.3 Goals
	1.4 Structure of this thesis

	2 Background
	2.1 Wireless and Wired Sensor Networks
	2.2 Wireless technologies
	2.3 ISM band
	2.3.1 Short Range Devices operating at 868 MHz

	2.4 The Internet Protocol Suite
	2.5 Ethernet and IEEE 802.3
	2.6 Internet Protocol
	2.6.1 IPv4

	2.7 User Datagram Protocol
	2.8 Other protocols
	2.8.1 Address Resolution Protocol
	2.8.2 Internet Control Message Protocol
	2.8.3 Dynamic Host Configuration Protocol

	2.9 Power over Ethernet
	2.9.1 Advantages of PoE

	2.10 Related work

	3 Method (Implementation)
	3.1 Hardware and Software tools
	3.1.1 TFA radio-controlled clock and wireless temperature transmitter
	3.1.2 Spectrum Analyzer
	3.1.3 The Universal Software Radio Peripheral
	3.1.4 GNU Radio
	3.1.5 Code Composer Studio
	3.1.6 Easily Applicable Graphical Layout Editor

	3.2 Gateway specifications
	3.2.1 MSP430 Microcontroller
	3.2.2 Powering
	3.2.3 Ethernet controller
	3.2.4 User interface
	3.2.5 RF interface

	3.3 Gateway‘s final look

	4 Applying the Method (Operation)
	4.1 Breaking the proprietary protocol
	4.1.1 Initially capturing data from the sensor
	4.1.2 Decoding the received signal
	4.1.3 Analyzing data
	4.1.4 Temperature field
	4.1.5 Identifier field
	4.1.6 Last byte
	4.1.7 Rest of frame
	4.1.8 Comparative with Bossard’s work

	4.2 Gateway operation
	4.2.1 Radio Frequency interface: operation
	4.2.2 Ethernet interface: operation

	5 Analysis and Evaluation
	5.1 Radio Frequency interface: evaluation
	5.2 Ethernet interface: evaluation
	5.3 System: evaluation
	5.4 Power over Ethernet: evaluation

	6 Conclusions
	6.1 Discussion of the results
	6.2 Future work
	6.3 Required reflections

	References
	A. Python scripts
	B. MATLAB scripts to decode FSK encoded signal
	C. Bit fields from the spreadsheet ‘Temperatures.xls’
	D. Schematic of the motherboard and the daughterboard
	E. Layout of the motherboard and the daughterboard
	F. Source code for the gateway

