
Degree project in
Communication Systems

First level, 15.0 HEC
Stockholm, Sweden

I V A N P E D E R S E N
a n d

A L F R E D A N D E R S S O N

 Visualization of data produced by sensors in a home environment

 More than downloading

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

More than
downloading

Visualization of data produced by
sensors in a home environment

Ivan Pedersen

and

Alfred Andersson

14 June 2012

Bachelor’s thesis

Mentor and examiner: Prof. Gerald Q. Maguire Jr.

Communication Systems
School of Information and Communication Technology

KTH Royal Institute of Technology
Stockholm, Sweden

i

Abstract
A home automation system usually contains a set of tools that users use to control devices in their

homes, often remotely. These devices often include but are not limited to light switches, thermostats,
thermometers, window blinds, and climate controls. The potential for these kinds of systems is huge
because of the sheer number of devices that could be controlled and managed with minimal and
inexpensive extra hardware. Many of the appliances in a normal home could benefit from being
connected to a system that allows the owner to manage and control the devices in their home. Thus
the number of potential devices is orders of magnitude larger than the number of homes connected to
the system. There are several systems on the market that provide systems to monitor and control a
home environment, however these systems only support specific in system devices. This uncovers a
problem where a homeowner only has the opportunity to use specific products that fit into these
systems. By introducing an open platform for the public that are not bound to any system we can
allow more devices to be integrated in the home and contribute to further development of smarter
homes.

The goal with this project was to provide a scalable open platform with the possibility of
asynchronous updating. This has been done by implementing multiple logical parts to both provide a
web interface for the user and to allow us to handle communication and storage of data. All these
parts are linked together to form a system of servers that handles all background operations. This
thesis discusses and presents implementations of all of these servers, how they are implemented,
communicate with each other, provide secure connections and how they can scale with increasing
usage. In this process we also discuss and present techniques that were used, how to use them and
their benefits, to help us reach our goal.

iii

Sammanfattning
”Home automation” syftar till ett system som låter användaren kontrollera och styra olika

apparater i hemmet, ofta sker detta utifrån. Dessa apparater inkluderar, men är inte begränsade till
ljusbrytare, termostater, termometrar, persienner eller klimatanläggningar. Potentialen för ett sådant
system är enormt då antalet apparater som skulle kunna övervakas med endast minimal och billig
extra hårdvara är stort. Många av dessa apparater kan dra nytta av att vara ansluten till ett system som
gör det möjligt för ägaren att hantera och styra enheter i deras hem. Antalet apparater är därför
mångdubbelt fler än antalet hem som är kopplade till systemet.

Det finns flera system på marknaden som ger användaren ett sätt att övervaka och styra en
hemmiljö, men dessa system är ofta låsta och stödjer bara specifika enheter. Genom att införa en
öppen plattform för allmänheten som inte är bunden till något system, kan vi tillåta att fler enheter kan
integreras i hemmet och bidra till ytterligare utveckling av smartare hem.

Målet med detta projekt var att skapa en skalbar öppen plattform med möjlighet till asynkron
uppdatering. Detta har gjorts genom att implementera flera logiska delar för att förse användaren med
ett webbgränssnitt och för att tillåta oss hantera kommunikation och lagring av data. Alla dessa delar
är sammanlänkade för att bilda ett system av servrar som hanterar alla bakgrundsprocesser. Denna
avhandling diskuterar och presenterar implementeringar av alla dessa servrar, hur de genomförs,
kommunicera med varandra, ger säkra anslutningar och hur de kan skala med ökad användning. I
denna process diskuterar och presenterar vi de tekniker som använts, hur man använder dem och deras
fördelar.

v

Acknowledgements
We would like to thank Prof. Gerald Q. Maguire Jr. for his help and assistance during this thesis

project. We would also like to thank Abdel Ahmid for collaborating with us during the feasibility
study.

vii

Table of Contents

Abstract ...i

Sammanfattning .. iii

Acknowledgements .. v

Table of Contents .. vii

List of Figures ...ix

List of Tables ...xi

Glossary .. xiii

1 Introduction ... 1

1.1 Background .. 1
1.2 Problem description ... 1
1.3 Sister thesis projects ... 2
1.4 Limitations of this thesis project .. 2
1.5 Structure of the report .. 3

2 Project introduction .. 5

2.1 Introduction to smart home monitoring .. 5
2.2 Gateway ... 6
2.3 Introduction to web development ... 6

2.3.1 Ruby on Rails ... 6
2.3.1.1 MVC ... 7
2.3.1.2 Model .. 7
2.3.1.3 View .. 7
2.3.1.4 Controller .. 8
2.3.1.5 Scaffolding .. 8
2.3.1.6 Managing the database .. 8
2.3.1.7 Gems ... 8

3 Implementation ... 11

3.1 Creating a home visualization interface ... 11
3.1.1 Login/authentication .. 11
3.1.2 Visualization .. 12

3.1.2.1 Google chart .. 12
3.1.2.2 Highcharts ... 12

3.1.3 Asynchronous message passing ... 13
3.2 Creating the data relay program ... 14

3.2.1 Handling incoming UDP messages ... 15
3.2.2 Connecting to the database and Faye .. 17

3.3 Security .. 19
3.3.1 Encrypting the UDP traffic .. 19
3.3.2 Internal system security ... 20
3.3.3 Key sharing .. 21
3.3.4 Problems with decryption of messages sent with UDP .. 21

3.4 Push notification server (Faye) .. 21
3.5 Database ... 22

3.5.1 MySQL ... 22
3.5.2 phpMyAdmin .. 22
3.5.3 Database security .. 23

viii

3.6 Gateway emulator .. 23
3.7 On a large scale .. 23

3.7.1 SendUDP ... 23
3.7.2 ServerUDP ... 26
3.7.3 Faye ... 29
3.7.4 MySQL ... 29
3.7.5 Test conclusions ... 30

4 Conclusions and Future work .. 33

4.1 Reflections ... 34
4.1.1 Economics and environmental aspects .. 34
4.1.2 Ethical aspects ... 34

4.2 Further developments ... 34
4.2.1 Ability to control the home environment .. 34
4.2.2 Key exchange ... 35
4.2.3 SSL-encrypted MySQL connection .. 35
4.2.4 Bulk data .. 35
4.2.5 Working with real data .. 36
4.2.6 Faye optimization .. 36
4.2.7 HTTPS ... 36
4.2.8 Switch from XML to JSON ... 36

References .. 37

Appendix A ... 39

Appendix B ... 41

ix

List of Figures
Figure 1-1 System overview ... 2
Figure 2-1 Overview of the Model-View-Controller (MVC) .. 7
Figure 3-1 Main system structure ... 11
Figure 3-2 Temperature gauges ... 12
Figure 3-3 Temperature line chart using Highcharts ... 13
Figure 3-4 Required UDP body structure .. 14
Figure 3-5 Concurrency architecture .. 16
Figure 3-6 UDP packet structure .. 16
Figure 3-7 Insertion and push program structure .. 17
Figure 3-8 Cipher-block chaining (CBC) mode, Encryption .. 20
Figure 3-9 Cipher-block chaining (CBC) mode, Decryption .. 20
Figure 3-10 MacBook UDP send test results .. 24
Figure 3-11 Vaio UDP send test results .. 24
Figure 3-12 Transmit rate with a MCS index of 15 ... 25
Figure 3-13 Dropped UDP packets as a function of packet size on the MacBook 25
Figure 3-14 True throughput of the Vaio and MacBook .. 26
Figure 3-15 ServerUDP ping results ... 27
Figure 3-16 Number of received packets per second with varying packet size 28
Figure 3-17 Throughput coming into the server as a function of different packet sizes 28
Figure 3-18 Time to process each task ... 29
Figure 4-1 Possible bulk data extension structure .. 35

xi

List of Tables
Table 3-1 Currently supported versions of the most common browsers 13
Table 3-2 Structural requirements for the UDP body .. 14
Table 3-3 TCP and UDP comparison ... 15
Table 3-4 Possible query results ... 18
Table 3-5 Laptop specification .. 23
Table 3-6 XML structure length with variable number of messages 27

xiii

Glossary

3DES Triple Data Encryption Standard
AJAX Asynchronous JavaScript and XML
AES Advanced Encryption Standard
API Application Programming Interface
CBC Cipher Block Chaining
CSS Cascading Style Sheets
CoS Department of Communication Systems, KTH, Kista, Sweden
Gateway A device that receives data from one system and transmit it onto another system
HTML HyperText Markup Language
HTTP HyperText Transfer Protocol
HW Hardware
IP Internet Protocol
ISP Internet Service Provider
IV Initialization Vector
JS JavaScript, a popular scripting language that is widely used on the web
JSON JavaScript Object Notation
MAC Message Authentication Code
MCS Modulation and Coding Scheme
Mbps Mega Bit Per Second
MHz Megahertz
MVC Model View Controller
OS Operating System
PHP PHP: Hypertext Preprocessor
PoE Power over Ethernet, method to supply power to devices via the Ethernet interface port
SSH Secure SHell
SSL Secure Socket Layer
SVG Scalable Vector Graphics
SW Software
Rails Ruby on Rails
RGB RGB colour model, stands for Red, Green and Blue
RTT Round Trip Time
TCP Transmission Control Protocol
VPN Virtual Private Network
UDP User Datagram Protocol
URL Uniform Resource Locator
USB Universal Serial Bus, communication protocol used for communication and power

supply between a computer and a device.
XML eXtensible Markup Language
XOR eXclusive OR

1

1 Introduction
This chapter introduces the reader to the purpose of this thesis project and describes the problem

to be solved. This chapter also explicitly delimits the scope of this thesis project and outlines the
structure of the rest of the document.

1.1 Background
Prof. Gerald Q. Maguire Jr. proposed several Bachelor’s thesis projects titled “More than

downloading” on his website [1]. The idea was that the Internet could and should be used more to
upload data and for users to be able to share certain information. He describes the thesis projects as
follows:

“Today many networks are optimized for downloading (i.e., a transfer through the networking
infrastructure to a host). Examples include web browsing, audio and video streaming from traditional
media providers, etc. One of the coming trends is increasing generation of content (even if it is only a
sensor saying "the temperature in the basement has fallen below 8°C"). This will result in increasing
amounts of traffic in the uplink direction.” [1]

This led us to the idea to develop a system that would present various types of sensor data via a
user-friendly interface, accessible from anywhere using a web browser and an Internet connection.

1.2 Problem description
We want to be able to receive data from various sensors and send this data via a gateway to a

remote server. This server can be located in the cloud. The user will then be able to view the data via a
web interface. Our goal is facilitate users uploading some of their data to other services, such as
weight data that could be uploaded to sites such as www.runkeeper.com. Furthermore, we want to
create a secure and easy to use website that enables a user to control and/or view the data that was
collected within their home. Much of the communication between the various sensors and a local
gateway in the home needs to be done over a radio operating in one of the ISM-bands.
Communications from the gateway to the Internet will use appropriate Internet protocols; the specific
protocols to be used will be examined as part of this thesis project. An overview of the network
topology that we consider in this thesis project is shown in Figure 1-1.

The purpose of the project is to create a manageable and easy to use home automation system
with low power and low cost components, and to present information collected via these sensors to
the user via a web browser. This will allow the user to access their data and to monitor their home
from anywhere that they have Internet connectivity.

2

1.3 S
Sim

project f
been aug
another
thesis pr
sensors i

The
capable
placing
home us

1.4 L
This

friendly
aspects.
will also

Furt
travellin
because
transferr
based on
to a futu

Sister the
multaneously

focuses on th
gmented wit
thesis that F
roject focuse
in range of th

se projects a
of sending d
this data int

ser anywhere

Limitation
s thesis proje
interface, th
 We will de

o be able to b

thermore, ou
ng from the s

only a pre-
red from the
n the data tha
ure thesis pro

esis proje
with this pro
he sensor sid
th wireless c

Francisco Jav
es on the dev
heir gateway

are logically
data to the g
to a server (
e, as long as t

ns of this
ect focuses o
hus limiting t
esign a syste
be displayed

ur communic
sensors to ou
-configured

e gateway to
at we receive

oject. Our sys

Figure

ects
oject, Abdel A
de of the sys
communicati
vier Sánchez
velopment o
y and then re

separated b
gateway and
(which could
they are attac

s thesis
n sending da
the scope fro

em that allow
via our webs

ation with th
ur servers. T
shared key
 our servers
e, we leave th
stem will not

1-1 System o

Ahmid [2] is
stem by colle
ion. Both of

of a gateway
laying this d

by this gatew
our project

d be in the c
ched to the I

project
ata to a serve
om the origin
ws others to
site.

he gateway w
This limits th

will be use
. This also l

the extension
t relay any in

overview

s working on
ecting and se
our thesis p

curren
 that is able

data via an IP

way. Abdel w
will focus o

cloud) and m
Internet via a

er and presen
nal problem
send inform

will be assum
he security th
ed to protect
limits the us
n to actuators
nformation to

n another rela
ending data

projects are a
ntly are work

to pick up s
P network.

will develop
on taking dat
making this
a web browse

nting the coll
definition to
ation to our

med to be sim
hat we will b
t the inform
e of any act
s and full dup
o any third p

ated thesis. H
from a scale
also connect
king on, this
signals from

a new senso
ata from the

data availab
er.

lected data vi
o focus on on
system and

mplex, with d
be able to im

mation as thi
tuators that c
plex commu

parties.

His thesis
e that has
ed to yet
master’s

m existing

or that is
gateway,

ble to the

ia a user-
nly these
this data

data only
mplement
s data is
could act
nications

3

1.5 Structure of the report
Following this introduction, Chapter 2 gives an introduction to the project. In this chapter we will

present an introduction to home monitoring, related work, and development techniques. Chapter 3
describes the implementation of our web interface, development of a server that receives data from
the sensors (logically via the gateway), and how the security, database, and the push notification
system is implemented within the system. Chapter 4 contains the conclusions that we have drawn
from this project and suggest some future work.

5

2 Project introduction
The purpose of this thesis project is to create a platform for visualization of data produced by

sensors in a home environment. Our goal is to create a platform to support multiple types of sensor
data and allow anyone with data from a wide variety of sensors to use this platform. The project is
divided into two major parts, one concerns visualization and the part that handle incoming data, which
will be stored in a database.

The visualization part of this project concerns how to present the data that have been collect to a
user via a web-interface. Our goal is to allow the user to monitor their home environment via their
choice of web browser. Some of this flexible compatibility comes from using web standards that
World Wide Web Consortium (W3C) has approved [3].

As some of this data can be quite sensitive it is important that we authenticate the user and ensure
that only successfully authenticated users can view information about their own home environment. In
order for the user to visualize this data we will present it using graphs and tables, and perform live
updates of these graphs and tables.

The part of the project that handles the incoming data requires us to develop a server that can
receive messages from different sources and successfully forward these messages to be stored in the
database and pushed to the website. Note that we support this push operation in order to have live
updates of the data that the user is currently viewing. This part includes security for the data while it is
in transit by encryption and use of a hash to ensure that its integrity is maintained. In addition we have
to address the issue of concurrency in order to allow scalability of our proposed solution. This means
that we have to consider the details of processes of database insertion and querying and pushing of
content to allow live updates.

2.1 Introduction to smart home monitoring
The concept of smart homes is based upon devices handling and providing information about the

home environment. A smart home provides the homeowner with new ways of interacting with the
connected devices in their home environment. The use of home monitoring to provide security for a
home is a well-known concept, but the concept of home automation has been extended to include
more than just traditional aspects of home security. These other aspects include monitoring of water
or power consumption and healthcare. The monitoring of a home can be done internally, thus
allowing only authenticated users in the home environment to observe the data that the home
automation system collects. Another way of monitoring the home is to provide tools that allow the
user to monitor their home externally. By allowing a user to monitor their home without being
physically in the home environment, a new and very interesting range of use cases can be explored.

Monitoring of a home involves putting together a puzzle consisting of a large and complex system
of sensors, actuators, gateways, etc. As new technology provides the home with new smart devices
and broadband Internet connectivity becoming more and more common in homes the possibility of
combining these devices become increasingly interesting. Today TVs, game consoles, computers,
tablets, media hubs, amplifiers, etc. are already being integrated into the home environment’s local
network(s). This has at least two effects. The first effect is that controlling devices in the home is
becoming more convenient than ever before. Remote controls are swapped with tablets, computers
control the volume of the amplifier, and there are many different ways of controlling and
communicating between these devices in a smart way. Expanding this network of things by adding
new devices could provide the user with even more functionality. It is this expanded functionality that
is the second effect of these devices being connected to the home network(s). For example, a user no
longer needs to open the fridge to know what is in it. Instead the user might go to a webpage that
contains the information about the contents of the fridge. The fridge would with Internet connectivity
be able to upload this information by itself. The same might be done for kitchen cabinets. The result is
that there is no more guessing while you are out shopping whether you have all the ingredients at
home for the meal that you want to make.

6

There are already many systems that handle monitoring and control of a home environment such
as OpenHome [4] and Z-Wave [5]. These systems usually come with their own solutions, protocols,
and functions. This means that there are several different protocols, devices and controllers all
speaking different languages. This limits the opportunity to truly customize the home environment to
fit the user’s needs. However, these systems follow a similar structure where multiple sensors and/or
actuators wirelessly transmit/receive data to/from a gateway. This data can be collected from these
sensors and potentially be handled in some way other than the closed solutions that currently exist.

As noted above we can imagine home automation that exists only within the home, where there is
only local storage of data and the user can only monitor and control their home environment from
within the home itself. Alternatively we can imagine a system that utilizes external storage of data
(potentially storing this data in the cloud), but still only allowing monitoring and control from within
the home. The third alternative is to utilize external storage of data and allowing the user to monitor
and control their home environment from anywhere via a normal web browser.

2.2 Gateway
Today many existing sensors broadcast their data in the licence free 868 MHz band. In order to

intercept these transmission, decode and extract this data, and forward it to the Internet a gateway is
needed. The job of this gateway is simply to listen to one or more frequencies, collect data, and relay
the data. This gateway could be connected to another wireless link compatible with a 2.4 or 5 GHz
Wi-Fi equipped router, a USB connection, or a wired Ethernet connection. By implementing an IP
stack directly in the gateway we can eliminate the need for an always-on computer in the home (if we
are storing the collected data outside of the home – as only the gateway and router need to be powered
on).

Francisco Javier Sánchez and Albert López have during the winter/spring 2012 developed a
gateway that uses the 868 MHz band to “sniff” sensors’ data and send them to a computer via an
Ethernet interface. Their gateway uses a Texas Instruments MSP430 microcontroller and a CC1101
wireless transceiver to communicate with different types of sensors. The device requires very low
power and is able to operate from power over Ethernet (PoE). The gateway contains only low cost
components. This device is described in detail in their thesis [6].

2.3 Introduction to web development
There are a lot more aspects that must be considered in web development then just a couple of

years ago. Today web sites are expected to be more dynamic than ever before and this requires some
new technologies. The techniques that allow for the live feeds and data streams that we see in many
websites such as Facebook or Twitter simply did not exist a few years ago.

Static websites does not require a lot of the advanced functions that a website today would not
work without. Today websites needs to be updated constantly and the old approach of hard coding
data into a website makes this difficult. Today websites are generated by a dynamic front end that
constantly is receiving updates from some type of backend logic. The backend handles connections to
databases and only lets users access the information that they should be able to access based upon
some form of authentication and authorization mechanism. This means that a website does not look
the same for every user, but instead its appearance depends on the user’s credentials.

In this chapter we describe how the structure in Ruby on Rails works and what techniques can be
used to create a dynamic and customizable website.

2.3.1 Ruby on Rails
Ruby on Rails or simply “Rails” is an open source web framework developed by the Danish

programmer David Heinemeier Hansson. Rails is as its name suggests written in the Ruby language
and is designed to make web applications easier and faster to develop. [7]

7

2.3.1.1 MVC
In the heart of Ruby on Rails development is a Model-View-Controller (MVC) architecture. This

architecture allows the program to be separated into three major parts: models, views, and controllers.
The model represents the data of the application and how to access/manage this data. The views
represent the user interface and in the case of a web application the views render all the HTML
content that is displayed on a web page. The controller couples the models and views. Further details
of each of these parts are given below.

Figure 2-1 Overview of the Model-View-Controller (MVC)

2.3.1.2 Model
In Rails the model represents the data that is present in a database and the rules that govern how

to manipulate this information. It is in these models that the associations between the different tables
in the database are specified. Rails handles all this and all that we have to do is use keywords such as
“belongs_to”, “has_many”, “has_one” or “has_and_belongs_to_many”. A user model could for
example specify “has_one :father” and “has_many :children” and that would express the relationship
that the “User has one father and has many children.” The father of the user will then be accessible in
the model as a user object that has a father attribute. Furthermore the information is accessible from
the view by using embedded ruby statements.

2.3.1.3 View
The view is what the users see and can interact with. The content shown on the webpage and how

it is shown is provided by the view. Creating a view is done by using common web-programming
languages such as HTML, CSS, XML, JavaScript, and JSON. However, the development is a bit
different than normal web development using these languages. One of the differences is that Rails can
combine several of the common web languages and the ruby programming language. The code is
written in an .erb (embedded Ruby) file. Rails use the following structure to enable integration of ruby
code into the .erb file:

<% Ruby code -- inline with output %>

<%= Ruby expression -- replace with result %>

8

The view is just the end point of the entire system and does not operate in the back end as do the
model and controller. The view simply uses what the controller says it should use and renders it for
the user in a structured way.

2.3.1.4 Controller
The controller can be seen as a middleman between the model and view. Its purpose is to relay

information received from the model to the view. This is done by parsing requests from the user and
fetching whatever is needed from the model and sending it to the view that displays the new content
for the user. The controller also handles work related to data submission, cookies, and sessions. The
controller follows a special structure that contains multiple functions, where each function first
interacts with the model and then parses the result and calls a view. Common operations in a control
function are shown below:

@variable = ModelX.find(params[:id])

format.json {renderjson: @variable }

2.3.1.5 Scaffolding
Scaffolding is a very useful tool in Rails that allow you to create a good structure upon which

further development could be based. It is unlikely that the scaffolding provides exactly the right thing
for the application, but it provides models, controllers, and views that you can modify to fit the
application's specific needs. This means that you can have a very basic structure up and running
together with a database in just a few commands. The following command will provide a sensor
model, matching controller, and views for the sensor. The two arguments “name” and “sensor_type”
correspond to columns in the database. Rails also creates an auto increment “id” column
automatically.

$ rails generate scaffold Sensor name:string sensor_type:string
Rails follow a linguistic naming convention, this means that the controller represents a sensor

(singular) but the database will contain a list of sensors (plural).

2.3.1.6 Managing the database
Rails allows you to create an empty database with the command:
$ rake db:create

This command will create an empty database based on pre existing models. To be able to update
the database, add new tables, and delete old ones a so-called migration is needed. This migration can
be automatically generated in a similar fashion as the scaffold (described in section 2.3.1.5). A
migration file is also generated when scaffolding that correspond to the model created. A migration
can be viewed as both an action, updating the database, and as a file, the migration file. The
information about how to update the database is stored in the migration file and can of course be
created manually without any automatic generation methods.

To be able to update the database a command written in the ruby console needs be executed.
When executing this command, all new migration files in the project are processed. The command to
execute the update/migration is:

$ rake db:migrate

2.3.1.7 Gems
Gems in Ruby are packaged Ruby applications or libraries. Gems are distributed via the “gem”

command. The web Ruby on Rails framework is actually a Ruby gem called “Rails” and is installed
with a simple command in the ruby console. Other gems can be added as a line of text to a specific
“Gemfile” inside Rails and then instantiated by running the “bundle install” command. The “bundle
install” command also handles dependencies that a gem might have. Gems can also be installed by

9

using commands directly on the command line, the same way as installing the Rails gem. Installing
gems directly via the command line results in installation of a local gem and the functionality
provided by this gem will only work for environments with this gem installed. The syntax for
installing new gems is:

$ gem install ‘gemToInstall’ –options

The preferred way of installing gems is to modify the “Gemfile” to include the desired gem and
using the bundle command to install it and its dependencies. This approach allows developers to
easily distribute their application to other developers and co-workers.

2.3.1.7.1 Devise
Login-authentication is handled by a ruby-gem called Devise [8]. Devise provides the base, which

other gems such as Omniauth [9] then will incorporate. Devise is a Rails engine, which means that it
provides its own controllers, models, and views. This will provide the basic structure as well as very
useful helper methods such as “current_user”, which return the user that is currently logged in. Of
course the initial structure that Devise provides can be modified to suit our needs.

2.3.1.7.2 MySQL
To be able to change the database type from the original sqlite3 to MySQL the MySQL gem is

needed. This gem provides an API module for ruby, which has the same functionality as the MySQL
C API. The gem has some important dependencies that have to be considered when using it on a
Microsoft Windows operating system. The libMySQL.dll used in a Windows operating system needs
to have the same version as the one used in the gem.

2.3.1.7.3 Faye
Handling and listening to external events can be somewhat tricky in Rails. By using the Faye gem

event handling gets a bit easier. The Faye gem provides functions that can be used to subscribe to
specific channels or push to any channel used by a Faye server.

11

3 Implementation
Our project consists of four main parts. These parts together create a system where we can receive

data through UDP datagrams, store data into a database, push current data to a live feed, and visually
present the data in a web browser. Because we also wanted to test our system we developed a program
that sends UDP messages to our server, just as a sensor would send information to our system. We
call this program “SendUDP” and it is described in more detail in section 3.6.

The parts and the relations between them are presented as an overview in Figure 3-1.

Figure 3-1 Main system structure

3.1 Creating a home visualization interface
To be able to rapidly develop this visualization tool we choose the Ruby on Rails framework.

Ruby on Rails is “...optimized for programmer happiness and sustainable productivity.” [7], we have
also had a little earlier experience working with Rails and wanted to improve our knowledge of this
framework. This tool will be the final part of the whole system, and can only operate when previous
parts of the system are complete and operating.

3.1.1 Login/authentication
The Devise gem (described in section 2.3.1.7.1) provides the user model along with the logic to

protect the user's password. To achieve this Devise uses the gem bcrypt-ruby [10]. This means that the
password is never stored in a humanly readable format and can thus never be compromised, even in
the event of a security breach. Bcrypt is a hashing algorithm designed by Niels Provos and David
Mazières of the OpenBSD Project [11].

12

Because Devise is a Rails engine there is a built in standard design of Devise. This was a great
help to us to quickly start using authentication. However, to be able to fit our needs; we had to modify
the design. To modify the standard design of devise we had to expose the files that provide the design.
This was done by executing the following command in the console:

$rails generate devise_views

The generated views gave us access to all of the information that we needed in order to modify
the whole layout of Devise. The modifications made to the layout where minimal, but it gave us an
understanding of how we could modify Devise and integrate new functions into a layout.

Devise handles most of the essential parts of the authentication process, but not all parts. One vital
part is matching the content displayed to the correct user. If one user creates a new gateway on the
webpage, this gateway should only be available to that user. To handle this we had to modify the
controllers responsible for listing the gateway entries that will be shown. Devise provides a helper
function that returns the current user that is logged in. This helper function was used to list only the
entries that the current user had created.

3.1.2 Visualization
An important part of this project is to be able to show the data to the user in a user-friendly way.

The data that we initially consider supporting included temperature and weight; therefore decided to
use gauges and graphs. There are a number of different APIs available that could be used to do this
and most of them use JavaScript to load the data into the graphs. In this chapter we describe the
different APIs that we use in our system.

3.1.2.1 Google chart
Google provides a free chart API [12] that is easy to use and show a wide variety of different

types of charts, maps, tables, and gauges. The charts are rendered with HTML/SVG technology and
this provides great cross-browser compatibility, including browsers in Android and iOS without any
need for any extra plug-ins.

The use of gauges was a natural step to take when working with temperature data. The API also
provides us with some options to customize the gauge. For example, different colour ranges can be
displayed on the gauge. The range of the gauge is also customizable, as well as animations when the
gauge changes value.

Only three different colours are available in the API: red, yellow, and green. However, there is an
option to choose the specific tone of each colour, by specifying a RGB colour code. This came in
handy because we wanted the temperature gauges on our site to have a blue range for very cold
temperatures and yellow and red for intermediate and very high temperatures. The solution was thus
to make the green colour tone a blue colour. Figure 3-2 shows the resulting gauges.

Figure 3-2 Temperature gauges

3.1.2.2 Highcharts
Highcharts [13] provides an API for good-looking interactive charts. Options such as tooltips and

zoom functions, and the ability to save and print charts are already built-in. Figure 3-3 shows an
example of one of our charts.

13

Figure 3-3 Temperature line chart using Highcharts

Highcharts also supports a great number of browsers. This broad support for browsers is of course
important in systems such as we are developing because users are expected to utilize many different
browsers. The browsers and their versions that Highcharts support are listed in Table 3-1.

Table 3-1 Currently supported versions of the most common browsers

Brand Versions supported
Internet Explorer 6.0 +

Mozilla Firefox 2.0 +

Google Chrome 1.0 +

Safari 4.0 +

Opera 9.0 +

iOS (safari) 3.0 +

Android browser 3.0 +

Highcharts is implemented by downloading two JavaScript files including the Highcharts API and
importing them into the project. This file and its content can be downloaded directly from the
Highcharts webpage [13]. To be able to create the chart and include the correct data, a new JavaScript
(JS) file had to be created. This JS file uses the downloaded Highcharts API to create and customize a
chart. The chart we created to display the temperature data is shown in Figure 3-3. Here we have
plotted the temperature as a function of time. The chart contains both the actual temperature and the
average temperature. The average temperature is calculated for each new temperature entry and
displays the running average from the first temperature displayed up to the current point.

To be able to display live data in our chart we use a subscribe method. This method listens to a
Faye channel and receives data pushed by the Faye server. The data received from the channel is
added to the chart values and the chart will be updated without having to update the whole page. This
method is presented further in section 3.1.3.

3.1.3 Asynchronous message passing
One major feature of our home automation system is to create a truly dynamic and flexible system

that could be used for multiple services. Users should be able to upload their sensor data to our servers
and immediately be able to view the data on our web site. This requires some kind of service that
listens for incoming changes in the database and then updates the web site without the user having to

14

reload th
process
connecti
and at th

One
that allo
clients w
incomin
to the w
is descri

3.2 C
The

handle i
requests
should
Subsequ
relay pr
message

The
java.net
had som

The
and a da
database

The
encoding
byte. If t
desired 9
elements
The requ
message

he page. Unf
listens on

ion to the Ra
he same time

e solution to
ows Faye-clie
will then han
ng data. Each

web site for th
ibed in sectio

Creating
data relay p

incoming da
s by checkin
be performe

uently, thread
rogram is to
e and checke

data relay p
[16]. Anoth

me experience

data relay p
atabase inser
e. In order to

data that is
g. Multiple e
the total size
992 byte. Th
s needs to co

quirements fo
es that follow

Requir

Total size o
The first 9
mode CBC
The last 16

fortunately, R
some stream
ails server. H
e display the

this problem
ents to listen
ndle the inco
h logged in u
he user to vie
on 3.4.

the data
rogram is a v
ata insertion

ng the validit
ed. The pro
ds extract tas

do insertion
d so that onl

program is w
her reason wh
e in creating

rogram is div
rtion part tha
o test the prog

sent to our
elements can
e of the XML
he IV is adde
ontain the fo
or a valid m
w the correct

F

Table 3

rements

of 1024 Byte
92 byte hav

C
6 Bytes have

Rails is not v
m of data, m
However, ou
new data on

m is to use F
n in on a “cha
ming data an

user listens to
ew. The serve

relay pr
vital part of t

n requests fr
ty of the rec
ogram hand
sks from the
ns into the
y valid data

written in Jav
hy we decide
distributed a

vided into tw
at checks the
gram a gatew

relay progra
n be sent in o
L structure si
ed to the end
ollowing five

message are l
XML structu

Figure 3-4 Re

3-2 Structura

e
e to be encr

e to be a MA

very good at
mainly becau
ur service ne
n the web pag

Faye [14]. F
annel” that is
nd reload the
o its own dat
er side of Fa

rogram
the project an
rom a gatew
ceived mess

dles requests
e queue and
database. Th
is inserted in

va because it
ed to create
and parallel p

wo parts, a se
e validity of
way emulator

am has to fo
one package
ize is lower

d of the pack
e attributes:
listed in Tab
ure.

equired UDP b

al requiremen

rypted using

AC generate

handling the
use it is no
eds to be ab
ge.

Faye is a pus
s published s
e parts of the
ta stream cha
aye, where th

nd one of its
way. The da
age and by
s by adding
evaluate them
he data to b
nto the datab

t is easy to u
the program

programs in

erver part tha
the message
r (described

ollow the XM
as long as th
than 992 byt

kage to make
gateway_id,

ble 3-2. App

body structur

nts for the UD

g AES-128 a

ed with HMA

ese kinds of
ot possible t
le to receive

sh-notificatio
somewhere o
e website tha
annel and the

he clients are

 purposes is
ata relay pro
checking if

g them as t
m. The other

be inserted is
ase.

use APIs suc
m in Java was

Java.

at handles the
s and does th
in section 3.6

ML 1.0 stand
he total size
te, padding i
a total of 10

 sensor_id, v
pendix A de

re

DP body

nd the block

AC-MD5

f services, wh
to maintain
e data from o

on messagin
on the web p
at are affecte
e data will b
 publishing t

to act as a se
ogram handl
the requeste
tasks into a

er purpose of
s extracted

ch as JDBC
s because we

e incoming m
he insertions
6) was devel

dard with th
does not ex

is needed to r
008 byte. Ea
value, type a

escribes two

k-cipher

hen some
an open

our users

g system
page. The
ed by the

be pushed
their data

erver and
les these
ed action
a queue.
f the data
from the

[15] and
e already

messages
s into the
loped.

he UTF-8
ceed 992
reach the

ach of the
and time.
example

15

Byte 992 to 1007 has to contain the IV used to encrypt the message
The message need to have specified all five values
The time value have to be in the format of “YYYY-MM-DD hh:mm:ss”

3.2.1 Handling incoming UDP messages
The interface towards the gateways that sends messages to our system is one part of the data relay

program. We call this program “ServerUDP” and its job is to handle incoming UDP messages from
gateways and to relay the data received to the database. ServerUDP also forwards the data to a Faye
server, which is described in section 3.2.2. The gateway interface is designed to receive a UDP
datagram containing an AES encrypted message with the size of 992 byte, a 16 byte IV, and a 16 byte
MAC. UDP is used because it provides connectionless communication between a gateway and the
relay program. This is suitable because it provides higher speed and requires less work for the
gateway in comparison with using TCP. Furthermore, the individual data values that are to be
transmitted are assumed to not be critically important and data is generally only produced at a
relatively slow rate, hence the flow control and error correction provided by TCP are unnecessary.
Hence we exchange the guarantee of correct in order delivery provided by TCP for higher speed and
less work for the gateway by using UDP. A summary of the comparison between using UDP and
using TCP is shown in Table 3-3. If the individual data values were more important, then we would
need to add some reliability mechanism, however this was never our goal and has therefore has been
left for future work.

Table 3-3 TCP and UDP comparison

TCP UDP

Reliable Unreliable

Connection-oriented Connectionless

Segment retransmission and flow
control through windowing No windowing or retransmission

Segment sequencing No sequencing

Acknowledge segments No acknowledgement

Our program ServerUDP is designed to handle multiple requests in parallel. This parallelism is
provided by a number of threads that operate on the list of received requests. By doing so,
computationally expensive operations in the program, such as decryption, insertions into the MySQL
database, and handling the Faye serve communication are handled by a separate thread, allowing the
main thread to continue to listen for incoming UDP messages. However, the lack of flow control in
UDP limits the parallelism and sending packets at too high an aggregate rate could result in severe
packet loss. This limit is further discussed and presented in section 3.7.2.

We create a shared synchronized object containing the list of tasks that we call “Pool of Tasks”.
These tasks provide the concurrency in our program. By using a linked list we can easily add and
remove elements in a first-in-first-out (FIFO) order. Threads that will handle the task and do the

16

necessar
the task
concurre

Receiv

To b
by the ja
data is s
linked li

The
port was
through
can be u
broader

The
fields an

ry operations
s in the list
ency architec

Server
ved message from

gateway

be able to lis
ava.net API
stored in a b
ist.

socket is bo
s chosen bec
the datagram
used to read
use, then an

UDP packe
nd a data fiel

s extract elem
is specified

cture is prese

m

sten for incom
and the sock

byte array th

ound such th
cause it is in
m socket is a
d the packet
application

et structure is
d. All the inf

ments from t
as a parame

ented in Figu

Figure 3-5 C

ming UDP m
ket is the rec
at has a leng

hat it listens t
the range of

assigned to a
’s content. I
should be m

s illustrated
formation in

Figure 3-6

the linked lis
eter at runtim
ure 3-5.

Pool of T
Shared synchron

Concurrency

messages we
ceiving poin
gth of 1024

to one port,
f private port
a datagram pa
If this applic

made to the IA

in Figure 3-
these fields

6 UDP packet

st. The numb
me. The defa

asks
ized object

architecture

use a datagr
nt for a pack

bytes before

currently sp
ts according
acket structu
cation were

ANA to get a

-6 and is qui
can be acces

t structure

ber of worke
fault number

ram socket. T
et delivery s
e it is added

pecified as U
to IANA [17

ure, which pr
to be exten

an assigned U

ite simple, w
ssed using th

er threads tha
r of threads i

Thr
Handling task

the

Thr
Handling task

the

Thr
Handling task

the

This class is
service. The
d to the sync

UDP port 500
7]. The data
rovides funct
nded and ado
UDP port num

with only fou
he java.net A

at handle
is 4. The

read
extracted from
pool

read
extracted from
pool

read
extracted from
pool

provided
received

chronized

000. This
received

tions that
opted for
mber.

ur header
API [16].

17

3.2.2 Connecting to the database and Faye
For each message received from a gateway a new task will be added to the pool of tasks. The

threads spawned at runtime will extract tasks from the pool and run methods to decrypt, parse, and
push the received data. The program communicates with the database by using a Java-to-MySQL
connector that converts JDBC calls into manageable code to be interpreted by the MySQL database.
The connector is distributed as a .jar file and needs to be linked together with the Java program at run
and compile time. To be able to compose and execute queries in the Java program the JDBC API [15]
is needed. This API is used in three simple steps: connecting to the database, sending queries, and
retrieving a result from the database. Connecting to the database is a simple line of code in the
program:

DriverManager.getConnection(”jdbc:mysql://URL”, ”UserName”,
”Password”);

Sending queries to the database can be done with two different kinds of queries: Statement and
PreparedStatement. The simple Statement lets us send a composed MySQL query as a simple string
and the PreparedStatement uses a similar structure, but instead of adding values directly into a string,
the statement is prepared with question marks. The query is sent and the database holds the query
while we send values to replace all the question marks, when all the question marks have been
replaced we execute the query. The PreparedStatement is used for security reasons, as it is resilient
against SQL-injections. The PreparedStatement can also be used to execute the query multiple times
without having to recompile the query. The API also provides a result object where results from a
query are stored. The result object is called a “resultSet” and allows us to use functions to extract rows
and entries from the result that we can use for our own purposes.

Each message that is processed by a thread follows the same structured flow. This flow is
presented in Figure 3-7.

Message authentication

Decryption

Message validation

Database insertion

Push to Faye Faye push-notification
server

MySQL DatabaseTi
m

el
in

e

Figure 3-7 Insertion and push program structure

18

The data that the thread receives is still encrypted and needs to be decrypted in order to be
evaluated. Decryption and message authentication are the first step in the process. Message
authentication is done by calculating a Message Authentication Code (MAC) and comparing it with
the MAC that is appended to the message. The decryption is carried out by using the AES algorithm.
More information about message authentication and decryption is presented in section 3.3.1. If the
message authentication or decryption fails an exception will be thrown and the thread will ignore this
task and select a new one.

If the message authentication and decryption succeed, then the thread will continue to extract the
information from the decrypted message, parse the message, and assign values in the message to
separate variables. It is essential that the sender properly composed the message (as specified in Table
3-2). If not, the extraction operation will fail and the thread will throw an exception, drop the task, and
extract a new task from the pool.

The values extracted from the decrypted message need to be validated before insertion of any data
into the database is done. This validation is done in two steps: (1) executing a query on the database to
get further information about the values and what they correspond to in the database, and (2)
evaluating the reply from the database to decide how and if the data should be inserted. We composed
the query so that it returns one row with three columns in it. The purpose of this query is to check if
the gateway value extracted from the received message exists in the database and that the sensor value
is listed in the database. We also use it to learn the most recent insertion of a sensor reading for this
sensor. To achieve this; the query has to contain nestled SQL select statements that are more time
consuming than a single select statement. Even though a nestled select statement is time
consuming it is still faster than sending multiple queries to the database. The query can return four
different types of results. These four types of results are shown in Table 3-4.

Table 3-4 Possible query results

Cases Gateway Sensor Time

Gateway does not exist1 - - -

Gateway exists

Sensor does not exist

Gateway ID NULL NULL

Gateway and Sensor exists

No readings from the sensor

Gateway ID Sensor ID NULL

Gateway, sensor, and readings exists Gateway ID Sensor ID Timestamp

The gateway column is needed to be able to check if the gateway exists in the database, the sensor
column is needed to be able check if the sensor exists in the database, and the time column is used to
check when the last entry was inserted. The value from the time column is important because we want
to limit the number of insertions that can be done by a sensor within a given interval of time. We have
set this limit to allow only one insertion every two seconds.

If the gateway does not exist in the database, then the thread will be interrupted and will ignore
the task. This could occur because a user did not add a gateway thru the webpage before this gateway
sent data to the database. We require that the user explicitly add gateways in order to be able to link
users registered on the webpage with specific gateways. In the case of a gateway existing but a sensor
not existing, then we add a new sensor to the database, create a link to the gateway it was sent through
by adding a specific “gateway_id” field in the sensor table, and then add the sensor data. In the other

1 In any case when the gateway does not exist; the query will return an empty result.

19

cases we insert a new sensor reading, with the exception of when the rate reaches the limited number
of insertions per second.

To be able to push messages to the Faye push-notification server we have to compose a HTTP
POST message. The data sent to the Faye server must be structured as a JSON object or the Faye
server will not be able to interpret the data. To be able to create a JSON structured message we used
JSON objects. These objects handle the transformation from strings and values to JSON structures.
The JSON message has to follow a special structure defined by the Faye server. This structure is
presented below:

{channel : /subscribe/channel, data : {

value : sensorValue, created_at : time}

}

The channel that we send the data to is dependent on what data is being sent. The channel address is
specified by the sensor id, which allows us to only push data to users that own this sensor.

All failures during the operations on a message will cause an exception and will interrupt further
operations on the task. This is because we do not want any partially handled request to affect the
database or the Faye server. After a thrown exception the thread will continue by extracting and
handling new tasks from the pool.

3.3 Security
Security is a vital part of our project, as we want to provide the user with a reliable and secure

service. We provide this security by encrypting plain text data and by message authentication. The
communication is only as secure as its weakest link and both the sender and receiver have to fulfil the
required security preconditions to provide sufficient security. Because we communicate over the
unsecure Internet, we have implemented security that is designed to resist several different types of
attacks against us. In this chapter we show the security provided by our system.

3.3.1 Encrypting the UDP traffic
The sensor data collected in a home environment can be very personal and a user should not have

to worry about that data being compromised. To guarantee that only authorized users can read and
send sensor data, encryption algorithms are used to encrypt the data. The gateway interface is
designed to only receive messages sent by properly enrolled gateways, which means that it only has to
handle decryption of small messages containing sensor data. The gateway that sends the messages
needs to implement the same encryption algorithm as the gateway interface and to use the same key.
Note that we are assuming the use of a symmetric encryption algorithm, as an asymmetric algorithm
would require too much processing time on both the gateway and the receiver.

We are using AES as the encryption/decryption algorithm. AES is a standard issued by the U.S.
National Institute of Standards and Technology (NITS) and is approved by the U.S. Department of
Commerce. AES uses the Rijndael algorithm developed by Joan Daemen and Vincent Rijmen [19]. In
our implementation we encrypt and decrypt a 992 byte array with AES. AES has a fixed block size of
16 bytes, which means that we have to divide our array into multiple blocks. This also means that we
can use a block-cipher mode of operation. In our case we use cipher-block-chaining (CBC), which
provides extra security by XORing previous cipher text blocks with the next plaintext block. To be
able to XOR the first block an initialization vector (IV) is needed to ensure that there is varying
content in the first block (to avoid a known plain text attack). The IV is composed by creating a 16
byte array. This array is subsequently used as input to the encryption and decryption algorithms. To
ensure that every message is encrypted into a different cipher text the IV is randomized and then
appended to the UDP message in plain text. Each new message utilizes a different IV, thus ensures
that each message is encrypted in to a different string even if the same data is sent, with the exception
of exactly the same data being sent with the same IV. However, this is very unlikely as the numbers of
permutations in the IV and byte array are very large. Because the IV has a length of 16 bytes, i.e. 128

20

bits, the
are illust

To g
is appen
function
entire en

To b
together
message
safely op

3.3.2
Secu

network
from oth
location

VPN
they are
larger ar
the inve
discusse

In o
a greater

number of p
trated in Figu

guarantee the
nded to the e
n to produce
ncrypted mes

be able to ve
r with the s
e. If these m
pen it and ev

Internal s
urity may als

k of servers, s
hers should
 and therefor

N connection
e not located
rea; however
estigation del
ed further.

ur test envir
r level of sec

permutations
ure 3-8 and F

Figure 3-8

Figure 3-9

e message’s
end of the m
a 16 byte ha

ssage (in our

erify the inte
secret key a
match, then w
valuate its co

system se
so be necess
so that within
not be possi
re their close

ns could be u
d at the sam
r the assump
lays in such

onment we r
curity, as a fi

s is or ~
Figure 3-9.

8 Cipher-bloc

9 Cipher-bloc

integrity we
message. Thi
ash value. Th
r case this me

egrity of the
and compare
we know tha
ntent.

ecurity
sary for the c
n this networ
ible. General
e proximity s

used to bind
e physical s
tion of low d
a VPN netw

run the differ
rewall only a

~ .

ck chaining (C

ck chaining (C

e use a 16 by
s MAC is c
he MAC is g
eans the first

e message we
e the genera
at the messa

communicati
rk the server
lly these ser
should result

together dif
site. This ena
delays betwe
work are out

rent parts of
allows conne

The CBC en

CBC) mode, E

CBC) mode, D

yte Message
alculated usi
generated by
t 1008 bytes)

e calculate t
ated MAC w
age has not b

ion between
rs should hav
vers will be
in low delay

fferent instan
ables a logic
een servers m
tside the sco

f our system o
ections via c

ncryption and

Encryption

Decryption

Authenticati
ing the MD5

y using the h
) together wit

he MAC for
with the MA
been tamper

servers conn
ve access to e

located in a
ys for this co

nces of the se
cal local net
may no longe
ope of this th

on the same
ertain ports t

d decryption

ion Code (M
5 cryptograp

hash algorith
ith a secret k

r the first 10
AC appende
red with and

nected to the
each other b
a single geog
ommunicatio

erver networ
twork to spa
er be valid. H
hesis and wi

server. This
to our system

methods

MAC) that
phic hash
m on the
ey.

008 bytes
ed to the
d we can

e internal
ut access
graphical
n.

rks when
an over a
However,
ill not be

s gives us
m.

21

3.3.3 Key sharing
In our implementation of the ServerUDP program we need keys to perform encryption with AES

and to produce a MAC. These keys are shared secrets between the gateway and the ServerUDP
program. These keys have to be secret in order to guarantee the required security. The distribution of
these keys needs to be handled in a secure way to avoid compromise of the secret. In our tests of the
system we handle both sides of the communication, which makes it easy to manually distribute the
keys. Our goal to offer an open interface to which a user can send their sensor data, but properly
handling key sharing among the nodes is a more complex project and something that could be
integrated in future work.

3.3.4 Problems with decryption of messages sent with UDP
In our implementation of the AES encryption algorithm we encountered some problems regarding

the decryption of messages sent over UDP. While experimenting with the algorithm we first
implemented the algorithm and ran it within the same program and this worked without any problems.
When we separated the encryption and decryption functions to the separate sites of the UDP
communication a problem occurred, as we no longer could successfully decrypt the received message.
We knew that the algorithm worked because of our initial experiments, which meant that the problem
had something to do with the UDP communication between the two hosts.

Trying to decrypt the encrypted message generated this exception:

Exception in thread "main"javax.crypto.BadPaddingException: Givenfinal
block not properly padded

This problem occurred because messages sent over the UDP channel were specified to be 1008
bytes in size and the encryption algorithm encrypted only the string and not the intended 1008 bytes.
We solved the problem by first adding extra padding to the message in order to generate a message of
the desired size and then encrypt the whole 1008 bytes.

3.4 Push notification server (Faye)
Faye uses TCP connections to communicate to and from the client and the Thin web server [20].

It does this by using the Ruby library “eventmachine” [21].

Faye is easily installed with the “gem” command and could be deployed on its own separate
server. The Faye server pushes messages to all the clients that are currently listening on the correct
channel. This allows the browser to receive messages in the background without the user having to
refresh the whole page. It also gets around the problem that the Rails server does not allow any open
TCP connections.

To implement these operations requires adding the following code to a ruby file to set up the Faye
server.

require 'faye'

Faye::WebSocket.load_adapter('thin')

faye_server = Faye::RackAdapter.new(:mount => '/faye', :timeout => 45)

runfaye_server

Running the following command starts the Thin server:

$rackup “filename” -s thin -E production

22

In Linux or Unix the server process can be started in the background as a daemon process by
adding “&” to the command above. This enables the service to remain running even after the terminal
window is closed or if the user disconnects from the SSH connection.

3.5 Database
In our thesis project we have used the MySQL program as our database, since it is freely available

and provide the functionality that we need.

3.5.1 MySQL
MySQL is one of the most commonly used database solutions and is used by companies such as

Facebook, Google, and Adobe. It is built with performance, reliability, and ease of use in mind. The
fact that it runs on multiple platforms also makes it very flexible. Tools such as phpMyAdmin
(discussed in section 3.5.2) make interaction with the database very easy and accessible from
anywhere via a web browser. A MySQL service was set up on a server running Ubuntu 12.04LTS.
The installation is done simply by executing the command:

$ sudo apt-get install mysql-server
By default the server only listens to the localhost IP address, thus the server has to be

reconfigured to listen for remote connections as well. The configuration file that handles this is the
“my.cnf” file located in the “/etc/mysql/” folder. The necessary change is made by editing the “bind-
address” variable to be the local IP address of the server or by binding it to “*” to allow for
connections on all of the host’s IP addresses.

bind-address = 192.168.0.5

or

bind-address = *

TCP port 3306 is the standard port for MySQL according to IANA [17], so this is the port number
that we have used.

The following command was used to verify that the server was up and running.
$ sudo netstat -tap | grepmysql

3.5.2 phpMyAdmin
Ruby on Rails uses an sqlite3 database by default and although there are visualization programs

and interfaces, such as SQLite database browser [22], we thought that it would be easier to switch to a
MySQL database and use the phpMyAdmin [23] tool to manage the database. The phpMyAdmin tool
is a web-based interface that allows the user to view and edit the database directly in their web
browser. This tool is written in PHP with the intention administering MySQL databases.

Furthermore, we wanted to have the database in one place, rather than running on our individual
computers. Therefore, we decided to move the database to a remote server. To achieve this an
apache2 web server was set up on our Ubuntu 12.04LTS server. The tool phpMyAdmin was then
installed and configured to function together with the apache2 server.

We also started a dynamic DNS service on the server that automatically updates the domain name
“biifer.mine.nu” to the server’s global IP address. This domain is registered to us at the site:
http://dyn.com/dns/. Having a domain name means that we can look up this name in order to find
the current IP address of the server, thus allowing us to contact the phpMyAdmin tool from anywhere
by just using the URL: “biifer.mine.nu/phpmyadmin” rather than having to know the server’s current
global IP address. This also has the advantage that in the event that the server gets a new global IP
address from its ISP, then the address will automatically be updated with the associated domain name.

23

3.5.3 Database security
MySQL supports traffic encrypted with both SSL and SSH. Both of these methods enable secure

connections between the MySQL server and any client that is trying to access the database. The SSL
method is the preferred connection type to use because it provides a connection directly to the
MySQL server, the SSH method provides only a secure tunnel to the host where MySQL is running.
The connections to MySQL are not secure by default, as this insecure option is slightly faster. In our
environment we use the same host for our MySQL database as our ServerUDP program, which
already receives encrypted traffic. For this reason, encrypting the traffic between the ServerUDP
program and the MySQL data is not critical; hence implementation of an SSL based tunnel has been
left for future work.

3.6 Gateway emulator
Because we did not have access to the gateway that Albert and Francisco were building we

developed a test program that would encrypt and send UDP messages in order to emulate how a
sensor would send data. This gave us a platform on which we could test and develop the receiving
side of the connection. The program we developed for this emulation is written in Java and uses a
UDP socket to send data packets to the receiving program.

At first the UDP connection between our test program and the receiving server was encrypted
with a 3DES encryption algorithm, this was later changed to an AES with the cipher-block chaining
(CBC) encryption algorithm to increase performance and to increase security. Initially 3DES was
chosen because we found a MSP430 compatible implementation of the algorithm on Texas
Instruments’ web site. Later we implemented our own encryption and MAC calculations to match the
receiving side’s implementations.

3.7 On a large scale
Because this project aims for a solution for a home environment, the system must be able to scale

up to support a potentially large customer base; there are a few potential bottlenecks in our system
that must be investigated. The system can be divided into 4 basic parts: the web server, a MySQL
server, a Faye server, and a server that handles the incoming UDP messages. To make this system
scale well for large numbers of customers and datasets a few actions needs to be taken. The following
subsections will consider each of the parts of the system and how it scales.

3.7.1 SendUDP
To be able to investigate the limits in our ServerUDP program we modified it to display the test

data. The test was conducted by sending multiple packets to the server to see how it performed.

The first step in the test was to investigate how fast we could send UDP packets. In this test we
used our laptops, a Sony Vaio VGN-SR59VG and an Apple MacBook (late 2008). The Sony laptop
will be referred to as “Vaio” and the Apple as “MacBook” in the remainder of this report. The
specifications of each laptop are listed in Table 3-5.

Table 3-5 Laptop specification

 Sony Vaio VGN-SR59VG Apple MacBook (Late 2008)

Processor Intel Core 2 Duo P8700@2.54 GHz Intel Core 2 Duo P8600@2.40 GHz

RAM 4GB DDR2@800 MHz 4GB DDR3@1067 MHz

OS Windows 7 Professional SP1 Mac OS X 10.6.8

The test was conducted by creating a simple test program that sent multiple UDP message to the
server as fast as possible. The test program (described in Appendix B) is not by itself a test of the

24

ServerU
server. T
perform
possible
determin
MacBoo

The
MacBoo
output in
drop any
the pack

UDP program
The test wa
ance was re

e and we ran
ne how long
ok are shown

results show
ok has a high
n Wireshark
y packets at
ket size incre

2

4

6

8

10

12

14

16

18

20

m
s

1

1

2

2

m
s

m, but rather
as performed
lated to pack
the program
time it had t

n in Figure 3-

Fig

w that there
her average
we found ou
all. Additio

eased. In a te

0

200

400

600

800

000

200

400

600

800

000

1 2

0

5000

0000

5000

0000

5000

1

test to see if
d with three
ket size. In t

m 10 times. W
taken to send
-10 and the r

gure 3-10 Mac

Figure 3-11 V

is a quite b
speed of sen
ut that the M
onally, for th
est with 1024

2 3 4
Te

2 3 4
Te

f our laptops
different si

this test we
When each t
d these 100k
results of the

cBook UDP s

Vaio UDP sen

big differenc
nding packe

MacBook dro
he MacBook
4 bytes in ea

5 6 7
est number

5 6 7
est number

s could be us
zes of UDP
send 100k U

test was finis
UDP packet

e Vaio in Figu

send test resu

nd test results

ce between t
ets than the S
opped a lot o
k the number
ach UDP pac

8 9 1

8 9 1

sed to test th
P packets to
UDP packets
shed we com
ts. The result
ure 3-11.

ults

s

the Vaio and
Sony. Howev

of packets, w
r of dropped
cket almost 7

10

Size:

Size:

Size:

0

Size:

Size:

Size:

he performan
investigate

s in a loop a
mpared times
ts of this test

d the MacBo
ever, by chec
while the Vai

packets incr
75% of pack

: 256B

: 512B

: 1024B

256B

512B

1024B

nce of the
how the

as fast as
stamps to
t with the

ook. The
cking the
o did not
reased as
kets were

dropped
trying to
802.11n
Modulat
Moreove
transfer
perform
of UDP

We
too fast
be check
The Vai
packets.

We
results a
of the pa

d before even
o send data a

n network tha
tion and Cod
er, the MCS
speed was h
ance on the
package.

Figure 3

think this hu
and that the

king to see o
io seems to

used Wiresh
are shown in
ackages the s

0

10000

20000

30000

40000

50000

60000

70000

80000

n being sent.
at a rate of o
at the laptop
ding Scheme
varies as the

hovering aro
MacBook. F

Figur

3-13 Dropped

uge loss of U
e hardware si
of the output

send the pa

hark to calc
n Figure 3-14
speed is still

256B

. However, t
over 650Mb
p was conne
e (MCS) ind
e signal stren
ound 130Mb
Figure 3-13 s

re 3-12 Trans

d UDP packet

UDP packets
imply canno
queue has r

ackets a lot s

ulate the tru
4. These resu
much higher

512B

this is somew
bps. This spe
ected to at th
dex of 15 is o
ngth of the w
bps. Figure 3
show how m

mit rate with

ts as a functio

s is due to th
ot keep up (a
room before
slower and

ue throughpu
ults suggest t
r than the Va

1024

what to be ex
eed is not po
he time. An
only capable

wireless netw
3-12 shows a
many packets

a MCS index

on of packet

he MacBook
although it w
putting an a
is therefore

ut from the
that even tho
aio.

4B

D

xpected beca
ossible on ac

IEEE 802.1
e of speeds u

work changes
a sample rea
s that were d

x of 15

size on the M

k trying to se
would seem th
additional pac

able to send

Vaio and th
ough the Ma

Dropped UDP

ause the Ma
chieve over t
1n network

up to 300 Mb
. During our
ading of the
dropped for e

MacBook

end the UDP
that the drive
cket into thi
d without lo

he MacBook
acBook dropp

packages

25

cBook is
the IEEE
with the

bps [24].
r tests the

network
each size

P packets
er should
s queue).

osing any

k and the
ped most

26

The
each com
from the
throughp

3.7.2
The

period o
to our se
We wan
server a
multiple
XML m
This me
in it vari
on the n
the UDP
datagram

An
understa
message
total XM

M
bp

s

most intere
mputer can s
e sending sid
put.

ServerUD
second step

of time. We d
erver. The te
nted to test h
and the MyS
e messages,

message head
eans that the
ies. Of cours

network. Thu
P and IP he
m.

example of
anding of th
es that can be
ML structure

0

20

40

60

80

100

120

140
p

Figure 3

esting result
send message
de, the MacB

DP
p was to see
did this by us
est investigat
how long it to
SQL database

and therefor
der is quite la

start up cost
se UDP and
us a 256 byte
eaders. Corr

f a valid X
he fixed cost
e fit in to a p
size contain

256B

3-14 True thro

from the U
es to the Ser
Book can sti

e how many
sing the UDP
tes how man
ook the serv
e. We also c
re we could
arge in this c
t for the UD
IP headers a

e raw XML m
respondingly

XML messa
t and the str
packet depen
ing a variabl

oughput of th

UDPSendStre
rverUDP pro
ill be used to

UDP messa
PSendStressT

ny packets ou
ver to receive
considered in
send multip

context, whi
DP body is th
also must be
message resu

y a 1024 by

age is prese
ructure that
nds on the le
le number of

512B

he Vaio and M

ssTester pro
ogram. As w
o send packe

ages the serv
Tester progra
ur server can
e, decrypt, an
n this test th
ple sensor re
ch gives the

he same even
added to the
ults in a 288

yte XML me

ented in Ap
we have ch

ength of each
f messages is

10

MacBook

ogram is that
e do not care
ets because i

ver could re
am from step

n successfully
nd send the m
hat a larger p
eadings in on

UDP body
n though the
e total numbe

byte IP data
essage becom

ppendix A
hosen to foll
h message. A
s shown in Ta

024B

at we know
e about pack
it has a high

eceive within
p one to send
y receive per
message to t
packet could
ne UDP pac
a fixed start
number of m

er of bytes b
agram after i
mes a 1066

to facilitate
low. The nu

A calculation
able 3-6.

Vaio Ma

how fast
ket losses
her actual

n a given
d packets
r second.
the Faye-
d contain
cket. The
t-up cost.
messages
eing sent
including

6 byte IP

e further
umber of

n over the

acBook

27

Table 3-6 XML structure length with variable number of messages2

Header size

 (byte)

Root element
size

(byte)

Number of
messages

Total message
length

(byte)

Total structure
size

(byte)

38 0 1 113 151

38 13 2 226 277

38 13 3 339 390

38 13 4 452 503

38 13 5 565 616

38 13 6 678 729

38 13 7 791 842

38 13 8 904 955

38 13 9 1017 1068

We conducted these tests on a server running Windows server 2008 R2 with a 100/10 Mbps
broadband connection and the result from performing a “ping” request to the server showed that we
had an average RTT of 26.6ms. The complete results from the ping request are shown in Figure 3-15.

Figure 3-15 ServerUDP ping results

We decided to divide the program into multiple parts to be able to pinpoint exactly where the
bottlenecks in our system are. At first we simply received UDP packages and printed out how fast we
was able to do this for the different sizes of packets. The results are shown in Figure 3-16.

2 All values presented in the table are calculated from the XML message structures presented in Appendix A.
These values can vary depending on the user’s implementation (i.e., the total structure size is not guaranteed to
be exactly the same length as in the table).

28

The
the large
course g
size. We
packet s

The thro
for each

As s
one with
1024 by
the serv
connecti

Figure

results from
er size (1024
greater for th
e have calcu
ize, Pn is the

oughput was
h packet size

Figure 3-17

seen from th
h the highest
yte packet thi
ver. To be ab
ion to the sit

Pa
ck

et
sp

er
se

co
nd

Mbp

0

10

20

30

40

50

60

70

80

90

100

Th
ro

ug
hp

ut
 (M

bp
s)

e 3-16 Numbe

m Figure 3-16
4 bytes) as th
he 1024 byte

ulated the thr
e number of p

then calcula
was calculat

7 Throughput

he throughpu
t throughput
is option is c
ble to comp
te www.bred

0

5000

10000

15000

20000

25000

30000

35000

1

Pa
ck

et
s p

er
 se

co
nd

102
ps 87.38

0

0

0

0

0

0

0

0

0

0

0

r of received

6 show that w
he smaller 2
e packets an
roughput acc
packets, and

ated from the
ted. These re

t coming into

ut varies with
. As we are
clearly the b

pare these re
dbandskollen

2 3 4 5

4 byte
8002953

 packets per

we are not a
256 byte pack
nd therefore
cording to th
d t is the time

e values show
esults are sho

o the server a

h the size of
able to send

best with resp
esults with w
n.se and foun

6 7 8 9

512 b
83.7514

second with

able to receiv
kets. Howev
the throughp

he following
e in seconds.

wn in Figure
own in Figure

as a function

f the packets
d up to 8 diff
pect to succe

what a user
nd that the 1

9 10 11 12 1

byte
45821

varying pack

ve as many p
ver, the total
put is better
formula, wh

e 3-16 and an
e 3-17.

of different p

. The best re
ferent sensor
essfully deliv
might exper
100/10 Mbps

13

1

5

2

256 byt
51.962896

ket size

packets per s
amount of d
with a large

here Ps is the

n average th

packet sizes

esult is of co
r readings in
vering lots o
rience, we te
s connection

1024 byte

512 byte

256 byte

te
622

second of
data is of
er packet
e total IP

roughput

ourse the
n a single
of data to
ested our
n actually

29

delivered about 96/9 Mbps (where the first number is the downlink throughput and the second number
is the uplink throughput). From this result we can calculate that our connection uses about 91% of its
full potential.

The last step in our tests with the ServerUDP program was to check how long each task took to
process each message, i.e. to decrypt the data, check the validity of the data, put the valid data into the
MySQL database, and push the data to the Faye server. We modified ServerUDP to only print
timestamps when each part of the processing was completed. The results can be seen in Figure 3-18
below.

Figure 3-18 Time to process each task

These results show that the most time-consuming parts of our system are the MySQL and Faye
portions of the processing. The systems performance is not very good because each task takes about
100ms to complete, and because this is done for every sensor reading that is sent to our system, the
system will not able to handle that many readings per second. In the following sections (sections 3.7.3
and 3.7.4) we discuss possible solutions and optimizations to improve this performance.

3.7.3 Faye
In the current implementation each sensor reading that is sent to our system is also pushed to the

Faye server, this operation of course takes some time and we have found that this is one of our main
bottlenecks. In the tests that we have conducted (described in the previous section 3.7.2) we found
that pushing each reading to Faye may not be the best solution. In our future work (section 4.2.6) we
propose that in the future multiple readings should be pushed at the same time.

Because Faye is using an HttpURLConnection the connection is dropped between each attempt to
connect to Faye. This is unlike the case for the MySQL connection where each thread in the
ServerUDP program keeps a connection to the database open. By keeping a connection open and
reusing the connection over and over the operations of communicating with the database avoid the
processing necessary to establish a new connection each time. There are ways to reuse and keep an
HTTP connection for multiple requests [25], but this has been left for future work.

3.7.4 MySQL
The MySQL database that we are using in this system is a potential bottleneck because it is

located at a single point and every request has to at some point access the database. The most common

0

20

40

60

80

100

120

140

160

180

200

m
s

MySQL

Faye

Decryption
and parsing

30

operation that the system performs is to add sensor data to the database; therefore it is important that
the system is able to perform this request as fast as possible. In order to check how fast the database
was able to insert a single row, i.e. a single sensor reading we did a number of insertions with the tool
“mysqlslap” [26]. This is a diagnostic program that emulates a client’s load on a MySQL server and
returns a set of values of how long the average database request took to be processed. We used the
following command to emulate how a real sensor value would be inserted. We ran this test with the
iterations option in order to perform the operation 1000 times in the interest of getting a good estimate
of the average value.

$mysqlslap --user=username --password=* --create-schema=development3 --
query="INSERT INTO sensor_readings(sensor_id, gateway_id, value,
created_at, updated_at) VALUES (3,27,10,1337932798774,1337932798774);" --
number-of-queries=1 --iterations=1000

The output from the mysqlslap program was:

Average number of seconds to run all queries: 0.019 seconds

Minimum number of seconds to run all queries: 0.015 seconds

Maximum number of seconds to run all queries: 0.065 seconds

These results show that each database insert request will take on average of 0.019s. This poses a
bit of a problem for us because our system sends each sensor reading to the database separately. This
means that each reading that is produced by a sensor has to be sent to the database and then inserted
individually. Looking at the results above, the average number of readings that can be inserted into
the database is only 52 per second. This is clearly not enough as our system must be able to handle
thousands of updates per second.

The solution to this problem could be to insert multiple rows with the same insert request. This
means that we should collect a number of values and insert them into the database at the same time.
We did another test with the “mysqlslap” tool and instead inserted 1000 rows of sensor readings with
a single SQL insert statement. The results are shown below.

Average number of seconds to run all queries: 0.040 seconds

Minimum number of seconds to run all queries: 0.023 seconds

Maximum number of seconds to run all queries: 0.391 seconds

These results show that even though we are inserting a thousand times more values each time, the
time to do so only increases by 21ms on average. This performance increase was bigger then what we
expected, so big in fact that we suggest the system’s performance can be improved by exploiting this
behaviour. Instead of sending each sensor reading to the database individually we should collect
values in a buffer and after some time or when the buffer reaches a certain size, then we should send
an update to the database. There are a however a disadvantage in using this solution which occurs
when the server that have bulked up the readings crashes. If the server crashes, all the readings that
have been bulked will be lost. However the data bulked up will hold readings from different sensors
as the gateways do not send information that often to the server which will only result in considerably
small looses for each home. This idea is presented in more detail under further developments in
section 4.2.4.

3.7.5 Test conclusions
As we have seen from the tests we have conducted there are several possible scaling bottlenecks.

The operations that have to been done within a task to successfully store and push a sensor reading are
time consuming and as a result we cannot reach the desired system throughput. There are possible
solutions to this problem, mainly concerning the database and Faye communications. As we have seen
from the results from the database test (described in section 3.7.4) the difference in time it takes to
push one or multiple messages is not that large. The solution proposed is to gather multiple messages
and not update the database every time we get a new reading. This solution is proposed and discussed

31

further as future work in section 4.2.4. However, the biggest bottleneck in the system is the Faye
server, more specifically the establishing of a connection to the Faye server from the ServerUDP
program. A connection established with the Faye server to send a push message can only be used
once, which means that we have to establish a new connection every time we push a message. The
establishment of this connection is a time-consuming operation and drastically lowers the overall
performance of the entire system. A proposed solution to this problem is presented as future work in
section 4.2.6.

The difference in throughput depends very strongly on the size of the packets and sending a larger
packets result in a high throughput. As a result the number of packets that we will receive are lower
and thus we can sustain a higher throughput. To take advantage of this higher throughput, multiple
messages should be sent in one packet. A 1024 byte UDP payload has space for a 992 byte XML
structure, thus we expect that it can contain 8 individual messages. This means that we can lower the
number of packets sent by having the gateway store messages locally and send eight sensor readings
in each message. Lowering the number packets sent to us reduces the processing cost and allows for
even higher scalability. An additional advantage is that we can handle each message faster if they are
contained in one packet. By handling multiple messages in one task we can also lower the cost of
connection establishment to the Faye server and other onetime costs associate with a task.

33

4 Conclusions and Future work
This chapter suggests some future work that could be done. It summarizes work that we have

thought about, but have not done. This chapter also contains a summary of our results and conclusions
that we have drawn during this thesis project.

As we move in to the age of the computers and the Internet being something that we take for
granted, a wide range of new devices and new implementations of old devices are becoming available
for homeowners. These devices strive to facilitate the everyday life for end users and to automate the
tasks of the internal systems. As these devices become more common in home environments the data
produced and consumed in the home environment is increasing. Data produced within the home is
rarely stored for further use and it is even more unusual for the data to be passed outside of the home.
Today there are several companies that provide systems for controlling and monitoring of a home
environment. However, these systems have their own closed protocols that limit the possibility of
introducing new creative solutions by which the user can input their own home’s data. The potential
uses of the data from home environments are many, but we believe that in order to be able to move
forward within this area we need to extend the home’s system, out into the Internet.

In the preceding chapters we have introduced the possibility of creating a web interface for the
purpose of monitoring data produced in a home environment. We have also described how we can
create a scalable system by which anyone with data from their home environment could monitor their
data. We have looked into the development process of the system and have reviewed several aspects
of the problem that have to be considered in order to develop scalable, secure, and robust systems.
The first major aspect discussed concerns web development and how to create an easy to use interface
that the user can interact with wherever they are. The discussion of the implementation process of
creating a web interface introduced many techniques and how they could be integrated into the
service. These techniques involve asynchronous updates using a push-notification server and the use
of external APIs to provide for a rapid development process. The second major aspect discussed
concerns the implementation of a system of servers to manage communication, store data, and to
allow asynchronous updating. The communication server provides the system with a communication
point to which users can push data. We have looked into how this communication server can be
developed, what is needed, and its limitations. We have also introduced techniques and APIs needed
within the server’s structure, such as details of the interaction between the servers, implementation of
security, error handling, parsing, concurrency, and scalability.

For the last step in our development we discussed and presented the results obtained in tests on
each part of the system. We discussed the likely scalability limitations in our system, what they
depend on, and how we can modify the system implementation in order to scale up even further.

All these steps add up to a complete open system that has the potential to grow along with
increased usage. Investment in servers, other equipment, and further software development are needed
in order to be able to scale the system up to become a widely used service. As of now the possibility
of launching such as service for the public in a near future is not that farfetched, however a good-
looking graphical interface is believed to be needed to attract potential users.

Creation of the web interface introduced us to Rails and the easy to use interface it offered. Rails
proved to be a great framework that facilitated our development. It provided us with easy to use plug-
ins in the form of gems and helped us structure our code following the MVC structure. Rails gave us
the opportunity to develop a fully functional web application in a short period of time, without
requiring extensive knowledge about the framework. For a first time web developer, Rails is perfect
as it is easy to get started and there is a lot of support along the way from the Rails community, such
as via the RailsCasts website [27].

The current implementation with each individual sensor value being added into the MySQL
database and pushed to Faye has some limitations with regard to scalability. The current system is
able to receive messages so rapidly that the worker threads are not able to keep up. As a result our
linked list (List Of Tasks) grows when there are many readings simultaneously sent to our ServerUDP
program. Based upon tests of our system we have been able to isolate the bottlenecks and have

34

proposed some solutions to the problems that we have observed. These solutions are described in
more detail in sections 4.2.4 and 4.2.6. Further conclusions regarding the scalability can be viewed in
section 3.7.5.

4.1 Reflections
In this section we will present our reflections about how our service possibly could affect the user

and the society in multiple ways such as economical, environmental and ethical aspects.

As we have created a service that aims to allow a user to monitor almost everything in a home
environment, changes in the lifestyle of a user is possible as the user can gain further information
about the home environment in an easy to access way. Furthermore, the possibility of affecting the
society positively regarding the environmental sustainability is also possible.

4.1.1 Economics and environmental aspects
Our service enables the user to monitor almost anything. This means that the user can gain

additional information about for example the power and water consumption. Based on the information
gained, the user could make decisions to lower the overall cost of the home environment by for
example lowering the power consumption.

Our service in itself does not directly affect the economics for a user but instead aims to raise
awareness about what is going on in the home environment to possibly change the lifestyle of the
user. A greater understanding of the power usage in every home would also benefit the society and
help to educate the user on how to lower the carbon footprint.

The economical aspects go hand in hand with the environmental aspects as decreasing for
example the power and water consumption will both affect the economics and the environment. By
lowering the power consumption of a home the combined savings of the whole system of many
thousands of homes would be noticeable, even though the system would require additional low-power
devices in every home.

4.1.2 Ethical aspects
Because we are working with sensor data that might be sensitive for the user we have

implemented security to prevent any data from being compromised. As we also work with user
accounts special care has been taken to protect the users’ passwords by never storing them in a
humanly readable format. Furthermore we store a hash of each password instead of the actual
passwords. This is very important because users often use the same passwords for multiple services
and if the passwords were compromised in our system, other services that the user uses might be
affected.

4.2 Further developments
As we took on a quite vast project that spanned across several systems from web development in

Rails to socket implementation in Java, there are several things that we did not have time to
implement. As we developed each part of the system as isolated parts the possibility of adding extra
functionality in the form of new programs can easily be done without having to modify all parts of the
program. In this section we present areas that have not explored yet and things we have not had time
to investigate or implement yet. We will also discuss possible solutions to some of these future
implementations.

4.2.1 Ability to control the home environment
The current implementation of our system only allows monitoring of data pushed from a home

environment. Something that we would have liked to incorporate in our system is the ability to control
devices in the home via the web interface as well. This would require modifications to the developed

web inte
impleme
home ga

4.2.2
Even

emulatio
this proj
scale up
scale. U
to be ab
keys am

4.2.3
The

of keys
that conn
encrypte

4.2.4
One

database
insertion
chunks
follows.
different
When th
thread th
thread th
of collec
our prog

erface, as o
entation of a
ateway.

Key exch
n though we
on of a gatew
ject. The imp

p the solution
sing other ke
le to scale th

mong users of

SSL-encr
connection
and certifica
nect to the d
ed traffic to a

Bulk data
e of the majo
e individuall
ns per second
before perfo
 Each thread
t values to s
he list is full
hat discovers
hat only hand
cting the dat
gram has to p

one must tra
a new progra

hange
e have imple
way) and our
plementation

n. The curren
ey sharing m
he system fu
f the system.

rypted My
to and from
ates, as well

database. The
a MySQL ser

a
or bottleneck
ly. This is a
d, therefore w

forming an u
d takes a task
some kind o
or if a certa

s that the list
dles this task
ta into bigge
perform.

Figur

anslate user
m that is abl

emented sec
r system the
n of a suitab
nt method of

methods that c
urther. This c

ySQL con
the MySQL

l as adding a
e MySQL do
rver. [28]

ks in our sys
a bottleneck
we propose t
update on th
k out of the
of data struc
ain time has p
t is full can s
k. Figure 4-1
r chunks wil

e 4-1 Possibl

driven requ
le to push a

cure commun
e key handlin
ble mechanis
f directly oral
can guarante
could possibl

nnection
L server could
a “SSL” requ
ocumentation

stem is that
because th

that our Serv
he database
“Pool of Ta

cture, which
passed, then
send the dat
 demonstrate
ll greatly dec

le bulk data e

uest to action
request to a

nication betw
ng needed in
m for key sh
lly sharing a

ee better secu
ly be done u

d be secured
uirement to
n pages prov

the system
e database i
verUDP prog
. The imple

asks” as usua
then is add
the complet

a to the data
es how this m
crease the nu

extension stru

ns. This wo
device by co

ween a gatew
n a large syst
haring is nec
key will not

urity in large
sing third pa

using SSL.
the database
ide a guide o

sends each s
is not able t
gram collects
ementation w
al, decrypts t
ded to anoth
te list is sent
abase or it co
method migh
umber of dat

ucture

ould also req
ommunicatin

way (in our
tem is not co
cessary if we
t be viable a
 systems is n
arty methods

This require
e profile for
on how to se

sensor readin
to handle th
s the data in
would then
the data and

her synchron
t to the datab
ould notify a
ht work. Thi
tabase insert

35

quire the
ng with a

case the
overed in
e wish to

at a larger
necessary
s to share

es the use
all users

et up SSL

ng to the
hat many
to bigger
work as
adds the

nized list.
base. The
a separate
s method
tions that

36

4.2.5 Working with real data
It was always our goal to include some real data in our system, i.e. connecting to the gateway that

Albert López and Francisco Javier Sánchez built or to take some readings from the device that Abdel
Ahmid worked on during his thesis project. However, due to time constraints this was never
accomplished, but it would be easy for a future thesis project to take readings from these devices and
send data to our system.

4.2.6 Faye optimization
The use of the asynchronous push messages greatly adds to the user’s experience and accounts for

a substantial part of the workload in developing this thesis project. However, the way Faye is
implemented at the moment is somewhat inefficient. The whole operation of pushing to Faye is
something that the ServerUDP program does with all the tasks that are coming in. This is not
necessary since not all of the users will be looking at their graphs all the time, hence only those graphs
that someone is currently looking at require the constant updates that Faye provides. A solution to this
problem is to run another select query to check if a user is currently logged in, then based on this
information decide if pushing to Faye is necessary. Another part that makes the Faye usage inefficient
is the establishing of a connection from the SendUDP program to the Faye server. As of now we
cannot keep a connection to Faye alive and have to establish a new connection for every task.
Keeping the connection alive for a longer period is possible [25] and would probably significantly
reduce the total time required for pushing new data to Faye.

4.2.7 HTTPS
HTTPS could relatively easily be added to the log in procedure on the web page. The advantage

of this would be that the communication between the web server and the browser would be encrypted
and secure. Because of this encryption, HTTPS will use more resources then a normal HTTP session;
therefore it might be useful to use HTTPS for the login credentials and then normal HTTP for the rest
of the web site.

The disadvantage of this would be that the rest of the communication is in the clear. The level of
security is however always a compromise between speed and security, less security will require fewer
resources and therefore be faster. A solution where all the traffic is sent with HTTPS is also possible
but this approach will require more resources.

4.2.8 Switch from XML to JSON
JSON [29] has during the past years grown to be a more and more widely used standard. JSON

has a slightly simpler syntax than XML and would require a smaller header in every message that is
sent. This would make the communication more efficient. Switching from XML to JSON would be
preferable in our case as the size of the UDP body is quite small, hence the percentage reduction in
overhead would be larger.

37

References

[1] Prof. Gerald Q. Maguire, ‘Examples of thesis projects’. [Online]. Available:
http://web.it.kth.se/~maguire/maguire-exjobbs-examples.html. [Accessed: 18-April-2012].

[2] A. Ahmid, ‘More than downloading’, Bachelor’s thesis, KTH, Royal Institute of Technology.
[3] World Wide Web Consortium, ‘World Wide Web Consortium (W3C)’. [Online]. Available:

http://www.w3.org/. [Accessed: 30-May-2012].
[4] iControl Networks inc, ‘OpenHome home management’, Solutions, OpenHome. [Online].

Available: http://www.icontrol.com/solutions/index.php. [Accessed: 30-May-2012].
[5] Z-Wave Alliance, ‘Z-Wave solutions’. [Online]. Available: http://www.z-

wave.com/modules/Z-WaveSolutions/. [Accessed: 30-May-2012].
[6] Albert López and Francisco Javier Sánchez, ‘Exploiting Wireless Sensors’, Master thesis, KTH,

Royal Institute of Technology, Stockholm, Sweden, Not yet published.
[7] D. Heinemeier Hansson, ‘Ruby on Rails’. [Online]. Available: http://rubyonrails.org.

[Accessed: 10-April-2012].
[8] C. A. da Silva and J. Valim, Devise. plataformatec, Available at

https://github.com/plataformatec/devise, [accessed April 9, 2012].
[9] M. Bleigh and J. Rosen, Omniauth. Intridea, Inc., Available at

https://github.com/intridea/omniauth, [accessed April 9, 2012].
[10] C. Hale, ‘bcrypt-ruby’, 12-August-2009. [Online]. Available: http://bcrypt-ruby.rubyforge.org/.

[Accessed: 18-May-2012].
[11] N. Provos and D. Mazières, ‘A future-adaptive password scheme’, in Proceedings of the annual

conference on USENIX Annual Technical Conference, Berkeley, CA, USA, 1999, pp. 32–32,
Available at http://dl.acm.org/citation.cfm?id=1268708.1268740.

[12] Google, ‘Google Chart’. [Online]. Available: https://developers.google.com/chart/. [Accessed:
18-May-2012].

[13] Highsoft Solutions AS, ‘Highcharts JS’, Highcharts JS. [Online]. Available:
http://www.highcharts.com/. [Accessed: 18-May-2012].

[14] J. Coglan, ‘Faye’. [Online]. Available: http://faye.jcoglan.com/. [Accessed: 18-May-2012].
[15] Oracle, ‘JDBC API Documentation’. Available at

http://docs.oracle.com/javase/1.3/docs/guide/jdbc/index.html, [accessed April 27, 2012].
[16] Oracle, ‘Java.net’. [Online]. Available:

http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html. [Accessed: 18-May-
2012].

[17] The Internet Assigned Numbers Authority (IANA), ‘Service Name and Transport Protocol Port
Number Registry’, 07-May-2012. [Online]. Available: http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.txt. [Accessed: 08-May-2012].

[18] Wireshark Foundation, ‘Wireshark’. [Online]. Available: http://www.wireshark.org/.
[Accessed: 18-May-2012].

[19] ‘Advanced Encryption Standard (AES)’. National Institute of Standards and Technology
(NIST), 26-November-2001, Available at http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

[20] M.-A. Cournoyer, ‘Thin, A fast and very simple Ruby web server’. [Online]. Available:
http://code.macournoyer.com/thin/. [Accessed: 18-May-2012].

[21] F. Cianfrocca, ‘eventmachine’. [Online]. Available: http://rubyeventmachine.com/. [Accessed:
30-May-2012].

[22] M. Piacentini, ‘SQLite Datebase Browser’, 12-September-2009. .
[23] Tobias Ratschiller, Marc Delisle, Michal Čihař, Dieter Adriaenssens, Madhura Jayaratne, and

Rouslan Placella, ‘phpMyAdmin’, 03-May-2012. [Online]. Available:
http://www.phpmyadmin.net/home_page/index.php.

[24] The Institute of Electrical and Electronics Engineers, Inc, ‘802.11n’. IEEE, Available at
http://standards.ieee.org/getieee802/download/802.11n-2009.pdf, [accessed May 28, 2012].

38

[25] Oracle, ‘Persistent Connections, HTTP keep alive’. Oracle, Available at
http://docs.oracle.com/javase/6/docs/technotes/guides/net/http-keepalive.html, [accessed May
29, 2012].

[26] Oracle, ‘mysqlslap’. [Online]. Available:
http://dev.mysql.com/doc/refman/5.6/en/mysqlslap.html. [Accessed: 18-May-2012].

[27] R. Bates, ‘RailsCasts’. [Online]. Available: http://railscasts.com/. [Accessed: 30-May-2012].
[28] Oracle, ‘Using SSL for Secure Connections’, MySQL Documentation. [Online]. Available:

http://dev.mysql.com/doc/refman/5.6/en/secure-connections.html. [Accessed: 28-May-2012].
[29] D. Crockford, ‘json Media Type for JavaScript Object Notation (JSON)’. The Internet

Engineering Task Force, Available at http://www.ietf.org/rfc/rfc4627, [accessed May 29, 2012].

39

Appendix A

A.1. Single message
<?xml version="1.0" encoding="UTF-8"?>

<sensor_reading

gateway_id="27"

sensor_id="12"

time="2012-05-24 16:45:31"

type="Temperature"

value="-8.911619"

/>

A.2. Multiple messages
<?xml version="1.0" encoding="UTF-8"?>

<root3>

<sensor_reading

gateway_id="27"

sensor_id="12"

time="2012-05-24 16:45:49"

type="Temperature"

value="-9.571651"

/>

<sensor_reading

gateway_id="27"

sensor_id="12"

time="2012-05-24 16:45:58"

type="Temperature"

value="-10.101651"

/>

</root>

3 The name of the root element has no impact on the validity of the structure.

41

Appendix B
import java.net.DatagramPacket;
import java.net.DatagramSocket;
import java.net.InetAddress;
import java.security.SecureRandom;
import java.util.Date;

public class UDPSendStressTester {

 public static void main(String[] args) throws Exception {
 String address = args[0];
 int UDPPacketSize = Integer.parseInt(args[1]);
 int iterations = Integer.parseInt(args[2]);
 float totalPacketSize = Integer.parseInt(args[3]);
 int socket = Integer.parseInt(args[4]);

 DatagramSocket clientSocket;
 clientSocket = new DatagramSocket();
 InetAddress IPAddress = InetAddress.getByName("localhost");
 SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

 IPAddress = InetAddress.getByName(address);
 byte[] randomBytes = new byte[UDPPacketSize];
 random.nextBytes(randomBytes);

 long startTime = new Date().getTime();

 for(int i = 0; i < iterations; i++){
 DatagramPacket sendPacket = new DatagramPacket(randomBytes,
randomBytes.length, IPAddress, socket);
 clientSocket.send(sendPacket);
 }
 float floatDate = (new Date().getTime() - startTime) / (float)
1000;
 System.out.println("Time to send: " + floatDate + "s");
 float throughput = ((totalPacketSize / 10) / floatDate);
 System.out.println("Throughput: " + throughput + "Mbps");
 clientSocket.close();
 }
}

www.kth.se

TRITA-ICT-EX-2012:084

