More than downloading

Visualization of data produced by sensors in a home environment

&

£,
IVAN PEDERSEN EKTHS
and %,E%XELEK":NK:: L

ALFRED ANDERSSON s

KTH Information and
Communication Technology

Degree projectin
Communication Systems
First level, 15.0 HEC
Stockholm, Sweden

More than
downloading

Visualization of data produced by
sensors in a home environment

Ivan Pedersen
and

Alfred Andersson

14 June 2012

Bachelor’s thesis

Mentor and examiner: Prof. Gerald Q. Maguire Jr.

Communication Systems
School of Information and Communication Technology
KTH Royal Institute of Technology
Stockholm, Sweden

Abstract

A home automation system usually contains a set of tools that users use to control devices in their
homes, often remotely. These devices often include but are not limited to light switches, thermostats,
thermometers, window blinds, and climate controls. The potential for these kinds of systems is huge
because of the sheer number of devices that could be controlled and managed with minimal and
inexpensive extra hardware. Many of the appliances in a normal home could benefit from being
connected to a system that allows the owner to manage and control the devices in their home. Thus
the number of potential devices is orders of magnitude larger than the number of homes connected to
the system. There are several systems on the market that provide systems to monitor and control a
home environment, however these systems only support specific in system devices. This uncovers a
problem where a homeowner only has the opportunity to use specific products that fit into these
systems. By introducing an open platform for the public that are not bound to any system we can
allow more devices to be integrated in the home and contribute to further development of smarter
homes.

The goal with this project was to provide a scalable open platform with the possibility of
asynchronous updating. This has been done by implementing multiple logical parts to both provide a
web interface for the user and to allow us to handle communication and storage of data. All these
parts are linked together to form a system of servers that handles all background operations. This
thesis discusses and presents implementations of all of these servers, how they are implemented,
communicate with each other, provide secure connections and how they can scale with increasing
usage. In this process we also discuss and present techniques that were used, how to use them and
their benefits, to help us reach our goal.

Sammanfattning

”Home automation” syftar till ett system som later anvéndaren kontrollera och styra olika
apparater i hemmet, ofta sker detta utifrdn. Dessa apparater inkluderar, men ar inte begriansade till
ljusbrytare, termostater, termometrar, persienner eller klimatanlaggningar. Potentialen for ett sadant
system dr enormt da antalet apparater som skulle kunna 6vervakas med endast minimal och billig
extra hardvara &r stort. Manga av dessa apparater kan dra nytta av att vara ansluten till ett system som
gor det mojligt for dgaren att hantera och styra enheter i deras hem. Antalet apparater dr darfor
mangdubbelt fler &n antalet hem som &r kopplade till systemet.

Det finns flera system pd marknaden som ger anvéndaren ett sitt att overvaka och styra en
hemmilj6, men dessa system &r ofta lasta och stodjer bara specifika enheter. Genom att inféra en
Oppen plattform for allménheten som inte dr bunden till ndgot system, kan vi tillata att fler enheter kan
integreras i hemmet och bidra till ytterligare utveckling av smartare hem.

Malet med detta projekt var att skapa en skalbar dppen plattform med mojlighet till asynkron
uppdatering. Detta har gjorts genom att implementera flera logiska delar for att forse anviandaren med
ett webbgréanssnitt och for att tillata oss hantera kommunikation och lagring av data. Alla dessa delar
ar sammanlénkade for att bilda ett system av servrar som hanterar alla bakgrundsprocesser. Denna
avhandling diskuterar och presenterar implementeringar av alla dessa servrar, hur de genomfors,
kommunicera med varandra, ger sidkra anslutningar och hur de kan skala med 6kad anvéndning. I
denna process diskuterar och presenterar vi de tekniker som anvénts, hur man anvénder dem och deras
fordelar.

Acknowledgements

We would like to thank Prof. Gerald Q. Maguire Jr. for his help and assistance during this thesis
project. We would also like to thank Abdel Ahmid for collaborating with us during the feasibility
study.

Table of Contents

Abstract i
Sammanfattning iii
Acknowledgements v
Table of Contents vii
List of Figures ix
List of Tables xi
Glossary xiii
1 Introduction 1
1.1 BaCKZIOUNG ..ottt ettt ettt e e e sbesaeesbe e beesseestesseesseesseesseesbenssessaesseenseensesnsennes 1
1.2 ProbIem AESCIIPLIONeeevieiieiieieeie ettt ettt e bt et et e esbeetaesteesbeesseessesseesseesseesseasseassesssesssesseessesnsesnsenses 1
1.3 N TS a1 1Ty 01 (0] [- USROS 2
1.4 Limitations Of this theSIS PIOJECeeuiiieieieieie ettt ettt ettt ettt et seeebesbesbeeneeneenseeens 2
1.5 SIUCTUIE OF the TEPOTLeeneieiiieieeie ettt ettt ettt st e bt e bt et et e et e eseesaeanteenseeneeeneesseennean 3
2 Project introduction 5
2.1 Introduction to Smart home MONIEOTING.cecvieeieiiieeieiiete ettt ettt eeee st e sbe e aeeneeeneeens 5
2.2 GALEWAY ...eeeitieeiiee sttt ettt se e et e sttt e ettt e sttt e sttt e sh bt e s st e e at e e ab e e bt e e s ab e e bt e e hb e e bt e e ea b e e bt e e sab e e nabeesabeennteesareenars 6
2.3 Introduction to Web deVeIOPMENt.c.ovieriieiieiicieeee ettt ettt ens 6
2.3.1 Ruby on Rails

2.3.1.1

23.1.2

2.3.13

2.3.14

2.3.15

2.3.1.6

2.3.1.7
3 Implementation 11
3.1 Creating a home visualization INEEITACEeeoiiiiiiiiieit et 11
311 LOGIN/QUIRERIICALION ..ottt bttt ettt et e e st e et et ene et e aeene e 11
3012 VASUAIIZATION ...ttt ettt ettt e e e et ettt et e e et te et enaeeneen 12
3.1.2.1 GOOGIE CRATT.....ceeee ettt ettt bttt b et et e st e st e b e et e b et et en e ene e st ebe e bt et e e et eneeseebesbenteeans 12
3.1.2.2 HIGRCRATES ...ttt ettt et e st et e bt et e tees e e bt eat e beeseebeeaeentesneenbenaes 12
3.1.3 ASYRChrONOUS MESSAZE PASSINGecuveeeieiiriieie ettt ettt ettt bttt ettt enes 13
32 Creating the data relay PrOZIaMccoeeieeiieriieiieie ettt eeae st e b e e besnsessaesseesseesseenseenseans 14
3.2.1 Handling incoming UDP MESSAZEScc.ccevverieiiiaieeieeiesieesieessessesee s essseseesesssesssesseesseansesnnes 15
3.2.2 Connecting to the database AN FAYe................cc..ccoccveeieeuieiiieiieiieiieeiie e eteeeie e sveesseese e e 17
33 SECUTTLY 1.vvevieieeteeteeeteette st eteeteetesttesteesseesbeesseesseeseassaesseessesssesssesseesseenseessesssesseesseenseasseessesssesseesseensennsenses 19
3.3.1 Encrypting the UDP tFaJJIC........ccuooueieieiee ettt ettt 19
3.3.2 INIEFNAL SYSTOIM SCCUFTLY ..ottt ettt ettt ettt ettt et enee e 20
3.3.3 K@Y SHAFIIG ...ttt a e bt ettt ettt eneen 21
3.3.4 Problems with decryption of messages sent With UDP...............c.ccccccouoiiiiiiiiiiieiieiieeee e 21
34 Push notification SEIVEr (FAYE)cc.eioiiiieiieiieitie ettt sttt ettt eae et et e enteeneesneennean 21
3.5 DIAtADASE ...ttt b a et et b bbbt e h ettt bt b aeeae et et ee 22
350 MYSQL..ocoooioeeeee ettt h e h ettt ettt h et ent et aeeae e 22
3.5. 2 PADMYAGIUN ..ottt ettt a ettt et be e enees 22
3.5.3 DAEADASE SCCUFILY ...ttt ettt ettt et et e e e s e s ae e e st e ebeesseesseesseetseeseebeenbeenseenees 23

3.6 GALEWAY CIMULALOT ...evviviiiieticie ettt ettt et e stesteesteesteesseesseessesssessaesseesseessesssesseessaessesssesseesseesennsenns 23
3.7 ON @ JATEE SCALEeouviieiiieieitieit ettt ettt ettt e stte st esteebeesbesteeeseesseesseesseassesssesseessaessesssesssesssasseensennsenns 23
3.7 SEIAUDP ..ottt ettt a st a et n e at st ae e e 23

3.7.2 SEIVEIUDNP.........oueieee e ettt ettt ettt 26

A B L1 OSSPSR SRR 29
3704 MYSQL ..ot h et a ettt h bttt a sttt b e aeeneeatent et e ebeeaeenes 29
3.7.5 TSt COMCIUSTONS ...ttt ettt ettt et e ettt st et e et et eteeneeenseenees 30

4 Conclusions and Future work 33
4.1 REFIECLIONS ...ttt ettt st b et b ettt nt et st bt bt eaeeaee e et e e 34
4.1.1 Economics and environmental ASPECESc..ccoccveeeeieeiueeieeeeeieesseeseeee et sseese e sisesesesseesseassesnnes 34

4. 1.2 EBRICAL ASPECLS ...ttt ettt b be et et e st e be b eeteeebeebeesbeenseenees 34

4.2 FUIher deVEIOPIMENLSccieiiieiieieeie ettt ettt ettt et e e e e aesaeesaeesbeesseessesssessaesseenseesseessenssessnensens 34
4.2.1 Ability to control the hOme enVIFONMENL................ccccceiiiiieiiii ittt 34
42,2 K@Y @XCHANGE ...ttt ettt 35
4.2.3 SSL-encrypted MYSQOL CONMMECIIONccceevuiieeiiieiiiee ettt ettt enees 35
424 BUIK AAEA. ... ettt ettt enean 35

4.2.5 WOrking With ¥eQl AaIQc.ccciioiiiiiiiee ettt 36
4.2.6 FAYE OPHIMIZALION ...ttt ettt ettt et 36
2.7 HTTPS ..ottt ettt a et ettt s et b et e s e st ettt b et et nt et aeene e 36
4.2.8 SWItch from XML 10 JSON.........cc.ccooiouiiiiiieci ettt ettt eta et ebeenseenees 36
References 37
Appendix A 39
Appendix B 41

viii

List of Figures

Figure 1-1 System OVEIVIEW ... 2
Figure 2-1 Overview of the Model-View-Controller (MVC).........ccoooiiiiiiiiiieiiiieeeeeen 7
Figure 3-1 Main SYStEM STUCIUIEooiiiiiiiiii e 11
Figure 3-2 TemMperature QAUGESuuuoiiiiieiieiiiiei e s e e e e et e e e e e e ee et s e e e e e e eeeesannaeeeaaeeenennns 12
Figure 3-3 Temperature line chart using Highcharts..............cccccoiiiic 13
Figure 3-4 Required UDP body StrUCtUre............uoiiiiiiiecee et 14
Figure 3-5 Concurrency arChiteClureooiiiiiiiiiiiie e 16
Figure 3-6 UDP packet STIUCLUIEcooiiiiiiiiiie e 16
Figure 3-7 Insertion and push program StruCtUre...........coouuvviiii e 17
Figure 3-8 Cipher-block chaining (CBC) mode, ENCryption ..o, 20
Figure 3-9 Cipher-block chaining (CBC) mode, Decryption..............cccccc, 20
Figure 3-10 MacBook UDP send test reSultS.........cooviiiiiiiiiiicii e, 24
Figure 3-11 Vaio UDP send test reSUIS..........cueiiiiiiiiiiee e 24
Figure 3-12 Transmit rate with a MCS index of 15 ..., 25
Figure 3-13 Dropped UDP packets as a function of packet size on the MacBook 25
Figure 3-14 True throughput of the Vaio and MacBooOK...................cccccc, 26
Figure 3-15 ServerUDP ping resultS ... 27
Figure 3-16 Number of received packets per second with varying packet size 28
Figure 3-17 Throughput coming into the server as a function of different packet sizes........ 28
Figure 3-18 Time to process each task..........cccuuiiiiiiiiiiiii e 29
Figure 4-1 Possible bulk data extension structure ... 35

List of Tables

Table 3-1 Currently supported versions of the most common browsers...............ccceeeeeennnn. 13
Table 3-2 Structural requirements for the UDP body ..o 14
Table 3-3 TCP and UDP COMPATISONuuiieieeeeeee e a e e e e e e e e e e ea e 15
Table 3-4 PosSSIble QUETNY reSUILS........cceuieie e e 18
Table 3-5 Laptop SPeCifiCationooeuuiiiiiiii e 23
Table 3-6 XML structure length with variable number of messagescccceeeeei. 27

Xi

Glossary

3DES Triple Data Encryption Standard

AJAX Asynchronous JavaScript and XML

AES Advanced Encryption Standard

API Application Programming Interface

CBC Cipher Block Chaining

CSS Cascading Style Sheets

CoS Department of Communication Systems, KTH, Kista, Sweden

Gateway A device that receives data from one system and transmit it onto another system
HTML HyperText Markup Language

HTTP HyperText Transfer Protocol

HW Hardware

P Internet Protocol

ISP Internet Service Provider

v Initialization Vector

JS JavaScript, a popular scripting language that is widely used on the web

JSON JavaScript Object Notation

MAC Message Authentication Code

MCS Modulation and Coding Scheme

Mbps Mega Bit Per Second

MHz Megahertz

MVC Model View Controller

oS Operating System

PHP PHP: Hypertext Preprocessor

PoE Power over Ethernet, method to supply power to devices via the Ethernet interface port

SSH Secure SHell

SSL Secure Socket Layer

SVG Scalable Vector Graphics

SW Software

Rails Ruby on Rails

RGB RGB colour model, stands for Red, Green and Blue

RTT Round Trip Time

TCP Transmission Control Protocol

VPN Virtual Private Network

UDP User Datagram Protocol

URL Uniform Resource Locator

USB Universal Serial Bus, communication protocol used for communication and power
supply between a computer and a device.

XML eXtensible Markup Language

XOR eXclusive OR

Xiii

1 Introduction

This chapter introduces the reader to the purpose of this thesis project and describes the problem
to be solved. This chapter also explicitly delimits the scope of this thesis project and outlines the
structure of the rest of the document.

1.1 Background

Prof. Gerald Q. Maguire Jr. proposed several Bachelor’s thesis projects titled “More than
downloading” on his website [1]. The idea was that the Internet could and should be used more to
upload data and for users to be able to share certain information. He describes the thesis projects as
follows:

“Today many networks are optimized for downloading (i.e., a transfer through the networking
infrastructure to a host). Examples include web browsing, audio and video streaming from traditional
media providers, etc. One of the coming trends is increasing generation of content (even if it is only a
sensor saying "the temperature in the basement has fallen below 8°C"). This will result in increasing
amounts of traffic in the uplink direction.” [1]

This led us to the idea to develop a system that would present various types of sensor data via a
user-friendly interface, accessible from anywhere using a web browser and an Internet connection.

1.2 Problem description

We want to be able to receive data from various sensors and send this data via a gateway to a
remote server. This server can be located in the cloud. The user will then be able to view the data via a
web interface. Our goal is facilitate users uploading some of their data to other services, such as
weight data that could be uploaded to sites such as www.runkeeper.com. Furthermore, we want to
create a secure and easy to use website that enables a user to control and/or view the data that was
collected within their home. Much of the communication between the various sensors and a local
gateway in the home needs to be done over a radio operating in one of the ISM-bands.
Communications from the gateway to the Internet will use appropriate Internet protocols; the specific
protocols to be used will be examined as part of this thesis project. An overview of the network
topology that we consider in this thesis project is shown in Figure 1-1.

The purpose of the project is to create a manageable and easy to use home automation system
with low power and low cost components, and to present information collected via these sensors to
the user via a web browser. This will allow the user to access their data and to monitor their home
from anywhere that they have Internet connectivity.

Actuator) . //

Figure 1-1 System overview

1.3 Sister thesis projects

Simultaneously with this project, Abdel Ahmid [2] is working on another related thesis. His thesis
project focuses on the sensor side of the system by collecting and sending data from a scale that has
been augmented with wireless communication. Both of our thesis projects are also connected to yet
another thesis that Francisco Javier Sanchez currently are working on, this master’s
thesis project focuses on the development of a gateway that is able to pick up signals from existing
sensors in range of their gateway and then relaying this data via an IP network.

These projects are logically separated by this gateway. Abdel will develop a new sensor that is
capable of sending data to the gateway and our project will focus on taking data from the gateway,
placing this data into a server (which could be in the cloud) and making this data available to the
home user anywhere, as long as they are attached to the Internet via a web browser.

1.4 Limitations of this thesis project

This thesis project focuses on sending data to a server and presenting the collected data via a user-
friendly interface, thus limiting the scope from the original problem definition to focus on only these
aspects. We will design a system that allows others to send information to our system and this data
will also be able to be displayed via our website.

Furthermore, our communication with the gateway will be assumed to be simplex, with data only
travelling from the sensors to our servers. This limits the security that we will be able to implement
because only a pre-configured shared key will be used to protect the information as this data is
transferred from the gateway to our servers. This also limits the use of any actuators that could act
based on the data that we receive, we leave the extension to actuators and full duplex communications
to a future thesis project. Our system will not relay any information to any third parties.

1.5 Structure of the report

Following this introduction, Chapter 2 gives an introduction to the project. In this chapter we will
present an introduction to home monitoring, related work, and development techniques. Chapter 3
describes the implementation of our web interface, development of a server that receives data from
the sensors (logically via the gateway), and how the security, database, and the push notification
system is implemented within the system. Chapter 4 contains the conclusions that we have drawn
from this project and suggest some future work.

2 Project introduction

The purpose of this thesis project is to create a platform for visualization of data produced by
sensors in a home environment. Our goal is to create a platform to support multiple types of sensor
data and allow anyone with data from a wide variety of sensors to use this platform. The project is
divided into two major parts, one concerns visualization and the part that handle incoming data, which
will be stored in a database.

The visualization part of this project concerns how to present the data that have been collect to a
user via a web-interface. Our goal is to allow the user to monitor their home environment via their
choice of web browser. Some of this flexible compatibility comes from using web standards that
World Wide Web Consortium (W3C) has approved [3].

As some of this data can be quite sensitive it is important that we authenticate the user and ensure
that only successfully authenticated users can view information about their own home environment. In
order for the user to visualize this data we will present it using graphs and tables, and perform live
updates of these graphs and tables.

The part of the project that handles the incoming data requires us to develop a server that can
receive messages from different sources and successfully forward these messages to be stored in the
database and pushed to the website. Note that we support this push operation in order to have live
updates of the data that the user is currently viewing. This part includes security for the data while it is
in transit by encryption and use of a hash to ensure that its integrity is maintained. In addition we have
to address the issue of concurrency in order to allow scalability of our proposed solution. This means
that we have to consider the details of processes of database insertion and querying and pushing of
content to allow live updates.

2.1 Introduction to smart home monitoring

The concept of smart homes is based upon devices handling and providing information about the
home environment. A smart home provides the homeowner with new ways of interacting with the
connected devices in their home environment. The use of home monitoring to provide security for a
home is a well-known concept, but the concept of home automation has been extended to include
more than just traditional aspects of home security. These other aspects include monitoring of water
or power consumption and healthcare. The monitoring of a home can be done internally, thus
allowing only authenticated users in the home environment to observe the data that the home
automation system collects. Another way of monitoring the home is to provide tools that allow the
user to monitor their home externally. By allowing a user to monitor their home without being
physically in the home environment, a new and very interesting range of use cases can be explored.

Monitoring of a home involves putting together a puzzle consisting of a large and complex system
of sensors, actuators, gateways, etc. As new technology provides the home with new smart devices
and broadband Internet connectivity becoming more and more common in homes the possibility of
combining these devices become increasingly interesting. Today TVs, game consoles, computers,
tablets, media hubs, amplifiers, etc. are already being integrated into the home environment’s local
network(s). This has at least two effects. The first effect is that controlling devices in the home is
becoming more convenient than ever before. Remote controls are swapped with tablets, computers
control the volume of the amplifier, and there are many different ways of controlling and
communicating between these devices in a smart way. Expanding this network of things by adding
new devices could provide the user with even more functionality. It is this expanded functionality that
is the second effect of these devices being connected to the home network(s). For example, a user no
longer needs to open the fridge to know what is in it. Instead the user might go to a webpage that
contains the information about the contents of the fridge. The fridge would with Internet connectivity
be able to upload this information by itself. The same might be done for kitchen cabinets. The result is
that there is no more guessing while you are out shopping whether you have all the ingredients at
home for the meal that you want to make.

There are already many systems that handle monitoring and control of a home environment such
as OpenHome [4] and Z-Wave [5]. These systems usually come with their own solutions, protocols,
and functions. This means that there are several different protocols, devices and controllers all
speaking different languages. This limits the opportunity to truly customize the home environment to
fit the user’s needs. However, these systems follow a similar structure where multiple sensors and/or
actuators wirelessly transmit/receive data to/from a gateway. This data can be collected from these
sensors and potentially be handled in some way other than the closed solutions that currently exist.

As noted above we can imagine home automation that exists only within the home, where there is
only local storage of data and the user can only monitor and control their home environment from
within the home itself. Alternatively we can imagine a system that utilizes external storage of data
(potentially storing this data in the cloud), but still only allowing monitoring and control from within
the home. The third alternative is to utilize external storage of data and allowing the user to monitor
and control their home environment from anywhere via a normal web browser.

2.2 Gateway

Today many existing sensors broadcast their data in the licence free 868 MHz band. In order to
intercept these transmission, decode and extract this data, and forward it to the Internet a gateway is
needed. The job of this gateway is simply to listen to one or more frequencies, collect data, and relay
the data. This gateway could be connected to another wireless link compatible with a 2.4 or 5 GHz
Wi-Fi equipped router, a USB connection, or a wired Ethernet connection. By implementing an IP
stack directly in the gateway we can eliminate the need for an always-on computer in the home (if we
are storing the collected data outside of the home — as only the gateway and router need to be powered
on).

Francisco Javier Sanchez and Albert Lopez have during the winter/spring 2012 developed a
gateway that uses the 868 MHz band to “sniff” sensors’ data and send them to a computer via an
Ethernet interface. Their gateway uses a Texas Instruments MSP430 microcontroller and a CC1101
wireless transceiver to communicate with different types of sensors. The device requires very low
power and is able to operate from power over Ethernet (PoE). The gateway contains only low cost
components. This device is described in detail in their thesis [6].

2.3 Introduction to web development

There are a lot more aspects that must be considered in web development then just a couple of
years ago. Today web sites are expected to be more dynamic than ever before and this requires some
new technologies. The techniques that allow for the live feeds and data streams that we see in many
websites such as Facebook or Twitter simply did not exist a few years ago.

Static websites does not require a lot of the advanced functions that a website today would not
work without. Today websites needs to be updated constantly and the old approach of hard coding
data into a website makes this difficult. Today websites are generated by a dynamic front end that
constantly is receiving updates from some type of backend logic. The backend handles connections to
databases and only lets users access the information that they should be able to access based upon
some form of authentication and authorization mechanism. This means that a website does not look
the same for every user, but instead its appearance depends on the user’s credentials.

In this chapter we describe how the structure in Ruby on Rails works and what techniques can be
used to create a dynamic and customizable website.

2.3.1 Ruby on Rails

Ruby on Rails or simply “Rails” is an open source web framework developed by the Danish
programmer David Heinemeier Hansson. Rails is as its name suggests written in the Ruby language
and is designed to make web applications easier and faster to develop. [7]

23.1.1 MVC

In the heart of Ruby on Rails development is a Model-View-Controller (MVC) architecture. This
architecture allows the program to be separated into three major parts: models, views, and controllers.
The model represents the data of the application and how to access/manage this data. The views
represent the user interface and in the case of a web application the views render all the HTML
content that is displayed on a web page. The controller couples the models and views. Further details
of each of these parts are given below.

| Model View

A\N

Controller

MVC

Dispatcher
Routes

Web Server

!

[Browser

Figure 2-1 Overview of the Model-View-Controller (MVC)

2.3.1.2 Model

In Rails the model represents the data that is present in a database and the rules that govern how
to manipulate this information. It is in these models that the associations between the different tables
in the database are specified. Rails handles all this and all that we have to do is use keywords such as
“belongs_to”, “has many”, “has one” or “has and belongs to_many”. A user model could for
example specify “has one :father” and “has many :children” and that would express the relationship
that the “User has one father and has many children.” The father of the user will then be accessible in
the model as a user object that has a father attribute. Furthermore the information is accessible from
the view by using embedded ruby statements.

23.13 View

The view is what the users see and can interact with. The content shown on the webpage and how
it is shown is provided by the view. Creating a view is done by using common web-programming
languages such as HTML, CSS, XML, JavaScript, and JSON. However, the development is a bit
different than normal web development using these languages. One of the differences is that Rails can
combine several of the common web languages and the ruby programming language. The code is
written in an .erb (embedded Ruby) file. Rails use the following structure to enable integration of ruby
code into the .erb file:

<% Ruby code -- inline with output %>

<%= Ruby expression -- replace with result %>

The view is just the end point of the entire system and does not operate in the back end as do the
model and controller. The view simply uses what the controller says it should use and renders it for
the user in a structured way.

2.3.1.4 Controller

The controller can be seen as a middleman between the model and view. Its purpose is to relay
information received from the model to the view. This is done by parsing requests from the user and
fetching whatever is needed from the model and sending it to the view that displays the new content
for the user. The controller also handles work related to data submission, cookies, and sessions. The
controller follows a special structure that contains multiple functions, where each function first
interacts with the model and then parses the result and calls a view. Common operations in a control
function are shown below:

@variable = ModelX.find(params[:id])

format.json {renderjson: @variable }

2.3.1.5 Scaffolding

Scaffolding is a very useful tool in Rails that allow you to create a good structure upon which
further development could be based. It is unlikely that the scaffolding provides exactly the right thing
for the application, but it provides models, controllers, and views that you can modify to fit the
application's specific needs. This means that you can have a very basic structure up and running
together with a database in just a few commands. The following command will provide a sensor
model, matching controller, and views for the sensor. The two arguments “name” and “sensor_type”
correspond to columns in the database. Rails also creates an auto increment “id” column
automatically.

$ rails generate scaffold Sensor name:string sensor_type:string

Rails follow a linguistic naming convention, this means that the controller represents a sensor
(singular) but the database will contain a list of sensors (plural).

2.3.1.6 Managing the database

Rails allows you to create an empty database with the command:
$ rake db:create

This command will create an empty database based on pre existing models. To be able to update
the database, add new tables, and delete old ones a so-called migration is needed. This migration can
be automatically generated in a similar fashion as the scaffold (described in section 2.3.1.5). A
migration file is also generated when scaffolding that correspond to the model created. A migration
can be viewed as both an action, updating the database, and as a file, the migration file. The
information about how to update the database is stored in the migration file and can of course be
created manually without any automatic generation methods.

To be able to update the database a command written in the ruby console needs be executed.
When executing this command, all new migration files in the project are processed. The command to
execute the update/migration is:

$ rake db:migrate

23.1.7 Gems

Gems in Ruby are packaged Ruby applications or libraries. Gems are distributed via the “gem”
command. The web Ruby on Rails framework is actually a Ruby gem called “Rails” and is installed
with a simple command in the ruby console. Other gems can be added as a line of text to a specific
“Gemfile” inside Rails and then instantiated by running the “bundle install” command. The “bundle
install” command also handles dependencies that a gem might have. Gems can also be installed by

using commands directly on the command line, the same way as installing the Rails gem. Installing
gems directly via the command line results in installation of a local gem and the functionality
provided by this gem will only work for environments with this gem installed. The syntax for
installing new gems is:

$ gem install ‘gemToInstall’ -options

The preferred way of installing gems is to modify the “Gemfile” to include the desired gem and
using the bundle command to install it and its dependencies. This approach allows developers to
easily distribute their application to other developers and co-workers.

2.3.1.7.1 Devise

Login-authentication is handled by a ruby-gem called Devise [8]. Devise provides the base, which
other gems such as Omniauth [9] then will incorporate. Devise is a Rails engine, which means that it
provides its own controllers, models, and views. This will provide the basic structure as well as very
useful helper methods such as “current_user”, which return the user that is currently logged in. Of
course the initial structure that Devise provides can be modified to suit our needs.

23.1.7.2 MySQL

To be able to change the database type from the original sqlite3 to MySQL the MySQL gem is
needed. This gem provides an API module for ruby, which has the same functionality as the MySQL
C API. The gem has some important dependencies that have to be considered when using it on a
Microsoft Windows operating system. The 1ibMySQL.dll used in a Windows operating system needs
to have the same version as the one used in the gem.

2.3.1.7.3 Faye

Handling and listening to external events can be somewhat tricky in Rails. By using the Faye gem
event handling gets a bit easier. The Faye gem provides functions that can be used to subscribe to
specific channels or push to any channel used by a Faye server.

3 Implementation

Our project consists of four main parts. These parts together create a system where we can receive
data through UDP datagrams, store data into a database, push current data to a live feed, and visually
present the data in a web browser. Because we also wanted to test our system we developed a program
that sends UDP messages to our server, just as a sensor would send information to our system. We
call this program “SendUDP” and it is described in more detail in section 3.6.

The parts and the relations between them are presented as an overview in Figure 3-1.

Browser
Push notification server Web server
(Faye) (Ruby on Rails / Thin)
Data relay program Database
SendUDP (ServerUDP) (MysQL)

Figure 3-1 Main system structure

3.1 Creating a home visualization interface

To be able to rapidly develop this visualization tool we choose the Ruby on Rails framework.
Ruby on Rails is “...optimized for programmer happiness and sustainable productivity.” [7], we have
also had a little earlier experience working with Rails and wanted to improve our knowledge of this
framework. This tool will be the final part of the whole system, and can only operate when previous
parts of the system are complete and operating.

3.1.1 Login/authentication

The Devise gem (described in section 2.3.1.7.1) provides the user model along with the logic to
protect the user's password. To achieve this Devise uses the gem berypt-ruby [10]. This means that the
password is never stored in a humanly readable format and can thus never be compromised, even in
the event of a security breach. Berypt is a hashing algorithm designed by Niels Provos and David
Maziéres of the OpenBSD Project [11].

11

Because Devise is a Rails engine there is a built in standard design of Devise. This was a great
help to us to quickly start using authentication. However, to be able to fit our needs; we had to modify
the design. To modify the standard design of devise we had to expose the files that provide the design.
This was done by executing the following command in the console:

$rails generate devise views

The generated views gave us access to all of the information that we needed in order to modify
the whole layout of Devise. The modifications made to the layout where minimal, but it gave us an
understanding of how we could modify Devise and integrate new functions into a layout.

Devise handles most of the essential parts of the authentication process, but not all parts. One vital
part is matching the content displayed to the correct user. If one user creates a new gateway on the
webpage, this gateway should only be available to that user. To handle this we had to modify the
controllers responsible for listing the gateway entries that will be shown. Devise provides a helper
function that returns the current user that is logged in. This helper function was used to list only the
entries that the current user had created.

3.1.2 Visualization

An important part of this project is to be able to show the data to the user in a user-friendly way.
The data that we initially consider supporting included temperature and weight; therefore decided to
use gauges and graphs. There are a number of different APIs available that could be used to do this
and most of them use JavaScript to load the data into the graphs. In this chapter we describe the
different APIs that we use in our system.

3.1.2.1 Google chart

Google provides a free chart API [12] that is easy to use and show a wide variety of different
types of charts, maps, tables, and gauges. The charts are rendered with HTML/SVG technology and
this provides great cross-browser compatibility, including browsers in Android and iOS without any
need for any extra plug-ins.

The use of gauges was a natural step to take when working with temperature data. The API also
provides us with some options to customize the gauge. For example, different colour ranges can be
displayed on the gauge. The range of the gauge is also customizable, as well as animations when the
gauge changes value.

Only three different colours are available in the API: red, yellow, and green. However, there is an
option to choose the specific tone of each colour, by specifying a RGB colour code. This came in
handy because we wanted the temperature gauges on our site to have a blue range for very cold
temperatures and yellow and red for intermediate and very high temperatures. The solution was thus
to make the green colour tone a blue colour. Figure 3-2 shows the resulting gauges.

Figure 3-2 Temperature gauges

3.1.2.2 Highcharts

Highcharts [13] provides an API for good-looking interactive charts. Options such as tooltips and
zoom functions, and the ability to save and print charts are already built-in. Figure 3-3 shows an
example of one of our charts.

12

Temperature
Source (Sensor ID): 74
20°

Temperature
=]

16:27:50 16:27:55 16:28:00 16:28:05 16:28:10 16:28:15 16:28:20 16:28:25

-8 Temperature ---- Average

Figure 3-3 Temperature line chart using Highcharts

Highcharts also supports a great number of browsers. This broad support for browsers is of course
important in systems such as we are developing because users are expected to utilize many different
browsers. The browsers and their versions that Highcharts support are listed in Table 3-1.

Table 3-1 Currently supported versions of the most common browsers

Brand Versions supported
Internet Explorer 6.0 +
Mozilla Firefox 2.0+
Google Chrome 1.0 +
Safari 4.0 +
Opera 9.0 +
iOS (safari) 3.0+
Android browser 3.0 +

Highcharts is implemented by downloading two JavaScript files including the Highcharts API and
importing them into the project. This file and its content can be downloaded directly from the
Highcharts webpage [13]. To be able to create the chart and include the correct data, a new JavaScript
(JS) file had to be created. This JS file uses the downloaded Highcharts API to create and customize a
chart. The chart we created to display the temperature data is shown in Figure 3-3. Here we have
plotted the temperature as a function of time. The chart contains both the actual temperature and the
average temperature. The average temperature is calculated for each new temperature entry and
displays the running average from the first temperature displayed up to the current point.

To be able to display live data in our chart we use a subscribe method. This method listens to a
Faye channel and receives data pushed by the Faye server. The data received from the channel is
added to the chart values and the chart will be updated without having to update the whole page. This
method is presented further in section 3.1.3.

3.1.3 Asynchronous message passing

One major feature of our home automation system is to create a truly dynamic and flexible system
that could be used for multiple services. Users should be able to upload their sensor data to our servers
and immediately be able to view the data on our web site. This requires some kind of service that
listens for incoming changes in the database and then updates the web site without the user having to

13

reload the page. Unfortunately, Rails is not very good at handling these kinds of services, when some
process listens on some stream of data, mainly because it is not possible to maintain an open
connection to the Rails server. However, our service needs to be able to receive data from our users
and at the same time display the new data on the web page.

One solution to this problem is to use Faye [14]. Faye is a push-notification messaging system
that allows Faye-clients to listen in on a “channel” that is published somewhere on the web page. The
clients will then handle the incoming data and reload the parts of the website that are affected by the
incoming data. Each logged in user listens to its own data stream channel and the data will be pushed
to the web site for the user to view. The server side of Faye, where the clients are publishing their data
is described in section 3.4.

3.2 Creating the data relay program

The data relay program is a vital part of the project and one of its purposes is to act as a server and
handle incoming data insertion requests from a gateway. The data relay program handles these
requests by checking the validity of the received message and by checking if the requested action
should be performed. The program handles requests by adding them as tasks into a queue.
Subsequently, threads extract tasks from the queue and evaluate them. The other purpose of the data
relay program is to do insertions into the database. The data to be inserted is extracted from the
message and checked so that only valid data is inserted into the database.

The data relay program is written in Java because it is easy to use APIs such as JDBC [15] and
java.net [16]. Another reason why we decided to create the program in Java was because we already
had some experience in creating distributed and parallel programs in Java.

The data relay program is divided into two parts, a server part that handles the incoming messages
and a database insertion part that checks the validity of the messages and does the insertions into the
database. In order to test the program a gateway emulator (described in section 3.6) was developed.

The data that is sent to our relay program has to follow the XML 1.0 standard with the UTF-8
encoding. Multiple elements can be sent in one package as long as the total size does not exceed 992
byte. If the total size of the XML structure size is lower than 992 byte, padding is needed to reach the
desired 992 byte. The IV is added to the end of the package to make a total of 1008 byte. Each of the
elements needs to contain the following five attributes: gateway id, sensor id, value, type and time.
The requirements for a valid message are listed in Table 3-2. Appendix A describes two example
messages that follow the correct XML structure.

1024 byte (UTF-8)

992 byte (Encrypted — AES /CBC) XML message structure

16 byte (IV) HMAC-MD5)

XML Header XML Body Padding

16 byte (MAC -

Figure 3-4 Required UDP body structure

Table 3-2 Structural requirements for the UDP body

Requirements

Total size of 1024 Byte

The first 992 byte have to be encrypted using AES-128 and the block-cipher
mode CBC

The last 16 Bytes have to be a MAC generated with HMAC-MDS5

14

Byte 992 to 1007 has to contain the IV used to encrypt the message

The message need to have specified all five values
The time value have to be in the format of “YYYY-MM-DD hh:mm:ss”

3.2.1 Handling incoming UDP messages

The interface towards the gateways that sends messages to our system is one part of the data relay
program. We call this program “ServerUDP” and its job is to handle incoming UDP messages from
gateways and to relay the data received to the database. ServerUDP also forwards the data to a Faye
server, which is described in section 3.2.2. The gateway interface is designed to receive a UDP
datagram containing an AES encrypted message with the size of 992 byte, a 16 byte IV, and a 16 byte
MAC. UDP is used because it provides connectionless communication between a gateway and the
relay program. This is suitable because it provides higher speed and requires less work for the
gateway in comparison with using TCP. Furthermore, the individual data values that are to be
transmitted are assumed to not be critically important and data is generally only produced at a
relatively slow rate, hence the flow control and error correction provided by TCP are unnecessary.
Hence we exchange the guarantee of correct in order delivery provided by TCP for higher speed and
less work for the gateway by using UDP. A summary of the comparison between using UDP and
using TCP is shown in Table 3-3. If the individual data values were more important, then we would
need to add some reliability mechanism, however this was never our goal and has therefore has been
left for future work.

Table 3-3 TCP and UDP comparison

TCP UDP
Reliable Unreliable
Connection-oriented Connectionless

Segment retransmission and flow

. . No windowing or retransmission
control through windowing g

Segment sequencing No sequencing

Acknowledge segments No acknowledgement

Our program ServerUDP is designed to handle multiple requests in parallel. This parallelism is
provided by a number of threads that operate on the list of received requests. By doing so,
computationally expensive operations in the program, such as decryption, insertions into the MySQL
database, and handling the Faye serve communication are handled by a separate thread, allowing the
main thread to continue to listen for incoming UDP messages. However, the lack of flow control in
UDP limits the parallelism and sending packets at too high an aggregate rate could result in severe
packet loss. This limit is further discussed and presented in section 3.7.2.

We create a shared synchronized object containing the list of tasks that we call “Pool of Tasks”.
These tasks provide the concurrency in our program. By using a linked list we can easily add and
remove elements in a first-in-first-out (FIFO) order. Threads that will handle the task and do the

15

necessary operations extract elements from the linked list. The number of worker threads that handle
the tasks in the list is specified as a parameter at runtime. The default number of threads is 4. The
concurrency architecture is presented in Figure 3-5.

Thread

Handling task extracted from
the pool

Server
Received message from
gateway

Pool of Tasks

Shared synchronized object

Figure 3-5 Concurrency architecture

Thread

Handling task extracted from
the pool

® & @ @

Thread

Handling task extracted from
the pool

To be able to listen for incoming UDP messages we use a datagram socket. This class is provided
by the java.net API and the socket is the receiving point for a packet delivery service. The received
data is stored in a byte array that has a length of 1024 bytes before it is added to the synchronized

linked list.

The socket is bound such that it listens to one port, currently specified as UDP port 50000. This
port was chosen because it is in the range of private ports according to IANA [17]. The data received
through the datagram socket is assigned to a datagram packet structure, which provides functions that
can be used to read the packet’s content. If this application were to be extended and adopted for
broader use, then an application should be made to the IANA to get an assigned UDP port number.

The UDP packet structure is illustrated in Figure 3-6 and is quite simple, with only four header
fields and a data field. All the information in these fields can be accessed using the java.net API [16].

Sowrce Port (16 bits)

Destination Port (16 bits)

Length (16 bits)

Checksura (16 bits)

Data....

Figure 3-6 UDP packet structure

16

3.2.2 Connecting to the database and Faye

For each message received from a gateway a new task will be added to the pool of tasks. The
threads spawned at runtime will extract tasks from the pool and run methods to decrypt, parse, and
push the received data. The program communicates with the database by using a Java-to-MySQL
connector that converts JDBC calls into manageable code to be interpreted by the MySQL database.
The connector is distributed as a .jar file and needs to be linked together with the Java program at run
and compile time. To be able to compose and execute queries in the Java program the JDBC API [15]
is needed. This API is used in three simple steps: connecting to the database, sending queries, and
retrieving a result from the database. Connecting to the database is a simple line of code in the
program:

DriverManager.getConnection(”jdbc:mysql://URL”, ”UserName”,
?Password”);

Sending queries to the database can be done with two different kinds of queries: Statement and
PreparedStatement. The simple Statement lets us send a composed MySQL query as a simple string
and the PreparedStatement uses a similar structure, but instead of adding values directly into a string,
the statement is prepared with question marks. The query is sent and the database holds the query
while we send values to replace all the question marks, when all the question marks have been
replaced we execute the query. The PreparedStatement is used for security reasons, as it is resilient
against SQL-injections. The PreparedStatement can also be used to execute the query multiple times
without having to recompile the query. The API also provides a result object where results from a
query are stored. The result object is called a “resultSet” and allows us to use functions to extract rows
and entries from the result that we can use for our own purposes.

Each message that is processed by a thread follows the same structured flow. This flow is
presented in Figure 3-7.

Message authentication

Decryption
2 »
o Message validation
£ <
= MySQL Database
Database insertion) o
v Push to Faye > Faye puZI;r‘llz':lflcatlon

Figure 3-7 Insertion and push program structure

17

The data that the thread receives is still encrypted and needs to be decrypted in order to be
evaluated. Decryption and message authentication are the first step in the process. Message
authentication is done by calculating a Message Authentication Code (MAC) and comparing it with
the MAC that is appended to the message. The decryption is carried out by using the AES algorithm.
More information about message authentication and decryption is presented in section 3.3.1. If the
message authentication or decryption fails an exception will be thrown and the thread will ignore this
task and select a new one.

If the message authentication and decryption succeed, then the thread will continue to extract the
information from the decrypted message, parse the message, and assign values in the message to
separate variables. It is essential that the sender properly composed the message (as specified in Table
3-2). If not, the extraction operation will fail and the thread will throw an exception, drop the task, and
extract a new task from the pool.

The values extracted from the decrypted message need to be validated before insertion of any data
into the database is done. This validation is done in two steps: (1) executing a query on the database to
get further information about the values and what they correspond to in the database, and (2)
evaluating the reply from the database to decide how and if the data should be inserted. We composed
the query so that it returns one row with three columns in it. The purpose of this query is to check if
the gateway value extracted from the received message exists in the database and that the sensor value
is listed in the database. We also use it to learn the most recent insertion of a sensor reading for this
sensor. To achieve this; the query has to contain nestled SQL select statements that are more time
consuming than a single select statement. Even though a nestled select statement is time
consuming it is still faster than sending multiple queries to the database. The query can return four
different types of results. These four types of results are shown in Table 3-4.

Table 3-4 Possible query results

Cases Gateway Sensor Time

Gateway does not exist' - - -

Gateway exists Gateway ID | NULL NULL

Sensor does not exist

Gateway and Sensor exists Gateway ID | Sensor ID | NULL

No readings from the sensor

Gateway, sensor, and readings exists | Gateway ID | Sensor ID | Timestamp

The gateway column is needed to be able to check if the gateway exists in the database, the sensor
column is needed to be able check if the sensor exists in the database, and the time column is used to
check when the last entry was inserted. The value from the time column is important because we want
to limit the number of insertions that can be done by a sensor within a given interval of time. We have
set this limit to allow only one insertion every two seconds.

If the gateway does not exist in the database, then the thread will be interrupted and will ignore
the task. This could occur because a user did not add a gateway thru the webpage before this gateway
sent data to the database. We require that the user explicitly add gateways in order to be able to link
users registered on the webpage with specific gateways. In the case of a gateway existing but a sensor
not existing, then we add a new sensor to the database, create a link to the gateway it was sent through
by adding a specific “gateway id” field in the sensor table, and then add the sensor data. In the other

" In any case when the gateway does not exist; the query will return an empty result.

18

cases we insert a new sensor reading, with the exception of when the rate reaches the limited number
of insertions per second.

To be able to push messages to the Faye push-notification server we have to compose a HTTP
POST message. The data sent to the Faye server must be structured as a JSON object or the Faye
server will not be able to interpret the data. To be able to create a JSON structured message we used
JSON objects. These objects handle the transformation from strings and values to JSON structures.
The JSON message has to follow a special structure defined by the Faye server. This structure is
presented below:

{channel : /subscribe/channel, data : {

value : sensorValue, created_at : time}

}

The channel that we send the data to is dependent on what data is being sent. The channel address is
specified by the sensor id, which allows us to only push data to users that own this sensor.

All failures during the operations on a message will cause an exception and will interrupt further
operations on the task. This is because we do not want any partially handled request to affect the
database or the Faye server. After a thrown exception the thread will continue by extracting and
handling new tasks from the pool.

3.3 Security

Security is a vital part of our project, as we want to provide the user with a reliable and secure
service. We provide this security by encrypting plain text data and by message authentication. The
communication is only as secure as its weakest link and both the sender and receiver have to fulfil the
required security preconditions to provide sufficient security. Because we communicate over the
unsecure Internet, we have implemented security that is designed to resist several different types of
attacks against us. In this chapter we show the security provided by our system.

3.3.1 Encrypting the UDP traffic

The sensor data collected in a home environment can be very personal and a user should not have
to worry about that data being compromised. To guarantee that only authorized users can read and
send sensor data, encryption algorithms are used to encrypt the data. The gateway interface is
designed to only receive messages sent by properly enrolled gateways, which means that it only has to
handle decryption of small messages containing sensor data. The gateway that sends the messages
needs to implement the same encryption algorithm as the gateway interface and to use the same key.
Note that we are assuming the use of a symmetric encryption algorithm, as an asymmetric algorithm
would require too much processing time on both the gateway and the receiver.

We are using AES as the encryption/decryption algorithm. AES is a standard issued by the U.S.
National Institute of Standards and Technology (NITS) and is approved by the U.S. Department of
Commerce. AES uses the Rijndael algorithm developed by Joan Daemen and Vincent Rijmen [19]. In
our implementation we encrypt and decrypt a 992 byte array with AES. AES has a fixed block size of
16 bytes, which means that we have to divide our array into multiple blocks. This also means that we
can use a block-cipher mode of operation. In our case we use cipher-block-chaining (CBC), which
provides extra security by XORing previous cipher text blocks with the next plaintext block. To be
able to XOR the first block an initialization vector (IV) is needed to ensure that there is varying
content in the first block (to avoid a known plain text attack). The IV is composed by creating a 16
byte array. This array is subsequently used as input to the encryption and decryption algorithms. To
ensure that every message is encrypted into a different cipher text the IV is randomized and then
appended to the UDP message in plain text. Each new message utilizes a different IV, thus ensures
that each message is encrypted in to a different string even if the same data is sent, with the exception
of exactly the same data being sent with the same [V. However, this is very unlikely as the numbers of
permutations in the IV and byte array are very large. Because the IV has a length of 16 bytes, i.e. 128

19

bits, the number of permutations is or ~ . The CBC encryption and decryption methods
are illustrated in Figure 3-8 and Figure 3-9.

Plaintext Plaintext Plaintext
I | I | NN
Initialization Vector (1V)
[TITI1 - N D - D
L) v v
Block Cipher Block Cipher Block Cipher

Key = Encryption Key —=| Encryption Key * | Encryption
L) L "

TTTTTT] | | |

Ciphertext Ciphertext Ciphertext

Figure 3-8 Cipher-block chaining (CBC) mode, Encryption

Initialization Vector (I1V) Ciphertext Ciphertext Ciphertext
I I
v v v
Block Cipher Block Cipher Block Cipher
Key * Decryption Key * Decryption Key » Decryption
. ' v
[TTITTI [TTT1T1] [TTTTT]
Plaintext Plaintext Plaintext

Figure 3-9 Cipher-block chaining (CBC) mode, Decryption

To guarantee the message’s integrity we use a 16 byte Message Authentication Code (MAC) that
is appended to the end of the message. This MAC is calculated using the MD5 cryptographic hash
function to produce a 16 byte hash value. The MAC is generated by using the hash algorithm on the
entire encrypted message (in our case this means the first 1008 bytes) together with a secret key.

To be able to verify the integrity of the message we calculate the MAC for the first 1008 bytes
together with the secret key and compare the generated MAC with the MAC appended to the
message. If these match, then we know that the message has not been tampered with and we can
safely open it and evaluate its content.

3.3.2 Internal system security

Security may also be necessary for the communication between servers connected to the internal
network of servers, so that within this network the servers should have access to each other but access
from others should not be possible. Generally these servers will be located in a single geographical
location and therefore their close proximity should result in low delays for this communication.

VPN connections could be used to bind together different instances of the server networks when
they are not located at the same physical site. This enables a logical local network to span over a
larger area; however the assumption of low delays between servers may no longer be valid. However,
the investigation delays in such a VPN network are outside the scope of this thesis and will not be
discussed further.

In our test environment we run the different parts of our system on the same server. This gives us
a greater level of security, as a firewall only allows connections via certain ports to our system.

20

3.3.3 Key sharing

In our implementation of the ServerUDP program we need keys to perform encryption with AES
and to produce a MAC. These keys are shared secrets between the gateway and the ServerUDP
program. These keys have to be secret in order to guarantee the required security. The distribution of
these keys needs to be handled in a secure way to avoid compromise of the secret. In our tests of the
system we handle both sides of the communication, which makes it easy to manually distribute the
keys. Our goal to offer an open interface to which a user can send their sensor data, but properly
handling key sharing among the nodes is a more complex project and something that could be
integrated in future work.

3.3.4 Problems with decryption of messages sent with UDP

In our implementation of the AES encryption algorithm we encountered some problems regarding
the decryption of messages sent over UDP. While experimenting with the algorithm we first
implemented the algorithm and ran it within the same program and this worked without any problems.
When we separated the encryption and decryption functions to the separate sites of the UDP
communication a problem occurred, as we no longer could successfully decrypt the received message.
We knew that the algorithm worked because of our initial experiments, which meant that the problem
had something to do with the UDP communication between the two hosts.

Trying to decrypt the encrypted message generated this exception:

Exception in thread "main"javax.crypto.BadPaddingException: Givenfinal
block not properly padded

This problem occurred because messages sent over the UDP channel were specified to be 1008
bytes in size and the encryption algorithm encrypted only the string and not the intended 1008 bytes.
We solved the problem by first adding extra padding to the message in order to generate a message of
the desired size and then encrypt the whole 1008 bytes.

3.4 Push notification server (Faye)

Faye uses TCP connections to communicate to and from the client and the Thin web server [20].
It does this by using the Ruby library “eventmachine” [21].

Faye is easily installed with the “gem” command and could be deployed on its own separate
server. The Faye server pushes messages to all the clients that are currently listening on the correct
channel. This allows the browser to receive messages in the background without the user having to
refresh the whole page. It also gets around the problem that the Rails server does not allow any open
TCP connections.

To implement these operations requires adding the following code to a ruby file to set up the Faye
server.

require 'faye'’
Faye: :WebSocket.load adapter('thin')
faye server = Faye::RackAdapter.new(:mount => '/faye', :timeout => 45)

runfaye_server

Running the following command starts the Thin server:

$rackup “filename” -s thin -E production

21

In Linux or Unix the server process can be started in the background as a daemon process by
adding “&” to the command above. This enables the service to remain running even after the terminal
window is closed or if the user disconnects from the SSH connection.

3.5 Database

In our thesis project we have used the MySQL program as our database, since it is freely available
and provide the functionality that we need.

3.5.1 MySQL

MySQL is one of the most commonly used database solutions and is used by companies such as
Facebook, Google, and Adobe. It is built with performance, reliability, and ease of use in mind. The
fact that it runs on multiple platforms also makes it very flexible. Tools such as phpMyAdmin
(discussed in section 3.5.2) make interaction with the database very easy and accessible from
anywhere via a web browser. A MySQL service was set up on a server running Ubuntu 12.04LTS.
The installation is done simply by executing the command:

$ sudo apt-get install mysqgl-server

By default the server only listens to the localhost IP address, thus the server has to be
reconfigured to listen for remote connections as well. The configuration file that handles this is the
“my.cnf” file located in the “/etc/mysql/” folder. The necessary change is made by editing the “bind-
address” variable to be the local IP address of the server or by binding it to “*” to allow for
connections on all of the host’s IP addresses.

bind-address = 192.168.0.5
or
bind-address = *

TCP port 3306 is the standard port for MySQL according to IANA [17], so this is the port number
that we have used.

The following command was used to verify that the server was up and running.

$ sudo netstat -tap | grepmysql

3.5.2 phpMyAdmin

Ruby on Rails uses an sqlite3 database by default and although there are visualization programs
and interfaces, such as SQLite database browser [22], we thought that it would be easier to switch to a
MySQL database and use the phpMyAdmin [23] tool to manage the database. The phpMyAdmin tool
is a web-based interface that allows the user to view and edit the database directly in their web
browser. This tool is written in PHP with the intention administering MySQL databases.

Furthermore, we wanted to have the database in one place, rather than running on our individual
computers. Therefore, we decided to move the database to a remote server. To achieve this an
apache2 web server was set up on our Ubuntu 12.04LTS server. The tool phpMyAdmin was then
installed and configured to function together with the apache?2 server.

We also started a dynamic DNS service on the server that automatically updates the domain name
“biifer.mine.nu” to the server’s global IP address. This domain is registered to us at the site:
http://dyn.com/dns/. Having a domain name means that we can look up this name in order to find
the current IP address of the server, thus allowing us to contact the phpMyAdmin tool from anywhere
by just using the URL: “biifer.mine.nu/phpmyadmin” rather than having to know the server’s current
global IP address. This also has the advantage that in the event that the server gets a new global IP
address from its ISP, then the address will automatically be updated with the associated domain name.

22

3.5.3 Database security

MySQL supports traffic encrypted with both SSL and SSH. Both of these methods enable secure
connections between the MySQL server and any client that is trying to access the database. The SSL
method is the preferred connection type to use because it provides a connection directly to the
MySQL server, the SSH method provides only a secure tunnel to the sost where MySQL is running.
The connections to MySQL are not secure by default, as this insecure option is slightly faster. In our
environment we use the same host for our MySQL database as our ServerUDP program, which
already receives encrypted traffic. For this reason, encrypting the traffic between the ServerUDP
program and the MySQL data is not critical; hence implementation of an SSL based tunnel has been
left for future work.

3.6 Gateway emulator

Because we did not have access to the gateway that Albert and Francisco were building we
developed a test program that would encrypt and send UDP messages in order to emulate how a
sensor would send data. This gave us a platform on which we could test and develop the receiving
side of the connection. The program we developed for this emulation is written in Java and uses a
UDP socket to send data packets to the receiving program.

At first the UDP connection between our test program and the receiving server was encrypted
with a 3DES encryption algorithm, this was later changed to an AES with the cipher-block chaining
(CBC) encryption algorithm to increase performance and to increase security. Initially 3DES was
chosen because we found a MSP430 compatible implementation of the algorithm on Texas
Instruments’ web site. Later we implemented our own encryption and MAC calculations to match the
receiving side’s implementations.

3.7 On a large scale

Because this project aims for a solution for a home environment, the system must be able to scale
up to support a potentially large customer base; there are a few potential bottlenecks in our system
that must be investigated. The system can be divided into 4 basic parts: the web server, a MySQL
server, a Faye server, and a server that handles the incoming UDP messages. To make this system
scale well for large numbers of customers and datasets a few actions needs to be taken. The following
subsections will consider each of the parts of the system and how it scales.

3.7.1 SendUDP

To be able to investigate the limits in our ServerUDP program we modified it to display the test
data. The test was conducted by sending multiple packets to the server to see how it performed.

The first step in the test was to investigate how fast we could send UDP packets. In this test we
used our laptops, a Sony Vaio VGN-SR59VG and an Apple MacBook (late 2008). The Sony laptop
will be referred to as “Vaio” and the Apple as “MacBook” in the remainder of this report. The
specifications of each laptop are listed in Table 3-5.

Table 3-5 Laptop specification

Sony Vaio VGN-SR59VG Apple MacBook (Late 2008)
Processor Intel Core 2 Duo P8700@?2.54 GHz Intel Core 2 Duo P8600@2.40 GHz
RAM 4GB DDR2@800 MHz 4GB DDR3@1067 MHz
(ON Windows 7 Professional SP1 Mac OS X 10.6.8

The test was conducted by creating a simple test program that sent multiple UDP message to the
server as fast as possible. The test program (described in Appendix B) is not by itself a test of the

23

ServerUDP program, but rather test to see if our laptops could be used to test the performance of the
server. The test was performed with three different sizes of UDP packets to investigate how the
performance was related to packet size. In this test we send 100k UDP packets in a loop as fast as
possible and we ran the program 10 times. When each test was finished we compared timestamps to
determine how long time it had taken to send these 100k UDP packets. The results of this test with the
MacBook are shown in Figure 3-10 and the results of the Vaio in Figure 3-11.

2000
1800 -
1600 +—
1400 -
1200 -
1000 -
800 -
600 -
400 -
200 -

0 -

H Size: 256B

ms

i Size: 512B
W Size: 1024B

1 2 3 4 5 6 7 8 9 10
Test number

Figure 3-10 MacBook UDP send test results

25000

20000

15000 -
M Size: 256B

ms

10000 i Size: 512B
W Size: 1024B

5000 -

1 2 3 4 5 6 7 8 9 10
Test number

Figure 3-11 Vaio UDP send test results

The results show that there is a quite big difference between the Vaio and the MacBook. The
MacBook has a higher average speed of sending packets than the Sony. Howewver, by checking the
output in Wireshark we found out that the MacBook dropped a lot of packets, while the Vaio did not
drop any packets at all. Additionally, for the MacBook the number of dropped packets increased as
the packet size increased. In a test with 1024 bytes in each UDP packet almost 75% of packets were

24

dropped before even being sent. However, this is somewhat to be expected because the MacBook is
trying to send data at a rate of over 650Mbps. This speed is not possible on achieve over the IEEE
802.11n network that the laptop was connected to at the time. An IEEE 802.11n network with the
Modulation and Coding Scheme (MCS) index of 15 is only capable of speeds up to 300 Mbps [24].
Moreover, the MCS varies as the signal strength of the wireless network changes. During our tests the
transfer speed was hovering around 130Mbps. Figure 3-12 shows a sample reading of the network
performance on the MacBook. Figure 3-13 show how many packets that were dropped for each size
of UDP package.

veduroam a=
PHY-ldge: 802.11n
BSSID: 0:8:30:5d:c7:a
Ka 16 (5 GHz)
Sakerhet: WPAZ Enterprise
RSSI: =52
Owverforingshastighet: 130
MCS-index: 15

Figure 3-12 Transmit rate with a MCS index of 15

80000

70000

60000

50000

40000
B Dropped UDP packages

30000

20000

10000

256B 512B 1024B

Figure 3-13 Dropped UDP packets as a function of packet size on the MacBook

We think this huge loss of UDP packets is due to the MacBook trying to send the UDP packets
too fast and that the hardware simply cannot keep up (although it would seem that the driver should
be checking to see of the output queue has room before putting an additional packet into this queue).
The Vaio seems to send the packets a lot slower and is therefore able to send without losing any
packets.

We used Wireshark to calculate the true throughput from the Vaio and the MacBook and the
results are shown in Figure 3-14. These results suggest that even though the MacBook dropped most
of the packages the speed is still much higher than the Vaio.

25

140

120

100

80

60

M Vaio & MacBook

Mbps

40

20

256B 512B 10248

Figure 3-14 True throughput of the Vaio and MacBook

The most interesting result from the UDPSendStressTester program is that we know how fast
each computer can send messages to the ServerUDP program. As we do not care about packet losses
from the sending side, the MacBook can still be used to send packets because it has a higher actual
throughput.

3.7.2 ServerUDP

The second step was to see how many UDP messages the server could receive within a given
period of time. We did this by using the UDPSendStressTester program from step one to send packets
to our server. The test investigates how many packets our server can successfully receive per second.
We wanted to test how long it took the server to receive, decrypt, and send the message to the Faye-
server and the MySQL database. We also considered in this test that a larger packet could contain
multiple messages, and therefore we could send multiple sensor readings in one UDP packet. The
XML message header is quite large in this context, which gives the UDP body a fixed start-up cost.
This means that the start up cost for the UDP body is the same even though the number of messages
in it varies. Of course UDP and IP headers also must be added to the total number of bytes being sent
on the network. Thus a 256 byte raw XML message results in a 288 byte IP datagram after including
the UDP and IP headers. Correspondingly a 1024 byte XML message becomes a 1066 byte IP
datagram.

An example of a valid XML message is presented in Appendix A to facilitate further
understanding of the fixed cost and the structure that we have chosen to follow. The number of
messages that can be fit in to a packet depends on the length of each message. A calculation over the
total XML structure size containing a variable number of messages is shown in Table 3-6.

26

Table 3-6 XML structure length with variable number of messages2

Header size Root element Number of Total message Total structure
(byte) size messages length size
(byte) (byte) (byte)
38 0 1 113 151
38 13 2 226 277
38 13 3 339 390
38 13 4 452 503
38 13 5 565 616
38 13 6 678 729
38 13 7 791 842
38 13 8 904 955
38 13 9 1017 1068

We conducted these tests on a server running Windows server 2008 R2 with a 100/10 Mbps
broadband connection and the result from performing a “ping” request to the server showed that we
had an average RTT of 26.6ms. The complete results from the ping request are shown in Figure 3-15.

ivanp@ccscenter:~> ping i1tard.dyndns.biz

FING itard.dyndns. biz (77.53.185.61) 56(84) bytes of data.

64 bytes from h77-53-185-61.dynamic.se.alltele.net (77.53.185.61): icmp_seqg=1 ttl=51 time=27.3 ms
64 bytes from h77-53-185-61 dynamic.se.alltele. net (77.53.185.61): 1cmp_seq=2 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61.dynamic.se.alltele.net (77.53.185.61): icmp_seq=3 ttl=51 time=26.5 ms
64 bytes from h77-53-185-61 dynamic.se.alltele. net (77.53.185.61): 1cmp_seq=4 ttl=51 time=26.6 ms
64 bytes from h77-53-185-61.dynamic.se.alltele.net (77.53.185.61): 1cmp_seqg=5 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61 dynamic.se.alltele. net (77.53.185.61): 1cmp_seq=6 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61 dynamic.se.alltele. net (77.53.185.61): 1cmp_seq=7 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61.dynamic.se.alltele.net (77.53.185.61): icmp_seq=8 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61 dynamic.se.alltele. net (77.53.185.61): 1cmp_seq=9 ttl=51 time=26.4 ms
64 bytes from h77-53-185-61.dynamic.se.alltele.net (77.53.185.61): icmp_seq=10 ttl=51 time=26.4 ms
~C

itard.dyndns . biz ping statistics ---
10 packets transmitted, 10 received, 0% packet loss,
rtt min/avg/max/mdev = 26.460/26.588/27.375/0.266 ms

Figure 3-15 ServerUDP ping results

time 9013ms

We decided to divide the program into multiple parts to be able to pinpoint exactly where the
bottlenecks in our system are. At first we simply received UDP packages and printed out how fast we
was able to do this for the different sizes of packets. The results are shown in Figure 3-16.

* All values presented in the table are calculated from the XML message structures presented in Appendix A.
These values can vary depending on the user’s implementation (i.e., the total structure size is not guaranteed to
be exactly the same length as in the table).

27

35000

30000

25000

20000

15000

Packets per second

10000

5000

1 23 456 7 8 910111213

H 1024 byte
1512 byte
M 256 byte

Figure 3-16 Number of received packets per second with varying packet size

The results from Figure 3-16 show that we are not able to receive as many packets per second of
the larger size (1024 bytes) as the smaller 256 byte packets. However, the total amount of data is of
course greater for the 1024 byte packets and therefore the throughput is better with a larger packet
size. We have calculated the throughput according to the following formula, where Ps is the total IP
packet size, Pn is the number of packets, and t is the time in seconds.

The throughput was then calculated from the values shown in Figure 3-16 and an average throughput

for each packet size was calculated. These results are shown in Figure 3-17.

100

90
80
70
60
50
40
30
20
10

0

Throughput (Mbps)

1024 byte

512 byte

256 byte

B Mbps

87.38002953

83.75145821

51.96289622

Figure 3-17 Throughput coming into the server as a function of different packet sizes

As seen from the throughput varies with the size of the packets. The best result is of course the
one with the highest throughput. As we are able to send up to 8 different sensor readings in a single
1024 byte packet this option is clearly the best with respect to successfully delivering lots of data to
the server. To be able to compare these results with what a user might experience, we tested our
connection to the site www.bredbandskollen.se and found that the 100/10 Mbps connection actually

28

delivered about 96/9 Mbps (where the first number is the downlink throughput and the second number
is the uplink throughput). From this result we can calculate that our connection uses about 91% of its
full potential.

The last step in our tests with the ServerUDP program was to check how long each task took to
process each message, i.e. to decrypt the data, check the validity of the data, put the valid data into the
MySQL database, and push the data to the Faye server. We modified ServerUDP to only print
timestamps when each part of the processing was completed. The results can be seen in Figure 3-18
below.

200

180

160

140 B MySQL

120

€ 100 Faye

it |

s HHHHHHHHHHHHHHHHHHHHHHHHHHHHHHHH

B Decryption
and parsing

Figure 3-18 Time to process each task

These results show that the most time-consuming parts of our system are the MySQL and Faye
portions of the processing. The systems performance is not very good because each task takes about
100ms to complete, and because this is done for every sensor reading that is sent to our system, the
system will not able to handle that many readings per second. In the following sections (sections 3.7.3
and 3.7.4) we discuss possible solutions and optimizations to improve this performance.

3.7.3 Faye

In the current implementation each sensor reading that is sent to our system is also pushed to the
Faye server, this operation of course takes some time and we have found that this is one of our main
bottlenecks. In the tests that we have conducted (described in the previous section 3.7.2) we found
that pushing each reading to Faye may not be the best solution. In our future work (section 4.2.6) we
propose that in the future multiple readings should be pushed at the same time.

Because Faye is using an HttpURLConnection the connection is dropped between each attempt to
connect to Faye. This is unlike the case for the MySQL connection where each thread in the
ServerUDP program keeps a connection to the database open. By keeping a connection open and
reusing the connection over and over the operations of communicating with the database avoid the
processing necessary to establish a new connection each time. There are ways to reuse and keep an
HTTP connection for multiple requests [25], but this has been left for future work.

3.7.4 MySQL

The MySQL database that we are using in this system is a potential bottleneck because it is
located at a single point and every request has to at some point access the database. The most common

29

operation that the system performs is to add sensor data to the database; therefore it is important that
the system is able to perform this request as fast as possible. In order to check how fast the database
was able to insert a single row, i.e. a single sensor reading we did a number of insertions with the tool
“mysqlslap” [26]. This is a diagnostic program that emulates a client’s load on a MySQL server and
returns a set of values of how long the average database request took to be processed. We used the
following command to emulate how a real sensor value would be inserted. We ran this test with the
iterations option in order to perform the operation 1000 times in the interest of getting a good estimate
of the average value.

$mysqglslap --user=username --password=* --create-schema=development3 --
query="INSERT INTO sensor_readings(sensor_id, gateway id, value,
created at, updated at) VALUES (3,27,10,1337932798774,1337932798774);" --
number-of-queries=1 --iterations=1000

The output from the mysqlslap program was:

Average number of seconds to run all queries: 0.019 seconds
Minimum number of seconds to run all queries: 0.015 seconds
Maximum number of seconds to run all queries: 0.065 seconds

These results show that each database insert request will take on average of 0.019s. This poses a
bit of a problem for us because our system sends each sensor reading to the database separately. This
means that each reading that is produced by a sensor has to be sent to the database and then inserted
individually. Looking at the results above, the average number of readings that can be inserted into
the database is only 52 per second. This is clearly not enough as our system must be able to handle
thousands of updates per second.

The solution to this problem could be to insert multiple rows with the same insert request. This
means that we should collect a number of values and insert them into the database at the same time.
We did another test with the “mysqlslap” tool and instead inserted 1000 rows of sensor readings with
a single SQL insert statement. The results are shown below.

Average number of seconds to run all queries: 0.040 seconds
Minimum number of seconds to run all queries: 0.023 seconds
Maximum number of seconds to run all queries: 0.391 seconds

These results show that even though we are inserting a thousand times more values each time, the
time to do so only increases by 21ms on average. This performance increase was bigger then what we
expected, so big in fact that we suggest the system’s performance can be improved by exploiting this
behaviour. Instead of sending each sensor reading to the database individually we should collect
values in a buffer and after some time or when the buffer reaches a certain size, then we should send
an update to the database. There are a however a disadvantage in using this solution which occurs
when the server that have bulked up the readings crashes. If the server crashes, all the readings that
have been bulked will be lost. However the data bulked up will hold readings from different sensors
as the gateways do not send information that often to the server which will only result in considerably
small looses for each home. This idea is presented in more detail under further developments in
section 4.2.4.

3.7.5 Test conclusions

As we have seen from the tests we have conducted there are several possible scaling bottlenecks.
The operations that have to been done within a task to successfully store and push a sensor reading are
time consuming and as a result we cannot reach the desired system throughput. There are possible
solutions to this problem, mainly concerning the database and Faye communications. As we have seen
from the results from the database test (described in section 3.7.4) the difference in time it takes to
push one or multiple messages is not that large. The solution proposed is to gather multiple messages
and not update the database every time we get a new reading. This solution is proposed and discussed

30

further as future work in section 4.2.4. However, the biggest bottleneck in the system is the Faye
server, more specifically the establishing of a connection to the Faye server from the ServerUDP
program. A connection established with the Faye server to send a push message can only be used
once, which means that we have to establish a new connection every time we push a message. The
establishment of this connection is a time-consuming operation and drastically lowers the overall
performance of the entire system. A proposed solution to this problem is presented as future work in
section 4.2.6.

The difference in throughput depends very strongly on the size of the packets and sending a larger
packets result in a high throughput. As a result the number of packets that we will receive are lower
and thus we can sustain a higher throughput. To take advantage of this higher throughput, multiple
messages should be sent in one packet. A 1024 byte UDP payload has space for a 992 byte XML
structure, thus we expect that it can contain 8 individual messages. This means that we can lower the
number of packets sent by having the gateway store messages locally and send eight sensor readings
in each message. Lowering the number packets sent to us reduces the processing cost and allows for
even higher scalability. An additional advantage is that we can handle each message faster if they are
contained in one packet. By handling multiple messages in one task we can also lower the cost of
connection establishment to the Faye server and other onetime costs associate with a task.

31

4 Conclusions and Future work

This chapter suggests some future work that could be done. It summarizes work that we have
thought about, but have not done. This chapter also contains a summary of our results and conclusions
that we have drawn during this thesis project.

As we move in to the age of the computers and the Internet being something that we take for
granted, a wide range of new devices and new implementations of old devices are becoming available
for homeowners. These devices strive to facilitate the everyday life for end users and to automate the
tasks of the internal systems. As these devices become more common in home environments the data
produced and consumed in the home environment is increasing. Data produced within the home is
rarely stored for further use and it is even more unusual for the data to be passed outside of the home.
Today there are several companies that provide systems for controlling and monitoring of a home
environment. However, these systems have their own closed protocols that limit the possibility of
introducing new creative solutions by which the user can input their own home’s data. The potential
uses of the data from home environments are many, but we believe that in order to be able to move
forward within this area we need to extend the home’s system, out into the Internet.

In the preceding chapters we have introduced the possibility of creating a web interface for the
purpose of monitoring data produced in a home environment. We have also described how we can
create a scalable system by which anyone with data from their home environment could monitor their
data. We have looked into the development process of the system and have reviewed several aspects
of the problem that have to be considered in order to develop scalable, secure, and robust systems.
The first major aspect discussed concerns web development and how to create an easy to use interface
that the user can interact with wherever they are. The discussion of the implementation process of
creating a web interface introduced many techniques and how they could be integrated into the
service. These techniques involve asynchronous updates using a push-notification server and the use
of external APIs to provide for a rapid development process. The second major aspect discussed
concerns the implementation of a system of servers to manage communication, store data, and to
allow asynchronous updating. The communication server provides the system with a communication
point to which users can push data. We have looked into how this communication server can be
developed, what is needed, and its limitations. We have also introduced techniques and APIs needed
within the server’s structure, such as details of the interaction between the servers, implementation of
security, error handling, parsing, concurrency, and scalability.

For the last step in our development we discussed and presented the results obtained in tests on
each part of the system. We discussed the likely scalability limitations in our system, what they
depend on, and how we can modify the system implementation in order to scale up even further.

All these steps add up to a complete open system that has the potential to grow along with
increased usage. Investment in servers, other equipment, and further software development are needed
in order to be able to scale the system up to become a widely used service. As of now the possibility
of launching such as service for the public in a near future is not that farfetched, however a good-
looking graphical interface is believed to be needed to attract potential users.

Creation of the web interface introduced us to Rails and the easy to use interface it offered. Rails
proved to be a great framework that facilitated our development. It provided us with easy to use plug-
ins in the form of gems and helped us structure our code following the MVC structure. Rails gave us
the opportunity to develop a fully functional web application in a short period of time, without
requiring extensive knowledge about the framework. For a first time web developer, Rails is perfect
as it is easy to get started and there is a lot of support along the way from the Rails community, such
as via the RailsCasts website [27].

The current implementation with each individual sensor value being added into the MySQL
database and pushed to Faye has some limitations with regard to scalability. The current system is
able to receive messages so rapidly that the worker threads are not able to keep up. As a result our
linked list (List Of Tasks) grows when there are many readings simultaneously sent to our ServerUDP
program. Based upon tests of our system we have been able to isolate the bottlenecks and have

33

proposed some solutions to the problems that we have observed. These solutions are described in
more detail in sections 4.2.4 and 4.2.6. Further conclusions regarding the scalability can be viewed in
section 3.7.5.

4.1 Reflections

In this section we will present our reflections about how our service possibly could affect the user
and the society in multiple ways such as economical, environmental and ethical aspects.

As we have created a service that aims to allow a user to monitor almost everything in a home
environment, changes in the lifestyle of a user is possible as the user can gain further information
about the home environment in an easy to access way. Furthermore, the possibility of affecting the
society positively regarding the environmental sustainability is also possible.

4.1.1 Economics and environmental aspects

Our service enables the user to monitor almost anything. This means that the user can gain
additional information about for example the power and water consumption. Based on the information
gained, the user could make decisions to lower the overall cost of the home environment by for
example lowering the power consumption.

Our service in itself does not directly affect the economics for a user but instead aims to raise
awareness about what is going on in the home environment to possibly change the lifestyle of the
user. A greater understanding of the power usage in every home would also benefit the society and
help to educate the user on how to lower the carbon footprint.

The economical aspects go hand in hand with the environmental aspects as decreasing for
example the power and water consumption will both affect the economics and the environment. By
lowering the power consumption of a home the combined savings of the whole system of many
thousands of homes would be noticeable, even though the system would require additional low-power
devices in every home.

4.1.2 Ethical aspects

Because we are working with sensor data that might be sensitive for the user we have
implemented security to prevent any data from being compromised. As we also work with user
accounts special care has been taken to protect the users’ passwords by never storing them in a
humanly readable format. Furthermore we store a hash of each password instead of the actual
passwords. This is very important because users often use the same passwords for multiple services
and if the passwords were compromised in our system, other services that the user uses might be
affected.

4.2 Further developments

As we took on a quite vast project that spanned across several systems from web development in
Rails to socket implementation in Java, there are several things that we did not have time to
implement. As we developed each part of the system as isolated parts the possibility of adding extra
functionality in the form of new programs can easily be done without having to modify all parts of the
program. In this section we present areas that have not explored yet and things we have not had time
to investigate or implement yet. We will also discuss possible solutions to some of these future
implementations.

4.2.1 Ability to control the home environment

The current implementation of our system only allows monitoring of data pushed from a home
environment. Something that we would have liked to incorporate in our system is the ability to control
devices in the home via the web interface as well. This would require modifications to the developed

34

web interface, as one must translate user driven request to actions. This would also require the
implementation of a new program that is able to push a request to a device by communicating with a
home gateway.

4.2.2 Key exchange

Even though we have implemented secure communication between a gateway (in our case the
emulation of a gateway) and our system the key handling needed in a large system is not covered in
this project. The implementation of a suitable mechanism for key sharing is necessary if we wish to
scale up the solution. The current method of directly orally sharing a key will not be viable at a larger
scale. Using other key sharing methods that can guarantee better security in large systems is necessary
to be able to scale the system further. This could possibly be done using third party methods to share
keys among users of the system.

4.2.3 SSL-encrypted MySQL connection

The connection to and from the MySQL server could be secured using SSL. This requires the use
of keys and certificates, as well as adding a “SSL” requirement to the database profile for all users
that connect to the database. The MySQL documentation pages provide a guide on how to set up SSL
encrypted traffic to a MySQL server. [28]

4.2.4 Bulk data

One of the major bottlenecks in our system is that the system sends each sensor reading to the
database individually. This is a bottleneck because the database is not able to handle that many
insertions per second, therefore we propose that our ServerUDP program collects the data into bigger
chunks before performing an update on the database. The implementation would then work as
follows. Each thread takes a task out of the “Pool of Tasks” as usual, decrypts the data and adds the
different values to some kind of data structure, which then is added to another synchronized list.
When the list is full or if a certain time has passed, then the complete list is sent to the database. The
thread that discovers that the list is full can send the data to the database or it could notify a separate
thread that only handles this task. Figure 4-1 demonstrates how this method might work. This method
of collecting the data into bigger chunks will greatly decrease the number of database insertions that
our program has to perform.

‘ Worker Thread XOJ ——

‘ Worker Thread Xa

. x,{ Shared object m—‘@
. ' \,

Database

L |

. |

‘ Worker Thread Xn} -

Figure 4-1 Possible bulk data extension structure

35

4.2.5 Working with real data

It was always our goal to include some real data in our system, i.e. connecting to the gateway that
Albert Lopez and Francisco Javier Sanchez built or to take some readings from the device that Abdel
Ahmid worked on during his thesis project. However, due to time constraints this was never
accomplished, but it would be easy for a future thesis project to take readings from these devices and
send data to our system.

4.2.6 Faye optimization

The use of the asynchronous push messages greatly adds to the user’s experience and accounts for
a substantial part of the workload in developing this thesis project. However, the way Faye is
implemented at the moment is somewhat inefficient. The whole operation of pushing to Faye is
something that the ServerUDP program does with all the tasks that are coming in. This is not
necessary since not all of the users will be looking at their graphs all the time, hence only those graphs
that someone is currently looking at require the constant updates that Faye provides. A solution to this
problem is to run another select query to check if a user is currently logged in, then based on this
information decide if pushing to Faye is necessary. Another part that makes the Faye usage inefficient
is the establishing of a connection from the SendUDP program to the Faye server. As of now we
cannot keep a connection to Faye alive and have to establish a new connection for every task.
Keeping the connection alive for a longer period is possible [25] and would probably significantly
reduce the total time required for pushing new data to Faye.

427 HTTPS

HTTPS could relatively easily be added to the log in procedure on the web page. The advantage
of this would be that the communication between the web server and the browser would be encrypted
and secure. Because of this encryption, HTTPS will use more resources then a normal HTTP session;
therefore it might be useful to use HTTPS for the login credentials and then normal HTTP for the rest
of the web site.

The disadvantage of this would be that the rest of the communication is in the clear. The level of
security is however always a compromise between speed and security, less security will require fewer
resources and therefore be faster. A solution where all the traffic is sent with HTTPS is also possible
but this approach will require more resources.

4.2.8 Switch from XML to JSON

JSON [29] has during the past years grown to be a more and more widely used standard. JSON
has a slightly simpler syntax than XML and would require a smaller header in every message that is
sent. This would make the communication more efficient. Switching from XML to JSON would be
preferable in our case as the size of the UDP body is quite small, hence the percentage reduction in
overhead would be larger.

36

References

[1]

[2]
[3]

[4]
[5]
[6]
[7]
[8]
[9]
[10]

[11]

[17]

[18]

[19]

[20]
[21]
[22]
[23]

[24]

Prof. Gerald Q. Maguire, ‘Examples of thesis projects’. [Online]. Available:
http://web.it.kth.se/~maguire/maguire-exjobbs-examples.html. [Accessed: 18-April-2012].

A. Ahmid, ‘More than downloading’, Bachelor’s thesis, KTH, Royal Institute of Technology.

World Wide Web Consortium, ‘World Wide Web Consortium (W3C)’. [Online]. Available:
http://www.w3.org/. [Accessed: 30-May-2012].

iControl Networks inc, ‘OpenHome home management’, Solutions, OpenHome. [Online].
Available: http://www.icontrol.com/solutions/index.php. [Accessed: 30-May-2012].

Z-Wave Alliance, ‘Z-Wave solutions’. [Online]. Available: http://www.z-
wave.com/modules/Z-WaveSolutions/. [Accessed: 30-May-2012].

Albert Lopez and Francisco Javier Sanchez, ‘Exploiting Wireless Sensors’, Master thesis, KTH,
Royal Institute of Technology, Stockholm, Sweden, Not yet published.

D. Heinemeier Hansson, ‘Ruby on Rails’. [Online]. Available: http://rubyonrails.org.
[Accessed: 10-April-2012].

C. A. da Silva and J. Valim, Devise. plataformatec, Available at
https://github.com/plataformatec/devise, [accessed April 9, 2012].

M. Bleigh and J. Rosen, Omniauth. Intridea, Inc., Available at
https://github.com/intridea/omniauth, [accessed April 9, 2012].

C. Hale, ‘berypt-ruby’, 12-August-2009. [Online]. Available: http://bcrypt-ruby.rubyforge.org/.
[Accessed: 18-May-2012].

N. Provos and D. Maziéres, ‘A future-adaptive password scheme’, in Proceedings of the annual
conference on USENIX Annual Technical Conference, Berkeley, CA, USA, 1999, pp. 32-32,
Available at http://dl.acm.org/citation.cfm?id=1268708.1268740.

Google, ‘Google Chart’. [Online]. Available: https://developers.google.com/chart/. [Accessed:
18-May-2012].

Highsoft Solutions AS, ‘Highcharts JS’, Highcharts JS. [Online]. Available:
http://www .highcharts.com/. [Accessed: 18-May-2012].

J. Coglan, ‘Faye’. [Online]. Available: http://faye.jcoglan.com/. [Accessed: 18-May-2012].

Oracle, ‘JDBC API Documentation’. Available at
http://docs.oracle.com/javase/1.3/docs/guide/jdbc/index.html, [accessed April 27, 2012].

Oracle, ‘Java.net’. [Online]. Available:
http://docs.oracle.com/javase/6/docs/api/java/net/package-summary.html. [Accessed: 18-May-
2012].

The Internet Assigned Numbers Authority (IANA), ‘Service Name and Transport Protocol Port
Number Registry’, 07-May-2012. [Online]. Available: http://www.iana.org/assignments/service-
names-port-numbers/service-names-port-numbers.txt. [Accessed: 08-May-2012].

Wireshark Foundation, ‘Wireshark’. [Online]. Available: http://www.wireshark.org/.
[Accessed: 18-May-2012].

‘Advanced Encryption Standard (AES)’. National Institute of Standards and Technology
(NIST), 26-November-2001, Available at http://csrc.nist.gov/publications/fips/fips197/fips-
197.pdf.

M.-A. Cournoyer, ‘Thin, A fast and very simple Ruby web server’. [Online]. Available:
http://code.macournoyer.com/thin/. [Accessed: 18-May-2012].

F. Cianfrocca, ‘eventmachine’. [Online]. Available: http://rubyeventmachine.com/. [Accessed:
30-May-2012].

M. Piacentini, ‘SQLite Datebase Browser’, 12-September-2009. .

Tobias Ratschiller, Marc Delisle, Michal Cihat, Dieter Adriaenssens, Madhura J ayaratne, and
Rouslan Placella, ‘phpMyAdmin’, 03-May-2012. [Online]. Available:
http://www.phpmyadmin.net/home_page/index.php.

The Institute of Electrical and Electronics Engineers, Inc, ‘802.11n’. IEEE, Available at
http://standards.ieee.org/getieee802/download/802.11n-2009.pdf, [accessed May 28, 2012].

37

[25]

[26]

[27]
[28]

[29]

38

Oracle, ‘Persistent Connections, HTTP keep alive’. Oracle, Available at
http://docs.oracle.com/javase/6/docs/technotes/guides/net/http-keepalive.html, [accessed May
29, 2012].

Oracle, ‘mysqlslap’. [Online]. Available:
http://dev.mysql.com/doc/refman/5.6/en/mysqlslap.html. [Accessed: 18-May-2012].

R. Bates, ‘RailsCasts’. [Online]. Available: http://railscasts.com/. [Accessed: 30-May-2012].
Oracle, ‘Using SSL for Secure Connections’, MySQOL Documentation. [Online]. Available:
http://dev.mysql.com/doc/refman/5.6/en/secure-connections.html. [Accessed: 28-May-2012].
D. Crockford, ‘json Media Type for JavaScript Object Notation (JSON)’. The Internet
Engineering Task Force, Available at http://www.ietf.org/rfc/rfc4627, [accessed May 29, 2012].

Appendix A

A.1. Single message
<?xml version="1.0" encoding="UTF-8"?>
<sensor_reading
gateway id="27"
sensor_id="12"
time="2012-05-24 16:45:31"
type="Temperature"

value="-8.911619"

/>

A.2. Multiple messages
<?xml version="1.0" encoding="UTF-8"?>
<root’>
<sensor_reading
gateway_id="27"
sensor_id="12"
time="2012-05-24 16:45:49"
type="Temperature"
value="-9.571651"
/>

<sensor_reading
gateway_id="27"
sensor_id="12"
time="2012-05-24 16:45:58"
type="Temperature”
value="-10.101651"

/>

</root>

3 The name of the root element has no impact on the validity of the structure.

39

Appendix B

import
import
import
import
import

public

java.
java.
java.
java.
java.

net.DatagramPacket;
net.DatagramSocket;
net.InetAddress;
security.SecureRandom;
util.Date;

class UDPSendStressTester {

public static void main(String[] args) throws Exception {

String address = args[@];

int UDPPacketSize = Integer.parseInt(args[1]);

int iterations = Integer.parseInt(args[2]);

float totalPacketSize = Integer.parselnt(args[3]);
int socket = Integer.parselnt(args[4]);

DatagramSocket clientSocket;

clientSocket = new DatagramSocket();

InetAddress IPAddress = InetAddress.getByName("localhost");
SecureRandom random = SecureRandom.getInstance("SHA1PRNG");

IPAddress = InetAddress.getByName(address);
byte[] randomBytes = new byte[UDPPacketSize];
random.nextBytes(randomBytes);

long startTime = new Date().getTime();

for(int 1 = 0; i < iterations; i++){

DatagramPacket sendPacket = new DatagramPacket(randomBytes,

randomBytes.length, IPAddress, socket);

1000;

clientSocket.send(sendPacket);

}

float floatDate = (new Date().getTime() - startTime) / (float)

System.out.println("Time to send: " + floatDate + "s");
float throughput = ((totalPacketSize / 10) / floatDate);
System.out.println("Throughput: " + throughput + "Mbps");
clientSocket.close();

41

TRITA-ICT-EX-2012:084

www.kth.se

