Comparing Expected and Real-Time
Spotify Service Topology

&

L,
VILIUS VISOCKAS EFKTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Degree projectin
Communication Systems
Second level, 30.0 HEC
Stockholm, Sweden

MASTER OFSCIENCE THESIS

Comparing Expected and Real-Time
Spotify Service Topology

Vilius VISOCKAS
vilius.visockas@gmail.com

May 29, 2012

Comparing Expected and Real-Time
Spotify Service Topology

Final version (2012-05-30)

VILIUS VISOCKAS (vilius.visockas@gmail.com)
Master’'s Programme in Security and Mobile Computing
NordSecMob (KTH + NTNU track)

KTH Royal Institute of Technology
School of Information and Communication Technology
Stockholm, Sweden
academic supervisor Prof. Gerald Q. Maguirg@raguire @kth.se)

NTNU Norwegian University of Science and Technology
Department of telematics
Trondheim, Norway
academic supervisor Prof. Yuming Jiafi@ng@item.ntnu.no)

Spotify AB
Stockholm, Sweden
industrial supervisor Mattias Janss@nattias.jansson@spotify.com)

Abstract

Spotify is a music streaming service that allows users to listen to the
favourite music. Due to the rapid growth in the number of users, the amount
of processing that must be provided by the company’s data centers is also
growing. This growth in the data centers is necessary, despite the fact that
much of the music content is actually sourced by other users based on a

peer-to-peer model.

Spotify’s backend (the infrastructure that Spotify operates to provide their
music streaming service) consists of a number of different services, such as
track search, storage, and others. As this infrastructure grows, sovieeser
may behave not as expected. Therefore it is important not only for Spotify’s
operation$ team, but also for developers, to understand exactly how the
various services are actually communicating.

The problem is challenging because of the scale of the backend network
and its rate of growth. In addition, the company aims to grow and expects to
expand both the number of users and the amount of content that is available.
A steadily increasing feature-set and support of additional platforms adds to
the complexity. Another major challenge is to create tools which are useful
to the operations team by providing information in a readily comprehensible
way and hopefully integrating these tools into their daily routine. The
ultimate goal is to design, develop, implement, and evaluate a tool which
would help the operations team (and developers) to understand the behavior

LAIso known as the Service Reliability Engineers Team (SRE).

of the services that are deployed on Spotify’s backend network.

The most critical information is to alert the operations staff when sesvice
are not operating as expected. Because different services are deployed on
different servers the communication between these services is rdfiacte

the network communication between these servers. In order to understand
how the services are behaving when there are potentially many thousands of
servers we will look for the patterns in the topology of this communication,
rather than looking at the individual servers. This thesis describes the tools
that successfully extract these patterns in the topology and compares them
to the expected behavior.

Sammanfattning

Spotify ar en \Axande musikstimningstanst som rijliggor for dess ar@ndare att lyssna
pa sin favoritmusik. Med ett snabbéxande ar@ndartal, dljer en tillvaxt i kapacitet som
maste tillhandahllas genom deras datacenter. Denagande kapaciteir nodvandig trots
det faktum att mycket av deras inridhhamtas fan andra aréndare via en peer-to-peer
modell.

Spotifys backend (den infrastruktur sorarkSpotifys tanster) besir av ett antal distinkta
typer som tillhandahller bl.a. $kning och lagring. | takt med att deras backericer,
okar risken att §nster missiiter sig. Carfor ar det inte bara viktigtdr Spotifys driftgrupp,
utanaven br deras utvecklare, atbfsé hur dessa kommunicerar.

Detta problemar en utmaning p.g.a. deras storskaliga infrastruktur, lahstorre i
takt med att den @xer. Foretaget stivar efter tilhaxt och brvantar detta i Ade antalet
anvandare och tillgngligt innefall. Stadigt okande funktioner och antalet distinkta
plattformar bidrar till komplexitet. Ytterligare en utmiag ar att bidra med verktyg
som kan anandas av driftgruppdi att tillhandaRlla information i ett tillgangligt och
overslkadligt format, och attdrhoppningsvis integrera dessa i en daglig arbetsrutin.

Det slutgiltiga nalet ar att designa, utveckla, implementera ochamtlera ett verktyg

som Bter deras driftgrupp (och utvecklarg)r$t beteenden i olika dnster som finns
i Spotifys infrastruktur. [dessa §nsterar utplacerade & olika servrar, reflekteras
kommunikationen mellan dem i deragtwerketskommunikation.d att forst tjansternas
beteende &r det potentiellt kan finnas tusentals servi@r\ leta efter ndnster i topologin,

istallet for beteenden&individuella servrar.

Acknowledgements

| want to thank my supervisor Mattias Jansson, who providedwith a good working
environment at Spotify and was my first point of contact foergthing involving this
thesis project. In addition, it was an exciting experiercé¢ involved in the operations
and infrastructure automation teams and to come to understhat day-to-day network
monitoring and operations feels like.

| would like to thank my main academic supervisor prof. Ger@l Maguire from KTH
for his guidance during this thesis project. He deservesrbst credits for helping me
to improve my report and focusing my attention on importagtads. | am also grateful
Yuming Jiang for being be my academic supervisor at NTNU.

Big thanks for my colleagues John-John Tedro and Martin Paim,gave me presentation
technique tips and the usage of various development toblsy Were great table football
partners during lunch time as well.

Contents

Abstract [
Abstract (swedish) iii
Acknowledgements \Y
List of Tables viii
List of Figures iX
List of acronyms Xi
List of definitions Xii
1 Introduction 1

1.1 ProblemandGoals

1.2 Limitations of Investigation,

1.3 Evaluationof Results

1.4 Structure ofthethesis.

2 Background S
2.1 AboutSpotify.

2.2 Spotify’s Architecture

CONTENTS CONTENTS
2.3 Example of service dependencies. 7
24 Relevantwork 8

3 Method 10
3.1 Recognizing ServiCes v v i e e e 10
3.2 Monitoring network traffic. o oo 11

3.21 Auditdtool 12
3.2.2 ptables. 13
3.23 Netstattool. 15
3.2.4 Collecting NetFlow information from network equipnhen 15
3.2.5 Exporting NetFlow using fprobe 16
3.2.6 Exporting NetFlow using a customtool. 16
3.3 NetFlow. 18
3.3.1 NetFlowprotocol 18
3.3.2 NetFlowbasedtools 19
3.3.3 SiLKsuiteforNetFlow 21
3.3.4 SiLK Deploymentscenarios 21
3.3.5 Deploymentof SiLK.o 24
3.3.6 Configuringexporters. e 24
3.4 Creatinganalysistools 25
3.4.1 SiLKasananalysissuite. 25
3.4.2 Motivation for a specialized analysistool. 26
3.4.3 NetFlow analysis and plotting language 27
3.4.4 Extendibility of the language. 29
3.45 Examplesofscripts. o o 30

Vi

CONTENTS CONTENTS
3.4.6 Implementation of analysis framework 31
3.4.7 Implementing customgroupers 32
3.4.8 Connecting analysistooltoSILK 34
4 Data Analysis 36
4.1 Analysis of sample Spotify service. 37
4.1.1 DNS based service classification 37
4.1.2 Configuration class based service classification. 38
4.1.3 Overtimeclassification 42
4.2 Service Dependency Graph. o L 44
4.3 Expected vs. real service behaviour. oL 45
4.4 Comparing classification methods. 45
4.5 Comparing data collectionmethods 47
5 Conclusions and Future work 49
5.1 Conclusions. e 49
5.2 DISCUSSIONS. v v e e e 51
53 FutureWork. 51
Bibliography 53
A Configuring routers 57
B Measurements 60
C Language constructs 61
D Language built-in functions 62

Vil

List of Tables

3.1 Netflow record format

4.1 Comparison of service classification methods

4.2 Server performance measurement during capture.

B.1 Server performance measurement during capture.

viii

List of Figures

2.1

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

3.10

4.1

4.2

4.3

4.4

Real life example of service dependencies 8

TCP portsforservices. o o it 11
Auditd log fileformat. 13
TCP state transitiondiagram 14
SiLK single machine scenario (1) 22
SiLK local collection and remote storage scenario(2). 22

SiLK remote collection and remote storage scenaria(3). 23

Example of analysisscript (1). 30
Example of analysisscript (2). oL 30
Example of analysisscript(3). oL 31
The architecture of analysis framework 32
Script for DNS based classification. 38
Example of DNS based classification 38
Script for host-class based classification 39
Example of host-class based classification. 39

LIST OF FIGURES LIST OF FIGURES

4.5 Scriptfor advanced flowfiltering 40
4.6 Example of advanced flow filtering. 41
4.7 Example of destination network classification. 42
4.8 Script for service classificationintime. 42
4.9 Dynamics of service communicatian. 43
4.10 Example of service dependencygraph 44

LIST OF FIGURES LIST OF FIGURES

List of Acronyms

The following is the list of acronyms which are used in thiedis.

AP Access Point for Spotify clients

BNF Backus Naur Form

BPF Berkeley Packet Filter

DDoS Distributed Denial of Service attack

DNS Domain Name System

IP Internet Protocol

JSON JavaScript Object Notation (data serialization format)
NetFlow A network protocol for collecting IP traffic information
PCAP Packet capture library

RFC Request for Comments

SILK System for Internet-Level Knowledge

SRE Service Reliability Engineering team

SRV DNS server record type

TCP Transmission Control Protocol

TOS Type of Service

Xi

LIST OF FIGURES LIST OF FIGURES

List of Definitions

The following list of definitions briefly explains frequeyntlised concepts in this thesis. It
is important to read this section carefully, as doing so alpb the reader to understand the
rest of the thesis.

Operations Spotify team responsible for ensuring all services worlsdal
known as SRE).

Service Dependency Two intercommunicating services are dependent upon e&eh, ot
as in aTCP connection, with packets flowing in both directions.
The termsservice topologyandservice correlatiorare used as
synonyms in this thesis. Generally, a service dependenty ca
be explained as a graph, in which services are represented as
nodes and there exists an edge between two services when ther
is network communication between them. The weight of the
edge reflects the volume of this communication.

Service In the scope of this thesis project, servers having similacfions
which handle and respond to clients’ requgstsvide a service
Services usually have a specific business value which often
could benefit Spotify customers or other services. Programs
running Spotify services are usually designed and impleetkn
by Spotify engineers. An example of a service &aarch service
which allows customers to locate tracks. In contrast, Sk
database is conceptually also a service, but it is not ceresid
a Spotify service in this thesis. Nevertheless, the dedimitf
a serviceis flexible and can be adapted to suite the specific
contexts.

Site In Spotify’s context, a site is a geographically distinctadeenter
which has a common point of presence on the Internet.

Xii

LIST OF FIGURES LIST OF FIGURES

Spotify Music streaming service. The data captured from the Spotify
infrastructure network will be used for analysis.

Xiii

Chapter 1

Introduction

This chapter defines the area of research, sets boundaribe thesis project and delimits
our investigation. The chapter ends with a description efdtiucture of the remainder of
the thesis.

1.1 Problem and Goals

Spotify deploys a service based model on their backend. Badkend consists of a
internal network of potentially thousands of servers. ®asiservices interact with clients
and between each other. However, due to constant growthadtual communication

patterns may deviate from the planned communication petterUnderstanding these
communication patterns is key to providing good serviceh users and using as input
to plan for the scaling of the various services in the back&ihis scaling process includes
deciding how many instances of each type of server and seisineeded, as well as
determining the internal and external network requirement

This thesis project began with trying to understand theowariservices and how they
interact with each other. The project’s goal is to desigrplement, and evaluate tools
which would help the operations team by presenting to therotane of the current service

1.2. LIMITATIONS OF INVESTIGATION Chapter 1. Introduction

topology (i.e., the actual pattern of communications betw&ervices) and to highlight how
this differs from the expected topology. Additionally, geaphicalsiteinformation can be
associated with a service and presented along with thedgpahformation.

This depiction could be augmented to suit several use casgesmould compare how

the expected network flows differ from the actual flows. Exaing cases when services
interact between different sites may lead to manually ssiggeoptimizations. Automating

this detection process is left for future work.

The tools we want to create should provide 8fREteam with information about runtime
backend service network dependencies. The designed dapaesd will be compared with
the actual dependencies. The actual dependencies willtbendaed by network analysis
and possibly supplemented with data from the servers tHeasseThis information can
be used when trying to understand the effects of these depems$ during incidents
when the systems are not providing the expected servicestoproviding them with
the expected service quality. Therefore a dependency dgsapdluable both for impact
analysis (what other services could be affected when acgemialfunctions) and cause
analysis (to understand why service malfunctions by ingashg dependent services).
From an operations point of view it is desirable to highligatviations of the actual services
behaviors from the designed behaviours.

1.2 Limitations of Investigation

This investigation will focus on the transport layer as oggmb to application layer
protocols. The focus of this analysis is on TCP transportqualf{ as all services that
we are concerned with in this thesis project use TCP as tlaisport protocol. This
thesis will describe the methodology that could be apphleachieve the goal of this thesis,
however the description of detailed results will be limitedbbfuscated as these details are
proprietary to the company.

The discussion of the specific logical relations betweevises (semantics) is not included
in this report. Report simply describes the actual commuioiegatterns between services.

1.3. EVALUATION OF RESULTS Chapter 1. Introduction

The reader of this report should be familiar with basic cotapoetworking concepts, have

a basic understanding BNSbehaviour, as well as transport and network layers as defined
in the OSI model; therefore these topics are not covered in the baakdrsection. The
reader may want to use the results of this report to perforimdas analysis on another
organizations’ networks.

1.3 Evaluation of Results

This thesis will introduce several possible data collectieethods, but only a few of them
are feasible and suitable for this thesis project. Two ofibssible collection methods will
be selected and compared with respect to their impact tesperformance.

In addition, two service classification methods will be camgal using criteria such as
accuracy of the results and execution time.

1.4 Structure of the thesis

Chapter 1 provided an introduction to this thesis. Chapte will cover necessary
background information. It will overview the Spotify’s mact, explain the architecture
of Spotify’s services and the structure of the backend ne¢wo

Chapter 3 contains an analysis of the problem. First, sectia discusses the definition
of a service in the Spotify’s context. Sectiah2 gives an overview of possible methods
to observe network flows. The chapter continues by desgribow to determine service
behaviour from network flow information. Sectiégh3will provide a deeper analysis of the
selected network observation approaches using NetFloav ttadiscusses available tools,
possible deployment scenarios, and problematic areag afmjplementation. Sectiol.4
focuses on the analysis of data provided from the tools destin previous section. It
identifies the problem of a lack of a convenient frameworkgimtting customized visual
plots from NetFlow data and the limitations of the availabtenmand line tools. This

1.4. STRUCTURE OF THE THESIS Chapter 1. Introduction

chapter then describes the details of the design and implatnen of such a framework.

Chapter 4 uses a combination of data collection and our own analysis to understand
the actual backend service behaviour.

Chapter5 summarizes our analysis. It also contains a discussiomjusions and suggests
potential future work.

Chapter 2

Background

The aim of this chapter is to give the necessary backgrouodnmation about the Spotify
organization, its product, and the architecture suppgttie delivery of this service.

2.1 About Spotify

Spotify is a music streaming service. The service is offenedree versions: a free version
with advertisements, unlimited, and a premium (pay-pentmpversion. As of January
2012, Spotify had 10,000,000 registered users, 20% of wéuttscribed to the premium
service [1].

Spotify (here refers to the company and compahiesa rapidly growing organization.

During this thesis project the main goal was to support thisvth, thus the backend must
support more customers and it must do so efficiently. Achigthis goal demands that
the infrastructure work properly, while supporting insa loads and being constantly
upgraded. At the time of writing this thesis, Spotify degdyover 1000 servers running
various services. These servers are located in sesieain Europe and the United States

1Spotify Sweden AB, Spotify Limited, Spotify France SAS, 8fyoSpain S.L, Spotify Norway AS,
Spotify Netherlands B.V., Spotify USA Inc., Spotify Finldi©y, and Spotify Denmark ApS currently form
the overall business concern, but organization is corgtgrawing.

2.2. SPOTIFY'S ARCHITECTURE Chapter 2. Background

of America.

2.2 Spotify’s Architecture

Spotify is a music streaming service offering low-latencgess to a library of over 15
million music tracks. Streaming is performed by a combmabf client-server access and
a peer-to-peer protocol between clients.

Spotify is based on various services, mostly of which ardtemiin Python. The core
element of the system is the Access Point (AP) which is thé fiosnt of contact for
each client. There are two major versions of the client: aila@nd a desktop version.
The whole Spotify infrastructure heavily relies on Domaiamhé SystemINS queries
to locate servers that provides some specific service. Atthahis approach has both
advantages and disadvantages, it is generally agreed ihbaoth fast and efficient. Details
of DNS can be found in the Internet Engineering Task Forc@F)EstandardRFC 1035
[2]. In particular, Spotify’s DNS is configured to return stlof SRV records for a particular
service query, as described RFC 2782 [3]. Each SRV record, among other attributes,
returns a port and host name. The host name can be resolvactdy to an IP address.
This tuple uniquely describes the destination of the serpirovider. If a service is moved
to another machine, then the DNS records must be updateddaugly. The DNS servers
use relatively small time-to-live values for these entinesrder to avoid potential problems
associated with DNS caching.

Services usually utilize TCP as their transport protocoldifidrent services utilize specific
TCP port numbers. Above the transport protocol, i.e., at fpi@ation level, the protocol
that is used is HTTP, but other protocols are used as wellrmestases. It is assumed that
communication between services facilitates exactly one ¢@ection, because special
cases as FTP connection (which utilizes two parallel cotmes) do not exist in Spotify’s
context. However, each working instance of connection éosétrvice (for example, when
connecting to database) may have a seperate connection.

2There are more RFCs covering the behaviour of DNS, but hereefee only to the basic of DNS that
are covered in the RFC 1035.

2.3. EXAMPLE OF SERVICE DEPENDENCIES Chapter 2. Background

2.3 Example of service dependencies

Let us describe a realistic scenario of a service orientetitecture. Let us assume
that a new company is creating a webmail service whose operé sponsored by
advertisements (ads).

The company plans to operate several servers, each detifoate different purpose (i.e.,
a service). TheMebserver handles users’ requests and manages customersingco
The Adsserver picks the most suitable ad to show based on the usésisnation in a
database. ThB®atabaseserver stores each user’s account information. Viad server
sends, receives, and stores email messages.Spamdetection server analyses text in
email, and filters out messages which are identified as spam.

These servers communicate with each other, thus creatmgeselependencies (as shown
in figure 2.1). For example, th&Vebserver andAdsserver fetch data from thBatabase
server (in this example MySQL). In addition, tiiéebserver uses thilail server to obtain
email messages and show them via a web interface.Mdikserver uses responses from
the Spamdetection server to filter out spam. Most of the servers vesdhostnames to the
IP addresses using the lodaNSserver. Finally, théMail server uses a regularly updated
external blacklist service to eliminate e-mail to and fratasslisted in blacklist.

It is important to note that usually two communicating seegi can be classified aglkgent
andserver The client service initiates the request to tlierverservice and expects a
response in order to continue its operation. Thereforeenthié edges between services in
the topology graph indicate communication in both direttiove have used an arrow on
only one end of the edge to illustrate a client-server retedhip (the arrow head points to
theserve).

2.4. RELEVANT WORK Chapter 2. Background

Web server

Cros o> Caseme>
Cmsar s> ‘

Blacklist server

Figure 2.1: Real life example of service dependencies

A dependency graph such as this one helps us to understaogehation of the system.
For example, if botiVebserver andAdsserver start to fail to serve users’ requests, it is
highly likely that theDatabaseserver is malfunctioning, because itis used by both sesvice

This example suggests that services can be aitkennal(i.e., those which are in control of
organization, such ddail service), orexternal(such as th@&lacklistservice). In addition,
services can be eithetandard(widely used, such MySQL server), or custom (such as
the Adsservice). Our focus in this thesis project is finding depewdes betweemternal
customSpotify services.

2.4 Relevant work

Attempts at understanding of live, automated backend n&taervice dependencies was
never done previously at Spotify. However, the general leratof service dependency is
not new.

Ensel and Keller [4] suggest an approach for automated ggoerof service dependency
models. The main idea is that measuring and correlatingicenietrics (CPU load or
bandwidth usage) on different hosts can infer a service rigrecy. In related work,
these authors suggest managing service dependenciesdddingnd resource description

2.4. RELEVANT WORK Chapter 2. Background

framework [5]. The goal of such model is to understand impéservice failure.

A. Keller and G. Kam describe an architecture and its implaatéon for retrieving
and handling dependency information from various managsdurces in a web-based
environment [6]. Their work relies on extracting infornmatifrom system configuration
repositories combined with results obtained from perfugbsome components of a
distributed system under a typical workload.

Basu, Fabio and Florian proposed a solution for the autonmdiatification of traces of
dependent messages, based on the correlation of messapes@xd among services [7,
8]. Their key principle is inference of a causal dependenithiv message pairs in the
log, where the first message is received at the service nogevithich the second message
originates using a probabilistic model.

To summarize, there are several approaches for undenstpraaid modelling service
dependencies. The most straightforward method is explidefining dependencies for
each service. However, when using this approach the inflemaeeds to be manually
revised and updated. Another approach is intercepting tmenwnication between
parties. Finally, artificial intelligence techniques cam dpplied in order to find service
dependencies.

Spotify’s approach to services is based on domain nameghwdreates a new context
for our research. The problem is that Spotify services dodesicribe the services on
which they rely in a configuration file, currently this is plyremplicit in the system
owners’ knowledge (i.e., in the implemented software antdmttally in its documentation).
However, given that all services run in the network are owhbgdone organization,
full observation of all the traffic between them makes it flssto find these implicit
dependencies.

Chapter 3

Method

This section gives an overview of possible methods for ustdading service dependencies.
Section3.1of this chapter addresses the problem of defining a serviSpatify’s backend
network. Assuming that hosts for the different services #red network links can be
observed, then the observation of network traffic seems &gdnemising way to learn about
service dependencies. Therefore sectioh discusses possible methods for observing
network traffic. Sectior3.3 further investigates one of these alternatives, spediyfical
collecting NetFlow information from the network equipmerfinally, section3.4 gives

a motivation and description of additional tools neededHeranalysis.

3.1 Recognizing services

Whatever method of network flow monitoring is chosen, themukhbe way to associate
an IP address, protocol, and port number tuple of a flow withezisic Spotify service.

In the original design, each Spotify service was expectetiliae specific non-overlapping
ranges of TCP ports. Therefore it is tempting to classify ises/ based upon these
predefined static port number ranges.

However, after inspection of this information in currentperating network’s DNS, it

10

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

appears that there exist different services running oremifft machines, but using the
same TCP port. One such an example is shown in the Tatblé. A special script was
written to analyze DNS records in order to find th@set clusters To conclude, both the
destination IP address and destination port number aréregijo map network flow to the
corresponding service based on DNS SRV entries.

Service Min port | Max Port
_spotify-servicelhttp.spotify.net| 8081 8087
_spotify-service2http.spotify.net.| 8081 8087
_spotify-service3http.spotify.net.|| 8082 8085
_spotify-servicedhttp.spotify.net.|| 8082 8097

Figure 3.1: Example of overlapping use of TCP port numbers by different service

As each host providing some specific service is usually t&ggeh a configuration
management class, an alternative approach of associatiegwerk flow with a service
is based upon this class name. It is important to note thgttbeldestination IP address is
necessary for such a classification. In addition, the assamfhat each host serves only
one service must be valid.

3.2 Monitoring network traffic

One of the biggest implementation decisions to be made is tbomonitor traffic. As
we are interested in statistics at the transport layereratian at the application level,
we simply need to collect information about traffic flows wiithbackend network. Two
basic approaches to finding traffic flows are logging infoioraat each server machine or
sniffing packets flowing through the network.

The advantage of sniffing traffic is that it is potentially racefficient and avoids use
of resources on the individual server machines. Howeverathount of traffic passing

Note that the specific service names have been replacedge@) to protect proprietary details of the
company’s backend configuration. The details of which serig what is not important for our tools - only
that there are dependencies, but because there is a mang toampping between services and port numbers
the DNS information is not sufficient to compute a unique isedrom port number to service.

11

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

through the routers of the internal network is on the ordeteadbytes per day, therefore
some form of random sampling could be used to reduce the ambtmaffic that has to be
processed, but this occurs at the cost of introducing soaibio the results.

Tracking network flows on each of the server machines couler afreater flexibility.
Moreover, this logging might be limited to only a short perif the day, in order to reduce
the negative effects on each server’s performance. Of equedorming the logging in the
servers themselves will also potentially introduce biakicWw could range in magnitude
from small to very large depending upon the other demands timindividual server.

In the following sections we will examine several potentrathods for tracking network
flows. We have assumed that each of the servers are runningiarDbeased Linux
operating system, as this was true at the time of writingttresis.

3.2.1 Auditd tool

Auditd (Audit daemon) is a user space component for linuxesysauditing [9, 10]. It
writes logs for system calls to disk. It is controlled by saeools, initctl for changing
rules andausearchandaureportfor manipulating the logs.

This tool can track operations at the level of system callscission in [11] explains how
to add rules to listen for system calls. We experimented waating rules for one kind
of system call: socket calls. The authors of [12] and [13kgiguidelines for analysing
auditd logs. However, the information which is logged is difficudt parse as the format
depends on the kernel version and is encoded in low levelsc@dgire 3.2 shows an
example of part of amauditd log). In addition, while it is possible to understand when a
socket is created, this does not provide information aldeiattual packets being sent over
socket.

12

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

type=UNKNOWNJ[1325] msg=audit(1330001823.261:26): tabhemngle family=2 entries=6

type=SYSCALL msg=audit(1330001823.261:26): arch=400808{scall=102 success=yes exit=0 aOxk-bffe35d0 a2=b7824ff4 a3=8143fAems=0 ppid=1370 pid=1458
auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egidgil=0 fsgid=0 tty=(none) ses=4294967295 comm="iptabkee="/sbin/iptables-multi” key=(null)
type=UNKNOWN][1325] msg=audit(1330001823.265:27): tafilesr family=2 entries=6

type=SYSCALL msg=audit(1330001823.265:27): arch=400808¢scall=102 success=yes exit=0 alxe-bfa8bel0 a2=b7786ff4 a3=94dbGféms=0 ppid=1370 pid=1463
auid=4294967295 uid=0 gid=0 euid=0 suid=0 fsuid=0 egidgil=0 fsgid=0 tty=(none) ses=4294967295 comm="iptabkee&="/sbin/iptables-multi” key=(null)
type=UNKNOWN][1325] msg=audit(1330001823.269:28): tafilesr family=2 entries=7 type=SYSCALL msg=audit(13300@3869:28): arch=40000003 syscall=102
success=yes exit=0 a0=e=hfd44780 a2=b7873ff4 a3=86a62it®€ms=0 ppid=1370 pid=1464 auid=4294967295 uid=0 gid=il=l suid=0 fsuid=0 egid=0 sgid=0 fsgid=0
tty=(none) ses=4294967295 comm="iptables” exe="/spables-multi” key=(null)

Figure 3.2: Sample part of an auditd log file. Pararag, a2 ...correspond to arguments passed to
the system calls

3.2.2 |Iptables

Another option for tracking TCP connections is using iptallel, 15]. Iptables are already
utilized within the Spotify network, and each machine hasoivn set of firewall rules
(configured using iptables).

Iptables have additional module for checking the state dZB €onnection. This module is
called conntrack [16]. There are only four states avaitakien, ESTABLISHED, RELATED,
and INVALID . Unfortunately, these states do not correspond to TCP staseshown in
figure3.3. These states instead relate to the internal state of @ak@nd do not accurately
provide information about the TCP connection’s state.

The conntrack stateEw simply means the packet is the first packet coantracktracked
connections (most probably, that will beT&P SYN packet). TheESTABLISHED state
means thatonntrackhas seen traffic in both directions. TRELATED state connections
are the ones which are connected to anoHsaABLISHED connection. Finally|NVALID
connections do not belong to any category and should gépbmatropped.

In the TCP three-way-handshake context there are three gessiafore a TCP connection
is set up:SYN, SYN + ACK, andAcCK. This is where a slight, but important difference
between theonntrackstates and the TCP socket'’s states is.

13

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

[}
CLOSED

Passive open Close
Timeout /RST

LISTEN

SYN/SYN + AC Send /SYN
SYN/SYN + ACK

/

SYN_RCVD

SYN_SENT

SYN + ACK/ACK

\

ACK
Close /FIN ESTABLISHED

Close/FIN FIN/ACK
FIN_WAIT 1 ACK CLOSE_WAIT
ACK . Close /FIN
FIN +

ACK/ACK
CLOSING
FIN_WAIT 2 LAST_ACK |—

\ ACK
FIN/ACK TIME_WAIT

]

d

Figure 3.3: TCP state transitions

Therefore one way of tracking connections is logging a paaken the TCP connection
is in theNEW state (first packet has been seen). To identify the end ofdheextion we
can wait for aFIN from the server. However, both of these approaches are shiyaions.

As the NEW state only means that there has been a packet seen on onbuwidds not
yet agreed to initiate a TCP connection. As for a closing cotioe, theFIN packet simply
indicates that the server wants to close the TCP connecfidrdidl not receive &IN from

the client, it should wait for thigIN, and even after that there is still some time (on the
order of minutes) before the socket is actually closed.

To estimate the traffic bandwidth for each connection, onddcenablesEQ number
logging in the iptables. Having the sequence number forasiedacket and the first packet,
it is possible to estimate the total number of bytes sent.iptadles manual [17] explains
these additional logging options, including how to log ssare numbers.

14

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

We have experimented with these ideas, setting up the estjptablesrules and testing
whether it works in practice. However, despite the mecmani®rking, the biggest issue
is its efficiency. In particular how much the performance i server decreases after
introducing these changes in the iptables. In addition]dabe will quickly become very
large and this solution does not scale to collect data fragelaumber of machines.

3.2.3 Netstat tool

Another solution is using system tosg(or netstaj to list all opened sockets. Fortunately,
this is not a process blocking operation, therefore it iscigffit and causes minimal
interference with the operation of the server. Howevers #pproach needs polling to
capture connection start and end events. As a result thisagipis most useful when only
a snapshot of connections is needed. Finally, this apprdaek not enable us to collect
information about the number of packets or bytes trandfetret rather simply the number
of connections.

3.2.4 Collecting NetFlow information from network equipment

A more passive monitoring approach is to collect the flow datported by routers or

other network equipment using the NetFlow protocol [18]rt&ioately, information about

flows is sufficient for this master thesis project’s goals.aAsositive side-effect, this flow

information can be used for other purposes within orgarnatfor example, for analysis

of Denial of Service (DoS) attacks. However, these addiimses of this data lie outside
the scope of this thesis. As this approach seems the moseeffand suitable approach of
collecting data, it will be more thoroughly discussed latethis thesis.

15

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

3.2.5 Exporting NetFlow using fprobe

Sometimes NetFlow data emission from the network equipnsembt feasible or desired.
An alternative solution is to use a NetFlow collection istracture which offers the
advantage of good scaling, but this process is based upamirgriNetFlow data from
the hosts rather than from the network equipmé&iprobe a pcapbased Unix tool, works
in exactly this way.

3.2.6 Exporting NetFlow using a custom tool

NetFlow data can be emitted using tipeobetool. Unfortunately, théprobetool is based
on thepcaplibrary and its operation is costly as it must actively Iisten interface in
promiscuous mode.

However, it is possible to exploit the fact that Spotify ugeableson hosts to create a more
efficient network information collection tool using thibnetfilter_.conntracklibrary [19].
This is a user-space library providing an application paogming interface (API) to the
in-kernel connection tracking state table. Reusing auyiltdata about connection events
from the iptablesonntrackmodule is potentially more efficient than active listeninmgam
interface.

To experiment with this idea, we create@gthonscript which registers listeners faiEw
andDESTROY connection events to the library. We used Pythtypesmodule in order to
use the functions from the dynamically loaded library (Dlof)ibnetfilter.conntrack Each
event contains information about the network flow, in paifaic, source and destination IP
addresses and port numbers, protocols of transport andretayers, and a conntrack
connection ID. This Connection ID can be used to identifytsigrand ending events
associated with the same connection. After receiving thectionDESTROY event, a
NetFlow record for this connection is created. Several M&tFecords are then packed
togethef into one NetFlow protocol version 5 packet and transmitiadhve UDP protocol
towards an active NetFlow collector. We used the Python g@iackeation and parsing

2The NetFlow protocol allows up to 30 records in one packet.

16

3.2. MONITORING NETWORK TRAFFIC Chapter 3. Method

library python-dpki[20] for creating NetFlow packets Regular Unix sockets were used
for transmitting these packets. This script must be condigto work as a daemon process.
The drawback of this tool is that it may require installingdanal packages (such as
libnetfilter_conntrackandpython-dpkdependencies) and a restart of the machines.

3There are alternative packet craft tools, such as Scapy.
4The latest release needs a patch due to the existing bug fiaMepacket length calculation.

17

3.3. NETFLOW Chapter 3. Method

3.3 NetFlow

The previous section gave an overview of possible traffic itbdng approaches. The
option of emitting NetFlow data from network equipment hasadvantage of low impact
on the server’s performance. This is the reason why thissseanalyses the use of the
NetFlow protocol to collect information about network traffic flovsWe will use this
information for backend service topology analysis.

First, theNetFlowprotocol will be introduced. After this an overview of van® NetFlow
based monitoring and analysis suites will be given. We wilitivate our choice of the
SiLK suite and describe how it can be deployed on a large netwpedgcifgcally one that
interconnects several data centers. Such a network ofptaudtata centers, each with many
machines, is typical of a backend network, such as one us&gpabiyfy.

3.3.1 NetFlow protocol

NetFlow is a network protocol originally developed Wyisca It has been become a
standard and is available on other platforms, suchuasgper OSandLinux. The protocol
provides aggregate information for each network flow andlmaemitted by the routers
and other network equipment. Flow collection is based ongamgacounter: a received
packet which corresponds to already monitored traffic flavetethis counter for the flow.
The close of alTCP connection forces the device to export the flow related médron
immediately. Among other fields, MetFlowrecord contains information about source
and destination IP adresses, port numbers, protocol usddp@nber of complete bytes
sent. Table3.1shows the complete format of all the fields contained hedFlowrecord.
NetFlow packets are usually sent via the UDP protocol, bezdlow data is not critical
and it may create a big traffic load.

Version v9 ofNetFlowwas extended to support IPv6, MPLS, and other new featugjs [1

5Note that NetFlow data emission and collection are twomtistprocesses. NetFlow data collection can
be done using SiLK suite, while NetFlow data is emitted eifhem network equipment, or hosts (by using
fprobe or fcollector tools)

18

3.3. NETFLOW Chapter 3. Method

Table 3.1: NetFlow v5 record format [21]

Bytes| Field | Description
0-3 | srcaddr | Source IP address
4-7 | dstaddr | Destination IP address
8-11 | nexthop | IP address of next hop router
12-13| input | SNMP index of input interface
14-15| output | SNMP index of output interface
16-19| dPkts | Packets in the flow
20-23| dOctets | Total number of Layer 3 bytes in the packets of the flow
24-27| first SysUptime at start of flow
28-31 last SysUptime at the time the last packet of the flow was received
32-33| srcport | TCP/UDP source port number or equivalent
34-35| dstport | TCP/UDP destination port number or equivalent
36 padl | Unused (zero) bytes
37 | tcpflags | Cumulative OR of TCP flags
38 prot IP protocol type (for example, TCP = 6; UDP = 17)
39 tos IP type of service (ToS)
40-41| srcas | Autonomous system number of the source, either origin or pee
42-43| dstas | Autonomous system number of the destination, either oogimeer
44 | srcmask| Source address prefix mask bits
45 | dstmask| Destination address prefix mask bits
46-47| pad2 | Unused (zero) bytes

However, the prevailing version of the NetFlow protocoléssion 5, therefore this version
was chosen for my imlementations. Another variant of NetFle Sampled Netflow
(sflow[22]). In sflowrandom sampling is introduced in order to make data cobecti
more efficient. In this case only a subset of packets are w@ulf therefore flow records
contain estimations, rather than real traffic informatiBach sampling may induce errors
in analysis, as discussed in [23].

3.3.2 NetFlow based tools

There are several free NetFlow based tool suites availdlblis. section gives an overview
of the most widely used tools.

Flowd [24] is small, fast, and secuigetFlow collector. This tool focuses on storing

19

3.3. NETFLOW Chapter 3. Method

NetFlow data on a disk. As an advantage of this tool is thatfére Pythonand Perl
interfaces for raw data access. However, the lack of arslgsis is a drawback.

Fprobe [25] is a probe that collects network traffic data amdsit as NetFlow flows to a
specified collector. Although it is difficult to use as a monig tool alone, it is a vital tool

for testing, as will be described in the following sectioB.traffic from a local machine
can be transformed intdetFlowdata, enabling testing even before routers are configured
to exportNetFlowdata.

Nfdump [26] collects and processes data according to a comhirze interface. Nfdump

is a part of theNfsenproject. Although it has scalable data collecting featuielcks
analysis tools. In contrashfsenis a related project which can be used to visualize the
NetFlow data via a web interface.

Flowtools [27] is library and a collection of programs usedbllect, send, process, and
generate reports from NetFlow data. Flowtools was develdpe Mark Fullmer. The
architecture of this suite and tools is similar to K suite, described in the following
paragraph. A practical disadvantage of the suite is thastipported by only one developer
and lacks good installation and usage documentation.

System for Internet-Level Knowledg8iLK)[28] is a NetFlow collection and analysis suite
for large networks. It is designed to scale up to support \gge networks. Itis possible to
merge data from different collectors and send incremeratta files across the network. In
addition, SiLK has a powerful analysis suite which enabdes filtering, sorting, grouping,
and other analysis operations. Theref@&,K is a good candidate as a tool for Spotify’s
backend service correlation analysis. This suite has hdfltient collection and analysis
tools. The major reason why it is proposed as the most saeitbte is that it provides a
scalable and secure data collection solution. The follgvgiection will give further details
about SiLK.

20

3.3. NETFLOW Chapter 3. Method

3.3.3 SiLK suite for NetFlow

SiLK is a analysis and traffic collection suite developed araintained by the U.S. CERT
Network Situational Awareness Team to facilitate secuaityalysis of large networks. It
enables effective collection, storage, and analysis ofiord data. It runs on most UNIX
style platforms. The SiLK suite is a collection of tools, whimust be configured to work
together to achieve the desired effect. The most importants @re:

rwflowpack is a core tool which packs NetFlow data. It listens for themwek devices which
produce NetFlow records, converts these records to SiLK&ftr and then packs
and stores this data on disk for later processing or trarssomgo other network
nodes.

flowcap simply listens for NetFlow data and prepares it for transiois. It is usually used
when a collector must be near the NetFlow emitter, but whep#tking of data may
be done on separate machine.

rwsender sends files to a receiver. It watches an incoming directorynéw files and sends
them to a receiver when new files are observed.

rwreceiver creates a connection wittvsenderand fetches incoming files, which are stored to an
output directory. Other tools, such egflowpackor rwflowappendusually observe
this directory and automatically process files which aregigthere.

rwflowappendreceives small batches of NetFlow records and stores thémadrorganized by hour.

3.3.4 SiLK Deployment scenarios

The best layout for a SiLK monitoring infrastructure depgod various factors, including
analysed network size, number of collectors, hosts’ comguiower, and others factors.
Some of possible usage scenarios are depicted in the Sittéllatson guide [29].

SProperiatary storage on disk format

21

3.3. NETFLOW Chapter 3. Method

In the simplest single machine scenario, a dedicated madisiens for NetFlow data and
stores this data on its disk. Analysis of this data is alscedmmthe same machine. In this
case it is sufficient to run thevflowpacktool. This approach has the advantage of being a
very simple configuration (as shown in figu).

generates netflow

Analysis suite

write

Silk Data

Figure 3.4: Single machine scenario. Flow packing, storage and analysis on thersactgne

In the second scenario (shown in figl®), data is collected locally and stored remotely.
In this scenario collectors also pack data by runmwfowpackand usingrwsenderto
transmit data to the remote analysis machine. At the arsalysichine this data is stored
and processed after being automatically fetched thenibgceivertool.

exports netflow

rwilowpack

rwsender
i
b

'

1

[packer working‘] [packer destination] J
/

@Gﬂ

append incoming

Figure 3.5: Local collection and remote storage scenario.

In the most complex scenario (shown in fig@té), data is collected remotely by collectors,
then transmitted and packed on dedicated remote machinesrefbre these packing

22

3.3. NETFLOW Chapter 3. Method

machines neither collect, nor store flow information forlgsia. They simply forward
the collected data. The difference between the scenariotdepn figure3.5and this more
complex scenario, is that it may utilize several analysismrges and the NetFlow data is
packed and analysed at different locations. This more cexngtenario facilitates scaling
up the amount of NetFlow data that can be analyzed and enthliideanalysis to present
the analysis closer in time to when the data was collected.

netflow data

'

1

[packcr incoming‘] [packer working‘] [packer destination] J
/

append incoming silk root

Figure 3.6: Remote collection and remote storage scenario

The most suitable scenario to be deployed in the case off§to use the intermediate
scenario depicted in figuz5with local collection and remote storage. Given that separa
powerful machines may be allocated for monitoring, it wondd be efficient to run only
collectors on the monitoring machines (as was shown in fi@u8e Instead collectors
can also pack data before transferring it to other machimearfalysis. Therefore a single
central analysis machine could organise and append packadcdming from different
collectors. Scalability is also greater when main comparat and data processing is
moved towards collectors (i.e., exploiting distributededarocessing to reduce the amount

23

3.3. NETFLOW Chapter 3. Method

of data that has to be distributed and analyzed). The simptenario (as was shown in
figure 3.4) may be not suitable due to big load on one processing maelnici¢he fact that
collector can be too distant from NetFlow sources.

3.3.5 Deployment of SIiLK

To facilitate deployment of the SILK suite, we had to confey8iLK to work in the
production environment. We had to adjust the package to watk the automated
configuration management software used in Spotify. Thidigoration was done in such
way that it would be easy to add extra NetFlow collectors. Thenections between
collectors and analysis machine were secured by using TU&i(gin feature of SILK
rwsenderandrwreceivertools).

3.3.6 Configuring exporters

Juniper Networks knowledge base [30] contains an exampseitihg up NetFlow data
export in JunOS. In order to export NetFlow data, a samplirgnvll rule should be
defined. A sample configuration of such firewall rules is shawappendixA.

24

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

3.4 Creating analysis tools

Information about network flows must be processed in ordientband analyse the backend
service dependencies. Although SiLK provides some comrtiaadools for analysis, its
focus is primarily on information retrieval, rather thamualex processing.

This section introduces the SiLK based analysis framewadnichvis essential for our

NetFlow data analysis. First, an overview of the availableKSanalysis tools is given.

After pointing out the limitations of these tools with respw the thesis project’s goal, the
motivation and specifications for a custom analysis toolgaren. This is followed by a

description of the design an implementation of such toois Tdwol will be used as a base
for the analysis of the NetFlow data presented in the nexitena

3.4.1 SiLK as an analysis suite

SiLK contains various command line analysis tools. Somé&es$é¢ tools are:

rwiilter for filtering packets by time, IP addresses, or port numbers
rwcut for displaying fields of filtered packets

rwuniq for grouping packets based on the value in a specific field

Although for some specific set of analysis tasks these toalg Ioe more than sufficient,
there are some important considerations which must be deresi as we plan our data
analysis.

Command line tools In network monitoring it is important to understand datande
being able to display this data visually is advantageous.wéver, SiLK only
provides command line based analysis. Connecting thess toolvell known
plotting suites such a&SnuPLOTrequires manual scripting.

25

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

Limited filter and grouping tools is limited by the SiLK tools, for example, itis practically
impossible to use a combination of filters (such as the lédgparatorsOR and
AND). Similarly, only one level of aggregation is allowed witly@uping tool.

Limited granularity Because SIiLK data is stored on the disk and organized in hourly
buckets, in some situations the tools are limited to aggmegdata only by the hour.
When investigating special cases, such BPaSattack which could occur in a short
time period, there is a need for greater granularity.

Incomprehensive usageln order to master SiLK analysis tools, it is important to arstand
the strict format for each command and its options. For exenwphen providing
a time bin interval in the grouping tools, the parameter isspd as a number of
seconds. This may be inconvenient when time bin is in ordéioafs. Some tasks
also require using extrelnix command line tools, such asvk sort, and others -
making it even more confusing for the user.

3.4.2 Motivation for a specialized analysis tool

In order to understand the dependencies between servicgsuld be useful to present
visual plots of the data. However, given the tools availabth SILK, it was clear that some
additional tool was necessary for converting SiLK data abwiflows into meaningful

plots. One of the reasons for this is that the definition ofraise in the Spotify’s context

can not easily be directly expressed in terms of netflowsthéamore, grouping by service
is not possible using the built-in SILK analysis tools.

As with all analysis tools, even when there exist predefinisdal plots, great value is
added if the presentation of data is suitably adapted to ¢k€suneed. For example, one
could be interested in the correlation of subsets of sesyioeservices deployed only at
one Spotifysite

The necessity of advanced data processing and plottingolead dolution which grew
into a small framework for analysis. A benefit of the proposesnework is that this
framework can be used for solving problems other than sirfipying and monitoring

26

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

service dependencies.

3.4.3 NetFlow analysis and plotting language

In order to ease the process of NetFlow information anglysesdevised a small language.
This language is as simple as possible, allowing groupifigrifig, and importing custom
functions fromPythonmodules.

There have previously been attempts to create query laeguag the NetFlow data in
order to improve the analysis process. In one of these attepMarinov defined a query
language in order to describe and identify the occurrencebiiork transform patterns in
a collection of flow records [31]. The main purpose of thisglaage is to detect various
attacks. Several other tools use SQL based syntax. The fioap@re tools which use
Berkeley Packet Filter syntax (such as one used in tcpdunip tdowever, as far as we
know, SIiLK has the most advanced tools for analysis and gngy@lthough as we have
seen it is still incomplete with respect to goal we wish toieeé.

The grammar of the language that we propose can be descsbiellicavs in BNF:

<program> .= <statement> ; <statement> ..

<statement> filter <expression>

| gfilter <expression>

| group <expression> as <name>

| emit [<expression>, ..] (expression, ..)

| import <literal>

| option <literal> <literal>

<expression> ::= <expression> + <expression>
<expression> * <expression>
<expression> / <expression>

I
I
| <expression> or <expression>
I

<expression> and <expression>

27

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

| (<expression>)
| <name>(<expression>,..)

| <literal>

In the following description of the proposed language, infation about a NetFlow record
is referred to simply as aode This is the smallest data unit for data processing. A set of
nodes form aontext

Statements are executed sequentially in their order ofepoesin the script. With each
statement the interpreter goes deeper in its recursiohuatikit reaches aemitstatement.

The grouping statemegtoupuses a function to transforncantextinto potentially several
contexts The grouping function accepts a NetFloawdeas an argument and returns a key.
The meaning of the key depends on the grouping function. kamele, it can be the
configuration class of the host identified by the destinativaddress, or a timebin index
identified by a starting timeNodeswhich evaluate to the same key are grouped together
and form distinct contexts. The following statement willdecuted iteratively in each of
the newly created contexts.

The filter statemertilter uses a function to filter a set abdesfrom acontext The filter
function accepts aodeas an argument and returns a positive integer value ifrtbde
passes the test. The filter is iteratively applied to all sodea context. Nodes which are
accepted by filter form a new context, which is passed to theong statement.

The emit statemergmitis used to output some data which can be plotted. As an ojptiona
argument (specified in brackets) it accepts a list of expyasswhich define a key. If a
key is not specified, then all keys from the previously exedgroup statements are used
as a key. A required argument is a list @fpressionswhich define the emitted values.
Therefore aremitstatement emits a tuple of keys and values (for example, adelg be
weekday, and value could be number of connections).

An expression evaluates to an integer value. Logical (Boglgalues are simulated as
integers, with positive values meaning the boolean vdlue Expressions may contain

28

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

regular arithmetic operators (such as addition and mid&gbn), logic operators (such
asand & or), parenthesis, and function calls. Either built-in, ortous functions can be
called. The latter functions are imported using thgport statement. Among the most
important built-in functions areountandsum The countfunction returns the number of
nodes in a context. Since a and as node is a NetFlow item, the wdcountliterally
means the number of connectidrfsr the current context. Similarly, theumfunctions
iterates through all nodes in a context, fetching the attelspecified as the parameter for
thesumfunction, converts the value of this attribute to an integyedt calculates a total sum.
For examplesum(’bytes’)would count total number of bytes for all NetFlow nodes in a
context

Section3.4.5 gives examples to demonstrate language features, syntestrgots, and
potential uses. Appendi gives a more detail specification of available language
constructs. Appendi® gives an overview of available built-in functions.

3.4.4 Extendibility of the language

There is also ammport statement which allows the programmer to import cusRython
groupers or filters to extend the framework. This flexibilitsyessential for our thesis
project’s goal, as we can define grouping of NetFlow infoioratoy service for the
Spotify’s context.

The importing module of the interpreter recognizes grosiggy classname. Custom
groupers should extend the claBaseGrouper All functions in the custom module are
classified as filters. We chose to implement groupers asedass they iterate through
many nodes and may need initialization or precalculatiospied up a grouping process.
Our interpreter is case insensitive and does it best toifgiehe function if it is not fully
gualified.

’Since usually exactly one NetFlow record is generated fahezonnection, these terms are used
interchangeably. Flow is exported as soon as the sessitwsed; which is identified by TCP-FIN (finish) or
TCP-RST (reset) packets.

29

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

3.4.5 Examples of scripts

This section gives several examples of how the proposediéagggcan be used.

The script shown in figur8.7 will help us to understand whether there was an increase in
the number of different source IP addresses sending IMCR pingng a suspectddDoS
attack. The first line filters out the ICMP records. The secor@divides the data into time
bins of one minute duration. Finallgiff in the third line calculates number of different
source IP addresses (’sip”) in each timebin.

filter protocol("icmp”);
group time(bin="1 minute”);
emit diff('sip’)

Figure 3.7: Looking for ICMP pings during a DDoS attack

Increasing number of different source IP addresses magatelihaving a DDoS attack.
The program shown in figurg.8 can be used to further investigate the country of origin
causing an overload. The first line groups a defined time ramgetimebins (with each
timebin’s duration defaulting to a one minute period). Teead line divides the data in
each timebin into context source country, which is deteeuliby the source IP address.
Lastly, sumin the third line calculates the sum of bytes for each contefined by the
nested grouping.

group time(from="yesterday”, to="now”);
group country("sip”);
emit sum(” bytes”)

Figure 3.8: Which country’s requests generated the most traffic in the last 24 hours
The last example shown in figuBe9 produces the service dependency graph as a stacked
bar chart. In this casdip indicates the destination IP address, whkifeindicates the source

IP address, hence the correlation of services with a giverewat sip and given value of
dip is a dependency.

30

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

group servicegrouper(’'sip’) as servicel;
group servicegrouper('dip’) as service2:
emit [servicel , service2] sum(”bytes”)

Figure 3.9: Correlation of flows from various services

3.4.6 Implementation of analysis framework

The helper framework is written in thReythonprogramming language and is based on a
top-down parser. This parser uses fhehonlexer to convert a program’s source code into
lexems and a custom tokenizer to convert these lexems ikém$

A third party Pythonlibrary is used for the actual plotting. Among the severaldidate
plotting libraries, we chose to us#atPlotLib[32], because it is stable, well supported, and
has a very good gallery of examples.

Our framework consists of the following components:

Lexer Decorates Python lexer to split script source into lexems
Tokenizer Uses top-down approach parsing to create a syntax tree efisok
Runner Runs statements from syntax tree

Grouper Runs grouping logic

Importer Run-time python module loader

Builtin Contains some built-in functions such as geolocation grajpenctions

sum diff, andcount

Context Data structure for NetFlow data storage. A context consistedes
(NetFlow records)

Flusher Flushes program output to plotter

8]t was also possible to use an open source based parsingdibta build token tree, but the custom
parser is easy to extend and was suitable for this thesisqiroj

31

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

Plotter Makes the best effort to render given output data as a plot

Figure3.10depicts the overall design of the system.

Script

A A
Python Lexer

A 4

Tokenizer

Interpreter

bw Flusher
Json Flusher Chart Flusher
Painter

Figure 3.10: The design of the analysis framework

DNS mapper

Some attributes of a NetFlow node can be derived from othestieg attributes, for
example a source country code can be derived from the sobraddress. These derived
attributes are static and do not change during runtime. thitiad, they might even be
not needed in calculations. Therefore these derived atéshsupport a lazy loading and
caching mechanism, thus they are only evaluated when tleegaually used and this is
done at most once. Lazy loading is done transparently ta athsses.

3.4.7 Implementing custom groupers

Geo grouping Grouping by geographic location (according to the souragestination IP
address) can be useful for various purposes. For exampke ibe used to examine where

32

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

the customers of a specific Spotify access point are based.

Grouping by the geographic location was added to our framewy using thePython
GeolPlibrary [33]. This library provides functions to fetch a cdty code or the full
name of the country given an IP address. Our geographic grdages one argument as
an additional parameter to indicate what IP address shaulgséd for this translation (i.e.,
the source or destination IP address) and utilizes funstiamm theGeolPlibrary in order
to return a country code as a string.

Our geographic filters exploit the same library to filter Neti* nodes matching certain
geographic criteria. Logic operatossiD or OR should be used to support more complex
filtering scenarios, such as filtering nodes for a group ohtoes.

Grouping by serviceDespite rapid changes in network infrastructure, therecareently
a limited number of ways to determine what is the destinasiervice according to the
NetFlow node. The most important attributes of a NetFloworddi.e., node) are the
destination IP address and destination port number.

As described earlier in sectidhl, one of the approaches is to use DNS information to
recognize the service. The DNS is a binding glue in the batkgatem and is widely used
to locate other services. The problem is that the completei@ of IP address to service
mapping is necessary for analysis and grouping purposest wauld be too expensive
to query the DNS server for each service, instead we chosarse DNS records instead.
We used théPython DNSlibrary[34] to transfer all DNS zone files. This Python libya
supports DNS security, which is needed to pass a secret geyher with a query (as a
complete zone transfer requires authorization). Follgwime transfers, we extracted all
SRV and A type records. As DNS records may be changing rapidiige DNS servers,
there exists a potential problem of DNS records being ayréadhlid during the analysis
process. This is further discussed in the Future work sectimwever, in the case of real
time analysis there is only a small chance that the DNS reowiitibe altered between the
time of lookup by the client and the time of the lookup by thalgsis tool. This is futher
discussed in sectidh. 2

The SRV records map service hame and protocol tuple intamfistost names and port

33

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

numbers which define service providers. The host names cegsbk/ed to IP addresses.
Using this information we created a reverse entry for eacti I®Rord, this way generating
the required mapping that will be used later to identify tlogv8l. It is guaranteed that each
host and port number pair will have an unique SRV record aatatwith i®. However,
this mapping must be updated regularly (for example, sétieras per day), because DNS
records are altered regularly.

Another approach is grouping NetFlow records by configaratnanagement classes
associated with a destination host (further referred tgpbirasclasses However, these
classes do not always correspond to services. In additoone $10osts may be tagged with
several classes. In the current implementation, when therseveral classes associated
with a host, then the first one in alphabetical order is pickdowever, such a situation is
not usual. An alternative approach in such cases would bsg@nother type of ordering,
for example by priority associated with each class. Suchaify list must be managed
and that is a major disadvantage of a class based approadlyFsome classes may be
irrelevant for the analysis of services. Despite theseddmatages and need the for manual
supervision, grouping by host class can be a potentiallgessful way to identify a service.

Caching The information abouDNS records and configuration management classes
corresponding to the hosts may change rapidly. Therefasediésirable to apply caching
mechanisms. Our framework supports caching of data of atramptime interval (which
defaults to one hour), so that processing consecutive egiakes less time. Cached data
is stored iNJSON format files on the disk. Service mapping information is teit from
these files, unless the file modification date has expiredudh sase the cache is updated
to reflect the recent situation of DNS and host classes.

3.4.8 Connecting analysis tool to SiLK

Our analysis supports two methods of inputting NetFlow da&0ON and standard input.

9Generally such a mapping might not be unique, however itqueriess is ensured by the Spotify’s
architecture.
100bject serialization format

34

3.4. CREATING ANALYSIS TOOLS Chapter 3. Method

The JSON input method reads NetFlow data from a JSON objeathwias a strictly
defined structure. This approach is useful if suites othan thiLK are used for NetFlow
collection and storage. In addition, it enables offline ps®sing and data migration.

The default input method is reading from standard input. ifdter andrwcut tools of
theSiLK package are used to print network flows to standard outp@ r@$ulting standard
output is then redirected to the analysis framework by usingx pipes.

35

Chapter 4

Data Analysis

The goal of this section is to analyze backend service atrogls using information about
netflows. These correlations are best depicted using thedeveloped for this purpose.

Section4.1 provides an analysis of one of Spotify’s services using ecamework. It
describes what is the expected behavior of this service antpares it with the results
obtained from network data. Sectidn2 describes how a full Spotify service topology
tree can be obtained by using these tools. Two possible apipes of classifying network
flow as services are compared4rl. Sectiond.5 compares the efficiency of two possible
methods of collecting network data from the hosts.

36

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

4.1 Analysis of sample Spotify service

This chapter provides an analysis of one of Spotify’s badkesrvices - browse (further
referenced to simply dsrowseg using the collected NetFlow information and the analysis
tools built for this purpose. Th8rowseservice looks up metadata data and acts as a
mediator which combines data into browsable results. lirnst XML or JSON based upon

a request from other services.

According to services documentation, this service shauddrd requests to the following
services:

Search All search requests pass through browse. The requests ravartted to search
which responds with lists of IDs.

Toplist Works similarly to thesearchservice, but returns a truncated list of matches.

The communication between these services and the sevosese have an expected

behaviour. It is important to note that communicationsgrat not necessarily correlate to
actual Spotify users’ behaviour. Sample data was colldctealone hour interval from one

of the production machines which runs th@wseservice. The analysis in the following

sections is based on this data. Scripts which perform arysissednd generate plots were
written in our new special purpose language (this languaagedescribed in sectidh4).

4.1.1 DNS based service classification

One of the possible ways to classify outgoing connectiommged on DNS SRV records
as described earlier in secti@nl As each service in Spotify has SRV records pointing to
a specific location, defined as a hostname (translatable i® address) and port number
tuple, itis possible to match each flow to a service based iipdestination IP address and
destination port. Destinations that do not match any serate classified ather(mostly
this is communication with access points). The script showiigure 4.1 performs a DNS
based classification of destination IP addresses.

37

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

import ’'services ’;
group servicegrouper('dip’);
emit (count() means 'number of connections’)

Figure 4.1: Script for classifying outgoing connections using DNS

This script produces a DNS based outgoing service clagsiiicehart. An example of such
chartis shown in figuret.2 It can be seen that the servim®wseactually communicates to
servicessearchandtoplist, as was expected. In addition, this chart reveals commtioica
to other serviceddist, search suggestvebserviceandinfo.

Services accessed service browse grouped by DNS

oo
o

~
o

(<))
(=]

w
o

N
o

w
o

N
(=]

Percentage of total connections

[
o

/,
2,
1=

v x (¢ o\ O
NS e° 32 o A
o o o < o

e?'?"c

Figure 4.2: DNS based classification of outgoing connections into services

4.1.2 Configuration class based service classification

As each server machine usually is dedicated to one speaificegeall of them are tagged

with a specific configuration class name. This approach helgsale new services and
eases the migration process. Machines which run differpotifg backend services are

tagged with different class names. Therefore fetching tasscnames associated with a
host is also a good approach to classify services. The strgavn in figuret.3 performs a

38

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

service classification based on configuration managemasses.

import ’'services ’;
group classgrouper ();
emit (count() means 'number of connections’)

Figure 4.3: Script for classifying outgoing connections using host classes

This script produces a configuration management class Is#seite classification chart,
such as shown in figuret.4. In addition, connections were also grouped by geographic
site. Because IP addresses do not reflect the geographimlocdtmachines in Spotify’s
case, site classification is instead based the destindRi@udiress. The chart proves that
(aside from a small insignificant exception) threwseservice communicates other services
running on machines within the sarsige and therefore no inefficiencies were discovered.

7o AN SRS SO SURSRNS UURNNNS USRS WS SO SO S SR O
L S B T T
sob bbb h b

Percentage of total connections

o R R N L
. © S .4© .o X X ol
S Q¥ e W RO (S o o
5 o' (C % 09 T QY (X o
& N 00 e® «°
SO
B

& o &
o (o0 GC;,QO

C
<

Figure 4.4: Host-class based classification of outgoing connections into services.

Let us introduce a few modifications to the chéd. First of all, we indicate to sum the
number of bytes transferred instead of the number of cormorect In addition, we do not
show access points, as we think that they should not be redarsl service. Finally, we
skip services which are insignificant (comparing averagesper second to a threshold).

39

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

The desired effect can be obtained by using the script shovigure4.5

group classgrouper(’'dip’) as gl;
gfilter not var(’'gl’, ’accesspoint ’);
gfilter bps() > 100;
emit [gl] (bytes () means ’'bytes’)

Figure 4.5: Script for advanced network flow filtering

This script creates a chart, such as shown in figuée Note how the volumes for each
service differ when number of bytes are measured in conttvasimber of connections as
it was shown in figurel.4.

40

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

Services accessed from browse grouped by class

60

sob b
%]
[
g8
B A0
E
o
B B0
° ; : : ;
D
©
8
3
G 20 e
j)
[« 9

B S

o ;

o e

X ‘\\4 R
,b(\f' & 0@ (,OQ) &
R & O S

N & &

& 2

Figure 4.6: Number of bytes transferred to various services based on host @aed blassification.

Finally, figure 4.7 shows a classification by class additionally grouped by #tevork to
which a destination IP address belongs. It can be seen thaenteption of access points
(which have public IP network addresses), all services comoate on interfaces within
internal service network.

41

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

Services accessed from browse grouped by class
—T— T T T T

60 (@ 78.31.X.Y/23 connect tions
[192.165.X.Y/27 ns
(B 194.71.X.Y/22 c
B 192.165.X.Y/27 ns

50

30

20f

Percentage of total connections

10f -

Figure 4.7: Outgoing connections to various services (based on host-class classificgrouped
by the destination network

4.1.3 Overtime classification

Itis also valuable to understand the dynamics of servicen@gncy, i.e. how communication
patterns and traffic volumes change within time. The schpin in figure4.8 groups a
one hour inspection interval into one hundred smaller timehnd gives a more detail view
of services which are communicated in each of these smatierihtervals.

import ’'services ’;
group classgrouper() as g2;
group time(bins='100") as g1l;
emit [gl, g2] (count())

Figure 4.8: Script showing service communication dynamics

The result of this script is shown in figu#e9. This shows that communication fraomowse
to most of services is smooth and not spiky with an exceptiocoommunication to an
accesspoint. In this concrete example, communicationdesacpoint had around 5 minute
duration repeating patterns.

42

4.1. ANALYSIS OF SAMPLE SPOTIFY SERVICE Chapter 4. Data Anagys

Services accessed from browse grouped by class
T T . T :

— spotify site connections — toplist connections
— messaging connections logarchive connections
— search connections — playlist connections
— accesspoint connections — open connections
: : — certs connections — monitoring connections
e 4 IR e e searchsuggest connections backups connections H
: : — configuration connections

Number of connections

Figure 4.9: Dynamics of the number of connections to other services (host-classdba
classification)

43

4.2. SERVICE DEPENDENCY GRAPH Chapter 4. Data Analysis

4.2 Service Dependency Graph

Once network flows are classified into services, it is posgibtonstruct a graph, depicting
service dependencies. The detail semantic analigsit in scope of this thesis. The width
(thickness) of the graph edge is determined using a logaitthule taking the number of
connections as a parameter. The graph structure is theessqat irDOT language [35]
and Graphviztool [36] is used to create a visualization. An example ofhsgaphic is
shown in figure4.102.

The graph structure is created by a special module in ourdnark. The framework has a
special flushetcalled GraphFlushemwhich instead of rendering a chart, updates edges of
the file storing the graphal structure. After creating a raapf structure, postprocessing
takes place. During this postprocessing the most insigmfiedges (i.e., those not
exceeding a configurable threshold) are deleted and thelieggeidth is calculated.

Figure 4.10: Service Dependency Graph. Bubbles represent distinct Spotify seamit edges
dependencies between them.

LFor example, node’s link to itself may indicate existingtdizited service.
2The actual service names are hidden to avoid revealing coyrgraprietary information.
3Section 3.4 describes flusher concept.

44

4.3. EXPECTED VS. REAL SERVICE BEHAVIOUR Chapter 4. Data Analysis

4.3 Expected vs. real service behaviour

The real-time data indicated a necessary update to anrexssivice topology graph which
was obtained by interviewing system owners. However, thaildeof this process cannot
be revealed due to the high sensitivity of this specific dites possible to automatically
construct a graph which shows the differences between tilearel expected topology
graphs. However this is left for future work.

4.4 Comparing classification methods

We examined two way of classifying services. The first metisdshsed on DNS and the
second is based on configuration management classes. Bethtien we propose several
performance evaluation criteria and use them to compaterhethods. We definesults’
accuracy setup timeandexecution times the three most important performance factors.

We defineaccuracyas the ability to classify networks flows servicesas defined in this
project as correctly as possible. The reference evalu@itiased on expert knowledge.
The setuptime is defined as the time needed to perform precalculatidren the cache

is expired. Theclassificationtime is defined as time needed to classify network traffic
information from a one hour period, given the cache (comtgiprecalculated auxiliary
data) is already available.

DNS based classification produced bettecuracy Although class based classification
identified more network flows, it had an undesirable effeaholuding supporting services
such as monitoring. Approximately 30% of classes does nettly relate to services.
Fortunately, these classes usually constitute a smatidraof total network traffic volume
and can be removed by postprocessing as was describedionseet

The class based classification had a slightly smaller set &s fetching class information
from database was on average slower then executing sevBi@lZdne transfers (32.2s
compared to 18.2s). Therefore initialization of the DNSduhslassification is faster.

45

4.4. COMPARING CLASSIFICATION METHODS Chapter 4. Data Analysis

Despite quite significant performance differences for gladation step, the calculation
of the DNS and class information caches is strongly depédratethe implementation and
its performance could be optimized.

When auxiliary data was available, the actual classificatiore was similar for both
methods (DNS based grouper is about 5% slower in classithi|@game amount of flows).

In principle, it is possible to mix DNS and class based apgitea into a hybrid classifier.
However, combining information from two distinct sourcesa meaningful way is not
trivial operation.

Table4.1summarizes the above observations from these comparisons.

Table 4.1: The comparison of classification methods

Feature DNS based Configuration Class based
Accuracy Higher Lower
Setup Faster Slower
Classification| Similar Similar

46

4.5. COMPARING DATA COLLECTION METHODS Chapter 4. Data Analysis

4.5 Comparing data collection methods

This sections compares two possible data collection msthadthe time of writing this
thesis probably the most efficient method, NetFlow emis&igrihe network equipment
was still technical impossibfe Therefore as an transitional solution, we decided to cblle
network information from the hosts.

This was achieved by gaining access to a set of productiomhimeg for each key (critical

for Spotify’'s backend and customers) service. We ran twiedint tools which aggregated
traffic passing over the local interfaces, converted thia d#o NetFlow format packets,
and transmitted these packets to a ren@itK collector.

The first tool we have tested is theapbased toofprobe(described in sectioB.2.5. This
tool actively listens to the interfaces in promiscuous modefortunately, as all packets
must pass through the central processing unit, this is piatlra costly process. Therefore
we created an alternative data collection tool which exg@bconnections from the iptables
conntrackmodule (as described in secti8r2.6.

In order to compare these two data collection methods, webadin tools seperately in

two consecutive hours and measured their CPU usage and impdbe overall server
performance. Table4.2 shows measurements of the performance impact on these set of
sample machines during the tesfThe percentage of CPU resources used was obtained
by dividing the CPU usage of the collector process by the ©RI usag® The column
connectionsshows the relative traffic volume among measured servicésrims of the
number of connections. The extended version of the resswftthese measurements is
available in appendiB.

41t seems that switches need a firmware upgrade before Netflowe enabled.

5The actual service names are obfuscated.

6Total CPU percentage was computed by running the Ursxcommand and usingwk to sum
percentages. Note that total CPU may exceed 100% when neslchg'multiple cores.

47

4.5. COMPARING DATA COLLECTION METHODS

Chapter 4. Data Analysis

Table 4.2: CPU for data collection compared to total CPU

Service| CPU for fprobe| CPU for fcollector| Connections
AP 3.7% 0.8% 12.1%
SC 4.7% 0.0% 26.2%
us 4.5% 2.4% 12.0%
PM 5.7% 1.0% 5.0%
PM4 7.7% 0.1% 1.3%
KY 4.1% 1.4% 1.3%
TR 3.4% 0.2% 30.5%
NT 3.1% 2.6% 11.8%

It can be seen that running the data collection service amhyatoon servers using ttiprobe
tool required from 3.1% to 7.7% of the total CPU time. In costrdata collection using the
custom toorequired from 0.0% to 2.6% of the CPU time. The CPU usage difecsaiuse
of various external factors, such as the difference betwleeservers’ technical potential
(i.e., due to differences in the CPU and processor boardtaothre), intensity of traffic
volume for the service, and others. Despite this, the taljgessts that the custom tool
(based on conntrack connections table) is a more efficigorbaph to collect data from the

hosts.

However, data collection from network equipment is ideatifas preferred data collection

method.

48

Chapter 5

Conclusions and Future work

The goal of this chapter is to summarize the results that weleeved. First, some
conclusions will be drawn. Following this is discussion bk tproblems that were
encountered. Finally, the future work section suggestst wtieer related problems can
be solved using the techniques described in this thesis.

5.1 Conclusions

Our work demonstrated that it is possible to identify sesvaependencies by simply
observing network behaviour and processing communicgibterns.

In this thesis project, we exploited the fact that Spotifigackend services could be
identified in two basic ways. The main approach is ugdMdS This is a natural approach
due to fact that services uEiNSthemselves to locate other services and DNS is used to
facilitate scaling and mobility. We also applied anothgoraach - determining the service
based upon the configuration management class of the hoseudg this introduces some
bias, because some classes do not belong to a service defastit is defined in this thesis.

Using the collected NetFlow data we created a service tgyajpwaph, which depicts the
communication relationships between different servidés.compared this with a similar

49

5.1. CONCLUSIONS Chapter 5. Conclusions and Future work

graph obtained by interviewing the various system ownenss fielped them to notice and
correct inaccuracies in the service topology graph frontesgsowners. In addition, our
topology graph has weighted edges, thus it is easy to sedwliges have the most traffic
volume.

We used the NetFlow infrastructure and network data catieaif host technique to obtain
the data for analysis. However, a lot of effort was put to stigate the more natural and
efficient alternative - NetFlow data collection from netw@quipment. We learned the
lesson that it is important consider the risk of not beingablimplement a solution due to
the external limits (such as organization’s policies).

Besides the main goal of this thesis (comparing expectedealdime service behaviour),
we achieved several other results.

NetFlow infrastructure We proposed and set up an infrastructure for collecting the
NetFlow information. The suggested approach uses the SiLK
suite and a deployment scenario with several collectorsaand
central storage and analysis machine.

Collection on hosts We compared two methods of collecting network data on hosts.
Our custom tool based aronntrackconnection table appeared
to be more efficient than usirfgrobetool.

Analysis language We designed and implemented a prototype of the languagelaime
at NetFlow data analysis. While it was a natural step to ease
our own analysis, this language interpreter can be usedtier o
important network traffic analysis tasks, such as the arsabfs
denial of servicDDoS)attacks.

Utilities for Spotify Some tools necessary for analysis were found to be missing
during the thesis project, for example an automated toadkto |
networks which belong to a specific Spot#iyeand a tool which
could map an IP address and port number tuple to the Spotify
service using DNS. These tools were implemented and can be
now used bySREteam to ease their daily operations.

50

5.2. DISCUSSIONS Chapter 5. Conclusions and Future work

5.2 Discussions

It is clear that the definition of the service depends on tlgamization. Therefore, we
chose to create a more flexible solution and created a sepamatysis language, which
allows the user to integrate other method of identifying rise. Therefore the approach
could be applied in other organizations.

Due to the dynamic nature of DNS and the dynamics of the backetwork infrastructure,
it is practically impossible to have consistent data overmalperiod of time. For example,
DNS entries may point to different IP addresses on consecdtys. Additional effort
could be made to enable long term service related queriesseliools would have to take
the information from DNS as a function of time and store thimimation into a database
for later analysis. Alternatively, instead of triggerindNB information cache update by
the analysis script, an update event may occur when a chardd$ server response to a
specific query is observed by sniffing. However, a new DNSnekaddition and temporary
removal is a more often operation than altering record totdoi the different destination.
The removal of DNS record does not cause problems for asalyscause services simply
stop using the removed destination address. Therefoheuah it is important to consider
the dynamics of DNS, it is not a problem in practise.

5.3 Future Work

It would be also interesting to combine information from tgwnfiguration files with the
information gathered by observing network flows. Such arr@gugh could introduce an
alternative perspective to the results.

For the purpose of analysis, we collected data from one mtamumachine per service.
Results would better reflect the actual situation if more nrehwould be sampled.
However, it is a trade-off between accuracy and efficiency.

Section4.2 described how a real-time service topology graph can barwta Provided

51

5.3. FUTURE WORK Chapter 5. Conclusions and Future work

that Spotify architects maintained a similar graph for expé dependencies, it would be
possible to generate a graph showing differences betwesa tiraphs. This solution would
require a strict service naming convention (i.e., ruledfljigon of a utility for defining such
dependencies, and a consistent contribution of this indéion from the system owners.

It would useful to have automatic alerts, when large charggesir in communication
between services located in differesities

Information gathered from netflows combined with our detilenguage could be used for
other purposes, for example examining potential DDoS ledtac

52

Bibliography

[1] Spotify. Background information Press Spotityttp://www.spotify.com/
about-us/press/background-info/, 2012.

[2] P.V. Mockapetris. Domain names - implementation anctgjation. Internet
Request for CommentRFC 1035 (Standard), November 1987. Updated by RFCs
1101, 1183, 1348, 1876, 1982, 1995, 1996, 2065, 2136, 2137, 2308, 2535,
2845, 3425, 3658, 4033, 4034, 4035, 4343, 5936, 5966.

[3] A. Gulbrandsen, P. Vixie, and L. Esibov. A DNS RR for spgtifj the location of
services (DNS SRV)Internet Request for CommenRFC 2782 (Proposed
Standard), February 2000. Updated by RFC 6335.

[4] A. Keller and G. Kar. Automated Generation of Dependelindels for Service
Management. Iin Workshop of the OpenView University Association (OVOA'9
1999.

[5] C. Ensel and A. Keller. Managing application service degencies with XML and
the resource description framework. Itrtegrated Network Management
Proceedings, 2001 IEEE/IFIP International Symposiumpayges 661 —-674, 2001.

[6] A. Keller and G. Kar. Determining service dependencredistributed systems. In
Communications, 2001. ICC 2001. IEEE International Confeeemg volume 7,
pages 2084 —2088 vol.7, 2001.

[7] Web Service Dependency Discovery Tool for SOA Manageménbgveice
Dependency Discovery Tool for SOA Managem2007.

53

http://www.spotify.com/about-us/press/background-info/
http://www.spotify.com/about-us/press/background-info/

BIBLIOGRAPHY BIBLIOGRAPHY

[8] Sujoy Basu, Fabio Casati, and Florian Daniel. Toward WetviSe Dependency
Discovery for SOA Management. Proceedings of the 2008 IEEE International
Conference on Services Computing (SCC 2008), 8-11 July 200®ltia, Hawalii,
USA pages 422-429. IEEE Computer Society, 2008.

[9] Linux Man. Auditd linux manualhttp://linux.die.net/man/7/audit.rules,
2012.

[10] OpenSUSE documentation. The Linux auditd framewariktp: //doc . opensuse.
org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html,
2012.

[11] Stackoverflow. Finding short lived TCP connections ompr®cesshttp://
serverfault.com/questions/352259/finding-short-lived-tcp-

connections-owner-process, 2012.

[12] Bousquf. Example of extracting IP addresses from addgd. http://wiki.
nokernel .net/linux-auditd, 2012.

[13] Devloop. Parsing different kind of socket calls frondéd logs.http://my.
opera.com/devloop/blog/show.dml/2036593, 2012.

[14] Iptables. Iptables tutoriahttp://www.frozentux.net/iptables-tutorial/
iptables-tutorial.html#IPFILTERING, 2012.

[15] B. Hubert. Linux Advanced Routing and Traffic Control HOWTR:tp: //www .
lartc.org/lartc.pdf, 2012.

[16] IPTables tutorial. The conntrack entriegitp: //www.fags.org/docs/iptables/
theconntrackentries.html, 2012.

[17] Iptables. Iptables log option&ttp://www.linuxtopia.org/Linux_Firewall _
iptables/x4238.html, 2012.

[18] B. Claise. Cisco Systems NetFlow Services Export Versiont@rnet Request for
CommentsRFC 3954 (Informational), October 2004.

[19] Netfilter/iptables project. Libnetfilteconntrack descriptiorhttp://netfilter.
org/projects/libnetfilter_conntrack/index.html, 2012.

54

http://linux.die.net/man/7/audit.rules
http://doc.opensuse.org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html
http://doc.opensuse.org/products/draft/SLES/SLESsecurity_sd_draft/part.audit.html
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://serverfault.com/questions/352259/finding-short-lived-tcp-connections-owner-process
http://wiki.nokernel.net/linux-auditd
http://wiki.nokernel.net/linux-auditd
http://my.opera.com/devloop/blog/show.dml/2036593
http://my.opera.com/devloop/blog/show.dml/2036593
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#IPFILTERING
http://www.frozentux.net/iptables-tutorial/iptables-tutorial.html#IPFILTERING
http://www.lartc.org/lartc.pdf
http://www.lartc.org/lartc.pdf
http://www.faqs.org/docs/iptables/theconntrackentries.html
http://www.faqs.org/docs/iptables/theconntrackentries.html
http://www.linuxtopia.org/Linux_Firewall_iptables/x4238.html
http://www.linuxtopia.org/Linux_Firewall_iptables/x4238.html
http://netfilter.org/projects/libnetfilter_conntrack/index.html
http://netfilter.org/projects/libnetfilter_conntrack/index.html

BIBLIOGRAPHY BIBLIOGRAPHY

[20] Dpkt. Dpkt python packet creation/parsing libranttp: //code.google.com/p/
dpkt/, 2012.

[21] Cisco. NetFlow header and message formatp://www.cisco.com/en/US/

docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.
html, 2012.

[22] P. Phaal, S. Panchen, and N. McKee. InMon Corporatiddeve A Method for
Monitoring Traffic in Switched and Routed NetworKaternet Request for
CommentsRFC 3176 (Informational), September 2001.

[23] Baek-Young Choi and Supratik Bhattacharyya. ObservatmnCisco sampled
NetFlow. SIGMETRICS Perform. Eval. Re83(3):18-23, December 2005.

[24] Flowd. Flowd collector websitéhttp://www.mindrot.org/projects/flowd,
2012.

[25] Fprobe. Fprobe on SourceForgetp://sourceforge.net/projects/fprobe/
files/, 2012.

[26] Nfdump. Nfdump on SourceForgettp://nfdump.sourceforge.net, 2012.

[27] FlowTools. Flowd collector websitéittp: //www.splintered.net/sw/flow-
tools/, 2012.

[28] CERT SA team. SiLK Documentatiohttp://tools.netsa.cert.org/silk/
index.html, 2012.

[29] CERT SA team. SiLK Installation Guid&ttp://tools.netsa.cert.org/silk/
install-handbook.pdf, 2012.

[30] Juniper Networks. Setting up J-Flow on a J-Series motitetp: //kb. juniper.
net/InfoCenter/index?page=content&id=KB12512&actp=RSS&
smlogin=true, 2012.

[31] Vladislav Marinov and irgen Scbnwalder. Design of an IP Flow Record Query
Language. IrfProceedings of the 2nd international conference on Autananm
Infrastructure, Management and Security: Resilient Netwakd Service AIMS
'08, pages 205-210, Berlin, Heidelberg, 2008. Springetager

55

http://code.google.com/p/dpkt/
http://code.google.com/p/dpkt/
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.cisco.com/en/US/docs/net_mgmt/netflow_collection_engine/3.6/user/guide/format.html
http://www.mindrot.org/projects/flowd
http://sourceforge.net/projects/fprobe/files/
http://sourceforge.net/projects/fprobe/files/
http://nfdump.sourceforge.net
http://www.splintered.net/sw/flow-tools/
http://www.splintered.net/sw/flow-tools/
http://tools.netsa.cert.org/silk/index.html
http://tools.netsa.cert.org/silk/index.html
http://tools.netsa.cert.org/silk/install-handbook.pdf
http://tools.netsa.cert.org/silk/install-handbook.pdf
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true
http://kb.juniper.net/InfoCenter/index?page=content&id=KB12512&actp=RSS&smlogin=true

BIBLIOGRAPHY BIBLIOGRAPHY

[32] Sourceforge. MatPlotLib: Python plotting documeitat http://matplotlib.

sourceforge.net, 2012.
[33] MaxMind. GeolP Python APIhttp://www.maxmind.com/app/python, 2012.
[34] PythonDns. DnsPython home pa@etp://www.dnspython.org, 2012.

[35] E. Koutsofios and S. North. DOT language tutoriedtp: //www.phi.uu.nl/~js/
graphviz/dotguide.pdf, 2012.

[36] Graphviz. Graph visualisation softwanettp://http://www.graphviz.org/,
2012.

56

http://matplotlib.sourceforge.net
http://matplotlib.sourceforge.net
http://www.maxmind.com/app/python
http://www.dnspython.org
http://www.phi.uu.nl/~js/graphviz/dotguide.pdf
http://www.phi.uu.nl/~js/graphviz/dotguide.pdf
http://http://www.graphviz.org/

Appendix A

Configuring routers

This appendix describes major steps for enabling netfloa datJuniper family routers.
First of all, an accepting firewall rule should be added.

firewall {
family inet {
filter sample-in {

term default {

then {
sample;
accept,
+

Later, we add a filter.

57

Chapter A. Configuring routers

interfaces {
XX {
unit YY {
description "Netflow export filter";
family inet {
filter {
input sample-in;
+
address Z.Z2.2.Z/Z;

Finally, we enable packet sampling after the record haseplase filter.

forwarding-options {
sampling {
input {
family inet {
rate 100;
run-length 1;

max-packets-per-second 1000;

}
output {
cflowd x.x.x.x { // Ip address of collector
port xxxx; // Upd port of collector
version 5;

no-local-dump;

58

Chapter A. Configuring routers

autonomous- SySt em—type peer;

max-packets-per-secordkfines limit for netflow packets (defaults to 1000), tiage is
the denomitator of sampling rate angh-lengthsets the number of samples following the
initial triggering event. In the output chain, we define tlodlectors’ IP address angbrt,
versionindicates which netflow version we are using, andrtbdocal-dumglag indicates
that we should switch off debugging.

59

Appendix B

Measurements

This appendix gives full details of measurements of two datkection methods.

Table B.1: Measurement of impact on server performance caused by datatomtiec

fprobe custom tool

Service| tool CPU | total CPU| fraction || tool CPU | total CPU| fraction
11.0%| 294.0% 3.7% 2.3% | 284.0%| 0.8%
8.5% 180.0%| 4.7% 5.0% 176.7%| 0.0%
3.4% 75.7% 4.5% 1.8% 74.4% 2.4%
18.7%/| 327.0% 5.7% 3.2% | 330.0% 1.0%
14.2%/| 185.5% 7.7% 0.2% 175.8%| 0.1%
1.1% 26.7% 4.1% 0.1% 26.0% 0.4%
8.1%| 238.4%| 3.4% 0.4%| 228.2%| 0.2%
2.1% 67.1% 3.1% 0.4% 65.4% 0.6%

IOTMMOQOW™>

60

Appendix C

Language constructs

The following table gives a summary of available languagesticts.

Statement | Description Example usage

import | import custom Python module. The interpreter logoksnport 'geo’;
for file with 'py’ extension in current directory.

filter filters nodes that match certaing criteria from thélter geo('LT’) or geo('LV’);
context.

group groups each node in the context using the specifigtbup servicegrouper('dip’) as g1
grouper.

dfilter filters groups themselves. dfilter bps()>mb(5);

emit emits values calculated for the current context. | emit (sum(“bytes™));

option set one of the optional parameters for plditle | option title 'the chart’;
(string), xlabel (string), ylabel (string), obfuscate
(int), angle(int)

61

L.

Appendix D

Language built-in functions

The following table documents all currently available ftions in our NetFlow data
analysis framework.

Function Description Example usage Module
count() get number of nodes (connection) in context dfilter count()>100; standard
sum(attr) converts attributettr to int for each node in context dfilter sum(’bytes’)<10; standard
and get sum
packets() shorthand for calsum(’packets’) dfilter packets()100; standard
bytes() shorthand for calum(’bytes’) dfilter bytes()>0; standard
bps() get average number bytes per second for context,|i.gfilter bps()>10; standard

shorthand fosum(’bytes’) / seconds

kb(c) get bytes from kB, an equivalent of 1024 dfilter bytes()>kb(10); standard
mb(c) gets bytes from mB, an equivalentof 1024 * 1024 | dfilter bytes()>mb(1); standard
diff(attr) gets number of different values of given attributeemit (diff('sip’)); standard

among the context nodes

log(c) gets logarithm (base e) on argument It is useful | emit (log(count())); standard
when plotting logarithmic plots.

attribute(attr) groups flows by node attributstr; group attribute(’sip’); standard

62

Chapter D. Language built-in functions

time(bin, start, ..) | groups flows into timebins, whet®n is one time bin| group time(bins=100) standard
size (default five minutesktart and end (default is
currentime) are timestamps for interval in intereg!
duration (default one hour) is interval length, an
bins is number of bins (default is 20). Enoug
parameters should passed to command in ordef to
correctly identify interval of interest.

> o v

geo(by, mode) groups nodes by geographical location. Param®ter group geo('dip’); geo

defines the attribute that will be used for grouping:
'sip’ (default) or 'dip’. Parametemodedefines what
grouping mode should be used: either fetching fu
country name (value 'name’, default) or two lette
code (‘code’).

- =

fsce() filters nodes by the source country code filter fscc('LT"); geo
fdcc() filters nodes by the destination country code filter fdcc('LT’); geo
classgrouper(attr) | groups nodes by configuration management claggroup classgrouper(’sip’); services
name. Parametaettr is attribute to use: 'dip’ (default)
or 'sip’

servicegrouper(attr) groups nodes based on DNS information. Parametgroup servicegrouper(‘dip’) as gl|; services
attr is attribute to use: 'dip’ (default) or 'sip’

63

TRITA-ICT-EX-2012:63

www.kth.se

	Abstract
	Abstract (swedish)
	Acknowledgements
	List of Tables
	List of Figures
	List of acronyms
	List of definitions
	Introduction
	Problem and Goals
	Limitations of Investigation
	Evaluation of Results
	Structure of the thesis

	Background
	About Spotify
	Spotify's Architecture
	Example of service dependencies
	Relevant work

	Method
	Recognizing services
	Monitoring network traffic
	Auditd tool
	Iptables
	Netstat tool
	Collecting NetFlow information from network equipment
	Exporting NetFlow using fprobe
	Exporting NetFlow using a custom tool

	NetFlow
	NetFlow protocol
	NetFlow based tools
	SiLK suite for NetFlow
	SiLK Deployment scenarios
	Deployment of SiLK
	Configuring exporters

	Creating analysis tools
	SiLK as an analysis suite
	Motivation for a specialized analysis tool
	NetFlow analysis and plotting language
	Extendibility of the language
	Examples of scripts
	Implementation of analysis framework
	Implementing custom groupers
	Connecting analysis tool to SiLK

	Data Analysis
	Analysis of sample Spotify service
	DNS based service classification
	Configuration class based service classification
	Overtime classification

	Service Dependency Graph
	Expected vs. real service behaviour
	Comparing classification methods
	Comparing data collection methods

	Conclusions and Future work
	Conclusions
	Discussions
	Future Work

	Bibliography
	Configuring routers
	Measurements
	Language constructs
	Language built-in functions

