
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

A H M E D K A M A L M I R Z A

 Managing high data availability in
dynamic distributed derived data

management system (D4M)
under Churn

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Managing high data availability in

dynamic distributed derived data

management system (D4M)
under Churn

Ahmed Kamal Mirza

akmirza@kth.se

2012.05.17

School of Information and Communication Technology

KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract

The popularity of decentralized systems is increasing day by day. These decentralized systems are

preferable to centralized systems for many reasons, specifically they are more reliable and more

resource efficient. Decentralized systems are more effective in the area of information management in

the case when the data is distributed across multiple peers and maintained in a synchronized manner.

This data synchronization is the main requirement for information management systems deployed in a

decentralized environment, especially when data/information is needed for monitoring purposes or

some dependent data artifacts rely upon this data. In order to ensure a consistent and cohesive

synchronization of dependent/derived data in a decentralized environment, a dependency management

system is needed.

In a dependency management system, when one chunk of data relies on another piece of data, the

resulting derived data artifacts can use a decentralized systems approach but must consider several

critical issues, such as how the system behaves if any peer goes down, how the dependent data can be

recalculated, and how the data which was stored on a failed peer can be recovered. In case of a churn

(resulting from failing peers), how does the system adapt the transmission of data artifacts with respect

to their access patterns and how does the system provide consistency management?

The major focus of this thesis was to addresses the churn behavior issues and to suggest and

evaluate potential solutions while ensuring a load balanced network, within the scope of a dependency

information management system running in a decentralized network. Additionally, in peer-to-peer

(P2P) algorithms, it is a very common assumption that all peers in the network have similar resources

and capacities which is not true in real world networks. The peer‟s characteristics can be quite

different in actual P2P systems; as the peers may differ in available bandwidth, CPU load, available

storage space, stability, etc. As a consequence, peers having low capacities are forced to handle the

same computational load which the high capacity peers handle, resulting in poor overall system

performance. In order to handle this situation, the concept of utility based replication is introduced in

this thesis to avoid the assumption of peer equality, enabling efficient operation even in heterogeneous

environments where the peers have different configurations. In addition, the proposed protocol assures

a load balanced network while meeting the requirement for high data availability, thus keeping the

distributed dependent data consistent and cohesive across the network. Furthermore, an

implementation and evaluation in the PeerfactSim.KOM P2P simulator of an integrated dependency

management framework, D
4
M, was done.

In order to benchmark the implementation of proposed protocol, the performance and fairness tests

were examined. A conclusion is that the proposed solution adds little overhead to the management of

the data availability in a distributed data management systems despite using a heterogeneous P2P

environment. Additionally, the results show that the various P2P clusters can be introduced in the

network based on peer‟s capabilities.

iii

Sammanfattning

Populariteten av decentraliserade system ökar varje dag. Dessa decentraliserade system är att föredra

framför centraliserade system för många anledningar, speciellt de är mer säkra och mer resurseffektiv.

Decentraliserade system är mer effektiva inom informationshantering i fall när data delas ut över flera

Peers och underhållas på ett synkroniserat sätt. Dessa data synkronisering är huvudkravet för

informationshantering som utplacerade i en decentraliserad miljö, särskilt när data / information

behövs för att kontrollera eller några beroende artefakter uppgifter lita på dessa data. För att säkerställa

en konsistent och härstammar synkronisering av beroende / härledd data i en decentraliserad miljö, är

ett beroende ledningssystem behövs.

I ett beroende ledningssystem, när en bit av data som beror på en annan bit av data, kan de

resulterande erhållna uppgifterna artefakter använd decentraliserad system approach, men måste tänka

på flera viktiga frågor, såsom hur systemet fungerar om någon peer går ner, hur beroende data kan

omräknas, och hur de data som lagrats på en felaktig peer kan återvinnas. I fall av churn (på grund av

brist Peers), hur systemet anpassar sändning av data artefakter med avseende på deras tillgång mönster

och hur systemet ger konsistens förvaltning?

Den viktigaste fokus för denna avhandling var att behandlas churn beteende frågor och föreslå och

bedöma möjliga lösningar samtidigt som en belastning välbalanserat nätverk, inom ramen för ett

beroende information management system som kör i ett decentraliserade nätverket. Dessutom, i peer-

to-peer (P2P) algoritmer, är det en mycket vanlig uppfattning att alla Peers i nätverket har liknande

resurser och kapacitet vilket inte är sant i verkliga nätverk. Peer egenskaper kan vara ganska olika i

verkliga P2P system, som de Peers kan skilja sig tillgänglig bandbredd, CPU tillgängligt

lagringsutrymme, stabilitet, etc. Som en följd, är peers har låg kapacitet tvingade att hantera

sammaberäkningsbelastningen som har hög kapacitet peer hanterar vilket resulterar i dåligsystemets

totala prestanda. För att hantera den här situationen, är begreppet verktygetbaserad replikering införs i

denna uppsats att undvika antagandet om peer jämlikhet, så att effektiv drift även i heterogena miljöer

där Peers har olika konfigurationer. Dessutom säkerställer det föreslagna protokollet en belastning

välbalanserat nätverk med iakttagande kraven på hög tillgänglighet och därför hålla distribuerade

beroende datakonsekvent och kohesiv över nätverket. Vidare ett genomförande och utvärdering

iPeerfactSim.KOM P2P simulatorn av en integrerad beroende förvaltningsram, D4M, var gjort

De prestandatester och tester rättvisa undersöktes för att riktmärka genomförandet avföreslagna

protokollet. En slutsats är att den föreslagna lösningen tillagt lite overhead för förvaltningen av

tillgången till uppgifterna inom ett distribuerade system för datahantering, trots med användning av en

heterogen P2P miljö. Dessutom visar resultaten att de olikaP2P-kluster kan införas i nätverket baserat

på peer-möjligheter.

v

Acknowledgement

This thesis would not have been possible without the support and wisdom of many respected and

loving people around me. I would like to start by expressing my deepest gratitude to my immediate

supervisor, Karsten Saller, and Prof. Schurr, for their invaluable assistance, continuous support and

guidance. Their knowledge, encouragement, and leadership from the initial to final stage of project,

were key motivating factors to my gaining a deep understanding of the subject and finally, completing

this thesis project. One simply could not wish for a better or a friendlier supervisor. I am indebted to

him more than he knows.

I would also like to thank TU-Damstard administration for facilitating and providing all the

necessary assistance for my research work. Their in-time support and co-operation were very helpful

during my stay at TU-Damstard.

I owe my deepest gratitude to Prof. Gerald Q.Maguire, my thesis supervisor at KTH for helping me

to understand and pursue this thesis. His guidance on every step was helpful to fully comprehend the

tasks at hand. I am really grateful for his timely inputs and advice. I will also thank the KTH

administration and especially my current and former program coordinators, Ms Susy and Ms Jenny

Lundin for managing all the activities in KTH during my studies and especially arranging an Erasmus

studentship for this thesis project. Without their support and help this project would not be possible.

Last but not the least; I would like to thank my research fellows, Fahad Azeemi and Waqas Liaqat

Ali, for providing me with moral support, technical help, and guidance.

Special thanks to my parents, family, and teachers for providing their guidance and wisdom

throughout my studies. Without their kind help and support I would not be where I am.

Ahmed Kamal Mirza

vii

Dedication

I dedicate this thesis to my lovely sister, who unfortunately passed away in 2007. She is always in

my thoughts and prayers. I will never be able to forget her. I know she is looking at me from heavens

with proud feelings. I wish she was here to cherish these moments with me.

ix

Table of Contents

Abstract i

Sammanfattning iii

Acknowledgement v

Dedication vii

Table of Contents ix

List of Figures xi

List of Tables xiii

List of Algorithms xv

List of Acronyms and Abbreviations xvii

1Introduction 1

1.1 Motivation 1

1.2 Contributions 2

1.3 Outline 2

2Related Work 3

3Background 7

3.1 P2P Overlays 7

3.1.1 Unstructured P2P Overlays 7

3.1.2 Structured P2P Overlays 8

3.2 PeerfactSIM.KOM Simulator 9

3.2.1 PeerfactSIM.KOM: General Concepts 10

3.2.2 PeerfactSIM.KOM Architecture Overview 10

4Information Management with D4M Framework 17

4.1 Basic Idea 17

4.2 Architecture 17

4.3 Concrete Scenario 19

4.4 Integration with Simulator PeerFactSim.KOM 22

4.4.1 Design Decisions and Considerations 23

4.4.2 D4M Cache Layer Components 24

4.4.3 Operation Services of D4M Framework 25

5Thesis Approach 31

5.1 Problem Statement 31

5.2 Solution 31

5.2.1 Common Approach to Replication 32

x

5.2.2 Proposed Approach 33

5.3 Architecture 34

5.3.1 Replication Protocol 37

5.3.2 Recovery Protocol 46

6Evaluation and Testing 51

6.1.1 Environment Setup for Simulation 51

6.1.2 Performance Evaluation 51

6.1.3 Fairness Evaluation 53

7Conclusion 57

8FutureWork 57

References 59

xi

List of Figures
Figure 1: Unstructured Overlay network ... 7

Figure 2: Chord ring with m= 4-bit (2
4
-1).. 9

Figure 3: Host component during simulation ... 10

Figure 4: Layered Architecture ... 11

Figure 5: Represent Interface Implementation ... 11

Figure 6: Each host is connected to the subnet which acts as the interconnection network................................ 12

Figure 7: Representation of simple network layer in configuration file .. 13

Figure 8: Representing Transport layer in configuration file .. 14

Figure 10: Declaration of ChordNodeFactory in a configuration file .. 15

Figure 11 Artifact‟s data structure representation .. 18

Figure 12: Activity Diagrams of D
4
M operating modes ... 18

Figure 13: Federation of servers operating chord protocol with data stored .. 19

Figure 14: Representation of distributed database environment with data dependencies 22

Figure 15: Peer layered architecture in PeerfactSim.KOM (after integration) ... 23

Figure 16: Implementation details of additional data structures.. 24

Figure 17: First Approach showing replication and recovery protocol ... 32

Figure 18: Representation of peer during replication protocol .. 35

Figure 19: Internal Structure of peer‟s Cache .. 35

Figure 20: Internal Structure of Peer's Cache Replica .. 35

Figure 21: D
4
M data topology in DHT overlay network .. 36

Figure 22: Activity Diagram of Replica Holder Selection (regular selection process)....................................... 38

Figure 23: Activity Diagram of Extended Selection Process of Replica Holder .. 39

Figure 24: Coordination workflow during selection process of replica holders ... 42

Figure 25: Data Synchronization Process .. 43

Figure 27: Recovery Protocol .. 47

Figure 28: Recovery Process (left) and Churn Handling Process (right) ... 48

Figure 29: Communication cost .. 53

Figure 30: Resource utilization ... 55

xiii

List of Tables
Table 1: Examples of unstructured overlays .. 8

Table 2: Database schema definition ... 20

Table 3: Computation function definition .. 21

Table 4: Simulation parameters .. 51

xv

List of Algorithms
Algorithm 1: Data distribution operation ... 25

Algorithm 2: Data Stabilization operation ... 26

Algorithm 3: Data Artifact Lookup Operation ... 27

Algorithm 4: Query operation ... 28

Algorithm 5: Derivative Evaluation Operation .. 29

Algorithm 6: Propagation Operation ... 30

Algorithm 7: Replica holder Selection... 40

Algorithm 8: Extended Algorithm for Replica holder Selection if neighbor peers do not need cache space 41

Algorithm 9: Data Synchronization process .. 45

xvii

List of Acronyms and Abbreviations

API

Application programming interface

CAN Content-addressable network

CDN Content distribution networks

CFS Co-operative file system

D
4
M Dynamically distributed derived data management

DHT Distributed hash table

HTTP Hypertext transport protocol

IMAP Internet message access protocol

IP Internet protocol

KBR Key-based routing

LDPC Low density parity check

LMS Local minima search protocol

P2P Peer-to-peer

PC Personal computer

QRT Query routing table

SIDM Scalable Distributed Information Management System

SQL Structured query language

TTL Time-to-live

Introduction 1

1 Introduction

This chapter describes the motivation for this thesis project. Next the chapter summarizes the

contributions, the author has made to the field as a result of this thesis project. Furthermore, the

chapter concludes with a description of the structure of the rest of the thesis in outline section.

1.1 Motivation

In current era of the internet, decentralized architectures are popular in different domains across

industries, including online file-storage providers [22], network management applications [23], and

online content repositories. Large-scale systems based on this architecture are classified as peer to peer

(P2P) systems [20]. The utilization of these peer to peer systems may vary, but the ultimate goal is

similar among them: to ensure resource efficiency, scalability [19], and availability [24] of

information/data content.

As compared to a centralized architecture, a decentralized architecture provides more robust,

reliable, and resource efficient services with a self-adapting mechanism. Most information

management applications operating today are based on the manager-agent model [25]. In other words,

there is one centralized management control program running on a central entity which is managing or

computing via some management protocol. This architecture leads to poor scalability and reliability, as

when more peers join the network the amount of traffic exchanged between the central management

identity and the agent peers increases and can create a bottleneck for the system. Additionally, this

central management entity can become a single point of failure causing poor reliability.

In a decentralized architecture, resource efficiency is always a challenging task. By employing

scalable and reliable services using P2P technology, we must deal with a number of peers in which

data artifacts are stored in a distributed fashion. These data artifacts can be categorized into base data

and derived data. The base data represents independent data, which is atomic in nature while derived

data is dependent data that relies on other data artifacts and can be computed by a combination of

different data artifacts.

In an interconnected computing environment, the importance of derived data cannot be overlooked

for analytic data processing. Such derived data might represent performance aggregates or some other

sort of network monitoring information which is monitored at the network level rather than individual

scalar performance factors. These scalar performance factors can be regarded as base data.

Furthermore in the data warehouse domain, dashboard applications represent calculated scores based

on data mining analytics; these scores are used to measure market trends. The data warehouses store

this derived (i.e. dependent) data so that aggregate data queries can be responded to quickly. For this

purpose, the dependency management functionality is needed to monitor these dependencies in a

cohesive and nearly consistent way. The consistency cannot be fully guaranteed as the artifacts data

and dependencies in all the peers may not be consistent and synchronized all the time due to network

latency. In contrast, cohesive data can be ensured when peers are informed to execute a

synchronization process to update the modified data artifacts and dependencies before responding to

requests. These dependencies can be distributed among peers without introducing a centralized

dependency server in such a way that a dynamically distributed derived data management (D
4
M)

framework [2] can operate on a P2P overlay.

Due to unpredictable behavior of the peers in a P2P system, the peers may leave the network either

erratically or when they wish. When a peer leaves the network erratically, its data will be become

inaccessible to the network, this can lead to inconsistencies in the distributed dependent data. There are

a variety of redundancy protocols for P2P systems which ensure high data availability even in the

2

event of a peer crashing. However, these replication protocols require the peers to store redundant data

which may negatively affect the overall performance of the system.

Part of the problem is due to the fact that the data manipulation and storage responsibilities are

assigned to each peer irrespective of its properties and capabilities. In general, all distributed hash table

(DHT) based protocols assume that each peer in the network is equal and has similar properties (with

respect to CPU performance, network bandwidth, available storage space, etc.). However, in the real

world, large scale data networks usually have peers with differences in capabilities. Therefore, a

replication protocol that can perform load balancing across the network is needed. Such a protocol

should assign the data replication operations to the peers based on their properties, as well as handle

the complex data dependencies in D
4
M. In order to perform this load balancing, utility-based

replication protocol is proposed in this thesis.

1.2 Contributions

The main contributions of this thesis are associated with two tasks. One task was to identify possible

approaches to implement and integrate the D
4
M framework in a P2P simulator, specifically

PeerfactSim.KOM [1],[17]. Each of these approaches was to be implemented and compared in the

existing environment of this simulator. The second task was to introduce a novel algorithm to handle

the problem of churn while ensuring no data was lost when using a data dependency management

framework operating in a decentralized environment. In order to assure data availability, even during

churn, several replication strategies were proposed and compared. The most suitable and efficient were

selected for use in our simulation environment. These contributions can be summarized as:

 Propose several different ideas about how to implement the D
4
M system in the existing

PeerfactSim.KOM P2P simulator.

 Propose a high data availability solution suitable for a heterogeneous and D
4
M system running on P2P

systems while handling churn.

 Introduce a novel algorithm to handle churn in this decentralized D
4
M system without affecting

consistency in the data relationships and dependencies.

 Introducing a novel algorithm for a heterogeneous system in order to efficiently utilize the distributed

resources in the network.

 Implementing and evaluating the proposed utility based replication algorithm using simulations.

1.3 Outline

The rest of the thesis is structured as follows. Chapter 2 reviews related work. Chapter 3 discusses the

underlying technologies, introduces P2P overlays with several different flavors of DHTs, and presents

some of the essential working details of PeerfactSim.KOM simulator. After this, Chapter 4 presents

details of the D
4
M framework and information management with an integration solution as

implemented in PeerfactSim.KOM. In chapter 5, a detailed problem statement is given and the new

approach used in this thesis project to solve this problem is compared with the traditional approach.

Additionally, this chapter presents the proposed approach to handle replication, along with its

architecture and implementation details. Finally, a performance evaluation of the proposed approach is

discussed in Chapter 6. Chapter 1 presents some conclusions and suggests some future work.

Related Work 3

2 Related Work

This chapter reviews related work concerning replication, redundancy schemes, and replica placement

policies. It also summaries some published work concerning an improved DHT that enhances churn

tolerance for the specific case of a P2P dependency management system. The definition of churn is

given in section 5.1. The chapter concludes with some comments on a hierarchical tree based

information management system that aggregates data about a large scale networked system.

The conventional method used for replication is mirroring in which the mirrors are normally aware

of the other mirrors (or at least a subset of them). Mirror based systems include Usenet News[37],

Akamai[38], Lotus Notes[39], and Internet message access protocol(IMAP)[40]. Besides mirroring,

caching is also a widely used method for replication in wide area web protocols [41][42]. Although

caching is a less organized replication method, it is highly suitable for environments where certain data

is highly demanded, such as in content distribution networks (CDNs)[43][44]. CDNs are the sets of

inter-operating caches which replicate highly demanded data in order to reduce the load on the content

server and to provide end users with a performance improvement (as the cache will typically be

located near to them, hence there will be a lower network delay to deliver the content from this cache).

In the context of decentralized systems, a variety of data replication strategies have been proposed

for file storage systems, such as CFS [45], PAST [46], and OceanStore[47]. These file storage systems

uses different kinds of replica placement protocols and redundancy schemes. A redundancy scheme

dictates the format of stored data in the replicas, whereas a replica replacement protocol defines the

selection criteria for replica peers in a network.

The redundancy schemes include simple replication schemes, erasure coding schemes (e.g. Reed

Solomon and Low-density parity-check(LDPC) codes, and hybrid replication schemes. A simple

replication scheme is used to achieve high availability and data persistence. In this type of scheme, a

file is replicated to n different peers (replicas) in the network and the replica information is stored in

distributed indexes (e.g. DHTs). Later when the file is requested, these indexes are accessed to select

any of the replica-holding peers to respond to the request. When using this scheme, the file will be

available if any replica-holding peer is available in the network. An erasure coding scheme was

introduced in the very early days of P2P network in which a file is decomposed equally into m data

blocks and encoded into n encoded blocks, which are distributed to n different peers. The file can be

retrieved by any accessing m encoded blocks. Unfortunately when using this scheme, lookups and

updates for a file generates considerable overhead for the system as each file request turns into m

requests. The hybrid scheme is a combination of the simple replication and the erasure coding

schemes. A comparative study [48] [49] of simple replication schemes and erasure coding schemes

showed that an erasure coding scheme provides higher data availability than a simple replication

scheme, but in the case of a P2P distributed dependency management system (D
4
M) where dependent

artifacts are distributed across the network, the erasure coding scheme leads to high traffic overheads

when it updates artifacts and due to the extra traffic generated by the replica synchronization process.

The replica placement protocol plays an important role in determining the implementation cost of

an efficient replication process. According to the recent literature, leaf-set based replication and

multi-key replication are the two main basic replica placement protocols. In the leaf-set replication

protocol, the data block is replicated to its owner‟s closest neighbors in its leaf-set. The leaf-set is the

list of neighbors directly attached to it. The neighbors holding a replicated copy of its data block can

be either its successors/predecessors or both. In other words, the owner‟s data blocks are replicated to

its closest neighbors. Both PAST[46] and DHash[50] use this protocol. A variant of this protocol is the

Successor Replication protocol in which only the immediate successors of the owner peer store the

replica of its data blocks. The owner peer is the peer who stores the actual data block. In the multiple

key based replication protocol, to replicate the data blocks on k owner peers, k different storage keys

will be computed for each data block. In other words for each data block, k different keys will be

4

generated for k replicas. Both CAN[51] and Tapestry[52] employs the multi-key replication protocol.

Multiple key based replication has variants in the form of Path and Symmetric replication [53][54]. To

implement a replication for a P2P dependency management system (D
4
M), the leaf-set based

replication protocol is used with extended conditions in order to choose the closest peer which has a

replica.

The replica placement protocol proposed in [55] uses a co-ordinated and controlled strategy which

is globally known to each peer in the network in order to place the replicas. It uses the globally known

hashing allocation function h(m, d) where m ≥ 1 is the index number of a replica instance and d is the

identifier of each document. The allocation (hashing) function provides the address of a DHT peer on

which a replica can be placed. Using this hash function with either the actually number of replicas

present or the location of the closest replica, any peer in the network can find a potential replica‟s

address. In this replica selection protocol, locks are used during replica addition/deletion. These locks

are used to avoid temporary inconsistencies in lookup while replica rd is being modified. These

temporary inconsistencies may lead to these replicas not being selected for document retrieval in the

worst case. These inconsistencies cannot be tolerated in a P2P dependency management system (D
4
M)

where most of the artifacts depend on other artifacts in the system. Additionally, if there is an

inconsistent artifact in the system, it may lead the system to an unreliable state, thus negatively

affecting the reliability of data artifacts. Furthermore, the locking mechanism may negatively affect

lookup performance as well.

The self-adapting replication protocol presented in [56] is designed to achieve high data

availability in DHT-based systems. Its design is based on an erasure coding scheme so it cannot be

implemented with a P2P dependency management system (D
4
M) due to the large amount of traffic that

would be exchanged in this scheme, as this would negatively affect the system‟s performance.

The RelaxDHT suggested in [57] enhances churn tolerance and provides a cost efficient

maintenance protocol to handle a high churn rate. The main purpose of RelaxDHT is to avoid the

transfer of a data block if there are still at least the desired numbers of replicas available in the

network. The owner peer (root) uses the replicated localization metadata to locate its replica-holding

peers. This metadata is introduced to reduce the overhead which is normally generated due to

migration of data blocks when a peer joins or leaves the P2P network. The root peer does not store its

own data, but only stores its replica set and keeps track of its root peer if it has a replica of other peer.

Therefore, there would be always at least one replica at all times in the network. The only unknown

issue with this resilient replication protocol is how it handles the concurrency of data updates since this

is not described in literature. The architecture of RelaxDHT shows that any replica peer can serve the

look up request and is allowed to update the data block.

For a P2P dependency management system (D
4
M) it is very important to get up to date data,

especially in eager mode operation. This is the basic difference between the RelaxDHT and the

replication strategy proposed in this thesis. In the proposed replication strategy, there is no need to

track the data concurrency because only a single root peer is responsible for update its data artifacts

and it can only serve lookup queries, thus other replica peers are unable to serve the look up requests

or update the replicated data artifacts. Additionally, data blocks in RelaxDHT are non-uniformly

distributed among peers during DHT maintenance, which is normally a basic property of DHTs. This

will also affect the lookup performance of the system.

The Scalable Distributed Information Management System (SIDM) [58] is a hierarchical tree based

information management system that aggregates data about a large scale networked system. It provides

scalability through hierarchical aggregation and flexibility to accommodate a wide range of

applications and data attributes. Furthermore, it performs lazy aggregation, on demand re-aggregation,

and tunable spatial replication to ensure robustness. It is based on Astrolabe [59] which is highly

robust due to its unstructured gossip protocol for data distribution and replication of all aggregated

Related Work 5

attribute values associated with a subtree to all peers in the subtree. SIDM has extra initial processing

overhead to build the aggregation trees it needs to operate, as well as for additional overhead during

DHT maintenance.

Background 7

3 Background

This chapter introduces the technologies and concepts which are used in the thesis, along with a brief

summary of their details. Since, a distributed data management is being discussed in a decentralized

environment we will begin by introducing some basic terms, such as peer to peer (P2P) overlays along

with the concept of flavors of structured and unstructured overlays. Later-on the architecture and

details of the simulator PeerfactSim.KOM and the distributed data dependency framework are

discussed.

3.1 P2P Overlays

A peer to peer (P2P) overlay network [20] is the logical decentralized network topology which runs on

the top of a physical network, typically the Internet. This logical network consists of addressable

interconnected nodes which share part of their resources, such as content, bandwidth, processing

power, and/or printers using self-organizing scalable routing and messaging operations. Each node

behaves in symmetric manner taking both client and server roles.

This P2P overlay architecture is implemented by P2P systems. In P2P systems, participating peers

form an overlay network and connect to each other according to a given overlay protocol. The P2P

overlay protocols can be categorized into two kinds of protocols: structured and unstructured overlay

protocols. These protocols vary in terms of their network graph structure and routing architecture.

Unstructured overlays are not relevant to the goals of this thesis, hence there are only briefly discussed.

3.1.1 Unstructured P2P Overlays

In P2P computing, unstructured overlays are considered to be a second generation of overlay networks.

An example of such a network is Gnutella [3][6][26]. In contrast, centralized overlays were used in

first generation networks such as Napster [21]. As depicted in Figure 1, in an unstructured overlay a

node can only directly access its immediately adjacent nodes. In order to deliver messages to other

nodes in the overlay a flooding mechanism or random walk mechanism is used [16].

Figure 1: Unstructured Overlay network

An optimal network graph structure, efficient search, and efficient query propagation are the main

design goals of an unstructured overlay. Some important unstructured overlays which addressed these

design issues are listed in Table 1.

8

Table 1: Examples of unstructured overlays

Type Design Reference
Flooding Gnutella, Fast Track [3],[6] & [8]
Random Walk Gia, local minima search(LMS) [7],[9]
Hill climbing back tracking Small world freenet [12]
Preference directed queries Tribler [11]
Semantic routing Internet-based Node Grouping

Algorithms(INGA)
[10]

3.1.2 Structured P2P Overlays

Structured P2P overlays are third generation overlays. These are generally based on Distributed Hash

Tables (DHT) [18] which employs key-based routing. In a structured DHT overlay, each node

maintains a routing table. This routing table is employed by query propagation and routing algorithms,

as specified by the overlay protocol. In other words, all nodes in the network cooperatively maintain

routing data so that any one node can reach another node more efficiently (in terms of the number of

hops) than is the case for unstructured overlays. The routing table helps nodes to forward queries

closer to the target node thus reducing the time it takes until the query can be answered by the target

node.

In order to maintain consistent routing data, nodes inform other nodes about changes in their

routing table data, as specified by the selected overlay protocol. These changes can be a variation in

network characteristics or a change in the offline/online state of a node in the overlay network. To

ensure a node‟s activeness the protocol offers keep-alive services which send heartbeat messages to

their neighbors and expect a reply. There is wide variety of structured DHT overlay protocols; some of

the most influential protocols are Chord [13], Pastry [5], Kademlia [27], and Bamboo [28].

3.1.2.1 Chord

Chord [13] belongs to the family of DHT overlay protocols. Chord is scalable protocol which

efficiently accommodates a node leaving or a new node joining the overlay network. Chord assigns

keys to the nodes in the network using consistent hashing [4]. The use of consistent hashing ensures

load balancing and scalability in such a way that during the bootstrap process or when a new node

joins, keys are distributed uniformly, i.e. each node gets approximately the same number of keys.

Chord uses SHA-1 [29] to hash the keys as it employs an m=160 bit identifier space. In other words,

Chord uses a identifier space of 2
160

 -1 values for key assignment. Each node picks a random identifier

by hashing its IP address to compute its position in the Chord ring. In the chord protocol, each node

maintains a routing table which contains the number of neighbors specified in the protocol. The

selection of neighbors is based on the node‟s own key. For instance, node K will select its neighbors in

such a way that nodes in the network which have keys close to node K‟s key may be selected to

become neighbors and their keys will be stored in node K‟s routing table, in order to perform routing.

As a result the nodes arrange themselves in a ring fashion as depicted in figure 2, where the identifier

space has an m=4-bit configuration.

In a Chord ring, data keys are stored according to the node‟s identifier. For example in figure 2,

data key=10 will be stored at node 12 and data key=5 will be stored at node 5. The maintenance and

look up operations details for Chord can be found in detail in [13].

Background 9

Figure 2: Chord ring with m= 4-bit (2
4
-1)

3.1.2.2 Pastry

Pastry [5] is a fault-resilient, self-organizing, and robust structured P2P overlay protocol which makes

routing and target positioning efficient. It is very similar to Chord [13], but in Pastry the identifier

space is not organized as a Chord ring, rather a routing procedure based on numerical unique

identifiers is used. In Pastry, when nodes join the Pastry overlay network, they are randomly assigned

a unique 128 bit L-bit identifier in such a way that node identifiers are uniformly distributed within the

128-bit identifier space. This assigned nodeId is encrypted based upon a hash function of the node‟s IP

address. Each Pastry node maintains a routing table, leaf set, and neighborhood set. The routing table

contains the nodeIds of those nodes which have the same number of characters in their common prefix,

grouped together in a row. The neighborhood set contains the nodeIds and IP address of nodes closest

to the current node. This neighborhood set is not used for routing purposes, but rather to maintain

locality properties as mentioned in [5]. The leaf set contains the number of nodes which are smaller

than current node and the number of nodes which are larger than current node. The leaf set is

employed for message routing. Pastry also exploits locality when routing messages in the overlay. In

the absence of a node failure, it takes O(logN) steps to route a message to any node in the network.

Some of the applications built on pastry are Scribe [15] and Past [16] [14].

3.2 PeerfactSIM.KOM Simulator

To implement and explore new innovative ideas, simulation is frequently used by researchers as a

method of evaluating, comparing, and analyzing different systems [30]. Simulation is a modeling

technique which provides an imitated environment in which the researcher can evaluate new

approaches and concepts before creating a real world implementation. In P2P systems, this modeling

has been a desirable way to test and evaluate different P2P protocols and their functionalities [31].

There are dozens of P2P simulators available for analysis, which vary in their functionalities and

architecture, some of these simulators are PeerSim [32], PlanetSim [33], and Kompics [34].

PeefactSim.KOM [1][17] targets the general requirements of P2P simulators as given in [35] and

[36]. It is a java-based P2P simulator for large-scale P2P systems which offers a simulated

environment to execute a variety of P2P scenarios dealing with different kinds of protocols and

functionalities. Additionally, it provides a user-friendly logging and statistics mechanism which

facilitates the collection and interpretation of quantitative data during running simulations. This

discrete-event based simulator has a layered-architecture which helps the layers to operate in a loosely

coupled manner. In addition, the simulator can provide or utilize the services of other layers in the

actual environment they are integrated in. In other words, each layer behaves as a component which

10

can be considered a plug-in for the simulator. Its modular design eases the implementation and

integration of new components that can be defined in terms of its abstract base implementation. This

modular design will be briefly discussed below along with its architecture details. Furthermore,

visualization is integrated into the simulator to provide graphical visualizations of communication

observed during simulations. This visualization can also be used for debugging purposes.

3.2.1 PeerfactSIM.KOM: General Concepts

During a simulation each peer has its own separate instance of each layer enclosed in it, as shown in

Figure 3. This means a peer consists of a collection of layers which interact with each other using a

message exchange process. For this reason, the simulator is considered as a message level simulator. In

a message exchange process, each peer will communicate with other peers by sending and receiving

messages. This communication is carried out using a lower layer, i.e. a network layer. The network

layer utilizes the internet to send the message to another peer. The same approach is followed in the

message receiving process.

Figure 3: Host component during simulation

3.2.2 PeerfactSIM.KOM Architecture Overview

The layered architecture of the PeerfactSim.KOM simulator can be logically split into two main parts:

the functional layers and the simulation engine as depicted in Figure 4. A functional layer in a

simulator is comprised of components, providing well-defined interfaces for each component to

expose its services and operations to other components and can communicate with others by

exchanging messages. These well-defined interfaces allow the use of existing default implementations

of components or to extend their concrete implementation. More specifically, this concept makes the

simulator flexible for extension based development. Usually this architectural flexibility is a main

requirement for simulators.

Host

HostHost

User Layer

Application Layer

Overlay Layer

Transport Layer

Network Layer

Background 11

Figure 4: Layered Architecture

In order to provide this flexibility, the simulator introduces the concept of default and skeletal

implementation. A default implementation is termed as implementation whose offered functionality is

defined and implemented, and can be used without modification. For flexibility, the skeletal

implementation is used (this is also termed abstract base implementation). To use this concept of a

skeletal implementation, the concrete implementation of an interface can be tailored by extending the

default implementation or by defining a new concrete implementation based on the abstract base

implementation. The design and implementation of this concept is illustrated in Figure 5.

Figure 5: Represent Interface Implementation

3.2.2.1 Functional Layers

In the PeerfactSim.KOM simulator, the functional layers are components which provide services and

operations to other layers and coordinate with lower and upper layers by exchanging messages with

each other. During simulation every peer is represented by a Host as shown in Figure 3. The lowest

three layers (the Network layer to Overlay Layer) are used in the implementation of the distributed

Overlay Layer

Transport Layer

Network Layer

User Layer

Application Layer

S
im

u
la

ti
o

n
 E

n
g

in
e

L
o

g
g

in
g

V
is

u
a
li

z
a
ti

o
n

G
N

U

p
lo

tt
in

g

Churn Model,

Exponential,KAD

Model

TCP, UDP

Chord, Pastry, CAN, Kademlia, Gnutella

Global Network Positioning, Analytical Model, Static Model

Basic Interface

Default Implementation Base Implementation

Concrete Implementation

12

information management framework as discussed below.

Network layer

The network layer is the lowest layer of the PeerfactSim.KOM simulator which is based on a network

model that allows peers to communicate with other peers in the simulated network with the help of the

message exchange process. This model is based on two components: the network layer and subnet.

The first component, the network layer, is installed as a separate component within each host during

simulation. It is connected to the transport layer in a host and a lower component, called the subnet.

The main purpose of this subnet component is to allow peers to communicate with other peers in a

simulated network and to deal with other network aspects of a host. These network aspects include

network latency, available bandwidth, exchange message size, and host status (i.e. if the host is offline

or online). These aspects are discussed in [17] in detail. A subnet component is considered to be

simulated network or internet through which all the peers communicate. The subnet simulates the

transmission of data between hosts in the simulated network. This subnet component is a centralized

identity and represents the network as depicted in Figure 6.

Subnet

Host X

Network Layer

Transport Layer

Host Y

Network Layer

Transport Layer

Figure 6: Each host is connected to the subnet which acts as the interconnection network

Each host is connected to the network, with the help of the subnet component. The subnet

component can only be accessed through the network layer. In other words, the layers above the

network layer can only send messages to another host in the network through the network layer, they

cannot directly communicate.

The exchange process of the network layer component handles the sending and receiving of

messages from the modeled network. When a host sends a message to another host, a message is

pushed to the network layer, and then it is forwarded from the network layer component within a host

to the subnet component, which is connected to all the hosts. This subnet component handles the

transmission time calculations and imitates packet loss and induces jitter. Additionally, the subnet

triggers the arrival of a message confirmation at the receiving host.

In order to use the given network layer in the simulator, the corresponding factory which is

responsible for initializing the network layer components should be declared in the configuration file

Background 13

as shown below in the code snippet in Figure 7. In this code snippet the network layer factory is

declared as “SimpleNetFactory” which creates “SimpleNetworkLayerFactory” to build the network

layer of each host and creates a centralized subnet identity for the simulation.

1 <Configuration>
2 [. . .]
3 <NetLayer class="de.tud.kom.p2psim.impl.network.simple.SimpleNetFactory">
4 <LatencyModel

 class="de.tud.kom.p2psim.impl.network.simple.SimpleStaticLatencyModel"
 latency="10ms" />

5 </ NetLayer>
6 [. . .]
7 </ Configuration>

Figure 7: Representation of simple network layer in configuration file

Transport Layer

The transport layer of PeerfactSim.KOM shown earlier in Figure 4, is a higher layer than the network

layer. The transport layer is connected to the overlay layer at one end and the network layer at the

other end as was shown in Figure 6. The transport layer provides an end-to-end communication service

to higher layers within host. These services include multiplexing using ports over a single connection,

connection-oriented data streams, and flow control. A transport layer‟s details are abstract and its

implementation depends upon the services being offered. The main task of the transport layer is to

provide efficient simulations of the underlying network to higher layers.

In the simulator the implementation of the transport layer presents some standard and basic

interfaces, and abstract classes. These interfaces define a network layer address along with a particular

port number which is used in multiplexing multiple transport connections via single network

connection. Additionally, transport message types are also specified with the help of these interfaces to

allow listeners or event handlers to receive the incoming transport messages at the given port. These

listeners are employed to catch events or messages sent by higher layers within a host and can notify

the higher layers about the arrival of new incoming messages from other hosts in the network. The

transport layer services can be used for two kinds of communication: (1) to forward messages from

higher layers to the network layer within a host which further sends these messages to their respective

hosts and (2) to deal with incoming messages from other hosts by forwarding them to the higher layers

for further operations.

Furthermore, communication between hosts in the network can be done synchronous as well as

asynchronous with the help of these interface implementation by using callback operations. This

communication can be based on TCP messages or UDP messages. TCP is a reliable and connection-

oriented protocol; while UDP provides unreliable and connectionless services. This layer also provides

the timeout functionality for the sending operations to other hosts for both kinds of messages. The

main purpose of this timeout functionality is to ensure that a target host sends back a reply for each

message in order to ensure reliable communication within a given time bound, otherwise a timeout

occurs it the nodes resends the message until it receives an acknowledgement message from the target

host.

In order to implement the transport layer in the simulator, a Transport Layer factory is declared in

the configuration file which is responsible for initializing the Transport Layer services.

14

The default transport layer factory is defined as shown in the code snippet in Figure 8.

1 <Configuration>
2 [. . .]
3 <TransLayer class="de.tud.kom.p2psim.impl.transport.DefaultTransLayerFactory" />
4 [. . .]
5 <Configuration>

Figure 8: Representing Transport layer in configuration file

Overlay Layer

As overlay functionality is important for P2P simulators, in PeerfactSim.KOM the overlay layer plays

a vital role which is encapsulated in the overlay layer. This encapsulation enables a programmer to

easily implementation different P2P overlay models. As noted earlier in section 3.1, in general the

overlay models can be classified into structured, unstructured, and hybrid overlays; but in our

simulator only the structured and unstructured overlays are relevant.

In the simulator each peer is termed a overlay node. To implement an overlay node, the simulator

provides interfaces to perform the operations and functions of the overlay node. These are shown in

Figure 9: Representation of Overlay Node in overlay.

The purpose of exposing these interfaces is to allow the developer to vary the structure of the

overlay routing table and the bootstrap mechanism provided by an overlay. These interfaces specify

the structure and functionality of the overlay node in the simulated network. Interface <OverlayNode>

specifies how an overlay node is represented in the simulator, whereas the inherited interface

<JoinLeaveOverlayNode> dictates the joining and leaving operation of an overlay node in structured

overlays during simulation. The interface <UnstructuredOverlay> represents the specific functionality

of an overlay node in unstructured overlays. KBR stands for Key-based routing which is needed in

structured overlays. <DHTNode> incorporates the DHT operations.

«interface»

overlayNode

«interface»

unstructuredOverlay

«interface»

joinLeaveOverlayNode

«interface»

KBR

«interface»

DHTNode

Figure 9: Representation of Overlay Node in overlay

The simulator can implement unstructured overlays, including Gnutella 0.4, Gnutella 0.6, and Gia;

and structured overlays including CAN, Chord, Kademlia, andPastry. These overlays can be used in

the simulator simply by declaring their factory implementation class in the configuration file. In

addition to the above mentioned overlays, the simulator implements other types of overlays as well,

but these are outside the scope of this discussion.

Background 15

Some of the common overlays which are implemented in this simulator are discussed below.

a) Gnutella-like Overlays

Gnutella is a distributed search protocol which provides a fault tolerant decentralized model for

unstructured overlays. In these overlays a multi-hop ping service is used to discover the peers in the

network, using TTL (time-to-live). Its poor scalability led to the use of distributed hash tables for file-
sharing applications. In the simulator a Gnutella API is available which offers basic connectivity

methods (join() and leave()). Additionally, this API exposes some interfaces for publishing and

querying documents and data. These interfaces are described in detail in the PeerfactSim.KOM manual.

b) Gnutella 0.6

Gnutella 0.6 is a modified version of the basic Gnutella 0.4 protocol as implemented by LimeWire.In

this overlay, the network is divided into ultra-peers and leaves. Leaves having little bandwidth act as
clients and ultra-peers are nodes that have a large amount of available bandwidth. The ultra-peers are

used to manage Gnutella overlay traffic, these nodes act as servers. The leaves are connected to multiple

ultra-peers to improve robustness. The ultra-peers maintain a query routing table (QRT) which stores

the resources of connected leaves that a peer is sharing. This modified Gnutella provides a dynamic
querying process which starts from the immediate ultra-peer neighbors and forwards the query from

these immediate ultra-peers to further ultra-peers until it finds the sufficient results for the query.

In the simulator, the implementation employs the functionality of the LimeWire client. The protocol
uses UDP and binary messages for transmission among peers, as this generate less-traffic than the

ASCII HTTP communication used in Gnutella. A brief description of the implementation details are

given in the PeerfactSim.KOM manual.

c) Gia

Gia improves upon the Gnutella –like overlays. These overlays are based on the functional values of the

overlay nodes. These functional values can vary in terms of available bandwidth, storage space, or other
functional aspect. A capacity value is associated with each overlay node. This capacity value is

employed for querying process and the connection making mechanism. Gia offers means of dealing

with low capacity nodes, provides a replication strategy to ensure consistency, and offers a querying
mechanism as described in the PeerfactSim.KOM manual. In the simulator, Gia can be used by the

common Gnutella API by declaring its factory component in the configuration file.

d) CAN

A Content-Addressable Network (CAN) belongs to the DHT family. It creates a node topology in a

d-dimensional Cartesian coordinate space. This coordinate space is employed to store key-value pairs.

This kind of overlay can organize itself. The details of the required operations (join(), leave(), lookup(),
and store()) are discussed briefly in the PeerfactSim.KOM manual.

In order to use this overlay, the simulator provides a CAN API for its operations and services. This can

be used by declaring the CanNodeFactory component in the configuration file of the simulator.

e) Chord

The Chord protocol is also a member of the DHT family. Its underlying concepts were described in

section 3.1.2.1. In the simulator Chord can be used by specifying the ChordNodeFactory component in
the simulator‟s configuration file as shown in Figure 10. Further implementation details are discussed in

the PeerfactSim.KOM manual.

1 <Overlay class="de.tud.kom.p2psim.impl.overlay.dht.chord2.components.

2 ChordNodeFactory" />

Figure 10: Declaration of ChordNodeFactory in a configuration file

16

3.2.2.2 Simulation Engine

The simulation engine is a discrete-event based component in the simulator which manages the

simulated peers in the network. These peers can communicate to each other by exchanging messages.

Each layer in the peer can be accessed by this engine for logging purposes. The architecture of the

simulation engine is comprised of the two components explained below:

Event Scheduler

With the help of the event scheduler, the simulator engine schedules events for execution at a certain

timestamp. The method scheduleEvent() is executed to schedule an event (before it triggers). Any

event can be scheduled immediately or after a certain timestamp. In addition, an event can be

scheduled once or more than once. An event is associated with a certain operation such that when an

event triggers, this operation is executed and can trigger other events. The main purpose of the event

scheduler in simulator is to schedule operations of each layer within each host. The host will in turn

execute these operations at the scheduled time. For instance, the scheduler is employed to carry out the

stabilize operation in the overlay layer in order to refresh the overlay‟s routing table.

To process the events a logical timestamp is considered for event occurrences and their execution.

For instance, an event A is scheduled to execute at timestamp tA = 10 and the next event B is

scheduled at tB = 100. In this case the scheduler first gets event A, processes it and updates the current

timestamp to 10 and go on to the next event, i.e., event B. When the scheduler extracts event B from

the event queue, it processes this event and will update the current timestamp to 100.

Event Queue

The EventQueue is an ordered list of future simulated events which are to occur. A timestamp is

associated with each simulated event. The timestamp represents the time at which this event will occur

and upon its occurrence it will notify the associated simulation handler to do some operation. In each

simulation step, the scheduler accesses the earliest event in EventQueue, calls its corresponding

handler and performs the specified actions. This process is carried out until the EventQueue is empty.

The further details can be found in PeerfactSim.KOM manual.

Information Management with D4M Framework 17

4 Information Management with D4M Framework

In this chapter, the architecture and the functionality of the Dynamic Distributed Derived Data

Management Framework (D
4
M) are discussed. This chapter gives details of how to handle the remote

data artifacts and dependent data in a coherent and eventually consistent way. In order to bring more

understanding, the brief overview of framework is discussed in working scenario. The D
4
M framework

is specially designed for the management of dependent and derived data distributed across multiple

peers in peer to peer (P2P) network.

4.1 Basic Idea

The D
4
M Framework is a self-adapting decentralized derived data management and monitoring

framework which works on P2P overlays and offers consistent and cohesive management of data and

its dependent artifacts. These data artifacts are stored in different peers by employing the basic services

of P2P overlays, such as Chord, Pastry, Kademlia, etc -- without using centralized dependency

management servers. In general, the term consistency in P2P systems means ensuring data reliability,

the state in which the respective peers have synchronized data with recent updates applied. The term

cohesion means ensuring that the data is consistent with recent updates which are not yet applied on

data but informed of these recent updates. Therefore, in D
4
M the nodes must manage the data in such a

way that data which is not yet synchronized with recent updates but is informed of the recent updates

so that if the data is requested it will be first updated then will be delivered to the requestor. In this

framework consistent and cohesive terms are distinguished with respect to the synchronized and

update mechanism. Consistent data is synchronized and updated among respective peers all the time.

In contrast, for cohesive data it may be possible that the data is not updated among the respective peers

all the time, but those peers are informed that they must execute some update mechanism when this

data is requested or pulled. As a result cohesive data may also be considered as updated and

synchronized among the respective peers, but only upon demand for the data. The data propagation in

the eager mode of the framework guarantees consistent data, while a lazy mode ensures only cohesive

data. The D
4
M Framework can be considered a milestone for data dependency management techniques

in decentralized environments as still there exists no mechanism for self adapting and effective data

management in graph-based structures.

Using the D
4
M Framework, a variety of different system parameters and states can be monitored,

enabling efficient and timely monitoring of networks in network monitoring applications. This

approach can also be utilized where decentralized systems are being used, for example Wiki engines

[60], social knowledge networks, and distributed development environments.

4.2 Architecture

In this framework, the data components are categorized in two kinds of data artifacts i.e. Basis and

Derivatives. Basis represents atomic data having no incoming dependencies but may be involved in

computation of the derived data with the help of different requirement artifacts using certain

computation function. Additionally, it has a list of dependency artifacts which is used to propagate its

updated value to all the peers holding its dependency artifacts. Derivatives are derived data collections

which may be dependent on some other derivatives or basis. The derivatives are data artifacts which

are generated using computation function. With each derivative there is a list of dependency artifacts

and requirement artifacts, and at least one computation function which computes the derived data

using its requirement artifacts. The internal structure of basis and derivative are illustrated in Figure

11.

18

Basis

Dependency Artifact
Dependency Artifact

DataValue

Derivative

ComputationFunctionDataValue

Dependency Artifact
Requirement Artifact

Dependency Artifact
Dependency Artifact

Figure 11 Artifact‟s data structure representation

The required/requirement artifacts are those artifacts which are needed to compute the respective

derivative value. The dependency artifact represents the derivative whose data value should be updated

if one of its Basis, computation function or required Derivatives have been changed. The requirement

artifacts may be basis or derivative while the dependency artifacts can only be derivatives.

The D
4
M framework operates in different modes of cache and data propagation which helps the

derived data to re-compute with minimum number of computing steps and to distribute the data

efficiently when it is required. These operating modes vary in terms of their activeness and prompt

action. The three identified operating modes are illustrated in Figure 12.

Wait for change

[detects change]

Re-compute

derivative

Check Availability

[if available]

Propagate a change value to

dependent derivatives

[derivative has changed]

[no change in derivative]

[if not available]

Wait for request

Check derivative availability

Invalidate derivaitve

[if available]

[not available]

Propagate the Invalidation

to dependent derivatives

[If Invalidation request]

[get request]

Check Request Type

[if query(deriv) request]
Check Validity

[If not valid]

[if valid]

Respond to

requesting peer

Re-compute

derivative

Wait for request

Check Availability

[detects a change]

[if available]

Collect all required

artifacts

[if unavailable]

Re-compute

derivative

Respond to

requesting peer

Collect all required

artifacts

Collect all required

artifacts

 (a) Lazy Mode (b) Eager Mode (c) Quiet Mode

Figure 12: Activity Diagrams of D
4
M operating modes

Information Management with D4M Framework 19

Eager If there is a change in artifact data (basis/derivative), its data value is distributed to all

peers immediately who are holding its dependent derivatives. The cause of a change in

artifact data may be the result of any derivative re-computation or basis value update

which is present in its list of dependency artifacts. It is illustrated in given figure 12(b).
Lazy Derivatives are re-computed and cached locally. The re-computed derivative is

distributed to interested peers when they request it otherwise it will remain in local

cache. Additionally, the peer who re-computed the derivative, send invalidation

derivative message to the interested peers as depicted in figure 12(a). In this process

interested peers are those who are having artifacts which depend on this re-computed

or updated derivative. It is more relevant to the peers who are having derivatives.

Quiet Derivative data is re-computed and distributed for each request but never be cached or

distributed in advance. The whole process is explained in activity diagram figure

12(c).

4.3 Concrete Scenario

For the better understanding, the use case of a distributed relational database system operating in

environment with federation of servers (given in Figure 13 where peers are arranged with respect to

chord protocol) is discussed where data is stored across servers in the form of tables governing certain

schema.

2

5

8

11

12

17
20

22

24

25

28

31 0

DHT overlay peer

D4M peer

Customer

Peer A
Current Year

vwCustomerAge

CalculateAge()

Adult Standard Age

Peer C

MarkAdult()

vwCustomerAdult

Peer B

Product

vwCustomerDetail

vwProductInSale

Peer D

Discount rate

CalculateDiscount()

PaymentTerm vwDiscountInvoice
InvoiceGenerate()

vwDiscount

Figure 13: Federation of servers operating chord protocol with data stored

20

These data tables are structured using formal schema definition which specifies the columns types and

other additional information like reference keys and their structure related information. Furthermore,

there are views which help to access and manipulate the data from and to data tables. The view is the

set of SQL statements which queries and updates the data stored in tables. In addition, certain tables

are having derived columns which can be populated based on some other column values. The derived

column is a computed column whose data value can be calculated by the other column data using

certain operating function e.g. concatenation of columns „FirstName‟ and „LastName‟ may result in

derived column „FullName‟ which concatenates the first and last name. In this scenario we have a

simple database schema as given below in table 2.

Table 2: Database schema definition

Data Tables Definition

Customer(CustomerID, Name, DateOf Birth, Age)

Product(ProductID,Name, StandardPrice, ListPrice, SalePrice)

Order(OrderNo,OrderDate,Status)

OrderDetail(OrderDetailID,OrderNo,ProductID, Quantity, UnitPrice, TotalAmount)

Discount(TransactionID, CustomerID, OrderNo, DiscountedAmount)

PaymentTerm (TermId, PaymentType, TermName)

Invoice(InvoiceId, InvoiceAmount, TransactionId)

In a given database schema definition, table Customer has column „Age’ as its derived column that

can be computed based on column „DataOf Birth‟ and current year. Similarly, the column „SalePrice‟

in a table Product is the derived column based on the difference of StandardPrice and ListPrice i.e.

SalePrice = difference(ListPrice, StandardPrice). In a table OrderDetail, the derived column

TotalAmount can be computed using formula TotalAmount = UnitPrice * Quantity, and later will be

used to compute the column „DiscountedAmount’ for table Transaction. The table PaymentTerm is

used to generate the column „InvoiceAmount’ for table Invoice based on payment term type.

Whenever there will be change in the columns data which are needed to compute the derived data

columns, all the dependent derived columns should be updated accordingly. In order to map D
4
M in

this scenario environment, the distributed database systems are used in which the tables are stored

across multiple peers based on certain structured overlay protocol like Chord, Pastry or Kademlia etc.

The database servers in a federation are termed as the peers in this context. The non-derived columns

in tables are considered as basis and derived columns are the derivatives which are computed with the

help of non-derived columns and certain computational function.

On peer A, a basis Customer table is stored which has the derived columns Age and isAdult which

can‟t be read directly from the table. In this scenario, there are certain views exposed to read the

derived columns otherwise the derived columns can‟t be either readable or updated directly from table.

The derived column Age is computed by the computation function CalculateAge() with the parameters

Customer record from the table and the CurrYear, in a result it updates the computed age in the

column Age which can be readable with the help of a view vwCustomerAge. Therefore, CurrYear and

Customer record are the requirements to compute the Age. These requirements are also the

dependencies in opposite way like the vwCustomerAge is a dependency arifact of table Customer and

Information Management with D4M Framework 21

CurrYear. In simple words when there is a change either in table Customer or CurrYear, their

dependent artfact i.e. vwCustomerAge will be computed again. Similarly on peer C, to calculate the

isAdult derived column with the help of its view vwCustomerAdult using computation function

MarkAdult(), the locally stored table AdultStandardAge and remotely stored view vwCustomerAge are

the requirements to compute vwCustomerAdult.. There is a table OrderDetail which has Amount as

derivied column. The column Amount value read by the view vwOrderAmount, can be calculated using

CalculateAmount() with the help of table OrderDetail which is stored locally. In a same way, the peer

C stores the view vwCustomerDetail, which allows concatenating the vwCustomerAge and

vwCustomerAdult and produce the value of vwCustomerDetail to read the complete details of a

customer and its order. Similarly, on peer C the table Product is having the derived column SalePrice

which can be computed using ListPrice and StandarPrice from the same table stored locally. On peer

D, the view vwDiscount calculates the discount amount based on discount rate provided by the table

DiscountRate. On the same peer, invoice amount can be calculated with the help of discounted value

given by vwDiscount and the payment term given by table PaymentTerm. The table PaymentTerm

specifies the terms of payment to calculate the invoice like visa card, cash etc. Therefore, the final

invoice amount will be calculated by computation function InvoiceGenerate() using payment term and

vwDiscount value. The computation functions specified can be defined as follows in Table 3.

Table 3: Computation function definition

Computation function Function definition

CalculateAge(CustomerDOB, CurrYear) Age := CurrYear - CustomerDOB

MarkAdult(AdultStandard, vwCustomerAge) If vwCustomerAge.Age >= AdultStandard then

 isAdult = true

else

 isAdult = false;

vwCustomerAdult := isAdult

CalculateAmount(OrderDetail) Amount := OrderDetail.UnitPrice * OrderDetail.ProductCount

vwOrderAmount:= Amount

ConcatenateCustomer(Customer, CustomerAdult) CustomerFullDetail:=CustomerDetail + vwCustomerAdult

vwCustomerDetail:=CustomerFullDetail

CalculateDiscount(vwOrderAmount,

Discountrate)

DiscountedAmount := vwOrderAmount – DiscountedAmount

vwDiscount : = DiscountedAmount

InvoiceGenerate(vwDiscount, PermanentTerm) If PermanentType == Cash

 InvoiceAmount:= vwDiscount

Else if PermanentType == „Visa card‟

 InvoiceAmount:= vwDiscount + VisaCharges

vwDiscountInvoice : = InvoiceAmount

When there will be change in records of simple tables discussed in scenario, their updates will be

sent to the remote peers where their requirements and dependencies are stored. These requirements and

dependencies are associated with each unit in the scenario. The discussed use case is shown in the

22

given Figure 14. It will be referenced later for the complex examples. In order to map this scenario

with dependency management system, the views whose values is derived can be considered as

derivatives and the tables or units like CurrYear, AdultStandatdAge can be considered as basis whose

data value does not depend on any artifact or view.

Customer

Adult Standard Age

basis

Peer A

Peer B

Peer C Peer D

Current Year

vwCustomerAge

CalculateAge()

MarkAdult()

OrderDetail

vwCustomerAdult

vwOrderAmount

CalculateAmount()

Discount rate vwDiscount

CalculateDiscount()

PaymentTerm vwDiscountInvoiceInvoiceGenerate()

Product

vwCustomerDetail

vwProductInSale

derivativeOperation()

ConcatenateCustomerDetail()

Figure 14: Representation of distributed database environment with data dependencies

4.4 Integration with Simulator PeerFactSim.KOM

The D
4
M framework is integrated into PeerfactSim.KOM simulator in order to evaluate the framework

with underlying DHT overlay protocol. The simulation results can be used with different overlay

protocols to optimize the principles for profile-based optimization strategy.

Information Management with D4M Framework 23

4.4.1 Design Decisions and Considerations

The PeerfactSim.KOM simulator allows us to integrate the framework in two possible ways.

1. First, in an underlying DHT protocol each peer may have its storage space where the data

artifacts can be stored. The data artifacts can be stored as key/value pair in each peer‟s storage

media which is a storage component of DHT protocol. The storage media depends upon

underlying protocol how it may store the data. In this case our framework cannot work

independent of underlying protocol i.e. tightly coupled implementation needs to be done and

may change for every other underlying DHT protocol.

2. The other possible way to integrate a D
4
M framework in the PeerfactSim.KOM simulator is to

build a „cache‟ component on each peer which runs transparently on the underlying DHT

protocol like Chord, Pastry or Kademlia. Each peer in the network is having a cache

component to store its interested artifacts which includes D
4
M data components i.e. basis and

derivatives. It is a loosely-coupled implementation.

The first approach offers the storage services which are embedded in DHT protocol whereas the

later approach provides flexibility for the implementation of different DHT protocols with D
4
M

framework in PeerfactSim.KOM. In general, each DHT protocol has different storage components and

different internal structure which may disturb the implementation of storage services of D
4
M

framework in the first approach.

Therefore, in order to carry out the transparent implementation of D
4
M framework in

PeerfactSim.KOM, later approach is selected. In selected approach, the D
4
M „cache‟ component acts

as an indepedenent component of a peer which provides the storage services as well as the services for

data manipulation and data transmission tasks. It employs the overlay services of underlying DHT

protocol for data lookups and transmission. In transparent implementation of D
4
M framework in

PeerfactSim.KOM each peer has layered architecture shown in figure 15. The lower layers like

network layer, transport layer and overlay layer are provided by PeerfactSim.KOM simulator while

D
4
M Cache layer provides data handling services to manage the distributed data and its dependencies

across the network.

Figure 15: Peer layered architecture in PeerfactSim.KOM (after integration)

24

4.4.2 D4M Cache Layer Components

Each peer in the network has a D
4
M cache layer which holds the data handling components. First, the

cache component is a storage container where it stores the data artifacts with their related information.

These data artifacts can be either basis or derivatives, while the related information comprises of

computational function and requirements/dependencies of the artifacts stored in data structures which

are defined briefly later in this chapter. Beside the cache component, D
4
M layer possess the handlers to

manage the distributed data across the network, termed as CacheHandler and PropagationHandler.

The cache handler is utilized to handle the insert/update/delete/query operations in cache whereas the

propagation handler is used to propagate the artifact updates to their dependent derivatives in the

network.

The operating modes for dependency management as defined in D
4
M framework can be specified

in cache component of a peer. The cache operating modes represent the degree of reactivity as how

actively the computation is performed when the change occurs in any of the requirement artifact of

derivative while propagation mode defines how to broadcast the artifact change to the peers having its

dependent derivatives. The D
4
M cache layer exposes its message listener to receive the data relevant

messages and process it according to the D
4
M framework message types. Due to the difference in

propagation and storage functionality of the operating modes, there is a separate cache handler and

propagation handler for each operating mode. For instance, the EagerCacheHandler and

EagerPropagationHandler are used for Eager operating mode. Similarly, the other two operating modes

have their own cache and propagation handler.

4.4.2.1 Cache Data Structures

The cache of a peer stores data artifacts with related reference artifacts which may be distributed over

several peers or located on a same peer. These reference artifacts can be either data requirement

artifacts or data dependency artifacts. In an implementation, these reference artifacts are implemented

as data structures which implement the base class of “RemoteArtifacts” depicted in figure 16. The

reference artifact is used to hold the responsible peer of a remote artifact.

RemoteArtifact

-artifactID

-responsiblePeer

-isValid

DependencyRequirement

Figure 16: Implementation details of additional data structures

Requirements Artifacts

A list of requirement artifacts is attached with each derivative. These requirements artifacts are

reference of basis or derivatives which are demanded for the computation function to compute only the

derivatives. This data structure contains the responsible peer overlay id where a particular artifact is

stored. The main purpose of a requirement artifact is to assist the computation of a derivative using an

associated computation function.

Information Management with D4M Framework 25

Dependency Artifacts

The dependency data artifacts are associated with each basis and derivative as reference data structure.

These data structures represent the derivatives which have to be updated if one of its Basis,

computation function or required Derivatives has been changed. This reference data structure contains

the peer overlay id on which dependent derivative is stored. These dependency artifacts are employed

to propagate the artifact‟s changes to the peers holding its dependent derivatives.

4.4.3 Operation Services of D4M Framework

In order to integrate the D
4
M framework in discrete event based simulator PeerfactSim.KOM, certain

operation services are implemented to handle the data dependencies and its change propagation across

the network. This section discusses the details of various data handling operation services which are

used in dependency data management.

4.4.3.1 Data Distribution Service – Bootstrap Process

The data distribution service performs the bootstrap process which is executed as soon as the network

peers are established according to the given DHT protocol. This service is scheduled to run once in the

start on each peer as configured in configuration xml file and allocates the data artifacts to the peers in

the network. It reads the data config file „d4M_data.xml’ and hashes the data artifacts into data keys to

allocate them according to their hashed data key value to the corresponding peers. Its execution

ensures the data specified in data file, has been delivered to the network. As soon as the data artifacts

given in data config file are stored on peers in the network, the data stabilization process starts.

Algorithm 1 shows the distribution of data.

Upon event (dataDistribution |INIT) do

 dataArtifacts := getData(“d4M_data.xml”);

 doHash(dataArtifacts);

 selectPeer := network.getRandomPeer();

 selectPeer.store(dataArtifacts);

 startTimer(t, STABILIZE)

end event

Algorithm 1: Data distribution operation

4.4.3.2 Data Stabilization Service

In stabilization process, each peer uses the neighborhood set table given by underlying DHT protocol

to synch the data artifacts to its responsible peers. During this process, each peer stores its interested

artifacts in its cache. When this service is triggered, it always looks into the cache of a peer for the data

keys which are not in the range of the peer. If it founds any data key outside the range of its own peer

id, it will push that data artifact to the closest peer according to the data key of an artifact; otherwise it

will not do anything. It may take some time to move the artifacts to their proper responsible peers. The

stabilization service is scheduled to run on each peer periodically to execute the process so that when a

peer queries an artifact it can be retrieved from the network with a minimum response time.

26

Algorithm 2 details the stabilization process.

Upon event (timeout | STABILIZE) do

 for all artifact ε peerCache.getArtifacts() do

 closePeer := getClosestPeer(artifact.getDataKey());

 if closePeer != currentPeer then

 send(closePeer, artifact);

 end if

 end for

 startTimer(t, STABILIZE);

end event

upon event (receive | srcPeer, artifact) do

 if not peerCache.contains(artifact.getDataKey()) then

 peerCache.insert(artifact);

 end if

 sendAck(srcPeer, ACK[artifact]);

end event

upon event (receive | srcPeer, ACK[artifact]) do

 peerCache.delete(artifact);

end event

Algorithm 2: Data Stabilization operation

4.4.3.3 LookUp Operation Service

The look up operation is used for finding the responsible peer for the required artifact. The operation is

scheduled immediately when requirement artifact is needed to perform the derivative computation

process or when the change in artifact is required to be propagated to the peers holding derivatives

whose data value is dependent on this changed artifact. This lookup operation will only be triggered

when a peer doesn‟t know the location of requirement artifact or dependent derivative where it is

stored in the network. In simple words, if a peer doesn‟t know who is the responsible peer of requested

requirement/dependent artifact the lookup operation will be used. In addition, it may also be called if

the responsible peer is incorrect peer i.e. the requested requirement or dependent derivative is not

found on responsible peer. Algorithm 3 explains the whole lookup operation.

A lookup operation uses the neighborhood table of requesting peer, given by the underlying

protocol (Chord, pastry etc.). It compares the peer id of a neighboring peer with the requested data key

and forwards the lookup request to the neighbor peer who is having peer Id closest to the data key.

When data key is reached to the closest peer who is having the requested data artifact, the closest peer

sends its peer overlay id in reply to the initiating peer of lookup request.

upon event (lookup | LOOKUP[dataKey])

 closePeer := getClosestPeerAmoungNeighbors(dataKey);

 send(closePeer, LOOKUP_FORWARD[currPeer, dataKey]);

end event

Information Management with D4M Framework 27

upon event (receive | srcPeer, LOOKUP_FORWARD[requestor, dataKey])

 if peerCache.contain(dataKey) then

 sendReply(requestor, REPLY[dataKey]);

 else

 closePeer := getClosestPeerAmoungNeighbors (dataKey);

 send(closePeer, LOOKUP_FORWARD[requestor, dataKey]);

 sendAck(srcPeer, FORWARDED);

 end if

end event

upon event (receive | srcPeer, REPLY[dataKey])

 remoteArtifact:= remoteArtifactsList.get(dataKey);

 remoteArtifact.setResponsiblePeer(srcPeer);

 logMessage(“LookUp completed successfully”);

end event

upon event(receive | srcPeer, FORWARDED)

 logMessage(“LookUp Request is forwarded”);

end event

Algorithm 3: Data Artifact Lookup Operation

4.4.3.4 Query Operation Service

A query operation is performed during a derivative evaluation process when the evaluating peer knows

the responsible peer of the requirement artifact. The main purpose of this operation is to collect the

values of the requirement artifacts which are distributed across the network as shown in Algorithm 4.

In this operation, a peer queries the needed data key of the requirement artifact to the remote

responsible peer. The query message is represented as “QueryMessage” in the implementation. The

responsible peer receives the query message and searches the requested data key in its local cache. If it

finds the data key in its local cache, it sends the value of requested data artifact in the reply message.

This reply message is represented as “ReplyQueryMessage” in the implementation. But if the

responsible peer is unable to find it in local cache, the requesting peer starts the look up operation for

the data key.

upon event (query | QUERY[dataKey])

 if requirementArtifact.responsiblePeer != null then

 send(requirementArtifact.responsiblePeer, QUERY[dataKey]);

 else

 triggerEvent(lookUp, LOOKUP[dataKey]);

 end if

end event

28

upon event(receive | srcPeer, QUERY[dataKey])

 if peerCache.contains(dataKey) then

 sendReply(srcPeer, RESPONSE[artifactValue]);

 else

 sendReply(srcPeer, RESPONSE[null]);

 end if

end event

upon event(receive | srcPeer, , RESPONSE[artifactValue])

 if artifactValue is null then

 triggerEvent(lookUp, LOOKUP[artifact.dataKey]);

 else

 logMessage(“query artifact recieved”);

 (any post operation)

 end if

end event

Algorithm 4: Query operation

4.4.3.5 Evaluation Operation Service

In an integration of D
4
M framework, an evaluation operation is employed to compute the derivative

using computation function associated with the derivative. The evaluation process of a derivative is

based on the cache operating mode. In eager mode and lazy mode, the peer computes the derivative

and stores the updated value in its cache whereas in quiet mode, the peer computes the derivative every

time it is requested but doesn‟t store the computed value in its cache. As soon as the evaluation process

completes, the updated derivative is propagated to the peers holding its dependent derivatives. The

later process is termed as propagation process which is based on its propagation operating mode.

Given in Algorithm 5, in an evaluation process first all the requirement artifacts which are needed

to compute the required derivative will be collected from the local cache of a peer. If these requirement

artifacts are not stored in its local cache then they are pulled out from the peers in the network using

pull operation services. During this collection/pull out operation, if the peer doesn‟t know the remote

location/responsible peer of its requirement artifacts, the lookup operation will be used to search the

needed requirement artifacts.

upon event(evaluate, EVALUATE[derivative])

 for all requirementArtifact ε derivative.getRequirementsArifacts() do

 if peerCache.contains(remoteArtifact) then

 requirementArtifactValue := requirementArtifactValue  { remoteArtifact .Value };

 else

 triggerEvent(query, QUERY[remoteArtifact.getDataKey]);

 end if

 end for

 if requirementArtifactValue.size = derivative.getRequirementArtifacts.size then

Information Management with D4M Framework 29

 triggerEvent(compute, COMPUTE[derivative, requirementArtifactValue]);

 end if

end event

upon event(receive | srcPeer, , RESPONSE[artifactValue])

 if artifactValue is null then

 triggerEvent(lookUp, LOOKUP[artifact.dataKey]);

 else

 logMessage(“query artifact recieved”);

 requirementArtifactValue := requirementArtifactValue  { artifactValue };

 if requirementArtifactValue.size = derivative.getRequirementArtifacts.size then

 triggerEvent(compute, COMPUTE[derivative, requirementArtifactValue]);

 end if

 end if

end event

upon event (compute | COMPUTE [derivative, requirementArtifactValue])

 derivative.value = derivative.getComputeFunction(requirementArtifactValue);

 if derivative.value is changed then

 triggerEvent(propagate, PROPAGATE[derivative]);

 end if

end event

Algorithm 5: Derivative Evaluation Operation

4.4.3.6 Propagation Operation service

The propagation service propagates the updated artifact values to the peers having dependent

derivatives of the updated artifacts, in the network. The propagation of updated artifacts is solely

depends on the propagation operating mode of a peer who is updating the data value of the artifact. For

this purpose, there is the handler for each propagation mode who manages the overall process of

propagation according to the mode specification.

In eager propagation mode, the updated data value of the artifact is immediately broadcast to its

peers having dependent derivatives as specified in D
4
M framework. In an implementation,

“PropagationHandlerEager” is used to handle this process. In lazy propagation mode, the updated

data value of artifact is not broadcasted to peers having its dependent derivatives rather it only

invalidates the dependent derivatives either stored in its local cache or on remote peers. Therefore it

sends the invalidation messages to the remotely stored dependent derivatives. In an implementation,

the handler named as “PropagationHanderLazy” is operating for this mode. Similarly, there is a

PropagationHandlerQuiet which handles the data propagation process under quiet mode. Algorithm 6

briefs the propagation operation.

upon event (propagate | PROPAGATE[derivative])

 for all dependentDerivative ε derivative.getDependencies() do

 if dependentDerivative.getResponsibilePeer() is not null then

30

 send(dependentDerivative.getResponsibilePeer(), UPDATE[derivative.getDataKey,

 derivative.Value] Or INVALIDATE[dependentDervative]);

 else

 triggerEvent(lookup, LOOKUP[dependentDerivaitve.getDataKey]);

 end if

 end for

end event

upon event(receive | srcPeer, UPDATE[updatedDerivative.getDataKey, updatedDerivative.Value]

 Or INVALIDATE [dependentDervative])

 if UPDATE then

 for all derivative ε peerCache.getStoredDerivatives do

 if derivative.getRequirements().contain(updatedDerivative.getDataKey) then

 triggerEvent(evaluate, EVALUATE[derivative]);

 end if

 end for

 else if INVALIDATE then

 triggerEvent(invalidate, INVALIDATE[dependentDerivative]);

 end if

end event

upon event (invalidate | INVALIDATE[dependentDerivative])

 if peerCache.contains(depedentDerivative.getDataKey) then

 derivative:= peerCache.getStoredDerivatives(depedentDerivative.getDataKey);

 derivative.isValid = false;

 end if

end event

Algorithm 6: Propagation Operation

 31

5 Thesis Approach

A structured P2P system provides a scalable solution to share data among peers in the network, but at

the same time offering high data availability is a challenge for these systems. This chapter addresses

the problem of how to provide high data availability for D
4
M - the dependency management system

operating in a structured P2P environment, by introducing the redundancy of data, i.e. by exploiting

data replication.

5.1 Problem Statement

The dynamic behavior of the peers in P2P systems allows them to join or leave the network at any

time. The unpredictable departure of a peer in decentralized P2P environments is a very common

behavior, termed churn. When a peer departs, it cannot be accessible by any peer in the network and its

data becomes unavailable to the other peers. In particular, for a dependency management system where

derived data artifacts are distributed across peers in the network, the departure of a peer may cause not

only unavailability of its data but also introduces the inconsistencies to the remote data artifacts which

are dependent on its data. The inconsistencies in the remote data artifacts may also affect the reliability

of data. Let us illustrate the problem with a simple running scenario mentioned earlier in Figure 15.

Consider the following scenario. If peerA which stores the customer table (a basis artifact) and

vwCustomerAge (a derivative artifact) crashes, then peerB will be unable to compute its locally stored

and derivative vwCustomerDetail due to the absence of a customer table. Similarly, peerC will be

unable to compute its locally stored and derivative vwCustomerAdult without the derivative

vwCustomerAge. In the worst case, if the data values of customer table and vwCustomerAge are

ignored when computing vwCustomerDetail and vwCustomerAdult on peerB and peerC, then the data

values computed will be incorrect and may not be considered as reliably computed data. In this way,

churn causes two challenges which a P2P data dependency management system must cope with: how

to provide high availability and ensuring reliable computation. In order to handle both these challenges

the high availability of data artifacts must be ensured. Therefore, in order to ensure high data

availability and reliability in a P2P data dependency management system, the churn behavior has to be

handled in an effective way.

5.2 Solution

In order to handle the churn behavior without any data loss, P2P systems typically rely on data

replication strategies. Each peer in the network needs to replicate a copy of its data (as a backup) on a

specified number of other peers in the network and synchronize all of these replicas when a change in

this data is detected. In this way if any of the peers crashes or leaves the network, then its updated data

should still be available to other peers via one or more of the replicas. Using replication the system can

continue to produce reliable data as it has avoided the problem of data being unavailable. To achieve

this, a churn handling model is proposed which provides an effective replication and recovery protocol

with the capability of handling complex dependency relationships. The proposed replication protocol

ensures data availability and reliability despite churn, particularly focusing on the case of D
4
M – a P2P

data dependency management system. Before going into the details of the proposed model, a common

approach to implementing a replication protocol is discussed. This approach was considered during our

design process.

32

5.2.1 Common Approach to Replication

A very common approach to replication designed for structured P2P systems, is to use the closest peers

to replicate the peer data. In this way when churn occurs, the data of an unavailable peer can be

recovered efficiently without any complex processing. The complex processing were refer to here is

the recovery procedure in which another peer in the network takes the responsibility for the data which

was stored on the unavailable peer and starts processing request for this (former) peer‟s data. The

process is efficient due to the short distance between the newly selected responsible peer and the

unavailable peer. The closer the newly responsible peer to the unavailable peer, the less resources and

time it will take to synchronize the data to the responsible peer when using the standard DHT data

allocation process described earlier in section 3.1.2.

In P2P data dependency management system (D
4
M) as shown in Figure 17, each peer maintains a

data cache to store the data for which it is responsible. This data comprises a collection of data

artifacts, i.e. basis and derivative data. In the discussion, the peer who replicates its data to some other

peer is referred to as a root peer while the one who stores a replica is a replica holder. In the

traditional approach, data artifacts are replicated from its responsible peer to peers whose peer

identifier is close to the data key. Therefore each peer in the network utilizes its immediate successors

and predecessors as its replica holders, depending on the k number of replica holders that are desired.

The maximum number of replica holders occurs when k = 1…N – 1, where N is the total number of

peers in the network. In the case of maximum replication every node in the network has a copy of all

of the data. At the end of the replication process, each peer in the network may act as both a root peer

and a replica holder at the same time (as following replication each peer has a copy of the data).

2

5

8

11

12

17
20

22

24

25

28

31 0

K = 2

5

8

11

12
17

20

22

24

25

28

31 0

Data keys

1

2
peer2 local

cache
peer5 local

cache

D
4
M peer having only replicas

D
4
M peer having loca data and replicas

DHT overlay peer having no local data and no replicas

Before Crash of Peer2 After Crash of Peer2

Data keys

1

2

Figure 17: First Approach showing replication and recovery protocol

Given in Figure 17, now if any of the peers goes offline (i.e., become unavailable), then its data

artifacts will still be available at one of its replica holders. As soon as its replica holders detect the

 33

unavailability of a root peer, they will co-ordinate with each other to select one replica holder as the

newly responsible peer for the data artifacts of the unavailable peer. The selection of a responsible peer

among replica holders may utilize their knowledge of their distance to the unavailable peer. Now the

selected peer will try to synchronize the data artifacts present in a replica of the unavailable peer

according to their data keys, as was done during the data allocation process in a structured P2P

systems. Furthermore, the unavailable peer was also holding a replica of some other root peer(s), thus

as soon as each root peer detects that this peer is unavailable, it will choose another neighbor peer as

its replica holder.

In the DHT overlay as depicted in the query routing table in Figure 17, the data keys are distributed

across the network. The overlay network is setup for k=2 replicas represented by arrows. There are

three different kinds of peers: the green and blue peers are the part of D
4
M data dependency

management system and store data artifacts in their local cache or store replicas of other peers,

whereas the gray peers are part of the overlay network but do not store data artifacts or any replica in

their cache, thus they are not the part of D
4
M dependency management system. If peer2 crashes, who

should store the data artifacts in its local cache as well the replica of peer0? As soon as peer0 detects

the crash of peer2, it will select peer5 as its replica holder which is now its successor provided by

underlying DHT protocol. Furthermore, the replica holders of the peer2 i.e. peer0 and peer5 will also

detect the crash of their root peer and peer0 will take the responsibility of local data of peer2 due to its

shortest distance from peer2. As soon as the data artifacts of peer2 will be re-stored in the local cache

of peer0, the synchronization process will be started which sends the data artifacts i.e. key2, key1 to its

responsible peer i.e. peer5. The peer5 who was storing only the replica earlier, now stores the data

artifacts having key1, key2 in its local cache. In a result, the peer8 now stores the replica of peer5, thus

it became the part of data dependency management system as compare to earlier state.

The redundant data in the network always minimizes the lookup time of data requests but at the

same time it introduces the concurrency problem. In this case, to get rid of concurrency issue in p2p

dependency management system, only the responsible peer (root peer) can serve the data look up

requests and update its data artifacts. It means that a replica holder has a read-only copy of root peer; it

cannot update or respond the data requests related to data artifacts stored as replicas on it. Normally

the updates are prompted if any of the local or remote dependent data artifacts are changed. When the

root peer receives the updates, it computes the relevant data artifacts and sends the updated data

artifacts to its replica holders in order to synchronize them with updated data. In this solution, the main

focus of replica maintenance is to ensure the data availability and reliability, rather to make efficient

data lookups.

5.2.2 Proposed Approach

Recent measurements on P2P systems shows that peers characteristics are highly variable in peer to

peer systems. The peers may differ in terms of bandwidth, CPU load, storage space and stability etc.

But in existing structured p2p systems, such as Chord, Pastry, and Kademlia, it is a common

assumption that all peers in the network are having similar distribution of resources and capacities.

Therefore, the peers having low capacities are forced to handle the same computation load which the

high capacity peers are handling. In a result, it affects the overall system performance badly. The

earlier approach mentions the same assumption of peer‟s equality which needs to be handled in an

effective way. Therefore, in order to handle this situation, the concept of utility function is presented.

A utility function is introduced to dispatch the assumption of a peer‟s equality as well as to operate

efficiently in heterogeneous environments where the peers have different configurations.

In this data replication approach, the selection of a replica holder peer is based on specified utility

function. Referring from the previous section, the root peers are those peers who are replicating their

local cache data and replica holders are the ones which keep the replica copy of root peer‟s cache. The

34

utility function measures the properties of a peer, depending on the application domain. For instance,

in database management systems the utility function of a peer can be defined by available bandwidth

and storage space. In contrast to that, in multimedia systems the peer‟s available latency and

bandwidth may be defined as utility function. Each peer in the network measures its capacity using

utility metric and selects its replica holders based on the utility function of its neighbor peers, which

comprises of its successor and predecessor peers. Unlike the first approach, the utility function

provides a load balanced network where peers are utilized according to their utilities and capacities.

The peer with higher utility handles more computation/bandwidth load than the peer having low

utility. This justified way of load handling results in an overall better performance across the network

and allows the low capacity devices to become a part of replication process in the p2p network. The

mobile phones and desktop PCs are the examples of low capacity devices. For instance, the mobile

phones can store the replica in its memory and mobile users can play with the replicated data in offline

mode, then revert back the changes to the original data source when gets online as discussed in [61].

In particular, D
4
M is dealing with the distributed data in peer to peer environment, so the storage

space as utility function may be considered as a critical decision. The storage space as utility function

helps the peer to utilize its high utility neighbor peers for holding its cache replica. The proposed

utility based algorithm is summarized concisely in a sequence of steps below.

1. Each peer in the network queries the available cache space (utility) of all its immediate

neighbors.

2. As soon as a peer gets the utilities of all its neighbors, it selects the neighbor peer with

highest available cache space (utility) as its replica holder.

3. This process repeats on each peer until its specified number of replica holders K is not

accomplished or any of its replica holders is departed or crashed.

Note that the selected neighbor should have larger available cache space than the root peer‟s local

cache space, in order to store the cache replica. It may arise the concurrency issues among the root

peers and its replica holders like data artifacts may not be consistent among them and some replica

holders have updated copy which is not available to other replica holders yet. Since we are dealing

with D
4
M, the requirement artifacts and dependency artifacts make this problem solved. These

reference data structures (see section 4.4.2.1) contain the responsible peer‟s address, which represents

the peer who has its original copy. Therefore, the query request of any of the data artifacts can only be

served by its responsible peer who is having its original copy, not the replica copy. If the responsible

peer is crashed then the look up operation will be performed for the requested data artifact across the

network. There are more few complex cases in this scenario which are discussed in section 5.3.2.1

The further details of the approach are discussed with its architecture and internal protocol in the

coming section.

5.3 Architecture

After discussing the proposed approach, this section gives a detailed overview of the architecture of

the proposed solution, which addresses the replication and recovery protocol to handle the churn

occurrence in D
4
M for structured p2p environments. In order to manage the replication phenomena,

the architecture of a peer provided by the p2p simulator PeerfactSim.KOM, given in earlier Figure 15

is altered by adding the functional components for replication and recovery protocol which are

represented in Figure 18.

 35

Figure 18: Representation of peer during replication protocol

In the given architecture, the replicated cache and replication manager are the additional

components which deal with the replication process. When a peer joins the network, its storage space

may be utilized as regular cache and replicated cache, to store its local data and data replicas of other

peers. The regular cache comprises of peer‟s own data artifacts while the cache replica is served to

store the replicas of the other peers as shown in Figure 19.

Peer's Cache

Package2

PeerId

Package2

PeerId

Cache Replica

PeerId
Basis
Basis
Basis

Basis
Basis

Derivaitive

Figure 19: Internal Structure of peer‟s Cache

The data replicas are termed as cache replicas which contain the data artifacts, i.e., basis and

derivatives of the root peer and associated key identifier to recognize which peer the replica belongs

to. The internal structure of a cache replica is modeled in Figure 20.

Cache Replica of a peer

Basis
Basis

Derivaitive
Basis
Basis
Basis

Figure 20: Internal Structure of Peer's Cache Replica

36

These cache replicas are used to assure the data availability in churn case. The replication manager

of a peer is responsible to handle the replication operations i.e. to retrieve and store the cache replica of

other peers into its replicated cache. At a time only one replica instance of a same peer can be stored in

the replicated cache of the replicating peer. In other words, no peer in the network can store the replica

of any peer more than once at the same time.

D
4
M is implemented on underlying DHT overlay to utilize the services of DHT. In Figure 21, the

D
4
M data topology is built on a structured decentralized network. A chord protocol is selected to build

a structured decentralized network for the demonstration of the recovery protocol. The selection of the

chord protocol is done solely due to its simple structure and functionality.

K = 2

2

5

8

11

12
17

20

22

24

25

28

31 0

* *

2

5

1112

17

25

28

31

0

D4M data topologyDHT Overlay topology

Figure 21: D
4
M data topology in DHT overlay network

In Figure 21, the gray peers are considered as the part of decentralized network but do not belong

to the D
4
M data topology. The blue nodes are the peers who contain only cache replica of other peers

in the network but don‟t store the data artifacts in their local cache. The green peers act as regular peer

as well as replica holder of some other peer in the network. They store the cache replica of other peers

as well as the data artifacts in their regular local cache. In a given figure 20, D
4
M data topology is

built on DHT overlay where K is the number of replicas each peer maintains. The D
4
M data topology

shows only the peers which store the D
4
M data artifacts either as replicas or data artifacts in their local

cache, termed as D
4
M peers. In a case of churn, the DHT peers may be utilized to store the data of

crashed peers as they have more available storage space than D
4
M peers. Following the replication

protocol, each peer maintains a number of replica holder peers to store their cache across the network

for redundancy. Each replica holder peer knows about the other replica holders of its root peer.

 37

5.3.1 Replication Protocol

The proposed data replication protocol comprises of different operations which includes the selection

of replica holders, the data synchronization process in which root peers replicates its local cache items

to its selected replica holders and the maintenance operation which ensures the synchronization of

updated data from the local cache to the replica holders. Before these operations can be discussed

further, the basic requirements are addressed to setup the environment for a D
4
M replication protocol

in p2p systems.

5.3.1.1 Basic Requirements for Replication Protocol

The data replication protocol needs the basic management services which facilitate the root peers to

maintain and replicate the copies of its local cache to the number of replica holders in the network.

These management services are executed on each peer periodically to perform replication management

tasks which are mentioned below.

Keep-Alive Service

The keep-alive service runs periodically on each peer in the network i.e. replica holder peer as well as

root peer. The main purpose of this service is to ensure that the peers are online and can participate in

the certain network activities. It detects the neighbor peers when they crash. In this service, a peer

sends the heart-beat message to all of its neighbor peers and expects the reply heart-beat message from

each neighbor in reply. When it doesn‟t get a heart-beat reply message from a peer in specified time it

detects the one as crashed peer. In order to manage the replication process properly this service should

detect the peer when it goes offline otherwise the peers will be unable to detect the status of their

replica holder peers.

Synch-Data Service

The synch-data service helps the root peers to synchronize their local cache data to its replica holder

peers. During the replication protocol, when the root peer chooses its replicating peers using the

utility-based selection strategy, the transmission of data will be performed from the root peer to its

replica holders. Notice that the root peer‟s local cache comprises of a collection of basis and

derivatives. The synch-data service will be executed either periodically or on data update event. When

the local cache data of the root peer is changed, it executes the synch-data service to synchronize the

local cache data to its replica holders if they are online so that the replica holders receive the updates

accordingly.

5.3.1.2 Selection Process of Replica Holders

The selection operation performs the vital steps to setup the replication protocol. It includes the

selection of the replica holder peers for each root peer. As mentioned earlier, the replica holder peers

are selected based on utility function (storage space).

In an initial phase of the selection operation, a peer queries its neighbor peers for their available

storage space (utility function). When it gets the responses from all the online neighbor peers, the peer

which has the maximum amount of available storage space will be selected as a replica holder to store

the cache replica of the root peer. In other words, each peer looks at its neighborhood set from the

underlying DHT protocol and sends them queries asking for their available storage space. As soon as it

gets a reply from all these neighbor peers, the node sorts the list of received storage space of all its

neighbors and chooses the one which has the maximum amount of available storage space. Each peer

may configure its K replica holder peers, where K = 1…N-1 and N is number of peers in the network.

38

For the selection of a specified number of replica holders, the root peer chooses the first K neighbor

peers from the sorted list of available storage space replies. As soon as the replica holders are selected,

the root peer initiates the synchronization process to replicate his local cache data to the selected

replicating peer as a replica. The synchronization is performed using the synch-data service mentioned

earlier. The whole selection process is described in using an activity diagram in Figure 22.

Collect neighbor

peers

Send Query(freeSpace)

to all neighbors

[Initiate selection of replica holder]

Filter the responses

(Available space >= Required space)

Sort the responses

Select a peer having

maximum available space

[selected no. of replicas = max allowed replica]

[current no. of replicas = max allowed replica]

Recieve responses

[current no. of replicas < max allowed replica]

[current no. of replicas < max allowed replica]

Figure 22: Activity Diagram of Replica Holder Selection (regular selection process)

During the selection process, it may be the case that none of the neighbor peers have enough

available storage space to replicate the root peer‟s local cache. In this case the root peer randomly

selects one of the neighbor peers from its neighborhood table and requests that it support the selection

process of the root peer‟s replica holders. The randomly selected neighbor receives the request,

executes the replica holder selection processes, and sends back its neighbor peer who is has the highest

utility. The requesting peer receives the response which identifies the peer having the maximum

available cache space and compares it with the needed cache space. If the selected peer has enough

cache space to replicate the root peer‟s local cache, then the root peer will select it as its replica holder

and initiate the synchronization process. But if its local cache requires more storage space than

available, then this support requesting process will be executed for half the number of neighbors, i.e.

 39

R = 1/2n where R is the number of randomly selected neighbors from whom to request help and n is

the number of requesting peer‟s neighbors. Note that all the peers in the decentralized network may not

be the part of the dependency management system‟s topology, as some peers might not store any

artifact data in its local cache. This extended selection procedure of replication is illustrated in Figure

23 with the help of an activity diagram.

Requesting Peer Randomly Selected Neighbor

Peer

Select a random

neighbor peer

Send supportRequest()

[Initiate alternate selection process]

Receive support

request

Execute Regular Selection Process

Get a peer

having maximum

space

Send reply(selectedPeer)

Receive the selected peer

[selected peer's available cache < needed cache space]

Select a Replica

[selected peer's available cache >= needed cache space]

Figure 23: Activity Diagram of Extended Selection Process of Replica Holder

40

Implementation

This sub-section presents the implementation details of the proposed data replication protocol. To be

able to implement the data replication protocol, the D
4
M framework has been integrated into the

PeerfactSim.KOM simulator in the first phase of this thesis project. The resulting system is used to

study in detail various aspects of a data dependency management system with a variety of P2P

protocols.

Given the architecture of the replica selection process mentioned above, for the implementation,

each peer in the network chooses its replica holder peers from its neighborhood table as provided by

underlying DHT protocol. The selected neighbor peers should have the maximum available storage

space among all of its neighbors. Algorithm 7 reflects the workflow procedure for the selection of

replica holders which was shown in the activity diagram in .

upon event (selectionPrototol , selectOnePeer) do

 if selectedReplica.Count < k then

 for all neighbour ε currentPeer.getNeighbors() do

 send(neighbour, queryCacheSpace);

 end for

 end if

end event

upon event (receive | srcPeer, queryCacheSpace) do

 send(srcPeer, reply[peer.availableCacheSpace]);

end event

upon event (receive | srcPeer, reply[availableCacheSpace]) do

 neighborReply := neighborReply  { reply };

 if neighborReply.Count = peer.getNeighbors() then

 neighborReply.sort(availableCacheSpace);

 do while selectedReplica.Count =< k

 peer := highest(neighborReply[availableCacheSpace]).srcPeer ;

 if peer.availableCacheSpace >= currentPeer.cacheSpaceNeeded then

 if selectOnePeer = true then

 send(requestingPeer , peer);

 break;

 end if

 selectedReplica := selectedReplica  { peer };

 else

 break;

 end if

 end do while

 end if

end event

Algorithm 7: Replica holder Selection

 41

If none of the neighbor peers have enough cache space in order to store the root peer‟s cache

replica, then the extended selection procedure is followed. The extended version of the selection

protocol in algorithm 8 reflects the activity diagram in Figure 23 on page 39.

upon event (extendedSelectionProtocol) do

 randPeer := randomSelectOne(peer.getNeighbors());

 send(randPeer , helpToSelectReplicaRequest);

end event

upon event (receive |srcPeer, helpToSelectReplicaRequest) do

 requestingPeer:= srcPeer;

 selectOnePeer := true;

 triggerEvent(selectionPrototol, selectOnePeer);

end event

upon event (receive | srcPeer, selectedPeer) do

 if selectedPeer.availableCacheSpace >= currentPeer. cacheSpaceNeeded then

 selectedReplica := selectedReplica  { selectedPeer };

 else

 triggerEvent(extendedSelectionProtocol);

 end if

end event

Algorithm 8: Extended Algorithm for Replica holder Selection if neighbor peers do not need cache space

In order to fully understand the coordination among neighbor peers and root peer during selection

process, a sequence diagram shown in Figure 24 describes the message transmission within the

internal components of a peer and external communication with neighbor peers.

42

Overlay layerReplication Manager

ask for neighbors

send active neighbors list

Transport Layer

send Ask(storage space) message to all the neighbors

Neighbor Peer

send Ask(space)

reply(available Space)

collect(availableSpace)

peer

cordination among components within peer

external message transmission

Figure 24: Coordination workflow during selection process of replica holders

5.3.1.3 Data Synchronization Process

After the selection of replica holders the synch-data service will be activated to replicate the local

cache of the root peer to its replica holders as shown in the activity diagram in Figure 25 on next page.

As soon as the synch-data service completes its data transmission operation, the root peer activates the

keep-alive service to periodically to check the status of its replica holders. The same keep-alive service

is executed on the replica holders to check the status of their root peer. In addition, a root peer informs

each of its replica holders about all the other replica holders who are carrying its cache replica. In other

words, each replica holder is aware of all the other replica holders of its root peer. This knowledge of

the other replica holders of a root peer helps the replica holders to determine the responsible peer in the

event of churn.

When the churn occurs, one of the replica holders will take responsibility for the cache items of the

root peer. When a root peer calculates its data artifact, i.e. changes the basis value or computes

derivatives due to a change in a dependent basis or derivative, then the synch-data service will transmit

the updated data to the root peer‟s replica holders. The synch-data service is responsible for the

maintenance of the cache replicas.

 43

Send Cache Instance & Wait

[Initiate replication process]

Recieve Cache instance

[Send instance of cache to the selected replica holder]

[If received]

Prepare Cache instance

[Time-out]

Send Ack back to sender

Activate Keep-Alive service

Activate Synch-Data service

Replication process completed

Send ack to root peer

Figure 25: Data Synchronization Process

Implementation

The data synchronization process is implemented in PeerfactSim.KOM using message transmission

services which send the root peer‟s local cache to its replica holders. Additionally, the keep-alive

service is executed on the root peer to take care of replica holders and on each replica holder to be

aware of the root peer‟s status. In order to ensure the delivery of messages, a timer is used in event

management systems. If respective action is not taken within its allotted time, then the time out

operation will be executed. The time out operation will try three times to repeat the unsuccessful

operation, and then it will delete that operation from the event queue. In the algorithm for data

synchronization, startTimer(t, REPLICATE_REQUEST) is the function which starts the timer when a

replicate request is send to the replica holder to copy the local cache of a root peer. In this call t is the

time span within which it must receive a replication completion message which confirms the root peer

44

that its local cache has been successfully replicated on the replica holder. If by t time, it does not

receive a replication confirmation message, then it will try to send the instance of its local cache to the

replica holder three times more. If none of these tries succeed in replicating the data onto a replica

holder, then it will discard this operation from the queue. Algorithm 9 describes this data

synchronization process.

upon event (dataSynch | INIT) do

 for all peer ε selectedReplicas do

 send(peer , replicate[localCache]);

 startTimer(t, REPLICATE_REQUEST[peer]);

 end for

end event

upon event(timeout | REPLICATE_REQUEST) do

 if numberOfTimes < 3

 send(REPLICATE_REQUEST.peer , replicate[localCache]);

 startTimer(t, REPLICATE_REQUEST[peer]);

 numberOfTimes := numberOfTimes + 1;

 end if

end event

upon event (receive | srcPeer, replicate) do

 if replicate.localCache.spaceNeeded <= currentPeer.availableCacheSpace then

 trigger(replicate);

 else

 send(srcPeer, noSpaceAck);

 end if

end event

upon event(replicate) do

 for all data ε replicate.localCache[data] do

 replicatedCache:= replicatedCache  {data};

 end for

 send(srcPeer, REPLICATE_COMPLETE);

end event

upon event(receive | srcPeer, noSpaceAck)

 trigger(selectionPrototol, false);

end event

upon event(receive | srcPeer, REPLICATE_COMPLETE) do

 replicaPeers := replicaPeers  { srcPeer };

end event

 45

upon event(timeout | HEARTBEAT) do

 for all replica ∈ replicaPeers do

 send(replica, HEARTBEAT);

 end for

 startKeepAliveServiceTimer(r, HEARTBEAT);

end event

upon event(receive | srcPeer, HEARBEAT) do

 alive := alive  { srcPeer };

end event

upon event(dataSynch | CHANGE[changedArtifacts]) do

 for all replica ∈ replicaPeers do

 send(replica, changeArtifact);

 startTimer(c, CHANGE[replica, changeArtifact]);

 end for

end event

upon event(receive | srcPeer, changeArtifact) do

 for all data ε replicate.localCache[data] do

 if data.id = changeArtifact.id

 replicatedCache:= replicatedCache - {data};

 data.value := changeArtifact.value;

 replicatedCache:= replicatedCache  {data};

 end if

 end for

 send(srcPeer, Ack);

end event

upon event(timeout |CHANGE) do

 if try < 3

 send(replica, changeArtifact);

 startTimer(c, CHANGE[replica, changeArtifact]);

 try : = try +1;

 end if

end event

Algorithm 9: Data Synchronization process

46

5.3.2 Recovery Protocol

In order to assure data availability in D
4
M, the recovery protocol utilizes the stage which was setup by

the replication protocol. Following the previous section, the replication protocol allocates the replica

holders to each peer who stores the cache replica of its regular cache items, i.e. data artifacts, in their

replicated cache. When any of the peers in the network crashes, two cases need to be handled. First the

root peers, who earlier selected the crashed peer as their replica holder, must detect its crash, so that

they can select another peer in the network as a replica holder. When the root peer detects its replica

holder has crashed, it will select another peer from its neighborhood table as its replica holder to

maintain its specified number of replica holder peers. Secondly, the regular local cache of a crashed

peer must be restored on its closest replica holder to assure data availability.

The process to restore the regular local cache of a crashed peer is a complex process. When the

root peer fails, each of its replica holder peers detects the crash and tries to find the closest replicating

peer to the root peer in the list. Each of them will select the closest replica holder to the root peer and

send a request to this peer to take responsibility for local cache items of the crashed peer. As soon as

the closest replica holder peer receives request messages from at least half of the replica holders of the

crashed peer
1
, it includes the cache replica items of crashed peer into its regular local cache. Now the

synch-data service will synchronize the data artifacts according to the peer‟s key identifier. Figure 26

demonstrates this process.

In the structured decentralized network depicted in Figure 26, each peer has three neighbors in its

neighborhood table. Peer2 has as neighbors Peer0, Peer5, and Peer12; while the Peer20 has neighbors

Peer22, Peer17, and Peer28. Out of the three neighbors each peer has selected two peers as its replica

holders. The peers in purple color are replica holder peers, the green nodes are not the part of D
4
M

data topology, the blue ones are simple neighbor peers which store only data artifacts in their regular

local cache, and the gray nodes are peers who are both root peers and replica holder peers at the same

time. Peer22 is considered s root peer as it has data artifacts in its regular cache as well as a cache

replica of Peer20 in its replica cache.

Neighbors: K = 3

2

5

11

12
17

25

28
31

0

Before Churn

8
20

24

22

Replicas: R = 2

Figure 26: Demonstration of Recovery protocol in Chord topology

1 We assume that there are an odd number of replica holder peers, otherwise we have to wait for half plus one request messages – to avoid the situation

where two peers would each think that they have the responsibility for the crashed root peer.

 47

If Peer22 leaves or crashes, then its replica holders (i.e. Peer24 and Peer31) will detect the crash

of their root peer and will try to find the closest replica holder to the root peer. As a result, Peer31 will

find Peer24 to be the closest replica holder peer of the crashed node; thus it will send a request

message to Peer24 to take responsibility for root peer‟s cache items. On the other hand, when Peer24

detects the crash of Peer22, it will find itself as closest replica holder peer to the crash peer. So to

confirm the crash, it waits for request messages from at least half of the replica holder peers of the

crashed node. As soon as it receives the required number of request messages, it will include the cache

replica items of Peer22 in its regular local cache. In addition, it executes the data synchronization

service to send the newly added cache items to its responsible peers. After the synch-data service

completes, Peer24 will send an acknowledgement message to the other replica holder peers of the

crashed node (i.e. Peer31 in above case), so that it can delete its cache replica of the crashed node. The

crashed node, Peer22 is also a replica holder which had stored the cache replica of Peer20 in its

replicated cache. When Peer20 detects the crash of its replica holder peer, it will select another

neighbor as its replica holder peer, such as Peer24. In this case Peer24 will also store the cache replica

of Peer20 and therefore acts as a replica holder as well as a root peer. The state of this overlay network

after churn recovery is shown in Figure 27 and the recovery process is described using an activity

diagram in Figure 28.

Neighbors: K = 3
Before Churn

Replicas: R = 2

2

5

11

12
17

25

28
31

0

8

20

24

22

2

5

11

12
17

28

31

0

8

20

25

24

After Churn

Figure 27: Recovery Protocol

If any of the data artifacts stored in a crashed peer‟s local cache is requested during the recovery

period, the request will be stored in a queue at the peer who is supposed to store the requested data

artifact. In other words, in structured P2P systems data blocks are stored on the peers based on their

peer‟s unique key identifier, therefore based on this mechanism the request for a data artifact will be

stored in a queue, maintained at the supposed-to-be-responsible peer. When the synch-data service is

completely done with the synchronization of the data artifacts of the crashed peer to its responsible

peer then this request will be retrieved from the queue and served, otherwise a timeout will occur and

the request will be deleted from the queue at the supposed-to-be-responsible peer.

48

Replica Holder ?

[Crash detected]

Regular Peer?

[crashed peer is a regular peer?]

[Yes]

Do Nothing
[No]

[Yes]

[No]

[crashed peer is a replica holder?]

Send root peer Check the replicated Cache

Execute Replica selection process

[the crash alert]

Root peer received

Select closest replica holder

[search crashed peer's replica in its replicated cache]

[Not found]

[found]

[Get the closest replica holder to the crashed peer]

Ask & Wait

recieve Ack

[send ask message to take responsibility]

[recieve Ack from closest peer]

[Timeout]

Wait

[Wait for confirm message that crashed peer's cache is restored]

Receive Confirmation

Delete Replica

Collect Ask request

Send Ack

Include replica cache items

[Initiate Take responsibility Process Or recieve Ask message to take responsibility]

[If itself is not the closest one]

[If it is the closest peer]
Take responsibility

[collect Ask Message from all active replica holders]

[send ack message to all replica holders for message recieve confirmation]

[put cache replica items of crashed peer into its own regular cache]

Stabilize Send recovery completion confirmation

Recovery Process completed

[execute data allocation process] [to all replica holders]

Figure 28: Recovery Process (left) and Churn Handling Process (right)

 49

5.3.2.1 Handling of Complex Cases: Possible Risks for Concurrency

Some complex cases are identified which may lead to concurrency problems. As discussed earlier,

while dealing with D
4
M, there is no possible concurrency problem due to the presence of

requirement/dependency artifacts which provides the responsible peer of data artifact containing its

original copy. Apart from this solution, there are few cases which need to be handled.

Case I: If the root peer crashes who may take the responsibility of data which was stored on crashed

peer i.e. data for which crashed peer was responsible?

According to the proposed recovery protocol, the closest replica to the crashed peer will take the

responsibility. The complex scenario may occur in this situation like it might be possible that the root

peer was having updated data artifacts which were just sent to its replica holders but half of the replica

holders didn‟t get the updates due to network latency or any unexpected problem and before receiving

them, the root peer has been crashed. In a result, now some replica holders may have updated data

artifacts of crashed peer and some have older than the update one. In this case, the data structure

lastUpdatedTimeStampRootPeer attached with the cache replica, will be utilized which shows the time

of the root peer when it received the updates last time from the root peer. All the replica holders will

exchange their last updated timestamp of the root peer that each of them received earlier and the

replica holder who is having latest updated time of root peer (crashed), his replica copy will be

restored to the newly responsible peer.

Case II: If the root peer crashes, who may serve the data requests during recovery time?

If any of the data artifacts which were stored on the crashed peer, are requested during recovery time,

those requests will be served up by one of its replica holders. In this situation, when requesting peer

doesn‟t find the data of responsible peer provided by requirement/dependency artifact, it will initiate

the look up operation for the requested data artifact. In a result of lookup operation, any of the replica

holders of crashed peer can be found and can serve the request for the requested data artifact.

 51

6 Evaluation and Testing

In this section, the performance of the proposed replication protocol is evaluated through discrete

event simulation using PeerfactSim.KOM simulator. The given evaluation shows that the proposed

replication protocol provides a considerably fault tolerant system with little overhead to manage the

dependent distributed data in p2p environment.

The rest of the section is organized as follows. The simulation setup is described along with

simulation parameters. Then, the performance of the system is measured through analysis of

communication cost in time and synchronization time of replicas during maintenance with variations

in the number of peers. In the fairness evaluation section, the utilization of resources is analyzed using

graphs to evaluate the fairness of system under the proposed replication protocol.

6.1.1 Environment Setup for Simulation

The simulation is based on an implementation of the Chord protocol which is a simple and efficient

structured overlay protocol. In the simulation setup, a 300-peer network is considered with the

parameters shown in Table 4.

Table 4: Simulation parameters

Simulation Parameters Values

Number of overlay peers (N) 300

Number of D
4
M peers (M) 160-240

Number of neighbours (G) 10

Number of data artifacts 100 (52 Basis + 48 Derivatives)

Number of replicas (K) 8

Number of data updates 30 updates/hr

D
4
M Operating mode Eager Mode

Crashed peers 10 peers/hr

The number of the overlay peers can be distinguished from the number of D
4
M peers as the overlay

peers are the total number of peers in an overlay network, while D
4
M peers are those overlay peers in

the network which store the data artifacts either in their local cache or in replicated cache. The number

of D
4
M peers cannot be controlled by the user in these simulations because it varies with respect to the

data keys assigned, thus the average of some simulations has been used for analysis.

The latency between any two peers in the simulated network is provided by the GNP Network

Model given in PeerfactSim.KOM which is highly heterogeneous in nature. It is described in detail in

PeerfactSim.KOM manual with the configuration setting. Similarly, the bandwidth between peers is

also provided by GNP Network model in PeerfactSim.KOM.

6.1.2 Performance Evaluation

In this section, the scalability of the system is evaluated through the study of communication costs as a

function of the addition of peers. The communication cost is the total number of messages exchanged

during the replica maintenance and data updates. In a given plot, the parameters are the same as given

52

in Table 4 for all the plots except for the variation in number of replicas, number of data updates/hour

and the number of artifacts. In each graph only one factor is varied in order to study the impact of this

variation on the remaining factors.

(a) (b)

 (c) (d)

 (e) (f)

 53

 (g)

Figure 29: Communication cost

Figure 29 shows the relationship between the traffic of D
4
M messages with respect to an increasing

number of peers and time while the number of replicas is altered. In figure 29(a), the number of

replicas is varied while D
4
M traffic is shown on the y-axis and the number of D

4
M peers on the x-axis.

There is more traffic generated when each peer in the network maintains eight replicas, as compared to

the least number of replicas. There is a gradual increase in traffic with the addition of D
4
M data

holding peers. The reason is, with more number of D
4
M peers in the network, the data artifacts are

distributed across the different peers in the network which need to be retrieved and updated. The

number of update messages and lookup messages increases with the increase in number of D
4
M peers.

Similarly the same occurs with an increase in the number of updates as depicted in figure 29(c).

Figure 29(b) and (c) simulate the traffic generated in the system with respect to the time and

compares the traffic for different numbers of replicas and updates. Initially, very heavy traffic occurs

as shown in the plot due to the bootstrap process in which each peer starts its replica selection process

and queries the available cache space of each neighbor which results in a rapid increase in traffic

generation. After the cache replicas are established, the D
4
M traffic generated is only to maintain the

replicas and synchronize the data dependencies across the network. That is why the plot shows that

after some time, the traffic is constant. Similarly in figure 29(d), the increase in number of updates

with the time will affect the traffic generation.

In figure 29(e) and figure 29(f), we compare the overlay messages and D
4
M messages to study the

extra overhead introduced with D
4
M replica maintenance. With the help of both the graphs displaying

the number of messages exchanged and the number of peers, it can be concluded that the proposed

replication protocol does not impose any major traffic overhead. Figure 29(g) shows the impact of

varying the number of data artifacts on traffic generation. For more data artifacts, there will be more

traffic generated due to the update propagation.

The synchronization and re-synchronization time for replicas during maintenance is same for an

increasing number of peers, and is not affected by the variation in number of replicas or data artifacts.

6.1.3 Fairness Evaluation

The percentage utilization of resources (such as memory) is used to study the fairness of the proposed

replication protocol. This section discusses the details of this utilization analysis.

The plots shown in Figure 30, shows the utilization (as a percentage) of the resources used by the

peers in the network with different numbers of replicas, updates, and data artifacts. Figure 30(a) shows

that, with larger numbers of replicas, that the peers used more storage space; thus utilizing more

54

resources as compared to peers in the network with the least number of replicas. Similarly, figure 30(d)

demonstrates that as soon as the peers join the system, the data artifacts are distributed among more

peers in the network and free up the storage. But at the same time, the increasing number of replicas

needs more storage space of peers to store the redundant cache data as depicted in figure 30(a) and (b).

The change in the number of updates does not impact utilization due to the fact that updates do not

take more space than the space before the update, as shown in figure 30(c). In the final graph, figure

30(e) shows that the number of artifacts needing storage space affects the overall utilization of system

when new artifacts are introduced. Therefore, we conclude that the system resources will be minimum

used as additional peers join the network. Initially when there are few peers in the network the

utilization is quite high, but it gradually decreases with the addition of peers (as the total amount of

state remains the same but is distributed over more peers).

Figure 30(f) indicates the relationship between the number of D
4
M peers and the number of

replicas. The number of D
4
M peers will increase with the increase in the number of replicas. Based on

this plot, we conclude that most of the peers would be D
4
M peers if there is a heavy data loaded

overlay network exists.

(a) (b)

(c) (d)

 55

 (e) (f)

Figure 30: Resource utilization

 57

7 Conclusion

This section details the results and analysis, concluded in this thesis work. In this thesis, we presented

a flexible and loosely coupled design to integrate the D
4
M framework into PeerfactSim.KOM and a

utility-based replication management protocol is used to achieve data availability with little overhead.

The main goal was to tolerate churn in highly heterogeneous network, where high capacity devices and

low capacity devices can participate in the replication protocol providing balanced use of resources in

the network. To achieve this goal, the utility function plays an important role when selecting the

replica holders based on their utility. The proposed replication approach uses a symmetric replication

scheme. A symmetric replication scheme is a replication scheme well suited to structured overlay

networks that can make a decision on replicas placement and detect when to replicate data.

The utility function leads us to different network designs. A p2p cluster of equal utility peers can

be built. In our proposed protocol, the utility function selects the replica peers which have the best

(maximum storage) utility. In order to build a cluster of equal utility peers, the utility function may

select the replica peers which have a utility value comparable to the peer who initiates the replication.

In this way, we can create different clusters of peers in network equal utility.

Although, we propose the use of our protocol to achieve data availability for the data dependency

management system, we believe that this protocol can be used in general to replicate network

monitoring services and other services in structured overlay networks.

8 FutureWork

Future work will include modification of the proposed replication protocol for concurrency handling,

as redundancy always speed up data lookups across the network. The concurrency has to be handled in

such a way that complex dependency relationships of data artifacts are maintained and are consistent

across all the replicas. Uncoordinated concurrent updates of a data artifact may result in an

unpredictable computed data value of dependent data artifacts. In addition to concurrency handling, we

must investigate environments with high churn rates where all the replicas of a root peer may crash at

the same time.

 59

References
[1]. D. Stingl, C. Gross, J. Rückert, L. Nobach, A. Kovacevic, and R. Steinmetz. PeerfactSim.KOM: A

Simulation Framework for Peer-to-Peer Systems. In Proc. of the IEEE International Conference on

High Performance Computing & Simulation (IEEE HPCS ‟11), 2011

[2]. K. Saller, D. Stingl, and A. Schürr. (2011, March). D
4
M, a Self-Adapting Decentralized Derived

Data Collection and Monitoring Framework. Workshops of the conference scientific

communication in Distributed Systems 2011, 37, 245 – 256, 2011

[3]. The Annotated Gnutella Protocol Specification v0.4, 2003: [www]

http://rfc-gnutella.sourceforge.net/developer/stable/index.html#t1. Last access on 2012-05-17

[4]. D. Karger, E. Lehman, F. Leighton, M. Levine, D. Lewin, and R.Panigraphy, Consistent hashing

and random trees: Distributed caching protocols for relieving hot spots on the World Wide Web.

In Proceedings of the 29th Annual ACM Symposium on Theory of Computing (El Paso, TX, May

1997), pp. 654–663.

[5]. A. Rowstron and P. Druschel, Pastry: Scalable, Decentralized Object Location, and Routing for

Large-Scale Peer-to-Peer Systems. Lecture Notes in Computer Science, 2218, 2001.

[6]. M. Ripeanu, I. Foster, and A. Iamnitchi, Mapping the Gnutella Network: Properties of Large-Scale

Peer-to-Peer Systems and Implications for System Design. IEEE Internet Computing,6(1),

February 2002.

[7]. Y. Chawathe, S. Ratnasamy, L. Breslau, S. Shenker, and N. Lanham. GIA: Making Gnutella-like

P2P Systems, Scalable. ACM SIGCOMM 2003.

[8]. J. Liang, R. Kumar, and K. Ross. The FastTrack Overlay: A Measurement Study. Computer

Networks, 50, 2006, 842–858.

[9]. R. Morselli, B. Bhattacharjee, A. Srinivasan, and M. Marsh, Efficient lookup on unstructured

topologies. Proceedings of the Twenty-Fourth Annual ACM Symposium on Principles of

Distributed Computing (Las Vegas, NV, USA, July 17 – 20, 2005). PODC ‟05. ACM Press, New

York, NY, 77–86.

[10]. A. Löser, S. Staab, and C. Tempich, Semantic Social Overlay Networks. IEEE J. Sel. Areas.

Communications, 25(1), 2007, 5–14.

[11]. J. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. Epema, M. Reinders, M. van

Steen, and H. Sips. Tribler: A Social-based Peer-to-Peer system. Proc. of the 5thInternational

Workshop on Peer-to-Peer Systems (IPTPS‟06).

[12]. I. Clarke, O. Sandberg, B. Wiley, and T. Hong, Freenet: A Distributed Anonymous Information Storage

and Retrieval System, in Lecture Notes in Computer Science  : Designing Privacy Enhancing

Technologies: International Workshop on Design Issues in Anonymity and Unobservability,

Berkeley, CA, USA, July 2000, Proceedings:, vol. 2009, Springer Berlin / Heidelberg, 2001, pp.

46–66.

[13]. I. Stoica, R. Morris, D. Liben-nowell, D. R. Karger, M. F. Kaashoek, F. Dabek, and H.

Balakrishnan, „Chord: a scalable peer-to-peer lookup protocol for internet applications‟,

IEEE/ACM Transactions on Networking, vol. 11, pp. 17–32, 2003.

[14]. A. Rowstron and P. Druschel. Storage management and caching in PAST, a large-scale,persistent

peer-to-peer storage utility. In Proc. ACM SOSP‟01, Banff, Canada, Oct. 2001.

http://rfc-gnutella.sourceforge.net/developer/stable/index.html#t1

60

[15]. A. Rowstron, A.-M. Kermarrec, M. Castro, and P. Druschel, „SCRIBE: The design of a large-scale

event notification infrastructure‟, in In Networked Group Communication, 2001, pp. 30–43.

[16]. P. Druschel and A. Rowstron. PAST: A large-scale, persistent peer-to-peer storage utility. In Proc.

HotOS VIII, Schloss Elmau, Germany, May 2001.

[17]. D. Stingl, C. Gross, J. Rückert, L. Nobach, S. Kaune, and K. Pussep, PeerfactSim.KOM: A Large-

Scale Simulation Framework for Peer-to-Peer Systems, [www]

http://peerfact.com/pub/PeerfactSim.KOM-2011-Documentation.pdf, Last access on 2011-08-03

[18]. Distributed Hash Tables at Wikipedia [www] http://en.wikipedia.org/wiki/Distributed_hash_table.

Last access on 2012-05-17

[19]. Definition of Scalability [www]

http://www.cisco.com/univercd/cc/td/doc/product/dsl_prod/6160/hwguide/glossary.htm. Last

access on 2012-05-17

[20]. Definition of peer-to-peer [www] http://en.wikipedia.org/wiki/Peer-to-peer. Last access on 2012-

05-17

[21]. Napster [www] http://www.napster.com/. Last access on 2012-05-17

[22]. Online file storage providers [www] http://en.wikipedia.org/wiki/File_hosting_service.

 Last access on 2012-05-17

[23]. Network management and monitoring applications [www]

www.im.ncnu.edu.tw/ycchen/nm/ch_13x.ppt. Last access on 2012-05-17

[24]. Definition of Availability [www] http://en.wikipedia.org/wiki/Availability. Last access on 2012-

05-17

[25]. Client-Server architecture [www] http://en.wikipedia.org/wiki/Client-server_model. Last access on

2012-05-17

[26]. Gnutella, wikipedia [www] http://en.wikipedia.org/wiki/Gnutella. Last access on 2012-05-17

[27] P. Maymounkov and D. Mazières, „Kademlia: A Peer-to-Peer Information System Based on the

XOR Metric‟, in Revised Papers from the First International Workshop on Peer-to-Peer Systems,

London, UK, UK, 2002, pp. 53–65.

[28]. Bamboo DHT [www] http://bamboo-dht.org/. Last access on 2012-05-17

[29]. FIPS 180-1. Secure Hash Standard. U.S. Department of Commerce, National Technical

Information Service (NIST), Springfield, VA, April 1995.

[30]. Systems Simulation: The Shortest Route to Applications: Modelling & Simulation. [www]

http://home.ubalt.edu/ntsbarsh/simulation/sim.htm#rwis. Last access on 2012-05-17

[31]. R. Jain, the Art of Computer Systems Performance Analysis. John Wiley & Sons, Inc, 1991.

[32]. A. Montresor and M. Jelasity, „PeerSim: A scalable P2P simulator‟, 2009 IEEE Ninth

International Conference on PeertoPeer Computing, no. 214412, pp. 99–100, 2009.

[33]. J. Pujol Ahullo and P. Garcia Lopez, “PlanetSim: An Extensible Simulation Tool for Peer-to-Peer

Networks and Services” in Proc. of the 9
th
 Int. Conf. on Peer-to-Peer Computing, 2009, pp. 85–86.

[34]. Kompics Framework, KTH, Sweden. [www] http://kompics.sics.se/trac. Last access on 2012-05-17

[35]. I. Baumgart, B. Heep, and S. Krause, “OverSim: A Flexible Overlay Network Simulation

Framework” in IEEE Global Internet Symposium, 2007, pp. 79–84.

[36]. S. Naicken, B. Livingston, A. Basu, S. Rodhetbhai, I. Wakeman, and D. Chalmers, “The State of

Peer-to-Peer Simulators and Simulations” SIGCOMM Computer Communication Review, vol. 37,

2007, pp. 95–98.

http://peerfact.com/pub/PeerfactSim.KOM-2011-Documentation.pdf
http://en.wikipedia.org/wiki/Distributed_hash_table
http://www.cisco.com/univercd/cc/td/doc/product/dsl_prod/6160/hwguide/glossary.htm
http://en.wikipedia.org/wiki/Peer-to-peer
http://www.napster.com/
http://en.wikipedia.org/wiki/File_hosting_service
file:///C:/Users/Kamal/Downloads/www.im.ncnu.edu.tw/ycchen/nm/ch_13x.ppt
http://en.wikipedia.org/wiki/Availability
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Client%E2%80%93server_model
http://en.wikipedia.org/wiki/Gnutella
http://bamboo-dht.org/
http://home.ubalt.edu/ntsbarsh/simulation/sim.htm#rwis
http://kompics.sics.se/trac

 61

[37]. B. Kantor and P. Lapsley, „Network News Transfer Protocol‟, Internet Request for Comments, vol.

RFC 977 (Proposed Standard), February 1986, Available at http://www.rfc-editor.org/rfc/rfc977.txt

. Last access on 2012-05-17

[38]. A. Shaikh, R. Tewari, and M. Agrawal, „On the Effectiveness of DNS-based Server Selection‟, in In

Proceedings of IEEE Infocom, 2001.

[39]. Lotus Software, IBM Software Group. Administering the Domino System Volume 1, May 1999.

[40]. M. R. Crispin. Internet message access protocol - version 4 rev1. Internet Request for Comments.

RFC 3501 (Proposed Standard), March 2003, Available at

http://www.rfc-editor.org/rfc/rfc3501.txt . Last access on 2012-05-17

[41]. L. Fan, P. Cao, J. Almeida, and A. Broder, „Summary cache: a scalable wide-area Web cache

sharing protocol‟, SIGCOMM Comput. Commun. Rev., vol. 28, no. 4, pp. 254–265, 1998.

[42]. H. Yu, L. Breslau, and S. Shenker, „A Scalable Web Cache Consistency Architecture’, 1999, pp.

163–174.

[43]. J. Dilley, B. Maggs, J. Parikh, H. Prokop, R. Sitaraman, and B. Weihl, „Globally Distributed

Content Delivery‟, IEEE Internet Computing, vol. 6, no. 5, pp. 50–58, Sep. 2002.

[44] G. Pierre and M. van Steen, „Design and Implementation of a User-Centered Content Distribution

Network‟, in Proceedings of the The Third IEEE Workshop on Internet Applications, Washington,

DC, USA, 2003, p. 42–.

[45]. F. Dabek, M.F. Kaashoek, D. Karger, R. Morris, and I. Stoica, “Wide-area cooperative storage

with CFS” in Proc. of the 18th ACM Symp. on Operating Systems Principles, Banff, Canada, Oct.

2001.

[46]. A. Rowstron and P. Druschel, “Storage management and caching in PAST, a large scale,

persistent peer-to-peer storage utility” in Proc. of the 18th ACM Symposium on Operating

Systems Principles, Banff, Canada, Oct. 2001.

[47]. J. Kubiatowicz, D. Bindel, Y. Chen, S. Cwerwinski, P. Eaton, D. Geels, R. Gummadi, S. Rhea, H.

Weatherspoon, W. Weimer, C. Wells, and B. Zhao, “Oceanstore: an architecture for global scale

persistent storage”, ASPLOS,pp. 190 -201, November 2000.

[48]. R. Bhagwan, K. Tati, Y. Cheng, S. Savage, and G. Voelker. Total recall: System support for

automated availability management. In Proceedings of NSDI, 2004.

[49]. H. Weatherspoon and J. Kubiatowicz. Erasure coding vs. replication: A quantitative

comparison. In Proceedings of IPTPS, 2002.

[50]. F. Dabek, J. Li, E. Sit, J. Robertson, F.F. Kaashoek,.and R. Morris: Designing a DHT for low

latency and high throughput. In: NSDI 2004: Proceedings of the 1st Symposium on Networked

Systems Design and Implementation, San Francisco, CA, USA (March 2004)

[51]. S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Schenker: A scalable content-addressable

network. In: SIGCOMM, vol. 31, pp. 161–172. ACM Press, New York (2001)

[52]. B.Y. Zhao, L. Huang, , J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubiatowicz: Tapestry: A

global-scale overlay for rapid service deployment. IEEE Journal on Selected Areas in

Communications (2003)

[53]. S., Ktari, M. Zoubert, A.Hecker, and H.Labiod: Performance evaluation of replication strategies

in DHTs under churn. In: MUM 2007: Proceedings of the 6
th
 international conference on Mobile

and ubiquitous multimedia, pp. 90–97. ACM Press, New York (2007)

http://www.rfc-editor.org/rfc/rfc977.txt
http://www.rfc-editor.org/rfc/rfc3501.txt

62

[54]. A. Ghodsi, L.O. Alima, and S. Haridi: Symmetric replication for structured peer-to-peer systems.

In: G. Moro, S. Bergamaschi, S. Joseph, J.-H. Morin, and A.M. Ouksel, (eds.) DBISP2P 2005 and

DBISP2P 2006. LNCS, vol. 4125, pp. 74–85. Springer, Heidelberg (2007)

[55]. M. Waldvogel, P. Hurley, and D. Bauer, „Dynamic Replica Management in Distributed Hash

Tables‟, in Research Report RZ–3502, IBM, 2003.

[56]. P. Knežević, A. Wombacher, and T. Risse, “Advanced Internet Based Systems and Applications”

ed. Ernesto Damiani et al. (Berlin, Heidelberg: Springer-Verlag, 2009), 201–210,

http://dx.doi.org/10.1007/978-3-642-01350-8_19. Last access on 2012-05-17

[57]. S. Legtchenko, S. Monnet, P. Sens, and G. Muller, „Churn-Resilient Replication Strategy for Peer-

to-Peer Distributed Hash-Tables‟, in Proceedings of the 11th International Symposium on

Stabilization, Safety, and Security of Distributed Systems, Berlin, Heidelberg, 2009, pp. 485–499.

[58]. P. Yalagandula and M. Dahlin, „A scalable distributed information management system‟, in

Proceedings of the 2004 conference on Applications, technologies, architectures, and protocols for

computer communications, New York, NY, USA, 2004, pp. 379–390.

[59]. R. V. Renesse, K. P. Birman, and W. Vogels, „Astrolabe: A Robust and Scalable Technology for

Distributed System Monitoring, Management, and Data Mining‟, ACM Transactions on Computer

Systems, vol. 21, p. 2003, 2001.

[60]. P. Mukherjee, C. Leng, A. Schürr. Piki - A Peer-to-Peer based Wiki Engine. Eighth International

Conference on Peer-to-Peer Computing, 2008.

[61]. B. Schandl and S. Zander, “Autonomous RDF Replication on Mobile Devices (Poster and Demo)”

(October 2009), http://eprints.cs.univie.ac.at/189/ . Last access on 2012-05-17

http://dx.doi.org/10.1007/978-3-642-01350-8_19
http://eprints.cs.univie.ac.at/189/

www.kth.se

TRITA-ICT-EX-2012:60

