
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

F E D E R I C O  E N N I

 A first application

 The Leaf project

K T H I n f o r m a t i o n  a n d

C o m m u n i c a t i o n  T e c h n o l o g y



The Leaf project: a first application
Federico Enni, enni@kth.se

Masters Thesis - 2011-11-03

Examiner
Professor Gerald Q. Maguire Jr.

Supervisor 
Professor Gerald Q. Maguire Jr.

 KTH



Abstract
Today  large publishers are developing platforms via which their content, such  as 

magazines, books, and newspapers, are distributed based upon the well established pattern 
of ‘pay-per-content’, via a multitude of mobile applications. Despite of the recent 
flourishing market of subscription possibilities, users currently  have to buy  single items of 
content at  an average expenditure that  is approximately  equal to the cost of the printed 
media, because publishers are still investing in printing  hardcover versions of their 
publications.
 
Furthermore currently  digital documents are mainly  “scanned” versions of the printed 
ones,  an unattractive format which does not exploit the potential of digital publishing. This 
format is rendered by  the device in a way  that does not permit the user to take real 
advantages of a digital environment,  making the e-reading experience something that  has 
no real added values, compared to regular printed publications. 

In order to provide to people an improved experience in terms of both accessing and 
enjoying their favorite material,  the Leaf project aims to create a platform  in which both 
publishers and readers can take advantage of an innovative business model and advanced 
technological solutions. 

As part of the Leaf project, the main  objective in this subproject is the realization of a client 
that can access a set  of online contents and offer  these to the reader, by  streaming content 
rather than requiring that the complete object should be downloaded in order to be 
rendered by  the device.  The access to the material should follow modern security 
standards, including data encryption, in order to prevent unauthorized use of the content. 
Furthermore,  the client should present the content in an innovative way  and allow the 
development of a mobile platform  that could be supported based upon advertising, with an 
approach based on using information about the user (i.e.  favorite places or profile details) 
as well as content-based advertising. 

In addition to the client application, the development of this subproject includes the 
development of a  series of server-side utilities for the uploading and elaboration of 
publications on the server infrastructure.      

The document first reviews e-reading systems, focusing on the ePub file definition and       
e-reading solutions currently  in use. The report  then describes the Android OS 
development environment. The document then explains the implementation for both 
client and server side applications,  giving  a detailed overview  of the chosen strategies and 
of the applications’ structure. Finally  the report concludes with a  list of the achieved goals, 
a discussion on the project’s limitations and then an  exploration on what is the future for 
this client application. 

i



Sammanfattning
Idag utvecklar  många utgivare plattformar vilkas innehåll,  såsom tidningar, böcker 

och veckotidningar distribueras via ett  flertal mobila applikationer enligt den väl 
etablerade ”pay-per-content” modellen.
 
Trots den blommande nya marknaden som  ger  möjligheten till prenumeration, får 
konsumenterna fortfarande köpa enstaka  publiceringar som  ungefär kostar  lika mycket 
som  de tryckta  media. Detta för att  utgivarna fortfarande investerar i den inbundna 
versionen av deras publikationer.
 
Dessutom  är de digitala dokumenten främst en “skannade” version av  det tryckta, en 
oattraktiv  format som  inte utnyttjar det  digitala formatets potentialitet. Denna format 
utförs av  enheter  på  ett sätt  som  inte tillåter  användare ta fördel av  digitala möjligheter. 
Därmed, jämfört med tryckt material, erhåller läsningsupplevelsen inte något mervärde.
 
För  att ge en bättre upplevelse, både när det  gäller att  få tillgång och att ”njuta” av  ens 
favorit material, Leaf projektet vill skapa en plattform  i vilken båda utgivare och  läsare kan 
ta fördel av en innovativ businessmodell och avancerade tekniska lösningar.
 
Huvudmålet i detta delprojekt, som tillhör huvudprojektet Leaf, är  realisering  av  en  client 
applikation som har tillgång till online material.  Detta material erbjuds till  läsaren via 
streaming istället för att hela  nedladdningen ska ske innan kundsenheten ska  kunna  börja 
använda det. Tillgången till materialet ska ske enligt moderna säkerhetsstandarder, 
datakryptering inbegripen, för  att undvika  otillåten användning av  detta material. 
Dessutom  ska  client applikationen presentera innehållet på ett  innovativ  sätt och tillåta 
utvecklingen av  en mobil plattform som  ska kunna stödjas utav  reklam. 
Tillvägagångssättet för  att genomföra reklam  ska baseras på användningen av  information 
om användaren (till exempel favorita platser  eller profildetaljer) likväl som 
innehållbaserad reklam.
 
Förutom client applikationen inkluderar  detta projekt också utvecklingen av  en serie 
server-side verktig för uppladdningen och utarbetandet  av  publikationer på serverns 
infrastruktur.
 
Denna rapport ger först en recension av  e-reading system, med fokus på ePub file 
definition samt e-reading lösningar  som  i dagsläget är använda. Efteråt förklarar 
rapporten implementationen för både client och server side applikationer  genom  att ge en 
detaljerad översikt av  de valda strategierna samt applikationernas struktur.  Slutligen 
avslutas rapporten med en lista över  de mål som har nåtts, en diskussion om projektets 
begränsningar och en prospektering på denna client applikationens framtid.

ii



Table of contents

List of Figures vi

List of Tables vii

List of Acronyms and Abbreviations viii

1. Introduction 1

1.1 Current publishing infrastructures 1

1.2 The e-reading history  1

1.3 The Leaf project 2

1.4 Client application 3

1.4.1 The Android OS as main interface for the Leaf platform 4

2. Electronic publications 6

2.1 Overview of electronic document formats 6

2.2 The ePub standard 7

2.2.1 Open Publication Structure 7

2.2.2 Open Packaging Format 8

2.2.3 OEBPS Container Format 9

2.2.4 ePub 3.0 draft specification 9

2.2.5 ePub 2.0/3.0 as the standard for the Leaf platform 10

2.3 Existing platforms 10

2.3.1 Evaluation of existing e-readers softwares and features  12

3. Android OS and SDK environment 14

3.1 Android OS for mobile devices 14

3.2 The Android SDK 15

3.2.1 Technical overview on the Android SDK 15

3.2.2 Android project’s structure, resources, and R.java 15

3.2.3 Android SDK Layouts  17

3.2.4 Android SDK source code 18

3.2.5 Android SDK project Manifest 19

3.2.6 Code compilation and the .apk packaging format 21

iii



4. Client application components 22

4.1 Connection to the server and authentication 23

4.1.1 Authentication via authActivity.class to manage users 24

4.1.2 authManager.class 25

4.2 Data presentation 26

4.2.1 Data synchronization and libraryActivity.class 26

4.2.2 Retrieving information with dbConnector.class 27

4.3 E-Reader software 28

4.3.1 Webkit engine 28

4.3.2 readingActivity.class  29

4.3.3 Javascript interface 30

4.3.4 jsTools.js 30

4.4 Streaming buffer and cache 31

4.5 Graphical User Interface 31

4.5.1 Support for multiple screen sizes and resolutions 32

4.5.2 Page number handling vs navigation controls  33

4.5.3 Transitions 34

4.5.4 User controls 34

5. Server side applications 36

5.1 Web interface 37

5.2 Java utilities 38

5.2.1 chapter.class  38

5.2.2 book.class 38

5.2.3 dbInformation.class 39

5.2.4 summaryBuilder.class 40

5.3 User authentication interface and Cookies handling 41

5.3.1 User authentication interface with loginApp.php 41

5.3.2 Cookies handling and the auth_memCookie module 42

Analysis of the results 43

6.1 Implementation decisions 43

iv



6.2 Empirical results 45

6.2.1 Analysis of the empirical results 46

6.3 Comparison with existing results 48

7. Conclusions 50

7.1 Achieved goals 50

7.2 Limitations of the current solution  51

7.2.1 Authorization system’s limitations 51

7.3 Future work 52

7.3.1 Future work on the client application 52

7.3.2 Future technologies 54

References 56

Appendixes 60

Appendix A - Uploading a book through the web interface 60

Appendix B - Sample “accessCookie” 62

Appendix C - Apache configuration for the auth_memCookie 63

     

  
     

v



     List of Figures

  Figure 1 - Sample strings.xml file ............................................... 17

  Figure 2 - Sample of a TabsLayout ............................................. 18

  Figure 3 - Sample AndroidManifest.xml file .............................. 20

  Figure 4 - A sample of <permissions> tag  ................................. 20

  Figure 5 - Overall functioning of client application .................. 23
   
  Figure 6 - User Authentication ................................................... 25

  Figure 7 - Basic functioning of libraryActivity .................................. 26

  Figure 8 - Basic functioning of readingActivity ................................. 30
   
  Figure 9 - Screen sizes supported in the Leaf client .................. 33

  Figure 10 - Server side applications when documents are 
  uploaded ..................................................................................... 36

  Figure 11 - Decisional path for the design and development 
  of the client  application .............................................................. 44

            Figure 12 - Relation between WiFi and 3G in the application ...47

  Figure 13 - Screenshot of the document inserting form ............ 60

  Figure 14 - Code for insertingBook.html .................................... 61

  Figure 15 - Code for insertedBook.html ...................................... 61

  Figure 16 - Data present in the accessCookie ............................. 62

  Figure 17 - Extract of the server’s configuration for the               
  auth_memCookie module ........................................................... 63

     

vi



     List of Tables

 Table 1 - Comparison of features in different e-reader clients................. 13

 Table 2 - Resolution formats scheme ........................................................ 16

 Table 3 - Application’s empirical data on components’ speed tests ........ 46

 Table 4 - Comparison of features in different e-reader clients, revised . 48

     
 

vii



List of Acronyms and Abbreviations

Android environment

APK    Android PacKage
JIT   Just In Time (Code Compilation)
OS   Operating System
SDK    Software Development Kit

Communication Protocols and networking acronyms 

AVFSD   A Virtual File System
DN    Distinguished Name
HTTPS   HyperText Transfer Protocol Secure
LDAP   Lightweight Directory Access Protocol
SSL    Secure Socket Layer
TLS    Transport Layer Security
URL    Uniform Resource Locator

E-publications

EPub   Electronic Publication
NCX    Navigation Control for XML 
OPS    Open Publication Structure
OPF    Open Packaging Format
OCF    OEBPS/Open Container Format
SVG    Scalable Vector Graphic

Programming environment

CSS    Cascading Style Sheet
GUI    Graphical User Interface
IDE    Integrated development Environment 
PHP    Personal Home Page/Hypertext PreProcessor
UID    Unique IDentifier
XML    eXtensible Markup Language
(X)HTML    (eXtensible) HyperText Markup Language

viii



1. Introduction

 1.1 Current publishing infrastructures

Information distribution systems have evolved dramatically, due to the 
development of digital communication systems. Looking at  the change in  how  news is 
distributed by  publishers and received by  the readers just a  decade ago in contrast  to now, 
it  is evident that technological innovation has driven the information world into a new  era, 
where the delay  between writers and readers is often imperceptible and the time it takes to 
write a line is longer than the time required to distribute the complete article to millions of 
readers worldwide. 

Personal computers and high-speed Internet connections play  a  key  role in this 
process, and as these devices evolve into something more personal, information channels 
will follow the same evolutionary path. 

Currently  the global information market  is trying to penetrate ever more deeply  into 
immediate distribution, thanks to the popularity  of personal devices such as advanced 
smart phones, e-book readers, and tablets. Due to the wide spread adoption of   
publishing-oriented software, newspapers, magazines, and books are now accessible “on-
the-go”. Additionally, access to digital material via these devices allows content  to be 
dynamic, rather than being restricted to static content  and it  also allows the content itself 
to refer to other  content which the “reader” can see or hear - either by  choice or 
involuntarily . 

 The mobile market  represents a battle field in which all the major  technology  firms 
are currently  fighting, and it  is experiencing extraordinary  growth. At the same time the 
publishing industry  is trying to adapt  its infrastructure in  order to use mobile devices and 
networks as the main medium to reach readers. However,  the main problem to solve is 
how to change peoples well engrained habits regarding their reading. 

 The Leaf project is an idea being carried out by  KTH Masters students Diego Botero, 
Federico Enni, George Khalil, and Sebastian Galiano. The team  has identified several 
potential areas that  are still not  well developed by  the publishing and distribution industry. 
The project’s vision is that by  addressing these areas we can present a service that is 
attractive for peoples who are still skeptic about changing how they  enjoy  their favorite 
reading material. Further details of the project are given in section 1.3 starting on page 2.

 1.2 The e-reading history

The first prototypes of digital books were developed during the early  nineteen 
seventies, thanks to the Gutenberg Project[1], which started producing electronic 
documents for  the public. Despite the initial indifference during the following twenty 
years, when industrial actors were focused on the development of the personal computer 
and Internet,  electronic books started arousing public interest in  the late nineteen nineties, 
due to the development of universal document formats such as Adobe’s Portable 
Document Format (PDF). In the same period several industrial actors introduced into the 

1



market the first models of eBook readers, such as SoftBook. However, these failed to be 
successful because of the limited availability  of contents, the lack of a  fast and user-friendly 
distribution infrastructure, and the high costs of both content and readers. 

With the continued development of information and communication systems and 
the mobile revolution,  interest in digital publishing/reading solutions have come back in 
vogue, attracting all of the actors involved in the information distribution chain.  This 
enables writers to access a broader public, while readers can take advantage of a  larger 
universe of information sources. Today  publishers are trying to evolve the distribution of 
contents to its next stage, a process that implies a major  change in  their  role in the digital 
world. 

Despite the fact  that eBooks and eMagazines distribution is entering a transitional 
phase, the Web 2.0 represents nowadays the main alternative to traditional reading and 
information sources. Thanks to its multitude of websites, blogs,  forums, and social 
networks, which are often  easy  to use and free to access for everyone, a large number of 
users are increasingly  getting their  content via Web 2.0 “publishers” more than from 
traditional publishers. 

A good example of a company  that is already  working in digital content distribution 
is OverDrive Inc., that provides a  multitude of services such as books catalogue and 
distribution platforms to many  libraries, institutions,  and retailers. Other companies 
involved in  the “digitalization” of content are Digital Media Initiatives,  Aptara Corporation, 
TexTech and Innodata Isogen.

1.3 The Leaf project 

In this dynamic and fragmented market, the publishing industry  is trying to apply 
its strategies and models in this new technological environment. This industry’s primary 
objective is a  “soft”  migration from  paper to digital media. This migration, which  is 
expected to be slow because of users‘ skepticism  regarding the merits of changing 
something as habitual as reading a book or  a magazine, has lead to the publication and 
distribution of contents through virtual bookshops, in the case of books, and specific 
mobile applications for individual magazines. 

The current  eBooks industry  is based on the development of text  that will be 
presented in a  way  which tries to be as similar as possible to the paper version of the same 
text, so that the user has the possibility  to browse paper-like pages and reading the text in 
a linear fashion. Today  books can be purchased from several online services, at  prices very 
near to bookshop prices of books. This happens because of many  factors, such as the lack 
of a clear income division pattern for  a digital book (the percentages currently  used are 
often the ones used in paper publications, where publishing and physical transport  have a 
big influence). This and other elements are clear signals that publishers still do not invest 
enough of their energies in the digital publications market, as they  look at  this conversion 
as a  potential economical risk. However, it  is necessary  to mention other important efforts 
made to help the growth of digital publications, as the e-libraries are doing. Even if they 
offer loans services as they  used to do with printed books, publishers such as the british 
HarperCollins or Simon & Schuster  are now  trying to protect themselves by  applying 
inhibitions and time limits to these loans.   

2



Regarding magazines, comics,  and journals,  the largest publishers are proposing a 
number of device-centric applications which offer readers advanced reading experiences, 
augmented contents, and integrated multimedia. However, these applications need to be 
individually  downloaded and installed.  Readers need to purchase as many  applications as 
there are magazines they  are interested in reading,  and then to buy  subscriptions or  pay  a 
single issue price for every issue they would like to read. 

According to data extracted from many  sources [2] [3] [4], such  the Newspapers 
Association of America statistics of 2010, people from occidental countries increasingly 
prefer reading news and articles from websites and blogs more than publications, either 
paper  or  digital ones, because of the ease of access, social-sharing possibilities, zero costs, 
and many other reasons. 

Our initial analysis of the current industry  situation and market, led to initiation of 
the Leaf project. This project’s vision is to provide people with a way  to enjoy  their  favorite 
reading material while taking advantage of the benefits offered by  the digital era, such as 
integrated multimedia and interactive elements.  In addition, innovative business models 
may  offer the possibility  of offering contents to people without asking the users to pay  for 
each individual accessed resource,  be this a  book or magazine issue.  The primary  goal of 
this project  is to create a platform  on which writers and publishers can distribute their 
content and by  which users can easily  access a large variety  and collection of magazines, 
books, while enjoying comics, and innovative forms of readings on their choice of mobile 
device. 

On the business side, the project will examine alternative and innovative ways of 
distributing  contents, generating for the authors, editors, and publishers a profitable 
revenue stream. One idea  is to enable different types of mobile advertisements and the 
creation of partnerships with “hosting companies”  that will manage free distribution spots, 
offering users different ways to access content via this proposed platform.

Among the technical issues that the project  must address,  is the creation of 
publishing solutions to provide authors and publishers with an easy  means to edit and 
upload contents.  We propose to do this using a mobile device-centric application that  will 
enable content producers to distribute new  material. In addition, a  client application will 
allow readers to access the published content. The distribution infrastructure should be 
designed to safely and efficiently store and distribute contents.

1.4 Client application

The main objective of this specific master  thesis project is the design, development, 
and evaluation of a client application for the Leaf project. The client software, which in this 
thesis project  will  be developed as an Android OS application, connects to the server  and 
presents to the user an overview of the available contents.  This presentation may  depend 
on the user’s profile,  that in the first  phase will be unique for  each user, even if in the 
future a user may  have several profiles. After selecting the desired contents, the user 
should be able to (nearly  immediately) begin enjoying  the content, leafing through pages, 
and navigating through the entire e-document — as occurs after  downloading with existing 
e-reader  applications. The primary  benefit of this new  client  will be the advantage of 
immediate access and augmented interactive content. 

3



 In order to support interactive content, the application should support  HTML5[6] 
and CSS3[7] languages, especially  for <canvas>  elements. For the same reason, native 
Javascript[8] as well as major  frameworks (such as JQuery[9] and Prototype[10]) must  be 
fully  supported. The chosen format that we have decided to utilize is the digital document 
format ePub 3.0[11]. Details of this format will be presented in section 2.2, starting on page 
6. The reasons for selecting this format are also explained during section 2.2.   

 An intuitive and user-friendly  graphical user interface (GUI) will be designed. The 
client must support bookmarking,  appearance controls, and review & manipulation of 
recent history.  Finally, the possibility  of adding plugins to improve the user’s experience 
will be evaluated.

 During the development of the first version of this application, contents will be 
accessible only  when the user  is connected to the Internet and data will be transferred to 
the user’s device in a  streaming fashion. This implies the use of a buffer (in  memory) to 
store pages to be read and a temporary  cache to keep recently  visited content in order to 
quickly  load this content. This strategy  will allow us to achieve two important results: we 
limit the amount of contents that the users have in their  devices, because users do not need 
to download entire documents to their  devices; and we allow the user to access content 
from different devices with the same account. In a second stage of the project the option of 
adding an offline mode will be evaluated. 

 Another  important part of the software, the development of which will depend on 
commercial strategies still to be defined by  my  collaborators, will concern retrieving data 
about the device and the user,  and sending these data  to the server. These data  can be used 
to allow an advertisement platform  to be more user-specific and less intrusive to the 
reading experience than existing approaches. The nature and variety  of the data that are to 
be collected remain to be defined and will  entirely  depend on developments in the other 
related parts of the overall Leaf project. 

 The development of the whole application, client and server  sides, has been 
achieved even with the usage of a remote repository  running a Subversion server[12]. This 
allowed the team to easily  collaborate and exchange portions of code, as well as developing 
and testing on different machines an configurations.

 Finally,  is important  to specify  that the Leaf project takes advantage of a streaming-
like strategy, to avoid the need to fully  download documents on the user’s device, in order 
to satisfy  a set of business policies.  These policies are described in the companion masters 
thesis by George Khalil[L2] and Diego Botero[L1].

 1.4.1 The Android OS as main interface for the Leaf platform

 The main mobile interface upon which the client application will run is the Android 
OS, currently distributed for both smartphones and tablets. 

 The first reason behind this choice is the wide adoption of Android OS, worldwide, 
which makes this Operating System to be the most  used mobile OS for  smartphones, 
according to many  statistics, such as the Millennial Mobile Mix[13] for  this summer or 
Gartner’s press release[14] of April 2011. This mobile OS is currently,  third quarter  of 2011, 
distributed in  its latest releases 2.3  Gingerbread for smartphones, and 3.0 Honeycomb for 
tablets. Among the mobile devices manufacturers that produce Android devices, we can 

4



find Samsung[15], HTC [16], Sony-Ericsson [17], Motorola[18] and many  more. The vast 
spread of Android OS can represent a key  point when the application will be ready  to be 
distributed to the public, which will be composed in this way  by  a potential of millions of 
users all  around the world; of course this number  will  be better refined by  the market 
estimations that will be performed  by the business team.
 
 The development environment  that characterizes Android is a free environment, in  
which the developers do not  need to pay  for the Android SDK[19] or for any  other tool. In 
the case of other mobile platforms, like the Apple[20] case, developers have to pay  a fee for 
the right  of using their  development kit.  In  addition to this, in  these “closed” environments 
the basic language is a “customized” version of Java that the developers have to learn in 
advance. On the contrary, the Android SDK is an environment based on Java, with  some 
added functions to interact with  the GUI controls. The GUI is constructed and managed 
thanks to XML[21] files, one per activity.

 1.5 Server-side application

 Together  with the Android client,  the project will include a  server-side application  
to implement a  series of operations while uploading a new digital publication in  the 
platform. 

 The server  side application includes two highly  connected parts which allow a user  
to upload a  new  document in  the server.  The basic architecture of the server  involves an 
Apache web server to host publications and webpages and a PostgreSQL database to keep 
track of users and documents (see [L3] Sebastian Galiano’s project  Thesis for a complete 
overview of the server’s infrastructure).

 The first part of the server side application  is represented by  a PHP based website, 
in  which the user can  insert a  new publication and specify  a title for  this document. Then 
the website performs the upload of the publication into a dedicated folder on the web 
server and inserts the publication’s data into the database.

 The second part  of the server side application is a  Java package that analyses the 
documents currently  “in upload”, retrieves data  about the publication  for the database and 
automatically builds a document summary to improve the content navigation.

 Measurements and implementation details regarding the client and server  
applications can be found in chapters 4 and 5.        

 The document will now introduce a background on the world of electronic 
publications, in  chapter 2. Then chapter 3 will give a detailed insight into Android OS and 
the development of Android applications. The components of the client application are 
explained in  details on chapter 4, then chapter  5 describes the implementation of the 
served side for this project. In chapter 6  the measurements made on the application are 
first  illustrated and then analyzed. In last chapter,  chapter  7, the document gives a 
description of the achieved goals and future work plans for this project.

5



2. Electronic publications

 In this chapter’s first part, the report analyzes the different types of electronic 
publications currently  in use. The attention is mainly  focused on the ePub format, its 
development and its technical structure. 

 The second part  describes and then evaluates the existing e-reading platforms 
currently  in use. In subsection 2.3.1  a general discourse introduces the most famous 
products currently  in the market, then it illustrates their features and performances. A 
table will summarize and highlight the advantages and disadvantages of each of these 
solutions.

 2.1 Overview of electronic document formats

 Digital publications have been produced in several different formats - using a  
variety  of standards. These different formats have caused a significant level of uncertainty 
for both  industrial actors and consumers. Adobe Systems Incorporated developed the 
widely  used Portable Document Format (PDF)[22]. This format has been very  popular 
because the specification was public and Adobe made a  reader  available for  nearly  all 
popular  platforms. Additionally,  there are open source implementations of PDF readers, 
such as Evince, Okular, and GSview. 

 In the late nineteen nineties a company  called SoftBook Press Inc.[23] introduced 
its first eBook reader, which was able to read books in a special standard called “Open 
eBook”.  The Open eBook[24] standard, OEB, can be considered as an ancestor of the 
current eBook format ePub. Released in September 1999,  an OEB file consists of a 
compressed ZIP archive containing XHTML pages, XML[21] documents for information 
handling, a manifest file to hold the document description, and external resources such as 
CSS[7] style sheets. The description of resources such  as images and other  media is based 
upon a collection of metadata selectors called the Dublin Core[25]. The Open eBook 
standard, also called OEBPS (Open Ebook Publication Structure), was formally  replaced 
after  eight years, September 2007, with  the Open Publication Structure 2.0[26], that 
evolved into the ePub standard. 

 The ePub is a digital publications format managed by  the International Digital 
Publishing Forum  (IDPF). The ePub format currently  represents the most  widely  adopted 
and compatible document format used by e-Reader devices.

 In the digital publications market, it is possible to find many  other formats, such as 
Palm  Media’s “PalmDOC”[27],  DjVu[28], Mobipocket[29],  and Amazon’s “.AZW”[30]. 
However,  these formats are proprietary  standards owned by  specific e-Reader device 
manufacturers and publishing/distribution  companies, hence they  are considered de facto 
standards. 

 Finally  it is important to mention that  several digital publications have been 
released in file formats that are commonly  used for other  purposes, such  as text  (.txt), 
HyperText Markup Language (HTML), and PostScript (.ps). 
 

6



 2.2 The ePub standard

 The ePub document format represents today  the most compatible format for  
electronic publications, with ePub used by  every  virtual bookshop and eBook website on 
the Internet. Thanks to its structure and organization, it allows documents to be 
universally  read and optimized in any  device,  regardless of screen format or operating 
system. This format is officially  supported by  every  major e-reader software and hardware, 
except for Amazon’s solution (that will be presented in the next section).

 The current official release of ePub format is 2.0.1. However, IDPF has released 
their draft specification of ePub 3.0[11], which will be formally  adopted by  the end of 2011. 
Until then the specifications regarding new media will be refined.

 A document published in the ePub standard is a compressed archive with  the .epub 
file extension. The ePub document makes use of three different formats, which specify  the 
file contents, aspect, and packaging. 

 2.2.1 Open Publication Structure

 The Open Publication Structure (OPS)[26] is the official specification defined by  the 
IDPF in  order  to ensure homogeneity  with regard to management of electronic 
publications. The current official release of the Open Publication Structure is version 2.0.1, 
v1.0.1 (September 2007).

 OPS is used in order  to manage three kind of entities: style sheets,  characters 
encoding information, and MIME-type[31] declarations for resources such as images and 
other media types. An important construct to encode OPS publications are “XML Islands”. 

 “XML Islands”  are fragments of XML[21] code that are used to declare information  
and resources inside the document; thanks to these “islands”, it  is possible to declare 
images and style sheets by  using the appropriate MIME-types, as well as to include 
information regarding the document itself. These fragments of XML [21] code can be 
inserted into the document as both inline or out-of-line code. 

 It  is possible to include in a  document multiple CSS[7] selectors. These describe the 
graphical appearance of the document. The CSS[7] used for this is called an OPS Style 
Sheet and it is composed using CSS 2.0 rules, plus a  limited list  of custom CSS[7] 
properties such as oeb-page-head and oeb-column-number. The CSS[7] mime-type should 
be text/css.

 Another  important concept  of the OPS[26] standard is that  of a MIME-type 
declaration. Each MIME-type declaration explicitly  tells how to specify  MIME-types for 
images and how to include resources with a non-standard MIME-type[31]. 

 Lastly  OPS[26] defines how to declare the character encoding that should be used 
within a document. This is necessary  in order to support compatibility  with multiple 
languages. The standard encoding set is UTF-8 or UTF-16, although is still possible to 
produce documents with other encodings.   
 

7



 2.2.2 Open Packaging Format

 Open Packaging Format (OPF)[32] (release 2.0.1  v1.0.1) is the name of the 
specification used to define the organization of contents inside an OPS[26] publication. 
The aim of OPF [32] is to create a  well structured and easy  to navigate electronic 
publication. The main components defined by  Open Packaging Format[32] are the .opf 
and the .ncx files.

 The .opf file is the main descriptor of a document. It  has a general parent  XML[11] 
node, called <package>, which  contains three required elements <metadata>, 
<manifest>, and <spine>  plus an optional node, <guide>, that can be used to point to 
particular structural elements of the publication, such as the references. 

 The <metadata>  element defines, through a series of specific tags, essential 
information regarding the document, with  the syntax: <dc:metadataTag> Value              
</dc:metadataTag>. Among the metadata tags are three required ones: title, language, 
and identifier; in addition, there are a series of optional information such as creator, 
coverage,  type etc. etc.. The majority  of metadata tags can be enriched with attributes, 
which in some cases follow specific rules.  An example of such an  attribute is the identifier’s 
id that has to be equal to the package’s unique-identifier.

 In the <manifest> element, all the files contained in the document, including  
XHTML pages, css, and images, should be declared. Between the beginning and closing 
tags of the manifest,  all the files are contained in  <item>  tags, each of which should have a 
unique id, the file path (href), and media-type (the MIME-type[31]).

 The reading order of the XHTML documents contained in the ePub file is expressed 
in  the <spine>  element, which lists the documents with itemref tags,  in the same linear 
order as the document chapters or parts follow.     

 The second file which  composes the Open Packaging Format is the .ncx file.  This file 
extension is derived from the name “Navigation Control file for  XML”. This contains the 
information that can be used to create a navigation panel for the document, presented as a 
Table of Contents. The organization if the .ncx file is hierarchical and each  subelement is 
composed of a  <head>  tag, followed by  <docTitle>,  <docAuthor>,  and <navMap>. All of 
these elements are wrapped in a general <ncx> tag. 

 The <head>  tag contains generic information regarding the document, such as the 
maxPageNumber and totalPageCount. Together with the values expressed in <docTitle> 
and <docAuthor>, the unique id contained in the <head>  should match  the information 
stored in the .opf manifest.

 The table of contents construction is based upon the <navMap>  tag,  which  contains 
a series of <navPoint>  elements that represent single entities of the table. Each 
<navPoint>  contains two sub-tags, one containing the chapter name and the other a link 
value, respectively labelled with the tags <navLabel> and <content>.     
    
  

  
8



 2.2.3 OEBPS Container Format

 The OEBPS Container Format (OCF)[33] standard defines how  the different 
publications components  should be organized in the compressed archive, which is a  .zip 
file[34]. According to the OCF definition,  the main ePub directory  should contain a  folder 
called “META-INF” and a file called “mimetype” as the first file in the folder. 

  Inside the “META-INF” folder there should be an XML definition  file called 
container.xml, in which the following tag structure indicates the .opf file and additional, 
optional, external files that define the content of the publication. This takes the form of: 
<rootfiles>
 <rootfile full-path=”path” media-type=”application/oebps-package+xml”>
</rootfiles>

 The “mimetype” file, which should be uncompressed and unarchived,  has to contain  
the string “application/epub+zip”.

 2.2.4 ePub 3.0 draft specification  

 During the first half of February  2011, the IDPF released a series of preliminary  
draft  specifications for the ePub 3.0 standard[11], which will  be composed of the following 
quartet  of standards: Content Document 3.0[35], Publications 3.0[36], Open Container 
Format 3.0[37], and Media Overlays 3.0[38]. It is important to note that these 
specifications are currently  “early  drafts”, so until the publication of the definitive versions 
they  should be considered as potentially  subject  to significant changes,  in structure and 
meanings.  

 According to the draft  specification, Content  Document 3.0[35] will supersede the 
Open Publication Structure[15] and introduce several important  changes, including 
HTML5[6], scripting, MathML support, semantic inflection of domain-specific 
information, and SVG[39] documents. In addition the .ncx navigation file, will be 
deprecated,  and a new navigation format will be defined by  EPUB Navigation Documents. 
In particular a part of Content Document 3.0[35], specifically  “XML Islands”  will  be 
deprecated.  

 The Open Packaging Format[32] will be replaced by  Publications 3.0[36],  which  
does not introduce significant  changes in  the document organization  structure, but 
includes a small list  of minor new elements such as the dcterms:modified property  and a 
metadata  “link”  element. A significant addition in Publications 3.0[36] is the definition  of 
support for Core Media Types, which represents the official introduction of audio and 
video contents to ePub documents, thanks to the HTML5 [6] <audio> and <video> tags.

 In the OCF 3.0[33] definition, the most important  changes concern the “META-
INF” folder, in which  the container.xml is still required,  but can be extended with new 
definition files, such as signatures.xml, encryption.xml, metadata.xml, rights.xml, and 
manifest.xml.  The container zip file will lose its abstraction of a file system, and become 
more of a regular zip archive. 

 Finally  the new ePub 3.0[21] predicts the introduction of two new specifications: 
Overview[21] and MediaOverlays[38].  The first one is a  description of the ePub 3.0[21] 
package. The later, MediaOverlays[38], are intended to define how to realize audio and 
text synchronization.

9



 2.2.5 ePub 2.0/3.0 as the standard for the Leaf platform

 The Leaf platform, as mentioned in the second paragraph of section 1.4, uses ePub 
2.0 (and ePub 3.0, in the next version) as the standard for contents distributed through it. 

 The reasons behind the decision of using ePub as a standard format  for  digital 
publications are many. 

 First, the wide adoption of ePub documents is a  driving element that convinced the 
team into this direction. Thanks to the fact of being a standard,  only  composed by 
standard-format files, a  big amount of nowadays digital publications are created in  ePub. 
Doing so, authors do not have to use proprietary  editing tools, but they  can take advantage 
of many  different  solutions. In addition to this,  having documents in ePub let contents 
owners to distribute these publications on many  different platforms. As viewed in  table 1, 
the ePub format is the most compatible in terms of number  of distributing platforms, a fact 
that may convince authors to have at least an ePub version, to be widely distributed. 

 A second key-element that makes ePub the format for the Leaf platform is its high  
correlation with web technologies.  Being based upon HTML/XML documents,  with CSSx 
styling and JavaScript[8] compatibility, makes the ePub a very  versatile format. Thanks to 
this, contents have the same advantages of web pages, meaning an high level of 
customization, possibility  of interactions embedded in  the documents, easy  layout and 
graphic elaboration, and a great capacity of involving multimedia contents. 

 To not being bind to a proprietary platform, together with the high possibilities 
given by the web-oriented nature of ePub and its consequential wide adoption, represents 
a multiple force of this document format that could not be ignored while selecting an initial 
format for the platform. Considering the well-structured organization of the contents (as 
shown in the previous subsections) and the    

 2.3 Existing platforms

 The current range of ways to access e-publications requires many  different 
solutions. Hence even though the main goal of Leaf project is to reach the entire market 
from a different angle, not  all of these mechanisms will be (or should be) available in the 
first prototype. 

 With regard to books,  the main solution today  is represented by  virtual bookshops 
hosted on dedicated Internet websites, such as the world-famous Amazon.com[40].  The 
primary  approach used to reach mobile users for  such  content is through device-specific 
applications,  which offer both  a reading experience and content  browsing. This 
functionality  is commonly  achieved due to access the same data available on the websites, 
with  an intuitive GUI that has been designed for the mobile environment and a pay-per-
download philosophy. The most famous example of this is Amazon.com[40] and its Kindle 
application (which is part of the Kindle platform); Kindle is an eBook reader device sold by 
Amazon.com. Alternatives are Apple’s iBook[41] and iBookstore, Barnes&Noble Nook[42] 
platform  and the mobile application Kobo[43].  It should be noted that  there are currently 
many  websites acting as virtual bookshops, so that books can be licensed from these 
website and later moved to one or more mobile devices.

10



 With respect to magazines, newspapers, and comics market the situation is a high  
fragmented market, because every  major  journal currently  offers their own device-centric 
mobile applications that each have to be downloaded by  the user. Each of these 
applications offers a different way  of browsing information. Additionally, the user has to 
individually  download and pay  for each issue of a  magazine,  newspaper, or comic book. 
Recently  Google and Apple mobile platforms, respectively  Android and iOS, introduced for 
publishing companies the possibility  of offer time-limited subscriptions to users who often 
read their contents. 

 Even though the main goal of the Leaf project is to realize something currently  not 
offered by  any  on the above mentioned solutions, there are several projects that will be 
deeply  analyzed during the course of the project  both to compare with the Leaf project and 
to learn from these other efforts. 

 The service called “PressDisplay.com”[44] powered by  NewspaperDirect Inc.  offers 
to its users the possibility  of browsing a very  large number  of newspapers from almost 
every  country  in the world, giving these users the possibility  of enjoying contents while 
offering different  payments options. Users can read contents directly  on the website,  which 
has an integrated e-reader  application with high compatibility  with every  journal and with 
a basic set  of reading tools. The same company  also offers a mobile application for 
different platforms called “Readers Hub”, which aggregates PressDisplay.com[44], Kobo 
eBooks Reader[43],  and Zinio magazines[45] in the same interface. Users can directly 
access these mobile services and then read the contents offered by  each of them, according 
to their individual commercial strategy. One of the most interesting  services offered by 
PressDisplay.com[44] is their web interface, that  presents all the latest news from 
different newspapers in  the same page and layout. When the user  clicks on the desired 
article, he or she is immediately  redirected to the “reading mode” of the newspaper 
offering this article.

 Another  interesting project that will be studied is the OpenLibrary[46] project, a  
website that offers free ebook reading (online) to visitors. Among the most interesting 
features of this project, the most relevant are the online e-reader  application, which 
efficiently  operates on different browsers, and their open space for  developers. In this 
“open space” developers can download open-source code of the platform  components and 
contribute to their  further improvement. However, the system currently  offers books that 
are not covered by copyright protection, therefore they can be distributed royalty-free.

 Recently, two new  services have been introduced in the market, with the aim  of 
distributing electronic publications on a flat-rate model. The first one, called 
“24Symbols”[47],  is a  spanish start-up that proposes a wide catalogue of regular  books 
with  a business model based upon subscriptions. The second one, “Platify”[48], is a 
swedish project with the same final objective on the business side; this project is currently 
working in the field of academic books,  offering royalties-free books. On the technical side, 
these two services offer  only  a  web-application to read contents, but when their  launching 
phases will be finalized,  they  will both come back into the market with mobile-based 
solutions.  

 With respect  to existing Android e-reader applications, the main solutions are the 
Aldiko eBook reader, Borders eBook, FBReader, Moon+ reader,  and applications such as 
Kindle app[49] and Kobo[43].   
 

11



 2.3.1 Evaluation of existing e-readers softwares and features

 In this section we discuss the main features of the alternative solutions named in  
the previous section, and how these features influence the performance of the system.

 The first feature to analyze is the way  to obtain  documents. The most widely  
adopted solution is to download of the whole document to the reading device, then 
accessing the document. This approach, used by  all the e-reader  software, prevents 
unauthorized redistributions of content by  using Digital Rights Management (DRM)[50] 
protection in  those books that are protected by  copyrights.  Despite DRM’s wide usage, this 
protection mechanism has been subject to heavy  criticism  by  several organizations 
worldwide.  Additionally, DRM protection on books has also been cracked many  times, on 
several different platforms. 

 No one of the clients currently  in the market can be used to access and read online 
contents without  downloading it  entirely,  but several solutions such as OpenLibrary[46] 
allow their users to read contents online, since they  are actually  implemented as web 
services hence they  are accessible through the browser.  With regard to magazines and 
journals,  since the majority  of them are distributed as mobile applications or websites, 
there are no clients suitable for this analysis,  because they  don’t perform a connection 
between client  and server  and the content is part of the application.  Despite of this, they 
can still be analyzed as models of e-reading solutions, especially  in terms of user  controls 
and available functions.

 The file format support is an important element to evaluate before proceeding with  
the design of the client software. Even if the Leaf project  will mainly  work with ePub, 
because if its wide compatibility  with commercial readers (almost every  device except 
Amazon’s Kindle [49]), an analysis of the most important file formats for  e-publications is 
important. Excluding the ePub format,  readable on every  device (but  the Amazon Kindle 
[49]), Text  (txt) and Adobe’s PDF are the most compatible formats, although  in reality  they 
were designed for  other purposes. A good compatibility  range is given by  HTML, DjVu
[28], and MobiPocket[19] formats, even  if they  still lack in terms of interactivity  with 
document  contents. The Open eBook[24] and FictionBook[51] formats are supported by 
some important  devices such  as Apple’s products, even though they  provide a more basic 
experience when compared to ePub. 

 With respect  to GUI implementations, there are some aspects to analyze in order  to 
better  understand people’s needs when reading an e-document. Brightness control,  Day/
Night modes, custom font size, and auto-adjustment to display  size are essential features 
that every  modern e-reader  application has, independently  of wether it is running on a 
tablet or ebook reader device. Navigation control is realized with a set  of tools, such as 
table of contents,  auto-resume, volume key  paging,  and bookmarks are implemented into 
all ebook softwares. Additional features, such as full text  search (present in  Aldiko, Apple’s 
iBook[41] and FBReader) or text-to-speech  functionalities (in OpenLibrary[46]) are key 
elements to attract people into this new way  of reading. A short list of additional functions 
offered to readers include the possibility  of taking notes, because it is an advanced feature 
only  valid for devices with a touchscreen (or  a  keyboard). Highlighting and search/share in 
the text, as well as accessing web links, are present in all the softwares installed on devices 
able to access the Internet. 

12



 Data synchronization is a  feature that  some clients, such as Kobo eBook Reader[43] 
and Amazon’s Kindle[49] ,  include in order to enable the user to have an account 
accessible through many  devices. To do this,  the software automatically  checks for  this 
user’s information on the server and downloads, if necessary, new content via the client 
application.    

 Accessing virtual bookstores is an essential feature present in many  important 
applications,  such as Apple iBook[41],  Amazon’s Kindle[49],  Kobo Reader[43], 
Barnes&Noble Nook[42], and Borders’  Ebook. The other  clients can access local 
documents which are stored in  the device’s memory, or in virtual catalogs in case of a web 
service (accessible through a browser).

 Table 1  lists features that can be found in the major  clients, on different platforms. 
The items have been  ordered from  the one with the highest number  of features (in  terms of 
functions and supported formats,  giving priority  to the non-proprietary  ones). This table 
does not consider  the real application’s appreciation  in the market,  the advantages some 
companies have on their own formats and the physical devices performance.  

( * C l i e n t s  w i t h 
more features  are 
showed in the top )

Supported Formats
(Non-proprietary)

Supported Formats
(Proprietary)

Data 
Synchro
nization

Day/Night 
Mode

Custom 
Font size

Virtual 
Store

Appleʼs iBook

Kobo Ebook 
Reader

Amazonʼs Kindle 3

OpenLibrary

pressDisplay.com

Barnes&Noble 
Nook

Lexcycle Stanza

Adobe Digital 
Editions

FBReader

Aldiko Ebook 
Reader

txt, ePub, html, 
Open eBook, pdf

MobiPocket, 
FictionBook, DjVu, 

eReader, azw, 
TomeRaider

YES YES YES YES

txt, ePub, html,  
Open eBook, DjVu, 

pdf

MobiPocket, 
FictionBook, 
eReader, azw, 
TomeRaider

YES YES YES YES

txt, html, pdf MobiPocket, azw YES YES YES YES

txt, ePub, html, 
DjVu, pdf

azw, DAISY, 
MobiPocket YES YES YES YES

txt, ePub, html, 
Open eBook, pdf --- YES YES YES YES

txt, ePub, pdf eReader YES YES YES YES

txt, html, ePub, pdf rtf, doc, eReader, Lit, 
azw YES YES YES NO

ePub, pdf Flash YES YES YES NO

txt, ePub, html, 
Open eBook

FictionBook, 
MobiPocket, rtf NO YES YES NO

ePub, pdf --- NO YES YES NO

Table 1 - Comparison of features in different e-reader clients

13



3. Android OS and SDK environment
 3.1 Android OS for mobile devices
 
 In 2005 Google Inc.  acquired the Android project, which is a mobile operating  
system (OS) developed and maintained by  the Open Handset Alliance[52]. This alliance 
included approximately  eighty  technology  firms and had the main goal of developing an 
open platform  for cellular handsets, with the aim  of enabling  a new ecology  of software 
developers. Currently  the development of new versions and the maintenance of the current 
version’s stability  is carried out by  the Android Open Source Project[53] (ASOP).  The 
Android mobile OS currently  represents the most wide-spread mobile phone development 
platform. According to the statistics presented in subsection 1.4.1,  ASOP currently  has a 
market share of 29% (by  March the third, 2011).  Additionally, there were thirty-three 
millions Android handsets sold in 2010.    

 The base upon which the Android OS runs is a register-based virtual machine, 
capable of using a Just-In-Time[54] compilation (JIT).  JIT compiles code just when there 
is a  need for  it, hence the portions of code to compile can be arbitrary  chosen (for  example, 
only  a fragment of code, a  file,  or  an individual function) and after compilation the code is 
inserted into a cache so that it can be easily  re-accessed in the future. This register-based 
VM is known as the Dalvik VM[55].  Before running Android applications, the OS converts 
the application into the compact Dalvik executable (.dex) format,  to improve the execution 
even when memory and microprocessor resources are limited. 

 On top of the Virtual Machine,  the Android OS is composed of a set  of dynamically  
loadable Java libraries, called the Java Class Libraries. These libraries can be called at run 
time by  Java  applications.  The main language used in the development of these Java Class 
Libraries was Java, however some parts are written in C because there was a need to access 
the underlying hardware resources and the OS. These Java Class Libraries are used to 
achieve three different, but essential purposes: (1) access to common services such as file 
and network input and output,  (2) provide the features required by  Java that a  given 
platform  may  not support (this is because of Java’s independence from any  specific 
platform), and (3) providing  the developer with  a set of well structured and organized 
standard code libraries, with functions to perform many common tasks.  

 The Java Class Libraries are presented to the user  with a specific object-oriented 
Application Framework[56], together with an intuitive GUI. This GUI is standardized in  all 
the devices with the Android OS pre-installed. The Application Framework’s[56] main 
components are two entities called Activity and Service; these are present in  all Android 
applications.  The Activity is associated with  a  single screen and a user interface. An 
activity  might involve for example displaying information or filling a text form. The Service 
component, on the other hand, represents something that  the application should run 
during a  long time span, without user  interaction or  information flow from the application 
to another application. It  is also important to note that a  Service does not  have a user 
interface.  The Android Application Framework[56] is composed of many  other 
components, including Tasks,  Threads,  Loopers [57], and more. Details of all of these 
components, classes, etc. are available from Android’s  official developer website [57].

14



 The highest level in Android’s software stack is represented by  applications. An 
Android application can be downloaded from  Google’s official marketplace (called Android 
Market) or from a third party  website. Each application always comes as an Android 
Package (.apk) file,  which is a variation of a standard java  JAR file. The development and 
structure of an Android application will be further analyzed in the next sections.   
   

 
 3.2 The Android SDK

 The Android Software Development Kit (SDK)[19] provided by  the Android project 
is the official set of tools that developers can use to create Android applications.

 3.2.1 Technical overview on the Android SDK

 The Android SDK[19] relies on two main software repositories: Android Repository 
and Third party Add-ons. Using these sources the developer can access a  set  of “basic 
tools”  (SDK Tools,  SDK Platform-tools, and SDK Platform) which are required for 
application development,  “recommended”  (documentation, samples,  and Microsoft 
Windows USB-drivers), and “supplementary” (Google APi and additional SDK platforms). 

 Any  Java-ready  Integrated Development Environment (IDE) can be used to create 
Android applications. However, the officially  recommended platform is the Eclipse IDE 
(specifically  the Galileo, Helios, or Ganymede versions) which can integrate the Android 
Development Tools (ADT) plugin, an extension that facilitates Android applications 
development within the aforementioned Eclipse versions.  Together  with the ADT plugin, 
the Android Virtual Device (AVD) manager for Eclipse IDE can be used to easily  keep the 
installed Android SDK[19] version and its components up-to-date and making it easy  to 
run applications on both virtual or real devices.

 3.2.2 Android project’s structure, resources, and R.java

 Every  Android project[19] should follow the same standard structure, i.e.,  it should 
be organized into several folders: “src”, “gen”, “assets”, “Android x.x”, “res”; in addition 
some files such as the AndroidManifest.xml and default.properties should be present.  

 The “src” (stands for  “sources”) folder will contain all of the Java sources packages, 
as well as the AndroidManifest.xml file. We will examine details of this directory  in section 
3.2.4.

 The”gen”  folder contains the Generated Java Files, which are automatically  
produced by  the SDK[19] engine. One of the files in this folder  is the R.java  file, which 
provides the “index” of an Android project.  This automatically  generated file assigns to 
every  resource in the project  (strings, layout objects, and other  elements contained in the 
“res”  folder) a specific constant value, creating a mapping between object identifiers (ids) 
and these public static final int numbers.  It  is important to note that every  object’s id in 
the project is defined by  the R.java file. As this file is automatically  generated it should not 
be manually  modified. Several classes appear in  the R.java file to indicate the behavior  of 
the different resources’ types in the application, these include strings and drawables.

15



 The folder  called “assets”[58] contains raw files to be used by  the project. For  
example,  such a file might be used to define special fonts. These files will be used by  the 
project only as input streams, because the “assets”[58] folder can not be accessed to 
perform  other  kinds of activities. Despite this limitation, this folder can be organized into 
subfolders, to give the degree of flexibility  required by  the application to the files that  will 
be stored in this folder. 

 Inside the “Android x.x”  folder we can find the current Android version, declared by  
the “x.x”  statement. This defines the minimum version of the “android.jar”  supported by 
this specific application.    

 Finally,  we have the resources folder[59], “res”, in which media files such  as images 
and functional elements (such as layout definitions and standard strings are stored).  This 
folder is divided into several sub-folders, depending on the resource type that the folder 
contains; functional images (such  as icons and layout elements) are stored in the three 
folders called “drawable-hdpi”, “drawable-mdpi” and “drawable-ldpi”, depending on the 
resolution (high, medium, or  low) of these images. These resolution formats are illustrated 
in table 1 which shows the size of icons and some common tabs.

Element hdpi mdpi ldpi

Launcher & Menu 
icons

72 x 72 px 48 x 48 px 36 x 36 px

Tab, Dialog, List 
View

48 x 48 px 32 x 32 px 24 x 24 px

 An essential resource sub-folder is “layout”[60], in  which layout definitions are 
defined in a series of .xml files,  normally  containing a file main.xml and other files for 
different parts of the application. The layout management and the .xml layout files will be 
discussed in section 3.2.3.

 The “values” directory  is another  sub-folder of “res”  and it stores xml value 
declarations, such as the (required) file strings.xml.  In  this file all the strings and string-
arrays that will appear in the application’s GUI should be stored, with a specific 
<string name=”stringName”>  tag to wrap the string’s value. Similarly, string-arrays 
should be declared with a <string-arrays>  tag containing a list of <item>  tags to contain 
array  values. Even if the value of “Text”  elements will be hard coded or set with  XML, 
creating strings.xml entries is encouraged because these entries can easily  be utilized when 
translating the interface to another  language.  An example strings.xml file is shown in 
Figure 1.    

Table 2 - Resolution formats scheme

16



                

 The “res”  folder may  also include an optional folder called “raw”, in which the 
developer can store raw files that need to be accessed other  then as a input stream. (Note 
that raw  files that are only  accessed as an input string can already  be accessed from  the 
“assets” folder). 

 3.2.3 Android SDK Layouts

 The “layout”[60] sub-folder of resources folder in a typical Android project is 
intended to store a  series of .xml files that define the application’s layout.  A layout 
specification for  an Android application is composed by  one or more XML files that can be 
accessed and referenced by  the Java classes of the project’s source code. Normally  an 
Android application binds a layout definition to each application’s activities and the main 
activity is related to the main.xml file.

 The main structure of a XML Android layout[60] is organized around the “View”  
concept. A  “View”  is a generic Java object and class that represents a visual entity  in  the 
application’s GUI. Many  Java classes are able to extends the “View”[61] class; for  example 
Buttons and TextViews,  that are elaborated in the Java source code. The visual behavior of 
each of these elements is defined in the XML layout[60] files. 

 A “View”[61] can be referred to by  XML code, using its unique identifier  (id). The 
view contains the main graphical features,  such as layout positioning, text attributes, and 
dimensions. The possibility  of inserting  text in the elements to predict a  text value, such as 
button’s label. Depending on the XML tag, that should be nested in the view’s container, a 
list of attributes to define the object’s visual appearance can be used to define the object’s 
appearance. The complete list of these attributes and their respective values can be found 
at the official Android Developer Website at http://developer.android.com/guide/topics/
ui/declaring-layout.html#attributes.

 Among the list of Java  Views[61] that can be modeled with XML, we can identify  
several functional categories: Layouts, Buttons, TextViews, WebViews, EditTexts, and 
many  more. These categories include elements that can be inserted in the application’s 
layout, with specific functions. While Buttons and EditText are elements that give the user 
interactive objects, TextViews, WebViews and Layouts form the structure of the 
application. It is important to note that  some XML attributes, such as 

Figure 1 - Sample strings.xml file

17

http://developer.android.com/guide/topics/ui/declaring-layout.html#
http://developer.android.com/guide/topics/ui/declaring-layout.html#
http://developer.android.com/guide/topics/ui/declaring-layout.html#
http://developer.android.com/guide/topics/ui/declaring-layout.html#


android:layout_width, android:layout_weight should be declared in order  to create the 
graphic instance of the element; even if the attribute is not explicitly  required, the 
android:id attribute should be declared in order to access the element from  the Java 
source code. 

 Special attention should be given when talking about “Layout”  objects. These 
objects are the main containers of the application’s visual structure. The main layout types 
are “LinearLayout”  (a linear  structure to define an ordered disposition of the elements), 
“RelativeLayout”  (gives the possibility  of relative positioning), and “AbsoluteLayout”  (to 
use to enable the developer  to specify  absolute positioning). A particular layout style is the 
“TabsLayout”,  which is composed of several kinds of minor layouts and allow  the creation 
of a structure with different tabs (an  example of a TabsLayout is shown in Figure 2).  All the 
elements that appear inside the layout should be nested inside the layout XML tag.

                     

 3.2.4 Android SDK source code

 The core functionalities and declarations of an Android project are defined in source 
code packages, inside the “src”  folder  of the application package. Just as in a regular  Java 
project, each source package has several .java files with different classes and interfaces.

 The main structure of a  .java file inside an Android source package is the same as in  
regular Java  files.  The first part of the document is reserved for  the import of libraries that 
will be used in  the class and then the class declaration should be written, with eventual 
extensions and the implementation of other classes. 

Figure 2 - Sample of a TabsLayout

18



 Inside the class the first part is reserved for  variables and constant declarations, 
furthermore we find all the methods that will compose the class,  constructed using the 
standard Java syntax to declare visibility and parameters.

 An essential method which  should be present in every  Android application’s main  
class is the “public void onCreate(Bundle savedInstanceState)”  method,  that will include 
the application’s starting activity.  

 To set the layout  of the XML definition  that will be used to render the Java class,  the 
method to use is “setContentView(R.layout.xmlName). The method’s parameter directly 
points to the “layout”[60] folder, thanks to R.java mapping. 

 Views can be retrieved from the layout files with the method findViewById
(R.id.viewId). Each view must be set as an instance of a View[61] object declared in the 
objects and variables declaration part. Every  view, depending  on  its type, has a set  of 
predefined methods to invoke functions related to its specific purpose. One of the most 
relevant  method that is offered by  the majority  of View[61] objects is the 
setOnClickListener(View v). This method allows the creation of listener  instances to bind, 
as an example, the pressing of a button to a specific action.     

 Activities can be created and launched in different ways. The main approach is the 
creation and usage of entities called “intents”. An “Intent”  is an  object that includes the 
definition of the main actions to perform with the activity  that required the intent’s 
initialization.  

 3.2.5 Android SDK project Manifest 

 E v e r y  A n d r o i d p r o j e c t i n c l u d e s a n  X M L f i l e , t h e s o c a l l e d 
“AndroidManifest.xml”[62], which keeps all the information regarding the application in a 
single place. This file must have exactly  this name, in every  project,  and it  has to be located 
in the root folder of the application package.

 The Manifest[62] file is divided into two parts, one dedicated to the declaration of 
the project’s features and the other lists the activities of the application and the application 
‘s properties.

 The declarations part of the Manifest[62] file includes several specific attributes, 
such  as “android:versionCode”, “androidVersionName”, “package”  are used to specify  this 
information. When a device wants to install an application, it  will first look at the values of 
these attributes to check for compatibility  and to ensure that the system meets the 
minimum requirements in order to run the software.

 Another  important source of information in the application declarations part is 
represented by  multiple tags that the developer can insert to better specify  important 
features of the software. Among these tags <uses-sdk>  states the minimum, maximum, 
and target SDK[19] versions required to compile the software,  <supports-screens> 
indicates that the application supports large sized screens. Additional similar  tags include 
<meta-data>, <permissions>, and many  more. These tags have tag-specific attributes; 
hence the developer does not  have the possibility  to define her/his own customized tags in 
the Manifest file[62].

19



 The <application>  tag begins the second part of the Manifest[62] file, and includes 
a series of <activity> tags that are used to specify  the attributes and behaviors of each 
activity  that comprises the application.  Inside the <activity> tags we can find the tag 
<intent-filter>  that  contains <action> and <category> tags; these tags are used to specify 
through  their attribute “android:name” what kind of activity  we are declaring and what its 
purpose is. Essential attributes of the <activity>  tag are “android:name”,  “android:label”, 
and “android:theme”  in which the developer specifies the corresponding information. The 
most important attributes for the <application>  tag are “android:icon”, which should 
point to the location of an  icon and “android:label”  that must contain  the value “@string/
app_name”, a  value contained in the “strings.xml”  file that  indicates the desired 
application name. An example AndroidManifest.xml[62] file is shown in Figure 3.       

 

 Modifying the permissions within the Manifest[62] file allows the developer to 
restrict the application accessibility  to other components or  services, for example to 
prevent the application to access the network or  the telephone’s functionalities. An 
example of how to use the permissions in the Manifest[62] file is shown in Figure 4.

  
  

 

Figure 3 - Sample AndroidManifest.xml file

Figure 4 - A sample of <permission> tag
Source: http://developer.android.com/guide/topics/security/security.html

20

http://developer.android.com/guide/topics/security/security.html
http://developer.android.com/guide/topics/security/security.html


 3.2.6 Code compilation and the .apk packaging format

 Once the code is ready  to be compiled, the developer can start this process by  
invoking the Just-In-Time[54] compilation procedure.  The standard procedure is based on 
four essential steps: (1) packaging the resources, (2) javac compilation,  (3) Dalvik[55] 
bytecode translation, and (4) creation of an unsigned apk file. These steps, which 
transform  the raw application package into a software ready  to run on Android machines, 
can be executed using the IDE or, in the command line environment, with a  simple set of 
dedicated commands to perform each of these steps individually. Further steps to sign the 
code with a key  and publish it  are optional, and these steps only  need to be executed just if 
the developer wants to distribute the application to others. 

 Once the code is compiled, the application is packed into an .apk file, which  
contains a standard Android Package. This file is a compressed archive that can be opened 
with  common archive tools, such  as WinZip, 7-Zip, Ark, or  WinRar. The .apk file format is 
the standard applications file format that Android equipped devices can open and execute.  

21



4. Client application components

      The development of the client application that will allow users to access the Leaf 
platform  from  their devices, is the main focus of this masters thesis project. This 
application, initially  developed for Android systems, will be developed based upon several 
components, which will take care of different tasks, using specific controllers to handle 
information exchange. 

 As with every  Android application, the components of the Leaf client are 
represented by  “Activities”, an abstraction of the different  activities that  user performs 
during the usage of the application. Every  activity  is implemented as a Java class, 
associated with a unique XML document that models its appearance.  The main “Activities” 
composing the Leaf project’s client application are described in figure 5.  

 The first activity’s description,  given in section 4.1, explains how the users are able 
to log in the platform in a secure and persistent  way, thanks to the LDAP[63] interaction 
with  the database that stores users’ information. Persistency  is based upon a special Cookie 
that is issued only to successfully recognized users. 

 The list of accessible resources is obtained by  connecting to the Leaf platform 
server,  currently  hosted at KTH, where data are stored in  a protected area. The Android 
activity  called “libraryActivity” is responsible of connecting the client with this protected 
area and showing  the user all the available contents. In  a future version, a  user’s “personal 
space” will be introduced, giving users a private bookshelf hosted on the Leaf server. 
Details of the current “libraryActivity” these will be discussed in the subsection 4.2.1.

 The application’s core, depicted in section 4.3, is represented by  an e-Reading tool 
that presents e-publications to the user,  interpreting HTML[6], CSS3[7],  and scripting 
contents according to the ePub specifications. The user  can navigate through the entire 
document via a set of commands to control the document’s presentation and navigation, as 
well as returning to the previous activity and starting to read other publications. 

 Through all the activities, the application offers a GUI that presents contents in  an  
innovative way, specifically  designed to facilitate accessibility  and usability. The design of 
this GUI, together with the specifications of its elements, will be discussed in section 4.4.

 The following sections will analyze the current  strategies and functions that the 
client application implements,  giving a  detailed overview of the implementation  of the 
Android activities composing the client application

        

  

22



        

 4.1 Connection to the server and authentication

 Since the client application was initially  developed for mobile devices and it has to  
be able to present contents that might be updated daily  (or  perhaps even more frequently), 
the client application must be able to retrieve resources from the Leaf server  platform. In 
order to achieve this, a crucial part of the development of the application was designing a 
means to automatically  establish a secure connection to the server and partially download 
the desired data. Details of this operation will depend upon the user-side commercial 
policies (these policies are being defined in companion projects by  George Khalil and 
Diego Botero, see [L2] and [L3]).    

 The main protocols that will be used are HTTP for the actual connection to the 
server  and for data exchange and the Lightweight  Directory  Access Protocol (LDAP) [63] 
for authentication and directory  browsing. The implementation of the authentication 
mechanism  has been designed using LDAP’s Bind operation together with a particular 
authentication strategy  that relies on customized cookies. Details of this will be explained 
in subsection 4.1.1. 

Figure 5 - Overall functioning of client application

23



 Currently  the transport-layer protocol that is used in the client-server  connection is  
a standard implementation of TCP[64]. The team is currently  evaluating the usage of SCTP 
[65] streams, in order  to avoid head-of-line blocking and to improve performance, 
especially when transferring audio and video data. 

 The design and development of the final version of the client application will build 
upon the current prototype, using a UML formulation to formalize the design description.

 4.1.1 Authentication via authActivity.class to manage users

 Information about  the users are stored by  the server-side application as database 
entities inside a dedicated table, with  relevant  subscriber/payment details, current 
documents,  and other information (including publication-oriented data) related to each 
user. 

 When the user launches the client application, the first visible activity  is the 
authentication activity  (implemented by  authActivity.class).  This class presents a simple 
login  form, into which the user  enter  his/her credentials to access the Leaf platform. Once 
the users send their  credentials (username and password), these credentials are sent to the 
server,  which compares these credentials against the user’s information that  is stored in 
the LDAP[63] system. If the credentials match then the user is allowed to proceed with  the 
next activities, otherwise the users are prompted to re-enter their credentials .

 The Java activity  that executes this task is called authActivity.class. In the first part 
of this class,  when the variables are declared, we find the instantiate a new HttpClient 
object, obtained from  the authManager class.  Details of this class,  its usage and the way  it 
is implemented, can be found on section 4.2.2. 

 The second part of authActivity.class collects the user’s credentials from the form, 
from two “EditText” fields.  The username and passwords strings are then stored in a 
private List, which is used to create a  HttpPost object.  This object  is then assigned the 
correct connection url (which points at  loginApp.php, see subsection  5.3.1) and sent in 
encoded form  to the PHP page that performs the authentication using LDAP. This last 
process is performed by  the HttpClient object (the one coming from authManager), which 
sends the Http POST request due to its “execute” method.

 After sending the Http POST request,  another  Java variable stores the response 
entity  sent by  the server. Depending on the HTTP status code associated with this 
response, the authActivity.class decides whether to transition the user to the next activity 
or to ask again  for the user’s access credentials. In the case of a  positive response, the java 
CookieStore is updated with the latest  cookie issued by  the server.  For more details on the 
cookies handling, see section 5.3.2. 

 Another  essential part  of user management is the synchronization of each user’s 
data. This should be sufficiently  efficient to, as an example, store information regarding 
the user’s bookmarks,  in such a  way  that the user can open the same book on another 
device without losing their  bookmark(s). With regard to the future development of an 
integrated advertising system, it  will be necessary  to synchronize relevant user  data with 
the server, in order to better understand each user’s behavior. This level of synchronization 
could be realized by one of several different schemes, such as SyncML. 

 
24



 Figure 6 depicts how the user authentication procedure works.

                                     

 4.1.2 authManager.class

 The Java class called “authManager.class”  is an auxiliary  class that is used to 
maintain the authentication session while the end-user is using the application. Thanks to 
this class, the user is able to continuously  use the application without losing  her/his 
authentication

 The content of this class is a  simple construction of a DefaultHttpClient[66] object 
that is used by  all the other  Java classes of the application. This strategy  allows the 
different classes to always rely  on the same object, avoiding the need to create multiple 
connections to the server. In addition, by  using a common object such as the authManager, 
there is no need to pass data between different activities, decreasing the time need to 
launch each activity. 

 The DefaultHttpClient object contained in the authManager activity  is instantiated 
with  port 80 for HTTP connections and port 443 for HTTP Secure connections (it is 
expected that in  the future all connections will utilize HTTPS). The  number  of connections 
is limited to two simultaneous connections most of the time and maximum of twenty  by 
using a ThreadSafeClientConnManager. In future implementations we expect that, these 
constraints will be changed to allow a larger number of connections.

Figure 6 - User authentication

25



 4.2 Data presentation  

 This section gives details on how the data are presented to the user, explaining how 
classes such as libraryActivity.class or dbConnector.class work. Despite the fact that code 
details are not revealed for commercial reasons, in the following subsections we illustrate 
structural details on how the retrieval of data, and its presentation to the user, have been 
developed. 
  
 4.2.1 Data synchronization and libraryActivity.class

 A certain amount of data synchronization  is a crucial part  of the project. Since the 
client application  will download only  requested resources,  the application should be 
synchronized with  the server  in  such  a way  that the application can present updates to the 
user, who can decide whether to open a magazine’s latest issue or  open a book recently 
uploaded into the server.

 During the development of the client application, a key  activity  was the so called 
“libraryActivity”, which presents to the user the documents that are currently  stored by  the 
server.  The libraryActivity.class  file acts as a “bridge”  between the retrieving of data from 
the server (see 4.2.3) and the reading activity (see 4.1.2). 

 The main component  of the libraryActivity.class is the method “buildMenu”, which  
takes the outputs of the database connection made by  dbConnector.class (see 4.2.2) and 
creates a  series of Android “button”  elements,  one for each  document in the server (in a 
later stage this will happen only  for  the content  present in the user’s home page,  such as 
favorites or suggested readings). After this, it binds an “onClickListener”  method to these 
buttons, so when a  user  clicks on a specific button she/he will be re-directed to the reading 
activity,  passing the document’s ID as a parameter. In  the future, these simple buttons will 
be replaced with a default sized image showing the document’s cover. The 
libraryActivity.class is depicted by figure 7.

 It  is important to note that,  at this stage of the project, the “libraryActivity” shows to 
every  user  all the documents currently  in the server (and thus all the documents  in the 
database). In the next phase of development, when user policies have been integrated, the 
documents presented to the user  will only  be the documents for which the current user has 
access. This access, which depends on the account status, will show  to the user only  the 
content that will be part of his/her homepage, such as favorite or suggested.   

                                      
 

Figure 7 - Basic functioning of libraryActivity

26



  
 4.2.2 Retrieving information with dbConnector.class

 The “libraryActivity”  enables the user to select which document to read, retrieves 
data from  the server via a database query  launched by  dbConnector.class.  This query  asks 
the database for the contents that are actually  stored in the server, and then passes the 
relevant documents’ data  to the “libraryActivity”, which will use each of the publication’s 
titles to create “button” elements (see subsection 4.2.1).

 Since the database is implemented using a PostgreSQL database, the 
dbConnector.class uses the “JDBC for PostgreSQL” driver to connect the Java  application 
to the database. Once the driver  is registered and the connection established, a “select” 
query  is sent  to the database, asking for  data regarding all the documents currently 
registered in the “books” table (for details regarding the database structure and its tables, 
refer to Sebastian Galiano’s masters thesis[L3]).  Each entry  in the “books” table is then 
stored in a Java private map that will be returned to the “libraryActivity”.    

 When user  policies are integrated,  the query  that will be sent to the database will be 
modified to be a  query  in which only  resources associated with the user account’s type will 
be requested. 

 A relevant development of this Java utility  will consider the security  risks of the 
database queries being made by  the client  side. To avoid misuses or  attacks, in  next 
development phases we will adopt a more complex architecture,  which will probably 
transfer the database interaction responsibility  to a server-side script. The 
dbConnector.class will evolve into a  Java class that interacts with a server side script,  
passing to this script  a request and the user’s identifier; however, the information returned 
is expected to be in the same form as currently  - thus the rest of the implementation will 
not be affected by this change.

 

27



 4.3 E-Reader software

 The core functionality  of the client application is interpreting HTML5[6], CSS3[7], 
and scripting code to present the user with document pages to read. These pages can 
include embedded rich media and interactive elements. In order  to perform these tasks, 
the client application uses a browser-like window  element to show contents retrieved from 
the server. 

 The Android View[61] component called WebView offers a good solution to create a  
browser window, based on the well-know layout engine Webkit[67]. The decision to 
present contents through a webkit-based window  is based upon the necessity  of 
interpreting resources that are normally  optimized for website rendering. The alternative 
for the development team  could have been to integrate contents in  more “classical” layouts 
part of the Android environment (such as embedding documents in  RelativeLayout 
objects), but the rendering of documents conforming to the ePub 2.0/3.0 specifications 
would anyway require the use of browser-like surfaces.

 Another  important design decision that was made regarding document handling is 
the granularity  of the application. The application currently  operates on chapters as the 
smallest  part of a document, in case of a book or articles in the case of a magazine. This 
decision was made due to the need to elaborate the different files within the same 
document. This also takes advantage of the reference that each chapter has in the summary 
creation process. In a  later phase of the project, this decision may  be revised to enable new 
navigation strategies.   

  
 4.3.1 Webkit engine

 The Webkit[67] software is a widely  used layout engine, which  currently  provides 
the base for  Web browsers such as Google’s Chrome and Apple’s Safari. It  was developed 
by  an aggregation of many  industrial actors, including KDE, Apple, RIM, Samsung, and 
Google. The software is distributed with a  GNU lesser  public license for  its core 
components, while the other parts are licensed under a BSD license. 

 There are four  main components to the Webkit engine[67]: WebCore, 
JavaScriptCore, Drosera, and SunSpider. 

 WebCore[67] is the main functional component of the engine and it is mainly  used 
for layout rendering. It is composed of a  collection of libraries that perform the 
construction of a page through  Document Object Model (DOM) analysis and HTML 
interpretation. As with every  modern layout engine, WebCore is able to render any 
standard markup and formatting language as visual information.  

 The JavaScriptCore[67] is a Javascript[8] engine responsible for interpreting and 
executing Javascript[8] code. This allows dynamic scripting. Recently  the Webkit[67] 
JavaScriptCore has been rewritten in order to improve its speed and performance.

 Drosera[67] was the Javascript  debugging software released together  with the 
Webkit[67] engine,  but  has currently  been abandoned because of the inclusion of its 
functionalities in the Inspector, an analysis tool distributed with Webkit[67]. 

28



 The last  component of Webkit engine is SunSpider[67], a suite that can be used by  
analysts and developers to perform  benchmarking on complex Javascript applications. It  is 
currently widely used by developers in its 0.9.1 version. 
  
 4.3.2 readingActivity.class

 The main activity  of the client application takes place in the class in which the 
document reading experience occurs. This part has been implemented,  as noted above, 
using the Android SDK component called WebView in the readingActivity.class Java class. 

 In the first part of the file containing this class there is a  declaration of objects and 
variables that will be used, such as the reading window, the navigation buttons to move to 
other chapters, the button to come back to the summary, and the “information-visualizer” 
text box. After  the initialization phase, the activity  retrieves the ID and name of the 
document that the user wishes to access; these data comes from the “libraryActivity”,  see 
subsection 4.2.1 .   

 A core part of the readingActivity.class is the initialization of settings regarding the 
WebView, via  the “WebSettings” Java class. These settings allow developers to set 
particular behaviors for WebViews, such as: is zoom supported or is Javascript[8] enabled. 
The Javascript handling  part is implemented by  creating a Javascript  interface that catches 
Javascript events during the reading experience and binds these occurrences with the 
desired Java methods. Details of the Javascript interface handling are given in subsection 
4.1.2 .

 Another  essential part of the readingActivity.class  is the enabling of external 
Javascript libraries, such as JQuery[9]. This is achieved by  re-implementing the 
“onPageFinished” method, part of the Android SDK. This method is invoked when a page 
finishes being loaded into a WebView. In  our implementation this appends Javascript code 
that loads the JQuery[9] library, if it  has not already  been included by  the document. Along 
with  the JQuery  library, another Javascript file called jsTools.js  is imported; details of this 
file are explained in subsection 4.1.3.  Both jsTools.js and JQuery  library  are stored in the 
application’s assets folder.

 The final relevant method in readingActivity.class is “setCurrentReadingState”. 
This method keeps track of which chapter the user  is reading and which  are the next  and 
previous chapters. This is implemented using the chapter  and book classes and will be 
explained in more detail in subsections 5.2.1 and 5.2.2 .  

 When all of the above operations are finished, the “readingActivity” shows the 
summary  of the document  inside the WebView  window (for the summary  creation details, 
see subsection 5.2.4).  The user  can select  a chapter  and then start reading it,  calling the 
“pageLoad” event every time a new chapter is requested (as shown in figure 8, step 2). 

29



           

 4.3.3 Javascript interface

 The reading experience takes advantages of Javascript[8] technology, which  
together with HTML5[6] and CSS3[7] will provide to users a  series of interactivity 
elements. In order to allow  writers to insert  interactive elements during document 
creation, it was necessary to create a Javascript interface. 

 The creation of javascriptInterface.class was required in  order to bind Javascript 
events to the propagation  of responses in  the Java code to these events. In  the code of the 
javascriptInterface.java file a set of methods are included, in which  different Javascript 
events are coupled to separate Java methods. An example of this is the Javascript 
“onTouch”  event, that will be converted into a Java “onTouch”  event. This provides a 
means to invoke a particular function depending on the resource that has been touched by 
the end user. In this way, when the author creates content, she/he is able to determine 
which kind of reaction should occur when readers touch  a particular  image, section, or 
word.
  
 The Javascript interface has been developed to interact even with external 
Javascript libraries, such as JQuery[9] or Prototype[10].

 4.3.4 jsTools.js

 Since the client application for the Leaf project  includes Javascript[8] controls to 
handle particular events or to dynamically  manipulate the document pages, a Javascript 
file called jsTools.js has been included in the main application’s package. Inside jsTools.js 
it  is possible to insert standard Javascript instructions,  as well as non-standard libraries, in 
order to manipulate the overall appearance of the document. 

 The standard usage of jsTools.js file is to add an instruction that should be launched 
when the reader arrives at a  certain point in her/his reading. Starting from that  point, for 
instance, the font color could be changed to another value for  the rest of the reading 
experience. The Javascript instruction will  be executed using the Javascript interface, and 
included in  jsTools.js in order to remain persistent — as jsTools.js  will be loaded in each 
page of the document.         

Figure 8 - Basic functioning of readingActivity

30



 4.4 Streaming buffer and cache

 A key  point in the development of the client application was the creation of a  
streaming service, in order to avoid the need to download complete documents and to 
improve the performance of the service, while avoiding misuse of the documents. While 
streaming of data is widely  used for the transmission of multimedia such as video and 
audio, a  system  which transfers the document from the server  to a dedicated buffer  “in 
portions” rather than as an entire file seemed to be a suitable solution for this project. 

 In order to stream a document, the architecture must include a buffer on the client 
side, in which  portions of the document can be stored and later accessed by  the e-Reader 
application. This buffer provides temporary  storage from which  the document fragment 
can be accessed, while a decryption process prepares the data for use by  the e-Reader 
application. This buffer will be allocated in memory. The application will automatically 
delete previously  accessed data, making it difficult for a  malicious user to download entire 
publications and later redistribute them. This has been considered a primary  goal of the 
Leaf project, because the business policies that will be implemented depend on preventing 
users from illegally redistributing content. 

 The design of the streaming functionality  will  be done in  the future after a deeper  
study  and evaluation of alternative strategies,  such as the use of the Networking File 
System  to access remote files segments or DCOM approach access sub-parts of a 
document. For the current prototype we have simply  implemented our  own FIFO buffer  to 
decouple the downloading of files from the preparation of them for the reader.

 An auxiliary  cache space is also provided for two different purposes on the client 
side. The first reason for the cache space, that  will be allocated in  the client device’s 
memory, is to temporarily  store data that has been recently  viewed by  the user, in order  to 
enable fast  recovery  of data when the reader wishes to go back and re-access already 
viewed content (for example,  flipping backward one page or returning to the text  after 
following a  citation). The second purpose of the cache space is to store, for users accessing 
the system  with  an top-class account,  entire documents as part of a premium  service 
offered by  the Leaf platform. This option will be implemented in later phases of the 
project, but it is important that the current design anticipates this future extension.       

 4.5 Graphical User Interface

 In order to provide good usability  and to offer the user a complete set  of innovative 
tools a crucial part of the project  was the design and realization of a  suitable Graphical 
User Interface (GUI) [68] [69]. 

 The design of the application follows the GUI design guidelines given on the official 
Android developers website[70]. This design can be divided in four functional parts: Icons, 
Widgets, Activities and Tasks,  and Menus. The design of the Leaf client application follows 
the principles determined by  the Android user interface team, in order to provide 
homogeneity  with the Android OS and to improve the user experience by  ensuring that it  is 
consistent with the expectations of an Android user.

31



 A key  element  that influenced the design of the interface, was the target device that 
the Leaf project had as our primary  target, since the Android OS can be run on various 
types of mobile hardware platforms, such as telephones, smartphones, and tablets. The 
first  version  of the client application has been realized with a  layout  designed for both 
tablets and smartphones, covering a  range of devices with  a  diagonal screen size ranging 
between 4  and 10 inches. Details of the parameters and the values that have been selected 
for them can be found in subsection 4.5.1. 

 Following this,  subsections 4.5.2 and 4.5.3  will focus on the methods used to handle 
document navigation and the transitions between different parts of a publication. Finally, 
subsection 4.5.4 will introduce the user  controls that are currently  present in the first Leaf  
client. 

 4.5.1 Support for multiple screen sizes and resolutions

 Including support for multiple monitors sizes, as already  stated above, is a key  
element in every  Android application, because of the ubiquitous nature of this (mobile) 
operating system. This is often considered to be Android’s best  aspect, because it  enables 
many  different devices to utilize the same platform. On the other hand, this is also 
Android’s weakest point,  due to the difficulties of adapting to so many  different interfaces, 
in terms of both their technical and physical characteristics.

 In the prototype Leaf client  software, the team decided to fully  support the 
application on tablets, i.e. devices with a diagonal screen size ranging between 5.3  and 11 
inches. Additionally,  the application is also designed to be compatible with visualization on 
smaller screen sizes, such as smartphones. The smallest tested screen size had a diagonal 
screen size of 3.2 inches.

 In order to achieve this level of compatibility  with so many  different screen sizes, 
the application has been developed in accordance with Android GUI team  directives [70]. 
According to these directions, the application considers two important  variables to handle 
in the application’s manifest[62]: screen size and screen density.                      

 Based upon the screen size variable, we were able to select the standard screen size 
to support in the Leaf client. This variable has been set to “large”, which  covers a range of 
devices from  four up to seven inches, or to “normal”,  for screens larger than three inches 
but  smaller than four and a half inches. Figure 9 shows the different screen size formats 
supported by  Android, as well as how the set of these that the Leaf client can utilize. It is 
important  to note that starting from Android 3.0, the way  of handling screen  sizes has 
changed to another metric which relies on screen width rather then diagonal size.

 Another  important aspect of the graphic appearance of the application is the screen 
density. This parameter indicates the pixel-density, that is the number  of pixels within a 
physical area of the screen. Taken together  with the screen size this parameter limits the 
size of the smallest features that the application can present. Currently  the possible values 
for this parameter are four: small (at least 426dp x 320dp),  normal (at least 470dp x 
320dp), large (at least 640dp x 480dp),  and xlarge (at least 960dp x 720dp). The 
application currently  supports both normal and large densities. It is important  to note that 
“dp” is a virtual pixel unit used as a standard when defining the basic metrics in  an 
Android application. The unit “dp” represents a physical pixel on a 160dpi screen.

32



     
  

 4.5.2 Page number handling vs navigation controls

 The management of a document’s page is a complex part of the client application  
development, because in a digital publication elements such as display  size and font 
properties may  change the number of a page, i.e.,  pages do not have a fixed page number 
but  rather are numbered based upon how they  are rendered on the screen. Even if a page 
numbering system is not necessary  in an application with  digital bookmarks and 
augmented navigation, the principle of offering users a “soft migration” towards new 
means of entertainment requires including a mechanism to deal with virtual pages.

 In order  to realize an efficient page-based computing system, during the uploading  
of documents on the server side of the platform a  count is made of all the characters and 
words that compose a chapter  or section of the document itself. The the uploading process 
saves, together  with  the document’s data, a map in which every  chapter's starting point is 
known in terms of the byte offset into the document file. This data can subsequently  be 
used by  the client application to automatically  compute the number of pages in a  chapter 
in  relation to the display  dimensions and, in the case of an increase or  decrease in font size, 
re-compute this number. 
  
 However,  the need for a  page numbering system  was been evaluated by  the Leaf 
Project team, together with  the resources needed to develop such a system. The conclusion 
of this evaluation is that at this stage of the project there does not seems to be sufficient 
reason to include a page numbering  system, due the complexity  of its implementation and 
its limited improvement of the user experience. 

 In order to give the users control over the navigation within the document, the 
client application includes a “chapters”  navigation system.  When reading a particular 
chapter, the user  has the possibility  to “jump”  to the next or  previous chapter.  This is done  
using the “playOrder”  property  in each chapter inside an epub document. This 

Figure 9 - Screen sizes supported in the Leaf client

33



information is stored in a map containing all the information regarding all the chapters. In 
this way,  the buttons that will allow  this behavior  can point to “next/previous chapter” 
simply by incrementing or decrementing the index in the current “playOrder”.

 During the future development of the Leaf client  application, the team  will design  
and implement an alternative navigation system, based on a  navigation bar that  the user 
can scroll to move backward and forward in the document. This system, together with 
multiple digital bookmarks,  could provide a good way  for  users to efficiently  follow  digital 
contents. 

 4.5.3 Transitions

 A component to which users are very  sensitive, in terms of their  reading experience, 
is the transition  between “pages”.  Given that the meaning and the importance of a page 
dramatically  changes when considering digital publications,  users want to feel a change 
from one surface to another while reading, as shown by  all the major  projects in this field, 
which decided to implement features such as the “leafing page” animation. 

 The solution adopted until now by  every  e-reader application is to use animated 
transitions to give the feeling of changing the page. These animated transitions usually 
simulate the page “leafing” movement in  ways that strongly  remind the reader of the action 
of turning a page. These transitions are achieved, in the majority  of the cases,  with 
JavaScript[8] specific plugins, such as booklet[71] and jFlip[72]. An alternative for  
applications that do not support  JavaScript  is the use of Adobe’s Flash[73] animations 
between pages, even if Adobe’s Flash is not fully  supported in the Leaf client application. 
However,  in the Leaf project client  application this aspect  is still not implemented, so the 
reading experience currently  relies on the basic “scrolling down” mechanism, inherited 
from Webkit[67]. 

 In order to enable transitional effects, the first step will be to introduce an abstract 
division of each chapter  into “pages”.  This could be realized by  calculating  how  many 
characters compose a “page”,  considering also the font size and screen dimensions. An 
alternative method could be calculating the pages in terms of space occupied by  spaces, 
characters, words and images. Once the chapter  has been divided into pages, the transition 
effect between pages can easily  be realized using  one of the aforementioned JavaScript 
plugins.

 The Leaf team will decide, before starting the development of the application’s next 
version, which level of usability  should be achieved. Depending on this, a  suitable 
transitional effect will be selected and implemented. It might even be possible to 
implementing more than one effect, then enable users to select their favorite effect 
(perhaps with different effects for different kinds of documents).  

 4.5.4 User controls

 The first version of the Leaf end-user application contains some controls that the 
reader may use to better control their reading experience.

 Controlling the size of the font is a  very  user-specific interaction, as it enable each  
reader to enlarge or reduce the font size used to render the content, according to their 
needs. To do this, the Leaf client provides the pinch-to-zoom functionality, a tool that  is 

34



quite common in current mobile devices application. This functionality  allows users to 
zoom-in or zoom-out by  simply  “pinching” on the screen (i.e. using two fingers to expand 
or contract the zoom factor). An increase in the zoom factor  (or  a  decrease) is followed by  a 
subsequent optimization of the text placement  according  to the new font size. One of the 
most notable advantages of this approach is that  of one ensure that the multimedia content 
immersed in the text also changes together with the font, then all of the contents will keep 
the same proportions. 

 Another  reading experience control that  has been implemented in the first Leaf 
client is the “day/night mode”. When the reader clicks on the “day/night mode”  button, 
this event triggers a change in the font and background colors, switching from day mode 
(black text on a white background) to night mode (white text on black background) and 
vice-versa. Nowadays this function is also very  popular in many  e-reading applications, 
because it  helps users to obtain the best layout according to their reading desires,  in  terms 
of maintaining readability  of the contents. This is an example of the importance of CSS3[7] 
interactions in the application, because the function has been developed just  by  letting the 
application change on-the-fly some basic values in the CSS of the current content. In 
future versions of this application, the development team  envisions the possibility  of 
having more than just these two modes for this functionality.

 A final user control that is implemented in the Leaf client software is the “back”  
function,  which  enables the user  to always return back to the previously  visualized chapter, 
window, or  menu. This utility, associated with the generic “Back” button (which is present 
in  each Android device) was implemented by  simply  catching the pressing of this button 
and binding it with the universal “go one step back” function.  

35



5. Server side applications

 The server side of the platform includes several components that are used to upload 
new publications on the server, as well as the Cookie handling for user authentication. 
These components have been implemented, during this initial phase of the project, in 
parallel with the infrastructure development [L3].

 A first important part of the server  side is composed of a  web server & interface 
which together  with Java utilities process the documents which are uploaded. These 
components and their  implementation details will be analyzed in the next sections. Figure 
9 gives an overall view of the server side mechanisms. 

 The second part of this chapter  illustrates how user  authentication is supported by  a  
specific PHP document and a Cookie management system.    

                                                     

  

Figure 10 - Server side applications when documents are uploaded

36



 5.1 Web interface

 The uploading process to enroll new documents into the platform occurs via  two 
webpages: insertBook.html and insertedBook.php.  In a later  stage of the project, these 
pages will be incorporated into a web platform through which users and the project’s staff 
can perform different actions on both the documents and metadata within the platform.
 
 The first  page, insertBook.html,  is a simple HTML document which presents a  
HTML form into which the new publication’s title and filename are entered. The form’s 
“action”  attribute is set to insertedBook.php, so that the posted data  will be sent to that 
page. In addition, the attribute “method” is set to “POST”, to indicate that data will be sent 
to the receiving page via an StdIn  (Standard Input) approach,  which is preferable to the 
“GET” method, according to HMTL specifications [6] when uploading files to a server. The 
last  attribute,  “enctype”, is set to “multipart/form-data” MIME[31] type,  to indicate that 
the file will be transferred to the server via a HMTL form.

 The second page, insertedBook.php,  is the receiver for the new publication. It  is 
composed of two sub-parts, the physical uploading of the document and the “exec” 
execution to complete the enrollment of the document.

 The uploading of the document  to the server is done through  a series of operations. 
First, the document’s name is retrieved from  the “POST[]” array  and stored into a php 
variable. Then the page checks whether  the file extension is “.epub”, and if so, then it 
changes this file name extension into “.zip”. The second step in  the process is to check for 
the file’s size and format, in order  to check that it  is one of the MIME-types that have been 
declared acceptable to be accepted into the Leaf infrastructure. If all of these operations 
were successful,  then the page checks to ensure that there are no other files in the server 
with  the same name, and if so, then it performs the actual transfer  of the file into a  folder 
called “test”, in the Apache “htdocs” folder. It is important to note that the file will be 
transferred as a zip archive, in order for the end user application to browse the document 
using A Virtual File System  (AVFSD) technology  [L3]. In the next  development phase the 
responsibility  of generating file names will be transferred to the server, so the server will 
automatically append the generated file name to the list of files to be uploaded by the user. 

 The second part of insertedBook.php is driven by  the invocation of the exec 
command, which is used in PHP to execute an external program using a UNIX shell. The 
invocation of “exec” calls the the summaryBuilder Java  class using the document’s 
filename and its title (defined in insertBook.html) as parameters, and appending the ‘#’ 
symbol after  the filename to ensure AVFSD compatibility. The description of 
summaryBuilder.class and the other Java classes is given in section 5.2 .

 Implementation details of the code, for  both insertBook.html and insertedBook.php 
pages, can be found in the appendix A starting at page 60 . 

 

 

37



 5.2 Java utilities

 The server side of the Leaf project contains a series of Java utilities to perform a set 
of essential operations when uploading a new document to the server. These utilities are 
implemented by  four dif ferent Java classes: chapter.class , book.class , 
dbInformation.class, and summaryBuilder.class.  It is important to note that  these classes 
have been compiled on the developer’s machine and then moved to the server, so the 
original “.java” source files have never been uploaded on the server1. 

 5.2.1 chapter.class

 According to the object-oriented programming paradigm, every  actual object  
should be represented in the programming environment as an object, in order  to better act 
as its abstraction, with  specific operations and properties. The first object type that  has 
been defined in the Leaf project is “chapter”, which is the representation  of a document ‘s 
chapter. In standard epub documents,  the standard chapter or section  is represented by  an 
HTML/XML document. 

 The chapter.class includes an object  constructor, six  methods, and a series of 
attributes: “name”, “link”,  and “playOrder”. The first attribute contains the chapter’s name 
or title, the second the position and name of the file, and the third one contains the 
position in which the chapter appears within the entire document. The values of these 
attributes are stored into “String” variables, except  for “playOrder” that  is saved as an 
“chapter_index” variable as it is an index into a list of chapters. 

 The main constructor  for  chapter objects is the method “chapter(String name, 
String link, int playOrder)”,  in which the values of object’s variables “name”,  “link”, and 
“playOrder” are set to be the three parameters needed to launch this method.

 The methods in chapter.class  can be divided into “setters”  and “getters”. The setters 
methods (“setName”, “setLink”, and “setPlayOrder”) can be used by  other Java  utilities to 
change the values of these three variables.  On the other hand, the “getters”  methods 
“getName”,  “getLink”, and “getPlayOrder” can be used to retrieve these values for a specific 
chapter object.

 5.2.2 book.class

 The generic document that can be uploaded and read in the Leaf platform is 
represented by  the Java object “book”.  Similar  to the “chapter”  object,  the book has several 
variables to represent different attributes of a document, these are: title, ID, pages, and 
chaptersList. The first attribute, “title”, is represented by  a Java  String and it set by  the 
user who uploaded the document. This attribute was passed to Java via the “exec” 
command, in insertedBook.php page.  The ID of the book is stored in a String variable “id” 
and it is inherited from the database “id” attribute that is used when inserting a new book 
row into the table of books in the database. The third attribute,  pages, is a Java int variable 
that contains the number of pages currently  in  the document; the concept of pages  is a 
complex  side of the project (subsection 4.5.2  for details). The last  attribute for a book is 

38

1 This was important as the operator of the service could be a cloud provider or some other form of outsourcing, hence 
protecting the confidentiality of the source code.



“chaptersList”, a  list  of all the chapters representing the e-publication; it is implemented as 
a Java ArrayList containing a series of “Chapter” objects, defined in subsection 5.2.1. 
  
 The constructor method for  a  book object is called “book(String title, String  id)”  and 
it  creates new book objects, setting the values of variables “title”  and “id” as  passed in  as 
parameters. The “pages”  and the “chaptersList” are initialized to “0” and 
“null”  (respectively) when creating a  new book.  Later  the Java utility  in charge of creating 
new books will automatically  update these two variables when inserting all of the chapters 
into the document. 

 The setter  methods (“setTitle”, “setId”,  “setPages”, and “setChapters”) are used to 
update the value of a book’s variables. The “setChapters”  method takes a String pointing to 
the location of the epub’s “.ncx”  file, which  contains all the document’s chapters and their 
links.  The method then analyzes the “.ncx” file,  parsing all the information related to 
chapters, retrieving for  each element  the values of the fields “playOrder”  and “src”, that  are 
later stored in the current chapter object. 

 Getter  methods allow the retrieval of information regarding a  book object, so other  
Java utilities can get  information about  a book, such as title (getTitle),  id (getId), pages 
(getPages), and chapters list (getChaptersList).  

 5.2.3 dbInformation.class

 The main purpose of dbInformation Java class is to insert  into the database data  
regarding the document that  is being uploaded and to return to the Java class which 
invoked it a response message.   
 
 The constructor method creates a “dbInformation” object which  only  has the  
variable “info”, which  is a Java HashMap containing pairs of metadata  information and 
labels,  such as (“title”, titlevalue) or  (“filename”, filenamevalue).  The information 
contained in  this map are: author, title,  language, description, publisher, filename, 
navigation file, cover.  The initialization of the “info” map is performed by  the class 
summaryBuilder.java. It is important  to note that the id is not present in the map, 
because it  is automatically  assigned by  the database engine due to an auto_increment 
setting of the id field. It is important to note that  this method for  assigning IDs will be used 
only  for the first  phase. In the future the ID of the documents will be assigned based on the 
ISBN number of these content, if any,  or it will be automatically  registered with a new 
ISBN  in case of a new original document. More metadata information will be added in 
next development phase. 

 Once the data is retrieved from  the map, the dbInformation class initializes the 
JDBC driver to start a connection with  the database,  and if this connection is successful, 
then it inserts the information in a new row in  the “books”  table.  Exception catching and 
displaying of the reasons for  failures have been implemented to avoid data loss and 
unexpected malfunctions during the document  uploading process. If the information is 
correctly  inserted into the database, then the response String is set to “Ok” and the 
uploading process continues. 

 Details regarding the database structure, features, and implementation can be 
found in Sebastian Galiano’s masters thesis [L3].

39



 5.2.4 summaryBuilder.class

 The main Java utility  on the server  side of the platform  is the summaryBuilder class, 
which acts as a controller  that triggers actions and creates objects,  plus a series of methods 
to realize the automatic creation of document summaries. 

 Among the variables of summaryBuilder.class we find the title and filename, which  
come in as String parameters from the PHP “exec”  command, invoked by 
insertedBook.php (see section 5.1). In  addition, some support variables are used to store 
temporary  file paths, the ”.ncx” file location, and the objects to instantiate, such as the 
current book object. A notable variable is the Java map “metadataMap” that contains all 
the information that the application is able to retrieve from the document. Later this map 
will be passed to dbInformation.class to fill-in the database entry. 

 The class has a  “main”  method that is executed and a series of methods that are 
launched by  the “main” method to perform the document information retrieval and index 
creation. The necessity  of automatic summary  creation comes from  the absence in .epub 
documents of a standard form of a table of contents.  

 The first method that is launched by  the main method is called “obtainOPF”  and it 
is used to get the location of the OPF file[32] inside the epub file. This method takes a 
string as a parameter,  in  order to know  the location of the document inside the server and 
it  automatically  searches for  the container.xml file,  inside “META-INF” folder, according 
to epub standard guidelines.  Once the container.xml file is found, the method instantiates 
a series of objects to start perform  an XML parse of the file, searching for the “rootfile” 
element and storing its “full-path” attribute’s value into a String variable called OPFpath. 

 The OPFpath  variable is used as the main parameter for the invocation of the 
“infoParser” method, which needs to know where “.opf”  file is in  order  to start retrieving as 
much information as possible regarding the document. Similar to the “obtainOPF” 
method, the “infoParser”  method instantiates a series of auxiliary  objects in order  to parse 
the “.opf”  file, such as a DocumentBuilderFactory, DocumentBuilder, and a  Document 
element.  The parsing then continues by  identifying  certain elements inside the “.opf” file, 
thanks to the Dublin Core Metadata  fields[25] such as “dc:title”,  “dc:creator”, 
“dc:language”, “dc:publisher”, and many  more. Every  value identified through  the parsing 
process is stored into the “metadataMap”, using a standard default string when these fields 
were not declared during the document’s creation.

 The main operation performed in the summaryBuilder.class is the automatic 
creation of the book summary, since the epub guidelines are not specific about the 
presence of an index document, leaving  it up to applications developers to create their own 
summary  pages. The “createHTMLsummary” method takes the chapters list and the 
document’s folder  name as parameters to automatically  document. Using a 
FileOutputStream object,  the method starts by  creating an HTML document in which it 
appends a  series of “<a>” tags,  each one representing a chapter of the book, according to 
the content of current document’s chapters list  (see “setChapters” in subsection 5.2.2). 
When the document is ready, it is moved into the “test” folder in the server.  

 The last operation performed in the summaryBuilder.class consists of calling  
dbInformation.class with the method “fillDBwithInfo”. The “fillDBwithInfo” method  
stores the information contained inside “metadataMap” to the database. The filename of 

40



the summary  previously  created,  which is the same as the original epub, will be stored in 
the database in the field “filename”.   

 5.3 User authentication interface and Cookies handling

 The user authentication is an essential part of the Leaf platform, since the client 
application should be able to send the authentication challenge to the server, retrieve a 
response, and keep the user  logged for the entire duration of the reading experience. The 
server  side of this mechanism is illustrated in subsection 5.3.1, while subsection 5.3.2 
better explains how the cookies are handled by the server.    

 5.3.1 User authentication interface with loginApp.php

 The server-side of the user authentication is performed by  a PHP page called 
loginApp.php.  This page is accessed by  the end-user application, specifically  by 
authActivity,  to provide the server with  the credentials of the user  wishing to access the 
Leaf platform. 

 The first  part  of loginApp.php receives the HTTP POST data and stores them in  
PHP variables. These variables are then sent to the LDAP[63] connection part. This second 
part, developed by  Sebastian Galiano [L3], configures the LDAP connection parameters 
and sends the user credentials to the LDAP configuration, which validates these 
credentials.

 In case of a negative reply  from the LDAP module, the HTTP response that is sent 
back to the application client is a code “301”  message that  is interpreted by  the application, 
which will subsequently  ask the user  to provide a  new set of credentials, since the 
credentials that were provided are not correct. 

 If the response is a positive message, HTTP code “200”, then an authorization-
granted cookie is issued. This cookie is then stored in the client application’s CookieStore, 
in the authManager DefaultHttpClient object (see section 4.1.2). 

 The creation of the Cookie is performed by  loginApp.php itself. The data that 
compose this cookie,  called “accessCookie”, are: name, domain, expiry  time, path, 
remoteIP, Group, UserName, UserSurname, and UserEmail.  Part of these are initialized by 
the php page, while others (the user-specific ones) are returned from the LDAP query. 

 After the cookie has been created, it is encoded using MD5 [74] encryption and sent 
to the client application.   
 
 Details related to the cookies’ creation,  handling and checking are given in  the next 
subsection. A sample of the “accessCookie” is presented in Appendix B, on page 62.  

41



 5.3.2 Cookies handling and the auth_memCookie module

 The usage of cookies to control users access and sessions in the Leaf platform  is 
done using an  open source module, auth_MemCookie[75], that allows the protection of 
certain web pages within the Apache Web Server environment.

 The auth_MemCookie module allows the restriction of the visibility  of specific 
pages to users who have been granted a cookie in loginApp.php. The auth_MemCookie 
configuration  is included in the Apache web server’s default-server.conf file. Inside this 
configuration  file, we limit the access of certain locations (in this case the folder containing 
all the publications) to only  clients who can present the “accessCookie”. If the Apache 
server  is ask to serve a page to a client  which does not have a valid accessCookie, then the 
client is redirected to a customized error page with  a “401” HTTP  error code (i.e.  “401 
Unauthorized”).

 The auth_MemCookie module takes advantage of another Apache module,  called 
memCached[76]. This second module is an Apache adaptation of the “Memcached” 
memory  caching system  [76] used by  many  websites and databases to optimize memory 
management, especially  in databases with high volumes of data. The connection between 
the auth_MemCookie module and the memCached[76]  requires that the user first  has to 
register causing the cookie value to be stored by  the memCached module — so that it can 
subsequently be available to be checked when there is a future connection by this client. 

 The current configuration for auth_memCookie enables the two modules to 
communicate between themselves, and specifies the details regarding the access of users to 
certain parts of the server. Details of this configuration are given in Appendix C.  

 In future implementations of the client application, the team  will consider  the use of 
auth_MemCookie “Groups”  functionality, to grant access to a certain set of contents only 
to authorized groups of users (i.e. premium users).  
  

42



6. Analysis of the results

 This chapter analyzes the results obtained by  the development of the first  client  for  
the Leaf project, on  both  functional and performance aspects.  The first  section of the 
chapter explains the reasons behind the different decisions made during the application 
planning, with the help of figure 11.  The following sections, 6.2 and 6.3,  respectively 
present to the reader the performances of the application (with  further analysis on these 
data) and the functionalities implemented in the application, compared to table 1  (which 
appears in subsection 2.3.1).

 6.1 Implementation decisions 

 This section presents a  summary  of the implementation decisions that have been 
made during the development of the Leaf platform client application. 
 
 Figure 11  describes these decisions using a graph, in  which the “building blocks”  
each represent a critical part of the application that has been developed for the chosen 
solution (this is shown in the light-green box inside the dark-green block). In contrast, the 
light-red boxes symbolize the alternative solutions that the team decided to not 
implement, at least in this phase of the project. Finally, light-yellow boxes depict those 
elements that the team will develop in a future phase. 

 The building blocks in this graph are linked with arrows, which abstractly  illustrates 
how the key  decisions made during the design and development process had a direct 
influence on future steps. A good example of the dependency  of each step on the previous 
steps is the implementation of a specific kind of cookie, which is a  consequence of the 
decision to have an authorization strategy  not based on the basic HTTP authorization. The 
authorization strategy  itself became an implementation decision once the team decided to 
adopt a streaming service rather than an offline mode. 

 Is important to note that the graph  in figure 11  illustrates only  the implementation  
decisions that  were critical for the client application development. For this reason, choices 
related to the contents (e.g. books or magazines), to the server architecture (e.g. which load 
balancer  solution to implement), and to the business area (e.g. which business model to 
apply) are not represented in this graph.

 Finally,  each building  block contains an indication of which section of this thesis 
better  explains the specific decision. Reading the appropriate section gives the reader an 
overview of the starting conditions, reasons, and results of every  crucial step that the team 
made during the development of this application.  

43



      

  

  

  

                                                              

  

  

Buffer  and  Cache  
(section  4.4)  

Not  yet  implemented  

Reading  Interface  
(section  4.3)  

WebView  
Contents  always  
available  after  
download  
Less  dinamicity    
1-­‐user-­‐many-­‐
devices  issue  

Basic  
Availability  only  
when  online  
High  interaction  
with  users  
Dynamic  contents  
Account-­‐centric  
distribution  

Data  Encryption  
(subsection  7.3.1)  

Not  yet  implemented  

Approach  
(section  1.4)  

Offline  
Contents  always  
available  after  
download  
Less  dinamicity    
1-­‐user-­‐many-­‐
devices  issue  

Streaming  
Availability  only  
when  online  
High  interaction  
with  users  
Dynamic  contents  
Account-­‐centric  
distribution  

Standard  
(subsection  2.2.5)  

ePub  2.0/  3.0  
Easiness  of  creation  
Wide  adoption  
Absence  of  summary  

Proprietary  Formats  
Very  difficult  adaptation  
to  many  formats  
Device-­‐specific  properties  

Platform  
(subsection  1.4.1)  

Android  
Big  availability  of  
devices  
Tablets  and  phones  
Java  programming  

Apple  iOS  
Tablet  and  phone  
Device-­‐specific  features  
Proprietary  
development  
environment  

Windows/Others  
Not  yet  a  stable  
environment  
Lack  of  devices  
Proprietary  
development  
environment  

Technologies  
(section  1.4)  

User's  data  synch  
(subsection  4.1.1)  

Not  yet  implemented  

HTML5  
Retro  
compatible  
Web-­‐
oriented  
Interactivity  
Standard  

Cookie's  implementation  
(subsection  5.3.2)  

Basic  
Basic  PHP  
generated  
Low  interaction  
with  Apache  

memCookie  
Harder  to  
implement  
High  customization  

CSS3  
Retro  
compatible  
Easy  
Wide  
adoption  
HTML  ready  

Adobe´s  PDF  
Widely  
adopted  
Many  
publications  
available  
Non  CSS-­‐ready  

Adobe´s  Flash  
Non  Apple-­‐Ready    
Well-­‐done  editing  
tool  
Wide  adoption  

JavaScript  
High  versatility  
Interactivity  
Well  developed  and  
supported  libraries  
Web-­‐oriented  

Document  navigation  
(subsection  4.5.1)  

Pages  
Users'  
habit  
Hard  to  
design  and  
implement    
Not  strictly  
necessary  

NavBar  
User  
friendly  
Not  100%  
accurate  

Chapters  
buttons  

User  friendly  
Reflects  
application's  
granularity  

Authentication  
(subsection  4.1.1)  

Basic  HTTP  
Easy  to  implement  
Not  shareable  
between  different  
Android  activities  
and  WebViews  

Cookie  based  
Harder  to  
implement  
Sessions  control  
Interaction  with  
LDAP  

Figure 11 - Decisional path for the design and development of the client application

44



 6.2 Empirical results

 During the development of the Leaf client application, the components that the 
team created have been constantly  evaluated in terms of their performance and reliability. 
The purpose of this section is to show the metrics that characterize the final application,  to 
have a more precise picture of the application’s features.
  
 The performance tests have been conducted using Traceview[77], a Java profiler  
tool that  is part of the Android SDK suite. This tool can be used to monitor  the timing of 
several parts of an application. Using Traceview, the developer can visualize as a series of 
timelines all the processes running between the start and end points, selected by  the 
application’s author. For every  process, we were able to extract the timing (expressed in 
milliseconds), dependencies, and the full tree of related processes.

 The reliability  tests have been performed and elaborated starting from  manual 
human invoked tests performed on several different Android devices, to test  error  rate, 
usability, and an evaluation of the quality of the application’s different components. 
 
 The results presented in this section will be compared, in  the next  section, with the 
values obtained from alternative applications’ equivalent components.  

Android 
Activity Applicationʼs componentApplicationʼs component Java class WiFi

(msec)
3G

(msec)

LeafClient 
Activity

Authorization 
Activity

Authorization 
Activity

Library ActivityLibrary Activity

Reading 
Activity
Reading 
Activity
Reading 
Activity
Reading 
Activity

1 Application started leafClient.java 137,6 139,6

2
Sending credentials and 

LDAP authorization - 
successful

authActivity.java + 
authManager.java 875,2 956,2

3
Sending credentials and 

LDAP authorization - 
unsuccessful

authActivity.java 810,3 886,4

4 Data retrieving from 
database dbConnector.java 187,1 300,8

5 Buttons dynamic creation libraryActivity.java 20,5 20,8

6 HTML summary displaying readingActivity.java 87,5 107,5

7 Chapter file loading - ePub, 
no images

readingActivity.java 734,1 942,7

8 Chapter file loading - ePub, 
images

readingActivity.java 1000,2 1552,8

9 Background/font colors 
change readingActivity.java 3,4 10,1

Table 3 - Application’s empirical data on components’ speed tests
(note the decimal comma indicates the radix point)

45



 It  is important to specify  the environmental variables that characterized the 
profiling phase, as well as the testing methodology. The values, expressed in milliseconds, 
represent the average results of five different measurements taken for each application’s 
element,  to avoid presenting inconsistent  data. This means that for each of the 
measurement, the team manually  executed five times the profiling with Traceview, and out 
of the five obtained results, we calculated the average value. In this case the choice of using 
the average value instead of the median value was made because the first  one can better 
represent the overall performance of the application, being an artificial number that 
represents all the five measurements. With later developments of this project, the team  will 
continue testing the application’s performances,  aiming to improve the speed and 
efficiency  of the client (adopting an automated way  to do this, in order to have more 
measurements for every single item to test).

 The device used to run the tests is a  Samsung Galaxy  Tab, with Android v. 2.3.3  
installed.  The conditions of this machine were typical, in terms of memory  usage, network 
adapter traffic consumption, and number of active applications.

 To test  the change in  performance with different  types of connectivity, we repeated 
the measurement using both WiFi and 3G networks. The WiFi connection was to a WiFi 
802.11n access point,  connected to a 24Mbps ADSL line. The 3G trials have been 
performed with full connectivity on a HSDPA 7.2Mbps network.       

 Finally,  when measuring the speed of data retrieving from  the server, the number of 
different documents stored in our  memory  was six, all of them  typical-length ePub 2.0 
books (specifically 270Kb, 217Kb, 1,5Mb, 274Kb, 1,7Mb, and 541Kb). 

 6.2.1 Analysis of the empirical results

 As can be observed from table 3, the results obtained from the profiling activity  are 
quite comparable,  although the WiFi connectivity  gives a  better  time-response on each 
activity  as compared to the 3G connectivity. Despite this, the difference between the two 
network connections is never sufficiently  different that it would justify  the introduction of 
major changes to improve the performance with 3G connectivity.

 In the majority  of the activities,  we can observe that when they  are ran over a 3G 
network, they  tend to be slightly  slower than when using WiFi link. The relation between 
the two different  situations can be observed in Figure 12, which shows the average relation 
between measurements, as well as the peaks in which  we can notice a remarkable 
similarity.

 Figure 12 shows the trend of the application when executed over both  WiFi and 3G 
connections. The Y-axis indicates the time, expressed in milliseconds, it  takes the 
application’s components to run. The X-axis of the graph represents all (nine) of the 
application’s components that have been tested.  These components have been put in 
“calling” order, so the first  (measurement number “1”) is the first component that is called 
when the user opens the application. The second measurement, related to sending the 
LDAP[63] authentication request, is the second activity  the user performs and so on until 
the last one,  which represents a typical user interactivity  control such as the background/
font colors mode. This order  gives an idea of the “standard usage” trends during a regular 
user experience with the application.  

  
46



                                          
 The results of these measurements confirmed are conform what the team was 
expecting, that is a fixed ratio of the performance of WiFi and 3G modes, with an average 
ratio of WiFi(msec)/3G(msec) = 0,87. The values that have not been included in this 
calculation are the so called “peaks”, in which we observe a different behavior — when 
there is a large amount of data to be transferred and this ratio represents the average 
difference in throughput for these two types of links. 

 Measure number “5” shows very  similar  values for both  connection types, due to the 
fact that they  refer to a task which is independent of the connectivity. In fact, the measure 
presents the speed of automatically  creating “buttons”  to access the documents,  after 
having already retrieved the titles and references from the database.

 On the other hand, measurements “7”,  “8”, and “9” have very  different values, 
demonstrating a significant  difference in performance. In the first two cases,  when 
downloading a document with or without images, this appear  to be reasonable, since the 
download is a task that may  requires more time than the other components,  due to the 
bigger amount of data involved (this is also demonstrated by  the highest values in the 
graph). Moreover, measurement “9” consists of sending a CSS rule to the document, which 
involves a re-definition of the document’s style, as well as very  fast  page refresh. This is 
also a task that involves significantly  online operations, so the WiFi performance was 
expected to be higher than the 3G.    

WiFi 3G

0

500

1000

1500

2000

Beginning 9 5 6 1 4 7 3 2 8 End

R
es

po
ns

e 
tim

e 
(m

se
c)

Measurement

Figure 12 - Relation between WiFi and 3G in the application
(Results are shown in order of WiFi speed to show how the difference between connections grows 

depending on the amount of data transferred)

47



 6.3 Comparison with existing results

 This section’s primary  goal is to compare and analyze the measurements obtained 
from the Leaf end-user application with the results of other alternative software. 

 A real comparison of measurements with existing applications would have been 
very  interesting. Unfortunately, the software developers of such e-reading tools do not 
disclose comparable measurements of their applications for  marketing reasons. Given this, 
it  is not possible to establish a  direct comparison between the Leaf client and other 
applications, specifically the ones described in subsection 2.3.1. 

 As a final summary  of the Leaf end-user  application, we have added the details of 
our client software to our table 1  (shown on page 13), to directly  compare it with the most 
popular comparable applications currently in the market.

( * C l i e n t s  w i t h 
more features  are 
showed in the top )

Supported Formats
(Non-proprietary)

Supported Formats
(Proprietary)

Data 
Synchro
nization

Day/Night 
Mode

Custom 
Font size

Virtual 
Store

Appleʼs iBook

Kobo Ebook 
Reader

Amazonʼs Kindle 3

OpenLibrary

pressDisplay.com

Barnes&Noble 
Nook

Lexcycle Stanza

The Leaf client

Adobe Digital 
Editions

FBReader

Aldiko Ebook 
Reader

txt, ePub, html, 
Open eBook, pdf

MobiPocket, 
FictionBook, DjVu, 

eReader, azw, 
TomeRaider

YES YES YES YES

txt, ePub, html,  
Open eBook, DjVu, 

pdf

MobiPocket, 
FictionBook, 
eReader, azw, 
TomeRaider

YES YES YES YES

txt, html, pdf MobiPocket, azw YES YES YES YES

txt, ePub, html, 
DjVu, pdf

azw, DAISY, 
MobiPocket YES YES YES YES

txt, ePub, html, 
Open eBook, pdf --- YES YES YES YES

txt, ePub, pdf eReader YES YES YES YES

txt, html, ePub, pdf rtf, doc, eReader, Lit, 
azw YES YES YES NO

txt, html, ePub, 
pdf --- NO YES YES YES/

NO

ePub, pdf Flash YES YES YES NO

txt, ePub, html, 
Open eBook

FictionBook, 
MobiPocket, rtf NO YES YES NO

ePub, pdf --- NO YES YES NO

 

 

Table 4 - Comparison of features in different e-reader clients, revised

48



 Table 4  shows the features of the Leaf client application, comparing it  with  popular  
applications currently  in the market. Despite identifying this row  as Leaf, the team  has not 
yet decided upon a final name for the software. 

 The second and the third columns show supported formats (both  proprietary  and 
non-proprietary  formats), indicating those ebooks format that have been tested on the 
application. Adobe’s PDF, txt and HTML have been tested and found to work properly  in 
our application, i.e. without any  problem  during the reading experience. The ePub format, 
which in this table is more specifically  identified as ePub 2.0, is the target  format on which 
the team worked, and currently represents the standard for our distribution platform.

 The fourth and the fifth  columns show, respectively, user’s data synchronization  
and night/day  mode, i.e. the possibility  of easily  switching from  a white background with 
black font to the opposite combination. User’s data synchronization is still not 
implemented, meaning that bookmarks and other functionalities related to a  specific user 
are not part of the current application. In regards to the “day/night”  mode, it is already 
present in the Leaf client, as described in the third chapter of subsection 4.5.4.

 The last  two columns state that custom font sizes and virtual stores are part  of the 
Leaf end-user application.  The possibility  of changing font size is given to the user (as 
described in  subsection 4.5.4, second paragraph) thanks to the “pinch-to-zoom” function, 
that allows users to easily  control text’s size. The “virtual store”  is function that has been 
implemented in  the application in the form  of “virtual library”. This is more than a digital 
shop, as the user can  access the collection of documents from  the application  itself without 
needing to download the publication from a third party  and then open it  with the Leaf 
client. Even if accessing the collection of available contents “in-app”  and online is a 
possibility  for the user, the team did not  develop functionality  for purchasing contents. For 
this reason it can not be considered as proper virtual store, this remains for  a subsequent 
development phase when the accounts policies will be be implemented.   

 Comparing the client we developed for  the Leaf project  with  the ones already  in the 
market, we can observe that  the our first prototype is positioned on top of the second half 
of the table. Given all the assumptions valid for  table 1, this result represents a good base 
for the next version of the client, which will have to compete with the more well-known 
applications also on performances and usability.

49



7. Conclusions
    In this chapter the focus is on  what  has been achieved thus far and what remains for 
future development phases. The first section will explain which the objectives that have  
been successfully  implemented for  both  client and server applications,  remarking on how 
the proposals in the original project plan have been respected or  changed during the 
implementation process. Subsequently  section 7.2 describes the project plans for the 
future,  focusing on the parts of the project that still need to be implemented and 
explaining evaluations that will be used as the basis for  implementation choices. In the 
end of the chapter a  short discussion explains which limitations the author had to 
overcome in order to successfully achieve the thesis project’s goals. 

 7.1 Achieved goals

 The first phase of the Leaf project  involved the development of both client and 
server  prototypes. The following list  describes the goals that have been successfully 
achieved during this first phase:

• Theoretical preparation,  Literature Study, Android programming training and 
study, and evaluation of current solutions in the market. (weeks 1-5)

• Development of a standalone e-reading client  application’s prototype for Android. 
(weeks 6-11)

• Development of server-side strategies and further implementation of these 
applications in the server (in collaboration with Sebastian Galiano). (weeks 12-15)

• Creation of the Leaf project temporary  homepage and web pages to upload new 
documents on the server. (week 10)

•  Adaption of the client application’s prototype to get data from  the server  side and 
read documents in a streaming-like approach using basic HTTP. (weeks 12-15)

• Integration of multimedia  support in the reading application, making it  possible to 
read contents created with  multiple technologies, including Javascript[8], JQuery 
library[9], HTML5[6], and embedded images and videos. (weeks 12-14)

• Creation of an authorization mechanism based upon LDAP[63] to check users’ 
credentials, grant  them  access to the contents they  are authorized for, and 
maintaining users authenticated throughout their reading experience. This 
component still has to be optimized, as described in subsection 4.1.1. (weeks 17-24)

• Adaptation of both client and server applications to run with  several types of   
non-standard epub documents and predicting anomalies in the file types and 
structures. (weeks 14-15)

 
• Design of GUI elements to integrate in the first client application, such as buttons, 
images, and logos (weeks 15-16)

50



 7.2 Limitations of the current solution

 During the development of the client and server applications for  the Leaf project 
there were some time and resource constraints, that led to few limitations in  the prototype 
application. 

 First of all the development of the ePub 3.0 standard, currently  still in progress, 
represents a changing target that will influence the final application developed for the 
project, i.e. the client  software and parts of the server  side utilities. The preliminary 
indications given by  the recently  released draft  specifications have been used as our  main 
guidance during client  application development in order  that the application can be easily 
adapted to the ePub 3.0 standards when they are officially released[35].

 In regard to the client application, some of its components have only  limited 
functionality.  An example of such limitations is the lack of a well established page 
numbering system, which is not typically  available for  digital publications navigation, but 
the (optional) presence of this feature could positively  influence the application’s success. 
In addition, small features such as brightness control and font-size increasing were part of 
the original design, but they  have not been implemented; nevertheless,  these features will 
probably be part of the first iteration during the next phase of the development.

 Looking from  the network and security  point of view, there are still some important 
features that  should be implemented, such as the usage of HTTPS in place of basic HTTP 
(with mutual authentication of both client  and server),  use of a  more secure database 
connection,  and encryption of all transmitted data.  More details regarding these features 
will be described in section 7.3,  

 7.2.1 Authorization system’s limitations

 In subsection 4.1.1,  the last paragraph introduced some technical problems related 
to the authorization system, which is currently  based on a combination of two modules, 
auth_memCookie[75] and memCached[76]. The setup for  these two components on the 
server, and the way they operate, can be found in section 5.3. 

 The main limitation regarding this mechanism  is related to the connection between 
these two modules,  which is currently  not working properly. At the current stage, the 
auth_memCookie module should check, every  time a  user  tries to access the protected area 
of the server, if the authorization cookie for  that user has been created and if it is valid. To 
do this, the module should connect to the second one, memCached, and check if in its 
memory  that such a cookie has been stored and that  the presented cookie matches this 
stored cookie. 

 After a very  deep analysis of the server, Apache, and these two modules,  the team 
was unable to find the reason why  this connection is not producing the expected result, 
that is finding the current user’s cookie. The first  part of this authorization mechanism, has 
been successfully  tested with different diagnostic tools. This means that when a user  logins 
into the web platform, his/her  access is registered by  the auth_memCookie[75] and a well-
formed cookie is correctly  stored in the memCached[76] for  the user  session handling. 
However, when the user later access the server the cookie is not successfully compared.

51



 Unfortunately  the documentation and support for this kind of problem, on a such  
specific issue, is insufficient to allow the team to determine the problem’s causes. To 
overcome this issue,  the team  has already  planned implementing  a similar  solution, which 
relies on a different technology, that should allow the same mechanism to keep track of 
users sessions. Details of this alternative solution are presented in section 7.3.    

 7.3 Future work

 The next iteration of development of the “Leaf Project” end-user application will 
involve improvements to existing features,  as well as the implementation of new utilities 
and technologies. The team working  on the Leaf project is also looking forward to see the 
future work from the other  actors involved in the e-reading market,  such as editing 
platform  creators, device manufacturers,  an teams working on the development of web and 
e-publications standards. The following two sections describe work planned for  the client 
application and some though regarding future technologies that may  be relevant to the 
future development of the client application.

 7.3.1 Future work on the client application 

 Among the the points that will be reviewed, restructured, and expanded, first of all 
we must adapt the application to the final ePub 3.0 structure. Currently  the application 
provides full support  for ePub 2.0, but with the official standardization of ePub 3.0 format, 
the application should be able to handle contents organized according to the new standard.

 With regard to the networking and security  aspects of the client and server, there 
are several features to be implemented in the next iteration. First of all, data encryption 
should be implemented in a secure but  light weight way, to avoid misuse of the data 
transmitted without reducing the speed or the reliability of the wireless connection. 

 In addition, the usage of HTTPS rather  than the basic HTTP would offer the 
application improved security, especially  in terms of data  protection, noted that  earlier  we 
should perform  mutual authentication of the client and server  — to prevent  impersonation 
of either. Directly  connected to this issue, the authorization mechanism  has to be re-
designed due to the problems described in subsection 7.2.1. To overcome this problem, the 
team plans to take advantage of another module for Apache, that should perform the same 
kind of activity  of auth_memCookie[75],  but in a more reliable and well-documented way. 
The reason why  this module is not  currently  installed on the server, is that in  order to use 
it  the team has to review the Apache web server configuration, a task that will be done in 
the next phase of this project. 

 A crucial point to be evolved in the next version of the application is the connection  
to the database, currently  achieved thanks to a specific Java class, dbConnector.class, 
illustrated in section 4.2.4. This solution is considered to be             non-optimal, because it 
consists of having the database information and queries in a  Java  class,  installed in the 
client device.  The solution that the team  is planning to adopt is to query  a php controller, 
hosted on the server, which will be in  charge of receiving  queries from  the application and 
forwarding them  to the database, without  having the database credentials in the end-user 
environment. 

52



 The implementation of a customized buffer  and cache is also a key  element of the 
next version of the application. Having these two components under  the control of the 
development team could give the project the tools needed to better adapt the streaming 
approach. 

 The navigation system  is currently  composed the the buttons used to navigate 
among different  chapters.  As stated in subsection 4.5.2, this part  of the application will be 
enriched later  with the implementation of digital bookmarks (already  part of the plan for 
user’s data synchronization) and a document scrollbar to move within the document.  

 Regarding future utilities that will be provided to users,  depending on the 
commercial requirements of the project  there will be a great number  of functions that 
could be added to the application, such as an offline version of the application, social 
network integration, user’s data control, and integration with an advertising system.

 The “offline version” functionality  will allow users, such as those with  a premium 
account,  to download contents into their device, in order  to be able to read publications 
even when offline. This feature must include appropriate data encryption, to avoid the 
illegal re-distribution of data through other  channels. The offline version should be 
implemented in such a way  that it will automatically  synchronize the user’s data  as soon as 
the device comes back online. 

 The integration with social network(s) is a desired functionality  that will be 
implemented in two separate parts. Concerning  the connection with  todays’ popular social 
networks, the Leaf Project team  is in contact with the development team  of Treadmill, a 
service which has the aim  of creating a network of readers and contents around the most 
famous social networks via  a specific API. Additionally,  the Leaf Project client application 
will include its own “sharing”  tools to enable users to interact at different levels with  the 
application itself and with their social networks. 
 
 The future developments of the client  application will involve, depending on  
commercial discussions and on the data  gathered following  the product’s launch, its own 
social network. The team is now in  contact with the firm behind “Bananity”  [78], a recently 
launched social network, to investigate the possibility  of a collaboration between these two 
services.

 User’s data manipulation is a delicate step that will be deeply  analyzed before 
starting any  implementation. This manipulation would be based upon retrieving  users’ 
data concerning their  readings and behaviors, and using this data for commercial or 
statistical purposes. Despite the great possibilities in  this direction given by  the usage of 
mobile devices, such as learning users‘ favorite places, behaviors, and contents, the legal 
aspects of utilizing this data (other  than to improve the service provided to the users) 
represents a  barrier  that  should be studied extensively  before embarking on any  usage of 
this data.

 Finally,  an important feature that  the team  is currently  studying is integration with  
an advertising system. Our current thinking is that this will be implemented by  renting 
phrases, rather than spaces, to advertising companies. In this way  the reading experience 
will not suffer from  any  disturbance in the already  limited reading (display) space or time, 
but  rather the user might use the advertising functionality  as a utility  — rather than an 
annoying distraction. This feature will be implemented, on the user side,  as a menu that 
scrolls down when the user clicks on a phrase or  word in  which he/she is interested, such 

53



as the name of an airline or  of a food. A specific API will be developed for  this purpose, to 
provide advertisers with an easy  interface to rent  “phrases” and link them with their 
commercial sources.

 In the future iterations of the Leaf Project end-user application, there will be 
improvements to the server-side utilities, such as an improved uploading system, user and 
account management, and a new web interface. These components will  depend 
significantly on commercial discussions.  

 The GUI design [50] [51] is another element that will be completely  restructured 
during the next stage of the Leaf project, optimizing it  according to the new functions that 
the team decides to include in the next version of the application. The theme will probably 
feature a large main window, representing the user’s “homepage”, with all the resources 
available for the user, classified and organized into different categories. Along the sides of 
that window there will be a list  of buttons that the user  may  use to access “Recent history”, 
“Favorite readings”, and “Suggested publications”. In addition to these categories, a 
complete set of tools will be provided to enable users to perform  activities during their 
reading, such as adding/removing  bookmarks, highlighting text, and changing the 
document’s orientation. Of course in the case of appearance changes,  the GUI should be 
sufficiently  advanced that it  can react flexibly  in order to always offer  the best reading 
experience to the user. 

 The contextual and functional menus of the application will be re-designed to offer  
users shortcuts to the technical functions that are normally  present in hidden menus and 
that are not directly  related to the reading material, such as access to the “general settings” 
or to invoke manual synchronization of data.  

 An advanced graphical feature that will be implemented in later phases of the 
project will be a means for  the user to collect different articles and summaries of the latest 
relevant data from  the user’s favorite readings, creating a sort of “customized”  journal page 
from which the user  can potentially  access interesting information extracted from various 
sources. This feature represents an example of the benefit  that users would have through 
the Leaf platform.

 7.3.2 Future technologies 

 Some external factors will influence the direction of the project, specifically  the 
different solutions introduced in this market by  different companies.  Recently, firms such 
as Koobits[79] or Platify[48] have launched platforms in which, similarly  to the Leaf 
project, users can upload and read different kinds of publications, taking advantage of 
modern interactivity  elements. Looking at  the development of these projects will have a 
double impact on the Leaf: on one hand their work can be observed to gather feedback and 
indicators of their  directions, on the other they  can be viewed as potential future 
competitors. 
   
 What will be crucial for  the future of the Leaf project is the development of new 
technologies related to the field of e-reading. In this direction, we are following to the 
major developments of both hardware and software.

 The development  of eInk screens surely  represents one of the most significant key-
features that  will affect the e-reading market in the near  future. The integration of 

54



electronic ink into mass-production tablets could be a major  factor to unify  e-readers and 
tablets.

 In addition to hardware innovations,  there will be many  software technologies that 
will affect  and increase the success of e-reading solutions. Many  of these solutions come 
from the Web sector,  and are highly  related to e-reading thanks to the ePub structure 
(specifically  the fact of utilizing HTML documents). The most important innovations that 
will be introduced in this market segment are Google’s DART[80] and the Mozilla  Web 
API[81], projects with the aim  of enabling browsers to exploit  device functionalities. These 
types of coming products will help content creators add more interactivity  in their 
creations, which is one of the most important motivations behind the Leaf project. 

 Content creators will also benefit  from  new  editing tools to compose publications 
and web contents, enabling them to achieve an interactivity  level that  could lead 
entertainment and information to a new  phase. This area will be open for many  new 
possibilities. In this field, tools like Adobe’s Edge[82] and the Sigil editor[83] can play  a 
leading role. 

 Despite the fact that an editing tool is not currently  part of the Leaf platform, future 
phases of the project will develop such a tool as a natural evolution of the web interface 
that today  enables users to upload their  documents. Such an editing tool will most likely  be 
implemented as an online tool and directly  integrated into the Leaf website,  in order  to 
enable authors to easily create new content.   

 Depending on the business path(s) that the project will take, as well as the 
technologies that will be implemented, the Leaf project  will try  to evolve from a 
distribution platform to a more comprehensive platform, in which users will enjoy  various 
forms of content on different devices and in various environments,  while enabling them to 
subscribe to specific content creators, editorial teams, and/or distributors. In the same 
way, authors will  be able to collaborate with designers and artists to embed multimedia 
interactive elements in their  creations, periodically  publish new contents, and decide in 
which way(s) to earn money on these contents.                      

55



References

1. Michael Hart, Gutenberg  Project description [www]  http://www.gutenberg.org/wiki/
Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart, Last  access on 
2011-02-24

2. Newspaper Association of America, Report on  total  paid circulation in  the last 50 years [www] http://
www.naa.org/TrendsandNumbers/Total-Paid-Circulation.aspx USA, Last access on 2011-02-24

3. Federazione Italiana Editori  Giornali, Italian newspapers paid circulation  2009/10, 2011-01-28 
[www] http://www.fieg.it/documenti_item.asp?page=1&doc_id=198 ITA, Last access on 2011-02-24

4. National  daily newspaper circulation for  January 2011 in UK, 2011-02-11 [www] http://
www.guardian.co.uk/media/table/2011/feb/11/abcs-national-newspapers1, Last access on 2011-02-24

5. Android Project, Android OS reference [www] http://developer.android.com/reference/
packages.html, Last access on 2011-02-24

6. W3C, HTML5 Specification [www] http://www.w3.org/TR/html5/, Last access on 2011-02-24

7. W3 Schools, Css Reference [www] http://www.w3schools.com/css/css_reference.asp, Last access on 
2011-02-24

8. W3 Schools, Javascript Reference [www] http://www.w3schools.com/jsref/default.asp, Last  access on 
2011-02-24

9. JQuery Project, JQuery definition [www] http://api.jquery.com/category/core/, Last access on 
2011-02-24

10. Prototype Core Team, Prototype Javascript Framework Guide [www] http://www.prototypejs.org/
learn, Last access on 2011-02-24

11. International  Digital  Publishing Forum, ePub 3 Overview, 2011-02-15 [www] http://idpf.org/epub/
30/spec/epub30-overview.html, Last access on 2011-02-24

12. Apache, Subversion, [www] http://subversion.apache.org/, Last access on 2011-10-09

13. Millennial  Mobile Mix, 15th July  2011, [www] http://www.bgr.com/2011/07/15/millennial-android-
tops-mobile-os-usage-for-7th-straight-month-iphone-still-top-device/, Last access on 2011-10-09

14. Gartner’s  official Mobile OS report, April  2011, [www] http://www.gartner.com/it/page.jsp?
id=1622614, Last access on 2011-10-09

15. Samsung, Samsung’s official website, [www] http://www.smasung.com, Last access on 2011-10-09

16. High Tech  Computer Corporation, HTC’s official  website, [www] http://www.htc.com, Last access  on 
2011-10-09

17. Sony, Sony’s official website, [www] http://www.sonyericsson.com/cws, Last access on 2011-10-09

18. Motorola, Motorola’s official website, [www] http://www.motorola.com, Last access on 2011-10-09

19. Android Project, Android SDK definition  [www]  http://developer.android.com/sdk/index.html, Last 
access on 2011-02-24

20. Apple’s official website, [www] http://www.apple.com, Last access on 2011-10-09 

21. W3 Schools, XML definition  [www] http://www.w3schools.com/xml/default.asp, Last access  on 
2011-02-24 

22. Adobe Portable Document Format v1.7, November 2006 [www] http://www.adobe.com/content/
dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf, Last access on 2011-03-05

56

http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.gutenberg.org/wiki/Gutenberg:The_History_and_Philosophy_of_Project_Gutenberg_by_Michael_Hart
http://www.naa.org/TrendsandNumbers/Total-Paid-Circulation.aspx
http://www.naa.org/TrendsandNumbers/Total-Paid-Circulation.aspx
http://www.naa.org/TrendsandNumbers/Total-Paid-Circulation.aspx
http://www.naa.org/TrendsandNumbers/Total-Paid-Circulation.aspx
http://www.fieg.it/documenti_item.asp?page=1&doc_id=198
http://www.fieg.it/documenti_item.asp?page=1&doc_id=198
http://www.guardian.co.uk/media/table/2011/feb/11/abcs-national-newspapers1
http://www.guardian.co.uk/media/table/2011/feb/11/abcs-national-newspapers1
http://www.guardian.co.uk/media/table/2011/feb/11/abcs-national-newspapers1
http://www.guardian.co.uk/media/table/2011/feb/11/abcs-national-newspapers1
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://developer.android.com/reference/packages.html
http://www.w3.org/TR/html5/
http://www.w3.org/TR/html5/
http://www.w3schools.com/css/css_reference.asp
http://www.w3schools.com/css/css_reference.asp
http://www.w3schools.com/jsref/default.asp
http://www.w3schools.com/jsref/default.asp
http://api.jquery.com/category/core/
http://api.jquery.com/category/core/
http://www.prototypejs.org/learn
http://www.prototypejs.org/learn
http://www.prototypejs.org/learn
http://www.prototypejs.org/learn
http://idpf.org/epub/30/spec/epub30-overview.html
http://idpf.org/epub/30/spec/epub30-overview.html
http://idpf.org/epub/30/spec/epub30-overview.html
http://idpf.org/epub/30/spec/epub30-overview.html
http://developer.android.com/sdk/index.html
http://developer.android.com/sdk/index.html
http://www.w3schools.com/xml/default.asp
http://www.w3schools.com/xml/default.asp
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf
http://www.adobe.com/content/dam/Adobe/en/devnet/acrobat/pdfs/pdf_reference_1-7.pdf


23. Wikipedia, Softbook [www] http://en.wikipedia.org/wiki/SoftBook, Last access on 2011-02-24

24. International  Digital  Publishing Forum, Open eBook specifications [www] http://
www.openebook.org/oebps/oebps1.2/index.htm, Last access on 2011-02-24

 
25. Dublin  Core Metadata  Initiative, Official  specifications  [www] http://dublincore.org/specifications/, 

Last access on 2011-02-24

26. International  Digital  Publishing Forum, Open  Publication Structure 2.0.1, 2010-09-04 [www] http://
idpf.org/epub/20/spec/OPS_2.0.1_draft.htm, Last access on 2011-02-24

27. Mobile Wiki, PalmDOC format [www] http://wiki.mobileread.com/wiki/PalmDOC, Last access on 
2011-03-07

28. DjVu.org, DjVu official documentation [www] http://djvu.org/resources/, Last access on 2011-03-07

29. MobiPocket official  reference site, MobiPocket documentation [www] http://www.mobipocket.com/
dev/, Last access on 2011-03-07 

30. Amazon.com, Amazon’s  AZW document format [www] http://kindle.s3.amazonaws.com/
Kindle_Users_Guide.azw, Last access on 2011-03-07

31. N. Freed and N. Borenstein, Multipurpose Internet Mail  Extensions Part One: Format of Internet 
Message Bodies, November 1996 [www] http://www.ietf.org/rfc/rfc2045.txt?number=2045, Last 
access on 2011-03-06

32. International  Digital  Publishing  Forum, Open  Packaging Format 2.0.1, 2010-09-04 [www] http://
idpf.org/epub/20/spec/OPF_2.0.1_draft.htm, Last access on 2011-02-24

33. International  Digital  Publishing Forum, OEBPS Container Format 2.01. 2010-09-04 [www] http://
idpf.org, word document on the main file, Last access on 2011-02-24

34. J. Dlugosz, ZIP2 reference [www] http://www.dlugosz.com/ZIP2/index.html, Last  access on 
2011-03-07

35. International  Digital  Publishing  Forum, ePub 3 Content Document, 2011-02-15 [www]  http://
idpf.org/epub/30/spec/epub30-contentdocs.html, Last access on 2011-02-24

36. International  Digital Publishing Forum, ePub 3 Publications, 2011-02-15 [www] http://idpf.org/epub/
30/spec/epub30-publications.html, Last access on 2011-02-24

37. International  Digital  Publishing  Forum, OEBPS Container Format 3.0, 2011-02-15  [www] http://
idpf.org/epub/30/spec/epub30-ocf.html, Last access on 2011-02-24

38. International  Digital  Publishing  Forum, ePub Media Overlays, 2011-02-15 [www] http://idpf.org/
epub/30/spec/epub30-mediaoverlays.html, Last access on 2011-02-24

39. Erik Dahlström, SVG [www] http://www.w3.org/TR/SVG11/, Last access on 2011-02-24

40. Amazon Inc., Amazon.com [www] http://www.amazon.com, Last access on 2011-02-24

41. Apple, iBook main page, http://itunes.apple.com/us/app/ibooks/id364709193?mt=8, Last access on 
2011-03-05

42. Barnes&Noble, Nook Platform website [www] http://www.barnesandnoble.com/NOOK/index.asp, 
Last access on 2011-02-24

43. Kobo, KoboBooks.com [www] http://www.kobobooks.com/, Last access on 2011-02-24

44. NewspaperDirect  Inc., PressDisplay.com [www] http://www.pressdisplay.com/pressdisplay/
viewer.aspx, Last access on 2011-02-24

45. Zinio LLC, Zinio Homepage [www] http://www.zinio.com/, Last access on 2011-03-07

46. The Internet Archive, OpenLibrary Project [www] http://openlibrary.org/, Last access on 2011-02-24

57

http://en.wikipedia.org/wiki/SoftBook
http://en.wikipedia.org/wiki/SoftBook
http://www.openebook.org/specs.htm
http://www.openebook.org/specs.htm
http://www.openebook.org/specs.htm
http://www.openebook.org/specs.htm
http://dublincore.org/specifications/
http://dublincore.org/specifications/
http://idpf.org/epub/20/spec/OPS_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPS_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPS_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPS_2.0.1_draft.htm
http://wiki.mobileread.com/wiki/PalmDOC
http://wiki.mobileread.com/wiki/PalmDOC
http://djvu.org/resources/
http://djvu.org/resources/
http://www.mobipocket.com/dev/
http://www.mobipocket.com/dev/
http://www.mobipocket.com/dev/
http://www.mobipocket.com/dev/
http://kindle.s3.amazonaws.com/Kindle_Users_Guide.azw
http://kindle.s3.amazonaws.com/Kindle_Users_Guide.azw
http://kindle.s3.amazonaws.com/Kindle_Users_Guide.azw
http://kindle.s3.amazonaws.com/Kindle_Users_Guide.azw
http://www.iana.org/assignments/media-types/index.html
http://www.iana.org/assignments/media-types/index.html
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm
http://idpf.org/epub/20/spec/OPF_2.0.1_draft.htm
http://idpf.org
http://idpf.org
http://idpf.org
http://idpf.org
http://www.dlugosz.com/ZIP2/index.html
http://www.dlugosz.com/ZIP2/index.html
http://www.dlugosz.com/ZIP2/index.html
http://www.dlugosz.com/ZIP2/index.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html
http://idpf.org/epub/30/spec/epub30-contentdocs.html
http://idpf.org/epub/30/spec/epub30-publications.html
http://idpf.org/epub/30/spec/epub30-publications.html
http://idpf.org/epub/30/spec/epub30-publications.html
http://idpf.org/epub/30/spec/epub30-publications.html
http://idpf.org/epub/30/spec/epub30-ocf.html
http://idpf.org/epub/30/spec/epub30-ocf.html
http://idpf.org/epub/30/spec/epub30-ocf.html
http://idpf.org/epub/30/spec/epub30-ocf.html
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html
http://idpf.org/epub/30/spec/epub30-mediaoverlays.html
http://www.w3.org/TR/SVG11/
http://www.w3.org/TR/SVG11/
http://www.amazon.com
http://www.amazon.com
http://itunes.apple.com/us/app/ibooks/id364709193?mt=8
http://itunes.apple.com/us/app/ibooks/id364709193?mt=8
http://www.barnesandnoble.com/NOOK/index.asp
http://www.barnesandnoble.com/NOOK/index.asp
http://www.kobobooks.com
http://www.kobobooks.com
http://www.pressdisplay.com/pressdisplay/viewer.aspx
http://www.pressdisplay.com/pressdisplay/viewer.aspx
http://www.pressdisplay.com/pressdisplay/viewer.aspx
http://www.pressdisplay.com/pressdisplay/viewer.aspx
http://www.zinio.com
http://www.zinio.com
http://openlibrary.org
http://openlibrary.org


47. 24Symbols, official homepage [www] http://www.24symbols.com, Last access on 2011-10-09

48. Paul  Biba, Platify’s service analysis [www] http://http://www.teleread.com/paul-biba/new-swedish-
ebook-platform-platify-opens/, Last access on 2011-10-09

49. Amazon.com  description, Kindle App for Android, [www] http://www.amazon.com/gp/feature.html/
ref=red_lnd_shrt_url?ie=UTF8&docId=165849822, Last access on 2011-10-09

50. W i k i p e d i a , D i g i t a l  R i g h t s M a n a g e m e n t [ w w w ] h t t p : / / e n . w i k i p e d i a . o r g / w i k i /
Digital_rights_management, Last access on 2011-03-06

51. FictionBook, FictionBook 2.1 Schema  [www] http://www.fictionbook.org/index.php/
Eng:XML_Schema_Fictionbook_2.1, Lat access on 2011-03-07

52. Open Handset Alliance, Official  Website, [www] http://www.openhandsetalliance.com/, Last access 
on 2011-02-24

53. Android Project, Android Open Source Project official  documentation [www] http://
source.android.com/, Last access on 2011-02-24

54. Official Java Reference Guide, Just In Time compilation  [www] http://java.sun.com/developer/
onlineTraining/Programming/JDCBook/perf2.html#jit, Last access on 2011-03-06 

55. D. Bornstein, Dalvik Virtual Machine [www] http://www.dalvikvm.com/, Last access on 2011-02-24

56. Android Project, Android Application Framework and .apk file definition [www] http://
sites.google.com/site/io/inside-the-android-application-framework, Last access on 2011-02-24

57. Android Project, Android Developer  Guide [www] http://developer.android.com/guide/index.html, 
Last access on 2011-02-24

58. Android Project, Android SDK Assets and Asset manager [www] http://code.google.com/android/
reference/android/content/res/AssetManager.html, Last access on 2011-02-24

59. Android Project, Android SDK Resources definition  [www] http://code.google.com/android/
reference/android/content/res/Resources.html, Last access on 2011-02-24

60. Android Project, Android layouts [www] http://developer.android.com/guide/topics/resources/
layout-resource.html, Last access on 2011-10-09

61. Android Project, Android SDK Views and XML [www] http://developer.android.com/reference/
android/view/View.html, Last access on 2011-02-24

62. Android Project, Android Manifest file [www] http://developer.android.com/guide/topics/manifest/
manifest-intro.html, Last access on 2011-02-24

63. M.Wahl, T. Howes, and S. Kille, Lightweight Directory  Access Protocol, http://www.ietf.org/rfc/
rfc2251.txt, Last access on 2011-10-09

64. Information Sciences Institute of University of Southern California, RFC 793 - TCP protocol  [www] 
http://tools.ietf.org/html/rfc793, Last access on 2011-10-09

65. R. Stewart, Q. Xie, K. Morneault, C. Sharp, H. Schwarzbauer, T. Taylor, I. Rytina, M. Kalla, L. Zhang, 
and V. Paxson, Stream  Control  Transmission  Protocol, [www] http://tools.ietf.org/html/rfc2960, Last 
access on 2011-10-09

66. Android official  homepage, DefaultHttpClient specification [www] http://developer.android.com/
reference/org/apache/http/impl/client/DefaultHttpClient.html, Last access on 2011-10-09

67. The Webkit project, Webkit official  WiKi  [www] http://trac.webkit.org/wiki, Last access on 
2011-02-24

68. Tom  Tullis and Bill  Albert, “Measuring the User Experience: Collecting, Analyzing, and Presenting 
Usability Metrics”, Morgan-Kaufmann, 2008

58

http://en.wikipedia.org/wiki/Digital_rights_management
http://en.wikipedia.org/wiki/Digital_rights_management
http://en.wikipedia.org/wiki/Digital_rights_management
http://en.wikipedia.org/wiki/Digital_rights_management
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
http://www.fictionbook.org/index.php/Eng:XML_Schema_Fictionbook_2.1
http://www.openhandsetalliance.com
http://www.openhandsetalliance.com
http://source.android.com
http://source.android.com
http://source.android.com
http://source.android.com
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://en.wikipedia.org/wiki/Just-in-time_compilation
http://www.dalvikvm.com
http://www.dalvikvm.com
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://sites.google.com/site/io/inside-the-android-application-framework
http://developer.android.com/guide/index.html
http://developer.android.com/guide/index.html
http://code.google.com/android/reference/android/content/res/AssetManager.html
http://code.google.com/android/reference/android/content/res/AssetManager.html
http://code.google.com/android/reference/android/content/res/AssetManager.html
http://code.google.com/android/reference/android/content/res/AssetManager.html
http://code.google.com/android/reference/android/content/res/Resources.html
http://code.google.com/android/reference/android/content/res/Resources.html
http://code.google.com/android/reference/android/content/res/Resources.html
http://code.google.com/android/reference/android/content/res/Resources.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/reference/android/view/View.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://developer.android.com/guide/topics/manifest/manifest-intro.html
http://trac.webkit.org/wiki
http://trac.webkit.org/wiki


69. Donald Norman, “The design of future things”, Basic Books, 6 Dec 2007

70. Android Project, GUI design guidelines. [www] http://developer.android.com/guide/practices/
ui_guidelines/index.html, Last access on 2011-02-24

71. JQuery Booklet plugin, JQuery  Booklet  plugin  [www] http://builtbywill.com/code/booklet/, Last 
access on 2011-10-09 

72. JQuery official  page, JQuery  jFlip plugin  [www] http://www.jquery.info/spip.php?article78, Last 
access on 2011-10-09

73. Adobe, Adobe’s Flash [www] http://www.adobe.com/software/flash/about/, Last access on 2011-11-01

74. R. Rivest, The MD5 Message-Digest Algorithm  [www] http://tools.ietf.org/html/rfc1321, Last access 
on 2011-10-09

75. M. Carbonneaux, authMemCookie module [www] http://authmemcookie.sourceforge.net/, Last 
access on 2011-10-09

76. Memcached.org  page, memCached definition [www] http://memcached.org/about, Last access on 
2011-10-09

77. Android official  homepage, Profiling Android applications with  Traceview [www] http://
developer.android.com/guide/developing/debugging/debugging-tracing.html, Last access on 
2011-10-09

78. Bananity’s team, Bananity’s official homepage, http://www.bananity.com/, Last access on 2011-10-09
 
79. Koobits Inc., Official Koobits web page, [www] http://www.koobits.com, Last access on 2011-05-18

80. Slashdot.com, Google’s  DART launch  [www] http://tech.slashdot.org/story/11/09/09/1453224/
google-to-introduce-new-programming-language-dart, Last access on 2011-10-09

81. Mozilla  project, the Mozilla web API, http://hacks.mozilla.org/2011/08/introducing-webapi/, Last 
access on 2011-10-09

82. Adobe, Adobe’s Edge website, [www] http://labs.adobe.com/technologies/edge/, Last access on 
2011-11-01

83. Sigil  project, Sigil  - a  WYSIWYG ebook editor [www] http://code.google.com/p/sigil/, Last  access on 
2011-11-01 

Other documents in the Leaf project

L1. D. Botero, The Leaf project: business plan, masters thesis project, November 2011

L2. G. Khalil, The Leaf project: commercial plan, masters thesis project, September 2011

L3. S. Galiàno, The Leaf project: infrastructure development, masters thesis project, August 2011

59

http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://developer.android.com/guide/practices/ui_guidelines/index.html
http://idpf.org/epub/30/spec/epub30-changes.html
http://idpf.org/epub/30/spec/epub30-changes.html


Appendixes 

 Appendix A - Uploading a book through the web 
interface

 Inserting a  new  publication inside the Leaf platform  library  is a simple task that can  
be performed through the web interface. This possibility  is available only  to users who 
have already logged into the website.

 The main structure of this operation is composed by  two steps, represented by  two 
separate files: insertBook.html and insertedBook.php. 

 The first of these file is a  HTML document which  presents a simple form, in which  
the user can define the publication’s name and point  to the real file in  his device’s storage. 
All the other information regarding the book, such as author, publisher, date and many 
more, will be automatically  fetched by  the server  side utilities. Figure 13  shows a 
screenshot of this page.

   

   Figure 13 - Screenshot of the document inserting  form

   
 The implementation of this page is simple and clean.  As observable from  the code, 
the main element is a HTML form  which contains one “<input type=’text’>”  tag for 
inserting the document’s title and a  “<input type=‘file’>”  tag for choosing  the file from  the 
local storage.  Then the form  ends with the reset and the submit buttons.  The interesting 
part is in the declaration of the form itself,  when is crucial to specify  the form method 
(POST) and the MIME-type (multipart/form-data), as explained in the second paragraph 
of section 5.1

 The data sent  by  insertBook.html are then received by  a PHP page called 
insertedBook.php.  The main role of this page is to actually  perform the storing  of the 
documents in the server, retrieving the book file from the PHP array “$_FILES[]” and the 
book name from the “$_POST[]”  array. The most important part in the PHP code is 
represented by  the last line, in which the page calls the first  server  side utility, 
summaryBuilder. This Java class will then call the other utilities, described in section 5.2.

60



    Figure 14 - Code for insertingBook.html

Figure 15 - Code for insertedBook.php

61



 Appendix B - Sample “accessCookie”

 The example below shows a sample “accessCookie”.  Such  a cookie is created by  the 
auth_memCookie module running in the Apache web server when the user  accesses the 
Leaf platform via an “in-app” login. This cookie is subsequently  stored in the memCached 
memory. This cookie can be checked when the user  wishes to access other  parts of the 
server,  such as the library  or  a specific book, to ensure that only  authenticated users have 
access to the platform’s resources.

Cookie Name: accessCookie

Accessible to script Yes

Content: 6873654d925a4411932581aa417096bd

Path: /test

Domain: “130.237.209.245”

Created Saturday, October 8, 2011 3:55:00 PM

Expiration Sunday, October 9, 2011 9:09:28 PM

 This cookie is directly  connected to its instance in the memCached,  in which there 
are additional information to keep track of the user’s session. Among these information, 
we can find: username, group,  remoteIp, email, name, surname. It is important to note 
that these information can be automatically  fetched from  the LDAP[63] interrogation, 
which can obtain users details. Nonetheless, these information are not currently  stored for 
the Leaf project platform. 

 

Figure 16 - Data present in the accessCookie

62



 Appendix C - Apache configuration for the 
auth_memCookie

 The following portion of configuration is an extract of the configuration for the 
auth_memCookie module. After the loading of the module file, the tag <Location /> 
contains all the rules to be applied for the main Apache directory.  A series of options 
defines the behavior  of the module, such as simulating the basic HTTP authentication, 
setting the HTTP headers in  the HTTP packets,  the cookie name, and the address for 
memCached.

 In the bottom  of the configuration is important  to note the last portion, which  
defines the behavior for  the “/test”  folder, which in this case represents the location on the 
server where documents are stored.   

LoadModule auth_memcookie_module  /usr/lib/apache2/mod_auth_memcookie.so
<IfModule mod_auth_memcookie.c>
<Location />
#     Options  +Indexes
#     Order allow,deny
#    Allow from all
#AllowOverride All 
#AcceptPathInfo On
Auth_memCookie_CookieName accessCookie
Auth_memCookie_Memcached_AddrPort "localhost:11211"
Auth_memCookie_SetSessionHTTPHeader "on"
Auth_memCookie_SessionTableSize "40"
Auth_memCookie_Authoritative "on"
Auth_memCookie_SimulateAuthBasic on
Auth_memCookie_MatchIP_Mode "2"
Auth_memCookie_GroupAuthoritative "off"
# must be set without that the refuse authentification
AuthType Cookie

# must be set (apache mandatory) but not used by the module
AuthName "AuthLeafProject"

# to redirect unauthorized user to the login page
ErrorDocument 401 "/error.html"

#Require valid-user

</Location>
</IfModule>

<Location "/test">
    require valid-user
</Location>

Figure 17 - Extract of the server’s configuration for the auth_memcookie module

63



www.kth.se

TRITA-ICT-EX-2011:249


