
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

Y E T I A N

 A Web Server for Sensors

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A Web Server for Sensors

Ye Tian

2011-09-03

Examiner: Gerald Q. Maguire Jr.

KTH Royal Institute of Technology

Stockholm, Sweden

i

Abstract

This thesis describes the project “A new Web Server for sensors”. The project has

created a demonstration web service that can receive data from sensors (both fixed

sensors and movable sensors) and distribute the received information in the form of

web pages. These web pages can provide forms that enable the user to enter

commands which are to be given to sensors. The aim of this thesis project was to

design and evaluate web-based application which could utilize sensor data. In this

project, we focused on two aspects: (1) web access to sensors and (2) the potential

mobility of sensors. The web server provides web server mediated access to the

sensors. Additionally, this project examined how to integrate a sensor with a mobile

device, such as a personal data appliance. The web server provides an easy access

mechanism to users who want to use and control sensors. Those users can flexibly use

their web browser to access to sensors through our web server. Moreover, a sensor

could move, for example because it is integrated with a personal data appliance. The

mobility of sensors increases the sensing scope of sensors because the sensors are not

fixed in position. Such sensors can sense the environment along the path that they are

moved.

To achieve the goals of this thesis project, we analyzed what are the basic parts

and functions that should exist for sensors in the web server. Furthermore, the thesis

analyzed how a sensor can be integrated with a personal data appliance, for instance,

how to supply the power to sensor; and how to synchronize data between the sensor

and personal data appliance. As a result of this project, a web server with some of the

necessary functions was developed. An approach of how to integrate a sensor with a

personal data appliance is specified in this thesis.

The thesis begins with an analysis of some existing solutions. Their advantages

were used to specify the requirements for our own solution. The thesis describes the

design and implementation of this proposed solution. Next the thesis describes the

testing and evaluation of this solution in the context of this project. The thesis ends

with some conclusions and suggests future work.

Key words: 6LoWPAN, sensor, mobile, web service, HTTP, UDP

ii

Sammanfatting

Denna avhandling beskriver projektet "En ny webbserver för sensorer". Projektet

har skapat en tjänst demonstration nätet som kan ta emot data från sensorer (både

fasta sensorer och rörliga sensorer) och distribuera fått information i form av

webbsidor.Dessa webbsidor kan ge former som gör det möjligt för användaren att

skriva in kommandon som ges till sensorer. Syftet med detta examensarbete var att

designa och utvärdera webbaserad applikation som kan använda sensordata. I detta

projekt har vi fokuserat på två aspekter: (1) webb tillgång till sensorer och (2) de

potentiella rörlighet av sensorer. Webbservern ger Web Access Server förmedlas till

sensorer. Dessutom undersökte detta projekt hur man kan integrera en sensor med en

mobil enhet, t.ex. en personuppgifter apparat. Webbservern ger en enkel tillgång

mekanism för användare som vill använda och styra sensorer. Dessa användare kan

flexibelt använda sin webbläsare för att få tillgång till sensorer via vår

webbserver. Dessutom kan en sensor röra sig, exempelvis genom att den är integrerad

med en personuppgifter apparat.Rörligheten av sensorer ökar avkänning omfattningen

av sensorer eftersom sensorerna inte är fasta på plats. Sådana sensorer kan känna

miljön längs den väg som de flyttas.

 För att nå målen med denna avhandling projektet analyserade vi vad som är

grundläggande delar och funktioner som bör finnas för sensorer i

webbservern.Dessutom analyseras i avhandlingen hur en sensor kan integreras med en

personuppgifterna apparat, till exempel, hur man levererar energi till sensorn, och hur

man synkronisera data mellan sensorn och personuppgifter apparaten. Som ett resultat

av detta projekt var en webbserver med några av de nödvändiga funktioner

utvecklas.En strategi för hur man kan integrera en sensor med en personuppgifterna

apparat som anges i denna avhandling.

 Avhandlingen inleds med en analys av några befintliga lösningar. Deras fördelar

har använts för att specificera kraven för vår egen lösning. Avhandlingen beskriver

utformningen och genomförandet av den föreslagna lösningen. Nästa avhandlingen

beskriver testning och utvärdering av denna lösning i samband med detta

projekt.Avhandlingen avslutas med några slutsatser och föreslår framtida arbete.

Nyckelord: 6LoWPAN, sensor, mobile, web service, HTTP, UDP

iii

Table of Contents

1 Introduction ... 1

2 Background ... 4

2.1 Problems statement .. 4

2.2 6LoWPAN protocol ... 4

2.2.1 IEEE 802.15.4 ... 6

2.2.2 6LoWPAN compression ... 7

2.3 Typical web services for sensors and actuators ... 8

2.3.1 Gateway approach ... 10

2.3.2 Compression approach .. 11

2.3.3 Solution for HTTP and TCP ... 12

2.4 Problem solutions... 12

2.5 Protocols in project .. 15

2.5.1 UDP... 16

2.5.2 TCP ... 16

2.5.3 HTTP... 16

2.6 Programming languages and tools ... 16

2.7 Equipment utilized in this thesis project .. 17

3 Sensor board.. 19

3.1 Wasa board ... 19

3.2 6LoWPAN sensor board .. 20

3.3 Low Power RS -232 sensor board ... 21

3.3.1 Serial data exchange ... 22

3.3.2 Power of sensor board ... 22

4 Software developed in this project .. 23

4.1 Requirements analysis ... 23

4.2 Program to emulate a 6LoWPAN sensor ... 24

4.3 ComServer program running on the HP iPAQ ... 26

4.4 Receiving and decoding program at the web server 30

4.5 Web server .. 31

4.5.1 Structure .. 31

4.5.2 Database .. 38

4.5.3 Functionalities ... 39

5 Results and measurements .. 41

5.1 Results of functional testing of the software .. 41

5.1.1 ComServer program .. 41

5.1.2 Web server ... 44

5.2 Measurements .. 50

5.2.1 Measuring performance of ComServer ... 51

5.2.2 Measuring the performance of the receiving and decoding program in

iv

the web server .. 52

5.2.3 Delay between when the sensors send a packet and when it has been

received and decoded ... 53

5.2.4 Analysis of these measurements ... 54

6 Conclusions and Future work ... 56

6.1 Conclusions .. 56

6.2 Future work .. 57

References .. 58

v

List of Figures

Figure 1: PAN, WLAN, and wired networks for sensing and control via a web

service .. 2

Figure 2: IP protocol stack and 6LoWPAN protocol stack 5

Figure 3: Basic format of 6LoWPAN packet ... 7

Figure 4: The minimal/compression format .. 8

Figure 5: The structure of web services ... 9

Figure 6: A diagram of web service gateway ... 11

Figure 7: Architecture of the problem solution .. 13

Figure 8: HP iPAQ Pocket PC h550 .. 18

Figure 9: Wasa board ... 20

Figure 10: Low Power RS-232 sensor board ... 21

Figure 11: A Query command for both temperature and battery readings 25

Figure 12: An Order command to turn on the board‟s green LED 26

Figure 13: A generic report message example ... 26

Figure 14: Serial port setting and UDP setting .. 27

Figure 15: A status message indicating that there is no available serial port 27

Figure 16: The ComServer status message indicating that the Com4 serial port is

openned .. 28

Figure 17: ComServer sensor commands .. 28

Figure 18: ComServer status information box ... 29

Figure 19: Data format of sensor coming from the HP iPAQ 30

Figure 20: MVC model .. 32

Figure 21: Defalut.aspx .. 33

Figure 22: Register.aspx... 34

Figure 23: Main.aspx ... 34

Figure 24: History.aspx .. 35

Figure 25: Three database tables for sensor information 38

Figure 26: The database table for browser registers user information 39

Figure 27: The database table for invited code .. 39

Figure 28: Use-case diagram for web server ... 40

Figure 29: ComSever performing a “status check” ... 42

Figure 30: ComServer performing the command “get sensor value” 43

Figure 31: ComServer after receiving a command to read a sensor 43

Figure 32: ComServer is terminated .. 44

Figure 33: Login error with username or password is empty 44

Figure 34: Login error with username or password is wrong 45

Figure 35: Sign up error with empty parameters ... 45

Figure 36: Sign up error with repeat password error ... 46

Figure 37: Sign up error with invalid invited code .. 46

vi

Figure 38: Sign up successes ... 46

Figure 39: Initial main.aspx page of web server .. 47

Figure 40: A notice message of web server to user .. 47

Figure 41:A notice message of web server to remain user to choose a command

.. 48

Figure 42: Recent temperature values of target sensor .. 49

Figure 43: A history page example of web server.. 49

Figure 44: An example of sending a command to specific sensor 50

Figure 45: Time required to generating a sensor packet and sending out in

ComServer ... 51

Figure 46: Measuring performance of receiving and decoding program 52

Figure 47: Sending process flow.. 54

vii

List of Tables

Table 1: Comparison of sensor access solutions .. 15

Table 2: HP iPAQ Pocket PC h5500 specifications ... 18

Table 3: Definitions of 6LoWPAN sensor message components 25

Table 4: Measuring the performance of the ComServer 52

Table 5: Measuring the performance of the receiving and decoding program 53

viii

List of Abbreviations and Acronyms

6LoWPAN IPv6 over Low power Wireless Personal Area Network

CSMA-CA Carrier Sense Multiple Access with Collision Avoidance

FCS Frame Check Sequence

FFD Full Function Device

GPIO General Purpose Input Output

GTS Guaranteed Time Slot

HTTP Hypertext Transfer Protocol

IETF Internet Engineering Task Force

M2M Machine to Machine

MAC Medium Access Control

Mime Multipurpose Internet Mail Extensions

PHY Physical Layer

RFD Reduced Function Device

REST Representational State Transfer

RPC Remote Procedure Call

RPL Routing Protocol for Low Power and Lossy Networks

SOAP Simple Object Access Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UART Universal Asynchronous Receiver-Transmitter

UDP User Datagram Protocol

URL Uniform Resource Locator

URI Uniform Resource Identifier

WADL Web Application Description Language

WLAN Wireless Local Area Network

WPAN Wireless Personal Area Network

WSDL Web Services Description Language

1

1 Introduction

Today a combination of wired and wireless networks reaches nearly every place in

the world. Additionally, wide area wireless networks have become popular all over the

world. Personal area networks, especially wireless personal area networks, are an

important area both commercially and as a research area. Such personal area networks

are used for monitoring and controlling devices within a very local area. In addition to

these personal networks which are used for interconnecting sensors on different parts of

the body, in clothing, etc. wireless networks with somewhat longer range links are used

for sensor systems include those in: healthcare centers, intelligent buildings, smart

houses, and so on. In these systems, sensors are used to sense something in their

environment and actuators are used to execute the commands of the system‟s owners

(for example, to close a blind when there is too much sun coming into a room during a

presentation). Facilitating access and control of these sensors and actuators is a key

issue in these systems. One possibility is to create a web service for these sensors and

actuators. Such a web service could be used by a user to view the information collected

by sensors and to control actuators. Such a web service could provide tasks to collect

data from many sensors and automatically control one or more actuators; for example,

the user might set a desired temperature range, then the software would automatically

adjusting the flow of air and heat to maintain the temperature at these sensors within

this temperature range. The goal of this thesis project is to identify the basic parts of

such a web service for a collection of sensors that are connected to the Internet via one

or more gateways. For the remainder of this thesis we will assume that the 6LoWPAN

(IPv6 over low power wireless personal networks) protocol is used to communication

with these sensors and actuators.

A generic network diagram of the integrated sets of sensors and actuators together

with their web service is shown in figure 1. This network diagram shows a (set of)

personal area networks (PANs), Wireless Local Area Networks (W LANs), a wired

intranet, and internet. A PAN interconnects sensors and actuators to a PAN gateway,

thus the sensors and actuators connect to other networks through this PAN gateway. We

assume that the WLAN is in turn connected to the intranet and internet by a switch or a

router. As a result the sensors and actuators can be accessed (indirectly through the web

service or directly) from a host connected to the internet or locally though the WLAN.

Due to the potentially very large numbers of sensors and actuators, if these devices are

to each be directly accessible to a host on the Internet, then it is essential that these

devices utilize IPv6. Note that for policy reasons a given sensor or actuator might only

be reachable from some specific Internet hosts or intranet hosts. Thus we separate the

potential for communication (enabled by IPv6's addressability) from the ability to

communicate (controlled by policy).

2

Figure 1: PAN, WLAN, and wired networks for sensing and control via a web service

Traditionally, a host with a specific program is used to control sensors and

actuators. This program receives and processes the data from sensors and sends

commands to actuators. This host can be placed in the same network as the sensors and

actuators or it can be placed elsewhere, more generally this host could be connected via

the internet. This approach of directly communicating with the sensors and actuators is

a very efficient method to control sensors and actuators. However, there are limitations

of this method. There are problems in scalability, mobility, and flexibility. One of the

issues of scalability is the communications traffic between this host and all of the

sensors and actuators - as IPv4 simply cannot address the numbers of devices that will

be needed, this is addressed by utilizing IPv6. The host that is utilizing these sensors

and actuators may change its point of network attachment; for example, due to the

user's movement or to different users being responsible for the operation of these

sensors and actuators at different times. Thus a solution should support mobile users

and multiple users. With regard to flexibility, when using a single application if there

are several different types of sensors and actuators, then the user(s) have to install

multiple programs to control all of these sensors and actuators or these applications

need to support plug-ins to dynamically extend the application to support new types of

sensors and actuators. For these reasons, adopting a flexible and preferably

standardized sensing and control methodology is very important. In later sections we

will discuss the standards that we have considered.

Web services have had a huge success, especially in enterprise Machine to

Machine (M2M) internet systems. Almost all internet users use one or more web

services. Thus combining the concept of a web service with sensors and actuators

3

would result in a system that is readily accepted by users. Using a web service to

control sensors and actuators is also more flexible than using fixed purpose

applications. Using a web service, users can use their web browser to view and

control sensors and actuators. Note that this approach enables IPv4 communication

between the web browser and web server, while the web server(s) communicate via

IPv6 with the sensors and actuators. Therefore this approach offers great flexibility to

users and brings the benefits of sensors and actuators to a larger audience quickly (as

it does not require IPv6 communication to be implemented and available in every

user's device and all intermediate networks).

Although a combination of web services and sensors and actuators is a good

solution, problems still remain. Many technologies have been developed to solve

these problems. This thesis begins by providing some background information

concerning typical web services, then focuses on the specific problems of web

services for sensors and actuators. The thesis also provides relevant background

information about the other technologies used for solving the remaining problems. I

designed a web service based on these web service methods and the traditional control

method. In addition to this web service, this project also developed a program that

simulates fixed sensors and a mobile device with a sensor board (as integrating a

sensor with a mobile device is another research aspect of this thesis), thus emulating a

mobile sensor that communicates with the web server. The actual interfacing of a

sensor to a mobile device (in this case a HP iPAQ personal data appliance) was done

by Pontus Olvebrink in another project[1]. Further details of this are given in section

3.3.

My web server consists of two parts: (1) a receiving and decoding program for

data from a sensor or actuator and (2) a web server that implements services for

sensors and actuators. Processing begins when packets are received from sensors or

actuators. The receiving and decoding program receives and decodes datagram

contains application layer messages from the device. The server saves relevant

information into a database. For this thesis project we have used a Microsoft SQL

server 2005 database[2]. Subsequently the web server reads information from the

database and generates suitable web pages. The user can control the sensors and

actuators via the web server by using these web pages as their user interface to the

sensors and actuators.

The structure of thesis is as follows: chapter 2 introduces the background

necessary to understand the rest of this thesis. Chapter 3 presents a study and research

about a sensor board. Chapter 4 describes the software implementation done during

this thesis project. Chapter 5 presents the results, measurements collected during the

project, and an evaluation of this data. The last chapter presents some conclusions and

suggests future work.

4

2 Background

This chapter introduces the concepts needed to understand this thesis. This chapter

gives an overview of the different technologies used during this thesis project.

2.1 Problems statement

As mentioned in chapter 1, a web service is a means to flexibly access sensors

and actuators. However, problems still remain, especially for the sensors and actuators

which are based on IPv6 over Low Power Wireless Personal Area Network

(6LoWPAN) protocol[3] (see section 2.2). The first problem is that all web services

are based on reliable session transport protocols, such as TCP[4], however 6LoWPAN

uses UDP[5]. Another problem is 6LoWPAN emphasizes low power consumption by

the sensor nodes. This is necessary because the sensors and actuators have to conserve

power, as they are frequently battery operated. As a result the sensors and actuators

typically use small packets size to transfer data in order to reduce their power

consumption. As a result the size of these packets is very small; in fact, the size is

only 127 bytes for a 6LoWPAN packet. These two problems limit the direct

integration of web services with 6LoWPAN sensors and actuators. The thesis clearly

describes these two problems in sections 2.2 and 2.3. In the section 2.3, the thesis

introduces some solutions to solve these problems.

Another research area examined in this project concerns the mobility of sensors.

Sensing technology and wireless and mobile communication technologies are

becoming increasingly popular. An important trend is the merger of sensing and

wireless communication technologies. Therefore, we have already also researched

how to integrate a sensor with a mobile device. (Note in this research, the mobile

device is a HP iPAQ Pocket PC h 5500 series personal digital appliance.) Because the

sensor can connect to the web service via the wireless network of the attached mobile

device, such an integrated sensor can combine web service, sensing technology, and

wireless and mobile technology together to realize one or more applications. The

result is a combination that can provide additional functions to web users, the sensor‟s

users, or other types of users.

2.2 6LoWPAN protocol

IPv6 over low power wireless personal area network (6LoWPAN) is a set of

standards defined by the Internet Engineering Task Force (IETF) (in RFC4919 [[6]],

RFC4944[7]). The 6LoWPAN protocol was created to facilitate IPv6 communication

5

by embedded Internet devices. The majority of such embedded Internet devices raise

challenges such as following:

1. Power and duty-cycle problem: a battery-powered wireless device needs to

utilize low duty cycles in order to operate for as long a lifetime as possible.

2. Lack of Multicast: Wireless embedded radio technologies such as IEEE

802.15.4, do not typically support multicast.

3. Limited bandwidth and frame size problems: Low power wireless embedded

devices typically have limited bandwidths, thus in order to minimize their

power consumption they utilize a small data frame size.

Figure 2 shows a comparison between the IPv6 protocol stack with 6LoWPAN

and a typical IP protocol stack. 6LoWPAN can be viewed as a part of the data link

layer. 6LoWPAN cooperates with and can operate over the IEEE 802.15.4 protocol.

IEEE 802.15.4 defines both a physical layer and medium access control sub layer. The

IEEE 802.15.4 standard will be introduced in next section.

Figure 2: IP protocol stack and 6LoWPAN protocol stack

The most important feature of 6LoWPAN is that its maximum data frame size is

only 127 bytes, thus it is much smaller than the IPv6 maximum transmission unit of

1280 bytes in common case (The jumbo packet length can be larger than 1500 bytes,

but less than 9000 bytes). The small frame size reduces power consumption, thus

saves battery-power. 6LoWPAN‟s features also include:

1. Support for both 64-bit and 16-bit IEEE 802.15.4 addressing

2. Useful with low-power link layers such as IEEE 802.15.4, narrowband ISM,

and power-line communications

3. Efficient header compression of IPv6 base and extension headers, and UDP

header

6

4. Network auto configuration using neighbor discovery

5. Unicast, multicast, and broadcast support, multicast packets are compressed

and mapped to broadcast packets

6. Support for IP routing (e.g. IETF Routing Protocol for Low Power and

Lossy Networks (RPL) [8])

7. Support of a link-layer mesh (e.g. IEEE 802.15.5[9])

2.2.1 IEEE 802.15.4

The first version of the IEEE 802.15.4[10] standard was released in January 2003

by the IEEE 802.15 task group 4. This standard defined a protocol by which

compatible wireless devices could communicate by using low-data-rate, low power,

and short-range radio frequency transmissions in a wireless personal area network

(WPAN). The IEEE 802.15.4 standard focuses on WPAN. A WPAN differs from a

WLAN in that the range of communication links with a WPAN are typically shorter

than the maximum ranges of a WLAN and the maximum data rates of a WPAN are

much lower than the maximum data rates of a WLAN. The IEEE 802.15.4 standard is

optimized for the case of small, power-efficient, and inexpensive solutions.

The standard defines both a physical layer and medium access control (MAC) sub

layer for low-data rate wireless connectivity with fixed, portable, and moving devices

with no battery or very limited battery consumption requirements. The typical range

of an IEEE 802.15.4 device is 10 meters. The IEEE 802.15.4 standard uses carrier

sense multiple access with collision avoidance (CSMA-CA) as the medium access

mechanism. Details of the various physical layers are outside the scope of this thesis.

Note that IEEE 802.15.4 includes two device types: full function device (FFD)

and reduced function device (RFD). The FFD can operate in three modes serving as a

PAN coordinator, coordinator, or an end device. Because such a device can support all

three modes and all IEEE 802.15.4 functions, it is called a full function device. A

RFD is intended for extremely simple applications such as a light switch or

temperature sensor. RFDs do not need to send a large amount of data. FFDs can talks

to RFDs or other FFDs. However, a RFD can talk only to FFD. Additionally a RFD

may only associate with a single FFD at a time.

IEEE 802.15.4 defines 4 types of frames. These four types are: Beacon, Data,

ACK, and MAC.

1. A beacon frame is used by a coordinator to transmit beacons

2. A data frame is used for all transfers of data

3. An acknowledgment (ACK) frame is used for confirming successful frame

reception

4. A MAC command frame is used for handling all MAC peer entity control

7

transfers

2.2.2 6LoWPAN compression

The maximum 6LoWPAN frame size is 127 octets (IEEE 802.15.4 defines the

frame size. This is a key limitation of the 6LoWPAN protocol) as 25 octets are

necessary for the MAC headers. Additionally, there is an optional, but highly

recommended for link layer security overhead, for example AES-CCM-128 [11] that

would add 21 octets of overhead. This means if we apply such a security method, only

81 octets are available for the higher layers in a single IEEE 802.15.4 frame. Because

6LoWPAN uses IPv6, the IPv6 header requires at least 40 octets. The UDP protocol

adds 8 octets of header. Finally, in the common case (without any security

application), 53 octets are left for carrying the data. This is shown in figure 3 (note:

the MAC header includes 21 octets of MAC header and 4 octets of frame check

sequence, the L field is an 8 bit dispatch value). If we apply AES-CCM-128

encryption, then we only have 32 octets to carry the actual data. Due to the overhead

of all these headers, performing header compression is compelling for 6LoWPAN.

While header compression is desirable and even feasible in many cases, it is not

required.

Figure 3: Basic format of 6LoWPAN packet

After header compression, the available payload can be 108 octets as shown in

figure 4. However, this header compression can only be used inside a 6LoWPAN

network. If the sensors send a packet to an external host, the PAN gateway of

6LoWPAN will expand this compressed packet to an uncompressed packet since the

external host will not have sufficient information to understand the compressed

header (another reason is that in order for the packet to reach an external host it will

likely have to be forwarded by routers; these routers will also lack the information

necessary to understand the compressed header).

8

Figure 4: The minimal/compression format

 The process of 6LoWPAN header compression is very complex. The thesis just

briefly introduces the basic idea of 6LoWPAN header compression. The idea of

6LoWPAN header compression is that 6LoWPAN elides the commonly used fields as

much as possible. For example, the header compression of IPv6 header field, the

6LoWPAN compresses the 64 bit network prefix for both source and destination

addresses to one bit each when they carry the well-know link-local prefix. 6LoWPAN

compresses the Next Header field to two bits when the packet uses UDP, or ICMP.

6LoWPAN also use the same approach to process the other header fields.

2.3 Typical web services for sensors and actuators

Today a typical web service is built upon the HTTP protocol. HTTP uses a

reliable transport protocol such as TCP or SCTP as its transport protocol. In this thesis

we assume the use of HTTP over TCP. Note that Transport Layer Security (TLS) can

be used in conjunction with TCP to provide end-to-end security between the user's

web browser and the web server. There two main types of web services: service-based

web services (simple object access protocol (SOAP) model) [12] and resource-based

web services (representational state transfer (REST) model)[13].

Service-based web services use XML following the SOAP format to implement

remote procedure-calls (RPCs) between clients and (SOAP) servers. The web services

description language (WSDL) [14] is used to describe the SOAP message. This model

is popular for enterprise machine to machine systems. A SOAP interface (a Universal

Resource Locator, URL) consists of a SOAP Uniform Resource Identifier (URI) that

implements several RPCs (also called methods). An example of a SOAP URI is:

http://sensor.com/test. This URI‟s methods could include:

getSensorStatus(sensorID)
getSensorValue(sensorID)
setConfig(parameter,value)

In this example the web server supporting http://sensor.com/test implements the

three methods shown above. As a result the browser user can get the sensor‟s status or

http://sensor.com/test
http://sensor.com/test

9

value via this SOAP URI. Additionally, the browser user could set the value of a

configuration parameter associated with this sensor.

In contrast to SOAP, the REST paradigm models objects as HTTP resources (a

good analogy is a noun), each with a URL accessible using standard HTTP methods.

The web application description language (WADL) [15] is used to describe REST.

The REST model is normally used on the internet between websites (it is also used to

provide dynamic web pages). The content of REST HTTP messages can be any

Multipurpose Internet Mail Extensions (MIME) [16] content, although XML is

common in machine to machine applications. Two examples are:

http://sensor.com/sensors/value
http://sesnor.com/sensors/sleeptime

In the REST model, the GET function is used on all resources to request the value,

and the POST function is used to set the value. Figure 5 shows the structure of web

services.

Figure 5: The structure of web services

As mentioned previously, in the SOAP model a URL defines a service (URI +

method). SOAP uses XML to encode its header and body. In contrast, in the REST

model, GET with a URL is used to access the resource. REST designs make use of

well-know XML.

10

Using the above information, we can define a web services for sensors and

actuators with 6LoWPAN.

The size of XML payload is large because XML has to describe the URI, the

methods, and so on. An example of XML is:

POST /sensorwebserver HTTP/1.1

Host: webserver.sensor.com

Content-Type: application/soap+xml; charset=utf-8

Content-Length: 454

<?xml version=”1.0”?>

<soap:Envelope

xmlns:soap=”http://www.ws.org/2001/12/soap-envelope”

soap: encodingSytle=”http://www.ws.org/2001/12sopa-encoding”>

<soap:Body xmlns:m=”http://www.sensor.com/sopa.wsdl”>

 <m:GetSensor>

 <m:SensorID>0x1a</m:SensorID>

 </m:GetSensor>

</soap:Body>

</soap:Envelope>

Even this short example requires 454 bytes. However, in 6LoWPAN, the

maximum size of a packet is 127 bytes. This means this XML message would require

several fragments to transmit. To solve this problem, there are two approaches: a

gateway approach and a compression approach (see next sections).

2.3.1 Gateway approach

In the gateway approach, a web service gateway is implemented at the edge of the

6LoWPAN. This gateway looks like a traditional host to hosts in the rest of the

Internet. However, a proprietary protocol can be used between the gateway (which

might be located at the web server) and the sensors and actuators. The gateway

converts the content and control messages of these devices into a standard format. If

the gateway is located at the web server the gateway could directly generate web

pages. This gateway approach is widely used with non-IP wireless embedded network

protocols, such as ZigBee[17]. One drawback of this approach is that a proprietary

protocol is needed between the sensors and the gateway. This creates scalability and

flexibility problems. There may be problems when a new type of sensor is added,

since the existing gateways might not have support for this kind of sensor - again

http://www.ws.org/2001/12/soap-envelope

11

requiring an upgrade of the affected gateways. Figure 6 shows this gateway approach.

The sensors communicate with the wireless gateway. The gateway enables these

sensors to indirectly communicate with a web server.

Figure 6: A diagram of web service gateway

2.3.2 Compression approach

In the compression approach, the web service format and protocols are

compressed to a size suitable for using over 6LoWPAN. There are two alternative

approaches: an end-to-end approach and a proxy approach. In the end-to-end

approach, the compression/decompression happens in both server and client. In the

proxy approach an intermediate node performs the compression/decompression

transparently, thus the clients and servers can use standard web services protocols.

Several technologies and standards exist for performing XML compression. Two of

the most common are:

1. The WAP Binary XML (WBXML) [18]

2. Binary XML (BXML) [19]

In 2006, the W3C proposed standardization of the efficient XML interchange

(EXI) format, which implements a compact binary encoding of XML[20]. In March

2011, the “Efficient XML interchange (EXI) Format 1.0” was released.

The compression approach does not require extra equipment, but requires that the

12

sensors and the server support the selected compression method. This means we there

must be a compatible compression algorithm in the sensor and web server. However,

this compression software might be a burden for the sensors, because the sensors

(especially 6LoWPAN sensors) are designed to have low power consumption and the

compression can require lots of computation. Another problem occurs on the server

side, where the compression software is also needed. This approach is not flexible,

since if we want to add a new server for the sensors, then we have to make sure that it

implements all of the compression algorithms that have be used by the sensors.

2.3.3 Solution for HTTP and TCP

As mentioned in section 2.1, another problem of 6LoWPAN sensors is that all

web services are based on a reliable session transport protocol, such as TCP, however

6LoWPAN uses UDP. The reason for using UDP in 6LoWPAN is that a

request-response protocol such as HTTP would require that battery-operated, that

wants to spend most of their time sleeping, be listening for requests. This

incompatibility limits the direct integration of web services with 6LoWPAN sensors

and actuators. Moreover, the gateway and compression approaches do not solve the

HTTP and TCP problem. Hence we must recognize that HTTP and TCP are not

suitable for use over 6LoWPAN. An alternative approach is illustrated by Sensinode's

Nano Web Services (NanoWS) [21] that applies XML compression together with an

efficient binary transfer protocol over UDP. This solution has been specifically

designed by Sensinode for 6LoWPAN. An ideal long-term solution will be the

standardization of a combination of XML (such as OpenGIS Sensor Model Language

Encoding Standard (SensorML)[22]) with a binary encoding bound to a suitable

UDP-based protocol.

2.4 Problem solutions

Considering the above problems, we designed a new architecture to provide web

server for sensors and actuators. A network diagram is shown in figure 7. In this

diagram, the sensors connect to the PAN gateway, and the gateway connects to a

switch or router. The switch connects to a local area network and finally interconnects

to an internet. As a result of this architecture we can put the web server anywhere. The

only requirement is that if users outside of the intranet are going to access these web

services, then the web server needs to have a connect to the internet. In order for the

sensors to communicate with the web server the sensors send UDP datagrams to

software running at the web server. This architecture is very simple. We do not need

any extra equipment other than the PAN gateway which we assume will implement all

of the gateway functions between the 6LoWPAN devices and the internet. We use

UDP datagrams between the sensors and gateway; as this suits the case for 6LoWPAN

13

sensors since they use UDP. This architecture follows the gateway approach and

locates the gateway at the PAN gateway. The web server can be located anywhere in

the internet. Only one problem remains: how do the sensor and web server understand

the content of datagrams that they will exchange? As the web server utilizes HTTP

over TCP protocol it cannot process these sensor‟s UDP datagrams directly. In

sections 2.3.2 and 2.3.3 we described several potential approaches. In our solution, we

added a receiving and decoding program at the web server. This program processes

the datagrams come from sensors and provides this information to the web server.

This is similar to the compression approach, but rather than simply performing

decompression this code can support a more general transformation from the received

datagram to the format that will be used within the web service. Therefore, we need to

install specific software in the web server to transform the messages from each

different type of senor to the internal format used by the web service. However, this

approach has the advantage that we do not need to make any changes in sensors.

Unfortunately, this requires conversion software for each different type of sensor -

which may be specific to the web service. This suggests that in the longer term that

this software should probably output a standard format XML encoded message

corresponding to each sensor's message - then only one type of software is needed per

web service to convert this format into the internal format used by the specific web

service.

Figure 7: Architecture of the problem solution

14

As was stated in section 2.1, we also researched how to integrate a senor with a

mobile device. We investigated this integration since we would like to enable the web

service to utilize such movable sensors. Following the model used above this requires

that we write a receiving and decoding program to take the sensor messages from

these mobile devices and transform these messages into the internal format used by

the web service. Thus our receiving and decoding program should also process these

datagrams. In the figure 7, the movable sensors act like other sensors, but they can

directly generate UDP over IPv6 packets (i.e., they do not have to be concerned with

6LoWPAN). The mobile device with sensor(s) can connect to the internet via WLAN

or a wide area wireless network. Note that this software to emit sensors values in UDP

over IPv6 packets can also be used to emulate 6LoWPAN sensors. This traffic can be

used to test the web server, both for functional correctness and to understand how the

server will perform given a specific load of sensor reports. In general, the project

consists of three parts: (1) web server; (2) fixed sensors; and (3) movable sensors.

The thesis also compares the existing solutions and our project solution to see the

advantages and disadvantages of these solutions. The comparison result is shown in

table 1.

15

Table 1: Comparison of sensor access solutions

 Traditional

access solution

Gateway

approach

Compression

approach

The solution

of this thesis

Access

approach

Users use a

specific host

to access

sensors

Users access

the web

service

gateway and

get sensor

information

from web

service

gateway

Users access

the web

service and get

sensor

information

from web

service

Users access

the web

service and

get sensor

information

from web

service

Requirements

for service

A specific

program is

needed for

host.

A specific

protocol

A compression

method

A receiving

and decoding

program

Requirements

for sensors

None A specific

protocol

A compression

method

None

Requirements

for users

A specific host Web Brower Web Brower Web Brower

Communication

between

sensors and

server

Based on the

specific

program

Based on the

specific

protocol

Based on TCP Based on

UDP

Extension for

new type sensor

Require the

specific

program to

change the

configuration

for new type

sensors

Require the

new sensor to

apply the

specific

protocol

Require the

new sensor to

apply the

compression

method

Require the

receiving and

decoding

program to

change the

configuration

2.5 Protocols in project

In this project, we have used UDP between the sensors and web server and have

used HTTP and TCP protocol between the web server and web browser users.

6LoWPAN is used within the PAN network. As 6LoWPAN was described earlier in

section 2.2, here we briefly introduce the other protocols.

16

2.5.1 UDP

UDP is a core part of the Internet Protocol Suite. It is a connectionless and

unreliable transport layer protocol. UDP does not use handshaking; hence it does not

by itself provide any reliability. UDP also does not implement flow or error control.

UDP uses port numbers to multiplex and demultiplex data from the application layer.

2.5.2 TCP

The Transmission Control Protocol is a stream connection oriented and reliable

transport protocol. TCP provides handshaking, flow control, and error control. These

features are very well suited for transporting HTTP (see next subsection).

2.5.3 HTTP

The Hypertext Transfer Protocol (HTTP) [23] is an application level protocol for

distributed, collaborative, hypermedia information. It is a request and response (also

called client – server) protocol. A client sends a request to the server in the form of a

request method, URI, and protocol version. The server responds with a status line

including the message protocol version and a success or error code, potentially

followed by data. This protocol is very popular as it is widely used by web browser

users to view web pages.

2.6 Programming languages and tools

The thesis project involves a web server, movable sensors, and fixed sensors. In

addition to the web server itself, on the web server side, we have developed a

receiving and decoding program for the UDP messages from the sensors. This

program was written using Java[24]. The programming language used is independent

of the requirements of this program (beyond the fact that the programming language

must be able to deal with UDP datagrams and XML), hence I simply choose my

favorite programming language. The web server self was designed using the ASP.net

[25]programming language. ASP.net was selected as it is a very popular programming

language to develop a web site. The fixed sensors were being developed in another

project at KTH (see [29]). However, these fixed sensors were not yet ready when I

started this project. Therefore, I have written an application to simulate the fixed

sensors. This simulator was written using C programming to facilitate it being

combined with the code currently being developed for the 6LoWPAN gateway (see the

thesis by Luis Maqueda Ara[26]). For the movable sensors, the sensors connect to the

17

mobile device via a serial interface, thus we developed a program that runs in the

mobile device to read data from sensors via the serial interface and sends the sensor‟s

value to the web server via UDP. This program was written using C # programming

since the mobile device used in this project was a HP pocket PC. This HP pocket PC

runs under Windows pocket 2003 operating system. C# and the Windows pocket 2003

OS were both developed by Microsoft.

To facilitate our development in these above programming languages, we have

used the following tools:

1. Netbeans 6.9 for Java programming and

2. Microsoft Visual Studio for C, C #, and ASP.net programming.

In addition to the above components, we also need a database. In this project, we

used Microsoft‟s SQL server 2005. To provide the web service we used Microsoft‟s

Internet Information Service (IIS). IIS provides the run-environment for the web

server.

2.7 Equipment utilized in this thesis project

We used a workstation as the web server, a mobile device, and some sensors in

this project. The workstation was a common personal computer (specifically a Dell™

Studio XPS™ 1640 laptop with an Intel Core Duo P8600 CPU running at 2.4 GHz,

with 4.0 GB of memory and a 100 Mbps Ethernet interface). Chapter three describes

the sensors used in more detail. Therefore this section introduces only the mobile

device.

A HP iPAQ Pocket PC h5500 PDA was used in this project. A picture of this device is

shown in figure 8. This HP PDA runs Microsoft‟s Windows Pocket 2003 operating

system. The iPAQ 5550 has a build-in Bluetooth interface and a build-in IEEE

802.11b WLAN interface. The Bluetooth interface can be used to connect to

additional devices. The WLAN interface can detect nearby WLAN access points and

be used for high speed wireless networking. The WLAN antenna is inside a

rubberized bump on the top. These two wireless interfaces enable the HP iPAQ to

access the internet via access points. This version of the HP iPAQ does not have a 3
rd

generation (3G) mobile network interface. However, this does not affect the results of

the project as today there is little difference (from the point of maximum throughput)

between a WLAN and a 3G network connection. The HP iPAQ has a function called

“Automatically connect to non-preferred networks”. This function will associate the

HP iPAQ with at an access point, if there is at least one access point in the

surrounding area.

18

Figure 8: HP iPAQ Pocket PC h550

The HP iPAQ also has a serial communication interface. This interface is used to

connect to the sensors that were used in this project. Details of how the serial

communication works are given in chapter 3. Table 2 presents the specifications of the

HP iPAQ.

Table 2: HP iPAQ Pocket PC h5500 specifications

Processor Intel XScale 400 MHz

Random Access Memory (RAM) 128MB SDRAM

Operating system Microsoft Windows Pocket PC 2003

Read Only Memory (ROM) 48 MB ROM

SDIO slot SD memory and SDIO card support

Expansion PC Card with backup battery

Display 240 x 320 pixels, 64K-color support, TFT

Weight 206.8 g (without Expansion Pack)

Battery Lithium Ion Polymer rechargeable. 1250mA

Networking Wi-Fi 802.11b and Bluetooth

19

3 Sensor board

Sensing technology is widely used in many fields such as industrial monitoring

systems, home and building automation, healthcare, defense, and real time

environmental monitoring and forecasting. Today sensing is also becoming widely

used in personal area networks, for instance, for personal health and fitness

monitoring. Sensing technology has greatly improved in recent years in terms of

physical size and weight, power consumption, reliability, cost, functionality, etc.

Today a majority of sensors are wireless. These sensors use a wireless link to connect

to each other, to a control host, or via a gateway to remote computers. A wide variety

of sensors are used, for instance, a temperature sensor can be used to detect the

temperature of the environment and the humidity sensor to measure the level of

humidity. In addition to these types of sensors, many other sensors capable of

measuring acceleration, light, magnetic field strength, pressure, and so on are being

used in an increasing variety of application. In this thesis project, we use a

temperature sensor embedded on a sensor board (a Wasa board). However, we do not

directly use the Wasa board. Instead we used two improved sensor boards (based on

the basic Wasa board design). This chapter introduces the WASA board and the two

improved sensor boards. The thesis briefly describes how these boards work, and how

they connect to the web server.

3.1 Wasa board

The Wasa board [27] is a growing family of open hardware and software

embedded controller boards that are intended to allow people to extend existing

computing platforms by adding sensors, radios, or other embedded control

functionality with few constraints. The first Wasa board was designed by Professor

Mark T. Smith of KTH. The Wasa board has some on-board sensors (for temperature

and light level) and a number of General Purpose Input Output (GPIO) ports to enable

students to easily add new sensors. The Wasa board uses a USB interface to emulate a

serial port to connect the board to a computer, since most current laptops do not have

a serial interface. Additionally, the USB interface also provides power to the board;

therefore an external power supply is not need. Figure 9 shows a picture of a Wasa

board.

20

Figure 9: Wasa board

To manually operate the Wasa board, we can use a terminal program to

communicate with the board via the USB interface. The Wasa board accepts and

interprets AT commands[28]. A program running on the board processes these special

AT commands that have been defined for this board.

3.2 6LoWPAN sensor board

The 6LoWPAN sensor board was designed by Joaquín Juan Toledo as part of his

master‟s thesis project[29]. Luis Maqueda Ara has utilized a version of this board

(without sensors) for his master‟s thesis project concerning creating a 6LoWPAN

gateway. This 6LoWPAN gateway project has realized a 6LoWPAN gateway that

connects 6LoWPAN sensors using IEEE 802.15.4 to the internet via an Ethernet

interface. The 6LoWPAN sensor board was developed based on Wasa board. However,

the new board adds a wireless interface (specifically IEEE 802.15.4) and uses the

6LoWPAN protocol to communicate with the gateway and adds a battery to provide

power. With both of these additions the 6LoWPAN sensor board does not need to be

connected to the power mains and can communicate its data via the wireless link. The

6LoWPAN sensor board retains the USB interface that can be used to load software

into the microcontroller and for debugging. In my thesis project, a program emulates

the 6LoWPAN sensor board since the 6LoWPAN sensor gateway project and sensors

boards were only being developed when my thesis project started. At this time there

are only a limited number of prototypes. However, the use of a simulator for the

sensor nodes does not affect the results since the simulator produces UDP datagrams

with data in the same data format as the 6LoWPAN sensors do (after being forwarded

by the gateway).

21

3.3 Low Power RS -232 sensor board

The Low Power RS-232 sensor board was built by Pontus Olvebrink in his thesis

project (see the board in figure 10). This Low Power RS-232 sensor board is also

based on Wasa board. The difference is that the Low Power RS-232 sensor board

connects via a RS-232 cable to a computer or a mobile device (in this case the HP

iPAQ). An innovation of this board is that the board and its sensors are power by the

RS-232 handshaking lines, thus the board gets its power from the attached computer.

This sensor board demonstrated that is feasible to equip such a mobile device with a

variety of sensors. In this section, the thesis introduces how the sensor board

communicates via the serial interface, what problems occurred when developing the

software to run on the HP iPAQ, and how to these problems were solved.

Figure 10: Low Power RS-232 sensor board

The Wasa board uses a Texas Instruments MSP430 [30] serial microcontroller.

This microcontroller supports two Universal Asynchronous Receiver-Transmitter

(UART) interfaces. Each UART interface has two pins: one pin is used to transmitter

output data and the other pin is used to receive input data. The USB interface of Wasa

board utilizes one UART interface to connect to the board to a computer. To connect

the microcontroller with a HP iPAQ we use the other UART interface. Although, the

HP iPAQ has both a USB interface and serial interface, we cannot use the USB

interface because it was designed to be connected to a USB bus master (unfortunately,

the HP iPAQ that we used only implements a USB slave interface). Additionally, the

slave USB interface of the HP iPAQ cannot provide power to the sensor board.

Therefore, we used the serial port of the HP iPAQ to connect to the second UART

interface of the Wasa board. This raises two issues: (1) we have to ensure that the HP

iPAQ has an ability to power the sensor board and (2) the signaling voltage of

22

MSP430 UART differs from the RS-232 signaling levels used by the HP iPAQ - hence

we need to convert the voltage levels to the appropriate levels for the interfaces of the

respective devices

3.3.1 Serial data exchange

RS-232 is a widely used serial communication standard. It uses voltages lower

than (-5v) and higher than (+5v) levels in such a way that (-5v or lower means a

logical 1 and +5v or greater means a logical 0). The logical representation is opposite

the sign of the voltage levels. However, the UART interface in MSP430

microcontroller uses the 5v to represent a (1) and 0v to represent a (0). Therefore, we

have to convert the voltages to the appropriate levels.

Several years earlier a KTH student, Alejanro Arcos clearly described this

problem and presented a solution in his thesis[31]. A MAXIM MAX3241 transceiver

[32] can do the voltage level shifting. The MAX3241 transceiver can run at 3.3 V (the

same voltage as the MSP 430 microcontroller). We connect the UART interface of the

MSP430 with the MAX3241 transceiver and some necessary capacitors such that

when the output signals of MSP430 chip go through the MAX3241 transceiver, the

voltage of the output signals will be shifting by MAX3241 transceiver from the

microcontroller‟s UART voltage level to a RS-232 voltage level for the HP iPAQ.

This final RS-232 output signal arrives at the HP iPAQ‟s RS-232 interface. Pontus

Olvebrink‟s Low Power RS-232 sensor board uses the same design idea to solve this

problem, although he used a MAX3188 transceiver. The different MAXIM

transceivers support different transmission rates. Pontus also provides for the

conversion from RS-232 levels to the voltage level used by the microcontroller's

UART interface for the reverse direction. Details can be found in Pontus' thesis [1].

3.3.2 Power of sensor board

Arcos also determined the ability of the HP iPAQ to provide the power to a sensor

board via the RS-232 handshaking lines. The Low Power RS-232 sensor board

obtains power from the RS-232 interface of the HP iPAQ - although Pontus Olvebrink

solves it using a different circuit design than that proposed by Alejanro Arcos. Details

can be found in Pontus' thesis. However, the result is that we can use the HP iPAQ to

power the sensor board via the RS-232 handshaking lines.

23

4 Software developed in this project

This chapter presents a description of all of the software developed in this thesis

project. The thesis describes the functionalities of each of the different programs and

how they fit into the complete design used in this thesis project. This chapter begins

with a requirements analysis. A result of this requirements analysis is a list of the

elementary functions that we have to implement.

4.1 Requirements analysis

The overall system architecture of this thesis project was shown in figure 7 in

section 2.4. From that figure we can see that: the data come from sensors (6LoWPAN

sensors or sensors connected to the HP iPAQ) and will later be presented to web

browser users via pages provided by an internet connected web server. Additionally,

the web browser user can use the web server to control the sensors. Based upon these

requirements we extract the basic functions listed below:

The 6LoWPAN sensor (or the program emulating the sensor):

1. The sensor should send data to web server.

2. The sensor should receive commands from web server, execute these

commands, and send the result to the web server.

The sensor connected with the HP iPAQ:

1. A program running on the HP iPAQ reads sensor values from sensor board

via the serial port.

2. This program sends the sensor data to the web server.

3. The program running on the HP iPAQ should receive commands from web

server, execute these commands, and send a reply to the web server.

4. The program running on the HP iPAQ must set up the serial interface

appropriately.

5. The program running on the HP iPAQ encapsulates and dencapsulates its

messages to the application running on the web server.

The web server:

1. A program is needed to receive sensor data from the above sources and save

this information in a database.

2. The web server should provide a page to enable users to register via their

web browser.

3. The web server should provide a login page to a web browser user

4. The web server should provide a search function to allow the web browser

24

user to search for a specific sensor‟s current information.

5. The web server should provide a search function to the web browser user to

enable them to search for a specific sensor‟s historical information, i.e., the

record of earlier sensor values and the time when each of these values were

stored in the database.

6. The web server should provide a means to send commands to enable the web

browser user to operate each specific sensor.

7. The web server should provide a logout function to enable a user to log out

from the web service.

Besides the above basic required functions, this thesis project also provides an

additional function that can download the sensor information history in an XML

formated file when the web browser is viewing historical sensor information. The

whole project was developed based on these requirements. Additional details will be

given in later sections.

4.2 Program to emulate a 6LoWPAN sensor

For testing purposes a C program was written to send simulated 6LoWPAN sensor

packets to a specific IP destination address and port. In my experiments I have used the

IP address 213.100.19.167 and UDP port 9999. Another UDP port could be configured

before the program runs. IPv4 was used because my experimental environment did

not support IPv6. However the actual 6LoWPAN sensor uses IPv6. This program runs

on a computer running the Linux operating system. The program was developed in C to

facilitate it being combined with the code currently being developed for the 6LoWPAN

gateway by Luis Maqueda Ara.

The program takes two arguments: a destination IP address and UDP port number.

The program sends UDP packets to this destination from a randomly allocated UDP

source port. Each UDP packet contains simulated 6LoWPAN sensor data.

As introduced in section 2.2.2, 6LoWPAN sensors can use a compressed header

format within the sensor network. However, if the packet is sent to an external host,

then the PAN gateway has to expand the compressed header producing an IP

datagram. In this thesis project, the web server is assumed to be located external to the

sensor network, thus when the web server receives packets from the 6LoWPAN

sensors, these packets are not compressed. For this reason the sensor emulator simply

sends a UDP datagram. Each of these UDP data contains less than 108 bytes of user

payload, to ensure that the emulated packet could have originated from an IEEE

802.15.4 equipped 6LoWPAN sensor node.

Luis Maqueda Ara has designed and implemented the software for the 6LoWPAN

25

gateway and Sergio Floriano Sanchez has designed and implemented the software for

the 6LoWPAN sensor board. Sergio Floriano Sanchez also defined the format of the

6LoWPAN packet used for this sensor board. Three packet formats are relevant here:

Query, Order, and Report.

1. A query command (QUERY) is sent to the sensor to request sensor

readings. It takes a variable number of parameters (0 to 4) specifying which

sensors readings are requested. For example, a QUERY command asking for

the temperature and battery readings would be as follows:

Figure 11: A Query command for both temperature and battery readings

For this command we send 057 in decimal, because in Sergio Toledo

Sanchez‟s program, he defines CMD_QUERY as 0, PARAM_TEMPERATURE

as 5, and PARAM_BATTERY as 7. The program running in the microcontroller

on the sensor board parses this command and performs the request operation.

Each of the commands and options has their own decimal code. Table 3 shows

some of these definitions of these components (further details can be found in

Sergio Floriano Sanchez's master‟s thesis[33]).

Table 3: Definitions of 6LoWPAN sensor message components

Name Definition

CMD_QUERY 0

CMD_ORDER 1

CMD_REPORT 2

ORDER_LED_ON 0

ORDER_LED_OFF 1

PARAM_LED_GREEN 1

PARAM_LED_YELLOW 2

PARAM_LED_RED 3

PARAM_LIGHT 4

PARAM_TEMPERATURE 5

PARAM_HUMIDITY 6

PARAM_BATTERY 7

Notice that because these encoding are used in different fields, the values used to

encode commands and parameters can reuse the same decimal values. The software

running on the actual 6LoWPAN sensor board parsers and processes all of these

messages. All of these definitions utilize a C char type, thus it is actually possible to

26

use characters other than '0' to '9' to encode commands and parameters.

2. An ORDER command works in a similar way, but it specifies the order in

which the sensor should perform the commands. An example to turn the

green light emitting diode (LED) is shown in Figure 12.

Figure 12: An Order command to turn on the board’s green LED

3. A report message is used to report the values of sensor reading. This is

used to reply to the Query command.

Figure 13: A generic report message example

These three types of user payload packet formats are used in the communication

between the 6LoWPAN sensor board and web server. The program which emulates

the 6LoWPAN sensor board starts by generating a CMD_REPORT message and

sends it to the web server after processing processed the two arguments to the

program (the destination IP address and destination UDP port number). This initial

message is sent to inform the web server of the IP address and port number of the

emulated sensor. When the program receives a CMD_QUERY command, it generates

a simulated packet in reply. Notice that the third format “CMD_REPORT” can carry a

maximum of 4 sensor readings. These four values have the same length (2 binary

bytes). Therefore, the receiving and decoding program running on the web server side

process each 2 byte binary value by (encoding and decoding these two bytes as four

hexadecimal digits in little endian order. Note that the MSP430 microcontroller uses

little endian order).

4.3 ComServer program running on the HP iPAQ

We call the program which runs on the HP iPAQ ComServer. The “com”

indicates the serial port for serial communication, as we have used the serial port to

connect the HP iPAQ and sensor board. This program reads sensor values from the

Low Power RS-232 sensor board via the serial interface. This program also responds

to requests for data from the web server and can order the sensor board to perform

various operations based upon commands from the web server. The ComServer

27

program acts as a bridge connecting the sensor and the web server. This program

was written in the C# programming language.

ComServer is more complex than the program that emulates a 6LoWPAN

sensor because the ComServer program has to perform additional processing.

First, the ComServer utilizes a graphical interface to enable the user to setup the

serial communication and to enter the UDP port number and IP address of the

program running on the web server. The serial communication configuration

includes the serial port number, baud rate, number of data bits, parity, number of

stop bits, and what form of flow control (if any) will be used. Figure 14 shows

the graphic interface used to enter these settings.

Figure 14: Serial port setting and UDP setting

In the serial port setting area, the SerialPort (pull down) field is used to set the

serial port number. The program automatically checks for the serial ports of the device

and shows the available port numbers in a menu list. If there is no available port, then

a message will be displayed in the message box as shown in figure 15. The default

number of data bits is 8. The default baud rate is 9600 baud. The number of stop bits

is one. By default there is no flow control. For the Low Power RS-232 sensor board,

we use the default settings except for the baud rate, the required baud rate for the Low

Power RS-232 sensor board is 115200 baud. Notice when you have changed the serial

port‟s settings you have to close the current serial connection and re-open the serial

interface, otherwise the new settings will not be applied.

Figure 15: A status message indicating that there is no available serial port

When the sensor board is connected, the program will show messages in a status

area as shown in figure 16.

28

Figure 16: The ComServer status message indicating that the Com4 serial port is openned

The UDP setting is very simple. Simply input the IP address of web server and

destination UDP port number in the associated fields, and then click the “set” button.

Next we can choose a sensor command to execute. In the ComServer, the

program only defines two sensor commands (as examples). The first command

checks the connection status of the sensor board. The second command reads sensor

values from the sensor board (in our experiments the program reads the temperature

sensor‟s values).

Figure 17: ComServer sensor commands

Because the Low Power RS-232 sensor board is based on the Wasa board it uses

the same AT commands as same as the Wasa board. Thus the “status check” to check

the connection status of sensor board simply sends the string AT<CR> (where <CR>

is an abbreviation for the carriage return). If the connection is working, then the

sensor board will reply “OK”. If something is wrong with the connection, the program

will either receive a reply message saying “ERROR” or the program will not get any

response. To handle the last case we need to implement a timeout - so that after some

period of time the program can know that the sensor board is not responding (for

example if the sensor board is not plugged in). The “get sensor value” button is used

to read the temperature sensor‟s value. The ComServer sends a command to a specific

register (S- register 200, this logical register is used to operate the temperature sensor

on the board). The resulting command to read the temperature sensor is:

ATS200?<CR>.

Notice that all AT commands must begins with “AT”. “S200” is the S-register

number of MSP 430 microcontroller and a question mark is used to indicate a read

request. Thus “S200?” means read the value of S-register 200. The reply to this

command is: <CR><LF>DATA<CR><LF> <CR><LF>OK<CR><LF>.

Where <LF> is an abbreviation for „line feed‟ and <CR> is an abbreviation for

„carriage return‟; while DATA is a four digit hexadecimal value encoding the

measured temperature from the temperature sensor. The final OK says that the

29

command completed without error.

Now that we have verified that all of the serial port settings are correct, we can

click the start button to run the ComServer program, causing the program to enter a

loop processing commands from the program running on the web server. The output

from the program is displayed in the status information box (as shown in Figure 18).

Figure 18: ComServer status information box

When the ComServer program starts, the program creates two threads one to

process commands sent by the web server and the other to process commands via the

graphical user interface.

1. Thread 1 opens a UDP connection; and listens to this UDP connection for

command packets from the web server. If a command is received from the

web server, then the thread executes this command and sends a reply to web

server. (We assume for our tests that the command from the web server will

be to read the temperature value from the sensor board.). The thread

continues to listen to the UDP connection until a command comes or the

program is terminated.

2. Thread 2 first checks what kind of command was made via the graphical

user interface. If the user chooses “status check”, then the thread will execute

this command once and show the result OK or ERROR in the status

information box. After this the thread will be terminated. If the “get sensor

value” command is chosen by user, then the thread will periodically execute

the command (ATS200?). If the program successfully reads the sensor value,

then the program will send this sensor value to the web server via a UDP

packet. This assumes that the destination UDP port number and IP were

successfully configured via the graphical user interface. In this case the

program will continue to periodically get the temperature and send a UDP

datagram with the latest value to the program running at the web server until

the user terminates the ComServer program.

In our experiments we have used two different types of sensor sources. For this

reason the receiving and decoding program running at the web server has to determine

the format of the sensor packet which it receives. Because we only have two different

30

packet formats we add a specific element “HP” before the DATA to indicate that this

data comes from the HP iPAQ. This format is shown in figure 19.

Figure 19: Data format of sensor coming from the HP iPAQ

4.4 Receiving and decoding program at the web server

The receiving and decoding program is written in Java. Java was selected because

it is widely used and is my favorite programming language. However, this program

could have been written in many other programming languages that supports receiving

and sending UDP datagram. There is no need for a graphic interface for the receiving

and decoding program. For the purposes of this project we have hardcoded the

receiving UDP port number in the program. We do this because this receiving and

decoding program will serve many clients and the UDP port number should be a fixed

value, otherwise the clients will not know what UDP port number to send packets to.

Note that this could be a well know port number, but I have not requested a port

number assignment from the Internet Assigned Number Authority. The program

receives and decodes packets sent by the sensors. As noted in the previous section,

there are two different types of sensor sources that have been used in this project. In

order for the program to determine the type of data source (i.e., a 6LoWPAN sensor

board or the HP iPAQ) all of the UDP datagrams sent from the HP iPAQ include an

"HP" element.

The program starts by opening a UDP socket to receive datagrams. Next the

program enters a loop to receive and decode the received packet. For each packet, the

program uses the Java API functions getAddress(), getPort(), and getLength() [34] to

extract the IP address and UDP port number of sender, and the length of payload

(respectively). The program parses the encapsulated payload from the sensor into

several separate parts.

During parsing, the program first checks whether there is a “HP” element at in the

start of the payload. If there is, then this packet comes from an HP iPAQ acting as a

mobile sensor otherwise the packet comes from a 6LoWPAN sensor (or software

emulating such a sensor). If this packet is from HP iPAQ, the program will parse and

process the rest of the payload. If there is a DATA value, then this source's IP address,

sensor ID, and value will be recorded in the database. If this packet is from a

31

6LoWPAN sensor, then the program will check to see whether it is a CMD_REPORT,

if so then the program parses and decodes the data value. If the payload does not start

with a CMD_REPORT, then the receiving and decoding program will discard this

packet since no other types of packets are processed in the context of this thesis

project. Note that there is a possibility that the packet might be a fake and malicious

packet, however, currently the program does not make any attempt to validate the

received packets, and hence this program may fail in unpredictable ways. Better

handling of these types of packets should be addressed in future work.

Finally, the program saves the data values (and associated information) into the

database. Details of the database will be introduced in next section.

4.5 Web server

This web server will collect and distribute information from 6LoWPAN sensors

and Low Power RS-232 sensors connected to HP iPAQs. An authorized user can use

their web browser to view a sensor‟s information. The user may also be able to control

the selected sensor via the web server. This section introduces the web server‟s

structure, the underlying database, the functionality of the prototype server, and so on.

The web server is written in ASP.net programming and developed using Microsoft

Visual Studio. The following technologies were used: JAVA script, HTML, and

Microsoft SQL server 2005. The run-time environment utilizes is Microsoft‟s IIS 6.0

with Microsoft SQL server 2005.

4.5.1 Structure

The structure of web server is the classic implementation pattern Model – View -

Controller, frequently abbreviated MVC[35]. MVC is a software architecture that is a

widely used architectural pattern in software engineering. A typical diagram

presenting the Model, View, and Controller relationships is shown in figure 20.

32

Figure 20: MVC model

The functions of those three components are:

1. "Models" in a MVC based application are the components of the

application that are responsible for maintaining state. Often this state persists

inside a database (for example: in this web server, we have a UserInfo.cs file

that is used to represent web browser user information extracted from the

database).

2. "Views" in a MVC based application are the components responsible for

the application's user interface. The web browser user uses the View

interface to communicate with the program.

3. "Controllers" in a MVC based application are the components responsible

for handling end user interaction, manipulating the model, and ultimately

choosing a view to render via the user interface. In a MVC application the

view is only concerned with displaying information. It is the controller that

handles and responds to user input and interaction.

More specifically for this thesis project, the Entity folder in web server represents

the Model. This folder includes several files, including: UserInfo.cs, InviteInfor.cs,

and Status.cs. The code in these files are used to manage the behavior of the

application and data, to respond to requests for information about a sensor‟s state

(usually from the view), and to respond to instructions to change state (usually from

the controller). This code also manages the connection to database. The DataContext

folder in the web server contains the controller programming files used to receive user

input and initiate a response by calling model objects. Finally, the *.aspx files (such

as default.aspx and main.aspx) are used to display the graphic interface and results to

web browser users.

In addition to the above files and folder, in the web server, there is a Web.config

file. This file contains parameters for the server, for example, the URI of the database

33

connection, along with the username and password that are required to access the

database. These parameters are easier to modify if we place them in Web.config,

rather than hard coding them in the software. The following sections of the thesis

explain these files in details.

4.5.1.1 Views

This project uses *.aspx files to represent the graphic interface. There are five

related *.aspx files used in the project.

1. Default.aspx is used to represent a login page to a web browser user if he

or she is already registered as a user in the web server. To login to the web

server, a username and password are required. If user fails to input either the

username or password, this page will display a red colored notice to user. If

the web browser user is not registered in the web server, the user can click

the “Sign Up” link to switch to a registration page. This registration page is

displayed by the Register.aspx file (described next). Figure 21 shows a

screenshot for Default.aspx. Note that this screenshot was captured using

Microsoft Visual Studio; hence the Default.aspx page shown in the figure is

the developer's view and not the user's view of this page. The actual results

of executing these *.aspx pages are shown in Chapter 5.

Figure 21: Defalut.aspx

.

2. Register.aspx enables unregistered web browser users to sign up via the

web server to access sensor data. Registration information includes:

username, password, repeat password, email address, and an Invited Code.

Because the web server distributes sensor information and this information

might be private (especially for the HP iPAQ user) we protect this privacy

by requiring that each new user enter a valid Invited Code when registering.

The Invited Code is assigned by the administrator of the web server. The

administrator only gives these codes to people who should have access to

sensor data via the web server. Using this Invited Code avoids un-authorized

people registering with the web server. Figure 22 shows a screenshot of

Register.aspx page.

34

Figure 22: Register.aspx

3. Main.aspx generates the page that the web browser users when they

successfully login. This Main.aspx relates to several other *.aspx pages, for

instance, DrawImage.aspx and Logout.aspx. The Main.aspx works with

these two files together. Figure 23 shows a screenshot of main.aspx.

Figure 23: Main.aspx

Figure 23 on the left side at the top shows the username and a logout

link which leads to Logout.aspx. Under the username, there is a search area.

The users can input the IP address of a sensor to look for information from

this sensor. If sensor values exist for IP address in the database, then

Main.aspx presents these values on the right side. The display of results is

generated by DrawImage.aspx. The label on the panel says "Temperature"

because in this project we have assumed that we should display temperature

values because we only have collected temperature values. If the search

result is null, this means the target sensor does not exist, thus the Main.aspx

35

page will show a notice message of this to user. In the bottom of left side,

there is an Operate Area that can be used to send a command to the sensor.

In our project, we have only implemented one command (read the

temperature value), hence the command list has only one entry; adding

additional commands is straightforward. The user clicks the send button to

send the command. Notice that because we have two types of sensors, when

the send process starts, the web server will look for the sensor in the

database to determine the type of the targeted sensor, and then it will send a

suitable command to the sensor based on the type of sensor. The reply to

this operation is displayed below the send button. Below the search button,

there is link named “History”. This link is used to switch to another web

page that enables the user to search the history of records of a sensor. In

contrast the main.aspx only presents the latest sensor values. The page

history.aspx will be introduced in next.

Each time Main.aspx is viewed, it first checks that the user is in a valid

session (i.e., that the user has logged in). If the user has not logged in then a

notice asks the potential user to login, and then automatically switches to

the Default.aspx page. Note that the Main.aspx page cannot be directly

viewed by inputting a URI such as http://example.com/Main.aspx.

4. History.aspx provides a search function to enable users to search the

history of values reported by a sensor. This page also provides a download

to enable users to download the historical records of a sensor after

successfully searching. The search template is shown in figure 24. There are

three fields: IP address, Date from, and Date end. The IP address specifies

the sensor (i.e., it acts as the sensor ID). While Date from and Date end

define a time interval as a search condition.

Figure 24: History.aspx

5. Logout.aspx is used to log out from the web server.

http://example.com/Main.aspx

36

6. DrawImage.aspx is used to generate a picture to display the data

information of a sensor.

Note that Logout.aspx and DarwImage.aspx do not work independently, but

rather they have to work with the Main.aspx. The DrawImage.aspx will be blank by

default and when there is no search result. Main.aspx, History.aspx, and

DrawImage.aspx will ensure that the user is in a valid session (i.e., that the user has

logged in) when they are viewed.

4.5.1.2 Model

As previously said, the Model in an MVC architecture is used to build a Data

model. The model manages the behavior and data of the application domain, responds

to requests for information about its state (usually from the view), and responds to

instructions to change state. In this web server we have 5 data models.

1. The web browser user information data model uses UserInfo.cs to build

the data model for web browser users. This data model contains the

username, password, and email address of the web browser user.

2. The Invited code data model uses InvitedInfo.cs to build the data model

for the Invited Code. In this prototype the length of the Invited Code is a

four digit code.

3. Sensor information data model uses SensorInfo.cs to build the data

model for a sensor. This model is used to process the sensor information,

including the IP address, and UDP port number

4. The sensor type data model uses SensorType.cs and Type.cs to build the

data model. This model computes the sensor source type (i.e. is the data

from a 6LoWPAN sensor or Low Power RS-232 sensor attached to a HP

iPAQ).

5. The sensor reading value data model uses SensorData.cs to build the data

model. This model processes the received values from a sensor.

4.5.1.3 Controller

The controller programming files exist in the DataContext folder in the web

server. There is a one-to-one correspondence between the controller and model. Thus

for every model we have in the project we must have one controller. Because the

controller is used to process the model and view parts in MVC architecture, then in

this web server there are five controllers:

1. UserDataContext.cs is used in Register.aspx to add a user to the set of

allowed users of this web server. Another function in the Register.aspx page

37

determines whether the username exists or not. If the username exists, then

the user is asked to choose another username. UserDataContext.cs is also

used to determine the login session of a user when the Main.aspx page is

viewed. This controller generally works with web browser user information

data model.

2. InvitedDataContext.cs is used to process the Invited Code (in the Invited

code data model) when the user registers. It checks to see if this Invited

Code exists in database. If this code exists, then it returns a true value to

Register.aspx, otherwise it responds with a false value (Note that the user

can only register successfully when the reply is true.). Once an Invited Code

has been used, the InvitedDataContext.cs deletes this Invited Code from the

database to avoid someone re-using this Invited code.

3. ServerInfoDataContext.cs is used to find the IP address of the sensor in

the database when the user operates the sensors (i.e., works with the sensor

information data model). This codes searches based upon the IP address of

the sensor using the IP address value that the user input in the “Operate

Area”. If the IP address exists in the database, then the code sends the

command to the specific sensor, otherwise sends a warning message to user

to indicate that a sensor with this IP address does not exist.

4. SensorTypeDataContext.cs is used to determine the source type of

sensors. When a user sends a command to a sensor, the web server first

checks the sensor type (6LoWPAN or Low Power RS-232) to determine the

specifics of the command that will be used.

5. SensorDataContext.cs is used to search the sensor reading values in the

database according to the IP address that has been entered. It always works

with the sensor data model. When the web browser user searches the latest

sensor reading will be displayed in main.aspx or a history record in

history.aspx.

6. Microsoft‟s SqlHelper.cs [36] is used to establish the connection to the

Microsoft SQL Server 2005 database. SqlHelper.cs is not a component of

the MVC architecture, but it is rather a general purpose C# class developed

by Microsoft to utilize the SQL database. SqlHelper.cs gets the database

username, password, and URI from Web.config and establishes an SQL

connection to the database. This controller contains the code that is used to

read, search, and save information from/to the database when there is a

request. SqlHelper.cs is a general open source class to operate a database.

4.5.1.4 Configuration file

The configuration file does not belong to the MVC architecture but it is used to

set some common parameters of the web server. Only one configuration file exists in

the web server – Web.config. The Web.config file contains information about the

38

database: database connection URI, database name, username, and password for using

database. In addition to the database related information, the Web.config file also

defines some parameters about temperature. The temperature value of a sensor is

presented as a picture on a web page. These temperature values are drawn on an X-Y

plot. In operation, the receiving program will receive a large number of temperature

values from a sensor. This means the web server has to show some or all of these

values on a web page. However, showing more than some limited number of values is

impractical due to the limited screen size of the web browser. Additionally older

values might not be useful to user. Therefore, we added a displaying parameter in the

Web.config file for the temperature value that limits the number of temperature values

displayed in the plot. For instance, if we set the limits to 20, then the plot will only

contain the latest 20 temperature values.

4.5.2 Database

Five database tables exist in the web server. These five databases are used to

process three kinds information:

1. Sensor information is stored in three tables: SensorDataInfo, SensorInfo, and

SensorTypeInfo. These three tables store all information about the sensors.

They all use the Sensor‟s IP address as the key. These three tables are shown

in Figure 25.

2. Browser User information is stored in one table: UserInfo. This table stores

the register browser user‟s information. This table is shown in Figure 26.

3. The Invited code is stored in one table InviteInfo. This table stores the

un-used invited codes.

Figure 25: Three database tables for sensor information

39

Figure 26: The database table for browser registers user information

Figure 27: The database table for invited code

4.5.3 Functionalities

Sections 4.1 and 4.5 mentioned nearly all of the functions of the web server.

There are seven functions in total: login, sign up, view current sensor information,

view sensor history information, send commands, download history records, and

logout. Figure 28 is a use-case diagram showing the relationships between of the

functions.

40

Figure 28: Use-case diagram for web server

It is easy to understand this use-case diagram. A normal browser user has to use

the sign up function (with a valid invited code) to become a registered user of the web

server. This invite code indicates that after authentication this user has been

authorized to use the search function to view the current sensor information or history

information (the historical records can be downloaded in an xml file). An

authenticated user can also operate the sensor by sending a command. The logout

function is used to safely leave the web server when the user wants to leave. A side

effect of logging out is to invalidate the session information, so that no one else can

hijack this session.

41

5 Results and measurements

This chapter presents the measurements and results of testing conducted during

this project. These measurements were used to test the correctness of the operation of

the different software components that were implemented. Additionally, these

measurements were used to evaluate the performance of each of these software

components.

5.1 Results of functional testing of the software

This section shows some screen dumps illustrating the correct functioning of each

part of the whole project. These screen dumps should also to help the reader

understand how this software meets the goals of this project. The project consists of

four software components: the sensor simulator program (to emulate 6LoWPAN

sensor), the ComServer program (to communicate with a Low Power RS232 sensor

connected to a HP iPAQ), a receiving and decoding program, and the web server. Of

these four parts, the simulator program and the receiving and decoding program do

not have a graphical user interface. Therefore the following sections will focus on

showing the ComServer program and web server. Later in the measurements section

5.2, the measurements and testing will also include the simulator program and

receiving and decoding program.

5.1.1 ComServer program

Because I found it hard to capture screen dumps when the ComServer program

was running on an HP iPAQ, I have captured screen dumps running this same

software on a laptop computer running Microsoft Windows 7 connected with a Wasa

board. Another reason is that Pontus who is the owner of the Low Power RS232

sensor was testing the sensor board a part of his thesis project at the same time as I

was doing the measurement. Note that because the Low Power RS-232 sensor board

and the Wasa board share the same command and response structure the program runs

just the same as it would when run on the HP iPAQ connected to a Low Power

RS-232 sensor board (with the only major difference being the use of a USB interface

in the case of the Wasa board and the serial interface in the case of the Low Power

RS232 board, but as mentioned in Chapter 3 the USB interface on Wasa board is to

simulate the serial interface. Therefore the transmission rate of Wasa board is same as

the Low Power RS232 sensor board).

42

Figure 29 shows the ComServer program executing the command “status check”.

As described in section 4.3, if only the “status check” action is chosen by the user,

then the program simply send the string “AT” to request the sensor board (in this case

the Wasa board) to report its status. In this figure, the sensor board is connected and

functioning, so it replies “OK” to the ComServer.

Figure 29: ComSever performing a “status check”

The figure 30 shows the ComProgram executing the command “get sensor value”.

In this case, the program receives the sensor‟s data from the sensor board via the

serial port, and then transfers this data to the web server. The IP address and UDP port

number were inputted in “UDPsettting” area.

43

Figure 30: ComServer performing the command “get sensor value”

Figure 31 shows how the ComServer responds to receiving a command from the

web server. In figure 31, we can see that the ComServer program received a command

from web server, executed the command, and generated a reply to web server.

Figure 31: ComServer after receiving a command to read a sensor

If user wants to terminate the ComServer, the user simply presses the terminate

button (as shown in figure 32). If the user wants to restart the program, the user has to

close the serial port and open again, and then press the start button to restart the

program.

44

Figure 32: ComServer is terminated

5.1.2 Web server

This section shows screen dumps of user interactions with the web server. These

screen dumps include all the situations that a browser user might experience.

A browser user wanting to use our web server first has to log in firstly. Figures 33

and 34 show some situations that a user might face during the login process. Figure 33

shows the situation if either (or both) username or password is not entered by the user.

Figure 34 shows what happens when the username or password is wrong. The web

server always displays a message to indicate what the problem is.

Figure 33: Login error with username or password is empty

45

Figure 34: Login error with username or password is wrong

If the browser user is not registered with our web server, the user must first sign

up to gain access to our web server. Figures 35, 36, and 37 show some examples of

sign up errors. Figure 38 shows what happens when this sign up is successful. The

error in figure 35 shows that the user forgot to input one or more values that are

necessary in order to successfully register. The error in figure 36 is that the user

entered an inconsistent password when he repeating the password. Figure 37 indicates

that the user entered an incorrect invited code.

Figure 35: Sign up error with empty parameters

46

Figure 36: Sign up error with repeat password error

Figure 37: Sign up error with invalid invited code

Figure 38: Sign up successes

47

Figure 39 displays an initial page after the user successfully logs in. The

temperature area is blank because there is not yet any data to present. In figure 40, if a

user presses the search button in the left top without inputting any IP address, then the

web server will display a notice to user. If the user presses the send button in left

bottom without inputting an IP address, the web server also displays a notice

reminding the user of the information that needs to be specified. If the user does not

choose a command, the web server will also display a notice as shown in figure 41.

Figure 39: Initial main.aspx page of web server

Figure 40: A notice message of web server to user

48

Figure 41:A notice message of web server to remain user to choose a command

Figure 42 presents an example temperature plot. The web server has searched for

temperature records in the database for the indicated sensors, and drawn a picture to

present on the web page. In this example, the picture shows only the most recent 10

records (if an administrator of web server wants to display more records in the plot,

the administrator can modify the setting in the Web.config file). Note that the

temperature values shown here are uncablibrated readings of a thermistor and should

be converted to a specific temperature scale, such as degrees Centigrade (however,

this calibration and conversion is outside the scope of this thesis project). However, if

a user wants to see more or all records of a sensor, this user can on click the history

link to view additional data. Figure 43 shows an example result. The historical records

of a sensor are shown in a table. Above this table is a download link that enables the

user to download these records in an XML format. Note that this download link is

only visible after a user pressed the search button.

49

Figure 42: Recent temperature values of target sensor

Figure 43: A history page example of web server

Figure 44 shows an example of sending a command to a specific sensor. The

result is shown on the bottom left of the web page. The user has to input an IP address

of a sensor and choose a command. After pressing the send button, the command is

sent to the specific sensor by web server. If the web server gets a reply from that

sensor, the web server will display the IP address of that sensor and the temperature

value in the “Reply of Command” area. Otherwise the “Reply of Command” area will

be blank. Additionally, the web server also saves this reply‟s result into the database.

50

Figure 44: An example of sending a command to specific sensor

5.2 Measurements

In this section, measurements of the performance of each of the software

components used in the project will be presented. As mentioned in previous sections,

the process begins with the sending of a sensor data packet (by the simulator program

or the ComServer program); next the web server‟s receiving & decoding program

receives and decodes the packet and updates the database. The web server can display

the sensor values on a web page. Therefore, three measurements are relevant to the

performance of the system: (1) we measure the time required to generate a sensor

packet and send it. In this thesis, we assume only two types of sensors: a 6LoWPAN

sensor and a RS-232 low power sensor. A 6LoWPAN sensor will be emulated by a

simulator program. Because we are simulating this data rather than actually using a

sensor we do not see any reason to measure this delay - as it will be basically limited

by the maximum rate that we can generate UDP datagrams. (2) We measure the delay

between when the sensor sends a packet and when it has been received and decoded.

(3) We measure the time required to store the values into the tables in the database

(within the web server„s receiving and decoding program). The measurement

environment and equipment consists of:

1. Rather than using a low power sensor board and HP iPAQ we have used a

Dell™ Studio XPS™ 1640 laptop: Intel Core 2 P8600 2.4 GHz CPU; 4 GB

memory; 10/100M Ethernet card; Windows 7 operating system; and

Microsoft Visual Studio 2010. The ComServer program running on this

machine communicates over a USB interface with a Wasa board.

2. The web server is running on a Dell™ D 610 laptop configured with Intel

Pentium M 1.6 GHz CPU; 512 MB memory; 10/100M Ethernet card;

51

Windows XP operating system; Microsoft Visual Studio 2005; and

Microsoft SQL Server 2005. The receiving & decoding program and web

server are both running on this machine.

3. These two machines are connected to a Netcore NR205S family router via a

crossover cable. The two DELL laptops and the Netcore router form a local

area network. The bandwidth of each Ethernet interface is 100M bps. The

average packet transfer delay of the Netcore router is specified by the vendor

as less than 300 μs[37].

5.2.1 Measuring performance of ComServer

The performance of the ComServer program is primarily determined by how

much time is required to generate a sensor packet and send it out. The measurement

method was to set a timer inside the ComServer program so that a timer records a

startTime when the ComServer program starts to read the sensor data and endTime

when the ConServer program sends the sensor data. The interval between startTime

and endTime is the time required for reading and sending a sensor data value.

Actually this interval is very short. To facilitate measuring this time, we set a 3

seconds break after the ComServer program sends the packet. Therefore, we have to

subtract 3 seconds from each time record during our analysis. Figure 45 shows an

example of such a measurement.

Figure 45: Time required to generating a sensor packet and sending out in ComServer

We repeated this measurement 5 times (i.e., 5 rounds), in each measurement the

ComServer read and generated 20 sensor packets and sent them out. We calculated the

average value over 20 measurements. We made 20 measurements because the time we

52

want to measure is very short and variable. We want to collect enough data to

calculate a statistical value for the time interval required to perform and send a single

measurement. Table 4 shows the records for this measurement (here we have already

subtracted the extra 3 seconds). Note that the median value is 21 ms. Details of the

analysis of these measurements are given in section 5.2.4.

Table 4: Measuring the performance of the ComServer

 Round 1 Round 2 Round 3 Round 4 Round 5

Average time

for each round

8 ms 21 ms 51 ms 23 ms 15 ms

Average time for total 5 rounds 23.6ms (± 14.7 ms)

5.2.2 Measuring the performance of the receiving and

decoding program in the web server

This measurement measures the how much time is needed between when the

receiving and decoding program receives a sensor packet and when it stores the

sensor‟s value into the database. This is quite similar to the previous measurement.

Therefore we use the same method of measurement. Figure 46 shows an example of

this measurement. We repeated the measurement 5 times (i.e., 5 rounds), and each

time received and decoded 20 packets. Table 5 shows the average of these

measurements. Details of the analysis of these measurements are given in section

5.2.4.

Figure 46: Measuring performance of receiving and decoding program

53

Table 5: Measuring the performance of the receiving and decoding program

 Round 1 Round 2 Round 3 Round 4 Round 5

Average time

for each round

30.4 ms 28.5 ms 19.8 ms 18.9 ms 23.3 ms

Average time for total 5 rounds 24.18ms (± 4.58 ms)

5.2.3 Delay between when the sensors send a packet and

when it has been received and decoded

Figure 47 presents the transfer process of packets flowing between the sensors

and the web server‟s receiving and decoding program. Packet 1 is sent at time point

G1; and arrives at the receiving and decoding program at time point R1 (This time

point is when the packet has just received at the receiving and decoding program, and

does not include the decoding time). The time between G1 and G2 is simply the

processing time required by the sensor to generate a sensor packet. The transfer time

of packet 1 is: Delay1 = R1 - G1 – delay of router. By parity of reasoning, the

transfer time of rest packets is:

Delay2 = R2 – G2 – delay of router
Delay3 = R3 – G3 – delay of router
Delay4 = R4 – G4 – delay of router
Delay5 = R5 – G5 – delay of router
Delay6 = R6 – G6 – delay of router
…

54

Figure 47: Sending process flow

 Actually, the transmission delay when the sensors send a packet and when it has

been received and decoded is very difficult to measure in millisecond level, since the

data packet size in this transmission is very small and the transmission rate of the

laptop‟s network card and router is very fast (100M bps). All the packets can be

completely transferred less than 1 ms. The result were improved by a ping

measurement (use the ping command “ping [IP address] –l [Size of packet]”).

5.2.4 Analysis of these measurements

We can find that the standard deviation in the results of measurements of

ComServer‟s performance is large. The variance of measurement results is very high.

The highest result is 51 ms but lowest result is just 8 ms. In the measurements of

performance of the receiving and decoding program, the results are more stable. We

consider the reason might be related to Wasa board. The ComServer was running on a

DELL laptop with a Wasa board. The receiving and decoding program was running on

another DELL laptop. The common point of these two program‟s hardware is that

both of them use a DELL laptop. Actually, the laptop belongs to ComServer has a

better performance rather than the receiving and decoding program‟s (The two laptops

were introduced in previously). However, a difference is the ComServer is also with a

Wasa board. The Wasa board is a very simple board. It is used to teach the knowledge

55

to students. And the Wasa board is not very stable. The process and respond time is

very variable. Therefore, we consider this is the reason why the variance of the

ComServer‟s measurement results is very high. Another reason is that we calculate

these measurements in microseconds. However, because the delay is so short we need

to make additional measurements and use a more precise measurement technique.

The whole process (generating a sensor packet, transferring, receiving and

decoding), it takes totally 48.78 ms (23.6ms + 24.18 ms + 1 ms (or less than 1ms)) on

average. From our measurements we know that it only takes about 23 ms to generate

and send the sensor packet, thus we can get a conclusion in theory that the rest of the

time the sensor could be sleep (or in some other sort of low power mode), hence the

power consumption of the sensor can be quite low - even with a duty cycle of once

per second the sensor could be consuming minimal power for nearly 98% of the time

(assuming that the time to wake up from this low power mode and to restart the radio

transceiver is negligible - however, this is unlikely to be true, hence the actual fraction

of time in lower power mode will be less than 98%). However, in practical this is not

possible, because the hardware cannot just work around 23 ms and sleep 977 ms in

one second. The duty cycle is too short.

The transferring delay is very short, hence the transfer delay in practice will be

negligible in a local area network, but may have to be considered in a wide area

network.

The time to receive and decode a sensor packet is the longest interval based upon

our measurements. The average value is 24.18 ms for processing 60 bytes of data.

This means in 1 second, the receiving and decoding program can process a maximum

of 41 packets. Therefore, if 41 or more sensors send their reports to web server at the

same time, the receiving and decoding program cannot process all the packets within

this one second period. This means that either the average rate of sensor packets has

to be lower than 41 per second or the receiving and decoding software needs to be

modified to speed it up. In practice there would be an even larger problem because

both the receiving & decoding and web service are running on the same computer,

thus if sensor packets come at an average rate of more than 41 per second the web

server will not have enough time to execute - hence the sensor web service will not be

able to provide good performance to the user.

56

6 Conclusions and Future work

6.1 Conclusions

The aim of this thesis project was to design, implement, and evaluate a web

application for sensors. More specifically we have developed, a web access solution for

sensors that enables users to read and control sensor via a web site and we have shown

how it is possible to integrate sensor with a PDA or other mobile device - thus enabling

portable (or mobile) sensors. The web server accomplished the primary goal of being

able to display sensor information via a web page to a user via their web browser.

Communication from the user's web browser to the web server can use HTTP or HTTP

over TLS (the later offers greater security). This project integrates a number of other

solutions into a simple web based system. The end users can use their browsers to

view and control the sensors without needing to install any additional software.

Because the receiving & decoding program communicates with each sensor via UDP,

this protocol can be adapted to the specific sensors and gateway that are used in

practice. The sensor web server gets sensor information from a database. Additionally,

this, the thesis project showed how the HP iPAQ pocket PC can utilize a sensor board

connected to it via a serial port.

This thesis described the development and implement process of this web service.

The author implemented the software by applying his knowledge of software

engineering, the MVC software architecture, the techniques of Java programming,

ASP.net programming, and networking knowledge.

This thesis project successfully achieves the primary goal of collecting and

distributing sensor information from a sensor to web browser users. It is an example

application that combines mobile technology, web technology, and sensing technology.

Based on this web service, a future developer could add additional types of sensor to

this web server. For instance, in the current web server, we utilized only a temperature

sensor. In order to add a humidity sensor or a sensor offers map orientation or location

is relatively straightforward. The next step is to combine the sensor data of all of these

sensors. For example, the web server might know the location of the sensor, thus it

can associate the temperature and humidity level with that place. If the web server

were to utilize Goolge Maps technology, then the browser user could view a page that

presents temperature and humidity measurements from a number of places, for

example to use this with micro weather prediction. This thesis project not only built a

generic web server, but it also introduces a way to develop a web based on the sensor

applications.

57

6.2 Future work

Although this thesis project is completed, there are many improvements that

could be made. Before this web server can be used outside of a lab environment, there

is a lot of work that needs to be done in order to address issues concerning the

administration of users & sensors, the security of the system, how to better support

browser users, and so on. Some of the problem s that are more urgent are described

below.

The first thing we have to consider is security. The web server actually has two

interfaces: one interface is for the web browser user and another for sensors. The

security between the web server and web browser user or sensors is very important. A

hacker might steal information from the web server, or send a fake packet to corrupt

or crash the web server. Any of these actions could cause valuable data to be lost.

Therefore, it will be important to add suitable security to this communication. For

example, an encryption function on the communication link between sensor and web

server or between web browser and web server would improve the security of the

communication. If this communication also included authentication, then it would be

possible to improve the security even more.

The second issue is to make the web server friendly. In the current web server,

there is no specific administrator page. If the administrator wants to manage the web

server, for instance, to add a new sensor, the administrator has to manually modify the

codes or the database. This is not user friendly. For the web browser user, the web

server also needs to provide more functions such as the ability to change password

and profile. Another problem for web browser user is in each time a user wants to

search or operate on a sensor; the user has to input an IP address of a sensor. Since an

IP address is not easy to remember (particularly in the case of IPv6 addresses), a

naming scheme for sensors has to be added to the web server.

Additional functions can be added to the web server. The web server will also

need to be modified to make it easier to add new types of sensors.

58

References

[1] Pontus Olvebrink, Low Power Sensor Platform for PDA: Wasa Board v1.4

revisited, Bachelor‟s thesis, Royal Institute of Technology (KTH), School of

Information and Communications Technology, TRITA-ICT-EX-2011:183, 22

June 2011.

[2] Wikipedia. Microsoft SQL Server.

http://en.wikipedia.org/wiki/Microsoft_SQL_Server . Latest view on June 27
th

,

2011.

[3] Zach Shelby and Carsten Bormann. 6LoWPAN: The Wireless Embedded Internet.

A John Wiley and Sons, Ltd, Publication, 2009. [Pages 20,134,136].

[4] J.Postel. Transmission Control Protocol. RFC 793, RFC Editor, September 1981,

Obsoletes RFC761, Updated by RFC1122, RFC3168, RFC6093.

http://www.rfc-editor.org/rfc/rfc793.txt.

[5] J.Postel. User Datagram Protocol. RFC768, Information Sciences Institute.

August 1980. http://www.rfc-editor.org/rfc/rfc768.txt.

[6] N. Kushalnagar, G. Montenegro, C. Schumacher. IPv6 over Low-Power Wireless

Personal Area Networks (6LoWPANs): Overview, Assumptions, Problem

Statement, and Goals. RFC 4919, RFC Editor. August 2007.

http://www.rfc-editor.org/rfc/rfc4919.txt.

[7] G. Montenegro, N. Kushalnagar, J. Hui, D. Culler. Transmission of IPv6 Packets

over IEEE 802.15.4 Networks. RFC 4944, RFC Editor. September 2007.

http://www.rfc-editor.org/rfc/rfc4944.txt.

[8] P. Thubert, A. Brandt, T. Clausen, J. Hui, R. Kelsey, P. Levis,

K. Pister, R. Struik,and JP. Vasseur. RPL: IPv6 Routing Protocol for Low power

and Lossy Networks draft-ietf-roll-rpl-19. Internet-Draft. Expires: September 14
th

,

2011. http://tools.ietf.org/html/draft-ietf-roll-rpl-19.

[9] IEEE 802 working group, Part 15.5: Wireless Personal Area Network (WPAN)

Mesh Networking. http://www.ieee802.org/15/pub/TG5.html.

[10] IEEE 802 working group, Part 15.4: Wireless Medium Access Control (MAC)

and Physical Layer (PHY) Specifications for Low-Rate Wireless Personal Area

Networks (WPANs), IEEE Computer Society, Standard specification, [WWW],

http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf.

http://en.wikipedia.org/wiki/Microsoft_SQL_Server
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc761&opt=All+fields&num=25&format=ftp&orgkeyword=793&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc1122&opt=All+fields&num=25&format=ftp&orgkeyword=793&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc3168&opt=All+fields&num=25&format=ftp&orgkeyword=793&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc6093&opt=All+fields&num=25&format=ftp&orgkeyword=793&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/rfc/rfc793.txt
http://www.rfc-editor.org/rfc/rfc768.txt
http://www.rfc-editor.org/rfc/rfc4919.txt
http://www.rfc-editor.org/rfc/rfc4944.txt
http://tools.ietf.org/html/draft-ietf-roll-rpl-19
http://www.ieee802.org/15/pub/TG5.html
http://standards.ieee.org/getieee802/download/802.15.4-2006.pdf

59

[11] AES CCM Encryption and Decryption.

http://www.inno-logic.com/resourcesEncryption.html . Latest view on February

15
th

, 2011.

[12] Don Box, David Ehnebuske, Gopal kakivaya, Andrew Layman, Noah

Mendelsohn, Henrik Frystyk Nielsen, Satish Thatte, Dave Winer. W3C. Simple

Object Access Protocol. http://www.w3.org/TR/2000/NOTE-SOAP-20000508/.

May 08
th

, 2011.

[13] Roy Thomas Fielding, Architectural Styles and the Design of Network-based

Software Architectures, Doctoral Dissertation, Information and Computer

Science, University of California, Irvine, 2000.

http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm.

[14] Erik Christensen, Francisco Curbera, Greg Meredith, Sanjiva Weerawarana. Web

Services Description Language (WSDL) 1.1. http://www.w3.org/TR/wsdl. March

15
th

, 2001

[15] Marc Hadley. Web Application Description Language.

http://www.w3.org/Submission/wadl/. August 31
st
 , 2009

[16] N. Freed and N. Borenstein, Multipurpose Internet Mail Extensions (MIME) Part

One: Format of Internet Message Bodies, Internet Request for Comments,

ISSN 2070-1721, RFC 2045, RFC Editor, November 1996, Updated by RFCs

2184, 2231, 5335, http://www.rfc-editor.org/rfc/rfc2045.txt.

[17] ZigBee. http://www.zigbee.org/Specifications.aspx.

Latest view on December 12
th

, 2010.

[18] Open Mobile Alliance. Binary XML Content Format Specification. Tech. rep,

WAP-192-WBXML-20010725-a, 2001.

[19] Open Geospatial Consortium. Binary Extensible Markup Language(BXML)

Encoding Speicfication. Tech.rep., 03-002r9,2006.

[20] Efficient XML Interchange(EXI) primer. http://www.w3.org/TR/exi-primer/.

Latest view on March 23
rd

, 2011.

[21] NanoService - Sensinode Ltd, Sensinode‟s NanoService™. [Online]. Available:

http://www.sensinode.com/EN/products/nanoservice.html. Latest view on:

August 25
th

, 2011.

[22] Mike Botts, and Alexandre Robin. OpenGIS® Sensor Model Language

(SensorML) Implementation Specification. OGC 07-000, Open Geospatial

Consortium Inc.. July 17
th

, 2007.

http://www.opengeospatial.org/standards/sensorml.

http://www.inno-logic.com/resourcesEncryption.html
http://www.w3.org/TR/2000/NOTE-SOAP-20000508/
http://www.ics.uci.edu/~fielding/pubs/dissertation/top.htm
mailto:erikc@microsoft.com
mailto:curbera@us.ibm.com
mailto:gregmer@microsoft.com
mailto:sanjiva@us.ibm.com
http://www.w3.org/TR/wsdl
http://www.w3.org/Submission/wadl/
http://www.rfc-editor.org/rfc/rfc2045.txt
http://www.zigbee.org/Specifications.aspx
http://www.w3.org/TR/exi-primer/
http://www.sensinode.com/EN/products/nanoservice.html
http://www.opengeospatial.org/standards/sensorml

60

[23] R.Fielding, J.Gettys, J.Mogul, H.Frystyk, L.Masinter, P.Leach, and t.Berners-Lee.

Hypertext Transfer Protocol- HTTP/1.1. RFC 2616, Internet Engineering Task

Force. June 1999. Obsoletes RFC2068, Updated

by RFC2817,RFC5785, RFC6266.

http://datatracker.ietf.org/doc/rfc793/?include_text=1.

[24] Java. http://en.wikipedia.org/wiki/Java_(programming_language).

Latest view on March 12
th

, 2011.

[25] ASP.NET. http://www.w3schools.com/aspnet/default.asp.

Latest view on May 17
th

, 2011.

[26] Luis Maqueda Ara, A 6LoWPAN gateway, Master‟s thesis,

Royal Institute of Technology (KTH), School of Information and

Communications Technology, work in progress.

[27] M.T.Smith. “The Wasa Board Project” Swedish Royal Institute of

Technology, Stockholm, Sweden. http://web.it.kth.se/~msmith/wasa/wasa_board

_project.html. Latest view on May 19
th

, 2011.

[28] AT command guide.

http://linmodems.technion.ac.il/pctel-linux/Pctel.ATCommand.Guide.6.23.00.pdf.

Latest view on May 12
th

, 2011.

[29] Joaquín Juan Toledo, A 6LoWPAN sensor board, Master‟s thesis, Royal Institute

of Technology (KTH), School of Information and Communications Technology,

work in progress.

[30] An introduction to the TI MSP430 low-power microcontrollers.

http://mspgcc.sourceforge.net/manual/c68.html Latest view on December 12
th

,

2010.

[31] Alejanro Arcos. A context-aware application offering map orientation. Royal

Institute of Technology (KTH), School of Information and Communications.

2010.

[32] MAX3241E. http://www.maxim-ic.com/datasheet/index.mvp/id/1780. Latest

view on February 22
nd

, 2011.

[33] Sergio Floriano Sanchez. A 6LoWPAN sensor board software implementation,

Master‟s thesis, Royal Institute of Technology (KTH), School of Information and

Communications Technology, work in progress.

[34] Java API. http://download.oracle.com/javase/6/docs/api/. Latest view on June

16
th

, 2011.

http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc2068&opt=All+fields&num=25&format=ftp&orgkeyword=2616&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc2817&opt=All+fields&num=25&format=ftp&orgkeyword=2616&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc5785&opt=All+fields&num=25&format=ftp&orgkeyword=2616&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://www.rfc-editor.org/cgi-bin/rfcsearch.pl?searchwords=rfc6266&opt=All+fields&num=25&format=ftp&orgkeyword=2616&filefmt=txt&search_doc=search_all&match_method=prefix&abstract=absoff&keywords=keyoff&sort_method=newer
http://datatracker.ietf.org/doc/rfc793/?include_text=1
http://en.wikipedia.org/wiki/Java_(programming_language)
http://www.w3schools.com/aspnet/default.asp
http://web.it.kth.se/~msmith/wasa/wasa_board_project.html
http://web.it.kth.se/~msmith/wasa/wasa_board_project.html
http://linmodems.technion.ac.il/pctel-linux/Pctel.ATCommand.Guide.6.23.00.pdf
http://mspgcc.sourceforge.net/manual/c68.html
http://www.maxim-ic.com/datasheet/index.mvp/id/1780
http://download.oracle.com/javase/6/docs/api/

61

[35] Model View Controller. http://c2.com/cgi/wiki?ModelViewController. Latest

view on July 17
th

, 2011.

[36] SqlHelper.

http://www.sharpdeveloper.net/source/SqlHelper-Source-Code-cs.html. Latest

view on July 17
th

, 2011.

[37] NETCORE NR205 PLUS home broadband router, product web page, Shen Zhen

Harten Techonology Co., June 13
th

 , 2009.

http://www.hartenisi.com.cn/en/products_detail.asp?productid=751.

http://c2.com/cgi/wiki?ModelViewController
http://www.sharpdeveloper.net/source/SqlHelper-Source-Code-cs.html
http://www.hartenisi.com.cn/en/products_detail.asp?productid=751

62

Appendix A: The code of program to
emulate 6LoWPAN sensor

#include <stdio.h>

#include <stdlib.h>

#include <sys/types.h>

#include <sys/socket.h>

#include <string.h>

#include <netinet/in.h>

#include <unistd.h>

#include <errno.h>

#include <resolv.h>

#include <arpa/inet.h>

#define __LITTLE_ENDIAN_BITFIELD

struct LoWPAN {

 int cmd;

 unsigned short parameter1;

 unsigned short parameter2;

 unsigned short parameter3;

 unsigned short parameter4;

};

unsigned char usage[] = {"usage: udpsend remote_ip remote_port\r\n"

 " for example:\r\n"

 " udpsend 172.18.1.128 10000\r\n"};

int main(int argc, char *argv[]) {

 struct LoWPAN *pudphdr;

 unsigned char *pbuf;

 int port;

 struct sockaddr_in servaddr, cliaddr;

 unsigned char buff[127];

 int len = 0;

 if (argc < 3) {

 printf(usage);

 return 1;

 }

 memset(buff, 0, sizeof (buff));

63

 int snd = socket(AF_INET, SOCK_DGRAM, 0);

 if (!snd)

 return 1;

 bzero(&servaddr, sizeof (servaddr));

 servaddr.sin_family = AF_INET;

 port = atoi(argv[2]);

 servaddr.sin_port = htons(port);

 if (inet_pton(AF_INET, argv[1], &servaddr.sin_addr) <= 0) {

 printf("[%s] is not a valid IPaddress\n", argv[1]);

 return 1;

 }

 pbuf = buff;

 pudphdr = (struct LoWPAN*) pbuf;

 pudphdr->parameter1 = htons(1025);

 pudphdr->parameter2 = htons(61617);

 pudphdr->parameter3 = htons(25);

 pudphdr->parameter4 = htons(25);

 pbuf += sizeof (struct LoWPAN);

 len = pbuf - buff;

 sendto(snd, buff, len, 0, (struct sockaddr*) &servaddr, sizeof (servaddr));

 close(snd); // close the socket

 printf("The packet cotent is : %p", *pudphdr);

 return 0;

}

64

Appendix B: The code of ComServer
program

Form1.cs
using System;

using System.Collections.Generic;

using System.ComponentModel;

using System.Data;

using System.Drawing;

using System.Text;

using System.Windows.Forms;

using System.IO;

using System.IO.Ports;

using System.Threading;

namespace COMServer

{

 public partial class Form1 : Form

 {

 protected bool isInTimerFun = false;

 string ReceiveData = "";

 private System.Threading.Thread thread = null;

 private System.Threading.Thread otherThread = null;

 public delegate void _SafeAddtrTextCall(string text);

 private delegate void ShowMSgDelegate(string msg);

 private delegate void ShowExceptionMSgDelegate(Exception msg);

 Mutex mu = new Mutex(false);

 Mutex muExceptionLog = new Mutex(false);

 public Form1()

 {

 InitializeComponent();

 }

65

 #region event

 private void Form1_Load(object sender, EventArgs e)

 {

 string portNum = "SerialPort Count:";

 try

 {

 portNum += SerialPort.GetPortNames().Length.ToString();

 for (int i = 0; i < SerialPort.GetPortNames().Length; i++)

 {

 portNum += "\r\n" + SerialPort.GetPortNames().GetValue(i).ToString() + "\r\n";

ComboBoxPortNum.Items.Add(SerialPort.GetPortNames().GetValue(i).ToString());

 }

 SetMSG(portNum);

 ComboBoxPortNum.SelectedIndex = 0;

 comboBoxDateBits.SelectedIndex = 3;

 comboBoxParity.SelectedIndex = 2;

 comboBoxStopBit.SelectedIndex = 0;

 comboBoxBondRate.SelectedIndex = 3;

 OpenSerialPort();

 }

 catch

 {

 portNum += "0\r\nTheir is no any SerialPort on your computer!";

 SetMSG(portNum);

 }

 }

 private void Form1_FormClosing(object sender, FormClosingEventArgs e)

 {

 try

 {

 if (serialPort1 != null)

66

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 }

 serialPort1.Dispose();

 }

 }

 catch (Exception ex)

 {

 SetMSG("Close error！ê?" + ex.Message);

 }

 }

 #endregion

 #region open serial port

 protected void OpenSerialPort()

 {

 if (ComboBoxPortNum.Text.ToString() != "")

 {

 serialPort1.PortName = ComboBoxPortNum.Text.ToString().Trim();

 try

 {

 if (!serialPort1.IsOpen)

 {

 serialPort1.Open();

 }

 LBPortState.Text = serialPort1.PortName + " is Open！ê?";

 if (comboBoxBondRate.Text.ToString() != "")

 {

 serialPort1.BaudRate = int.Parse(comboBoxBondRate.Text.ToString());

 }

 if (comboBoxDateBits.Text.ToString() != "")

 {

 serialPort1.DataBits = int.Parse(comboBoxDateBits.Text.ToString());

 }

 if (comboBoxStopBit.Text.ToString() != "")

 {

67

 switch (comboBoxStopBit.Text.ToString())

 {

 case "1":

 serialPort1.StopBits = StopBits.One;

 break;

 case "1.5":

 serialPort1.StopBits = StopBits.OnePointFive;

 break;

 case "2":

 serialPort1.StopBits = StopBits.Two;

 break;

 }

 }

 if (comboBoxParity.Text.ToString() != "")

 {

 switch (comboBoxParity.Text.ToString())

 {

 case "Even":

 serialPort1.Parity = Parity.Even;

 break;

 case "Mark":

 serialPort1.Parity = Parity.Mark;

 break;

 case "None":

 serialPort1.Parity = Parity.None;

 break;

 case "Odd":

 serialPort1.Parity = Parity.Odd;

 break;

 case "Space":

 serialPort1.Parity = Parity.Space;

 break;

 }

 }

 btnCloseSerialPort.Enabled = true;

 btnOpenSerialPort.Enabled = false;

 }

 catch (Exception e2)

 {

 LBPortState.Text = e2.Message;

68

 serialPort1.Dispose();

 }

 }

 else

 {

 LBPortState.Text = "Please choose a serial port！ê?";

 }

 }

 private void btnOpenSerialPort_Click(object sender, EventArgs e)

 {

 OpenSerialPort();

 }

 private void btnCloseSerialPort_Click(object sender, EventArgs e)

 {

 if (ComboBoxPortNum.Text.ToString() != "")

 {

 try

 {

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 }

 LBPortState.Text = serialPort1.PortName + " is closed！ê?";

 btnOpenSerialPort.Enabled = true;

 btnCloseSerialPort.Enabled = false;

 }

 catch (Exception e2)

 {

 LBPortState.Text = e2.Message;

 serialPort1.Dispose();

 }

 }

69

 else

 {

 LBPortState.Text = "Please choose a serial port！ê?";

 }

 }

 #endregion

 #region

 private void safeAddtrText(string text)

 {

 if (this.InvokeRequired)

 {

 _SafeAddtrTextCall callALL =

 delegate(string s)

 {

 this.txtBoxMSG.AppendText(s + " ");

 SetMSG("Receiving Data is:" + s + "\r\n");

 };

 this.Invoke(callALL, text);

 }

 else

 {

 txtBoxMSG.AppendText(text);

 SetMSG("Receiving Data is:" + text + "\r\n");

 }

 }

 #endregion

 #region

 private void serialPort1_DataReceived(object sender,

System.IO.Ports.SerialDataReceivedEventArgs e)

 {

 while (serialPort1.BytesToRead > 0)

 {

70

 if (false)

 {

 int data = 0x00;

 try

 {

 data = serialPort1.ReadByte();

 }

 catch (Exception e2)

 {

 SetMSG(e2.Message);

 break;

 }

 ReceiveData += data.ToString("X").PadLeft(2, '0');

 ReceiveData = ReceiveData.ToUpper();

 }

 else

 {

 ReceiveData += serialPort1.ReadExisting();

 }

 }

 UDPClient.MainContent = ReceiveData;

 safeAddtrText(ReceiveData);

 ReceiveData = "";

 }

 #endregion

 #region

 private void CLSTxtBoxAllReceive_Click(object sender, EventArgs e)

 {

 }

 #endregion

 #region

 public string WriteData(string cmd)

 {

 string sResult = "";

71

 if (serialPort1 == null)

 {

 sResult = "Serial port does not initial！ê?";

 return sResult;

 }

 if (!serialPort1.IsOpen)

 {

 sResult = "Serial port ：êo" + serialPort1.PortName +" open failed";

 return sResult;

 }

 try

 {

 string sendvalue = "";

 sendvalue = cmd;

 if (false)

 {

 sendvalue = sendvalue.Replace(" ", "");

 }

 if (false)

 {

 int sendLength = sendvalue.Length / 2;

 byte[] StrBuffer = new byte[sendLength];

 string hexstring = "";

 int k = 0;

 for (int i = 0; i < sendvalue.Length;)

 {

 try

 {

 hexstring = sendvalue.Substring(i, 2);

 }

 catch (Exception ex)

 {

 sResult += "Data format error, the data must be hex data：êo" +

ex.Message;

 return sResult;

 }

72

 int j;

 j = int.Parse(hexstring, System.Globalization.NumberStyles.HexNumber);

 StrBuffer[k] = (byte)j;

 i += 2;

 k++;

 }

 serialPort1.Write(StrBuffer, 0, StrBuffer.Length);

 }

 else

 {

 serialPort1.Write(sendvalue);

 System.Threading.Thread.Sleep(50);

 }

 }

 catch (Exception ex)

 {

 sResult = ex.Message;

 }

 return sResult;

 }

 #endregion

 #region

 protected void SetMSG(string msg)

 {

 ShowMSgDelegate showmsgDelegate = new

ShowMSgDelegate(SetmsgDelegateTargetFun);

 if (txtBoxMSG.InvokeRequired)

 {

 txtBoxMSG.BeginInvoke(showmsgDelegate, msg);

 }

 else

 {

 if (txtBoxMSG.Text.Length > 1024 * 512)

 {

 txtBoxMSG.Text = string.Empty;

 }

 txtBoxMSG.AppendText(DateTime.Now.ToString() + "：êo" + msg + "\r\n");

 }

73

 mu.WaitOne();

 SiXi.Logs.Log.WriteDebugLog(msg);

 mu.ReleaseMutex();

 }

 protected void SetmsgDelegateTargetFun(string msg)

 {

 if (txtBoxMSG.Text.Length > 1024 * 512)

 {

 txtBoxMSG.Text = string.Empty;

 }

 txtBoxMSG.AppendText(DateTime.Now.ToString() + "：êo" + msg + "\r\n");

 }

 protected void SetExceptionMSG(Exception msg)

 {

 ShowExceptionMSgDelegate showmsgDelegate = new

ShowExceptionMSgDelegate(SetExceptionmsgDelegateTargetFun);

 if (txtBoxMSG.InvokeRequired)

 {

 txtBoxMSG.BeginInvoke(showmsgDelegate, msg);

 }

 else

 {

 if (txtBoxMSG.Text.Length > 1024 * 512)

 {

 txtBoxMSG.Text = string.Empty;

 }

 txtBoxMSG.AppendText(DateTime.Now.ToString() + "：êo" + msg.ToString() + "\r\n");

 }

 muExceptionLog.WaitOne();

 SiXi.Logs.Log.WriteDebugLog(msg.ToString());

 muExceptionLog.ReleaseMutex();

 }

 protected void SetExceptionmsgDelegateTargetFun(Exception msg)

 {

 if (txtBoxMSG.Text.Length > 1024 * 512)

 {

 txtBoxMSG.Text = string.Empty;

 }

74

 txtBoxMSG.AppendText(DateTime.Now.ToString() + "：êo" + msg.ToString() + "\r\n");

 }

 #endregion

 private void button5_Click(object sender, EventArgs e)

 {

 UDPClient client = new UDPClient(this.IPText.Text, int.Parse(this.PortTxt.Text), serialPort1,

txtBoxMSG);

 otherThread = new Thread(client.StartByCmd);

 otherThread.Start();

 if (checkBox4.Checked == true)

 {

 string sResult = "";

 sResult = WriteData("at\r\n");

 if (sResult != "")

 {

 SetMSG(sResult);

 }

 }

 if (checkBox3.Checked == true)

 {

 thread = new Thread(client.StartNoCmd);

 thread.Start();

 }

 }

 private void button3_Click(object sender, EventArgs e)

 {

 //if (thread != null)

 // thread.Abort();

 //if (otherThread != null)

 // otherThread.Abort();

 txtBoxMSG.AppendText("\r\nStop receiving data!");

 UDPClient.Stop();

 if (serialPort1.IsOpen)

 {

 serialPort1.Close();

 }

 }

75

 private void checkBox3_CheckedChanged(object sender, EventArgs e)

 {

 }

 private void comboBoxParity_SelectedIndexChanged(object sender, EventArgs e)

 {

 }

 private void comboBoxStopBit_SelectedIndexChanged(object sender, EventArgs e)

 {

 }

 private void label3_Click(object sender, EventArgs e)

 {

 }

 private void comboBoxBondRate_SelectedIndexChanged(object sender, EventArgs e)

 {

 }

 }

}

Form1.Designer.cs

namespace COMServer

{

 partial class Form1

 {

 private System.ComponentModel.IContainer components = null;

 protected override void Dispose(bool disposing)

 {

 if (disposing && (components != null))

 {

76

 components.Dispose();

 }

 base.Dispose(disposing);

 }

 #region Windows

 private void InitializeComponent()

 {

 this.components = new System.ComponentModel.Container();

 this.serialPort1 = new System.IO.Ports.SerialPort(this.components);

 this.groupBox2 = new System.Windows.Forms.GroupBox();

 this.comboBoxParity = new System.Windows.Forms.ComboBox();

 this.btnOpenSerialPort = new System.Windows.Forms.Button();

 this.ComboBoxPortNum = new System.Windows.Forms.ComboBox();

 this.comboBoxBondRate = new System.Windows.Forms.ComboBox();

 this.label1 = new System.Windows.Forms.Label();

 this.label6 = new System.Windows.Forms.Label();

 this.label2 = new System.Windows.Forms.Label();

 this.label5 = new System.Windows.Forms.Label();

 this.LBPortState = new System.Windows.Forms.Label();

 this.comboBoxStopBit = new System.Windows.Forms.ComboBox();

 this.btnCloseSerialPort = new System.Windows.Forms.Button();

 this.label3 = new System.Windows.Forms.Label();

 this.label4 = new System.Windows.Forms.Label();

 this.comboBoxDateBits = new System.Windows.Forms.ComboBox();

 this.groupBox4 = new System.Windows.Forms.GroupBox();

 this.button4 = new System.Windows.Forms.Button();

 this.button2 = new System.Windows.Forms.Button();

 this.PortTxt = new System.Windows.Forms.TextBox();

 this.label7 = new System.Windows.Forms.Label();

 this.IPText = new System.Windows.Forms.TextBox();

 this.label8 = new System.Windows.Forms.Label();

 this.groupBox6 = new System.Windows.Forms.GroupBox();

 this.checkBox3 = new System.Windows.Forms.CheckBox();

 this.checkBox4 = new System.Windows.Forms.CheckBox();

 this.txtBoxMSG = new System.Windows.Forms.TextBox();

 this.groupBox3 = new System.Windows.Forms.GroupBox();

 this.button3 = new System.Windows.Forms.Button();

 this.button5 = new System.Windows.Forms.Button();

 this.groupBox2.SuspendLayout();

77

 this.groupBox4.SuspendLayout();

 this.groupBox6.SuspendLayout();

 this.groupBox3.SuspendLayout();

 this.SuspendLayout();

 this.serialPort1.DataReceived += new

System.IO.Ports.SerialDataReceivedEventHandler(this.serialPort1_DataReceived);

 this.groupBox2.Controls.Add(this.comboBoxParity);

 this.groupBox2.Controls.Add(this.btnOpenSerialPort);

 this.groupBox2.Controls.Add(this.ComboBoxPortNum);

 this.groupBox2.Controls.Add(this.comboBoxBondRate);

 this.groupBox2.Controls.Add(this.label1);

 this.groupBox2.Controls.Add(this.label6);

 this.groupBox2.Controls.Add(this.label2);

 this.groupBox2.Controls.Add(this.label5);

 this.groupBox2.Controls.Add(this.LBPortState);

 this.groupBox2.Controls.Add(this.comboBoxStopBit);

 this.groupBox2.Controls.Add(this.btnCloseSerialPort);

 this.groupBox2.Controls.Add(this.label3);

 this.groupBox2.Controls.Add(this.label4);

 this.groupBox2.Controls.Add(this.comboBoxDateBits);

 this.groupBox2.Dock = System.Windows.Forms.DockStyle.Top;

 this.groupBox2.Location = new System.Drawing.Point(0, 0);

 this.groupBox2.Name = "groupBox2";

 this.groupBox2.Size = new System.Drawing.Size(904, 49);

 this.groupBox2.TabIndex = 23;

 this.groupBox2.TabStop = false;

 this.groupBox2.Text = "Serial Port Setting";

 this.comboBoxParity.FormattingEnabled = true;

 this.comboBoxParity.Items.AddRange(new object[] {

 "Even",

 "Mark",

 "None",

 "Odd",

 "Space"});

 this.comboBoxParity.Location = new System.Drawing.Point(526, 20);

 this.comboBoxParity.Name = "comboBoxParity";

 this.comboBoxParity.Size = new System.Drawing.Size(59, 20);

 this.comboBoxParity.TabIndex = 11;

78

 this.comboBoxParity.SelectedIndexChanged += new

System.EventHandler(this.comboBoxParity_SelectedIndexChanged);

 this.btnOpenSerialPort.Location = new System.Drawing.Point(596, 18);

 this.btnOpenSerialPort.Name = "btnOpenSerialPort";

 this.btnOpenSerialPort.Size = new System.Drawing.Size(51, 23);

 this.btnOpenSerialPort.TabIndex = 2;

 this.btnOpenSerialPort.Text = "Open";

 this.btnOpenSerialPort.UseVisualStyleBackColor = true;

 this.btnOpenSerialPort.Click += new System.EventHandler(this.btnOpenSerialPort_Click);

 this.ComboBoxPortNum.FormattingEnabled = true;

 this.ComboBoxPortNum.Location = new System.Drawing.Point(76, 15);

 this.ComboBoxPortNum.Name = "ComboBoxPortNum";

 this.ComboBoxPortNum.Size = new System.Drawing.Size(54, 20);

 this.ComboBoxPortNum.TabIndex = 3;

 this.comboBoxBondRate.FormattingEnabled = true;

 this.comboBoxBondRate.Items.AddRange(new object[] {

 "1200",

 "2400",

 "4800",

 "9600",

 "19200",

 "115200"});

 this.comboBoxBondRate.Location = new System.Drawing.Point(276, 17);

 this.comboBoxBondRate.Name = "comboBoxBondRate";

 this.comboBoxBondRate.Size = new System.Drawing.Size(58, 20);

 this.comboBoxBondRate.TabIndex = 15;

 this.comboBoxBondRate.SelectedIndexChanged += new

System.EventHandler(this.comboBoxBondRate_SelectedIndexChanged);

 this.label1.AutoSize = true;

 this.label1.Location = new System.Drawing.Point(11, 20);

 this.label1.Name = "label1";

 this.label1.Size = new System.Drawing.Size(71, 12);

 this.label1.TabIndex = 4;

 this.label1.Text = "SerialPort:";

 this.label6.AutoSize = true;

 this.label6.Location = new System.Drawing.Point(235, 20);

79

 this.label6.Name = "label6";

 this.label6.Size = new System.Drawing.Size(35, 12);

 this.label6.TabIndex = 14;

 this.label6.Text = "Baud:";

 this.label2.AutoSize = true;

 this.label2.Location = new System.Drawing.Point(713, 22);

 this.label2.Name = "label2";

 this.label2.Size = new System.Drawing.Size(47, 12);

 this.label2.TabIndex = 5;

 this.label2.Text = "Status:";

 this.label5.AutoSize = true;

 this.label5.Location = new System.Drawing.Point(340, 22);

 this.label5.Name = "label5";

 this.label5.Size = new System.Drawing.Size(53, 12);

 this.label5.TabIndex = 13;

 this.label5.Text = "StopBit:";

 this.LBPortState.AutoSize = true;

 this.LBPortState.ForeColor = System.Drawing.SystemColors.ActiveCaption;

 this.LBPortState.Location = new System.Drawing.Point(766, 24);

 this.LBPortState.Name = "LBPortState";

 this.LBPortState.Size = new System.Drawing.Size(41, 12);

 this.LBPortState.TabIndex = 6;

 this.LBPortState.Text = "NotNow";

 this.comboBoxStopBit.FormattingEnabled = true;

 this.comboBoxStopBit.Items.AddRange(new object[] {

 "1",

 "1.5",

 "2"});

 this.comboBoxStopBit.Location = new System.Drawing.Point(399, 17);

 this.comboBoxStopBit.Name = "comboBoxStopBit";

 this.comboBoxStopBit.Size = new System.Drawing.Size(38, 20);

 this.comboBoxStopBit.TabIndex = 12;

 this.comboBoxStopBit.SelectedIndexChanged += new

System.EventHandler(this.comboBoxStopBit_SelectedIndexChanged);

 this.btnCloseSerialPort.Enabled = false;

 this.btnCloseSerialPort.Location = new System.Drawing.Point(653, 18);

80

 this.btnCloseSerialPort.Name = "btnCloseSerialPort";

 this.btnCloseSerialPort.Size = new System.Drawing.Size(54, 23);

 this.btnCloseSerialPort.TabIndex = 7;

 this.btnCloseSerialPort.Text = "Close";

 this.btnCloseSerialPort.UseVisualStyleBackColor = true;

 this.btnCloseSerialPort.Click += new System.EventHandler(this.btnCloseSerialPort_Click);

 this.label3.AutoSize = true;

 this.label3.Location = new System.Drawing.Point(133, 18);

 this.label3.Name = "label3";

 this.label3.Size = new System.Drawing.Size(59, 12);

 this.label3.TabIndex = 8;

 this.label3.Text = "DataBits:";

 this.label3.Click += new System.EventHandler(this.label3_Click);

 this.label4.AutoSize = true;

 this.label4.Location = new System.Drawing.Point(443, 24);

 this.label4.Name = "label4";

 this.label4.Size = new System.Drawing.Size(77, 12);

 this.label4.TabIndex = 10;

 this.label4.Text = "FlowControl:";

 this.comboBoxDateBits.FormattingEnabled = true;

 this.comboBoxDateBits.Items.AddRange(new object[] {

 "5",

 "6",

 "7",

 "8"});

 this.comboBoxDateBits.Location = new System.Drawing.Point(193, 15);

 this.comboBoxDateBits.Name = "comboBoxDateBits";

 this.comboBoxDateBits.Size = new System.Drawing.Size(39, 20);

 this.comboBoxDateBits.TabIndex = 9;

 this.groupBox4.Controls.Add(this.button4);

 this.groupBox4.Controls.Add(this.button2);

 this.groupBox4.Controls.Add(this.PortTxt);

 this.groupBox4.Controls.Add(this.label7);

 this.groupBox4.Controls.Add(this.IPText);

 this.groupBox4.Controls.Add(this.label8);

 this.groupBox4.Dock = System.Windows.Forms.DockStyle.Top;

 this.groupBox4.Location = new System.Drawing.Point(0, 49);

81

 this.groupBox4.Name = "groupBox4";

 this.groupBox4.Size = new System.Drawing.Size(904, 57);

 this.groupBox4.TabIndex = 28;

 this.groupBox4.TabStop = false;

 this.groupBox4.Text = "UDPsetting";

 this.button4.Location = new System.Drawing.Point(423, 19);

 this.button4.Name = "button4";

 this.button4.Size = new System.Drawing.Size(75, 23);

 this.button4.TabIndex = 15;

 this.button4.Text = "reset";

 this.button4.UseVisualStyleBackColor = true;

 this.button2.Location = new System.Drawing.Point(342, 19);

 this.button2.Name = "button2";

 this.button2.Size = new System.Drawing.Size(75, 23);

 this.button2.TabIndex = 14;

 this.button2.Text = "set";

 this.button2.UseVisualStyleBackColor = true;

 this.PortTxt.Location = new System.Drawing.Point(248, 21);

 this.PortTxt.Name = "PortTxt";

 this.PortTxt.Size = new System.Drawing.Size(81, 21);

 this.PortTxt.TabIndex = 13;

 this.label7.AutoSize = true;

 this.label7.Location = new System.Drawing.Point(204, 30);

 this.label7.Name = "label7";

 this.label7.Size = new System.Drawing.Size(41, 12);

 this.label7.TabIndex = 12;

 this.label7.Text = "Port：êo";

 this.IPText.Location = new System.Drawing.Point(76, 21);

 this.IPText.Name = "IPText";

 this.IPText.Size = new System.Drawing.Size(100, 21);

 this.IPText.TabIndex = 11;

 this.label8.AutoSize = true;

 this.label8.Location = new System.Drawing.Point(36, 30);

 this.label8.Name = "label8";

 this.label8.Size = new System.Drawing.Size(29, 12);

82

 this.label8.TabIndex = 11;

 this.label8.Text = "IP：êo";

 this.groupBox6.Controls.Add(this.checkBox3);

 this.groupBox6.Controls.Add(this.checkBox4);

 this.groupBox6.Dock = System.Windows.Forms.DockStyle.Top;

 this.groupBox6.Location = new System.Drawing.Point(0, 106);

 this.groupBox6.Name = "groupBox6";

 this.groupBox6.Size = new System.Drawing.Size(904, 55);

 this.groupBox6.TabIndex = 29;

 this.groupBox6.TabStop = false;

 this.groupBox6.Text = "SensorCommands";

 this.checkBox3.AutoSize = true;

 this.checkBox3.Location = new System.Drawing.Point(210, 26);

 this.checkBox3.Name = "checkBox3";

 this.checkBox3.Size = new System.Drawing.Size(120, 16);

 this.checkBox3.TabIndex = 1;

 this.checkBox3.Text = "get sensor value";

 this.checkBox3.UseVisualStyleBackColor = true;

 this.checkBox3.CheckedChanged += new

System.EventHandler(this.checkBox3_CheckedChanged);

 this.checkBox4.AutoSize = true;

 this.checkBox4.Location = new System.Drawing.Point(38, 26);

 this.checkBox4.Name = "checkBox4";

 this.checkBox4.Size = new System.Drawing.Size(96, 16);

 this.checkBox4.TabIndex = 0;

 this.checkBox4.Text = "status check";

 this.checkBox4.UseVisualStyleBackColor = true;

 this.txtBoxMSG.Location = new System.Drawing.Point(14, 20);

 this.txtBoxMSG.Multiline = true;

 this.txtBoxMSG.Name = "txtBoxMSG";

 this.txtBoxMSG.ScrollBars = System.Windows.Forms.ScrollBars.Vertical;

 this.txtBoxMSG.Size = new System.Drawing.Size(860, 257);

 this.txtBoxMSG.TabIndex = 0;

 this.groupBox3.Controls.Add(this.txtBoxMSG);

 this.groupBox3.Location = new System.Drawing.Point(4, 161);

 this.groupBox3.Name = "groupBox3";

83

 this.groupBox3.Size = new System.Drawing.Size(880, 297);

 this.groupBox3.TabIndex = 26;

 this.groupBox3.TabStop = false;

 this.groupBox3.Text = "status information";

 this.button3.Location = new System.Drawing.Point(526, 464);

 this.button3.Name = "button3";

 this.button3.Size = new System.Drawing.Size(75, 23);

 this.button3.TabIndex = 31;

 this.button3.Text = "terminate";

 this.button3.UseVisualStyleBackColor = true;

 this.button3.Click += new System.EventHandler(this.button3_Click);

 this.button5.Location = new System.Drawing.Point(389, 464);

 this.button5.Name = "button5";

 this.button5.Size = new System.Drawing.Size(75, 23);

 this.button5.TabIndex = 30;

 this.button5.Text = "start";

 this.button5.UseVisualStyleBackColor = true;

 this.button5.Click += new System.EventHandler(this.button5_Click);

 this.AutoScaleDimensions = new System.Drawing.SizeF(6F, 12F);

 this.AutoScaleMode = System.Windows.Forms.AutoScaleMode.Font;

 this.ClientSize = new System.Drawing.Size(904, 509);

 this.Controls.Add(this.groupBox6);

 this.Controls.Add(this.button3);

 this.Controls.Add(this.button5);

 this.Controls.Add(this.groupBox4);

 this.Controls.Add(this.groupBox3);

 this.Controls.Add(this.groupBox2);

 this.MaximizeBox = false;

 this.Name = "Form1";

 this.Text = "SerialConnectionToSensor";

 this.Load += new System.EventHandler(this.Form1_Load);

 this.groupBox2.ResumeLayout(false);

 this.groupBox2.PerformLayout();

 this.groupBox4.ResumeLayout(false);

 this.groupBox4.PerformLayout();

 this.groupBox6.ResumeLayout(false);

 this.groupBox6.PerformLayout();

 this.groupBox3.ResumeLayout(false);

84

 this.groupBox3.PerformLayout();

 this.ResumeLayout(false);

 }

 #endregion

 private System.IO.Ports.SerialPort serialPort1;

 private System.Windows.Forms.GroupBox groupBox2;

 private System.Windows.Forms.ComboBox comboBoxParity;

 private System.Windows.Forms.Button btnOpenSerialPort;

 private System.Windows.Forms.ComboBox ComboBoxPortNum;

 private System.Windows.Forms.ComboBox comboBoxBondRate;

 private System.Windows.Forms.Label label1;

 private System.Windows.Forms.Label label6;

 private System.Windows.Forms.Label label2;

 private System.Windows.Forms.Label label5;

 private System.Windows.Forms.Label LBPortState;

 private System.Windows.Forms.ComboBox comboBoxStopBit;

 private System.Windows.Forms.Button btnCloseSerialPort;

 private System.Windows.Forms.Label label3;

 private System.Windows.Forms.Label label4;

 private System.Windows.Forms.ComboBox comboBoxDateBits;

 private System.Windows.Forms.GroupBox groupBox4;

 private System.Windows.Forms.Button button4;

 private System.Windows.Forms.Button button2;

 private System.Windows.Forms.TextBox PortTxt;

 private System.Windows.Forms.Label label7;

 private System.Windows.Forms.TextBox IPText;

 private System.Windows.Forms.Label label8;

 private System.Windows.Forms.GroupBox groupBox6;

 private System.Windows.Forms.CheckBox checkBox3;

 private System.Windows.Forms.CheckBox checkBox4;

 private System.Windows.Forms.TextBox txtBoxMSG;

 private System.Windows.Forms.GroupBox groupBox3;

 private System.Windows.Forms.Button button3;

 private System.Windows.Forms.Button button5;

 }

}

85

Program.cs

using System;

using System.Collections.Generic;

using System.Windows.Forms;

namespace COMServer

{

 static class Program

 {

 [STAThread]

 static void Main()

 {

 Application.ThreadException += new

System.Threading.ThreadExceptionEventHandler(Application_ThreadException);

 AppDomain.CurrentDomain.UnhandledException += new

UnhandledExceptionEventHandler(CurrentDomain_UnhandledException);

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 }

 static void CurrentDomain_UnhandledException(object sender, UnhandledExceptionEventArgs e)

 {

 Exception error = e.ExceptionObject as Exception;

 SiXi.Logs.Log.WriteExceptionLog(error);

 Application.Exit();

 }

 static void Application_ThreadException(object sender,

System.Threading.ThreadExceptionEventArgs e)

 {

 SiXi.Logs.Log.WriteExceptionLog(e.Exception);

 Application.Exit();

 }

 }

}

86

UDPClient.cs

using System;

using System.Collections.Generic;

using System.Text;

using System.Net;

using System.Net.Sockets;

using System.Text.RegularExpressions;

using System.Diagnostics;

namespace COMServer

{

 public class UDPClient

 {

 private static int n = 0;

 private static Socket serverSocket = null;

 private string ip;

 private static bool isStop = false;

 private int port = 0;

 private System.IO.Ports.SerialPort serialPort = null;

 private System.Windows.Forms.TextBox listBox = null;

 public static string MainContent = "";

 public UDPClient(string _ip, int _port, System.IO.Ports.SerialPort _serialPort,

System.Windows.Forms.TextBox _listBox)

 {

 ip = _ip;

 port = _port;

 serialPort = _serialPort;

 listBox = _listBox;

 }

 public void StartByCmd()

 {

 try

 {

 if (!isStop)

 {

 int recv;

 byte[] data = new byte[1024];

 IPEndPoint ipep = new IPEndPoint(IPAddress.Any, 9999);

87

 Socket newsock = new Socket(AddressFamily.InterNetwork,

 SocketType.Dgram, ProtocolType.Udp);

 newsock.Bind(ipep);

 IPEndPoint sender = new IPEndPoint(IPAddress.Any, 9999);

 EndPoint Remote = (EndPoint)(sender);

 recv = newsock.ReceiveFrom(data, ref Remote);

 newsock.SendTo(data, data.Length, SocketFlags.None, Remote);

 while (true)

 {

 string cmd = Encoding.Default.GetString(data, 0, recv);

 listBox.AppendText(System.DateTime.Now.ToString() + "The receiving

command is !!!!!!!!!!!!!!!!!!!!:" + cmd + "\r\n");

 if (cmd == "ATS200?\r\n")

 {

 serialPort.Write("ATS200?\r\n");

 // System.Threading.Thread.Sleep(50);

 if (!string.IsNullOrEmpty(MainContent))

 {

 byte[] sendMessage = Encoding.Default.GetBytes(MainContent);//

Encoding.Default.GetBytes(serialPort.ReadLine());

 serverSocket.SendTo(sendMessage, Remote);

 listBox.AppendText(System.DateTime.Now.ToString() +

"@@@@@@@@@@@@@Reply" + cmd + "data is sent!");

 }

 }

 }

 }

 }

 catch (Exception ex)

 {

 if (serverSocket != null)

 serverSocket.Close();

 }

 finally

 {

 if (serverSocket != null)

 serverSocket.Close();

 }

88

 }

 public void StartNoCmd()

 {

 Stopwatch sw = new Stopwatch();

 sw.Start();

 try

 {

 if (!isStop)

 {

 IPAddress serverIP = IPAddress.Parse(ip);

 IPEndPoint server = new IPEndPoint(serverIP, port);

 Socket serverSocket = new Socket(AddressFamily.InterNetwork,

SocketType.Dgram, ProtocolType.Udp);

 while (true)

 {

 n++;

 byte[] cmd = Encoding.Default.GetBytes("ATS200?\r\n");

 serialPort.Write("ATS200?\r\n");

 if (!string.IsNullOrEmpty(MainContent))

 {

 byte[] sendMessage = Encoding.Default.GetBytes(MainContent);

 serverSocket.SendTo(sendMessage, sendMessage.Length,

SocketFlags.None, server);

 Match match = Regex.Match(MainContent, @"([0-9]+)");

 listBox.AppendText(System.DateTime.Now.ToString() + "UDP data is ("

+ MainContent + "). \r\n Data is sent!\r\n");

 System.Threading.Thread.Sleep(3000);

 sw.Stop();

 listBox.AppendText("\r\nThe measuring packet number:" + n + " The

measuring duration is:" + sw.ElapsedMilliseconds.ToString() + "\r\n");

 }

 }

 }

 }

 catch (Exception ex)

 {

89

 if (serverSocket != null)

 serverSocket.Close();

 }

 finally

 {

 if (serverSocket != null)

 serverSocket.Close();

 }

 }

 public static void Stop()

 {

 if (serverSocket != null)

 {

 serverSocket.Close();

 isStop = true;

 }

 }

 }

}

90

Appendix C: The code of receiving and
decoding program

SensorReceiver.java

package sensorserver;

import java.io.*;

import java.net.DatagramSocket;

public class SensorReceiver {

 /**

 * @param args the command line arguments

 */

 public static void main(String[] args) {

 // TODO code application logic here

 int udpPortNumber;

 if (args.length == 1) {

 try {

 udpPortNumber = Integer.parseInt(args[0]);

 java.sql.Date date = new

java.sql.Date(System.currentTimeMillis());

 DatagramSocket updsocket = new

DatagramSocket(udpPortNumber);

 SensorReceiverThread sensorthread = new

SensorReceiverThread(updsocket);

 sensorthread.start();

 java.sql.Date date1 = new

java.sql.Date(System.currentTimeMillis());

 System.out.println(date + "1111111111111111"+ date1);

 } catch (NumberFormatException e) {

91

 e.printStackTrace();

 System.out.println("[Server Info] ERROR: The argument should

be port number for udp socket.");

 } catch (IOException ioe) {

 ioe.printStackTrace();

 System.out.println("[Server Info] I/O ERROR: The error occurs

when opening the socket.");

 }

 }else {

 System.out.println("[Server Info] ERROR: You have to input the port

number of udp socket in agument field." + "\n");

 }

 }

}

SensorReceiverThread.java

package sensorserver;

import java.io.*;

import java.net.*;

import db.DBManager;

import java.sql.ResultSet;

import java.text.SimpleDateFormat;

import java.util.*;

public class SensorReceiverThread extends Thread {

 DatagramSocket updsocket;

 String stringHex;

 public static InetAddress sensoraddress1 = null;

 public static String sensoraddress = "";

 public static int sensorport = 0;

 public static int sensorTemp = 0;

 public static int sensorTemp1 = 0;

 public static int sensorTemp2 = 0;

 public static int sensorTemp3 = 0;

92

 public static int type = 0;

 public static int count = 0;

 public SensorReceiverThread(DatagramSocket updsocket) throws

SocketException {

 this.updsocket = updsocket;

 }

 @Override

 public synchronized void start() {

 super.start();

 }

 @Override

 public void run() {

 byte[] buffer = new byte[2048];

 while (true) {

 DBManager dbm = new DBManager();

 dbm.dbConnection();

 count++;

 DatagramPacket udpsensorpacket = new DatagramPacket(buffer,

buffer.length);

 long startTime = System.currentTimeMillis();

 try {

 updsocket.receive(udpsensorpacket);

 sensoraddress1 = udpsensorpacket.getAddress();

 sensoraddress = sensoraddress1.toString().substring(1);

 sensorport = udpsensorpacket.getPort();

 String msg = new String(buffer, 0, udpsensorpacket.getLength());

 udpsensorpacket.setLength(buffer.length);

 String detect = msg.substring(0, 2);

 if (detect.equals("AT")) {

 type = 1;

 SensorParserLowPower sensorpacketparser = new

SensorParserLowPower(msg);

93

 sensorTemp = sensorpacketparser.getSensorTemp();

 Date d = new Date();

 long longtime = d.getTime();

 d.toLocaleString();

 SimpleDateFormat sdf = new

SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 sdf.format(longtime);

 String query = "INSERT INTO dbo.SensorDataInfo

(IP,Temp,ReceiveTime) "

 + "VALUES ('" + sensoraddress + "', '" +

sensorTemp + "', '" + sdf.format(longtime) + "')";

 dbm.dbUpdate(query);

 String query1 = "SELECT * FROM dbo.SensorInfo WHERE

IP LIKE '" + sensoraddress + "'";

 ResultSet rs1 = dbm.dbQuery(query1);

 try {

 if (rs1.next()) {

 String query2 = "DELETE FROM dbo.SensorInfo

WHERE IP LIKE '" + sensoraddress + "'";

 dbm.dbUpdate(query2);

 String query3 = "INSERT INTO dbo.SensorInfo

(IP,Port) "

 + "VALUES ('" + sensoraddress + "', '" +

sensorport + "')";

 dbm.dbUpdate(query3);

 } else {

 String query4 = "INSERT INTO dbo.SensorInfo

(IP,Port) "

 + "VALUES ('" + sensoraddress + "', '" +

sensorport + "')";

 dbm.dbUpdate(query4);

 }

 } catch (Exception e) {

 System.err.println(e);

 }

 String query5 = "SELECT * FROM dbo.SensorTypeInfo

WHERE IP LIKE '" + sensoraddress + "'";

94

 ResultSet rs2 = dbm.dbQuery(query5);

 try {

 if (rs2.next()) {

 String query6 = "DELETE FROM

dbo.SensorTypeInfo WHERE IP LIKE '" + sensoraddress + "'";

 dbm.dbUpdate(query6);

 String query7 = "INSERT INTO

dbo.SensorTypeInfo (IP,Type) "

 + "VALUES ('" + sensoraddress + "', '" +

type + "')";

 dbm.dbUpdate(query7);

 } else {

 String query8 = "INSERT INTO

dbo.SensorTypeInfo (IP,Type) "

 + "VALUES ('" + sensoraddress + "', '" +

type + "')";

 dbm.dbUpdate(query8);

 }

 } catch (Exception e) {

 System.err.println(e);

 }

 } else {

 type = 2;

 SensorParserLowPAN sensorParserLowPAN = new

SensorParserLowPAN(msg);

 int[] st = new int[4];

 st = sensorParserLowPAN.getSensorTemp();

 sensorTemp = st[0];

 sensorTemp1 = st[1];

 sensorTemp2 = st[2];

 sensorTemp3 = st[3];

 Date d = new Date();

 long longtime = d.getTime();

 d.toLocaleString();

 SimpleDateFormat sdf = new

SimpleDateFormat("yyyy-MM-dd hh:mm:ss");

 sdf.format(longtime);

 if (sensorTemp != 0 && sensorTemp1 != 0 &&

95

sensorTemp2 != 0 && sensorTemp3 != 0) {

 } else if (sensorTemp != 0 && sensorTemp1 != 0 &&

sensorTemp2 != 0 && sensorTemp3 == 0) {

 } else if (sensorTemp != 0 && sensorTemp1 != 0 &&

sensorTemp2 == 0 && sensorTemp3 == 0) {

 } else if (sensorTemp != 0 && sensorTemp1 == 0 &&

sensorTemp2 == 0 && sensorTemp3 == 0) {

 String query = "INSERT INTO dbo.SensorDataInfo

(IP,Temp,ReceiveTime) "

 + "VALUES ('" + sensoraddress + "', '" +

sensorTemp + "', '" + sdf.format(longtime) + "')";

 dbm.dbUpdate(query);

 String query1 = "SELECT * FROM dbo.SensorInfo

WHERE IP LIKE '" + sensoraddress + "'";

 ResultSet rs1 = dbm.dbQuery(query1);

 try {

 if (rs1.next()) {

 String query2 = "DELETE FROM

dbo.SensorInfo WHERE IP LIKE '" + sensoraddress + "'";

 dbm.dbUpdate(query2);

 String query3 = "INSERT INTO

dbo.SensorInfo (IP,Port) "

 + "VALUES ('" + sensoraddress + "',

'" + sensorport + "')";

 dbm.dbUpdate(query3);

 } else {

 String query4 = "INSERT INTO

dbo.SensorInfo (IP,Port) "

 + "VALUES ('" + sensoraddress + "',

'" + sensorport + "')";

 dbm.dbUpdate(query4);

 }

 } catch (Exception e) {

 System.err.println(e);

 }

 String query5 = "SELECT * FROM

dbo.SensorTypeInfo WHERE IP LIKE '" + sensoraddress + "'";

 ResultSet rs2 = dbm.dbQuery(query5);

96

 try {

 if (rs2.next()) {

 String query6 = "DELETE FROM

dbo.SensorTypeInfo WHERE IP LIKE '" + sensoraddress + "'";

 dbm.dbUpdate(query6);

 String query7 = "INSERT INTO

dbo.SensorTypeInfo (IP,Type) "

 + "VALUES ('" + sensoraddress + "',

'" + type + "')";

 dbm.dbUpdate(query7);

 } else {

 String query8 = "INSERT INTO

dbo.SensorTypeInfo (IP,Type) "

 + "VALUES ('" + sensoraddress + "',

'" + type + "')";

 dbm.dbUpdate(query8);

 }

 } catch (Exception e) {

 System.err.println(e);

 }

 } else if (sensorTemp == 0 && sensorTemp1 == 0 &&

sensorTemp2 == 0 && sensorTemp3 == 0) {

 }

 }

 //Thread.yield();

 } catch (IOException ex) {

 System.err.println(ex);

 }

 long endTime = System.currentTimeMillis();

 long runTime = endTime - startTime;

 dbm.dbDisconnect();

 System.out.print("The run time is ：" + runTime + "ms. The measuring

packet is" + count + "\n");

 }

 }

}

97

SensorParserLowPower.java

package sensorserver;

public class SensorParserLowPower {

 String sensorpacket = null;

 public SensorParserLowPower(String sensorpacket) {

 this.sensorpacket = sensorpacket;

 }

 public int getSensorTemp() {

 String Temp = sensorpacket.substring(2);

 int sensorTemp = Integer.parseInt(Temp);

 return sensorTemp;

 }

}

SensorParserLowPAN.java

package sensorserver;

public class SensorParserLowPAN {

 String sensorpacket = null;

 public SensorParserLowPAN(String sensorpacket) {

 this.sensorpacket = sensorpacket;

 }

 public int[] getSensorTemp() {

 int[] temp = new int[4];

 byte[] buffer = sensorpacket.getBytes();

 StringBuffer sb = new StringBuffer();

 String stringHex;

 for (int i = 0; i < sensorpacket.length(); i++) {

 stringHex = Integer.toHexString(buffer[i] & 0xFF);

 if (stringHex.length() == 1) {

 stringHex = '0' + stringHex;

98

 }

 sb.append(stringHex);

 }

 sb.toString();

 String[] tempA = new String[4];

 tempA[0] = sb.toString().substring(4, 8);

 tempA[1] = sb.toString().substring(8, 12);

 tempA[2] = sb.toString().substring(12, 16);

 tempA[3] = sb.toString().substring(16);

 temp[0] = Integer.parseInt(tempA[0], 16);

 temp[1] = Integer.parseInt(tempA[1], 16);

 temp[2] = Integer.parseInt(tempA[2], 16);

 temp[3] = Integer.parseInt(tempA[3], 16);

 return temp;

 }

}

DBManager.java

package db;

import java.sql.Connection;

import java.sql.DriverManager;

import java.sql.ResultSet;

import java.sql.SQLException;

import java.sql.Statement;

public class DBManager {

 private Connection conn = null;

 private Statement stmt = null;

 private ResultSet rs = null;

 public void dbConnection() {

99

 try {

 Class.forName("com.microsoft.sqlserver.jdbc.SQLServerDriver");

 String url =

"jdbc:sqlserver://localhost:1433;DatabaseName=SensorDB";

 conn = DriverManager.getConnection(url, "sa", "123456");

 //conn = ds.getConnection();

 stmt = conn.createStatement();

 } catch (Exception e) {

 System.err.println(e);

 }

 //return stmt;

 }

 public ResultSet dbQuery(String query) {

 //stmt = this.dbConnection();

 try {

 rs = stmt.executeQuery(query);

 } catch (SQLException e) {

 System.err.println(e);

 }

 return rs;

 }

 public void dbUpdate(String query) {

 try {

 stmt.executeUpdate(query);

 } catch (SQLException e) {

 System.err.println(e);

 }

 }

 public void dbDisconnect() {

 try {

 if (this.rs != null) {

 this.rs.close();

 }

 if (this.stmt != null) {

 this.stmt.close();

 }

 if (this.conn != null) {

100

 this.conn.close();

 }

 } catch (SQLException e) {

 System.err.println(e);

 }

 }

}

101

Appendix D: The code of Web server

Default.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Default.aspx.cs"

Inherits="SensorSolution._Default" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body style="font-size:12px">

 <form id="form1" runat="server">

 <div>

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <thead>

 <tr>

 <td align="center" colspan="2">

 <h3>Log in</h3>

 </td>

 </tr>

 </thead>

 <tr>

 <td align="right">

 Username：êo

 </td>

 <td align="left">

 <asp:TextBox ID="UserNameTxt" runat="server" Width="204px"></asp:TextBox>

 <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"

 ControlToValidate="UserNameTxt" ErrorMessage="Username cannot

empty!"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td align="right">

 Password：êo

 </td>

102

 <td align="left">

 <asp:TextBox ID="PwdTxt" runat="server" TextMode="Password"

Width="203px"></asp:TextBox>

 <asp:RequiredFieldValidator ID="RequiredFieldValidator2" runat="server"

 ControlToValidate="PwdTxt" ErrorMessage="Password cannot

empty!"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td align="right">

 </td>

 <td align="left">

 <asp:Button ID="LoginBtn" runat="server" Text="Login" Width="77px"

 onclick="LoginBtn_Click" /> Sign Up

 </td>

 </tr>

 </table>

 </div>

 </form>

</body>

</html>

Default.aspx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using SensorWeb.Entity;

using SensorWeb.DataContext;

namespace SensorSolution

{

 public partial class _Default : System.Web.UI.Page

 {

 private UserDataContext _userDataContext = new UserDataContext();

 protected void Page_Load(object sender, EventArgs e)

 {

103

 }

 protected void LoginBtn_Click(object sender, EventArgs e)

 {

 try

 {

 UserInfo userEntiy = new UserInfo();

 userEntiy.UserName = this.UserNameTxt.Text.Trim();

 userEntiy.Pwd = this.PwdTxt.Text.Trim();

 int result=_userDataContext.Login(userEntiy);

 if (result > 0)

 {

 Session["UserID"] = result;

 Session["UserName"] = this.UserNameTxt.Text.Trim();

 Server.Transfer("Main.aspx");

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Login failed! Please check your

username and password!');</script>");

 }

 }

 catch

 {

 }

 }

 }

}

Default.aspx.Designer.cs

namespace SensorSolution {

 public partial class _Default {

104

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 protected global::System.Web.UI.WebControls.TextBox UserNameTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator1;

 protected global::System.Web.UI.WebControls.TextBox PwdTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator2;

 protected global::System.Web.UI.WebControls.Button LoginBtn;

 }

}

Main.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Main.aspx.cs"

Inherits="SensorSolution.Main" %>

<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 Namespace="System.Web.UI" TagPrefix="asp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body style="font-size:12px">

 <form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="server">

 </asp:ScriptManager>

 Welcome<asp:Label ID="UserNameLbl" runat="server"></asp:Label>to Sensor Server!Logout

105

 <hr />

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <tr>

 <td width="30%" valign="top" height="600px">

 <table width="100%" cellpadding="0" cellspacing="0" height="600px">

 <tr>

 <td height="50%" valign="top">

 <fieldset style="height:300px">

 <legend>Search Area</legend>

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <tr>

 <td align="right">IP address：êo</td>

 <td align="left">

 <asp:TextBox ID="SensorIPTxt" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td align="center" colspan="2">

 <asp:Button ID="SearchBtn" runat="server" Text="Search" Width="77px"

 onclick="SearchBtn_Click" />

 </td>

 </tr>

 </table>

 History

 </fieldset>

 </td>

 </tr>

 <tr>

 <td valign="top">

 <fieldset style="height:300px">

 <legend>Operate Area</legend>

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <tr>

 <td align="right">IP address：êo</td>

 <td align="left">

 <asp:TextBox ID="SensorIPTxtControl" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td align="right">Commands：êo</td>

106

 <td align="left">

 <asp:DropDownList ID="CmdList" runat="server">

 <asp:ListItem Value="-1" Text="==Command List==" Selected="True"></asp:ListItem>

 </asp:DropDownList>

 </td>

 </tr>

 <tr>

 <td> </td>

 <td align="left">

 <asp:Button ID="ReportBtn" Text="Send" runat="server" onclick="ReportBtn_Click" />

 </td>

 </tr>

 <tr>

 <td colspan="2">

 <fieldset>

 <legend>Reply of Command</legend>

 IP address：êo<asp:Label ID="IDLbl" runat="server"></asp:Label>

 Current temperature：êo<asp:Label ID="TempLbl" runat="server"></asp:Label>

 </fieldset>

 </td>

 </tr>

 </table>

 </fieldset>

 </td>

 </tr>

 </table>

 </td>

 <td valign="top">

 <fieldset>

 <legend>Temperature</legend>

 <asp:UpdatePanel ID="UpdatePanel1" runat="server">

 <ContentTemplate>

 <iframe width="100%" frameborder="0" scrolling="auto" height="600px" id="MapFrame"

runat="server"></iframe>

 </ContentTemplate>

 <Triggers>

 <asp:AsyncPostBackTrigger ControlID="Timer1" EventName="Tick" />

 </Triggers>

 </asp:UpdatePanel>

 <asp:Timer ID="Timer1" runat="server" Interval="5000" ontick="Timer1_Tick"

Enabled="false"></asp:Timer>

107

 </fieldset>

 </td>

 </tr>

 </table>

 </form>

</body>

</html>

Main.aspx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using SensorWeb.DataContext;

using SensorWeb.Entity;

using System.Net;

using System.Net.Sockets;

using System.Threading;

using System.IO;

using System.Text;

namespace SensorSolution

{

 public partial class Main : System.Web.UI.Page

 {

 private SensorTypeDataContext sensorTypeDataContext = new SensorTypeDataContext();

 private SensorWeb.Entity.SensorInfo _serverInfo;

 private static string UDPResult = "";

 protected void Page_Load(object sender, EventArgs e)

 {

 if (Session["UserID"] != null && Session["UserID"].ToString().Trim() != "")

 {

 this.UserNameLbl.Text = Session["UserName"].ToString();

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please log in

firstly!');window.location.href='Default.aspx';</script>");

108

 }

 string configStr =

System.Configuration.ConfigurationManager.AppSettings["cmd"].ToString();

 if (!string.IsNullOrEmpty(configStr))

 {

 string[] cmdStr = configStr.Split(',');

 if (cmdStr != null && cmdStr.Length > 0)

 {

 for (int i = 0; i < cmdStr.Length; i++)

 {

 ListItem item = new ListItem(cmdStr[i].Trim(),cmdStr[i].Trim());

 if (!this.CmdList.Items.Contains(item))

 {

 this.CmdList.Items.Add(item);

 }

 }

 }

 }

 }

 private int ToolTip(type type)

 {

 int result = 0;

 switch (type)

 {

 case type.HP:

 result = 1;

 break;

 case type.LoWPAN:

 result = 2;

 break;

 }

 return result;

 }

 protected void SearchBtn_Click(object sender, EventArgs e)

 {

 type type;

 int searchType = -1;

 int tmp=0;

109

 if (!string.IsNullOrEmpty(this.SensorIPTxt.Text))

 {

 type = sensorTypeDataContext.GetSensorTypeByIP(this.SensorIPTxt.Text);

 searchType = 1;

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please input an IP address of a

sensor!');</script>");

 searchType = -1;

 this.MapFrame.Attributes["src"] = "";

 return;

 }

 #region

 switch (searchType)

 {

 case 1:

 this.MapFrame.Attributes["src"] = "DrawImage.aspx?UserID=" +

this.SensorIPTxt.Text;

 this.Timer1.Enabled = true;

 break;

 }

 #endregion

 }

 protected void Timer1_Tick(object sender, EventArgs e)

 {

 if (this.MapFrame.Attributes["src"]!=null&&this.MapFrame.Attributes["src"].Trim() != "")

 {

 this.MapFrame.Attributes["src"] = this.MapFrame.Attributes["src"];

 }

 else

 {

 this.MapFrame.Attributes["src"] = "";

 }

 }

110

 private void SendUdpHP()

 {

 IPEndPoint server = new IPEndPoint(IPAddress.Parse(_serverInfo.SensorIP),

_serverInfo.Port);

 UdpClient udpClient = new UdpClient();

 String cmd = this.CmdList.SelectedValue.Trim();

 if (cmd == "GetTemp")

 {

 byte[] sendMessage = Encoding.Default.GetBytes("ATS200?\r\n");

 udpClient.Send(sendMessage, sendMessage.Length, server);

 string result = "";

 byte[] receiveMsg = udpClient.Receive(ref server);

 result = Encoding.Default.GetString(receiveMsg).Substring(2);

 IPEndPoint RemoteIpEndPoint = new IPEndPoint(IPAddress.Any, 0);

 String receiveIP = RemoteIpEndPoint.Address.ToString();

 int receivePort = RemoteIpEndPoint.Port;

 SensorDataContext SensorDataContext = new SensorDataContext();

 int existPort =

SensorDataContext.GetSensorPortByIP(this.SensorIPTxtControl.Text);

 if (!string.IsNullOrEmpty(result))

 {

 SensorData sensorEntity = new SensorData();

 if (receiveIP == this.SensorIPTxtControl.Text && existPort == receivePort)

 {

 sensorEntity.SensorIP = receiveIP;

 sensorEntity.Temp = int.Parse(result);

 sensorEntity.ReciveTime = System.DateTime.Now;

 UDPResult = result;

 new

SensorWeb.DataContext.SensorDataContext().InsertSensorData(sensorEntity);

 }

 }

 udpClient.Close();

 }

 }

 private void SendUdpLowpan()

 {

111

 IPEndPoint server = new IPEndPoint(IPAddress.Parse(_serverInfo.SensorIP),

_serverInfo.Port);

 UdpClient udpClient = new UdpClient();

 String cmd = this.CmdList.SelectedValue.Trim();

 if (cmd == "GetTemp")

 {

 byte[] sendMessage = Encoding.Default.GetBytes("05");

 udpClient.Send(sendMessage, sendMessage.Length, server);

 string result = "";

 byte[] receiveMsg = udpClient.Receive(ref server);

 result = Encoding.Default.GetString(receiveMsg);

 IPEndPoint RemoteIpEndPoint = new IPEndPoint(IPAddress.Any, 0);

 String receiveIP = RemoteIpEndPoint.Address.ToString();

 int receivePort = RemoteIpEndPoint.Port;

 SensorDataContext SensorDataContext = new SensorDataContext();

 int existPort = SensorDataContext.GetSensorPortByIP(this.SensorIPTxtControl.Text);

 if (!string.IsNullOrEmpty(result))

 {

 SensorData sensorEntity = new SensorData();

 if (receiveIP == this.SensorIPTxtControl.Text && existPort == receivePort)

 {

 sensorEntity.SensorIP = receiveIP;

 sensorEntity.Temp = int.Parse(result);

 sensorEntity.ReciveTime = System.DateTime.Now;

 UDPResult = result;

 new

SensorWeb.DataContext.SensorDataContext().InsertSensorData(sensorEntity);

 }

 }

 udpClient.Close();

 //}

 }

 }

 protected void ReportBtn_Click(object sender, EventArgs e)

 {

 try

 {

 if (string.IsNullOrEmpty(this.SensorIPTxtControl.Text))

 {

112

 Page.RegisterStartupScript("msg", "<script>alert('Please input an SensorIP address

of sensor!');</script>");

 }

 if (this.CmdList.SelectedIndex == -1 || this.CmdList.SelectedValue == "-1")

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please choose a

command!');</script>");

 }

 else

 {

 #region udp command

 _serverInfo = new

SensorWeb.DataContext.SensorInfoDataContext().GetSensorInfoBySensorIP(this.SensorIPTxtControl.Text)

;

 type type;

 if (!string.IsNullOrEmpty(this.SensorIPTxt.Text))

 {

 type = sensorTypeDataContext.GetSensorTypeByIP(this.SensorIPTxt.Text);

 int typeResult = ToolTip(type);

 if (typeResult == 1)

 {

 Thread sendMsgThread = null;

 try

 {

 sendMsgThread = new Thread(new ThreadStart(SendUdpHP));

 sendMsgThread.Start();

 Thread.Sleep(1000);

 this.IDLbl.Text = this.SensorIPTxtControl.Text;

 this.TempLbl.Text = UDPResult;

 }

 catch

 {

 }

 finally

 {

 //sendMsgThread.Abort();

 }

113

 }

 else if (typeResult == 2)

 {

 Thread sendMsgThread = null;

 try

 {

 sendMsgThread = new Thread(new ThreadStart(SendUdpLowpan));

 sendMsgThread.Start();

 Thread.Sleep(1000);

 this.IDLbl.Text = this.SensorIPTxtControl.Text;

 this.TempLbl.Text = UDPResult;

 }

 catch

 {

 }

 finally

 {

 //sendMsgThread.Abort();

 }

 }

 }

 #endregion

 }

 }

 catch

 {

 }

 }

 }

}

Main.aspx.Designer.cs

namespace SensorSolution {

 public partial class Main {

114

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 protected global::System.Web.UI.ScriptManager ScriptManager1;

 protected global::System.Web.UI.WebControls.Label UserNameLbl;

 protected global::System.Web.UI.WebControls.TextBox SensorIPTxt;

 protected global::System.Web.UI.WebControls.Button SearchBtn;

 protected global::System.Web.UI.WebControls.TextBox SensorIPTxtControl;

 protected global::System.Web.UI.WebControls.DropDownList CmdList;

 protected global::System.Web.UI.WebControls.Button ReportBtn;

 protected global::System.Web.UI.WebControls.Label IDLbl;

 protected global::System.Web.UI.WebControls.Label TempLbl;

 protected global::System.Web.UI.UpdatePanel UpdatePanel1;

 protected global::System.Web.UI.HtmlControls.HtmlGenericControl MapFrame;

 protected global::System.Web.UI.Timer Timer1;

 }

}

Register.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Register.aspx.cs"

115

Inherits="SensorSolution.Register" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body style="font-size:12px">

 <form id="form1" runat="server">

 <div align="center">

 <h3>Sign Up</h3>

 </div>

 <hr />

 <fieldset>

 <legend>User Information</legend>

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <tr>

 <td align="right">Username：êo</td>

 <td align="left">

 <asp:TextBox ID="UserNameTxt" runat="server"></asp:TextBox>*

 <asp:RequiredFieldValidator ID="RequiredFieldValidator1" runat="server"

 ControlToValidate="UserNameTxt" ErrorMessage="Username cannot be

empty!"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td align="right">Password：êo</td>

 <td align="left">

 <asp:TextBox ID="PwdTxt" runat="server" TextMode="Password"></asp:TextBox><font

color="red">*

 <asp:RequiredFieldValidator ID="RequiredFieldValidator2" runat="server"

 ControlToValidate="PwdTxt" ErrorMessage="Password cannot be

empty!"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td align="right">Repeat password：êo</td>

 <td align="left">

 <asp:TextBox ID="RePwdTxt" runat="server" TextMode="Password"></asp:TextBox><font

116

color="red">*

 <asp:CompareValidator ID="CompareValidator1" runat="server"

 ControlToCompare="PwdTxt" ControlToValidate="RePwdTxt"

 ErrorMessage="Repeat password is different!"></asp:CompareValidator>

 </td>

 </tr>

 <tr>

 <td align="right">Email:</td>

 <td align="left">

 <asp:TextBox ID="EmailTxt" runat="server"></asp:TextBox>*

 <asp:RequiredFieldValidator ID="RequiredFieldValidator3" runat="server"

 ControlToValidate="EmailTxt" ErrorMessage="Email cannot be

empty!"></asp:RequiredFieldValidator>

 <asp:RegularExpressionValidator ID="RegularExpressionValidator1" runat="server"

 ControlToValidate="EmailTxt" ErrorMessage="Email format is wrong!"

ValidationExpression="\w+([-+.']\w+)*@\w+([-.]\w+)*\.\w+([-.]\w+)*"></asp:RegularExpressionValidator

>

 </td>

 </tr>

 <tr>

 <td align="right">Invited Code：êo</td>

 <td align="left">

 <asp:TextBox ID="InviteCodeTxt" runat="server"></asp:TextBox>*

 <asp:RequiredFieldValidator ID="RequiredFieldValidator4" runat="server"

 ControlToValidate="InviteCodeTxt"

 ErrorMessage="Invited Code cannot be empty!"></asp:RequiredFieldValidator>

 </td>

 </tr>

 <tr>

 <td></td>

 <td align="left">

 <asp:Button ID="RegisterBtn" runat="server" Text="Confirm"

 onclick="RegisterBtn_Click" />

 Back

 </td>

 </tr>

 </table>

 </fieldset>

 </form>

</body>

117

</html>

Register.aspx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using SensorWeb.DataContext;

using SensorWeb.Entity;

namespace SensorSolution

{

 public partial class Register : System.Web.UI.Page

 {

 private UserDataContext _userDataContext = new UserDataContext();

 private InviteDataContext _inviteDataContext = new InviteDataContext();

 protected void Page_Load(object sender, EventArgs e)

 {

 }

 protected void RegisterBtn_Click(object sender, EventArgs e)

 {

 try

 {

 UserInfo userEntiy = new UserInfo();

 userEntiy.UserName = this.UserNameTxt.Text.Trim();

 userEntiy.Pwd = this.RePwdTxt.Text.Trim();

 userEntiy.Email = this.EmailTxt.Text.Trim();

 if (!_userDataContext.IsExist(userEntiy))

 {

 InviteInfo inviteEntiy = new InviteInfo();

 int parseInt = 0;

 if (int.TryParse(this.InviteCodeTxt.Text.Trim(), out parseInt))

 {

 inviteEntiy.InviteNum = int.Parse(this.InviteCodeTxt.Text.Trim());

118

 if (_inviteDataContext.IsExist(inviteEntiy))

 {

 int result = _userDataContext.AddUser(userEntiy);

 if (result > 0)

 {

 _inviteDataContext.DeleteInvite(inviteEntiy);

 Page.RegisterStartupScript("msg", "<script>alert('Sign Up

successes!');window.location.href='Default.aspx';</script>");

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Sign Up

fails!');</script>");

 }

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Invited Code does not

exist!');</script>");

 }

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Invited Code is 4 digit

number!');</script>");

 }

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Username already

exists!');</script>");

 }

 }

 catch

 {

 }

 }

 }

}

119

Register.aspx.Designer.cs

namespace SensorSolution {

 public partial class Register {

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 protected global::System.Web.UI.WebControls.TextBox UserNameTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator1;

 protected global::System.Web.UI.WebControls.TextBox PwdTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator2;

 protected global::System.Web.UI.WebControls.TextBox RePwdTxt;

 protected global::System.Web.UI.WebControls.CompareValidator CompareValidator1;

 protected global::System.Web.UI.WebControls.TextBox EmailTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator3;

 protected global::System.Web.UI.WebControls.RegularExpressionValidator

RegularExpressionValidator1;

 protected global::System.Web.UI.WebControls.TextBox InviteCodeTxt;

 protected global::System.Web.UI.WebControls.RequiredFieldValidator RequiredFieldValidator4;

 protected global::System.Web.UI.WebControls.Button RegisterBtn;

 }

}

DrawImage.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="DrawImage.aspx.cs"

Inherits="SensorSolution.DrawImage" %>

120

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

 <script type="text/javascript">

 function onLoad() {

 alert('1');

 window.location.reload();

 }

 setTimeout("onload()", 1000);

 </script>

</head>

<body onload="onLoad();">

 <form id="form1" runat="server">

 <div>

 </div>

 </form>

</body>

</html>

DrawImage.aspx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using System.Drawing;

using System.Drawing.Drawing2D;

using System.IO;

using System.Drawing.Imaging;

using SensorWeb.Entity;

using SensorWeb.DataContext;

namespace SensorSolution

{

 public partial class DrawImage : System.Web.UI.Page

 {

121

 private int Dx

=int.Parse(System.Configuration.ConfigurationManager.AppSettings["Dx"].Trim());

 private int Dy = 20;

 private int maxYnum = 1;

 private int Dm = 5;

 private int maxY;

 private int tempCount = 0;

 private SensorDataContext SensorDataContext = new SensorDataContext();

 protected void Page_Load(object sender, EventArgs e)

 {

 if (Session["UserID"] != null && Session["UserID"].ToString().Trim() != "")

 {

 List<SensorData> list = new List<SensorData>();

 int topCount =

int.Parse(System.Configuration.ConfigurationManager.AppSettings["Top"].Trim());

 if (!string.IsNullOrEmpty(Request.QueryString["UserID"]))

 {

 list =

SensorDataContext.GetSensorDataByIP(Request.QueryString["UserID"].ToString(), topCount);

 }

 if (maxY <= 100)

 {

 int max = list[0].Temp;

 for (int h = 0; h < list.Count; h++)

 {

 if (max < list[h].Temp)

 max = list[h].Temp;

 }

 maxYnum = max + 10;

 }

 else

 {

 int L = maxY.ToString().Length;

 int Temp = int.Parse(maxY.ToString().Substring(0, 1)) + 1;

 if (L <= 3)

 {

122

 Dm = 15;

 }

 else

 {

 Dm = 50;

 }

 for (int m = 0; m < L - 1; m++)

 {

 maxYnum *= 10;

 }

 maxYnum = Temp * maxYnum;

 }

 int c = 0;

 if (list != null && list.Count > 0)

 {

 c = list.Count;

 }

 int wd = 80 + Dx * (c - 1);

 int hd = maxYnum / Dm * Dy + 120;

 if (wd < 600) wd = 600;

 if (hd < 400) hd = 250;

 Bitmap img = new Bitmap(wd, hd);

 Graphics g = Graphics.FromImage(img);

 Pen Bp = new Pen(Color.Black);

 Pen Rp = new Pen(Color.Red);

 Pen Sp = new Pen(Color.Silver);

 Font Bfont = new Font("Arial", 12, FontStyle.Bold);

 Font font = new Font("Arial", 8);

123

 Font Tfont = new Font("Arial", 9);

 g.DrawRectangle(new Pen(Color.White, hd), 0, 0, img.Width, img.Height);

 LinearGradientBrush brush = new LinearGradientBrush(new Rectangle(0, 0, img.Width,

img.Height), Color.Black, Color.Black, 1.2F, true);

 LinearGradientBrush Bluebrush = new LinearGradientBrush(new Rectangle(0, 0,

img.Width, img.Height), Color.Blue, Color.Blue, 1.2F, true);

 g.DrawString("Temperature", Bfont, brush, 50, 20);

 int nums = 0;

 for (int i = 0; i < c; i++)

 {

 nums += list[i].Temp;

 tempCount += list[i].Temp;

 }

 string info = "Time of the temperature line：êo" + DateTime.Now.ToString();

 g.DrawString(info, Tfont, Bluebrush, 50, 45);

 for (int i = 0; i < c; i++)

 {

 g.DrawLine(Sp, 50 + Dx * i, 85, 50 + Dx * i, 85 + maxYnum / Dm * Dy);

 string st = list[c - i - 1].ReciveTime.ToShortTimeString();

 g.DrawString(st, font, brush, 45 + Dx * i, 85 + maxYnum / Dm * Dy);

 }

 for (int i = 0; i < maxYnum / Dm; i++)

 {

 g.DrawLine(Sp, 50, 85 + Dy * i, 50 + Dx * (c - 1), 85 + Dy * i);

 int s = maxYnum - Dm * i;

 g.DrawString(s.ToString(), font, brush, 20, 80 + Dy * i);

 }

 g.DrawLine(Bp, 50, 80, 50, 85 + maxYnum / Dm * Dy);

 g.DrawLine(Bp, 50, 85 + maxYnum / Dm * Dy, 55 + Dx * (c - 1), 85 + maxYnum / Dm

* Dy);

124

 Point[] p = new Point[c];

 for (int i = 0; i < c; i++)

 {

 p[i].X = 50 + Dx * i;

 p[i].Y = 85 + maxYnum / Dm * Dy - (list[c - i - 1].Temp) * Dy / Dm;

 }

 g.DrawCurve(Rp, p, 1.5F);

 for (int i = 0; i < c; i++)

 {

 g.DrawString(list[c - i - 1].Temp.ToString(), font, Bluebrush, p[i].X, p[i].Y - 10);

 g.DrawRectangle(Rp, p[i].X - 1, p[i].Y - 1, 2, 2);

 }

 g.DrawString("Temperature value", Tfont, brush, 15, 65);

 if (list != null && list.Count > 0)

 {

 g.DrawString("Record time:" + list[0].ReciveTime.ToShortDateString() + "

Average value:" + tempCount / list.Count, Tfont, brush, 45, 85 + maxYnum / Dm * Dy + 15);

 }

 MemoryStream sm = new MemoryStream();

 img.Save(sm, ImageFormat.Jpeg);

 Response.Clear();

 Response.ContentType = "image/jpeg";

 Response.BinaryWrite(sm.ToArray());

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please login

firstly!');window.location.href='Default.aspx';</script>");

 }

 }

 }

}

DrawImage.aspx.Designer.cs

125

namespace SensorSolution

{

 public partial class DrawImage

 {

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 }

}

Hisotry.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="History.aspx.cs"

Inherits="SensorSolution.WebForm1" %>

<%@ Register Assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

PublicKeyToken=31bf3856ad364e35"

 Namespace="System.Web.UI" TagPrefix="asp" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body>

 <form id="form1" runat="server">

 <asp:ScriptManager ID="ScriptManager1" runat="server">

 </asp:ScriptManager>

 <table width="100%" cellpadding="0" cellspacing="0">

 <tr>

 <td height="50%" valign="top">

 <fieldset>

 <legend>Search Area</legend>

 <table width="100%" cellpadding="0" cellspacing="0" border="1">

 <tr>

 <td align="right">IP address(XXX.XXX.XXX.XXX)：êo</td>

 <td align="left">

 <asp:TextBox ID="SensorIPTxt" runat="server"></asp:TextBox>

126

 </td>

 </tr>

 <tr>

 <td align="right">Date from(YYYY-MM-DD HH-MM-SS)：êo</td>

 <td align="left">

 <asp:TextBox ID="SensorDateFromTxt" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td align="right">Date end(YYYY-MM-DD HH-MM-SS)：êo</td>

 <td align="left">

 <asp:TextBox ID="SensorDateEndTxt" runat="server"></asp:TextBox>

 </td>

 </tr>

 <tr>

 <td align="center" colspan="2">

 <asp:Button ID="SearchBtn" runat="server" Text="Search" Width="77px"

 onclick="SearchBtn_Click" />

 </td>

 </tr>

 </table>

 </fieldset>

 </td>

 </tr>

 </table>

 <div id="Div1" runat="server" style="visibility:hidden">

 Download Records in XML format

 </div>

 <asp:DataGrid id="xmldata" runat="server" />

 </form>

</body>

</html>

History.aspx.cs

using System;

using System.Collections.Generic;

127

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

using SensorWeb.DataContext;

using SensorWeb.Entity;

using System.Net;

using System.Net.Sockets;

using System.Threading;

using System.IO;

using System.Text;

using System.Data;

namespace SensorSolution

{

 public partial class WebForm1 : System.Web.UI.Page

 {

 private static string HistoryResult = "";

 private string result = "";

 private SensorDataContext sensorDataContext = new SensorDataContext();

 List<SensorData> list = new List<SensorData>();

 protected void Page_Load(object sender, EventArgs e)

 {

 if (Session["UserID"] != null && Session["UserID"].ToString().Trim() != "")

 {

 string xmlFilePath = Server.MapPath("~/123.xml");

 if (File.Exists(xmlFilePath))

 {

 File.Delete(xmlFilePath);

 }

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please log in

firstly!');window.location.href='Default.aspx';</script>");

 }

 }

 protected void SearchBtn_Click(object sender, EventArgs e)

 {

 string xmlFilePath = Server.MapPath("~/123.xml");

128

 int searchType = -1;

 if (!string.IsNullOrEmpty(this.SensorIPTxt.Text)

&& !string.IsNullOrEmpty(this.SensorDateFromTxt.Text)

&& !string.IsNullOrEmpty(this.SensorDateEndTxt.Text))

 {

 searchType = 2;

 }

 else

 {

 Page.RegisterStartupScript("msg", "<script>alert('Please input an IP address of a

sensor! And please input a serach time range');</script>");

 searchType = -1;

 return;

 }

 #region

 switch (searchType)

 {

 case 2:

 result = sensorDataContext.GetSensorHistoryByIP(this.SensorIPTxt.Text,

this.SensorDateFromTxt.Text, this.SensorDateEndTxt.Text, xmlFilePath);

 // this.ResultLbl.Text = result;

 DataSet objDataSet = new DataSet();

 DataTable dt = new DataTable();

 objDataSet.ReadXml(xmlFilePath);

 xmldata.DataSource = objDataSet.Tables["Sensor"].DefaultView;

 xmldata.DataBind();

 Div1.Style.Value = "display";

 break;

 }

 #endregion

 }

 }

}

History.aspx.Designer.cs

129

namespace SensorSolution {

 public partial class WebForm1 {

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 protected global::System.Web.UI.ScriptManager ScriptManager1;

 protected global::System.Web.UI.WebControls.TextBox SensorIPTxt;

 protected global::System.Web.UI.WebControls.TextBox SensorDateFromTxt;

 protected global::System.Web.UI.WebControls.TextBox SensorDateEndTxt;

 protected global::System.Web.UI.WebControls.Button SearchBtn;

 protected global::System.Web.UI.HtmlControls.HtmlGenericControl Div1;

 protected global::System.Web.UI.WebControls.DataGrid xmldata;

 }

}

Logout.aspx

<%@ Page Language="C#" AutoEventWireup="true" CodeBehind="Logout.aspx.cs"

Inherits="SensorSolution.Logout" %>

<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"

"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">

<html xmlns="http://www.w3.org/1999/xhtml">

<head runat="server">

 <title></title>

</head>

<body>

 <form id="form1" runat="server">

 <div>

130

 </div>

 </form>

</body>

</html>

Logout.aspx.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Web.UI;

using System.Web.UI.WebControls;

namespace SensorSolution

{

 public partial class Logout : System.Web.UI.Page

 {

 protected void Page_Load(object sender, EventArgs e)

 {

 Session.Clear();

 Server.Transfer("Default.aspx");

 }

 }

}

Logout.aspx.Designer.cs

namespace SensorSolution

{

 public partial class Logout

 {

 protected global::System.Web.UI.HtmlControls.HtmlForm form1;

 }

}

Web.config

131

<?xml version="1.0"?>

<configuration>

 <appSettings>

 <add key="SQLCONN"

value="server=TIANYE-C31CA0FE\SQLEXPRESS;database=SensorDB;uid=sa;pwd=123456"/>

 <add key="Dx" value="50"/>

 <add key="Top" value="10"/>

 <add key="cmd" value="GetTemp"/>

 </appSettings>

 <connectionStrings/>

 <system.web>

 <compilation debug="true">

 <assemblies>

 <add assembly="System.Web.Extensions, Version=1.0.61025.0, Culture=neutral,

PublicKeyToken=31BF3856AD364E35"/></assemblies></compilation>

 <authentication mode="Windows"/>

 <httpHandlers>

 <remove verb="*" path="*.asmx"/>

 <add verb="*" path="*.asmx" validate="false"

type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=1.0.61025.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add verb="*" path="*_AppService.axd" validate="false"

type="System.Web.Script.Services.ScriptHandlerFactory, System.Web.Extensions, Version=1.0.61025.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35"/>

 <add verb="GET,HEAD" path="ScriptResource.axd"

type="System.Web.Handlers.ScriptResourceHandler, System.Web.Extensions, Version=1.0.61025.0,

Culture=neutral, PublicKeyToken=31bf3856ad364e35" validate="false"/>

 </httpHandlers>

 </system.web>

</configuration>

Codes in DataContext folder

132

InviteDataContext.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Data;

using SensorWeb.Entity;

namespace SensorWeb.DataContext

{

 public class InviteDataContext

 {

 public void DeleteInvite(InviteInfo entiy)

 {

 string sqlStr = string.Format("DELETE FROM [InviteInfo] WHERE InviteNum={0}",

entiy.InviteNum);

 int result = SqlHelper.ExecuteNonQuery(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 }

 public bool IsExist(InviteInfo entiy)

 {

 try

 {

 string sqlStr = string.Format("SELECT ID FROM [InviteInfo] WHERE

InviteNum={0}", entiy.InviteNum);

 int result = (int)SqlHelper.ExecuteScalar(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 if (result > 0)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 catch

 {

 return false;

 }

 }

133

 }

}

SensorDataContext.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Data;

using SensorWeb.Entity;

using System.Xml;

using System.Data;

using System.IO;

using System.Text;

namespace SensorWeb.DataContext

{

 public class SensorDataContext

 {

 public List<SensorData> GetSensorDataByIP(string IP)

 {

 List<SensorData> list = new List<SensorData>();

 string strSql = string.Format("SELECT * FROM [SensorDataInfo] WHERE IP='{0}'

ORDER BY ReceiveTime ASC", IP);

 DataSet ds = SqlHelper.ExecuteDataset(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, strSql);

 if (ds != null && ds.Tables.Count > 0 && ds.Tables[0].Rows.Count > 0)

 {

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 SensorData entiy = new SensorData();

 entiy.ID=int.Parse(ds.Tables[0].Rows[i]["ID"].ToString());

 entiy.SensorIP = ds.Tables[0].Rows[i]["IP"].ToString();

 entiy.Temp=int.Parse(ds.Tables[0].Rows[i]["Temp"].ToString());

entiy.ReciveTime=DateTime.Parse(ds.Tables[0].Rows[i]["ReceiveTime"].ToString());

 list.Add(entiy);

 }

134

 }

 return list;

 }

 public List<SensorData> GetSensorDataByIP(string IP,int top)

 {

 List<SensorData> list = new List<SensorData>();

 string strSql = string.Format("SELECT TOP {1} * FROM [SensorDataInfo] WHERE

IP='{0}' ORDER BY ReceiveTime DESC", IP, top);

 DataSet ds = SqlHelper.ExecuteDataset(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, strSql);

 if (ds != null && ds.Tables.Count > 0 && ds.Tables[0].Rows.Count > 0) {

 for (int i = 0; i < ds.Tables[0].Rows.Count; i++)

 {

 SensorData entiy = new SensorData();

 entiy.ID = int.Parse(ds.Tables[0].Rows[i]["ID"].ToString());

 entiy.SensorIP = ds.Tables[0].Rows[i]["IP"].ToString();

 entiy.Temp = int.Parse(ds.Tables[0].Rows[i]["Temp"].ToString());

 entiy.ReciveTime =

DateTime.Parse(ds.Tables[0].Rows[i]["ReceiveTime"].ToString());

 list.Add(entiy);

 }

 }

 return list;

 }

 public int GetSensorPortByIP(string IP)

 {

 int port = 0 ;

 try

 {

 string sqlStr = string.Format("SELECT Port FROM [SensorInfo] WHERE IP='{0}'",

IP);

 port = (int)SqlHelper.ExecuteScalar(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 return port;

 }

 catch

135

 {

 return port;

 }

 }

 public string GetSensorHistoryByIP(string IP, string from, string end, string xmlFilePath)

 {

 if (File.Exists(xmlFilePath))

 {

 File.Delete(xmlFilePath);

 }

 string sqlStr = string.Format("SELECT * FROM [SensorDataInfo] WHERE IP='{0}' AND

ReceiveTime between '{1}' and '{2}' ", IP, from, end);

 XmlDocument doc = new XmlDocument();

 XmlNode docNode = doc.CreateXmlDeclaration("1.0", "UTF-8", null);

 doc.AppendChild(docNode);

 XmlElement root = doc.CreateElement("Sensors");

 doc.AppendChild(root);

 doc.Save(xmlFilePath);

 string result = "";

 IDataReader dr = SqlHelper.ExecuteReader(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 while (dr.Read())

 {

 result += "<tr><td>" + dr.GetString(1) + "</td></tr>" + "<tr><td>" + dr.GetValue(2)

+ "</td></tr>" + "<tr><td>" + dr.GetDateTime(3) + "</td></tr><tr></tr>";

 string a = dr.GetString(1);

 string b = dr.GetValue(2) +"";

 string c = dr.GetDateTime(3) +"";

 XmlElement eltBook = doc.CreateElement("Sensor");

 root.AppendChild(eltBook);

 XmlElement eltTitle = doc.CreateElement("SensorIP");

 eltTitle.AppendChild(doc.CreateTextNode(a));

 eltBook.AppendChild(eltTitle);

136

 XmlElement eltAuthor = doc.CreateElement("Temperature");

 eltAuthor.AppendChild(doc.CreateTextNode(b));

 eltBook.AppendChild(eltAuthor);

 XmlElement eltPrice = doc.CreateElement("ReceivedTime");

 eltPrice.AppendChild(doc.CreateTextNode(c));

 eltBook.AppendChild(eltPrice);

 doc.Save(xmlFilePath);

 }

 return result;

 }

 public void InsertSensorData(SensorData entiy)

 {

 string strSql = string.Format("INSERT INTO SensorDataInfo VALUES ('{0}',{1},'{2}')",

entiy.SensorIP, entiy.Temp, entiy.ReciveTime);

 SqlHelper.ExecuteNonQuery(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, strSql);

 }

 }

}

SensorInfoDataContext.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Data;

using SensorWeb.Entity;

namespace SensorWeb.DataContext

{

 public class SensorInfoDataContext

 {

 public SensorInfo GetSensorInfoBySensorIP(string IP)

 {

 SensorInfo entiy = new SensorInfo();

137

 string strSql = string.Format("SELECT * FROM [SensorInfo] WHERE IP='{0}'", IP);

 DataSet ds = SqlHelper.ExecuteDataset(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, strSql);

 if (ds != null && ds.Tables.Count > 0 && ds.Tables[0].Rows.Count > 0)

 {

 entiy.Port = int.Parse(ds.Tables[0].Rows[0]["Port"].ToString());

 entiy.SensorIP = IP;

 }

 return entiy;

 }

 }

}

SensorTypeDataContext.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Data;

using SensorWeb.DataContext;

using SensorWeb.Entity;

namespace SensorWeb.DataContext

{

 public class SensorTypeDataContext

 {

 public type GetSensorTypeByIP(string IP)

 {

 try

 {

 string sqlStr = string.Format("SELECT Type FROM [SensorTypeInfo] WHERE

IP='{0}'", IP);

 int result = (int)SqlHelper.ExecuteScalar(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 type _status = type.unknow ;

 switch (result)

 {

 case 1:

 _status = type.HP;

 break;

 case 2:

138

 _status = type.LoWPAN;

 break;

 }

 return _status;

 }

 catch

 {

 return type.unknow;

 }

 }

 }

}

UserDataContext.cs

using System;

using System.Collections.Generic;

using System.Web;

using System.Data;

using SensorWeb.Entity;

namespace SensorWeb.DataContext

{

 public class UserDataContext

 {

 public int AddUser(UserInfo entiy)

 {

 string sqlStr = string.Format("INSERT INTO [UserInfo] VALUES ('{0}','{1}','{2}')",

entiy.UserName, entiy.Pwd, entiy.Email);

 return SqlHelper.ExecuteNonQuery(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 }

 public int Login(UserInfo entiy)

 {

 try

 {

 string sqlStr = string.Format("SELECT ID FROM [UserInfo] WHERE UserName='{0}'

AND Pwd='{1}'", entiy.UserName, entiy.Pwd);

139

 int result = (int)SqlHelper.ExecuteScalar(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 if (result > 0)

 {

 return result;

 }

 else

 {

 return 0;

 }

 }

 catch

 {

 return 0;

 }

 }

 public bool IsExist(UserInfo entiy)

 {

 try

 {

 string sqlStr = string.Format("SELECT ID FROM [UserInfo] WHERE

UserName='{0}'", entiy.UserName);

 int result = (int)SqlHelper.ExecuteScalar(SqlHelper.ConnectionStringLocalTransaction,

CommandType.Text, sqlStr);

 if (result > 0)

 {

 return true;

 }

 else

 {

 return false;

 }

 }

 catch

 {

 return false;

 }

 }

 }

}

140

Codes in Entity folder

InviteInfo.cs

using System;

using System.Collections.Generic;

using System.Web;

namespace SensorWeb.Entity

{

 [Serializable]

 public class InviteInfo

 {

 #region

 private int _id;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 private int _inviteNum;

 public int InviteNum

 {

 get { return _inviteNum; }

 set { _inviteNum = value; }

 }

 #endregion

 }

}

SensorData.cs

using System;

using System.Collections.Generic;

using System.Web;

141

namespace SensorWeb.Entity

{

 [Serializable]

 public class SensorData

 {

 #region

 private int _id;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 private string _sensorIP;

 public string SensorIP

 {

 get { return _sensorIP; }

 set { _sensorIP = value; }

 }

 private int _temp;

 public int Temp

 {

 get { return _temp; }

 set { _temp = value; }

 }

 private DateTime _reciveTime;

 public DateTime ReciveTime

 {

 get { return _reciveTime; }

 set { _reciveTime = value; }

 }

 #endregion

 }

}

142

SensorInfo.cs

using System;

using System.Collections.Generic;

using System.Web;

namespace SensorWeb.Entity

{

 [Serializable]

 public class SensorInfo

 {

 private int _id;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 private string _sensorIP;

 public string SensorIP

 {

 get { return _sensorIP; }

 set { _sensorIP = value; }

 }

 private int _port;

 public int Port

 {

 get { return _port; }

 set { _port = value; }

 }

 }

}

SensorType.cs

using System;

using System.Collections.Generic;

using System.Web;

namespace SensorWeb.Entity

{

143

 [Serializable]

 public class SensorType

 {

 #region

 private int _id;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 private string _sensorIP;

 public string SensorIP

 {

 get { return _sensorIP; }

 set { _sensorIP = value; }

 }

 private type _type;

 public type Type

 {

 get { return _type; }

 set { _type = value; }

 }

 #endregion

 }

}

Type.cs

using System;

using System.Collections.Generic;

using System.Web;

namespace SensorWeb.Entity

{

 public enum type

144

 {

 LoWPAN,

 HP,

 unknow

 }

}

UserInfo.cs

using System;

using System.Collections.Generic;

using System.Web;

namespace SensorWeb.Entity

{

 [Serializable]

 public class UserInfo

 {

 #region

 private int _id;

 public int ID

 {

 get { return _id; }

 set { _id = value; }

 }

 private string _userName;

 public string UserName

 {

 get { return _userName; }

 set { _userName = value; }

 }

 private string _pwd;

 public string Pwd

 {

 get { return _pwd; }

 set { _pwd = value; }

 }

145

 private string _email;

 public string Email

 {

 get { return _email; }

 set { _email = value; }

 }

 #endregion

 }

}

www.kth.se

TRITA-ICT-EX-2011:198

