
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

N I R A N J A N A N K A L A I C H E L V A N

 Distributed Traffic Load Scheduler
based on TITANSim for System Test of a

Home Subscriber Server (HSS)

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Distributed Traffic Load Scheduler
based on TITANSim for System Test
of a Home Subscriber Server (HSS)

Niranjanan Kalaichelvan

nirkal@kth.se

Examiner: Prof. Gerald Q. "Chip" Maguire Jr., KTH

Industry supervisor: Peter Dimitrov, Ericsson AB

This thesis project was carried out at and funded by Ericsson AB, Stockholm,

Sweden

mailto:nirkal@kth.se
http://www.it.kth.se/~maguire

i

Abstract

The system test is very significant in the development life cycle of a telecommunication

network node. Tools such as TITANSim are used to develop the test framework upon which

a load test application is created. These tools need to be highly efficient and optimized to

reduce the cost of the system test. This thesis project created a load test application based on

the distributed scheduling architecture of TITANSim, whereby multiple users can be

simulated using a single test component. This new distributed scheduling system greatly

reduces the number of operating system processes involved, thus reducing the memory

consumption of the load test application; hence higher loads can be easily simulated with

limited hardware resources.

The load test application used for system test of the HSS is based on the central scheduling

architecture of TITANSim. The central scheduling architecture is a function test concept,

where every user is simulated by a single test component. In the system test several thousand

users are simulated by the test system. Therefore, the load application based on central

scheduling architecture uses thousands of test components leading to high memory

consumption in the test system. In this architecture, the scheduling of test components is

centralized which results in a lot of communication overhead within the test system, as

thousands of test components communicate with a master scheduling component during the

test execution.

On the other hand, in the distributed scheduling architecture the scheduling task is performed

locally by each test component. There is no communication overhead within the test system.

Therefore, the test system is highly efficient. In the distributed scheduling architecture the

traffic flow of the simulated users are described using the Finite State Machines (FSMs). The

FSMs are specified in the configuration files that are used by the test system at run time.

Therefore, implementing traffic cases using the distributed scheduling architecture becomes

simpler and faster as there is no (TTCN-3) coding/compilation.

The HSS is the only node (within Ericsson) whose system test is performed using the central

scheduling architecture of TITANSim. The other users (nodes) of TITANSim are using the

distributed scheduling architecture for its apparent benefits. Under this circumstance, this

thesis project assumes significance for the HSS. When a decision to adapt the distributed

scheduling architecture is made for the system test of the HSS, the load application created in

this thesis project can be used as a model, or extended for the migration of the test modules

for the HSS from the central scheduling architecture to the distributed scheduling

architecture.

By creating this load application we have gained significant knowledge of the TITANSim

framework; most importantly, the necessary modifications to the TITANSim framework

required to create a distributed scheduling architecture based load application for the HSS.

The load application created for this project was used to (system) test the HSS by generating

load using real system test hardware. The results were analytically compared with the test

ii

results from the existing load application (which is based on the central scheduling

architecture). The analysis showed that the load application based on distributed scheduling

architecture is efficient, utilizes less test system resources, and capable of scaling up the load

generation capacity.

Key words: FSM, scheduling, system test, TITANSim, test components

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Sammanfattning

Systemet test är mycket betydelsefullt i utvecklingen livscykeln för ett telenät nod.Verktyg

som TITANSim används för att utveckla testet ram på vilken ett belastningsprov program

skapas. Dessa verktyg måste vara mycket effektiv och optimerad för att minska kostnaderna

för systemet testet. Detta examensarbete skapat ett program belastningsprov bygger på

distribuerad schemaläggning arkitektur TITANSim, där flera användare kan simuleras med

hjälp av ett enda test komponent. Det nya distribuerade schemaläggning systemet minskar

kraftigt antalet operativsystem inblandade system processer, vilket minskar

minnesförbrukning av lasten testprogram, därav högre belastningar kan enkelt simuleras med

begränsade hårdvara resurser.

Lasten testa program som används för systemtest av HSS är baserad på den centrala

schemaläggning arkitektur TITANSim. Den centrala schemaläggning arkitektur är ett

funktionstest koncept, där varje användare simuleras med ett enda test komponent. I systemet

testa flera tusen användare är simulerade av testsystemet.Därför använder belastningen

program baserat på centrala schemaläggning arkitektur tusentals testa komponenter leder till

hög minnesförbrukning i testsystemet.I denna arkitektur är schemaläggning av test

komponenter centraliserad vilket resulterar i en mycket kommunikation overhead inom

testsystem, som tusentals testa komponenter kommunicerar med en mästare schemaläggning

komponent under testexekvering.

Å andra sidan, i den distribuerade schemaläggning arkitekturen schemaläggning uppgiften

utförs lokalt av varje test komponent. Det finns ingen kommunikation overhead i

testsystemet. Därför är testsystemet mycket effektiv. I distribuerad schemaläggning

arkitekturen trafikflödet av simulerade användare beskrivs med Finite State Machines

(FSMs). Den FSMs anges i konfigurationsfiler som används av testsystemet vid

körning. Därför genomföra trafiken fall med distribuerad schemaläggning arkitektur blir

enklare och snabbare eftersom det inte finns någon (TTCN-3) kodning / sammanställning.

HSS är den enda nod (inom Ericsson) vars system test utförs med hjälp av den centrala

schemaläggningen arkitektur TITANSim. Den andra användare (noder) i TITANSim

använder distribuerad schemaläggning arkitektur för sina uppenbara fördelar. Under denna

omständighet, förutsätter detta examensarbete betydelse för HSS. När ett beslut att anpassa

distribuerad schemaläggning arkitektur är gjord för systemet test av HSS, kan belastningen

program som skapats i detta examensarbete kan användas som en modell, eller förlängas för

migration av testet moduler för HSS från den centrala schemaläggningen arkitektur för

distribuerade schemaläggning arkitektur.

Genom att skapa denna belastning ansökan har vi fått stor kunskap om TITANSim ramen,

viktigast av allt, de nödvändiga ändringar av TITANSim ramverk som krävs för att skapa en

iv

distribuerad schemaläggning arkitektur baserad belastning ansökan för HSS. Lasten program

som skapats för detta projekt har använts för att (system) testa HSS genom att generera last

använda riktiga maskinvarusystem test. Resultaten analytiskt jämfört med provresultaten från

den befintliga belastningen ansökan (som är baserad på den centrala schemaläggning

arkitektur). Analysen visade att belastningen ansökan baseras på distribuerad schemaläggning

arkitektur är effektiv, använder mindre resurser testsystem, och kan skala upp kapaciteten last

generation.

Nyckelord: FSM, schemaläggning, systemtest, TITANSim, testa komponenter

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Dedicated to my parents

Abiramasundari Ramalingam and Kalaichelvan Visagan

vi

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Acknowledgements

I express my deepest gratitude to Prof. Gerald Q. "Chip" Maguire Jr., KTH for his valuable

feedback throughout this thesis project.

My sincere thanks to Mr. Johan Blom at Ericsson AB for providing this thesis opportunity.

Thanks to Mr. Fredrik Berntsson at Ericsson AB for his managerial support throughout this

project.

I express my gratitude to Mr. Peter Dimitrov, industrial supervisor, at Ericsson AB for his

technical support and feedback throughout this project.

My sincere thanks to Mr. Tao Huang, Mr. Magnus Nilsson at Ericsson AB for helping me to

understand the BAT and clarifying many of my doubts related to performing the system test

of the HSS.

I thank the TSP Coordination and Management (TCM) team at Ericsson in Spain for their

timely support in TSP and HSS installation and solving other environment issues.

http://www.it.kth.se/~maguire

viii

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Table of Contents

Abstract.. i

Sammanfattning .. iii

Acknowledgements ... vii

List of Figures .. xi

List of Tables .. xiii

List of Acronyms and Abbreviations .. xv

1 Introduction .. 1

2 The SUT - HSS .. 5

3 Background: TTCN-3 ... 9

3.1 TTCN-3 test system .. 9

3.1.1 Test Management and Control .. 10

3.1.2 TTCN-3 Executable (TE) ... 11

3.1.3 TTCN-3 Control Interface (TCI) .. 12

3.1.4 TTCN-3 Runtime Interface (TRI) ... 12

3.2 TTCN-3 Core Language Features ... 13

3.2.1 TTCN-3 component architecture .. 13

3.2.2 Concurrency ... 14

3.2.3 Synchronous and Asynchronous communication ... 16

3.2.4 Timer Handling.. 18

3.3 TTCN-3 and finer aspects of system test ... 19

3.3.1 System testing .. 19

3.3.2 Resource optimization .. 20

3.3.3 Resource management .. 21

3.4 Related work ... 21

4 TITANSim ... 25

4.1 TITANSim Architecture ... 25

4.2 TITANSim Component Structure ... 27

4.3 LGen base Programming Paradigms ... 27

4.3.1 Sequential programming ... 28

4.3.2 Event driven programming ... 28

4.4 Finite State Machines .. 29

4.5 Scheduling concepts .. 30

4.6 Distributed Scheduling architecture .. 32

4.7 The LGen base – finer aspects .. 33

x

5 Methods ... 35

5.1 Goals ... 35

5.2 Setup ... 35

5.2.1 TITANSim setup .. 35

5.2.2 Diameter Proxy ... 36

5.2.3 HSS setup with Maia .. 38

5.3 Architecture of the proposed load application... 45

5.4 Solution design .. 45

5.4.1 The traffic case ... 45

5.4.2 The TITANSim GenApp .. 47

5.4.3 TITANSim framework modifications ... 49

5.4.4 S6a load application design .. 50

5.4.5 Transport mechanism .. 56

5.5 Solution deployment ... 60

5.5.1 Test hardware .. 60

5.5.2 Test execution architecture ... 63

5.5.3 Test execution and results ... 64

6 Analysis ... 73

6.1 BAT load application .. 73

6.2 BAT results ... 73

6.3 Comparison of results ... 77

6.3.1 Test system resource consumption ... 77

6.3.2 Load generation capacity .. 78

7 Conclusion ... 81

8 Future work .. 83

8.1 Load regulation ... 83

8.2 Remote transport ... 83

8.3 Application extension.. 84

8.4 TTCN-3 test case generator... 85

xi

List of Figures

Figure 1: IMS Application and Control layer ... 6
Figure 2: EPS Architecture ... 6
Figure 3: MME – HSS (S6a interface) ... 7
Figure 4: A TTCN-3 Test System .. 10
Figure 5: A Distributed TTCN-3 Test System .. 11
Figure 6: SUT interacting with various test components .. 13
Figure 7: HSS as a SUT interacting through multiple Diameter interfaces .. 15
Figure 8: A Concurrent TTCN-3 test system .. 16
Figure 9: Asynchronous send and receive operation .. 17
Figure 10: Blocking procedure based communication mode .. 17
Figure 11: Non-blocking procedure based communication mode .. 18
Figure 12: TITANSim architectural elements .. 25
Figure 13: Control logic ... 26
Figure 14: TITANSim component structure ... 27
Figure 15: Sequential, hardwired TTCN-3 test system ... 28
Figure 16: Event driven, dynamic TTCN-3 test system ... 29
Figure 17: State diagram ... 30
Figure 18: Central Scheduling .. 31
Figure 19: Distributed Scheduling .. 31
Figure 20: DS architecture .. 33
Figure 21: Relation between entity, behavior type, and FSM... 34
Figure 22: The development setup.. 35
Figure 23: TITANSim EPTF GenApp in Eclipse SDK .. 36
Figure 24: The Diameter Proxy architecture .. 37
Figure 25: Diameter Proxy ... 38
Figure 26: The TSP architecture ... 40
Figure 27: Maia setup ... 42
Figure 28: TP2 startup after Maia setup ... 43
Figure 29: LDAP browser showing the ESM stack and ESM subscriber parameters .. 44
Figure 30: Population centre tool.. 44
Figure 31: S6a application architecture .. 45
Figure 32: Diameter session establishment... 46
Figure 33: The Initial Attach traffic case .. 47
Figure 34: Logical view of GenApp ... 48
Figure 35: Logical view of MME GenApp... 48
Figure 36: Diameter_Types module generation from the set of DDF files .. 49
Figure 37: The S6a load application design flow ... 51
Figure 38: The S6a load application component hierarchy .. 52
Figure 39: The Initiator Connection FSM .. 53
Figure 40: The S6a Initial Attach FSM .. 54
Figure 41: The TITANSim Runtime GUI .. 55
Figure 42: CPS versus Time (seconds) [Target CPS: 50] ... 55
Figure 43: CPS versus Time (seconds) [Target CPS: 20] ... 56
Figure 44: IPL4 transport type .. 57
Figure 45: IPL2 transport type .. 57
Figure 46: Performance changes while increasing the number of IP addresses ... 58
Figure 47: Performance changes while increasing the number of ports ... 59
Figure 48: Entity groups for transport multiplexing ... 60
Figure 49: NSP 5.0 cabinet and traffic generators in IP lab ... 61

xii

Figure 50: NSP 5.0 hardware overview .. 62
Figure 51: Distributed execution of S6a load application ... 64
Figure 52: CPU utilization of gteador3... 65
Figure 53: CPU utilization of gteador4... 66
Figure 54: Physical memory utilization in gteador3 ... 66
Figure 55: Physical memory utilization in gteador4 ... 67
Figure 56: CPS versus Time (seconds) in gteador3 .. 67
Figure 57: CPS versus Time (seconds) in gteador4 .. 68
Figure 58: Snapshot of TSP cluster load level in eadorm ... 68
Figure 59: CPU utilization of maia15 ... 69
Figure 60: CPS versus Time (seconds) of maia15 .. 70
Figure 61: Physical memory utilization of maia15 ... 70
Figure 62: Snapshot of TSP cluster load level in eadorm ... 70
Figure 63: CPU utilization of gteador3... 74
Figure 64: CPU utilization of gteador4... 74
Figure 65: Physical memory utilization of gteador3 ... 75
Figure 66: Physical memory utilization of gteador4 ... 75
Figure 67: Snapshot of TSP cluster load level in eadorm ... 76
Figure 68: CPS versus Time (seconds) of BAT application ... 76
Figure 69: Load regulation for S6a load application .. 83
Figure 70: Remote transport mechanism for S6a load application ... 84

xiii

List of Tables

Table 1: TTCN-3 Timer operations .. 19
Table 2: A sample FSM table ... 29
Table 3: CS versus DS .. 31
Table 4: Diameter Proxy Configuration ... 37
Table 5: Maia IP addresses ... 41
Table 6: NSP 5.0: Processor and physical memory specification ... 61
Table 7: Traffic generator: Processor and physical memory specification ... 62
Table 8: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU capacity of each DICOS

processor) ... 68
Table 9: Traffic generator: Processor and physical memory specification ... 69
Table 10: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU capacity of each DICOS

processor) ... 71
Table 11: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU capacity of each DICOS

processor) ... 77
Table 12: CS/BAT versus DS/S6a test system resource consumption ... 78
Table 13: CS/BAT versus DS/S6a load generation capacity .. 79

xiv

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

List of Acronyms and Abbreviations

3GPP 3
rd

 Generation Partnership Project

AIA Authentication Information Answer

AIR Authentication Information Request

API Application Programming Interface

AS Application Server

ASN.1 Abstract Syntax Notation One

AuC Authentication Centre

AV Authentication Vector

AVG Authentication Vector Generator

AVP Attribute Value Pair

ATS Abstract test suite

BER Basic Encoding Rules

BSF Bootstrapping Server Function

CD CODEC

CEA Capabilities Exchange Answer

CER Capabilities Exchange Request

CH Component Handling

CLA Cancel Location Answer

CLL Core Load Library

CLR Cancel Location Request

CN Core Network

CODEC Coder/Decoder

CORBA Common Object Request Broker Architecture

CPS Calls per second

CPU Central Processing Unit

CS Central Scheduling

CSCF Call Server Switching Function

DDF Data Definitions File

DPMG Diameter Protocol Module Generator

DS Distributed Scheduling

DWA Device Watchdog Answer

DWR Device Watchdog Request

DWT Device Watchdog Timer

EDS Encoding/Decoding System

EPS Evolved Packet System

EPTF Ericsson Performance Test Framework

ESM EPS Subscription Manager

ETS Executable Test Suite

ETSI European Telecommunications Standards Institute

ExecCtrl Execution Control

FBQ Free-Busy Queue

FSM Finite State Machines

GPRS General Packet Radio Service

GSM Global Services Mobile

GSN GPRS Support Node

GUI Graphical User Interface

HC Host Controller

xvi

HLR Home Location Register

HPLMN Home Public Land Mobile Network

HSS Home Subscriber Server

HTTP Hyper Text Transport Protocol

I-CSCF Interrogating – Call Server Switching Function

IDA Insert Subscriber Data Answer

IDE Integrated Development Environment

IDR Insert Subscriber Data Request

IMS IP Multimedia Subsystem

IP Internet Protocol

IPC Inter Processor Communication

IPL2 IP Layer 2

IPL4 IP Layer 4

ISM IP Subscription Manager

LAN L2 Local Area Network Level 2

LDAP Lightweight Directory Access Protocol

LGen Load Generator

LM Load Module

LSV Latest System Version

LTE Long Term Evolution

MAA Multimedia-Auth-Answer

MAR Multimedia-Auth-Request

MC Main Controller

MGCF Media Gateway Control Function

MME Mobility Management Entity

MSC Message Sequence Chart

MTC Main Test Component

NM Node Management

NSP Network Server Platform

O&M Operation and Maintenance

OS operating system

P-CSCF Proxy – Call Server Switching Function

PA Platform Adaptor

PPA Push-Profile-Answer

PPR Push-Profile-Request

PTC Parallel Test Component

RTA Register-Termination-Answer

RTR Register-Termination-Request

S-CSCF Serving – Call Server Switching Function

SA SUT Adaptor

SAA Service-Assignment-Answer

SAR Server-Assignment-Request

SCF Service Control Function

SCTP Session Control Transmission Protocol

SDA Subscriber Data Access

SDK Software Development Kit

SIP Session initiation protocol

SLF Subscriber Location Function

SNMP Simple Network Management Protocol

SS7 Signaling System 7

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

SSL Secure Sockets Layer

SUT System under test

T3RTS TTCN-3 Runtime System

TCI TTCN-3 Control Interface

TCP Transmission Control Protocol

TE TTCN-3 Executable

TL Test Logging

TM Test Management

TMC Test Management and Control

TP Test Port

TRI TTCN-3 Runtime Interface

TSP Telecom Server Platform

TTCN Testing and Test Control Notation

UAA User-Authorization-Answer

UAR User-Authorization-Request

UDP User Datagram Protocol

UE User Equipment

ULA Update Location Answer

ULR Update Location Request

USSD Unstructured Supplementary Service Data

VoD Video on Demand

VPLMN Visited Public Land Mobile Network

WiMAX Worldwide Interoperability for Microwave Access

WSM Wireless Subscription Module

1

1 Introduction

This chapter will introduce the problem area of the thesis project and provide a review

of the existing system test architecture and performance, specifically the Home Subscriber

Server (HSS) node used in networks such as IP Multimedia Subsystem (IMS) and Long Term

Evolution (LTE). The following chapter gives an overview of Testing and Test Control

Notation-3 (TTCN-3) programming language features and the test framework used for this

thesis project.

System test is a very crucial phase in the development cycle of any software product, since it

is generally performed after integration testing and verifies the conformance of product to its

stated requirements. For telecommunication (telecom) vendors (such as Ericsson, Nokia

Siemens Networks, and Alcatel-Lucent) that are involved in the development of core network

nodes in IMS, 3G, and LTE, the system test not only verifies the compliance of the product

with functional requirements, but other crucial system aspects such as system capacity, call

quality, correct generation of operation and maintenance events (e.g., alarms and logging),

load balancing, and load regulation are tested.

For telecom vendors the system test phase is very expensive, because the resources (technical

labor, time, and computing power) involved in this phase are huge. The system under test

(SUT) is installed on telecom grade hardware and the nodes that interact with the SUT are

emulated during the system test. Typically the hardware is a clustered multi-processor

environment that can handle millions of calls per second (CPS), with huge databases that

store customer and call/session related information. The system test strives to reproduce a

real field deployment of the SUT. While this is inevitably expensive, it is less expensive than

trying to debug a system once it has actually been deployed in the field.

Software testing technologies have improved by leaps and bounds in the last decade, thanks

to the efforts of many researchers (in academia and industry), corporations selling testing

tools, standards organizations, and the software vendors themselves who have invested in

research on software testing. Today a great deal of software testing is automated. This has

resulted in a significant reduction in the time and effort needed for development of a test

framework, test cases, and the test execution.

TTCN is one such success story – it is a result of the combined effort of the European

standards body ETSI (European Telecommunications Standards Institute), leading telecom

vendors (such as Ericsson, Nokia, Motorola, and many others), and researchers at some of the

finest technical universities of Europe [1]. TTCN-3 (version 3) as it is known today, is an

internationally standardized programming language for testing. TTCN-3 is generic and has

been successfully employed for testing in telecommunication, automotive, and various other

domains of software testing for over a decade [2]. TTCN-3 is the prime driver of automation

in telecom testing, since it is used by Ericsson, Nokia, and other major telecommunications

vendors for various levels of testing, including functional, system, and performance testing.

2

Its usage has lead to a significant reduction in software maintenance costs and reduction in

the lead time of product development, hence its wide spread usage in the industry [3].

A number of tools that offer a TTCN-3 compiler and an Integrated Development

Environment (IDE) are available under open source license, such as BBT and Trex, to name

just two [4]. Additionally, Ericsson has developed its own customized TTCN-3 tool called

TITAN which is widely used in product development units across Ericsson [5]. TITAN

supports numerous protocols (such as Diameter, SIP, DNS, and LDAP) and offers test ports

(for several transport protocols, including TCP and SCTP). It is available as a plug-in to the

Eclipse IDE
*
 and has its own log viewer [3].

The TITAN test tool was further enhanced to support simulated loads, i.e. to act as traffic

generators for performing load testing on a SUT. Within Ericsson, the load capable version of

the TITAN tool is commonly referred to as „TITANSim‟. TITANSim provides a very

efficient test design and test execution environment for system testers. It has a layered

architecture consisting of a TTCN-3 test executor, test ports, protocol support, libraries, and

ready to use load applications [6]. A detailed architectural overview of TITANSim is

provided in Chapter 4.

This thesis project has taken place within the system test team at Ericsson AB which

develops load test applications for the HSS node in Ericsson‟s implementation of IMS.

Within the IMS, the HSS stores the subscription information for each subscriber, performs

authentication and authorization of users, and can provide information to others about the

subscriber's location and current IP address [7]. HSS is also used in Long Term Evolution

(LTE)/4G networks for the same purpose. As per the 3
rd

 Generation Partnership Project

(3GPP) IMS architecture, the HSS communicates over Diameter interfaces with other IMS

network elements, such as the Subscriber Location Function (SLF), Call Server

Switching Function (CSCF), and Application Server (AS).

During a typical system test of a HSS (i.e., where the HSS is the SUT), the HSS application is

installed on the target hardware and the other network elements that communicate with the

HSS are simulated by the TITANSim. These simulated components are called traffic or load

generators, since their objective is to generate a configured amount of traffic in order to put

the HSS under a load for testing purposes. The TITANSim framework which is used to create

these load test applications for HSS supports two kinds of architectures: Central Scheduling

(CS) and Distributed Scheduling (DS). The current load application is based on using the

central scheduling architecture of TITANSim, thus several thousand load generator test

components are required to simulate the load when the HSS is subjected to a high target load,

for instance 2000 CPS. On the operating system level each of these load generator

components executes as a separate process. With such a large number of separate processes,

memory consumption is huge when simulating high load conditions. This also results in very

inefficient test execution, with slow system response times. As the current load test

application is based on using the centralized scheduling architecture of TITANSim, load

*
 Eclipse IDE, www.eclipse.org

http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
www.eclipse.org

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

testing consumes a lot of memory and this approach is inefficient when simulating high load

conditions, both factors increase the cost of the system test process [6]. In the central

scheduling architecture based load test application, the scheduling of test components is

centralized which results in a lot of communication overhead within the test system, as

thousands of test components communicate with a master scheduling component during the

test execution.

This thesis project aims to create a load test application based on the distributed scheduling

architecture of TITANSim, thus multiple traffic cases will be simulated using a single test

component. This will greatly reduce the number of operating system level processes

involved, thus greatly reducing memory consumption. This approach will enable high load

conditions to easily be simulated with limited hardware resources. In the distributed

scheduling architecture the scheduling task is performed locally by each test component.

There is no communication overhead within the test system. Therefore, the test system is

highly efficient. In the distributed scheduling architecture based load test application the

traffic flow of the simulated users are described using the Finite State Machines (FSMs). The

FSMs are specified in the configuration files that are used by the test system at run time.

Therefore, implementing traffic cases using the distributed scheduling architecture becomes

simpler and faster as there is no (TTCN-3) coding/compilation.

4

5

2 The SUT - HSS

 In the real world, system test developers require a deep understanding of the SUT and

the protocols involved, because a system test is performed on real target nodes. Hence, the

system testers have to install, configure, and provision the SUT software on the target

machine in order to perform the system test.

The SUT for our thesis project is an HSS, which is the master database node in IMS, 3G, or

LTE networks. In the following discussion we will focus on its role and operation in IMS

(later we will consider the role of the HSS in mobility management). Architecturally IMS

consists of a transport layer, IMS layer, and a service/application layer. The basic philosophy

of IMS is to be access-agnostic, so that users from any kind of access network can connect to

an IMS enabled service. Hence, the transport layer consists of a number of gateway nodes

which allow devices from a variety of access networks (such as WLAN, 3G/LTE, WCDMA,

PSTN, and WiMAX) to access the IMS. The IMS layer consists of core switching function

nodes such as S-CSCF, P-CSCF, and I-CSCF. These types of nodes form the heart of IMS

and perform the important function of call/session handling. Note that IMS is based on the

use of the session initiation protocol (SIP) [16].

The HSS is present in the service/application layer of IMS, along with a number of

application servers (AS). An AS can be used to provide a variety of services to the end users,

such as video on demand, video-conferencing, Push-2-Talk, and so on. End users who access

these services using the IMS network must have an IMS subscription. In addition, each

subscriber can have a profile which stores information related to the subscriber‟s service

preferences, authentication information, and so on. All IMS subscriber related information is

stored in the HSS. The HSS performs the authorization and authentication of the user along

with providing location information and the IP address information of the subscriber‟s UE to

other nodes upon request. A typical home network in IMS will have millions of subscribers;

hence the subscriber data will be spread over multiple HSSs. Therefore as noted in section

3.2.2, a SLF is used to identify in which HSS a particular subscriber‟s data is stored. Figure 1

shows an HSS interacting with other IMS nodes through Diameter interfaces Cx and Dx [12].

The HSS is also used in LTE networks, where it interacts with the Mobility Management

Entity (MME) through the S6a Diameter interface [13]. The module within the HSS that

manages the S6a interface for LTE access is called the Enhanced Packet Services (EPS)

Subscription Manager (ESM).

Figure 2 shows the EPS architecture and its interfaces. In this thesis we will restrict our

discussion to the S6a interface. The S6a interface enables the transfer of subscriber related

data between a MME and HSS. The MME is the heart of the mobility support in an LTE

access network, as it tracks the UE and is responsible for handover when the UE moves from

one node to another node within a given LTE network
†
.

†
 Actually an MME can also handle handovers to/from non-LTE networks, but these details lie outside the scope

of this thesis.

6

Figure 1: IMS Application and Control layer

Figure 2: EPS Architecture

The update location procedure is used between the HSS and MME to update the location

information of the subscriber in the HSS database. This is done by sending the Diameter S6a

messages: Update Location Request (ULR) and Update Location Answer (ULA). In addition

to location information, other information such as the MME‟s identity and terminal

information are exchanged with the HSS in the Update Location procedure. When a

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

subscriber‟s subscription has terminated the HSS uses the Cancel Location procedure to

inform the MME, using the Diameter S6a messages Cancel Location Request (CLR) and

Cancel Location Answer (CLA). When any of the subscription related data is changed in the

HSS, the MME is informed by the HSS using an Insert Subscriber Data procedure via the

Insert Subscriber Data Request (IDR) and Insert Subscriber Data Answer (IDA). The MME

can also retrieve authentication information for a subscriber from the HSS through the

Authentication Information Request (AIR) and Authentication Information Answer (AIA)

messages. Figure shows the S6a interface with some of these messages.

For this thesis project the S6a interface between the MME and HSS has been chosen for

developing the load application based on a distributed TITANSim load scheduler. The S6a

interface has been chosen because from a TITANSim perspective, the LGen design is less

complex and the required number of traffic generators needed is less than directly using the

Cx or Sh interface. From the HSS‟s (i.e., the SUT‟s) perspective, the configuration and

provisioning of a HSS is simpler, as the S6a interface requires fewer modules within the

HSS. Thus the S6a interface fits well within the scope of the thesis work with regard to the

time available to carry out this project and the complexity of problem that can be adequately

addressed in this period of time.

Figure 3: MME – HSS (S6a interface)

8

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

3 Background: TTCN-3

Since the mid 1980s, TTCN-3 has become the de facto standard for testing and

writing test specifications. It is an internationally standardized language and offers tool

vendor independence. Therefore any TTCN-3 tool will compile the test scripts in exactly the

same way. It is a simple high level programming language suitable for test developers to

create test specifications, even for complex systems with multiple protocols/interfaces. It has

a textual format for defining test cases – referred to as the TTCN-3 core notation. It offers

many presentation formats for specifying test cases ([8], page 18). Test cases can be specified

in tabular format, Message Sequence Chart (MSC) format, or in a simple textual format. All

of these presentation formats can be converted to the TTCN-3 core notation. TTCN-3

supports different communication modes, such as message oriented communication and

procedure based communication and also includes numerous features (such as built in data

matching, concurrent test execution, timers, and a distributed test architecture). The following

sections provide a brief architectural overview of a TTCN-3 test system and describe some of

its core language features.

3.1 TTCN-3 test system
A test specification consisting of several test cases written in the TTCN-3 core notation

constitutes a test suite. A TTCN-3 test suite is abstract, commonly referred to as an abstract

test suite (ATS), since it is devoid of any system specific information, such as choice of

Coder/Decoder (CODEC) or transport protocol ([9], page 22). This abstract nature of the test

suite makes it easier for the TTCN-3 test developers, as they only need to focus on the

functional aspects of the test (such as specified by a protocol message sequence or finite state

machines) when creating test suites. A TTCN-3 test system is comprised of several other

parts in addition to the test specification itself. These other parts are the TTCN-3 Executable

(TE), SUT Adaptor (SA), Platform Adaptor (PA), and Test Management and Control (TMC)

([9], page 23).

The above functions are realized by several test system entities that interact with each other

through standardized interfaces: TTCN-3 Runtime Interface (TRI) and TTCN-3 Control

Interface (TCI). Figure 4 shows the different entities involved in the TTCN-3 test system.

The core of the TTCN-3 test system is the TE which executes the TTCN-3 statements. The

TTCN-3 execution layer communicates with the PA and SA though TRI and with the TMC

layer through TCI. ETSI has standardized these interfaces in [10] and [11].

10

Figure 4: A TTCN-3 Test System
‡

3.1.1 Test Management and Control

The test management and control (TMC) layer internally consists of three entities: CODEC

(CD), Test Management (TM), and Component Handling (CH); assisted by a Test Logging

(TL) entity.

CD The CD entity performs the encoding and decoding of messages exchanged

between the TTCN-3 test system and the SUT, so these messages are

understandable to each system. All TTCN-3 tools support standardized

encoding schemes, such as ASN.1 [32], and BER [33]. However, if the SUT

uses proprietary encoding schemes, then a user defined CODEC should be used.

TM The TM entity helps a test developer handle the test process itself. The test

developer can control the order of execution of test suites or block some part of

the test suite from execution. This control enables the tester to customize the test

process to suit his or her needs. Log creation, viewing, and debugging are

simplified by using a Test Logging (TL) entity.

CH The CH entity plays a key role in distributed test execution. In a distributed test

execution, the test executable (TE) is spread across multiple test nodes. A

typical distributed TTCN-3 test system is shown in

Figure 5.

‡
 Adapted from Figure.1 General Structure of TTCN-3 Test System, Page 12 of [10]

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

TL The TL plays the key role of logging of the test events and making these events

available to the test user. Typical test events include send/receive messages

between the test system and SUT, alarms, timers, component creation,

execution, and termination information.

Figure 5: A Distributed TTCN-3 Test System
§

Each node involved in the distributed test system will have its own SA, PA, CD, and TL

entities. The CH and TM entities manage the communication between test entities in each of

the nodes in the distributed test setup. The CH entity is aware of all of the communication

ports of all the test entities in all nodes, thus the CH can forward messages from one instance

of an entity to another instance of the same entity in a different node.

3.1.2 TTCN-3 Executable (TE)

The TE entity is responsible for the execution of a specific TTCN-3 test suite (the ATS). The

TE is conceptually divided into an Executable Test Suite (ETS), a TTCN-3 Runtime System

(T3RTS), and an optional Encoding/Decoding System (EDS) ([10], page 13).

§
 Adapted from Figure 3 , Page 21, [11]

12

ETS The ETS entity executes the test cases. During the test case execution, ETS

communicates with the T3RTS entity to send messages to the SUT. When the

response message is received the ETS entity matches the received response with

the test case defined template of expected response as encoded in the test suite.

T3RTS T3RTS is the heart of the TE entity. It communicates with the TM entity through

the TCI interface and with PA and SA through the TRI interface. All the test

events are logged by the TM entity with the help of T3RTS. The T3RTS is

responsible for initializing the adaptors, i.e., the ETS and EDS entities. T3RTS

notifies the SA entity what message is to be sent to the SUT. It communicates

with the PA entity so that appropriate timers are started, stopped, read, or simply

queried during the test execution. T3RTS invokes the EDS entity so that all the

messages are appropriately encoded / decoded before they are exchanged with

the SA.

EDS The EDS entity is responsible for encoding and decoding of all test data

exchanged between the T3RTS and SA during the test execution.

3.1.2.1 SUT Adaptor (SA)

The TTCN-3 test suite is completely abstract. Hence, the mapping of all TTCN-3 operations

to a real world operation is performed by the SUT Adaptor (SA). For example, while a test

suite specification might simply indicate the message to be sent through a port, the SA entity

maps the TTCN-3 port to a real world port (i.e., to a specific destination IP address, transport

protocol, and port number).

3.1.2.2 Platform Adaptor (PA)

The platform adaptor (PA) entity handles all the events that occur when messages are lost

between the TTCN-3 test system and the SUT. For example, timers need to be implemented

to handle message timeouts that arise when messages are lost in transport or the

communicating node fails to respond to a specific message. Timers are implemented at the

platform level (with messages such as Device Watchdog Timer (DWT) that monitor

connectivity with a Diameter peer node), and also at the application level as per the specific

protocol‟s specification.

3.1.3 TTCN-3 Control Interface (TCI)

In a test system all the communication between the TE, TM, CH, CD, and TL entities are

defined by the TCI. TCI enables a TE to manage test execution, log events with TL,

distribute and coordinate test entities in different test devices, and perform coding and

decoding ([11], page 22).

3.1.4 TTCN-3 Runtime Interface (TRI)

TRI defines the communication between the TE & PA and TE & SA. TRI enables a TE to

exchange messages with the SUT through SA, control timers, and receive messages and

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

timeout events. The ETSI standardized interfaces TRI and TCI enable a TTCN-3 test system

to be adapted for any kind of SUT ([10], page 15).

3.2 TTCN-3 Core Language Features
ETSI has designed TTCN-3 to be a very flexible and powerful language for performing

system tests ([8], page 17). The language features that are built into TTCN-3 are extensive

and make TTCN-3 suitable for regression testing, integration testing, and stress testing.

However, there are some specific TTCN-3 features that are pertinent to the development of

TITANSim. In this section we will briefly discuss those features that make TTCN-3 very

powerful for load test application development.

3.2.1 TTCN-3 component architecture

Any load test application designed in TTCN-3 is built on a number of components.

Depending on the complexity of the testing task, a single component test system can be

designed (with only a Main Test Component - MTC) or the system can involve multiple

components (Parallel Test Components - PTCs) – as shown in Figure 6. In test systems that

involve multiple components, the MTC is responsible for creating the PTCs. Each PTC will

perform its defined testing task and produce its own component level test verdict. The MTC

collects the verdicts from each of the PTCs and determines the final verdict for each

particular test case.

Figure 6: SUT interacting with various test components

Each component is defined with a particular type name and its definition includes associated

ports, timers, variables, and constants of the component. As will be discussed in section 3.2.3

TTCN-3 components communicate with each other and with the SUT using ports. The

component type definition is local to a particular component hence other components may

use the same port names or timer names in its definition. The following code sample shows a

typical component definition with port, timer, and a variable.

14

type component MyPTC1Type
{
var integer MyLocalInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1
}

 It is also possible to define a new component type by extending an already defined

component type using extends keyword; the former is referred to as the extended type and

the later as the parent type. It is also possible to have an extended type component definition

extending multiple parent types. In such a case the parent type definition may also be based

on an extension. So effectively the component definition of an extended type includes all the

ports, variables, timers defined in the parent type as well as those defined directly in the

extended type.

type component MyMTCType
{
var integer MyLocalInteger;
timer MyLocalTimer;
port MyMessagePortType PCO1
}
type component MyExtendedMTCType extends MyMTCType
{
var float MyLocalFloat;
timer MyOtherLocalTimer;
port MyMessagePortType PCO2;
}

3.2.2 Concurrency

In any telecommunication network (such as IMS, GSM, or 3G/LTE) the SUT is quite

complex as it communicates with multiple nodes via many different interfaces. For example,

in the IMS network, the HSS node contains the subscriber database storing all the

subscription information needed in order to perform authorization and authentication of users.

Typically, the number of subscribers is very large. Hence, the home domains in actual IMS

networks have multiple HSS nodes. In this case, the IMS systems needs a Subscriber

Location Function (SLF) in the home domain to map the user‟s IMS address to the

corresponding HSS that stores this particular user‟s profile and other subscription

information. The SLF is used by a number of nodes in the IMS home domain, specifically the

Serving – Call Server Switching Function (S-CSCF). When the S-CSCF wants to retrieve any

information from a user‟s profile or wants to authenticate a user using the HSS database, the

S-CSCF must first locate the SLF and ask it for the address of the appropriate HSS for this

specific user. Then the S-CSCF establishes a session with the appropriate HSS (unless it

already has an existing session). The HSS provides the user with access to Application

Servers (AS), thus the HSS facilitates authentication of a subscriber using a particular device

(i.e., User Equipment (UE)), when this UE wants to initiate a session with the AS. To realize

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

a secure and authenticated connection between the UE and AS, the HSS uses another node

called the Bootstrapping Server Function (BSF) that provides security keys for the session

between UE and AS. Thus a simple scenario such as retrieving a user profile or performing

user authentication will involve multiple nodes. Figure 7 shows the S-CSCF, SLF, and HSS

along with the Diameter interfaces that they use to communicate.

Figure 7: HSS as a SUT interacting through multiple Diameter interfaces

If we consider HSS A as the SUT, our test system should have at least two test components,

one each for Zh and Cx interfaces. Thus one test component (say PTC1) would simulate a

BSF node attached via the Zh interface and the other (say PTC2) would simulate

S-CSCF node attached via the Cx interface. It is also possible to design the same test system

with a single component, but this version will operate in a non-concurrent fashion (e.g., first

simulating interactions via the Zh interface, then Cx or vice versa). However, this

non-concurrent design is very complicated and the test system code will be hard to maintain.

In contrast, a concurrent TTCN-3, design is modular, hence it is easier to maintain – even for

a system as complex as shown in Figure 7. For concurrent TTCN-3 design it is important to

have a very clear definition of the configuration of the test components. The test component

configuration includes the details of the ports with which the test components communicate

with each other and test system interface with the SUT.

As with any TTCN-3 test system, a concurrent TTCN-3 test system includes one MTC,

which is responsible for the creation of the PTCs. The TTCN-3 core language provides a

special create operation to dynamically create PTCs at run time, i.e. during test execution

([8], page 93). Figure 8 shows a typical TTCN-3 concurrent test system configuration.

16

Figure 8: A Concurrent TTCN-3 test system

3.2.3 Synchronous and Asynchronous communication

Each component has a certain number of assigned ports through which it will exchange

messages with the SUT. The message types that are part of the definition of a port type can

be bidirectional (inout), send only (out), or receive only (in). TTCN-3 port types can be

message based or procedure based ports, depending on the communication mode used by the

test components. In both the cases the port will have a set of predefined message signatures

or procedures that define what the port is allowed to send or receive. The following code

samples show the definition of message based and procedure based ports.

type port MyMessagePortType message
{
in MsgType1, MsgType2;
out MsgType3;
inout integer

}

type port MyProcedurePortType procedure
{
out Proc1, Proc2, Proc3
}
In message based communication mode, as shown in Figure 9, the send operation in the

sending component is non-blocking, i.e. it is asynchronous, while the receive operation in the

receiving component is blocking ([8], page 166). For example, a send or receive operation on

a message based port is performed as below.

MyMessagePort.send(5); // Sends the integer value 5

MyMessagePort.receive; // Removes the first value from MyMessagePort.

In a typical real-time system, there will be multiple incoming messages queuing up at the

receiving component. To handle such message queues, TTCN-3 provides a trigger operation

that allows a receiving node to apply some filter conditions on the message queue and to

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

process only those messages that match the filter criteria. A basic example of such trigger

code is shown below. It specifies that the operation will trigger on the reception of the first

message of the type MyType with an arbitrary value at the port MyMessagePort.

MyMessagePort.trigger(MyType:?);

Figure 9: Asynchronous send and receive operation

The procedure based communication mode, as shown in Figure 10, is based on remote

procedure calls. The sender node invokes a call operation on the receiving node, for which

the receiving node responds by invoking a getcall operation. If the operation is successful,

then the receiving node will respond with a reply operation or raise exception operation. On

the sender node the response is received using a catch operation ([8], page 166). Procedure

based communication can be blocking, where both the sender and receiver nodes wait until

the operation is performed; or the communication can be non-blocking. The non-blocking

mode of communication as shown in Figure 11, where the operation of the sender node is

non-blocking, while only the receiving node operates with a blocking state. For detailed

handling of procedure based communication with code examples refer to ([8], pages 174-

184).

Figure 10: Blocking procedure based communication mode

18

Figure 11: Non-blocking procedure based communication mode

At the TTCN-3 language level, each component is always defined with its associated ports.

Thus the component type is differentiated based on the associated ports. The port names are

also local to the component, hence they are not unique. The component type definition also

includes constants, variables, timers, and functions. Thus every instance of the component

type that is created will have its own set of ports, timers and functions as defined in the

component type definition.

3.2.4 Timer Handling

As discussed in the section 3.2.2, in non-concurrent TTCN-3 test systems, the execution flow

stops till a response is received from the SUT. Hence, the test system should be prepared to

handle situations when there is no response from the SUT. TTCN-3 provides timers that

expire and indicate to the test system the SUT‟s inactivity. TTCN-3 provides all the

operations needed for creating a timer, checking for an expired duration, stopping a timer,

check a timer‟s status, and blocking execution while the timer is running – as shown in Table

1. Timers are also used to create a sufficient time gap between executions of test cases to

enable the tests cases to execute from a stable state. Typically timers are defined in the

components‟ definitions. TTCN-3 also allows timers to be defined inside the individual test

cases and in the module‟s control part. The sample code below shows the different operations

that can be performed with a timer.

timer sampleTimer; // declare a timer variable

sampleTimer.start;

sampleTimer.stop;

var float timerValue;

timerValue := sampleTimer.read; // read elapsed time

if(sampleTimer.running) {} // check if the timer is running

sampleTimer.timeout // check the expiration of the timer

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Table 1: TTCN-3 Timer operations

Statement TTCN-3 operation

Start timer Start

Stop timer Stop

Read elapsed time Read

Check timer status Running

Timeout event Timeout

For efficient timer handling each component or control module where the timer is defined

maintains a list of running timers and timeout timers. Whenever a timer is started an entry is

made in the running timers list. When the timer expires, it is added to the list of timeout

timers. Thus at any point of time during test execution an entry for each timer exists either in

the running timers list or the timeout timers list ([8], page 189). When the execution of the

control module or the test component is stopped, all the running timers are cancelled and no

longer exist in either list of timers.

3.3 TTCN-3 and finer aspects of system test
In this section, some key aspects of the TTCN-3 based test systems (such as concurrency,

resource optimization, and resource management) are discussed.

3.3.1 System testing

In section 3.2.2 about concurrent TTCN-3 testing, a typical example of session authentication

using the HSS was discussed. It was quite clear from this example that the TTCN-3 test

system has to simulate all the other nodes that interact with the HSS (SUT). In a real world

scenario, the HSS in an IMS network may need to authenticate thousands of user sessions per

second. In order to apply the same load to the SUT, the test has to simulate tens of thousands

of users; however, this will require a lot from the test system – especially if each user is to be

individually modeled. This would require that there be tens of thousands of test components

involved in the test system, all executing in a concurrent fashion.

Using this approach, the TTCN-3 test system designed to system test a node such as a HSS

will be as complex as the HSS itself (or perhaps even more complex). However, the

complexity of the test system can be reduced to a certain extent by clearly defining the design

scope of the system test. Consider that the process that generates thousands of individual

requests for session authentication from the SUT per second does not need to wait for the

response from the SUT, but rather this process can execute thousands of concurrent threads

where each thread will process the response to its request when the response later arrives.

This thread will then take the appropriate action based on the traffic flow that was defined in

the test system.

20

This means that we can test the processing of the SUT in a system test without modeling each

individual user. The test system developer can design a TTCN-3 test system so that a certain

number of authentication requests are made per second to the SUT with a complete set of

messages as per the standard protocol specifications. Note that only some of the responses

actually needed to be checked to see if they are the correct and expected response, the rest

can simply be ignored – thus reducing the load on the load generator, enabling a given load

generator to simulate a much larger number of users making authentication requests per

second. However, the SUT must not know which of the authentication requests are being

checked and which are not, thus it must actually process all of them correctly.

3.3.2 Resource optimization

As discussed in Chapter 1, performing a system test is a very resource intensive process.

Each simulated user consumes a significant amount of memory in the test system. For

example, a real HSS might need to support 10 000 simultaneous users, hence the test system

will have to simulate at least 10 000 users. If on an average the process simulating each user

consumes 100 kilobytes of memory, then a total of 1 gigabytes of memory is required. The

traffic rate of the load generator, hence the load on the SUT is proportional to the number of

users that can be simulated by the test system. This means that the TTCN-3 test developers

have to strike a balance between achieving high loads and the resource consumption required

to generate this load.

The resources required of the load generator can be reduced considerably by re-using

resources. Assume we need to generate a load of five calls per second (CPS) by the test

system in order to test the SUT under this load and that it takes one second for each call to

complete, then at the end of five seconds, instead of deploying a sixth user, we can reuse the

first user (who is now free) to play the role of the sixth user. Simplistically this would imply

that to achieve a traffic rate of five CPS, all we need is just five users; however, this is not

quite true as in generally we would like to avoid the delay of setting up a user to enter the

queue – hence we might use a number of additional users to enable the load generator to

create users that are prepared to place call, then simply feed these prepared users to the SUT

at the desired rate. In this slightly more sophisticated method we can actually test the system

with a load of five CPS, rather than a load that varies between four and five with some

unknown duty cycle (i.e., the fraction of time when the system is actually under a load of five

users could vary from a few percent to 100% of the time – depending upon how quickly the

load generator can generate a new user state). In TITANSim a common practice while

configuring the load application is to make the load generators simulate a number of

additional users which is nearly 20% more than the required number of users. The time taken

by the users to execute their assigned traffic case and become available again for execution

depends on the system response time with the varying load levels. This approach has been

proven in research with SUT‟s such as an HTTP server, put under test with commercial load

generators such as HP‟s LoadRunner
**

 ([17], chapter 5). These results show that the average

**

 Commercial software for performance validation from HP, check

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-

17%5e8_4000_100

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5e8_4000_100
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5e8_4000_100

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

response time of the system increases as more number of users start using the system (i.e., as

more load is generated by the test system). Under high load conditions the SUT response can

be very slow (well below satisfactory limits) and the users simulated by the test system will

have to wait longer for their response. From a test system‟s perspective, this means that its

resources (user components and the associated memory) take longer to complete execution

and become available for reuse. To counter this problem TITANSim provides a load

regulation feature to regulate the CPS and maintain the SUT in a stable state during test

execution. This feature periodically measures the CPU load level on the SUT and calculates a

new target CPS value.

3.3.3 Resource management

Since the TTCN-3 test systems used for system test usually simulate thousands of users to

achieve high traffic rates, it uses a lot of memory which can become fragmented during test

execution. Memory fragmentation will seriously affect the performance of the test system as

it reduces the execution speed. So the load applications built using TTCN-3 should have

efficient data structures to avoid memory fragmentation. For instance, TITANSim provides a

Free-Busy Queue (FBQ) which is used to maintain a list of free and busy slots in the memory

([6], page 4). The FBQ is used for dynamic memory allocation in any load application

developed using TITANSim. So when a user process is created by the test system during

execution, an element representing a free resource is removed from the free queue and added

to the busy queue and vice versa when the user process terminates.

3.4 Related work
Test automation with TTCN-3 has been an area of significant research in telecommunications

over the past decade. Development of a test framework assumes as much significance as the

software itself. Markus Warken in his publication titled „From Testing to Anti-product

Development‟ illustrates how telecommunication companies consider modern testing as an

anti-product development [24]. Old ways of software development models such as the

Waterfall model [25] have now been replaced by parallel software development (also known

as incremental development) methods such as Scrum [26], which necessitate the development

of the anti-product in parallel to the product. This has also led to a general understanding in

the telecommunications industry that the anti-product is in itself a complex software system

and that the test development teams must have competent developers. Markus draws onto his

vast personal experience in anti-product development using TTCN-3 and explains how

TTCN-3 is the method of choice for telecommunications testing. He also explains the

advantages of using TTCN-3 for anti-product development such as the concept of re-use in

the test system development, and the ease of test management, automation, and debugging

([24], pages 303, 304).

Any anti-product developed for the system test focuses on two main goals. Firstly, the test

system should not be as complex as the SUT itself. Secondly, the test system should generate

sufficient load to test the load characteristics of the SUT and at the same time use minimal

resources. While technologies such as TTCN-3 can be effectively employed to achieve the

22

first goal of a simpler, easy to maintain test system; the second goal has to be addressed at an

architectural level of the test system; independent of the technology used to develop it.

Ferenc Bozóki and Tibor Csöndes of Ericsson Hungary in their publication titled „Scheduling

in Performance Test Environment’ provide a Finite State Machine (FSM) based architecture

and an algorithm to improve the scheduling efficiency in such test systems [27]. In the

functional test, typically every test case simulates just one user (user or client of the SUT)

using a POSIX thread (for general information on such threads see [28]). This is called the

„one user-one thread‟ approach. Unfortunately, while simple – this approach does not scale

up well for a performance test environment where thousands of such threads are required.

This would consume a lot of resources and the thread scheduler will spend time switching

between the threads during the test execution. To solve this problem, Ferenc and Tibor

abstract the concept of a thread to an abstract level called virtual threads, where a single

thread could emulate multiple users, and the execution of each user is considered as a virtual

thread. This is called the „multiple user-one thread‟ approach ([27], page 2). It is realized

using FSM theory [29]. The „multiple user-one thread‟ approach also has some bottlenecks.

As almost every message exchanged between the test system and the SUT is timer driven, the

test system has to process each message within a time; otherwise the message is considered

too late leading to a false (test) verdict. Thus, there could be undesirable delays in processing

of events in a „multiple user-one thread‟ approach as a single thread is responsible for

handling events for thousands of users. To solve this problem, Ferenc and Tibor propose an

algorithm to reduce the total delay of the test system by optimizing the scheduling of events

([27], page 4).

In the system test environment, the test system used for generating load typically is

comprised of multiple test nodes. When multiple test nodes are involved, test component

distribution becomes vital to efficient utilization of test system resources during the test

execution. George Din, Sorin Tolea, and Ina Schieferdecker in their publication titled

„Distributed Load Tests with TTCN-3’ provide an architecture for distributed load test

execution and also present a few distribution algorithms along with their characteristics [22].

They also present three generic patterns of test component specification, namely a one

component per client pattern where a component emulates just one client or user, a sequential

repetition of clients per component pattern where a component sequentially repeats in a loop

emulating a different user each time, and an interleaved client behaviors per component

pattern where a component simulates multiple users in parallel ([22], page 182).

A number of factors have to be considered when choosing an appropriate algorithm for test

component distribution, when the test system involves multiple test nodes. For example, in

the one component per client pattern test components are created, execute a scenario, and

terminate for every user. In such a case the balancing of test components (a decision on which

test node the test component should be created) can be performed during the test execution at

the time of test component instantiation. In the case of interleaved client behaviors per

component pattern test components execute for longer periods since they simulate multiple

users ([22], page 184). For this pattern the test component distribution needs to be performed

before the test execution using the knowledge of the resources consumed by the test

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

components and how much the relevant resource is available on each test node. Based on

when the distribution decision is taken, the distribution algorithms can be classified as static

or dynamic ([22], page 189). A static algorithm, such as round robin test component

distribution, is effective when the test nodes have more or less same resources (for example

memory and CPU capacity). It should be noted that the test component distribution was

performed in a similar fashion for the tests in this thesis project (refer to section 5.5.2).

Dynamic algorithms are effective when the test nodes have different memory and CPU

capacity ([22], page 190). Dynamic algorithms use a threshold parameter such as memory, or

load level. The algorithm periodically measures the threshold parameter on each test node

during the test execution and accordingly decides on which test node the test component

should be deployed.

In „Distributed functional and load tests for Web services’, Ina Schieferdecker, George Din,

and Dimitrios Apostolidis, implement a distributed test platform architecture for load testing

a simple web service [23]. They experiment by increasing the test load to measure the

changes in response time of a web server with an increasing number of test components. Such

studies are essential for striking the correct balance between SUT load levels, number of test

components, and test execution time.

24

25

4 TITANSim

Now that we have equipped ourselves with a basic understanding of the TTCN-3 test

system architecture, its function and language features, we will now study a real world

TTCN-3 system that is used widely within Ericsson for system test load application

development.

TITANSim is an extensible, modular, software load test framework written in the TTCN-3

language. It provides all the necessary building blocks to build any load test application.

TITANSim utilizes all the core features that were discussed in the previous chapter to their

fullest potential. It provides all the functionalities required to develop highly optimized load

test applications needed for carrying out a system test. The TITANSim features can be

broadly classified as protocol dependant and protocol independent. Protocol dependant

features include several libraries for protocols such as SIP, Diameter, HTTP, MAP, DNS, test

ports, and many more. Protocol independent features include data structures needed for

resource management such as the FBQ, Hash Map, and user scheduling components.

4.1 TITANSim Architecture
TITANSim is an extensible modular software load test framework written in TTCN-3

language for TITAN, Ericsson‟s proprietary tool for TTCN-3 test execution. The main

architectural elements of TITANSim are the Test Ports (TPs), TITAN libraries, Core Load

Library (CLL), Application Libraries, Control Logic, and Run time Graphical User Interface

(GUI) ([6], page 6) – as shown in Figure 12.

Figure 12: TITANSim architectural elements

26

TITAN Libraries The TITAN libraries provide all the basic TTCN-3 language

functions & operations, such as send, receive, and create. These

libraries also provide all the functions needed for communication

between TTCN-3 components and the SUT, data structures and

data types, and logging.

Test Ports The TPs implement the transport functions for sending and

receiving messages. They also perform the CODEC functions for

all messages exchanged with the SUT.

Core Load Library The CLL forms the protocol independent part of the TITANSim

architecture. The CLL provides all functions needed for user

creation, resource management functions (such as FBQ and hash

map), user scheduling, and load regulation.

Application Libraries Application libraries provide the protocol dependent part of the

TITANSim architecture. A number of protocol application

libraries are provided (such as SIP, Diameter – Cx/Dx, Sh, and

DCCA). The applib, as each one of these libraries is usually

referred to as, provides the base TTCN-3 component definitions

and functions. Any load test application can be developed by

choosing the appropriate applib.

Control Logic The control logic realizes the executable part of TITANSim. It is

built on top of the CLL and the applib. It is application specific

and ensures that the expected traffic flow is realized - as shown in

Figure 13.

Run time GUI The run time GUI offers a user interface with which a tester can

control the test‟s execution. Using the GUI, the tester can control

logging options, view test statistics, and start and stop test

execution.

Figure 13: Control logic

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

4.2 TITANSim Component Structure
Each TTCN-3 component is similar to an object in any object oriented programming

language. Each component has a set of functions and component variables that are declared

in the component definition. To use a feature provided by a particular component, one

extends that component, and use the functions and variables provided by it. Any system test

load application developed on TITANSim will have a component structure similar to Figure

14.

Figure 14: TITANSim component structure

The MTC is created by the TITAN framework offered by the TITAN libraries. The test cases

designed for a particular load application start executing inside the MTC. The actual load

generation (i.e., the traffic itself) is created by the Load Generator components (LGens)

which execute within a PTC. Depending on the test design many LGen components will be

created during the test execution, hence an Execution Control (ExecCtrl) component is used

to initiate and oversee the traffic execution and synchronize the finish events of these LGens.

The TITANSim CLL provides a LGen base component, which can be extended by a specific

load generation application. The LGen base feature forms the heart of the TITANSim. It

enables the concurrent execution of many PTCs. Each PTC is mapped to an OS process. So

in order to generate high traffic load conditions, theoretically we need many PTCs which

make the load application quite resource intensive and inefficient. However, the LGen base

feature is designed to simulate multiple users with a single PTC. By simulating hundreds and

thousands of users on a single PTC, the number of OS processes required to generate the

traffic load is significantly reduced. The design of such a LGen base feature requires a new

programming paradigm called event driven programming which is discussed in the following

section.

4.3 LGen base Programming Paradigms
Traditionally two programming paradigms are frequently used in a TTCN-3 test system

design. They are, sequential programming and event driven programming. Sequential

programming is used in test system design for functional testing, where usually only one user

28

is simulated by the test system in each test case – because the emphasis in functional testing

is on correct execution of each function that is being tested. In contrast event driven

programming is frequently used in test system designs for a system test, as there is generally

a need to simulate a million users in each test case.

4.3.1 Sequential programming

In sequential programming, a set of programming instructions are defined in the test system

and order of the execution is fixed – as shown in Figure 15.

Figure 15: Sequential, hardwired TTCN-3 test system

Figure 15 showed a sequence of Diameter messages exchanged between the TTCN-3 test

system and the HSS. In this case the execution is strictly sequential and the test system waits

for some maximum period of time for a response from the HSS. The main drawback of

sequential programming is that the execution of the test system is blocked until it receives a

response from the SUT or a timer expires, for each message sent out by the test system. So

with a naive mapping of the test generation of each individual user to a single process, this

technique can simulate only one user per PTC. This technique is not scalable; hence it is not

suited for system testing high capacity nodes such as the HSS, which must handle thousands

of CPS.

4.3.2 Event driven programming

Instead of a fixed sequential execution behavior event driven programming enables dynamic

execution order; hence the test system behavior is described in terms of actions assigned to

events. Whenever a particular event occurs, the test system executes the corresponding

assigned action. Therefore the test system does not wait for a response from the SUT, but

rather it reacts to the events from SUT by executing the defined actions for a particular event,

as shown in Figure 16. This facilitates the test system interleaving the execution of a very

large number of users while only needing to maintain the necessary state for each of these

users – but without the overhead of a process per user.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 16: Event driven, dynamic TTCN-3 test system

Thus in event driven design a PTC does not block the execution of the test system, so instead

of just a single user per PTC – multiple users can be simulated using each PTC. So a single

PTC sends request messages for a number of users to the SUT and handles the response

messages for each of these users as and when the response arrives from the SUT. The ideal

design approach is to have as many PTCs as the number of CPU cores, say 2 PTC‟s for duo-

core and 4 for the quad-core processor system.

4.4 Finite State Machines
The dynamic behavior of TTCN-3 test systems designed using the event driven programming

paradigm, can be better explained with the use of the concept of FSMs. A FSM is described

with a set of events, test steps, and states. Every event will have an assigned test step. At any

point of time during test execution the test system is in a particular state of the FSM and

listens for the events that are expected to occur in that state. Events could be timeout

messages, responses messages from the SUT, and so on. Upon the occurrence of a particular

event the test system executes the corresponding test step and moves to the next state (or

could even remain in the same state). For example, consider a FSM consisting of two states

(S0 and S1), two events (E1 and E2), and test steps (TS1, TS2). When the test system is in

state S0, if the event E1 occurs it executes TS1 and moves to S1. Similarly if the test system

is in S1 and if event E2 occurs, then it executes TS1 and moves to state S0. FSMs can be

described in the form of a table, as shown in Table 2, or in a state diagram (i.e., in a graphical

format) as shown in Figure 17.

Table 2: A sample FSM table

Event/ next states S0 S1

E1 TS1, S1 TS2, S1

E2 TS2, S0 TS1, S0

30

Figure 17: State diagram

4.5 Scheduling concepts
Since the TTCN-3 test system involves many PTCs which act as LGens there is a need for a

base feature that takes care of LGen component initialization, test case execution, handling

the result of each traffic case execution, enable/disable a LGen component, and finally clean

up all the LGens and the associated data bases when the test case execution is complete. The

TITANSim CLL has a base scheduling feature that provides all these functions. It can be

used to schedule the PTCs used in the test system design based on the two different

programming paradigms discussed in previous section. The base scheduling feature provides

two types of scheduling methods: Central Scheduling (CS) and Distributed Scheduling (DS)

[6].

The CS method is based on the sequential programming paradigm, where the test system is

likely to consist of hundreds of PTCs as shown in Figure 18. In the central scheduling

architecture based load test application, the scheduling of test components is centralized

which results in a lot of communication overhead within the test system, as hundreds of test

components communicate with a master scheduling component during the test execution.

The DS method is based on the event driven programming paradigm. Hence, the test system

utilizes only few PTCs. In this case the scheduling functions are distributed and performed by

the LGens themselves in each PTC, rather than in a master scheduling component. The DS

method is shown in Figure 19.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 18: Central Scheduling

Figure 19: Distributed Scheduling

Table 3 summarizes the differences between the CS and DS scheduling.

Table 3: CS versus DS

 Central Scheduling Distributed Scheduling

Sequential test system Dynamic, event driven test system using FSM

One user simulated in each PTC Thousands of users simulated in each PTC

Typically uses hundreds of PTCs Ideally the number of PTCs equal the number of

processor cores

Uses a master scheduling component The scheduling functions are distributed and handled

32

by each PTC

Internal communication overhead

Traffic cases implemented in TTCN-3 modules

No overhead

Traffic cases implemented in FSMs (configuration

files)

Not suitable for system test. Typically used for

functional testing purposes

Highly suited for system test, consumes less test

system resources, yet capable of generating high

traffic load conditions

4.6 Distributed Scheduling architecture
The concept of Distributed Scheduling based on FSMs was proposed by Ferenc Bozóki and

Tibor Csöndes of Ericsson Hungary in their publication titled „Scheduling in Performance

Test Environment’ [27]. As discussed in section 3.4, Ferenc Bozóki and Tibor Csöndes

extended the concept of a thread to an abstract level called virtual threads, where a single

thread could emulate multiple users and the execution of each user is considered as a virtual

thread. Figure 20 (adapted from Figure 3 in page 2 of [27]) shows one such thread executing

User a, User b, and User c as separate virtual threads. The execution behavior of each user is

dynamic and it is defined by a FSM as described in section 4.4. Each thread holds a database

to store the relevant information about the users. Each record of this database corresponds to

a specific user. Thus, by simply varying the index of this database, the execution context

changes to a different user. Compare this to the case of central scheduling, where the OS

scheduler has to make context switches between processes to change the execution context to

another user.

Each thread holds an event queue which is a simple FIFO queue [30] for storing the incoming

events. The message in the queue is processed to determine the user it belongs to, and the

message is dispatched to the appropriate user using an event dispatcher. The user then

performs the action according to the assigned FSM. Each thread also maintains a timer queue

which holds the timer events of the users. The thread adds a timer event to the queue for a

specific user only if it is required; say for instance if a response to an event has to be sent

within two seconds. When such a timer expires in the timer queue, the timeout event is

dispatched to the corresponding user. A bottleneck with this approach is that certain events in

the queue might require computationally intensive operations, i.e., use significant CPU time.

This would deprive the other events in the queue (which may have a comparatively smaller

timeout value in the timer queue) of CPU time and may lead to unnecessary timeout events.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 20: DS architecture
††

As almost every message exchanged between the test system and the SUT is timer driven, the

thread has to process a message within the appropriate time; otherwise the message is

considered to be too late (leading to timeouts) leading to a false (test) verdict. Thus, there

could be undesirable delays in processing of events in the test system as only a single thread

is responsible for handling events for typically thousands of users. Therefore, Ferenc and

Tibor proposed an algorithm to reduce the total delay of the test system by optimizing the

scheduling of events by introducing a secondary queue. Using this algorithm the thread

prioritizes the event queue and determines those events that can be put on hold temporarily

(in the secondary queue) without causing an actual delay (as those events have a higher

timeout value compared to the rest in the event queue) in the test system. For detailed

discussion of this algorithm refer to ([27], page 4).

4.7 The LGen base – finer aspects
In TITANSim terminology any user that is simulated by the PTC is referred to as an entity.

Henceforth we will use the term entity to refer to any object simulated by the TTCN-3 test

system. A simulated entity can be configured to exhibit different behavior types. For

example, all the SIP related capabilities are referred to as the SIP behavior type, similarly

Diameter protocol related capabilities are referred to as the Diameter behavior type. An entity

assigned a list of behavior types is called an entity type. A group of entities of same type

††

 Adapted from Figure 3 in page 2 of [27]

34

form an entity group. Thus an entity group consists of several instances of entities (such as

users) exhibiting common behavior types. Since the system behavior is described by FSMs,

the behavior type assigned to entities consists of a set of test steps and events. Once the

behavior type with test steps and events is assigned to the entities, a traffic case is created. A

traffic case basically defines a certain flow of traffic (as described in the FSM) assigned to

the entity. Depending on the requirements of the load application, a number of traffic cases

can be created, by assigning different behavior types to different entity types. Once a traffic

case is created, it is important to define how much traffic of this kind should be generated by

the test system. Hence, the required traffic rate or load level, and the number of PTCs to be

used are configured by creating a scenario. Figure 21 shows the relation between entity,

behavior type, and the FSM.

Figure 21: Relation between entity, behavior type, and FSM

35

5 Methods

This chapter presents the environment for developing the load test application, the

S6a load application design and implementation, and the test system setup used for the tests

executed with the S6a load application and their results.

5.1 Goals
This project aims to create a Diameter load application based on the distributed scheduling

architecture of TITANSim, specifically for the S6a interface. The scope of the load

application is limited to the Initial Attach traffic scenario which will be described in later

sections. A thorough investigation is made of how to deploy the solution in a real system

environment
‡‡

 (including using separate traffic generators, with a real target node running the

HSS software as the SUT). Performance measurements and a comparison of the earlier CS

based solution with the new DS based solution.

5.2 Setup
Figure 22 shows the environment used to develop the load application. It consists of

TITANSim, a Diameter Proxy, and the HSS application installed and running in a simulated

environment called Maia
§§

.

Figure 22: The development setup

This figure shows the logical view of the setup for the sake of clarity. Physically all of these

elements are run as separate processes in a single Linux workstation running SUSE

 Linux

10.1 Desktop 32 bit edition.

5.2.1 TITANSim setup

The TITANSim software is developed and maintained by TCC (Test Competence Center), a

Research & Development organization focusing on TTCN-3 within Ericsson‟s unit in

Hungary. All the official releases of the software are available for download only internally

within Ericsson. For this project the latest release of the TITANSim software called the

‡‡

 The load application was designed and tested only in a simulated environment during its development cycle.

Hence additional investigation is needed to deploy the load application in real environment.
§§

 Maia is an Ericsson proprietary tool used to simulate the Ericsson Telecom Server Platform (TSP), in which

the HSS application is installed and run. For more information, see

http://www.ericsson.com/ericsson/corpinfo/publications/review/2001_04/files/2001045.pdf.

 An open source Linux distribution, see http://www.opensuse.org/en/

http://www.ericsson.com/ericsson/corpinfo/publications/review/2001_04/files/2001045.pdf
http://www.opensuse.org/en/

36

EPTF GenApp (Ericsson Performance Test Framework Generic Application) version

R7A03 is used. This version of the software provides all the required libraries needed for

developing load applications for Diameter traffic type. As discussed in chapter 4,

TITANSim is written exclusively for execution with TITAN, the proprietary TTCN-3

execution platform used within Ericsson. The latest version of TITAN software, version

1.8.pl4 was installed on the computer as it is a prerequisite for TITANSim. TITAN is also

available as a plug-in to the Eclipse SDK, which is used for TITANSim development. A

screen shot of the TITANSim development and execution environment as an Eclipse plug-in

is shown in Figure 23.

Figure 23: TITANSim EPTF GenApp in Eclipse SDK

5.2.2 Diameter Proxy

In actual operation, the HSS does not handle more than two or three transport connections per

peer node. However, in a typical system test scenario where there may be multiple traffic

generators used in the test system, thus there is a need for the HSS to support at least one

connection per traffic generator. Unfortunately, the limited number of connections supported

by the HSS is not sufficient to support the required number of traffic generators needed for

the system test. To circumvent this problem a Diameter Proxy is used. The Diameter Proxy is

a tool that acts as a proxy server between the traffic generators
†††

 and the Diameter server

under test (in this case the Diameter server is the HSS). The Diameter Proxy of the HSS

establishes a transport connection with the HSS and supports a unique transport connection

†††

 These traffic generators are Linux workstations that run the TITANSim load application during a typical

system Test, usually one or more traffic generators are used in the system test depending on the required load

levels.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

with each of the traffic generators (Diameter clients). All of the traffic generators address

their messages to the Diameter Proxy, which performs multiplexing/de-multiplexing of the

messages between the HSS and traffic generators, as shown in Figure 24.

Figure 24: The Diameter Proxy architecture

The Diameter Proxy exchanges CER-CEA messages with the HSS and also supports DWR-

DWA messages to keep the connection alive. It uses a separate thread to serve each of the

clients (the TTCN components) connecting to it and uses the user name AVP to uniquely

identify and associate a connection with the corresponding client. Table 4 shows a typical

configuration of the Diameter Proxy server setup for this project. Figure 25 shows a sample

screen shot once the Diameter Proxy is up and running.

Table 4: Diameter Proxy Configuration

 Main configuration parameters Value

Supported node hss

Diameter server IP address 192.168.83.100

Diameter server port 3870

Protocol tcp

No. of Diameter server connections 1

Diameter Proxy port 3876

38

Figure 25: Diameter Proxy

5.2.3 HSS setup with Maia

Ericsson employs carrier-class technology when it comes to developing telephony and server

applications. Ericsson‟s Telecom Server Platform (TSP) is a carrier class server technology

for multimedia applications and control functionality. TSP provides very high availability and

enables operators to deploy different functions on the same hardware and to save cost [20].

For example, functionally P-CSCF, S-CSCF, and I-CSCF are different nodes, but all of them

can be installed on a single TSP and run in real time as functionally different nodes, even

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

though they are all installed in a single physical computer. A variety of nodes developed by

Ericsson such as HSS/MGCF/CSCF in the IMS and SCF/HLR in the GSM, GSN in GPRS

run on TSP.

TSP is built on component based architecture and uses commercially available components to

build its structure. The architecture of TSP is shown in Figure 26. It consists of a cluster of

processors running Linux and the DICOS‡‡‡ operating systems forming the operating system

and hardware layers. The heart of TSP is the middleware layer provided by the TelORB

clusterware. It connects the different processors and facilitates using Inter Processor

Communication (IPC). The TelORB clusterware also has an object-oriented database

providing persistent storage in RAM. The database is distributed over the processor cluster.

Thus each of the database items is replicated and always stored in more than one processor.

As a result of this replication an application running on TSP is highly robust and protected

against data loss even if a processor crashes at run time. The node management layer

supports standards such as CORBA, LDAP, HTTP, and SNMP; and enables the easy

integration of the TSP node with external management systems used by the operator. The

signaling layer supports SS7 and Diameter stacks over IP. It is a highly scalable layer and can

be distributed over multiple processors called Traffic Processors (TP). While the TPs handle

the real time traffic, Input/Output (I/O) processors handle the operations and maintenance

operations performed in the node. TSP is available in a number of configurations depending

on the size of processor cluster (Maxi-42, Midi-31, Mini-21, and Micro-10). The processor

cluster is also logically divided into many different processor pools for the sake of

distribution of software into different processor pools [18].

During the system test the HSS application is installed and configured on a real TSP node

referred to as the target node (in this case it is the SUT). Maintaining a complex node such as

the TSP is a very expensive and complex process, hence the target node is only available for

a certain window of time for each system tester within Ericsson. As a result this target node is

only used for performing actual system tests. So, all development activities based on TSP

utilize Maia (a TSP simulator). Maia simulates both an I/O processor and one or more TPs on

a single Linux workstation using VMware
§§§

 virtual machine software. Therefore, a VMware

license is a prerequisite for running Maia on a Linux workstation. Each simulated I/O

processor and TP corresponds to a separate VMware virtual machine instance. Maia supports

most of the functions actually supported by the TSP and provides the user with very TSP-like

environment. All the functions of TSP simulated by Maia are invoked using the epmaia

command. Figure 27 shows the execution of the different epmaia commands involved in

setting up Maia.

In order to setup the Maia configuration, epmaia setup is executed. This creates the

necessary VMware configuration files for the I/O processor(s) and TPs, SS7 configuration

files, node management (NM) configuration files, site database, and other TSP configuration

files. In TSP each executable software module is packaged in a structure called a Load

Module (LM). The HSS application that is loaded on TSP is also organized into a number of

‡‡‡

 DICOS is an Object Oriented RTOS developed by Ericsson
§§§

 A virtualization software, check http://www.vmware.com/virtualization/

http://www.vmware.com/virtualization/

40

LMs. Thus the base TSP software (Maia LMs) is organized into a number of LMs that take

care of separate functions such as IPC, SS7, and Diameter stack functions.

Figure 26: The TSP architecture

The HSS application LMs perform functions such as HSS subscriber data access, HSS

subscription management, etc. For this project LMs from official TSP release 6500 and HSS

release LSV3 are used. Each of these LMs also contains a configuration file called the epct

file that specifies in which processor pool this LM should be primarily loaded and in which

processor pool it should be replicated. The loading of appropriate LMs into the corresponding

processor pool is performed by the epmaia epct command which results in the generation of

the Loading Group. The I/O processor is then started by executing the epmaia start

command. The generated configuration files for NM, SS7, and site database are then loaded

from the host machine into the virtual I/O processor is done by the epmaia upload command.

The TPs are then started using the epmaia start command. The simulation environment can

be stopped using epmaia stop command by specifying the individual processor name or

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

using the option -all to stop all processors. The status of the Maia configuration and the

VMware virtual machines can be checked using epmaia status command. The command

epmaia save can be used to save log files from the console, daemon logs, and crash dumps

from the I/O. Each of the epmaia commands has a number of options that can be used

depending upon on the needs of the tester. TSP uses the virtual IP (VIP) concept; hence the

entire processor cluster can be addressed by one VIP address. Table 5 shows the IP address

used in Maia. A sample screen shot in Figure 28 shows the processor TP2 start up following

the Maia setup.

Table 5: Maia IP addresses

 Symbolic name IP address

IPv4 VIP external 192.168.83.100

IPv4 VIP internal 192.168.53.100

I01 172.16.8.100

TP1 172.16.8.102

42

Figure 27: Maia setup****

 As simple as it might sound on paper, the Maia setup process is actually quite complex. A number of issues

were encountered and solved regarding the Maia setup during this project. These issues were mainly related to

determining the correct epct files to use for the corresponding release of TSP and HSS. Other issues were related

to provisioning of the Maia (HSS) database with subscriber information. Some key database objects necessary

for provisioning HSS were not installed in Maia properly. Resolving all of these issues took roughly 3 weeks.

After this Maia was up and running and the HSS was successfully provisioned.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 28: TP2 startup after Maia setup

5.2.3.1 HSS Provisioning

Once the HSS is successfully running after the Maia setup, the next step is to configure the

HSS and provision it with all the necessary subscriber information. Since we have chosen to

use the ESM module for this project, all the configuration and provisioning is performed

solely to run the ESM application in HSS (Maia). This provisioning is performed using an

internal tool called “population centre”. The population centre tool uses a number of shell

scripts to set the configuration parameters in order to set the ESM Diameter stack up and start

it running in the HSS (Maia). Once the ESM stack is configured the database container

objects that hold the subscription information are populated. All the configuration and

database population are performed through the Lightweight Directory Access Protocol

(LDAP) [19] interface offered by the TSP. Figure 29 shows the LDAP browser tool which is

used for manually setting up the LDAP parameters in any TSP node. Once the provisioning

process is complete, the HSS will be ready for traffic for the system test.

Maia introduces certain limitations to HSS provisioning. In the case of a typical target node

in a system test roughly 100 000 ESM subscribers are populated in the node. However, since

Maia is being used as our simulator it imposes certain memory limitations. Therefore to keep

the HSS application stable and prevent the Maia process from crashing, the provisioning was

limited to roughly 10 000 ESM subscribers.

44

Figure 29: LDAP browser showing the ESM stack and ESM subscriber parameters

The population centre tool also takes an input configuration file through which we can

control the number of ESM subscribers that have to be populated along with certain other

node parameters. Figure 30 shows the population centre tool that is used for HSS

provisioning.

Figure 30: Population centre tool

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

5.3 Architecture of the proposed load application
Figure 31 shows the architecture of the proposed S6a load application. The proposed solution

consists of a new S6a LGen component which basically extends the DiameterBase LGen

component and DiameterBase Transport component provided by the TITANSim applib. The

DiameterBase LGen component in turn is an extension of the LGen base component feature

provided by the TITANSim CLL as discussed in section 4.2. The other functions such as

Statistics, Logging, Execution control, and RT GUI for the application are provided by the

standard TITANSim CLL. A detailed description of the S6a load application design is

provided in the following section.

Figure 31: S6a application architecture

5.4 Solution design

5.4.1 The traffic case

 After the provisioning of the HSS the Diameter Proxy is started. The Diameter Proxy

establishes a Diameter session with the HSS by exchanging the CER/CEA messages.

Similarly, when the S6a application (simulates the MME) is started it establishes a Diameter

session with the Diameter Proxy – as shown in Figure 32. After the Diameter session is

established between the nodes the Diameter traffic (such as the S6a) can be run over the

Diameter session.

46

Figure 32: Diameter session establishment

As briefly discussed in chapter 5.2.3, the focus is mainly on the ESM module within HSS

defined by the S6a interface [13]. To be specific, the scope of the load application for this

project is limited to the Initial Attach traffic case, although the application could be extended

in the future to support other traffic cases. Figure 33 shows the traffic flow diagram of the

Initial Attach traffic case followed by a brief description. For a detailed description of the

messages with the Diameter Attribute Value Pairs (AVPs) involved, refer to [13].

The Initial Attach procedure is carried out between the MME and the HSS over S6a

interface in order to authenticate a UE located in the LTE network. The MME requests

authentication information from the HSS using AIR/AIA messages. Upon receiving the AIR

message, the HSS checks if the IMSI of the user is known and requests the Authentication

Centre (AuC) to generate Authentication Vectors (AVs). The HSS then returns the result

code AVP DIAMETER_SUCCESS (2001) in the AIA message along with the generated

AVs to the MME.

If the MME wants to update any of the user‟s identity stored in the HSS, it can do so by

sending an ULR message to the HSS by including the IMSI and the supported Radio Access

Technology (RAT) types. Upon the reception of a ULR the HSS checks if the supported

Radio Access Technology (RAT) type in the request is allowed for this subscriber. It then

checks if roaming restrictions are applicable to the user in this specific Visited Public Land

Mobile Network (VPLMN). Then based on the operator‟s configuration to allow or bar the

user from accessing the packet oriented services according to the user‟s current location (i.e.,

based upon the Home Public Land Mobile Network (HPLMN) or the VPLMN) the HSS

chooses to include or not include the subscriber‟s Access Point Name (APN) configurations

in the ULA message.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 33: The Initial Attach traffic case

5.4.2 The TITANSim GenApp

As discussed in section 5.2 the TITANSim GenApp software has been chosen to implement

the S6a load application on the DS architecture of TITANSim. The TITANSim GenApp is a

generic TITANSim traffic generator application that can be used as a test bed for TITANSim

development. The TITANSim GenApp is built using the CLL, applibs, TPs, and RT GUI

provided by the TITANSim architecture. The GenApp consists of a collection of prewritten

LGens for different traffic types such as SIP, Diameter, HTTP, and USSD. Any application

developed on the TITANSim GenApp can either use the same prewritten LGen or simply

extend and customize it to suit the needs of the application. Since the S6a protocol is based

on the Diameter base protocol [14], in this project a new LGen component for S6a traffic

type was developed by extending the Diameter base component type. Apart from prewritten

LGen types the GenApp also provides a number of standard functions that can be used by all

applications for execution control and collecting statistics. Figure 34 below shows the logical

run-time view of the TITANSim GenApp. Figure 35 shows the logical run-time view of the

MME GenApp created for the S6a load application.

48

Figure 34: Logical view of GenApp

Figure 35: Logical view of MME GenApp

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

5.4.3 TITANSim framework modifications

The design of the S6a load application required many modifications to the existing standard

modules of the TITANSim architecture especially the application libraries for Diameter.

These modifications to the TITANSim architecture were performed before the actual design

of the S6a load application itself. A brief description of these modifications is presented in

the following section.

5.4.3.1 Diameter application library

The Diameter application library is one of several protocol libraries that are available in

the Application Libraries layer of the TITANSim architecture (refer to section 4.1). This

library offers several TTCN-3 modules that contain the basic Diameter AVP type

definitions, the FSM of the Diameter base protocol [14], several utility functions to

encode/decode AVP‟s to/from Diameter message, and functions that invoke the transport

layer application programming interface (API) (the Test Ports) to send/receive messages.

One of the key modules within the Diameter application library is the Diameter_Types

module. This contains the Diameter base protocol AVP definitions and all the other

Diameter application protocol AVPs (for example, Cx, and Sh) that are currently

supported by the Diameter Application Library. The TITANSim Diameter Application

Library initially lacked support for the S6a protocol. Hence, the Diameter_Types module

was first extended to support the S6a protocol specific AVPs as per 3GPP TS 29.272

v9.5.0 [21] which is supported by Ericsson‟s HSS. A Data Definitions File (DDF) was

prepared containing the S6a interface specification. This DDF for S6a was used along

with DDF files containing the Diameter base specification as input to a tool called

DPMG (Diameter Protocol Module Generator). DPMG is an Ericsson proprietary tool

utilized by TITANSim to automatically generate and update TTCN-3 modules from DDF

files. Thus the Diameter_Types module was updated to provide support for S6a interface

with the help of DPMG tool as shown in Figure 36.

Figure 36: Diameter_Types module generation from the set of DDF files

50

The library also initially lacked support for the Diameter Initiator
††††

 mode, as all the existing

Diameter load applications that use this library operate in responder
‡‡‡‡

 mode. Thus for this

project the Diameter Application Library was updated to support the Initiator mode as per

RFC 3588 [14]. A new function was written to initiate a transport connection with the

configured Diameter peer. The function uses one of the API functions provided by the

IPL4asp socket provided by the Test Ports layer of the TITANSim (refer to section 4.1).

Details of this are discussed in the following section.

5.4.3.2 Diameter Test Ports

As discussed in section 4.1 the TP layer of TITANSim offers all the transport functionalities

needed for the applications to send/receive messages between the test system and the SUT.

The TP layer provides a variety of modules and the appropriate TP module has to be chosen

by the application based on its needs. The Diameter based applications developed in

TITANSim use IPL4asp test ports.

IPL4asp is a general purpose, session independent test port that provides access to several

transport layers over IPv4 and IPv6. The supported transport protocols are TCP, TCP with

SSL, SCTP, and UDP over multiple platforms (specifically Linux, Solaris, and Cygwin). For

the S6a load application, all the S6a Diameter sessions were run over TCP for the sake of

simplicity.

5.4.4 S6a load application design

The design of the S6a load application mainly consists of the design of the S6a LGen

component, the FSM that defines the Initial Attach traffic behavior, and other configuration

files that contain the values of parameters used by the application at run-time. These entity

properties include the number of entities to be used by the application, the AVP values to be

sent in the ULR/AIR messages, and socket details such as IP address, port, etc. Figure 37

shows the work flow in the design of the S6a load application.

The S6a LGen component is designed to provide all the capabilities of the LGen base as

discussed in section 4.7. In fact this component is an extension of the DiameterBase LGen

component provided by the Diameter Application Library, which in turn extends the LGen

base component provided by the CLL. The component hierarchy of the S6a load application

is shown in Figure 38. The S6a LGen component declares the required entity types, behavior

types, and also implements the test steps and events required for the Initial Attach FSM. The

declaration of FSM, scenario, and traffic case is done in configuration files that are used by

the application at run-time. Thus the load application itself is very flexible and dynamic in

behavior as the FSM‟s are provided at run-time through configuration files.

††††

 In Initiator mode a Diameter peer acts like a client (for example, an MME) and Initiates communication

with its peer node.
‡‡‡‡

 In the responder mode a Diameter peer acts like a server (for example, the HSS) and only responds to

messages from its peer node and does not initiate the communication.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 37: The S6a load application design flow

52

Figure 38: The S6a load application component hierarchy

Two FSMs are designed for the Initial Attach traffic case, namely the Initiator Connection

FSM, and the Initial Attach FSM. The Initiator Connection FSM establishes the configured

number of transport connections with the Diameter Proxy server. It consists of two states:

Idle, and CERWaiting – as shown in Figure 39. The registered events are denoted by „E‟ and

test step functions by „A‟. The traffic flow of every entity always starts and ends with the

state „Idle‟. The LGen base automatically dispatches the „Start_the_Traffic_case‟ event to all

the S6a entities once the traffic case is started. The entities in the Idle state listen to the

„Start_the_Traffic_case‟ event and execute the test step function that opens a TCP connection

with the configured Diameter peer node –in this case the Diameter Proxy as was discussed in

section 5.2.2. If the TCP connection is successfully established, then the S6a LGen

component raises an event „Conn successful‟. The entity then executes the test step function

to send a CER message to the Diameter Proxy and moves to the next state CERWaiting. If

the TCP connection fails, then an event „Conn failed‟ is raised upon which the entity reports

traffic failure and remains in the Idle state.

When the Diameter Proxy responds with CEA message, the event „CEA received‟ is raised

and the entity executes the test step function handleCEA to handle the received CEA

message. The CEA message is decoded and if it is successful (i.e., contains a

DIAMETER_SUCCESS result code AVP), then a „CEA successful‟ event is raised and the

entity remains in the state CERWaiting after reporting traffic success. If the CEA fails, then a

„CEA failed‟ event is raised. Then the entity reports traffic failure and remains in the same

state. If in the CERWaiting state a „Stop_the_Traffic_case‟ event is received (when the tester

stops the traffic case execution from the RT GUI), the entity closes the TCP connection with

the Diameter Proxy, reports the event „entity stopped‟, and moves back to the Idle state.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

During traffic execution, if the Diameter Proxy goes down for some reason the TCP

connection of each the entity will break, such an event is reported by „Conn closed‟ and the

entity listens for such an event in the CERWaiting state, reports traffic failure if it occurs, and

moves back to the Idle state.

Figure 39: The Initiator Connection FSM

The Initial Attach FSM designed for the traffic case is shown in

Figure 40. The FSM consists of three states: Idle, AIRWaiting, and ULRWaiting. The LGen

base automatically dispatches the „Start_the_Traffic_case‟ event to all the S6a entities once

the traffic case is started. The entities in the Idle state listen to the „Start_the_Traffic_case‟

event, execute the test step function sendAIR, and move to the AIRWaiting state. In the

AIRWaiting state the entity listens to the event „AIA received‟, upon reception of which it

executes the handleAIA step function to decode the AIA message. If the AIA is successful,

then an event „AIA successful‟ is raised. It then sends out the ULR message and moves to

ULRWaiting state. If the AIA message fails, an „AIA failed‟ event is raised. Then the entity

reports traffic failure and moves back to the Idle state. Similarly in the ULRWaiting state the

entity handles the ULA response message, reports traffic success, and moves back to the Idle

state if the ULA is successful. Otherwise it reports traffic failure and moves back to the Idle

state if the ULA fails. If in the states AIRWaiting, and ULRWaiting, a

„Stop_the_Traffic_case‟ event is received (when the tester stops the traffic case execution

from the RT GUI) the entity reports the event „entity stopped‟ moves back to the Idle state.

During traffic execution if the Diameter Proxy goes down for some reason the TCP

connection used by the entity would break, such an event is reported by „Conn closed‟ and

the entity listens for such an event in the AIRWaiting, and ULRWaiting states, reports traffic

failure if it occurs, and moves back to the Idle state. The traffic case execution terminates

once all the configured entities complete their execution (report either traffic success or

54

traffic failure). It is also possible to configure the entities to repeat the execution any fixed

number of times for a traffic case.

Figure 40: The S6a Initial Attach FSM

As discussed in section 4.1 the test execution is managed with a RT GUI provided by the

TITANSim. With this GUI the traffic case can be started, terminated, and various statistics

can be viewed (for example, the traffic chart that displays the CPS versus time). Figure 41

shows a screen shot of the RT GUI during the execution of the Initial Attach traffic case.

Figure 42 and Figure 43 show the CPS chart displayed by the RT GUI during a sample test

execution with 1000 entities and the target CPS set to 50 and 20 CPS respectively.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 41: The TITANSim Runtime GUI

Figure 42: CPS versus Time (seconds) [Target CPS: 50]

56

Figure 43: CPS versus Time (seconds) [Target CPS: 20]

5.4.5 Transport mechanism

The TITANSim CLL provides a transport layer that performs many important functions such

as message routing (i.e., the routing of incoming and outgoing messages between LGen

components), and message buffer management (i.e., the storing of octet-string messages to be

sent in a transport connection). The transport layer utilizes the IPL4 or IPL2 test ports

provided by the TP layer of TITANSim. It also allows the tester to choose the test port to use

for the application either at run-time, or compile-time. It provides three different transport

component types that applications can extend to utilize its features.

EPTF_Transport_CT: This component type is test port independent. The type of test port to

be used can be specified at run-time through a configuration file.

EPTF_TransportIPL4_CT: This component type uses IPL4asp test ports. It is a simple kernel

based solution as shown in Figure 44.

EPTF_TransportIPL2_CT: This component type moves the socket handling to user space

and makes it possible to optimize the socket handling independent from the kernel.

However it supports only UDP. It is shown in Figure 45.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 44: IPL4 transport type

Figure 45: IPL2 transport type

58

5.4.5.1 Performance comparison of transport types

The IPL4 and IPL2 test ports have their own advantages and disadvantages when it comes to

handling sockets, and scalability. IPL2 test port provides better scalability for the transport

layer and also performs better than IPL4 when it comes to handling numerous sockets. This is

attributed to the fact that in IPL2 test port the socket handling is performed in user space.

However, IPL2 test port currently supports only UDP protocol and does not support TCP or

SCTP which are required for any Diameter based application. Hence, the S6a load

application uses IPL4 test port by extending the EPTF_TransportIPL4_CT component.

Figure 46 compares the performance of IPL4 and IPL2 when the test system has many IP

addresses to open several sockets. Figure 47 compares the performance of IPL4 and IPL2

when the test system uses many ports to open several sockets. In both the cases the

performance of IPL2 test remains almost unchanged, but the performance of IPL4 test port

steadily declines.

Figure 46
§§§§

: Performance changes while increasing the number of IP addresses

§§§§

 The figure is taken from an Ericsson AB internal document. It appears here with permission from Ericsson

AB. It is used here simply to underline the importance of transport multiplexing.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 47

: Performance changes while increasing the number of ports

5.4.5.2 Transport Multiplexing

As discussed in the previous section the IPL4 test port performance declines considerably as

more sockets are used by the load application. As a result of this, the message handling

capacity of the test system drops and so does the generated load. Thus, the load application

has to be designed in such a way that it uses as few sockets as possible to generate the target

load.

If each simulated S6a user (i.e., entity) opens a socket towards the Diameter Proxy, there will

be about 100 000 sockets used to test the ESM module provisioned with 100 000
†††††

subscribers. This design is not scalable and limits the performance of the IPL4 test ports as

seen in Figure 47. Moreover, the Diameter Proxy used in the HSS system test performs

optimally only with a maximum of 100 to 200 transport connections.

To solve this problem, the S6a load application is designed to use the transport multiplexing

concept, where by multiple simulated entities can be configured to share a single transport

connection to send/receive the message to/from the SUT. Thus it is possible to support Initial

Attach traffic for around 100 000 ESM subscribers using about 100 TCP connections towards

 The figure is taken from an Ericsson AB internal document. It appears here with permission from Ericsson

AB. It is used here simply to underline the importance of transport multiplexing.

†††††

 In Ericsson AB the system test of the ESM module is performed by provisioning a maximum of 100 000

subscribers in the HSS.

60

the Diameter Proxy. This solution is very scalable and also maintains the performance of the

IPL4 test port, and the Diameter Proxy at an optimal level. To implement transport

multiplexing, two different entity groups were created – as shown in Figure 48. The first

group called the transport group is responsible for establishment and termination of the

transport connections to the Diameter Proxy, while the second group called the protocol

group is responsible for running the Initial Attach traffic using the transport connections

established by the transport group. Each protocol entity is mapped to a transport entity using

modulo logic [31]. For example, when the transport group is configured with 100 entities and

the protocol group with 100 000 entities, each transport connection created by a transport

entity will be shared by 1000 protocol entities.

Figure 48: Entity groups for transport multiplexing

5.5 Solution deployment
In the development phase of the S6a load application the tests were performed by installing

HSS on a TSP simulator (Maia) as described in section 5.2.3. In order take measurements for

performance comparison the S6a load application was executed in a real system test

environment. This section describes the test hardware and execution architecture used for the

tests with their results.

5.5.1 Test hardware

To test the performance of S6a load application and to take measurements a real system test

environment was used. The test environment consists of two traffic generator machines

(referred to as gteador3 and gteador4) and a TSP cabinet (referred to as eadorm). The test

equipment is located at an Ericsson laboratory in Madrid and was accessed remotely from

Stockholm. Figure 49 shows an approximate network diagram of the test equipment in the

lab.

The TSP hardware is called Network Server Platform (NSP), which is mounted in a cabinet

consisting of 4 sub racks. Each sub rack contains a number of processor modules (usually up

to a maximum of 12 processors). Figure 50 gives an overview of the node with each sub rack

containing processors with duplicate internal Ethernet connections. For this thesis project

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

NSP 5.0 was used. NSP 5.0 is a powerful, high capacity hardware used for TSP. It consists of

a cluster of processor modules. The cluster can contain between 11 and 46 processor modules

(depending on the size of the node).

Figure 49: NSP 5.0 cabinet and traffic generators in IP lab

The cabinet eadorm used for this thesis project holds the NSP 5.0 hardware and connected to

it is a set of traffic generators called gteador3 and gteador4. TSP 6500 in micro configuration

mode (refer to section 5.2.3) was installed in eadorm. After the TSP 6500 installation, the

official release of HSS 11b LSV5 software was installed on the node. The TSP and the HSS

installation in the cabinet were performed by the TSP configuration management personnel,

an expert team in Madrid, Spain. The HSS was provisioned with 100 000 ESM subscribers as

described in section 5.2.3.1.

Table 6 shows the configuration of each processor board used in NSP 5.0. There are 8 such

processor boards used in the cluster for the TSP in micro configuration.

Table 6: NSP 5.0: Processor and physical memory specification

Low-power Pentium M processor running at 1.8 GHz

2 MB on – die L2 cache

400 MHz Front Side Bus

2 GB DDR RAM

62

Figure 50: NSP 5.0 hardware overview

The traffic generator machines (gteador3 and gteador4 used for load generation) have the

configuration shown in Table 7.

Table 7: Traffic generator: Processor and physical memory specification

No. of processors 2

Processor model Intel(R) Xeon(TM) CPU 3.20GHz

(single core)

Cache size per processor 2048 KB

Total physical memory 2 GB

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

5.5.2 Test execution architecture

As discussed in section 4.1, the S6a load application developed on TITANSim uses the

TITAN execution environment. The TITAN execution environment consists of many test

components whose behavior is described in the S6a load application. They are basically the

MTC and many other PTCs. Apart from these test components the TITAN execution

environment also uses other special components which are described in this section.

In TITAN execution environment the test components execute independently, as each of

them is a separate operating system process. These components can be run in a single

machine or in different machines (distributed test execution). The components communicate

with each other using TCP connections via Ericsson proprietary protocols. In TITAN, the test

components are classified into three groups based on their function. These groups are main

controller, host controller, and test components (further divided into main test component and

parallel test components).

5.5.2.1 Main Controller (MC)

The MC is a standalone application provided by the TITAN as a command line interface

based control interface for the user to the test executor system. A single instance of MC runs

during the entire test execution (irrespective of whether the test execution is running one

single machine or distributed of many machines). The MC is manually started by the user. It

creates or terminates the MTC upon the user‟s request. It also shows the test verdict to the

user once the test execution is complete.

5.5.2.2 Host Controller (HC)

The HC is an instance (process) of the executable (in this case, the binary of the S6a load

application) used for test execution. One instance of HC is started in each machine

participating in the test by the user. The HC maintains a TCP connection to the MC for

communication, thus during the test execution when the MC wants a new test component to

be created on the host (where the HC is running), the HC forks and the resulting child process

acts as the new test component.

5.5.2.3 Main Test Component (MTC)

The MTC is also an instance of the test system executable. As discussed in 5.5.2.1, it is the

first process that is created on the user‟s request by the MC. There will be only one instance

of the MTC in the entire test system (irrespective of whether there is a single processor or

distributed test execution). The MTC starts the test execution by invoking the appropriate

control section of the configuration file used for the test. The MTC maintains a TCP

connection with the MC for communication.

5.5.2.4 Parallel Test Component (PTC)

For the system test as the desired load cannot be generated by the MTC alone, the test

execution utilizes several components executing in parallel to generate the required load.

During the test execution the MTC requests the HC to create multiple child processes which

are called PTCs. Each PTC is simply another instance of the test system executable. Each

PTC maintains a TCP connection with the MC.

64

5.5.2.5 Distributed execution of S6a load application

As discussed in section 5.5.1, the test hardware consists of two traffic generator machines

(gteador3 and gteador4). To fully utilize the available hardware the S6a load application

execution was distributed over gteador3 and gteador4. Figure 51 shows the different

components (processes) involved in the test and their distribution in the test system.

Figure 51
‡‡‡‡‡

: Distributed execution of S6a load application

5.5.3 Test execution and results

The S6a load application was tested by deploying it in different configurations. The following

section briefly explains the deployment configuration and the corresponding test results of the

S6a load application.

5.5.3.1 Load generation with traffic generators (gteador3, gteador4)

In this test the S6a load application execution was distributed over both the traffic

generators, namely gteador3, and gteador4 – as was shown in Figure 51. The application

was configured in such a way that only one LGen component was deployed in each

traffic generator and each LGen component simulated 15000 ESM subscribers using 50

transport connections. Therefore, the Initial Attach traffic was executed for a total of

30000 ESM subscribers using a total of 100 transport connections towards the Diameter

Proxy.

‡‡‡‡‡

 The traffic generators (gteador3 and gteador4) have single core processors. Hence, one LGen was executed

in each of the traffic generators. In traffic generators with multiple-core processors, as many LGens can be

executed (concurrently) as the number of processor cores (for instance, 2 LGens on a dual-core processor, 4

LGens on a quad-core processor).

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

The CPU utilization in each of the traffic generator machines remained approximately

75% as shown in Figure 52 and Figure 53 respectively during the test. The physical

memory consumption of the S6a load application in each of the traffic generator

machines during the test was approximately 40 megabytes. The total physical memory

utilization in gteador3 and gteador4 is shown in Figure 54 and Figure 55 respectively.

Since two traffic generators were used the total CPS was approximately 110 with each

traffic generator contributing approximately 55 CPS as shown in Figure 56 and Figure 57.

Figure 58 shows a snapshot of the load level (in percentage of the total CPU capacity of each

processor) of the 8 processors in the TSP cluster during the test. In Figure 58, m1_s17 and

m1_s19 are Linux I/O processors, m1_s13, m1_s15, m1_21, and m1_s23 are DICOS TPs,

and m1_s9 and m1_s11 are loader processors. As discussed in section 5.2.3, the real time

traffic is handled only by the DICOS TPs. Hence, for determining the average load on the

TSP cluster, only the DICOS TPs are considered. In this case, the average load on the DICOS

TPs (the HSS) was 17.275% in the duration of the test. Table 8 shows the maximum,

minimum, and average system load, traffic load, and O&M load (in percentage of the total

CPU capacity of each processor) for each of the DICOS TPs.

Figure 52: CPU utilization of gteador3

66

Figure 53: CPU utilization of gteador4

Figure 54: Physical memory utilization in gteador3

Figure 54 shows three colored layers. The top layer indicates the cached memory, the layer in

the middle indicates the buffered memory, and the bottom layer indicates the memory

consumed by the applications (application memory).

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 55
§§§§§

: Physical memory utilization in gteador4

Figure 56: CPS versus Time (seconds) in gteador3

§§§§§

 Figure 55 uses the same color scheme as in Figure 54. The Diameter Proxy process in gteador4 resulted in

higher cached memory utilization in gteador4 when compared to gteador3.

68

Figure 57: CPS versus Time (seconds) in gteador4

Figure 58

: Snapshot of TSP cluster load level in eadorm

DICOS TP/Load % Proc_m1_s13
††††††

 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23

Max system load 2.0 1.0 1.0 2.0

Min system load 1.0 1.0 1.0 1.0

Average system load 1.996 1.0 1.0 1.012

Max traffic load 32.0 36.0 59.0 32.0

Min traffic load 11.0 11.0 9.0 10.0

Average traffic load 17.461 15.480 15.605 15.312

Max O&M load 2.0 2.0 7.0 2.0

Min O&M load 0.0 0.0 0.0 0.0

Average O&M load 0.055 0.055 0.074 0.051

Total average load 19.512 16.535 16.680 16.375

Table 8: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU

capacity of each DICOS processor)

5.5.3.2 Load generation using high capacity traffic generator

The gteador3 and gteador4 machines are of relatively low capacity, with a single core

CPU and a physical memory of only 2 GB each. Hence, the test was repeated using a

higher capacity machine called maia15 with the configuration shown in Table 9.

 In the figure, m1_s17 and m1_s19 are Linux I/O processors, m1_s13, m1_s15, m1_21, and m1_s23 are

DICOS TPs, and m1_s9 and m1_s11 are loader processors
††††††

 The processors in a TSP cluster are identified by the pattern „Proc_m*_S**‟. For instance, Proc_m1_S13

identifies the processor in magazine 1, slot 13 of the NSP cabinet.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Table 9: Traffic generator: Processor and physical memory specification

No. of processors 4

Processor model Intel(R) Xeon(R) CPU 5160 @ 3.00GHz

(dual core)

Cache size per processor 4096 KB

Total physical memory 16 GB

In this test the execution was carried out on a single machine (maia15). Thus, all the test

components and the Diameter Proxy were running in the same machine. Two LGen

components were deployed with each LGen simulating 15 000 ESM subscribers using 50

transport connections with the Diameter Proxy. Therefore the test covered a total of 30 000

ESM subscribers using a total of 100 transport connection with the Diameter Proxy.

Figure 59: CPU utilization of maia15

The CPU utilization increased from 3% (at the start of the test) and remained approximately

at 68% (the third broad peak in Figure 59) during the test. The physical memory

consumption of the S6a load application was 63 megabytes during the test. Figure 61 shows

the total physical memory utilization of maia15 during the test. The total CPS generated by

the traffic generator during the test was approximately 320 CPS (each LGen contributing

approximately 160 CPS). Figure 60 shows the CPS versus Time chart of one of the LGens

during the test.

70

Figure 60: CPS versus Time (seconds) of maia15

Figure 61

‡‡‡‡‡‡
: Physical memory utilization of maia15

Figure 62 shows a snapshot of the load level (in percentage of the total CPU capacity of each

processor) of the 8 processors in the TSP cluster during the test. Table 10 shows the

maximum, minimum, and average system load, traffic load, and O&M load for each of the

DICOS TPs. The average load on the DICOS TPs (the HSS) was 48.366% in the duration of

the test.

Figure 62
§§§§§§

: Snapshot of TSP cluster load level in eadorm

‡‡‡‡‡‡

 Figure 61 uses the same color scheme as in Figure 54

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

DICOS TP/Load % Proc_m1_s13 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23

Max system load 2.0 3.0 4.0 2.0

Min system load 2.0 2.0 3.0 2.0

Average system load 2.0 2.986 3.261 2.0

Max traffic load 57.0 57.0 78.0 58.0

Min traffic load 33.0 39.0 40.0 36.0

Average traffic load 43.507 48.043 47.884 43.493

Max O&M load 2.0 3.0 5.0 2.0

Min O&M load 0.0 0.0 0.0 0.0

Average O&M load 0.058 0.072 0.101 0.058

Total average load 45.565 51.101 51.246 45.551

Table 10: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU

capacity of each DICOS processor)

§§§§§§

 Figure 62 uses the same color scheme as in Figure 58

72

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

6 Analysis

In this chapter, the results of similar tests (the test described in section 5.5.3.1)

performed with the load application based on CS architecture of TITANSim are presented.

Then a thorough analysis is performed by comparing it with the results from section 5.5.3.1

(results of test with S6a load application).

6.1 BAT load application
The CS based load application which is currently used for system test at HSS in Ericsson is

called the Background Activities Test (BAT). The BAT load application is used to test

various modules within the HSS such as ESM, IP Subscription Manager, Subscriber Data

Access, and Wireless Subscription Module. The BAT load application for ESM uses a

separate set of configuration files for the test deployment. However, for the sake of simplicity

details of the BAT environment set up and its configuration is not given. The test environment

is exactly the same as described in section 5.5.1, but in this case the BAT load application is

executed in the traffic generators instead of the S6a load application.

The BAT load application for ESM uses a mix of traffic cases for load generation. For

example, a scenario can be configured to run a traffic mix of Initial Attach, HSS initiated

Detach, Insert Subscriber Data, Handover LTE to 3G, and many more. It is also possible to

configure the percentage contribution of each of these traffic cases to the total load. For

example, a scenario can be configured to generate 10% Insert Subscriber Data traffic, 30%

Handover traffic, 20% Purge Subscriber traffic, and 40% Service Authentication traffic.

However for this thesis project, we consider only the Initial Attach traffic case. Therefore, for

this test only the Initial Attach traffic was generated (i.e., the Initial Attach traffic constituted

100% of the traffic).

6.2 BAT results
The BAT load application for ESM was configured to run the Initial Attach traffic for 30 000

ESM subscribers using 200 LGen components (PTCs), and the test execution was distributed

over gteador3 and gteador4 (100 LGen components in each traffic generator) as shown in

Figure 51. Each LGen component uses a separate transport connection to the Diameter Proxy.

Therefore, the BAT load application uses a total of 200 transport connections to run the

Initial Attach traffic for 30 000 ESM subscribers.

The CPU utilization largely remained within the range of 3% to 10% with occasional peaks

up to 25% during load generation in gteador3 as can be seen in Figure 63. Figure 64 shows

the CPU utilization of gteador4 which largely remained within the range of 3% to 5%. The

physical memory consumption of the BAT load application during the test was approximately

154 megabytes in gteador3 and 145 megabytes in gteador4. Figure 65 and Figure 66 show the

total physical memory utilization in gteador3 and gteador4 respectively, during the test. The

74

CPS chart is shown in Figure 68. The CPS varied from a minimum of 60 to a maximum of 385

during the test.

Figure 67 is a snapshot of the load level (in percentage of the total CPU capacity of each

processor) of the 8 processors in the TSP cluster during the test. Table 11 shows the

maximum, minimum, and average system load, traffic load, and O&M load for each of the

DICOS TPs. The average load on the DICOS TPs (the HSS) was 5.576% in the duration of

the test.

Figure 63: CPU utilization of gteador3

Figure 64: CPU utilization of gteador4

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Figure 65

: Physical memory utilization of gteador3

Figure 66
†††††††

: Physical memory utilization of gteador4

 Figure 65 uses the same color scheme as in Figure 54
†††††††

 Figure 66 uses the same color scheme as in Figure 54

76

Figure 67: Snapshot of TSP cluster load level in eadorm

Figure 68: CPS versus Time (seconds) of BAT application

DICOS TP/Load % Proc_m1_s13 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23

Max system load 1.0 1.0 1.0 1.0

Min system load 1.0 1.0 1.0 1.0

Average system load 1.0 1.0 1.0 1.0

Max traffic load 22.0 22.0 56.0 22.0

Min traffic load 0.0 0.0 0.0 0.0

Average traffic load 3.465 2.915 3.317 2.979

Max O&M load 5.0 4.0 7.0 5.0

Min O&M load 0.0 0.0 0.0 0.0

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

Average O&M load 1.444 1.317 1.408 1.458

Total average load 5.908 5.232 5.725 5.437

Table 11: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU

capacity of each DICOS processor)

6.3 Comparison of results
A comparison of the test results of the BAT load application and the S6a load application will

be made in terms of the test system resource consumption, load generation capacity, and

other factors such as the test execution time, and CPU utilization of the traffic generators.

The results presented in this section are based on the tests described in section 5.5.3.1 and

6.2. Table 12 compares the test resource consumption of the BAT and S6a load application

during the test. The total physical memory and the number of processes used by the

application during the test are shown considering both the traffic generators. The test

execution time is basically the time taken to execute the traffic case (i.e., to run the Initial

Attach procedure for 30 000 ESM subscribers).

6.3.1 Test system resource consumption

It is evident from Table 12 that the BAT load application is very resource intensive. It

consumes more physical memory and operating system processes compared to the S6a load

application. The BAT load application consumes more than thrice the physical memory

consumed by the S6a load application for generating the same amount of traffic (i.e., generate

Initial Attach traffic for 30 000 ESM subscribers). The physical memory consumption of the

BAT load application would increase by several times when tests are run with a mix of traffic

cases for higher number of ESM subscribers (say 100 000).

The BAT load application executes the traffic case in three phases namely, pre-execution

phase, load phase, and post-execution phase. In the pre-execution phase existing logging

information is deleted, O&M events such as alarms are verified in the HSS, etc. In the load

phase the Initial Attach traffic is generated. In the post-execution phase, a Detach procedure

is carried out for the subscribers (for which the Attach procedure was carried out in the load

phase). The time taken for the execution of each of these phases is shown in Table 12. Since

the S6a load application does not run the Detach procedure, the time taken for post-execution

phase is ignored in the discussion. Considering only the time taken for the load phase

execution (when the Initial Attach traffic was generated), we can say that the BAT load

application generates traffic faster than the S6a load application (the load phase execution of

the Initial Attach traffic case in BAT load application completed in 223 seconds, where as the

execution of Initial Attach traffic case in S6a load application completed in 282 seconds).

There are many factors that lead to this difference, such as the inherent architectural

difference in scheduling, and differences in the configuration of logging operations of the two

applications during the test. However, the time taken for the overall test execution of the

BAT load application (381 seconds) is higher than the S6a load application (282 seconds).

78

The execution time of generating the traffic cases in the S6a load application can be

improved further by optimizing the FSMs. The FSMs can be made simpler by optimizing the

events and test step functions that entities execute to generate the traffic. It is clear from

Table 12 that the S6a load application results in higher CPU utilization when compared to the

BAT load application. Thus, the S6a load application makes efficient use of test system

resources to generate a consistently high load when compared to the BAT load application

(which only achieved the target load near the end of the test).

Table 12: CS/BAT versus DS/S6a test system resource consumption

Parameter CS/BAT result DS/S6a result

Total physical memory used (megabytes) 299 80.4

Total no. of processes
‡‡‡‡‡‡‡

 242 7

Test execution time (seconds) Pre: 158

Load: 223

Post: 68

282

CPU utilization 3% to 10% ~75%

6.3.2 Load generation capacity

The BAT load application resulted in a lower average load compared to the S6a load

application as seen in Table 13. This is reflected in the poor CPU utilization of the traffic

generators by the BAT load application (see Figure 63 and Figure 64), and the generated CPS

that varied from a minimum of 0 to a maximum of 385 in the duration of the test (see Figure

68) with an average of approximately 200 CPS. However, it should be noted that the BAT

load application is designed to be executed as a traffic mix as discussed earlier in this chapter.

Its load generation capacity during the test could have been significantly reduced during the

test as only the Initial Attach traffic was run from the traffic mix (To evaluate this difference

we would need to either implement more traffic cases in our load application or learn further

details of the BAT load application).

The S6a load application on the other hand showed a great deal of scalability in load

generation. Initially, it was configured to run with one LGen and executed using only one

traffic generator which generated an average load on the HSS of 9%. Subsequently, the

execution was distributed over two traffic generators (using two LGens) which generated an

average load on the HSS of 17.525% as shown in Table 13. The generated CPS also scaled

up from 55 (in case of one LGen) to 110 (in case of 2 LGens). Moreover, Figure 56 and

Figure 57 show a very steady CPS during the test execution which has resulted in a better

average load on the TSP cluster. Thus, in the future the load generation capacity can be

‡‡‡‡‡‡‡

 The total number of operating system processes during the test execution

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

easily scaled up by increasing the number of traffic generators. It should also be noted that

the S6a load application generated an average load on the HSS of around 49% when it was

deployed and tested using a high capacity traffic generator (refer to section 5.5.3.2). This

clearly proves the potential of the S6a load application to generate even higher loads,

provided that a high capacity traffic generator is used and a traffic mix (with more traffic

cases in addition to the Initial Attach are implemented) to sustain the load generation for

longer periods.

Table 13: CS/BAT versus DS/S6a load generation capacity

Parameter CS/BAT result DS/S6a result

Total number of LGens used 200 2

Average load on the (HSS) TSP DICOS TPs (%) 5.576 17.275

Maximum CPS 385

 (for 200 LGens)

63

(for LGen1, 59 for LGen2)

Minimum CPS 60

(for 200 LGens)

53

(for LGen1, 53 for LGen2)

Average CPS ~200

(for 200 LGens)

~110

(for 2 LGens)

80

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

7 Conclusion

The results of this thesis project clearly demonstrate the benefits of the distributed

scheduling architecture of the TITANSim framework. For the S6a Initial Attach traffic case,

the S6a load application produced an average load of 17.275% on the HSS compared to the

BAT load application which produced an average load of 5.576% on the HSS. The physical

memory consumption of the S6a load application was less than one third of the physical

memory consumption of the BAT load application. The S6a load application designed and

tested in this project shows high scalability in load generation and high efficiency in terms of

utilization of test system resources. It is possible to extract even higher performance from the

S6a load application by adding features such as Load Regulation and Remote Transport

which will be discussed in chapter 8.

A decision to adapt the distributed scheduling architecture for system test of the HSS at

Ericsson will be the management‟s prerogative. If such a decision is made, then there will be

a need for migration of the existing test modules for the HSS (which are currently using the

central scheduling architecture) to the distributed scheduling architecture. This is a highly

complex task in itself considering the required framework updates to TITANSim and the

sheer number of FSMs that will have to be designed in order to carry out the migration.

The S6a load application can be used as a model, or extended in the future, when the test

modules for the HSS are migrated from the central scheduling architecture to the distributed

scheduling architecture. The migration project would consist of creating new application

libraries in TITASim, extending some of the existing application libraries of TITANSim, and

creating the FSMs (traffic cases) for the test modules. After the migration to the distributed

scheduling architecture, creating new traffic cases (using FSMs) for the system test of the

HSS would become simpler and faster as there will be no TTCN-3 coding/compilation. An

exciting possibility of the future would be a TTCN-3 test case generator tool that can create

TTCN-3 test cases these FSMs. Such a tool will also significantly reduce the time spent on

test framework development (refer to section 8.4).

82

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

8 Future work

The TITANSim framework provides many features that were not utilized in

developing the S6a load application due to the thesis project‟s limited scope and time

constraints. In this chapter, we will discuss some important features that the S6a load

application should have in future when it is used in a production environment within

Ericsson.

8.1 Load regulation
The TITANSim CLL provides a base load regulator component, which should be extended

by the S6a load application and initialized with a reference to functions that measures the

SUT load. This would make it possible to regulate the target CPS based on the current load

level of the SUT (i.e., the CPU usage of the SUT). The next CPS target is calculated based on

the previous CPS value and the last two load levels, according to the specified load level in

the configuration. A schematic view of the load regulation is shown in Figure 69. The CPS

value is regulated only if the SUT load level reaches or exceeds the target load level set in the

configuration. Below that value the original CPS is used without any regulation.

Figure 69: Load regulation for S6a load application

8.2 Remote transport
As discussed in section 5.4.4, the DiameterS6a_LGen component extends the

Diameter_LocalTransport component for communication with the transport layer. By

extending the local transport component the DiameterS6a_LGen component itself performs

the transport functions, such as set up and tear down of transport connections towards the

Diameter Proxy. This can be considered as an overhead affecting the LGen performance

since the DiameterS6a_LGen is primarily responsible for generating only the S6a protocol

traffic. In the future it is recommended to use the Diameter_RemoteTransport component,

hence the DiameterS6a_LGen component will be relieved of performing the transport

functions. The remote transport component uses a Diameter_Mapper component that

performs the transport functions on behalf of the DiameterS6a_LGen component as shown in

Figure 70.

84

Figure 70: Remote transport mechanism for S6a load application

8.3 Application extension
The existing BAT load application for the ESM module contains a number of traffic cases for

Initial Attach, Detach, Handover LTE to 3G, ESM user profile management, etc. For this

thesis project the scope of the project was restricted to the Initial Attach procedure. Hence,

the S6a load application in the future should be extended to support the other procedures as

well. This will require updates to the Diameter_Types module, Diameter application library,

and a number of FSMs will need to be created for each of the traffic cases.

When other traffic cases are created in future, it will be possible to execute a scenario with

multiple traffic cases. Each traffic case can also be configured to carry a certain weight in the

target CPS (for example, traffic case 1 shall have 10% weight, traffic case 2 shall have 30%

weight, and traffic cases 3 shall have 60% weight in the target CPS).

In the future the S6a load application should also be configured to run the traffic in three

phases namely, pre-execution phase, load phase, and post-execution phase. During the pre-

execution phase transport connections are established and other configuration updates to SUT

are performed to prepare it for the load phase. The desired load of protocol traffic is

generated during the load phase. In the post execution phase clean up actions (for example,

tearing down of transport connections, freeing used entities, test verdict calculation, etc.) are

performed to conclude the analysis. This partitioning will facilitate evaluation of the system

while it is under the desired load and explicitly excluding the warm up and shutdown of the

testing process itself.

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

8.4 TTCN-3 test case generator
Patrick Wacht, Thomas Eichelmann, et al. have proposed a test development process in the

publication titled „A New Approach to Design Graphically Functional Tests for

Communication Services
§§§§§§§

’ [34]. In this test development process, a behavior model is

created (by the test developer) using the FSMs. The FSMs are created based on the service

description (use-cases). The test case generator tool uses the behavior model to create new

TTCN-3 templates and also utilizes pre-defined TTCN-3 templates to generate the test cases.

The authors have also proposed a connectivity concept that the test case generator tool can

employ to map the data from the behavior model to the corresponding TTCN-3 element.

Apart from generating the test cases, such a tool also generates TTCN-3 templates based on

the service description. These generated templates can be integrated into the test framework.

This presents an exciting opportunity for automation of test framework development.

§§§§§§§

 The publication can be directly accessed from

http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pd

f

http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pdf
http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pdf

86

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

References

[1] TTCN-3.org. (Undated). About TTCN-3. [Online]. Available:

 http://www.ttcn-3.org/Origin.htm. Last access on 4/8/2011

[2] TTCN-3.org. (Undated). TTCN-3 Application areas. [Online]. Available:

http://www.ttcn-3.org/ApplicationAreas.htm. Last access on 4/8/2011

[3] TTCN-3.org. (Undated). TTCN-3@Ericsson. [Online]. Available:

http://www.ttcn3.org/TTCN3UC2007/Presentations/Wed/1500_ttcn_users_at_

ericsson_a.pdf. Last access on 4/8/2011

[4] TTCN-3.org. (Undated). TTCN-3 open source tools. Available:

http://www.ttcn-3.org/OpenSourceTools.htm. Last access on 4/8/2011

[5] János Zoltán Szabó and Tibor Csöndes. TITAN TTCN-3 Test Execution

Environment. Test Competence Centre, Ericsson Hungary Ltd. January, 2007

[Online]. Available:

http://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/HT_0701a-

6.pdf. Last access on 4/8/2011

[6] Gábor Ziegler. Runtime test configurations for load testing. Lecture notes.

Ericsson Hungary Ltd. 15 May, 2007 [Online]. Available:

http://www.ttcn3.org/TTCN3UC2007/Presentations/Fri/Session%204/ziegler-

Run-time_test_configurations.pdf. Last access on 4/8/2011

[7] Gonzalo Camarillo and Miguel-Angel Garcia-Martin. The 3G IP Multimedia

Subsystem (IMS): Merging the Internet and Cellular Worlds. John Wiley &

Sons, 2004, 354 pages, ISBN 0470 87156 3.

[8] ETSI Standard. TTCN-3 Core language standard. ETSI ES 201 873-1 V4.2.1.

July 2010

[9] Colin Wilcock, Thomas Deiß, Stephan Tobies, Stefan Keil, Federico Engler,

and Stephan Schulz. An Introduction to TTCN-3. John Wiley & Sons, 2005,

http://www.ttcn-3.org/Origin.htm
http://www.ttcn-3.org/ApplicationAreas.htm
http://www.ttcn3.org/TTCN3UC2007/Presentations/Wed/1500_ttcn_users_at_ericsson_a.pdf
http://www.ttcn3.org/TTCN3UC2007/Presentations/Wed/1500_ttcn_users_at_ericsson_a.pdf
http://www.ttcn-3.org/OpenSourceTools.htm
http://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/HT_0701a-6.pdf
http://www.hiradastechnika.hu/data/upload/file/2007/2007_1a/HT_0701a-6.pdf
http://www.ttcn3.org/TTCN3UC2007/Presentations/Fri/Session%204/ziegler-Run-time_test_configurations.pdf
http://www.ttcn3.org/TTCN3UC2007/Presentations/Fri/Session%204/ziegler-Run-time_test_configurations.pdf

88

282 pages, ISBN-13 978-0-470-01224-6.

[10] ETSI Standard. TTCN-3 Standard Part 5: TTCN-3 Runtime Interface. ETSI

ES 201 873-5 V4.2.1. July 2010

[11] ETSI Standard. TTCN-3 Standard Part 6: TTCN-3 Control Interface. ETSI ES

201 873-6 V4.2.1. July 2010 3GPP. IP Multimedia (IM) Subsystem Cx and Dx

interfaces; Signalling flows and message contents Rel. 10. 3GPP TS 29.228

V10.0.0. December 2010

[12] 3GPP. IP Multimedia (IM) Subsystem Cx and Dx interfaces based on

Diameter protocol; Protocol details Rel.9. 3GPP TS 29.229 V9.3.0.

September 2010

[13] 3GPP. IP Multimedia (IM) Subsystem Mobility Management Entity (MME)

and Serving GPRS Support Node (SGSN) related interfaces based on

Diameter protocol Rel. 10. 3GPP TS 29.272 V10.1.0. December 2010

[14] P. Calhoun, J. Loughney, E. Guttman, and G. Zorn and J. Arkko. Diameter

Base Protocol. Internet Request for Comments. 2070-1721. RFC 3588.

September 2003 [Online]. Available: http://www.rfc-editor.org/rfc/rfc3588.txt.

Last access on 5/15/2011

[15] Szabados, Kristóf. Structural Analysis of Large TTCN-3 Projects. Testing of

Software and Communication Systems. Lecture Notes in Computer Science.

Springer, Berlin, 2009, pages 241-246. Available:

http://dx.doi.org/10.1007/978-3-642-05031-2_19. Last access on 5/15/2011

[16] M. Handley, H. Schulzrinne, E. Schooler, and J. Rosenberg. SIP: Session

Initiation Protocol. Internet Request for Comments. 2070-1721. RFC 2543.

March 1999 [Online]. Available: http://www.rfc-editor.org/rfc/rfc2543.txt.

Last access on 5/15/2011

[17] Zhang Li. Service Improvements for a VOIP Provider. Master of Science

Thesis. TRITA-ICT-EX-2009:104, August 2009 [Online]. Available:

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090829-Zhang-

Li-with-cover.pdf. Last access on 5/15/2011

[18] Victor Ferraro-Esparza, Michael Gudmandsen, and Kristofer Olsson. Ericsson

Telecom Server Platform. Ericsson Review No. 3. 2002 [Online]. Available:

http://www.ericsson.com/ericsson/corpinfo/publications/review/2002_03/files/

2002032.pdf. Last access on 5/31/2011

http://www.rfc-editor.org/rfc/rfc3588.txt
http://dx.doi.org/10.1007/978-3-642-05031-2_19
http://www.rfc-editor.org/rfc/rfc2543.txt
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090829-Zhang-Li-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090829-Zhang-Li-with-cover.pdf
http://www.ericsson.com/ericsson/corpinfo/publications/review/2002_03/files/2002032.pdf
http://www.ericsson.com/ericsson/corpinfo/publications/review/2002_03/files/2002032.pdf

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

[19] M. Kucherawy. Message Header Field for Indicating Message Authentication

Status. 2070-1721. RFC 5431. April 2009 [Online]. Available: http://www.rfc-

editor.org/rfc/rfc5451.txt. Last access on 5/31/2011

[20] Dan Peterström. IP Multimedia for Municipalities: The supporting

architecture. Masters Thesis, School of Information and Communication

Technology, Royal Institute of Technology (KTH), Stockholm, Sweden.

TRITA-ICT-EX-2009:103, August 2009 [Online]. Available:

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090818-

Dan_Peterstrom-with-cover.pdf. Last access on 5/31/2011

[21] 3GPP. IP Multimedia (IM) Subsystem Mobility Management Entity (MME)

and Serving GPRS Support Node (SGSN) related interfaces based on

Diameter protocol Rel. 10. 3GPP TS 29.272 V9.5.0. December 2010

[22] George Din, Sorin Tolea, and Ina Schieferdecker. Distributed Load Tests with

TTCN-3. Lecture Notes in Computer Science. Volume 3864/2006, 2006, pages

177-196, DOI 10.1007/11754008_12 [Online]. Available:

http://www.springerlink.com/content/5240k24061512350

Last access on 7/15/2011

[23] Ina Schieferdecker, George Din and Dimitrios Apostolidis. Distributed

Functional and Load Tests for Web Services. International Journal on

Software Tools for Technology Transfer (STTT). Springer-Verlag, Berlin,

Heidelberg, ISSN 1433-2779, Volume 7 Issue 4, August 2005, pages 351-260,

DOI 10.1007/s10009-004-0165-6 [Online]. Available:

http://www.springerlink.com/content/tkyuwjg8ned0wb42/

Last access on 7/15/2011

[24] Markus Warken. From Testing to Anti-product Development. International

Journal on Software Tools for Technology Transfer (STTT). Springer-Verlag,

Berlin, Heidelberg, ISSN 1433-2779, Volume 10, Number 4, July 2008, pages

297-307, DOI 10.1007/s10009-008-0074-1 [Online]. Available:

http://www.springerlink.com/content/745567223522m2px/

Last access on 7/15/2011

[25] Robert K. Wysocki. Effective. Software Project Management. Wiley

Publishing, 2006, ISBN-13: 978-0-7645-9636-0.

[26] Ken Schwaber, Mike Beedle. Agile Software Development with Scrum.

Microsoft Press, 2004, ISBN: 0-7356-1993-X.

[27] Ferenc Bozóki, Tibor Csöndes. Scheduling in Performance Test Environment.

16
th

 International Conference on Software, Telecommunications and

http://www.rfc-editor.org/rfc/rfc5451.txt
http://www.rfc-editor.org/rfc/rfc5451.txt
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090818-Dan_Peterstrom-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090818-Dan_Peterstrom-with-cover.pdf
http://www.springerlink.com/content/5240k24061512350
http://www.springerlink.com/content/tkyuwjg8ned0wb42/
http://www.springerlink.com/content/745567223522m2px/

90

Computer Networks (SoftCOM 2008), September 2008, pages 404-408, DOI

10.1109/SOFTCOM.2008.4669519 [Online]. Available:

http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4669519

&queryText%3Dload+test+ttcn-

3%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803

%29%29%26searchField%3DSearch+All. Last access on 7/15/2011

[28] David R. Butenhof. Programming with POSIX Threads. Addison-Wesley

Professional, 1997, ISBN-13: 978-0-201-63392-4.

[29] Ferdinand Wagner, Ruedi Schmuki, Thomas Wagner, and Peter

Wolstenholme. Modeling Software with Finite State Machines. Auerbach

Publications, 2006, 362 pages, ISBN-13: 978-0-8493-8086-0.

[30] Peter Brass. Advanced Data Structures. Cambridge University Press, 2008,

ISBN: 978-0-521-88037-0

[31] Wikipedia. (July, 2011). Modulo Operation. [Online]. Available:

http://en.wikipedia.org/wiki/Modulo_operation. Last access on 7/16/2011

[32] International Telecommunication. Union (ITU). (Undated). Introduction to

ASN.1. [Online]. Available: http://www.itu.int/ITU-

T/asn1/introduction/index.htm. Last access on 7/16/2011

[33] International Telecommunication Union. (Undated). OSI Networking and

System Aspects – ASN.1. [Online]. Available: http://www.itu.int/ITU-

T/studygroups/com17/languages/X.690-0207.pdf. Last access on 7/16/2011

[34] Patrick Wacht, Thomas Eichelmann, Armin Lehmann, and Ulrich Trick. A

New Approach to Design Graphically Functional Test for Communication

Services. 4
th

 IFIP International Conference on New Technology, Mobility and

Security (NTMS), February 2011, pages 1-4, DOI:

10.1109/NTMS.2011.5721068 [Online]. Available:

http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ie

ee.org%2Fiel5%2F5720565%2F5720575%2F05721068.pdf%3Farnumber%3

D5721068&authDecision=-203. Last access on 8/12/2011

http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4669519&queryText%3Dload+test+ttcn-3%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4669519&queryText%3Dload+test+ttcn-3%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4669519&queryText%3Dload+test+ttcn-3%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://ieeexplore.ieee.org/search/freesrchabstract.jsp?tp=&arnumber=4669519&queryText%3Dload+test+ttcn-3%26openedRefinements%3D*%26filter%3DAND%28NOT%284283010803%29%29%26searchField%3DSearch+All
http://en.wikipedia.org/wiki/Modulo_operation
http://www.itu.int/ITU-T/asn1/introduction/index.htm
http://www.itu.int/ITU-T/asn1/introduction/index.htm
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://www.itu.int/ITU-T/studygroups/com17/languages/X.690-0207.pdf
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5720565%2F5720575%2F05721068.pdf%3Farnumber%3D5721068&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5720565%2F5720575%2F05721068.pdf%3Farnumber%3D5721068&authDecision=-203
http://ieeexplore.ieee.org/Xplore/login.jsp?url=http%3A%2F%2Fieeexplore.ieee.org%2Fiel5%2F5720565%2F5720575%2F05721068.pdf%3Farnumber%3D5721068&authDecision=-203

Kungliga Tekniska Högskolan (KTH) Final Report

Royal Institute of Technology 8/13/2011

www.kth.se

TRITA-ICT-EX-2011:185

