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Abstract 

The system test is very significant in the development life cycle of a telecommunication 

network node. Tools such as TITANSim are used to develop the test framework upon which 

a load test application is created. These tools need to be highly efficient and optimized to 

reduce the cost of the system test. This thesis project created a load test application based on 

the distributed scheduling architecture of TITANSim, whereby multiple users can be 

simulated using a single test component. This new distributed scheduling system greatly 

reduces the number of operating system processes involved, thus reducing the memory 

consumption of the load test application; hence higher loads can be easily simulated with 

limited hardware resources.  

The load test application used for system test of the HSS is based on the central scheduling 

architecture of TITANSim. The central scheduling architecture is a function test concept, 

where every user is simulated by a single test component. In the system test several thousand 

users are simulated by the test system. Therefore, the load application based on central 

scheduling architecture uses thousands of test components leading to high memory 

consumption in the test system. In this architecture, the scheduling of test components is 

centralized which results in a lot of communication overhead within the test system, as 

thousands of test components communicate with a master scheduling component during the 

test execution.  

On the other hand, in the distributed scheduling architecture the scheduling task is performed 

locally by each test component. There is no communication overhead within the test system. 

Therefore, the test system is highly efficient. In the distributed scheduling architecture the 

traffic flow of the simulated users are described using the Finite State Machines (FSMs). The 

FSMs are specified in the configuration files that are used by the test system at run time. 

Therefore, implementing traffic cases using the distributed scheduling architecture becomes 

simpler and faster as there is no (TTCN-3) coding/compilation.  

The HSS is the only node (within Ericsson) whose system test is performed using the central 

scheduling architecture of TITANSim. The other users (nodes) of TITANSim are using the 

distributed scheduling architecture for its apparent benefits. Under this circumstance, this 

thesis project assumes significance for the HSS. When a decision to adapt the distributed 

scheduling architecture is made for the system test of the HSS, the load application created in 

this thesis project can be used as a model, or extended for the migration of the test modules 

for the HSS from the central scheduling architecture to the distributed scheduling 

architecture.  

By creating this load application we have gained significant knowledge of the TITANSim 

framework; most importantly, the necessary modifications to the TITANSim framework 

required to create a distributed scheduling architecture based load application for the HSS. 

The load application created for this project was used to (system) test the HSS by generating 

load using real system test hardware. The results were analytically compared with the test 
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results from the existing load application (which is based on the central scheduling 

architecture). The analysis showed that the load application based on distributed scheduling 

architecture is efficient, utilizes less test system resources, and capable of scaling up the load 

generation capacity.  

Key words: FSM, scheduling, system test, TITANSim, test components 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



Kungliga Tekniska Högskolan (KTH)   Final Report 

Royal Institute of Technology  8/13/2011  

 
 

Sammanfattning 

Systemet test är mycket betydelsefullt i utvecklingen livscykeln för ett telenät nod.Verktyg 

som TITANSim används för att utveckla testet ram på vilken ett belastningsprov program 

skapas. Dessa verktyg måste vara mycket effektiv och optimerad för att minska kostnaderna 

för systemet testet. Detta examensarbete skapat ett program belastningsprov bygger på 

distribuerad schemaläggning arkitektur TITANSim, där flera användare kan simuleras med 

hjälp av ett enda test komponent. Det nya distribuerade schemaläggning systemet minskar 

kraftigt antalet operativsystem inblandade system processer, vilket minskar 

minnesförbrukning av lasten testprogram, därav högre belastningar kan enkelt simuleras med 

begränsade hårdvara resurser.  

 

Lasten testa program som används för systemtest av HSS är baserad på den centrala 

schemaläggning arkitektur TITANSim. Den centrala schemaläggning arkitektur är ett 

funktionstest koncept, där varje användare simuleras med ett enda test komponent. I systemet 

testa flera tusen användare är simulerade av testsystemet.Därför använder belastningen 

program baserat på centrala schemaläggning arkitektur tusentals testa komponenter leder till 

hög minnesförbrukning i testsystemet.I denna arkitektur är schemaläggning av test 

komponenter centraliserad vilket resulterar i en mycket kommunikation overhead inom 

testsystem, som tusentals testa komponenter kommunicerar med en mästare schemaläggning 

komponent under testexekvering.  

 

Å andra sidan, i den distribuerade schemaläggning arkitekturen schemaläggning uppgiften 

utförs lokalt av varje test komponent. Det finns ingen kommunikation overhead i 

testsystemet. Därför är testsystemet mycket effektiv. I distribuerad schemaläggning 

arkitekturen trafikflödet av simulerade användare beskrivs med Finite State Machines 

(FSMs). Den FSMs anges i konfigurationsfiler som används av testsystemet vid 

körning. Därför genomföra trafiken fall med distribuerad schemaläggning arkitektur blir 

enklare och snabbare eftersom det inte finns någon (TTCN-3) kodning / sammanställning.  

 

HSS är den enda nod (inom Ericsson) vars system test utförs med hjälp av den centrala 

schemaläggningen arkitektur TITANSim. Den andra användare (noder) i TITANSim 

använder distribuerad schemaläggning arkitektur för sina uppenbara fördelar. Under denna 

omständighet, förutsätter detta examensarbete betydelse för HSS. När ett beslut att anpassa 

distribuerad schemaläggning arkitektur är gjord för systemet test av HSS, kan belastningen 

program som skapats i detta examensarbete kan användas som en modell, eller förlängas för 

migration av testet moduler för HSS från den centrala schemaläggningen arkitektur för 

distribuerade schemaläggning arkitektur.  

Genom att skapa denna belastning ansökan har vi fått stor kunskap om TITANSim ramen, 

viktigast av allt, de nödvändiga ändringar av TITANSim ramverk som krävs för att skapa en 
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distribuerad schemaläggning arkitektur baserad belastning ansökan för HSS. Lasten program 

som skapats för detta projekt har använts för att (system) testa HSS genom att generera last 

använda riktiga maskinvarusystem test. Resultaten analytiskt jämfört med provresultaten från 

den befintliga belastningen ansökan (som är baserad på den centrala schemaläggning 

arkitektur). Analysen visade att belastningen ansökan baseras på distribuerad schemaläggning 

arkitektur är effektiv, använder mindre resurser testsystem, och kan skala upp kapaciteten last 

generation.  

 

Nyckelord: FSM, schemaläggning, systemtest, TITANSim, testa komponenter  
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1 Introduction 

This chapter will introduce the problem area of the thesis project and provide a review 

of the existing system test architecture and performance, specifically the Home Subscriber 

Server (HSS) node used in networks such as IP Multimedia Subsystem (IMS) and Long Term 

Evolution (LTE). The following chapter gives an overview of Testing and Test Control 

Notation-3 (TTCN-3) programming language features and the test framework used for this 

thesis project. 

System test is a very crucial phase in the development cycle of any software product, since it 

is generally performed after integration testing and verifies the conformance of product to its 

stated requirements. For telecommunication (telecom) vendors (such as Ericsson, Nokia 

Siemens Networks, and Alcatel-Lucent) that are involved in the development of core network 

nodes in IMS, 3G, and LTE, the system test not only verifies the compliance of the product 

with functional requirements, but other crucial system aspects such as system capacity, call 

quality, correct generation of operation and maintenance events (e.g., alarms and logging), 

load balancing, and load regulation are tested. 

For telecom vendors the system test phase is very expensive, because the resources (technical 

labor, time, and computing power) involved in this phase are huge. The system under test 

(SUT) is installed on telecom grade hardware and the nodes that interact with the SUT are 

emulated during the system test. Typically the hardware is a clustered multi-processor 

environment that can handle millions of calls per second (CPS), with huge databases that 

store customer and call/session related information. The system test strives to reproduce a 

real field deployment of the SUT. While this is inevitably expensive, it is less expensive than 

trying to debug a system once it has actually been deployed in the field. 

Software testing technologies have improved by leaps and bounds in the last decade, thanks 

to the efforts of many researchers (in academia and industry), corporations selling testing 

tools, standards organizations, and the software vendors themselves who have invested in 

research on software testing. Today a great deal of software testing is automated. This has 

resulted in a significant reduction in the time and effort needed for development of a test 

framework, test cases, and the test execution.  

TTCN is one such success story – it is a result of the combined effort of the European 

standards body ETSI (European Telecommunications Standards Institute), leading telecom 

vendors (such as Ericsson, Nokia, Motorola, and many others), and researchers at some of the 

finest technical universities of Europe [1]. TTCN-3 (version 3) as it is known today, is an 

internationally standardized programming language for testing. TTCN-3 is generic and has 

been successfully employed for testing in telecommunication, automotive, and various other 

domains of software testing for over a decade [2]. TTCN-3 is the prime driver of automation 

in telecom testing, since it is used by Ericsson, Nokia, and other major telecommunications 

vendors for various levels of testing, including functional, system, and performance testing. 
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Its usage has lead to a significant reduction in software maintenance costs and reduction in 

the lead time of product development, hence its wide spread usage in the industry [3]. 

A number of tools that offer a TTCN-3 compiler and an Integrated Development 

Environment (IDE) are available under open source license, such as BBT and Trex, to name 

just two [4]. Additionally, Ericsson has developed its own customized TTCN-3 tool called 

TITAN which is widely used in product development units across Ericsson [5]. TITAN 

supports numerous protocols (such as Diameter, SIP, DNS, and LDAP) and offers test ports 

(for several transport protocols, including TCP and SCTP). It is available as a plug-in to the 

Eclipse IDE
*
 and has its own log viewer [3].  

The TITAN test tool was further enhanced to support simulated loads, i.e. to act as traffic 

generators for performing load testing on a SUT. Within Ericsson, the load capable version of 

the TITAN tool is commonly referred to as „TITANSim‟. TITANSim provides a very 

efficient test design and test execution environment for system testers. It has a layered 

architecture consisting of a TTCN-3 test executor, test ports, protocol support, libraries, and 

ready to use load applications [6]. A detailed architectural overview of TITANSim is 

provided in Chapter 4. 

This thesis project has taken place within the system test team at Ericsson AB which 

develops load test applications for the HSS node in Ericsson‟s implementation of IMS. 

Within the IMS, the HSS stores the subscription information for each subscriber, performs 

authentication and authorization of users, and can provide information to others about the 

subscriber's location and current IP address [7]. HSS is also used in Long Term Evolution 

(LTE)/4G networks for the same purpose. As per the 3
rd

 Generation Partnership Project 

(3GPP) IMS architecture, the HSS communicates over Diameter interfaces with other IMS 

network elements, such as the Subscriber Location Function (SLF), Call Server 

Switching Function (CSCF), and Application Server (AS).  

During a typical system test of a HSS (i.e., where the HSS is the SUT), the HSS application is 

installed on the target hardware and the other network elements that communicate with the 

HSS are simulated by the TITANSim. These simulated components are called traffic or load 

generators, since their objective is to generate a configured amount of traffic in order to put 

the HSS under a load for testing purposes. The TITANSim framework which is used to create 

these load test applications for HSS supports two kinds of architectures: Central Scheduling 

(CS) and Distributed Scheduling (DS). The current load application is based on using the 

central scheduling architecture of TITANSim, thus several thousand load generator test 

components are required to simulate the load when the HSS is subjected to a high target load, 

for instance 2000 CPS. On the operating system level each of these load generator 

components executes as a separate process. With such a large number of separate processes, 

memory consumption is huge when simulating high load conditions. This also results in very 

inefficient test execution, with slow system response times. As the current load test 

application is based on using the centralized scheduling architecture of TITANSim, load 

                                                                 
*
 Eclipse IDE,  www.eclipse.org 

http://en.wikipedia.org/wiki/Authentication
http://en.wikipedia.org/wiki/Authorization
www.eclipse.org
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testing consumes a lot of memory and this approach is inefficient when simulating high load 

conditions, both factors increase the cost of the system test process [6]. In the central 

scheduling architecture based load test application, the scheduling of test components is 

centralized which results in a lot of communication overhead within the test system, as 

thousands of test components communicate with a master scheduling component during the 

test execution.  

This thesis project aims to create a load test application based on the distributed scheduling 

architecture of TITANSim, thus multiple traffic cases will be simulated using a single test 

component. This will greatly reduce the number of operating system level processes 

involved, thus greatly reducing memory consumption. This approach will enable high load 

conditions to easily be simulated with limited hardware resources. In the distributed 

scheduling architecture the scheduling task is performed locally by each test component. 

There is no communication overhead within the test system. Therefore, the test system is 

highly efficient. In the distributed scheduling architecture based load test application the 

traffic flow of the simulated users are described using the Finite State Machines (FSMs). The 

FSMs are specified in the configuration files that are used by the test system at run time. 

Therefore, implementing traffic cases using the distributed scheduling architecture becomes 

simpler and faster as there is no (TTCN-3) coding/compilation.   
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2 The SUT - HSS 

 In the real world, system test developers require a deep understanding of the SUT and 

the protocols involved, because a system test is performed on real target nodes. Hence, the 

system testers have to install, configure, and provision the SUT software on the target 

machine in order to perform the system test.  

The SUT for our thesis project is an HSS, which is the master database node in IMS, 3G, or 

LTE networks. In the following discussion we will focus on its role and operation in IMS 

(later we will consider the role of the HSS in mobility management). Architecturally IMS 

consists of a transport layer, IMS layer, and a service/application layer. The basic philosophy 

of IMS is to be access-agnostic, so that users from any kind of access network can connect to 

an IMS enabled service. Hence, the transport layer consists of a number of gateway nodes 

which allow devices from a variety of access networks (such as WLAN, 3G/LTE, WCDMA, 

PSTN, and WiMAX) to access the IMS.  The IMS layer consists of core switching function 

nodes such as S-CSCF, P-CSCF, and I-CSCF. These types of nodes form the heart of IMS 

and perform the important function of call/session handling. Note that IMS is based on the 

use of the session initiation protocol (SIP) [16]. 

The HSS is present in the service/application layer of IMS, along with a number of 

application servers (AS). An AS can be used to provide a variety of services to the end users, 

such as video on demand, video-conferencing, Push-2-Talk, and so on. End users who access 

these services using the IMS network must have an IMS subscription. In addition, each 

subscriber can have a profile which stores information related to the subscriber‟s service 

preferences, authentication information, and so on. All IMS subscriber related information is 

stored in the HSS. The HSS performs the authorization and authentication of the user along 

with providing location information and the IP address information of the subscriber‟s UE to 

other nodes upon request. A typical home network in IMS will have millions of subscribers; 

hence the subscriber data will be spread over multiple HSSs. Therefore as noted in section 

3.2.2, a SLF is used to identify in which HSS a particular subscriber‟s data is stored. Figure 1 

shows an HSS interacting with other IMS nodes through Diameter interfaces Cx and Dx [12]. 

The HSS is also used in LTE networks, where it interacts with the Mobility Management 

Entity (MME) through the S6a Diameter interface [13]. The module within the HSS that 

manages the S6a interface for LTE access is called the Enhanced Packet Services (EPS) 

Subscription Manager (ESM).  

Figure 2 shows the EPS architecture and its interfaces. In this thesis we will restrict our 

discussion to the S6a interface. The S6a interface enables the transfer of subscriber related 

data between a MME and HSS. The MME is the heart of the mobility support in an LTE 

access network, as it tracks the UE and is responsible for handover when the UE moves from 

one node to another node within a given LTE network
†
. 

                                                                 
†
 Actually an MME can also handle handovers to/from non-LTE networks, but these details lie outside the scope 

of this thesis. 
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Figure 1: IMS Application and Control layer 

 

 

 

Figure 2: EPS Architecture 

The update location procedure is used between the HSS and MME to update the location 

information of the subscriber in the HSS database. This is done by sending the Diameter S6a 

messages: Update Location Request (ULR) and Update Location Answer (ULA). In addition 

to location information, other information such as the MME‟s identity and terminal 

information are exchanged with the HSS in the Update Location procedure. When a 
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subscriber‟s subscription has terminated the HSS uses the Cancel Location procedure to 

inform the MME, using the Diameter S6a messages Cancel Location Request (CLR) and 

Cancel Location Answer (CLA). When any of the subscription related data is changed in the 

HSS, the MME is informed by the HSS using an Insert Subscriber Data procedure via the 

Insert Subscriber Data Request (IDR) and Insert Subscriber Data Answer (IDA). The MME 

can also retrieve authentication information for a subscriber from the HSS through the 

Authentication Information Request (AIR) and Authentication Information Answer (AIA) 

messages. Figure shows the S6a interface with some of these messages. 

For this thesis project the S6a interface between the MME and HSS has been chosen for 

developing the load application based on a distributed TITANSim load scheduler. The S6a 

interface has been chosen because from a TITANSim perspective, the LGen design is less 

complex and the required number of traffic generators needed is less than directly using the 

Cx or Sh interface. From the HSS‟s (i.e., the SUT‟s) perspective, the configuration and 

provisioning of a HSS is simpler, as the S6a interface requires fewer modules within the 

HSS. Thus the S6a interface fits well within the scope of the thesis work with regard to the 

time available to carry out this project and the complexity of problem that can be adequately 

addressed in this period of time. 

 

Figure 3: MME – HSS (S6a interface) 
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3 Background: TTCN-3 

Since the mid 1980s, TTCN-3 has become the de facto standard for testing and 

writing test specifications. It is an internationally standardized language and offers tool 

vendor independence. Therefore any TTCN-3 tool will compile the test scripts in exactly the 

same way. It is a simple high level programming language suitable for test developers to 

create test specifications, even for complex systems with multiple protocols/interfaces. It has 

a textual format for defining test cases – referred to as the TTCN-3 core notation. It offers 

many presentation formats for specifying test cases ([8], page 18). Test cases can be specified 

in tabular format, Message Sequence Chart (MSC) format, or in a simple textual format. All 

of these presentation formats can be converted to the TTCN-3 core notation. TTCN-3 

supports different communication modes, such as message oriented communication and 

procedure based communication and also includes numerous features (such as built in data 

matching, concurrent test execution, timers, and a distributed test architecture). The following 

sections provide a brief architectural overview of a TTCN-3 test system and describe some of 

its core language features. 

3.1 TTCN-3 test system 
A test specification consisting of several test cases written in the TTCN-3 core notation 

constitutes a test suite. A TTCN-3 test suite is abstract, commonly referred to as an abstract 

test suite (ATS), since it is devoid of any system specific information, such as choice of 

Coder/Decoder (CODEC) or transport protocol ([9], page 22). This abstract nature of the test 

suite makes it easier for the TTCN-3 test developers, as they only need to focus on the 

functional aspects of the test (such as specified by a protocol message sequence or finite state 

machines) when creating test suites. A TTCN-3 test system is comprised of several other 

parts in addition to the test specification itself. These other parts are the TTCN-3 Executable 

(TE), SUT Adaptor (SA), Platform Adaptor (PA), and Test Management and Control (TMC) 

([9], page 23). 

The above functions are realized by several test system entities that interact with each other 

through standardized interfaces: TTCN-3 Runtime Interface (TRI) and TTCN-3 Control 

Interface (TCI). Figure 4 shows the different entities involved in the TTCN-3 test system. 

The core of the TTCN-3 test system is the TE which executes the TTCN-3 statements. The 

TTCN-3 execution layer communicates with the PA and SA though TRI and with the TMC 

layer through TCI. ETSI has standardized these interfaces in [10] and [11]. 
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Figure 4: A TTCN-3 Test System
‡
 

3.1.1 Test Management and Control 

The test management and control (TMC) layer internally consists of three entities: CODEC 

(CD), Test Management (TM), and Component Handling (CH); assisted by a Test Logging 

(TL) entity.  

CD The CD entity performs the encoding and decoding of messages exchanged 

between the TTCN-3 test system and the SUT, so these messages are 

understandable to each system. All TTCN-3 tools support standardized 

encoding schemes, such as ASN.1 [32], and BER [33]. However, if the SUT 

uses proprietary encoding schemes, then a user defined CODEC should be used. 

TM The TM entity helps a test developer handle the test process itself. The test 

developer can control the order of execution of test suites or block some part of 

the test suite from execution. This control enables the tester to customize the test 

process to suit his or her needs. Log creation, viewing, and debugging are 

simplified by using a Test Logging (TL) entity. 

CH The CH entity plays a key role in distributed test execution. In a distributed test 

execution, the test executable (TE) is spread across multiple test nodes. A 

typical distributed TTCN-3 test system is shown in  

Figure 5. 

 

                                                                 
‡
 Adapted from Figure.1 General Structure of TTCN-3 Test System, Page 12 of [10] 
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TL The TL plays the key role of logging of the test events and making these events 

available to the test user. Typical test events include send/receive messages 

between the test system and SUT, alarms, timers, component creation, 

execution, and termination information. 

 

 

Figure 5: A Distributed TTCN-3 Test System
§
 

Each node involved in the distributed test system will have its own SA, PA, CD, and TL 

entities. The CH and TM entities manage the communication between test entities in each of 

the nodes in the distributed test setup. The CH entity is aware of all of the communication 

ports of all the test entities in all nodes, thus the CH can forward messages from one instance 

of an entity to another instance of the same entity in a different node. 

3.1.2 TTCN-3 Executable (TE) 

The TE entity is responsible for the execution of a specific TTCN-3 test suite (the ATS).  The 

TE is conceptually divided into an Executable Test Suite (ETS), a TTCN-3 Runtime System 

(T3RTS), and an optional Encoding/Decoding System (EDS) ([10], page 13). 

                                                                 
§
 Adapted from Figure 3 , Page 21, [11] 
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ETS The ETS entity executes the test cases. During the test case execution, ETS 

communicates with the T3RTS entity to send messages to the SUT. When the 

response message is received the ETS entity matches the received response with 

the test case defined template of expected response as encoded in the test suite.  

T3RTS T3RTS is the heart of the TE entity. It communicates with the TM entity through 

the TCI interface and with PA and SA through the TRI interface. All the test 

events are logged by the TM entity with the help of T3RTS. The T3RTS is 

responsible for initializing the adaptors, i.e., the ETS and EDS entities. T3RTS 

notifies the SA entity what message is to be sent to the SUT. It communicates 

with the PA entity so that appropriate timers are started, stopped, read, or simply 

queried during the test execution. T3RTS invokes the EDS entity so that all the 

messages are appropriately encoded / decoded before they are exchanged with 

the SA. 

EDS The EDS entity is responsible for encoding and decoding of all test data 

exchanged between the T3RTS and SA during the test execution. 

3.1.2.1 SUT Adaptor (SA) 

The TTCN-3 test suite is completely abstract. Hence, the mapping of all TTCN-3 operations 

to a real world operation is performed by the SUT Adaptor (SA). For example, while a test 

suite specification might simply indicate the message to be sent through a port, the SA entity 

maps the TTCN-3 port to a real world port (i.e., to a specific destination IP address, transport 

protocol, and port number). 

3.1.2.2 Platform Adaptor (PA) 

The platform adaptor (PA) entity handles all the events that occur when messages are lost 

between the TTCN-3 test system and the SUT. For example, timers need to be implemented 

to handle message timeouts that arise when messages are lost in transport or the 

communicating node fails to respond to a specific message. Timers are implemented at the 

platform level (with messages such as Device Watchdog Timer (DWT) that monitor 

connectivity with a Diameter peer node), and also at the application level as per the specific 

protocol‟s specification. 

3.1.3 TTCN-3 Control Interface (TCI) 

In a test system all the communication between the TE, TM, CH, CD, and TL entities are 

defined by the TCI. TCI enables a TE to manage test execution, log events with TL, 

distribute and coordinate test entities in different test devices, and perform coding and 

decoding ([11], page 22). 

3.1.4 TTCN-3 Runtime Interface (TRI) 

TRI defines the communication between the TE & PA and TE & SA. TRI enables a TE to 

exchange messages with the SUT through SA, control timers, and receive messages and 
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timeout events. The ETSI standardized interfaces TRI and TCI enable a TTCN-3 test system 

to be adapted for any kind of SUT ([10], page 15). 

3.2 TTCN-3 Core Language Features 
ETSI has designed TTCN-3 to be a very flexible and powerful language for performing 

system tests ([8], page 17). The language features that are built into TTCN-3 are extensive 

and make TTCN-3 suitable for regression testing, integration testing, and stress testing. 

However, there are some specific TTCN-3 features that are pertinent to the development of 

TITANSim. In this section we will briefly discuss those features that make TTCN-3 very 

powerful for load test application development. 

3.2.1 TTCN-3 component architecture 

Any load test application designed in TTCN-3 is built on a number of components. 

Depending on the complexity of the testing task, a single component test system can be 

designed (with only a Main Test Component - MTC) or the system can involve multiple 

components (Parallel Test Components - PTCs) – as shown in Figure 6. In test systems that 

involve multiple components, the MTC is responsible for creating the PTCs. Each PTC will 

perform its defined testing task and produce its own component level test verdict. The MTC 

collects the verdicts from each of the PTCs and determines the final verdict for each 

particular test case. 

 

 

Figure 6: SUT interacting with various test components 

Each component is defined with a particular type name and its definition includes associated 

ports, timers, variables, and constants of the component. As will be discussed in section 3.2.3 

TTCN-3 components communicate with each other and with the SUT using ports. The 

component type definition is local to a particular component hence other components may 

use the same port names or timer names in its definition. The following code sample shows a 

typical component definition with port, timer, and a variable. 
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type component MyPTC1Type 
{ 
var integer MyLocalInteger; 
timer MyLocalTimer; 
port MyMessagePortType PCO1 
} 

 It is also possible to define a new component type by extending an already defined 

component type using extends keyword; the former is referred to as the extended type and 

the later as the parent type. It is also possible to have an extended type component definition 

extending multiple parent types. In such a case the parent type definition may also be based 

on an extension. So effectively the component definition of an extended type includes all the 

ports, variables, timers defined in the parent type as well as those defined directly in the 

extended type. 

type component MyMTCType 
{ 
var integer MyLocalInteger; 
timer MyLocalTimer; 
port MyMessagePortType PCO1 
} 
type component MyExtendedMTCType extends MyMTCType 
{ 
var float MyLocalFloat; 
timer MyOtherLocalTimer; 
port MyMessagePortType PCO2; 
} 

3.2.2 Concurrency 

In any telecommunication network (such as IMS, GSM, or 3G/LTE) the SUT is quite 

complex as it communicates with multiple nodes via many different interfaces.  For example, 

in the IMS network, the HSS node contains the subscriber database storing all the 

subscription information needed in order to perform authorization and authentication of users. 

Typically, the number of subscribers is very large. Hence, the home domains in actual IMS 

networks have multiple HSS nodes. In this case, the IMS systems needs a Subscriber 

Location Function (SLF) in the home domain to map the user‟s IMS address to the 

corresponding HSS that stores this particular user‟s profile and other subscription 

information. The SLF is used by a number of nodes in the IMS home domain, specifically the 

Serving – Call Server Switching Function (S-CSCF). When the S-CSCF wants to retrieve any 

information from a user‟s profile or wants to authenticate a user using the HSS database, the 

S-CSCF must first locate the SLF and ask it for the address of the appropriate HSS for this 

specific user. Then the S-CSCF establishes a session with the appropriate HSS (unless it 

already has an existing session). The HSS provides the user with access to Application 

Servers (AS), thus the HSS facilitates authentication of a subscriber using a particular device 

(i.e., User Equipment (UE)), when this UE wants to initiate a session with the AS. To realize 
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a secure and authenticated connection between the UE and AS, the HSS uses another node 

called the Bootstrapping Server Function (BSF) that provides security keys for the session 

between UE and AS. Thus a simple scenario such as retrieving a user profile or performing 

user authentication will involve multiple nodes. Figure 7 shows the S-CSCF, SLF, and HSS 

along with the Diameter interfaces that they use to communicate. 

 

Figure 7: HSS as a SUT interacting through multiple Diameter interfaces 

If we consider HSS A as the SUT, our test system should have at least two test components, 

one each for Zh and Cx interfaces. Thus one test component (say PTC1) would simulate a 

BSF node attached via the Zh interface and the other (say PTC2) would simulate  

S-CSCF node attached via the Cx interface. It is also possible to design the same test system 

with a single component, but this version will operate in a non-concurrent fashion (e.g., first 

simulating interactions via the Zh interface, then Cx or vice versa). However, this  

non-concurrent design is very complicated and the test system code will be hard to maintain. 

In contrast, a concurrent TTCN-3, design is modular, hence it is easier to maintain – even for 

a system as complex as shown in Figure 7. For concurrent TTCN-3 design it is important to 

have a very clear definition of the configuration of the test components. The test component 

configuration includes the details of the ports with which the test components communicate 

with each other and test system interface with the SUT. 

As with any TTCN-3 test system, a concurrent TTCN-3 test system includes one MTC, 

which is responsible for the creation of the PTCs. The TTCN-3 core language provides a 

special create operation to dynamically create PTCs at run time, i.e. during test execution 

([8], page 93). Figure 8 shows a typical TTCN-3 concurrent test system configuration. 
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Figure 8: A Concurrent TTCN-3 test system 

3.2.3 Synchronous and Asynchronous communication 

Each component has a certain number of assigned ports through which it will exchange 

messages with the SUT. The message types that are part of the definition of a port type can 

be bidirectional (inout), send only (out), or receive only (in). TTCN-3 port types can be 

message based or procedure based ports, depending on the communication mode used by the 

test components. In both the cases the port will have a set of predefined message signatures 

or procedures that define what the port is allowed to send or receive. The following code 

samples show the definition of message based and procedure based ports. 

type port MyMessagePortType message 
{ 
in MsgType1, MsgType2; 
out MsgType3; 
inout integer 

} 

type port MyProcedurePortType procedure 
{ 
out Proc1, Proc2, Proc3 
} 
In message based communication mode, as shown in Figure 9, the send operation in the 

sending component is non-blocking, i.e. it is asynchronous, while the receive operation in the 

receiving component is blocking ([8], page 166). For example, a send or receive operation on 

a message based port is performed as below. 

MyMessagePort.send(5); // Sends the integer value 5  

MyMessagePort.receive; // Removes the first value from MyMessagePort. 

In a typical real-time system, there will be multiple incoming messages queuing up at the 

receiving component. To handle such message queues, TTCN-3 provides a trigger operation 

that allows a receiving node to apply some filter conditions on the message queue and to 
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process only those messages that match the filter criteria. A basic example of such trigger 

code is shown below. It specifies that the operation will trigger on the reception of the first 

message of the type MyType with an arbitrary value at the port MyMessagePort. 

MyMessagePort.trigger(MyType:?); 
 

 

Figure 9: Asynchronous send and receive operation 

The procedure based communication mode, as shown in Figure 10, is based on remote 

procedure calls. The sender node invokes a call operation on the receiving node, for which 

the receiving node responds by invoking a getcall operation. If the operation is successful, 

then the receiving node will respond with a reply operation or raise exception operation. On 

the sender node the response is received using a catch operation ([8], page 166). Procedure 

based communication can be blocking, where both the sender and receiver nodes wait until 

the operation is performed; or the communication can be non-blocking. The non-blocking 

mode of communication as shown in Figure 11, where the operation of the sender node is 

non-blocking, while only the receiving node operates with a blocking state. For detailed 

handling of procedure based communication with code examples refer to ([8], pages 174-

184). 

 

 

Figure 10: Blocking procedure based communication mode 
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Figure 11: Non-blocking procedure based communication mode 

At the TTCN-3 language level, each component is always defined with its associated ports. 

Thus the component type is differentiated based on the associated ports. The port names are 

also local to the component, hence they are not unique. The component type definition also 

includes constants, variables, timers, and functions. Thus every instance of the component 

type that is created will have its own set of ports, timers and functions as defined in the 

component type definition. 

3.2.4 Timer Handling 

As discussed in the section 3.2.2, in non-concurrent TTCN-3 test systems, the execution flow 

stops till a response is received from the SUT. Hence, the test system should be prepared to 

handle situations when there is no response from the SUT. TTCN-3 provides timers that 

expire and indicate to the test system the SUT‟s inactivity. TTCN-3 provides all the 

operations needed for creating a timer, checking for an expired duration, stopping a timer, 

check a timer‟s status, and blocking execution while the timer is running – as shown in Table 

1. Timers are also used to create a sufficient time gap between executions of test cases to 

enable the tests cases to execute from a stable state. Typically timers are defined in the 

components‟ definitions. TTCN-3 also allows timers to be defined inside the individual test 

cases and in the module‟s control part. The sample code below shows the different operations 

that can be performed with a timer. 

timer sampleTimer; // declare a timer variable 

sampleTimer.start;  

sampleTimer.stop; 

var float timerValue; 

timerValue := sampleTimer.read; // read elapsed time 

if(sampleTimer.running) {} // check if the timer is running 

sampleTimer.timeout // check the expiration of the timer
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Table 1: TTCN-3 Timer operations 

Statement TTCN-3 operation 

Start timer Start 

Stop timer Stop 

Read elapsed time Read 

Check timer status Running 

Timeout event Timeout 

 

For efficient timer handling each component or control module where the timer is defined 

maintains a list of running timers and timeout timers. Whenever a timer is started an entry is 

made in the running timers list. When the timer expires, it is added to the list of timeout 

timers. Thus at any point of time during test execution an entry for each timer exists either in 

the running timers list or the timeout timers list ([8], page 189). When the execution of the 

control module or the test component is stopped, all the running timers are cancelled and no 

longer exist in either list of timers.  

3.3 TTCN-3 and finer aspects of system test 
In this section, some key aspects of the TTCN-3 based test systems (such as concurrency, 

resource optimization, and resource management) are discussed. 

3.3.1 System testing 

In section 3.2.2 about concurrent TTCN-3 testing, a typical example of session authentication 

using the HSS was discussed. It was quite clear from this example that the TTCN-3 test 

system has to simulate all the other nodes that interact with the HSS (SUT). In a real world 

scenario, the HSS in an IMS network may need to authenticate thousands of user sessions per 

second. In order to apply the same load to the SUT, the test has to simulate tens of thousands 

of users; however, this will require a lot from the test system – especially if each user is to be 

individually modeled. This would require that there be tens of thousands of test components 

involved in the test system, all executing in a concurrent fashion. 

Using this approach, the TTCN-3 test system designed to system test a node such as a HSS 

will be as complex as the HSS itself (or perhaps even more complex). However, the 

complexity of the test system can be reduced to a certain extent by clearly defining the design 

scope of the system test. Consider that the process that generates thousands of individual 

requests for session authentication from the SUT per second does not need to wait for the 

response from the SUT, but rather this process can execute thousands of concurrent threads 

where each thread will process the response to its request when the response later arrives. 

This thread will then take the appropriate action based on the traffic flow that was defined in 

the test system. 
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This means that we can test the processing of the SUT in a system test without modeling each 

individual user. The test system developer can design a TTCN-3 test system so that a certain 

number of authentication requests are made per second to the SUT with a complete set of 

messages as per the standard protocol specifications. Note that only some of the responses 

actually needed to be checked to see if they are the correct and expected response, the rest 

can simply be ignored – thus reducing the load on the load generator, enabling a given load 

generator to simulate a much larger number of users making authentication requests per 

second. However, the SUT must not know which of the authentication requests are being 

checked and which are not, thus it must actually process all of them correctly. 

3.3.2 Resource optimization 

As discussed in Chapter 1, performing a system test is a very resource intensive process. 

Each simulated user consumes a significant amount of memory in the test system. For 

example, a real HSS might need to support 10 000 simultaneous users, hence the test system 

will have to simulate at least 10 000 users. If on an average the process simulating each user 

consumes 100 kilobytes of memory, then a total of 1 gigabytes of memory is required. The 

traffic rate of the load generator, hence the load on the SUT is proportional to the number of 

users that can be simulated by the test system. This means that the TTCN-3 test developers 

have to strike a balance between achieving high loads and the resource consumption required 

to generate this load.  

The resources required of the load generator can be reduced considerably by re-using 

resources. Assume we need to generate a load of five calls per second (CPS) by the test 

system in order to test the SUT under this load and that it takes one second for each call to 

complete, then at the end of five seconds, instead of deploying a sixth user, we can reuse the 

first user (who is now free) to play the role of the sixth user. Simplistically this would imply 

that to achieve a traffic rate of five CPS, all we need is just five users; however, this is not 

quite true as in generally we would like to avoid the delay of setting up a user to enter the 

queue – hence we might use a number of additional users to enable the load generator to 

create users that are prepared to place call, then simply feed these prepared users to the SUT 

at the desired rate. In this slightly more sophisticated method we can actually test the system 

with a load of five CPS, rather than a load that varies between four and five with some 

unknown duty cycle (i.e., the fraction of time when the system is actually under a load of five 

users could vary from a few percent to 100% of the time – depending upon how quickly the 

load generator can generate a new user state). In TITANSim a common practice while 

configuring the load application is to make the load generators simulate a number of 

additional users which is nearly 20% more than the required number of users. The time taken 

by the users to execute their assigned traffic case and become available again for execution 

depends on the system response time with the varying load levels. This approach has been 

proven in research with SUT‟s such as an HTTP server, put under test with commercial load 

generators such as HP‟s LoadRunner
**

 ([17], chapter 5). These results show that the average 

                                                                 
**

 Commercial software for performance validation from HP, check 

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-

17%5e8_4000_100 

https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5e8_4000_100
https://h10078.www1.hp.com/cda/hpms/display/main/hpms_content.jsp?zn=bto&cp=1-11-126-17%5e8_4000_100
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response time of the system increases as more number of users start using the system (i.e., as 

more load is generated by the test system). Under high load conditions the SUT response can 

be very slow (well below satisfactory limits) and the users simulated by the test system will 

have to wait longer for their response. From a test system‟s perspective, this means that its 

resources (user components and the associated memory) take longer to complete execution 

and become available for reuse. To counter this problem TITANSim provides a load 

regulation feature to regulate the CPS and maintain the SUT in a stable state during test 

execution. This feature periodically measures the CPU load level on the SUT and calculates a 

new target CPS value.  

3.3.3 Resource management 

Since the TTCN-3 test systems used for system test usually simulate thousands of users to 

achieve high traffic rates, it uses a lot of memory which can become fragmented during test 

execution. Memory fragmentation will seriously affect the performance of the test system as 

it reduces the execution speed. So the load applications built using TTCN-3 should have 

efficient data structures to avoid memory fragmentation. For instance, TITANSim provides a 

Free-Busy Queue (FBQ) which is used to maintain a list of free and busy slots in the memory 

([6], page 4). The FBQ is used for dynamic memory allocation in any load application 

developed using TITANSim. So when a user process is created by the test system during 

execution, an element representing a free resource is removed from the free queue and added 

to the busy queue and vice versa when the user process terminates. 

3.4 Related work 
Test automation with TTCN-3 has been an area of significant research in telecommunications 

over the past decade. Development of a test framework assumes as much significance as the 

software itself. Markus Warken in his publication titled „From Testing to Anti-product 

Development‟ illustrates how telecommunication companies consider modern testing as an 

anti-product development [24]. Old ways of software development models such as the 

Waterfall model [25] have now been replaced by parallel software development (also known 

as incremental development) methods such as Scrum [26], which necessitate the development 

of the anti-product in parallel to the product. This has also led to a general understanding in 

the telecommunications industry that the anti-product is in itself a complex software system 

and that the test development teams must have competent developers. Markus draws onto his 

vast personal experience in anti-product development using TTCN-3 and explains how 

TTCN-3 is the method of choice for telecommunications testing. He also explains the 

advantages of using TTCN-3 for anti-product development such as the concept of re-use in 

the test system development, and the ease of test management, automation, and debugging 

([24], pages 303, 304).  

Any anti-product developed for the system test focuses on two main goals. Firstly, the test 

system should not be as complex as the SUT itself. Secondly, the test system should generate 

sufficient load to test the load characteristics of the SUT and at the same time use minimal 

resources. While technologies such as TTCN-3 can be effectively employed to achieve the 
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first goal of a simpler, easy to maintain test system; the second goal has to be addressed at an 

architectural level of the test system; independent of the technology used to develop it. 

Ferenc Bozóki and Tibor Csöndes of Ericsson Hungary in their publication titled „Scheduling 

in Performance Test Environment’ provide a Finite State Machine (FSM) based architecture 

and an algorithm to improve the scheduling efficiency in such test systems [27]. In the 

functional test, typically every test case simulates just one user (user or client of the SUT) 

using a POSIX thread (for general information on such threads see [28]). This is called the 

„one user-one thread‟ approach. Unfortunately, while simple – this approach does not scale 

up well for a performance test environment where thousands of such threads are required. 

This would consume a lot of resources and the thread scheduler will spend time switching 

between the threads during the test execution. To solve this problem, Ferenc and Tibor 

abstract the concept of a thread to an abstract level called virtual threads, where a single 

thread could emulate multiple users, and the execution of each user is considered as a virtual 

thread. This is called the „multiple user-one thread‟ approach ([27], page 2). It is realized 

using FSM theory [29]. The „multiple user-one thread‟ approach also has some bottlenecks. 

As almost every message exchanged between the test system and the SUT is timer driven, the 

test system has to process each message within a time; otherwise the message is considered 

too late leading to a false (test) verdict. Thus, there could be undesirable delays in processing 

of events in a „multiple user-one thread‟ approach as a single thread is responsible for 

handling events for thousands of users. To solve this problem, Ferenc and Tibor propose an 

algorithm to reduce the total delay of the test system by optimizing the scheduling of events 

([27], page 4). 

In the system test environment, the test system used for generating load typically is 

comprised of multiple test nodes. When multiple test nodes are involved, test component 

distribution becomes vital to efficient utilization of test system resources during the test 

execution. George Din, Sorin Tolea, and Ina Schieferdecker in their publication titled 

„Distributed Load Tests with TTCN-3’ provide an architecture for distributed load test 

execution and also present a few distribution algorithms along with their characteristics [22]. 

They also present three generic patterns of test component specification, namely a one 

component per client pattern where a component emulates just one client or user, a sequential 

repetition of clients per component pattern where a component sequentially repeats in a loop 

emulating a different user each time, and an interleaved client behaviors per component 

pattern where a component simulates multiple users in parallel ([22], page 182).  

A number of factors have to be considered when choosing an appropriate algorithm for test 

component distribution, when the test system involves multiple test nodes. For example, in 

the one component per client pattern test components are created, execute a scenario, and 

terminate for every user. In such a case the balancing of test components (a decision on which 

test node the test component should be created) can be performed during the test execution at 

the time of test component instantiation. In the case of interleaved client behaviors per 

component pattern test components execute for longer periods since they simulate multiple 

users ([22], page 184). For this pattern the test component distribution needs to be performed 

before the test execution using the knowledge of the resources consumed by the test 
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components and how much the relevant resource is available on each test node. Based on 

when the distribution decision is taken, the distribution algorithms can be classified as static 

or dynamic ([22], page 189). A static algorithm, such as round robin test component 

distribution, is effective when the test nodes have more or less same resources (for example 

memory and CPU capacity). It should be noted that the test component distribution was 

performed in a similar fashion for the tests in this thesis project (refer to section 5.5.2). 

Dynamic algorithms are effective when the test nodes have different memory and CPU 

capacity ([22], page 190). Dynamic algorithms use a threshold parameter such as memory, or 

load level. The algorithm periodically measures the threshold parameter on each test node 

during the test execution and accordingly decides on which test node the test component 

should be deployed. 

In „Distributed functional and load tests for Web services’, Ina Schieferdecker, George Din, 

and Dimitrios Apostolidis, implement a distributed test platform architecture for load testing 

a simple web service [23]. They experiment by increasing the test load to measure the 

changes in response time of a web server with an increasing number of test components. Such 

studies are essential for striking the correct balance between SUT load levels, number of test 

components, and test execution time. 
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4 TITANSim 

Now that we have equipped ourselves with a basic understanding of the TTCN-3 test 

system architecture, its function and language features, we will now study a real world 

TTCN-3 system that is used widely within Ericsson for system test load application 

development. 

TITANSim is an extensible, modular, software load test framework written in the TTCN-3 

language. It provides all the necessary building blocks to build any load test application. 

TITANSim utilizes all the core features that were discussed in the previous chapter to their 

fullest potential. It provides all the functionalities required to develop highly optimized load 

test applications needed for carrying out a system test. The TITANSim features can be 

broadly classified as protocol dependant and protocol independent. Protocol dependant 

features include several libraries for protocols such as SIP, Diameter, HTTP, MAP, DNS, test 

ports, and many more. Protocol independent features include data structures needed for 

resource management such as the FBQ, Hash Map, and user scheduling components. 

4.1 TITANSim Architecture 
TITANSim is an extensible modular software load test framework written in TTCN-3 

language for TITAN, Ericsson‟s proprietary tool for TTCN-3 test execution. The main 

architectural elements of TITANSim are the Test Ports (TPs), TITAN libraries, Core Load 

Library (CLL), Application Libraries, Control Logic, and Run time Graphical User Interface 

(GUI) ([6], page 6) – as shown in Figure 12.  

 

 

Figure 12: TITANSim architectural elements 
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TITAN Libraries The TITAN libraries provide all the basic TTCN-3 language 

functions & operations, such as send, receive, and create. These 

libraries also provide all the functions needed for communication 

between TTCN-3 components and the SUT, data structures and 

data types, and logging. 

 

Test Ports The TPs implement the transport functions for sending and 

receiving messages. They also perform the CODEC functions for 

all messages exchanged with the SUT. 

 

Core Load Library The CLL forms the protocol independent part of the TITANSim 

architecture. The CLL provides all functions needed for user 

creation, resource management functions (such as FBQ and hash 

map), user scheduling, and load regulation. 

 

Application Libraries Application libraries provide the protocol dependent part of the 

TITANSim architecture. A number of protocol application 

libraries are provided (such as SIP, Diameter – Cx/Dx, Sh, and 

DCCA). The applib, as each one of these libraries is usually 

referred to as, provides the base TTCN-3 component definitions 

and functions. Any load test application can be developed by 

choosing the appropriate applib. 

 

Control Logic The control logic realizes the executable part of TITANSim. It is 

built on top of the CLL and the applib. It is application specific 

and ensures that the expected traffic flow is realized - as shown in 

Figure 13. 

 

Run time GUI The run time GUI offers a user interface with which a tester can 

control the test‟s execution. Using the GUI, the tester can control 

logging options, view test statistics, and start and stop test 

execution. 

 

 

Figure 13: Control logic 
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4.2 TITANSim Component Structure 
Each TTCN-3 component is similar to an object in any object oriented programming 

language. Each component has a set of functions and component variables that are declared 

in the component definition. To use a feature provided by a particular component, one 

extends that component, and use the functions and variables provided by it. Any system test 

load application developed on TITANSim will have a component structure similar to Figure 

14. 

 

 

Figure 14: TITANSim component structure 

The MTC is created by the TITAN framework offered by the TITAN libraries. The test cases 

designed for a particular load application start executing inside the MTC. The actual load 

generation (i.e., the traffic itself) is created by the Load Generator components (LGens)  

which execute within a PTC. Depending on the test design many LGen components will be 

created during the test execution, hence an Execution Control (ExecCtrl) component is used 

to initiate and oversee the traffic execution and synchronize the finish events of these LGens.  

The TITANSim CLL provides a LGen base component, which can be extended by a specific 

load generation application. The LGen base feature forms the heart of the TITANSim. It 

enables the concurrent execution of many PTCs. Each PTC is mapped to an OS process. So 

in order to generate high traffic load conditions, theoretically we need many PTCs which 

make the load application quite resource intensive and inefficient. However, the LGen base 

feature is designed to simulate multiple users with a single PTC. By simulating hundreds and 

thousands of users on a single PTC, the number of OS processes required to generate the 

traffic load is significantly reduced. The design of such a LGen base feature requires a new 

programming paradigm called event driven programming which is discussed in the following 

section. 

4.3 LGen base Programming Paradigms 
Traditionally two programming paradigms are frequently used in a TTCN-3 test system 

design. They are, sequential programming and event driven programming. Sequential 

programming is used in test system design for functional testing, where usually only one user 
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is simulated by the test system in each test case – because the emphasis in functional testing 

is on correct execution of each function that is being tested. In contrast event driven 

programming is frequently used in test system designs for a system test, as there is generally 

a need to simulate a million users in each test case. 

4.3.1 Sequential programming 

In sequential programming, a set of programming instructions are defined in the test system 

and order of the execution is fixed – as shown in Figure 15. 

 

 

Figure 15: Sequential, hardwired TTCN-3 test system 

Figure 15 showed a sequence of Diameter messages exchanged between the TTCN-3 test 

system and the HSS. In this case the execution is strictly sequential and the test system waits 

for some maximum period of time for a response from the HSS. The main drawback of 

sequential programming is that the execution of the test system is blocked until it receives a 

response from the SUT or a timer expires, for each message sent out by the test system. So 

with a naive mapping of the test generation of each individual user to a single process, this 

technique can simulate only one user per PTC. This technique is not scalable; hence it is not 

suited for system testing high capacity nodes such as the HSS, which must handle thousands 

of CPS. 

4.3.2 Event driven programming 

Instead of a fixed sequential execution behavior event driven programming enables dynamic 

execution order; hence the test system behavior is described in terms of actions assigned to 

events. Whenever a particular event occurs, the test system executes the corresponding 

assigned action. Therefore the test system does not wait for a response from the SUT, but 

rather it reacts to the events from SUT by executing the defined actions for a particular event, 

as shown in Figure 16. This facilitates the test system interleaving the execution of a very 

large number of users while only needing to maintain the necessary state for each of these 

users – but without the overhead of a process per user. 
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Figure 16: Event driven, dynamic TTCN-3 test system 

Thus in event driven design a PTC does not block the execution of the test system, so instead 

of just a single user per PTC – multiple users can be simulated using each PTC. So a single 

PTC sends request messages for a number of users to the SUT and handles the response 

messages for each of these users as and when the response arrives from the SUT. The ideal 

design approach is to have as many PTCs as the number of CPU cores, say 2 PTC‟s for duo-

core and 4 for the quad-core processor system. 

4.4 Finite State Machines 
The dynamic behavior of TTCN-3 test systems designed using the event driven programming 

paradigm, can be better explained with the use of the concept of FSMs. A FSM is described 

with a set of events, test steps, and states. Every event will have an assigned test step. At any 

point of time during test execution the test system is in a particular state of the FSM and 

listens for the events that are expected to occur in that state. Events could be timeout 

messages, responses messages from the SUT, and so on. Upon the occurrence of a particular 

event the test system executes the corresponding test step and moves to the next state (or 

could even remain in the same state). For example, consider a FSM consisting of two states 

(S0 and S1), two events (E1 and E2), and test steps (TS1, TS2). When the test system is in 

state S0, if the event E1 occurs it executes TS1 and moves to S1. Similarly if the test system 

is in S1 and if event E2 occurs, then it executes TS1 and moves to state S0. FSMs can be 

described in the form of a table, as shown in Table 2, or in a state diagram (i.e., in a graphical 

format) as shown in Figure 17. 

Table 2: A sample FSM table 

Event/ next states S0 S1 

E1 TS1, S1 TS2, S1 

E2 TS2, S0 TS1, S0 
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Figure 17: State diagram 

4.5 Scheduling concepts 
Since the TTCN-3 test system involves many PTCs which act as LGens there is a need for a 

base feature that takes care of LGen component initialization, test case execution, handling 

the result of each traffic case execution, enable/disable a LGen component, and finally clean 

up all the LGens and the associated data bases when the test case execution is complete. The 

TITANSim CLL has a base scheduling feature that provides all these functions. It can be 

used to schedule the PTCs used in the test system design based on the two different 

programming paradigms discussed in previous section. The base scheduling feature provides 

two types of scheduling methods: Central Scheduling (CS) and Distributed Scheduling (DS) 

[6].  

The CS method is based on the sequential programming paradigm, where the test system is 

likely to consist of hundreds of PTCs as shown in Figure 18. In the central scheduling 

architecture based load test application, the scheduling of test components is centralized 

which results in a lot of communication overhead within the test system, as hundreds of test 

components communicate with a master scheduling component during the test execution.  

The DS method is based on the event driven programming paradigm. Hence, the test system 

utilizes only few PTCs. In this case the scheduling functions are distributed and performed by 

the LGens themselves in each PTC, rather than in a master scheduling component. The DS 

method is shown in Figure 19. 
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Figure 18: Central Scheduling 

 

 

Figure 19: Distributed Scheduling 

Table 3 summarizes the differences between the CS and DS scheduling. 

Table 3: CS versus DS 

              Central Scheduling                Distributed Scheduling 

Sequential test system Dynamic, event driven test system using FSM 

One user simulated in each PTC Thousands of users simulated in each PTC 

Typically uses hundreds of PTCs Ideally the number of PTCs equal the number of 

processor cores 

Uses a master scheduling component The scheduling functions are distributed and handled 
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by each PTC 

Internal communication overhead 

Traffic cases implemented in TTCN-3 modules 

No overhead 

Traffic cases implemented in FSMs (configuration 

files) 

Not suitable for system test. Typically used for 

functional testing purposes 

Highly suited for system test, consumes less test 

system resources, yet capable of generating high 

traffic load conditions 

4.6 Distributed Scheduling architecture 
The concept of Distributed Scheduling based on FSMs was proposed by Ferenc Bozóki and 

Tibor Csöndes of Ericsson Hungary in their publication titled „Scheduling in Performance 

Test Environment’ [27]. As discussed in section 3.4, Ferenc Bozóki and Tibor Csöndes 

extended the concept of a thread to an abstract level called virtual threads, where a single 

thread could emulate multiple users and the execution of each user is considered as a virtual 

thread. Figure 20 (adapted from Figure 3 in page 2 of [27]) shows one such thread executing 

User a, User b, and User c as separate virtual threads. The execution behavior of each user is 

dynamic and it is defined by a FSM as described in section 4.4. Each thread holds a database 

to store the relevant information about the users. Each record of this database corresponds to 

a specific user. Thus, by simply varying the index of this database, the execution context 

changes to a different user. Compare this to the case of central scheduling, where the OS 

scheduler has to make context switches between processes to change the execution context to 

another user.  

Each thread holds an event queue which is a simple FIFO queue [30] for storing the incoming 

events.  The message in the queue is processed to determine the user it belongs to, and the 

message is dispatched to the appropriate user using an event dispatcher. The user then 

performs the action according to the assigned FSM. Each thread also maintains a timer queue 

which holds the timer events of the users. The thread adds a timer event to the queue for a 

specific user only if it is required; say for instance if a response to an event has to be sent 

within two seconds. When such a timer expires in the timer queue, the timeout event is 

dispatched to the corresponding user. A bottleneck with this approach is that certain events in 

the queue might require computationally intensive operations, i.e., use significant CPU time. 

This would deprive the other events in the queue (which may have a comparatively smaller 

timeout value in the timer queue) of CPU time and may lead to unnecessary timeout events. 
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Figure 20: DS architecture
††

 

As almost every message exchanged between the test system and the SUT is timer driven, the 

thread has to process a message within the appropriate time; otherwise the message is 

considered to be too late (leading to timeouts) leading to a false (test) verdict. Thus, there 

could be undesirable delays in processing of events in the test system as only a single thread 

is responsible for handling events for typically thousands of users. Therefore, Ferenc and 

Tibor proposed an algorithm to reduce the total delay of the test system by optimizing the 

scheduling of events by introducing a secondary queue. Using this algorithm the thread 

prioritizes the event queue and determines those events that can be put on hold temporarily 

(in the secondary queue) without causing an actual delay (as those events have a higher 

timeout value compared to the rest in the event queue) in the test system. For detailed 

discussion of this algorithm refer to ([27], page 4). 

4.7 The LGen base – finer aspects 
In TITANSim terminology any user that is simulated by the PTC is referred to as an entity.  

Henceforth we will use the term entity to refer to any object simulated by the TTCN-3 test 

system. A simulated entity can be configured to exhibit different behavior types. For 

example, all the SIP related capabilities are referred to as the SIP behavior type, similarly 

Diameter protocol related capabilities are referred to as the Diameter behavior type. An entity 

assigned a list of behavior types is called an entity type. A group of entities of same type 

                                                                 
††

 Adapted from Figure 3 in page 2 of [27] 
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form an entity group. Thus an entity group consists of several instances of entities (such as 

users) exhibiting common behavior types. Since the system behavior is described by FSMs, 

the behavior type assigned to entities consists of a set of test steps and events. Once the 

behavior type with test steps and events is assigned to the entities, a traffic case is created. A 

traffic case basically defines a certain flow of traffic (as described in the FSM) assigned to 

the entity. Depending on the requirements of the load application, a number of traffic cases 

can be created, by assigning different behavior types to different entity types. Once a traffic 

case is created, it is important to define how much traffic of this kind should be generated by 

the test system. Hence, the required traffic rate or load level, and the number of PTCs to be 

used are configured by creating a scenario. Figure 21 shows the relation between entity, 

behavior type, and the FSM. 

 

Figure 21: Relation between entity, behavior type, and FSM 
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5 Methods 

This chapter presents the environment for developing the load test application, the 

S6a load application design and implementation, and the test system setup used for the tests 

executed with the S6a load application and their results. 

5.1 Goals 
This project aims to create a Diameter load application based on the distributed scheduling 

architecture of TITANSim, specifically for the S6a interface. The scope of the load 

application is limited to the Initial Attach traffic scenario which will be described in later 

sections. A thorough investigation is made of how to deploy the solution in a real system 

environment
‡‡

 (including using separate traffic generators, with a real target node running the 

HSS software as the SUT). Performance measurements and a comparison of the earlier CS 

based solution with the new DS based solution.  

5.2 Setup 
Figure 22 shows the environment used to develop the load application. It consists of 

TITANSim, a Diameter Proxy, and the HSS application installed and running in a simulated 

environment called Maia
§§

. 

 

Figure 22: The development setup 

This figure shows the logical view of the setup for the sake of clarity. Physically all of these 

elements are run as separate processes in a single Linux workstation running SUSE
***

 Linux 

10.1 Desktop 32 bit edition. 

5.2.1 TITANSim setup 

The TITANSim software is developed and maintained by TCC (Test Competence Center), a 

Research & Development organization focusing on TTCN-3 within Ericsson‟s unit in 

Hungary. All the official releases of the software are available for download only internally 

within Ericsson. For this project the latest release of the TITANSim software called the 
                                                                 
‡‡

 The load application was designed and tested only in a simulated environment during its development cycle. 

Hence additional investigation is needed to deploy the load application in real environment. 
§§

  Maia is an Ericsson proprietary tool used to simulate the Ericsson Telecom Server Platform (TSP), in which 

the HSS application is installed and run.  For more information, see 

http://www.ericsson.com/ericsson/corpinfo/publications/review/2001_04/files/2001045.pdf. 
***

  An open source Linux distribution, see http://www.opensuse.org/en/ 

http://www.ericsson.com/ericsson/corpinfo/publications/review/2001_04/files/2001045.pdf
http://www.opensuse.org/en/
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EPTF GenApp (Ericsson Performance Test Framework Generic Application) version 

R7A03 is used. This version of the software provides all the required libraries needed for 

developing load applications for Diameter traffic type. As discussed in chapter 4, 

TITANSim is written exclusively for execution with TITAN, the proprietary TTCN-3 

execution platform used within Ericsson.  The latest version of TITAN software, version 

1.8.pl4 was installed on the computer as it is a prerequisite for TITANSim. TITAN is also 

available as a plug-in to the Eclipse SDK, which is used for TITANSim development. A 

screen shot of the TITANSim development and execution environment as an Eclipse plug-in 

is shown in Figure 23. 

 

Figure 23: TITANSim EPTF GenApp in Eclipse SDK 

5.2.2 Diameter Proxy 

In actual operation, the HSS does not handle more than two or three transport connections per 

peer node. However, in a typical system test scenario where there may be multiple traffic 

generators used in the test system, thus there is a need for the HSS to support at least one 

connection per traffic generator. Unfortunately, the limited number of connections supported 

by the HSS is not sufficient to support the required number of traffic generators needed for 

the system test. To circumvent this problem a Diameter Proxy is used.  The Diameter Proxy is 

a tool that acts as a proxy server between the traffic generators
†††

 and the Diameter server 

under test (in this case the Diameter server is the HSS).  The Diameter Proxy of the HSS 

establishes a transport connection with the HSS and supports a unique transport connection 

                                                                 
†††

 These traffic generators are Linux workstations that run the TITANSim load application during a typical 

system Test, usually one or more traffic generators are used in the system test depending on the required load 

levels. 
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with each of the traffic generators (Diameter clients). All of the traffic generators address 

their messages to the Diameter Proxy, which performs multiplexing/de-multiplexing of the 

messages between the HSS and traffic generators, as shown in Figure 24. 

 

Figure 24: The Diameter Proxy architecture 

The Diameter Proxy exchanges CER-CEA messages with the HSS and also supports DWR-

DWA messages to keep the connection alive. It uses a separate thread to serve each of the 

clients (the TTCN components) connecting to it and uses the user name AVP to uniquely 

identify and associate a connection with the corresponding client. Table 4 shows a typical 

configuration of the Diameter Proxy server setup for this project. Figure 25 shows a sample 

screen shot once the Diameter Proxy is up and running. 

Table 4: Diameter Proxy Configuration 

              Main configuration parameters                Value 

Supported node                   hss 

Diameter server IP address           192.168.83.100 

Diameter server port                  3870 

Protocol                                                                                                    tcp 

No. of Diameter server connections                                                1 

Diameter Proxy port                                                                                               3876 
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Figure 25: Diameter Proxy 

5.2.3 HSS setup with Maia 

Ericsson employs carrier-class technology when it comes to developing telephony and server 

applications. Ericsson‟s Telecom Server Platform (TSP) is a carrier class server technology 

for multimedia applications and control functionality. TSP provides very high availability and 

enables operators to deploy different functions on the same hardware and to save cost [20]. 

For example, functionally P-CSCF, S-CSCF, and I-CSCF are different nodes, but all of them 

can be installed on a single TSP and run in real time as functionally different nodes, even 
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though they are all installed in a single physical computer. A variety of nodes developed by 

Ericsson such as HSS/MGCF/CSCF in the IMS and SCF/HLR in the GSM, GSN in GPRS 

run on TSP. 

TSP is built on component based architecture and uses commercially available components to 

build its structure. The architecture of TSP is shown in Figure 26. It consists of a cluster of 

processors running Linux and the DICOS‡‡‡ operating systems forming the operating system 

and hardware layers. The heart of TSP is the middleware layer provided by the TelORB 

clusterware. It connects the different processors and facilitates using Inter Processor 

Communication (IPC). The TelORB clusterware also has an object-oriented database 

providing persistent storage in RAM. The database is distributed over the processor cluster. 

Thus each of the database items is replicated and always stored in more than one processor. 

As a result of this replication an application running on TSP is highly robust and protected 

against data loss even if a processor crashes at run time.  The node management layer 

supports standards such as CORBA, LDAP, HTTP, and SNMP; and enables the easy 

integration of the TSP node with external management systems used by the operator. The 

signaling layer supports SS7 and Diameter stacks over IP. It is a highly scalable layer and can 

be distributed over multiple processors called Traffic Processors (TP). While the TPs handle 

the real time traffic, Input/Output (I/O) processors handle the operations and maintenance 

operations performed in the node.  TSP is available in a number of configurations depending 

on the size of processor cluster (Maxi-42, Midi-31, Mini-21, and Micro-10). The processor 

cluster is also logically divided into many different processor pools for the sake of 

distribution of software into different processor pools [18]. 

During the system test the HSS application is installed and configured on a real TSP node 

referred to as the target node (in this case it is the SUT). Maintaining a complex node such as 

the TSP is a very expensive and complex process, hence the target node is only available for 

a certain window of time for each system tester within Ericsson. As a result this target node is 

only used for performing actual system tests. So, all development activities based on TSP 

utilize Maia (a TSP simulator). Maia simulates both an I/O processor and one or more TPs on 

a single Linux workstation using VMware
§§§

 virtual machine software. Therefore, a VMware 

license is a prerequisite for running Maia on a Linux workstation. Each simulated I/O 

processor and TP corresponds to a separate VMware virtual machine instance. Maia supports 

most of the functions actually supported by the TSP and provides the user with very TSP-like 

environment. All the functions of TSP simulated by Maia are invoked using the epmaia 

command. Figure 27 shows the execution of the different epmaia commands involved in 

setting up Maia. 

In order to setup the Maia configuration, epmaia setup is executed. This creates the 

necessary VMware configuration files for the I/O processor(s) and TPs, SS7 configuration 

files, node management (NM) configuration files, site database, and other TSP configuration 

files. In TSP each executable software module is packaged in a structure called a Load 

Module (LM). The HSS application that is loaded on TSP is also organized into a number of 
                                                                 
‡‡‡

 DICOS is an Object Oriented RTOS developed by Ericsson 
§§§

 A virtualization software, check http://www.vmware.com/virtualization/ 

http://www.vmware.com/virtualization/


40 
 

LMs. Thus the base TSP software (Maia LMs) is organized into a number of LMs that take 

care of separate functions such as IPC, SS7, and Diameter stack functions. 

 

 

Figure 26: The TSP architecture 

The HSS application LMs perform functions such as HSS subscriber data access, HSS 

subscription management, etc. For this project LMs from official TSP release 6500 and HSS 

release LSV3 are used. Each of these LMs also contains a configuration file called the epct 

file that specifies in which processor pool this LM should be primarily loaded and in which 

processor pool it should be replicated. The loading of appropriate LMs into the corresponding 

processor pool is performed by the epmaia epct command which results in the generation of 

the Loading Group. The I/O processor is then started by executing the epmaia start 

command. The generated configuration files for NM, SS7, and site database are then loaded 

from the host machine into the virtual I/O processor is done by the epmaia upload command. 

The TPs are then started using the epmaia start command. The simulation environment can 

be stopped using epmaia stop command by specifying the individual processor name or 
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using the option -all to stop all processors. The status of the Maia configuration and the 

VMware virtual machines can be checked using epmaia status command. The command 

epmaia save can be used to save log files from the console, daemon logs, and crash dumps 

from the I/O. Each of the epmaia commands has a number of options that can be used 

depending upon on the needs of the tester. TSP uses the virtual IP (VIP) concept; hence the 

entire processor cluster can be addressed by one VIP address. Table 5 shows the IP address 

used in Maia. A sample screen shot in Figure 28 shows the processor TP2 start up following 

the Maia setup. 

Table 5: Maia IP addresses 

   Symbolic name                      IP address 

IPv4 VIP external                   192.168.83.100 

IPv4 VIP internal                   192.168.53.100 

I01                   172.16.8.100 

TP1                                                                                                 172.16.8.102 
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Figure 27: Maia setup**** 

 

                                                                 
****

 As simple as it might sound on paper, the Maia setup process is actually quite complex. A number of issues 

were encountered and solved regarding the Maia setup during this project.  These issues were mainly related to 

determining the correct epct files to use for the corresponding release of TSP and HSS. Other issues were related 

to provisioning of the Maia (HSS) database with subscriber information. Some key database objects necessary 

for provisioning HSS were not installed in Maia properly. Resolving all of these issues took roughly 3 weeks. 

After this Maia was up and running and the HSS was successfully provisioned. 
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Figure 28: TP2 startup after Maia setup 

5.2.3.1 HSS Provisioning 

Once the HSS is successfully running after the Maia setup, the next step is to configure the 

HSS and provision it with all the necessary subscriber information. Since we have chosen to 

use the ESM module for this project, all the configuration and provisioning is performed 

solely to run the ESM application in HSS (Maia). This provisioning is performed using an 

internal tool called “population centre”. The population centre tool uses a number of shell 

scripts to set the configuration parameters in order to set the ESM Diameter stack up and start 

it running in the HSS (Maia). Once the ESM stack is configured the database container 

objects that hold the subscription information are populated. All the configuration and 

database population are performed through the Lightweight Directory Access Protocol 

(LDAP) [19] interface offered by the TSP. Figure 29 shows the LDAP browser tool which is 

used for manually setting up the LDAP parameters in any TSP node. Once the provisioning 

process is complete, the HSS will be ready for traffic for the system test. 

Maia introduces certain limitations to HSS provisioning. In the case of a typical target node 

in a system test roughly 100 000 ESM subscribers are populated in the node. However, since 

Maia is being used as our simulator it imposes certain memory limitations. Therefore to keep 

the HSS application stable and prevent the Maia process from crashing, the provisioning was 

limited to roughly 10 000 ESM subscribers. 
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Figure 29: LDAP browser showing the ESM stack and ESM subscriber parameters  

The population centre tool also takes an input configuration file through which we can 

control the number of ESM subscribers that have to be populated along with certain other 

node parameters. Figure 30 shows the population centre tool that is used for HSS 

provisioning. 

 

Figure 30: Population centre tool 
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5.3 Architecture of the proposed load application 
Figure 31 shows the architecture of the proposed S6a load application. The proposed solution 

consists of a new S6a LGen component which basically extends the DiameterBase LGen 

component and DiameterBase Transport component provided by the TITANSim applib. The 

DiameterBase LGen component in turn is an extension of the LGen base component feature 

provided by the TITANSim CLL as discussed in section 4.2. The other functions such as 

Statistics, Logging, Execution control, and RT GUI for the application are provided by the 

standard TITANSim CLL. A detailed description of the S6a load application design is 

provided in the following section. 

 

 

Figure 31: S6a application architecture 

5.4 Solution design 

5.4.1 The traffic case 

 After the provisioning of the HSS the Diameter Proxy is started. The Diameter Proxy 

establishes a Diameter session with the HSS by exchanging the CER/CEA messages. 

Similarly, when the S6a application (simulates the MME) is started it establishes a Diameter 

session with the Diameter Proxy – as shown in Figure 32. After the Diameter session is 

established between the nodes the Diameter traffic (such as the S6a) can be run over the 

Diameter session. 
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Figure 32: Diameter session establishment 

 

As briefly discussed in chapter 5.2.3, the focus is mainly on the ESM module within HSS 

defined by the S6a interface [13]. To be specific, the scope of the load application for this 

project is limited to the Initial Attach traffic case, although the application could be extended 

in the future to support other traffic cases. Figure 33 shows the traffic flow diagram of the 

Initial Attach traffic case followed by a brief description. For a detailed description of the 

messages with the Diameter Attribute Value Pairs (AVPs) involved, refer to [13]. 

The Initial Attach procedure is carried out between the MME and the HSS over S6a 

interface in order to authenticate a UE located in the LTE network. The MME requests 

authentication information from the HSS using AIR/AIA messages. Upon receiving the AIR 

message, the HSS checks if the IMSI of the user is known and requests the Authentication 

Centre (AuC) to generate Authentication Vectors (AVs). The HSS then returns the result 

code AVP DIAMETER_SUCCESS (2001) in the AIA message along with the generated 

AVs to the MME. 

If the MME wants to update any of the user‟s identity stored in the HSS, it can do so by 

sending an ULR message to the HSS by including the IMSI and the supported Radio Access 

Technology (RAT) types. Upon the reception of a ULR the HSS checks if the supported 

Radio Access Technology (RAT) type in the request is allowed for this subscriber. It then 

checks if roaming restrictions are applicable to the user in this specific Visited Public Land 

Mobile Network (VPLMN). Then based on the operator‟s configuration to allow or bar the 

user from accessing the packet oriented services according to the user‟s current location (i.e., 

based upon the Home Public Land Mobile Network (HPLMN) or the VPLMN) the HSS 

chooses to include or not include the subscriber‟s Access Point Name (APN) configurations 

in the ULA message. 
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Figure 33: The Initial Attach traffic case 

5.4.2 The TITANSim GenApp 

As discussed in section 5.2 the TITANSim GenApp software has been chosen to implement 

the S6a load application on the DS architecture of TITANSim.  The TITANSim GenApp is a 

generic TITANSim traffic generator application that can be used as a test bed for TITANSim 

development. The TITANSim GenApp is built using the CLL, applibs, TPs, and RT GUI 

provided by the TITANSim architecture. The GenApp consists of a collection of prewritten 

LGens for different traffic types such as SIP, Diameter, HTTP, and USSD.  Any application 

developed on the TITANSim GenApp can either use the same prewritten LGen or simply 

extend and customize it to suit the needs of the application. Since the S6a protocol is based 

on the Diameter base protocol [14], in this project a new LGen component for S6a traffic 

type was developed by extending the Diameter base component type.  Apart from prewritten 

LGen types the GenApp also provides a number of standard functions that can be used by all 

applications for execution control and collecting statistics. Figure 34 below shows the logical 

run-time view of the TITANSim GenApp. Figure 35 shows the logical run-time view of the 

MME GenApp created for the S6a load application. 
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Figure 34: Logical view of GenApp 

 

Figure 35: Logical view of MME GenApp 
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5.4.3 TITANSim framework modifications 

The design of the S6a load application required many modifications to the existing standard 

modules of the TITANSim architecture especially the application libraries for Diameter. 

These modifications to the TITANSim architecture were performed before the actual design 

of the S6a load application itself. A brief description of these modifications is presented in 

the following section. 

5.4.3.1 Diameter application library 

The Diameter application library is one of several protocol libraries that are available in 

the Application Libraries layer of the TITANSim architecture (refer to section 4.1). This 

library offers several TTCN-3 modules that contain the basic Diameter AVP type 

definitions, the FSM of the Diameter base protocol [14], several utility functions to 

encode/decode AVP‟s to/from Diameter message, and functions that invoke the transport 

layer application programming interface (API) (the Test Ports) to send/receive messages. 

One of the key modules within the Diameter application library is the Diameter_Types 

module. This contains the Diameter base protocol AVP definitions and all the other 

Diameter application protocol AVPs (for example, Cx, and Sh) that are currently 

supported by the Diameter Application Library. The TITANSim Diameter Application 

Library initially lacked support for the S6a protocol. Hence, the Diameter_Types module 

was first extended to support the S6a protocol specific AVPs as per 3GPP TS 29.272 

v9.5.0 [21] which is supported by Ericsson‟s HSS. A Data Definitions File (DDF) was 

prepared containing the S6a interface specification. This DDF for S6a was used along 

with DDF files containing the Diameter base specification as input to a tool called 

DPMG (Diameter Protocol Module Generator). DPMG is an Ericsson proprietary tool 

utilized by TITANSim to automatically generate and update TTCN-3 modules from DDF 

files. Thus the Diameter_Types module was updated to provide support for S6a interface 

with the help of DPMG tool as shown in Figure 36. 

 

Figure 36: Diameter_Types module generation from the set of DDF files 
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The library also initially lacked support for the Diameter Initiator
††††

 mode, as all the existing 

Diameter load applications that use this library operate in responder
‡‡‡‡

 mode. Thus for this 

project the Diameter Application Library was updated to support the Initiator mode as per 

RFC 3588 [14]. A new function was written to initiate a transport connection with the 

configured Diameter peer. The function uses one of the API functions provided by the 

IPL4asp socket provided by the Test Ports layer of the TITANSim (refer to section 4.1). 

Details of this are discussed in the following section. 

5.4.3.2 Diameter Test Ports 

As discussed in section 4.1 the TP layer of TITANSim offers all the transport functionalities 

needed for the applications to send/receive messages between the test system and the SUT. 

The TP layer provides a variety of modules and the appropriate TP module has to be chosen 

by the application based on its needs. The Diameter based applications developed in 

TITANSim use IPL4asp test ports.  

IPL4asp is a general purpose, session independent test port that provides access to several 

transport layers over IPv4 and IPv6. The supported transport protocols are TCP, TCP with 

SSL, SCTP, and UDP over multiple platforms (specifically Linux, Solaris, and Cygwin). For 

the S6a load application, all the S6a Diameter sessions were run over TCP for the sake of 

simplicity. 

5.4.4 S6a load application design 

The design of the S6a load application mainly consists of the design of the S6a LGen 

component, the FSM that defines the Initial Attach traffic behavior, and other configuration 

files that contain the values of parameters used by the application at run-time. These entity 

properties include the number of entities to be used by the application, the AVP values to be 

sent in the ULR/AIR messages, and socket details such as IP address, port, etc. Figure 37 

shows the work flow in the design of the S6a load application.  

The S6a LGen component is designed to provide all the capabilities of the LGen base as 

discussed in section 4.7. In fact this component is an extension of the DiameterBase LGen 

component provided by the Diameter Application Library, which in turn extends the LGen 

base component provided by the CLL. The component hierarchy of the S6a load application 

is shown in Figure 38. The S6a LGen component declares the required entity types, behavior 

types, and also implements the test steps and events required for the Initial Attach FSM. The 

declaration of FSM, scenario, and traffic case is done in configuration files that are used by 

the application at run-time. Thus the load application itself is very flexible and dynamic in 

behavior as the FSM‟s are provided at run-time through configuration files. 

 

                                                                 
††††

 In Initiator mode a Diameter peer acts like a client (for example, an MME) and Initiates communication 

with its peer node. 
‡‡‡‡

 In the responder mode a Diameter peer acts like a server (for example, the HSS) and only responds to 

messages from its peer node and does not initiate the communication. 
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Figure 37: The S6a load application design flow 



52 
 

 

 

Figure 38: The S6a load application component hierarchy 

Two FSMs are designed for the Initial Attach traffic case, namely the Initiator Connection 

FSM, and the Initial Attach FSM. The Initiator Connection FSM establishes the configured 

number of transport connections with the Diameter Proxy server. It consists of two states: 

Idle, and CERWaiting – as shown in Figure 39. The registered events are denoted by „E‟ and 

test step functions by „A‟. The traffic flow of every entity always starts and ends with the 

state „Idle‟. The LGen base automatically dispatches the „Start_the_Traffic_case‟ event to all 

the S6a entities once the traffic case is started. The entities in the Idle state listen to the 

„Start_the_Traffic_case‟ event and execute the test step function that opens a TCP connection 

with the configured Diameter peer node –in this case the Diameter Proxy as was discussed in 

section 5.2.2. If the TCP connection is successfully established, then the S6a LGen 

component raises an event „Conn successful‟. The entity then executes the test step function 

to send a CER message to the Diameter Proxy and moves to the next state CERWaiting. If 

the TCP connection fails, then an event „Conn failed‟ is raised upon which the entity reports 

traffic failure and remains in the Idle state.  

When the Diameter Proxy responds with CEA message, the event „CEA received‟ is raised 

and the entity executes the test step function handleCEA to handle the received CEA 

message. The CEA message is decoded and if it is successful (i.e., contains a 

DIAMETER_SUCCESS result code AVP), then a „CEA successful‟ event is raised and the 

entity remains in the state CERWaiting after reporting traffic success. If the CEA fails, then a 

„CEA failed‟ event is raised.  Then the entity reports traffic failure and remains in the same 

state. If in the CERWaiting state a „Stop_the_Traffic_case‟ event is received (when the tester 

stops the traffic case execution from the RT GUI), the entity closes the TCP connection with 

the Diameter Proxy, reports the event „entity stopped‟, and moves back to the Idle state. 
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During traffic execution, if the Diameter Proxy goes down for some reason the TCP 

connection of each the entity will break, such an event is reported by „Conn closed‟ and the 

entity listens for such an event in the CERWaiting state, reports traffic failure if it occurs, and 

moves back to the Idle state. 

 

Figure 39: The Initiator Connection FSM 

The Initial Attach FSM designed for the traffic case is shown in  

Figure 40. The FSM consists of three states: Idle, AIRWaiting, and ULRWaiting. The LGen 

base automatically dispatches the „Start_the_Traffic_case‟ event to all the S6a entities once 

the traffic case is started. The entities in the Idle state listen to the „Start_the_Traffic_case‟ 

event, execute the test step function sendAIR, and move to the AIRWaiting state. In the 

AIRWaiting state the entity listens to the event „AIA received‟, upon reception of which it 

executes the handleAIA step function to decode the AIA message. If the AIA is successful, 

then an event „AIA successful‟ is raised. It then sends out the ULR message and moves to 

ULRWaiting state. If the AIA message fails, an „AIA failed‟ event is raised. Then the entity 

reports traffic failure and moves back to the Idle state. Similarly in the ULRWaiting state the 

entity handles the ULA response message, reports traffic success, and moves back to the Idle 

state if the ULA is successful. Otherwise it reports traffic failure and moves back to the Idle 

state if the ULA fails. If in the states AIRWaiting, and ULRWaiting, a 

„Stop_the_Traffic_case‟ event is received (when the tester stops the traffic case execution 

from the RT GUI) the entity reports the event „entity stopped‟ moves back to the Idle state. 

During traffic execution if the Diameter Proxy goes down for some reason the TCP 

connection used by the entity would break, such an event is reported by „Conn closed‟ and 

the entity listens for such an event in the AIRWaiting, and ULRWaiting states, reports traffic 

failure if it occurs, and moves back to the Idle state. The traffic case execution terminates 

once all the configured entities complete their execution (report either traffic success or 
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traffic failure). It is also possible to configure the entities to repeat the execution any fixed 

number of times for a traffic case. 

 

 

Figure 40: The S6a Initial Attach FSM 

As discussed in section 4.1 the test execution is managed with a RT GUI provided by the 

TITANSim. With this GUI the traffic case can be started, terminated, and various statistics 

can be viewed (for example, the traffic chart that displays the CPS versus time).  Figure 41 

shows a screen shot of the RT GUI during the execution of the Initial Attach traffic case. 

Figure 42 and Figure 43 show the CPS chart displayed by the RT GUI during a sample test 

execution with 1000 entities and the target CPS set to 50 and 20 CPS respectively.  
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Figure 41: The TITANSim Runtime GUI 

 

 

Figure 42: CPS versus Time (seconds) [Target CPS: 50] 
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Figure 43: CPS versus Time (seconds) [Target CPS: 20] 

5.4.5 Transport mechanism 

The TITANSim CLL provides a transport layer that performs many important functions such 

as message routing (i.e., the routing of incoming and outgoing messages between LGen 

components), and message buffer management (i.e., the storing of octet-string messages to be 

sent in a transport connection). The transport layer utilizes the IPL4 or IPL2 test ports 

provided by the TP layer of TITANSim. It also allows the tester to choose the test port to use 

for the application either at run-time, or compile-time. It provides three different transport 

component types that applications can extend to utilize its features.  

EPTF_Transport_CT: This component type is test port independent. The type of test port to 

be used can be specified at run-time through a configuration file. 

EPTF_TransportIPL4_CT: This component type uses IPL4asp test ports. It is a simple kernel 

based solution as shown in Figure 44. 

EPTF_TransportIPL2_CT: This component type moves the socket handling to user space 

and makes it possible to optimize the socket handling independent from the kernel.  

However it supports only UDP. It is shown in Figure 45. 
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Figure 44: IPL4 transport type 

 

 

Figure 45: IPL2 transport type 
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5.4.5.1 Performance comparison of transport types 

The IPL4 and IPL2 test ports have their own advantages and disadvantages when it comes to 

handling sockets, and scalability. IPL2 test port provides better scalability for the transport 

layer and also performs better than IPL4 when it comes to handling numerous sockets. This is 

attributed to the fact that in IPL2 test port the socket handling is performed in user space. 

However, IPL2 test port currently supports only UDP protocol and does not support TCP or 

SCTP which are required for any Diameter based application. Hence, the S6a load 

application uses IPL4 test port by extending the EPTF_TransportIPL4_CT component. 

Figure 46 compares the performance of IPL4 and IPL2 when the test system has many IP 

addresses to open several sockets.  Figure 47 compares the performance of IPL4 and IPL2 

when the test system uses many ports to open several sockets. In both the cases the 

performance of IPL2 test remains almost unchanged, but the performance of IPL4 test port 

steadily declines.  

 

Figure 46
§§§§

: Performance changes while increasing the number of IP addresses 

 

       

                                                                 
§§§§

 The figure is taken from an Ericsson AB internal document. It appears here with permission from Ericsson 

AB. It is used here simply to underline the importance of transport multiplexing. 
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Figure 47
*****

: Performance changes while increasing the number of ports 

5.4.5.2 Transport Multiplexing 

As discussed in the previous section the IPL4 test port performance declines considerably as 

more sockets are used by the load application. As a result of this, the message handling 

capacity of the test system drops and so does the generated load. Thus, the load application 

has to be designed in such a way that it uses as few sockets as possible to generate the target 

load. 

If each simulated S6a user (i.e., entity) opens a socket towards the Diameter Proxy, there will 

be about 100 000 sockets used to test the ESM module provisioned with 100 000
†††††

 

subscribers. This design is not scalable and limits the performance of the IPL4 test ports as 

seen in Figure 47. Moreover, the Diameter Proxy used in the HSS system test performs 

optimally only with a maximum of 100 to 200 transport connections. 

To solve this problem, the S6a load application is designed to use the transport multiplexing 

concept, where by multiple simulated entities can be configured to share a single transport 

connection to send/receive the message to/from the SUT.  Thus it is possible to support Initial 

Attach traffic for around 100 000 ESM subscribers using about 100 TCP connections towards 

                                                                 
*****

 The figure is taken from an Ericsson AB internal document. It appears here with permission from Ericsson 

AB. It is used here simply to underline the importance of transport multiplexing. 

 
†††††

 In Ericsson AB the system test of the ESM module is performed by provisioning a maximum of 100 000 

subscribers in the HSS. 



60 
 

the Diameter Proxy. This solution is very scalable and also maintains the performance of the 

IPL4 test port, and the Diameter Proxy at an optimal level. To implement transport 

multiplexing, two different entity groups were created – as shown in Figure 48. The first 

group called the transport group is responsible for establishment and termination of the 

transport connections to the Diameter Proxy, while the second group called the protocol 

group is responsible for running the Initial Attach traffic using the transport connections 

established by the transport group. Each protocol entity is mapped to a transport entity using 

modulo logic [31]. For example, when the transport group is configured with 100 entities and 

the protocol group with 100 000 entities, each transport connection created by a transport 

entity will be shared by 1000 protocol entities. 

 

Figure 48: Entity groups for transport multiplexing 

5.5 Solution deployment 
In the development phase of the S6a load application the tests were performed by installing 

HSS on a TSP simulator (Maia) as described in section 5.2.3. In order take measurements for 

performance comparison the S6a load application was executed in a real system test 

environment. This section describes the test hardware and execution architecture used for the 

tests with their results. 

5.5.1 Test hardware  

To test the performance of S6a load application and to take measurements a real system test 

environment was used. The test environment consists of two traffic generator machines 

(referred to as gteador3 and gteador4) and a TSP cabinet (referred to as eadorm). The test 

equipment is located at an Ericsson laboratory in Madrid and was accessed remotely from 

Stockholm. Figure 49 shows an approximate network diagram of the test equipment in the 

lab.   

The TSP hardware is called Network Server Platform (NSP), which is mounted in a cabinet 

consisting of 4 sub racks. Each sub rack contains a number of processor modules (usually up 

to a maximum of 12 processors). Figure 50 gives an overview of the node with each sub rack 

containing processors with duplicate internal Ethernet connections. For this thesis project 
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NSP 5.0 was used. NSP 5.0 is a powerful, high capacity hardware used for TSP. It consists of 

a cluster of processor modules. The cluster can contain between 11 and 46 processor modules 

(depending on the size of the node).  

 

Figure 49: NSP 5.0 cabinet and traffic generators in IP lab 

The cabinet eadorm used for this thesis project holds the NSP 5.0 hardware and connected to 

it is a set of traffic generators called gteador3 and gteador4. TSP 6500 in micro configuration 

mode (refer to section 5.2.3) was installed in eadorm. After the TSP 6500 installation, the 

official release of HSS 11b LSV5 software was installed on the node. The TSP and the HSS 

installation in the cabinet were performed by the TSP configuration management personnel, 

an expert team in Madrid, Spain. The HSS was provisioned with 100 000 ESM subscribers as 

described in section 5.2.3.1. 

Table 6 shows the configuration of each processor board used in NSP 5.0. There are 8 such 

processor boards used in the cluster for the TSP in micro configuration. 

Table 6: NSP 5.0: Processor and physical memory specification 

Low-power Pentium M processor running at 1.8 GHz  

2 MB on – die L2 cache  

400 MHz Front Side Bus  

2 GB DDR RAM  
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Figure 50: NSP 5.0 hardware overview 

The traffic generator machines (gteador3 and gteador4 used for load generation) have the 

configuration shown in Table 7.  

Table 7: Traffic generator: Processor and physical memory specification 

No. of processors  2  

Processor model  Intel(R) Xeon(TM) CPU 3.20GHz 

(single core) 

 

Cache size per processor  2048 KB  

Total physical memory  2 GB  
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5.5.2 Test execution architecture 

As discussed in section 4.1, the S6a load application developed on TITANSim uses the 

TITAN execution environment. The TITAN execution environment consists of many test 

components whose behavior is described in the S6a load application. They are basically the 

MTC and many other PTCs. Apart from these test components the TITAN execution 

environment also uses other special components which are described in this section. 

In TITAN execution environment the test components execute independently, as each of 

them is a separate operating system process. These components can be run in a single 

machine or in different machines (distributed test execution). The components communicate 

with each other using TCP connections via Ericsson proprietary protocols. In TITAN, the test 

components are classified into three groups based on their function. These groups are main 

controller, host controller, and test components (further divided into main test component and 

parallel test components). 

5.5.2.1 Main Controller (MC) 

The MC is a standalone application provided by the TITAN as a command line interface 

based control interface for the user to the test executor system. A single instance of MC runs 

during the entire test execution (irrespective of whether the test execution is running one 

single machine or distributed of many machines). The MC is manually started by the user. It 

creates or terminates the MTC upon the user‟s request. It also shows the test verdict to the 

user once the test execution is complete.  

5.5.2.2 Host Controller (HC) 

The HC is an instance (process) of the executable (in this case, the binary of the S6a load 

application) used for test execution. One instance of HC is started in each machine 

participating in the test by the user. The HC maintains a TCP connection to the MC for 

communication, thus during the test execution when the MC wants a new test component to 

be created on the host (where the HC is running), the HC forks and the resulting child process 

acts as the new test component. 

5.5.2.3 Main Test Component (MTC) 

The MTC is also an instance of the test system executable. As discussed in 5.5.2.1, it is the 

first process that is created on the user‟s request by the MC. There will be only one instance 

of the MTC in the entire test system (irrespective of whether there is a single processor or 

distributed test execution). The MTC starts the test execution by invoking the appropriate 

control section of the configuration file used for the test. The MTC maintains a TCP 

connection with the MC for communication. 

5.5.2.4 Parallel Test Component (PTC) 

For the system test as the desired load cannot be generated by the MTC alone, the test 

execution utilizes several components executing in parallel to generate the required load. 

During the test execution the MTC requests the HC to create multiple child processes which 

are called PTCs. Each PTC is simply another instance of the test system executable. Each 

PTC maintains a TCP connection with the MC. 
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5.5.2.5 Distributed execution of S6a load application 

As discussed in section 5.5.1, the test hardware consists of two traffic generator machines 

(gteador3 and gteador4). To fully utilize the available hardware the S6a load application 

execution was distributed over gteador3 and gteador4. Figure 51 shows the different 

components (processes) involved in the test and their distribution in the test system.   

 

Figure 51
‡‡‡‡‡

: Distributed execution of S6a load application 

5.5.3 Test execution and results 

The S6a load application was tested by deploying it in different configurations. The following 

section briefly explains the deployment configuration and the corresponding test results of the 

S6a load application. 

5.5.3.1 Load generation with traffic generators (gteador3, gteador4)  

In this test the S6a load application execution was distributed over both the traffic 

generators, namely gteador3, and gteador4 – as was shown in Figure 51. The application 

was configured in such a way that only one LGen component was deployed in each 

traffic generator and each LGen component simulated 15000 ESM subscribers using 50 

transport connections. Therefore, the Initial Attach traffic was executed for a total of 

30000 ESM subscribers using a total of 100 transport connections towards the Diameter 

Proxy. 

                                                                 
‡‡‡‡‡

 The traffic generators (gteador3 and gteador4) have single core processors.  Hence, one LGen was executed 

in each of the traffic generators. In traffic generators with multiple-core processors, as many LGens can be 

executed (concurrently) as the number of processor cores (for instance, 2 LGens on a dual-core processor, 4 

LGens on a quad-core processor). 
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The CPU utilization in each of the traffic generator machines remained approximately 

75% as shown in Figure 52 and Figure 53 respectively during the test. The physical 

memory consumption of the S6a load application in each of the traffic generator 

machines during the test was approximately 40 megabytes. The total physical memory 

utilization in gteador3 and gteador4 is shown in Figure 54 and Figure 55 respectively. 

Since two traffic generators were used the total CPS was approximately 110 with each 

traffic generator contributing approximately 55 CPS as shown in Figure 56 and Figure 57. 

Figure 58 shows a snapshot of the load level (in percentage of the total CPU capacity of each 

processor) of the 8 processors in the TSP cluster during the test. In Figure 58, m1_s17 and 

m1_s19 are Linux I/O processors, m1_s13, m1_s15, m1_21, and m1_s23 are DICOS TPs, 

and m1_s9 and m1_s11 are loader processors. As discussed in section 5.2.3, the real time 

traffic is handled only by the DICOS TPs. Hence, for determining the average load on the 

TSP cluster, only the DICOS TPs are considered. In this case, the average load on the DICOS 

TPs (the HSS) was 17.275% in the duration of the test. Table 8 shows the maximum, 

minimum, and average system load, traffic load, and O&M load (in percentage of the total 

CPU capacity of each processor) for each of the DICOS TPs.   

 

Figure 52: CPU utilization of gteador3 
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Figure 53: CPU utilization of gteador4 

 

Figure 54: Physical memory utilization in gteador3 

Figure 54 shows three colored layers. The top layer indicates the cached memory, the layer in 

the middle indicates the buffered memory, and the bottom layer indicates the memory 

consumed by the applications (application memory). 
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Figure 55
§§§§§

: Physical memory utilization in gteador4 

 

Figure 56: CPS versus Time (seconds) in gteador3 

 

                                                                 
§§§§§

 Figure 55 uses the same color scheme as in Figure 54. The Diameter Proxy process in gteador4 resulted in 

higher cached memory utilization in gteador4 when compared to gteador3. 
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Figure 57: CPS versus Time (seconds) in gteador4 

 

Figure 58
******

: Snapshot of TSP cluster load level in eadorm 

 

DICOS TP/Load % Proc_m1_s13
††††††

 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23 

Max system load 2.0 1.0 1.0 2.0 

Min system load 1.0 1.0 1.0 1.0 

Average system load 1.996 1.0 1.0 1.012 

Max traffic load 32.0 36.0 59.0 32.0 

Min traffic load 11.0 11.0 9.0 10.0 

Average traffic load 17.461 15.480 15.605 15.312 

Max O&M load 2.0 2.0 7.0 2.0 

Min O&M load 0.0 0.0 0.0 0.0 

Average O&M load 0.055 0.055 0.074 0.051 

Total average load 19.512 16.535 16.680 16.375 

 

Table 8: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU 

capacity of each DICOS processor) 

5.5.3.2 Load generation using high capacity traffic generator 

The gteador3 and gteador4 machines are of relatively low capacity, with a single core 

CPU and a physical memory of only 2 GB each. Hence, the test was repeated using a 

higher capacity machine called maia15 with the configuration shown in Table 9.  

                                                                 
******

 In the figure, m1_s17 and m1_s19 are Linux I/O processors, m1_s13, m1_s15, m1_21, and m1_s23 are 

DICOS TPs, and m1_s9 and m1_s11 are loader processors 
††††††

 The processors in a TSP cluster are identified by the pattern „Proc_m*_S**‟.  For instance, Proc_m1_S13 

identifies the processor in magazine 1, slot 13 of the NSP cabinet. 
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Table 9: Traffic generator: Processor and physical memory specification 

No. of processors  4  

Processor model  Intel(R) Xeon(R) CPU 5160  @ 3.00GHz 

(dual core) 

 

Cache size per processor  4096 KB  

Total physical memory  16 GB  

    

 

In this test the execution was carried out on a single machine (maia15). Thus, all the test 

components and the Diameter Proxy were running in the same machine. Two LGen 

components were deployed with each LGen simulating 15 000 ESM subscribers using 50 

transport connections with the Diameter Proxy. Therefore the test covered a total of 30 000 

ESM subscribers using a total of 100 transport connection with the Diameter Proxy.   

 
 

Figure 59: CPU utilization of maia15 

The CPU utilization increased from 3% (at the start of the test) and remained approximately 

at 68% (the third broad peak in Figure 59) during the test.  The physical memory 

consumption of the S6a load application was 63 megabytes during the test. Figure 61 shows 

the total physical memory utilization of maia15 during the test. The total CPS generated by 

the traffic generator during the test was approximately 320 CPS (each LGen contributing 

approximately 160 CPS). Figure 60 shows the CPS versus Time chart of one of the LGens 

during the test. 



70 
 

 

Figure 60: CPS versus Time (seconds) of maia15 

 
Figure 61

‡‡‡‡‡‡
: Physical memory utilization of maia15 

Figure 62 shows a snapshot of the load level (in percentage of the total CPU capacity of each 

processor) of the 8 processors in the TSP cluster during the test.  Table 10 shows the 

maximum, minimum, and average system load, traffic load, and O&M load for each of the 

DICOS TPs. The average load on the DICOS TPs (the HSS) was 48.366% in the duration of 

the test. 

 
 

Figure 62
§§§§§§

: Snapshot of TSP cluster load level in eadorm 

                                                                 
‡‡‡‡‡‡

 Figure 61 uses the same color scheme as in Figure 54 
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DICOS TP/Load % Proc_m1_s13 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23 

Max system load 2.0 3.0 4.0 2.0 

Min system load 2.0 2.0 3.0 2.0 

Average system load 2.0 2.986 3.261 2.0 

Max traffic load 57.0 57.0 78.0 58.0 

Min traffic load 33.0 39.0 40.0 36.0 

Average traffic load 43.507 48.043 47.884 43.493 

Max O&M load 2.0 3.0 5.0 2.0 

Min O&M load 0.0 0.0 0.0 0.0 

Average O&M load 0.058 0.072 0.101 0.058 

Total average load 45.565 51.101 51.246 45.551 

 

Table 10: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU 

capacity of each DICOS processor) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                                                                                       
§§§§§§

 Figure 62 uses the same color scheme as in Figure 58 
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6 Analysis 

In this chapter, the results of similar tests (the test described in section 5.5.3.1) 

performed with the load application based on CS architecture of TITANSim are presented. 

Then a thorough analysis is performed by comparing it with the results from section 5.5.3.1 

(results of test with S6a load application). 

6.1 BAT load application 
The CS based load application which is currently used for system test at HSS in Ericsson is 

called the Background Activities Test (BAT). The BAT load application is used to test 

various modules within the HSS such as ESM, IP Subscription Manager, Subscriber Data 

Access, and Wireless Subscription Module. The BAT load application for ESM uses a 

separate set of configuration files for the test deployment. However, for the sake of simplicity 

details of the BAT environment set up and its configuration is not given. The test environment 

is exactly the same as described in section 5.5.1, but in this case the BAT load application is 

executed in the traffic generators instead of the S6a load application. 

The BAT load application for ESM uses a mix of traffic cases for load generation. For 

example, a scenario can be configured to run a traffic mix of Initial Attach, HSS initiated 

Detach, Insert Subscriber Data, Handover LTE to 3G, and many more. It is also possible to 

configure the percentage contribution of each of these traffic cases to the total load. For 

example, a scenario can be configured to generate 10% Insert Subscriber Data traffic, 30% 

Handover traffic, 20% Purge Subscriber traffic, and 40% Service Authentication traffic. 

However for this thesis project, we consider only the Initial Attach traffic case. Therefore, for 

this test only the Initial Attach traffic was generated (i.e., the Initial Attach traffic constituted 

100% of the traffic). 

6.2 BAT results 
The BAT load application for ESM was configured to run the Initial Attach traffic for 30 000 

ESM subscribers using 200 LGen components (PTCs), and the test execution was distributed 

over gteador3 and gteador4 (100 LGen components in each traffic generator) as shown in 

Figure 51. Each LGen component uses a separate transport connection to the Diameter Proxy. 

Therefore, the BAT load application uses a total of 200 transport connections to run the 

Initial Attach traffic for 30 000 ESM subscribers. 

The CPU utilization largely remained within the range of 3% to 10% with occasional peaks 

up to 25% during load generation in gteador3 as can be seen in Figure 63. Figure 64 shows 

the CPU utilization of gteador4 which largely remained within the range of 3% to 5%. The 

physical memory consumption of the BAT load application during the test was approximately 

154 megabytes in gteador3 and 145 megabytes in gteador4. Figure 65 and Figure 66 show the 

total physical memory utilization in gteador3 and gteador4 respectively, during the test. The 
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CPS chart is shown in Figure 68. The CPS varied from a minimum of 60 to a maximum of 385 

during the test. 

Figure 67 is a snapshot of the load level (in percentage of the total CPU capacity of each 

processor) of the 8 processors in the TSP cluster during the test.  Table 11 shows the 

maximum, minimum, and average system load, traffic load, and O&M load for each of the 

DICOS TPs. The average load on the DICOS TPs (the HSS) was 5.576% in the duration of 

the test. 

 

Figure 63: CPU utilization of gteador3 

 

Figure 64: CPU utilization of gteador4 
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Figure 65
*******

: Physical memory utilization of gteador3 

 

Figure 66
†††††††

: Physical memory utilization of gteador4 

                                                                 
*******

 Figure 65 uses the same color scheme as in Figure 54 
†††††††

 Figure 66 uses the same color scheme as in Figure 54 
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Figure 67: Snapshot of TSP cluster load level in eadorm 

 

Figure 68: CPS versus Time (seconds) of BAT application 

DICOS TP/Load % Proc_m1_s13 Proc_m1_s15 Proc_m1_s21 Proc_m1_s23 

Max system load 1.0 1.0 1.0 1.0 

Min system load 1.0 1.0 1.0 1.0 

Average system load 1.0 1.0 1.0 1.0 

Max traffic load 22.0 22.0 56.0 22.0 

Min traffic load 0.0 0.0 0.0 0.0 

Average traffic load 3.465 2.915 3.317 2.979 

Max O&M load 5.0 4.0 7.0 5.0 

Min O&M load 0.0 0.0 0.0 0.0 
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Average O&M load 1.444 1.317 1.408 1.458 

Total average load 5.908 5.232 5.725 5.437 

 

Table 11: Load distribution in (the HSS) DICOS TPs (in percentage of the total CPU 

capacity of each DICOS processor) 

6.3 Comparison of results 
A comparison of the test results of the BAT load application and the S6a load application will 

be made in terms of the test system resource consumption, load generation capacity, and 

other factors such as the test execution time, and CPU utilization of the traffic generators. 

The results presented in this section are based on the tests described in section 5.5.3.1 and 

6.2. Table 12 compares the test resource consumption of the BAT and S6a load application 

during the test. The total physical memory and the number of processes used by the 

application during the test are shown considering both the traffic generators. The test 

execution time is basically the time taken to execute the traffic case (i.e., to run the Initial 

Attach procedure for 30 000 ESM subscribers). 

6.3.1 Test system resource consumption 

It is evident from Table 12 that the BAT load application is very resource intensive. It 

consumes more physical memory and operating system processes compared to the S6a load 

application. The BAT load application consumes more than thrice the physical memory 

consumed by the S6a load application for generating the same amount of traffic (i.e., generate 

Initial Attach traffic for 30 000 ESM subscribers). The physical memory consumption of the 

BAT load application would increase by several times when tests are run with a mix of traffic 

cases for higher number of ESM subscribers (say 100 000).  

The BAT load application executes the traffic case in three phases namely, pre-execution 

phase, load phase, and post-execution phase. In the pre-execution phase existing logging 

information is deleted, O&M events such as alarms are verified in the HSS, etc. In the load 

phase the Initial Attach traffic is generated. In the post-execution phase, a Detach procedure 

is carried out for the subscribers (for which the Attach procedure was carried out in the load 

phase). The time taken for the execution of each of these phases is shown in Table 12. Since 

the S6a load application does not run the Detach procedure, the time taken for post-execution 

phase is ignored in the discussion. Considering only the time taken for the load phase 

execution (when the Initial Attach traffic was generated), we can say that the BAT load 

application generates traffic faster than the S6a load application (the load phase execution of 

the Initial Attach traffic case in BAT load application completed in 223 seconds, where as the 

execution of Initial Attach traffic case in S6a load application completed in 282 seconds). 

There are many factors that lead to this difference, such as the inherent architectural 

difference in scheduling, and differences in the configuration of logging operations of the two 

applications during the test. However, the time taken for the overall test execution of the 

BAT load application (381 seconds) is higher than the S6a load application (282 seconds).  
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The execution time of generating the traffic cases in the S6a load application can be 

improved further by optimizing the FSMs. The FSMs can be made simpler by optimizing the 

events and test step functions that entities execute to generate the traffic. It is clear from 

Table 12 that the S6a load application results in higher CPU utilization when compared to the 

BAT load application. Thus, the S6a load application makes efficient use of test system 

resources to generate a consistently high load when compared to the BAT load application 

(which only achieved the target load near the end of the test). 

Table 12: CS/BAT versus DS/S6a test system resource consumption 

Parameter CS/BAT result DS/S6a result 

Total physical memory used (megabytes) 299  80.4 

Total no. of processes
‡‡‡‡‡‡‡

 242 7 

Test execution time (seconds) Pre:   158 

Load: 223 

Post:  68 

282 

CPU utilization 3% to 10% ~75% 

     

6.3.2 Load generation capacity 

The BAT load application resulted in a lower average load compared to the S6a load 

application as seen in Table 13. This is reflected in the poor CPU utilization of the traffic 

generators by the BAT load application (see Figure 63 and Figure 64), and the generated CPS 

that varied from a minimum of 0 to a maximum of 385 in the duration of the test (see Figure 

68) with an average of approximately 200 CPS. However, it should be noted that the BAT 

load application is designed to be executed as a traffic mix as discussed earlier in this chapter. 

Its load generation capacity during the test could have been significantly reduced during the 

test as only the Initial Attach traffic was run from the traffic mix (To evaluate this difference 

we would need to either implement more traffic cases in our load application or learn further 

details of the BAT load application).  

The S6a load application on the other hand showed a great deal of scalability in load 

generation. Initially, it was configured to run with one LGen and executed using only one 

traffic generator which generated an average load on the HSS of 9%. Subsequently, the 

execution was distributed over two traffic generators (using two LGens) which generated an 

average load on the HSS of 17.525% as shown in Table 13. The generated CPS also scaled 

up from 55 (in case of one LGen) to 110 (in case of 2 LGens). Moreover, Figure 56 and 

Figure 57 show a very steady CPS during the test execution which has resulted in a better 

average load on the TSP cluster. Thus, in the future the load generation capacity can be 

                                                                 
‡‡‡‡‡‡‡

 The total number of operating system processes during the test execution 
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easily scaled up by increasing the number of traffic generators. It should also be noted that 

the S6a load application generated an average load on the HSS of around 49% when it was 

deployed and tested using a high capacity traffic generator (refer to section 5.5.3.2). This 

clearly proves the potential of the S6a load application to generate even higher loads, 

provided that a high capacity traffic generator is used and a traffic mix (with more traffic 

cases in addition to the Initial Attach are implemented) to sustain the load generation for 

longer periods.  

Table 13: CS/BAT versus DS/S6a load generation capacity 

Parameter CS/BAT result DS/S6a result 

Total number of LGens used 200 2 

Average load on the (HSS) TSP DICOS TPs (%) 5.576 17.275 

Maximum CPS 385 

 (for 200 LGens) 

63  

(for LGen1, 59 for LGen2) 

Minimum CPS 60  

(for 200 LGens) 

53  

(for LGen1, 53 for LGen2) 

Average CPS ~200  

(for 200 LGens) 

~110  

(for 2 LGens) 
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7 Conclusion 

The results of this thesis project clearly demonstrate the benefits of the distributed 

scheduling architecture of the TITANSim framework. For the S6a Initial Attach traffic case, 

the S6a load application produced an average load of 17.275% on the HSS compared to the 

BAT load application which produced an average load of 5.576% on the HSS. The physical 

memory consumption of the S6a load application was less than one third of the physical 

memory consumption of the BAT load application. The S6a load application designed and 

tested in this project shows high scalability in load generation and high efficiency in terms of 

utilization of test system resources. It is possible to extract even higher performance from the 

S6a load application by adding features such as Load Regulation and Remote Transport 

which will be discussed in chapter 8.  

A decision to adapt the distributed scheduling architecture for system test of the HSS at 

Ericsson will be the management‟s prerogative. If such a decision is made, then there will be 

a need for migration of the existing test modules for the HSS (which are currently using the 

central scheduling architecture) to the distributed scheduling architecture. This is a highly 

complex task in itself considering the required framework updates to TITANSim and the 

sheer number of FSMs that will have to be designed in order to carry out the migration.  

The S6a load application can be used as a model, or extended in the future, when the test 

modules for the HSS are migrated from the central scheduling architecture to the distributed 

scheduling architecture. The migration project would consist of creating new application 

libraries in TITASim, extending some of the existing application libraries of TITANSim, and 

creating the FSMs (traffic cases) for the test modules. After the migration to the distributed 

scheduling architecture, creating new traffic cases (using FSMs) for the system test of the 

HSS would become simpler and faster as there will be no TTCN-3 coding/compilation. An 

exciting possibility of the future would be a TTCN-3 test case generator tool that can create 

TTCN-3 test cases these FSMs. Such a tool will also significantly reduce the time spent on 

test framework development (refer to section 8.4). 
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8 Future work 

The TITANSim framework provides many features that were not utilized in 

developing the S6a load application due to the thesis project‟s limited scope and time 

constraints.  In this chapter, we will discuss some important features that the S6a load 

application should have in future when it is used in a production environment within 

Ericsson. 

8.1 Load regulation 
The TITANSim CLL provides a base load regulator component, which should be extended 

by the S6a load application and initialized with a reference to functions that measures the 

SUT load. This would make it possible to regulate the target CPS based on the current load 

level of the SUT (i.e., the CPU usage of the SUT). The next CPS target is calculated based on 

the previous CPS value and the last two load levels, according to the specified load level in 

the configuration. A schematic view of the load regulation is shown in Figure 69. The CPS 

value is regulated only if the SUT load level reaches or exceeds the target load level set in the 

configuration. Below that value the original CPS is used without any regulation. 

 

 

Figure 69: Load regulation for S6a load application 

8.2 Remote transport 
As discussed in section 5.4.4, the DiameterS6a_LGen component extends the 

Diameter_LocalTransport component for communication with the transport layer. By 

extending the local transport component the DiameterS6a_LGen component itself performs 

the transport functions, such as set up and tear down of transport connections towards the 

Diameter Proxy. This can be considered as an overhead affecting the LGen performance 

since the DiameterS6a_LGen is primarily responsible for generating only the S6a protocol 

traffic. In the future it is recommended to use the Diameter_RemoteTransport component, 

hence the DiameterS6a_LGen component will be relieved of performing the transport 

functions. The remote transport component uses a Diameter_Mapper component that 

performs the transport functions on behalf of the DiameterS6a_LGen component as shown in 

Figure 70. 
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Figure 70: Remote transport mechanism for S6a load application 

8.3  Application extension 
The existing BAT load application for the ESM module contains a number of traffic cases for 

Initial Attach, Detach, Handover LTE to 3G, ESM user profile management, etc. For this 

thesis project the scope of the project was restricted to the Initial Attach procedure. Hence, 

the S6a load application in the future should be extended to support the other procedures as 

well. This will require updates to the Diameter_Types module, Diameter application library, 

and a number of FSMs will need to be created for each of the traffic cases. 

When other traffic cases are created in future, it will be possible to execute a scenario with 

multiple traffic cases. Each traffic case can also be configured to carry a certain weight in the 

target CPS (for example, traffic case 1 shall have 10% weight, traffic case 2 shall have 30% 

weight, and traffic cases 3 shall have 60% weight in the target CPS). 

In the future the S6a load application should also be configured to run the traffic in three 

phases namely, pre-execution phase, load phase, and post-execution phase. During the pre-

execution phase transport connections are established and other configuration updates to SUT 

are performed to prepare it for the load phase. The desired load of protocol traffic is 

generated during the load phase. In the post execution phase clean up actions (for example, 

tearing down of transport connections, freeing used entities, test verdict calculation, etc.) are 

performed to conclude the analysis. This partitioning will facilitate evaluation of the system 

while it is under the desired load and explicitly excluding the warm up and shutdown of the 

testing process itself. 
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8.4 TTCN-3 test case generator 
Patrick Wacht, Thomas Eichelmann, et al. have proposed a test development process in the 

publication titled „A New Approach to Design Graphically Functional Tests for 

Communication Services
§§§§§§§

’ [34]. In this test development process, a behavior model is 

created (by the test developer) using the FSMs. The FSMs are created based on the service 

description (use-cases). The test case generator tool uses the behavior model to create new 

TTCN-3 templates and also utilizes pre-defined TTCN-3 templates to generate the test cases. 

The authors have also proposed a connectivity concept that the test case generator tool can 

employ to map the data from the behavior model to the corresponding TTCN-3 element. 

Apart from generating the test cases, such a tool also generates TTCN-3 templates based on 

the service description. These generated templates can be integrated into the test framework. 

This presents an exciting opportunity for automation of test framework development. 

 

 

 

 

      

 

 

 

 

 

 

 

 

 

 

 

 

                                                                 
§§§§§§§

 The publication can be directly accessed from 

http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pd

f 

http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pdf
http://www.taunusportal.de/etechnikorg/aufsaetze_vortraege/aufsaetze/wacht_et_al_comgeneration_paris11_.pdf
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