
Degree project in
Communication Systems

Second level, 30.0 HEC
Stockholm, Sweden

A L I S A R R A F I

 Improving community based software development
using community based grids

 Peer to Peer Grid for
Software Development

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Peer to Peer Grid for Software Development

Improving community based software development
using community based grids

Ali Sarrafi

Master of Science Thesis

Examiner: Prof. Gerald Q. Maguire Jr.

Supervisor: Håkan Kjellman, MoSync AB.

Department of Communication Systems (CoS)

School of Information and Communication Technology (ICT)

Kungliga Tekniska Högskolan(KTH)

Kista, Stockholm, Sweden.

Abstract

Today, the number of software projects having large number of developers
distributed all over the world is increasing rapidly. This rapid growth in dis-
tributed
software development, increases the need for new tools and environments
to facilitate the developers’ communication, collaboration and cooperation.
Distributed revision control systems, such as Git or Bazaar, are examples of
tools that have evolved to improve the quality of development in such projects.
In addition, building and testing large scale cross platform software is especially
hard for individual developers in an open source development community, due
to their lack of powerful and diverse computing resources.

Computational grids are networks of computing resources that are
geographically distributed and can be used to run complex tasks very efficiently
by exploiting parallelism. However these systems are often configured for cloud
computing and use a centralized structure which reduces their scalability and
fault tolerance.

Pure peer-to-peer (P2P) systems, on the other hand are networks without
a central structure. P2P systems are highly scalable, flexible, dynamically
adaptable and fault tolerant. Introducing P2P and grid computing together to
the software development process can significantly increase the access to more
computing resource by individual developers distributed all over the world.

In this master thesis we evaluated the possibilities of integrating these
technologies with software development and the associated test cycle in order to
achieve better software quality in community driven software development. The
main focus of this project was on the mechanisms of data transfer, management,
and dependency among peers as well as investigating the performance/overhead
ratio of these technologies. For our evaluation we used the MoSync Software
Development Kit (SDK), a cross platform mobile software solution, as a case
study and developed and evaluated a prototype for the distributed development
of this system. Our measurements show that using our prototype the time
required for building MoSync SDK’s is approximately six times shorter than
using a single process. We have also proposed a method for near optimum task
distribution over peer to peer grids that are used for build and test.

i

Abstrakt

Idag är antalet programvaruprojekt med stort antal utvecklare distribueras över
hela världen ökar snabbt. Denna snabba tillväxt i distribuerad mjukvaruutveck-
ling, ökar behovet av nya verktyg och miljöer för att underlätta utvecklarnas
kommunikation, samarbete och samarbete. Distribuerat versionshanteringssys-
tem, s̊asom Git och Bazaar, är exempel p̊averktyg som har utvecklats för att
för bättra kvaliteten p̊autvecklingen i s̊adana projekt. Dessutom, bygga och
testa storskalig programvara plattformsoberoende är särskilt svrt för enskilda
utvecklare i en öppen källkod utvecklingsgemenskap, p̊agrund av deras brist
p̊akraftfulla och mångsidiga datorresurser.

Datorgridd är nätverk av IT-resurser som är geografiskt fördelade och kan
användas för att köra komplexa uppgifter mycket effektivt genom att utnyttja
parallellitet. Men dessa system är ofta konfigurerade för molndator och använda
en centraliserad struktur vilket minskar deras skalbarhet och feltolerans.

En ren icke-hierarkiskt (P2P-nätverk) system, åandra sidan är nätverk
utan en central struktur. P2P-systemen är skalbara, flexibla, dynamiskt
anpassningsbar och feltolerant. Introduktion P2P och datorgridd tillsammans
med mjukvaruutveckling processen kan avsevä rt öka tillg̊angen till mer
datorkraft resurs genom enskilda utvecklare distribueras över hela världen.

I detta examensarbete har vi utvärderat möjligheterna att integrera dessa
tekniker med utveckling av programvara och tillhörande testcykel för att
uppn̊abättre programvara kvalitet i samhä llet drivs mjukvaruutveckling. Tyn-
gdpunkten i detta projekt var p̊amekanismerna för överföring av data, hantering,
och beroendet bland kamrater samt undersö ka prestanda / overhead förhllandet
mellan dessa tekniker. För vr utvärdering använde vi MoSync Software
Development Kit (SDK), en plattformsoberoende mobil programvara lösning,
som en fallstudie och utvecklat och utvärderat en prototyp för distribuerad
utveckling av detta system. V̊ara mätningar visar att med hjälp av v̊ar prototyp
den tid som krävs för att bygga MoSync SDK är cirka sex g̊anger kortare än
med en enda process. Vi har ocks̊aföreslagit en metod för nära optimal uppgift
fördelning över peer to peer nät som används för att bygga och testa.

iii

Acknowledgements

The author would like to thank Professor Gerald Q. Maguire Jr. for his valuable
feedback and guidance through out this project and also Mr. H̊akan Kjelman
for his kindness, supervision, and help during the completion of this project. He
would also like to thank MoSync employees Ali Mousavian, Mattias Fr̊anbarg ,
and Anders Malm for their valuable help and feedback in finishing the prototype.
Finally the author would like to thank Mr. Miles Midgley for his valuable help
in debugging and testing the prototype.

v

Contents

1 Introduction 1

2 Background 5

2.1 Distributed and Grid Computing 5
2.2 P2P Systems and P2P Grids . 8
2.3 Distributed Software Development 11
2.4 Distributed Software Testing . 13

3 Method 17

3.1 System Requirements . 18
3.1.1 Task Types . 18
3.1.2 Case Study:MoSync SDK 18

3.1.2.1 Current Build System 19
3.1.2.2 Current Revision Control and Developer Collab-

oration . 19
3.2 System Prototype . 21

3.2.1 General Architecture . 21
3.2.2 Build Tasks . 22
3.2.3 Main System Components 25

3.2.3.1 Master Component 25
3.2.3.2 Slave Component 25
3.2.3.3 Client Component 26

3.2.4 General Operation . 27
3.2.4.1 Communication Messages 28
3.2.4.2 Client Operation 29
3.2.4.3 Slave Operation 29
3.2.4.4 Master Operation 29

3.3 Expansion to a P2P Architecture 34
3.3.1 System Architecture . 34
3.3.2 Task Distribution . 35

4 Analysis 39

4.1 Data Transfer and Management 39
4.2 Performance and Scalability . 44

4.2.1 Test Setup and Configuration 44
4.2.2 Basic Task Times . 44
4.2.3 Task Scheduling and Scalability 45

vii

viii Contents

5 Conclusions and Future Work 53

5.1 Conclusion . 53
5.2 Future Work . 54

References 55

List of Figures

2.1 A generic architecture for a distributed computing system 6
2.2 A generic architecture for a distributed computing host 6
2.3 Space time diagram of a process with dependency among tasks . 7
2.4 A comparison between major grid computing categories 8
2.5 Continuous Integration in Software Development 12

3.1 The basic concept of MoSync SDK 19
3.2 Build-compatibility of different MoSync components 20
3.3 Revision control system architecture used by MoSync develop-

ment team . 20
3.4 The Prototype Architecture . 21
3.5 Main Components of the System Running on a Host 22
3.6 General class and object relationship for builder 24
3.7 General class and object relationship for master 25
3.8 General class and object relationship for slave 26
3.9 General class and object relationship for clients 27
3.10 Sequence of events for build/test task 28
3.11 General operation of a client . 31
3.12 General operation of a salve . 32
3.13 General operation of a master . 33
3.14 Final system architecture and host interconnection 34
3.15 Minimum number of control messages required to run a specific

task . 35
3.16 Task Definition in XML format 36
3.17 Distribution of tasks over the network using self contained

dividable tasks . 37

4.1 Maximum commit size divided by the size of source tree for all
of the seven projects shown as percentage. 41

4.2 Summary of the data transfer algorithm combining revision
control and plain TCP connections 43

4.3 The setup that was used for measurements and evaluations . . . 45
4.4 Task breakdown for the case of building MoSync SDK 46
4.5 Processing time versus number of processes with linear task division 48
4.6 Processing time versus number of processes with optimal task

divisions . 49
4.7 System performance building two complete packages 51
4.8 The achieved time with maximum possible parallelism 51

ix

List of Tables

3.1 Library classes available to different parts of the system 23
3.2 Functions available to the build/test tasks using inheritance . . . 24
3.3 Extra classes used by the MasterServer Class 26
3.4 Extra classes used by the ClientBuilder Class 27
3.5 Description of XML tags used for describing the tasks in the

proposed system . 37

4.1 Seven open source project used as samples for the analysis 40
4.2 Commit Statistics for the Projects under analysis 41
4.3 Data transfer measurement results 42
4.4 Designed build and test tasks . 46
4.5 Initial measurement results . 47
4.6 Package Build Measurement Results 50

xi

List of Abbreviations

API Application Programming Interface
BOINC Berkeley Open Infrastructure for Network Computing
CVS Concurrent Versions System
DHT Distributed Hash Table
EC2 Elastic Compute Cloud
FLOPS Floating Point Operations Per Second
GB Giga Bytes
GNU GPL GNU General Public License
IDE Integrated Development Environment
IP Internet Protocol
JXTA Juxtapose
KB Kilo Bytes
MB Mega Bytes
Mbps Mega bits per second
MD5 Message-Digest Algorithm 5
MinGW Minimalist GNU for Windows
MIT Massachusetts Institute of Technology
OS Operating System
P2P Peer to Peer
RAM Random Access Memory
RPC Remote Procedure Call
SDK Software Development Kit
SETI@Home Search for Extra-Terrestrial Intelligence at Home
SPMD Single process multiple data
SWT Software Testing
XML Extensible Markup Language
XMLRPC Extensible Markup Language Remote Procedure Call
YETI York Extendible Testing Infrastructure

xiii

Chapter 1

Introduction

Recently the development of large software products in a distributed manner
(even globally) has gained a lot of attention from large corporations who are
developing complex commercial software [1]. Traditionally globally distributed
software development was considered riskier than collocated development, but
Bird et. al. in a study on the development and failures of Windows Vista
[2] showed that distributed development of software that has many small
components, can be more effective and lead to fewer failures[3]. Corporates
software developers often use specific centralized management and quality
assurance mechanisms to ensure the quality and performance of their products
even when doing distributed development [1], while also benefiting from the
advantages of distributed development.

In addition, during recent years the diversification and popularity of different
computing systems, especially for mobile platforms, has lead to increased
attention to cross-platform software solutions, such as the MoSync SDK[4].
Developing such software with many different components, requires extensive
build and test mechanisms. Usually, each revision of the software should be
build and tested on multiple platforms, thus the time required for building
each package, increases significantly with increasing source code size and the
number of platforms. In addition, test and verification of such software on
multiple platforms requires extensive processing resources in order to test
and verify the software’s operation on each of the different platforms and
in different configurations. The developers of such software want to make
sure that the software works on all of their different target platforms, and
seamlessly integrates with different configurations without exhibiting any bugs.
Additionally, it is not sufficient to test the software only in a fixed development
environment, but rather there is a need to test this software on multiple
platforms in which some of the platforms are (or act as if they were) mobile.
Projects such as Emulab [5] and similar projects provide new test and evaluation
environments for software development.

In commercial projects powerful computing resources and servers together
with automatic build and test systems [6, 7] or test suites[8, 9], are often used
to continuously test and integrate the software. This requires that powerful
machines for building and testing the system be available to the development
team.

Open source software development on the other hand is normally driven by

1

2 Chapter 1. Introduction

communities [10, 11, 12]. Such software is often managed in one of the following
ways[10]:

1. Pure Communities or Peer Production;

2. Open source companies leading the development with parallel
developments in the community; or

3. Full cooperation between the open source corporate and the development
community.

Regardless of the development process, the potentially large size of the
volunteer community contributing to the development of an specific software
project is advantageous to the core development team. Large communities
result in more review and testing of different parts of the code and continuous
improvement in the software’s quality. Additionally, the existence of a
large community can speed up the process of introducing new features and
functionality to the software. For example, Debian GNU linux [13] has a
community of more than 3000 developers around the world [14] working together
to improve the quality of the software.

In open source software development providing centralized expensive
powerful resources is often neither technologically appropriate nor economically
efficient for such communities, especially those driven by non-profit core teams.
Therefore, open source communities seeking to have many individuals con-
tributing to a software development and maintenance project, need to develop
solutions to ensure the quality and stability of their products. Additionally
it is desirable to attract individual developers who do not have access to very
expensive equipment, while making it possible for them to build and test their
code faster and easier.

Grid and distributed computing[15, 16] have been proposed in other areas
for solving large and processing intensive tasks without using super computers.
Grids usually consist of many computing resources distributed over a network
(such as the Internet), collaborating with each other to solve an specific problem.
Grid based systems have shown promising performance, for instance the BOINC
project [17] has the performance of 4,853,552.7 GigaFLOPS 1 as of January
2011[18].

These system usually are used for running specific applications which can be
classified as single process multiple data (SPMD) [19] or bag of task applications
[20]. SPMDs are applications in which a single process is repeated over different
parts of a large set of data independently in different processors or machines.
This type of application is suitable for processing a huge amount of data with a
simple process, such as searching through different combinations. On the other
hand, bag of task applications are application structures which can be split into
completely independent parts. These types of applications are more suitable for
large modular tasks that can be run independently.

Grid based systems usually exploit a centralized architecture using a single
server to assign tasks and to track the contributors. They often do not
have support for dynamic environments and expect stability of the computing
resources. Peer-to-peer (P2P) computing [21, 22] on the other hand, is a
method of sharing resources among different computers without any predefined

11 GigaFLOPS = 1 Million floating point operations per second

3

or static client and server architecture, which makes it suitable for dynamic
environments. P2P systems were traditionally used for sharing files rather than
computing resources. Combining P2P and grid technologies has recenlty been
proposed as a means to provide parallel and grid computing[15, 23, 24] together
with the and adaptive features of P2P systems.

Test and development of large scale software in a distributed manner has
received relatively little attention until the last few years[8, 25, 26, 27], but
with the introduction of distributed version control systems [28] and the huge
increase in popularity of the distributed revision control systems [29], the need
for distributed testing and development has increased.

Although there are some research activities on running regression software
tests in computational or P2P grids, there has been little attention paid
to the concept of using P2P distributed computing for both software builds
and tests. This is especially true when it comes to consideration of the
data transfer overhead and the effects of high task dependency. In this area
there are no dedicated systems or analysis available. Building software in
a distributed manner is different than running unit testing on P2P systems,
because building software has a high degree of dependency among different
tasks and there is a need for transferring large amounts of data between peers.
In addition, automatically dividing tasks into independent parts may encounter
some limitations.

In this project we have investigated the possibility of using a P2P grid
architecture for our software build and test process, specifically targeting widely
distributed open source software development. Our goal is to find the limits and
requirements of such systems, especially in terms of balancing the data transfer
overhead with the processing speed gain achieved by parallelizing the build and
test processes.

The rest of this document is organized as follows. Chapter 2 gives some of the
background of the project, including a survey of related work. An overview of
the project methodology and designs are given in chapter 3. Chapter 4 consists
of the analysis of the designs and approaches used in this project. Finally some
concluding remarks and suggestions for future work are presented in chapter 5.

Chapter 2

Background

This chapter covers the theoretical background and previous work in the topics
related to this thesis project. Section 2.1 briefly describes distributed and
grid computing while covering the previous works in these topics. Section 2.2
provides and overview of previous work on the topics of P2P computing and P2P
grids. Section 2.3 discusses the concept on distributed software development.
Finally, section 2.4 covers distributed software testing and quality improvement.

2.1 Distributed and Grid Computing

A distributed system is defined by Kshemkaylani and Singhal as “a collection
of independent entities that cooperate to solve a problem that can not be
individually solved”[30]. From a computing perspective a system is called
distributed if it has the following features[30, 31]:

• There is no globally distributed common physical clock,

• Different processing entities do not share a global memory,

• Processing entities are geographically separated, and

• There is heterogeneity of the components and computational power.

There are several motivations for using distributed computing systems,
these include running a naturally distributed application, sharing of resources,
accessing remote data and resources, fault tolerance, reduce the
cost/performance ratio, and better scalability[30].

In such systems different processing entities communicate with each other
through a communication network, rather than an interconnection network,
which is their distinction from parallel processing systems[31]. Figure 2.1
shows a generic architecture for distributed computing systems. Each host
has a processor and/or memory unit for use in the distributed application.
Some sort of distributed system middleware is used to organize the distributed
computing operations in each host using the existing communication application
programming interfaces (APIs) of the network protocol stack and the operating
system. Figure 2.2 shows the relationship between the middleware and the other
parts of a host.

5

6 Chapter 2. Background

Communication Network

Process/
Memory Process/

Memory

Process/
Memory

Process/
MemoryProcess/

Memory

Process/
Memory

Figure 2.1: A generic architecture for a distributed computing system

Distributed System
Middleware

Operating System Network Protocol Stack

Application

Figure 2.2: A generic architecture for a distributed computing host

Distributed systems often execute independent tasks on different machines
when the level of dependency between tasks is very low. When there is a high
level of dependency between different processing tasks, then one must consider

2.1. Distributed and Grid Computing 7

this dependency and the effect of communication delays during the design and
run-time scheduling of such systems.

Figure 2.3 shows the concept of dependency delay due to dependent tasks.
If we define a client as the host which sends a request for a process and a slave
as a host which runs part of a process, it can be seen in the beginning of the
space time diagram that this client starts three different independent parallel
tasks that can be run on different hosts. These independent tasks can be run
concurrently and without delay and the only limiting factor for each of them is
the amount resources available, whereas dependent tasks can only be run after
the prerequisites are satisfied and the client has received the results that will
become the inputs for the dependent tasks. The time a system must wait before
being able to assign new tasks to free resources, i.e. until it receives the results of
prerequisite tasks, is defined as dependency delay. In Figure 2.3, the dependent
task can only execute after the client has received the final input from slave 1.
This dependent task may also have needed input from slaves 2 and 3, but these
have already been received by the client; hence we can see that the dependency
delay is related to the delay to get the last of the needed inputs.

Initiate a process

Slave 1

Slave 2

Slave 3

Client

Scheduled Task Dependent task

Processing Time

Start task Send Results

Dependency delay

Time

Figure 2.3: Space time diagram of a process with dependency among tasks

A computational grid is a form of distributed computing with a large network
of processing entities[16], which provides access to the computational power
regardless of the computers’ geographical position. A specific type of grid
computing called Volunteer Computing [32] is a type of grid that has received
lots of attraction in scientific and academic projects. A Volunteer Computing
grid is a network of volunteer computers sharing their computing resources to
solve a specific large problem. Projects such as SETI@Home [33] that analyzes
radio signals from the space utilizing millions of computational volunteers is
one of these computational grids. BOINC [17], which is a multi application
volunteer computing grid based on the generic evolution of SETI@Home.
The equivalent processing power of these systems, 27000 Giga FLOPS for
SETI@Home, and 4,853,552.7 GigaFLOPS for BOINC, shows that volunteer
computing is a promising technology for achieving high computing performance
at low incremental cost for the entity that wants to run the application.

8 Chapter 2. Background

Most of the currently deployed grid systems utilize a centralized control
structure, even though they may have some P2P functionality as well. This
centralized control and management approach works like a virtual organization,
which results in some barriers for new task submitters who wish to enter the
organization and perform computations[34]. P2P based grids are attempts to
overcome these barriers and provide a dynamic and flexible system usable by
everyone. Figure 2.4 presents a brief comparison between these two major
categories of open source grid and volunteer computing systems. Section 2.2
discusses these P2P systems in greater detail.

!"#$%&'%$()&&

!"#$%&'() *+&,-./01+$'2)
3!4501+$'2)67589)

:;<%+(') =>?-'@')@'<A)?-/?)
%'<B+<$#.>')-.)C'<$()+B)
*D7:3)

=<>?-C'>C;<') E(;#&&A)9'.C<#&-F',)

=%%&->#G+.) E(;#&&A)3:HI)H+,'&',)
#%%&->#G+.()

!"#$%&')
=%%&->#G+.()

J'.'G>(2)3%#>')3>-'.>'2)
6-+K9?'$-(C<A2)'C>L)

*+%,,&%-.&/).01+&23++1-04)5&

!"#$%&'() 7;<J<-,6&7%,%8)-3&
)

:;<%+(') H;&GK:;<%+('2)M'('#<>?)
N#(',)

=<>?-C'>C;<') :O:)+<)9'.C<#&-F',)

=%%&->#G+.) 6#/)+B)4#(P()+<)3:HI)

!"#$%&')
=%%&->#G+.()

3+QR#<')4'(G./2)9+,')
9<#>P-./)#.,)'C>L))

Figure 2.4: A comparison between major grid computing categories

2.2 P2P Systems and P2P Grids

P2P systems are networks of computers connected to each other without fixed
client-server roles[35]. In P2P systems each node may have different roles
and can dynamically change its role depending on the need for this role and
its capabilities. Another important feature of P2P systems is their dynamic
behavior and potentially high scalability due to their flexible structure and the
basic support for adding new nodes and dealing with nodes which depart. There
are different varieties of P2P networks ranging from purely decentralized to
hierarchical, or even those having a centralized tracker[35].

The traditional application of P2P systems is storage sharing (often
characterized by file sharing). These often use an overlay network on top of
the internet to interconnect the peers. Resource (typically file) discovery is
one of the important aspects of P2P networks, since there is often no central
managed directory keeping track of the location of the available resources in the
network, therefore techniques such as distributed hash tables (DHT) are used
to implement decentralized directories of resources.

The flexibility and dynamic behavior of P2P networks is an attractive feature
for use in distributed and grid computing. By using a P2P based architecture,
in grids can have a very dynamic and flexible structure with nodes joining
and leaving the network at any time. In addition, such networks should not
suffer from a single point of failure, thus leading to better fault tolerance[15].
Note that the cost of this increased fault tolerance is replicated copies of data

2.2. P2P Systems and P2P Grids 9

hence a reduction in efficiency of more than a factor of two in both storage and
communication (since each file has to be stored at least twice, the nat least twice
as many copies of the file have to be transferred across the network).

P2P grids often use resource discovery mechanisms to search for and find
both suitable processing entities and other resources. Resource discovery is
a process which can be used by any node to find peers with an available
instance of the required resource. Although using P2P systems together with
resource discovery increases the flexibility of the grid architecture, there are still
problems using such systems, specifically initiation delay and instability. Several
attempts have been made to address the issues of resource discovery and search
mechanisms in P2P grid systems, with a focus on finding the resources in a P2P
network rather than focusing on processing and scheduling.

Therning and Bengtsson proposed Jalapeno, a Java based P2P grid
computing system[36]. Jalapeno was developed in Java using the P2P
framework and technology provided by the JXTA standard[37]. It uses a
hierarchical structure consisting of three types of nodes: manager, worker, and
task submitter. Managers in a Jalapeno network act as super peers in the search
and discovery mechanisms and also manage the submission of tasks among their
peers. The authors claim to achieve a semi-linear speed up in performance when
the number of contributing nodes increases up to eight (which may not be a
significant number of processing entities for many applications).

Senger et al. proposed P2PComp [38], a framework that uses P2P technology
to implement parallel and distributed computing. Nodes in P2PComp have
similar functionality and do not have any hierarchical role in the structure.
This system was also developed based on the JXTA P2P standard for Java.
The aim of this system is to provide a unified framework for running SPMD
applications in a flexible P2P environments. The authors claim that P2PComp
allows the use of pure P2P philosophy in grids.

Tiburcio and Spohn proposed Ad Hoc Grid [39], a self organizing P2P grid
architecture developed based on OurGrid [40] middleware. Ad Hoc Grid adapts
the original centralized architecture of OurGrid to a more flexible structure by
adopting new peer discovery, failure handling, and recovery mechanisms. Their
proposed method focuses on running bag of tasks type applications. In their
method the peers communicate via multicast messages and form two different
multicast groups one local and one for peer discovery. The authors claim to
have a dynamic P2P grid architecture with similar performance to OurGrid.
However, in Ad Hoc Grid nodes do not have any static roles and can switch
between being a task executer and a searching peer.

Ma et al. proposed a resource discovery mechanism for P2P based grids[41].
Their model uses a multilevel overlay network, with three different types of
peers: super peer-agent, super peer, and ordinary peer. The authors proposed
a keyword matching algorithm based on hash tables which can be used together
with an ant colony algorithm.

La Andzaro et al. proposed a resource discovery mechanism for decentralized
and P2P volunteer computing systems[42]. Their aim is to achieve the simplicity
of a centralized system in a scalable decentralized system. Another objective
of the authors was to provide constant lookup latency for frequent resources.
Their proposed method is claimed to achieve a discovery time of 900ms in a
decentralized system with 4096 peers versus the 800ms delay in a centralized
search system.

10 Chapter 2. Background

Esteves et al. proposed GridP2P[34], a system for cycle sharing in grids
using a P2P structure. The major aim of their proposed method is to provide a
system for remote access to idle cycles usable by any ordinary user. The author’s
claim that GridP2P has a complete set of P2P and grid functions, which helps
it to provide efficiency, security, and scalability. They used simulation of up
to eight nodes (which again may not be significant for many applications) and
claim to have a linear increase in computational performance with an increase
in the number of nodes.

2.3. Distributed Software Development 11

2.3 Distributed Software Development

Today having distributed teams in different places contributing to a single
project, is common in large companies with a global market and multiple
development offices[1]. In addition, open source software development has
increased the distribution and heterogeneity of software development teams.
Projects such as the Debian project with over 3000 developers[14] or The Linux
Kernel project with over 6000 developers in 600 different places[43] are examples
of open source projects with large development communities. In such projects,
there is a need for new development and collaboration tools that support the
unique requirements of such distributed teams. For instance, distributed version
control systems[44, 45] such as Git [46] or Bazaar [47] were initially developed
because of the needs in large open source development efforts.

Distributed version control systems usually store the complete repository
on every host [44] and each developer has local access to the complete history
of the software source that he/she is contributing to. This method of data
management, can achieve high redundancy, hence providing high fault tolerance
as each of the developers has a complete copy of the repository - this means
that a complete loss would require that all of these copies be destroyed
nearly simultaneusly. Such systems can use a semi-P2P architecture since the
collaboration between developers may be purely decentralized, but in many
cases there is a central publishing site for authoritative code releases.

Using distributed version control and software development has benefits
beyond high redundancy and increased fault tolerance. Multiple developers can
also work on a specific project and collaborate without publishing their code
before it is finalized. Merging and committing new code is more structured
with distributed revision management and the probability of breaking a code
revision in the main repository is very low and avoidable using the many possible
options available in distributed version control systems[44]. An example of
preventive actions is Sandboxing, in which developers commit to mirrors of the
main repository and their commit will only be integrated into the main branch
after it passes all the builds and tests defined by the system.

One of the tools that is used for improving the quality of software
development, specifically facilitating build and test is continuous integration[6,
7]. The idea behind continuous integration is to merge and test small parts
of the code into the main branch frequently. A continuous integration tool
monitors the repository for changes and triggers an automatic build and test
after each commit. Using such systems, has proved to improve the quality of
software significantly as it performs many tests over small pieces of software[6].
Figure 2.5 shows the basic idea behind continuous integration systems. Using
a continuous integration system not only makes merging the source code easier
as the merges are done in smaller steps, but it also forces developers to test
their code before committing it by sending alerts to the developer or updating
the commit’s status on the status server. Although continuous integration helps
developers to achieve higher quality software, the currently available tools are
often centralized. In distributed software development with large communities
each separate group of developers may have to operate their own continuous
integration server, in addition to the main integration tool.

Distributed revision control systems such as Git[46] or Bazaar[47] provide a
semi-P2P environment for developer collaboration and source code management.

12 Chapter 2. Background

Repo
Continuous
Integration

Tool

New Commit

or Merge

Build & Test
System

Email alerts,
Results interface

Figure 2.5: Continuous Integration in Software Development

However, both of these systems need a central management system and manual
updates. There have been some attempts to adapt pure P2P functionality to
revision control and data management in the development environment, thus
showing the potential of having P2P functionality in the distributed software
development framework.

Mukrejee et al. in a study analyzing the benefits of using P2P technology
in software development especially agile software development [48], proposed
AKME - a P2P tool that supports distributed agile software development.
AKME is designed to be used by small teams and uses a pure P2P architecture.
However, the limitation of this system is its scalability as it is explicitly designed
for small teams, hence it can not support large distributed teams as well as it
supports small teams.

Mukherjee et al. also proposed a purely P2P based version control
and collaboration method [49], which controls revisions based on CVS, uses
decentralized P2P control, and uses a P2P file sharing and search mechanism
on an overlay network to perform file updates and provide peer communication.
However, this proposed system only operates on single files and is still under
development.

Although there are several distributed revision control systems and some
attempts to use pure P2P technology together with revision management
system, there are as of yet no scalable systems that can use pure P2P resource
discovery for source code management.

2.4. Distributed Software Testing 13

2.4 Distributed Software Testing

Software Testing (SWT) is defined as the act of verifying the software’s quality
and functionality against a certain set of requirements and standards[9]. Due to
increases in the complexity of new software systems and the increased attention
to new software development paradigms such as extreme programming, software
testing has become more and more important. The concept of software testing
has evolved from bug fixing by individual developers to test automation or agile
testing[9]. SWT can be categorized into three different categories:

1. Blackbox Testing
Blackbox testing, also known as functional testing, occurs when the tester
(either the person or the tool) considers the block of code or software as
a box with certain functionality. In this type of testing the tester does
not consider the internal structure of the code and uses input data and
observed output to evaluate the software. The advantage of this technique
is that it tests what the program is supposed to do, but it may not be
able to achieve exhaustive testing(testing all possible input combinations)
in many situations.

2. Structural (whitebox) Testing
The test conditions in whitebox testing are designed by examining the
potential paths through the logic of the source code. This requires the
tester to be aware of the code’s internal structure. As a result this method
of testing can ensure that all paths are examined. The major disadvantage
of this technique is that it does not test the functionality of the software.
For software that has extensive sanity checks of input values and extensive
error handling, much of the testing will be of this code and not necessarily
the main paths that will actually be executed for valid data.

3. Hybrid (Graybox) Testing
Hybrid testing is a combination of the two former techniques, in which the
tester and developer are in close collaboration with each other to jointly
develop tests of both functionality and completeness.

In addition to these three general types of testing there are several testing
techniques that more or less map into one of these categories. Some of these
methods are (note that detailed lists and descriptions are available in [9]):

Unit Testing: Testing small part of the code independently.

FUZZ Testing: This task builds MoSync Libraries on Mac OS X.
Due to high interdependency of components in this
task it cannot be divided into any other subtasks.

Exception Testing: MoSyncWin tasks is used to build MoSync libraries
on Microsoft Windows. Due to high interdependency
of components in this task it cannot be divided into
any other subtasks.

Free Form testing: MoSync IDE is built using this task. This single task
generates a Java based IDE for MoSync that can be
used on any platform.

14 Chapter 2. Background

Testing complex software is a large and resource consuming task. There
usually exists a huge number of test cases and combinations of these test cases
that need to be executed. Distributed or parallel software testing [50, 9] is
an approach to increasing the performance of testing, leading to more rapidly
getting useful test results. In addition, distributed software testing makes it
possible to run multiple different tests at the same time in order to achieve better
test coverage. Distributed testing is a topic that has received little attention
previously and the few research attempts can be categorized into the following
three types:

• Testing on multiprocessor systems,

• Testing on cloud computing resources, or

• Testing on computational grids.

Using multiprocessor computers or local computer clusters is the traditional
way of solving complex or processing intensive tasks. There are several examples
of attempts to parallelize testing on large and powerful computers. However,
this method is neither cost efficient nor feasible for every development team.
Therefore other approaches should be considered to provide suitable testing
methods for these other types of development teams. We describe three
examples of this approach below.

Cloud Computing [51] is a new computing technology in which the com-
puting resources are not directly visible to the end user. Cloud based systems
often use virtual machines on powerful servers to provide distributed computing
resources. The distributed nature and cost efficiency of such systems makes
them a potential target for intensive software testing, hence this method has
received major attention from the research community.

Hanawa et al. proposed D-Cloud a testing environment for large scale
software testing using cloud computing technology. The authors propose a
method specifically designed for dependable parallel and distributed systems.
The goal of this system is to address the poor reproducibility of dependable
distributed systems, such as high availability servers.

Oriol and Ullah proposed YETI on the Cloud [8], a distributed and parallel
evolution of the York Extendible Testing Infrastructure (YETI) [52], which is
claimed to be a very fast software testing tool. YETI on the Cloud uses cloud
computing resources from Amazon’s Elastic Compute Cloud (Amazon EC2)
to achieve high processing power and simulate multiple distributed machines.
Their aim is to achieve a solution for distributed and large scale software testing
which can use general test cases and operate very fast. However, as of the time
of their publication this project is still an ongoing work and there have been no
evaluation results presented for this system.

As mentioned earlier grids are also very promising systems for solving large
and compute intensive tasks, because of their parallelism. In addition, the
transparent grid computing systems can be considered to be cloud computing
resources. The features of computational grid systems makes them a suitable for
testing large scale software and running multiple parallel tests. At the present
time there have been only a few research attempts to adopt software testing to
the computational grid. We give some examples of these below.

2.4. Distributed Software Testing 15

Duarte et al. proposed GridUnit [27, 53] to use the intrinsic characteristics
of grids to speedup the software testing processes. GridUnit is designed based
on the JUnit test framework and uses a centralized monitoring and control
framework to control the execution of unit tests. They used three different Grid
systems to evaluate the performance of their proposed method: Globus [54],
ourGrid [55, 56, 40], and Condor [57]. They claim to achieve up to 12 times
faster results when more than 45 machines are contributing to the test process.

Almeida et al. proposed an architecture for testing large scale systems using
P2P grid technology[26], to achieve better scalability. In order to address the
problem of synchronization and dependency between consecutive testers in large
scale distributed grid systems, their method uses message passing in a B-tree
structure or gossiping messages between consecutive testers.

Li et al. proposed a grid based software unit test framework based on bag
of tasks applications[25]. This framework uses a dynamic bag of tasks model
instead of the typical static models to achieve adaptive task scheduling. They
proposed a swarm intelligence scheduling strategy to improve the efficiency of
resource usage and to speed up task completion. They claim to achieve shorter
task completion times than random and heuristic testing by approximately 10%
and 40% respectively.

Chapter 3

Method

Although there have been several attempts to use P2P distributed and grid
computing systems for software testing and especially unit testing, there has
been little attention paid to using such systems for build and test together.
Most of the distributed build systems distribute the build over a predefined
set of servers to achieve faster builds. In contrast a P2P distributed system
that uses volunteer based computing will have a more challenging task than
simply load balancing. The way that source code and revisions are managed
can dramatically influence the performance of such a system, because there may
be long delays due to the need to transfer large amounts of data in order to be
able to run each task. In addition, building and testing often requires some
preparation on each platform, which increases the overhead when dividing the
build or test task into parts. Additionally, there are situations where dividing
a task into multiple tasks would be more expensive than simply running the
original task locally because of the data transfer and preparation overheads.

In addition, in cross platform systems such as MoSync SDK, there is a need
for building the system and testing it on different platforms. Therefore, in such
systems there exists a required minimum number of distributed tasks. This
SDK currently has libraries for 77 different mobile platforms and requires at
least on three different platforms for a complete system build regardless of the
required building time due to the requirements for the different cross platform
build environments. These requirements make it very hard for the community
of developers to easily contribute to such an open source project. In order
to attract more developers to their community, open source software projects
should facilitate collaboration among many developers who are distributed over
the Internet.

The goal of this masters thesis project is to find a suitable structure for
distributed build and test to faster developer collaboration in open source
software communities. Instead of utilizing powerful centralized servers for
build and test, we plan to develop a P2P system that will help developers
to share their computing resources. In this way developers can effectively have
more computers and devices for running tests on the software, hence the core
development team can have greater confidence in the quality and stability of
the software.

Since there have been many research attempts on distributed testing (such
as [27, 26, 25], [8], and [51]) and also resource discovery mechanisms in P2P

17

18 Chapter 3. Method

grid and volunteer computing environments (such as [40] and [58, 59]), this
project focuses on addressing the issues that arise due to the need to transfer
data among peers, hence it will examine the tradeoff between the potential
performance gains by adding additional nodes and the potential increase in
overhead (especially in the form of delay). Additionally, in this masters thesis
we investigated and designed a data management system for a P2P build and
test system.

3.1 System Requirements

In order to design the P2P based distributed build and test system, we studied
the requirements needed for building MoSync SDK packages. Section 3.1.1
describes the features that are required for running our specific type of tasks,
while section 3.1.2 describes the structure and specific requirements of MoSync
SDK’s build system.

3.1.1 Task Types

In many grid applications the amount of data that is required to be transferred
among nodes is negligible in comparison to the time needed for processing,
whereas in build/test systems the data transfer delay is a considerable part of
the total processing time. Therefore, in such systems tasks are considered to be
data dependent and the processing time may vary depending on the network
performance.

As a result, a P2P built and test grid system not only requires a system for
managing tasks and distributing them over the network efficiently, but it also
requires an efficient way of distributing the data and tasks among the relevant
peers. Most of the currently available and general purpose grids do not have an
efficient way of managing data and presume that the data transfer delay does
not cause a significant decrease in the overall system’s performance.

In this project we designed a task management system inspired by bag of
tasks applications (as discussed in sections 3.2.1 and 3.3.2), which should also
be suitable for build/test applications. We also proposed and analyzed a data
management solution for such systems (discussed in section 4.1).

3.1.2 Case Study:MoSync SDK

Testing and evaluations of the designs proposed in this master thesis are done
on a prototype of a P2P based distributed build and test system, developed
specifically for MoSync AB’s SDK. MoSync SDK is a cross platform tool
providing a single development environment for most of the major mobile
handset platforms currently available in the market. Figure 3.1 shows the basic
concept behind this platform. The SDK includes libraries for C/C++ which
have unique abstracted interfaces and are platform independent.

MoSync SDK uses specific components called runtimes to provide the
interface to the external resources for each MoSync application. These runtimes
are platform specific and should be run on their respective target platforms, as
a result they should also be tested on their specific target platforms.

3.1. System Requirements 19

MoSync SDK

Symbian

Windows
Mobile Android

iPhone

JavaME

C/C++ Code

Figure 3.1: The basic concept of MoSync SDK

3.1.2.1 Current Build System

Currently MoSync uses a script based build and test system using a series
of Ruby scripts that are invoked hierarchically, these are called MoSync’s
“workfiles”. Each “workfile” at the bottom of the tree is the smallest piece
of the build system that can be run independently. However, there may be
dependencies between these files. These scripts can be run on either Windows
or Mac OS X hosts to build MoSync libraries and tools. The detailed operation
and purpose of each component is outside the scope of this document, but is
described in the MoSync documentation[60]. The MoSync SDK also includes an
integrated development environment which is based on the Eclipse integrated
development environment (IDE). This IDE is completely platform independent
and can be build on any host using the Apache Ant [61] system.

MoSync runtimes are built using a separate script that can be invoked with a
number of different options. The MoSync SDK consists of 78 different runtimes
for different platforms (which includes a large number of different phones). Some
of these runtimes must be built on their respective platforms, for instance the
iPhone iOS and Windows Mobile runtimes should be built on a Mac OS X
platform or a Microsoft Windows platform respectively. Figure 3.2 shows the
compatibility of different components’ build script with different platforms. As
it can be seen in this figure, in order to build a complete MoSync SDK package
access to at least three different machines (either physical or virtual) is required.

Using the current build it takes more than two hours to do a complete build
on a powerful server and requires manual actions on more than one computer to
complete the build process, which makes it very hard for individual developers
to ensure they have not broken other parts of software by changing a specific
part of the whole system.

3.1.2.2 Current Revision Control and Developer Collaboration

Currenlty MoSync uses Git [46] as a hierarchical distributed revision control
system for the SDK development. Figure 3.3 shows the structure and

20 Chapter 3. Method

Microsoft Windows

LinuxMac OS X

Mosync IDE

JavaME

Android

Windows Mobile

iPhone iOS
Moblin

Symbian

Libs & Tools

Figure 3.2: Build-compatibility of different MoSync components

interconnections in this revision control system. This structure uses developer
sandboxes to achieve distributed independent repositories and uses a master
branch which a mirror of the public repository. Each sandbox will be merged
with the main repository after passing the build and test requirements. Each
sandbox belongs to a single team member, but many developers may commit
to an individual sandbox during a specific project.

Public
Repository
(GitHub)

Master Branch

Developer
Sandboxes

Developer
Sandboxes

Developer
Sandboxes

Local
Repository

Local
Repository

Contributors
Repositories

Figure 3.3: Revision control system architecture used by MoSync development
team

3.2. System Prototype 21

3.2 System Prototype

As the first phase of this project we have developed a prototype based upon
the basic functionality required for a P2P grid systems. This prototype can be
used as a base for developing the final P2P system. In order to evaluate the
proposed structure we used the developed prototype to build all of the MoSync
SDK packages. The main goal of this phase was to provide a platform enabling
performance and scalability measurements together with providing a basis for
expansion to a P2P system.

3.2.1 General Architecture

Figure 3.4 shows the network structure for this proposed system prototype. This
network consists of a master server which keeps track of the slaves and searches
through the slave list to service each request coming from a client. This master
server with some extensions can act as super peer (tracker) in the final P2P
architecture.

Client
Process

Slave
Process

Slave
Process

A
B C

Slave
Process

C

Master

Figure 3.4: The Prototype Architecture

There are several slaves connected to the master server and who
independently update their status. Each slave can run an independent build
or test script based upon a request by a client. Each slave is assumed to assign
all of its (shared) processing power to one client at a time. In order unify
the operations that are done by the system, these scripts are registered in the
master’s list, so they can be run by any of the systems. Each script should consist
of the minimum unit of operation that can be performed by a slave. Therefore
when generating tasks to process a request the master server distribute the tasks
depending on the number of available slaves and their capabilities.

Each host is capable of performing all of the three different roles using its
built-in components and run-time configuration. In the current version of the
system the role of each host is predetermined using a configuration file. Figure
3.5 shows the main components of the software running on each host and their

22 Chapter 3. Method

connection to the underlying operating system. The base functions are provided
by a set of classes that act as a library of basic operations that provide the
functionality of the distributed system. These class include everything that
is needed to provide an abstract interface for interacting with the distributed
system without considering the technology and the underlying layers. Table 3.1
describes these libraries.

Master
Functionality

Base Functionality

Slave
Functionality

Client
Functionality

Operating System Network Protocol Stack

P2P
Operation

Figure 3.5: Main Components of the System Running on a Host

3.2.2 Build Tasks

We used Ruby [63] as the base programming language for our prototype. Ruby
is a dynamic programming language, which provides transparent cross platform
support for our prototype. In addition, because of the dynamic behavior of
the Ruby language interpreter, tasks can be used as independent, self sufficient,
dynamic Ruby classes and scripts. We designed a base class in Ruby to provide
a unique interface to the system for each task. This base class can be inherited
by the task classes.

Figure 3.6 shows the conceptual class diagram for this base class. This
class also implements the basic functions that are accessible to the child classes
through inheritance and provides access to the system functionality. Table 3.2
includes the list of functions provided by the BuilderBaseClass to its child classes
to facilitate implementation of different tasks. By using this class as the parent
for a task class the user does not have to care about the details of the underlying
system’s operation and is only required to implement the specific functionality
required to run the task, i.e. building a component or running a specific test.

3.2. System Prototype 23

Table 3.1: Library classes available to different parts of the system
Utility This class provides many system level functions such

as compression, decompression, getting host platform
information, basic file operations, running external
commands while examining their outputs, and examining
the underlying operating system for free available TCP
ports.

FileTransfer This class provides a simple interface for transferring large
files among peers.

Logger This class provides abstract creation and handling of log
files for the distributed system.

RemoteCall The RemoteCall class provides an abstract interface for
calling remote functions on different hosts. It also provides
encoding and decoding of data for the remote functions.
This class currently uses XMLRPC over the HTTP protocol
to provide remote functionality to the system. Using
this class the underlying technology can be changed easily
without changing the user functions.

ClientHandler ClientHandler is a child class of RemoteCall and provides
an interface to the remote functions available on the client
component, such as sending sources, fetching results, and
updating status of a task.

SlaveHandler This class is a child class of RemoteCall and provides an
interface to the remote functions available on the slave
component, such as getting a task script, running a task,
and stopping a process.

MasterHandler MasterHandler is a child class of RemoteCall and provides
an interface to the remote functions available on the master
component of the host, such as query for slaves, generating
task scripts, adding a slave, and updating status of a slave.

TaskInfo This class consists the information about a task its
requirements, compatible platforms, its subtasks, the
associated script, assigned slave info if any, and other
compatible tasks. This class is transferred over XMLRPC
[62] as the request and response packet.

SlaveInfo The SlaveInfo class contains information about the slaves
and is used in both task class and master component to
track and store information about the slaves. It provide
information such as slave’s IP address and RPC port, its
platform, script generated for it, unique input filenames and
output filenames to be used by it in a particular process.

24 Chapter 3. Method

run
getSource
SendResults

mode
localPlatform
localAddress

BuilderClass

MasterHandler ClientHandler

RemoteCall

0..1 0..1

1
FileTransfer

0..1

1

Utility

0..1
0..1

1
LoggerClass

1

0..1

1

1

Figure 3.6: General class and object relationship for builder

Table 3.2: Functions available to the build/test tasks using inheritance
getSource Downloads the source from the client and

returns the local path for it.
sendResults Sends the results back to the client.
packLogsAndExit Stops the process, makes a package of log files,

sends the log files to the client where an error
happens.

sendError Sends realtime error messages to the client.
cleanUp Removes all temporary files and variables.
log Provides logging functionality which puts

ordered entries into the log file.
sh Provides the ability to run shell commands in

a limited manner, handles errors and logging
of the command.

prepareEnvironment Prepares the environment for the script by
creating temporary directories, adding needed
environmental variables, etc.

3.2. System Prototype 25

3.2.3 Main System Components

The software that will be installed on each host contains three major compo-
nents: the master component, the slave component, and the client component.
Based upon the situation, each host may use any of these components. The
active components define the role of the host in our overlay network.

3.2.3.1 Master Component

The master component of the system is build around a class named
MasterServer. This class uses many other classes from the common library
and provides all of the functionality required for searching through the slaves
connected to it, generating unique scripts and filenames for each task, pushing
common files to the slaves, and providing the slave list to the client. It also
instantiates some specific classes which are only used by this class client and/or
slave. Figure 3.7 shows the master class relationship with other classes and
Table 3.3 describes the private classes that are used by the master class.

run
startServer
genratesScripts
getScript
addSlave

localPlatform
localAddress

MasterClass

FileTransfer0..11

Utility

0..1

0..1

SlaveInfo

TaskInfo

1

1

0..n

0..1

1 1

1
0..n

ZipTracker

ZipInfo

0..1

0..n

1

ScriptTracker

ScriptInfo

0..1

0..n

1

Figure 3.7: General class and object relationship for master

3.2.3.2 Slave Component

A class named SlaveServer is the central part of the slave component in our
prototype. This class instantiates and uses multiple classes to perform its
assigned operations. Figure 3.8 shows SlaveServer’s relationships with other
classes of the system. The SlaveServer class also uses ZipInfo and ZipTracker
classes to track its local resources and also to update the local zip files
(compressed files that contain resources that are not changed frequently), when
there is a change in the file on master host.

26 Chapter 3. Method

Table 3.3: Extra classes used by the MasterServer Class
ScriptTracker This class is used for registering, tracking and

generating scripts for the registered tasks.
ScriptInfo ScriotInfo is used by ScriptTracker class to store

information about each specific script. It includes
information about the script name, the task related
to it, script platform, and parameters needed to be
passed to the script.

ZipTracker The system uses a separate table for common
resources used by tasks. In order to decrease the
data transfer delay at runtime, master server pushes
these files as zip files to each slave that connects to
it. This class tracks the resource files in form of zip
files and sends them to the slaves if needed.

ZipInfo This class is used by ZipTracker to store the
information of each resource file. This information
includes MD5 hash of the file, fileName, fileSize and
its location.

fetchScript
updateStatus

status
localPlatform
localAddress

SlaveClass

MasterHandler ClientHandler

RemoteCall

1

FileTransfer

Utility

0..1

1

ZipTracker

ZipInfo

0..1

0..1

0..1 0..1

1

1

0..n

1

1

0..1

1

Figure 3.8: General class and object relationship for slave

3.2.3.3 Client Component

Each host also includes a client part which uses a ClientBuilder class as its main
component. This class also uses multiple classes from the common functionality
library, together with some client specific classes to support the functionality
required of the client. The extra classes used by the client are listed in Table
3.4.

3.2. System Prototype 27

run
startRPC

mode
localPlatform
localAddress

ClientClass

MasterHandler SlaveHandler

RemoteCall

0..1 0..1

1

FileTransfer0..11

Utility

0..1
0..1

SlaveInfo

TaskInfo

1

1 1

0..n

0..1

1

SourceHandler

ResourcePreparator

TaskGenerator

1

1

1

0..n

1

0..1

0..1

0..1

1

Figure 3.9: General class and object relationship for clients

Table 3.4: Extra classes used by the ClientBuilder Class
SourceHandler This class handles the packing and preparation of

the source for the task list. It compresses the
source directory into different zip files based on the
requirements of different tasks.

ResourcePreparator The ResourcePreparator class handles the prepara-
tion of resources for dependent tasks.

TaskGenerator This class generates a list of tasks to be sent to the
master.

3.2.4 General Operation

In this section we discuss the general functionality of the prototype. Section
3.2.4.1 describes the messages that are required to be transferred among nodes
in order to run a task. Section 3.2.4.2 shows the structure and operation of a
client node. Section 3.2.4.3 describes the steps in running a task from the slave
point of view. Finally, section 3.2.4.4 discusses the operation of the master and
its role in the network.

28 Chapter 3. Method

3.2.4.1 Communication Messages

In order to run a specific task, different nodes with different roles may need to
send multiple messages to each other. Figure 3.10 shows a sequence diagram
for the messages transferred among different nodes in the system in order to
run a specific task. The client starts by sending a build/test request to the
server. This request may include multiple subtasks depending on the main task
of the client. The master sever sends a list of slaves together with a task list to
the client. After receiving this information the client sends (build or test) task
requests to each of the slaves in this list.

Client Master Server Slave

Genrate Scripts

Slave List

Build Request

Download Script

Script

Results

Status Free

Status Busy

Figure 3.10: Sequence of events for build/test task

After receiving the task request, a slave calls the master server to receive the
specific (and unique) Ruby script generated to run the specific task assigned to
it. The master server sends the script to the slave in a single message. Due to
the small size of these scripts they are sent directly packed in the XMLRPC [62]
messages and no extra file transfer connection is needed to transfer them.

The slave then runs the script, which in turn may download the relevant
source file from the client via a separate connection. After completion of the
task the slave sends any available result file together with the log files to the
client. Results and log files are transferred via a separate temporary TCP
connection between the client and the slave. This TCP connection from the
control connection. These TCP connections are closed after finishing the file
transfer and a new temporary connection is initiated for each new data transfer.
After finishing its processing and sending the results back to the client, the slave

3.2. System Prototype 29

sends a status message to the master to indicates that it is available for future
task requests.

3.2.4.2 Client Operation

A client generates a set of subtasks based on the original main task. The
original main task can be building or testing a specific software system (in
our case MoSync SDK). These tasks are sent to the master server (a host
which is configured to use its master functionality). This master server may
in turn divide each of these subtasks into yet smaller subtasks based upon
slave availability and the multi-platform nature of the task, then it attaches
information about the assigned slaves to the task list and returns this list to
the client. If there are not enough available free slaves to finish all of the
required tasks, then the master server sends the task list with slave information
attached to some of the tasks. The client sends requests to the available slaves
in the list and schedules another request to be sent to the master to complete
the remaining tasks. The scheduling of tasks, communication with slaves, and
processing of the intermediate results is done in the clients in order to reduce
the load on the master server. Figure 3.11 shows the operation of a client to
complete a requested task. Clients use as many threads as possible to achieve
parallelism in sending files and tasks to the slaves.

Each build or test request operation can be complete or partial. Partial
operations are handled similarly to the complete operations, with the only
difference being in source preparation, and the type of requests sent to the
server. For instance a client may start a process that builds or tests a single
component of the software, rather than the complete package.

3.2.4.3 Slave Operation

Slaves always consider their assigned tasks to be self sufficient, thus the script
should include the information about the client that has generated the request
itself and the script does not need to get any additional information from the
slave. The main operation of the slave is to provide libraries to the scripts and
run them in a controlled environment. Figure 3.12 shows how a slave generally
operates. The operation starts with the slave registering itself with the master
server as an available slave, then the slave starts a timer which updates its
status on the master server every 60 seconds. After receiving a task request,
this particular slave downloads the generated script, changes its status to busy,
and runs the script as a separate process. The status of the task script is locally
monitored to determine if it has finished its operation, then the slave removes
any temporary files and variables associated with the specific task and waits for
a new task. In addition to task requests, slaves respond to stop requests as well.
When a client wants to terminate a previously requested task due to a local error
or user request it can send a stop request to the slave, which results in killing
the script’s process and removing all of its temporary and status variables.

3.2.4.4 Master Operation

The master component, as shown in Figure 3.13, has the roles of tracking and
search through slaves, script, resource files, and task types. When receiving a

30 Chapter 3. Method

general build/test request from the client, the master server examines the list of
tasks and divides them into subtasks as needed. After dividing the received tasks
into subtasks and reorganizing the task list, the master searches for suitable
slaves in its list of available slaves, assigns appoperiate slaves to their respective
tasks, generates unique scripts for each of them, and sends a new list with this
information back to the client. In situations when the master finds a task in
the list, which is not compatible with any available slave that is either free or
busy, then an error message will be generated and sent back to the client. The
master also keeps track of every slave that is connected to it, based upon the
status updates that the slaves send. When a master receives an update message
it searches through the slave list for the specific slave and if the slave is not
in the list, then an error message will be sent back to that particular slave so
that the slave can register itself again with the master by sending its complete
information.

3.2. System Prototype 31

Start

Is it a complete
build ?

Compress
Source Code
for Runtimes

Compress
Source Code

for IDE

Compress
Source Code
for Libs/Tools

Send Request for
Slaves to Master

Received
Slaves?

Wait for a
Random Time

Send build/test
requests

Received enough
Slaves

Wait For
Results

Wait for a
Random Time

Terminate
Thread Receive a Result

Received all

Combine the
Results

Stop

Initiate Partial
Build

Thread

Thread

Multiple Threads

Figure 3.11: General operation of a client

32 Chapter 3. Method

Start

Add self to
Master

Wait 60
Seconds

Update Status
on Master

Build
Request

Get Script
From Master

Run Script

Change Status
to Busy

CleanUp

Stop
Request

Kill the build
process

A

A

Thread

Thread

Figure 3.12: General operation of a salve

3.2. System Prototype 33

Server
Request

Add
Slave

Update
 Slave

Start/Idle

Reorganize
Task List

Select Servers

Found
Incompatible

Tasks

Return
Error

Generate
Required Scripts

No

Yes

Return
Task List

Attach Slaves to
Task List

Idle

Add Slave
to List

Idle

Return
Zip List

Slave is in
the List

Return
Error

Update status
of the Slave

Return
Success

Idle

No

Yes

Figure 3.13: General operation of a master

34 Chapter 3. Method

3.3 Expansion to a P2P Architecture

Our second step in this project was to design an expansion mechanism for the
prototype to have a pure P2P architecture that can be usable by the developer
communities. In this new structure, there might be many masters connected to
each other working as trackers tracking dynamically available slaves (i.e. user
machines). There have been several proposals and a great deal of research
regarding P2P search in grids and resource discovery (i.e. [41, 42, 34, 59, 64, 65,
66, 67]). Therefore, our focus has been on methods of distributing tasks over
the slaves discovered by a P2P search algorithm.

3.3.1 System Architecture

As mentioned in section 3.2.1 the prototype components can be used as the
basis for developing the final P2P system. Figure 3.14 shows the proposed
hierarchical architecture for the final P2P build/test grid system. Using a
hierarchical structure reduces the number of changes required in the prototype
system to achieve full P2P functionality. The first step in this transition is that
the master functionality will be expanded to perform P2P search and discovery
operations (as shown earlier in Figure 3.5). Client and slave operations will
remain the same as in the prototype, although there may be a need for minor
changes.

Main Tracking
Server

Client/Slave

Tracker(master)

Figure 3.14: Final system architecture and host interconnection

3.3. Expansion to a P2P Architecture 35

In a real P2P system with nodes scattered over the Internet, communication
delay may be significant and high level of control messaging to be transferred
among peers can cause additional delay. In order to reduce the control messaging
overhead in the final P2P design we refined the messages that are required to be
exchanged in order to run a task. Figure 3.15 shows the sequence of messages
transferred among peers in order to run a specific task on a specific slave. This
figure does not include the search mechanism that is handled by the trackers
because as mentioned before our focus in this project is on distributing the tasks
over the slaves found by the P2P search mechanism. Additionally, this search
can be take place in the background and hence is not in the set of dependencies
for processing a given Task request.

Client Tracker Slave

Register

Assigned Tracker

Register

Sync Request

Task Request

Resources

Main Tracker

Results

Task Request

Figure 3.15: Minimum number of control messages required to run a specific
task

3.3.2 Task Distribution

As will be shown in section 4.2.3, the optimal way to exploit a distributed build
grid is to distribute the available tasks over the available slaves proportionally to
the processing resources. This method is feasible when the client has a complete
list of available slaves in advance. In real P2P systems the information about
the available slaves is not known in advance and may change dynamically. P2P
networks may be very dynamic and nodes may freely join or leave the network.

In order to overcome this problem and to achieve a balance between the
optimal task assignment and P2P search, we have designed a hierarchical task
distribution algorithm. This algorithm uses partial search results to initiate
task distribution and exploits XML based self dividing tasks. The tasks used in
our design are self-sufficient tasks that can be rescheduled and further divided
by slaves in the network.

36 Chapter 3. Method

<task name="TaskName" id="TaskID">

<requirements>

<requirement name="platform" value= "value"/>

<requirement name="libraries" value= "required libraries"/>

<requirement name="source" value= "revision" branch="branchName"/>

</requirements>

<compatible>task1,task2,task3</compatible>

<prerequisites>

<prerequisite name="Task Name"/>

</prerequisites>

<subTasks>

<subTask name="subtaskName" id="subtaskID">

<option name="optionName" value="OptionValue"/>

</subTask>

</subTasks>

<phases>

<phase order="0" taskList="task1,task2" />

<phase order="1" taskList="task3,task4" />

</phases>

<initiator address="clientAddress" port="clientPort"/>

</task>

Figure 3.16: Task Definition in XML format

We designed XML based task definitions as shown in figure 3.16. These
tasks are considered to be self sufficient; meaning they have complete infor-
mation about the task, the subtasks, the client initiating the process, source
information, and requirements for running the task. Using XML defined tasks
improves the extendibility of the system and makes it possible for custom tags
to be used in different situations. In addition, such structure is easily dividable
by just extracting the definition of a subtask and create new xml structure
for it. New task chunks inherit their requirements , client information and
compatibility information from the parent task. Table 3.5 shows description of
the default tags in the proposed XML based task definition.

Using the self-sufficient tasks the system can benefit from better division of
tasks and achieve a sub-optimal task division. Figure 3.17 shows the concept of
task distribution in our proposed system. The client starts by sending a search
request to its tracker, then it selects k slaves from the initial search results and
sends a subtask of its main task to each of those selected slaves. Parameter k
defines the starting point of the process and can be configured on the client by
the user. Each slave in turn can run a new search query and divide its assigned
task into chunks based upon the number of secondary slaves it can find. The
intermediate slaves can either pick a chunk to run and forward the rest to other
slaves or just forward the request based upon their available processing capacity.
The process continues until either the slave cannot find any other slaves or the
task is not dividable anymore. This process leads to forming a tree overlay
for task distribution. Each of the slaves for completing their tasks directly
communicate with the client for source updates and sending the results back.

3.3. Expansion to a P2P Architecture 37

Table 3.5: Description of XML tags used for describing the tasks in the proposed
system
Tag Name Description
task This tag is the root of each XML definition and

covers the whole task.
requirements This tag bound the list of requirements for each task.
requirement This tag defines the actual requirements of the

system.
compatible This tag defines other tasks that can be run with

this tag on the same machine and do not conflict
with each other.

prerequisites and prerequisite These tasks cover the prerequisite tasks that are
required for completion of this task.

subtasks and subtask These two tags cover the subtasks that can be
derived from the task defined in this XML.

phases and phase List of the steps needs for completion of the specific
task. Used to prioritize the subtasks.

initiator Detailed information of the client initiated the
process for downloading the sources and sending the
results back.

Client

Task Chunk

Task Chunk
Task Chunk

Task Chunk Task Chunk

Task ChunkTask Chunk

Task

Task

Task

Redundant Tasks

SlaveSlaveSlave

Slave
Slave

Slave

Slave

Slave Slave

Slave

Figure 3.17: Distribution of tasks over the network using self contained dividable
tasks

P2P networks are often very dynamic and any node may leave the network
at any time. Therefore, forming a tree structure with unreliable hosts as base
nodes can cause significant decrease in the overall performance. To prevent

38 Chapter 3. Method

such problems the system can use reliability factors to rank the nodes based on
their availability and connectivity. Each node logs its time on the tracker. The
tracker calculates the reliability rank of each node and sends this reliability rank
along with the search results to the client. In addition, the subtasks can be send
to redundant slaves to achieve greater reliability and achieve better expected
performance without needing to ignore low ranked slaves. The general queuing
theory that supports this approach is described in [68].

Chapter 4

Analysis

In the previous chapter we proposed a prototype and a new method of using
grids for software build and test. In this chapter we present an analysis of
these proposed methods and algorithms in the master thesis together with
experimental measurements in order to evaluate the proposed methods. Section
4.1 discusses and evaluates our proposed data management method for use with
P2P build and test grids. Section 4.2 then presents our measurements using the
developed prototype and compares them to the ideal situations.

4.1 Data Transfer and Management

In a distributed build and/or test system transferring the source code from the
original host to the hosts performing the tasks causes a delay that cannot be
neglected in the performance analysis. In order to completely build the software,
the complete source tree may be required on each host. This requirement may
lead to significant data transfer overhead (depending on the size of source code).
By using a distributed revision control system, we can significantly reduce the
amount of data that needs to be transferred among peers by only sending only
the differences between the local repositories.

We performed an analysis of seven open source projects, listed in Table
4.1, in order to calculate the amount of data transfer that may be required in
different situations to perform a build or test operation. As the information in
table 4.1 indicates, transferring the complete source tree among peers can lead to
significant file transfer overhead. This overhead may cause a significant decrease
in overall performance of the system especially when the network connecting
peers has low performance. Therefore, a data management system is needed to
decrease the amount of data that actually must be transferred over the network
hence decreasing the delay and increasing the overall performance of the system.

All of the projects that we have considered use Git [76] as their revision
control system. Table 4.2 shows the commit statistics for these seven projects.
As this table indicates the maximum size of a potential change in the source code
is significantly smaller than the source tree itself. These numbers also show that
there can be a significant decrease in the required data transfer overhead when
using a revision control management system as the base for these data transfers.
Figure 4.1 shows maximum commit size of each project as a percentage of its

39

40 Chapter 4. Analysis

Table 4.1: Seven open source project used as samples for the analysis
Project Name Source Size (MB) Description

Active Merchant [69] 9.2 An extension to the e-commerce system
Shopify. Has been in production
since 2006 and was released under
sponsorship of the Shopify Project.

jQuery [70] 19.9 A cross browser JavaScript Library for
simplifying the client side development.
Released under MIT License and GNU
GPL and has been active since 2006.

Ruby on Rails [71] 55.0 An open source web application frame-
work for the Ruby programming
language. Released under MIT License
and has been active since 2004.

Xorg [72] 66.0 A set of packages providing access to
the X window system and published by
the free desktop foundation. Released
under X11 License and has been active
since 2004.

Perl [73] 172.2 A high level general purpose dynamic
programming language. Released
under GNU GPL and has been active
since 1987.

MoSync SDK [74] 317.0 A cross platform mobile development
SDK using C++ and Eclipse. Has
been active since 2004 and was released
under GNU GPL license.

Linux Kernel [75] 1638.4 The operating system kernel for Linux
operating system. Initially released in
1991 under GNU GPL and maintained
by a community of developers.

source tree size. It can be seen from this figure in normal situations peers
need to transfer at most 20 percent of a source tree when using the features
of revision control system. Therefore, exploiting the features of this revision
control software is recommended to increase the efficiency of a P2P build and
test system.

Although using a revision control system can increase the efficiency of such
P2P build and/or test systems, there are limitations in the type and architecture
of the revision control system that can be used. Centralized revision control
systems, such as SVN [77] do not fulfill the requirements of P2P build and/or
test systems because any change must be committed to the central server before
being made available to and transferred using the source code control system.
Therefore distributed revision control systems are recommended because peers
can pull changes directly from each other without interfering with the main
repository. It should also be mentioned that there may be exceptional situations
where the changes in the local source code are comparable to the source tree in
size, but on average the changes that were merged into the main repository of

4.1. Data Transfer and Management 41

these projects are significantly smaller than the source code itself (see table 4.2
and figure 4.1).

Table 4.2: Commit Statistics for the Projects under analysis
Project Max Size (MB) Avg. Size (KB) Max. Files Avg. Files

Linux Kernel 99.13 79.233 4208 2
Active Merchant 0.087 196.96 19 3
MoSync SDK 41.0 35.631 737 6
jQuery Project 3.75 174.57 26 2

Perl 7.86 42.721 123 3
Ruby on Rails 4.1 26.725 337 2

Xorg 7.58 97.554 345 3

Figure 4.1: Maximum commit size divided by the size of source tree for all of
the seven projects shown as percentage.

We have performed an experiment to compare the performance of using
direct file transfer and using revision control systems. In order to perform this
experiment, we downloaded MoSync SDK’s source tree from a single server
using both the Git revision control system and a direct file transfer. Both of
these methods were used to download the source tree from the same server over
the internet and through a 14Mbps connection. The direct transfer method
downloaded a compressed version of the source tree (comprising 89.9MB)
directly from the server using the HTTP protocol, while the Git connection was
used in two different modes: cloning a complete source tree and downloading
the differences using Git commands. The differences download measurement
was done by reseting the local Git repository to an older revision and branch,
then updating it to the latest revision and switching the branch. Table 4.3
shows the results of our measurements. This table shows that if every slave has
a copy of the source tree the data transfer can be up to approximately 24 times
more efficient. It also shows the inefficiency of using Git to transfer the complete

42 Chapter 4. Analysis

source tree, but if the data management system uses the revision control system
it will only transfer the complete source tree once, as all subsequent transfers
will only be files that have been changed.

Table 4.3: Data transfer measurement results
Method Average Time (seonds)
Direct File Transfer 67.45
Git Cloning the complete repository 147.59
Git pulling the differences from 50 commits back 2.73
Git pulling the differences from 5 commits back 1.09

There are also limitations and risks in using revision control systems as
the base of data transfer. In many projects (especially in community based
open source software development) developers may cause merge and commit
conflicts which should often be handled manually. In such situations pulling the
source code from another machine via the revision control system may cause
problems in the operation of the system. Therefore, extra actions should be
considered when using these systems as the base for data transfer. To overcome
this problem we propose using dummy branches together with backup direct
transfer. Figure 4.2 shows an overview of the proposed way to exploit the
benefits of revision control systems. Using this method will sacrifice performance
in some situations, but is more fault tolerant than using the revision control
systems alone.

4.1. Data Transfer and Management 43

Idle Mode

Get Latest Info
from Main repo

Create dummy
branch

Pull
Request

Pull Sucess

Register
Detailed

Revision Info

Build
Command

Compress the
Source Tree

Start

A

A

Send Using
TCP

Yes
No

A

A

Figure 4.2: Summary of the data transfer algorithm combining revision control
and plain TCP connections

44 Chapter 4. Analysis

4.2 Performance and Scalability

As mentioned before the data transfer overhead can cause significant additional
delay and as a result lower the performance of P2P build systems. In addition,
peers need to run some prerequisite tasks before running their assigned task.
These prerequisite tasks can also cause additional delay in processing. All of
these limitations may produce a practical limit for dividing tasks into subtasks,
i.e., a point after which the performance gain would be less than the overhead
penalty.

In this section we present our evaluation and analysis of the performance and
scalability of our proposed prototype using both experimental measurements
and theoretical analysis. First we discuss the experiment setup we used for
our measurements and then discuss the expected performance versus the actual
measured performance.

4.2.1 Test Setup and Configuration

We have deployed the prototype on a set of virtual and physical machines, which
will be used for our measurements and investigations. Figure 4.3 summarizes the
configuration of these machines and the configurations used in our test setup. In
order to model the machines in a P2P network, we used virtual machines with
limited resources as slaves. We use two powerful server that have six and eight
core processors, each of these servers run four virtual machines. These servers
run Ubuntu Linux Desktop Edition 64bit [78] as their operating system. Each
virtual machine has one GB of RAM assigned to it. The Linux virtual machines
have four virtual processors each and the Microsoft Windows virtual machines
run on two virtual processors. In addition, we have two dual core Mac mini
machines acting as Mac OS X slave servers. The Linux slaves run XUbuntu
Linux 32bit and the Windows slaves run Microsoft Windows XP Service pack
3 with the MinGW environment configured on them. All of our tests are done
using direct source transfer by compressing the source tree into a single zip file
and transferring it over the network.

Based upon our analysis of the MoSync source code we divided the main task
of building MoSync SDK into eight different general tasks as shown in Table
4.4. Figure 4.4 shows the hierarchy of tasks used in our design. MoSyncWin
and MoSyncMac tasks are high priority tasks which are assigned to the available
slaves. After assigning slaves to these tasks, then Runtimes and Eclipse tasks
are divided into subtasks to occupy all of the available slaves. MacPacking and
WinPacking tasks depend upon finishing the other tasks therefore scheduled in
the next phase.

4.2.2 Basic Task Times

Since the nature of tasks running on our system is very complicated and
vary from component to component, providing an exact theoretical formula for
calculating the performance is not feasible. Therefore, we measured the time
needed for performing the most basic tasks of building MoSync components. We
use these timings for further analysis and measurements. Table 4.5 contains the
results of these measurements. According to Amdahl’s law the shortest time that
can be achieved by parallelization is equal to the time required for processing the

4.2. Performance and Scalability 45

Internal
Network

Windows
Slave

Linux
Slave

Linux
Slave

Windows
Slave

Windows
Slave

Linux
Slave

Linux
Slave

Windows
Slave

Mac OS X
Slave

Mac OS X
Slave

Virtual Machines
Virtual Machines

Server 1

Server 2

Master

Client

Figure 4.3: The setup that was used for measurements and evaluations

longest unbreakable task in the whole process. The results in Table 4.5 indicate
that the shortest achievable time when building complete MoSync packages is
greater than equal to the time required for building Windows Libraries plus the
time required for running the windows packaging task(1426 seconds).

4.2.3 Task Scheduling and Scalability

Division of tasks among available nodes is one of the important factors in the
performance of grids. Additionally, how a grid is able to scale with increase in
the number of nodes is an important performance benchmark in most of the
literature(such as [25, 36, 16], and [20]).

Usually in ordinary grid systems the tasks are divided into small chunks
with equal size, then a new chunk is assigned to a new node that joins the
system. This method results in a linear increase in theoretical performance.
In this project we consider a decrease in build or test time as an increase in
performance. Therefore, the ideal increase in performance versus the number of

46 Chapter 4. Analysis

Table 4.4: Designed build and test tasks
Task Name Description
Runtimes This task is a general task that has the potential

to build all of the required runtimes. This task
is divided into multiple tasks depending on the
situation. Since some runtimes can only be built on
Mac OS X, Linux, or Windows; in order to build the
complete set of runtimes this task should be divided
into at least three subtasks.

MoSyncMac This task builds MoSync Libraries on Mac OS X.
Due to high interdependency of components in this
task it cannot be divided into any other subtasks.

MoSyncWin MoSyncWin tasks is used to build MoSync libraries
on Microsoft Windows. Due to high interdependency
of components in this task it cannot be divided into
any other subtasks.

Eclipse MoSync IDE is built using this task. This single task
generates a Java based IDE for MoSync that can be
used on any platform.

MacPacking This task packages the results of other tasks that it
depends on, into an installation package suitable for
Mac OS X. This is a dependent task that requires
previous tasks to finish.

WinPacking This task packages the results of other tasks that it
depends on, into an installation package suitable for
Microsoft Windows. This is a dependent task that
requires previous tasks to finish.

MoSync Build

Windows
Package Mac Package

Eclipse Runtimes Mac LibsWindows
Libs

JavaME(64)Android(3) iOS(1)Windows
Mobile(4) Symbian(3)Moblin(1)

Mac PackingWindows
Packing

Shared

Figure 4.4: Task breakdown for the case of building MoSync SDK

processing nodes, would be as follows:

4.2. Performance and Scalability 47

Table 4.5: Initial measurement results
Task Description No. of Runs Task Completion Time (seconds)
Building two MoSync SDK pack-
ages(for Microsoft Windows and Mac
OS X) sequentially and using the
original build system that does not have
any parallel mechanism.

4 10597

Building a single JavaME runtime on
Linux without taking into account the
required preparation time.

20 12

Building a single Android runtime on
Linux without taking into account the
required preparation time.

20 21

Building Moblin runtime on Linux
without taking into account the re-
quired preparation time.

20 52

Building a single Windows Mobile
runtime on Microsoft Windows without
taking into account the required prepa-
ration time.

20 78

Building a single Symbian runtime on
Microsoft Windows without taking into
account the required preparation time.

20 95

Building iPhone runtime on Mac OS
X without taking into account the
required preparation time.

20 28

Building prerequisites for building a
runtime on Microsoft Windows.

20 134

Building prerequisites for building a
runtime on Linux.

20 42

Building prerequisites for building a
runtime on Mac OS X.

20 34

Windows Libraries 20 1183
Mac OS X Libraries 20 752
Windows Packaging 20 243
Mac OS X Packaging 20 158

Tprocess =

�
Tsingle −Np ∗ Tchunk if Np < Nchunks

Tchunk if Np > Nchunks
(4.1)

where Tprocess is the actual time required for running the build or test
package on the achieved distributed system, Tsingle is the time required for
running all of the sub tasks(chunks) on a single local machine, Np is the number
of nodes(processes) running the the tasks, Nchunks is the number of possible task
chunks, and Tchunk is the time required for running a single task chunk over a
single processor.

According to equation 4.1 the effects of an ideal increase in performance are
as shown as blue points (and a blue curve) in Figure 4.5. Figure 4.5 also shows

48 Chapter 4. Analysis

the measured performance of our prototype. We used the Runtimes tasks for
both our theoretical calculations and experimental measurements because this
set of tasks can be easily split into uniformly small tasks. The measurements
shown in Figure 4.4 is based on running the experiment for 100 times (to reach
the confidence interval of 0.01) and using the average. Since each of our nodes
in the setup had more than one processors the decrease in processing time is
approximately linear when the number of processes increases, but when a new
remote node is added to the system a small increase in the processing time is
visible. This increase occurs because of the network overhead and the extra
delay caused by running prerequisite tasks on the remote machine. As figure
4.5 shows, due to the additional delays the gap between the ideal system and the
actual system increases with increase in number of processing nodes. An analysis
over these measurement results shows that the delay in processing caused by
the inter process delay is negligible in comparison to the delay caused by the
network. Therefore, we can consider the delay to come from the data transfer
over the network.

Figure 4.5: Processing time versus number of processes with linear task division

Another way of scheduling and dividing the tasks is to fully benefit from
the number of available processors to balance the number of tasks running on
each node by dividing the number of subtasks by the number of available nodes.
Using this method the processing time is significantly lower than when using
linear task assignment. As a result the ideal processing time versus the number
of processors is described in equation 4.2.

Tprocess =

�
Nchunks

Np

�
∗ Tchunk if w is 0 and Np < Nchunks

round

�
Nchunks

Np

�
∗ Tchunk + Tchunk if w is not 0 and Np < Nchunks

Tchunk if Np > Nchunks

(4.2)

4.2. Performance and Scalability 49

where w equals to mod(Nchunks, Np).
Equation 4.2 indicates that ideally there should be a decrease in processing

time by a factor of N as shown in figure 4.6. Figure 4.6 also includes the
results from our measurements too. This figure shows that the real system
follows the scalability of an ideal system with a small gap. Unfortunately, the
performance gap increases as the number of nodes increases, thus indicating
that there are diminishing returns for increasing the number of processors. This
expansion is due to the network and processing overhead. When reaching a
certain number of processors(in our case 16) the ideal processing time does not
decrease significantly with an increase in the number of processors. This is the
point in which the optimum number of processors are being used and increasing
the number of processors does not affect the performance of the system. In
the prototype the performance starts declining when the numbers of nodes
exceeds this point and adding new processors causes the actual performance
of the system to decrease (as can be seen in the curve with an increase in
processing time when the number of processors exceeds 16).

Figure 4.6: Processing time versus number of processes with optimal task
divisions

50 Chapter 4. Analysis

The actual building and testing of software is a more diverse task than the
subset of tasks represent by Runtimes. The complete set of tasks consists of
different types of sub-tasks either dependent or independent sub-tasks. In order
to evaluate the performance improvement introduced by our prototype when
building two complete MoSync SDK packages, we measured the time required
for building these packages with different numbers of simultaneous jobs. Table
4.6 shows the results of our measurements when building two MoSync packages
over our prototype. The combination of tasks are chosen in a way that can be
easily detected by the system without any manual intervention.

Table 4.6: Package Build Measurement Results
No. of Jobs No. of Nodes Description

1 2 Building each package on a single machine (one
Windows and one Mac OS X) sequentially.

2 2 Building each package on a single machine (one
Windows and one Mac OS X) in parallel.

4 4 Building on four nodes using full power
of each machine. Tasks were divided as
MoSyncWin, MosyncMac, Eclipse, Runtimes,
Windows Packaging, Mac Packaging. The
packaging tasks depend on finishing all of the
others (packages share components).

6 6 Building on six nodes using full power of each
machine. Tasks were divided as MoSyncWin,
MosyncMac, Eclipse, Three Runtimes Tasks,
Windows Packaging, Mac Packaging. The
packaging tasks depend on finishing all of the
others (packages share components).

8 8 Building on eight nodes using full power of each
machine. Tasks were divided as MoSyncWin,
MosyncMac, Two Eclipse Tasks, Four Runtimes
Tasks, Windows Packaging, Mac Packaging. The
packaging tasks depend on finishing all of the
others (packages share components).

Figure 4.7 shows the results of our measurements of building complete
packages. This figure shows the performance achieved by using our distributed
prototype builder is six times more than the performance achieved by the single
machine sequential builder. Figure 4.8 shows the achieved processing time
with maximum possible parallelism in comparison to the ideal performance
when using the same degree of parallelism. This figure supports the previous
expectations regarding the performance according to the Amdahl’s law. The
actual achieved processing time is 305 longer than the ideal processing time.
This time is mostly because of the data transfer delay among different nodes.

4.2. Performance and Scalability 51

Figure 4.7: System performance building two complete packages

Windows Libs

Mac Libs

Windows Mobile

Eclipse

JavaMe/Android/Moblin

Symbian

Eclipse

iPhone

Windows
Packaging

Mac
Packaging

Time

Ideal Time = 1426 seconds

Actual Time = 1731 seconds

Additional
 Delay

Figure 4.8: The achieved time with maximum possible parallelism

Chapter 5

Conclusions and Future

Work

5.1 Conclusion

In this thesis project we explored the possibilities of using P2P grids for building
and testing software. The goal was to investigate the limits and benefits
of running more complex tasks in comparison to running computationally
intensive tasks using P2P grids. Our main focus was to evaluate the role of
the data transfer delays in the performance of such grids and also the effects
of partitioning of tasks on the performance of such grids. We have developed a
prototype for running such tasks using a hierarchical structure. Our prototype
is designed in such a way that can be expanded to a real P2P architecture
without major modifications. This prototype improved the performance of
building MoSync SDK by approximately six times over a test setup (that was
designed to model a network of multiple nodes). This performance improvement
illustrates the possibility of running such tasks over grids.

One of the reasons for the limited increase in performance is that, in contrast
to ordinary grid tasks, build and test tasks have high data transfer requirements
and network delay can cause an additional decrease in the performance of the
grid based system. Therefore, we propose a data management system that
exploits the functionality provided by revision control systems to improve the
efficiency of transferring data over the network. However, there are limitations
in using revision control systems as the base for data management of the P2P
build and test grid. It is recommended that distributed revision control systems
be used for this purpose rather than centralized systems. Additionally, there
should be a mechanism for detecting and ignoring source code conflicts during
the transfer. Therefore, we designed a system that uses dummy branches over
the Git revision control system. This method uses direct transfer when there
are unresolvable conflicts.

Tasks running on P2P build and test systems can only be divided into smaller
tasks up to a certain degree. This limitation requires additional considerations
when deciding upon task distribution. In order to overcome the limitations
dictated by the nature of the tasks and to exploit the full power of the distributed
system, we proposed a method of task distribution that evenly divides the

53

54 Chapter 5. Conclusions and Future Work

tasks (that are possible to divide) over the set of nodes that are available for
running them. Our measurements show that this method of dividing the tasks
can increase the achieved performance by a factor of approximately six in the
developed prototype (see Figures 4.5 and 4.6). Although dividing the tasks
evenly over the available nodes leads to a significant increase in performance, in
a real P2P environment it is not feasible to have the list of available nodes
in advance without extra penalties. In order to overcome this problem we
designed a tree based hierarchical task distribution method that can reach a
near-optimum performance in a real world scenario.

P2P grids can help in increasing the number of contributions among open
source software communities by providing the opportunity for every developer
to build and test their codes without having access to multiple machines
locally. Developing cross platform applications may need building and testing
the software on multiple platforms. Therefore, using a P2P system can also help
such projects by providing the possibility of building and testing the software
over multiple platforms with different configurations, thus enabling contributes
from developers who only have one of the platforms.

5.2 Future Work

The future work includes the following:

• Evaluate the system’s queueing and scheduling capabilities when respond-
ing to requests from multiple clients.

• Develop and evaluate a test application over the middleware prototype.

• Integrate the proposed data management system and P2P searching
mechanisms into the prototype.

• Analyze the effect of adding a P2P search mechanism in terms of resulting
delay and the overall system performance.

• Evaluate performance of the new system and compare it to the prototype.

• Exploit available source code analysis tools to achieve automatic modu-
larization and task generation.

• Analyze the security requirements for P2P build and test grids.

• Add automatic feature detection to detect the capabilities of the hosts.

• Add a mechanism for detection and usage of idle processing power of the
slaves.

References

[1] M. A. Cusumano, “Managing software development in globally distributed
teams,” Commun. ACM, vol. 51, pp. 15–17, February 2008. [Online].
Available: http://doi.acm.org/10.1145/1314215.1314218

[2] “Microsoft Windows Vista,” http://windows.microsoft.com/en-
US/windows-vista/products/home.

[3] C. Bird, N. Nagappan, P. Devanbu, H. Gall, and B. Murphy, “Does
distributed development affect software quality? An empirical case
study of Windows Vista,” in Proceedings of the 31st International
Conference on Software Engineering, ser. ICSE ’09. Washington, DC,
USA: IEEE Computer Society, 2009, pp. 518–528. [Online]. Available:
http://dx.doi.org/10.1109/ICSE.2009.5070550

[4] MoSync, “MoSync cross platform SDK,” http://www.mosync.com.

[5] D. Johnson, T. Stack, R. Fish, D. M. Flickinger, L. Stoller, R. Ricci,
and J. Lepreau, “Mobile emulab: A robotic wireless and sensor network
testbed,” in INFOCOM 2006. 25th IEEE International Conference on
Computer Communications. Proceedings, april 2006, pp. 1 –12.

[6] P. Duvall, S. Matyas, and A. Glover, Continuous integration: improving
software quality and reducing risk, 1st ed. Addison-Wesley Professional,
2007.

[7] J. Holck and N. Jorgensen, “Continuous integration and quality assurance:
A case study of two open source projects,” Australian Journal of
Information Systems, vol. 11, no. 12, pp. 45–53, 2004.

[8] M. Oriol and F. Ullah, “YETI on the Cloud,” in Software
Testing, Verification, and Validation Workshops (ICSTW), 2010 Third
International Conference on, 2010, pp. 434 –437.

[9] W. E. Lewis, Software Testing and Continuous Quality Improvement,
3rd ed. CRC Press, 2009.

[10] P. de Laat, “Governance of open source software: state of the art,”
Journal of Management and Governance, vol. 11, pp. 165–177, 2007.
[Online]. Available: http://dx.doi.org/10.1007/s10997-007-9022-9

[11] E. Capra, C. Francalanci, F. Merlo, and C. Rossi Lamastra, “A survey
on firms’ participation in open source community projects,” in Open

55

56 References

Source Ecosystems: Diverse Communities Interacting, ser. IFIP Advances
in Information and Communication Technology, C. Boldyreff, K. Crowston,
B. Lundell, and A. Wasserman, Eds. Springer Boston, 2009, vol. 299, pp.
225–236.

[12] G. von Krogh and E. von Hippel, “The promise of research on open source
software,” Management Science, vol. 52, no. 7, pp. 975–983, July 2006.

[13] (2010) Debian GNU Linux. http://www.debian.org. [Online]. Available:
http://www.debian.org

[14] Debian Community, “About Debian,” http://www.debian.org/News/
2010/20101215, Last Checked: 28 Jan 2011.

[15] G. Fox, D. Gannon, S. hoon Ko, S. Lee, S. Pallickara, M. Pierce, X. Qiu,
X. Rao, A. Uyar, M. Wang, and W. Wu, “Peer-to-peer grids,” in In Grid
Computing Making the Global Infrastructure a Reality. John Wiley and
Sons Ltd, 2010.

[16] F. Berman, G. Fox, and A. J. G. Hey, Grid Computing: Making the Global
Infrastructure a Reality. New York, NY, USA: John Wiley & Sons, Inc.,
2003.

[17] D. P. Anderson, “BOINC: A System for Public-Resource Computing
and Storage,” in Proceedings of the 5th IEEE/ACM International
Workshop on Grid Computing, ser. GRID ’04. Washington, DC,
USA: IEEE Computer Society, 2004, pp. 4–10. [Online]. Available:
http://dx.doi.org/10.1109/GRID.2004.14

[18] “BOINC Status - Boinc Combined,” http://boincstats.com/stats/, last
Checked: 25-01-2011.

[19] F. Darema, “The SPMD Model: Past, Present and Future,” in Recent
Advances in Parallel Virtual Machine and Message Passing Interface, ser.
Lecture Notes in Computer Science, Y. Cotronis and J. Dongarra, Eds.
Springer Berlin / Heidelberg, 2001, vol. 2131, pp. 1–1.

[20] W. Cirne, F. Brasileiro, J. Sauvé, N. Andrade, D. Paranhos, E. Santos-neto,
R. Medeiros, and F. C. Gr, “Grid computing for bag of tasks applications,”
in In Proc. of the 3rd IFIP Conference on E-Commerce, E-Business and
EGovernment, 2003.

[21] D. S. Milojicic, V. Kalogeraki, R. Lukose, K. Nagaraja, J. Pruyne,
B. Richard, S. Rollins, and Z. Xu, “Peer-to-peer computing,” HP Labs,
Tech. Rep., 2002.

[22] A. Iamnitchi, P. Trunfio, J. Ledlie, and F. Schintke, “Peer-to-peer
computing,” in Euro-Par 2010 - Parallel Processing, ser. Lecture Notes
in Computer Science, P. D’Ambra, M. Guarracino, and D. Talia, Eds.
Springer Berlin / Heidelberg, 2010, vol. 6271, pp. 444–445.

[23] J. A. Pouwelse, P. Garbacki, J. Wang, A. Bakker, J. Yang, A. Iosup, D. H. J.
Epema, M. Reinders, M. R. V. Steen, and H. J. Sips, “Tribler: A social-
based peer-to-peer system,” in In The 5th International Workshop on Peer-
to-Peer Systems (IPTPS’06, 2006.

References 57

[24] J. Cao and F. Liu, “P2PGrid: Integrating P2P Networks into the Grid
Environment,” in Grid and Cooperative Computing - GCC 2005, ser.
Lecture Notes in Computer Science, H. Zhuge and G. Fox, Eds. Springer
Berlin / Heidelberg, 2005, vol. 3795, pp. 871–883.

[25] Y. Li, T. Dong, X. Zhang, Y. duan Song, and X. Yuan, “Large-scale
software unit testing on the grid,” in Granular Computing, 2006 IEEE
International Conference on, May 2006, pp. 596 – 599.

[26] E. de Almeida, G. Sunyé, and P. Valduriez, “Testing architectures for large
scale systems,” in High Performance Computing for Computational Science
- VECPAR 2008, ser. Lecture Notes in Computer Science, J. Palma,
P. Amestoy, M. Daydé, M. Mattoso, and J. Lopes, Eds. Springer Berlin /
Heidelberg, 2008, vol. 5336, pp. 555–566.

[27] R. N. Duarte, W. Cirne, F. Brasileiro, P. Duarte, and D. L. Machado,
“GridUnit: Using the Computational Grid to Speed up Software Testing,”
in 19th Brazilian Symposium on Software Engineering, 2005.

[28] Y. Jiang, G. Xue, and J. You, “Distributed hash table based peer-to-
peer version control system for collaboration,” in Computer Supported
Cooperative Work in Design III, ser. Lecture Notes in Computer Science,
W. Shen, J. Luo, Z. Lin, J.-P. Barthès, and Q. Hao, Eds. Springer Berlin
/ Heidelberg, 2007, vol. 4402, pp. 489–498.

[29] B. de Alwis and J. Sillito, “Why are software projects moving from
centralized to decentralized version control systems?” in Cooperative
and Human Aspects on Software Engineering, 2009. CHASE ’09. ICSE
Workshop on, May 2009, pp. 36 –39.

[30] A. D. Kshemkalyani and M. Singhal, Distributed Computing Principles,
Algorithms, and Systems. Cambridge, UK: Cambridge University Press,
2008.

[31] D. P. Vidyarthi, B. K. Sarkar, A. K. Tripathi, and L. T. Yang, Scheduling
in Distributed Computing Systems: Analysis, Design and Models. New
York, NY, USA: Springer, 2009.

[32] L. F. G. Sarmenta, “Volunteer computing,” Ph.D. dissertation, Department
of Electrical Engineering and Computer Science, Massachusetts Institute
of Technology, Cambridge, Massachusetts, USA, June 2001.

[33] D. P. Anderson, J. Cobb, E. Korpela, M. Lebofsky, and D. Werthimer,
“SETI@home: an experiment in public-resource computing,” Commun.
ACM, vol. 45, pp. 56–61, November 2002. [Online]. Available:
http://doi.acm.org/10.1145/581571.581573

[34] S. Esteves, L. Veiga, and P. Ferreira, “GridP2P: Resource usage in Grids
and Peer-to-Peer systems,” in Parallel Distributed Processing, Workshops
and Phd Forum (IPDPSW), 2010 IEEE International Symposium on, 2010,
pp. 1 –8.

58 References

[35] R. Rodrigues and P. Druschel, “Peer-to-peer systems,” Commun.
ACM, vol. 53, pp. 72–82, October 2010. [Online]. Available:
http://doi.acm.org/10.1145/1831407.1831427

[36] N. Therning and L. Bengtsson, “Jalapeno: secentralized grid computing
using peer-to-peer technology,” in Proceedings of the 2nd conference on
Computing frontiers. New York, NY, USA: ACM, 2005, pp. 59–65.
[Online]. Available: http://doi.acm.org/10.1145/1062261.1062274

[37] L. Gong, “JXTA: a network programming environment,” Internet
Computing, IEEE, vol. 5, no. 3, pp. 88 –95, 2001.

[38] L. Senger, M. de Souza, and D. Foltran, “Towards a peer-to-peer framework
for parallel and distributed computing,” in Computer Architecture and
High Performance Computing (SBAC-PAD), 2010 22nd International
Symposium on, 2010, pp. 127 –134.

[39] P. Tiburcio and M. Spohn, “Ad hoc grid: An adaptive and self-organizing
peer-to-peer computing grid,” in Computer and Information Technology
(CIT), 2010 IEEE 10th International Conference on, 29 2010-july 1 2010,
pp. 225 –232.

[40] N. Andrade, L. Costa, G. Germóglio, and W. Cirne, “Peer-to-peer grid
computing with the ourgrid community,” in in 23rd Brazilian Symposium
on Computer Networks (SBRC 2005) - 4th Special Tools Session, 2005.

[41] S. Ma, X. Sun, and Z. Guo, “A resource discovery mechanism integrating
p2p and grid,” in Computer Science and Information Technology (ICCSIT),
2010 3rd IEEE International Conference on, vol. 7, 2010, pp. 336 –339.

[42] D. Lá andzaro, J. Marquè ands, and X. Vilajosana, “Flexible resource
discovery for decentralized p2p and volunteer computing systems,”
in Enabling Technologies: Infrastructures for Collaborative Enterprises
(WETICE), 2010 19th IEEE International Workshop on, 2010, pp. 235
–240.

[43] J. Corbet, G. Kroah-Hartman, and A. McPherson, “Annual report on linux
kernel development - linux kernel development,” December 2010.

[44] B. O’Sullivan, “Making sense of revision-control systems,” Communications
of the ACM, vol. 52, no. 9, pp. 56–62, September 2009.

[45] N. B. Ruparelia, “The history of version control,” SIGSOFT Software
Engineering Notes, vol. 35, pp. 5–9, January 2010. [Online]. Available:
http://doi.acm.org/10.1145/1668862.1668876

[46] S. Chacon, Pro Git, D. Parkes, Ed. Apress, 2009.

[47] S. Fomin, “The cathedral or the Bazaar: Version-control centralized or
distributed?” in Software Engineering Conference in Russia (CEE-SECR),
2009 5th Central and Eastern European, 2009, pp. 259 –265.

References 59

[48] P. Mukherjee, A. Kovacevic, and A. Schürr, “Analysis of the benefits the
peer-to-peer paradigm brings to distributed agile software development,”
in In Proceedings of the the Software Engineering Conference (SE), Feb
2008, pp. 72 – 76.

[49] P. Mukherjee, C. Leng, W. Terpstra, and A. Schurr, “Peer-to-peer based
version control,” in Parallel and Distributed Systems, 2008. ICPADS ’08.
14th IEEE International Conference on, 2008, pp. 829 –834.

[50] W. Perry, Effective methods for software testing, third edition. New York,
NY, USA: John Wiley & Sons, Inc., 2006.

[51] T. Hanawa, T. Banzai, H. Koizumi, R. Kanbayashi, T. Imada, and
M. Sato, “Large-scale software testing environment using cloud computing
technology for dependable parallel and distributed systems,” in Software
Testing, Verification, and Validation Workshops (ICSTW), 2010 Third
International Conference on, 2010, pp. 428 –433.

[52] M. Oriol and S. Tassis, “Testing .NET code with YETI,” in Engineering
of Complex Computer Systems (ICECCS), 2010 15th IEEE International
Conference on, 2010, pp. 264 –265.

[53] A. Duarte, W. Cirne, F. Brasileiro, and P. Machado, “GridUnit: software
testing on the grid,” in ICSE ’06: Proceedings of the 28th international
conference on Software engineering. New York, NY, USA: ACM, 2006,
pp. 779–782.

[54] I. Foster, “Globus toolkit version 4: Software for service-oriented systems,”
Journal of Computer Science and Technology, vol. 21, pp. 513–520, 2006.

[55] M. Mowbray, “How web community organisation can help grid computing,”
International Journal of Web Based Communities, vol. 3, no. 1, pp. 44–54,
2007.

[56] W. Cirne, F. Brasileiro, N. Andrade, L. Costa, A. Andrade, R. Novaes, and
M. Mowbray, “Labs of the world, unite!!!” Journal of Grid Computing,
vol. 4, no. 3, pp. 225–246, 2006.

[57] D. Thain, T. Tannenbaum, and M. Liyny, “Distributed computing in
practice: the condor experience,” Concurrency and Computation: Practice
and Experience, vol. 17, no. 2-4, pp. 323–356, 2005.

[58] D. Talia and P. Trunfio, “A P2P Grid Services-Based Protocol: Design and
Evaluation,” in Euro-Par 2004 Parallel Processing, ser. Lecture Notes in
Computer Science, M. Danelutto, M. Vanneschi, and D. Laforenza, Eds.
Springer Berlin / Heidelberg, 2004, vol. 3149, pp. 1022–1031.

[59] S. Basu, S. Banerjee, P. Sharma, and S.-J. Lee, “Nodewiz: peer-to-peer
resource discovery for grids,” in Cluster Computing and the Grid, 2005.
CCGrid 2005. IEEE International Symposium on, vol. 1, May 2005, pp.
213 – 220 Vol. 1.

[60] “MoSync SDK Documentation,” http://www.mosync.com/content/
programming-mosync, Last Checked: February 5, 2011.

60 References

[61] “The Apache Ant Project,” http://ant.apache.org/.

[62] “Xmlrpc specifications,” http://www.xmlrpc.com/spec.

[63] “The ruby programming language,” http://www.ruby-lang.org/en/.

[64] Z. Xiong, Y. Yang, X. Zhang, M. Zeng, and L. Liu, “A grid resource
discovery model using p2p technology,” in Intelligent Information Hiding
and Multimedia Signal Processing, 2008. IIHMSP ’08 International
Conference on, 2008, pp. 1553 –1556.

[65] E. Meshkova, J. Riihijrvi, M. Petrova, and P. Mähönen,
“A survey on resource discovery mechanisms, peer-to-
peer and service discovery frameworks,” Computer Networks,
vol. 52, no. 11, pp. 2097 – 2128, 2008. [Online].
Available: http://www.sciencedirect.com/science/article/B6VRG-
4S4JYXJ-3/2/c6c11b48f6e01f253797c416292a93b0

[66] A. Di Stefano, G. Morana, and D. Zito, “Qos aware services discovery in
a p2p grid environment,” in Pervasive Computing and Applications, 2007.
ICPCA 2007. 2nd International Conference on, 2007, pp. 546 –551.

[67] P. Trunfio, D. Talia, H. Papadakis, P. Fragopoulou, M. Mordacchini,
M. Pennanen, K. Popov, V. Vlassov, and S. Haridi, “Peer-to-peer
resource discovery in grids: Models and systems,” Future Generation
Computer Systems, Elsevier, vol. 23, no. 7, pp. 864 – 878, 2007.
[Online]. Available: http://www.sciencedirect.com/science/article/B6V06-
4MMFJ0H-1/2/c45730642fb5e1dd5dbeb364dcad5b19

[68] A. Weinrig and S. Shenker, “Greed is not enough: adaptive load sharing
in large heterogeneous systems,” in INFOCOM ’88. Networks: Evolution
or Revolution, Proceedings. Seventh Annual Joint Conference of the IEEE
Computer and Communcations Societies, IEEE, mar 1988, pp. 986 –994.

[69] “The Active Merchant Project Repository Page,”
https://github.com/Shopify/.

[70] “jQuery Java Script Library Git Repository,” https://github.com/jquery.

[71] “Ruby on Rails Git Repository,” https://github.com/rails.

[72] “Xorg Git Repository,” http://cgit.freedesktop.org/xorg/.

[73] “Perl Git Repository,” http://perl5.git.perl.org/perl.git.

[74] “MoSync SDK Git Repository,” https://github.com/MoSync.

[75] “The Linux Kernel Git Repository,” http://git.kernel.org/?p=linux/kernel/
git/torvalds/linux-2.6.git;a=summary.

[76] “Git - Fast Version Control System,” http://git-scm.com/.

[77] “Apache subversion,” http://subversion.apache.org/.

[78] “Ubuntu desktop edition,” http://www.ubuntu.com/desktop.

www.kth.se

TRITA-ICT-EX-2011:164

