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Utvecklingen av molndatabearbetning är drivande nästa generation av
Internet-tjänster. OpenStack är en av de största öppen källkod mellan-
programvara datormoln utveckling samhällen. För närvarande stöder IT-
plattform specifika signaturer och pollett som för användarautentisering.
I denna avhandling vill vi införa en plattformsoberoende, flexibel och
decentraliserad autentiseringsmekanism i OpenStack. Vi valde OpenID
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Chapter 1

Introduction

Cloud Computing is a new paradigm for utilization of scalable resources
over the internet. The Pay-Per-Use model for cloud infra-structures has
introduced wide interest among users to utilize such services. Major cloud
service providers such as Amazon AWS, Rackspace, Salesforce, etc. have
driven development of multiple cloud platforms. The most prominent among
the open source cloud projects are OpenStack, CloudStack, Eucalytus, and
OpenNebula. The open-source cloud platforms provide the ability to deploy
private Infrastructure-as-a-Service (IaaS) clouds. Many open-source cloud
platforms have compatible application programming interfaces (API) with
public clouds such as Amazon AWS, which improves the flexibility and
usability of the private clouds. An explanation of the different types of cloud
based services can be found in section 2.1 starting on page 5.

1.1 Motivation

As the open source cloud platforms become increasingly popular, usability
is being improved with easy to use web interfaces and cloud service APIs.
Users can use different client programs or APIs for accessing the different
services on the cloud platform. The graphical user interface (GUI) for the
platforms, accessible over the network or the Internet, also provide support
to access the cloud services in an easy and user-friendly way. Logging into
the cloud managerial console gives the users an easy-to-use dashboard, from
which they can easily view and manipulate their resources. The management
console is a major requirement for administrators, as it gives flexibility and
improves usability for managing the users in the system, their privileges, the
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CHAPTER 1. INTRODUCTION 2

resources, and over all control of the cloud deployment.

However, these access mechanisms are still being implemented by simple web
services. Thus the security threshold is rather low for cloud services. Even
though a lot of research remains focussed on intra-cloud network security,
data isolation, and policy enforcement; little research has been conducted
in the area of security of access points to the cloud platforms. Present
authentication techniques only involve processing requests for resources, with
plaintext query/response methods to the local database.

1.2 Problem Area

Web GUI has become the most widely deployed front-end for delivering
cloud services, both to administrators and users. However, there are certain
limitations in what these fronts-ends make available. In the context of
authentication of users, there exists the following limitations:

• The primary concern arises, when the architecture for these web GUI
front-ends are designed using the same structure as traditional web
servers. These front-ends were initially intended to simplify interaction
of users and administrators with the cloud platform back-end. This
meant, that unlike traditional web servers, these front ends should be
’dumb’ servers, i.e. , they are only a window to view the available
services. However, this is not what the current trend of development
has done, where at present, they are being implemented as regular web
servers providing internet services (see section 2.3.4 on page 23).

• The users are required to use username/password based login into the
dashboard. This imposes all the disadvantages of such login systems,
including limited usability by users, as compared to authentication
frameworks such as OpenID [13, 54], Shibboleth [34], SAML [51, 57],
etc.

• As the front-end GUI becomes a separate entity, it becomes a
requirement for the front-ends to maintain separate user credentials.
This requirement arises from the general concept of web services, where
there is an absence of a federated login architecture. The absence
of a centralized authentication architecture gives rise to the problem
mentioned in the next point, of having multiple Policy Decision Points
(PDPs).
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• As the users log into the web GUI, the web front-end uses API
calls to the cloud platform back-end to execute different operations
on the cloud. This means, the users are first authenticated at the
web GUI, and the back-end cloud platform does not play a role in
the authentication process. This introduces multiple PDPs. This is
contradictory to general security principles, where it is recommended
that there should always be a single point of policy decision, while there
can be multiple Policy Enforcement Points (PEPs).

• For the above mentioned reasons, we see that there should be complete
trust between front-end GUI and back-end cloud platform. This also
means that the front-end GUI can not simply be a "dumb" web server,
but has to be more tightly coupled to the back-end.

1.3 Research Goals and Contributions

The initial part of this research included studying multiple cloud platforms.
The selection of a suitable cloud platform for developing a prototype was
an important step, from the perspective of its architecture, future research
scopes, and for further service enhancements. In our research, we worked
with OpenStack (see section 2.3 on page 8) for developing the prototype as
a proof-of-concept.

The research focussed to introduce a decentralized authentication platform
in OpenStack. Thus, we designed and implemented a mechanism to perform
OpenID based authentication in OpenStack. However, the target was to keep
the front-end GUI as a "dumb" server. Hence, we implemented the OpenID
authentication in the back-end of the OpenStack server, with a mechanism to
use OpenID as a service with the help of APIs from the front-end. The work
included development of a pair of new APIs in the OpenStack API server.

Furthermore, an additional module, the Nova-OpenID-Controller, was incor-
porated in OpenStack. The implementation followed the current modular
architecture of OpenStack, allowing a distributed OpenStack back-end just
like all other existing modules.

Additionally, the prototype implementation included extension of the Django-
Nova and Dashboard (see section 2.3.4 on page 23) GUI. The APIs were used
from the web interface, to allow authentication of a standard OpenID user
and to allow such a user to log into the OpenStack management console.
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1.4 Organisation of Thesis

The rest of the thesis is organised as follows. Chapter 2 discusses the
studies on the various cloud platforms, including the architectural and
functional details of OpenStack, the selected platform. The working
principles of OpenID authentication is explained in chapter 3. In chapter 4,
we have presented the design for using OpenID-Authentication-as-a-Service
in OpenStack. The implemented prototype, its architecture and working
mechanism has been included in chapter 5. Chapter 6 discusses some
analytical perspectives and evaluations on the developed prototype. Finally,
chapter 7 provides the summary of the thesis and scopes for future work.
Appendix A includes the traces from executing the OpenStack prototype
implementation. An applicability analysis and initial design for OAuth in
OpenStack is included in appendix B.



Chapter 2

Cloud Computing Platforms

2.1 Introduction to Cloud Computing

There are multiple ways to define Cloud Computing [21]. Ian Foster et al.
in [38] have defined it as:

"A large-scale distributed computing paradigm that is driven by
economies of scale, in which a pool of abstracted, virtualized,
dynamically-scalable, managed computing power, storage, plat-
forms, and services are delivered on demand to external customers
over the Internet."

Cloud Computing is a relatively new cyber-infrastructure, implying a service
oriented architecture (SOA) for computing resources. Users access cloud
services over a simple front-end interface to utilize the virtualized resources.

The SOA in clouds is usually defined in a hierarchical structure, as shown in
figure 2.1. The layers of cloud computing services in SOA can be described
as:

1. Infrastructure as a Service (IaaS) provides virtual CPUs, storage
facilities, memory, etc. according to user requests. IaaS providers split,
assign, and dynamically resize the resources flexibly to build ad hoc
systems as requested by clients. Users access the virtualized resources
over the network according to their requirements. Example: Amazon
AWS [3].

2. Platform as a Service (PaaS) acts as an abstraction between the
physical resources and the service. PaaS providers supply a software

5
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platform and the application programming interfaces (APIs), where
users execute their software components. Applications can then be
deployed on the platform, together with other services such as cloud
storage facilities, without the concern for resource availability, and
easily scaling up with increasing utilization of the hosted applications.
Example: Google App Engine [6].

3. Software as a Service (SaaS) provide end users with integrated
services from the providers, comprising of hardware, development
platforms, and applications. SaaS is a packaged solution and is
deployed centrally by the SaaS provider who provides remote access
to its users. The users simply utilize the services over a web interface
and have minimum visibility of the implementation of the service as
compared to IaaS and PaaS. Example: Salesforce.com [18].

Platform As A Service
(PaaS)

Infrastructure As A Service
(IaaS)

Software As A Service
(SaaS)

Service AbstractionResource Visibility

Figure 2.1: Service Oriented Architecture in Cloud Computing

2.2 Selection of A Cloud Platform

Currently, there are multiple cloud platform projects being developed in the
open source community. All of them aim to fulfil the requirements of an
IaaS provider. They enable the deployment and management, along with
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the configuration of a multi-subscriber tiered infrastructure of cloud services
by enterprises and service providers. However, we will not focus on any
of the commercially deployed cloud services, but rather on the open-source
platforms available for private cloud deployments.

IaaS cloud platforms provide computing resources: CPU, memory, disk space,
and network bandwidth. The middleware application uses an hypervisor
running in the back-end to allow the creation of virtual machines (VMs).
These VMs emulate physical computers, and each have a CPU, memory,
disk, and network resources. The actual physical resources for the creation of
the VMs are provided by virtual hosts. The most popular hypervisors in the
community are KVM, Xen, VMware, VirtualBox, etc. In the implementation
of these middleware platforms, libvirt [8] is the most common C/C++ library
used to communicate with the hypervisor from the middleware layer.

All middleware platforms are comprised of multiple modules, which can be
executed in an array of physical resources. When configured in a distributed
environment, they provide a collective service for utilizing virtual resources
through the cloud middleware. We explored the deployment and services
for the following mainstream cloud middleware platforms: CloudStack,
OpenStack, and Eucalyptus.

We studied the different middleware, from the perspective of their scope for
the integration of an open source decentralized authentication mechanism.
Our study primarily focussed on the following features of the specific cloud
middleware platforms.

• The architectural modularity of the middleware: This was a
significant issue given the objective of our research. Even though all
middleware were designed to be deployed in a distributed environment,
our concern was the modularity on the different operational units in
the cloud and the means of communication between the modules.

• The authentication framework: The authentication module re-
quired to be a separate module in the architecture. Additionally, we
studied the mechanism which was being used to authenticate a request
from a user.

• Detachment of the core resource controller module from the
authentication process: We focussed on a detached core module
from the authentication module. This enabled us to handle the
authentication process separately, without being concerned with how
the actual resources are allocated and distributed.
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• Provision for API services: We investigated the handling of the
API servers on the middleware, and how requests were passed to the
core controller. This was an important factor for us to consider, as
is explained in chapter 4, when we describe the process of developing
OpenID-Authentication-as-a-Service APIs for our selected platform.

• Separation of front-end GUI services from the back-end cloud
servers: With the evolution of web services, it should be noted that
the traditional architecture of web based services is not the same as
that of cloud services. In cloud servers, as the actual physical resources
lie on the back-end, the PDP needs to reside in the back-end, which
is not always the case with standard web services. For this reason, we
required a certain level of detachment and an absence of dependency
of the front-end GUI server from the cloud server running on the back-
end.

• Applicability of OpenID: OpenID is a widely used open platform for
decentralized authentication. We considered the application of OpenID
authentication where there was a separation of the front-end GUI from
the back-end.

• Public network exposure of the cloud middleware: Decentral-
ized authentication using OpenID [13] required an exposure to the
public Internet, for interaction with the identity providers. Thus, for
security, the specific module responsible for OpenID authentication,
should be separated from the core and interacting with the public
Internet.

2.3 OpenStack Nova: The Selected Platform

We considered the above mentioned criteria for the selection of a suitable
cloud computing platform, and selected OpenStack for our research. This
section presents the design and working principles of OpenStack.

2.3.1 Architecture

Nova, the cloud computing middleware fabric controller from OpenStack, is
a widely utilized open source project with many contributors. It originated
as a project at NASA Ames Research Laboratory and started as open-source
software in early 2010.
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Public ClientsAdmin Client

API Server

Cloud ControllerAuth Manager Object Store

Volume ControllerNetwork ControllerSchedulerCompute Controller

Nova-Manage Euca2oolsNova Api Client

OpenStack
API

EC2
API

Method Call

Method Call

REST

Method Call

HTTP

AMQP

Compute Controller
Compute Controller

XML/JSON

Figure 2.2: OpenStack Nova Architecture

OpenStack supports virtualization with KVM, UML, XEN, and HyperV,
using the QEMU emulator. The central core of OpenStack Nova is the Cloud
Controller, which interacts with the other modules in different ways. As
shown in figure 2.2, the following are the components of OpenStack:

• Cloud Controller is the central component which represents the
global state, and interacts with the other components.

• API Server is an HTTP server which provides two sets of APIs to
interact with the Cloud Controller: the Amazon EC2APIs and the
OpenStack OSAPIs.
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• Auth Manager provides authentication and authorization services for
OpenStack, which can interact with the Nova-Manage client using local
method calls.

• Compute Controller provides the compute server resources.

• Scheduler is responsible for selecting the most suitable Compute
Controller to host an instance.

• Object Store component is responsible for storage services.

• Volume Controller provides permanent block-level storage for the
compute servers.

• Network Controller handles the virtual networks for the VMs to
interact with the public network.

2.3.2 Authentication and Authorization Framework

The authentication of requests from a user, and the authorizing of resources
for the request are handled by the Auth Base module. OpenStack uses a
Role Based Access Control (RBAC) [58] mechanism to enforce policies. For
administrative operations, the Nova-Manage module is used to interact with
the Auth Base database (as shown in figure 2.2). The following sub-sections
discuss the credentials maintained for each OpenStack user, followed by a
description of OpenStack’s RBAC model, and details of the Nova-Manage
module.

2.3.2.1 User Credentials

When a user is created, an Access Key and a Secret Key are assigned to
the user. They can be randomly generated or can be specified by the
administrator during user creation. The credentials in the user database
for each OpenStack user are shown in table 2.1.

These credentials are used in different ways to authenticate a user’s incoming
API requests. The use of these credentials will be discussed in section 2.3.3
on page 14. The use of the access key and the secret key differ from their use
in EC2APIs (see section 2.3.3.2 on page 16) and OSAPIs (see section 2.3.3.3
on page 20). This difference is due to a design inconsistency in the core of
OpenStack, and is currently under consideration for modification.
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Table 2.1: User Credentials in OpenStack

Credential Description

id Unique identifier for each user

name Usually, human readable username for a user

access_key Unique, and can be randomly generated or specified during user
creation

secret_key Unique, and can be randomly generated or specified during user
creation

is_admin Set to "1" if an "admin" user is created, or "0" otherwise

2.3.2.2 Role Based Access Control (RBAC)

OpenStack uses a Role Based Access Control (RBAC) [58] mechanism to
enforce authorization of resources within the cloud. In RBAC, instead
of defining specific privileges for each user, the platform defines a set of
permissions based on the user’s authorization. Each set of permissions is
referred to as a "role" or a "security group", and each user is associated with
a specific role. Thus, the role defines the authorized actions when a user
attempts to access a service, as shown in figure 2.3.

Figure 2.3: Role Based Access Control Architecture
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In OpenStack Nova, the administrators are only allowed to define the set of
rules for each role, and assign a role to the users. This greatly simplifies the
task of management of users and organizational security.

OpenStack Nova defines five different roles for the users, which the admin-
istrator has to assign to each OpenStack user. Roles in OpenStack can be
global or project specific. The following are the roles used in managing users
in OpenStack:

1. Cloud Administrator (admin): Users assigned this role have
complete system access and modification privileges. Users can be
created with admin roles for specific projects, and will have all the
same rights as an administrator. The administrators are allowed to
add, remove and modify users, projects, keys, images, and instances.
They are also allowed to manage the access network, and modify roles
for other users.

2. IT Security (itsec): This is a global role, and is limited to IT security
personnel. Users of this role are allowed to quarantine instances.
However, this is not one of the commonly used roles in OpenStack
deployments.

3. Project Manager (projectmanager): Project owners are assigned
this role by default. A project manager is allowed multiple operations,
and could alternatively be termed as the administrator for the specific
project. Thus, project managers are allowed to perform just the same
operations as administrators, but only on the specific project.

4. Network Administrator (netadmin): This role allows users to
perform specific network related actions on OpenStack. Thus, a
netadmin is allowed to allocate and assign the IP addresses for the
VMs, and also manage the firwall policies for the access network.

5. Developer (developer): This is the default role assigned to users
created via OpenStack. This is a general purpose role, and the users
are required to be added to specific projects. Once added, the users
can create and download access keys, and use the access keys to access
any running instances within the project. A developer is allowed to
use the operations which are available for all user roles, and include
viewing instances, images, volumes, keypairs, and additionally, create
his own keypair to access the instances.

An overview of the roles and their privileges is summarized in table 2.2
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Table 2.2: RBAC Model in OpenStack Nova

Roles admin itsec projectmanager netadmin developer

Global yes yes no no no

Local no no yes yes yes

Key

Management

yes yes yes n/a yes

Instance

Management

yes no yes n/a no

Image

management

yes no yes n/a no

Network

Management

yes no yes yes no

Project

Management

yes no yes n/a no

Create/Modify

Firewall

yes no yes yes no

2.3.2.3 The Nova-Manage Module

As shown in figure 2.2, OpenStack provides the Nova-Manage module for
administrative tasks such as user, roles, vpn, network, and other management
functions. Nova-Manage is a self-executable python command-line tool, with
specific commands to directly interact with the OpenStack database. After
a user is created, the operations of including the user in a specific project,
defining their roles, etc. are all done through the Nova-Manage module.

Each nova-manage command is in the form:

$ nova-manage category command [args]

For example, the list command in the fixed category displays the pool of
all existing fixed IP addresses, and is written as:

$ nova-manage fixed list

The command can also be run without arguments, and it would show the
list of available command categories, that is:

$ nova-manage

A summary of the different command categories available with nova-manage
is shown in table 2.3. Additionally, if the command category is run without
any arguments, it displays all the available operations for the specific
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Table 2.3: Commands Categories in Nova-Manage

Category Commands Description

user admin, create, delete, ex-
ports, list, modify, revoke

Operations related to OpenStack users

project add, create, delete, environ-
ment, list, modify, quota,
remove, scrub, zipfile

Operations related to OpenStack projects

role add, has, remove Operations on the OpenStack user roles

shell bpython, ipython, python,
run, script

Provides a command line prompt for the
supported engines

vpn change, list, run, spawn Operations on virtual private networks
(VPNs) between VMs on the cloud

fixed list Displays all the fixed IP addresses available
for the VMs on the cloud

floating create, delete, list Network management options for floating
IP addresses for the VMs on the cloud

network create, list Network management options for available
networks for the IP pool for created VMs

service disable, enable, list Operations on the different service mod-
ules for the OpenStack deployment

log request Generate log files for specific service
modules

db sync, version Operations for OpenStack database main-
tenance

volume delete, reattach Operations on the volumes available for the
VM instances on the cloud

flavor create, delete, list Management of available hardware config-
uration for VM instances.

category. For example, the following command displays the operations
available for "user":

$ nova-manage user

2.3.3 Application Programming Interfaces

OpenStack Nova exposes two sets of APIs: the OpenStack API (OSAPI)
and Amazon Elastic Compute Cloud API (EC2API). The OSAPI is the
list of APIs being developed as OpenStack matures with time. On the
other hand, the EC2APIs are a list of comprehensive APIs, designed and
defined by Amazon Web Services (AWS) [3]. In all cases, OpenStack relies
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on Representational State Transfer (REST) to handle the responses from the
APIs. The following sub-section discusses REST in detail. Later sub-sections
discuss the two sets of APIs for OpenStack Nova.

2.3.3.1 Representational State Transfer (REST)

REST [37, 55, 42, 43] is an architecture for designing web applications. In
typical implementations, REST relies on a stateless, client-server, cacheable
communications protocol, usually over HTTPS. An example of a RESTful
client-server interaction is shown in figure 2.4.

Client

Server

Client

Service1

Service2 

GET http://www.server.com/Service1

<?xml version="1.0" ?>
<Service1Response>
       .............
</Service1Response>

GET http://www.server.com/Service2?
Param1=X&Param2=Y

<?xml version="1.0" ?>
<Service2Response>
       .............
</Service2Response>

Figure 2.4: A RESTful Client-Server Interaction Example

REST introduces a method for addressing and defining resources and enables
us to write web services using a Uniform Resource Identifier (URI) [26]. All
clients and servers supporting HTTP/HTTPS can use REST resources with
the specific URIs that are implemented by the server.

In REST, the terminology "resources" refers to any API residing on a
RESTful server. The information being sent by the client to the REST
server can be included in the HTTP headers or in the URI, both of which
are acceptable by standard REST practices. The response to a REST API
call depends on the service provider, and can range from a simple text string
to a fully described XML object.

REST requires the API calls to be sent over HTTPS (HTTP running
over SSL) for confidentiality, integrity and authenticity. Thus, for security
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reasons, both the client and the server must implement the SSL technology
in RESTful services.

As RESTful services are stateless, each request is required to be handled
in complete isolation. Hence each request should include all the required
information to invoke the specific API at the RESTful server. The server
never stores a "state" from previous requests, and the client should resend
parameters if required.

The fundamentals of REST include:

• A resource is described as any information or services, which is
accessible by a client from a RESTful server. As shown in figure 2.4,
Service1 and Service2 can be referred as resources.

• Each resource on a RESTful server is uniquely referenced using a URI.
(e.g. http://www.server.com/Service1)

• Any interaction with a resource residing on a RESTful server is
stateless.

• Communication and manipulation of resources are done with the four
generic HTTP methods: GET, POST, PUT and DELETE.

All API services on OpenStack are RESTful. However, even though REST
requires HTTPS connections for security reasons, current implementation of
the API Server on OpenStack does not use HTTPS. Implementation of the
API server with HTTPS is a future development task for OpenStack, but
not yet incorporated in the framework.

2.3.3.2 EC2 APIs

Amazon EC2 has introduced the EC2APIs, which allows users to interact
with Amazon AWS services, along with the server instances in Amazon’s data
centers. The EC2APIs have also been implemented in OpenStack, similar
to their implementation in Amazon AWS [1]. These APIs support Query
requests, which are basic HTTP requests to the RESTful API Server. The
EC2APIs on OpenStack use the HTTP GET method. The data sent as
response to the request are serialized as XML objects. However, OpenStack
currently do not incorporate any security mechanisms, and the messages are
interchanged over HTTP as plaintext.
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The APIs in OpenStack are accessible by sending Query requests to the Nova
API server. For using these APIs, the Access Key and the Secret Key are used
as the AWSAccessKeyID and AWSSecretKeyID respectively. By default, the
Nova API Server uses TCP port 8773, and upon invoking a specific API, it
uses method calls to interact with the Nova Cloud Controller.

All requests include mandatory fields [1], including an "Action" parameter,
which is used to specify the requested operation with the API. Another
important parameter to validate the integrity of the request is the "Signature"
parameter. The whole HTTP query string is used to generate the signature
for a request, with the AWSSecretKeyID (secret_key) as the key, and the
SHA-256 hash algorithm.

Signature = HashFunction (

HTTP_Verb + "\n" +

Host_Header + "\n" +

HTTP_Request_URI + "\n" +

QueryString

)

Therefore, for making an EC2API call, we first generate the signature, and
then append it to the arguments in the query string in the REST URI for the
specific API. It should also be mentioned, that all text in the URL should be
encoded as specified in RFC 3986 [26]. The common parameters along with
examples of using them in RESTful EC2API requests are shown in table 2.4.

Table 2.4: Query Parameters for the EC2API in OpenStack

Parameter Name Example Required

Action Action=DescribeProjects yes

Version Version=nova (DEFAULT) yes

AWSAccessKeyId AWSAccessKeyId=admin (manually specified)
or AWSAccessKeyId=617367c3-46f2-40ba-8fd7
(randomly generated)

yes

Timestamp Timestamp=2011-05-02T08:21:56 yes

Signature Signature=zPtTNga4ftpjxoPzqRot/tFo62aqM= yes

SignatureMethod SignatureMethod=HmacSHA256 yes

SignatureVersion SignatureVersion=2 (DEFAULT) yes

Name Name=rasib no
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The different parameters and their purpose are as follows:

1. Action: Used to request a specific action, which is being invoked by
the specific API.

2. Version: The specific version of EC2API being invoked. This is
important in the EC2API set in Amazon AWS [3]. In the case of
OpenStack, we use the default value of "nova".

3. AWSAccessKeyId: The Access Key ID (Access Key) for the user
sending the request. They can be automatically generated, or manually
specified when creating a user on OpenStack.

4. Timestamp: The date and time at the client, when the specific API
query call was signed. The timestamp is in the format YYYY-MM-
DDThh:mm:ss. Alternatively, Amazon AWS EC2APIs [1] allows the
"Expire" parameter instead of "Timestamp".

5. Signature: The signature of the query request using the required
parameters. As mentioned above, this is generated from the query
request, and then appended with the query parameters. For authen-
tication, once a request is received, the signature is regenerated, and
compared to the one included in the request.

6. SignatureMethod: The hash algorithm used to create the signature
for the query request. For signing EC2API calls, either SHA-1 or
SHA-256 hash algorithms can be used for the signature. OpenStack
implements both SHA-1 and SHA-256 hash algorithm for the signature
verification in the query requests (similar to AWS EC2APIs [1]). Both
SHA-1 and SHA-256 are strong hash algorithms, with SHA-256 being
more resistant to collision attacks because of its greater output size. A
comparison of both the algorithms is shown in table 2.5.

7. SignatureVersion: The signature version which has been used to sign
the query request. The default value, for both Amazon AWS, and in
OpenStack is "2".

8. Name: An optional parameter along with the query request, to specify
the name of the user. It is usually used when the AWSAccessKeyId

is a random long string, and this parameter specifically provides the
username in human readable text.
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Table 2.5: SHA-1 and SHA-256 Comparison

Algorithm Internal
State
Size(bits)

Output
Size(bits)

Block
Size(bits)

Max.
Message
Size(bits)

Rounds

SHA-1 160 160 512 264
− 1 80

SHA-256 256 256 512 264
− 1 64

The whole query string is used to generate the signature in an EC2API call.
For example, for the DescribeProjects API, the parameters for generating the
signature would look like the following:

Signature = HashFunction (

GET\n

localhost:8773\n

/services/Admin/\n

AWSAccessKeyId=admin

&Action=DescribeProjects

&SignatureMethod=HmacSHA256

&SignatureVersion=2

&Timestamp=2011-03-02T08%3A20%3A38

&User=admin

&Version=nova

)

Thus, with all the standard parameters, the format for a query request to the
EC2API server on OpenStack, with a DescribeProjects action request looks
like the following:

GET http://localhost:8773/services/Admin/?AWSAccessKeyId=admin&

Action=DescribeProjects&SignatureMethod=HmacSHA256&SignatureVer

sion=2&Timestamp=2011-03-02T08%3A20%3A38&User=admin&Version=nova&

Signature=YKII5A1hCm2iztjT%2BfcDKee0nSxsjrs%3D HTTP/1.0

The EC2API server replies to API calls with XML data serialization, with
a specific structure for each action. For example, for the DescribeProjects
action API call above, OpenStack responds with the following XML:
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<?xml version="1.0" ?>

<DescribeProjectsResponse xmlns="http://ec2.amazonaws.com/doc/nova/">

<requestId>P7HBV0KXPVLOC628Y7N</requestId>

<projectSet>

<item>

<projectname>AdminProject</projectname>

<projectManagerId>admin</projectManagerId>

<description>AdminProjectDesc</description>

</item>

</projectSet>

</DescribeProjectsResponse>

2.3.3.3 OpenStack APIs

The OpenStack Compute API (OSAPI) [53] was initially designed by Rack-
space US [17], the initiators of OpenStack. OSAPI is a RESTful web service
interface, and supports both JavaScript Object Notation (JSON) [28] and
XML data serialization.

By default, the OSAPI server runs on TCP port 8774 of the OpenStack
Server. Each HTTP query request to the OSAPI requires specific authen-
tication credentials. It uses the X-Auth-User and the X-Auth-Key header
values in the query requests to specify the username and the API Access Key
respectively. However, similar to EC2APIs, the OSAPIs also communicates
over HTTP with plaintext messages.

For using OSAPIs, the username is the "Name" parameter in the user
database, and this value is placed in the X-Auth-User field. Along with
that, the API Access Key, is placed in the X-Auth-Key field, and is matched
against the Access Key from the user credentials table in the database. After
an initial authentication request to an Authentication URL, if successful, an
X-Auth-Token is returned by the server.

For authenticating a user to OpenStack with OSAPI, an authentication
request would have the following format:

GET /v1.0 HTTP/1.1

Host: <OSAPI_Server_Authentication_URL>

X-Auth-User: <username>

X-Auth-Key: <access_key>
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Once an authentication request is received, the request is validated by
comparing the Access Key and the Name against the X-Auth-Key and the
X-Auth-User respectively. If successful, the X-Auth-Token is generated, by
a hashing the username, the access key, and a timestamp.

Token = HashFunction (

username + access_key + timestamp

)

All of the required information for the token are stored in the OpenStack
database, and are compared against the hash value of the token hash. A
successful authentication responds with an "HTTP 204 No Content" response
with the X-Auth-Token in the header, as shown below:

HTTP/1.1 204 No Content

Date: <Day>, <Date> <Month> <Year> <Time:hh:mm:ss>

Server: Nova

X-Server-Management-Url: <OSAPI_Server_Authentication_URL>

X-Storage-Url: <NULL>

X-CDN-Management-Url: <NULL>

X-Auth-Token: <Token>

Content-Length: 0

Content-Type: text/plain; charset=UTF-8

The X-Server-Management-Url is the URL where all operation requests
should be made for OSAPIs. The X-Storage-Url and X-CDN-Management-

Url are fields used by Rackspace [17], but do not currently provide any
specific features within OpenStack.

At present, the token issued by OSAPI is considered valid for a duration of
2 days, after which, the client has to perform another authentication and
receive a new token. An HTTP 401 Unauthorized response is sent by the
API Server if a request is made with an expired token.

Once the OSAPI client receives the token, it can then send action requests
to other APIs on the OSAPI server. In an OSAPI call, the request format
(JSON or XML) is specified using the Content-Type header value. The
desired response format from the server can also be specified in the API
requests, and can be different from the request format. The Accept header
value is used to specify the response format. Additionally, the response
format can be referenced using .xml or .json extension in the query request,
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which essentially refers to different "resources" in the REST request line. A
comparison of XML and JSON type request and response formats is shown
in table 2.6.

Table 2.6: XML/JSON Serialization Specification in OSAPIs

Format Content-Type/Accept Header Query Entension Default

JSON application/json .json yes

XML application/xml .xml no

An example API request with a JSON header, but specifying an XML return
type, for retrieving the list of "flavors" would look like the following:

GET /flavors HTTP/1.1

Host: http://localhost:8774/

Content-Type: application/json

Accept: application/xml

X-Auth-Token: adflkroiabdl-adf-asdadfwr-agfger

The Content-Type parameter can be changed to "application/xml" to
specify an XML request type. Alternatively, the Accept parameter could be
changed to "application/json" to specify a JSON return type. To specify
a return type serialization in the query extension, the first line of the request
would look like the following:

GET /flavors .xml HTTP/1.1

Host: http://localhost:8774/

...

Upon successful authentication of the token, an example XML response for
the "flavors" would look like the following:

<?xml version="1.0" encoding="UTF-8"?>

<flavors xmlns="http://localhost:8774/servers/api/v1.0">

<flavor id="1" name="Medium" ram="1024" disk="20" />

<flavor id="2" name="Large" ram="4012" disk="50" />

</flavors>

If the serialization type for the response was specified as JSON, the response
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would look like the following:

{

"flavors" : [

{ "id":1, "name":"Medium", "ram":1024, "disk":20 },

{ "id":2, "name":"Large", "ram":4012, "disk":50 }

]

}

2.3.4 Web Interface - Dashboard/Django-Nova

The ongoing work in OpenStack is also focussed towards developing an easy-
to-use managerial Web GUI. The GUI is built on the Django framework, the
"Django-Nova" project, with another wrapper framework for the interface
called "Dashboard".

The Django-Nova framework is an implementation layer of the APIs for
OpenStack. Currently, the EC2APIs (see section 2.3.3.2 on page 16)
implemented in OpenStack provide a more comprehensive list of functions.
Thus, Django-Nova uses the EC2APIs to implement the GUI for OpenStack.

Dashboard is a wrapper implementation of the Django framework for
OpenStack. It provides the views for the graphical interface. As shown in
figure 2.5, Dashboard simply returns the HTML views for the GUI. Internally,
it uses python method calls to the Django-Nova framework. Subsequently,
Django-Nova implements the EC2API calls, and thus interacts with the API
server on OpenStack.

Django-Nova uses an "admin" user account on OpenStack back-end, and
requires the access and secret keys for the "admin" user during configuration
of the front-end GUI. It uses these keys to interact with the API server,
on behalf of the users accessing the services from OpenStack through the
Dashboard. Initially, the Administrator account is used to retrieve the
specific user credentials from OpenStack. Once received, Dashboard/Django-
Nova then uses that user’s credentials to further access the resources.

Additionally, the GUI front-end incorporates a separate user management in
the Django framework. When a user tries to access the managerial console,
the user first authenticates with the Dashboard/Django-Nova authentication
system. Once authenticated, the user is allowed access to the managerial
console, and then, the HTML views for the dashboard are processed
according to the responses from the OpenStack API server.
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Figure 2.5: DashBoard/Django-Nova with OpenStack

As we will see later, the separate management of user authentication will
be the focus of our research. This separate authentication framework is
responsible for the incompatibility with standard security practices of having
a single PDP in contrast to multiple PDPs (as used is the current design)
[25, 40].

2.4 Other Open Source Cloud Middlewares

There are numerous cloud platforms being researched and under construc-
tion. While some remain proprietary, some are open-source. In our study, we
evaluated the open-source cloud middleware solution provided by Cloud.com,
CloudStack [27], and another called Eucalyptus [5, 48]. The following
sections discuss the architectural specifications of these two platforms.
However, there are other well known open-source IaaS platforms, such as
OpenNebula [14], Hadoop [7], etc., which for lack of time have not been
included in these discussions.

2.4.1 Cloud.com CloudStack

The CloudStack open-source cloud computing platform is powered by
Cloud.com. The community edition is the open-source tool, and has been
in development since 2008. CloudStack offers an innovative open-source
software technology for deploying either public or private cloud environments.
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CloudStack offers a well defined and easy-to-use AJAX enabled graphical web
interface, with the core mainly coded in Java. Once the administrator/user
logs in, the dashboard offers all the expected services, including the creation
of domains, memory allocation, CPU type definition, creation, launching and
termination of virtual machine instances, monitoring the performances of the
virtual machines, etc. It is a ready-to-deploy package, with a complete set
of functionalities.

The architecture of CloudStack introduces three separate components, and
a four layer approach, as shown in figure 2.6. The compute controller is
the module which manages the VM instances. The compute controller uses
a hypervisor to realize the operations. The network controller manages the
bridges to the hardware interface, along with the virtual local networks for the
VM instances. The storage controller is the module which provides storage
facilities, mainly for image management for VM creation, along with VM
instance snapshots.

CloudStack Manager GUI

CloudStack API

CloudStack Bussines Logic Layer

CloudStack Orchestration Engine

Compute
Controller

Network
Controller

Storage
Controller

GUI User

API User

Figure 2.6: Cloudstack Architecture

The CloudStack API server exposes an interface, which developers can use to
make API requests with HTTP calls, and interact with CloudStack according
to the defined actions. The API requests are in the form:

http://<apiURL>?command=<apiCommand>&<param1=val>&<param2=val>
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CloudStack incorporates two different API URLs. The public API URL
allows access for developers and users, and access to this URL must be
secured. The private API URL allows full, unsecured access to the entire
API server, and is assumed to be secured behind a firewall. Apart from that,
there is also the CloudStack Manager, which is a fully integrated web service
point, providing a GUI for the users.

Below the interface layer, is the CloudStack business logic layer. This layer
incorporates the functionality for authorization and accounting operations.
The bottom layer, the Orchestration Engine, directly interacts and schedules
the operations of the compute controller, the network controller, and the
storage controller.

2.4.2 Eucalyptus

Another popular open-source cloud middleware platform is Eucalyptus.
Eucalyptus has been developed at the University of California, Santa
Barbara. It is believed to be a portable, modular, and simple IaaS
platform for research organizations, and was built to resemble Amazon AWS.
Additionally, it includes features such as WS-Security policies [57] with SOAP
[63] for secure communication between its internal components.

As shown in figure 2.7, the Eucalyptus architecture is a simple hierarchical
structure with node controllers, cluster controllers, and cloud controller.
The user interface mainly relies on Java, while the underlying layer in built
with Python and C. However, Eucalyptus seemed to have slowed down its
development, and is already a matured solution. It is very easy to deploy, and
is a relatively integrated product, that does not allow many modifications of
its architecture.

The entry point to the Eucalyptus platform is through the cloud controller.
This includes an API engine, which includes both REST and SOAP [63]
protocols to handle the requests, make high level scheduling operations, and
implement them on the cluster controllers. Handling of both REST and
SOAP requests in the API engine is completely compatible with Amazon’s
EC2APIs [1]. Additionally, it includes a web GUI, through which users
and administrators can perform different management operations in the
cloud. Not shown in the diagram, the cloud controller also incorporates
a storage controller, referred to as Walrus. The storage controller provides a
mechanism to store and access VM objects and user data, and implements
Amazon’s S3 interface [2].
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Figure 2.7: Eucalyptus Architecture

A cloud controller can control multiple cluster controllers. Specifically, a
cluster controller is responsible for scheduling the specific node controllers
in its domain for VM executions. Cluster controllers are also responsible
for managing the virtual local networks for the instances. As shown
hierarchically, there can be multiple node controllers in each cluster. The
node controllers are the specific hosts, which provide the resources for the
IaaS, and control the execution, inspection, and termination of the VM
instances.



Chapter 3

OpenID Background

OpenID is one of the most popular open source decentralized identity
management solutions for web services. In this chapter, we provide a detailed
specification of the required information on OpenID [13, 54].

3.1 OpenID Terminology

There are various entities and terms used in the specification for OpenID
authentication. Below, we provide the terminologies used in OpenID.

1. Identifier: An "http" or "https" URI used as the OpenID identity, for
a specific user, or for an OpenID Provider.

2. User-Agent: An HTTP/1.1 [36] client at the user’s end.

3. Relying Party (RP): A web service point which requires user
authentication of an OpenID Identifier.

4. OpenID Provider (OP): An authentication service provider, allow-
ing users to authenticate against a provided OpenID Identifier.

5. OP Identifier: An Identifier for an OP.

6. User-Supplied Identifier: An Identifier provided by user. A user
may provide either a personal Identifier or an OP Identifier. If an OP
Identifier is used, after authentication, the OpenID Provider returns
the specific user’s Claimed Identifier.

28
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7. Claimed Identifier: An Identifier finally returned to the RP from
the OP, which is linked to a local user identity at the RP.

8. Return To URL: The URL provided by the RP, where the OP would
send the User-Agent back after authentication.

9. Trust Root: The URL against which the OP will authenticate the
user.

10. OP Endpoint URL: The absolute HTTP/HTTPS URL which
performs the user authentication. This is discovered by the RP using
the Yadis Discovery Protocol [19] for the Identifier provided by the user
.

3.2 Authentication

OpenID is a well known open source authentication mechanism. It provides
decentralized user centric identity management for web services, and allows
seamless Single-Sign-On (SSO) authentication. The current version of
OpenID is 2.0 [13, 54]. Previously, OpenID 1.0 only supported stateful
authentication. However, OpenID 2.0 supports both stateful and stateless
OpenID authentication. The sequence of a stateless OpenID authentication
is shown in figure 3.1. The stateless OpenID authentication mechanism works
as follows:

1. The User-Agent first requests a page over HTTP from a web service
point, which supports OpenID authentication.

2. The web server returns a page over HTTP to the User-Agent.

3. The user supplies the OpenID Identifier, and the User-Agent submits
the value to the web server.

4. The web server acts as an RP. It normalizes the Identifier, and performs
the discovery process, using the Yadis protocol [19] (XRI Resolution
protocol [61] was used in OpenID 1.0, but is avoided in OpenID 2.0). At
this point, the RP receives the meta-information from the OP, required
for the redirection of the User-Agent to the OP endpoint URL.

5. The RP then sends an HTTP 302 Redirection response to the User-
Agent. The redirection includes several different parameters, including
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HTTP User Request

HTTP Response

Supply OpenID

Discover OP Endpoint
Retrive Meta-Info

HTTP 302 Redirection

Redirect to OpenID Provider

Authenticate User

HTTP 302 Redirection

Redirect to Web Server         OP Discovery
Diffie-Hellman Key Exch.
     Verify OpenID Auth

OpenID : Local User
Login

User Web Server (RP) OpenID Provider (OP)

Figure 3.1: Signalling Sequence for Stateless OpenID Authentication

the "openid.return_to" URL. The URL contains a nonce value gener-
ated by the RP, for example: http://10.0.0.25:8080/openid/verify

/?janrain_nonce=2011-03-23T07:20:56ZLnMsYN.

6. The User-Agent receives the HTTP 302 Redirection, and is redirected
to the OP server, at the OP endpoint URL.

7. The OP can use any method to authenticate the user (such as
username/password, certificates, smart-cards, generic bootstrapping
architecture based device authentication [23], etc). Once authenticated,
the OP returns the User-Agent back to the RP, at the return_to

URL specified by the RP in the previous phase. The OP passes a
long string in the GET request line, in order for the RP to validate
the authentication, also referred to as the assertion URL. An assertion
URL usually holds the following parameters:
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/openid/verify/?janrain_nonce=<nonce sent from RP>

&openid.ns=<OpenID version specification at OP>

&openid.mode=<id_res:OpenID response>

&openid.op_endpoint=<OP endpoint URL>

&openid.response_nonce=<nonce from OP>

&openid.return_to=<RP return URL>

&openid.assoc_handle=<D-H key association handle at OP>

&openid.signed=op_endpoint,

claimed_id,

identity,

return_to,

response_nonce,

assoc_handle

&openid.sig=<signature of openid.signed parameter values>

&openid.identity=<authentication user Identifier>

&openid.claimed_id=<claimed user Identifier>

8. At this point, the RP verifies the signature. It re-calculates the
openid.sig from the values of all the parameter names included
in openid.signed. If verification is successful, the RP parses the
openid.op_endpoint, and after discovery of the OP, it sets up a
key association using Diffie-Hellman (D-H) key exchange [32] and the
openid.assoc_handle.

9. After the D-H key establishment, the RP verifies the response for the
specific openid.identity with the check_authentication operation
for the following fields which the RP has received from the OP:
op_endpoint, claimed_id, identity, return_to, response_nonce.

10. Once the parameters are all successfully verified, referred to as the
assertion, the RP links the openid.claimed_id with the identity of a
local user in its own server and allows the user to login to the service
point.

In a "stateful" OpenID authentication, the D-H key exchange [32] occurs in
the initial discovery phase at the RP. The "openid.assoc_handle" is stored
together with the shared key at the RP when the shared key is established.
The User-Agent is then redirected to the OP. After authentication at the OP
and when the user is redirected back to the RP, there is no D-H key exchange.
Instead, the "openid.assoc_handle" is used to retrieve the stored key from
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the previous step, and the received parameter values are then verified. Thus,
in this process, it is required that the RP is able to maintain a key database.

3.3 Security in OpenID

Even with widespread use, OpenID is not fully secure from attacks. OpenID
2.0 had significant improvements over OpenID 1.0 [54]. However, any RP or
OP, implementing OpenID functionality, should consider some issues. Here,
we summarize the different threats that OpenID is vulnerable to, including
the results from the OpenID’s working group specifications [13], A. Lindholm
[46], P. Sovis et al. [59], and M. Oostdijk et al. [60].

1. Eavesdropping and Reusing Assertions: OpenID is vulnerable
to eavesdropping attacks if the nonce value in the assertion URL
is not checked. This implementation flaw at the RP or the OP
would allow an attacker to reuse authentication assertions. However,
using an SSL/TLS [31, 44] tunnel to prevent eavesdropping, or the
implementation executing a check for nonce reuse in the verification
phase, either would prevent assertion reuse.

2. Wrong Use of SSL/TLS: Even with SSL/TLS tunnels in the
authentication process, there might still be potential for intruder
attacks. In some cases, the user might even have a false impression
of security and be a victim to Cross-Site-Scripting attacks [30], if non-
HTTPS Identifiers are used. To avoid such loopholes, the session of the
User-Agent with the RP’s service point should be an HTTPS session.
Additionally, the OP’s op_endpoint URL and the RP’s return_to

URL are required to be secured connections for fully secure transaction
with the User-Agent.

3. Man-in-the-Middle Attacks (MITM)

(a) Attribute Exchange Vulnerability: OpenID Attribute Exchange
[12] is an extension to OpenID 2.0, which allows the inclusion
of additional parameters to interchange information between the
RP and OP. The OpenID assertion URL from the OP to the RP
after authentication contains the openid.signed parameter, the
value of which implies all the different parameters which have been
included in the signature, openid.sig. However, if the additional
parameters in attribute exchange are not included by the OP
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in the signature, then they are vulnerable to modifications by a
MITM.

(b) Attribute Exchange Parameter Injection: A MITM can append
additional parameters in the assertion URL from the OP to the
RP after authentication using Attribute Exchange parameters.
Therefore, to detect MITM information injection, the OP should
include all the attribute exchange parameters in the signature,
and the RP should verify each parameter when checking the
openid.sig, and verify that all the parameter names are included
in openid.signed.

(c) Discovery Tampering: The discovery process includes DNS ad-
dress resolution and retrieving the meta-information from the OP.
Both mechanisms are susceptible to attacks. If the DNS resolution
is somehow manipulated, the MITM can impersonate a false OP.
Furthermore, if the MITM can breach the session between the RP
and the OP, and tamper with the meta-information, the User-
Agent can be redirected as the adversary wants. Security against
these attacks could be achieved using mutually authenticated
certificates for the information being exchanged between the RP
and the OP.

(d) Adversary Relay Proxy: The MITM could act as a false RP, and
instead of redirecting the user to the OP, could act as a proxy
for the OP. Thus, the adversary RP would acquire the user’s
credentials.

4. Denial-of-Service Attacks (DoS): DoS attacks are a significant
concern for any web services [39]. DoS attacks can be launched
by a misbehaving RP, by sending repeated OpenID authentication
requests to an OP. Additionally, a misbehaving User-Agent can also
send repeated requests to an RP, to start the OpenID authentication
process. However, using "stateless" OpenID reduces a lot of the pre-
processing and storage tasks for the RP. This has been considered in
our design for integration of OpenID in OpenStack, which is discussed
later in chapters 4 and 5.

3.4 Other Authentication Frameworks

There are other authentication platforms similar to OpenID, which provide
similar decentralized authentication mechanisms. Microsoft.NET Passport
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[50], and its successor Microsoft CardSpace [47] are two identity management
platforms from Microsoft. Shibboleth [56, 34] is an open source federated
identity management specification, which uses the Security Assertion Markup
Language (SAML) as an internal specification. SAML [57, 51] is an open
standard for exchanging authentication and authorization data between
security domains using XML. With Shibboleth and SAML, users authenticate
themselves to an identity provider, and then the service provider and the
identity provider exchange identity credentials in the back-end. A summary
of these mechanisms is shown in table 3.1.

Table 3.1: Comparison of Authentication Frameworks

Authentication
Framework

Technology Depen-
dency

Application Domain

OpenID HTTP, open source Decentralized, user-centric, between
provider and service point with user
interaction.

Microsoft.NET
Passport &
CardSpace

Operating system,
client end certificates,
licensed technology,
WS-Security [57]

Centralized, user-centric, Windows work-
station account, between Microsoft Live
and service point with user interation.

SAML XML, open source [57,
51]

Organization centric, between provider
and service point without user interaction.

Shibboleth HTTP, SAML frame-
work, open source [57,
34]

Organization centric, between provider
and service point without user interaction.



Chapter 4

OpenID with OpenStack Nova

OpenID allows a decentralized and flexible authentication mechanism for
web services. In this chapter, we present the design to integrate OpenID
authentication in OpenStack Nova.

4.1 OpenID in OpenStack

OpenStack (see section 2.3 on page 8) performs authentication, based on
access and secret keys. Using OpenStack with API tools (euca-tools EC2API
client [4], python-nova OSAPI client [16]), is not much of a concern. However,
using APIs to interact with cloud services is not a very convenient form
of interaction. Thus, the GUI plays a more significant role in the services
provided to users. The Dashboard/Django-Nova framework (see section 2.3.4
on page 23) provides a suitable GUI for users.

OpenStack encourages the use of its APIs (EC2API or OSAPI) for imple-
menting front-end GUI services. The weakness in this implementation is
that, the users are required to be authenticated in a separate authentication
framework in the front-end, with a username/password pair. Once authenti-
cated, the front-end GUI server then uses the Admin credentials to retrieve
the user’s credentials. This way, the backend OpenStack server never plays
a role when the GUI server initially authenticates the user.

Therefore, the current approach for developing a front-end GUI for Open-
Stack does not follow the standard practices for policy enforcement and
management [25, 40]. In standard architecture for such federated login
mechanisms, the front-end GUI server is a "dumb" server, providing only
views to the User-Agent. The Policy Administration Point (PAP) and the

35
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Policy Decision Point (PDP) are always required to be a single point in any
architecture. However, there could be multiple Policy Enforcement Points
(PEPs), where the decision by the PDP are enforced.

In contrast to the standards, in the present formation, if OpenID is
implemented on OpenStack, the relaying point will reside in the front-end
server. As shown in figure 4.1, the GUI server interacts with the OP,
authenticates the user, and provides access. This makes the front-end act as
a secondary PDP, in parallel to the user administration in the back-end.

Figure 4.1: Improper Authentication Enforcement Point

4.2 Applicability of OpenID in OpenStack

To apply OpenID authentication mechanism in OpenStack, we first needed
to consider the architectural perspective. Implementing OpenID at the front-
end GUI server, as shown in figure 4.1, and making it act as a simple RP
in the process, was a simple task. However, that was not our target, as we
needed to combine a dual-PDP scenario into a single-silo formation.

Mechanisms such as OpenID were targeted for basic web service architec-
tures. In contrast, cloud services such as OpenStack do not necessarily follow
such an organisation. As shown in figure 4.2, our design aim was to shift the
point of authentication, the PDP, to the back-end OpenStack server.

Shifting the PDP and performing the authentication in the back-end
requires the front-end to initiate an authentication request. This way, the
authentication decision is made in the back-end within the PAP, the Auth
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Figure 4.2: OpenID-OpenStack Authentication Overview

Manager module in OpenStack (see section 2.3.1 on page 8).

Enabling OpenID authentication in OpenStack would allow users to log into
OpenStack with OpenID URLs. However, the administrator should link an
OpenID URL to an existing OpenStack user to enable OpenID authentication
for the user. This is a standard practice in all web services providing OpenID
authentication, where a local user is linked to his specific OpenID URL (see
section 3.2 on page 29).

4.3 OpenID as a Service

Performing OpenID authentication on the back-end would combine the
decision points into a single PDP. Thus, we propose a design to implement
OpenID-Authentication-as-a-Service on the back-end. The following sub-
sections present the factors considered in the design, followed by the detail
messaging sequence to utilize the OpenID authentication service.

4.3.1 Service Design Concept

While designing an architecture to integrate OpenID with OpenStack, we
converged on a solution based upon OpenID-Authentication-as-a-Service for
OpenStack. We considered the following issues when designing the solution:

• The front-end GUI should be a "dumb" server, only processing views.
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• There should not be any requirement for the GUI server to maintain
any user credentials for authentication.

• Even though the views on the GUI are based on responses from the
API server, the front-end should interact with the Auth Manager in
the back-end to provide the initial authentication grant.

• The HTTP User-Agent only interacts with the front-end server. The
back-end OpenStack server should not have any direct communication
with the User-Agent.

• The process of authentication of a user in the front-end should be
realized as a service from the back-end server.

• All interaction between the front-end and the back-end should be
stateless, as required by the RESTful API server [55, 37, 1, 53].

• Ensure that we meet all of the specifications of OpenID [13, 54].

• Simplify implementation requirements at the front-end server.

• Ensure all security requirements for OpenID in all phases of interaction,
as discussed in section 3.3 on page section 32.

• Maintain a modular and distributed structure for the integration
points, in order to comply with the current architecture of OpenStack.

4.3.2 OpenID Authentication Service API

As mentioned in section 3.2 on page 29, OpenID authentication at an RP
involves two phases: (a) OP endpoint URL discovery and retrieving meta-
information, and (b) Verifying an authentication assertion URL received
from an OP. Therefore, we divided the OpenID-Authentication-as-a-Service
operation in OpenStack into two phases, each invoked with a separate API.

The two APIs which have been defined are:

• OpenIDAuthReq: This API is invoked in the initial phase by the
front-end server. It executes an OpenID authentication request, and
performs the first phase in the process.

• OpenIDAuthVerify: This API is invoked in the second phase by
the front-end server. It executes the authentication verification for the
OpenID authentication assertion URL received from the OP.
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The message sequence for OpenID authentication is shown in figure 4.3. The
entities in the mechanism are the User-Agent, the front-end GUI Server, the
back-end OpenStack Server, and the OpenID provider. The functionality of
the entities are described in table 4.1.

Figure 4.3: Message Sequence for OpenID Authentication API

Prior to authentication with OpenID, the administrator is required to add
a specific OpenID User Identifier to an existing OpenStack user. The
information is addded into the user database in OpenStack, which is used
later in the process of authentication. The sequence of operations for the
user to authenticate against OpenStack, using an OpenID URL are:

1 The user requests the index page from the GUI server with the HTTP
User-Agent.

2 The GUI server returns the login page.

3 The user enters an OpenID Identifier (either user Identifier, or OP
Identifier).

4 The GUI server invokes the OpenIDAuthReq API on the OpenStack
API server to request an OpenID user authentication.
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Table 4.1: Entities in OpenID Authentication for OpenStack

Entities Description

User-Agent An HTTP client application running at the user’s
end.

GUI Server A front-end server, running GUI services for
managerial operations on OpenStack.

OpenStack Server The back-end OpenStack server, which is running
the API services for OpenStack.

OpenID Provider The OP, with which the user has already created an
OpenID account.

5 The API functionality is executed at the OpenStack server. The process
runs the Yadis discovery protocol, and performs the OP endpoint
discovery, and retrieves all the other required meta-information from
the OP to redirect the User-Agent to the OP.

6 The API server uses all the parameters for the redirection and generates
the response XML for the OpenIDAuthReq API call.

7 The GUI server receives the XML response and parses the contents. It
uses the values in the response to generate an HTTP 302 Redirection

for the User-Agent.

8 (a) The User-Agent receives the HTTP 302 Redirection response from
the GUI server. (b) The User-Agent is redirected to the OP endpoint
URL.

9 The OpenID provider authenticates the user. Authentication mech-
anisms can vary from simple username/password, smart cards, client
side certificates, device authentication (GBA), etc. Once the user is
authenticated, the OP generates an authentication assertion response,
with the required parameters and a signature (see section 3.2 on page
29).

10 (a) The OP sends back the User-Agent to the GUI server. (b) The GUI
server receives the User-Agent and triggers the next phase of action
from the front-end server.

11 The GUI server invokes OpenIDAuthVerify API, the second API in the
authentication process, to request verification of the OpenID assertion
URL.
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12 There are multiple operations in this phase of the authentication
process.

a The API functionality is executed at the back-end OpenStack
server.

b The process verifies the signature in the assertion URL, performs
discovery of the OP, and establishes a D-H shared key. It uses
the key to securely verify all the parameters in the OpenID
authentication assertion URL.

c Once verified, Auth Manager retrieves the local OpenStack
user, which has the specific OpenID user Identifier added to its
credentials.

13 The API server uses the parameters for the successfully authenticated
user and generates the response XML for the OpenIDAuthVerify API.
If either the user authentication was not successful, or an OpenStack
user with the asserted OpenID Identifier was not found, the API server
returns an error code in the response XML.

14 The GUI server receives the XML response, and uses the user
information to provide the login, and the HTML dashboard view to
the user.

4.4 Usability of OpenID in OpenStack

A lot of discussions on the usability of OpenID has occurred [24, 29, 62, 56,
45]. In summary, the following advantages in authentication of users could
be attained with OpenID in OpenStack:

• OpenID is the most widely used open standard for authentication.
There are many OP providers for the user to choose from. These include
Google [41], Yahoo [20], MyOpenID [10], and LiveJournal [9].

• It will provide a decentralized user centric authentication delegation
for using OpenStack services. Users will have control over his or her
own identity management and authentication.

• Usability will improve, as OpenID aims for a single user versus multiple
service points applicability. Users using OpenID for other web services,
can use the same OpenID to use OpenStack services.
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• Users will have a seamless Single-Sign-On (SSO) experience. OPs allow
users to remain signed in with the providers, and store cookies in the
User-Agent to save login information. Thus, when a user is already
signed in at the OP, trying to access the OpenStack Dashboard is a
smooth and simple operation for the user, without requiring any extra
interaction for re-authentication.

• Users will have flexibility in the authentication mechanism, as OPs
allow different authentication mechanisms for their users. Most
OpenID providers support username/password, and client certificate
based authentication for users. Apart from that, Leicher et al. in [45]
describe a trusted computing environment using OpenID, A. S. Ahmed
in [24] presents a 3GPP standard authentication mechanism for smart
phones, and Watanabe et al. in [62] illustrate a cellular subscriber ID
and OpenID federated authentication architecture. Ericsson Labs also
provides an Identity Management service, which uses GBA [23, 22, 35]
based device authentication services with OpenID.



Chapter 5

Goals and Prototype
Implementation

In this chapter, we present the description and the details of our prototype
implementation. As mentioned in the research goals (see section 1.3 on page
3), the prototype is a proof-of-concept of the OpenID-Authentication-as-a-
Service, as described in section 4.3 on page 37.

5.1 Research Methodology

This section includes the research work carried out to solve the initial
problems. Apart from the details provided in the previous chapters, this
section presents some of the specific implementation oriented investigations
performed.

5.1.1 Dual PDP to Single PDP

As shown previously in figure 4.2 on page 37, the initial challenge was
to devise a method to logically shift the front-end GUI server’s role for
conducting the OpenID authentication relaying to the back-end OpenStack
server.

Therefore, the design for a dual-API service for providing OpenID authenti-
cation was made. With that, the two phases of OpenID authentication can
be performed via API calls on the back-end.

43
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5.1.2 OpenID Relay Point Complication

In traditional OpenID implementations, the RP performs all the operations
for OpenID authentication from the same URL domain. This means, the
URL domain the User-Agent requests, is the same domain which performs
the redirection in the initial OpenID authentication request with the OP.
Following authentication at the OP, the User-Agent is redirected to the same
domain, and is the same point from where verification of the authentication
assertion is performed. However, as we split the OpenID authentication
process with the APIs, we have two domains: the front-end which interacts
with the User-Agent, and the back-end which performs the rest of the
operations.

Thus, we exploited the regular use of the OpenID parameters, by using
the "return_to" and the "trust_root" parameters in a different way, but
maintained the OpenID specifications [13, 54]. We used them to specify the
front-end URL in the OpenID authentication setup by the back-end with
the OP in the initial phase. As the User-Agent is only in contact with the
front-end server, the OP recognises the service point using the trust_root

information, and effectively redirects the User-Agent to the return_to URL
at the front-end after authentication is performed at the OP.

5.1.3 Implementating a RESTful Service

The OpenStack API Server implements RESTful services. This means, all
services are stateless, and all required information is sent with each request
to the server. However, in the regular "stateful" OpenID authentication, the
D-H shared key is stored after the first phase, and is retrieved during the
verification session.

Therefore, we used the "stateless" OpenID authentication mechanism. This
provided us with two benefits. First, it made the OpenID authentication
possible to implement in a RESTful manner, without requiring store of any
information for a session. Second, it provided a subtle protection against
DoS attacks on the framework. As the shared key is set up only in the final
phase, any extra processing in the initial phase after invoking the first API
is avoided.
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5.1.4 Architectural Consideration

Integrating OpenID functionality on the back-end server required some
modifications in the architecture. Previously, the only module interacting
with the public network was the API Server. However, with OpenID, it is
necessary for OpenStack to have a point of interaction with the OP on the
public network. Hence, we wanted this to be a separate module, detached
from the core components, to ensure privacy of the internal network.

Therefore, we introduced a new module in the architecture of OpenStack,
to implement the functionality of OpenID authentication. This module
interacts with the OP in the public Internet on one interface, and with the
Cloud Controller on another interface. In our prototype, the internal
communication is done with XML over HTTP, thus allowing a modular
deployment of OpenStack.

5.2 OpenID Authentication As A Service

The following sub-sections describes the architectural details of our prototype
for OpenID authentication in OpenStack. All modules, added features, and
extensions are discussed in the following sub-sections. It also includes the
signalling sequence and the architectural action flow in the prototype.

5.2.1 Prototype Architecture

The basic architecture of OpenStack has been discussed previously in section
2.3 on page 8, and was shown in figure 2.2 on page 9.

In our prototype, we introduced some new modules to meet our require-
ments, but followed the structure of OpenStack. The modified OpenStack
architecture is shown in figure 5.1.

The Nova OpenID Controller is the new module added to the archi-
tecture. Furthermore, we introduced an extension in the API Server,
the Cloud Controller, Auth Manager and its Nova-Manage admin
client. We also implemented invocation of the APIs from the Django-
Nova/Dashboard framework to use the OpenID authentication function-
ality.

The OpenStack server runs the following services: Nova-API, Nova-Objectstore,
Nova-Compute, Nova-Network, Nova-Scheduler, Nova-Volume, and Nova-
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Figure 5.1: Additions to OpenStack Architecture

Ajax-Console-Proxy. In addition to these services, our prototype runs the
Nova-Openid-Controller service on TCP port 9988 by default.

The circular points in figure 5.1 shows the points of the implemented
extensions, along with the position of the Nova OpenID Controller. The
following sections present further details of this implementation.
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5.2.2 Modifications in API Server

Our design included two APIs to perform authentication with OpenID in
OpenStack. OpenStack has two sets of APIs, the EC2APIs, and the OSAPIs
(see section 2.3.3 on page 14).

However, we chose to implement our prototype as an addition in the
set of EC2APIs. This was because the specifications of EC2APIs are
more well documented and supported by Amazon AWS. Furthermore, the
functions supported by EC2APIs are more comprehensive compared to
OSAPIs. The Django-Nova/Dashboard framework also uses EC2APIs to
provide the graphical interface to the users. Hence, we implemented the
OpenID authentication mechanism with EC2APIs, and used the Django-
Nova/Dashboard framework to realize the new API services.

We designed two APIs to perform OpenID-Authentication-as-a-Service from
the front-end server. The following present the design of the two APIs.

• OpenidAuthReq

– Action Description: The front-end server initially invokes this API
to request an OpenID authentication from the back-end.

– Parameters: All mandatory parameters for an EC2API call (see
section 2.3.3.2 on page 16). Additional parameters include the user
supplied OpenID Identifier, and the "openid.return_to" URL for
the front-end server. The additional parameters are set as values
in the "Name" parameter in the EC2API request, separated by an
"&".
E.g. Name=profile.google.com/rasib&http://localhost:

8000/openid-auth-return

– Internal Execution: The API Server receives the request, parses
the parameters, and executes the API functionality with a method
call to the Cloud Controller, and waits for the response
variables.

– Response Handler: When the response variables are received
from the Cloud Controller, it generates the response XML
for the API call. The <OpenidAuthReqResponse> tag holds the
parameters in the response XML object.

• OpenidAuthVerify

– Action Description: The front-end server invokes this API to
request an OpenID authentication verification from the back-end,
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after the User-Agent has been redirected to the front-end with the
assertion URL from the OP.

– Parameters: All mandatory parameters for an EC2API call (see
section 2.3.3.2 on page 16). Additional parameter includes the
whole assertion URL sent from the OP to the return_to URL
at the front-end server. The additional parameter is set as value
in the "Name" parameter in the EC2API request. Format of the
assertion URL in OpenID authentication is shown in section 3.2
on page 29.

– Internal Execution: Similar to the previous API, the API Server
receives the request, parses the parameters, and executes the API
functionality with a method call to the Cloud Controller, and
waits for the response variables.

– Response Handler: When the response variables are received
from the Cloud Controller, it generates the response XML for
the API call. The <OpenidAuthVerifyResponse> tag holds the
parameters in the response XML object.

5.2.3 Modifications in Cloud Controller

The Cloud Controller incorporates function handlers for each API in the
API Server. Once the API Server receives a request, it invokes the
specific handler in Cloud Controller. Thus, we extended the function of
Cloud Controller by including two additional handlers for the two above
mentioned APIs in the API Server.

The corresponding handlers for the two APIs are openid_auth_req(), and
openid_auth_verify() respectively. Both of these handlers in Cloud
Controller internally communicates with the OpenIDHandler sub-module,
which specifically interacts with the Nova-OpenID Controller.

The OpenIDHandler communicates with Nova-OpenID Controller with
GET requests over HTTP. In the present implementation, it is assumed
that this interface is within a secured domain. Thus, no additional security
is imposed in the messages. However, to ensure maximum security, it is
suggested that HTTPS is used if the deployment does not have a secured
internal network.
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5.2.4 Addition of Nova-OpenID Controller

As shown in figure 5.1 on page 46, the Nova-OpenID Controller module
is added to the OpenStack architecture. It accepts GET requests over HTTP
from the Cloud Controller.

The Nova-OpenID Controller uses two sub-domain URLs for the Nova-
Openid-Controller to receive the OpenidAuthReq and the OpenidAuthVer-
ify action requests, implemented in a RESTful way. The description of the
processes are as follows:

• OpenidAuthReq ⇒ openid_auth_req()

– Service URL: http://localhost:9988/request/

– Required parameters: openid_identifier and return_to URL.

– Action: Runs Yadis discovery protocol [19], and discovers the OP
endpoint URL and its specifications in the meta-information for
the openid_identifier. It then uses the return_to URL and
the received information to generate the redirectional parameters.

– Response Parameters: According to the specifications of OpenID
authentication [54, 13], the following variables are returned to
Cloud Controller to be used for the redirection: op_endpoint_url,
openid.return_to, openid.realm, openid.ns, openid.mode,
openid.claimed_id, and openid.identity.

• OpenidAuthVerify ⇒ openid_auth_verify()

– Service URL: http://localhost:9988/verify/

– Required parameters: The assertion URL received from the OP at
the return_to URL on the front-end server.

– Action: Receives the assertion URL, and verifies the signature.
Upon successful verification, it parses the return_to URL from
the assertion URL, and performs a stateless check_authentication

operation for the return_to URL with the op_endpoint_url. It
sets up a D-H shared key, and uses the key to securely verify
the following parameters in the assertion URL: op_endpoint,
claimed_id, identity, return_to, and response_nonce.

– Response Parameters: Once successfully verified, it returns a suc-
cess message to Cloud Controller, and the openid.claimed_id.
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Failure in any state of the verification process sends back an error
status message.

A trace from performing OpenID authentication with the APIs on OpenStack
is included in appendix A.2 on page 79.

5.2.5 Modifications in Auth Manager

Any web server providing OpenID authentication has an internal mechanism
to link a local user to an OpenID Identifier. Thus, we included an additional
credential for OpenStack users for OpenID authentication in OpenStack. In
addition to the previously mentioned parameters (see section 2.3.2 on page
10), the user database in OpenStack includes the "openid" credential. The
OpenStack administrator is expected to add an OpenID Identifier for a user
to enable OpenID authentication for the user.

The Nova-OpenID Controller sends the openid.claimed_id to Cloud
Controller upon successful verification in the second phase of the authen-
tication process. The Auth Manager then uses this OpenID URL to
retrieve the OpenStack user from the database, for that specific authenticated
openid.claimed_id. This is similar to existing use cases for other APIs,
where the Auth Manager uses access keys, secret keys, or usernames to
retrieve the user information from the database.

5.2.6 Modifications in Nova-Manage

As explained in section 2.3.2.3 on page 13, the Nova-Manage module is an
admin tool for Auth Manager. Thus, we included an additional function
in Nova-Manage, using which the administrator can add and modify the
OpenID information for the user.

The command for adding an OpenID URL for an OpenStack user is:

$ nova-manage user openid [user_openid_url]

Thus, the administrator adds the OpenID Identifier to enable OpenID
authentication for the user during user creation. However, the current
implementation allows one-to-one mapping of OpenStack users to OpenIDs,
and a specific user can have only one OpenID Identifier.
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5.2.7 Configuration Presets

The prototype requires the following presets for executing OpenID authen-
tication in OpenStack.

1. The Dashboard/Django-Nova GUI server is running.

2. Django-Nova has an "admin" account with OpenStack. The OpenID
authentication is requested as a service on behalf of this account from
the front-end.

3. Dashboard/Django-Nova has a pre-specified "return_to" URL set by
the administrator.

4. OpenStack has the Nova-API and Nova-OpenID-Controller services
running.

5. By default, the API Server runs on TCP port 8773, and the Nova-OpenID

Controller runs on TCP port 9988.

6. The administrator has created a user on OpenStack, and included the
user’s OpenID Identifier in the credentials.

Specific instructions and commands for configuring the presets is included in
appendix A.1 on page 78.

5.2.8 Message Sequence

The signalling sequence in our prototype is shown in figure 5.2. When the
User-Agent requests the index page from the front-end server, the login page
contains the "openid-identifier" field for entering the OpenID URL for the
user. Thus, the user enters his OpenID URL (User Identifier or OP Identifier)
and submits the value to the server.

GUI server then calls the OpenIDAuthReq EC2API on the OpenStack
API server. Additionally, it sets the value of the parameter "Name" as
"openid_url&return_to_url".

The API Server receives the API request, and Nova-OpenID Controller runs
the Yadis discovery protocol for the openid_url, to retrieve the OP endpoint
URL, and meta-information for the OP. The API server then generates the
response XML for the OpenIDAuthReq API call and sends it to the front-end
server to redirect the user.
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1. GET <index page>

2. HTML <openid_identifier>

3. GET <openid_url> submit form

4. GET "OpenidAuthReq" EC2API
additional params: 
name = "openid_url"&"return_to"

5. Invoke API
- Yadis discovery protocol
- request OP-metadata
- Generate Redirection URL

User-Agent GUI Server OpenID ProviderOpenStack Server

6. <?xml version="1.0" ?>
    <OpenidAuthReqResponse>
        <RedirectionURL>
           ...
           params for redirection
           ...
        </RedirectionURL>
    </OpenidAuthReqResponse>

7. Parse XML
    Construct 302 HTTP
    redirection response8. 302 HTTP Redirection

GET openid-redirection-url

9. User Authentication at OpenID Provider Website

Authenticate User : Generate OpenID Authentication Response : Redirect to "return_to"

10 a. 302 HTTP Redirection (openid_auth_response)

10 b. GET <return_to> URL
11. GET "OpenidAuthVerify" EC2API
additional param: 
name = "openid_auth_response"

12. Invoke API
- Establish (D-H) key assoc
- Verify openid_auth_response 
- Link OpenID -> User
- Return SUCCESS/FAILURE

14. Parse XML
      If User details -> Allow Login
      Else ->Failure

13. <?xml version="1.0" ?>
     <OpenidAuthVerifyResponse>
         ...
         User details
         ...
     </OpenidAuthVerifyResponse>

Figure 5.2: Signalling Sequence for OpenID Authentication in OpenStack

The GUI server uses the values, and sends an HTTP 302 Redirection to
the User-Agent. The User-Agent is then redirected to the OP. The OP
authenticates the user, and sends back the User-Agent to the return_to

URL at the GUI server with the assertion URL.

At the return_to URL, the GUI server invokes OpenIDAuthVerify EC2API.
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Additionally, it sets the value of the parameter "Name" as the whole OpenID
assertion URL received from the OP.

The API Server receives the request, and Nova-OpenID Controller runs the
verification process with the OP. It runs the Yadis discovery protocol to
discover the OP services, and establishes a D-H shared key to verify the
assertion URL. Upon verification, OpenStack then links a local user with the
openid.claimed_id.

The API server then creates the response XML for the OpenIDAuthVerify
API call with the user information, which the front-end server uses to allow
the user to log in. If the authentication was unsuccessful, it returns an error
message in the response XML.

5.2.9 Prototype Action Flow
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Figure 5.3: Action Flow for OpenID Authentication in OpenStack

A detail description of the internal communication of the modules in the
architecture and the action flow for the prototype is shown in figure 5.3. The
sequence of actions are as follows:
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1: From the index page, the User-Agent submits the OpenID Identifier
URL for authentication.

2: Dashboard receives the OpenID URL and invokes an internal method
call to the Django-Nova framework.

3: Django-Nova invokes the "OpenidAuthReq" API to the back-end
OpenStack API server.

4, 5: API Server parses the parameters and invokes the openid_auth_req()

handler in Cloud Controller.

6: Cloud Controller sends a function request to the http://localhost:

9988/request URL in Nova-OpenID Controller.

7: Nova-OpenID Controller runs the Yadis discovery protocol to retrieve
the OP end point URL, and OP’s other meta-information and specifi-
cations.

8: Cloud Controller receives the parameters required for redirecting the
User-Agent to the OP.

9, 10, 11: API Server receives the parameters, forms the response XML object,
and sends it as response to the API call from Django-Nova.

12: Django-Nova parses the XML object, and sends the values to Dash-
board.

13: Dasboard uses the values to populate a form template, and uses the
HTTP POST method to submit the values for redirection of the User-
Agent.

14, 15: User-Agent receives the redirection form, and is redirected to the OP
with the redirectional parameters.

16: The user authenticates himself to the OP using whichever authentica-
tion mechanism available at the OP.

17, 18: User-Agent is redirected back to the openid.return_to URL at the
front-end GUI server.

19: The return_to URL on Dashboard receives the assertion URL from the
OP, and invokes an internal method call to the Django-Nova framework
for verification of the assertion URL.
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20: Django-Nova invokes the "OpenidAuthVerify" API to the back-end
OpenStack API server.

21, 22: API Server parses the parameters and invokes the openid_auth_verify()

handler in Cloud Controller.

23: Cloud Controller sends a function request to the http://localhost:

9988/verify URL in Nova-OpenID Controller.

24: Nova-OpenID Controller verifies the signature, sets up a D-H shared
key, and securely verifies values of all the parameter names which are
included in openid.signed.

25: If successfully verified, Nova-OpenID Controller returns a success
message, and the openid.claimed_id to the Cloud Controller. If
verification was unsuccessful, it returns an error message.

26: If successfully verified, Cloud Controller requests Auth Manager to
retrieve the user information from the user database. If verification was
unsuccessful, Cloud Controller forms a "user not found!" error message
and sends it back to the API server.

27, 28: Auth Manager interacts with the database to retrieve the user creden-
tials, and sends it to Cloud Controller.

29, 30, 31: API Server receives the parameters (from step 26 in case of unsuccessful
verification), forms the response XML object, and sends it as response
to the API call from Django-Nova.

32: Django-Nova parses the XML object, and sends the values to Dash-
board.

33: Dasboard receives the values. If authentication was successful, the
response values include the user information. If authentication was
unsuccessful, the response is a "user not found!" error message.

34: Thus, based on the received response values, Dashboard either allows
the user to log in to the interface, or displays a login error message.

The action flow completes the sequence of using the OpenID-Authentication-
as-a-Service APIs on OpenStack from the front-end GUI server. Thus, the
PDP and PAP is shifted to the back-end, and the front-end only acts as a
"dumb" PEP.
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5.3 OpenID Authentication APIs

This section gives the description of the API invocation and the possible
responses for the call. In addition to the OpenID parameters, both the APIs
require the mandatory parameters for all EC2APIs (see section 2.3.3.2 on
page 16).

5.3.1 OpenidAuthReq API

This section describes the format of OpenidAuthReq API call, and the
expected response XML objects.

5.3.1.1 API Invoke

As mentioned earlier in the configuration presets (section 5.2.7 on page 51),
the authentication service API is a service required to be invoked by an
admin user on OpenStack owned Django-Nova. Thus, the format for calling
the OpenidAuthReq EC2API is shown in table 5.1.

Table 5.1: Format for OpenidAuthReq EC2API

GET http://localhost:8773/services/Admin/

?AWSAccessKeyId=<admin_access_key>

&Action=OpenidAuthReq

&Name=<user_supplied_openid_url>&<gui_server_return_to_url>

&SignatureMethod=HmacSHA256

&SignatureVersion=2

&Timestamp=<timestamp>

&Version=nova

&Signature=<signature_for_the_request>

5.3.1.2 Response Format

The response for OpenidAuthReq EC2API maintains the standard response
format for EC2APIs. If a valid OpenID Identifier is supplied by the user,
API Server responds with the variables for the redirection. Table 5.2 shows
a successful response format.
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Table 5.2: Success Response Format for OpenidAuthReq EC2API

<?xml version="1.0" ?>

<OpenidAuthReqResponse xmlns="http://ec2.amazonaws.com/doc/nova/">

<requestId>ec2api_request_id</requestId>

<input>

<openidClaimedId>openid_claimed_id</openidClaimedId>

<openidReturnTo>return_to_url?janrain_nonce=XXXX</openidReturnTo>

<openidNs>openid_specification_version</openidNs>

<openidIdentity>user_supplied_openid</openidIdentity>

<openidMode>checkid_setup</openidMode>

<openidRealm>return_to_url</openidRealm>

</input>

<form>

<action>op_endpoint_url</action>

<acceptCharset>UTF-8</acceptCharset>

<id>openid_message</id>

<enctype>application/x-www-form-urlencoded</enctype>

<method>post</method>

</form>

</OpenidAuthReqResponse>

If the user supplied an invalid OpenID URL, it responds with an error
message, as shown in table 5.3.

Table 5.3: Failure Response Format for OpenidAuthReq EC2API

<?xml version="1.0"?>

<Response>

<Errors>

<Error>

<Code>NotFound</Code>

<Message>Invalid OpenID Provider</Message>

</Error>

</Errors>

<RequestID>ec2api_request_id</RequestID>

</Response>
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5.3.2 OpenidAuthVerify API

This section describes the format of OpenidAuthVerify API call, and the
expected response XML objects.

5.3.2.1 API Invoke

Once the assertion URL is received at the front-end GUI server, it calls the
OpenidAuthVerify EC2API. The format for invoking the API is shown in
table 5.4.

Table 5.4: Format for OpenidAuthVerify EC2API

GET http://localhost:8773/services/Admin/

?AWSAccessKeyId=<admin_access_key>

&Action=OpenidAuthVerify

&Name=<assertion_url_from_op>

&SignatureMethod=HmacSHA256

&SignatureVersion=2

&Timestamp=<timestamp>

&Version=nova

&Signature=<signature for the request>

5.3.2.2 Response Format

The response for he OpenidAuthVerify EC2API depends on the result of
the verification. If successful, the response XML object contains the user
information, which is similar to the response for the existing DescribeUser
EC2API [1]. The format for a successful response is shown in table 5.5.

If the verification was unsuccessful, the API Server responds with an error
message, as shown in table 5.6.

5.4 Dashboard/Django-Nova with OpenID

The Dashboard/Django-Nova framework uses the EC2APIs to provide the
GUI service. For generating API calls, Django-Nova uses the python-boto
library [52]. Thus we used python-boto to implement the OpenidAuthReq and
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Table 5.5: Success Response Format for OpenidAuthVerify EC2API

<?xml version="1.0" ?>

<OpenidAuthVerifyResponse xmlns="http://ec2.amazonaws.com/doc/nova/">

<requestId>ec2api_request_id</requestId>

<username>authenticated_user</username>

<secretkey>user_secret_key</secretkey>

<accesskey>user_access_key</accesskey>

<file>user_credential_file_url</file>

<openid>user_openid</openid>

</OpenidAuthVerifyResponse>

Table 5.6: Failure Response Format for OpenidAuthVerify EC2API

<?xml version="1.0"?>

<Response>

<Errors>

<Error>

<Code>NotFound</Code>

<Message>

No user for OpenID:claimed_openid

</Message>

</Error>

</Errors>

<RequestID>ec2api_request_id</RequestID>

</Response>

OpenidAuthVerify API calls to OpenStack API Server, to perform OpenID-
Authentication-as-a-Service from the front-end.

In current implementation, Django-Nova owns an "admin" user account in
OpenStack server. All initial requests from the server are made with the
"admin" user’s credentials. Once a user logs in successfully, and Django-
Nova receives the user information, it then makes all further requests with
the user’s credentials. Thus, the OpenID authentication service is only usable
by an Admin user.

At first, Dashboard/Django-Nova requests the OpenID authentication ser-
vice. Section 5.3.1 on page 56 describes how to invoke the OpenidAuthReq
API, and the expected response XML.
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Once Django-Nova receives the response, it parses the values in the XML
object, and passes them on to Dashboard as name:value pairs. Dashboard
then uses the values to populate a form template for the HTTP 302

Redirection. The structure of the redirection form, along with a small
auto-submission script we used, is included in the appendix (see table A.1 in
section A.2 on page 79).

After the user has successfully authenticated himself at the OP, the User-
Agent is redirected to the return_to URL on the Dashboard server. The
URL executes a method call to Django-Nova, to invoke the OpenidAuthReq
API. Section 5.3.2 on page 58 describes how to invoke the OpenidAuthVerify
API, and the expected response XML. A successful authentication returns the
user information, which Dashboard uses to populate the managerial interface
for the authenticated user.



Chapter 6

Analysis and Discussion

This chapter presents a post-implementation analysis and discussion of the
prototype and the security concerns. The goal of the thesis was a proof-
of-concept for the integration of OpenID in OpenStack. Thus, this chapter
presents an evaluation and analysis on the architectural ideas rather than
thorough performance measurements.

6.1 Critical Security Points

Any web service is prone to security attacks. In theory, the level of security
of a system is equal to the security of the minimum secured point in the
architecture.

In our implementation, the exposed interfaces are the GUI Server on the
front-end with the User-Agent, the API Server on the back-end with
the GUI Server, the OP end point with the User-Agent on the public
network, and the Nova-OpenID Controller back-end with the OP.

In all cases where the User-Agent is involved, using HTTPS is the safest
solution. Standard web services provide server-side certificates to authen-
ticate the server to the User-Agent. However, in this case, it is crucial
to authenticate the client to the web server. Thus, using both client-
side and server-side certificates for mutual authentication is recommended.
Additionally, other mechanisms to protect the integrity of the messages
relayed through the User-Agent include nonce checking, and verifying
openid.sig for all the parameters included in openid.signed. It should
be noted that using an HTTPS connection increases the latency of the
authentication procedure.

61
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For the API server, all RESTful requests include signatures with a pre-shared
secret between the GUI server and OpenStack. Thus, unless the front-end
server is vulnerable to a compromise by an attacker, the connection to the
back-end can be considered as an integrity protected channel. Currently,
the communication between Django-Nova and the API Server is over HTTP.
Hence, using SSL between the front-end Django-Nova and the API Server is
the most reasonable solution for providing confidentiality. This is a standard
practice for all RESTful services. The API Server is an HTTP-supported
public interface, usable with other API clients (such as euca-tools [4], and
python-nova client [15]). Security technologies such as IPSec [33] are intended
for network level host-to-host security, rather than application-to-application
security. Therefore, IPSec is not a recommended security solution for the
RESTful API Server. However, HTTPS support in the OpenStack API
Server has not been implemented yet, and remains as a future task.

The verification of the assertion URL by Nova-OpenID Controller and the
OP occurs in the back-end. This is significantly different from regular
OpenID implementations, where the front-end is always the RP. However, the
back-end communication of Nova-OpenID Controller with the OP cannot be
considered hidden from an attacker. An attacker can sniff packets from the
network to intercept the communication between Nova-OpenID Controller
and the OP. Hence, following OpenID specifications, this communication is
implemented over an encrypted channel with the D-H shared key between
Nova-OpenID Controller and the OP, as the OP is assumed to be on the
public Internet.

An important part of the implementation on Nova-OpenID Controller was
the generation of redirection parameters. As the "return_to" URL is specified
by the front-end, we ensured its integrity in the verification process by making
sure it is included in the "openid.signed" parameter list, and the parameter
values are all included in the "openid.sig" signature.

However, there is still scope for an attacker to manipulate the information.
As explained in section 3.3 on page 32, the solution can be vulnerable to
Discovery Tampering, Adversary Relay Proxy, and DoS attacks.

Session management between the User-Agent and Dashboard/Django-Nova
front-end is another area where the security should be improved. Authenti-
cation of the user is done in the back-end. However, OpenStack still has to
rely on the front-end to maintain the user session. Services on OpenStack
are RESTful services, and no session information is stored, while the front-
end is a session-based service point for the User-Agent. It is contradictory
with the design principles of RESTful services to maintain such session based
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security. Therefore, OpenStack trusts the front-end Dashboard/Django-Nova
to manage the user session.

6.2 Use Case Study

The implementation of OpenID on OpenStack was tested against two specific
use cases. The following sections present the details for the use cases.

6.2.1 Standard OpenID Providers

Our implementation follows all the specifications of OpenID 2.0 [54, 13].
Thus, authentication in OpenStack using OpenID is supported for all
standard OpenID providers supporting OpenID 2.0.

We have verified use cases for authentication using our own implemented
OP, and also with OpenIDs from Google, Yahoo, and MyOpenID. Table 6.1
summarizes the features of the OpenID providers. In each case, we were
concerned with the returned value for openid.claimed_id, which is the user
Identifier the OpenStack administrator is required to include in the user
credentials.

Table 6.1: Standard OpenID Providers

OP Comments

Google OP Identifier https://www.google.com/accounts/o8/id

returns random string as Identifier. User Identifier
https://profiles.google.com/username returns user specified
Identifier. Supports OpenID 2.0.

Yahoo https://me.yahoo.com/username returns user specified Identifier.
Supports OpenID 2.0.

MyOpenID http://username.myopenid.com/ returns user specified Identifier.
Insecure HTTP OP endpoint. Supports OpenID 2.0.

6.2.2 GBA Provider

3rd Generation Partnership Project (3GPP) specifies the Generic Bootstrap-
ping Architecture (GBA) [23] as a mechanism to authenticate devices. It
uses cellular technology with the Internet to provide authentication services
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to mobile devices. As an extension, the 3GPP also specifies a standardization
for the integration of OpenID with GBA [22, 24].

Ericsson Labs provide a GBA based authentication service in their Identity
Management (IDM) portal [35]. Currently, it can be used over the Internet,
making any device behave as a next generation mobile device, by installing
the SoftSim application on the device, available on the portal.

In our use case, we used an Android enabled mobile device for accessing
the OpenStack GUI. We used the GBA with OpenID mechanism to
authenticate the Android device with the SoftSim application. Ericsson
IDM uses the OP Identifier https://idm.labs.ericsson.net to initiate
the OpenID authentication. A successful authentication returns a user
specified https://idm.labs.ericsson.net/portal/id/username Identi-
fier from the portal.

6.2.3 Performance Evaluation

In our use cases, we found that the execution time varied with the different
OpenID providers. We were running the OpenStack server back-end and the
Dashboard/Django-Nova front-end GUI server on the same machine. The
server was running the Ubuntu 10.04.2 LTS Lucid 64-bit operating system,
on a Tower MacPro4.1, with 8GB RAM, and a 2.27GHz Intel(R) Xeon(R)
16 Core 64-bit processor.

We captured network packets and calculated the time differences to evaluate
the performance of our prototype. We recorded 30 observations for each
OpenID provider. The times were calculated based on two phases. The
"Request" phase includes the time from the User-Agent submitting the
OpenID Identifier until the User-Agent reaches the OP endpoint URL. The
"Verification" phase includes the time from the authenticated User-Agent
being redirected from the OP, until the time when the user is logged into the
Dashboard interface.

Furthermore, we recorded another 30 measurements for each provider,
when the user is already signed in at the OP. The user had a seamless
SSO experience, without the need to re-authenticate at the OP. The
timing includes the time for the user to submit their OpenID Identifier on
the Dashboard interface, and directly log in without any additional user
interaction.

The measurements had an approximately Gaussian distribution. Thus, we
calculated the mean of the readings. The recorded measurements are shown
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in figure 6.1. The graph shows the mean of each set of readings, along with
the population standard deviation for each OP.

Figure 6.1: Time Measurements for OpenID Authentication

As shown in the graph, the request phase for all the OPs has small standard
deviation compared to the verification phase and the SSO timings. The
request phase only requires the Nova-OpenID Controller to discover the OP
meta-information, and thus exhibits a relatively consistent behaviour.

The table shows the ratio of the verification phase to the request phase
for each provider. It can be seen that, except for MyOpenID, all providers
require approximately double the time in the verification phase compared to
the request phase. The verification phase includes setting up a D-H shared
key, and encryption and decryption of all information while verifying the
assertion URL. Thus, Nova-OpenID Controller requires more time in the
second phase. A higher standard deviation in the readings is understandable
because of the varying processing times both at the Nova-OpenID Controller
and at the OP end.

The time measurements for the providers show that MyOpenID takes the
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least time in all cases. This is because MyOpenID uses only a basic HTTP
connection and is thus faster, but unsecured.

For all OPs, the SSO timing is greater than the summation of the authen-
tication and the verification phase timings. The first two measurements
did not include the user interaction while performing authentication at the
OP. However, in the measurements for SSO, the User-Agent requires time
for the extra processing needed to authenticate itself to the OP with the
cookies stored in the device. The SSO timings for all OPs display the highest
standard deviation. This is because the timing includes processing delays at
the User-Agent (to retrieve the cookies), at the OP, and at Nova-OpenID
Controller. As because these three entities have varying performance, the
recorded timing intervals had a comparatively high variance.

Furthermore, we measured the internal timing between the Nova-OpenID
Controller and Cloud Controller to evaluate the performance of the internal
module. We recorded the duration of time for the Cloud Controller to
send a request to Nova-OpenID Controller and receive a response, for both
the openid_auth_req and openid_auth_verify API handlers. We recorded
30 measurements for each of the OPs for each operation. The recorded
measurements are shown in figure 6.2. The graph shows the average duration
of time between the request and the response for the authentication request
and the authentication verification along with the standard deviation for each
of the OPs.

The graph in figure 6.2 for the internal timing measurements shows a similar
pattern to the external measurements in figure 6.1. The standard deviations
for all the OPs were also consistent.

However, figure 6.2 does not show the timing for the verification phase to be
twice the time required for the request phase as in figure 6.1. Additionally,
the sum of the internal timings on figure 6.2 is much lower compared to the
external timing in figure 6.1 for all the OPs. This is because the external
measurements include the time required for the API Server to process the
variables and generate the response XML for the API call, the time required
for Dashboard/Django-Nova front-end to process the data and generate the
HTML view and, primarily, the time required for the authentication process
at the OP end point.

However, the performance of the prototype and the timing measurements
depend largely on the hardware configuration of the server. Additionally,
OpenStack does not incorporate any efficiency improvement mechanisms at
present, and the design and architecture of the whole system is still evolving.
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Figure 6.2: Time Measurements for Nova-OpenID Controller

6.3 Version Information

OpenStack released its initial version, Austin, in October 2010. The second
release version, Bexar, came out in February 2011.

Our implementation was integrated with the Bexar release. After a successful
implementation with Bexar, we then integrated our solution with Cactus, the
third release, which came out in April 2011.

Diablo, the fourth release of OpenStack is scheduled to be released in Septem-
ber 2011. However, beginning with the Diablo release, the authentication
framework design is supposed to utilize a new architecture. It will integrate
the KeyStone project [49] as the authentication module, the design of which
is still evolving.
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6.4 Discussion

The goal of this thesis project was to introduce a flexible decentralized
authentication mechanism for cloud computing platforms. Studying the
usability and availability of services, we chose OpenID as the authentication
mechanism. After extensive research on open-source cloud middleware
solutions, we chose OpenStack to continue our work. However, OpenID has
its own flaws and vulnerabilities, and OpenStack also has its limitation and
complexities.

After achieving our initial goal, we conducted further research, and con-
verged on the idea of implementing OpenID-Authentication-as-a-Service
APIs in OpenStack. In addition to fulfilling the requirement to perform
authentication with OpenID, we introduced the concept of performing the
authentication in a rather unusual manner. We divided the authentication
process into two phases, and implemented the processes with two separate
APIs on the API Server.

During the thesis work, we faced certain technical challenges. Section
5.1 on page 43 discusses the way each of the issues were handled. The
prototype incorporated all of the standard security practices and meets the
specifications of the technologies being used.

One of the most challenging parts of the work was to logically adapt the
dual PDP scenario into a single PDP. Even with a working design, the
implementation required extensive exploration of the OpenID parameters
to divide the functionality of a standard RP in to the necessary components.
Verification of the parameters and inclusion of the parameters in the signature
was one of the crucial features of the implementation.

Another difficult design task was choosing the point of integration of the
features in the OpenStack architecture. We believe that we have selected an
interesting approach, by adding the Nova-OpenID Controller as a separate
module and implementing an internal interface with the Cloud Controller.
This was especially important from the perspective of internal network
security. As this module interacted with the OP on the public Internet, the
separation provides the required abstraction of the internal network from the
public Internet.

One of the features of the implementation is that it only supports OpenID
version 2.0. This was a requirement as we needed to implement a RESTful
service, and a similar "stateless" mode is only supported in OpenID 2.0. This
cannot be viewed as a limitation, as OpenID 2.0 is considered to be more
secure than its previous versions.



Chapter 7

Conclusions and Future Work

The evolution of cloud computing is driving the next generation of internet
services. In addition to proprietary platforms, multiple open-source middle-
ware solutions are available on the Internet.

Currently, all middleware support platform specific technologies for authen-
tication and access control. In our research we chose OpenStack as our open-
source cloud platform. OpenStack allows access via its two set of RESTful
APIs: the EC2APIs and the OSAPIs. These APIs use access keys and secret
keys to authenticate users in the framework when accessing services.

Nonetheless, the adoption of these new technologies must be easy for the
users. To improve usability, OpenStack offers a graphical interface with the
Dashboard/Django-Nova framework. However, the current architecture of
OpenStack lacks specific GUI based services. Thus, the Dashboard/Django-
Nova framework uses the set of EC2APIs to provide HTML views of the GUI.
For initial authentication, the front-end incorporates a separate username
and password based validation mechanism. This introduces a dual PDP
scenario, which is not a recommended practice for web services.

In this thesis, we introduced a flexible decentralized authentication service
for the front-end. We selected OpenID as an open-source authentication
platform. OpenID has its own advantages for web services, which include
improvements in usability and seamless SSO experience for the users.
OpenID allows users to choose identities from multiple providers on the
Internet, use a range of authentication mechanisms depending upon the
mechanisms supported by the provider, and to access multiple service points
on the Internet with the same OpenID Identifier.

In our design, OpenID authentication in the front-end is used as a service
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from the back-end OpenStack server. As a result, we were able to shift
the dual points of decision making and perform the authentication at a
single PDP in the back-end. For our implementation, we explored OpenID
authentication. We were able to divide the mechanism into two phases:
the authentication request and the authentication verification phase. The
two phases in the authentication process were then implemented with two
separate APIs.

The design was implemented on OpenStack. We used Dashboard/Django-
Nova as the front-end GUI, and implemented the APIs as EC2APIs. The
two implemented APIs on the OpenStack API server are OpenidAuthReq
and OpenidAuthVerify. Additionally, we added the Nova-OpenID
Controller a new module in the OpenStack architecture. This module
communicates with the Cloud Controller over an internal HTTP interface,
and with the OP on the public Internet over another interface. Furthermore,
we extended the functionality of the Nova-Manage administrator tool, to
add and modify the OpenID credentials for existing OpenStack users.

The OpenID support for the prototype is designed only for use with OpenID
version 2.0. The prototype implementation was successfully tested against
standard OpenID providers on the Internet supporting OpenID 2.0. The
use cases were evaluated against OpenID Identifiers from Google, Yahoo,
and MyOpenID, along with a GBA based authentication mechanism from
Ericsson IDM Services.

The Nova-OpenID Controller on the back-end incorporates secure au-
thentication and verification of the OpenID assertion URL with the OP.
Therefore, secure interaction with the OP over HTTPS is supported.
However, Nova-OpenID Controller is able perform the authentication process
over an insecure HTTP connection, depending upon the OP’s capabilities. In
our timing measurements, we found that using HTTPS requires more time
compared to using HTTP. This is a basic trade-off between security and
performance of any system. Execution time traces of performing OpenID
authentication in OpenStack is included in appendix A on page 78.

In our thesis, we developed a prototype as a the proof-of-concept for
using OpenID-Authentication-as-a-Service from front-end GUI servers. The
security of the solution follows the relevant standards. This concept can be
applied to similar architectures, where there is a separation of the PDP on
the service back-end, and a PEP on the "dumb" front-end.
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Future Work

The research performed during this thesis project revealed further possibili-
ties. The first objective would be to introduce greater flexibility in the choice
of authentication mechanisms for the user. Second, one should introduce
open platforms for authorization delegation in OpenStack.

To provide flexibility in the choice of authentication on OpenStack, we
suggest that other authentication platforms, such as Shibboleth/SAML, be
considered. Shibboleth is an organization centric authentication mechanism.
The authentication tokens and other information are exchanged between the
authentication provider and the service provider on the back-end.

A use case for Shibboleth authentication is where an organization has a
service agreement with an OpenStack cloud provider. Thus, any user from
the organization should be able to use the OpenStack services using his or
her organization centric identity using Shibboleth authentication.

To provide a generic solution for authentication, we aim to design a common
Authentication-as-a-Service API in OpenStack. This API will allow the
front-end GUI to use any method of authentication based on the user’s choice.

The second objective would be to introduce open authorization platforms in
OpenStack. We will consider OAuth [11] as the most appropriate open-
source authorization mechanism. OAuth is a user centric authorization
delegation specification, and allows two parties to securely interchange
specific information about authorized resources.

We have already performed an applicability analysis of OAuth on OpenStack.
A possible use case for OAuth is when a user has accounts on two OpenStack
providers. With OAuth, the user will be able to define authorized resources
on provider A. Then, the user can utilize resources from provider B, with
provisions for dynamic scaling of resources to provider A. A high level design
of delegated authorization with OAuth in OpenStack is included in appendix
B on page 84.
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Appendix A

Executing OpenID in
OpenStack

This section includes some execution instructions and traces from the
execution of the OpenID authentication mechanism on OpenStack.

A.1 Setup Information

This section provides the setup instructions for the OpenStack prototype to
function.

The first requirement is to set up the database.

$ InstallationDir/bin/nova-manage db sync

An admin user is created on OpenStack for the Dashboard/Django-Nova
framework, with the access key "admin", and the secret key "admin". Another
regular user, "rasib" is then created, who will be using the service. The access
and secret key is automatically generated by OpenStack in this case.

$ InstallationDir/bin/nova-manage user admin dashboardAdmin admin admin

$ InstallationDir/bin/nova-manage user admin rasib

Having user "rasib" created, we would then add the user’s OpenID Identifier
with his OpenStack credentials. In this case, we would be using his Google
OpenID information, which would be used to log into OpenStack GUI.

$ InstallationDir/bin/nova-manage user openid rasib https://profiles.
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google.com/rasib

A project is created on OpenStack, with the Dashboard administrator as the
project manager.

$ InstallationDir/bin/nova-manage project create project1 dashboardAdmin

Finally, a small network for the pool of IP addresses for the VMs is created.

$ InstallationDir/bin/nova-manage network create 172.16.0.0/16 1 16

Having done all of it, it is then required to run the OpenStack services with
the following commands.

$ InstallationDir/bin/nova-api

$ InstallationDir/bin/nova-objectstore

$ InstallationDir/bin/nova-compute

$ InstallationDir/bin/nova-network

$ InstallationDir/bin/nova-scheduler

$ InstallationDir/bin/nova-volume

$ InstallationDir/bin/nova-ajax-console-proxy

$ InstallationDir/bin/nova-openid

Finally, after setting up OpenStack services, we would then run the
Dashboard/Django-Nova GUI service.

$ DashboardDir/tools/with_venv.sh DashboardDir/dashboard/manage.py runserver

0.0.0.0:8080

A.2 Execution Trace

We had run the services on the Nomadic Lab network, on host n25. Thus,
initially, the User-Agent requests the index page from Dashboard from:

http://n25.nomadiclab.com:8080

The user then types his OpenID URL in the openid-identifier box, and
submits the value. Thus, the OpenidAuthReq API is called, with the
appropriate parameters. The API request looks like the following:
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GET http://n25.nomadiclab.com:8773/services/Admin/

?AWSAccessKeyId=admin

&Action=OpenidAuthReq

&Name=profiles.google.com/rasib\

&http://n25.nomadiclab.com:8080/openid/verify/

&SignatureMethod=HmacSHA256

&SignatureVersion=2

&Timestamp=2011-03-23T07:20:55

&Version=nova

&Signature=FnNUPULRvynIjYG6ylVWK9PrjWj3NCmWrfOdgzNY8s=

As this API is called, the following messages on the Nova-OpenID Controller
service describes its functions:

OpenID identifier: profiles.google.com/rasib

Service redirection URL: http://n25.nomadiclab.com:8080/openid/verify/

Trust root included: http://n25.nomadiclab.com:8080/openid/verify/

Generated checkid_setup request to https://www.google.com/accounts/

o8/ud?source=profiles using stateless mode

With the discovered information by Nova-OpenID Controller, it returns the
redirectional parameters in the response XML for the front-end to redirect
the User-Agent to Google for user authentication.

<?xml version="1.0" ?>

<OpenidAuthReqResponse xmlns="http://ec2.amazonaws.com/doc/nova/">

<requestId>M84ZV2V9T9ZLUZRG5VEP</requestId>

<input>

<openidClaimedId>https://profiles.google.com/rasib85</openidClaimedId>

<openidReturnTo>http://10.0.0.25:8080/openid/verify/

?janrain_nonce=2011-03-23T07%3A20%3A56ZLnMsYN

</openidReturnTo>

<openidNs>http://specs.openid.net/auth/2.0</openidNs>

<openidIdentity>https://profiles.google.com/rasib85</openidIdentity>

<openidMode>checkid_setup</openidMode>

<openidRealm>http://10.0.0.25:8080/openid/verify/</openidRealm>

</input>

<form>

<action>https://www.google.com/accounts/o8/ud?source=profiles</action>

<acceptCharset>UTF-8</acceptCharset>

<id>openid_message</id>

<enctype>application/x-www-form-urlencoded</enctype>

<method>post</method>

</form>

</OpenidAuthReqResponse>
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Using the response XML, Dashboard then uses a form to populate the fields
and an auto-submission script to POST to redirect the user. The format of
the form is shown in table A.1.

Table A.1: Dashboard HTTP 302 Redirection Form

<body onload="document.forms[0].submit();">

<h1>OpenID transaction in progress</h1>

<form id="{{formId}}" action="{{formAction}}"

method="{{formMethod}}"

accept-charset="{{formAcceptCharset}}"

enctype="{{formEnctype}}">

<input type="hidden" name="openid.return_to"

value="{{inputOpenidReturnTo}}"/>

<input type="hidden" name="openid.realm"

value="{{inputOpenidRealm}}"/>

<input type="hidden" name="openid.ns"

value="{{inputOpenidNs}}"/>

<input type="hidden" name="openid.claimed_id"

value="{{inputOpenidClaimedId}}"/>

<input type="hidden" name="openid.mode"

value="{{inputOpenidMode}}"/>

<input type="hidden" name="openid.identity"

value="{{inputOpenidIdentity}}"/>

<input type="submit" value="Continue"/>

</form>

<script>

var elements = document.forms[0].elements;

for (var i = 0; i < elements.length; i++) {

elements[i].style.display = "none";

}

</script>

</body>

The User-Agent is redirected to the OP, and once the user authenticates
himself, he is sent back to the return_to URL on Dashboard/Django-Nova.
Dashboard/Django-Nova then calls the OpenidAuthVerify API.
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GET http://n25.nomadiclab.com:8773/services/Admin/

?AWSAccessKeyId=admin

&Action=OpenidAuthVerify

&Name=/openid/verify/

?janrain_nonce=2011-03-23T07:20:56ZLnMsYN

&openid.ns=http://specs.openid.net/auth/2.0

&openid.mode=id_res

&openid.op_endpoint=https://www.google.com/

accounts/o8/ud?source=profiles

&openid.response_nonce=2011-03-23T07:20:58ZQ02wNXOYIlqBcQ

&openid.return_to=http://10.0.0.25:8080/openid/verify/

?janrain_nonce=2011-03-23T07:20:56ZLnMsYN

&openid.assoc_handle=AOQobUd67rDCBApRSNOX2lBiEA_

jmOuOm0NcNzI4im8sDgz6KGo1iZ1E

&openid.signed=op_endpoint,

claimed_id,

identity,

return_to,

response_nonce,

assoc_handle

&openid.sig=9m2AfSwsGQ/40frxzNJlB4KqRbk=

&openid.identity=https://profiles.google.com/rasib

&openid.claimed_id=https://profiles.google.com/rasib

&SignatureMethod=HmacSHA256

&SignatureVersion=2

&Timestamp=2011-03-23T07:20:58

&Version=nova

&Signature=8jnIm7Ede/KbNYuAcKu73Yx9aT MxHyLNijjwhAoSBE=

As this API is called, the following messages on the Nova-OpenID Controller
service describes its functions:

No pre-discovered information supplied.

Performing discovery on https://profiles.google.com/rasib

Received id_res response from https://www.google.com/

accounts/o8/ud?source=profiles using association

AOQobUd67rDCBApRSNOX2lBiEA_jmOuOm0NcNzI4im8sDgz6KGo1iZ1E

Using OpenID check_authentication

op_endpoint

claimed_id

identity

return_to

response_nonce

assoc_handle

Status: success
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Identifier: https://profiles.google.com/rasib

After the verification is completed successfully, Auth Manager retrives the
user information for OpenID "https://profiles.google.com/rasib". The API
server then responds with the user information for Dashboard/Django-Nova
to allow the user to log in into the interface.

<?xml version="1.0" ?>

<OpenidAuthVerifyResponse xmlns="http://ec2.amazonaws.com/doc/nova/">

<requestId>C5J4N394A9-TI8Y5BD4O</requestId>

<username>rasib</username>

<secretkey>ad68e65d-5599-47ee-b191-8803c57f24b3</secretkey>

<accesskey>a7caceb8-3b25-435a-a836-d4ce632f450f</accesskey>

<file/>

<openid>https://profiles.google.com/rasib</openid>

</OpenidAuthVerifyResponse>



Appendix B

Applicability of OAuth in
OpenStack

OAuth [11] is an open-source platform for authorization delegation between
web services. OAuth enables a user-centric sharing and access of resources
between two service points.

We performed an initial analysis on the applicability of OAuth on OpenStack.
The following sections present a high level implementation design for a
possible use case of OAuth in OpenStack.

B.1 OAuth Overview

OAuth performs allows authorization delegation on behalf on the user,
between to service points. OAuth specifications [11] provides the following
sequence of operations to implement authorization with OAuth:

1. User-X is at ServerA, and wants to access a remote resource from
ServerB.

2. ServerA sends sends a request to ServerB for a "request_token" to the
request_token_URL in ServerB.

3. ServerB responds with a "request_token" to ServerA.

4. ServerA redirects User-X with the "request_token" to the authoriza-
tion_URL in ServerB to authorize the remote resource.

84
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5. User-X authenticates and authorizes the resource for ServerA at
ServerB.

6. ServerB redirects User-X back to ServerA with the authorized
"request_token".

7. ServerA uses the authorized "request_token" to send a request to the
access_token_URL in ServerB for an "access_token".

8. ServerB responds with an "access_token".

9. ServerA then uses the "access_token" to send requests to the re-
source_URL in ServerB to access the remote resource which the user
has authorized.

B.2 Use Case

An overview of a use case for OAuth in OpenStack is shown in figure B.1.

Figure B.1: OAuth Use Case Overview

User-X is assumed to own two accounts with two separate OpenStack
providers. OpenStack providers A and B are assumed to pre-share a service
level agreement. There can be two use cases in this scenario.

B.2.1 Use Case 1

User-X Requests Resource from OpenStack Provider B through
OpenStack-Provider A
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User-X is at OpenStack provider A. However, the user wishes to request a
resource from OpenStack provider B, through provider A.

Thus, the remote resource request is implemented using OAuth between
OpenStack providers A and B. Provider A redirects User-X to provider B.
At provider B, the user authorizes some resources for providers A. User-X is
then again redirected to provider A, and delegates the OAuth authorization
token.

Provider A then accesses the authorized resource on provider B with the
OAuth token.

B.2.2 Use Case 2

User-X Pre-Authorizes Resources on OpenStack Provider B for
OpenStack-Provider A

User-X is at OpenStack provider A. The user then configures a cloud
scaling feature on provider A, such that provider A can dynamically scale
the resources from User-X’s account on OpenStack provider A to User-X’s
account on OpenStack provider B.

During configuration, provider A redirects User-X to provider B. The user
then presets authorized resources for provider A for a certain duration. User-
X is then redirected back to provider A with an OAuth authorization token
for the specified duration.

Provider A saves the OAuth token for User-X, and can use the token to
dynamically scale up the resources to provider B, till when the token expires.

B.3 Signalling Sequence Overview

In our future work, we aim to implement OAuth in OpenStack for delegated
authentication. We have designed the initial signalling sequence of OAuth
in OpenStack, shown in figure B.2, to implement the use cases described in
section B.2 on page 85.

The user initially submits the remote OpenStack Provider’s URL to access
a remote resource. The front-end server on Provider-A thus calls the
"RemoteResource" API in the back-end OpenStack server.

Provider-A then calls the "DescribeURL" API in Provider-B, to discover
the authorization_URL in Provider-B. Provider-B thus responds with the



APPENDIX B. APPLICABILITY OF OAUTH IN OPENSTACK 87

Remote
Resource URL

API:RemRes API:DescURL

DescURLResponse

Save(URLs) API:ReqToken

ReqTokenResponseRemResResponse

Parse XMLHTTP 302 Redirect

Auth_URL

Authenticate/Authorize ResourceHTTP 302 Redirect

Callback_URL API:ShowServ

Save
(AuthReqToken)

API:AccessToken

AccessTokenResponse
Save

(AccessToken)

ShowServResponse

Parse XML
Show Services

Remote
Resource Req

API:RemResReq

Retrieve
(AccessToken)

OpenStack Provider A

GUI
Server

User OpenStack Provider B

API:RemReq

RemReqResponse
RemResReq

Response

Figure B.2: OAuth in OpenStack Signalling Sequence

authorization_URL in the XML object, which Provider-A saves, and starts
the second phase of operation.

Provider-A then calls the "RequestToken" API in Provider-B. Provider-B
thus responds with a "request_token" to Provider-A. Provider-A’s back-
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end then sends the "RemoteResourceResponse" XML, with the token, and
the required redirectional parameters to the front-end GUI server. The
front-end thus parses the XML object, and redirects the User-Agent to the
authorization_URL in Provider-B.

The user then authenticates and authorizes the resource on Provider-B. After
that, Provider-B redirects the User-Agent back to the front-end GUI server
of Provider-A at the pre-configured callback_URL, which was included in
the "request_token".

The callback_URL at the front-end GUI calls the "ShowServices" API in
Provider-A, along with the authorized "request_token", to display the
list of services authorized from Provider-B. Upon receiving the request,
the Provider-A back-end saves the token, and calls the "AccessToken" API
in Provider-B with the authorized "request_token". Provider-B receives
the authorized "request_token", and responds with an "access_token".
Provider-A then receives the "access_token", saves it, and sends an XML
response to the front-end GUI to display the authorized services on Provider-
B.

After this, the user can request a remote resource on the front-end
GUI. The front-end in turn calls the "RemoteResourceRequest" API in
Provider-A’s back-end. The back-end receives the request, and retrieves the
"access_token" to call the "RemoteRequest" API in Provider-B. Provider-
B thus receives the request with the valid "access_token", allocates the
resource, and sends back a success message to Provider-A.

B.4 Summary

Implementation of OAuth in OpenStack will introduce flexibility in the
authorization of resources on the platform. It could be used and extended
in various ways. This section provides an overview of OAuth, along with
two applicable use cases for delegated authorization. Furthermore, we also
presented the initial design for OAuth on OpenStack.
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