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Abstract

During recent years, waveform signal processing within a radio system is
performed more and more in the digital domain rather than the analog domain.
This is exemplified in Software Defined Radios (SDRs) systems. A SDR is a radio
system whose components are realized in software rather than in hardware.
Among the main advantages of such systems, the most important are flexibility
and portability. A SDR system is flexible since its components can be modified
and reconfigured without physically modifying the system. Furthermore, a SDR
system can be ported to a number of different environments, hence it is not
tied to a specific hardware platform. Due to these characteristics, SDRs are
being used more and more in both military and public safety sectors.

A straightforward consequence of the adaptability to variable environments
is the porting of SDRs to embedded processors and handheld devices. These
devices usually have significant limitations both in terms of computational
performance and power constraints. Although the trend in the development
of General Purpose Processors (GPPs) and Digital Signal Processors (DSPs)
dictated by the Moore’s Law has increased the performance of embedded
devices, currently they face limitations due to both the power consumption
and to the execution time when executing even partial SDR systems.

The objective of this thesis project is the evaluation and the optimization
of the performance of software running on the OMAP3530 platform on a
BeagleBoard. This thesis focuses specifically on the system performances as
a function of the configuration of the communication link between the GPP
and the DSP in order to reduce as much as possible the system delay due to
the communication among the processor cores in the system. Furthermore,
this thesis compares the performance achieved by the system by exploiting
the DSP and the NEON vector coprocessor. The results of this study
show reduced communication delays, thus facilitating the porting of a SDR-
like system to an OMAP platform. The experiments were performed on a
BeagleBoard Revision C3, a hardware platform based on the Texas Instruments
OMAP3530. The OMAP3530 is a processor made up of two cores: the GPP,
a 600-MHz ARM Cortex™-A8 Core and an advanced Very Long Instruction
Word (VLIW) microprocessor Core, specifically the TMS320C64x+™DSP Core.
The communication between the two cores is via the DSP/BIOS Link, software
designed by Texas Instruments to facilitate the exchanging of data between the
two cores. The optimal DSPLink setup was obtained with the MSGQ module.
This offered good performance, while reducing the system power consumption
and reducing the load on the GPP. Moreover, the DSP-based solution offered
better performance than the NEON-based configuration.
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Sammanfattning

Under de senaste ȧren har signalbehandlingstekniken i radiosystemen
övergȧtt till att använda digital teknik snarare än traditionell analog. Ett exem-
pel pȧ detta är Software Defined Radios (SDRs) där mȧnga av komponenterna
är implementerade i mjukvara istället för hȧrdvara. De största fördelarna med
SDR-tekniken är portabiliteten och flexibiliteten. SDR möjliggör omkonfigure-
ring under drift utan att fysiskt behöva pȧverka systemet. Dessa fördelaktiga
egenskaper har gjort att SDR-tekniken används mer och mer inom civil säkerhet
och militära omrȧden.

Även om General Purpose Processors (GPPs) och Digital Signal Proces-
sors (DSPs) blir effektivare och bättre med tiden enligt Moores lag, sȧ är
porteringsarbetet av SDR system till inbyggda plattformar och handburen
utrustning tekniskt utmanande. Utmaningen bestȧr av att utrustningen ofta
har begränsningar i form av beräkningsprestanda och strömförbrukning.

Utvärderingen fokuserar pȧ optimering av systemprestanda med avse-
ende pȧ mjukvaran som är implementerad pȧ en OMAP3530 plattform.
Systemprestandan är beroende pȧ konfigurationen av kommunikationslänken
mellan processorkärnorna i systemet. Resultaten av denna studie minimerar
fördröjningen i kommunikationslänken mellan processorkärnorna och visar att
portering till SDR-liknande OMAP-plattformar är möjlig. Arbetet inkluderar
även en prestandajämförelse mellan att utnyttja NEON vector processorn
istället för DSP:n som även finns pȧ platformen.

Försöken utförs pȧ en BeagleBoard som är en hȧrdvaruplattform frȧn Texas
Instruments och bygger pȧ OMAP3530. OMAP3530 bestȧr av tvȧ kärnor: en
GPP (600-MHz ARM Cortex™-A8) och en avancerad Very Long Instruction
Word (VLIW) Mikroprocessor Core (TMS320C64x+™DSP). Kommunikationen
mellan kärnorna bygger pȧ DSP/BIOS Link som är en mjukvara framtagen
av Texas Instruments för att underlätta utbyte av information mellan de tvȧ
kärnorna.
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Chapter 1

Introduction

This thesis project will evaluate core-to-core communications in order to optimize
the performance of software running on an Open Multimedia Application Platform
(OMAP) platform. The evaluation done in this thesis and its results, will be used
in projects related to porting a Software Defined Radio (SDR) system to embedded
systems, such as the OMAP platform.

This master thesis represents the final project in my academic studies for the
Master of Science in Computer Science Engineering conducted initially at Politec-
nico di Torino in Torino (Italy) and afterwards at Kungliga Tekniska Högskolan
(KTH) in Stockholm (Sweden) as an exchange student in the Erasmus/LLP Double
Degree programme.

The project has been carried out at Saab Systems in Järfälla at the Security
and Defence Solutions department according to the company’s requirements. Saab
is involved in the development of products, services, and solutions ranging from
military defense to civil security1.

The present chapter gives a quick overview of the background concerning SDRs
(section 1.1) and describes in detail the problems and the goal of the thesis project
(section 1.2). Furthermore, the method to be used (section 1.3) and the organization
of the complete thesis (section 1.4) of the project are described.

1.1 Background
The development of SDR systems (further details in section 2.1) has taken place over
the last several decades. It has been driven by the evolution of radio communication
systems from primarily analog processing to digital computation. In our society
communicating is essential and radio communication systems play a fundamental
role in enabling people to communicate (especially while on the move). A radio is
a system that receives and transmits signals in the Radio Frequency (RF) part
of the electromagnetic spectrum (ranging from 30 KHz to 300 GHz) in order
to transmit and receive information. Today radio communication systems are

1http://www.saabgroup.com/en/About-Saab/Company-profile/Saab-in-brief/

1



2 CHAPTER 1. INTRODUCTION

embedded in many devices commonly used in the everyday life, such as cellular
phones, computers, and even vehicles.

Until two decades ago, the only way to build a radio system was to use
analog electronic techniques. With the improvements in the Integrated Circuit (IC)
technology, as described by the Moore’s law, the level of integration, the operating
frequency, and the price/performance of Very Large Scale Integration (VLSI) circuits
has enabled digital signal processing rather than analog signal processing in radio
systems. The main idea behind a SDR system, is to realize a radio communication
system where some or all of the physical layer functions are realized by software
[1]. In a SDR we can replace the static analog platform with its pre-determined
waveforms2 (as in a canonical radio system) with general purpose hardware that
provides the waveform processing as implemented by software.

The benefits of SDRs are manifest and cover different aspects. The main
advantages are flexibility and portability. Since the waveform is software
dependent, several types of waveform can be supported by a single platform. This
means that a different radio can (often) execute on a single platform just by loading
new software or new firmware in memory3. In addition, a single waveform can
be ported to several different platforms quickly (often) without requiring major
modifications. These features clearly lead to economic advantages. On one hand
the prototyping time (and so the time-to-market) is considerably reduced since
software design can take greater advantage of the design hierarchy than analog
systems design. On the other hand the Non-recurrent Engineering (NRE) costs are
reduced since the hardware platform can be designed once and then reused for a
large number of products. Furthermore, maintenance and upgrading are speeded
up since the repairs are mainly installing new bits to fix software bugs, rather than
physically substituting components. In some cases, this maintenance or upgrading
can be performed remotely without the radio being taken out of service. Moreover
upgrading a product is flexible and new features can be installed quickly, remotely,
and without the need of any physical intervention. The ability to remotely update
the software greatly increases the speed with which upgrades can be deployed while
increasing the scalability of the maintenance organization. In addition logistical
and operational expenditures are lowered by utilizing a common radio platform for
multiple markets. This is especially important for military and civil defense markets
where the volumes of products are much lower than for consumer electronics, thus
consumer devices can be "upgraded" into military and civil defense products as
needed - radically changing the cost of these products.

People may wonder whether SDRs will be effectively adopted by society and

2In the SDRs context, the term "waveform" includes all the components needed to create a
radio system.

3Assuming that the platform has adequate performance to meet the requirements of this radio.
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how they are integrated with today’s technology. An interesting study related to
the adoption of the SDR technology is reported in [2]. In this paper the rate of
adoption of the SDR technology is analyzed in different market segments. As we can
see from figure 1.1, the SDR technology is well adopted in military communications
where even the laggards and sceptics have adopted it. Even if it has been recently
accepted in commercial wireless infrastructures, it has not yet "crossed the chasm"4
concerning the mobile handsets and terminal market segment. The reasons for
these trends are explained in [2]. In military environments, the radios targeted for
military communication are based on reprogrammable reconfigurable processors.
On the opposite side of the spectrum of volumes, although in the mobile handset
market SDR technology is not yet mainstream, some steps in this direction have
been made in this segment. An example is the Apple’s 3G iPhone based on an
Infineon baseband processor. It is made up of a Digital Signal Processor (DSP) for
the baseband processing and a General Purpose Processor (GPP) for other kinds of
computations. This approach of combining a GPP with a DSP has been used in wide
area cellular handsets and wireless local area network access points for many years.
as it leads to decreased costs, decreased time to market, and increased flexibility.

Figure 1.1. Adoption curve in different market segment of the SDR technology
(adapted from [2])

4The "Crossing the Chasm" concept is described in the Geoffrey Moore’s homonymous book [3].
In this book, the author focuses on the specifics of marketing high tech products during the early
start up period. A product crosses the chasm when it becomes adopted not only by visionaries
(early adopters), but also by the pragmatists who are the early-majority. This is the most difficult
step for the product, but it defines at the same time the maturity of the product.
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1.2 Motivations and problem statement

In the section 1.1 the current status of the SDR technology in the mobile handsets
and terminals market segment was described. Embedded and handheld devices
can be considered as part of this market segment. In this section we will take a
deeper look at the problems of implementing SDR technology for this class of devices.

Waveform processing can be performed on four different types of hardware
platforms and configurations (see section 2.2 for more details): General Purpose
Processor (GPP), General Purpose Processor (GPP) + Digital Signal Processor
(DSP), Field Programmable Gate Array (FPGA), or Application Specific Integrated
Circuit (ASIC). While a large number of SDR products has been developed for
running on a GPP (for example, in a desktop computer), the constraints of running
on a handheld device and the interest in using SDR on such devices have presented
new challenges for SDRs. The user requirements include small size and limited
weight, and long battery life (the later achieved by a low power consumption). The
challenge is to create SDR systems capable of meeting these constrains when running
on embedded devices. One of the most popular tools in the SDR environment is
GNU Radio (section 2.1.1), a free software development toolkit that provides signal
processing runtime support and signal processing blocks to implement software
radios. Although the GNU Radio is platform independent, because it is written
using Python, the most critical blocks with respect to the performance are written in
C++. GNU Radio was designed for running in powerful GPPs on desktop computers
as it makes heavy use of hardware-accelerated floating point computations [4]. The
extensive exploitation of floating point operations has limited its use on embedded
systems which do not have floating point processors. Nevertheless, some projects are
porting SDRs to embedded systems. Two examples are Open SDR5 which intends
to port GNU Radio to the BeagleBoard and OSSIE (section 2.1.2). The later can
target a number of different platforms.

This thesis project takes place in this context of efforts to point SDR to
embedded GPP+DSP platforms. Although other studies have been done about
the performances of embedded systems running a SDR (such as the OpenSDR
project, Philip Balister’s master thesis [5] and paper [4]), the uniqueness of my
thesis project is its focus on the communication link between the GPP and the DSP.
Therefore, a great amount of effort was expended to understand what is the best link
configuration with respect to the kinds of computations to be performed by the DSP
and how much the system gains in terms of performance by using this configuration.
The performance achieved by exploiting this configuration, is also compared to the
performance that can be achieved by using the NEON vector coprocessor.

For this project, we will focus on the BeagleBoard, a low-cost hardware platform.

5http://www.opensdr.com/
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BeagleBoard was designed for testing and for experimenting, rather than for
developing final products. This board is based on the TI6 OMAP processor family.
The processor on the BeagleBoard is the Texas Instruments (TI) OMAP3530 (see
section 2.4). This processor contains an ARM Cortex-A8 GPP and a TI C64x+
DSP. A number of peripherals are also available on the BeagleBoard. The operating
system running on the GPP is the Ȧngström distribution7, a Linux distribution for
a variety of embedded devices. On the DSP side, there is no operating system
- simply a Basic Input Output System (BIOS). This DSP/BIOS is a real-time
multi-tasking kernel designed by TI specifically to run on DSP platforms. The
two cores communicate and exchange data by means of DSP/BIOS Link (aka
DSPLink). DSPLink is the basic software developed by TI for the Inter Process
Communication (IPC) between the GPP and the DSP.

The goal of my project is to determine and to evaluate the best configuration of
the DSPLink (in terms of its IPC mechanisms) in order to minimize the delay of the
distributed software running on an OMAP system. The performance analysis will
consider three different kinds of performance of the system: the latency concerning
the exchanging of data on the link (DSPLink) between the GPP and DSP, the load
on the GPP, and the load on the DSP. The results of this study should be used as a
basis for the design of software architectures when porting SDRs to the BeagleBoard
or in general to the OMAP3530 platform.

1.3 Method
The goal of this research work is the evaluation of an artifact. More specifically,
the artifact in question is an OMAP3530 platform. This platform will be evaluated
and studied in terms of distributed software performance split across the two cores.

The first phase of the project consisted of gathering information about the
OMAP platform and the operating systems to be used. During this phase, a
deeper understanding of the hardware capabilities of the system was acquired. The
initial main goal of this thesis project was the evaluation of the performance of the
GPP+DSP solution as a function of the IPC protocol used for the communication.
In this context the DSPLink is in charge of the IPC-based communication between
the GPP and DSP .

During the second phase, software to test DSPLink performance was developed.
This test software, simulating a typical block of a SDR system, was designed in order
to test the performance that could be achieved by using all of the different DSPLink
modules.

The third phase analyzed the collected results in an effort to improve the overall
system performance. After further study, the NEON vector coprocessor was studied

6http://www.ti.com/
7http://www.angstrom-distribution.org
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and exploited. Test software for targeting the NEON coprocessor was designed and
implemented. Using this software, the performance of the GPP+DSP solution was
compared with the GPP+NEON solution.

During the last phase, my attention was shifted towards floating point opera-
tions. The hardware for the execution of floating point operations was studied and
the test software suitably modified to exploit this hardware. Finally an analysis
of the collected data was performed to complete my study of how SDR might be
realized on the BeagleBoard..

1.4 Thesis organization
Chapter 2 of this report, explains the background of the project. A brief explanation
of SDR systems is given, as well as a look at SDR implementations for embedded
systems. Additionally, the hardware platform and software running on it are
analyzed in detail. The chapter ends with an overview of some previous work
done on embedded SDRs and on the analysis of SDR performance.

Chapter 3 introduces all of the tools and methods necessary to analyze the
target system’s performance. The experimental and development environment are
described. Furthermore, the test software for the different system configurations
is described and explained in detail. Finally the tools used for performance
measurements are described.

Chapter 4 reports on the analysis of the data collected according to the method
described in chapter 3. Two proposed system solutions are analyzed and compared.
This thesis ends with chapter 5 which summarizes results obtained from chapter 4
and contains some proposals for future works and extensions of this masters thesis
project.



Chapter 2

Background

Building upon the motivations for this thesis project and the brief overview of SDR
in the chapter 1, this chapter presents the current state of the art regarding the
tools used in this project. First, a general explanation of SDR will be given. Section
2.1 introduces the technical basis and the motivation for SDRs without going deeply
into technical details. For further details, please refer to [6] and [7]. In section
2.2 the current state of the art regarding embedding SDRs in hardware systems is
clarified.

Next focus of this chapter shifts towards technical details of both the hardware
and software tools used during the project. Sections 2.3 and 2.4 give an overview
of the hardware platform used.

Then, the software tools that will be used during this project are described. In
section 2.5 the operating systems running on the OMAP cores is explained in detail,
while the section 2.6 gives details concerning the DSPLink software. Finally the
chapter finishes by giving an overview of the previous works related to this thesis
project (section 2.7).

2.1 Software Defined Radio
A Software Defined Radio (SDR) is "a radio that is substantially defined in software
and whose physical layer behaviour can be significantly altered through changes to
its software" [7]. Hence a SDR is a radio system in which the waveform signal
processing is performed digitally. In SDRs a large portion of the functionality
is implemented through software. This approach increases the flexibility of the
device, as it can change its operating parameters and new features can be added
to it without any physical modification to the system. Decades ago, the only
way to design a radio system was by means of analog circuits. Thanks to the
improvements in VLSI technology, the possibility of realizing radio components (e.g.
mixers, filters, amplifiers, modulators, demodulators, detectors, etc.) as software
running on personal computers, embedded computing devices, or programmable
gate arrays has become a reality.

7
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In an ideal SDR, either digitization occurs at the antenna or following a very
flexible Radio Frequency (RF) front-end. This flexible RF front-end is needed in
order to handle a wide range of carrier frequencies and modulation formats [7, page
3]. The ideal scheme for a SDR is shown in figure 2.1. The antenna receives the
analog radio signal. This flexible RF front-end convertes the analog radio signal into
the digital domain by an Analog to Digital Converter (ADC). The stream is then
received and processed in a combination of software and hardware. These software
and hardware process the waveform. An output waveform is sent as a digital signal
to be converted by a Digital to Analog Converter (DAC) into an analog signal.
The analog signal is generally amplified and transmitted into the ether by a radio
antenna.

Figure 2.1. Model of an ideal SDR system

A more concrete scheme is shown in figure 2.2. The main difference from
the ideal scheme is that an intermediate step before conversion is needed in the
receiver. This conversion to an intermediate frequency is required since SDRs must
deal with radio frequency signals (ranging from 30 KHz to 300 GHz), but current
technology does not allow a signal conversion (from digital to analog domain and
vice versa) with both a high enough rate and a sufficient accuracy for frequencies
above 35 MHz1. This step transforms the received high-frequency signal into a
so called Intermediate Frequency (IF). For received signals, this transformation
is done by a tuner. Following this the intermediate frequency is filtered and
digitized2. The filtering is done to prevent aliasing of high frequency signals
into the band of frequencies that are being digitized. A similar transformation
can be made to shift the IF frequency back for transmission. Both figures 2.1
and 2.2 cite CORBA as a software tool in the processing unit. Common Object
Request Broker Architecture (CORBA) is a standard that enables components
written in multiple programming languages and running on different computers, to
communicate by means of interfaces written by using Interface Definition Language
(IDL). According to the Software Communication Architectures (SCA), the transfer

1This limit is not a hard limit. The frequency at which direct data conversion can be done
increases in the case of multi-GHz processor clocks.

2This transformation can be achieved by means of a super heterodyne receiver. In order to tune
the high-frequency signal into IF, a variable-frequency oscillator, mixer, and filter can be used.
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of data between two components in the waveform must be implemented as CORBA
remote procedure calls. In this way, CORBA enables components designed by
different vendors to work together.

Figure 2.2. Model of a real SDR system

As figure 1.1 showed, SDRs are today widely used in the commercial and military
fields due to their benefits [7, page xv, preface]:

• Ease of design: traditionally radio systems required years of design experience
to be able to design a complex analog system and a deep understanding of the
system components interaction was required. Using SDRs the time-to-market
of a product can be reduced since a common hardware platform can be reused
for a multitude of radio products. Furthermore a deep understanding of the
analog part of the system is no longer mandatory.

• Ease of manufacture: since the behaviour of analog components varies, huge
costs for quality control were common for high quality analog radios. In
contrast, the behaviour of processors is more deterministic since given the
same input, two processors will generally produce the same output3.

• Flexibility in multimode operations: supporting different communication
standards and protocols means loading new software into the SDR without
requiring any physical modification of the device. This enables a product to
be updated remotely, thus saving money and time.

• Developing new functionalities: thanks to the flexibility of SDR, new tech-
niques can be developed giving new capabilities to the radios system, examples
include data encryption, voice and speech recognition, data compression,
advanced error recovery, interference rejection techniques, and software-
enabled power minimization and control. All these functions are implemented
by the processor, eliminating the need for further components - hence reducing
the system cost and enabling a reduction in the product cost.

3While the processors may compute the same output (if the processors are working correctly),
there may be a difference in the time when the processors produce this output. As a result there
is also an expensive (an extensive) testing process for processors - this process can be used to sort
the processors into both functional and non-functional chips, but can also sort them into different
performance grades based upon the clock speed at which the processor executes correctly.
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2.1.1 GNU Radio
GNU Radio4 is a free software toolkit for developing SDRs. It provides a library
for signal processing, enabling programmers to create SDRs using available low-
cost hardware and external RF interfaces. GNU Radio is written in Python.
Nevertheless, libraries that involve intensive signal processing tasks are written in
C++ for performance reasons. The role of Python is to connect the C++ blocks
by using SWIG 5. The programmer creates a radio system graphically (or logically)
by interconnecting blocks. Each block represents a component in the radio system,
while the connecting edges represent signal dataflows. An ideal infinite streaming
flow of data is processed by each block. In addition, GNU Radio offers the possibility
to understand the algorithmic implementation of a radio system and the possibility
to modify and create your own custom blocks.

GNU Radio is intended to run on a desktop computer. This means that the
basic system should have a 1 or 2 GHz processor with at least 256 MB of RAM
[8]. This requirements seems to be ridiculously low compared to the newest desktop
machines. For example, a 3 GHz processor could evaluate up to 3 billion floating-
point FIR taps/s if a single-cycle floating-point unit is available6. However, today’s
embedded devices do not meet these requirements (we will examine this further in
section 2.4).

Since GNU Radio is only a software package, some hardware is required to build
a complete SDR system. The Ettus Research (now part of National Instruments)
USRP is a low-price hardware device designed by Matt Ettus that implements
both the receiver and the transmitter in the SDR system. It connects the GNU
Radio software with the real world by means a USB 2.0 interface. More recently
the company has released an improved device called the USRP2. It is an improved
version of the USRP and consists of [10]:

• Two 100 MS/s 14-bit ADCs

• Two 400 MS/s 16-bit DACs

• A Xilinx Spartan 3-2000 FPGA

• Gigabit Ethernet interface

• 1 Megabyte of on-board high-speed SRAM

The FPGA can be used for on-chip processing at the board’s high sample rates. The
gigabit Ethernet interface enables the board to deliver to applications running on a

4http://gnuradio.org/redmine/
5http://www.swig.org/. SWIG (this stands for Simplified Wrapper and Interface Generator) is

a software development tool that allows programs written in C/C++ to be connected to software
written in other higher level languages.

6An example of design of a syngle-cycle floating point unit is [9]. In this paper, a single-
cycle floating point unit is designed as a pipeline of three stages. Each stage (operands alignment,
addition or subtraction of mantissas, and normalization of the result) is performed by a single-cycle
unit.
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network attached computer samples of up to 50 MHz of RF bandwidth. Moreover
the USRP2 is capable of processing signals up to 100 MHz wide. The schematics
of USRP project are freely available. In addition, there are drivers to integrate the
device into GNU Radio. A variety of daughterboards, sold by Ettus Reasearch, are
available to extend the USRP2’s functionality.

GNU Radio can be compiled and installed on the BeagleBoard. The GNU
Radio package can be compiled by means of bitbake or a compiled version can
be downloaded and installed from the Ȧngström distribution package repository
website7 as an IPK package. To install the package, it is sufficient to type in the
command shell:
opkg install <file.ipk>8

2.1.2 OSSIE
The Open Source SCA Implementation Embedded (OSSIE) project9 is an open
source SDR based on the SCA specification10. The software is written in C++
using the omniORB CORBA ORB [11]. The current (0.8.1) version of the software
is designed to be executed on a Linux operating system and on Intel and AMD
processors. Nonetheless, experimental versions have been ported to processors that
are widely used in embedded devices. The scope of the OSSIE project is to release
a software version with enhanced support for embedded systems. Experimental
embedded versions have been ported to the following devices:

• TI 320C6416 DSP;
• ARM 9;
• Marvell PXA27011;
• PowerPC;
• PowerPC 405.

OSSIE offers a variety of tools for rapid prototyping of a waveform.

OSSIE Eclipse Feature (OEF) This Eclipse plug-in offers a simple drag-and-
drop interface to create a waveform. It provides a GUI to create signal
processing components and helps programmers to interface OSSIE with
CORBA;

7http://www.angstrom-distribution.org/repo/
8The file name used in this project was gnuradio_3.1.3-r3.1_armv7a.ipk
9http://ossie.wireless.vt.edu

10SCA provides a common infrastructure for the development and managing of SDR based
systems. The main goal of SCA is to implement portability and interoperability among the different
SDR products, to define commercial standards, support the reuse of waveform design modules, and
build on evolving commercial frameworks [6].

11This is one of the processors in what was formally known as the DEC StrongARM, then Intel
XScale processor family.
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ALF This tool helps to debug waveforms. The programmer can launch the
waveform, view a block representation of the waveform, and can inject or
monitor the state of the signals during the application flow.

Waveform Dashboard (WaveDash) This tool allows users to configure and
modify the waveform at run time from a GUI.

2.2 Embedded SDRs
Our presentation thus far has focused on SDR systems suitable for running on
desktop PCs (GNU Radio (2.1.1), OSSIE (2.1.2)). This section deals with choosing
the hardware to be adopted when porting SDRs to embedded devices. For detailed
comparisons among available embedded solutions refer to [12] and [7, chapter 7].

We will start by enumerating differences between different kinds of processing
units (see figure 2.1), then look at the main differences between a SDR system
implemented on a desktop computer and on an embedded platform 12. A SDR can
have several advantages when running on a desktop personal computer (PC):

ease of use the SDR can be built graphically, interconnecting radio components
using a GUI;

computation power usually PCs have powerful CPUs able to perform a large
number of operations per time unit. Additionally SDRs can usually exploit
fast, single-cycle floating-point units; and

extensive support with respect to drivers and upgrades.

Nevertheless, a desktop PC is not portable, consumes a lot of power, and the
operating system is scheduling many processes to run on a single processor (or
a small number of processor cores). In contrast, an embedded solution offers:

• low power consumption (from 100 to 400 times lower);

• dedicated hardware: the hardware (and operating system) are dedicated and
optimized for specific tasks; and

• potentially lower cost as only the hardware and software resources needed for
the target task are needed.

The shortcomings of embedded systems are mostly related to their utilizing a much
more constrained set of resources. These constraints make programming more
complex.

We will examine several different digital hardware choices for SDRs by comparing
them according to the following attributes [7]:

12A DSP-based system is used as representative of embedded solutions in this comparison.
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Flexibility the ability to handle different protocols and waveforms. The capability
of supporting future developments in protocols or technologies is desirable.

Modularity the subsystems must be easily replaced or substituted when new
technology becomes available.

Scalability allows the radio to be enhanced with further capabilities and function-
alities.

Performance in terms of power consumption, computational power, and relative
cost (Prof. Mark T. Smith characterizes this as MIPS/Watt/$).

The main hardware alternatives that can be used to implement a SDR are DSP, GPP,
ASIC, and FPGA. Each of these will be examined in more detail below.

2.2.1 DSP
A DSP is a microprocessor optimized for digital signal processing operations.
It is optimized to offer high-performance when executing repetitive, numerically
intensive tasks, with high-performance I/O. A DSP consists at least of an Artihmetic
Logic Unit (ALU), an accumulator, Multiply Accumulate (MAC) unit13, and buses.
A DSP is usually able to perform several memory accesses in a single clock
cycle. To achieve that, the DSP architecture breaks the classical von Neumann
Architecture by implementing a Harvard Architecture. The von Neumann
Architecture has a single memory interface for both instructions and data accesses,
thus a single access to memory can take place in each clock cycle. This dramatically
limits the processor performance. In contrast, a Harvard Architecture separates the
data and instruction memories enabling one instruction and one data memory access
to occur on each cycle; however, this requires two dedicated buses. An improved
version of the Harvard Architecture implements several data memories, each with
dedicated buses so that every memory can provide data in parallel resulting in
multiple memory accesses in a single clock cycle. In the last decades, superscalar
implementations have enabled multiple instructions to be fetched, decoded, and
executed in parallel, examples are Very Long Instruction Word (VLIW) and Single
Instruction Multiple Data (SIMD) architectures (see sections 2.4.1 and 2.4.2).

Since the DSP’s functionality is determined by the executed software, the
flexibility, scalability, and modularity of a DSP solution are good. However,
this solution typically has high power consumption, but can offer quite high
performance when measured in multiply-accumulates per second. This later metric
is quite important as many signal processing operations (such as filtering) can
be implemented as multiply-accumulate computations. However, one of the most
significant limitations of this system is that few programmers are able to get high
performance on more than a limited subset of the code, hence limiting the overall

13An example of a MAC operation: a← a + b ∗ c
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performance of the system. As a result carefully written libraries of subroutines
(often provided by the hardware vendor or a third party) are used by most
programmers - enabling them to achieve high performance without needing to
understand all of the details of the processor.

2.2.2 GPP
The GPP solution offers very high programmability. Unlike DSP programming, which
requires extensive experience and a deep knowledge of the DSP architecture and
assembly language to design and implement an efficient algorithm, a GPP can be
programmed using higher level languages, while exploiting the operating system
and extensive libraries of routines. The achievable performance can reach that of
DSP with the introduction of coprocessors and architecture modifications (section
2.4.1).

The main advantage of a DSP over a GPP is the deterministic execution of
the code. In a DSP all the hardware and software running on the processor is
executing only one task - as the DSP generally does not have an operating system
coordinating multiple tasks. In a GPP the operating system scheduler breaks
this deterministic behaviour by making extensive use of multitasking, thus this
complicating performance analysis of the system. However, in multiple processor
(and multiple core) GPPs, one processor might be dedicated to a specific task, thus
regaining the deterministic execution of a task. Additionally, real-time operating
systems enable deterministic scheduling - but at the cost of increased programming
effort and a requirement of deeper knowledge of both the hardware and software.

2.2.3 ASIC
In an ASIC solution, the entire integrated circuit is designed to implement a specific
computation at the gate and sometimes even the transistor levels. ASICs are the
optimal solution in terms of run-time performance. They are capable of achieving
fast execution times with the minimum power consumption. Unfortunately, this
is at the cost of greatly reduced flexibility. The cost of the system (both Non-
recurrent Engineering (NRE) and production costs) is high and the system design
time can be very long. To reduce development time a developer can use a Hardware
Description Language (HDL) and purchase the design for entire sub-systems (so
called "intellectual property", for example an Ethernet interface, a 48 bits floating
point multiplier, etc.).

2.2.4 FPGA
An FPGA is an integrated circuit that can be customized by programmers after
having been manufactured. Using a FPGA avoids some of the development costs
of the ASIC approach, while offering both flexibility and higher performance than
both DSP or GPP based solutions. For the FPGA solution programmers must design
their circuit by means of HDLs. Using a FPGA greatly increases the flexibility when
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compared to the ASIC approach. In some cases, the FPGA can be reconfigured on
the fly. In some cases, different parts of the FPGA can be reconfigured while other
parts are used to execute a computation. Depending on the FPGA, there is a wide
range of flexibility and modularity. Additionally, the types of gates which different
vendors offer range from very simple logic gates to much more complex logic, with
some FPGAs offering embedded processor cores, memories, network interfaces, etc.
as blocks that the programmer can configure into their circuits. One difficulty is that
increased on-chip complexity of blocks increases the cost and decreases the potential
flexibility of circuits that can be realized with a given FPGA. Another difficulty is
that mapping designs to a given FPGA may be very difficult, with small changes
leading to very big differences in performance. However, the performance of FPGAs
can be very high since the system functions are still implemented in hardware and
they can execute in parallel.

2.2.5 Conclusions concerning alternative solutions
As already stated in the section 2.1, the main advantage of SDRs is their flexibility.
For this reason the best embedded solutions for such systems are the GPP, DSP, and
FPGA. The main limitation of the first two of these systems is their performance.
To increase their performance, a hybrid configuration can be created in which
the GPP and DSP cooperate to achieve higher performance. In such a system
the GPP controls the DSP and coordinates tasks, while implementing the most
computationally demanding operations in the DSP. General purpose I/O operations
are performed by the GPP. Although the global system performance is increased,
the complexity of programming is increased since the programmer must deal with
the communication between the two cores. Furthermore, since data must be sent
over a communication channel, the potential parallelism may not be fully exploited.
The GPP+DSP configuration, represents the main trend in the integration of SDRs
in embedded devices. Nevertheless, FPGAs are used for performance critical tasks
where the performance provided by the GPP+DSP system is insufficient. An example
of this is the use of an FPGA in the USRP, where the FPGA is used for the
signal decimation and for converting a signal to and from baseband14. Table 2.1
summarizes the comparisons made in this section. In this table the scores are from
1 (worst) to 5 (best) and they are related to each other.

2.3 BeagleBoard
BeagleBoard is a single-board computer system based on TI’s OMAP3530 (see
section 2.4). It is able to achieve laptop-like functionality thanks to its performance
and to the expansion interfaces and peripherals available on the board. In addition

14The USRP FGPA can also be used to perform other signal processing that requires both high
performance and direct access to the samples, such as the recognition of the start of a WLAN
frame and timestamping as shown in [13].
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Table 2.1. Comparison of embedded SDR solutions (adapted from [12])

Solutions DSP GPP FPGA ASIC GPP + DSP
Flexibility 5 5 3 1 5
Performance 2 1 4 5 3
Programmability 4 5 2 1 4
Development cycle 5 5 3 1 5
Cost 5 4 3 1 4
Power consumption 2 2 4 5 1

to its performance, it is at the same time a low-power and low-cost embedded
computer system. At the time of writing, the cost of a BeagleBoard-xM is US$ 149.
This board is targeted at the Open Source Community. Since some key features of
the OMAP system are missing (in fact the intefaces of the OMAP for the high speed
data transfer are not exposed), it is not intended to be used in a final product, but
it is designated as an experimental and test platform [14]. The BeagleBoard used
during this project was the version BeagleBoard Revision C3. The table 2.2 shows
the key features of this board. The core of the BeagleBoard C3 is the OMAP3530
ES3.0 15 processor (2.4) packaged in a Package-on-Package (POP). In the POP
packaging techniques, the memories chips are mounted on the top of the processor
package. The version of the BeagleBoard that was used is shown in figure 2.3.

With regard to the memory, in the Micron POP there are two integrated
memory devices: a 2 Gb NAND x 16 (256MB flash memory) and a 2 Gb MDDR
SDRAM x32 (256MB @ 166MHz). These two devices are the only on-board memory
available. Nevertheless, since BeagleBoard has standard interfaces for connecting
external storage devices. Additionally, it is possible to extend the system memory
by means of SD or MMC cards or by an USB flash or hard drive. However, accessing
these external memories will be quite slow.

TI’s TPS65950 chip is used for power management. The TPS65950 is a
Power Management Multi-Channel IC (PMIC) solution. In a single IC a multichannel
power-management device and an audio coder/decoder are integrated. This chip in
charge of controlling the power for the both peripherals and for the OMAP processor.

A 14-pin JTAG interface is also provided to permit software debugging and
programming of the on-chip FLASH memory (i.e., to install a system image or boot
loader). Support for RS232 via UART3 is provided by a 10 pin header. Through
this interface is it possible to access the BeagleBoard using a IDC to DB9 flat serial
cable.

2.4 OMAP3530 Microprocessor
The Texas Instruments Open Multimedia Application Platform (OMAP) is a family
of microprocessors specialised for multimedia applications and designed for portable

15ES3.0 refers to the silicon version of the OMAP processor
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Table 2.2. Key features of BeagleBoard C3

BeagleBoard Revision C3 Features
Processor OMAP3530 ES3.0 600 MHz

Memories 2Gb NAND (256MB)
2Gb MDDR SDRAM (256MB)

PMIC TPS65950

Power Regulators
Audio CODEC
Reset
USB OTG PHY

Debug support

UART
14-pin JTAG
LEDs
GPIO pins

HS USB Host Port Single USB HS Port (up to 500 mA power)

Audio connectors L+R out (3.5 mm)
L+R stereo in (3.5 mm)

SD/MMC Connector 6 in 1 SD/MMC/SDIO
4/8 bit support, Dual voltage

Video DVI-D
S-Video

Power Connector USB Power
DC Power

Printed Circuit Board (PCB) 3.1" x 3.0" (78.74 x 76.2mm)
6 layers

and embedded devices. Due to these characteristics, the OMAP microprocessors have
been extensively utilized in cellular phones.

There are three groups of microprocessors in the OMAP family. Each segment is
distinguished from the others by its performance and intended application:

• High performance: these processors are intended to be used in smart phones
or handheld devices. Such devices need sufficiently powerful processors to run
embedded operating systems (typically a Linux or Symbian OS), to support
mobile connectivity and multimedia applications. The following processors
families belong to this segment: OMAP1, OMAP2, OMAP3, and OMAP4;

• Basic multimedia: they are intended for handset manufactures and their
main feature is low-cost and high degree of integration. The OMAP331 and
OMAP310 are examples of such microprocessors, while the DMx series of
digital media coprocessors are used to support advanced cameras on some
mobile devices;

• Modem and applications: this segment features low-cost and low-power, low-
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Figure 2.3. BeagleBoard overview

frequency microprocessors. These are primarily intended for simple mobile
phones.

The BeagleBoard that we have used is based on the OMAP3530 microprocessor.
The OMAP3530 is a dual-core microprocessor belonging to the OMAP3 family,
hence it is in the high performance segment. As reported by Texas Instruments
in [15], the OMAP3 architecture is designed to provide video, image, and graphics
processing. The computation power of this architecture is sufficient to support
media applications such as streaming video, 3D mobile gaming, video conferencing,
and high-resolution still images. The OMAP3530 is able to support operating
systems such as Linux or Windows CE. The subsystems that compose the device
are 16 :

• ARM Cortex™-A8 Microprocessor Unit (MPU) (up to 720 MHz);
• TI C64x+ DSP (up to 520 MHz);
• Imagination Technologies POWERVR SGX™subsystem for 3D graphics ac-

celeration;
16In our project, the OMAP3530 ES3.0 includes ARM Cortex-A8 processor (revision r1p3, 600

MHz) and TI C64x+ DSP (480 MHz)
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• Image Signal Processor (ISP) for the processing of different images formats;

• level 3 (L3) and level 4 (L4) interconnects for high speed data transfer with
memory controllers (either external or on-chip ones).

Furthermore advanced services are implemented in the OMAP3530. A remarkable
capability of the system is its power management. The active power consumption
is reduced due to automatic control of the operating voltage of individual modules
and by supporting the SmartReflex™technology 17. In an OMAP3430 this reduces
active power consumption by 66 percent and standby power leakage by up to three
orders of magnitude[16]. For readers interested in the advanced features and in the
details of the OMAP3530 microprocessors, please refer to [15]. Programmers can
refer to [17].

2.4.1 Cortex-A8 Processor
The Cortex-A8 processor is a microprocessor designed by ARM Holdings based
on the ARMv7-A, a 32-bit Reduced Instruction Set Computer (RISC) Instruction
Set Architecture (ISA). The Cortex-A8 is a low-power, high-performance single core
microprocessor designed for portable devices having the following main features[18]:

• frequency from 600 MHz up to 1.5 GHz;

• Dhrystone performance 18 is 2.0 DMIPS 19 / MHz;

• a superscalar processor with two different pipelines. The first pipeline is in
charge of the execution of integer ARM instructions. The second pipeline is
a NEON pipeline for the execution of advanced SIMD and Vector Floating
Point (VFP) instruction set;

• dynamic branch prediction with branch target address cache, global history
buffer, and 8-entry return stack;

17Developed by Texas Instruments, this technology consists of a set of hardware and software
techniques for dynamic control of power consumption, voltage, and frequency in mobile devices. It
guarantees a trade off between a limited power consumption budget and enhanced multimedia
application performance field. The techniques involved covers different design levels. At the
silicon level, the contribution of the static leakage power is reduced. At hardware level, Adaptive
Voltage Scaling (AVS), Dynamic Power Switching (DPS), and Standby Leakage Management (SLM)
technologies are used. At software level, an open software framework assures compatibility between
low hardware level and the OS’s power managers[16].

18This refers to the performance as measured by means of the Dhrystone benchmark. This
benchmark was created in 1984 by Dr. Reinhold P. Weicker and it tests integer computation
performance of a processor without any floating-point operations. It became popular since it is
free of charge, while the most popular benchmarks belonging to the SPEC suite are quite expensive.
However, it has several notable limitations as it does not consider many important factors such as
the RISC nature of the processor, multitasking, memory hierarchy, and advanced processor designs
(as found in superscalar and VLIW computers)

19Dhrystone Million Instructions Per Second (MIPS)
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• Memory Managment Unit (MMU) and two 32 entries Translation Look-aside
Buffers (TLBs) for data and instruction (respectively);

• static and dynamic power management;

• L1 instruction and data cache of 16KB or 32KB (configurable size). The L1
cache is integrated on-chip so that it can be accessed in a single clock cycle;

• L2 cache up to 1 MB configurable size with parity and Error Correction Code
(ECC) techniques implemented. The L2 cache is banked so that only the bank
in question is activated for increased power saving.

Three technologies implemented in the Cortex-A8 are noteworthy for our project.
The first one is the Thumb-2 instruction set, an extension of the earlier Thumb
instruction set. When the processor is in the Thumb instruction set state, it is
able to execute variable-length instructions. In this state the instruction length
is not fixed at 32 bits, but can be either 16 bits or 32 bits temporary breaking
the RISC model. The main advantage is to reduce the instruction code size. This
aspect can be very important when dealing with embedded devices with a limited
amount of main memory. The short instructions (16 bits) utilize implicit operands
or limitations of the more general instruction set. In fact only a limited set of
operations can be expressed through these 16 bits instructions. Thumb-2 is an
enhancement of the Thumb technique as it introduces the possibility to interleave
16 bit instructions with 32 bit instructions while still in the Thumb instruction set
mode.

The second technology is theVector Floating Point (VFP) architecture. This
consists of a coprocessor extension of the ARM architecture capable of executing
floating point operation with half, single, and double precision. It is fully compliant
with the IEEE 754 floating point format.

Third is the NEON technology [19], a 128 bit SIMD architecture extension.
Thanks to this, the Cortex-A8 is able to execute advanced SIMD instructions. SIMD
is a class of parallel execution that exploits parallel operations on data. NEON is
considered a short-vector architecture, this means that registers are considered as
vectors of elements of the same type of data and the same operation is performed
in parallel in different lanes (see figure 2.4). The data types available in this
SIMD instruction set are signed and unsigned 8 bits, 16 bits, 32 bits, 64 bits and
single precision floating point. This technology provide a significant acceleration
in the performances of multimedia and signal processing algorithms such as video
encode/decode, 2D/3D graphics, gaming, audio and speech processing, and image
processing. The motivation for this is that in such applications it is very common
that an operation is to be performed on an array of data, this is naturally highly
parallel, hence it is well suited to a SIMD instruction set.
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Figure 2.4. SIMD architecture

Unfortunately, the VFP technology is optional and according to [15], it has not
been included in the OMAP3530 processor utilized by the BeagleBoard. However,
the NEON technology is important for this project as it helps porting of SDRs to the
OMAP processor as floating point operations are supported. The VFP functionality
should be taken into account in future extensions of this work (for example, when
implementing a speech CODEC on a different version of this platform).

2.4.2 TMS320C64x+ DSP
The TMS320C64x+ DSP is a VLIW architecture that executes up to eight 32-bit
instructions per cycle ([20]). This is possible because in the CPU architecture 8
functional units are present. These functional units are divided into:

• 6 ALUs (single 32 bit, double 16 bit, or quad 8 bit arithmetic operations per
clock cycle);

• 2 multipliers (two 16x16 bit multiplies or four 8x8 bits multiplies per clock
cycle).

This DSP processor includes sixty-four 32-bit general purpose registers. The
TMS320C64x+ benefits from its VLIW architecture20. The main advantage is due
to the grouping instructions. This reduces the number of instructions that are
produced for a given amount of code (hence less memory is needed), thus the
number of fetches from the instruction memory is reduced (resulting in less power
being consumed), and the execution time is reduced by exploiting the instruction

20VLIW architecture is a static way for exploiting the instruction level parallelism of a program.
The compiler package groups of instructions that can be executed in parallel into longer instruction
at compile time. This means that when the CPU executes one VLIW, several single instructions
are executed in parallel each clock cycle. Due to the static nature of this technique, it is not able
to exploit optimally all of the potential instruction level parallelism.
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level parallelism.

The C64x+ is a fixed-point DSP. This implies that floating point operations
are not executed in hardware, but rather are emulated by software. Nevertheless
software performance can be improved by using TI’s IQmath Library for C64x+
(details in [21]). This library is a collection of highly optimized mathematical
functions (written as C/C++ routines) aimed for porting floating-point algorithms
to fixed-point code that can be executed by the C64x+ hardware. Another useful
tool for improving performance of the software running on the DSP, is the TI C64x+
DSPLIB [22]. DSPLIB is a collection of high optimized C-callable routines that are
written in assembly code. Most of these routines are used for signal processing,
especially in computationally expensive real-time applications. The functions in
the DSPLIB are organized into seven different categories:

• Adaptive filtering
• Correlation
• Fast Fourier Transform (FFT)
• Filtering and convolution
• Math
• Matrix and
• Miscellaneous.

2.5 OMAP3530: Operating Systems
A variety of operating systems can execute on OMAP processors. The ARM GPP is in
charge of most of the platform functions including the control and the coordination
of the DSP. While complete operating systems can be executed on the GPP, a
simple Basic Input Output System (BIOS) is sufficient for the DSP, as the DSP is
used for real-time computation and I/O21, leaving the other tasks to the GPP. The
operating systems that can be executed by the ARM GPP are Linux®, Symbian OS™,
Microsoft’s Windows Mobile™, and Android™. The BIOS that is supported by the
DSP is the TI’s DSP/BIOS Real-Time Operating System (section: 2.5.2). During
this master thesis project, the Linux Ȧngström (2.5.1) distribution was used as the
GPP operating system and DSP/BIOS Real-Time OS (2.5.2) was used on the DSP.

2.5.1 Ȧngström Distribution
Ȧngström 22 is a Linux distribution intended for the embedded devices. It claims
to be versatile and scalable. It can be installed on systems having from 4 MB

21As already stated, the BeagleBoard does not expose the intefaces of the OMAP for the high
speed data transfer

22http://www.angstrom-distribution.org/
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to terabytes of memory. The Angström distribution is based upon the union of
the OpenEmbedded, OpenZaurus, and OpenSimpad projects. The OpenEmbedded
Project is a framework to create Linux distribution for embedded systems.

An important tool in the OpenEmbedded projects is bitbake. This is a tool
used to build packages for the embedded distribution by means of cross-compiling.
A cross-compiler produces executable code for a platform and a system that is
different from the platform hosting the compiler. This technique is fundamental for
building of software packages for those systems where compilation is not feasible
due to limited system resources, processor speed, and ported compilers and OS.

2.5.2 DSP/BIOS™Real-Time OS
The Texas Instruments DSP/BIOS is a real-time multi-tasking kernel that was
designed to run on DSP platforms, specifically the TMS320C6000, TMS320C5000,
and TMS320C28x families. It does not require any license fee and it is available both
standalone and integrated in the Code Composer Studio Interactive Development
Environment (IDE) tool. DSP/BIOS offers many functions in order to support
complex applications within the constraints and deadlines typical of real-time
applications. It aims to achieve a minimal memory footprint by using configurable
modules that can be excluded by the kernel if not used. From now on, the name of
these modules will be indicated with the string of capital letters between parentheses
as listed in table 2.3. Currently DSP/BIOS Real-time Operating System (RTOS) is
available in two different versions: 5x and 6x. The latter version has the same core
as the former one, but more effort has been made to increase the portability of the
code and to add more Inter Process Communication (IPC) protocols. DSP/BIOS
5.x was adopted23, hence our explanations will mostly focus on it.

From the point of view of multithreading, DSP/BIOS RTOS provides several
kinds of threading mechanisms that can be classified into four levels depending on
their priority [23] (see figure 2.5). The threading mechanisms are listed in descending
order depending on the priority (remembering that a higher priority results in lower
latency during the execution of a task):

• hardware interrupts (HWI): these interrupts are triggered in response to
external asynchronous events involving the DSP. A DSP, hardware interrupt is
usually raised by a device (either on-board or external). After having received
the hardware interrupt, the processor stops its normal thread of execution and
executes the so called Interrupt Service Routine (ISR) that handles a critical
task affected by a hard deadline. Interrupts should be limited to critical tasks
that need to run at frequencies approaching 200 kHz (i.e., with a deadline
within 2-100 microseconds). Since interrupt handler threads have a high
priority, these threads can only be preempted by other HWI threads with
an higher priority. Clock functions (CLK) are part of this category, since they
are triggered by a hardware timer. Nevertheless it is possible to temporarily

23The reason of this choice are explained in section 3.2
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Table 2.3. Kernel modules in DSP/BIOS RTOS

Kernel Module Description
Hardware Interrupts (HWI) Hardware interrupt manager

Software Interrupts (SWI) Lightweight preemptible threads that use the
program stack and can not yield the processor

Tasks (TSK) Independent threads of execution that can yield
the processor

Periodic Functions (PRD) Lightweight threads time-triggered
Message Queues (MSGQ) Variable length zero-copy messages
Mailboxes (MBX) Synchronized data exchange
Locks (LCK) Binary semaphores
Semaphores (SEM) Counting semaphores
Clock (CLK) Interface with the hardware timer
Streams (SIO) Streaming I/O
General I/O Extensible general I/O
Memory Manager (MEM) Low overhead dynamic memory allocator
Buffer Manager (BUF) Fast and deterministic fixed-sized buffer allocator
Power Manager (PWRM) Power manager module
Cache Control (BCACHE) Cahce controller and configurator

disable hardware interrupts to avoid lower priority tasks being preempted.
This is done by setting the Global Interrupt Enable (GIE) or Interrupt Enable
Register (IER) bits in the Control Status Register (CSR) depending on whether
you wish to enable or disable interrupts.

• software interrupts (SWI): these interrupts have lower priority than HWI.
They invoke lightweight preemptible threads that share a common stack.
Therefore the latency is reduced since a backup copy of the stack is not
needed, thus saving time during the context switch. While HWI are generated
by external hardware, software interrupt are due to particular SWI calls in
the program. Programmers can use SWIs to handle tasks that need to be
completed within a deadline that is longer than the HWI (a SWI task is
for tasks that require completion within 100 microseconds or more). Both
HWI and SWI interrupt service routines runs to completion. They can be
preempted only by a hardware interrupt or by another software interrupt
with a higher priority. According to the RTOS policies, the higher the priority
integer associated with a thread, the higher the priority of that thread. There
are fourteen priority levels available for software interrupts. If two threads
have the same priority level, they will be served on a first-come first-served
basis. Periodic functions (PRD) belong in the software interrupts threads
category.

• tasks (TSK): tasks are independent threads of execution that can voluntarily
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yield the processor, additionally they can be preempted. The main difference
between a TSK and a SWI is that the former can be preempted by any higher
priority thread while waiting for available resources. Programmers should use
inter process communication and synchronization mechanisms only between
tasks since these mechanisms usually require the task to be suspended in order
to synchronize with other tasks. There are 16 possible levels of priority. If
the priority of a task is -1, then the task will be frozen until its priority level
becomes at least 1.

• background thread: the background thread executes the idle loop (IDL) with
the lowest possible priority, level 0. This loop runs continuously and is
preempted by higher priority tasks. Note that the idle loop can be used
to execute functions with soft deadlines.

Figure 2.5. DSP/BIOS thread priorities (adapted from [23])

DSP/BIOS offers fundamental IPC mechanisms for synchronization and
communication among threads. The basic structure is a semaphore that is used both
for protecting resources from multiple accesses (i.e., to enforce mutual exclusion) and
for the coordination and synchronization of concurrent threads (using a counting
semaphore). A counting semaphore is a structure that keeps a counter of available
resources. Usually the counter is initialized after creation with the number of
available resources or to 1, depending upon whether it is a synchronization counter
or a binary counter. A task that wants to gain access to a shared resource or to a
critical region of code, must call the SEM_pend function. If the semaphore counter
is greater than 0, than the thread can continue execution. Otherwise the thread is
suspended until another concurrent thread leaves the critical region by calling the
SEM_post function. DSP/BIOS permits the programmer to define the maximum
duration of the waiting time by specifying the timeout parameter as an argument
to the SEM_pend function. Besides semaphores, DSP/BIOS 5.x offers other two
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IPC mechanisms: mailboxes (MBX) and message queues (MSGQ). A mailbox is a
synchronous way to exchange messages among tasks on the same processor (the DSP
in our case). The exchange is synchronous implying that both the sender and the
receiver must be ready to send/receive the message. In this sense, a mailbox is both
a synchronization and a communication tool. In DSP/BIOS RTOS, exchanged
messages must be fixed-size. The programmer can set the fixed size of these
messages taking into account the limited memory that is available. If mailboxes
are expected to exchange messages among threads located on multiple cores, then
a message queue transport module is needed. Such a module is not available in the
kernel, but it provided by the DSPLink (section 2.6). Message queues are used for
asynchronous communications: the message is stored in a memory location and is
retrieved by the receiver as soon as it is ready. There is no need for both actors
to be ready for the communication. The message queue can handle variable-length
messages between tasks.

DSP/BIOS provides a set of services for interrupt management aimed to
maximize flexibility, while reducing data memory requirements. ISRs can be written
by developers in C language thanks to the interrupt dispatcher. The dispatcher
automatically calls assembly language macros that perform the following system
level operations:

• ensure that SWI and TSK scheduler execute at the correct time;

• disable/enable hardware interrupts while an ISR is executing and

• save/restore any register or control word before/after the ISR execution.

By using such an interrupt dispatcher, the code complexity is reduced, thus avoiding
inserting low level operations code to each ISR. Additionally, the data memory
required is limited thanks to the existence of a separate system stack. A dedicated,
shared system stack is used during the execution of both software and hardware
interrupts, while each task uses its own stack. If no tasks (TSK) are running in the
system, then all remaining threads (SWI and HWI) share the same system stack.
This leads to performance benefits since:

• the system stack can be smaller since every task has its own stack. The smaller
the stack, the faster the memory that can be used to realize this stack;

• in a system serving only ISRs from software and hardware interrupts, there is
no need to save and restore the stack during context switching, significantly
reducing the time needed to perform context switching.

To minimize the memory footprint DSP/BIOS supports TI’s multicore DSP
solution: when many cores should load the same system image, DSP/BIOS provides
shared image support avoiding loading of image on each core. In this way memory
usage is improved since less local memory is needed, enabling this local memory
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to be used as local data memory. The MSGQ core-to-core communication module
should be enabled for this.

For power management, DSP/BIOS focuses on minimizing power consump-
tion while still meeting performance constraints. To achieve this, a range of power
management features is provided. Some of them are:

• idling the CPU when the IDL cycle is running (i.e., suspending CPU operation
when there is no computation to be done);

• providing Application Programming Interfaces (APIs) for voltage and fre-
quency scaling;

• providing standby and hibernation APIs (to reduce power consumption for
longer periods of time);

• automatic idling of the inactive peripherals; and
• coordination of complex systems power management by means of tracing and

notify mechanisms.

The major new release of DSP/BIOS RTOS is version 6.x. It provides the same
core features as the DSP/BIOS 5.x, but augments its functionality, performance,
and most importantly its portability. The main improved aspects are:

• the usage of a new configuration technology called Real-time Software
Components (RTSC) to improve the portability of the code;

• APIs were changed so a compatibility layer is present to ensure that no changes
are needed to DSP/BIOS 5.x software. This compatibility layer provides 100%
source code compatibility for the great majority of DSP/BIOS applications.

• the number of priority levels both for SWI and TSK is increased from 16 to
32;

• IPC mechanisms were improved by adding Events objects and GateMutex. An
Event object lets a task wait for one or more events, such a semaphore post
or a mailbox post. The GateMutex provides a priority-inheritance mutex. It
augments the functionality of a binary semaphore by avoiding the phenomenon
of priority inversion24. To avoid this, a series of scheduling algorithms are
available. The GateMutex implements one of them, called priority-inheritance
algorithm. According to it, if a lower-priority task gains the access to a shared

24Priority inversion is a scheduling scenario in which an higher priority task is indirectly
preempted by a lower-priority one. Given L the lower-priority task, M a medium-priority task,
and H the higher-priority task. If L asks for the shared resource before the others, then if H wants
to later use the same resource, it has to wait until L releases it. The problem is that if M does not
need to use the resource and L gains access to the resource, then H is blocked while M is executed
preempting L so that it cannot execute and release the resource. In this way the higher priority
task is served as the lowest-priority task. This is a serious problem if H has a hard deadline.
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resource and a higher-priority task is waiting for the same resource, than the
lower-priority algorithm inherits the priority of the highest task waiting for
that resource25.

• analysis of task performance is enhanced since per-task CPU load analysis is
available;

• enhanced debug features by means of user-configurable debug instrumentation
options. Hook functions26 are supported for HWI, SWI and TSK objects.

• improvements in memory management. A new heap manager is introduced:
HeapMultiBuf. The main characteristic of this manager is that it can support
a deterministic allocation of both variable and fixed length memory area. The
memory system performance does not degrade and its performance is not
affected by fragmentation.

2.6 DSP/BIOS™Link (DSPLink)
Texas Instruments DSP/BIOS Link (also known as DSPLink) is foundation software
for the IPC between the GPP and the DSP [24, page 9]. Today many DSP-based
applications use the GPP to control one or a set of DSPs. The most common
operations between the two cores are:

• exchanging of control and data information;

• booting of the DSP by GPP; and

• control and coordination of algorithms and tasks running on the DSP by the
GPP.

DSPLink is software designed to facilitate such interactions. It offers programmers
a set of APIs that abstract the characteristics of the physical communication layer.
The programmers’ attention can focus on the development of the application
algorithms, rather than on the communication mechanisms. To achieve this, a
Remote Procedure Call (RPC) layer is introduced so that the characteristics of
the physical layer connecting the two cores are hidden from the application. The
appearance is that the GPP uses local function calls to obtain data from the DSP. The
RPC layer is responsible for delivering messages between the two actors. DSPLink is
capable of abstracting the underlying physical layers both in a System on Chip (SoC)
device or in a device where the two cores are discrete and are not placed on the

25In our example, using a priority inheritance scheduling algorithm, the task M would be not
able to preempt L, since L inherits the priority from the H task which has a higher priority than
M.

26Hook functions are functions called before or after a particular events happens. They are
suitable for software debugging and by means of them, a programmer can customize their debugging
operations.
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same board (e.g. a DSP connected through a PCI interface).

DSPLink is designed to work with DSP/BIOS OS (2.5.2) on the DSP side,
while no specific operating system is required on the GPP side. Since the DSPLink
package contains all the source code, it is possible to port it to a variety of operating
systems (i.e., all of those supported by the GPP). The figure 2.6 shows the software
architecture distributed over the cores. On both sides, link drivers hide the physical
link layer. On the GPP side, the processor manager exposes the DSPLink APIs to the
client, while the OS adaptation layer makes the DSPLink components independent
from the specifics of the OS.

Figure 2.6. DSPLink software architecture (adapted from [24, page 13])

DSPLink offers the following services to the end-points clients27[24, page 9]:

• basic processor control (via the PROC module);

• sharing and synchronization of a memory pool among the cores (POOL);

• notification of user events (NOTIFY);

• mutually exclusive access to shared resources (MPCS);

• linked list data streaming (MPLIST);

• data transfer over channels (CHNL);

• exchanging of messages (MSGQ);

• circular buffer data streaming (RINGIO) and

• zero-copy messaging.

27In brackets the name of the DSPLink module in charge of the service in question.
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The list above represents the complete set of services offered by DSPLink. However,
depending on the platform and operating systems used, the system may support
only a subset of these services.

The last entry in the list refers to the zero-copy transfer mode (ZCPY).
Using this technique the data are exchanged among the cores by means of shared
memory, avoiding any need to physically copy data to and from the respective
memory spaces. In this way data transfer implies only the allocation of buffers in
the shared memory region and addresses translation. The ZCPY system is composed
of three sub-components [25]:

• Shared memory allocator : the data to be exchanged are stored in buffers
allocated in the shared memory;

• Address translator : the buffers allocated in the shared memory need to be
accessed by any core as user-space buffers. Since the DSP sub-system does not
have a MMU, this component must perform address translations from the DSP
physical address space to GPP virtual space and vice versa. Furthermore, the
translation from GPP user and kernel spaces are performed by this component;
and

• Shared Memory Inter Processor Signaling: this component is in charge of
managing control structures and to inform the processors about changes in
the shared buffers.

DSPLink provides several advantages for programmers working with an
embedded multicore system:

• Portability: an application that uses DSPLink is easily portable to another
architecture with no or few changes since architectural low level details are
hidden;

• Flexibility: applications are more flexible since programmers can use the
most appropriate high or low level communication protocols depending their
necessities;

• Scalability: only needed modules need to be compiled and included in the
executable file, saving resources; and

• Physical layer abstraction: the details of the physical link are hidden from the
programmer, so that it is easier to focus on application development.

2.6.1 DSPLink components
Before starting talking about the modules and IPC mechanisms provided by
DSPLink, the reader must be aware of the difference between the IPC mechanisms in
the DSP/BIOS OS and in DSPLink. While the IPC techniques in the DSP/BIOS OS
are intended for the communication among local threads, DSPLink makes possible
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communication among threads located on different cores. Nevertheless, in some
cases DSPLink bases its modules on the underlying DSP/BIOS OS ones (as in the
MSGQ or POOL cases). The descriptions of the modules is based upon [26]. For
more details (such as API descriptions) please refer to [24] and [26].

2.6.1.1 PROC

The PROC component (that stands for "processor"), represent the abstraction of
the DSP core from the GPP’s point of view. By means of this component, several
operations can be performed:

• the DSP can be initialized by the GPP. This initialization is performed
by means of the PROC_setup() API function that initializes the low-level
components’ structures. PROC_destroy() frees all these structures at the
end of the cooperation;

• the GPP gets a local reference to the DSP (using PROC_attach()). The
first GPP attached to the DSP becomes the "owner" of the DSP so that race
conditions can not happen. The GPP calls PROC_detach() at the end of the
application;

• the executable file is loaded in the DSP (using PROC_load()). By convention,
DSP executable files have the .out extension;

• the execution of the executable file is started/stopped on the DSP (using
PROC_start() and PROC_stop() respectively);

• direct reads and writes to the DSP memory can be done through PROC_read()

and PROC_write().

In the current DSPLink version, only one DSP is supported by the GPP. However,
the APIs were made generic to enable future improvements in a multi-core system
architecture.

2.6.1.2 POOL

The POOL module is the shared memory manager. It configures and allocates
buffers in the shared memory region. These buffers can be used by IPC mechanisms
to enable cores to communicate via shared memory. The functions of this component
are:

• configure the shared memory region by means of POOL_open(). After all
operations are concluded, the memory is freed by POOL_close();

• allocate/free buffers via POOL_allocate() / POOL_free();

• translate address of the allocated buffer into different address spaces (POOL_translateAddr());
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• synchronize the memory content from the different processors’ point of views.

The DSPLink offers two different kinds of memory pools. The first one is
SMAPOOL where zero-copy buffers are allocated. The second one is BUFPOOL
for the allocation of fized-sized buffers.

2.6.1.3 NOTIFY

The NOTIFY component allows clients to register and be notified of events
happening on the other processor(s). A client can either wait for or generate an
event. The NOTIFY_register() function is used to register for a particular event
which could be generated locally or at a remote location. A callback function is also
defined so that this function will be executed when the respective event is received.
An event is unique since it is identified by an Inter Process Signal (IPS) event number
in a defined IPS table. To unregister (in order to stop listening on the given IPS)
NOTIFY_unregister() should be invoked. When a processor wants to signal the
completion of an operation, it sends a notification through NOTIFY_notify(). The
notification is broadcasted to all listeners. A custom 32-bits payload can be attached
to the notification. The NOTIFY component also provides different priorities for
the notifications. A lower priority number means higher priority. The notification
technique is feasible only for infrequent notification. The reason for this is that a new
notification can not be sent before the previous one has been read by the listener.
This introduces some non-deterministic delays, which can be very dangerous in
real-time systems.

2.6.1.4 MPCS

The Multi Processors Critical Section (MPCS) component provides mutually
exclusive access to a shared memory region. The MPCS component enables different
clients on different processors to access the same shared object while avoiding
conflicts and data coherency issues. The functionalities provided by MPCS are:

• creation of a MPCS object with a system-level unique name
(MPCS_create());

• the handle to the MPCS object is retrieved by calling MPCS_open();

• exclusive access to the shared region is gained by calling MPCS_enter(). After
having completed the operation, the shared region must be left as soon as
possible using MPCS_leave() to maximize system efficiency; and

• the MPCS object is closed and deleted when no longer needed
(MPCS_close() and MPCS_delete()).

Unfortunately, the MPCS mechanism is not robust since it does not tolerate
deadlocks and priority inversions. The former issue happens when multiple tasks are
running on the GPP and DSP and they involve both an MPCS object and another
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DSPLink IPC tool that internally uses a MPCS object. Priority inversions can
occur due to thread priorities and can occur if the DSP side uses the SWI module
(a high-priority thread). If a thread on the GPP is pre-empted after having gotten
the MPCS lock, then the DSP side must wait until the thread running on the GPP
completes. This means that the SWI task can not execute. This is really a serious
issue for a real-time operating system, but fortunately the priority-inversion issue
has been solved with DSP/BIOS 6.x (see section 2.5.2)

2.6.1.5 MSGQ

The MSGQ (message queue) module is in charge of exchanging of messages among
processors. The message exchange paradigm is queue-based. This means that the
reader waits for messages in a queue (MSGQ_get()) while the writer puts the
message on a queue (MSGQ_put()). The queue can be located locally or remotely.
For this reason, a MSGQ transport protocol is needed (MSGQ_transportOpen())
both to locate (MSGQ_locate()) and to handle a remote queue and to send
messages over the link. A message queue can have only one reader. In contrast,
many writers can send messages to the same queue at the same time. The MSGQ
module is usually used when more than 32-bits of information must be sent (as in
this case the NOTIFY component not suitable). The information can be of variable
length since variable length payloads are supported. Moreover, if the application
needs to send messages frequently, this module avoids the problem related to the
NOTIFY component; thanks to the presence of a queue that stores messages in a
First-In First-Out (FIFO) order.

This component utilizes synchronous communication, thus the MSGQ_get() and
MSGQ_put() are blocking if the queue is empty or full, respectively.

In a multi-DSPs system, communication by means of message queues among
multiple DSPs is possible even without DSPLink. In fact, it is sufficient because the
MSGQ module of DSP/BIOS OS provides ad-hoc transport protocols.

2.6.1.6 MPLIST

The MPLIST is an extension of the MSGQmodule and it can be used in applications
that require multiple readers and multiple writers. It implements a doubly-linked
list of messages within the shared memory region thus out-of-order information
processing is feasible. The basic approach is still a message-like structure, but the
structure is no longer a simple queue. The list is created using MPLIST_create(),
by specifying a system-level unique name. It is opened using MPLIST_open() which
returns a handle. A client may manipulate the elements in the list in one of the
following ways:

• put the new element at the end of the linked list (with MPLIST_putTail());

• read an element from the head of the list (MPLIST_getHead());

• check if the list is empty (MPLIST_isEmpty());
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• insert an element in a given position specifying the address of the element
that will follow the new one (MPLIST_insertBefore());

• remove a given element from the list (MPLIST_remove());

• get a pointer to the first element in the list (MPLIST_first()); and

• get a pointer to the element that follows the one specified as argument
(MPLIST_next()).

By using the functions that are provided, out-of-order information processing can
be performed. Additionally, information can have different priorities assigned
depending on their position in the list.

2.6.1.7 CHNL

The CHNL component realizes a unidirectional logical data transfer channel
between a single reader and a single writer using the same buffer size. Over a
single physical link, multiple channels can be allocated and used at the same time.
The end points of the data channel are defined during the creation of the channel
(CHNL_create()) so that no information regarding the source and destination is
stored in the data buffers flowing through the channel. This component utilizes
the issue-reclaim model. According to this model, the client only needs to issue
(CHNL_issue()) or reclaim (CHNL_reclaim()) a buffer (empty to get, full
to send information) and is totally unaware of the channel state. Underlying
mechanisms exchange buffers only when they are available to both end-points.
Multiple buffers can be queued on the same channel to improve the performance.

2.6.1.8 RINGIO

The RINGIO component implements a circular buffer for use by one reader and one
writer. A circular buffer is allocated in the shared memory (RingIO_create())
and is identified by a system-level unique name. RINGIO is the only IPC mechanism
that enables the two actors to work with different sized buffers. Consequently the
reader and writer are independent. The writer acquires empty memory space in
the circular buffer (using RingIO_acquire()). Only when the data buffer is filled,
does the writer release the buffer (RingIO_release()) and the chuck of data is
committed to the shared circular buffer. On the other side, the reader acquires a
region of the buffer with valid data and invalidates the buffer after having released
it. A part of the shared memory is used for the control attributes related to the
data. The RINGIO module provides great flexibility in terms of:

buffer size as an actor can acquire a certain amount of data and release a different
amount; and

operations on data as the buffer can be totally flushed and unused data that was
acquired but not released can be cancelled.
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Due to its flexibility, RINGIO perfectly suits the processing of streaming media (or
in our case a stream of digitized radio signals).

2.7 Previous work
Among the studies related to SDRs, two of them are very related to this master thesis
project. The first one is Philip Balister’s master thesis work [5]. The objective of
this study is on one hand the feasibility of the porting of a SCA waveform developed
through OSSIE to an embedded platform (specifically the OMAP 5912 platform28)
and on the other hand to estimate the resources used by the waveform in terms
of memory and processor usage. Performance results of single components of the
waveform are presented. The results shown by Balister’s study are interesting to
port SDRs to embedded systems. By utilizing the methods and tools explained in
the thesis work [5], is possible to detect the modules of the SDR system that requires
an excessive amount of system resources. After that, this modules can be optimized
and executed on different processors according to the optimization and execution
techniques explained in this master thesis report.

The second study, by Tore Ulversøy and Jon Olavsson Neset, focuses on the
analysis of a SCA-based SDR-application workload as a function of the granularity
of the system [27]. SCA allows SDR applications to be made up of different
distributed components. This introduces a processor workload overhead due to the
communication between these components. This overhead is estimated as function
of data packet size exchanged by the components by varying the workload of the
single components. During their measurements, several components were deployed
on the same CORBA capable GPP on a desktop computer. Results of this analysis
show that the processor workload increases as the number of components and the
data packet size increase. This means that a trade off is needed between the
scalability of a distributed SDR system and the processor workload. For further
details, see [27]. Even though their experiments were not executed on an embedded
system but on a desktop computer, the results concerning the processor workload
can be integrated with the analysis done in section 4.4.1 where the execution time
of a chain of blocks is presented.

28The Texas Instruments’ OMAP 5912 platform is made up of an ARM9 GPP and a Texas
Instruments’ TMS320C55x DSP





Chapter 3

Method

This chapter explains in detail the method used for the analysis of an OMAP3530
for the porting of an embedded SDR system. Different deployment solutions are
proposed, implemented, and analyzed. This chapter focuses on the implementation
part. Results and analysis are presented in the chapter 4.

The section 3.2 describes the software and hardware environments used during
the development of the software and the analysis of experimental results. The
testing software is described in detail in the section 3.3, while the two solutions
proposed and used for the actual testing are explained in sections 3.4 and 3.5
respectively. A thorough explanation of the tools used in order to measure the
performance of the system is given in section 3.6. Finally, section 3.7 explains how
these two solutions handle floating point operations.

3.1 Introduction
As already stated in section 1.2, the aim of this masters thesis project is to analyze
the performance of the OMAP3530 platform in order to port a SDR system to this
platform. The OMAP3530 platform is made up of an ARM Cortex-A8 GPP and
a TI C64x+ DSP (see section 2.4). Initially the focus was on the analysis of the
system performance when a GPP + DSP configuration is exploited. In order to
quantify the system’s performance and to be able to perform an empirical analysis,
the testing software explained in detail in section 3.3 was developed. The function
of this software is to filter a noisy sound file in order to reduce the noise.

Afterwards my attention shifted to the NEON SIMD coprocessor in the Cortex-
A8 GPP. Hence the testing software was modified in order to exploit this coprocessor
instead of the DSP. This led to a comparison of the performance of these two different
configurations.

Finally, the test software was modified to support floating point operations in
order to be able to perform a comparison between the two solutions when executing

37
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floating point operations.
In this report, sometimes the terms GPP and DSP are used to indice the processes

which executes on the specific processor.

3.2 Development and experiments environments
In chapter 2 a general introduction to the hardware system was given. This section
will focus on the specifics of hardware and software tools that were utilized. The
empirical analysis was performed on a BeagleBoard (see section 2.3). The core of
the board is an OMAP3530 processor made up of a an ARM Cortex-A8 GPP and a
TI C64x+ DSP (see section 2.4). The specific versions of the system components
are listed in table 3.1.

Table 3.1. Revisions of components of the experiments environment

System Revision
BeagleBoard C3
OMAP3530 ES 3.0
ARM Cortex-A8 r1p3

An important parameter that deserves to be emphasized is the clock frequency
since most of our measurements are in terms of timing. The OMAP3530 ES3.0
platform can have a maximum clock rate of 600 MHz for the GPP and 430 MHz for
the DSP. Nevertheless, the system working at these conditions is considered to be
overdriven resulting into a shorter life expectancy of the system1 and into a lower
reliability of the system (since correct results may not be guaranteed anymore).
The default clocking for our system, the best compromise between performance and
longevity, is 500 MHz for the GPP and 360 MHz for the DSP. To learn the current
clocking rate of the system, the code in listing 3.1 was executing on the GPP.

Listing 3.1. Clock rate code
1 while(1) {
2 ccnt_value = ccnt_read(); /* read the current cycle counter */
3 printf("Current CCNT value is: %u\n", ccnt_value);
4 usleep(1000000); /* sleep 1 second */
5 }

Details about the function cccnt_read() will be given in section 3.6.1. The output
of the code shows the value of the cycle count register (a 32-bit register) every
second:

Current CCNT value is: 511665946
Current CCNT value is: 1011851249

1The life span of the system is reduced since an increase in processor’s frequency causes heat
to increase linearly. If the heat is not properly dissipated, the system becomes overheated. This
can cause degradation effects (e.g. electromigration).
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Current CCNT value is: 1512065528
Current CCNT value is: 2012229861
Current CCNT value is: 2512381502
Current CCNT value is: 3012555421
Current CCNT value is: 3512754317
Current CCNT value is: 4012945691
Current CCNT value is: 218182281
Current CCNT value is: 718308923

From the output values, we can compute the median value of the number of clock
ticks in a second that is 5001853032. We can figure out that the clocking of the
system is around 500 MHz I have decided to perform the experiments on a system
working in the normal conditions according to the specification. Nevertheless, to
increase the performance of the system, overclocking can be enabled by typing u-
boot commands booting the operating system. Specifically, to set GPP clock to 600
MHz the command is mw 48004940 0012580c, while to set the DSP clock to 430
MHz, the command is mw 48004040 0x0009ae0c. These commands are intended
for working on a system whose component versions are listed as in table 3.1.

In order to use the platform, an operating system must be executed both on the
GPP and DSP side, respectively the Ȧngström Linux distribution (section 2.5.1) and
the DSP/BIOS 5.x (section 2.5.2). The motivations for these choices are explained
here. Although several operating systems have been ported to the BeagleBoard (e.g.
Symbian OS, Android, Ubuntu, Micorsoft’s Windows Mobile, etc.), the Ȧngström
Linux distribution was chosen because it is an open source Linux system, stable and
user friendly that offers everything necessary for the purposes of this thesis work.
Additionally, a lot of documentation is available and a large amount of is given
by the open source community. The Ȧngström OS was built from source code
following instructions at [28] and then loaded on a dual partitioned SD-card3. The
Linux kernel version of the system was 2.6.32. Since the Ȧngström distribution is
based on the OpenEmbedded project, it inherits the package building system based
on bitbake, a tool that supports cross compiling of packages. The build process
provides a cross compiler toolchain. The toolchain consists of tools from the GNU
Compiler Collection (GCC)4 toolchain version 4.3.3 (the names of the tools are
the same as the GCC toolchain with the prefix arm-angstrom-linux-gnueabi-),
modified for targeting the ARM processors. During my project, the specific tools
used were:

arm-angstrom-linux-gnueabi-gcc C compiler;

arm-angstrom-linux-gnueabi-as ARM assembly compiler;
2The median value was taken into consideration instead of the average so that the incoherent

difference between the ninth and the eighth values (due to the register overflow) does not affect
our result.

3The SD-card must have two partitions. The first one is a boot partition using the FAT file
system to be read by the OMAP bootloader. The second partition is intended for the Linux root
file system and uses an ext3 file system

4http://gcc.gnu.org/
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arm-angstrom-linux-gnueabi-gdb application debugger; and

arm-angstrom-linux-gnueabi-objdump displays information about object files.
In this project the disassembler was used to generate assembly code based
upon executable files by means of the option -d.

In addition, this toolchain is compliant with the GNU Embedded Application Binary
Interface (EABI). An ABI is a low-level description of the interface between the
applications and the operating system hosting them. EABI extends a common ABI
by improving [29]:

• the performance of floating point operations. The code of both software and
hardware floating point operation can be mixed and the general performance
is improved (for more details see [30]); and

• the conversion of several system calls.

On the DSP side, the BIOS used is the DSP/BIOS 5.41.07.24. The version
of DSPLink used is the 1.65.00.03. The reason why a DSP/BIOS 5.x version was
chosen rather than a DSP/BIOS 6.x one, is that currently DSPLink supports only
DSP/BIOS 5.x on the DSP side when executing on an OMAP3530 platform. This can
be verified during the DSPLink installation phase as specified in [31]. One of the
first steps in the building and installation of the DSPLink, is the configuration and
the building of the kernel object to be loaded at boot time in the target operating
system. This is done by calling the perl script dsplinkcgf.pl in the following way:

perl dsplinkcfg.pl --platform=OMAP3530 --nodsp=1 --dspcfg_0=OMAP3530SHMEM
--dspos_0=DSPBIOS5XX --gppos=OMAPLSP --comps=ponslrmc

As we can see, one of the arguments passed to the script is: -dspos_0=DSPBIOS5XX. If
the user tries to set up the DSP/BIOS 6.x by typing the option -dspos_0=DSPBIOS6XX,
the output from the script is:

****************** ERROR !!! ***************************
Please provide a valid DSP OS!
Following DSP OS are supported by OMAP3530 with Shared Memory Physical
Interface:
<ID>-->DSPBIOS5XX
DSP/BIOS (TM) Version 5.XX

Furthermore, the current version of DSPLink supports only one DSP and the only
communication method for the OMAP3530 platform is shared memory. However,
this limitation does not affect our analysis. In section 2.5.2 it was stated that
DSP/BIOS 6.x offers a larger number of IPC mechanisms. Nevertheless, the IPC
mechanisms provided by the operating system are those provided locally among
the thread running locally on the DSP. The IPC mechanisms in which we are
interested in this project, are those provided by DSPLink as these make possible
the communication between threads on different processors (theoretically on a
high number5 of processors). In order to develop DSPLink applications, a Linux

5This number is theoretically limited to 2x − 1, where x is the number of address bits.
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workstation was set up. The Linux workstation was running Fedora Release 12
(Constantine) operating system, based on Linux kernel 2.6.31. Besides the DSPLink
and DSP/BIOS, other tools are needed. Below these tools along with the version
number used for this project are listed:

Code Generation Tool 6.1.17 TI’s collection of tools needed to build DSP
applications. It contains an optimizing C compiler and assembly language
tools (assembler, linker, archiver, hex conversion utilities, etc.);

Local Power Manager 1.23.01 used to create kernel modules for power man-
agement system services;

eXpress DSP Components (xdctools) 3.20.03.63 collection of components to
create, test, deploy, and install RTSC components. RTSC is used to develop
modules and components constituting distributed embedded applications.

TMS320C64x+ DSP Library v. 2.1.0 collection of optimized functions for
signal processing on the C64x+ DSP; and

IQMath Library v.2.1.3 collection of libraries for supporting floating point
operations on the DSP. This library is provided by TI for a Windows-based
development environment. However, the code can be cross-compiled to target
the operating system running on the GPP (Linux in our case)..

For some experiments and for debugging purposes, the Code Composer Studio tool
(see appendix A), running on a Windows XP workstation, was used.. All tools
needed (with the exception of DSPLink), are embedded in the Code Composer
Studio Tool. The version of this tool used is CCS v4.2. After having built the
application on the host machine, the executable files need to be loaded into the file
system of the target machine and launched from a shell. Two methods were used to
achieve this: downloading the code via the serial interface or via a network interface
(via a Secure Shell (SSH) connection). In the first case, the RS232 BeagleBoard
port is connected to the host’s serial port and the transfer is done. In the this
case you need a RS232 flat ribbon cable to DB9 serial connector to connect the
BeagleBoard to the serial port of the host machine. A remote serial console to the
BeagleBoard is set up on the host computer using Minicom. Minicom is a text-
based modem application that emulates a remote unix-like console session through
a serial connection. The second method was to use a network SSH connection from
the host to the target platform. Since the BeagleBoard does not provide an Ethernet
interface, a D-Link DUB E-100 Ethernet - USB 2.0 adapter was used. This second
method makes it possible to access the target machine via the network.

The table 3.2 summarizes hardware and software specifics of the GPP and DSP.
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Table 3.2. SW and HW specifics of GPP and DSP (D.M.=Direct Mapped, S.A.=Set
Associative)

GPP DSP
Clock frequency 500 MHz 360 MHz

Cache specifics
16 KB L1i 4-Way S.A. 32 KB L1i D.M.
16 KB L1d 4-Way S.A. 80 KB L1d 2-Way S.A.

256 KB L2 64 KB 4-Way S.A.
Operating system Ȧngström Linux kernel 2.6.32 DSP/BIOS 5.41.07.24
Compiler Ȧngström toolchain GCC 4.3.3 CGT 6.1.17

3.3 Software for performance testing
In order to test the performance of the system, test software was developed. This
software should process signals and have similar functionality and structure to the
code that would be used to implement an SDR. The aim of this software was to
remove noise from a Waveform Audio File Format (WAVE) audio file. In the case
of SDRs, the data source commonly is the USRP which provides data to the host
machine via its USB interface. For our testing purposes an audio file simulates such
stream of samples. The application provides the possibility of changing the input
sample rate, the number of bits per sample, and the sample data type. The core
of this software is a Finite Impulse Response (FIR) filter. As the audio signal is
processed by the filter, the stream of output data is stored in an output WAVE file.
In this way the correct functioning of the system can be easily tested by listening
to the output file. Figure 3.1 is a block diagram of the test software. The input and
output blocks are the same for every version of the test software. The FIR block
varies noticeably depending on the configuration of the system being tested.

Figure 3.1. Testing software block diagram

3.3.1 The input WAVE file
The input WAVE file was chosen from a library of WAVE files freely available on
the Internet. This file contains one channel of 44100 Hz data as signed 16-bit data
samples. The size of the file is 822.6 KB and it contains 9.55 seconds of sound data.
Such a file was chosen since it was a good trade-off between size and duration of
sound data for our testing purposes. The WAVE format was selected since it is widely
supported by many operating systems and by GNU Radio. The specifications for
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this format are available at [32, page 55]. GNU Radio (see section 2.1.1) was used
to insert noise into the input audio signal at a predefined frequency by using the
block diagram shown in figure 3.2. When executing the block diagram in question,
a sine wave of 10 kHz was added to the input WAVE signal, resulting in a whistle
in the output signal. A noise of 10 kHz was selected since the main frequencies of
the input file were in the range 0 - 5 kHz. This can be seen in figure 3.3 where
both the input and the noisy signal are displayed. A low-pass Hamming FIR filter
is applied to the noisy signal. The cut off frequency of this filter was set at 3 kHz
with a transition width of 1 kHz.

Figure 3.2. GNU Radio block diagram of the network used to insert noise and to
display the FFT of the signal before and after processing with a low pass filter.

The frequency spectrum of the noisy signal, as generated by GNU Radio, is
shown in figure 3.3. From the spectrum we can clearly see the frequency of the noise
at 10 kHz and the frequencies of the input audio file, with the later at frequencies
below 5 kHz.

In order to optimize transfer of the data to and from the GPP, a memory-
mapped file was used. A memory-mapped file is not physically copied into the main
memory. Instead, a segment of the virtual memory is set up to map the contents of
the file stored on the disk into the address space of the processor. Each access to
the file, is treated as it was in main memory and access happens via the memory-
mapped file input/output routines. The code used to map the input WAVE file is
showed in listing 3.2. In this code, the function Print_0 is invoked. This function
(as well as Print_1), is widely used in the rest of the report. This function is just
a wrapper of the printf() with the addition of the flushing of the buffer. We note
the use in this code of data type Char16. This type is equivalent to the short type
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Figure 3.3. Frequency spectrum of the signal with 10 kHz noise added to it

and is defined by DSPLink in the header file gpptype.h. After the mmap call the
contents of the file can be accessed via the "content" pointer, just as if the data
were stored in an array in memory. This access is rapid and avoids the need to
make repeated calls to the read() or fread() functions. If the operating system has
sufficient memory available the contents of the file can remain buffered in memory
once the file has been accessed once.

Listing 3.2. Memory-mapped input WAVE file
1 int fp_in;
2 Char16 *content;
3 int pagesize
4
5 ...
6
7 fp_in = open(inputFile, O_RDONLY);
8 if(fp_in == -1 )
9 Print_0("Error while opening input file\n");

10 pagesize = getpagesize();
11
12 ...
13
14 content= mmap((caddr_t) 0, header->dataLen, PROT_READ, MAP_SHARED, fileno(fp_in)←↩

, 0);
15 if(content == MAP_FAILED) {
16 printf("Error in mmap\n");
17 exit(1);
18 }

By using this technique, the I/O performance is increased by limiting the access
in the file system since no system calls (fread and fwrite) are used, which are
slow and blocking. Furthermore, no data must be copied from the kernel space
to the user space. Linux implements lazy loading so portions of the file will be
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transferred into main memory as needed. With read ahead, this can enable the file
to be brought into memory before it needs to be accessed; while avoiding the need
for the user to manage the actual file operations. The loaded portion is a multiple
of a page size.

The performance of the reading and writing of the data file were evaluated using
a simple test program consisting of the code in listing 3.3. Using this code a simply
increment each 16 bit value and writing of the result into the output file revealed
that the throughput was 24.95 Mbytes per second. By using system calls fread
and fwrite, the resulting throughput was 13.90 Mbytes per second.

Listing 3.3. mmap test program

1 int fp_in;
2 int fp_out;
3 Char16 *data;
4 Char16 *dataOut;
5 int j;
6
7 ...
8
9 inputFile = argv [1] ;

10 outputFile = argv [2] ;
11
12 ccnt_enable();
13 ccnt_start();
14
15 fp_in = open(inputFile, O_RDWR);
16 fp_out = open(outputFile, O_RDWR);
17
18 ...
19
20 timer.startTime=ccnt_read();
21
22 data= (Char16*) mmap((caddr_t) 0, fileLen, PROT_READ, MAP_SHARED, fp_in, 0);
23 if(data == MAP_FAILED) {
24 printf("Error in mmap in\n");
25 exit(1);
26 }
27
28 dataOut= (Char16*) mmap((caddr_t) 0,fileLen, PROT_WRITE, MAP_SHARED, fp_out, 0)←↩

;
29 if(dataOut == MAP_FAILED) {
30 printf("Error in mmap out\n");
31 exit(1);
32 }
33
34 for (j=0; j< (fileLen >> 1); j++)
35 dataOut[j]=data[j]+1;
36
37 munmap (data, fileLen);
38 munmap (dataOut, fileLen);
39
40 timer.endTime=ccnt_read();
41
42 ...
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3.3.2 The FIR filter
In electronics, a filter is "a system that removes components of the input signal
based on frequency" [33, page 272]. In our application, the FIR filter block receives
as input the noisy audio signal and produces as output the filtered audio stream.
Since the noise frequency is 10 kHz and the significant part of the audio stream has
frequencies lower than 5 kHz, the type of filter needed is a low-pass filter. Low-pass
filters "pass low frequency and block or strongly attenuate high frequencies" [33].
An FIR filter is a digital filter whose output signal y is defined by the convolution:

y[n] =
N∑

i=0
bix[n− i]⇒ y[n] = b0x[n] + b1x[n− 1] + ...+ bNx[n−N ]

where x is the input signal, b is the array of filter coefficients or taps, and N is
the filter order. The number of taps (length of b array) is N + 1. In such an FIR
filter, the input signal is convolved with a filtering function. In my application this
function is the Hamming Window defined as:

w(n) = 0.54− 0.46cos( 2πn
N − 1)

The coefficient array b was computed by means of the Filter Design & Analysis Tool
integrated in MATLAB. The designed filter was a direct-form Hamming window
low-pass FIR filter. The sample frequency parameter was set to 44100 Hz, the cut
off frequency at 5 kHz with default attenuation at cut off frequencies of 6 dB. By
means of this tool, filters with different orders N were designed and the respective
coefficient array was exported as signed 16-bits integers and stored as array in C
language header files to be included in our application. As figure 3.4 shows, in the
upper part of the figure the magnitude response function of a filter of order 511 (512
taps), while in the lower part of the figure shows the filtered signal in the frequency
domain. From this figure we can see that the noise is reduced by 80 dB. Frequencies
of the input audio signal are lower than 5 kHz. For our scope, a low-pass FIR filter
was sufficient to filter all frequencies above 5 kHz, by passing all frequencies of the
input audio signal unaltered. Nevertheless, since the noise frequency is known (at
10 kHz), another possibility is to use a notch filter. A notch filter is a band-stop
filter with a narrow stop-band. This filter passes most frequencies unaltered while
reducing those frequencies in a specific range.

3.4 GPP + DSP Solution
The first objective was the evaluation of the platform while running the test software
both on the GPP load, and the DSP. Specifically, we are interested in evaluating
the performance of the software in terms of execution timing, GPP and DSP load
as a function of the IPC mechanism used to communicate via DSPLink. In order
to achieve this, the test software introduced in section 3.3 was modified to produce
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Figure 3.4. Magnitude response of a 511-order FIR filter and frequency spectrum
of filtered signal

six different versions of the software (each using a different IPC protocol). Figure
3.5 shows how the blocks of the test software were distributed over the system’s
processors.

Figure 3.5. Test software block diagram: GPP + DSP
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3.4.1 General description

The two processors communicate via a shared memory. The DSPLink software
provides a wrapper for access to this memory and offers several IPC mechanisms
to exchange data. Because of the limited amount of shared memory (the default
size of shared memory in the OMAP3530 is 1 MB), the stream must be split in data
chunks by the GPP, sent to the DSP for the filtering, received, and stored into an
output file. The length of the chunks and the number of filter’s taps are variable so
that our analysis has varied both the length of the chunks and the number of the
filter’s taps (see chapter 4).

The DSPLink shared memory, according to the DSPLink design, is cacheable
on the DSP side and non-cacheable on the GPP side. In fact, the shared memory
regions are reserved in non-cached memory on the GPP side and no cache coherency
protocol is implemented on the GPP . On the other hand, on the DSP side the
shared memory is cached by default. There is the possibility to disable the cache
by configuring the DSP/BIOS. On the DSP side the cache coherency is ensured
for all modules with the exception of the PROC and MPLIST modules where the
application must provide the data coherency.

3.4.1.1 GPP side

In all the six versions of the software, the main function on the GPP side is
GPP_Main(). This function sequentially calls the other functions that will realize
the GPP side functionality. In this function, the length of the data chunks (passed
as a command line argument) is aligned to the length of the L1 cache word in the
DSP (128 bytes in our case). In our analysis, the length of the chunks utilized will be
multiples of 128 bytes. For software using the PROC, MPCS, CHNL, and MSGQ
modules, the GPP_Main() sequentially calls GPP_Create(), GPP_Execute(), and
GPP_Delete(). The function GPP_Create() creates the PROC object with
PROC_setup(). Then the GPP is attached to the DSP with PROC_attach(). Then,
one or more memory pools are allocated (via POOL_alloc()) after having set up
the number and the size of the buffers to be allocated in the pool(s). Depending
on the IPC module to be used, some address range in the GPP memory space is
translated into the DSP memory space. The next step is to load the DSP with its
executable file and some program specific arguments. This is done through the
function PROC_load(). In this function the data structures needed by the IPC
module in question are created and set up. The last step is to start the execution
of the DSP by invoking PROC_start(). The function GPP_Execute() reads the
stream of data from the GPP’s memory and write it into the DSPLink memory
space, splits the data into chunks, and sends the chunks in a loop via the chosen
IPC protocol provided by DSPLink. The function returns a pointer to memory where
the filtered data has been saved. The last step is GPP_Delete() which deallocates
all the data and memory structures utilized by the previous functions. A common
procedure is to stop the execution of the DSP with PROC_stop(), close the buffer
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pool (POOL_close()), detach the GPP from the DSP with PROC_detach(), and
finally to destroy the PROC object (PROC_destroy()).

In contrast, for MPLIST and RINGIO modules, the GPP_Main() first calls
GPP_Create() and then GPP_create_thread(), a wrapper of the function
pthread_create()6, to create two parallel threads. One thread is the writer, which
is in charge of sending data to the DSP; the other is the reader that receives the
filtered data back. The function GPP_Join_client() waits for the threads to finish
their execution and finally the function GPP_Delete() is invoked. This modification
was made since these two modules are better suited for parallel data processing (see
the specific software description paragraphs for further explanations).

The DSP boot mode chosen for the software in this project is the normal boot
mode shown in figure 3.6.

Figure 3.6. Normal boot mode (adapted from [24, page 21])

3.4.1.2 DSP side

On the DSP side, tasks (TSK module) are used instead of software interrupts
(SWI). The reason for that is that tasks must be used when communicating via
IPC protocols since tasks can be suspended. In contrast SWIs cannot yield the
processor. Furthermore, the main advantage of software interrupts over tasks is
that the context switching time is reduced. However, in our case, only two threads
are running on the DSP: the main task and tskDSP. Since the main task is suspended

6From the Posix pthread library
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after creating the tskDSP task, the benefits of using software interrupts would be
limited.

The execution flow of the DSP starts when the function PROC_start() is invoked
on the GPP side. The first operation to be done by the DSP is to receive and
save the arguments sent by the GPP via the function PROC_load(). Also on
the DSP side the chunk length is aligned with the cache word length. Then, the
main task creates the task tskDSP with a priority level of 4. The flow of this
task is very similar to the flow of the GPP program. The first function invoked is
TSKDSP_create() that allocates the necessary areas of the DSP memory space
and sets and initializes some transfer information. One aspect that is important
to note is that all DSPLink structures are created, allocated, and initialized on the
GPP side. The next step is to call the function TSKDSP_execute(). This function
represents the main functional part of the DSP code since it receives data, filters
the samples, and sends the resulting data back to the GPP. The next function to
be invoked is TSKDSP_delete(), to deallocate all those structures created in the
TSKDSP_create() function.

The code for the FIR filter is placed in the TSKDSP_execution() function. The
code was optimized using functions from the DSPLIB and it is commont to all
versions of the software. The code is showen in listing 3.4.

Listing 3.4. Code of FIR filter on the DSP side
1 ...
2 void DSP_fir_gen (
3 const short *restrict x, /* Input array [nr+nh-1 elements] */
4 const short *restrict h, /* Coeff array [nh elements] */
5 short *restrict r, /* Output array [nr elements] */
6 int nh, /* Number of coefficients */
7 int nr /* Number of output samples */
8 );
9

10 void DSP_blk_move_gen (
11 short * restrict x, /* Source address */
12 short * restrict r, /* Destination address */
13 int nx /* Number of bytes to be transferred */
14 );
15
16 ...
17
18 #pragma DATA_ALIGN (filter_out, 4)
19 filter_out = MEM_calloc (DSPLINK_SEGID, numSamples * sizeof (short), 4) ;
20 history = MEM_calloc (DSPLINK_SEGID, (FILTER_ORDER) * sizeof (short), ←↩

DSPLINK_BUF_ALIGN) ;
21 filter_in = MEM_calloc (DSPLINK_SEGID, (numSamples + FILTER_ORDER) * sizeof ←↩

(short), DSPLINK_BUF_ALIGN) ;
22 first_filter_in = MEM_calloc (DSPLINK_SEGID, numSamples * sizeof (short), ←↩

DSPLINK_BUF_ALIGN) ;
23
24 for(i=0; i< numberOfChunks; i++) {
25 /* Do processing on this buffer */
26 if (status == SYS_OK) {
27 if (first_chunk == 0) {
28 DSP_blk_move_gen (history, filter_in, FILTER_ORDER);
29 memcpy(&filter_in[FILTER_ORDER], buffer_input, bufferSize);
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30 DSP_fir_gen(filter_in, coeff, filter_out, NUM_TAPS, numSamples);
31 DSP_blk_move_gen (&filter_in[numSamples], history, FILTER_ORDER);
32 }
33 else {
34 memcpy(first_filter_in, buffer_input, bufferSize);
35 DSP_fir_gen(first_filter_in, coeff, &filter_out[NUM_TAPS], NUM_TAPS, ←↩

numSamples - NUM_TAPS);
36 DSP_blk_move_gen (&first_filter_in[numSamples - FILTER_ORDER], history←↩

, FILTER_ORDER);
37 first_chunk = 0;
38 }
39 memcpy(buffer_output, filter_out, bufferSize);
40 }

The two functions from the DSPLIB are:

DSP_fir_gen The FIR filter function. This function was written using intrinsics
to optimize the speed of the code. From its prototype, shown in listing 3.4, we
can see that it operates on signed 16-bit integers arrays. This function unrolls
the inner loop by loading 8 bytes per time step from the memory (four samples)
and computing four output samples per instruction cycle taking advantage of
the VLIW architecture. For these reasons, the function requires that the output
array must be aligned to a 4-byte boundary.

DSP_blk_move_gen This function moves data from the source address to the
destination address exploiting the VLIW parallelism as the function above.

In the prototypes of the two functions, we can see that some pointers are declared
using the keyword restrict. By means of this keyword, the programmer ensures
to the compiler that there is only one pointer used to access this area of memory.
In this way, the compiler assumes that the problem of pointer aliasing7 is negligible
hence enabling cache optimizations.

The following sections will explain in detail the software implemented for each
IPC mechanism and how the module in question was integrated in the general test
software framework. For details regarding IPC modules, refer to section 2.6.1. The
timing code is not described in these sections but is explained in section 3.6.1.

3.4.2 PROC module
The test software exploiting the PROC module is called proc_FIR and the test
command to run the program is:

./proc_FIR <path of DSP executable> <input WAVE file> <output WAVE file> /
<shared memory address> <chunk size>

As we can see, the fourth input argument is the address of the shared memory from
which the buffers for storing chunks will be allocated. As we will consider later,

7The situation when the same memory location can be accessed using different pointers, is called
pointer alising. This situation implies that the compiler is unable to utilize code optimizations
involving caches and may reduce the degree of instruction level parallelism.
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this implies a deep understanding and knowledge of the memory needed by the
program. For our specific case, the address should be set at 0x87EF0080 in normal
execution mode and at 0x87EF0200 if in CPULOAD mode for measuring the DSP
load (see section 3.6). These addresses point to the DSPLink shared memory and
they are physical addresses (remember that DSPLink does not support the MMU on
DSP side.

In this application, the GPP writes data directly into the DSP memory
space of the shared memory. This is done through functions PROC_read() and
PROC_write(). In order to synchronize the two processors, the NOTIFY module is
needed. The application control is shown in the figure 3.7. On the GPP side, the last
step of the GPP_Create() function is to wait on a binary semaphore for the DSP to
complete the set up operations (done in the TSKDSP_create()) function on the the
DSP side. The semaphore is provided by the hosting operating system and not by the
DSPLink. In our case, the semaphore has the sem_t type, provided by the POSIX
library and defined in the header file semaphore.h. By means of the NOTIFY
module, a callback function is associated with a particular IPS event. After that
the DSP finishes its set up, a notification is sent to the GPP via NOTIFY_notify()

specifying the ID of the target GPP (in the case of a multiprocessor environment) and
the ID of the event in the IPS table. On the GPP side the callback function is executed
when such event happens. The callback function, in our case, is simply a post on
the same semaphore on which the process on the GPP side was pending. In this way,
the thread on the GPP can safely continue being sure that the DSP is operating and
ready to continue the execution flow. The NOTIFY module provides the possibility
to send 32-bits of data as a payload of a notification message. Exploiting this
feature, the GPP communicates the addresses where the data must be exchanged in
the DSP memory. Specifically, the first address (dspAddr1) is the address passed
to the application via the command line argument and it is the address in which
the GPP writes and the DSP reads data. The second address (dspAddr2) is the
value of the first address incremented by the chunk size. It represents the address
at which the DSP writes and GPP later reads data and it is contiguous to the first
memory area. After that, the GPP starts iteratively sending chunks to the DSP.
Data are written to the dspAddr1 address via PROC_write() passing as arguments
the ID of the target processor, the address where data must be stored, the size of
the data, and the data pointer. At this point, the GPP sends a notification to the
DSP to communicate that data are ready in the DSP memory area and waits on a
semaphore for the data to be filtered. The DSP, which was waiting on a semaphore
for the data, can now process data and write it back to the address dspAddr2. A
notification is sent back to the GPP to communicate that data are filtered and now
available. This loop is performed until no more chunk remains on the GPP side to
be elaborated. A possible optimization of this schema is the double buffering. With
this technique, there are two buffer areas, one pair where the DSP is processing data
and writing its results and the other where the GPP is reading out data and then
writing in new data to be processed in the next iteration. The role of the buffer
pairs are swapped in each iteration. The GPP should write data into the spare buffer
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before waiting on the semaphore.

Figure 3.7. PROC module testing software

3.4.2.1 Advantages

The main advantage of the PROC module is that the communication protocol is
straightforward. The complexity of the code for the communication purpose is very
simple. Another advantage is that the interrupts are used to signal to the processes
that updated data are available. In this way the processor load is lowered since the
thread is suspended and the processor is yielded.

3.4.2.2 Shortcomings

An important drawback of the PROC module is that the addresses are manually
decided by the programmer who must know in details the memory requirements of
the application. This dramatically limits the scalability of the software. In fact,
the programmer must evaluate if a change in the code affects the memory and
has manually to avoid memory overlaps. With respect to parallelism, there are no
memory protection mechanisms implemented by the PROC module. This means
that data coherency problem can arise if concurrent processes operate on the same
data.

3.4.3 MPCS module
Memory protection is provided by the MPCS module. The software using this
module is called mpcs_FIR and is invoked with the command:

./mpcs_FIR <path of DSP executable> <input WAVE file> <output WAVE file>/
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<chunk size> <polling interval>

The communication schema in this application is similar to the PROC testing
software. While in the PROC software the GPP writes data directly into the
DSP memory, by using the MPCS module, data are exchanged by means of the
POOL component while the MPCS module ensures the mutual exclusion while
accessing data. By using POOL_alloc(), two buffers in the POOL memory space
are allocated. In the first buffer a control structure is stored. This structure consists
of a flag indicating whether the data are valid or not, the ID of the author of data,
and the ID of the chunk currently present in the data structure which is the second
buffer. The addresses of these two buffers must be translated by the GPP into
the DSP memory space (using POOL_translateAddr()) and communicated to the
DSP (since the DSP MMU system is not supported by DSPLink). The translated
addresses are transmitted via notification messages as showed in figure 3.8. When
the set up phase ends, the two processors start checking the control structure values
in order to understand if data are updated or not. Access to the common buffers in
shared memory is regulated by MPCS module. Before accessing the shared object,
each processor invokes MPCS_enter(). This function blocks if another process
has already gained access to the shared object. The lock is released by calling
MPCS_leave(). If the author field of the control structure is different from the ID
of the current processor, then the data are read and updated, and consequently, the
control structure is updated. The thread is then suspended by means of the system
call usleep() for the time period specified as fifth argument in the command line.
This mechanism results in a polling behavior with the specified interval between
pooling the status of the object. So, while in the PROC case interrupts were used
to synchronize changes to data, in this case synchronization is achieved by using
polling and a control structure.

Since the POOL module is used to handle data in the shared memory, is
sufficient to copy data from the GPP memory space to the DSPLink memory
segment through memcpy(). Nevertheless, to achieve data synchronization in the
shared memory and to be sure to work with latest data on GPP side, the function
POOL_invalidate()must be called before reading both control and data structure,
and POOL_writeback() after having updated some data. Fgure 3.8 summarizes
this communication pattern. On the DSP side the access to the buffers in the
POOL memory space is done using the translated addresses. Also in this case
the data synchronization must be forced by invalidating the cache before reading
(HAL_cacheInv()) and writing back the cache updated content into the shared
memory (HAL_cacheWbInv()).

3.4.3.1 Advantages

The MPCS module has the same advantages as the PROC module in terms of
low programming complexity. In addition, one of the PROC drawbacks is solved,
as MPCS provides the mutual exclusive access the shared memory. By using the
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Figure 3.8. MPCS module testing software

MPCS, many concurrent processes can safely access to the shared memory without
compromising data coherency.When utilizing the PROC module, the programmer
is not forced to know in detail the memory allocation of the application and no
manually allocated addresses must be defined a priori. Hence, a higher degree of
scalability is reached.

3.4.3.2 Shortcomings

The most evident shortcoming in this application is the processor load. Since a
form of busy waiting is used, the GPP process is not suspended (and the processor
is not yielded) while waiting for the data to be elaborated. Another shortcoming is
the need for a control structure to keep track of changes done to the data structure.
This leads to a waste of limited shared memory. The amount of memory needed for
the control structure depends on the application. The minimum control structure
contains the ID of the last process that wrote data in the shared memory.

3.4.4 CHNL module
The channel_FIR uses the CHNL module for the communication. The application
is invoked through the command:

./channel_FIR <path of DSP executable> <input WAVE file> /
<output WAVE file> <chunk size>

The communication between processors is based on unidirectional logical data
channels. Such channels permit communication between a single reader and a
writer. In order to complete the exchange of data between the GPP and the DSP ,
two channels have been created using the function CHNL_create(). The channel
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from the GPP to the DSP is called CHNL_ID_OUTPUT while the one from the
DSP to the GPP is named CHNL_ID_INPUT, as shown in figure 3.9. One of the
arguments of this function is an instance of the ChannelAttrs structure. The role
of this structure, defined in the chnl.h header file provided by DSPLink, is to define
some parameters of the channel - such as the endianess, the data size, and allocates
the direction of the channel. The GPP allocates these channels on both directions
and the buffers that should be transferred through the channels by invoking the
function CHNL_allocateBuffer(). The association between these buffers and the
channel is done by means of instances of the ChannelIOInfo structure. Some
fields in this structure are the size and the pointer to the buffer. The data transfer
is carried out according to the issue-reclaim model. According to this model, the
channel created above is first opened. Then, a buffer for the I/O is issued. In
case of a reader, an empty buffer is issued, while in the case of a writer, a filled
one is issued. Afterwards, the client reclaims the buffer, this means that the client
waits until the buffer is sent through the channel (writer) or that the buffer is filled
(reader). The buffers are managed by the link driver, that is the interface between
the application and the physical device, and the ISR module, for the interrupts. The
reclaim function is blocking and the waiting time can be unlimited or a time out
can be set. The functions to achieve this are CHNL_issue() and CHNL_reclaim()

on the GPP side. On the DSP side the Serial I/O module (SIO) is exploited and the
functions are SIO_issue() and SIO_reclaim().

Figure 3.9. CHNL module testing software
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3.4.4.1 Advantages

Firstly the concept of exchanging data through channels is very straightforward
and easy to be understood. Furthermore, the buffer allocation is done by the
DSPLink POOL module so that the programmer is not obliged to manually allocate
the memory space. The CHNL module also offers the opportunity to allocate
several buffers for one channel and send several consecutive buffers at the same
time. Another advantage is the issue-reclaim model hides from the programmer the
complexity of managing the buffer delivery and the interrupt mechanism.

3.4.4.2 Shortcomings

The first shortcoming is that the channels are unidirectional and so only one reader
and one writer can use the channel at the same time. Furthermore, the two ends of
the channel must be decided at the creation time and the channel direction cannot
be changed dynamically. In case of multiple processors, N*(N-1) ∗∗ channels are
needed to achieve the full connectivity.

3.4.5 MSGQ module
Another way of exchanging data among processors, is via messages. Each processor
needs at least one message queue to be able to receive messages. A message queue
has one reader and can have multiple writers. These capabilities are provided by
DSPLink by means of the MSGQ module. The software exploiting this module is
called msgq_FIR and the command to run it is:

./msgq_FIR <path of DSP executable> <input WAVE file> /
<output WAVE file> <chunk size>

In order to be able to communicate, both the GPP and the DSP each have their own
message queues. A message queue is an instance of the MSGQ_Queue type defined
in msgq.h. This message queue must be created and opened on the reader side.
The MSGQ module is functionally parallel on both GPP and DSP sides. In practice
this means that the same DSPLink functions are used in the design even though
different implementations are realized depending on the operating system. In fact,
the DSPLink MSGQ module is based on the DSP/BIOS homonymous module on
the DSP side.

The first step is to open the message queue referred by a unique system-level
name using the function MSGQ_open(). This function returns a handle to the
message queue. This handle is a 32-bit value made up of two 16-bit integers. The
first integer is the processor ID, while the second field integer contains the ID of the
message queue on the processor. DSPLink requires that a message queue for the
handling of asynchronous error messages must be defined. Such a message queue
can be the same as the one for the reception of application messages. A fundamental
component of the system is the message queue transport protocol. The function of
this component is to locate and deliver messages over the complete system. To
locate the remote queues, the function MSGQ_locate() must be invoked passing

∗∗From now on, N is the number of processors in a multi processors system.
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in the name of the remote queue and the remote processor ID. The GPP waits for
the DSP to set up the queue and for the queue to be located. The same operations
are performed on the DSP side. An exchanged message is defined as follows:

typedef struct Message_content_tag {
MSGQ_MsgHeader msgHeader;
Void *dspSrcDataAddr;
Char8 dataBuffer [CHUNK_L];

} Message_content ;

The message header msgHeader is mandatory in every message since it contains
information necessary to deliver the message. Although according to the documen-
tation DSPLink supports variable length payloads, errors occurred when variable
length payloads were sent. To solve this problem, the payload dataBuffer was
defined statically with the maximum application chunk size in the definition.
However, when allocating the POOL buffer where the message should be stored
(via MSGQ_alloc()), the effective chunk size is used. In this way a pseudo variable
payload is achieved. Furthermore, the message size should be aligned to the DSP
cache word size. The dspSrcDataAddr is the translated address of the payload
to the DSP memory space. Then, in order to track messages, the message ID is
set as to be the chunk ID. Messages are sent invoking MSGQ_put() specifying the
destination queue and received on the local queue through MSGQ_get(). The API
to send a message is deterministic and non-blocking. A timeout is specified for the
receiving operation. If the message is not available and the queue is empty, the
client waits for the timeout to expire. This timeout can be either zero or unlimited.
In this way, both synchronous and asynchronous communication paradigms can be
achieved.

Figure 3.10. MSGQ module testing software
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3.4.5.1 Advantages

MSGQ offers a good solution for realizing communication in a multi-processor
system. Since a message queue can receive messages from different senders, N
message queues are sufficient to enable communication between any processors.
Another advantage is that the receiver does not need to know details of the sender
in advance (e.g. the sender’s address). All the necessary information is embedded
in the message and can be retrieved by means of APIs. Furthermore, in the same
message, different types of data can be sent at the same time.

3.4.5.2 Shortcomings

The first shortcoming is the need to define a maximum size payload for any
message. A completely dynamically allocated payload is not achievable contrary to
the DSPLink documentation. Another drawback is the need for a message header
for each message. This control information wastes memory and requires additional
overhead for every message that is transferred. An instance of the MSGQ_MsgHeader
structure, requires 128 bytes of memory.

3.4.6 MPLIST module
The communication via linked list is achieved by using the MPLIST module in the
application mplist_FIR invoked by the command:

./mplist_FIR <path of DSP executable> <input WAVE file> /
<output WAVE file> <chunk size> <max number of elements>

By utilizing the linked lists provided by the MPLIST module, the programmer
can operate on data out-of-order. To reflect this feature, the sequential schema
of the previous application was broken and a different design was chosen. In this
new program, on the GPP side two tasks are running: one writer, in charge of
sending chunks to the DSP, and a reader, which receives the filtered data. The
two tasks are synchronized together and with the task running on the DSP side
by means of semaphores (as shown in figure 3.11). Two linked lists are created
on the GPP side and they are characterized by a system-level unique name. In
addition, three semaphores are used for synchronization and one MPCS object is
utilized to protect a shared variable called current. This shared variable is the
current number of chunks that are sent by the writer, but not yet received by the
reader. Two semaphores, the GPP_SemPtr_rd and GPP_SemPtr_wr are used for
synchronization of the GPP and DSP with the help of the NOTIFY module. Two
callback functions waiting on these semaphores, are listening for two different IPS
events. A third semaphore, GPP_SemPtr_sync, is used locally on the GPP side.
When the current variable has reached the maximum number of elements in the
list (passed as an argument to the program), the writer is suspended invoking a
SEM_pend() on a semaphore. After the reader processes one element it wakes up
the writer by means of a notification.
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Figure 3.11. MPLIST module testing software

After the set up phase, the GPP waits for the DSP to finish its initial phase.
When everything is ready, the DSP sends a notification to the GPP and waits on the
semaphore GPP_SemPtr_wr. After that, the writer task starts sending chunks to
the DSP. The chunks are appended to the tail of the MPLIST1 using the function
MPLIST_putTail() and the variable current is updated after gaining access to
the MPCS object. On the DSP side, two callback functions, associated with a
particular IPS event ID, were defined. These functions make a post to the associated
semaphore. After sending a chunk, the writer notifies the DSP so that a post to the
GPP_SemPtr_wr is sent. The task on the DSP can now get data from the head of
the linked list (MPLIST_getHead()), process this data, and append the output
data to the tail of MPLIST2. Then, it sends a notification to the event associated
with the semaphore GPP_SemPtr_rd and waits on the semaphore GPP_SemPtr_wr.
The reader, which was waken up by the DSP, can now take the data from the head
of the MPLIST2. When the number of current chunks is equal to the maximum
number of elements in the linked lists (specified as an argument to the program),
the writer waits on the semaphore GPP_SemPtr_sync and it is waken up by the
reader by means of a post.

3.4.6.1 Advantages

An important advantage of the MPLIST module is the possibility to process data
out-of-order. In our application, this feature is not important since we are dealing
with a sequential stream of data. In a multi-processor environment, communication
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can utilize a single doubly-linked list since MPLIST supports multiple readers
and multiple writers. The identity of the senders can be retrieved by means of
information included in the header of the messages.

3.4.6.2 Shortcomings

The MPLIST handles messages in a similar way as the MSGQ module. For this
reason, the same disadvantages of the MSGQ module are also valid for the MPLIST.
These drawbacks include the pseudo-dynamic payload length and the overhead of
the message header. In case of many messages with a small payload, the data
overhead may be significant.

3.4.7 RINGIO module
The last IPC mechanisms is the circular buffer provided by the RINGIO DSPLink
module. The software utilizing this module is called ringio_FIR and the command
to execute it is:

./ringio_FIR <path of DSP executable> <input WAVE file> /
<output WAVE file> <chunk size> <circular buffer size>

Two circular buffers are used for the communication: RINGIO1 and RINGIO2.
The first buffer receives data from the GPP. The DSP reads data from RINGIO1
and writes to RINGIO2, where the GPP can collect the filtered data. As for the
MPLIST case, two parallel threads are executed on the GPP: a writer and a reader.
During the initialization phase, the GPP side creates the RINGIO1 buffer through
the function RingIO_create() while the DSP creates the RINGIO2. After the
creation of the circular buffer, the client needs to open it. This is done by using
RINGIO_open(). Two important arguments to be passed to this function are:

• openMode: the mode with which the buffer is opened (reader or writer mode);
and

• flag: flags to define the caching and notification behavior. On the GPP
side the flag used is RINGIO_NOTIFICATION_ONCE. By means of this
flag, the client gets a notification whenever an attempt to acquire a buffer
from RINGIO fails. On the DSP side, since the shared memory is cacheable,
the configuration of cache coherency protocol implemented by DSPLink is
specified by means of the flags: RINGIO_DATABUF_CACHEUSE, RIN-
GIO_ATTRBUF_CACHEUSE, and RINGIO_CONTROL_CACHEUSE.
These buffers requires data coherency for the data, attribute, and control
buffers.

The next step is to register the callback function that must be executed when
an event happens on the associated RINGIO. This is not done by using the
NOTIFY component, but rather this functionality is embedded in the RINGIO
module in the form of the function RingIO_setNotifier(). The first step in
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the communication is done by the writer, which sends attributes over RINGIO1 to
the DSP (via RingIO_setAttribute()) which is initially suspended waiting on a
semaphore. This attribute, RINGIO_DATA_START, causes the execution of the
callback function associated with the RINGIO1 on the DSP side. This function posts
to the semaphore on which the DSP task is suspended waiting on. The DSP sends
the RINGIO_DATA_START on RINGIO2 to the reader. From now on, the writer
writes data to the RINGIO2 and the reader collects data back by reading from
RINGIO2. The data are sent via the circular buffer according to an acquire-release
mechanism. When the writer wants to write data, it acquires an empty buffer of the
desired size from RINGIO through RingIO_acquire(). This function blocks if no
empty buffer is available. When the function returns the empty buffer, the writer
fills the buffer and releases it by calling RingIO_release(). Conversely, the reader
acquires filled buffers and releases empty ones. At the end of the iteration, when all
chunks have been sent, the writer sets the attribute RINGIO_DATA_END that is
received by the DSP and propagated to the reader on the GPP side.

Figure 3.12. RINGIO module testing software

3.4.7.1 Advantages

RINGIO perfectly suits data streaming since is very flexible and processes data in
order. Additionally, if a buffer of the required size is not available, a smaller buffer
is retrieved so that communication may continue without evident interruptions.
Nevertheless, this feature was not used for this project. In our case, only a buffer of
the required size is acquired. RINGIO helps the programmer by embedding some of
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the necessary synchronization structure. The NOTIFY and MPCS tools are used
internally by the RINGIO component to ensure data coherence and synchronization.

3.4.7.2 Shortcomings

The main drawback of RINGIO is its high programming complexity. Although the
RINGIO hides part of the synchronization matter, the programmer must handle
the buffers’ boundaries if partial buffers are sent. The complexity is even higher if
variable length attributes are exploited.

3.5 GPP + NEON Solution
The first system configuration that was considered to port a SDR to the OMAP3530
platform, was to exploit the DSP. Another option is to exploit the NEON
coprocessor provided by the ARM Cortex-A8. NEON is a SIMD coprocessor (also
known as vector processor). Physically, it consists of a chip directly connected to the
data and control bus of the ARM processor. A SIMD architecture is able to perform
the same operation in parallel over different sets of data by using a single instruction,
hence increasing the processor’s performance. The level of parallelism depends on
the algorithm and details of the instruction set. Since the largest NEON register
is 128-bits, if the algorithm performs operations with 8-bit values, the coprocessor
can execute at most 16 operations simultaneously. However, the instruction level
parallelism can be limited by other constraints such as memory thoughtput and the
loop overhead.

The hardware features of the NEON processors are (according to [34] and [35]):

• 16-entry instruction queue;
• dual-view register file: thirty-two 64-bit registers (D0...D31) or sixteen 128-bit

registers (Q0...Q15);
• 6 stage execution pipeline (integer and single-precision floating point);
• 3 SIMD integer pipelines;
• a load-store/permute pipeline;
• 2 SIMD single-precision floating-point pipelines;
• a non-pipelined Vector Floating-Point unit (VFPLite); and
• 12-entry load data queue.

The NEON coprocessor is decoupled from the main processor by means of an
instruction queue (as shown in figure 3.13). The Cortex-A8 can issue up to two
valid instructions per clock cycle to the NEON unit. The NEON 10-stage pipeline
(including a 6-stage execution pipeline), starts after the ARM integer pipeline in
the case of a NEON instruction. All instructions are issued and retired in-order.
The ARM processor makes NEON’s job easier by solving all branch mispredictions
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and exceptions before the NEON pipeline. More importantly, the ARM processor
ensures NEON a zero-load penalty when using the L1 cache. In fact, all NEON
addresses are computed by the processor before the NEON pipeline starts and data
can be loaded in advance. The integer pipeline is made up of three pipelines:
the MAC (multiply-accumulate), ALU, and the shift. The loadstore/permute
pipeline handles all load and store operations and data transfers to the integer
unit. Moreover, it performs data permute operations (interleave or de-interleave
on memory accesses). The NEON floating-point (NFP) pipeline consists of two
pipelines: floating-point ADD and floating-point MUL. The NEON coprocessor also
contains the VFPLite8 unit, this is a non-pipelined implementation of the ARM
VFPv3 Floating-Point Specification (see section 2.4.1) for backward compatibility
with the existing ARM floating-point code [35].

Figure 3.13. NEON block diagram (adapted from [34])

The advantages of NEON are:

• aligned and unaligned access to data for a better vectorization of the code;
• support for integer and floating-point operations;
• being a coprocessor, NEON is tightly coupled to the ARM core. This leads

to a series of advantages: an unified view of memory and a single instruction
execution flow. The latter feature simplifies the development tool, since only
one development tool chain is needed for the two cores; and

• data through-put performance is enhanced thanks to an efficient handling of
data by the register file. Due to the high data parallelism, the register file
can load a large amount of data from memory with one access minimizing the
number of accesses to memory.

8The term "lite" indicates a version not limited in functionality, but in area and performance.
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There are three way to develop code for the NEON processor: using a vectorizing
compiler, using NEON intrinsics, and writing NEON assembly code. Since the
target was NEON, the test software was modified according for the three different
ways of developing NEON code. In this way, a more complete analysis of the NEON
performance could be made.

3.5.1 Vectorizing compiler
The first way of generating code for NEON is to exploit a vectorizing compiler. The
main advantage of this method is that the programmer does not need to change
their code. The vector code is generated by the compiler by means of compiler
options. Listing 3.5 shows the straightforward C code to implement a FIR filter:

Listing 3.5. FIR Filter: compiler vectorization
1 Void FIR_core(int* __restrict longInput, short* __restrict dataOut, int coeff←↩

[], int halfSize) {
2
3 int i = 0;
4 int j = 0;
5 int sum = 0;
6
7 for(j=0; j < halfSize; j++) {
8 sum = 0;
9 for (i=0; i < BL; i++) {

10 sum += longInput[i+j] * coeff[i];
11 }
12 dataOut[j] = (sum >> 15);
13 }
14 }

In our case, the compiler based on GCC (arm-angstrom-linux-gnueabi-gcc)
is able to vectorize the code. In order to do it, the following options were used:

arm-angstrom-linux-gnueabi-gcc -O3 -Wall -c -mtune=cortex-a8 -mfpu=neon
-ftree-vectorize -ftree-vectorizer-verbose=15 -mfloat-abi=softfp
-march=armv7-a

In order to generate vectorized code, the optimization level O3 is required by
the compiler. Furthermore, the target processor and the version of the ARM
architecture need to be specified. The target coprocessor is specified by saying
-mfpu=neon. The option -ftree-vectorize tells to the compiler to produce
vectorized code and the output of this operation is shown thanks to the option
-ftree-vectorizer-verbose. As we can see from listing 3.5, the keyword
restrict was used in the array definitions (see section 3.4.1). Unfortunately, GCC
poorly vectorizes the code. As can be seen by examining the generate code, very
little change has been made to the code in comparison with the FIR code developed
for the DSP. Specifically the FIR function deals with int arrays instead of short
arrays. A conversion of the array, from short to int was mandatory in order for
the compiler to vectorize the code. In fact, in GCC starting from version 4.2 there
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is a bug9 that does not let the compiler vectorize code in which a cast is done.
Therefore the conversion is performed outside the FIR function and must be taken
into account during the analysis of the NEON performance. This problem was not
detected when using the ARM C compiler armcc. However, this compiler does a
better job in vectorizing the code since is able to vectorize code with casting without
problems. Unfortunately, armcc is not freeware and for the sake of coherency with
the GPP + DSP solution, the arm-angstrom-linux-gnueabi-gcc was used above
with the above workaround.

3.5.2 NEON Intrinsics
As the compiler is not always able to do a good job when vectorizing code, especially
when dealing with complex functions, a second way of developing NEON code
is using intrinsics. The NEON intrinsics are a combination of C and assembly
code giving the programmer direct control over the SIMD functionalities. The
programmer can still use a high level programming language (C language), but
can directly control the processor’s operations. Furthermore, the instrinsics are
designed to limit errors related to data types mismatches. In order to use these
intrinsics, the option -mfpu=neon must be passed to the compiler and the header
file arm_neon.h must be included. Listing 3.6 shows the code for the FIR filter
when using intrinsics to process four parallel vectors of shorts:

Listing 3.6. FIR Filter: NEON intrinsics
1 #include "arm_neon.h"
2
3 Void FIR_core(Char16* longInput, Char16* dataOut, int16_T coeff[], int BL, Int32←↩

halfSize) {
4
5 Int32 i = 0;
6 Int32 j = 0;
7 Int32 sum = 0;
8 int16x4_t coeff_vector;
9 int16x4_t input_vector;

10 int32x4_t result_vector;
11
12 for(j=0; j < halfSize; j++) {
13 sum = 0;
14 //Set all lanes to the same value 0
15 result_vector = vdupq_n_s32(0);
16
17 for (i=0; i < (BL >> 2) ; i++) {
18 coeff_vector = vld1_s16(&coeff[i*4]);
19 input_vector = vld1_s16(&longInput[i*4 + j]);
20 //vmlal: result_vector = result_vector + coeff_vector * input_vector
21 result_vector = vmlal_s16(result_vector, coeff_vector, input_vector);
22 }
23 sum += vgetq_lane_s32(result_vector, 0);
24 sum += vgetq_lane_s32(result_vector, 1);
25 sum += vgetq_lane_s32(result_vector, 2);
26 sum += vgetq_lane_s32(result_vector, 3);

9http://gcc.gnu.org/bugzilla/show_bug.cgi?id=26128
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27
28 if (BL % 4) {
29 for(i=BL - (BL % 4); i< BL; i++ )
30 sum += longInput[i+j] * coeff[i];
31 }
32 dataOut[j] = sum >> 15;
33 }
34 }

The code above was compiled with the command:

arm-angstrom-linux-gnueabi-gcc -O3 -Wall -c -mtune=cortex-a8 -mfpu=neon
-mfloat-abi=softfp -march=armv7-a

In the code above, the inner loop was manually unrolled with a factor of 4. In the
lines 18 and 19, four values from the arrays coeff and longInput are loaded as
16-bit signed integers into variables of type int16x4_t. This variable type (defined
in the arm_neon.h), is a vector of four short values. The multiply-accumulate
operation is performed over these two vectors in the line 21. The result is a vector
(result_vector) of four 32-bit integers. The last step (lines 23-26), is to sum
up the value of every lane. The line 28 handles the remaining samples in case the
coefficient array has a length which is not a multiple of the unrolling factor (4 in
our case).

The list of all intrinsics is available in the arm_neon.h header file. For the
mapping between intrinsics and ARM assembly, refer to [36].

Listing 3.7 shows part of the disassembled code of the listing 3.6.

Listing 3.7. NEON intrinsics: disassembled code
1 00008ae0 <FIR_core>:
2 8ae0: e1a0c00d mov ip, sp
3 8ae4: e92ddff0 push {r4, r5, r6, r7, r8, r9, sl, fp, ip, lr, pc}
4 ...
5 8b24: e3a07000 mov r7, #0 ; 0x0
6 ...
7 8b6c: f461174f vld1.16 {d17}, [r1]
8 8b70: f462074f vld1.16 {d16}, [r2]
9 8b74: f2d128a0 vmlal.s16 q9, d17, d16

10 8b78: e2811008 add r1, r1, #8 ; 0x8
11 8b7c: e2822008 add r2, r2, #8 ; 0x8
12 ...
13 8b88: ee122b90 vmov.32 r2, d18[0]
14 8b8c: ee323b90 vmov.32 r3, d18[1]
15 8b90: e0833002 add r3, r3, r2
16 8b94: e35c0000 cmp ip, #0 ; 0x0
17 8b98: ee132b90 vmov.32 r2, d19[0]
18 8b9c: e0833002 add r3, r3, r2
19 8ba0: ee331b90 vmov.32 r1, d19[1]
20 8ba4: e0831001 add r1, r3, r1
21 ...
22 8c08: e89daff0 ldm sp, {r4, r5, r6, r7, r8, r9, sl, fp, sp, pc}

From this code the mapping between the instrinsics and the assembly language
code is evident. The intrinsics function vld1_s16 was mapped with the assembly
language instruction vld1.16, the function vmlal_s16 with the instruction
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vmlal.s16, and the lines 23-26 of the listing 3.6 correspond to lines 13-20 of the
disassembled code.

3.5.3 NEON assembly code
If neither the vectorizing compiler nor the usage of instrinsics yield the desired
performance, then the last possibility is to develop NEON code is by writing in
assembly language. Hand coding in assembly language is a way to maximize the
code performance. Nonetheless, it requires lots of programming experience, a deep
knowledge of the processor architecture, and has a considerable learning curve.
NEON assembly instructions are listed and explained in [36] and [37, chapter 5].
The assembly language version of the FIR filter code is shown in listing 3.8.

Listing 3.8. FIR Filter: NEON assembly
1 .arch armv7-a
2 .fpu neon
3 .text
4 .align 2
5 .global FIR_core
6 .type FIR_core, %function
7
8 FIR_core:
9

10 push {r4-r12} @ backup copy of registers
11 @ r0 <- longInput
12 @ r1 <- dataOut
13 @ r2 <- coeff
14 @ r3 <- BL
15 mov r4, #0 @ r4 <- j = 0
16 cmp r3, #512
17 blt .Lno512
18 ldr r11, [sp, #8] @ r11 <- dataLen
19 b .Lafter512
20 .Lno512:
21 ldr r11, [sp, #4]
22
23 .Lafter512:
24 mov r9, #0 @
25 mov r10, r0 @ r10: backup copy of longInput address
26 mov r12, r2 @ r12: backup copy of coeff address
27
28 .Lstart_outer:
29 mov r6, #0 @ r6 <- sum = 0
30 vmov.i32 q0, #0 @ q0 <- result_vector = 0. q0 is a 128-bit vector, four ←↩

integers
31 mov r5, #0 @ r5 <- i = 0
32 mov r2, r12 @ restore original coeff address
33 mov r0, r10 @ restore original longInput address
34 add r0, r0, r4 @ longInput + j
35
36 .Lstart_inner:
37 vld1.16 d2, [r0] @ load four short int from the longInput to d2 (64-bit ←↩

vector)
38 vld1.16 d3, [r2] @ load four short int from the coeff to d3 (64-bit vector)
39 vmlal.s16 q0, d2, d3 @ multiply-accumulate: q0 = q0 + d2 * d3
40 add r5, r5, #4 @ i += 4
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41 add r0, r0, #8 @ longInput += 8 (jump to the next 4 short int)
42 add r2, r2, #8 @ coeff += 8 (jump to the next 4 short int)
43 cmp r5, r3 @ compare i and BL
44 blt .Lstart_inner @ if i < BL, restart inner loop, else quit the inner loop
45
46 .Lend_inner:
47 vmov.32 r7, d0[0] @ r7 = first lane of q0
48 add r6, r6, r7 @ sum += first lane
49 vmov.32 r7, d0[1] @ r7 = second lane of q0
50 add r6, r6, r7 @ sum += second lane
51 vmov.32 r7, d1[0] @ r7 = third lane of q0
52 add r6, r6, r7 @ sum += third lane
53 vmov.32 r7, d1[1] @ r7 = fourth lane of q0
54 add r6, r6, r7 @ sum += fourth lane
55
56 #case BL not multiple of 4
57 sub r9, r5, r3 @ r9 = BL % 4
58 cmp r9, #0 @ BL % 4 == 0
59 beq .L_multiple
60 eor r5, r5, r5 @ if BL % 4 != 0, a new loop starts. i = 0
61
62 .L_multiple_cycle: @ loop for computing remaining samples
63 smlal r8, r6, r0, r2 @ multiply-accumulate: r8|r6 = r8|r6 + r0 * r2
64 add r5, r5, #1 @ i++
65 add r0, r0, #2 @ longInput += 2 (pointer to the next short int)
66 add r2, r2, #2 @ coeff += 2 (pointer to the next short int)
67 cmp r5, r9
68 blt .L_multiple_cycle @ if no more samples, quit the loop
69
70 .L_multiple:
71 #update dataOut
72 asr r6, r6, #15 @ sum = sum >> 15
73 strh r6, [r1] @ dataOut = sum
74 add r4, r4, #2 @ j += 2
75 add r1, r1, #2 @ dataOut += 2
76 cmp r4, r11 @ j == dataLen
77 blt .Lstart_outer @ if j == dataLen, quit the outer loop
78
79 .Lend_outer:
80 pop {r4-r12} @ restore registers
81 mov pc, lr @ restor program counter

The code was compiled by using the command:

arm-angstrom-linux-gnueabi-as -mlittle-endian -mcpu=cortex-a8
-mfpu=neon -march=armv7-a

The directives in lines 1 and 2, indicates respectively the target architecture and
floating point unit. The function prototype is:

extern Void FIR_core(Char16* longInput, Char16* dataOut, int16_T coeff[],
int BL, Int32 dataLen);

According to the ABI, the first four function arguments are passed through
registers r0...r3, while the fifth argument (dataLen), is passed through the stack
and retrieved in the line 18 or 21. Remember that d registers are 64-bit sized, while
q registers have a 128-bit length. In lines 37 and 38, four 16-bit signed integers
are loading starting from the address contained in r2 and stored in a d vector. In
the line 39, the multiply-accumulate operation is executed and the result, a 128-bit
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register, is stored in the q0 register. Please note that the register file has a dual-
view. This means that the q register set q0...q15 is physically the same as the
d register set d0...d31. This means that q0 = (d1 « 16) + d0. In lines 47-54,
the value of each lane is added up in the r7 register (this is equivalent to the sum
variable in the previous examples). The case in which the coefficient array has a
length which is not a multiple of the unrolling factor 4, is handled in lines 56-68.

If we compare the assembly code generated by intrinsics (shown in listing 3.7)
with the assembly code of the listing 3.8, we can notice that no relevant differences
exist concerning the vector code.

3.6 Measuring tools
Our analysis consider three parameters in order to compare the performance of
the different solutions when executing the test software. These parameters are
execution time, GPP load, and DSP load. Clearly, the DSP load will only be
used for the comparison of IPC protocols in the GPP+DSP system configuration.

3.6.1 Execution time
With respect to the timing, two different types of timing were measured depending
on the system configuration:

• A chunk’s round-trip time: this timing is only relevant for the GPP+DSP
configuration since it measures the time spent when transmitting chunks over
DSPLink to the DSP. It includes the transmission of chunks to the DSP and
back to the GPP and the computation time of the DSP. A chunk’s round-trip
time (troundtrip) can be defined as:

troundtrip = 2ttransmission + tdsp

• Execution time: for the GPP+DSP configuration, this time indicates the
amount of time spent by the GPP_Execute() function. This includes copying
of data (i.e., the chunks) from the user memory space to the DSPLink memory
space and vice versa (when needed) and the chunk’s round-trip time. The
execution time (texecution) can be defined as:

texecution = 2tmemory + troundtrip

In the GPP+NEON configuration, the execution time includes the time
needed by the system to execute the FIR filter functions (the different
versions were explained in section 3.5). No extra times are included in the
measurements.

In order to measure the test software timing, two types of software timers were
exploited: fine-grained and coarse-grained timer functions.
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The fine-grained functions were used to measure the troundtrip. A high degree
of precision is needed when measuring such times since the round-trip time can be
really small in case of small chunks. The maximum degree of precision is achieved
by directly accessing the so called Cycle Counter (CCNT) register in the ARM
architecture. This register counts the number of clock cycles since the register was
reset. It can be directly read by a user application, while some restrictions concern
attempting to write it (e.g. the register must be disabled before being written to in
order to ensure a deterministic behavior). The CCNT register is controlled by the
Performance Monitor Control (PMNC) register. The functions used to handle the
CCNT register are shown in listing 3.9.

Listing 3.9. CCNT register functions

1 /* Enable the CCNT register */
2 inline void ccnt_enable(void) {
3 __asm__ volatile ("mov r1, #0x80000000");
4 __asm__ volatile ("mcr p15, 0, r1, c9, c12, 1" ::: "r1");
5 }
6
7 /* The PMCR register is accessed. The following operations are performed:
8 - Disable Cycle count divider
9 - Reset cycle counter

10 - Enables all counters
11 */
12 inline void ccnt_start(void) {
13 __asm__ volatile ("mov r0, #5");
14 __asm__ volatile ("mcr p15, 0, r0, c9, c12, 0" ::: "r0");
15 }
16
17 /* The value of the CCNT (cycle counter register) is returned */
18 inline Uint32 ccnt_read(void) {
19 Uint32 counter;
20 __asm__ volatile ("mrc p15, 0, %0, c9, c13, 0" : "=r"(counter));
21 return counter;
22 }
23
24 /* Stop the cycle counter */
25 inline void ccnt_stop(void) {
26 __asm__ volatile ("mcr p15, 0, %0, c9, c12, 0" :: "r"(1<<5));
27 }

The instructions mrc and mcr are called coprocessor instructions. This class of
instructions causes the ARM processor to raise an undefined instruction trap. This
happens when the processor is not able to interpret the instruction. When such a
trap happens, the ARM processor starts a handshaking with the all coprocessors in
order to establish if the instruction is a valid coprocessor instruction and if there is
a coprocessor able to execute it (further details at [38, appendix A]). The mrc and
mcr instructions, belong to a class of instructions used to transfer 32-bit values from
the ARM processor to a coprocessor and vice versa. The instruction mrc transfers
a value from the ARM processor to the processor. The mcr performs the opposite
operation. Their syntax is:

MRC{cond} <cp#>,<op>,<ARM src>,<lhs>,<rhs>,{info}
MCR{cond} <cp#>,<op>,<ARM dest>,<lhs>,<rhs>,{info}
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where cp# is the coprocessor ID (0-15), op is the operation code (0-7), ARMsrc
/ ARMdest is the ARM source/destination register (0-15), lhs and rhs are
coprocessor registers (0-15), and info is the filed for extra information (0-7). The
function ccnt_enable() enables the CCNT register by setting to 1 the enable
bit in the PMNC register. The function ccnt_start() sets some fields in the
PMNC register. It resets the value of the CCNT register, disables the cycle count
divider10, and enables other performance counters controlled by the PMNC register.
The function ccnt_read() returns the current value of the cycle count while
ccnt_stop() stops the counter.

Since the CCNT register is a 32-bit register and the GPP frequency is around 500
MHz, the cycle counter overflows every 8.59 seconds. In order to measure texecution

and to be able to handle long latencies, coarse-grained timing functions were used.
These functions are based on the function gettimeofday(). This function, defined
in the header file sys/time.h, returns the current time with a precision of the order
of microseconds. The time value is stored in a structure of the type timeval. These
functions are coarse-grained since gettimeofday() introduces the overhead typical
of the system calls into the measuring due to the context switching from the user
space to the kernel space.

The time required to call the function gettimeofday was measured by using
the fine-graded functions. The result is that the average number of clock cycles that
gettimeofday requires to execute is 2294. This value corresponds to 4.588 µs for
the processor used in our project.

3.6.2 GPP load
There are essentially two ways to measure the CPU load. The first one is to use
measuring tools internal to the software by writing some code. This way usually
gives the most accurate measurements. The drawback of this technique is that the
programmer has to design and debug the code; and the scalability of the software
is somewhat limited. The second way is to use external tools. These tools can
be system monitors that control processes running on the operating system while
producing statistics about system resources that these processes use. In order
to measure the GPP load, an external system monitoring tool was chosen. The
operating system running on the GPP side is a Linux distribution and a variety of
system tools are readily available, are well tested, have been shown to be reliable.
For all of these reasons, the top tool was utilized. The program top belongs to
the procps package11 and provides statistics about tasks managed by the kernel
in a dynamic way in real-time. This command shows the percentage of CPU and
memory usage of every process together with other information. The program top
was run as background process while the test software was running. The command
used to run this monitor tool was:

top -d 0.1 | grep <process name> | awk ’{print $10" "$13}’ >> <out file>

10If the cycle count divider bit is set, the CCNT register is incremented every 64th processor
clock cycle.

11The procps package collects some utilities that provide information about
processes by using the /proc filesystem. The website of the project is:
http://procps.sourceforge.net/
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The -d option sets the sampling frequency. For this project, the sampling frequency
was 10 Hz (a sample every 0.1 second). The output was filtered by grep so that
only statistics about the process in question were taken into account. The small
awk script prints just the columns of the CPU usage and process name and stores
them into an output file. Another awk script was used to compute the average GPP
load for each process. An important aspect that must be considered is that top
consumes system resources as well. In particular, for a frequency of 10 Hz, the GPP
workload (on the processor that was used) due to top itself was about 16%. This
must be considered when analyzing the data.

Another profiler tool was considered: oprofile12. It is able to profile processes
running on the operating system as a low overhead daemon. It supports the ARM
architecture: with the option event=CPU_CYCLES:500:0:1:1, the tool samples the
system every 500 clock cycles (minimum allowed value) by accessing the ARM CCNT
register. However, this tool was not used to get the CPU usage in this project. The
reason for this it that incoherent results were obtained during the testing. As a
result of the oprofile analysis, the CPU load was constant and was not depending
on the chunk size and on the number of filter’s taps. This strange behavior was
contradicted by top that was providing more realistic results. Nevetheless, the tool
was useful in order to understand in detail which application libraries were using the
CPU (by means of separate=library option). Furthermore, by using the option
-vmlinux, information about CPU usage of kernel modules can be collected. An
example of the output of the program when executing the msgq_FIR program with
a 128-taps filter and chunk length of 2048 bytes with the -vmlinux option enabled,
is listed in appendix C. The output report has been shortened for readability.

3.6.3 DSP load

The Real-time Analysis tool, integrated in the Code Composer Studio (see appendix
A), can be used to analyze the DSP load. Unfortunately, the current version of the
Real-time Analysis tool was not working properly with version 5.41 of DSP/BIOS.
Hence, a custom solution was designed. This solution consists of creating an idle
TSK that is executed whenever the principle tasks on the DSP side are suspended.
On the DSP side, the main task creates the tskDSP (see section 3.4) with a priority
of 4, the idle task idle_task (if in CPULOAD mode) with a priority of 2, and
then ends its execution. Since the tskDSP has the highest priority, the idle task
will run only when the tskDSP is suspended. The priority of idle_task was set
higher than the priority of 0 of the system idle tasks (from IDL module) to be sure
that the idle_task is not influenced by other tasks during its execution. The code
for creating these tasks and the callback function of the idle_task are shown in
listing 3.10.

12http://oprofile.sourceforge.net
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Listing 3.10. Tasks for measuring DSP load

1 Void main(Int argc, Char *argv[])
2 {
3 TSK_Handle tskDSPTask;
4 TSK_Handle myIdle;
5
6 /* Initialize DSP/BIOS LINK. */
7 DSPLINK_init () ;
8 ...
9 /* Creating task for TSKDSP application */

10 tskDSPTask = TSK_create(tskDSP, NULL, 0);
11 TSK_setpri(tskDSPTask,4);
12
13 #ifdef CPULOAD
14 myIdle = TSK_create(idle_task, NULL, 0);
15 TSK_setpri(myIdle, 2);
16 #endif
17 }
18
19 static Int tskDSP()
20 {
21 /* Create Phase */
22 status = TSKDSP_create (&info);
23
24 /* Execute Phase */
25 if (status == SYS_OK) {
26 #ifdef CPULOAD
27 CLK_start();
28 startTime = CLK_gethtime();
29 #endif
30 status = TSKDSP_execute (info);
31 if (status != SYS_OK) {
32 SET_FAILURE_REASON(status);
33 }
34 }
35 #ifdef CPULOAD
36 endTime = CLK_gethtime();
37 *totalPtr = endTime - startTime;
38 HAL_cacheWbInv ( totalPtr, intSize) ;
39 *idlePtr = idle;
40 HAL_cacheWbInv ( idlePtr, intSize) ;
41 CLK_stop();
42 #endif
43
44 /* Delete Phase */
45 status = TSKDSP_delete (info);
46 if (status != SYS_OK)
47 SET_FAILURE_REASON(status);
48 return status ;
49 }
50
51 static Int idle_task () {
52 Uint32 t1 = 0;
53 while(1) {
54 TSK_disable();
55 t1 = CLK_gethtime();
56 idle += CLK_gethtime() - t1;
57 TSK_enable();
58 }
59 }
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The percentage of the DSP CPU usage was computed with the following formula:

DSPworkload = 1− tidle

ttotal

The total time is measured starting from line 30 of listing 3.10, before the starting of
TSKDSP_execute() (section 3.4), the ending time is measured after its execution.
These values are sent to the GPP to be showed as output by using DSPLink.
Functions TSK_disable() and TSK_enable() in the idle_task deserve particular
attention. The former function disables the DSP/BIOS task scheduler so that the
current task continues its execution even if a higher priority task becomes ready to
run. However if a HWI occurs, then the task is preempted. The latter function
enables again the task scheduler. These functions are needed in order to avoid
the situation in which a higher priority tasks is ready to run after idle_task

has executed the line 58 and before the execution of the line 59. In this case,
the execution time of the higher priority task will be included in the idle time
measurement.

The method shown above is very simple, and has the disadvantage that in a
complex operating system, the programmer cannot be sure that no other processes
influence the execution of the idle task. Fortunately in our case, the DSP/BIOS is
a simple BIOS and few tasks are executing and the tasks that are running are well
known so this generic disadvantage is not relevant to us. Nonetheless, for testing
purposes a further idle task with a priority of 1, i.e. lower than the idle_task

was run. We can use this to detect if there is a malfunctioning in our thinking,
because we expect that this task will never be run during the time our priority 4
and priority 2 tasks are executing, hence we can detect a problem if this additional
idle task executes for a number of cycles different than zero.

3.7 Floating point operations
The last objective of this thesis project is to compare the performance of the two
solutions (GPP+DSP and GPP+NEON) when executing floating point operations.
Such an analysis is important for the porting of SDRs to the OMAP3530 platform
since a considerable number of floating point operations are typically performed by
SDRs per unit time. Hence, the FIR filter software was modified. The samples of the
original input file were converted from 16-bit signed integers to 32-bit floating point
to create a new input file. Consequently, the filter coefficients were also modified
by computing a new set of coefficients using MATLAB’s FDATool.

3.7.1 Floating point on the GPP
On the GPP side, the floating point operations are executed by the NEON
coprocessor. Since the NEON coprocessor supports floating point operations (it
has two floating point pipelines and a VFPLite unit, see section 3.5), the changes
to the code of the FIR filter are straightforward. The main FIR filter function is
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the same as shown in listing 3.5, with the only difference that the pointer types are
float instead of short, thus the function prototype becomes:

Void FIR_core(float* __restrict longInput, float* __restrict dataOut,
float coeff[], int halfSize);

The code was compiled with the command:

arm-angstrom-linux-gnueabi-gcc -O3 -Wall -c -ffast-math
-fsingle-precision-constant -march=armv7-a -mtune=cortex-a8 -mfpu=neon
-ftree-vectorize -mfloat-abi=softfp -ftree-vectorizer-verbose=15

The cross compiler is able to generate vectorized floating point code. The options
used for the vectorization are the same as given in section 3.5.1. Additionally, two
more options were used:

-ffast-math : this option enables additional optimizations for floating point
operations. This can lead to violations of the IEEE standard 754 or ISO C
specifications for math functions. The GCC documentation explicitly states
that this option must not be turned on when any level of optimization (-O)
is active since incorrect results according to the IEEE floating point standard
can occur. Nevertheless, the cross compiler is not able to vectorize the code
without this option; and

-fsingle-precision-constant : since NEON supports only single-precision floating
point, this option prevents the compiler from utilizing double precision
operations and hence avoids the conversion of the data to double-precision.

By using the tool arm-angstrom-linux-gnueabi-objdump, the assembly code
produced by the compiler was retrieved. This shows that the cross compiler has
vectorized the floating point code by using the instructions: vmul.f32, vadd.f32,
and vmov.32. This assembly code is shown in appendix D.

The option -mfloat-abi deserves a special attention. This GCC compiler
option controls both the ABI and whether floating point operations should be used
[39]. It can have three different values:

soft the floating point operations are emulated in software. The compiler will not
produce any Floating Point Unit (FPU) instruction, hence the option -mfpu,
indicating the target hardware floating point unit, is ignored. Integer registers
are used to pass float arguments to the emulation routines.

softfp the floating point operations are done in hardware by using the soft ABI.
However, the compiler can generate soft instructions to improve performance
depending on the target FPU. The main drawback of this approach is that the
floating point arguments are passed through integer registers. The copying of
data from integer to floating point registers introduces a stall in the pipeline.
This slowdown notably penalizes the performance (as shown in section 4.5).
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hard the floating point operations are done in hardware. The -mfpu option is
mandatory and floating point arguments are directly passed in floating point
registers.

Although the best option in term of performance is hard, during this project the
option softfp was used since at the time of writing, it is the only one supported
by the Ȧngström compiler toolchain.

3.7.2 Floating point on the DSP
The TMS320C64x+ DSP (2.4.2) does not have a floating point unit. In order to
perform floating point operations software emulation must be used. TI’s IQmath
Library for C64x+ ([21]) permits to the programmers to port of floating point
algorithms to fixed point code. Furthermore, optimized routines are available in
the library for common operations to facilitate the programmer producing high-
performance code.

Listing 3.11 shows how the code in listing 3.4 was modifying for use with IQMath
libraries.

Listing 3.11. Code of FIR filter using IQMath library
1 ...
2 float * history;
3 float * first_buffer;
4 float * complete_buffer;
5 _iq * IQ_coeffs;
6 _iq * IQ_first_buffer;
7 _iq * IQ_complete_buffer;
8
9 ...

10
11 filter_out = MEM_calloc (DSPLINK_SEGID, halfSize * sizeof (float), ←↩

DSPLINK_BUF_ALIGN) ;
12 history = MEM_calloc (DSPLINK_SEGID, (FILTER_ORDER) * sizeof (float), ←↩

DSPLINK_BUF_ALIGN) ;
13 complete_buffer = MEM_calloc (DSPLINK_SEGID, (halfSize + FILTER_ORDER) * sizeof ←↩

(float), DSPLINK_BUF_ALIGN) ;
14 IQ_complete_buffer = (_iq *) MEM_calloc (DSPLINK_SEGID, (halfSize + FILTER_ORDER←↩

) * sizeof (_iq), DSPLINK_BUF_ALIGN) ;
15 first_buffer = MEM_calloc (DSPLINK_SEGID, halfSize * sizeof (float), ←↩

DSPLINK_BUF_ALIGN) ;
16 IQ_first_buffer = (_iq *) MEM_calloc(DSPLINK_SEGID, halfSize * sizeof(_iq), ←↩

DSPLINK_BUF_ALIGN);
17
18 //Convert coefficients to IQ type
19 IQ_coeffs = (_iq *) MEM_calloc(DSPLINK_SEGID, NUM_TAPS * sizeof(_iq), ←↩

DSPLINK_BUF_ALIGN);
20 for (i=0; i< NUM_TAPS; i++)
21 IQ_coeffs[i] = _FtoIQ(coeff[i]);
22
23 ...
24
25 if (first_chunk==0) {
26 memcpy(complete_buffer, history, FILTER_ORDER * sizeof(float));
27 memcpy(&complete_buffer[FILTER_ORDER], buffer_input, bufferSize);
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28
29 for (i=0; i<(halfSize + FILTER_ORDER); i++)
30 IQ_complete_buffer[i] = _FtoIQ(complete_buffer[i]);
31 for (j = 0; j < halfSize ; j++) {
32 sum = 0;
33 for (i = 0; i < NUM_TAPS; i++)
34 sum = sum + _IQmpy(IQ_complete_buffer[i + j], IQ_coeffs[i]);
35 filter_out[j] = _IQtoF(sum);
36 }
37 memcpy(history, &complete_buffer[halfSize], FILTER_ORDER * sizeof(float));
38 }
39
40 ...

The _iq type represents a 32-bit fixed point number in q format. In order to
convert a floating point array of data to fixed point, the function _FtoIQ() may be
used. The function _IQtoF() performs the inverse conversion13. In the line 34, the
multiply-accumulate operation is implemented by means of the function _IQmpy()

in order to perform fixed point multiplication and addition.
The IQMath library provides two types of implementations of its functions:

a C implementation and an assembly one by using inline functions. In order to
use the former implementation, the header file IQmath.h must be included in
the application. In order to use the latter one, the header file to be included is
IQmath_inline.h. According to Texas Instruments’ benchmarks14, an application
using the inline assembly implementation is typically about 10 times faster than
one using the implementation in C.

13Note that because of the limited resolution of the fixed point representation converting a
floating point value to a fixed point value and converting back may not result in the original
floating point value.

14The benchmark program that they used consisted of running a FIR filter of 10 taps with 100
outputs. The result is presented in the benchmark.doc file contained in the program installation
directory which TI provides.



Chapter 4

Analysis and Results

This chapter collects, presents, and analyzes results from testing the system
performance for the configurations and with the tools explained in chapter 3.

Section 4.1 analyses and compares the results of the performance of the
GPP+DSP solution as a function of the IPC module that was utilized. The
performance of the GPP+NEON configuration is analyzed in section 4.2. Section
4.4 compares the two approaches above with the additional optimizations explained
in the section 4.3. The floating point analysis is reported in section 4.5, while the
final analysis results are given in section 4.6.

This chapter includes a number of graphs concerning the most important results.
Additional graphs and data are included in appendices B, E, and F.

4.1 DSPLink analysis
The first configuration of the system to be analyzed is the GPP+DSP. The objective
of this analysis is to find the best DSPLink module in terms of the performance
metrics which were described in section 3.6. These performance parameters are:
execution time, the GPP load, and the DSP load. The analysis of these
parameters has been performed as functions of a variable chunk size and on a
variable filter complexity (hence a variable number of filter coefficients).

The chunk size has the values 2i where i ∈ [7, 14]. The main reason for this
choice of values is related to the requirement for data alignment. As already stated
in section 3.4.1.2, buffers of data exchanged through DSPLink, must have their size
aligned with the size of the DSP L1 cache word. Since the minimum size of the DSP
L1 cache word is 128 bytes, the minimum chunk size must be at least 128 bytes (27)
and all other sizes must be a multiple of this value. The highest value is 16 KB in
order to avoid the saturation of the DSPLink shared memory which is limited. It is
important to note that multiple buffers of the chunk size may need to be allocated in
the shared memory. According to the application, several buffers of the specified size

79
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and their associated synchronization structures need to be allocated in the shared
memory. Moreover, the chunk size should suit the concept of data streaming; hence
values greater than 16 KB, depending on the data sample’s type, can result in a too
coarse-grained streaming (i.e., with too high a delay for the delivery of the media
stream).

With respect to the FIR filter coefficients, the number of taps is 2i with
i ∈ [4, 9]. The reason for this choice is that 16 taps where simple and sufficient to
achieve good results in filtering the input file. On the other hand, the maximum
number (as a power of 2) of filter taps that Matlab’s FDATool can generate is 512.
Hence another tool would need to be used to generate more than 512 (29) filter
coefficients.

4.1.1 Execution time analysis
Before starting our analysis of the collected data, some clarifications must be made
regarding the arguments passed to test software. First of all, a preliminary analysis
of the polling time of the MPCS software was made. The purpose was to discover
the polling time that leads to the best software performance. For this purpose the
MPCS software was executed in an average case, with a chunk size of 1024 bytes
and 128 taps. This test was run 5 times and the average values are shown in figure
4.1. The best execution time was obtained with a polling time of 100 µs. This value
as a standard deviation of 0.34 µs (the minimum value is 1.79614 ms, the maximum
value is 1.79694 ms). Hence, the polling time of 100 µs was used for all the other
experiments involving polling. However, as once case see from these results there
is really very little difference between the polling times of 10 µs and 10 ms. In
order to explain this behavior, the chunk’s round-trip time must be considered (see
later in this section). For this test software and in these conditions, the chunk’s
average time was 4.29 ms. This means that the data are available after this amount
of time. So the software performance remains the same for polling times less than
10 ms since data is retrieved with a low delay. In contrast, if the polling time is
greater than 10 ms, a delay will occur between the time when data are ready and
the polling time, thus leading to performance degradation.

Additionally, the MPLIST and RINGIO software were designed to achieve a
certain degree of parallelism (see sections 3.4.6 and 3.4.7). In order to compare
them with the other software, they were executed with a parallelism level (PL)
equal to 1. This means that for the MPLIST software, the maximum number of
elements in the list was set to 1, while for the RINGIO software, the dimension of
the circular buffer was equal to the chunk size. Additionally, an additional analysis
comparing the performance of these two modules has been done with a parallelism
level of 4 (see later in this section).

As explained in section 3.6.1, we are interested in two times: execution and
chunk round-trip time. These can be expressed as:

texecution = 2tmemory + troundtrip
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Figure 4.1. Execution time of MPCS as a function of the polling time

troundtrip = 2ttransmission + tdsp

The graph of the execution times of each type of DSPLink module is shown in figure
B.2. Figure 4.2 shows the average execution times of all these different modules.
The vertical axis represents the average value of the execution times of all filter
versions for a fixed chunk size. From this graph we can understand the performance
of each module as a function of the chunk size and at the same time easily see
which module optimizes the execution time. According to the graph, the best IPC
mechanism in terms of execution time for all the values of the chunk size is MPCS.
The reason for this is that this module exploites direct access to the shared memory
and utilizes polling. The second best module is PROC, as it also exploits direct
access to the shared memory but it uses interrupts instead of polling (thus there
will be an added delay before the GPP knows that the processing of a chunk is
finished). At the same time, MSGQ offers similar performance to both MPCS and
PROC. The worse IPC mechanism is CHNL, which exhibits very poor performance
for small chunk sizes. This is due to the issue-reclaim model that does not provide
good performance since the process is suspended twice every data transmission
(once while waiting for an available buffer, and once while waiting for the other end
to provide or elaborate data). Furthermore, this communication model has a high
communication overhead, particularly evident for small chunk sizes (hence a higher
number of transfers). Additionally, the performances of MPLIST and RINGIO are
worse than the first three modules, but better than CHNL. Furthermore, we can
see that the execution time is similar for chunks with a size greater than 4 KB.
For these values the ttransmission time is negligible with respect to to the processing
time tdsp. For an audio signal at 44,100 samples per second, 4096 bytes represents



82 CHAPTER 4. ANALYSIS AND RESULTS

less than 47 ms of audio. In graphs referred to execution time error bars are shown.
The error bars represent the precision of measurement done on the graph. In order
to define the accuracy of the measurements of the execution times, a series of 5
measurements was done for each chunk length. The highest standard deviation was
considered resulting in a precision of ±0.28%. This percentage was applied to all
measurements concerning the execution times. Error bars in figure 4.2 represent the
precision for the average of 6 values. The precision is so computed as the accuracy
value of the single measurement (±0.28%) multiplied by 6, resulting in an accuracy
of ±1.69%.

Figure 4.2. Average execution time of the different DSPLink modules for different
chunk sizes

The graph shown in figure 4.3 is a complement to the previous figure. It shows
the average execution time for all chunk sizes and numbers of taps. This average
value has been considered to offer a simple overall comparison of the different IPC
mechanisms. The graph confirms the results shown in figure 4.2, and highlights how
there are two distinct classes of modules with respect to the execution time. The
first group, made up of MPCS, PROC and MSGQ, has the best performance; while
the second one, made up of MPLIST, RINGIO, and CHNL, should not be used if
minimum execution time is the primary target of a system.

With respect to the total round-trip time, the graphs for all modules are shown
in figure B.1. These figures show the total round-trip time computed as the sum
of the chunk round-trip times of all sent chunks. Depending on the chunk size, a
variable number of iterations are needed in order to send all the data. If we call
this value iterNumber, then the average chunk round-trip time can be defined as:

troundtrip_avg = troundtrip

iterNumber

This value represents how much time is spent by a chunk of data going from the
GPP to the DSP and vice versa. Figure 4.4 shows, for each chunk size, the average
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Figure 4.3. Average execution time of DSPLink modules

value of troundtrip_avg for all filter versions; while figure B.3 presents the value of
troundtrip_avg for all the different DSPLink modules. From figure B.3, it is clear

Figure 4.4. Average round-trip time of DSPLink modules for various chunk sizes

that the performance trend is similar for all modules, with the exception of the
CHNL module. In general the round-trip time increases exponentially as the chunk
size increases. This is due to the ttransmission component which grows linearly as a
function of the chunk size, and because tdsp increases quadratically with the number
of taps (since the FIR filter algorithm is O(n2), with n as the number of taps).

A better analysis can be carried out by using the graph shown in figure 4.5. As
for figure 4.3, the value on the vertical axis represents the average of troundtrip_avg

values for all chunk sizes and number of taps. From this graph we can see that MPCS
has the smallest average chunk round-trip time and its performance is definitely
better than the others. However, it is surprising that the MSGQ performance
is better than the PROC one in terms of round-trip time. This means that the
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interrupt mechanism of MSGQ is more efficient than the PROC one. Nevertheless,
the execution time of PROC (as obtained from the previous analysis), is lower than
the one of MSGQ. This is due to the fact that tmemory of MSGQ is greater than
for PROC since PROC does not need to copy data from the user memory space to
the shared memory since direct memory accesses are performed. Furthermore, more
complex synchronization and data structures are needed by MSGQ, which decreases
its performance. As seen in this graph, the performance of MPLIST in terms of
round-trip time is comparable to the PROC one. In terms of execution times,
PROC is slightly better than MPLIST, as was shown in figure 4.3. The complex
communication protocols of CNHL and RINGIO limit their performance, so that
their bad performance in terms of execution times is confirmed by this analysis of
average round-trip times.

Figure 4.5. Average round-trip time of each of the DSPLink modules

As already mentioned, a comparison between RINGIO and MPLIST modules
when exploiting a parallelism level of 4 has been done. The degree of parallelism
has been limited by the available shared memory as the structures could only hold
16 KB of data. As a result, the maximum chunk size that I have analyzed was 4
KB (hence 16 KB of structure in this case and in the earlier analysis). This analysis
aimed to determine if MPLIST is better than RINGIO when a level of parallelism
greater than one is used. Results in terms of both the execution and average chunk
round-trip time are shown in figure 4.6. From the graph, it is clear that MPLIST
has a better performance than RINGIO in the case of both a parallelism of 1 and
4.
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Figure 4.6. Performance of MPLIST and RINGIO with a parallelism level of 4

4.1.2 GPP load analysis

The GPP load for all the DSPLink modules are showed in the graph in figure B.4.
From these graphs is possible to analyze the GPP workload as a function of the
chunk size and the number of FIR filter taps. In order to compare these different
modules, the graph in figure 4.7 can be used. This graph represents the average
value of the GPP load for all the different modules. The vertical axis represents the
average values of the GPP load for all chunk sizes; on the horizontal axis the filter
order is represented. The most evident result is that while the GPP load of MPCS
increases with the filter complexity, the GPP load of all other modules decreases.
The reason for this is the usage of the polling. Since in the MPCS testing software
the GPP does a busy form of waiting, the process waiting for data is suspended and
restored frequently. On one hand, this waiting process is executed by the processor
so that this processor performs some unnecessary work when it pools and the results
are not ready. Additionally, a considerable number of unnecessary context switches
occur - increasing the overhead on the processor. This explains why the trend of the
MPCS’s GPP load is opposite of the other IPC methods. The only way for the GPP
to be suspended for a longer time than the polling time, is to wait on the MPCS
object. This happens if the DSP is in the protected and shared region of code. For a
lower number of coefficients, the probability that the DSP has acquired the shared
region is higher than in the case of higher number of taps - since tdsp is shorter1.
Since tdsp is shorter, the DSP will spend more time in the shared region to check if
data were updated. This leads to a higher number of conflicts that causes the GPP
to be suspended for a longer time. In the case of larger number of taps, the DSP
spends a long time computing on a given chunk of data. During this time, the GPP
always gets access to the shared region without being blocked; hence, the GPP load
increases. For all the other modules that have their communication protocols based
on interrupts, the smaller the number of taps, the smaller is the process waiting
time, hence higher is the processor load. Moreover, the smaller the chunk size, the
greater the number of iterations needed to send data. Hence, the process is woken

1The DSP makes its data computation outside the shared region protected by the MPCS object.



86 CHAPTER 4. ANALYSIS AND RESULTS

up more frequently. Regarding the other modules, the best module in terms of GPP
load is MSGQ as it shows an efficient interrupting and synchronization mechanism.
The performance of PROC is not very different from the MSGQ, but, starting from
MPLIST, different performance is shown. Once again the CHNL module offers
poor performance, in this case in terms of GPP workload. It is important to note
the influence of the measurement tool top on these measurements. As stated in
section 3.6.2, the GPP workload due to top is about 16%, hence no workload is
100% (as 16% of the GPP is being consumed by the top process).

Figure 4.7. GPP workload of DSPLink modules

Figure 4.8 compares all the different DSPLink modules based on the GPP load
computed as the average for all values of chunk size and number of filter taps. The
results presented in the previous graph are highlighted in this column graph. The
good performances of MSGQ and PROC are confirmed, while the performance of
CHNL and MPCS are clearly quite poor.

4.1.3 DSP load analysis

Figure 4.9 shows the average DSP workload for all chunk sizes as a function of the
filter order. From this graph two results are evident. The first result is that the
DSP workload slowly increases as the filter complexity grows. This can be explained
by the fact that as the data computation grows with the filter complexity, the DSP
computation time (tdsp) increases, while the ttransmission and tmemory remain the
same (the vary as a function of the chunk’s size). The second result is the clear
difference in behavior between MPCS and all other DSPLink modules. The reasons
for this behavior of the MPCS module have already been explained in section 4.1.2.
The processor load is roughly 100% since the overhead of any measuring tool does
not affects the measurements results. Regarding the other protocols, there is not a
well-defined difference in performance.
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Figure 4.8. GPP workload of the different DSPLink modules

Figure 4.9. DSP workload of the different DSPLink modules

In order to understand which is the best IPC protocol with respect to the DSP
load, the graph in figure 4.10 is useful. The values showed by this graph are the
average for all chunk sizes and filter orders. From this graph, the bad performance
of MPCS is highlighted, while no other module is clearly the best, although the
module that offers the best performance in terms of DSP load is CHNL.

4.1.4 Conclusions
The outcome of the above analysis is summarized in this section. The best DSPLink
IPC protocol in terms of execution time is MPCS, while PROC and MSGQ also offer
good performance. Although MPCS is the best in terms of timing, it results in the
worst GPP load. The best communication mechanism, in terms of minimal GPP
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Figure 4.10. DSP workload of the different DSPLink modules

load, is MSGQ with PROC and MPLIST also offering decent performance. With
respect to the DSP load, there is not module which is clear best (although PROC is
slightly better than others). However, there is one module that is clearly the worst
one in terms of DSP load: MPCS.

In conclusion, if the system designer is exclusively interested in timing optimiza-
tion without concern for other system aspects, the module that should be used is
MPCS. Nevertheless, the MSGQ module should be utilized to achieve the best
system balance. In fact, by using MSGQ, we achieve good timing performance,
with the GPP load optimum and the DSP load being average. This leads, on one
hand to a lower power consumption since the processors can be put in a standby
state while waiting for data and on the other side, the level of parallelism of the
system is increased since other tasks can be executed by the GPP while waiting for
data from DSP.

4.2 NEON analysis
After having analyzed the performance of the GPP+DSP solution, the next step is
to analyze the performance of the system when the NEON coprocessor substitutes
for the DSP . This analysis is done in terms of execution time and processor
load (GPP load) using the tools explained in section 3.6. The performances of the
three NEON test software versions (shown in section 3.5) have been compared with
the performance of the test software running on the GPP only (without either DSP
or NEON coprocessor). The results of the analysis in terms of the execution time
are shown in figure 4.11.

From the graph the difference between the NEON-based solutions and the
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GPP-only solution is clear. On one hand, the difference in performance between
the intrinsics-based and assembly-based solutions is really slight. Nevertheless,
the performance of the intrinsics-based software is consistently better than the
assembly-based one. With respect to the compiler-based version, the performance
is more similar to the GPP-only version than to the other two NEON versions.
Additionally, the differences among versions are more evident for higher filter orders.
In fact, the execution time grows exponentially as the FIR filter order grows. The
execution time varies as:

• k · e0.648x for GPP-only version;

• k · e0.629x for compiler-based NEON version; and

• k · e0.416x for intrinsics-based and assembly-based NEON versions

where x is the number of filter taps and k is a constant which differs for each
function. From this analysis we can conclude that the compiler could be significantly
improved - as there is potentially a factor of 4 to be gained for the case of 512 taps.
In order to estimate the accuracy of the measurements shown in figure 4.11, the
highest deviation standard for each data series as a percentage of the execution time
average value. The deviation standards are ±0.09% for the GPP_only software
version, ±0.05% for the NEON_compiler, ±0.12% for the NEON_intrinsics, and
±0.03% for the NEON_assembly software version.

Figure 4.11. NEON execution time as a function of number of taps

The other parameter used in the performance evaluation is the processor load.
In order to accurately measure this workload, three series of measurements have
been made and the average of this series are considered. As we can see from figure
4.12, the growth of the processor workload is small as a function of the number of
filter taps. Performances of the different software versions are similar. Nonetheless,
we can notice the better performance of the intrinsics-based version for low-order
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filters and the generally worse performance of the GPP-only solution for nearly all
different numbers of taps. The average of all the workload values was computed and
used to compare their performances, as shown in figure 4.13. This graph confirms
the slight difference between the different versions. However, the best version is the
compiler-based one, , but it is not clear that the difference is significant.

Figure 4.12. NEON processor workload as a function of the number of taps

Figure 4.13. NEON processor workload for the different versions of the program



4.3. CODE OPTIMIZATIONS 91

4.2.1 Conclusions
The analysis above has highlighted two important results. The first result is that
the NEON coprocessor definitely increases the timing performance of the system in
comparison to only using the GPP for computations. The amount of improvement
depends on the complexity of the computation, but it shows an exponential growth
in the number of taps. The best way of programming the NEON processor is
using intrinsics. This solution offers both the best timing performance and a
good trade-off between programming complexity and speed of programming. If
the timing constraints are not very strict, the vectorizing compiler can be used to
develop NEON code while offering some improvement in the timing performance.
The assembly approach is not relevant as it achieves the same performance as the
intrinsics, while introducing greater programming complexity and requiring a long
learning curve.

The second result is that the NEON coprocessor does not significantly offload
the processor. This is reasonable since NEON is a coprocessor and not an external
processor. This is due to the same resources (memory, buses, etc.) being shared
between the GPP and the NEON. Furthermore, we have to remember that the
GPP is not suspended during the execution of NEON instructions (see section 3.5).
Additionally, the test software version that improves the processor workload most
is the compiler-based one. Nevertheless, the best solution of developing NEON
code remains using the intrinsics, since the processor workload performance is very
similar to the best achieved by the compiler-based version.

4.3 Code optimizations
This section explains the optimization made to the test software of the GPP+DSP
solution in order to further improve the timing performance. The DSPLink analysis
in the section 4.1, was carried without compiler optimizations. This was done so
that the different modules performance would not be influenced by the compiler
optimizations. This choice was suitable for an initial comparison of modules’
performance. The next step of our analysis is to compare the two solutions taken
into consideration with possible optimizations. Hence, an optimized version of the
GPP+DSP solution code should be compared to the already optimized code for
the NEON-based solution. Since the target of this optimization is improved timing
performance, the best DSPLink module in terms of timing (MPCS) was further
examined. The test software based on this IPC protocol, was optimized by using
compiler optimization options and by changing some code to optimize memory
transfer operations.

4.3.1 Compiler optimization
The first step in optimizing the software was to examine the compiler optimization
options. The software for the GPP+DSP solution is distributed over the GPP and
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DSP and so two different compilers must be used for the target software (one for
each side). The software for the GPP side was compiled using the cross-compiler
arm-angstrom-linux-gnueabi-gcc based on GCC 4.3.3. The compiler option
-O3 was used. This option activates some optimizations in the compiler in order
to improve the resulting code’s timing performance. However, a side effect of this
optimization is that both the compiling time and the code size may be increased.
This option is designed to optimize the code in terms of speed of execution while
enabling only optimizations that are valid for all standards compliant programs.

The compiler used for the DSP software was cl64, the C compiler from the
Code Generation Tool. This compiler is able to produce good performance by using
optimization techniques. In order to emit optimized code, the programmer can
specify the following options [40]:

-o1 minimal high-level optimizations are performed.

-o2 a low function-level optimizations are performed.

-o3 a low full optimization is performed.

If no optimization option is specified, the -o0 level is implicitly adopted. These
different options optimize the performance in terms of reducing execution time,
but increase the code size. If the code size is an issue, the option -ms can be
used. In order to achieve the maximum performance, the option -g must be
avoided. This option enables full symbol debug, but limits code reordering and
other optimizations. This causes a performance degradation ranging from 30% to
50% according to [40, page 8]. In this thesis project, the code was compiled with the
options -o3 -mv6400+ which applies optimizations target to the TI C64x+ DSP.
Among the optimizations applied, two are especially important. The first one is
software pipelining. Pipelining is disabled by default unless an optimization level
greater than zero is specified. Pipelining can substantially increase the software
performance due to the VLIW architecture implemented in the processor. Another
optimization done by the compiler for the C64x+ architecture is the usage of a loop
buffer. This buffer allows instructions in a loop to be fetched the first time the
loop is invoked, rather than every iteration of loop. This technique saves power
as there are fewer accesses to the instruction memory. Under certain conditions,
timing performance is improved (see [40] for further details). In order to speed up
the code, the MUST_ITERATE compiler directive was used where appropriate. This
compiler directive is a pragma that informs the compile the minimum number of
times the loop will be executed, the maximum number of times it we be execute,
and the multiples of the minimum number of times that the loop will be executed.

4.3.2 Memory transfer optimizations
In order to transfer data from the GPP’s memory space to the DSPLink shared
memory, the memcpy function was exploited on both the GPP and DSP sides. As
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discussed in [41], it is considered to be a time-consuming method for copying data.
In fact, this function is blocking and does not return until the copying process is
completed. So the processor’s pipeline can be idle for many cycles. Fortunately, an
optimized version of memcpy is provided by Texas Instruments to be used on the
DSP , thus the performance degradation is limited. On the GPP side an alternative
method should be implemented. From the analysis done in [42], the fastest way
for copying data on a Cortex-A8 is via the NEON, in particular, by exploiting the
NEON coprocessor’s data preloading. Data preloading is a technique to improve
data transfer performance by intelligently exploiting the memory hierarchy. It
consists of loading data into the L2 cache in advance by exploiting the principle
of locality. When a data miss does happen, data must not be retrieved from the
main memory, but rather fetched directly from the L2 cache. In this way, the
long access time to the main memory is hidden. The study in [42] shows that
the performance achievable by only using NEON is the same as the memcpy one; in
contrast, if NEON and the preloading are utilized, then the performance is increased
by 49% with respect to memcpy implemented by the ARM processor alone.

A custom assembly function was implemented, called custom_memcpy. The
code of this function is shown in listing 4.1.

Listing 4.1. Custom memcpy function

1 .arch armv7-a
2 .fpu neon
3 .text
4 .align 2
5 .global custom_memcpy
6 .type custom_memcpy, %function
7
8 custom_memcpy:
9 push {r4}

10 eor r3, r3, r3 @ initialize the index to 0
11 .Loop:
12 pld [r1, #0x100] @ r1 = src address
13 vldm r1!, {d0-d7} @ load into d0-d7 64-byte data (8 bytes per D ←↩

register)
14 vstm r0!, {d0-d7} @ r0 = dst address. The previous loaded 64-byte data is ←↩

stored
15 add r3, r3, #64 @ update the index
16 cmp r3, r2
17 blt .Loop
18
19 #case length not multiple of 64 -> word copy
20 sub r2, r3, r2 @ check if the remainder is 0
21 cmp r2, #0
22 beq .Lmultiple
23 eor r3, r3, r3 @ initialize the index to 0
24 .Loop_word:
25 pld [r1, #0x100]
26 ldr r4, [r1], #4
27 str r4, [r0], #4
28 add r3, r3, #4
29 cmp r3, r2
30 blt .Loop_word
31
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32 .Lmultiple:
33
34 pop {r4}
35 mov pc, lr @ restore program counter

This function preloads in the L2 cache 256 bytes of data (four Q registers), then for
every loop iteration, 64-bytes of data are read from the source address and moved
to the destination address. If the data length is not a multiple of 64-bytes, this is
handled by the code in lines 22-32.

Using the NEON coprocessor for copying data leads to another advantage that
improves timing. The processor’s integer registers are not corrupted (i.e., these
registered do not have to be used, hence the values of these registers do not
have to be saved before and restored after the copy operation) since the data
are transferred via NEON’s register file. This improves performance especially
in the case of frequent data transfers, since the register restoring overhead is
potentially eliminated. Another widely adopted option for copying data, is the
use of a Direct Memory Access (DMA) engine. Such a coprocessor offloads the
data transfer operations from the GPP. This enables the processor to perform other
operation in parallel with the DMA engine copying data. The data are copied by the
DMA engine using sub-blocks. The system performance can be further improved by
implementing a pipeline. The DMA coprocessor provides a small block of data to the
GPP so that the GPP can start its processing. In the meanwhile, other sub-blocks
are loaded and passed to the GPP , rather than requiring the GPP to wait for the
entire block of data to be loaded.

4.3.3 Performance analysis
The optimizations explained in the previous sections were applied to the test
software and results of running tests with this software were collected. In this
section only the testing software using the MPCS module is considered. The version
of the software without any optimization is called GPP+DSP v.1. While the name
GPP+DSP v.2 indicates the version optimized by the compiler. Finally, the version
with memory transfer optimizations is called GPP+DSP v.3.

Figure 4.14 shows the execution time as a function of chunk size and filter
complexity of the final optimized version GPP+DSP v.3. This graph clearly shows
that for chunk sizes smaller than 2 KB in size, the execution time does not depend
on the number of taps. This is due to the fact that the DSP is sufficiently fast in
computing that tdsp is negligible, hence the transmission time dominant. For chunk
sizes greater than 2 KB, the execution time differs but not significantly.

A comparison of the three versions of the test software is shown in figure 4.15.
Firstly, the graph shows a significant gain in performance when optimizing the
software. However, we note that the performance of the two optimized versions is
similar. This behavior was expected since the DSPLink memory is not cacheable
on the GPP side. Hence, data preloading is not applicable. The custom_memcpy

function exploits only the NEON coprocessor without any preloading. This, as
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Figure 4.14. GPP+DSP v.3 execution time as a function of the chunk size and
number of filter taps

discussed in the previous section, leads to performances comparable to that achieved
by using memcpy. The usage of the custom_memcpy routine should be limited only
to the GPP+NEON solution where it offers considerable performance improvement.

Figure 4.15. GPP+DSP optimized execution time

In order to quantify the improvement in performance achieved by GPP+DSP
v.3, figure 4.16 is useful. This figure illustrates the average of all execution time
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values. From this graph it can be determined that the combination of these
optimizations achieve a 73.92% improvement.

Figure 4.16. GPP+DSP optimized execution time

4.4 Comparison of GPP+DSP and GPP+NEON solutions
In this section, two earlier system configurations are compared in terms of execution
time and GPP workload. The best performances achievable by exploiting the two
configurations are considered. Hence, during the timing analysis, the performance
of the GPP+DSP v.3 testing software (section 4.3.3) is compared to the NEON
intrinsics-based version. Regarding the GPP workload analysis, the MSGQ testing
software (the best GPP workload according to section 4.1.2) is compared with NEON
compiler-based version.

4.4.1 Execution time analysis
The first step is to analyze the performance in terms of the execution time of
the two solutions when executing one FIR filter. Figure 4.17 shows the execution
time in terms of filter complexity for both solutions. Regarding the DSP-based
solution, only the best results (achieved with larger chunk sizes) are showed for
the sake of clarity. Before analyzing this graph, we have to take into account the
trade-off between the execution speed and the coarseness of the streaming. For
the GPP+DSP solution, the best performance is achieved with large sized data
chunks (the maximum length considered in the analysis was 16 KB). Although the
communication overhead is reduced by using larger chunk sizes, a coarse-grained
data streaming results. This means that data buffering takes more time and
processed data are only ready after a delay that is proportional to the chunk size.
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During this thesis work, data streaming performance was considered for the DSP-
based solution, while for the NEON-based solution the whole data set was filtered
without being split. This means that the best execution time for the NEON-based
solution was achieved. If we want to stream data in a similar manner as for the
DSP-based solution, the NEON performance will be degraded due to the overhead
of splitting data. From figure 4.17 is evident that the performance of the GPP+DSP
solution is better than for the GPP+NEON solution for all filter complexities and for
chunk sizes larger than 4 KB. Furthermore, the exponential growth of the execution
time of the DSP-based solution is much slower than for the NEON-based solution.

Figure 4.17. DSP versus NEON execution time

The next step is to analyze the performance when data is filtered by a chain
of blocks. This analysis was done to simulate data computations in a SDR system
when several blocks are processed in a series. In order to simplify the analysis, a
chain of 512-tap FIR filters is considered. In the case of DSP-based solution, data
was sent from the GPP to the DSP, processed by the chain of filters and sent back
to the GPP. Figure 4.18 shows the result of the experiment’s results in terms of
execution time of different system configurations as a function of the number of
blocks in the chain.

4.4.2 GPP load analysis

In this section the results of the GPP workload of the previous sections are merged.
Figure 4.19 shows the average GPP load for all filter complexities (and chunk sizes
in the case of the DSP-based solution). A big difference in behavior between the
two solutions with regard to the GPP load is evident. As we can see, while the DSP
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Figure 4.18. Execution time for a chain of blocks

offloads the GPP, the NEON coprocessor does not. The reasons for these behaviors
have been discussed in sections 4.1.2 and 4.2.

4.5 Floating point analysis
In the section 3.7, the test software versions for floating point operations were
introduced. In this section we analyze their performance with respect to their
execution time. As already explained in section 3.7, the test software executed on
the NEON coprocessor exploits the hardware floating point unit provided by NEON.
On the DSP side, there are no hardware FPUs, but only a fixed point arithmetic and
logic unit. Hence, TI’s IQMath Library was used to convert floating point numbers
into q-format fixed point numbers. The IPC protocol used in this test software
is MPCS, as it was the best in terms of execution time performance. There are
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Figure 4.19. DSP versus NEON GPP workload

two possible implementations of the functions provided by IQMath Library: C and
assembly implementations. During this analysis, the performance of the NEON
software is compared with the performance of two versions of DSP software exploiting
both libraries.

The performances of the three solutions are shown in figure 4.20.
From the graph it is clear that the best performance is achieved by using the

DSP and the assembly implementation of the IQMath Library functions. The
NEON performance is slightly better than the DSP performance when using the
C implementation of the IQMath Library. Nevertheless, we must emphasize that:

1. the DSP performs all computations as fixed point computations. A precision
loss may happen when using fixed point, in comparison to floating point. In
order to reduce this loss, the programmer should carefully think about the data
type to be used for q-format numbers. In particular, a preliminary analysis
about the number of bits to be reserved for the integer and fractional parts
must be done specifically for the application in question. This increases the
programming complexity and the risk of obtaining incorrect results.

2. better performance can be achieved by the NEON coprocessor by using a
compiler that supports the option -mfloat-abi=hard. The tested software
was compiled with the option -mfloat-abi=hard, the only option supported
by the utilized compiler (for further details, see section 3.7.1).

In order to verify the performance improvement achieved by the assembly
implementation with respect to the C language implementation, the average value
of the execution times for the 512-coefficients FIR filter for all chunk sizes was
computed. This value is 17.59 seconds for the C implementation and 1.72 seconds
for the assembly implementation. This confirms the TI’s benchmark (see section
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Figure 4.20. Floating point execution time

3.7.2) since simply by including IQmath_inline.h header instead of IQmath.h,
the software executes 10.17 times faster. If we consider all FIR filters, the assembly
version is on average 4.37 times faster.

4.6 Final results

From the analysis carried out in the previous section, the most important result to
be highlighted is that the performance of the GPP+DSP solution is better than the
GPP+NEON solution according to both the execution time and the GPP workload.
Nevertheless, the two solutions are not mutually exclusive. This means that they
can cooperate and be run in parallel on the same OMAP3530 platform. A suitable
trade-off can be designed to achieve the maximum level of performance for such
platform for a given computation.

Regarding performance, the best system configuration to optimize the execu-
tion time is when the GPP cooperates with the DSP and the IPC protocol used is
MPCS. However, this IPC protocol leads to the fastest execution while exhibiting
the worst performance in terms of the two processors workload (both GPP and DSP
workloads). A high processor load leads to higher power consumption and reduces
the parallelism of the system; as the GPP processor is not able to perform other
tasks while waiting for the data to be ready. A more balanced solution is achieved
by utilizing the MSGQ module. This IPC mechanism shows the best performance in
terms of GPP workload, while exhibiting a reasonable result for the DSP workload.
The loss of speed with respect to the MPCS module is 7.36% according to figure
4.3. From the point of view of the programming complexity, the MSGQ approach is
very straightforward, since the concept of message-based communication is widely
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used in many distributed systems. By utilizing the MSGQ IPC protocol, a more
robust system is achieved since the MPCS does not tolerate deadlocks and priority
inversions in DSP/BIOS 5.x (see 2.6.1.4). Concerning the GPP+NEON solution,
the best timing performance is achieved by developing NEON code with intrinsics.
This offers the best trade-off, since it merges the architecture control of the assembly
language and high level programming capability of the C language. With respect to
the processor workload, there are not any relevant differences among the different
method for developing code for NEON. If the system should perform floating point
operations, two possibilities can be exploited considering the design constraints.
If the execution speed has priority over the loss of precision, the floating point
operations can be executed by the DSP. Since the DSP does not provide a FPU, the
programmer must convert floating point numbers to fixed point numbers by using
the inline assembly implementation of the IQMath library. However, a preliminary
study to minimize the loss of precision is needed according to the application
constraints. If the loss of precision is not negligible, then the NEON coprocessor
should be used since no precision loss will occur by actually performing floating
point operations. The NEON performance related to floating point operations is
better than the performance of the DSP when the C implementation of the IQMath
library is used. The fact that the NEON coprocessor was not able to achieve the
same performance as the DSP for the FIR filter considered in this thesis project,
does not imply that this resource should not be exploited. Depending on the type
of computations and on algorithms that must be executed, an efficient trade-off
in distributing tasks over the system can be designed to maximize the platform
performance. An example of design could utilize the NEON to compute floating
point operations which have strict precision constraints while in parallel the DSP
can execute integer or fixed point operations that can tolerate precision losses.

Another factor to be considered when choosing the proper system configuration
is the system determinism. The deterministic behavior is referred to the timing.
In particular, DSPLink introduces a communication layer that introduces some
differences in times measured for different executions of the same algorithm. These
differences are evident but still negligible for the case of a single-DSP system.
Anyway, since DSPLink was designed to support a multi-DSP environment, this
issue should be considered carefully when executing critical tasks in a real-time
system. This non-deterministic behavior can be avoided by using NEON. Since the
communication between GPP and NEON is directly done by accessing to the same
memory space, any source of non-determinism is avoided.

Another design parameter is the desired degree of parallelism. The first
aspect is the parallelism when exchanging data. If the designer wants to enable
the communication layer to send several chunks at the same time via DSPLink,
then the MSGQ module should not be used. In fact, the MSGQ mechanism limits
the degree of parallelism of the system since a message queue can have only one
reader - although it can have multiple writers. Instead, either MPLIST or RINGIO
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module could be used. However, as showed in the previous sections, MPLIST offers
better performance than RINGIO both regarding the timing and the processors
workloads. With respect to the system-level parallelism, an implementation should
exploit both DSP and NEON. As explained in section 4.4, long chains of blocks
must be executed by the DSP which offers better long-term performance. However,
sporadic tasks can be executed by NEON. If the GPP+DSP configuration is chosen,
then the GPP load is low (if MSGQ module is used). Hence, the GPP can execute
other tasks in parallel (e.g. input/output, control operations, etc.) while waiting
for data from DSP. In case of highly parallelizable code, the DSPLink layer can
reduce the degree of parallelism of the code since data are split. On the other hand,
the NEON coprocessor must be used since its vector processor architecture obtains
the maximum performance when executing parallel code.



Chapter 5

Conclusions and Future Work

5.1 Conclusions

The objective of this thesis project was to investigate the performance of a
OMAP3530 platform when executing signal processing algorithms. This study aimed
to facilitate the porting of SDR systems to embedded systems such as the OMAP
platform.

The first goal has been the analysis of the performance of the system as a function
of the IPC protocol used for communication between the GPP and the DSP. The
system performance was analyzed in terms of timing and processor workloads. After
the analysis of the DSP-based solution, a second goal was defined. This second goal
was to find another system configuration that would further improve the system
performance. Hence, the NEON vector coprocessor, embedded in the ARM Cortex-
A8 GPP was exploited. Such a solution, based on NEON, was analyzed. Finally,
the two solutions have been compared regarding both integer and floating point
operations.

Results of the analysis have showed that the best system performance is achieved
when using the DSP for signal processing computations. In particular, the optimal
DSPLink setup was obtained with the MSGQ module. This module offers the best
general system performance, although it is not able to guarantee the best timing
performance. To guarantee the best timing performance requires use of the MPCS
module, however, this leads to an extremely high processor (over)load. The MSGQ
DSPLink module offers both good execution time performance and offloads the
GPP. Using the DSP leads to two main benefits due to offloading the GPP. The first
advantage is reduced power consumption of the system. The GPP can be put in
a standby state while waiting for data from the DSP (if no other tasks need to be
executed). The second benefit is that the degree of parallelism can be increased if
other tasks are executed by the GPP while the DSP processes data. Exploiting this
parallelism further decreases the power consumption and increases the performance
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of the system.

Unfortunately, the NEON vector coprocessor is not able to guarantee the
same performance as the DSP. However, its role in the system should not
be underestimated. It can be used to execute highly parallelizable algorithms
contemporaneously to the DSP execution. Additionally, NEON is the only system
resource offering a FPU. Floating point operations can be performed in hardware
via the NEON. Another way to execute floating point computations is to convert
floating point numbers to fixed point representations, then perform the operations
using the fixed point unit of the DSP. In order to perform such conversions, TI’s
IQMath library was utilized. The performance achieved by using this library is
better than the performance offered by NEON. Unfortunately due to the use of a
fixed point representation, a loss in precision can occur.

As a result of this thesis project I have developed a good mastery of DSPLink
software. DSPLink was an excellent tool to exchange data between the two processor
cores. It generally offers good performance in terms of timing and reliability.
Nonetheless, there are some shortcomings in using this tool. The main drawback is
the long learning curve. A large amount of time must be spent in study in order
to deeply understand the IPC mechanisms which this software provides. In order
to do so, I have found the sample programs provided with the DSPLink package
to be really useful and fundamental to enabling my understanding of this software.
Although these programs only show basic functionalities and capabilities of the tool,
they are useful when starting to work with DSPLink. Furthermore, the designer
must deeply know the target system, since the memory pools must be manually
allocated by the programmer. Hence, the resources needed by the application must
be manually allocated a priori. This implies a preliminary long evaluation study of
the application and makes the system difficult to scale.

5.2 Future work

This thesis project has evaluated the performance of the OMAP3530. The focus
of this project was mostly on improvements to the system in terms of timing
performance. Another analysis could evaluate the power consumption of the two
main system configurations: DSP-based and NEON-based configurations. Only
a limited power consumption analysis was carried out during this thesis project.
Power consumption plays an important role in the portability of SDR systems to
embedded platforms and can be a future extension and further development of this
project.

The analysis done in this project can be further improved in two directions that
were not explored due to the limited time available for this thesis project. The first
direction is to exploit the C compiler provided by ARM to replace the GCC-based
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one for certain tasks. As already explained throughout this report, sometimes the
cross compiler used in this project resulted in bad performance. Two examples are
the ability of the compiler to vectorize the code for targeting NEON and the lack of
support for the option -mfloat-abi=hard that would lead to optimized execution
of floating point operations on the NEON FPU. It would be interesting to try to
achieve these goals with the ARM armcc. The second direction is to further improve
the memory transfer operations. In order to do this, two options are available:

• cmem: is an API and library to manage blocks of memory which are physically
contiguous. This library can be used to improve the reliability and availability
of the system by using its pool-based configuration to allocate shared memory
between the GPP and the DSP. In fact, cmem ensures contiguous memory even
after that the software has run for a long time; and

• DMA: the DMA engine can be used on the GPP processor to speed up memory
transfers. Instead, on the DSP side is provided an Enhanced Direct Memory
Access (EDMA) Controller for data transfers between the L2 cache and the
device peripherals. This unit may speed up data transfer when peripheral
devices are directly connected to the DSP.

In order to improve the performance of the code, two tools can be useful for
future applications:

• OpenMAX™a royalty-free, cross-platform API developed by the Khronos
Group that provides a comprehensive media codec and application portability
by enabling accelerated multimedia components to be developed, integrated,
and programmed across multiple operating systems and silicon platforms1.
OpenMAX is related to this master thesis project since an optimized
implementation of the library to target the NEON coprocessor was developed
by ARM;

• Embedded MATLAB offers a subset of the MATLAB language that supports
efficient code generation for prototyping and deploying embedded systems, and
accelerating fixed-point algorithms. It consists of more than 270 MATLAB
operators and functions and more than 90 functions from the Fixed-Point
Toolbox™software2. This tool can be used in conjunction with the IQMath
library to perform floating point operations on the DSP.

Finally, some consideration about the hardware tools must be reviewed. During
this project, all the experiments were executed on a BeagleBoard Revision C3.
This platform is not at the cutting edge, since its working frequency is slower
than the leading edge products in the market. While such a platform was perfect
for the project, it should not be used in future product development. There are

1from: http://www.arm.com/community/multimedia/standards-apis.php
2from: http://www.mathworks.com/help/toolbox/eml/gs/brqncq7-1.html
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two possibilities to improve the hardware. The first possibility is to use the last
model of BeagleBoard. This version of the board is called BeagleBoard-xM and,
at the time of writing, the latest revision is A2. This board consists of a DM3730
instead of the OMAP3530. The DM3730 platform contains an ARM Cortex-A8
with a working frequency of up to 1 GHz and includes a NEON coprocessor.
The DSP is a TMS320C64x+ 800 MHz DSP core. Using such a platform, enables
the use of DSP/BIOS 6.x in conjuntion with DSPLink. Even more interesting
would be analyzing the performance of TI’s TMS320C6A8167 and TMS320C6A8168
processors. These processors both contain an ARM Cortex-A8 processor with
up to a 1.5 GHz working frequency with NEON technology. The DSP is TI’s
TMS320C674x floating point VLIW DSP, fully compatible with the c64x+ DSP,
used during this project.



Appendix A

Texas Instruments Development Tools

Texas Instruments provides a range of tool supporting the development of DSP/BIOS
applications.

• Code Composer Studio (CCStudio) IDE: an integrated development
environment for programming Texas Instruments DSP families. It is based on
the Eclipse open source software framework. The tools offers to programmers
compilers for every TI DSP, debuggers, profilers and simulators;

• Kernel Object Viewer: a part of CCStudio framework. This viewer is
used for debugging purposes and enables developers to check the status of
OS objects such as tasks, semaphores, and mailboxes. A task can have three
possible statuses: ready, running, and blocked. In the ready status, a task
is ready to be executed, the system has already checked the availability of
resources but is waiting for the processor. In the running state, a task is
being executed by the processor. In the blocked state, the task is waiting on
an IPC object (semaphore, mailbox, or event);

• Real-time Analysis: another part of the CCStudio framework. This tools
graphically displays the threads execution and switching sequence. Additional
information is also presented, such as the average and maximum execution
time per thread and system CPU load.
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Performance of DSPLink modules

Figure B.1. Chunks round trip time of DSPLink modules
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Figure B.2. Execution time of DSPLink modules
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Figure B.3. Average chunk round trip time of DSPLink modules
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Figure B.4. GPP load of DSPLink modules



Appendix C

Example of OProfile output report

CPU: ARM V7 PMNC, speed 0 MHz (estimated)
Counted CPU_CYCLES events (Number of CPU cycles)
with a unit mask of 0x00 (No unit mask) count 500

samples % image name app name symbol name

432 46.7027 vmlinux vmlinux omap3_pm_idle
157 16.9730 vmlinux vmlinux cpu_idle
22 2.3784 ld-2.9.so msgq_FIR /lib/ld-2.9.so
21 2.2703 ld-2.9.so busybox /lib/ld-2.9.so
12 1.2973 vmlinux vmlinux schedule
11 1.1892 libc-2.9.so msgq_FIR /lib/libc-2.9.so
11 1.1892 vmlinux vmlinux v7_flush_kern_dcache_page
10 1.0811 vmlinux vmlinux sub_preempt_count
10 1.0811 vmlinux vmlinux unmap_vmas
9 0.9730 vmlinux vmlinux copy_page
8 0.8649 vmlinux vmlinux __do_softirq
7 0.7568 vmlinux vmlinux cpu_v7_dcache_clean_area
7 0.7568 vmlinux vmlinux kmem_cache_alloc
7 0.7568 vmlinux vmlinux mmc_blk_issue_rq
7 0.7568 vmlinux vmlinux omap_hsmmc_start_command
6 0.6486 busybox busybox /bin/busybox
6 0.6486 vmlinux vmlinux __memzero
5 0.5405 vmlinux vmlinux __up_read
5 0.5405 vmlinux vmlinux filemap_fault
5 0.5405 vmlinux vmlinux update_mmu_cache
4 0.4324 libc-2.9.so busybox /lib/libc-2.9.so
4 0.4324 vmlinux vmlinux __d_lookup
4 0.4324 vmlinux vmlinux __down_read_trylock
4 0.4324 vmlinux vmlinux add_preempt_count
4 0.4324 vmlinux vmlinux cpu_v7_set_pte_ext
4 0.4324 vmlinux vmlinux get_page_from_freelist
4 0.4324 vmlinux vmlinux pfn_valid
3 0.3243 vmlinux vmlinux __do_fault
3 0.3243 vmlinux vmlinux __make_request
3 0.3243 vmlinux vmlinux __pabt_usr
3 0.3243 vmlinux vmlinux __wake_up_bit
3 0.3243 vmlinux vmlinux do_page_fault
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3 0.3243 vmlinux vmlinux find_get_page
3 0.3243 vmlinux vmlinux handle_mm_fault
2 0.2162 vmlinux vmlinux do_filp_open
2 0.2162 vmlinux vmlinux do_mmap_pgoff
2 0.2162 vmlinux vmlinux find_vma
2 0.2162 vmlinux vmlinux get_request
2 0.2162 vmlinux vmlinux load_elf_binary
2 0.2162 vmlinux vmlinux mutex_lock
2 0.2162 vmlinux vmlinux number
2 0.2162 vmlinux vmlinux page_add_file_rmap
2 0.2162 vmlinux vmlinux sys_mmap_pgoff
2 0.2162 vmlinux vmlinux tick_nohz_restart_sched_tick
2 0.2162 vmlinux vmlinux tick_nohz_stop_sched_tick
2 0.2162 vmlinux vmlinux uart_start
2 0.2162 vmlinux vmlinux unlock_page
2 0.2162 vmlinux vmlinux vector_swi
2 0.2162 vmlinux vmlinux vm_normal_page
1 0.1081 ld-2.9.so oprofiled /lib/ld-2.9.so
1 0.1081 libpthread-2.9.so msgq_FIR /lib/libpthread-2.9.so
1 0.1081 vmlinux vmlinux ____pagevec_lru_add
1 0.1081 vmlinux vmlinux __aeabi_uidivmod
1 0.1081 vmlinux vmlinux __clear_user_std
1 0.1081 vmlinux vmlinux __dabt_usr
1 0.1081 vmlinux vmlinux __dentry_open
1 0.1081 vmlinux vmlinux _down_read
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NEON disassembled floating point code

Listing D.1. NEON disassembled floating point code

1 00008a90 <FIR_core>:
2 8a90: e92d07f0 push {r4, r5, r6, r7, r8, r9, sl}
3 8a94: e2535000 subs r5, r3, #0 ; 0x0
4 8a98: ed2d8b0c vstmdb sp!, {d8-d13}
5 8a9c: e1a04001 mov r4, r1
6 8aa0: da000068 ble 8c48 <FIR_core+0x1b8>
7 8aa4: e2828008 add r8, r2, #8 ; 0x8
8 8aa8: e288a008 add sl, r8, #8 ; 0x8
9 8aac: e28a9008 add r9, sl, #8 ; 0x8

10 8ab0: e2896008 add r6, r9, #8 ; 0x8
11 8ab4: e2867008 add r7, r6, #8 ; 0x8
12 8ab8: e3a0c000 mov ip, #0 ; 0x0
13 8abc: e2871008 add r1, r7, #8 ; 0x8
14 8ac0: ea000027 b 8b64 <FIR_core+0xd4>
15 8ac4: edd02b00 vldr d18, [r0]
16 8ac8: edd21b00 vldr d17, [r2]
17 8acc: edd00b02 vldr d16, [r0, #8]
18 8ad0: f3422db1 vmul.f32 d18, d18, d17
19 8ad4: edd81b00 vldr d17, [r8]
20 8ad8: f3400db1 vmul.f32 d16, d16, d17
21 8adc: f2422da0 vadd.f32 d18, d18, d16
22 8ae0: edd01b04 vldr d17, [r0, #16]
23 8ae4: edda0b00 vldr d16, [sl]
24 8ae8: f3411db0 vmul.f32 d17, d17, d16
25 8aec: f2422da1 vadd.f32 d18, d18, d17
26 8af0: edd00b06 vldr d16, [r0, #24]
27 8af4: edd91b00 vldr d17, [r9]
28 8af8: f3400db1 vmul.f32 d16, d16, d17
29 8afc: f2422da0 vadd.f32 d18, d18, d16
30 8b00: edd01b08 vldr d17, [r0, #32]
31 8b04: edd60b00 vldr d16, [r6]
32 8b08: f3411db0 vmul.f32 d17, d17, d16
33 8b0c: f2422da1 vadd.f32 d18, d18, d17
34 8b10: edd00b0a vldr d16, [r0, #40]
35 8b14: edd71b00 vldr d17, [r7]
36 8b18: f3400db1 vmul.f32 d16, d16, d17
37 8b1c: f2422da0 vadd.f32 d18, d18, d16
38 8b20: edd01b0c vldr d17, [r0, #48]
39 8b24: edd10b00 vldr d16, [r1]
40 8b28: f3411db0 vmul.f32 d17, d17, d16
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41 8b2c: f2422da1 vadd.f32 d18, d18, d17
42 8b30: edd00b0e vldr d16, [r0, #56]
43 8b34: edd11b02 vldr d17, [r1, #8]
44 8b38: f3400db1 vmul.f32 d16, d16, d17
45 8b3c: f2400da2 vadd.f32 d16, d16, d18
46 8b40: f3400da0 vpadd.f32 d16, d16, d16
47 8b44: ee103b90 vmov.32 r3, d16[0]
48 8b48: ee0d3a10 fmsr s26, r3
49 8b4c: ee1d3a10 fmrs r3, s26
50 8b50: e784310c str r3, [r4, ip, lsl #2]
51 8b54: e28cc001 add ip, ip, #1 ; 0x1
52 8b58: e155000c cmp r5, ip
53 8b5c: e2800004 add r0, r0, #4 ; 0x4
54 8b60: da000038 ble 8c48 <FIR_core+0x1b8>
55 8b64: e1823000 orr r3, r2, r0
56 8b68: e3130007 tst r3, #7 ; 0x7
57 8b6c: 0affffd4 beq 8ac4 <FIR_core+0x34>
58 8b70: ed927a01 flds s14, [r2, #4]
59 8b74: edd07a01 flds s15, [r0, #4]
60 8b78: ee27da27 fmuls s26, s14, s15
61 8b7c: edd26a00 flds s13, [r2]
62 8b80: edd07a00 flds s15, [r0]
63 8b84: ed927a02 flds s14, [r2, #8]
64 8b88: ed906a02 flds s12, [r0, #8]
65 8b8c: edd28a03 flds s17, [r2, #12]
66 8b90: ed909a03 flds s18, [r0, #12]
67 8b94: edd29a04 flds s19, [r2, #16]
68 8b98: ed90aa04 flds s20, [r0, #16]
69 8b9c: edd2aa05 flds s21, [r2, #20]
70 8ba0: ee06daa7 fmacs s26, s13, s15
71 8ba4: ed90ba05 flds s22, [r0, #20]
72 8ba8: edd2ba06 flds s23, [r2, #24]
73 8bac: ed90ca06 flds s24, [r0, #24]
74 8bb0: edd2ca07 flds s25, [r2, #28]
75 8bb4: ed902a07 flds s4, [r0, #28]
76 8bb8: edd21a08 flds s3, [r2, #32]
77 8bbc: ed901a08 flds s2, [r0, #32]
78 8bc0: edd20a09 flds s1, [r2, #36]
79 8bc4: ed900a09 flds s0, [r0, #36]
80 8bc8: ee07da06 fmacs s26, s14, s12
81 8bcc: ed928a0a flds s16, [r2, #40]
82 8bd0: ed905a0a flds s10, [r0, #40]
83 8bd4: edd24a0b flds s9, [r2, #44]
84 8bd8: ed904a0b flds s8, [r0, #44]
85 8bdc: edd23a0c flds s7, [r2, #48]
86 8be0: ed903a0c flds s6, [r0, #48]
87 8be4: edd22a0d flds s5, [r2, #52]
88 8be8: ed906a0d flds s12, [r0, #52]
89 8bec: edd25a0e flds s11, [r2, #56]
90 8bf0: ee08da89 fmacs s26, s17, s18
91 8bf4: ed907a0e flds s14, [r0, #56]
92 8bf8: edd26a0f flds s13, [r2, #60]
93 8bfc: edd07a0f flds s15, [r0, #60]
94 8c00: e2800004 add r0, r0, #4 ; 0x4
95 8c04: ee09da8a fmacs s26, s19, s20
96 8c08: ee0ada8b fmacs s26, s21, s22
97 8c0c: ee0bda8c fmacs s26, s23, s24
98 8c10: ee0cda82 fmacs s26, s25, s4
99 8c14: ee01da81 fmacs s26, s3, s2

100 8c18: ee00da80 fmacs s26, s1, s0
101 8c1c: ee08da05 fmacs s26, s16, s10
102 8c20: ee04da84 fmacs s26, s9, s8
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103 8c24: ee03da83 fmacs s26, s7, s6
104 8c28: ee02da86 fmacs s26, s5, s12
105 8c2c: ee05da87 fmacs s26, s11, s14
106 8c30: ee06daa7 fmacs s26, s13, s15
107 8c34: ee1d3a10 fmrs r3, s26
108 8c38: e784310c str r3, [r4, ip, lsl #2]
109 8c3c: e28cc001 add ip, ip, #1 ; 0x1
110 8c40: e155000c cmp r5, ip
111 8c44: caffffc6 bgt 8b64 <FIR_core+0xd4>
112 8c48: ecbd8b0c vldmia sp!, {d8-d13}
113 8c4c: e8bd07f0 pop {r4, r5, r6, r7, r8, r9, sl}
114 8c50: e12fff1e bx lr
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Data of DSPLink performance

CHNL module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1163886.64 7.66E+09 15.573200 72.19 1654566052 91478005 94.47
256 3290 1166488.82 3.84E+09 7.845490 72.42 832307918 43090321 94.82
512 1645 1014267.44 1.67E+09 3.467220 71.73 442314088 20868286 95.28

1024 822 973101.46 8.00E+08 1.695430 70.62 241105008 8430835 96.50
2048 411 1334147.36 5.48E+08 1.171880 75.08 173096276 4406984 97.45
4096 205 1058038.84 2.17E+08 0.502381 36.85 139884192 2714547 98.06
8192 102 1915293.21 1.95E+08 0.453369 40.23 124435612 1964158 98.42
16384 51 3514570.39 1.79E+08 0.416779 55.50 117249136 1659750 98.58

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1149658.17 7.56E+09 15.424700 72.08 1659835826 86944673 94.76
256 3290 1168361.19 3.84E+09 7.864080 72.39 860696074 39914915 95.36
512 1645 1035401.68 1.70E+09 3.528810 71.03 456709496 15323356 96.64

1024 822 1032388.67 8.49E+08 1.790370 66.87 315574434 7800292 97.53
2048 411 1464457.06 6.02E+08 1.276400 75.12 248563564 4513596 98.18
4096 205 1579315.15 3.24E+08 0.717712 32.65 215856608 2823000 98.69
8192 102 2944369.85 3.00E+08 0.663208 38.14 198804946 1954119 99.02
16384 51 5538135.69 2.82E+08 0.622772 32.68 191665030 1594626 99.17

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1175603.06 7.74E+09 15.771700 72.17 1701049982 78013916 95.41
256 3290 1199107.17 3.95E+09 8.066250 72.64 890318494 29106145 96.73
512 1645 1045953.85 1.72E+09 3.562160 68.68 600519238 13966661 97.67

1024 822 1159670.17 9.53E+08 2.001770 63.58 467404820 7631266 98.37
2048 411 1721251.82 7.07E+08 1.485320 65.10 401492492 4498526 98.88
4096 205 2601986.85 5.33E+08 1.136140 23.90 366215244 2862913 99.22
8192 102 4989408.51 5.09E+08 1.080290 26.10 348626304 2066200 99.41
16384 51 9629394.51 4.91E+08 1.040310 26.28 341136084 1612782 99.53

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1134465.70 7.46E+09 15.213000 72.61 1780609894 53255977 97.01
256 3290 1191124.57 3.92E+09 8.013460 71.79 1201015240 26910605 97.76
512 1645 1202746.38 1.98E+09 4.089230 65.03 916378702 14219676 98.45

1024 822 1562616.45 1.28E+09 2.666020 53.25 777574302 7699846 99.01
2048 411 2686402.74 1.10E+09 2.286040 51.73 705515716 4501861 99.36
4096 205 4636977.05 9.51E+08 1.970340 17.55 668054160 2940752 99.56
8192 102 9049752.27 9.23E+08 1.909000 17.64 647210254 1954832 99.70
16384 51 17740479.88 9.05E+08 1.867430 14.61 639447926 1552460 99.76

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1204035.64 7.92E+09 16.106400 72.11 2472607400 53277763 97.85
256 3290 1356120.70 4.46E+09 9.102200 68.31 1858813098 27402888 98.53
512 1645 1590740.07 2.62E+09 5.367430 53.73 1545505872 14324249 99.07

1024 822 2565480.83 2.11E+09 4.313810 37.63 1391161866 8013984 99.42
2048 411 4728038.76 1.94E+09 3.961240 37.59 1312280646 4647202 99.65
4096 205 8719253.20 1.79E+09 3.644070 11.00 1269867486 2862795 99.77
8192 102 17182609.98 1.75E+09 3.567780 11.05 1246670408 2183128 99.82
16384 51 33984412.98 1.73E+09 3.524870 10.57 1237043382 1674896 99.86

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 1315944.52 8.66E+09 17.597100 68.57 3894761182 53748211 98.62
256 3290 1648249.14 5.42E+09 11.018400 59.53 3175262238 28171145 99.11
512 1645 2595076.07 4.27E+09 8.668210 36.57 2801361482 14377868 99.49

1024 822 4630169.97 3.81E+09 7.708010 24.05 2618016420 7701462 99.71
2048 411 8832145.21 3.63E+09 7.336180 22.23 2527052918 4595500 99.82
4096 205 16861801.63 3.46E+09 6.982090 8.26 2473334416 2761312 99.89
8192 102 33439134.24 3.41E+09 6.884220 9.66 2440585986 2085773 99.91
16384 51 66457100.55 3.39E+09 6.835970 8.93 2430044914 1554349 99.94
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MSGQ module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 139059.67 9.15E+008 1.899990 22.60 666942834 30698370 95.40
256 3290 161068.56 5.30E+008 1.121150 21.97 369273080 15116185 95.91
512 1645 207753.91 3.42E+008 0.739380 23.42 238639536 8224969 96.55
1024 822 299039.39 2.46E+008 0.545563 16.70 173400370 4890330 97.18
2048 411 478855.56 1.97E+008 0.446656 17.85 139511942 3132795 97.75
4096 205 830374.98 1.70E+008 0.392609 17.60 121972100 2111625 98.27
8192 102 1543929.95 1.57E+008 0.365692 16.98 112475047 1625751 98.55

16384 51 3025722.41 1.54E+008 0.358581 17.38 110464729 1431068 98.70

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 160856.47 1.06E+009 2.187500 21.67 738223392 29994513 95.94
256 3290 193220.61 6.36E+008 1.331940 19.40 453025148 15454288 96.59
512 1645 273274.59 4.50E+008 0.956147 15.37 324252004 8887503 97.26
1024 822 421716.12 3.47E+008 0.747192 15.92 249210220 4871237 98.05
2048 411 728376.06 2.99E+008 0.651214 11.83 214650898 3087640 98.56
4096 205 1340640.72 2.75E+008 0.601532 13.70 197135557 2219278 98.87
8192 102 2562342.24 2.61E+008 0.573425 13.16 187389259 1690481 99.10

16384 51 5061431.29 2.58E+008 0.565674 13.94 185419235 1385941 99.25

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 194864.21 1.28E+009 2.633850 17.43 905283972 29240832 96.77
256 3290 264045.71 8.69E+008 1.798000 12.43 619267128 15079691 97.56
512 1645 403896.04 6.64E+008 1.385220 10.37 481233456 8850916 98.16
1024 822 682701.72 5.61E+008 1.176090 9.96 407157016 5193599 98.72
2048 411 1240602.84 5.10E+008 1.072630 14.47 369955896 3244501 99.12
4096 205 2363118.45 4.84E+008 1.020870 9.18 348120720 2146011 99.38
8192 102 4596643.48 4.69E+008 0.988312 13.72 336829165 1690119 99.50

16384 51 9124340.69 4.65E+008 0.980530 12.95 334234087 1390357 99.58

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 267858.68 1.76E+009 3.594910 11.43 1275877702 30908298 97.58
256 3290 406427.77 1.34E+009 2.734860 8.95 956700212 15942325 98.33
512 1645 666997.14 1.10E+009 2.250520 9.87 793200964 8867080 98.88
1024 822 1206058.14 9.91E+008 2.036740 11.78 709600386 4739535 99.33
2048 411 2268792.07 9.32E+008 1.918550 8.83 671165828 3036772 99.55
4096 205 4400292.43 9.02E+008 1.856050 10.55 649167005 2135343 99.67
8192 102 8661034.40 8.83E+008 1.817870 11.84 635581057 1698998 99.73

16384 51 17247590.33 8.80E+008 1.809200 10.74 633057019 1473796 99.77

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 416745.26 2.74E+009 5.554440 10.15 1986074390 31197926 98.43
256 3290 677537.54 2.23E+009 4.518560 8.10 1611189012 16298523 98.99
512 1645 1202933.70 1.98E+009 4.014010 8.59 1415906570 8420153 99.41
1024 822 2239484.42 1.84E+009 3.735570 8.94 1322898214 5044506 99.62
2048 411 4320697.30 1.78E+009 3.604770 10.31 1278733266 3209929 99.75
4096 205 8473615.36 1.74E+009 3.526340 12.11 1250825785 2096453 99.83
8192 102 16791145.45 1.71E+009 3.476070 10.68 1232876991 1707364 99.86

16384 51 33485807.47 1.71E+009 3.465880 8.46 1229897446 1406760 99.89

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 719602.42 4.73E+009 9.540160 8.40 3376630114 29833914 99.12
256 3290 1227791.84 4.04E+009 8.140080 9.28 2904685360 15637693 99.46
512 1645 2255174.85 3.71E+009 7.475740 8.86 2676262726 9121920 99.66
1024 822 4309792.65 3.54E+009 7.139190 9.93 2550027712 4917625 99.81
2048 411 8411016.98 3.46E+009 6.966770 9.35 2490236885 3117905 99.87
4096 205 16618969.99 3.41E+009 6.866030 9.63 2453996411 2283180 99.91
8192 102 33040263.53 3.37E+009 6.791080 13.03 2427145001 1713380 99.93

16384 51 65940143.86 3.36E+009 6.775240 10.17 2422415252 1400983 99.94
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PROC module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 147954.45 9.74E+08 1.959380 42.65 693032903 36117505 94.79
256 3290 153571.08 5.05E+08 1.016880 35.03 365363289 16441759 95.50
512 1645 200842.36 3.30E+08 0.664276 24.92 223692904 8044795 96.40
1024 822 302651.84 2.49E+08 0.499451 21.25 156643753 4084386 97.39
2048 411 496655.60 2.04E+08 0.409424 18.20 127424207 2380528 98.13
4096 205 889403.56 1.82E+08 0.365357 18.10 112362323 1536070 98.63
8192 102 1676751.53 1.71E+08 0.342559 16.13 104441871 1055622 98.99

16384 51 3285959.06 1.68E+08 0.335602 9.67 102450423 839089 99.18

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 151847.10 9.99E+08 2.010930 35.88 726968277 32783830 95.49
256 3290 183369.33 6.03E+08 1.212830 26.76 412575185 14379198 96.51
512 1645 270939.13 4.46E+08 0.894776 21.57 294384652 7589677 97.42
1024 822 430564.04 3.54E+08 0.709717 17.47 241072697 4635771 98.08
2048 411 754271.17 3.10E+08 0.621155 15.36 204301599 2489200 98.78
4096 205 1402016.29 2.87E+08 0.575500 17.50 187781043 1551426 99.17
8192 102 2694095.11 2.75E+08 0.550141 11.83 180148587 1124190 99.38

16384 51 5317799.39 2.71E+08 0.542816 11.83 177025757 832592 99.53

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 183246.08 1.21E+09 2.423830 26.51 854889157 29852886 96.51
256 3290 256951.53 8.45E+08 1.697270 21.18 581973225 14684711 97.48
512 1645 403898.04 6.64E+08 1.332150 14.57 455620391 7858429 98.28
1024 822 686187.32 5.64E+08 1.129940 13.31 389756749 4363272 98.88
2048 411 1269228.33 5.22E+08 1.044400 11.19 356121005 2480368 99.30
4096 205 2422406.60 4.97E+08 0.993897 10.96 338902903 1603642 99.53
8192 102 4729499.94 4.82E+08 0.965301 9.92 329087415 1077975 99.67

16384 51 9379934.47 4.78E+08 0.957153 12.17 326154035 834304 99.74

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 256246.14 1.69E+09 3.384310 19.58 1215565409 30399210 97.50
256 3290 390004.76 1.28E+09 2.572450 13.71 917863045 15313291 98.33
512 1645 666997.65 1.10E+09 2.197780 11.11 775845731 8310187 98.93
1024 822 1208460.60 9.93E+08 1.988530 8.75 697961019 4416826 99.37
2048 411 2292675.80 9.42E+08 1.885650 9.81 660630743 2541917 99.62
4096 205 4461638.49 9.15E+08 1.829990 11.09 640077275 1631334 99.75
8192 102 8795364.49 8.97E+08 1.794740 10.38 627911885 1093388 99.83

16384 51 17503728.22 8.93E+08 1.785770 8.65 624384385 820271 99.87

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 403277.62 2.65E+09 5.319240 12.43 1917261577 30080740 98.43
256 3290 666201.61 2.19E+09 4.389980 9.86 1575890205 15635218 99.01
512 1645 1192725.12 1.96E+09 3.927340 8.83 1398791335 8121588 99.42
1024 822 2243955.33 1.84E+09 3.690890 8.35 1311946899 4457832 99.66
2048 411 4344147.55 1.79E+09 3.571990 9.55 1267177219 2560160 99.80
4096 205 8539242.51 1.75E+09 3.501770 10.62 1242084939 1652336 99.87
8192 102 16922130.33 1.73E+09 3.452610 10.52 1224995969 1101662 99.91

16384 51 33740964.92 1.72E+09 3.441990 11.23 1221030847 839935 99.93

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 705273.57 4.64E+09 9.293760 9.13 3309539025 28926458 99.13
256 3290 1220871.49 4.02E+09 8.039670 8.61 2870269753 15022681 99.48
512 1645 2252802.64 3.71E+09 7.415040 8.95 2654761343 8348982 99.69
1024 822 4315212.34 3.55E+09 7.096070 8.28 2538091639 4546385 99.82
2048 411 8440008.05 3.47E+09 6.938810 10.03 2479436443 2590168 99.90
4096 205 16679988.60 3.42E+09 6.839480 9.76 2444825603 1629082 99.93
8192 102 33169916.58 3.38E+09 6.767150 8.74 2418538923 1102923 99.95

16384 51 66194928.76 3.38E+09 6.752260 10.32 2413292989 868389 99.96
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MPCS module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 190392.14 1.25E+09 2.578000 18.91 9.23E+08 26182 100.00
256 3290 187166.68 6.16E+08 1.296020 19.48 4.64E+08 28970 99.99
512 1645 185994.23 3.06E+08 0.671875 22.90 2.37E+08 26522 99.99
1024 822 194844.87 1.60E+08 0.377991 35.43 1.34E+08 26964 99.98
2048 411 358821.97 1.47E+08 0.352509 43.27 1.29E+08 26386 99.98
4096 205 707762.01 1.45E+08 0.346619 53.03 1.25E+08 27134 99.98
8192 102 1404021.81 1.43E+08 0.341614 50.78 1.23E+08 25264 99.98

16384 51 2821065.61 1.44E+08 0.341614 57.43 1.25E+08 24941 99.98

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 190512.19 1.25E+09 2.579590 18.08 9.25E+08 25927 100.00
256 3290 186604.25 6.14E+08 1.291990 18.40 4.65E+08 25502 99.99
512 1645 191214.70 3.15E+08 0.689270 24.94 2.47E+08 26541 99.99
1024 822 312591.79 2.57E+08 0.572082 43.70 2.06E+08 35534 99.98
2048 411 614696.28 2.53E+08 0.562653 60.52 2.02E+08 26556 99.99
4096 205 1214288.31 2.49E+08 0.554138 59.27 2E+08 47109 99.98
8192 102 2409581.93 2.46E+08 0.546998 68.74 1.98E+08 24992 99.99

16384 51 4810967.51 2.45E+08 0.544952 63.46 1.99E+08 25485 99.99

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 190157.73 1.25E+09 2.576450 18.29 9.24E+08 26063 100.00
256 3290 189571.39 6.24E+08 1.312680 20.98 4.72E+08 26097 99.99
512 1645 293968.98 4.84E+08 1.028350 41.56 3.7E+08 25519 99.99
1024 822 570996.91 4.69E+08 0.997070 61.06 3.59E+08 26301 99.99
2048 411 1124747.47 4.62E+08 0.981720 65.36 3.54E+08 25570 99.99
4096 205 2227841.84 4.57E+08 0.969757 71.16 3.5E+08 25011 99.99
8192 102 4421332.87 4.51E+08 0.958038 73.41 3.47E+08 29142 99.99

16384 51 8794277.49 4.49E+08 0.951263 75.56 3.48E+08 25553 99.99

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 193477.55 1.27E+09 2.618930 20.45 9.42E+08 25638 100.00
256 3290 292656.81 9.63E+08 1.991000 44.61 7.16E+08 26250 100.00
512 1645 557791.33 9.18E+08 1.896270 59.60 6.83E+08 25944 100.00
1024 822 1087716.07 8.94E+08 1.846770 67.68 6.66E+08 24346 100.00
2048 411 2147342.63 8.83E+08 1.823640 69.96 6.57E+08 25247 100.00
4096 205 4254302.51 8.72E+08 1.800900 77.18 6.51E+08 25893 100.00
8192 102 8445436.12 8.61E+08 1.778050 73.99 6.46E+08 26012 100.00

16384 51 16752138.06 8.54E+08 1.762790 76.33 6.47E+08 25740 100.00

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 308238.63 2.03E+09 4.129270 47.00 1.49E+09 30262 100.00
256 3290 567610.31 1.87E+09 3.800170 61.21 1.37E+09 26202 100.00
512 1645 1085599.87 1.79E+09 3.632540 66.48 1.31E+09 27100 100.00
1024 822 2121226.58 1.74E+09 3.545750 70.95 1.28E+09 25978 100.00
2048 411 4187806.53 1.72E+09 3.500150 74.59 1.26E+09 26403 100.00
4096 205 8306135.75 1.70E+09 3.462370 75.53 1.25E+09 25264 100.00
8192 102 16488050.84 1.68E+09 3.418370 77.61 1.24E+09 25910 100.00

16384 51 32668615.29 1.67E+09 3.386020 81.33 1.24E+09 25791 100.00

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 605102.38 3.98E+09 8.036440 61.08 2.89E+09 26250 100.00
256 3290 1117357.43 3.68E+09 7.417630 69.02 2.67E+09 35991 100.00
512 1645 2140950.45 3.52E+09 7.105560 72.89 2.56E+09 24482 100.00
1024 822 4184752.05 3.44E+09 6.939480 78.25 2.5E+09 25281 100.00
2048 411 8266480.98 3.40E+09 6.854490 80.08 2.47E+09 25213 100.00
4096 205 16402134.34 3.36E+09 6.781590 79.44 2.45E+09 26590 100.00
8192 102 32559853.12 3.32E+09 6.697450 79.81 2.43E+09 26573 100.00

16384 51 64464723.10 3.29E+09 6.629120 81.27 2.43E+09 26301 100.00
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MPLIST module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 194327.72 1.28E+09 2.820190 47.71 1015210995 48252347 95.25
256 3290 214149.98 7.05E+08 1.574890 43.11 544037289 23765577 95.63
512 1645 257064.01 4.23E+08 0.963287 36.77 324884923 12585584 96.13
1024 822 346135.22 2.85E+08 0.660950 31.58 216479011 7024959 96.75
2048 411 523320.56 2.15E+08 0.509155 28.90 162946665 4253654 97.39
4096 205 880935.47 1.81E+08 0.433777 20.80 136192499 2862094 97.90
8192 102 1606852.20 1.64E+08 0.396180 23.40 122220041 2148006 98.24

16384 51 3108156.92 1.59E+08 0.381988 24.83 117905241 1733586 98.53

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 209135.51 1.38E+09 3.017360 44.31 1059365201 45410621 95.71
256 3290 247909.46 8.16E+08 1.797030 37.43 615432877 23154080 96.24
512 1645 325715.14 5.36E+08 1.189030 29.94 400719707 12366187 96.91
1024 822 475661.96 3.91E+08 0.873901 25.77 293619925 7050947 97.60
2048 411 784638.23 3.22E+08 0.723359 20.85 238854011 4250659 98.22
4096 205 1392390.16 2.85E+08 0.642853 16.18 211998613 2901895 98.63
8192 102 2626626.33 2.68E+08 0.603302 15.78 197033781 2139248 98.91

16384 51 5136022.45 2.62E+08 0.588471 16.80 192581761 1747211 99.09

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 250948.27 1.65E+09 3.565980 37.55 1231166017 45210334 96.33
256 3290 319736.01 1.05E+09 2.270200 31.46 788439389 23794135 96.98
512 1645 456237.04 7.51E+08 1.619200 22.62 562790239 12688098 97.75
1024 822 735463.35 6.05E+08 1.301090 17.69 447793855 7079970 98.42
2048 411 1295269.25 5.32E+08 1.143770 15.06 393232359 4454385 98.87
4096 205 2412885.61 4.95E+08 1.062960 11.24 362727071 2904439 99.20
8192 102 4660746.03 4.75E+08 1.018650 11.63 346421207 2169917 99.37

16384 51 9199912.61 4.69E+08 1.003330 12.06 341995807 1745051 99.49

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 325704.68 2.14E+09 4.547910 28.77 1586797665 45499593 97.13
256 3290 454321.08 1.49E+09 3.156370 20.73 1107649739 23322397 97.89
512 1645 722282.27 1.19E+09 2.493530 15.14 874547341 12635144 98.56
1024 822 1256927.59 1.03E+09 2.158780 11.37 754391115 7062704 99.06
2048 411 2322024.88 9.54E+08 1.987880 9.75 694965423 4366439 99.37
4096 205 4456169.10 9.14E+08 1.900060 11.88 664787649 2994398 99.55
8192 102 8727556.83 8.90E+08 1.848450 9.71 645757789 2180278 99.66

16384 51 17326152.47 8.84E+08 1.831910 11.48 640814465 1744389 99.73

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 471508.85 3.10E+09 6.468600 19.95 2279571293 44772220 98.04
256 3290 731859.54 2.41E+09 4.982480 13.93 1761342657 23304845 98.68
512 1645 1250943.17 2.06E+09 4.231600 10.13 1502089361 12644565 99.16
1024 822 2292184.59 1.88E+09 3.858640 9.92 1367630561 7057614 99.48
2048 411 4372538.27 1.80E+09 3.671390 8.36 1302875727 4393651 99.66
4096 205 8531502.83 1.75E+09 3.568820 9.65 1266303331 2960095 99.77
8192 102 16851880.12 1.72E+09 3.504030 11.71 1243641459 2171923 99.83

16384 51 33565365.43 1.71E+09 3.486420 8.44 1237535983 1777119 99.86

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 768055.20 5.05E+09 10.370300 12.58 3725421189 46573304 98.75
256 3290 1285694.88 4.23E+09 8.624790 9.27 3073198009 23511613 99.23
512 1645 2312103.31 3.80E+09 7.722290 8.37 2759354489 12903626 99.53
1024 822 4363921.36 3.59E+09 7.265660 8.71 2598648847 7520930 99.71
2048 411 8467007.37 3.48E+09 7.038120 9.16 2515048475 4444132 99.82
4096 205 16675254.58 3.42E+09 6.909150 9.57 2468284329 2956625 99.88
8192 102 33096379.49 3.38E+09 6.818090 9.29 2439058847 2252374 99.91

16384 51 66011215.76 3.37E+09 6.795990 9.27 2430093799 1786209 99.93
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RINGIO module

HAMMING16
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 416954.07 2.74E+009 4.64377 51.76 1667005364 52761470 96.83
256 3290 444016.64 1.46E+009 2.4967 51.30 870833460 26690039 96.94
512 1645 493843.56 8.12E+008 1.41574 47.08 487655112 13593213 97.21
1024 822 595780.92 4.90E+008 0.899719 40.13 294400364 7126773 97.58
2048 411 786839.1 3.23E+008 0.598785 34.58 196789588 3972403 97.98
4096 205 1182868.72 2.42E+008 0.463134 30.73 147869288 2251038 98.48
8192 102 1967257.53 2.01E+008 0.393738 23.05 122895768 1431916 98.83

16384 51 3602622.43 1.84E+008 0.362884 30.83 111708310 1009995 99.10

HAMMING32
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 432652.56 2.85E+009 4.84226 50.25 1734002626 52651037 96.96
256 3290 476472.03 1.57E+009 2.71332 44.87 964934482 26762731 97.23
512 1645 559774.35 9.21E+008 1.63171 40.97 572251414 13754333 97.60
1024 822 728804.69 5.99E+008 1.09003 29.58 371851780 7206451 98.06
2048 411 1044088.99 4.29E+008 0.809906 24.77 273692134 3952973 98.56
4096 205 1692289.91 3.47E+008 0.673188 20.30 223370932 2297960 98.97
8192 102 2978628.03 3.04E+008 0.601593 22.42 197390918 1452264 99.26

16384 51 5577497.73 2.84E+008 0.571961 15.32 186504662 1049230 99.44

HAMMING64
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 476402.22 3.13E+009 5.38772 45.00 1936433196 52796499 97.27
256 3290 548199.31 1.80E+009 3.18182 38.58 1125645776 27010583 97.60
512 1645 696067.51 1.15E+009 2.07571 30.74 729394502 13729247 98.12
1024 822 986077.75 8.11E+008 1.51605 22.70 526918122 7322573 98.61
2048 411 1560314.44 6.41E+008 1.23303 17.89 425506974 3951105 99.07
4096 205 2715816.56 5.57E+008 1.09189 14.74 373430408 2223837 99.40
8192 102 5016181.38 5.12E+008 1.01843 11.40 346345774 1386744 99.60

16384 51 9650337.71 4.92E+008 0.986175 13.03 334931764 964034 99.71

HAMMING128
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 554787.18 3.65E+009 6.39932 38.20 2290022890 52476008 97.71
256 3290 685368.4 2.25E+009 4.08838 30.06 1463485676 26773394 98.17
512 1645 960742.47 1.58E+009 2.94864 21.75 1050726798 13896135 98.68
1024 822 1503211.17 1.24E+009 2.36838 15.05 834188340 7273413 99.13
2048 411 2587020.62 1.06E+009 2.07733 12.39 729572202 3931290 99.46
4096 205 4755037.07 9.75E+008 1.92929 10.39 675292979 2274538 99.66
8192 102 9090577.04 9.27E+008 1.8486 12.65 646013490 1472170 99.77

16384 51 17773142.76 9.06E+008 1.8161 9.55 634492962 1055727 99.83

HAMMING256
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 704403.32 4.63E+009 8.38907 28.74 3018006766 53891988 98.21
256 3290 963627.35 3.17E+009 5.91327 21.04 2122437324 27388570 98.71
512 1645 1493309.83 2.46E+009 4.70309 14.85 1676468686 13852951 99.17
1024 822 2538123.63 2.09E+009 4.0701 11.42 1445845360 7260125 99.50
2048 411 4636463.3 1.91E+009 3.8613 9.57 1335649668 3970311 99.70
4096 205 8829772.48 1.81E+009 3.59998 9.24 1276642012 2277778 99.82
8192 102 17252610.85 1.76E+009 3.51239 11.02 1244957654 1488763 99.88

16384 51 34042360.61 1.74E+009 3.47546 8.67 1230767188 1038240 99.92

HAMMING512
Chunk size Num. of Chunks Chunk’s Troundtrip [ticks] Total Ttransfer [ticks] Texecution [s] GPP load DSP total cycles DSP idle cycles DSP load

128 6580 999587.11 6.58E+009 12.2951 19.86 2924528800 53115636 98.18
256 3290 1517370.7 4.99E+009 9.54672 14.06 3429206636 27349413 99.20
512 1645 2549574.93 4.19E+009 8.17783 10.60 2924528800 13786012 99.53
1024 822 4608922.52 3.79E+009 7.47556 9.10 2672855612 7306186 99.73
2048 411 8730983.2 3.59E+009 7.12933 9.79 2549536872 4009285 99.84
4096 205 16975508.28 3.48E+009 6.94052 8.57 2480221102 2333066 99.91
8192 102 33512425.31 3.42E+009 6.82962 8.69 2439137764 1479954 99.94

16384 51 66505459 3.39E+009 6.78674 17.52 2423698156 1050570 99.96



Appendix F

Data of NEON performance

GPP only
Filter taps Texecution [s] Texecution [clock ticks] Average GPP load [%]

16 0.157654 78818658 57.07
32 0.280274 140138328 57.24
64 0.526581 263303458 59.43
128 1.017580 508778136 59.52
256 1.997500 998753648 59.69
512 3.962650 1981338036 59.32

NEON vectorizing compiler
Filter taps Texecution [s] Texecution [clock ticks] Average GPP load [%]

16 0.108216 54097447 53.74
32 0.194611 97293939 58.01
64 0.380890 190446699 59.11
128 0.657135 328570140 59.11
256 1.365690 682852711 58.70
512 2.465760 1232882635 59.40

NEON intrinsics
Filter taps Texecution [s] Texecution [clock ticks] Average GPP load [%]

16 0.127960 63982554 52.15
32 0.118073 59030707 52.21
64 0.172333 86163064 59.65
128 0.271942 135972978 58.83
256 0.460968 230482044 59.27
512 0.844269 422124518 59.15

NEON assembly
Filter taps Texecution [s] Texecution [clock ticks] Average GPP load [%]

16 0.109619 54795042 53.47
32 0.130951 65470395 57.63
64 0.186401 93185622 56.85
128 0.281799 140906318 55.48
256 0.473175 236585713 58.94
512 0.858246 429134731 59.76
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