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Abstract

Abstract

This thesis is part of alarger project on non-binary alternatives to authentication;
in contrast to the binary authentication used in IEEE 802.1X and IEEE 802.11i. This
thesis project seeks to define, implement, and evaluate a non-binary wireless access
authentication mechanism. It introduces a new authenticator that implements such a
new non-binary authentication mechanism.

In today’s wireless local area networks it is generally not possible to continue a
multimedia roaming session smoothly, because of the long delay caused by
authentication — during which no traffic other than authentication traffic is permitted.
In the best cases this high delay results in along communication interruption interval
without media, while in the worst cases the session is aborted by the higher layer
application as the application believes that the connectivity is lost. Thus introducing a
more appropriate authentication mechanism enables mobile users who move into a
new wireless local area network cell to continue to send and receive packets with
greatly reduced handover latency (in comparison to existing authentication
mechanisms). This new authentication mechanism potentialy enables seamless
roaming for users of conversational multimedia services (for example, a voice over IP
call could continue despite a movement from one cell to another).

This thesis demonstrates that it is possible to allow unauthenticated users to
immediately begin to communicate, while smultaneously limiting their traffic. These
limitations in traffic are implemented by traffic shaping. Additionally, using traffic
shaping also offers a number of new possibilities — such as offering different qualities
of service, allowing negotiation for different maximum bandwidths, etc.



Sammanfattning

Detta examensarbete ar en del av ett storre projekt om icke-binéra alternativ till
autentisering, i motsats till den bindra autentiseringen anvands i IEEE 802.1X och
|EEE 802.11i. Denna avhandling syftar till att definiera, genomféra och utvardera en
icke-binar trédlds dtkomst autentiseringsmekanism. Denna avhandling presenterar en
ny dosa som implementerar en ny icke-binar autenti seringsmekanism.

Infora en mer andamasenlig mekanism for autentisering méjliggér mobila
anvandare som flyttar ini ett nytt trédlost lokalt natverk cell att fortsétta att skicka och
ta emot paket med kraftigt nedsatt Overlamnandet fordréjning (i jamfoérelse med
befintliga autentiseringsmekanismer). Denna nya autentiseringsmekanism potentiellt
mojliggdr somlés roaming for anvéndare av konversation multimedia tjanster
(exempelvis kan en rost dver |P-samtal fortsétter trots en rorelse fran en cell till en
annan). Tyvarr, i dagens lokala trédlosa natverk fortsdtter smidigt ett multimedium
session & i allmanhet inte & mdjligt, pa grund av det langa dréjsmalet vantar pa
autentisering - da ingen trafik an autentisering &r tilldten. | basta fall kan detta hog
fordrojning resultera i ett 1ang meddelande avbrott intervall utan medier, medan det i
vérsta fall sessionen avbryts av hogre lager tilldmpning som tillampningsprogram
anser att andutning &r forlorat.

Denna avhandling visar att det & mojligt att tilldta autentiserade anvandare som
omedelbart bdrja kommunicera, samtidigt som begransar deras trafik. Dessa
begransningar i trafiken genomfors av trafikformning. Dessutom anvénder
trafikformning erbjuder ocksa ett antal nya majligheter - sasom att erbjuda olika
kvaliteter av service, vilket gor férhandling for olika maximal bandbredd, osv.



Table of Contents

Table of Contents

N == o U i
S 0] 0= 1= T T SRS ii
TADIE OF COMENES ..ottt st st ae et st e s beeaeesbesbesbeensesbesreennebesrens i
IS 0 T 0 - v
IES 0] H =0 =SOSR Vi
List of Acronyms and ADDIeVIiations...........coeoiiiiiineiesiese e Vii
N 1 011 0o [ o 1
11 Introduction to the Authenticator and our model ...........ccceceveverceeceresie e, 2
12 Problem SEateMENt ........cooiee e e e 3
13 [0 11 = 1o TP 4
14 Organization Of thiStNESIS.........ccccieeeiireceee e e 5

22 = T- o7 (o | 1o U 1o SRS 7
21 IEEE 802.11 and 802.1X StaNardS.........ceoveueruerierieeriesiesieesiesieseeeeeeseeseesesse e seeseenes 7
211 IEEE 802.11 CONCEPLS .....eeiieeieeeieesieeseesee sttt st siee st sbeesreesaeesbeesteesteesbeesteenseenes 8
212 TEEE 802101 ....eieeeeeeeieee ettt sttt sttt et bbb bbb e 14
213 A RPN 14
214 IEEE 802.1X Authentication on Wirel@sS LANS ........cceoevereeeeerenereeee e 17
215 RADIUS ...ttt bbbt b b e it b e b bt ebesbe e 19

2.2 L0 1 111 o SRS 22
2.3 101 o P 24
24 N BT TTEET <. bbb bbb bbb e 25
24.1 NELfIlter FrameworK ..........cvcieiiie et 25
24.2 [ (070 1@ o= = 1 o o ISP 29
24.3 01 SR = o] =PSRN 32

25 IPTADIE .t bbb b eb e nae e 33
251 Thethree Default IPTADIES. .......c.couiiuieieeeceeeee e e 33
25.2 Dalal SLIUCLUIES ..ottt ettt et ettt st e nneenneas 34
253 LAY 0 S [ S 37

2.6 . R TRSRRPRTS 44

B MEINO ... et er e n e 55
31 State MaChinESfOr EAP .......o e s 56
311 EAP Full Authenticator States under Pass-Through Mode..........cccceeevveninvinnienen. 65
312 CONSEANES. ...ttt et sttt sttt et e ab e ettt be s 66
3.13 LOCA VAITADIES. ......ceiceeceecee ettt nenne s 66
3.14 PrOCEAUIES.......ceeeeiete ettt st st e s e s e sbeebeene e resrenneas 67
3.15 Interface between EAP SM and MethOds ..........ccooeririeeereneneeceese e 68
3.1.6 EAP SM Data Structure in hostapd..........ccovveeerereseseeeese e s see e 69
3.1.7 Data Structure of EAPSM & AAA Interfacein hostapd .........ccccocevvieeieciecieciene, 71

3.2 F Ay I Y TSP 72
321 RADIUS Client 0N RECEIVING....ccciviieeererieseeeesie e see e sre e see e sreeaeseesnens 74
322 RADIUS Client 0N SENAING .......coiiiiiiiciese ettt sne 84

3.3 BAPOL LAYEN ...ttt et sttt st st st ese st sbe e enesbestenaeneas 91
331 VaTBDIES. ... e 92
332 How EAPOL functionsin hostapd............cccceeeeeeieie s %!

34 EAPOL Sender & RECEIVEN ........cooiiiiieeeeeie ettt 105
35 NON-Binary AULNENEICELOT .........cccvererieeieere e 109
351 Port Control iNhOSLaPRd .......ccvveieeece e 109
352 Modification of the Authenticator PAE State Machine..........ccceoeiiiicvcieneee, 116

3.6 Another Method by Using Linux Firewall ..........cccoovveeeeienineneeene e 129

4 Testing and EVAIUBLION........ccccveiiiiieeese ettt te et st sreenaesaesresneenee e e 131
5 Conclusions and FULUIE WOIK..........cc.oiiiiieciesie ettt sttt s 133
51 CONCIUSIONS. ... .ottt ettt e st sbesreeneestesaesneeneeneens 133
5.2 FULUPE WOTK ... ettt sttt st sn e e st nnesneeneenee e 133
[ 1= 1= S 135
APPENAIX A, SEALINFO. i et 141



Appendix B.  Original Authenticator PAE SM .......ccoiiiiieeeere et

Appendix C. Original eapol_state_machine



List of Figures

List of Figures

Figure 1-1: Traditional binary authentiCation ............cccccveieierienese e 2
Figure 1-2. Non-binary authentication using atraffic Shaper...........ccccovvevecvece s 2
Figure 2-1. IEEE 802.11 ProtOCOl SEACK .......cuvivirierieeriesiesieeee st see ettt sre st see e seens 7
Figure 2-2. IEEE 802.11 Frame FOMMIAL.........cccveierererieeiesieseseeeseeseesseeseeseesee e sseeeeseessesneeneeseeseees 9
Figure 2-3: Payloads of Probe Request and RESPONSE..........cccveveevieiiericeese s 12
Figure 2-4. IEEE 802.11 handshake between AP and STA .........cooiiineineneeee e 13
Figure 2-5. EAP Frame FOIMMEL.........ccoeeiereseeeeie e se ettt eeestesse s eeseessesseensessesnens 16
Figure 2-6. EAP Message Exchange FrameWorK .........ccccoveveeerereseseesese s seeeese e see e 17
Figure 2-7. E1ementSin 802.1X ......ccoiirieireririeieesesie et sae st e esesae st saenesseseesseneas 18
Figure 2-8. IEEE 802.1X Message Exchange Framework ..........cccoveveeeeeneneneneese e seeseesee e 18
Figure 2-9. EAPin EAPOL MPDU fOr EXtherNet .........cooovvieeeece e 19
Figure 2-10. Radius Frame FOrMEL ...........c.ooeeeeieieceeeeie sttt st sre 20
Figure 2-11. RADIUS Attribute value pair fOrMaL...........ccceeririeiinerineeese e 20
Figure 2-12. WiFi ROaMIiNG PlatfOrm .........oceeee e 23
Figure 2-13. hostapd MOOUIES ..........cooiiiieeeece sttt st re e enesre 25
Figure 2-14. netfilter inside LinuX KEMED ..o 26
Figure 2-15. NELFITEN IN TPVA.......o ettt st eeste e e e neenne s 27
Figure 2-16. IPTable SITUCIUIE........ceeiecie ettt sttt ene e nesrenre 36
FIQUrE 2-17. P PACKEL OUL........oiuieeiiiiesieieeee ettt st sre e e 39
Figure 2-18. |P Packet Input Processing from The DIiVEN ........ccccovvieeererese e 40
Figure 2-19. [P PaCket [N PrOCESSING ....ocvviveeriereerieseeeieesesiesteeseesteseessesseeseessessessesseesssssessessesssessessens 41
Figure 2-20. Packet fOrWarding...........cuoerieiriiiererieesese et sre st see e 42
Figure 2-21. Filtering during FOrWaIding .........ccocveeeeeeereseseeeesee e sseeseesee e ee e ste e eeeneeseens 43
Figure 2-22. Operation of ipset COMMANGS.........cccveoeeriererieeeeere e e sne s 45
Figure 2-23. Chains of Nf_SOCKOPL OPS......cceiieieii ettt enea 46
Figure 2-24. The Process of Creating A NEW SEL ........ccoov et 47
Figure 3-1. SImplified AP ATChItECIUIE........ceeeeieee e 55
Figure 3-2. Hierarchical APATCHITECIUIE. .........ccveiiiiecieeee sttt sne 56
Figure 3-3. Stand-Alone EAP Switch Model [51] ...c.vovrereirirereeeesereeese s 57
Figure 3-4. Pass-Through EAP SWitch MOdel [51] ....ccoveveriieeeere e 58
Figure 3-5. EAP Stand-Alone Authenticator State Maching..........ocveceveiececceecece e 59
Figure 3-6. EAP Backend Authenticator State€ MaChine...........coceveeeireneene e 60
Figure 3-7. EAP Full Authenticator State Maching - L........c.covvvieeieerereseeeereese e 63
Figure 3-8. EAP Full Authenticator State Maching - 2..........covvvieeieerene e 64
Figure 3-9. RADIUS Client on ReCelVINg AAA FramES.......ccoveeeerenereese e 75
Figure 3-10. RADIUS Client on Sending AAA FrameS ........ccceoevevevereene e 86
Figure 3-11. EAP and EAPOL SMs0on Sending AAA FramesS........ccvecvevereneseeieeneseseseeseeseesnens 87
Figure 3-12. SM Relationship on RADIUS Sending & ReCEIVING........cccovveeeveeieneieceerese s 91
Figure 3-13. Interface between EAP & EAPOL SMS......co i 92
Figure 3-14. EAP & EAPOL SMson Transmitting EAP REQUESES .........ccoevevereeiese e 97
Figure 3-15. Port TIMers State MaChine ........c.ccviiiuieieeiecieseceestese ettt sre 99
Figure 3-20. Reauthentication Timer State Machine............coeoeiriienecn e 103
Figure 3-21. Backend Authentication State MaChing...........ccocvevevevienenene e 104
Figure 3-22. Controlled Directions State Machine ...........cceeeeeeve e 105
FIigure 3-23. EAPOL RECEIVES .......ccciiiieeeierieieeete sttt sttt st se et st saenesseseeneeneens 107
Figure 3-24. wpa_driver_hostap_ops for [Nitialization...........cccccovovvereeeennsieneceee e 108
Figure 3-25. EAPOL SENUES .......oceieeeeie ettt te sttt st st e e stesresseensesresnesnaeneeseenes 109
Figure 3-26. After pOrtStatuS ChangE .....ccoeiiirierieeririee et 115



List of Tables

Table 2-1. Types of IEEE 802.11 MAC FraIMES.......cccccveieieiesesieseesie e steseesaeste e sseesaessessesseeneenens 8
Table 2-2. Type and Subtype of Frame COntrol ............ccoceeveiiiieieie s 10
Table 2-3. TODS and FrOMDS........c.oooui ettt st st be et s be s re e resne e 10
TablE 2-4. DUIATON / 1D ...ttt bbb bbbt 11
Table 2-5. Meaning of Addresses According to To/ FromDS.........ccocveveveiececeecece e 12
TADIE 2-6. EAP TYPES....cueite ittt sttt sttt st sttt sttt st b et s sbe s be st e st ebesbeseeneeneneeneenens 15
Table 2-7. RADIUS attributes and their corresponding type NUMDEY ..........cccoveeeerenenceereneneenns 21
TADIE 2-8: IPVA NOOKS ...ttt bbbttt b e bbbt b e e 27
Table 2-9: NEtfilter FEIUIM COUBS .......coi et 28
Table 2-10. IPTABLE DEfiNItIONS ......c.coueiriiieirieiereierer et 33
Table 2-11. IPTABLE OPEIraliONS........cccueiieieriieeerieseseeseestestesseeeessessessesseessesssssesssessessessesssessessens 33
Table 3-1. SM Comparison between Stand-Alone and Full Authenticator ..........ccccoveveeeveeiecienen, 65
Table 3-2. EAP Full Authenticator States under Pass-Through Mode..........cccoovreerienineccreneen. 66
Table 3-3. Long Term Variall€S........ccv ittt snenne s 67
Table 3-4. Short TErM Vari@hl€S...........ooeeeeeeeee et s 67
Table 3-12. Parameters fOr POrTSIIUS.........coireeiririreere e s 111

\Y



List of Acronyms and Abbreviations

List of Acronymsand Abbreviations

AID
AP
BSS
BSSID
CFP
DHCP
DS
EAP
EAPOL
ESS
IANA
IAPP
IBSS
ISP
MAC
Mbps
MPDU
NAS
PACP
PAE
PHY
PPP
RTS
SSID
STA
UDP
VolP
WEP
WISP
WLAN
WPA

association identifier

access point

Basic service set, including STA and AP
6 byteslong, MAC of AP in infrastructure mode; random number in IBSS
contention-free period

dynamic host configuration protocol
distribution system

extensible authentication protocol
EAPover LAN

extended service set, including several BSSs
Internet Assigned Numbers Authority
Inter-Access Point Protocol

independent BSS

inteternet service provider

media access control

million bits per second

MAC Protocol Data Unit

network access server

Port access contral protocol

Port access entity

physical layer

point-to-point protocol

Request to Send

service set ID, an arbitrary string asthe AP's name
station

user datagram protocol

voice over IP

wire equivalent privacy

wireless inteternet service provider
wireless local area network

Wi-Fi Protected Access

Vii



viii



I ntroduction

1 Introduction

Wi-Fi™ technology has been incoroporated by manufacturers in various mobile
devices, such as laptops, personal digital appliances, and emerging WiFi phones, but
users of this technology face amajor practical hurdle - roaming’. After getting used to
communicating through these devices inside aroom, typically only afew meters from
the access point, the users find that they can not easily go beyond this “room” (or
nearby locations) because to do so the users will have to authenticate with a new
access points, resulting in akind of wireless “zo0”. Hence manufacturers are trying to
enable users to roam between different Wi-Fi access points (APs).

Seamless Wi-Fi roaming is promising since it is beneficial for all. End-users want
consistent service experience across hotspots without knowledge of the mechanics of
wireless access. They also want simple and safe login process no matter which
authentication method is used. They may even hope that hotspots from public, home,
or even enterprise can be integrated, so that a temporary, basic but urgent
communication need can be satisfied despite the different service providers. On the
other hand, for service providers and enterprises, Wi-Fi roaming could attract more
customers and, as aresult, generate new revenue streams. They also want to ensure an
accurate and timely billing system. Network operators may even hope roaming users
can automatcially utilize the most appropriate network - so as to reduce traffic jam
and network device redundency while maximizing user satisfaction.

Unfortunately, realizing such benefits in today’s wireless local area networks
(WLANS) is generally not possible due to the lack of roaming support. For example, a
voice over |P (VolP) user will not experience a seamless handover as they move from
one WLAN subnet to another, because of the long delay waiting for authentication —
during which no traffic other than authentication data is permitted. This is because
current authentication mechanism (using IEEE 802.1X [33] or IEEE 802.11i) is a
binary authentication process. Here “binary” means that authentication must be
completed before the user is able to send any non-authentication related traffic.

To elimiate this bottleneck, Professor Gerald Q. Maguire Jr., proposed a thesis
project to take a deep look into the IEEE 802.1X protocol, study the actual need for
authentication from the perspectives of both customers and service providers, and
consider existing AP products and roaming solutions; then propose an innovative
solution that allows both user authentication and normal network service to proceed
in parallel during handover, thus leading to seamless Wi-Fi roaming. This thesis
project is part of alarger project on non-binary alternatives to authentication, which
consists of three sub-projects: (1) a new authenticator which utilizes traffic shaping to
limit the amount of traffic from the supplicant — both before and after the supplicant is
authenticated (the subject of this thesis), (2) to add bandwidth specifications to the
responses from the authentication server [9], and (3) a new supplicant which can take
advantage of the flexibility offered by this new authenticator and the ability to ask for
different amounts of bandwidth (or potentially other parameters to be applied by the
traffic shaper) [10].

1 Wi-Fi is a trademark of the Wi-Fi Alliance, while initially focused on interoperability of IEEE
802.11b devices the group has expanded their scope in recent years..
1



Background

This chapter first gives an overview of the architecture of a common wireless
access point. Then it introduces our design and summaries the problems to be
addressed. Solutions to these problems will be covered in detail in the remainder of
thisthesis.

1.1 Introduction to the Authenticator and our model

An authenticator is traditionally used by a network operator to decide if a
supplicant should be allowed to utilize the network’s resources. Figure 1-1 shows an
example of a traditional binary authentication mechanism, where the authenticator
controls a switch that initially connects the supplicant only to the authenticator.
Figure 1-2 shows the proposed non-binary authentication mechanism. In this
approach the binary switch is replaced by a traffic shaper. A continuous traffic
shaping process replaces the binary authentication process, while at the same time
maintaining traffic flows and redirecting authenti cation messages to the authenticator.

Supplicant - = Swyitch [

Authenticator

N
X

Suthentication server

Figure 1-1: Traditional binary authentication

; - N B (=11 [ R - netwok
Supplicant =4 ™ shaper

f !
¥

Authenticatar

%
A

Authentication server

Figure 1-2. Non-binary authentication using a traffic shaper

For the remaineder of this thesis, unless explicitly stated, we assume that the
network operator is ainternet service provider. (1SP).
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Unlike a binary switch, the traffic shaper allows traffic to continue to flow through
an AP. Thus customers can carry on their business during a handover. However, end
users crossing zones (cells operated by different operators) should be reminded that
they are in a new Wi-Fi zone, therefore authentication and payment should be made.
To achieve that, traffic shaping can limit the bandwidth of unauthenticated users, thus
affect the degree of communication comfort. Ideally, the AP should be able to apply a
blacklist and ban malicious users. As with existing APs, rather than doing
authentication on its own, APs rely on remote authentication servers (RADIUS
Server) for authentication service and relay al authentication messages between the
authentication servers and the clients.

Although it looks like a simple change from a binary switch to a traffic shaper,
things are not as simple as they seem. The new architecture must accommodate the
following requirements: (1) allow the network to provide continuous services to
supplicants (clients requesting authentication), so that customers will not have their
traffic cut-off during a handover; (2) be acceptable to existing supplicant devices and
authentication servers, so that both customers and service providers can preserve their
investment and avoid a requirement for new software installation; (3) be compatible
with the most commonly used authentication protocol IEEE 802.1X; and (4) leverage
existing APs by upgrading software rather than instaling new hardware. The
following chapters will explain how to achieve these goalsin a cost-effective manner.

1.2 Problem Statement

In addition to forwarding traffic (the basic function of an AP), the other function
of atraditional AP is to authenticate end users. Thus traditionally the AP blocks all
traffic to/from an unauthenticated user, except for traffic related to the authentication
process. |[EEE 802.1X defines a port based binary authentication scheme. Support for
IEEE 802.1X is often implemented in the AP's software. Therefore, one way to
implement the proposed new AP isto modify atraditional AP s software.

A traditional AP's work flow can be summaried as. (1) discover a new wireless
device trying to access the network; (2) cut off the supplicant’s incoming and
outgoing traffic; (3) trigger a new authentication process whose traffic will flow
between the supplicant, the authenticator, and the authentication server; and (4) if the
supplicant is successfully authenticated then allow traffic to flow to-from it, otherwise
block this device's traffic. In the case of our non-binary authentication AP, no traffic
cut-off will occur, which makes for seamless handovers. To avoid traffic becoming
free for al devices, we need to encourage devices to authenticate. How can we
ensure that the AP only provides access to legitimate users (generaly the ISP's
subscribers)? Thisis achieved by using an intelligent traffic shaper. This traffic shaper
initially limits the bandwidth of the new device to very low throughput. The device
now has the possibility to send/receive traffic in paralel with its attempt to
authenitcate itself. If the authentication is successful then the traffic shaper is
informed to increase the throughput to this device (or perhaps to decrease the delay
which this device's traffic has been experiencing). If the authenitcation was not
successful (including authentication failure and free communication timed out), the
traffic shaper will cut off the unauthorized user’s traffic and block the traffic until it
has successfully authenticated itself.
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The diffrence in behavior between the proposed AP and a traditional AP is similar
to the difference between purchasers using a credit card versus using a debit card. In
the case of a purchase with a credit card, the credit card issuer guarantees that the
merchant will be paid and bills the customer on a monthly basis for al of their
consumption with this credit card; while in the case of a purchase with a debit card the
customer’s account is debited for the amount of the expenses at the time of the
procurement. Just as the credit card issuer takes some risk that their customers may
not pay their bill, the network operator takes a risk with the new AP that the users will
use the AP to access the network with no intention of paying. A credit card issuer
keeps track of customers who do not pay and does not give them credit in the future
or charges them much higher for their outstanding debt.

Considering the above features of the new AP, we can further specify the
problems that need to be solved from atechnical point of view:

1. How to discover a new supplicant and tell this device's traffic from other
traffic?

2. When and how to trigger a new authentication process?
3. How to distinguish authentication messages from other traffic?

4. How to relay the authentication packets between the supplicant and the
authentication server?

5. How to define the limited time period before requiring authentication?

6. What is the risk of allowing traffic before successful authentication and how
to mitigate thisrisk?

Keeping in mind the above technical problems, this thesis demonstrates a feasible
way to seamlessy perform Wi-Fi roaming, while limiting the traffic of
unauthenitcated devices. We assume that these limitations are enforced by a traffic
shaper for business or policy reasons.

1.3 Limitations

This thesis project seeks to design an architecture for a non-binary wireless access
authentication mechanism, to analyze potential technical barriers, and to propose
solutions.

For the purpose of this thesis, the authenticator is only concerned with controlling
the ability of a supplicant to access a network — potentially limiting this supplicant to
a specific maximum bandwidth. Therefore, the thesis will explicitly consider the case
of a WLAN supplicant associating with a WLAN access point. Additionally, the
thesis assumes that a RADIUS server will be used as the authentication server.

These limitations should not be overly constraining — thus changing to a
DIAMETER [47] or other authentication server should not require significant
changes, but such changes are explicitly outside the scope of this thesis. Similarly
applying this new authenticator to the case of an authenticator for a port controlled
Ethernet switch should also not require a major effort, but also lies outside the scope
of thisthesis.
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1.4 Organization of this thesis

Chapter Error! Reference source not found.will provide the background for
both the hardware and software that will be necessary for understanding the rest of the
thesis. Chapter 2 will also lay the foundation for the system architecture and give the
design reason of the proposed solution, why we choose a specific hardware / software
solution, how the non-binary authentication should be performed, and what further
modifications should be made. Chapter 3 presents the proposed design. Chapter 4
4describes the evaluation of a prototype of the proposed solution. This is followed by
a chapter that gives some conclusions and suggests future work. The appendixes
contain the relevant source code used in Chapter 3.
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2 Background

This chapter provides the reader with the background information necessary to
understand the rest of the thesis. It begins by introducing the relevant |EEE standards.
The RADIUS authentication, authorization, and accounting protocol will also be
introduced and the message sequences required for a device to authenticate itself and
receive authorization from a wireless local area network (WLAN) access point (AP)
will be described in detail. Following this the hostapd module and the LINUX
network filtering mechanisms will be described. This module and these filtering
mechanisms will later be used as the basis for the solution proposed by this thesis to
implement non-binary authentication.

2.1 IEEE 802.11 and 802.1X standards

The IEEE 802 family of standards deal with Local Area Network (LAN) and
metropolitan area network communications, including the Ethernet family, token ring,
wireless LANs (WLANS), wireless personal area networks, wireless metropolitan area
network, bridging, and virtual bridged LANS[29]. These standards concern the data
link layer and physical layer. Among these standards, those for WLAN were
developed by the |IEEE 802.11 working group.

The first WLAN standard (referred to as a base standard) IEEE 802.11 was
ratified in 1997. It defined the physical layer (abbreviated PHY), the data link layer
protocol, and frame format for WLAN. Many amendments came afterwards, aiming
at higher datarates or enhanced security mechanisms. |EEE 802.11a[30] worksin the
5 GHz band and offers data rates of up to 54 million bits per second (Mbps). IEEE
802.11b [31] worksin 2.4 GHz band and offers data rates of up to 11 Mbps. As IEEE
802.11a and IEEE 802.11b use different portions of the radio spectrum, they are not
compatible. Thus a new standard 802.11g [32] was defined with the high data rates of
|IEEE 802.11a, but backward compatibility with 802.11b and operating in the same
frequency band as |EEE 802.11b. In order to merge these amendments (802.11a, b, d,
e, g, h, i, ]) with the base standard, IEEE 802.11-2007 [5] was approved on March 8,
2007. The most recent amendment is |EEE 802.11n published in October 2009, which
adds multiple-input multiple-output (MIMO) and some other new features. Error!
Refer ence sour ce not found. shows the IEEE 802.11 protocol stack.

Upper
layers
Data
Logical Link Control link
layer
MAC
sublayer

802.11 | 802.11 | 802.11 | 802.11a | 802.11b | 802.11g | Physica
Infrared | FHSS | DSSS | OFDM | HRDSSS | OFDM | layer

Figure 2-1. |EEE 802.11 Protocol Sack
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For security, |IEEE 802.11 defined Wired Equivalent Privacy (WEP).
Unfortunately, this scheme turned out to be vulnerable to malicious tampering with
messages and to replay attacks [11, 12, 23, 24]. Thus 802.1X was proposed for
stronger security.

We assume that our mobile devices communicate according to the IEEE 802.11
standard. When the device enters a cell in a new domain it will perform conditional
authentication following IEEE 802.1X. To understand the details of the handover
procedure (for a device to change from using one cell to access the network to using
another cell to access the network) it is important for us to be familiar with the details
of these two protocaols.

2.1.1 IEEE 802.11 Concepts

|EEE 802.11 [18] was defined to be a “wireless Ethernet”?. The standard refers to
wireless stations (STAS) as the devices that utilize a IEEE 802.11 interface to
communicate. The standard defines two modes of communication: a infrastructure
mode and an ad hoc mode. In infrastructure mode each STA communicates via an
access point (AP). Multiple APs can be connected into a LAN and interconnected
with other networks. In ad hoc mode the STAs communicate directly between
themselves. In all cases each IEEE 802.11 device competes for access to the media
using a media access control (MAC) protocol. As we are only concerned with
infrastructure mode, we will not consider ad hoc mode further.

We focus on APs that have an |EEE 802.11 interface and an |EEE 802.3 interface. These
APs act as a bridge when forwarding packets from one interface to the other. The LAN
interface receives and transmits |EEE 802.3 frames, while the wireless interface receives and
transmits IEEE 802.11 frames. All protocols and data from higher layers are carried within
the frame’s body. In order to understand the details of the non-binary authentication we have
to consider the interworking between these two kinds of frames in order to support the IEEE
802.1X authentication process.

Table 2-1 shows three different types of MAC frames in IEEE 802.11. Data frames are
used for data transmission (i.e., sending traffic for higher layer protocols). Control frames are
used for media access control. Management frames transmit management information, but are
not forwarded to upper layers. Figure 2-2 shows the 802.11 frame format. As can be seen, the
802.11 frame format is more complicated than the |EEE 802.3 frame format.

Table 2-1. Types of |IEEE 802.11 MAC Frames

Control Frame RTS, CTS, ACK

Data Frame

Management Frame Beacon

Probe Reguest, Probe Response

Assoc Request, Assoc Response

Reassoc Request, Reassoc Response

Disassociation

Authentication

Deauthentication

Announcement traffic indication frame

2 Ethernetisawired LAN physical and MAC layer specification that was the precusor to |EEE 802.3.
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Figure 2-2. |IEEE 802.11 Frame Format [19]

Considering the various fields shown in Figure 2-2 in a top to bottom order:

Preamble is PHY dependent, and includes to sub-fields: Synch and SFD. Synch
is 80-hit long and is used by the PHY circuitry to select the appropriate antenna (if
diversity is used), for steady-state frequency offset correction, and synchronization
with the received packet. The Start Frame Delimiter (SFD) consists of a 16-bit binary
pattern 0000 1100 1011 1101 which indicates the start of the PLCP header [34].

PL CP header is always transmitted at 1 Mbit/s and contains information used by
the PHY layer to decode the frame. It consists of PLCP_PDU Length Word, PLCP
Signaling Field, and a Header Error Check Field. PLCP_PDU Length Word
indicates the number of bytes in the frame. The PLCP Signaling Field indicates the
supported date rate, encoded in 0.5 MBps increments from 1 Mbit/s to 54 Mbit/s. The
Header Error Check Field isa 16 Bit CRC error detection field [34].

Considering the MAC layer protocol data unit (PDU), the first field in the header
is the frame control field. It consists of two bytes. The first two bits indicate the
Protocol Version with a value of 00. Type and Subtype fields work together to
specify the frame type. Table 2-2 shows the meaning on the various 6 bit
combinations of Type and Subtype.
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Table 2-2. Type and Subtype of Frame Control [34]

Type Value Subtype Value
b3 b2 Type Description b7 b6 b5 b4 Subtype Description
00 M anagement 0000 Association Request
00 M anagement 0001 Association Response
00 M anagement 0010 Reassociation Request
00 M anagement 0011 Reassociation Response
00 M anagement 0100 Probe Request
00 M anagement 0101 Probe Response
00 M anagement 0110- 0111 | Reserved
00 Management 1000 Beacon
00 M anagement 1001 ATIM
00 M anagement 1010 Disassociation
00 Management 1011 Authentication
00 M anagement 1100 Deauthentication
00 Management 1101..1111 Reserved
01 Control 0000..1001 Reserved
01 Control 1010 PS-Poll
01 Control 1011 RTS
01 Control 1100 CTS
01 Control 1101 ACK
01 Control 1110 CF End
01 Control 1111 CF End + CF-ACK
10 Data 0000 Data
10 Data 0001 Data+ CF-Ack
10 Data 0010 Data + CF-Poll
10 Data 0011 Data + CF-Ack +CF-Pall
10 Data 0100 Null Function (no data)
10 Data 0101 CF-Ack (no data)
10 Data 0110 CF-Poll (no data)
10 Data 0111 CF-Ack + CF-Poll (no data)
10 Data 1000..1111 Reserved
11 Reserved 0000..1111 Reserved

ToDS is set to 1 if the frame is addressed to the AP for forwarding to the
distribution system (DS), including the case when the destination station is in the
same cell, i.e., within the Basic service set (BSS), but is not the AP itself. The bit is
set to O in al other frames. FromDS is set to 1 when the frame is coming from the
DS. Table 2-3 illustrates the 4 possible combinations of ToDS and FromDS with their
corresponding meaning.

Table 2-3. ToDS and FromDS

ToDS FromDS Meaning
0 0 Data transmitted between two stations within the same BSS
1 0 Datasentto DS
0 1 Datareceived from DS
1 1 X\Vliareless distribution system frame sent from one AP to other
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More (Fragments) Flag is set to 1 when there are additional fragments belonging
to the same frame following the current fragment. Retry is set to 1 indicating that this
fragment is a retransmission of a previously fragment in order for the receiver to
recognize duplicate transmissions that may occur when an acknowledgement packet is
lost. Power Management indicates the Power Management mode that the station will
be in after the transmission of this frame. This is used when the station changes from
Power-Save to Active or vice versa; 1 means the station will operate in power-save
mode and 0 means active. All frames from an AP have a power management value
equal to O; asthe AP will remain active at all times. More Data is used by the AP to
notify a STA which is operating in power-save mode that there are more frames
buffered for transmission to this station. Given this information a STA may continue
polling the AP for these buffered packets or the STA may to change to active mode.
The WEP flag indicates if the frame body was encrypted by the WEP algorithm.
Order indicates if this frame is being sent using the Strictly-Ordered service class.
The Strictly-Ordered Service Class is defined for users that cannot accept a change of
ordering between unicast frames and multicast frames (ordering of unicast framesto a
specific address is always maintained) [34].

Following the Frame Control field is the Duration / ID field. Thisfield can serve
as an association identifier (AlID) in Power-Save Poll messages for a station operating
in power save to retrieve frames that are buffered for it at the AP. In al other frames,
this field contains a duration value to update the Network Allocation Vector (NAV).
Table 2-4 explains the meaning on bit of the 2 bytes long Duration/ ID.

When bit 15 is zero, bits 14-0 represent the remaining duration of a frame
exchange sequence after the frame in which the duration value is found. This valueis
used to upgrade the NAVs of other stations, preventing a station receiving this field
from beginning a transmission that might cause corruption of the ongoing frame
exchange sequence [35]. During a contention-free period (CFP) Duration / ID’s value
is set to 32768. In PS-Poll frames AID is a 16-hit field that contains an arbitrary
number assigned to the station by the AP when it associates with a BSS. The numeric
value in the least significant 11 bits (bits 0..10) are used by the mobile station to
identify which bit in a traffic indication map [36] information element indicates that
the access point has frames buffered for the mobile station [35].

Table 2-4. Duration / 1D [35]

Bit 15 Bit 14 Bits 13-0 Usage
0 0..32767 Duration (after this frame, calculated in us)
1 0 0 Fixed value (32768) during CFP
1 0 1..16383 Reserved
1 1 0 Reserved
1 1 0..2007 AID in PS-Poll frames
1 1 2008..16383 | Reserved

In Address Fields, aframe may contain up to 4 Addresses depending on the ToDS
and FromDS bits defined in the Control Field. The four possibilities are shown in
Table 2-3.
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Table 2-5. M eaning of Addresses According to To/ FromDS [34]

To DS From DS Addressl Address2  Address3 Address 4
0 0 DA SA BSSID N/A
0 1 DA BSSID SA N/A
1 0 BSSID SA DA N/A
1 1 RA TA DA SA

Address-1 isthe Recipient Address. If ToDS is set, then this is the address of the
AP; if ToDSisnot set, then thisis the address of the end-station.

Address-2 isthe Transmitter Address. If FromDS is set, then this is the address of
the AP; if it isnot set, then it is the address of the Station.

Address-3 isin most cases the remaining, missing address. If FromDS is set to 1,
then this is the original source Address; if ToDS is set, then this is the destination
address.

Address-4 isused in the special case where awireless wistribution system is used,
and the frame is being transmitted from one AP to another, in this case both the ToDS
and FromDS bits are set, so both the origina destination and the origina source
Addresses are missing.

The Sequence Control field, located between Address-3 and Address-4, is used to
indicate the order of different fragments belonging to the same frame, and to
recognize duplicate packets. It consists of two subfields: Fragment Number and
Sequence Number, which indicate the frame and the number of the fragment in the
frame.

The last part of the MAC PDU, following the payload, is CRC. This contains a
32-hit field used as a Cyclic Redundancy Check.

Error! Reference source not found. shows the sample payload of Probe Request
and Probe Response.

Probe Request Payload

S s S

Probe Response Payload

H

Figure 2-3: Payloads of Probe Request and Response[19]

A supplicant connecting to an AP needs to perform the following procedures:
1. Scanning

There are two types of scanning: active and passive. In active scanning, the
STA sends a Probe Regest, and AP replies with Probe Resp.onse. In passive
12
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scanning, the STA simply listens to beacon frames.

2. Association

Association only occurs in infrastructure mode and is logically equivalent to
connecting to awired network.

3. Authentication

There are three types of authentication methods. open, shared-key, and |IEEE
802.1X. In the open authentication method the STA and AP exchange an
authentication frame. The shared-key authentication method is based on
WEP. The STA sends an authentication frame, then the AP replies with a
challenge in clear text, to which the STA replies with an encrypted challenge.
The AP decrypts this challenge text and matches it with the original clear
text. If they match, then the AP will send an authentication frame with a
status code of success. The third authentication method is 802.1X, which is
used in Wi-Fi Protected Access (WPA). Figure 2-4 shows the handshaking
progress for WLAN authentication.

__|

Probe Req

_|

A

Probe Resp

\4

Ack

Auth

Ack

Auth

Ack

Assoc Req

Ack

Assoc Resp

Ack

Data

Ack

Figure 2-4. |IEEE 802.11 handshake between AP and STA [19]
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2.1.2 |IEEE 802.11i

Theinitial IEEE 802.11 standard defined WEP to protect wireless networks. WEP
uses RC4 with 40-bit keys, a 24-bit initialization vector (1V), and CRC32 to protect
against packet forgery [19]. All these choices proved to be insufficient: the key space
istoo small to protect against attacks, RC4 key scheduling isinsufficient, the IV space
is too small and IV reuse makes attacks easier, there is no replay protection, and
non-keyed authentication does not protect against bit flipping packet data. [23, 24, 25]

Because the security framework of IEEE 802.11 proved to be insecure, Task
group | (Security) of the IEEE 802.11 working group [21] worked to address the
flaws. The result was the IEEE 802.11i amendment to the IEEE 802.11 standard. This
amendment was approved in June 2004 and published in July 2004.

Wi-Fi Alliance [22] adopted the 3.0 draft version of IEEE 802.11i in order to
quickly establish a subset of the proposed security improvements. This subset is
called Wi-Fi Protected Access (WPA). WPA capability is a mandatorily requirement
for the interoperability testing and certification done by the Wi-Fi Alliance. WPA
uses the Tempora Key Integrity Protocol (TKIP) to replace WEP. TKIP was selected
as a compromise between strong security and the requirement by many vendors to be
usable on existing hardware [19]. WPA uses RC4 for encryption, but with per-packet
RC4 keys. Moreover, it adds replay protection and keyed packet authentication
mechanism, based upon a message integrity check.

In WPA keys can be managed in two different manners: using pre-shared keys
(called *WPA-Personal’) or by using an external authentication server (e.g., RADIUS)
and the Extensible Authentication Protocol (EAP). The latter method, called
WPA-Enterprise, is used by IEEE 802.1X. The purpose of both methods are the same:
to generate a master session key for the AP and supplicant.

WPA uses a 4-Way Handshake and a Group Key Handshake to generate and
exchange encryption keys between the authenticator and supplicant, for unicast and
multicast traffic respectively. Both handshakes verify that both the authenticator and
the supplicant know the master session key. These handshakes are independent of the
selected key management mechanism, thus they is only one method for generating
master session key changes [19].

After the final version of IEEE 802.11i was adopted, the Wi-Fi Alliance
introduced a new version of WPA called WPA2. 802.1X serves primarily in this new
standard. The 802.1X-2001[26] is called "Port-based network access control protocol”,
because it makes use of point-to-point connection characteristics of IEEE 802 LAN,
in which context the supplicant has a single point of attachment to the LAN
infrastructure. By enforcing authenticating and authorizing over that port, it can
prevent access from illegitimate users.

2.1.3 EAP

The Extensible Authentication Protocol (EAP)[53] is briefly reviewed before
introducing 802.1X details in the next subsection.

The point-to-point protocol (PPP) was widely used for dial-up Internet access.
PPP performs authentication at Layer 2 before establishing any network layer. PPP's
authentication methods, such as PAP and CHAP, had many limitations in terms of
flexibility and security. Because most corporate networks want better access security
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than offered by a simple username and password scheme, EAP was designed. EAP
provides a generalized framework for various authentication methods by establishing
a tunnel between the user and the authentication server. In the case of PPP, EAP
operates inside PPP's authentication protocol. EAP was introducted to avoid
proprietary authentication systems and enables authentication schemes ranging from
passwords to challenge-response tokens and public key infrastructure certificates.
Some popular EAP authentication mechanisms are listed in Table 2-6.

Table 2-6. EAP Types (adapted from [27] )

Dynamic
Server Supplicant key
Authentication Authentication  delivery Risks
EAP-MD5 None Password hash No Man-in-the-middle
attacks (MITM),
session hijacking
LEAP Password hash | Password hash No | dentity exposed,
directory attack
EAP-TLS Public key Public Key Yes | dentity exposed
(Certificate) (either a
certificate or a
smart card)
EAP-TTLS Public key CHAP, PAP, Yes MITM
(Certificate) MS-CHAP
(v2), EAP
PEAP Public key Any EAP Yes MITM; the
(Certificate) identity is hidden
in pahse2, but
potentially
exposed in phase 1

EAP is a very simple protocol with two message frames (Request or Response),
four message types (request, response, success, and failure), and an extensible
choreography. Figure 2-5 shows the EAP frame format. The Code field is one byte
long and encodes the message type: (1) Request, (2) Response, (3) Success, and (4)
Failure. The one byte identifier field is used to match requires and responses. The 16
bit length field indicates the total length of the EAP packet, and the data portion is a
function of the method.
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Byte offset O 1 2 4

Code Identifier Length Data

Figure 2-5. EAP Frame Format

EAP defines an EAP configuration negotiation packet. In this packet the data field
contains a one byte Type field with the value 3, a Length field with avalue of 4, and a
two byte Authentication Protocol field with the value 0xC227[28].

EAP request and response packets (with Code values of 1 and 2 respectively),
have a data field that contains a one byte Type field and data. The length of the data
depends upon the value in the Type field. The EAP packet type values are assigned by
the Internet Assigned Numbers Authority (IANA). Success and failure packets are a
fixed 4 byteslong (hence their length field contains the value 4).

Figure 2-6 shows the EAP message exchange, which is similar to the IEEE
802.1X message exchange due to the fact that EAP is the basis for the IEEE 802.1X
protocol. EAP starts after the supplicant has data and link layer connectivity (Step 0 in
the figure), The link layer association process is covered in Section 2.2 Roaming. It is
not specified who should start EAP first. Either the authenticator immediately detects
the newly associated supplicant and sends out EAP-Request, or the client sends an
EAPOL-Start message to the AP at first. In a word, EAPOL-Start is optiona (as
shown in the figure). It isimportant to note that there is no “EAP-start” packet in EAP.
802.1X does have an EAPOL-Start pakcet which is sent from the supplicant while
RADIUS aso has an EAP-Start message which is sent from the RADIUS client [4].
One thing we need to do is to take EAP messages out of the 802.11 frames and
repackage them into Radius frames, vice versa.
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e -

0 Establish Data Link

3

Success Message Yes

Failure Message No

Figure 2-6. EAP M essage Exchange Framework [28]

2.1.4 IEEE 802.1X Authentication on Wireless LANs

As mentioned in the last section, EAP contains an extensible choreography, which
facilitates further RFCs defining EAP over various authentication processes, such as
EAP-over-LDAP, EAP-SIM, EAP-over-GPRS, and EAP-over-802 (also know as
EAP over LAN). Note that EAP-over-802 is the IEEE 802.1X specification. |EEE
802.1X describes port-based access models, while EAP adds the authentication
mechanisms [28].

IEEE 802.1X defines a context (in terms of a port and supplicant), state machines,
and the EAP over LAN (EAPOL) protocol. Details of them are given below. Actualy,
IEEE 802.1X simply passes EAP over a wired or wireless LAN and defines an
association between a station and an access point. The association acts as a logical
port for the purpose of interpreting the IEEE 802.1X standard. WLAN cards (or their
software drivers) are supposed to support the IEEE 802.1X state engine, which
requires that the IEEE 802.11 association must complete before the IEEE 802.1X
negotiation begins. Since the IEEE 802.1X state machine requires an active link,
successful exchange of Association Request and Association Response frames is
reported to the IEEE 802.1X state machine as the link layer becomes active. The
reason we call IEEE 802.1X a binary authentication is because the AP must drop all

17



Background

non-802.1X traffic to and from the port (STA) prior to its successful IEEE 802.1X
authentication. Once the authentication succeeds, the AP alows traffic to flow
normally. Figure 2-7 shows the elements in |[EEE 802.1X, specifically the STA, AP,
AAA server (in this case a RADIUS server), port; and the protocols EAP, EAPOL,
and RADIUS. Error! Reference source not found. shows 802.1X message
exchanging process.

|
|

|
: STA EAPOL AP RADIUS RADIUS server !
| |
) |
) |
) |
| |
) |
) |
) |

) ) Authentication
Supplicant Authenticator server

Figure 2-7. Elementsin 802.1X (Adapted from [19] )

EAP-Response: Identity (forwarding)

A

(forwarding) EAP-Request: Challenge

EAP-Response: Challenge answer (forwarding)

\ 4

EAP-Success/ Failure Accept / Reject

Figure 2-8. IEEE 802.1X M essage Exchange Framework [37]

A supplicant (running on a STA), who wishes to access the WLAN's service, is
responsible for replying to any authentication requests from the authenticator in order
to establish itsidentity.

A portisaphysical attachment point where the supplicant connects to the LAN. In
the case of a wired network this is frequently a multiport switch or in the case of a
wireless LAN itisan AP. In an IEEE 802.11 WLAN, the authenticator manages two
distinct logical ports connected to the wireless interface: oneis a*controlled port” and
the other is an “uncontrolled port”. When aframeis received by the wireless interface
the bridging mechanism inside the AP will either forward the frame to the controlled
port or the uncontrolled port. This forwarding is controlled by the authenticator. When
anew STA first appears its frames are automatically forward to a controlled port —
which delivers the frames to the authenticator. This traffic will cause the authenticator
to challenge the supplicant and forward authentication messages from the supplicant
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to the authentication server. As mentioned above, the authenticator's behavior is
independent of the authentication method. The authenticator needs little memory and
processing power, as most of the processing is done a the supplicant and
authentication server.

|[EEE 802.1X uses EAP to carry authentication messages between the supplicant
and the authentication server. However, EAP was primarily developed for dial-up
connections, thus there is no link layer protocol to carry EAP in an IEEE 802 LAN.
That is why EAPOL was defined. In fact, EAPOL was originally defined for IEEE
802.3 / Ethernet and Token Ring / FDDI links. Since IEEE 802.11 WLAN has the
same basic frame format as IEEE 802.3, EAPOL encapsulation can be handled
directly by a LAN MAC service. Figure 2-9 shows the EAPOL MAC Protocol Data
Unit (MPDU) for Ethernet.

Byte | 1 2 3 4 5 6 7 8 9
0
EAPOL Packet
Ethernet | Protocol | EAPOL Packet EAP | ID Length Data
Type version | Code Body Code (Totad
Length length of
packet)
2 bytes lbyte | 1byte 2 bytes 1 1 2 bytes
byte | byte
0x88 ..0x8E 2 EAP packet

Figure 2-9. EAPin EAPOL MPDU for Ethernet (Adapted from [28])

As stated in section 2.1.3 on page 14, the EAP Code is one byte long and encodes
the message type: (1) Request, (2) Response, (3) Success, and (4) Failure. The
EAPOL Code values are: (1) EAP-Packet, (2) EAPOL-Start, (3) EAPOL-Logoff, (4)
EAPOL-Key, (5 EAPOL-Encapsulated-ASF-Alert, (6..255) reserved. The
EAPOL-Key message can be used to distribute or obtain global key information to /
from attached stations, following successful authentication [38].

2.1.5 RADIUS

A Remote Authentication Dial In User Service (RADIUS) server stores
information about subscribers (the authorized users of a service) in a database,
authenticates them, and provides optional services, such as dynamic virtual LAN
(VLAN) assignment and accounting. In our case, the AP acts as RADIUS client and it
contacts the authentication server to learn if it should provide services to a supplicant.

The RADIUS protocol can be used to provide authentication, authorization, and
accounting (AAA). These services give network administrators an easy way to (1)
identify (authenticate) remote users and control which users can access the network;
(2) define what each user can do by controlling access to network resources
(authorization); and (3) keep track of what resources each user consumes in order to
bill them for services (accounting) [39].
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RADIUS operates at the application layer in the TCP/IP protocol suite. The
RADIUS protocol defines how to exchange information between a RADIUS client
and a RADIUS server [16]. RADIUS uses UDP to transport its messages, using UDP
port 1812 for RADIUS authentication messages and port 1813 for RADIUS
accounting messages. Figure 2-10 shows the RADIUS message format.

0 7 15 31

Code | |dentifier | Length

Authenticator

Figure 2-10. Radius Frame Format (Adapted from [9])

The Code field is 8 bits long. This field contains one of the following codes:
(1) Access-Request; (2) Access-Access, (3) Access-Relect; (4) Accounting-Request;
(5) Accounting-Responsg; (11) Access-Challenge; (12) Status-Server;
(13) Status-Client; and (255) Reserved.

The Identifier field is 1 byte long. The Identifier value is used to match a request
with its corresponding response. The value in a response is equal to the value in
request. The identifier value is unchanged in the case of aretransmission [41].

The Length field is 2 bytes long and indicates the entire packet length.

The Authenticator field is sixteen bytes in length and contains the information that
the RADIUS client and server use to authenticate each other. There are two kinds of
authenticators: Request and Response [41]. For a Request the Authenticator value is
randomly generated. A Reply isaMD5 digest of the reply message appended with the
secret. For details of the RADIUS protocol see [54].

One or more RADIUS attributes are contained in the Attributes section, which
carry specific authentication, authorization, and configuration details. Attribute Type
denotes the type of the attribute. The attribute’ s name is not passed in the packet — just
a number. Attribute Length indicates the length of the attribute field, which must be
three or greater. Attribute Value contains the value of the attribute itself. Thisfield is
required for each attribute presented, even if the value itself is null [43, section 2.5].
Figure 2-11 shows the standard attribute-value pair (AVP) pattern. Table 2-7 shows
the RADIUS Attribute Types.

Type Length Vaue
1..255 >3

Figure 2-11. RADIUSAttribute value pair format (Adapted from section 2.5 of [43])
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Table 2-7. RADIUS attributes and their corresponding type number [3]

Type Attribute Type Attribute
1 | User-Name 2 User-Password
3 | CHAP-Password 4 NAS-IP-Address
5 | NAS-Port 6 Service-Type
7 | Framed-Protocol 8 Framed-IP-Address
9 | Framed-IP-Netmask 10 Framed-Routing
11 | Filter-ID 12 Framed-MTU
13 | Framed-Compression 14 Login-IP-Host
15 | Login-Service 16 Login-TCP-Port
17 | (unassigned) 18 Reply-Message
19 | Callback-Number 20 Callback-ID
21 | (unassigned) 22 Framed-Route
23 | Framed-IPX-Network 24 State
25 | Class 26 Vendor-Specific
27 | Session-Timeout 28 Idle-Timeout
29 | Termination-Action 30 Called-Station-ID
31 | Calling-Station-ID 32 NAS-Identifier
33 | Proxy-State 34 Login-LAT-Service
35 | Login-LAT-Node 36 Login-LAT-Group
37 | Framed-Apple Talk-Link 38 E;flllin ﬁg;@g?&e
39 | Framed-Apple Talk-Zone 40..59 | (reserved for accounting)
60 | CHAP-Challenge 61 NAS-Port-Type
62 | Port-Limit 63 Login-LAT-Port
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2.2 Roaming

Roaming extends connectivity for a subscriber to a network that is different from
the home network [17]. The term originated in GSM, but here we will only be
concerned roaming in the contents of a WLAN handover between two different
authentication domains. There are two requirements for roaming, one is successful
authentication and authorization of a subscriber (and in the background accounting for
this visiting subscriber’s resource usage so that their home network operator can be
billed) and the other to minimize the period of time when the user has no connectivity
due to the handover and AAA delays.

Since the original design of IEEE 802.11 did not consider mobility and security
between networks, protocols such as IEEE 802.1X, 802.11i, 802.11f, and 802.11e
were proposed to meet the increasing demand for WLAN mobility and security. Some
manufacturers and engineers also introduce their own roaming solutions, however
they suffered from various drawbacks such as being incompatible with existing
devices, service degradation due to long authentication times, complicated certificate
management, or highly complex platforms with little flexibility.

For example, one proposal is to implement Wi-Fi roaming using VPNs with client
certificates. This assumes that al the APs are in the same VLAN and are connected to
the outside world through an IPSec gateway. This gateway prevents any
communication between supplicants and the internet until the supplicant has
established an authenticated VPN. However, this proposal suffers from unreliable
certificate management and long authentication times. What is more the requirement
that “al APsarein the same VLAN” limits the scalabity of roaming.

A solution proposed by Deutsche Telecom provides an integrated Wi-Fi roaming
platform (Error! Reference source not found.). Each of the wireless inteternet
service providers (WISP) allow inbound roaming by opening their hotspots up to
subscribers from the other operators and allowing easy access (for example with a
central login page). Each of the internet service providers (I1SPs) permit outbound
roaming to other service providers. This system uses a central hotspot database with a
single AAA Hub connected to a WiFi Roaming Platform. RADIUS mediation
eliminates the need to configure a RADIUS interface per roaming partner [44]. This
roaming solution acts as a pure wholesale positioning partner [44]. It solves
authentication and accounting problems when roaming between different hotspots or
service providers. Compared with the VLAN proposal above, thisis more scalable (as
long as you sign a contract to join their platform). However, their proposal does not
even mention seamless roaming. It simply establishes a monopoly layer in the middie,
which costs a lot but is neither flexible nor necessary for small to medium size
operators (who may only have alimited set of converage areas).
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Figure 2-12. WiFi Roaming Platform [44]

In order to solve these problems, it is critical to make a clear track of the roaming
process and analyze how much latency each step contributes. A norma handover
process based on |EEE 802.11i includes five steps:

1. Discover the targeted AP.
2. Associate with thisAP.

3. AAA conversion: Use IEEE 802.1X to negotiate an authentication scheme
between supplicant and authentication server through the EAP, then carry
out the authentication.

IN

. Link layer security: Provide link layer encryption to protect the traffic
between the client device and the AP. Since al important applications
provide end-to-end encryption, we omit consideration of link level
encryption in thisthesis.

5. ISP selection and QoS: If there are multiple I SPs, the AP has to map traffic to
a specific ISP and potentially provide QoS guarantees. Details of this lie
outside the scope of thisthesis.

Handover latency primarily comes from steps 2 and 3. While this thesis focuses on
minimizing or eliminating delay in step 3, it isimport to pay attention to what is going
on in steps 1 and 2. These two steps have been analyzed in detail in Jon-Olov Vatn's
doctoral disseration [20]. He has shown that the delays due to step 1 and step 2 can be
reduced to a total delay in the order of milliseconds, which is much shorter than the
several seconds delay due to step 3. Because the delay due to the AAA conversion is
so long it has a significant impact on many applications, therefore we need to
markedly reduce this delay — hence reducing this delay is the focus of this thesis
project.
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2.3 hostapd

As mentioned in the beginning, we will leverage existing access points by
upgrading their software. HoStAP [49] is an open source Linux driver for WLAN,
which enables a computer running Linux to act as an access point. It supports normal
station operations in BSS and IBSS. It supports the IEEE 802.11 functions:
authentication and deauthentication, association and disassociation, reassociation, data
transmission, and power saving (PS) mode signaling and frame buffering for PS
stations. The driver aso implements the basic functionality needed to initialize and
configure Prism2-based cards, to send and receive frames, and to gather statistics. The
time critical tasks such as beacon sending and frame acknowledgments are taken care
of by the firmware of Prism2 chipset [49].

On top of this driver is a user space daemon — hostapd. This daemon implements
IEEE 802.11 access point management (authentication / association), an IEEE
802.1X/WPA/WPA2 Aduthenticator, integrated EAP server, RADIUS client, and
RADIUS authentication server [50]. Error! Reference source not found. shows the
hostapd modules. Using a combination of Host AP driver and hostapd daemon we can
support the following features: IEEE 802.1X and dynamic WEP rekeying, RADIUS
Accounting, RADIUS-based ACL for IEEE 802.11 authentication, minimal |APP
(IEEE 802.11f), WPA, and |EEE 802.11i/RSN/WPA2 [49].

With regard to the previous section the firmware and Host AP implement step 1
and step 2; while hostapd implements the functions that an AP needs for step 3:
standard |EEE 802.1X framework, EAPOL support, multiple user authentication, and
data privacy with strong encryption. As we focus on step 3, we will not examine the
firmware or how Host AP operates as a WLAN driver. Additionally, we do not care
about the exact authentication method used in EAP. As indicated earlier this is
primarily a matter between the supplicant and authentication server. Considering the
basic AAA conversion, there are three primary elements: (1) a sender and receiver of
EAPOL on AP s wireless side; (2) aRADIUS client on AP’ s LAN side; and (3) a set
of state machines cooperating with each other to fulfill the logic of IEEE 802.1X. The
solution proposed in Chapter 2will implement these three elements based upon the
hostapd module.
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Figure 2-13. hostapd M odules [50]

2.4 Netfilter

The first problem in our design is how to acquire network packets without
duplicating the logic in the Linux kernel. Fortunately the netfilter [15] subsytem in the
kernel offers a means of getting packets, while minimizing the code that we need to
write.

2.4.1 Netfilter Framework

Netfilter is a structured subsystem in Linux kernel with the ability to add code that
will be invoked when packets reach various stages of processing the the Linux
kernel’ s networking code. This functionality has been utilized in the past to implment
a wide variety of network services, such as packet filtering, network address
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translation (NAT), and connection tracking. The netfilter framework is designed to be
highly flexible and scalable, alowing new features to be either statically built-in or
dynamically loaded (as loadable modules). Figure 2-14 shows where the netfilter
residesin the Linux network layer.

Application

v

BSD socket kernd

v

INET 1 l

L TCP UDP
I I

IP Layer Netfilter

v

Datalink

v

Network

v

Network card

Figure 2-14. netfilter inside Linux kernel

Although netfilter operations are in the same layer and frequently interact with the

Linux kernel networking code, netfilter function modules are clearly separated from
the Linux kernel 1P layer. The netfilter framework consists of three parts:

26

1. A suit of hooks for each network protocol (5 hooks for 1Pv4), which can be

called when packets pass through them. Note that a hook is a function that
enables other code to request that it be called when the hook is invoked.

2. In order to represent the above hooks, netfilter defines a two-dimensional

list_head array:
struct list_head nf _hooks [NPROTO] [NF_MAX_HOOKS]

As there are thrity-two protocols supported by Linux, the value of
NPROTO is 32 (defined in include/linux/socket.h). Each protocol has a
maximum of NF_MAX_HOOKS hooks (currently 8), but only 5 of them are
used in the 1Pv4 code. Each member of the array contains a link to the
header of a hook for a specific protocol. Therefore, whenever a packet
passes through the network stack, the kernel checks if there is a hook
registered for this protocol in this position, if there is, then this element of
the array contains the address of a function that will be invoked by the hook
(as a cal back) to handle this packet. This packet might be analyzed,
modified, discarded, or even queued for further processing in user space.

The user space program processes the queued packets asynchronously. Thus
the processing of these packets will only occur when the user space program
is scheduled for execution by the scheduler. The user space program can
inspect and modify the packet, and can aso inject the packet back into the
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kernel through the same hook. Thus it will appear that the processing takes
place in the kernel — but without the code actually needing to be executed in
either kernel mode or in kernel address space. This removes many of the
restrictions that would occur if the code would be part of the kernel (such as
the ability to do file 1/O, invoke other programs, etc.)

Figure 2-15 displays the work flow of netfilter in IPv4 as well as the location of
the five hooks. The names of these five hooks and their purpose are listed in Table 2-8.

t |
v
NF_IP_ LOCAL _ NF_IP_ LOCAL_O
T v
Route

Route | NF_IP_ FORWA |

I

NF_IP_PRE_ROUTI NF_IP_POST_ROUTI

*

| v

Figure 2-15. netfilter in IPv4
Table 2-8: | Pv4 hooks
HOOK Aimed Packet Function
NF_IP_PRE_ROUTING Before routing decisions, Source address translation
just into |Player
NF_IP_LOCAL_IN After routing decisions, Incoming packets filtering
destined for this host
NF_IP_FORWARD After routing decisions, transmitting packets filtering
destined for another interface
NF IP LOCAL OUT Sent out by local processes Destination address traslation
NF IP_ POST ROUTING All outbound packets Outgoing packets filtering

The NF_IP_PRE_ROUTING hook is invoked when a sk_buff packet is passed to
the IP stack successfully, that is, after sanity checks. It is called in ip_rcv() in
net/ipv4/ip_input.c:

int ip_rcv (struct sk_buff *skb, struct net_device *dev, struct
packet_type *pt) {

return NF_HOOK (PF_INET, NF_IP_PRE_ROUTING,
skb, skb->dev, NULL, ip_rcv_finish);
}

Then the routing table would decide whether this packet is destined for this host.
If so, before passing it to the upper layer protocols, it has to go through the
NF_IP_LOCAL_IN hook, whichiscaledinip_local_deliver() in net/ipv4/ip_input.c:
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int ip_local_deliver (struct sk_buff *skb) {

return NF_HOOK (PF_INET, NF_TIP_ LOCAIL_IN, skb,
skb->dev, NULL,
ip_local_deliver_finish);

}

Otherwise it would be handled by the NF_IP_FORWARD hook before
forwarding. Thisiscalled in ip_forward() in net/ipv4/ip_input.c:

int ip_forward (struct sk_buff *skb) {

return NF_HOOK (PF_INET, NF_IP_ FORWARD, skb, skb->dev,
dev2, ip_forward_finish);

}

Packets sent by the local host need to pass the NF_IP_LOCAL_OUT HOOK
before further routing decisions. This is caled in ip_build and send pkt() in
net/ipv4/ip_output.c:

int ip_build_and_send_pkt (struct sk_buff *skb, struct sock
*sk, u32 saddr, u32 daddr,
struct ip_options *opt) {

return NF_HOOK (PF_INET, NF_IP_ LOCAL_OUT, skb, NULL,
rt->u.dst.dev,
output_maybe_reroute) ;

}

The last hook al outbound packets will encounter is the
NF_IP_POST ROUTING hook. This is caled in ip finish output() in
net/ipv4/ip_output.c:

__inline_ int ip_finish_output (struct sk_buff *skb) {

return NF_HOOK (PF_INET, NF_IP_ POST ROUTING, skb,
NULL, dev, ip_finish_output2);
}

All of these hooks already exist in the kernel and are ready for use, as long as at
least one function is registered as a call back for each hook. Each registered hook
returns one of the values shown in Table 2-9 as aresullt.

Table 2-9: netfilter return codes[12]

NF_ACCEPT Transmit the packet as usual

NF _DROP Discard the packet

NF _STOLEN Taken over, no more transmission

NF_QUEUE Put the packet into queue, generally for user space

NF REPEAT Call this hook function again

For questions about sk_buff, please refer to sk_buff analysis [8]. For questions
about socket programming, please refer to manual of PF_PACKET [6] and manual of
AF_PACKET [7].
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2.4.2 Hook Operation

One of our key requirements is to do filtering, including redirecting registration
packets, block unauthorized user packets, transmit authorized user packets, and so
forth. Thus we need a more powerful filter, which is client specific, rule specific, and
protocol specific. In order to be client specific, we need access to a AAA server and a
list of local hosts; to be rule specific, we need a more functiona rule table than
iptable; and to be protocol specific, we need to register our own operations for these
hooks. Before we can register an operation, we need to define our own nf_hook_ops
and then call nf_register_hook (). Thisis done as follows:

/* include/linux/netfilter.h */
struct nf_hook_ops {
struct list_head 1list; // link list header
/* user fills in from here down. */
nf_hookfn *hook; // user defined handling function

int pf; // protocol

int hooknum; // hook number

/* hooks are ordered in ascending priority. */
int priority;

Y

As mentioned above that netfilter defines a two-dimensional list_head array to
represent the hooks:

struct list_head nf_hooks [NPROTO] [NF_MAX_HOOKS]

For an operation to attach itself into specific hook, it must know which hook it
wishes to belong to. This is done by referring to the hook’s properties: list_head list,
int pf, and int hooknum. There can be many operations in the form of nf_hook_ops
inserted in the link. The individual hooks are ordered in ascending priority, where the
smaller number, the higher priority:

NF_TIP_PRI_FIRST = INT_MIN,

NF_TIP_PRI_CONNTRACK = -200,
NF_IP_PRI_MANGLE = -150,
NF_IP_PRI_NAT_DST = -100,

NF_IP_PRI_FILTER = O,
NF_IP_PRI_NAT_SRC = 100,
NF_IP_PRI_LAST = INT_MAX,

These priorities show that netfilter first deals with connection track
(CONNTRACK), secondly mangle, thirdly destination address trandation
(NAT_DST), fourthly filter, next source address trandation (NAT_SRC), and any
remaining hooks. At each point, if the operation discards the packet, then the packet is
immediately discarded and does not flow to the following operations. Otherwise the
packet continues to the next operation.

The address of nf_hook ops serves as a parameter of nf_register_hook(), which
returns 0. The following code is from “Hacking the Linux Kernel Network
Stack”[13], which does a simple hook registration that will throw all packets away.
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/* Sample code to install a Netfilter hook function that will
drop all incoming packets. */

#define _ KERNEL_
#define MODULE

#include <linux/module.h>
#include <linux/kernel.h>
#include <linux/netfilter.h>
#include <linux/netfilter_ipv4.h>

/* This is the structure we shall use to register our function
*/
static struct nf_hook_ops nfho;

/* This is the hook function itself */

unsigned int hook_func (unsigned int hooknum,
struct sk_buff **skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn) (struct sk_buff *))

{

return NF_DROP; /* Drop ALL packets */
}

/* Initialisation routine */

int init_module ()

{
/* Fill in our hook structure */
nfho.hook = hook_func; /* Handler function */
nfho.hooknum = NF_IP_PRE_ROUTING; /* First hook for IPv4

*/

nfho.pf = PF_INET;

nfho.priority = NF_IP_PRI_FIRST; /* Make our function
first */

nf_register_hook (&nfho) ;

return 0;

}

/* Cleanup routine */
void cleanup_module ()

{

nf_unregister_hook (&nfho) ;

}

As the above example shows, to define our own filter module, we only need to
define itsinitialization routine, which initiates our own nf_hook_ops by specifying its
properties (hook number, protocol number, and priority), as well as defining its
handler function. To unregister a filter module is also simple, simply call
nf_unregister_hook() with the address of the same nf_hook ops that was used for
registering the hook.
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Now that the connection between an operation and its hook is clear, let us look
into how to pass a packet from the hook to its handler function. We will use the hook
NF_IP_PRE_ROUTING as example. The NF_IP_PRE_ROUTING hook is called in
ip_rcv() in net/ipv4/ip_input.c:

int ip_rcv (struct sk_buff *skb, struct net_device *dev, struct
packet_type *pt) {

return NF_HOOK (PF_INET, NF_IP_PRE_ROUTING, skb, skb->dev,
NULL, ip_rcv_finish);
}

Here a socket buffer (called skb) is passed to the hook at the head of linked list of
NF_IP_PRE_ROUTING hooks and it will be passed all the hooks on this list it is
discarded or finally accepted (this means that it passes to the next stage of processing
as shown in Figure 2-15). An operation, a nf_hook_ops, takes in the packet (by
nf_register_hook) and passes it to its corresponding handler fuction nf_hookfn *
(recall the structure of nf_hook_ops). The prototype for nf_hookfn is given in
linux/netfilter.h as follows:

typedef unsigned int nf_hookfn (unsigned int hooknum,
struct sk_buff **skb,
const struct net_device *in,
const struct net_device *out,
int (*okfn) (struct sk_buff *));

The first argument, hooknum identifies the specific hook. The pointer sk_buff **
points to the packet. Thisisavery complex structure, which will be used frequently in
the following chapters. A packet typically includes a link layer header (Ethernet or
RAW), network layer header (IPv4/6, IPX, RAW), and transport layer header (TCP,
UDP, ICMP, SPX). These headers are organized into the corresponding unions. mac,
nh, and h (for MAC layer header, network header, and transport header). Y ou must
be very cautious when referring to header information. Consider a TCP packet as
example, both the transport header h, and network header nh point to IP header
structures. h->th is equal to nh->iph. Thus if you want to refer to a TCP packet’'s
header, | suggest doing the following:

/* tcphdr is defined in linux/tcp.h */
struct tcphdr *tcpheader;
if (skb->nh.iph->protocol == IPPROTO_TCP)
tcpheader = (struct tcphdr *) (skb->data +
(skb->nh.iph->ihl*4)) ;

The IP header length skb->nh.iph->ihl is 32 bits long, which is 4 chars in length.
Thus, skb->data + (skb->nh.iph->ihl*4) would skip the complete I P header and would
point to the TCP header. The following code explains the unions in sk_buff.
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struct sk_buff {

/* Transport Layer header */
union {
struct tcphdr *th;

unsigned char *raw;
} h;

/* Network Layer header */
union {
struct iphdr *iph;

unsigned char *raw;
} nh;

}
This header structure contains packet header information, while the real data is

inside skb->h.raw and skb->nh.raw, which are "unsigned char *" pointers. That is
why it is necessary to explictly coerce the type into our desired type (struct tcphdr *).

The third argument is of type net_device *in. Thisis used to describe the packet’s
incoming interface and type net _device *out describes the packet's outgoing
interface. Generally, in is only relevant for NF_IP_ PRE ROUTING and
NF_IP_LOCAL_IN hooks; while out is only relevant for NF_IP_LOCAL_OUT and
NF_IP_POST_ROUTING. In the case of ip_rcv only one interface /the incoming
interface) is passed to the hook function. For example, if we want to block packets
coming from ethO, we do this filtering in NF_IP_PRE_ROUTING. If we want to
block packets being send ethl, we do this filtering in NF_IP_POST_ROUTING,
when the destined interface is known after routing decision is made. Within the hook
we will look for packets destined to to the net_device *out corresponding to ethl.
Note that there is no incoming device for local generated packets and there is no
outgoing device for host destined packets. Please refer to chapters 4 and 5 of
“Hacking the Linux Kernel Network Stack”[13] to see how the code exactly works.

2.4.3 RulesTable

In order to abstract those behaviors carried out by each hook, netfilter defines rule
tables and each table is described by a structure ipt_table. The most familiar examples
of table are filter, nat, and mangle, which are the default rule tables in Linux.
Each table can be divided into several chains and each chain utilizes a specific hook.
For example, table filter has three chains and they are for NF_IP_LOCAL_IN,
NF_IP_LOCAL_OUT, and NF_IP_FORWARD. In order to go through the complete
rule collection on a hook we cal the function ipt do table(). The relationship
between netfilter hooks and ipt_table may be confusing, thus the following section
describestheipt_table or IPTABLE in more detail.
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2.5 IPTable

The rules that aLinux user can enter using the iptable command are connected
to tables in netfilter. We will start our examination of the IPTable by asking three
guestions:

1. What isthe relation between rules, tables, and hooks?

2. If we are already able to define filtering rules in nf_hook_ops, then why is it
necessary to build arule table system on top of these hooks?

3. Netfilter hasits own hook functions that packets would go through. However,
IPTABLE introduces its own chains, so how do packets actually get
processed?

You can refer to Iptables Instruction [2] for common questions and answers.

251 ThethreeDefault |P Tables

For the ease of further reference, we put the definition and operations of each of
these three tablesin Table 2-10 and Table 2-11, respectively.

Table 2-10. IPTABL E Definitions

Table Definition Operation L ocation
filter | ipt_table packet filter | struct nf_hook opsipt_opg] netfilter/iptable filter.c
nat | ipt tablenat table ip nat_standalone.c netfilter/ip nat_rule.c
mangle | ipt_table struct nf_hook_opsipt_op9g[] netfilter/iptable_mangle.c
packet _mangler
Table2-11. IPTABLE Operations
table Hook Operation
NF _IP_LOCAL_IN ipt_hook() calls ipt_do_table() to connect to its INPUT
chain
, NF_IP_ LOCAL_FORWARD | ipt_hook() calls ipt do table() to connect to its
filter FORWARD chain
NF_IP_LOCAL_OUT ipt_local_out_hook() calls ipt_do_table() to connect to
its OUTPUT chain

NF_IP_PRE_ROUTING struct nf_hook_ops ip_nat_in_ops -> ip_nat_in() cals
ip_nat_rule_find(); cals ipt_do_table() to connect to its

PREROUTING chain

nat NF_IP_POST_ROUTING struct nf_hook_opsip_nat_out _ops->ip nat_out() calls
ip_nat_rule_find(); cals ipt_do_table() to connect to its

POSTROUTING chain

NF_IP_LOCAL_OUT

NF_IP_PRE _ROUTING ip_route_hook() cals ipt_do_table to coonect to its

PREROUTING chain

NF_IP_ LOCAL_IN ip_route_hook() cals ipt_do_table to coonect to its

INPUT chain
mangle NF_IP_FORWARD ip_route_hook() calls ipt_do table to coonect to its
FORWARD chain
NF_IP_LOCAL_OUT ip_route_hook() calls ipt_do_table to coonect to its
OUTPUT chain

NF_IP_POST ROUTING ip_route_hook() cals ipt_do_table to coonect to its

POSTROUTING chain
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A tableisjust a collection of rules that do similar jobs, such asfiltering. Rules are
actually stored in as a structure ipt_entry. In order to locate the relevant rule
accurately and quickly, al the rules inside a table are put in an array ipt_entry[],
whose length is dynamic. From a user’s perspective, there is a structure ipt_match to
describe the rule’s matching conditions and if the rule is matched there is a structure
ipt_target to invoke the functions necessary to carry out the target.

2.5.2 Data Structures

If you want to create a new table, you need to create a structure ipt_table which
looks like this:

/* netfilter_ipv4/ip_tables.h */
struct ipt_table
{
/* tables are put in a linked list, here your table is hung
*/
struct list_head 1list;

/* the name must be unigque */
char name [IPT_TABLE_MAXNAMELEN] ;

/* prepare table, providing basic infor, replace the old one
by register_table */
struct ipt_replace *table;

/* valid hooks the table will hang on */
unsigned int valid_hooks;

/* lock for table operation */
rwlock_t lock;

/* indexed pointer for rules, initiated as NULL */
struct ipt_table_info *private;

/* self referenced, used for stat */
struct module *me;

}

The structure ipt_table info is explained below:

/* include/linux/netfilter_ipv4d/ip_tables.h */
struct ipt_table_info

{

/* table size */

unsigned int size;

/* Number of entries, an entry per rule */
unsigned int number;

/* Initial number of entries. Needed for module usage count
*/

unsigned int initial_entries;
/* offset of the first rule for each hook */
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unsigned int hook_entry [NF_IP_NUMHOOKS] ;

/* offset of the last rule for each hook */
unsigned int underflow[NF_IP_NUMHOOKS] ;

/* ipt_entry tables: one per CPU */
char entries[0] cacheline_aligned;

Y

The structureipt_replace is explained as following:

/* include/linux/netfilter_ipv4/ip_tables.h */
struct ipt_replace

{
/* table name */
char name[IPT_TABLE_MAXNAMELEN] ;

/* valid hook entry points : bitmask */
unsigned int valid_hooks;

/* number of entries */
unsigned int num_entries;

/* total size of new entries */
unsigned int size;

/* offset of the first rule for each hook */
unsigned int hook_entry [NF_IP_NUMHOOKS] ;

/* offset of the last rule for each hook */
unsigned int underflow[NF_IP_NUMHOOKS] ;

/* information about old entries */
/* number of counters, a counter per entry */
unsigned int num_counters;

/* the old entries' counters. */
struct ipt_counters *counters;

/* the table’s entrance */
struct ipt_entry entries[0];

Y

In the above above see see that the rules are stored in ipt_entry[ ]. All the rules
belonging to a table are stored in an array. The method “chain” for each available
hook is actually part of the array. These “chains’ are ordered according to their hook
number sequence. For example, for the table £ilter, the array starts with INPUT,
then FORWARD, then OUTPUT, and finally error handling. The head and end rules
of each chain, or hook, are marked by hook_entry[ ] and underflow[ ]. Now it is time
when a picture is more worthy than a thousand words. The following code is from
net/ipv4/netfilter/iptable filter.c and shows the built-in filter table. Figure 2-16
illustrates the relationship between the filters and the chains.
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static struct ipt_table packet_filter = {

{NULL, NULL}, // link list

“filter”, // name

&initial_ table.repl, // initial table model
/~k

* this is very interesting, valid hooks are defined as

*
(l<<NF_IP6_LOCAL_IN)|(l<<NF_IP6_FORWARD)|(l<<NF_IP6_LOCAL_
ouT)

*/

FILTER_VALID_HOOKS,

RW_LOCK_UNLOCKED, // lock

NULL, // empty

THIS_MODULE

}i

oooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooooo

struct ipt_table

¢ ( list_head :
N I T > :
¢ | FILTER_VALID_HOOKS :
¢ | rwlock table size :

: { ipt_replace null rule number :
: | ipt_table_info { initial_entries :
: | module me |- entries[0] :
: | hook entry[NF IP_NUMHOOKS] :
P\ I Gy AR underflow[NF IP_NUMHOOKS] :
A ~. - S <.
[ INPUT ][ FORWARD ]  OUTPUT | ERROR ]

Figure 2-16. | PTable Sructure

Entriesin the ip_table give genera information, while entriesin the ipt_table_info
concern the chains. For example, the struct ipt_replace contains parameters both from
ip_table and ipt_table_info. These parameters will be transferred into members of
ipt_table info when you register a new table by caling the function
intipt_register_table (struct ipt_table *). You call void ipt_unregister_table (struct
ipt_table*) to remove atable.

Each entry in ipt_entry represents arule. This rule contains a matching IP header,
one or more Match items, and one Target. Its size is not fixed since its Match items
could vary. Theipt_entry struct is shown below:
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[* include/linux/netfilter_ipv4 */

struct ipt_entry
{ // IP header used for matching
struct ipt_ip ip;
// mark of concern on packet
unsigned int nfcache;
// target comes after match, match is in the
end of ipt_entry
u_intl6_t target_offset;
// offset of the next rule, or size of this
rule, sizeof (ipt_entry) +
// sizeof (ipt_match) * n + sizeof
(ipt_target), n>=0
u_1intlé6_t next_offset;
// marking the hook it belongs to
unsigned int comefrom;
// accumulated number of packets and data
struct ipt_couners counters;
// position of target or the first match
unsigned char elems[0];

}

The array ipt_entry[ | islocated right after the ipt_table->private->entrieg[0]. Each
member of the array contains its own match(es) and target.

2.5.3 Work Flow

Now that we are familiar with the netfilter structure and iptables, let us take alook
at their work flow in order to understand their relationship. First we take a systematic
view of packet processing in Linux network stack.
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shows the flowchart for sending packets and Error! Reference source not found. &
Figure 2-19 are for receiving packets.
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If a packet should be forwarded to another interface, then ip_route input_slow()
callsip_forward(). This processing is shown in Figure 2-20.

§ net/ipv4/ip forward.c:ip forward() 3

;

f . : T
. NF HOOK(.,NF II'! FORWARD,. ., ip forward finish)

|
i ip_forward_finish()
{ -
i ineclude/net/ip h:ip_send() 1
; H

!

Figure 2-20. Packet forwarding

As an example, we will examine how ip_forward() to see how the rules are
applied for filtering. Before ip forward() returns, NF_HOOK(PF_INET,
NF_IP_FORWARD, skb, skb->dev, dev2, ip_forward_finish) would be executed. The
following code gives NF_ HOOK' s definition (as a macro):

# define NF_HOOK (pf, hook, skb, indev, outdev, okfn) \
(list_empty (&nf_hooks [(pf)] [(hook)]) ) ? (okfn) (skb) \
: nf_hook_slow( (pf), (hook), (skb), (indev), (outdev),
(okfn) )

If the list that nf_hooks PF_INET][NF_IP_FORWARD] points to is empty,
ip_forward() would directly call ip forward finish(skb), otherwise it would call
nf_hook_slow to carry out netfilter handling().

Since table filter has three chains, it must register each of them by calling
nf_register_hook() during initialization. This requires three nf_hook_ops structures,
representing the chains: INPUT, FORWARD, and OUTPUT. For table filter, at
the hook FORWARD, the handler is set as ipt_hook(), which directly calls
ipt_do_table(). Subsequently ipt do table() works its way through the table. In
practice nearly all hook handler call ipt_do table() to process rules. The filtering
process for the case of forwarding is shown in Error! Refer ence sour ce not found..
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Figure 2-21. Filtering during Forwarding

Returning to the three questions proposed in the beginning of section 2.3. The first
and the third questions have been answered. The second one is interesting. Although
it is straight forward to do matching and targeting in nf_hookfn, it is far from ssimple
and flexible. You need to create a new kernel module and compile it, and then you
need to initialize the module when loading it to the runining kernel. The most critical
thing is that such a modification is beyond maintenance and troublesome to maintain
the module with changes to the kernel. In contrast, IPTable introduces an excellent
abstraction for similar operations using hooks. The table is simply inserted and the
rules are stored in an array attaching to the table. No longer are specific operations
added into netfilter beyond an invitation for packets to be passed to the hook. Users
can easily organize and dynamically edit their rules.

Unfortunately, despite IPTable’s advantages, it does not fulfill our requirements.
Firstly, our filtering rules change frequently (i.e., everytime a client device movesinto
our out of the cell). IPTable stores rules inside an array, which is easy to walk through
when processing, but it is not an efficient structure when frequently updating rules. As
can be seen in the existing routine ipt_replace(), replacing a table entry leads to large
amounts of copying and redistribution. Secondly, each entry of our table should have
atime limit associated with it. Thus after a supplicant has be authorized to access the
network via this AP, the rule should automatically removed after some time limit,
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unless the authorized usage period is extended. Therefore we turn our focus to another
mechanism called IP Set, which is covered in the next section.

2.6 IP Set

As mentioned in the project description, we need a black list, a temp list, and a
white list. The white list maintains normal traffic for authenticated users. The temp
list keeps traffic of users who are only to receive a limited bandwidth and redirects
authentication packets for a specified time, during which the customer is supposed to
finish authentication. Otherwise the user will be moved to the black list. Blacklisted
user can only send authentication traffic. Actually the black list and temp list can be
unified, because the black list is simply an extreme case of bandwidth limiting with a
bandwidth of zero. We can now restate our requirements:

e Alistof MAC, IP addresses, and port numbers;

e Each entry of the temp list as an associated time limit;

e After authentication the corresponding entry is moved to the white list, otherwise to
black list;

e Match againgt lists using iptables; and

o Efficiently dynamically update iptables rules for newly added clients, authenticated
clients, and unauthenticated clients.

If you look at the official website of IP sets [52] the features of |psets seem be be
just what we need. IPset is an extension of 1PTables. While IPTables classifies rules
into tables in a behavior oriented way, ipset sorts rules into sets which are address
oriented. An IP set can be associated with an IP address, MAC address, port number,
or a combination of them. An entry in one set can be bound to another set, similar to a
database”join” operation, making sophisticated matching possible

There are 11 different types of sets, among which iptree is used to store IP
addresses in a tree, optionally with timeout values. Since the other ten sets resemble
iptree, we can easily understand them by looking only at iptree. The ipset programs
work in user space, accept commands, and interacting with the kernel. These
programs work together with kernel modules to implement the | Pset functionality. We
first create our three sets using acommand of the form:

ipset -N set_nametype specification [options]

This command creates a set identified by set name with the specified type.
Type-specific options may also be supplied. The option for the set type “iptree” is a
timeout value in seconds (default 0) for the entries. To specify our “whitelist” without
atimeout value we use ipmap rather than iptree:

ipset -N blacklist iptree —-timeout 1200
ipset -N templist iptree —-timeout 120
ipset -N whitelist ipmap

Figure 2-22 explains how these commands operate.
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Figure 2-22. Operation of ipset Commands

Before creating a set we specify our set type. The functions settype->create _init(),
settype->create final() in method set_create(), and the default settype->create parse()
in method parse commandling(), al cal their corresponding methods in
ipset_iptree.c, which implements the actual operations on an iptree.

Inside the kernel, all registered IP sets are put in a structure list_head set_type list.
Sets can be identified through an identifier (id) or by itsindex in ip_set_list. The id
representing a unique set inside kernel never changes, but the index may change. The
id can be also used to find a key in the hash of bindings.

Requests from userspace are serialized by ip_set_mutex. Remember that sets can
be deleted only from userspace. Therefore you will see in the following code that
ip_set_list locking obeys the following rules:

e kernel requests: read and write locking mandatory
e user requests. read locking optional, write locking mandatory
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Wherever requests come from, their function can be divided into two parts: to set
the ipset, using method ip_set sockfn_set(), or to get information from an ipset using
ip_set_sockfn_get(). These socket functions are put in the structure nf_sockopt_ops
which serves as the interface to kernel sets. Entries are defined by netfilter to describe
the getsockopt/setsockopt interfaces for a certain protocol. Different protocols are
linked together through a structure list_head and the header of this list is defined in
net/core/netfilter.c. nf sockopts(struct list_head). Error! Reference source not
found. shows the relationship between these chains.

nf sockopts » nf sockopt ops / nf sockopt ops
list next list next

...... T N

)

nf_sockopt_ops nf_sockopt_ops
list next list next
prev * prev

Figure 2-23. Chains of nf_sockopt_ops

For IPset, itsown nf_sockopt_opsisgiven in ipset-2.4.5\kernel\ip_set.c:

static struct nf_sockopt_ops so_set = {
.pf = PF_INET,
.set_optmin = SO_IP_SET,
.set_optmax = SO_IP_SET + 1,
.set = &ip_set_sockfn_set,
.get_optmin = SO_IP_SET,
.get_optmax = SO_IP_SET + 1,

.get = &ip_set_sockfn_get,

#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23)
.use =0,

#else
.owner = THIS_MODULE,

#endif

Y

In order to create an iptree, the function iptree create() in kernel/ip_set_iptree.cis
invoked. Figure 2-24 shows how we create a new set, starting with a request from
userspace. Thisrequest was due to a call to the method ip_set sockfn_set().
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Figure 2-24. The Process of Creating A New Set

After determing the type and performing the correct locking, the type specific
operations are carried out by their own methods. For example, in order to add an IP
address to iptree, after parsing the command whee the type is iptree, the userspace
program calls iptree's adt_parser(), which is used to add, delete, and test the parser.
Here “adt” stands for add, delete, and test. After the command and parameters are
transferred into kernel, eventually the funciton ip set sockfn set() will be called.
Each type of operation is placed in a structure fn_table, and the various types form an
array adtfn_table][] as shown below:

/* ipset-2.4.5\kernel\ip_set.c */
struct fn_table {
int (*fn) (ip_set_id_t index,
const void *data, size_t size);
} adtfn_table[] = {
{ ip_set_addip }, { ip_set_delip }, { ip_set_testip},
{ ip_set_bindip}, { ip_set_unbindip },
{ ip_set_testbind },
Y
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So we get the type of operation by comparing the commands:
adtfn = adtfn_table[*op - IP_SET OP_ADD_IP].fn

In the case of CMD_ADD, the function table would invoke method iptree_add()
inip_set_iptree.c, which would call ADDIP_WALK three timesto finish thetask of
adding the IP address. Before we examine this function, we need first to know that an
iptree is organized as follows:

/* ipset-2.4.5\kernel\include\linux\netfilter_ipv4\
ip_set_iptree.h */
struct ip_set_iptreed {

unsigned long expires[256]; /* X.X.X.ADDR */
Y

struct ip_set_iptreec {
struct ip_set_iptreed *tree[256]; /* xX.X.ADDR.* */
Y

struct ip_set_iptreeb {
struct ip_set_iptreec *tree[256]; /* x.ADDR.*.* */
Y

struct ip_set_iptree {
unsigned int timeout;
unsigned int gc_interval;
#ifdef _ KERNEL_

uint32_t elements; /* number of elements */

struct timer_list gc;

struct ip_set_iptreeb *tree[256]; /* ADDR.*.* * */
#endif

Y

The last 8 bits of the IP address are represented by an unsigned long, and since
there are 256 different values, they are put in an array — unsigned long [256]. So
structure ip_set_iptreed represents the last 8 bits of an IP address. The structure
ip_set_iptreec represents the third octet of the IP address. As we know ip_set_iptreec
has 256 different values and each should contain an ip set _iptreed. The same
approach applies to ip_set_iptreeb and finally ip_set_iptree, which represents all
65536 possihilities, or so called entries. Now let us turn to the macro ADDIP_WALK:

/* ipset-2.4.5\kernel\ip_set_iptree.c */
#define ADDIP_WALK (map, elem, branch, type, cachep) do {\

if ((map)->treel[elem]) { \
DP("found %u", elem); \
branch = (map)->treelelem]; \
} else { \
branch = (type *) \
kmem_cache_alloc (cachep, GFP_ATOMIC); \
if (branch == NULL) \
return -ENOMEM; \
memset (branch, 0, sizeof (*branch)); \
(map) ->tree[elem] = branch; \
DP("alloc %u", elem); \
} \
} while (0)
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When invoked this code will first detect if the entry (treg[elem]) at the map level
exists. If so, it would branch to the next level through the entry. Before looking into

how ADDIP_WALK isutilized in the method iptree_add, we introduce another macro
ABCD:

/* ipset-2.4.5\kernel\ip_set_iptree.c */
#if defined(__ LITTLE_ENDIAN)

#define ABCD(a,b,c,d,addrp) do { \
a = ((unsigned char *)addrp) [3]; \
b = ((unsigned char *)addrp) [2]; \
¢ = ((unsigned char *)addrp)[1l]; \
d = ((unsigned char *)addrp) [0]; \

} while (0)

#elif defined(__ BIG_ENDIAN)

#define ABCD(a,b,c,d,addrp) do { \
a = ((unsigned char *)addrp) [0]; \
b = ((unsigned char *)addrp)[1l]; \
¢ = ((unsigned char *)addrp) [2]; \
d = ((unsigned char *)addrp) [3]; \

} while (0)

According to host form or network form; a,b,c, and d point to 4 8-bit field of an IP
address. Thusiptree_add() issimply a series of callsto ADDIP_WALK, asfollows:

/* ipset-2.4.5\kernel\ip_set_iptree.c */

Static inline int iptree_add(struct ip_set *set, ip_set_ip_t
*hash_ip,

ip_set_ip_t ip, unsigned int timeout)

{ .
ABCD(a, b, ¢, d, hash_ip);

ADDIP_WALK (map, a, btree, struct ip_set_iptreeb,
branch_cachep) ;

ADDIP_WALK (btree, b, ctree, struct ip_set_iptreec,
branch_cachep) ;

ADDIP_WALK (ctree, ¢, dtree, struct ip_set_iptreed,
leaf_cachep) ;

}

Imagine we want to insert the Ipv4 address 192.168.0.2. We first check if thereis
entry 192 at the first level, if not, we create a new one. Otherwise we enter its second
level and check if an entry 168 exists, continuing in this way to the last 8 bits.

There are many other behaviors, such as test for an entry or deleting an entry, to
print or restore a set, to save, and execute a session. They should be easy to
understand after the two examples above.

As you may have observed, each entry in the iptree can be viewed as a pointer,
hence we judge if an entry exists by telling if the value is not NULL. We can not
prune empty branches by calling delete from userspace because iptree del() smply
reduces the value to zero but zero is still a non-NULL value. The real removal
function isiptree flush():
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/* ipset-2.4.5\kernel\ip_set_iptree.c */
static void iptree_flush(struct ip_set *set)

50

{

}

struct ip_set_iptree *map = set->data;
unsigned int timeout = map->timeout;

/* gc might be running */

while (!del_timer (&map->gc))
msleep (IPTREE_DESTROY_SLEEP) ;

_ flush(map) ;

memset (map, 0, sizeof (*map));

map->timeout = timeout;

init_gc_timer (set) ;

This function first checks if a timer is running. When this time is up, it calls
__flush(map) and then resets the set and initialize the timer. Inside __flush(), the code
walks through the whole tree and releases every entries unused memory by calling
kmem_cache freg(), as shown below:

static inline wvoid

{

}

flush(struct ip_set_iptree *map)

struct ip_set_iptreeb *btree;
struct ip_set_iptreec *ctree;
struct ip_set_iptreed *dtree;
unsigned int a,b,c;

LOOP_WALK_BEGIN (map, a, btree);
LOOP_WALK_BEGIN (btree, b, ctree);
LOOP_WALK_BEGIN(ctree, c, dtree);
kmem_cache_free(leaf_cachep, dtree);
LOOP_WALK_END;

kmem_cache_free (branch_cachep, ctree);
LOOP_WALK_END;

kmem_cache_free (branch_cachep, btree);
LOOP_WALK_END;

map->elements = 0;

Y ou might wonder why the timer is part of the iptree. No matter how you create a
new iptree (by iptree create or flush and reset a tree by iptree flush), there the
function init_gc_timer isalways called. This function is shown below:

static inline void init_gc_timer (struct ip_set *set)

{

struct ip_set_iptree *map = set->data;
map->gc_interval = IPTREE_GC_TIME;
init_timer (&map->gc) ;

map->gc.data = (unsigned long) set;
map->gc.function = ip_tree_gc;
map->gc.expires = jiffies + map->gc_interval * HZ;

add_timer (&map->gc) ;
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As you can see the core function is init_timer, with a parameter timer_list. Next
the function assigns a value to timer.function and timer.expires. Add atimer and when
the time is up the function in timer.function will be called. To delete atimer just call
del_timer(&timer). The timer associated with an iptree is used to periodically invoke
garbage collection, to prune unneeded entries from the tree and to return this space to
the kernel.

Next we examine how |Pset relates to netfilter. Inside ipt_set.h there are structures
for “match info” and “target info”. These are used for registering IPset as an entry in
|PTable. These structures and related functions are:

/ *
ipset-2.4.5\kernel\include\linux\netfilter_ipv4\ipt_set.h
*/
struct ipt_set_info {

ip_set_id_t index;

u_int32_t flags[IP_SET MAX_ BINDINGS + 1];
Y

/* match info */
struct ipt_set_info_match {
struct ipt_set_info match_set;

Y

struct ipt_set_info_target {
struct ipt_set_info add_set;
struct ipt_set_info del_set;
Y

They areused by ipt_SET initinipt_SET.c to get registered in IPTABLE:
/* ipset-2.4.5\kernel\ipt_SET.c */
#define xt_register_target ipt_register_target

static int _ _init ipt_SET init (void)
{
return xXt_register_target (&SET_target) ;
}
From user’s point of view, | Psets are used together with | Ptables:
/* ipset-2.4.5\kernel\include\linux\netfilter_ipv4\ip_set.h
*/
/* API for iptables set match, and SET target */
extern int ip_set_addip_kernel (ip_set_id_t id,
const struct sk_buff *skb,
const u_int32_t *flags);
extern int ip_set_delip_kernel (ip_set_id_t id,
const struct sk_buff *skb,
const u_int32_t *flags);
extern int ip_set_testip_kernel (ip_set_id_t id,
const struct sk_buff *skb,
const u_int32_t *flags);

Now if you review our requirements as listed at the beginning of this section, you
can easily understand how well IPset fits these requirements. IPTables had rules
which were costly to modify. In our case the rules are very stable, but the 1P addresses
associated with a rule are frequently changed. IPSet binds IP addresses associated
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with the same rule together. The rules are registered as an entry in iptables and serve
as target in that entry, so that they must be walked if the entry is invoked by the
iptables command. We can dynamically update i ptables with new addresses by simply
manipulating IPSets, rather than replacing the old table. As you have see from the
structure of ip_set_iptree, it is well optimized to match an |P address against a set,
since to find an address it is divided into four parts which are used as indexes to
arrays. Thisislikely to be faster than walking through all the chainsin IPTables.
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3 Method

As mentioned in Section2.3, we group the AP's function modules for AAA
conversion into three parts: (1) a sender and receiver of EAPOL on the AP s wireless
side; (2) a RADIUS client on AP's LAN side; and (3) a set of state machines
cooperating with each other to implement the logic of IEEE 802.1X (these state
machines are labelled 802.1X SM in thefigure). Error! Reference sour ce not found.
shows this simplified architecture.

EAPO
l IW Send &
; Receive
|
—

Figure 3-1. Simplified AP Architecture

Passthrough Authenticator

_ﬁ/ 802.1X SM _ﬂ\k

EAPSM

The definition of components in Figure 3-1 and the interfaces between them are
described in various |IEEE standards and IETF RFCs. Sometimes these descriptions
use different names for the same component. For example, the IEEE 802.1X standard
refers to both the supplicant and the AP as a Port Access Entity (PAE), because both
have the same two components, a set of Port Access Control Protocol (PACP) state
machines and a higher layer with which these machines communicate. The difference
between the two terms is that the higher layer of the supplicant PAE implements EAP
functionality, while that of the authenticator PAE implements a combination of EAP
and AAA functionality [33]. EAP is a big state machine (marked as EAP SVl in Figure
3-1) which takes charge of the whole access control logic. The EAP state machine of
the supplicant and the AP are different. In RFC 4137 [51], the EAP state machine
functionality is refered to as the “EAP layer”. AAA functionality is the same as the
RADIUS Client in Figure 3-1. The PACP state machines are labelled as 802.1X SM in
Figure 3-1 while they are referred to as EAPOL state machines in hostapd was shown
in Error! Reference source not found. on page Error! Bookmark not defined..
|EEE 802.1X defines an encapsulation format that allows EAP message to be carried
directly by a LAN MAC service [33]. IEEE 802.1X also defines the PACP state
machines and the interface between these PACP state machines and the higher-layer
functionality. The EAP protocol exchanges are defined by the IETF s EAP standards,
IETF RFC 3748 [37], and successor standards. For example the RADIUS AAA
protocol is defined by the IETF RADIUS standards: RFC 2865 [54], IETF RFC 2866
[13], IETF RFC 3579 [40], and successor standards [33]. The descriptions of EAP SM
can be found in RFC 4137. Among these various documents | EEE 802.1X-2004 and
RFC 4137 are vital to this thesis. Both of them use a hierarchical structure as shown
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in Figure 3-2 which is similar to Error! Reference source not found. but in a
vertical way.

A combination of EAP and

B AAA functionality referred to as
EAP Full Authenticator State Machine the higher layer in |IEEE 802.1X
\
| |
AAA 1 l AAA Layer referred to as the
w ( second lower layer in RFC 4137
VUl
/ L Ll ) EAP Transport Layer referred to
as the first lower layer in RFC
EAPOL SM 4137
——
N—

|

il

Figure 3-2. Hierarchical AP Architecture

IEEE 802.1X defines the EAPOL State Machines and treats both the AAA
functionality and the EAP State Machine as the higher layer. However, RFC 4137 [51]
focuses on the EAP State Machine, treating both the AAA functionality and the
EAPOL SM as the lower layer. Both Figure 3-2 and Error! Reference source not
found. on page Error! Bookmark not defined. show that, the EAP state machine
directly communicates with the EAPOL SM; while EAPOL SM directly
communicates with the AAA layer. This raises the question: Is there any direct
interaction between the AAA layer and the EAP layer? If so, what is the reason
behind this direct interaction? The question is answered in the end of Section 3.2.2 on

page 84.

Following the hierarchical architecture in Figure 3-2, the next section will describe
the EAP state machines; Section 3.2 will introduce the interfaces between the EAP
layer and the AAA layer, and it will cover the AAA functions at length; Section O will
introduce the interfaces between the EAP layer and the EAPOL layer, and it will
present the EAPOL state machines; Section 3.4 will examine the interaction between
the EAPOL Sender & Receiver and the EAPOL layer; Section 3.5 will discuss how to
convert an AP into a non-binary authenticator by modifying hostapd. Finally Section
3.6 will examine another method of implementing the desired functionality.

3.1 State Machines for EAP

Most information of the information is this section about EAP state machines is
from RFC 4137: State Machines for Extensible Authentication Protocol (EAP) Peer
and Authenticator [51]. This RFC describes four different types of EAP state
machines. peer, stand-alone authenticator (non-pass-through), EAP backend
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authenticator (for use on AAA servers), and EAP full authenticator (for both local and
pass-through).

The peer and stand-alone authenticator state machines are illustrative of how EAP
as defined in RFC 3748 [37] may be implemented. An EAP authentication consists of
one or more EAP methods in sequence followed by an EAP Success or EAP Failure
sent from the authenticator to the peer [51]. Both the authenticator and the peer can
implement one or more EAP methods. That is why each EAP peer has to select its
choice of method and negotiate with its counterpart. The negotiation will determine
which EAP method will be used, as well as the sequence of methods if more than one
method will be used. This negotiation of EAP methods and sequences of methods is
controlled by the “EAP Switch”. The “EAP Switch Model” comprises events and
actions for the interaction between the EAP Switch and EAP methods. The methods
may also have state machines, which is beyond our scope. Error! Reference source
not found. shows the EAP switch model for the stand-alone authenticator scenario.

=

N

i |

Figure 3-3. Sand-Alone EAP Switch Model [51]

The backend and full/pass-through authenticator machines illustrate how
EAP/AAA protocol support defined in RFC 3579 [40] may be implemented. The
full/pass-through state machine allows an NAS or edge device to pass EAP Response
messages to a backend authentication server. A stand-alone authenticator carries out
authentication locally, while a full authenticator can choose either to perform local
authentication or remote authentication. Error! Reference source not found. shows
the EAP switch model for the pass-through authenticator scenario.
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Figure 3-4. Pass-Through EAP Switch Modél [51]

We use the full/pass-through authenticator for our project, thus we omit the EAP
peer state machine which bears rare similarity to the EAP authenticator state
machines. Error! Reference source not found. shows the EAP stand-aone
authenticator state machine. Figure 3-6 shows the EAP backend authenticator state
machine. They are identical to each other except that no retransmit is included in the
IDLE state in the backend authenticator state machine. The reason is that with
RADIUS, retransmission is handled by the NAS. Also, a PICK_UP_METHOD state
and a variable in INITIALIZE state are added to the backend authenticator state
machine to alow the method to "pick up" a method started in aNAS [51].
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Figure 3-5. EAP Sand-Alone Authenticator State Machine[51]
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Figure 3-6. EAP Backend Authenticator State Machine [51]
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Error! Reference source not found. shows the EAP full authenticator state
machine for a loca AAA. It is identical to the stand-alone state machine, with the
exception that the SELECT ACTION state has an additional transition to
PASSTHROUGH.
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Figure 3-7. EAP Full Authenticator State Machine - 1 [51]

Reference source not found. shows the remainder of the EAP full
authenticator state machine in the case of pass-through for a remote AAA. Compared
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with Error! Reference source not found., retains most of the logic, except the four
method states. Since the EAP SM layer interacts directly with the AAA layer when
the RADIUS client is activated under pass-through mode, there are three replacement
AAA statess AAA_REQUEST, AAA_RESPONSE, AAA_IDLE, which are
responsible for handling EAP responses from the supplicant, RADIUS responses from
the AAA server, and idleness respectively. All the other states have the suffix “2” to
help distinguish them from their counterparts in Error! Reference source not
found..
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Figure 3-8. EAP Full Authenticator State Machine - 2 [51]

The lower layers that the EAP state machine maps to mainly do two jobs. present
messages to the EAP SM and transmit the results created by the EAP SM. Peer state
machine and stand-alone state machines interface to the EAPOL SM layer only. The
backend authenticator state machine interfaces to the AAA layer only. However, the
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full authenticator state machine is unique in that it interfaces to multiple lower layers
when operating under pass-through mode. The EAPOL SM is responsible for
transmitting messages between the EAPOL Sender/Receiver and the EAP SM while
the AAA layer is responsible for transmitting messages between the RADIUS client
and the EAP SM. In Error! Reference source not found. the four method states
organize the logic for the EAP switch. But in Error! Reference source not found. ,
the pass-through authenticator relies on the responses from the AAA server to judge
whether the result is SUCCESS or FAILURE or if it should continue relaying the
message. Therefore, the three AAA states replace the four method states.

In RFC4137 [51], the state machine description is carried out in the sequence
shown in Table 3-1.

Table 3-1. SM Comparison between Sand-Alone and Full Authenticator

Sequence | Stand-Alone | Full
1 Interface between SM and Lower layer
1.1 Variables (Lower Layer to SM) EAPOL +AAA
1.2 Variables (SM to Lower Layer) EAPOL +AAA
1.3 Constants same
2 Interface between SM and Methods same
3 SM Local Variables
3.1 Long-Term same
3.2 Short-Term only “decision” is different
4 Procedures same
5 States No Pass-Through | + Pass-Through

Since our scenario uses the pass-through authenticator, we focus on the state
machine presented in Error! Reference source not found.. Its further study will be
divided into three parts. The remainder of this section describes the states in Error!
Reference sour ce not found. (pass-through only) — see section 3.1.1, local variables
— see section 3.1.3, and procedures — see section 3.1.4; as well as the interface
between SM and methods — see section 3.1.5. Section 3.1.2 lists and describes the
constant(s). It isimportant to note that these constants belong to the interface between
the state machines and the lower layer. Section 3.2 on page 72 will cover the interface
related to AAA and Section 0 on page 91 will cover the interface related to EAPOL
SM.

3.1.1 EAP Full Authenticator States under Pass-Through Mode

All of the states (see Error! Reference source not found.) in the EAP Full
Authenticator state machine when operating under pass-through mode are described
in Table 3-2.
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Table 3-2. EAP Full Authenticator States under Pass-Through Mode [51]

Sate

Purpose

INITIALIZE_PASSTHROUGH

Initializes variables when the pass-through portion
of the state machine is activated.

IDLE2 The state machine waits for a response from the
primary lower layer (EAPOL SM), which
transports EAP traffic from the peer.

RECEIVED2 This state is entered when an EAP packet is

received and the authenticator is in
PASSTHROUGH mode. The packet header is
parsed here.

AAA_REQUEST

The incoming EAP packet is parsed for sending to
the AAA server.

AAA_IDLE

Tell the AAA layer that it has a response and then
waits for a new request, a no-request signal, or
success/failure.

AAA_RESPONSE

The request from the AAA interface is processed
into an EAP request.

SEND_REQUEST?2

This state signals the lower layer (EAPOL SM)
that arequest packet is ready to be sent.

DISCARD2 This state signals the lower layer that the response
was discarded, and that no new request packet
will be sent at thistime.

RETRANSMIT2 It retransmits the previous request packet.

SUCCESS2 A final state indicating success.

FAILURE?2 A final state indicating failure.

TIMEOUT_FAILUREZ2

A final state indicating failure because no response has
been received. Because no response was received, no
new message (including failure) should be sent to the
peer. Thisis different from the FAILUREZ2 state, in which
amessage indicating failure is sent to the peer.

3.1.2 Constants

There is only one constant: MaxRetrans (integer) a configurable maximum count
indicating how many retransmissions should be attempted before aborting. Note that
this constant belongs to the interface between the EAP State Machine and Lower

Layer.
3.1.3 Local Variables

A list of long-term variablesand their descriptionsaregiven in Table 3-3. They arereferred to as
long term variables, sincethe state is maintained between packets. Note that the names of the
statesin Table 3-2 have implicit postifx “2" to correspond to their states. In contrast to long term

variables,

Table 3-4 shows short-term variables whose state is not maintained between

packets.
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Table 3-3. Long Term Variables[51]
Variable Description
currentMethod (EAP type) EAPtype, IDENTITY, or NOTIFICATION.

currentld (integer)

0..255 or NONE. Usually updated in
PROPOSE_METHOD state. Indicates the identifier
value of the currently outstanding EAP request.

methodState (enumeration)

Asdescribed in Table 3-2.

retransCount (integer)

Reset in SEND_REQUEST state and updated in
RETRANSMIT state. Current number of
retransmissions.

lastRegData (EAP packet)

Set in SEND_REQUEST state. EAP packet contains
the last sent request.

methodTimeout (integer)

Method-provided hint for suitable retransmission
timeout or NONE.

Table 3-4. Short Term Variables [51]

Variable Description

rxResp (boolean) Set in RECEIVED state. Indicates that the current
received packet is an EAP response.

respld (integer) Set in RECEIVED state. The identifier from the
current EAP response.

respMethod (EAP type) Set in RECEIVED state. The value is the method

type of the current EAP response.

ignore (boolean)

Set in SELECT_ACTION state. Temporarily stores
the policy decision to succeed, fail, continue with a
local method, or continue in pass-through mode.

decision (enumeration)

Setin SELECT_ACTION state. Temporarily stores
the policy decision to succeed, fail, or continue.

3.1.4 Procedures

For methods / procedures, the method uses its internal state in addition to the
information provided by the EAP layer. The only arguments that are explicitly shown
as inputs to the procedures are those provided to the method by EAP. Those inputs
provided by the method’ s internal state remain implicit [51].

Method

Table 3-5. Methods [51]
Description

calculateTimeout()

Calculates the retransmission timeout, taking into account
the retransmission count, round-trip time measurements,
and method-specific timeout hint (see [37], Section 4.3).
Returns an integer.

par seEapResp()

Determines the code, identifier value, and type of the
current response. In the case of aparsing error (e.g., the
length field islonger than the received packet), rxResp
will be set to FALSE. The values of respld and

respM ethod may be undefined as aresult. Returns a
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Method Description

boolean, an integer, and an EAP type.
buildSuccess() Creates an EAP Success Packet. Returns an EAP packet.
buildFailure() Creates an EAP Failure Packet. Returns an EAP packet.
nextl d() Determines the next identifier value to use, based on the

previous one. Returns an integer.

Policy.update()

Updates all variablesrelated to internal policy state. The
return value is undefined.

Policy.getNextMethod()

Determines the method that should be used at this point in
the conversation based on a predefined policy.
Policy.getNextMethod() must comply with [37] (Section
2.1), which forbids the use of sequences of authentication
methods within an EAP conversation. Thus, if an
authentication method has already been executed within
an EAP dialog, Policy.getNextMethod() must not
propose another authentication method within the same
EAP dialog. Returns an EAP type.

Policy.getDecision()

Determinesif the policy will alow SUCCESS, FAIL, or
IS yet to be determined (CONTINUE). Returns a decision
enumeration.

m.check() M ethod-specific procedure to test for the validity of a
message. Returns a boolean.

m.process() Parses and processed a response for that method. The
return value is undefined.

m.init() Initializes state just before use. Thereturn valueis
undefined.

m.reset() Indicates that the method is ending in the middle of or
before completion. The return value is undefined.

m.isDone&() To check for method compl etion. Returns a bool ean.

m.getTimeout()

Determines an appropriate timeout hint for that method.
Returns an integer.

m.getKey() Obtains key material for use by EAP or lower layers.
Returns an EAP key.
m.buildReq() Produces the next request. Returns an EAP packet.

3.1.5 Interface between EAP SM and Methods

The following describes the interaction between the EAP state machine and EAP
methods. The implict input parameters are IN: eapRespData, methodState; OUT:
ignore, eapRegData; and I N/OUT: currentld, (method-specific state), (policy).

Table 3-6. I nterface between EAP SM and Methods [51]

Method

Description

m.init (in: -, out: -)

When the method isfirst started, it must initialize its
own method-specific state, possibly using some
information from Policy (e.g., identity).

m.buildReq (in: integer, out:

EAP packet)

Next, the method creates a new EAP Request packet,
with the given identifier value, and updates its
methodspecific state accordingly.
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Method Description

m.getTimeout (in: -, out: The method can also provide a hint for

integer or NONE) retransmission timeout with m.getTimeout.
m.check (in: EAP packet, When a new EAP Response is received, the method
out: boolean) must first decide whether to process the packet or to

discard it silently. If the packet looks like it was not
sent by the legitimate peer (e.g., if it hasan invalid
Message Integrity Check, which should never occur),
the method can indicate this by returning FALSE. In
this case, the method should not modify its own
method-specific state.

m.process (in: EAP packet,
out: -)

m.isDone (in: -, out: boolean)

m.getKey (in: -, out: EAP key | Next, the method processes the EAP Response and
or NONE) updates its own method-specific state. Now the

options are to continue the conversation (send
another request) or to end this method.

If the method wants to end the conversation, it

® TellsPolicy about the outcome of the method
and possibly other information.

® |f the method has derived keying material it
wants to export, returns it from m.getKey().

@ |ndicates that the method wants to end by
returning TRUE from m.isDone().

Otherwise, the method continues by sending another

request, as described earlier.

3.1.6 EAP SM Data Structure in hostapd

In hostapd, the structure eap sm is defined to describe the EAP server state
machine data. Asis shown below, this also includes EAP states, constants, long-term
local variables, short-term local variables, plus related data structures which are not
defined in RFC 4137. The interfaces between EAP layer and AAA layer as well as
EAPOL layer are placed together in a structure eap_eapol_interface, which is aso
included in the structure eap_sm.

/**
* hostapd-0.7.3\src\eap_server\eap i.h: struct eap_sm
*/

struct eap_sm {

enum {

EAP_DISABLED, EAP_INITIALIZE, EAP_IDLE, EAP_RECEIVED,
EAP_INTEGRITY_CHECK, EAP_METHOD_RESPONSE,
EAP_METHOD_REQUEST,

EAP_PROPOSE_METHOD, EAP_SELECT_ACTION, EAP_SEND_REQUEST,
EAP_DISCARD, EAP_NAK, EAP_RETRANSMIT, EAP_SUCCESS, EAP_FAILURE,
EAP_TIMEOUT_FAILURE, EAP_PICK_UP_METHOD,
EAP_INITIALIZE_PASSTHROUGH, EAP_IDLE2, EAP_RETRANSMIT2,
EAP_RECEIVED2, EAP_DISCARD2, EAP_SEND_REQUEST?,
EAP_AAA_REQUEST, EAP_AAA_RESPONSE, EAP_AAA_IDLE,
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EAP_TIMEOUT_FAILURE2, EAP_FAILURE2, EAP_SUCCESS2
} EAP_state;

[* Constants */
int MaxRetrans;

struct eap_eapol _interface eap _if;
/* Full authenticator state machine local variables*/

[* Long-term (maintained betwen packets) */
EapType currentMethod;
int currentld;
enum{
METHOD_PROPOSED, METHOD_CONTINUE, METHOD_END
} methodState;
int retransCount;
struct wpabuf *lastRegData;
int methodTimeout;

[* Short-term (not maintained between packets) */

Boolean rxResp;

int respld;

EapType respMethod,;

int respVendor;

u32 respVendorMethod,;

Boolean ignore;

enum {
DECISION_SUCCESS, DECISION_FAILURE, DECISION_CONTINUE,
DECISION_PASSTHROUGH

} decision;

[* Miscellaneous variables */

const struct eap_method *m; /* selected EAP method */
/* not defined in RFC 4137 */

Boolean changed;

void *eapol_ctx, *msg_ctx;

struct eapol_callbacks *eapol_cb;

void *eap_method _priv;

u8 *identity;

size tidentity len;

[* Whether Phase 2 method should validate identity match */
int require_identity _match;

int lastld; /* Identifier used in the last EAP-Packet */
struct eap_user *user;

int user_eap_method_index;

intinit_phase2;

void *sdl_ctx;

void *eap _sim_db_priv;

Boolean backend auth;

Boolean update user;

int eap_server;

int num_rounds;

enum {
METHOD_PENDING_NONE, METHOD_PENDING_WAIT,
METHOD_PENDING_CONT

} method_pending;
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u8 *auth_challenge;
u8 * peer_challenge;

u8 *pac_opague_encr_key;
u8 *eap fast a id;
size teap fast a id len;
char *eap fast a id_info;
enum {
NO_PROV, ANON_PROV, AUTH_PROV, BOTH_PROV

} eap _fast_prov;

int pac_key_lifetime;

int pac_key refresh time;
inteap_sim aka result_ind;
int tnc;

struct wps_context *wps,
struct wpabuf *assoc_wps ie;

Boolean start_reauth;

b

3.1.7 Data Structure of EAP SM & AAA Interface in hostapd

In hostapd structure eap eapol _interface is defined to describe the interfaces
between EAP SM and AAA as well as EAPOL SM. Sections 3.2 and 3.3 will start by
introducing each of the corresponding variables related to its own interface.

/**

/*
* hostapd-0.7.3\src\eap_server\eap.h: struct eap_eapol _interface
*/

struct eap_eapol_interface {

/* Lower layer to full authenticator variables */

Boolean eapResp; /* shared with EAPOL Backend Authentication */
struct wpabuf * eapRespData;

Boolean portEnabled;

int retransWhile;

Boolean eapRestart; /* shared with EAPOL Authenticator PAE */
int eapSRTT;

int eapRTTVAR,;

* Full authenticator to lower layer variables */

Boolean eapReq; /* shared with EAPOL Backend Authentication */
Boolean eapNoReg; /* shared with EAPOL Backend Authentication */
Boolean eapSuccess,

Boolean eapFail;

Boolean eapTimeout;

struct wpabuf * eapRegData;

u8 *eapKeyData;

size t eapKeyDatalen;

Boolean eapKeyAvailable; /* called keyAvailablein IEEE 802.1X-2004 */

/* AAA interface to full authenticator variables */
Boolean aaaEapReq;

Boolean aaaEapNoReq;

Boolean aaaSuccess;
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Boolean aaaFal;
struct wpabuf * aaaEapReqData;
u8 * aaaEapK eyData;
size t asaEapKeyDatal en;
Boolean aaaEapK eyAvailable;
int aaaM ethodTimeout;

[* Full authenticator to AAA interface variables*/
Boolean aaaEapResp;

struct wpabuf * aaaEapRespData;

[* azaldentity -> eap_get_identity() */

Boolean aaaTimeout;

|3
3.2 AAA Layer

Table 3-77 showsthe variablesin the AAA Interface to Full Authenticator. While
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Table 3- shows the variables in the Full Authenticator Interface to AAA.
Table 3-7. Variables (AAA Interfaceto Full Authenticator) [51]

Variable Description

aaaEapReq (boolean) Set to TRUE in lower layer, FALSE in authenticator
state machine. Indicates that anew EAP request is
available from the AAA server.

aaaEapNoReq (boolean) Set to TRUE in lower layer, FALSE in authenticator

state machine. Indicates that the most recent
response has been processed, but that thereisno
new reguest to send.

aaasuccess (boolean)

Set to TRUE in lower layer. Indicates that the AAA
backend authenticator has reached the SUCCESS
state.

aaaFail (boolean)

Set to TRUE in lower layer. Indicates that the AAA
backend authenticator has reached the FAILURE
state.

aaaEapRegData (EAP packet)

Set in the lower layer when aaaEapReq, aaaSuccess,
or aaaFail is set to TRUE. The actual EAP request
to be sent (or success/ failure).

aaaEapKeyData (EAP key)

Set in lower layer when keying material becomes
available from the AAA server.

aaaEapKeyAvailable
(boolean)

Set to TRUE in the lower layer if keying material is
available. The actual key isstored in
aaaEapKeyData.

aaaMethodTimeout (integer)

Method-provided hint for suitable retransmission
timeout, or NONE. (Note that thishint isfor the
EAP retransmissions done by the pass-through
authenticator, not for retransmissions of AAA
packets.)
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Table 3-8. Variables (Full Authenticator Interfaceto AAA) [51]

Variable Description

aaaEapResp (boolean) Set to TRUE in authenticator state machine, FALSE
in the lower layer. Indicates that an EAP response is
available for processing by the AAA server.

aaaEapRespData (EAP Set in authenticator state machine when eapResp is

packet) set to TRUE. The EAP packet to be processed.

aaal dentity (EAP packet) Set in authenticator state machine when an

IDENTITY responseis received. Makes that
identity available to AAA lower layer.

aaaTimeout (boolean) Setin AAA_IDLE if, after a configurable amount of
time, there is no response from the AAA layer. The
AAA layer inthe NASisalive and OK, but for
some reason it has not received avalid
Access-Accept/Reject indication from the backend.

The explanation for how AAA module functions in hostapd is divided into two
parts: Receiving and Sending. For each sub section we start with a process flow chart,
then we explain the functions in a top-down manner and end up with an analysis of
how the interfaces described above come into effect.

3.2.1 RADIUS Client on Receiving

Figure 3-9 shows how the RADIUS client receives and processes frames from the
AAA server. Moreover, it gives a complete top-down view of how the AAA client is
initiated and how it interacts with the other parts of the system.

The code analysis is based on the last stable hostapd version 0.6.9, while the
newest stable version is 0.7.3. Although in the new version the process may not
exactly follow the map with some functionalities are moved from its original function
to another, the main logic doesn’'t change.
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[ hostapd\hostapd.c: main() ]
[ hostapd\hostapd.c: hostapd_setup_interface( ) ]
i
|

[ hostapd\hostapd.c: setup_interface( ) ]

1

[ hostapd\hostapd.c: hostapd _setup_bss( ) ] - [
. .I
II \/

[ src\radiusiradius _client.c: radius client_init( ) ] [ hostapa\ ieee802_1x.c: ieee802_1x_init() ]

L
[ src\radiusiradius _client.c: radius _client_init_auth() ] sre\radiusiradius client.c: radius _client_register(
I ...,RADIUS AUTH, ieee802_1x_receive auth,...)

S
src\utils\eloop.c: eloop_register_read sock( auth_serv_sock,
radius client receive, radius, RADIUS AUTH)

1

src\radiusiradius_client.c: radius client_receive || hostapd\ ieeeB02_1x.c: ieee802_1x_receive auth()

b

hostapd\ ieeeB02_1x.c: ieeeB802_1x_decapsulate radius()

Figure 3-9. RADIUS Client on Receiving AAA Frames

The whole system starts at main(), which first reads in options. Then it registers
the EAP methods, allocates space for each interface on demand and initializes an
event loop. An AP may have several interfaces and each interface may support up
to 6 BSSes®. Next each of the interfaces is initidized by calling
hostapd_setup_interface(). The core function of hostapd_setup interface() is
setup_interface(). The latter function initializes the driver interface’ and configures
all BSSes with a pointer to this driver interface. Then it validates the BSS
configurations, flushes old stations and sets up wireless link privacy for the driver.
Next it sets the radio channel and frequency, clears default encryption keys (default
management keys in the case of IEEE 802.11W), sets up link encryption, and sets the

3 A single physical AP can act like multiple logical APs, each with a different BSS identifier. This
enables mulitple operators to share an AP, while users logically connect viatheir network operator.
* Note that multiple BSSes can be configured with a pointer to asingle driver interface.
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beacon interval. After that it calls ieee802_11 set beacon to prepare al the
parameters that are needed in the beacon frame. Next the code sets a Request to Send
(RTS) threshold and fragmentation threshold for the kernel driver. After configuring
the driver, it continues setting up the BSS by calling hostapd_setup _bss(), which
initializes al per-BSS data structures and resources. One of these resources, the
RADIUS Client module, isinitiated by calling radius_client_init().

RADIUS Client has only two jobs: authentication and accounting. Thus
radius_client_init() calls radius client_init_auth() and radius client_init_acct()
respectively, which returns 0 if its initiaization is successful. Both
radius client_init_auth() and radius client_init_acct() calls radius change server()
to prepare parameters needed for communication with the RADIUS server, like
shared secret and retry counters. It also binds and connects RADIUS client address
with RADIUS server address. The shared secret, retry counters as well as server
sockets and addresses are written in a configuration file, which are read and saved in
the structure hostapd radius_servers. radius_client_init_auth() and
radius client_init_acct() are similar. Here we will focus on authentication.
radius_client_init_auth() does three jobs: (1) Creates a socket; (2) Connects through
the socket; and (3) Listens to this socket. For socket creation, it calls socket(PF_INET,
SOCK_DGRAM, 0). For connection, it cals radius change server(radius,
conf->auth_server, NULL, radius->auth serv_sock, radius->auth_serv_sock6, 1),
which actualy calls connect(sel_sock, addr, addrlen). For socket listening, hostapd
uses an event loop system. By registering a handler function for the auth socket, the
system calls this handler function whenever a frame is received on that socket.
Therefore, eloop register read sock registers a handler radius client_receive for
auth_serv_sock.

The RADIUS Client has separate handlers and configurations for authentication
and accounting messages. Thus radius_client_receive first examines the msg_type to
prepare the corresponding configuration and handlers. Then it calls recv(sock, buf,
sizeof(buf), MSG_DONTWAIT) and radius msg parse(buf, len). The RADIUS
message is stored in the structure radius msg. While radius client_receive() checks
the message header code (ACCESS ACCEPT, ACCESS REJECT,
ACCESS CHALLENGE, or ACCOUNTING_RESPONSE) and increases the
number of the corresponding message record by 1. As a RADIUS response should
match a RADIUS request sent earlier by the RADIUS Client, a match means that their
identifiers are equal. Thus the RADIUS Client puts each request in alist on sending a
request and searches that list on receiving what looks like a response. If no matching
RADIUS request is found, then that response message is dropped. If a match isfound,
then it calculates the round trip time and removes acknowledged RADIUS request
from the list. Next, radius client_receive goes through all the handlers, which deal
with the RADIUS response.

The handler is stored in the data structure radius rx_handler. This value is used
internally inside the RADIUS client module. The structure is a combination of a
handler function and context data (void *data). The context data is actually a pointer
to the main data structure hostapd, which is mainly used for logging. The handler
returns a return value RadiusRxResult, which is an enumeration, which indicates the
result of processing by the handler function. The radius rx_handler structure and the
enumerated result values are shown below:
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/**

* grc\radiusiradius_client.c: struct radius rx_handler - RADIUS client RX handler
*/
struct radius_rx_handler {
/* *
* handler - Received RADIUS message handler
*/
RadiusRxResult (* handler)(struct radius_msg * msg,
struct radius_msg *req,
const u8 *shared_secret,
size t shared _secret len,
void *data);
/* *
* data- Context datafor the handler
*/
void *data;
1

/**
* src\radius\radius_client.h: struct radius_rx_handler - RADIUS client RX handler
*/
typedef enum {
RADIUS RX_PROCESSED,
RADIUS _RX_QUEUED,
RADIUS RX_UNKNOWN,
RADIUS RX_INVALID_AUTHENTICATOR
} RadiusRxResult

These call back handlers are registered by calls to radius client_register() and
unregistered when the RADIUS client is deinitidized with a cal to
radius_client_deinit(). There can be multiple registered RADIUS message handlers.
Each of these handlers will be called in order until one of them indicates that it has
processed or enqueued the message. As we can see from the code below,
radius_client_register() first distinguishes if it is registering an auth or accounting
handler. Then it finds the corresponding handlers array from the structure
radius client_ data, which owns these handlers. By using realoc(),
radius_client_register() gets enough additional space for the new handler (while
keeping all the other handlers’ information). Finally it adds the new handler at the end
of the array.
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/**

* sre\radius\radius client.c: radius client_register - Register aRADIUS client RX handler
* @radius: RADIUS client context from radius_client_init()

* @msg_type: RADIUS client type (RADIUS AUTH or RADIUS ACCT)

* @handler: Handler for received RADIUS messages

* @data: Context pointer for handler callbacks

* Returns: 0 on success, -1 on failure

*/

int radius_client_register(struct radius_client_data *radius,
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RadiusType msg_type,
RadiusRxResult (* handler)(struct radius_msg * msg,
struct radius_msg *req,
const u8 *shared_secret,
size t shared secret_len,
void *data),
void *data)

struct radius_rx_handler ** handlers, * newh;
size t*num;

if (msg_type == RADIUS ACCT) {
handlers = &radius->acct_handlers;
num = &radius->num_acct_handlers;
} else{
handlers = &radius->auth_handlers;
num = &radius->num_auth_handlers;

}

newh = os_realloc(* handlers,
(*num + 1) * sizeof(struct radius_rx_handler));
if (newh ==NULL)
return -1;

newh[* num].handler = handler;
newh[* num].data = data;
(*num)-++;

*handlers = newh;

return O;
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There is only one authentication handler specifically registered for IEEE 802.1X,
ieee802_1x receive_auth(). The registration of ieee802_1x receive_auth() comes
during the initialization of 802.1X module. As can be seen in Figure 3-9 on page 75,
both the RADIUS Client module and IEEE 802.1X module are initialized in
hostapd_setup_bss(). However, the RADIUS Client module is initialized earlier than
|EEE 802.1X module, as shown in the following code.

/**
* hostapd\hostapd.c: hostapd_setup bss - Per-BSS setup
*/
static int hostapd_setup_bss(struct hostapd data * hapd, int first)

if (wpa_debug_level == MSG_MSGDUMP)
conf->radius->msg_dumps = 1;

hapd->radius = radius_client_init(hapd, conf->radius);

if (hapd->radius== NULL) {
wpa_printf(MSG_ERROR, "RADIUS client initiaization failed.");
return -1;

}

if (hostapd_acl_init(hapd)) {
wpa_printf(MSG_ERROR, "ACL initiaization failed.");
return -1;

}
if (hostapd_init_wps(hapd, conf))
return -1,

if (ieee802_1x_init(hapd)) {
wpa_printf(MSG_ERROR, "IEEE 802.1X initialization failed.");
return -1;

An investigation into ieeeB02_1x receive auth() as well as its sub function
ieee 802 1x decapsulate radius() clearly shows how the interface variables from
AAA to EAP work. These interface variables are colored blue in the following code.

/**

*jeeeB802_1x.c: ieee802_1x_receive auth - Process RADIUS frames from Authentication Server
* @msg: RADIUS response message
* @reg: RADIUS request message
* @shared_secret: RADIUS shared secret
* @shared_secret_len: Length of shared secret in octets
* @data: Context data (struct hostapd data*)
* Returns: Processing status
*/
static RadiusRxResult
ieeeB02_1x_receive auth(struct radius_msg *msg, struct radius msg *req,
const u8 *shared secret, size t shared secret_len,
void *data)

struct hostapd_data* hapd = data;

struct sta_info *sta;

u32 session_timeout = 0, termination_action, acct_interim_interval;
int session_timeout_set, old_vlanid = 0;

struct eapol_state_ machine *sm;

int override_eapReq = 0;
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sm =ieeeB02_1x_search radius identifier(hapd, msg->hdr->identifier);
if (sm==NULL) {
wpa printf(MSG_DEBUG, "IEEE 802.1X: Could not find matching "
"station for this RADIUS message");
return RADIUS RX_UNKNOWN;
}

sta= sm->sta;

/* RFC 2869, Ch. 5.13: valid Message-Authenticator attribute MUST be
* present when packet contains an EAP-Message attribute */
if (msg->hdr->code == RADIUS_CODE_ACCESS_REJECT &&
radius_msg_get_attr(msg, RADIUS ATTR_MESSAGE_AUTHENTICATOR, NULL,
0)<0&&
radius msg_get attr(msg, RADIUS ATTR_EAP_MESSAGE, NULL, 0) <0) {
wpa printf(MSG_DEBUG, "Allowing RADIUS Access-Reject without "
"Message-Authenticator since it does not include "
"EAP-Message");
} elseif (radius_msg_verify(msg, shared secret, shared_secret_len,
reg, 1)) {
printf("Incoming RADIUS packet did not have correct "
"Message-Authenticator - dropped\n™);
return RADIUS RX_INVALID_AUTHENTICATOR,;

}

if (msg->hdr->code != RADIUS CODE_ACCESS ACCEPT &&
msg->hdr->code != RADIUS_CODE_ACCESS _REJECT &&
msg->hdr->code != RADIUS CODE_ACCESS CHALLENGE) {
printf("Unknown RADIUS message code\n”);
return RADIUS_RX_UNKNOWN;

}

sm->radius _identifier = -1;
wpa_printf(MSG_DEBUG, "RADIUS packet matching with station " MACSTR,
MAC2STR(sta->addr));

if (sm->last_recv_radius) {
radius_msg_free(sm->last_recv_radius);
os _free(sm->last_recv_radius);

}
sm->last_recv_radius = msg;

session_timeout_set =
Iradius_ msg_get_attr_int32(msg, RADIUS_ATTR_SESSION_TIMEOUT,
&session_timeout);
if (radius_msg_get attr_int32(msg, RADIUS ATTR_TERMINATION_ACTION,
&termination_action))
termination_action = RADIUS_TERMINATION_ACTION_DEFAULT;

if (hapd->conf->radius->acct_interim_interval == 0 & &
msg->hdr->code == RADIUS_CODE_ACCESS ACCEPT &&
radius_msg_get_attr_int32(msg, RADIUS_ATTR_ACCT_INTERIM_INTERVAL,
&acct_interim_interval) == 0) {
if (acct_interim_interval < 60) {
hostapd_logger(hapd, sta->addr,

HOSTAPD_MODULE_|IEEE8021X,
HOSTAPD_LEVEL_INFO,
"ignored too small "
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"Acct-Interim-Interva %d",
acct_interim_interva);
} else
sta->acct_interim_interval = acct_interim_interval;
}

switch (msg->hdr->code) {
case RADIUS_CODE_ACCESS ACCEPT:
if (sta->ssid->dynamic_vlan==DYNAMIC_VLAN_DISABLED)
sta->vlan id = 0;
ese{
old_vlanid = sta->vlan _id;
sta->vlan_id = radius msg_get vlanid(msg);

}
if (sta>vlan id>0&&
hostapd _get vlan id_ifname(hapd->conf->vlan,
sta->vlan_id)) {
hostapd_logger(hapd, sta->addr,
HOSTAPD_MODULE_RADIUS,
HOSTAPD_LEVEL_INFO,
"VLAN ID %d", sta->vlan_id);
} elseif (sta->ssid->dynamic_vlan == DYNAMIC_VLAN_REQUIRED) {
sta->eapol _sm->authFail = TRUE;
hostapd_logger(hapd, sta->addr,
HOSTAPD_MODULE_IEEE8021X,
HOSTAPD_LEVEL_INFO, "authentication "
"server did not include required VLAN "
"ID in Access-Accept”);
bresk;

}
ap_sta bind_vlan(hapd, sta, old_vlanid);

/* RFC 3580, Ch. 3.17 */

if (session_timeout_set & & termination_action ==
RADIUS _TERMINATION_ACTION_RADIUS REQUEST) {
sm->reAuthPeriod = session_timeout;

} elseif (session_timeout_set)
ap_sta session_timeout(hapd, sta, session_timeout);

sm->eap_if->asaSuccess = TRUE;
override_eapReq =1;
ieeeB02_1x_get _keys(hapd, sta, msg, req, shared secret,
shared_secret_len);
ieeeB02_1x_store radius_class(hapd, sta, msg);
ieeeB02_1x_update sta identity(hapd, sta, msg);
if (sm->eap if->eapKeyAvailable & &
wpa_auth_pmksa_add(sta->wpa_sm, sm->eapol_key crypt,
session_timeout_set ?
(int) session_timeout : -1, sm) ==0) {
hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE WPA,
HOSTAPD LEVEL DEBUG,
"Added PMK SA cache entry");
}
break;
case RADIUS_CODE_ACCESS_REJECT:
sm->eap_if->azaFail = TRUE;
override_eapReq =1;
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break;
case RADIUS_CODE_ACCESS_CHALLENGE:
sm->eap_if->asaEapReq = TRUE;
if (session_timeout_set) {
I* RFC 2869, Ch. 2.3.2; RFC 3580, Ch. 3.17 */
sm->egp_if->aaaMethodTimeout = session_timeout;
hostapd_logger(hapd, sm->addr,
HOSTAPD_MODULE_IEEE8021X,
HOSTAPD _LEVEL_DEBUG,
"using EAP timeout of %d seconds (from "
"RADIUS)",
sm->eap_if->aaalM ethodTimeout);
} else{
/*
* Use dynamic retransmission behavior per EAP
* gpecification.
*/
sm->eap_if->aaalM ethodTimeout = 0;
}
break;

}

ieee802_1x_decapsulate radius(hapd, sta);
if (override_eapReq)
sm->eap_if->asaEapReq = FALSE;

eapol_auth_step(sm);

return RADIUS RX_QUEUED;
}

/* *
*ieeeB02_1x.c: ieeeB02_1x_decapsulate radius— Get EAP from RADIUS frames
*/
static void ieee802_1x_decapsulate radius(struct hostapd data * hapd,
struct sta_info *sta)

{
u8 *eap;
size tlen;
struct eap_hdr *hdr;
int eap_type=-1,
char buf[64];

struct radius_msg * msg;
struct eapol_state machine *sm = sta->eapol _sm;

if (sm==NULL || sm->last_recv_radius== NULL) {
if (sm)
sm->eap_if->azaEapNoReq = TRUE;
return;

}

msg = sm->last_recv_radius;

eap = radius_msg_get_eap(msg, &len);
if (eap ==NULL) {
/* RFC 3579, Chap. 2.6.3:
* RADIUS server SHOULD NOT send Access-Reject/no EAP-Message
* attribute */
hostapd_logger(hapd, sta->addr, HOSTAPD MODULE_IEEE8021X,
HOSTAPD_LEVEL_WARNING, "could not extract "
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"EAP-Message from RADIUS message');
sm->egp_if->aaaEapNoReq = TRUE;
return;

}

if (len < sizeof (*hdr)) {
hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_|EEE8021X,
HOSTAPD_LEVEL_WARNING, "too short EAP packet "
"received from authentication server");
os_free(eap);
sm->eap_if->aaaEapNoReq = TRUE;
return;

}

if (len > sizeof (*hdr))
)_type = eap[sizeof (* hdr)];

hdr = (struct eap_hdr *) eap;
switch (hdr->code) {
case EAP_CODE_REQUEST:
if (eap_type>=0)
sm->eap_type authsrv = eap_type;
os_snprintf(buf, sizeof(buf), "EAP-Request-%s (%d)",
eap_type>=07?eap_type text(eap_type) : "?7",
eap_type);
break;
case EAP_CODE_RESPONSE:
os_snprintf(buf, sizeof(buf), "EAP Response-%s (%d)",
eap_type>=07?eap_type text(eap type) : "??",
eap_type);
break;
case EAP_CODE_SUCCESS:
os_strlcpy(buf, "EAP Success', sizeof (buf));
break;
case EAP_CODE_FAILURE:
os_stricpy(buf, "EAP Failure”, sizeof(buf));
break;
default:
os_strlcpy(buf, "unknown EAP code", sizeof(buf));
bresk;

}

buf[sizeof (buf) - 1] ="\0';

hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_IEEE8021X,
HOSTAPD_LEVEL_DEBUG, "decapsulated EAP packet (code=%d "
"id=%d len=%¢d) from RADIUS server: %s",
hdr->code, hdr->identifier, be_to_host16(hdr->length),
buf);

sm->eap_if->aaaEapReq = TRUE;

wpabuf_free(sm->eap_if->aaaEapReqData);
sm->eap_if->aaaEapReqData = wpabuf_alloc_ext_data(eap, len);

To better understand the code, it is necessary to clarify the relationship between
some basic data structures. The data structures eap sm (defined in
\src\eap_server\eap i.h) and eap eapol _interface (defined in \src\eap_server\eap.h)
have aready been introduced. For each station there is an eap sm and an
eap_eapol_interface. In SectionO we will introduce eapol_state_machine (defined in
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\src\eapol_auth\eapol _auth_sm i.h), whch holds per-supplicant authenticator state
machines. This structure contains a pointer to eap sm as well as a pointer to the
eap_eapol_interface inside that eap_sm. For each supplicant, there is only one
EAPOL state machine. Each station’s information is put in a structure sta info (see
Error! Reference sour ce not found.). This structure includes a pointer to its EAPOL
state machine. All sta info are put in alist, which is stored in the structure hostapd.
Accordingly the structure hostapd contains all the information necessary for the
operation of the daemon software.

The function ieee802_1x receive auth() first finds the EAPOL state machine matching
the RADIUS response. Since sta info contains the RADIUS message's identifier,
ieee802_1x_search radius identifier() searches through the sta_info list in hostapd and
returns the corresponding eapol_state machine. Both sta_info and eapol_state machine have
a pointer referring to each other. Thus we can access the corresponding sta_info after we find
the correct eapol_state_machine. Next the code will validate the RADIUS message by
checking the message header as well as by matching this response with the corresponding
request. After that, it updates the variable last recv radius stored in the
eapol_state machine; and sets session timeout and acct interim interval (The only
difference between accounting and interim accounting messages is that the interim message
will override any pending interim accounting updates; while a new accounting message does
not remove any pending messages [49]). Next the code branches depending upon the header
code: ACCESS ACCEPT, ACCESS CHALLENGE, or ACCESS REJECT. You can see
from the code that interface variables are set during this phase. For example, the setting of
aaaEapKeyData can be seen in the function ieeeB02_1x get keys. A key requirement for
implementing |IEEE 802.1X is to extract the EAP message from the RADIUS frame. Thisis
done by ieeeB802_1x_decapsulate radius(). This function will also check if the EAP message
islegal. If everything is OK, then the signal aaaEapReq is set to TRUE and the EAP message
will be copied to aaaEapRegData. After al the relevant interface variables are sef,
eapol_auth_step() is called to revolve the EAPOL and EAP state machines (the EAP SM is
also awakened by eapol_auth_step()).

It is important to note that the structure eap_eapol interface which stores the
interface variables resides in eap_sm. However the modification of the interface
variables from the AAA layer to the EAP layer are made directly by
eapol_state machine rather than eap sm. A pointer to eap eapol interface in
eapol_state machine helps renew the interface information while keeping the EAP
modul e unattached.

3.2.2 RADIUS Client on Sending

Before giving the process flowchart, some critical data structure should be
explained ahead. The structure eapol _authenticator is a globa EAPOL authenticator
data structure stored in the structure hostapd. It contains all the call back functions
and configuration information needed by the authenticator. The references to the call
back functions are put in the structure eapol _auth_cb (defined in eapol_auth_sm.h).
The configuration information is stored in the structure eapol _auth_config (defined in
eapol _auth_sm.h).

/**
* src\eapol_auth\eapol _auth_sm_i.h: struct eapol _authenticator
x|

struct eapol_authenticator {

struct eapol_auth_config conf;
struct eapol_auth_cb cb;
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u8 *default_wep key;
u8 default_wep_key_idx;

Figure 3-10 shows the process flow map for the RADIUS client when sending
RADIUS frames. The function radius_client_send() is used to transmit a RADIUS
authentication  (RADIUS AUTH)  or  accounting  (RADIUS ACCT  or
RADIUS ACCT_INTERIM) request. After some validation, it retrieves the
shared secret  and calls radius msg finish() to add the attribute
“Message-Authenticator” to the message, to set msg->hdr->length, and to encrypt the
whole frame using the MD5 agorithm. After that it calls send() to transmit the frame
to the authentication server. Note that the local socket is already connected with its
counterpart in the authentication server due to the call to radius change server()
during the radius _client_init() phase.

The function radius _client_send() is called by ieee802_1x encapsulate radius(),
whose main job is to prepare an EAP message and itsert it into a RADIUS message.
The first step is to get the user identity (from the EAP-Response/ldentity) by calling
ieee802 _1x learn identity(). This user identity will later be used in the attribute
RADIUS ATTR USER NAME in the RADIUS frame. Next it gets the
radius identifier by calling radius client get id() and creates a new RADIUS
message by caling radius msg_new(RADIUS CODE_ACCESS REQUEST,
sm->radius_identifier). Next it fillsin the various attributes values in the message by
calling radius msg add attr() for USER _NAME, NAS IP_ADDRESS,
NAS IDENTIFIER, CALLED_STATION_ ID, CALLING STATION_ID, and
CONNECT_INFO; as well as radius msg add attr_int32() for NAS PORT,
FRAMED_MTU, and NAS PORT_TYPE. Then it adds the resulting EAP message
into the RADIUS frame by caling radius msg_add eap(). If this packet is an
Access-Request reply to the previous Access-Challenge, then it must copy the STATE
attribute from the previous RADIUS message. This is done by calling
radius_msg_copy_attr(msg, sm->last recv_radius, RADIUS ATTR_STATE). Now
that the RADIUS frame is ready, it calls radius _client_send() — which was discussed
in the previoous paragraph.

The function ieee802_1x_encapsulate radius() is inside ieee802_1x_aaa_send().
During the initialization phase of IEEE 802.1X module, ieee802 1x init() assigns a
value to eapol_auth config (conf) and eapol auth cb (cb). Then
ieee802_1x aaa send serves as the aaa send call back handler for eapol auth cb.
Both eapol_auth config and eapol_auth _cb are parameters to eapol auth init(),
which initializes hapd->eapol_auth. Although the structure eapol_authenticator is
part of the contents of the structure hostapd, it is also referenced through a pointer by
the structure eapol_state_machine. That is how the functions in eapol_auth _cb serve
as call back functions for EAPOL auth state machines.

Figure 3-10 shows the relationship between these methods, but it does not
illustrate the whole process, like who actually calls the call back function aaa_send()
and when it is called. Moreover it is also important to explore the interface variables
from the EAP layer to the AAA layer. Thus it is necessary to examine the EAP state
machine while at the same time looking into one of the EAPOL state machines (in
this case the Backend Authentication state machine). The Backend Authentication
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state machine serves as atrigger for the EAP state machine by setting the appropriate
interface variables. Figure 3-11 illustrates the relationship between EAP and EAPOL
state machines as well as how those interface variables from the EAP layer to the
AAA layer comeinto effect.

The following code shows how the Backend Authentication state machine transits
from REQUEST to RESPONSE.

/**

* egpol_sm.c

*/
SM_STEP(BE_AUTH)
{

switch (sm->be_auth_state) {

case BE_ AUTH_REQUEST:
if (sm->eapol Eap)
SM_ENTER(BE_AUTH, RESPONSE);
elseif (sm->eap _if->eapReq)
SM_ENTER(BE_AUTH, REQUEST);
elseif (sm->eap if->eapTimeout)
SM_ENTER(BE_AUTH, TIMEOUT);
break;

| hostapd ieeeB02_1x.c: ieee802_Lx_init()

s
[ eapol_auth_cb.aaa send=ieee802_1x_aaa send() ]..\

“~~ hapd->eapol_auth=eapol_auth_init(&conf, &cb)

ieee802_1x_encapsulate_radius( )
|

[ hostapd\ ieee802_1x.c: ]

src\radius\radius _client.c:
radius_client_send()

Figure 3-10. RADIUS Client on Sending AAA Frames
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[ hostapd\ ieee802_1x.c: ieee802_1x_receive( ) ]

N
[ hostapd\ ieee802_1x.c: handle_eap() ]

) h 4

src\eapol_auth\eapol_auth_sm.c:
.~ €apol_auth step(sta->eapol_sm)

hostapd\ ieee802_1x.c: handle_eap_response():
eapRespData; sm->eapolEap = TRUE

Z

] ] ( eloop_register_timeout(0,
[ eapol_sm_step_run() j\ L eapol_sm_step cb, sm, NULL)

/[ 2 eap_server_sm_step(sm->eap) ]

1SM_STEP_RUN

BE_AUTH o
SM_STEP RUN

RESPONSE:
eapResp=TRUE

AAA_REQUEST:

eapRespData=
aaaEapRespData

AAA_IDLE:
asaEapResp=TRUE

}

while (sm->changed);

Figure 3-11. EAP and EAPOL SMson Sending AAA Frames
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The function ieee802_1x receive() processes the EAPOL frames from the
supplicant. To process these frames ieee802_1x receive() calls handle eap() if the
frame contains a 802.1X EAP packet. After this handle eap() will call
handle_eap response() if the EAP code was RESPONSE (which we would expect in
our scenario). The function handle_eap response() finds the corresponding EAPOL
state machine sm from sta info, copies the EAP message to
sm>eap if->eapRespData and sets sm->eapolEap as TRUE. After that
ieee802_1x receive() calls eapol _auth_step(sta->eapol _sm) to step the EAPOL state
machines forward.

The function eapol _auth_step() is called to advance al the EAPOL state machines
after any change that could affect their state. Its core is actually eapol_sm step_run().
Since a corresponding eapol _state machine will exist as long as a supplciant is being
serviced, and because the eapol_state machine contains many state machines and
methods whose work may be time consuming, plus there may be frequent state
changes, eapol_auth_step() could take a lot of CPU cycles. Accordingly it is
necessary to run eapol_sm step run() with a timeout in order to ensure that other
potential timeouts and events are processed and to avoid long function call chains.
The function eapol sm step cb() simply serves as a package for
eapol_sm step_run() to get an eloop timeout registration.

The function eapol_sm step run() can be divided into three parts. (1) runs the
EAPOL state machines; (2) runs the EAP state machine; (3) calls aaa_send(). The
precondition for this function to march forward is that there is no more change to any
of the state machines belonging to the current part. So the EAP state machine starts
running when there is no further alteration of EAPOL state machines. However, if the
state is changed after the EAP state machine runs, then it must go back to the EAPOL
part again (Part 1 in Figure 3-11). When the EAP state machine is no longer changing,
it advances to Part 3, using the call back function aaa_send(). At the beginning of
Part 1, restart, it first keeps arecord of all EAPOL state machines' status. Then it will
run all the state machines with AUTH_PAE (the Authenticator PAE state machine)
running first. Finally, it will compare all the state machines’ status with the record at
start. If there is any change, it will go back to restart to run those EAPOL state
machines again. There is a countdown from 100 for “goto restart;” as a precaution
against infinite loops inside the eloop callback. If O is reached, it will exit and return
to restart through the event loop (eapol_auth step()). The same process happens in
Part 2.

In our scenario, one of the EAPOL state machines, Backend Authenticator state
machine moves from REQUEST to RESPONSE, since eapolEap was set TRUE by
handle eap response(). In the RESPONSE dtate, it sets sm->eap if->eapResp as
TRUE, which is a trigger for advancing the EAP state machine. Also it sets
sm->eapolEap as FALSE, which is a trigger for itself. The function goes back to
restart and finds there is no more change, then it moves to Part 2. Inside the function
eap_server_sm step() is a do while loop, so that the EAP state machine will keep
running until there is no more change to any state machine. Then EAP steps from
IDLE2 to RECEIVED2. In RECEIVED? it cals eap sm parse() to get respld,
respMethod, respVendor and respVendorMethod. eap sm parse() also sets rxResp
TRUE if the header code is RESPONSE. rxResp is described in Table 3-4, it indicates
that the current received packet is an EAP response. The EAP state machine runs
again and this time it is in the state RECEIVED2. It finds out that sm->rxResp is
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TRUE (set just now) and sm->respld matches with sm->currentld, which means that
the current EAP response belongs to the current EAP conversation. (respld is the
identifier from the current EAP response, see Table 3-4; currentld is the identifier of
the currently outstanding EAP request; see Table 3-3). These two conditions make the

EAP state machine transit to the state AAA_REQUEST, where it copies eapRespData

to aaaEapRespData. Then it advances unconditionally to the AAA_IDLE state, where
sm->eap_if.aaaEapResp is set TRUE. Till now, the EAP state machine has prepared
aaaEapResp signal and aaaEapRespData. The function will go back to restart again
and finds there isn't any change in either Part 1 or Part 2. So it marches to Part 3,
where the call back aaa send (ieee802_1x aaa send(), see Figure 3-10) is used to
send the RADIUS message to the authentication server.

/**

* src\eap.c

*/

SM_STATE(EAP, IDLE?)

{

}

SM_ENTRY (EAPR, IDLE2);

sm->eap_if.retransWhile = eap_sm_calculateTimeout(
sm, sm->retransCount, sm->eap_if.eapSRTT, sm->eap_if.eapRTTVAR,
sm->methodTimeout);

SM_STATE(EAP, RECEIVED?2)

{

}

SM_ENTRY (EAP, RECEIVED?2);

[* parse rxResp, respld, respMethod */
eap_sm_parseEapResp(sm, sm->eap _if.eapRespData);

SM_STATE(EAP, AAA_REQUEST)

{

SM_ENTRY (EAP, AAA_REQUEST);

if (sm->eap_if.eapRespData== NULL) {
wpa printf(MSG_INFO, "EAP: AAA_REQUEST - no eapRespData’’);
return;

}

/*
* if (respMethod == IDENTITY)
*  aaaldentity = eapRespData
* Thisis aready taken care of by the EAP-Identity method which
* stores the identity into sm->identity.
*/

eap_copy_buf(&sm->eap_if.aaaEapRespData, sm->eap _if.eapRespData);

The following code shows the four states of EAP state machine (IDLE2,
RECEIVED2, AAA_REQUEST, AAA_IDLE) aswell astheir transitions.
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SM_STATE(EAP, AAA_IDLE)
SM_ENTRY (EAP, AAA_IDLE);

sm->eap_if.aaaFail = FALSE;
sm->eap_if.aaaSuccess = FAL SE;
sm->eap_if.aaaEapReq = FALSE;
sm->eap_if.aaaEapNoReq = FAL SE;
sm->eap_if.aaaEapResp = TRUE;

}

SM_STEP(EAP)
{

case EAP_INITIALIZE_PASSTHROUGH:
if (sm->currentld == -1)
SM_ENTER(EAP, AAA_IDLE);
else
SM_ENTER(EAP, AAA_REQUEST);
break;

case EAP_IDLE2:
if (sm->eap _if.eapResp)
SM_ENTER(EAP, RECEIVED2);
elseif (sm->eap_if.retransWhile == 0)
SM_ENTER(EAP, RETRANSMIT2);
break;

case EAP_RECEIVED2:
if (sm->rxResp & & (sm->respld == sm->currentld))
SM_ENTER(EAP, AAA_REQUEST);
else
SM_ENTER(EAP, DISCARD?2);
break;

case EAP_AAA REQUEST:
SM_ENTER(EAP,AAA_IDLE);
break;

It isimportant to note that the modification to the interface variables from the EAP
layer to the AAA layer are actually made directly by the EAP layer as a result of the
direct interaction by the EAPOL layer on the EAP layer. The reference to
eap_eapol_interface and eapol_authenticator in eapol_state machine help the
EAPOL layer invoke call back functions established by the RADIUS Client without
touching the EAP module.

In the end of Section 3.2.1 it is mentioned that the modification to the interface
variables from the AAA layer to the EAP layer were actually made by the direct
interaction by the AAA layer on the EAPOL state machine. A pointer to the
eap_eapol_interface from the eapol_state machine to its true existence in eap_sm
helps couple the interface information, while decoupling from the EAP module. As a
result it does not matter the interaction is from the EAP layer to the AAA layer or the
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reverse - “there is not necessarily a direct interaction between the EAP layer and the
AAA layer, as in the case of 802.1X-2004" [51]. Such a design enables the EAP
module and AAA module to intact while remaining loosely coupled. Figure 3-12
shows the relationship between EAP, EAPOL, and AAA during RADIUS receiving
and sending phases.

-] /&
%o %9,
@ o @ e

On RADIUS Receiving On RADIUS Sending

Figure 3-12. SM Relationship on RADIUS Sending & Receiving

3.3 EAPOL Layer

The EAPOL layer of the full authenticator, whether it is operating in pass-through
mode or not, is the same as that of a stand-alone authenticator. Thus one can ignore
the details of the AAA layer in this section. In the prior sections when studying the
AAA interfaces, the focus was on sending and receiving RADIUS frames. With
regard to EAPOL interfaces, the focus is sending and receiving EAPOL frames.
Following the same pattern used in Section 3.2, we will introduce the interface
variables between EAPOL and EAP first. Their descriptions are based on the
explanation of EAP stand-alone authenticator in RFC 4137 [51].

Error! Reference source not found. shows the interface between the PACP state
machines and the higher layer for the authenticator PAE. The system sends
portEnabled signal to both the higher layer and the PACP, indicating that a port is
active. The PACP transmits EAP messages between the physical port and the higher
layer. The higher layer of the Authenticator uses eapReg/eapNoReq to disclose when
it is prepared to receive a new message, and eapResp to hint that a new message is
available to the higher layer. Inside the higher layer, EAP drives the authentication
process together with the associated EAP methods. But on completion EAP will take
its cue from AAA to signal eapSuccess or eapFail to the PACP. All EAP messages
switched between Supplicant and Authenticator are produced by the EAP component.
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Authenticator

Higher Layer

eapReq

eapFall

eapSuccess

eapNoReq

eapTimeout portEnabled
disabled

Figure 3-13. Interface between EAP & EAPOL SMs[33]
3.3.1 Variables

The variables used in the EAPOL Interface to the Authenticator are enumerated
in Table 3-9. The variables used in the reverse direction are shown in Table 3-10.
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Table 3-9. Variables (EAPOL Interface to Full Authenticator)

Variable Description

eapResp (boolean) Set to TRUE in lower layer, FALSE in authenticator
state machine. Indicates that an EAP responseis
available for processing.

eapRespData (EAP Set in lower layer when eapResp is set to TRUE. The

packet) EAP packet to be processed.

portEnabled (boolean) Indicates that the EAP authenticator state machine should be

ready for communication. Thisis set to TRUE when the EAP
conversation is started by the lower layer. If at any point the
communication port or session is not available, portEnabled
is set to FALSE, and the state machine transitions to
DISABLED. To avoid unnecessary resets, the lower layer
may dampen link down indications when it believes that the
link is only temporarily down and that it will soon be back
up (see[37] Section 7.12). In this case, portEnabled may not
always be equal to the "link up" flag of the lower layer.

retransWhile (integer)

Outside timer used to indicate how long the
authenticator has waited for anew (valid) response.

eapRestart (boolean)

Indicates that the lower layer would like to restart
authentication.

eapSRTT (integer)

Smoothed round-trip time. (See [37] Section 4.3.)

eapRTTVAR (integer)

Round-trip time variation. (See [37] Section 4.3.)

Table 3-10. Variables (Full Authenticator Interfaceto EAPOL)

Variable

Description

eapNoReq (boolean)

Set to TRUE in authenticator state machine, FALSE in
lower layer. Indicates the most recent response has
been processed, but there is no new request to send.

eapSuccess (boolean)

Set to TRUE in authenticator state machine, FALSE in
lower layer. Indicates that the state machine has
reached the SUCCESS state.

eapFail (boolean)

Set to TRUE in authenticator state machine, FALSE in
lower layer. Indicates that the state machine has
reached the FAILURE state.

eapTimeout (boolean)

Set to TRUE inthe TIMEOUT_FAILURE state if the
authenticator has reached its maximum number of
retransmissions without receiving a response.

eapRegData (EAP packet) | Set in authenticator state machine when eapReq,
eapSuccess, or eapFail isset to TRUE. The actual EAP
request to be sent (or success/failure).

eapKeyData (EAP key) Set in authenticator state machine when keying

material becomes available. Set during the METHOD
state. Note that this document does not define the
structure of the type "EAP key".

eapKeyAvailable (boolean)

Set to TRUE in the SUCCESS state if keying material
isavailable. The actual key is stored in eapKeyData.
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3.3.2 How EAPOL functions in hostapd

The explanation for the EAPOL module in hostapd is divided into three parts: (1)
Sending EAP Responses to the EAP layer; (2) Receiving EAP Requests from the EAP
layer; and (3) EAPOL state machines. Part 1 has already been covered in Section
3.2.2. Part 2 is a succeeding process of RADIUS client receiving, which is covered in
Section 3.2.1.

3.3.2.1 EAPOL on receiving an EAP Request

Error! Reference source not found. shows the remaining process after the AAA
layer has transmitted the RADIUS response message to the EAP layer. When
aaaFapReq is st to TRUE and aaaEapRegData assigned by
ieee802_1x decapsulate radius(), then eapol auth step() a the end of
ieee802_1x receive_auth() will run the EAP state machine since there is no changein
the EAPOL state machines. The status of the EAP state machine will transition from
AAA_IDLE to AAA_RESPONSE, where the value of the interface variable
asaEapRegData will be copied to eapRegData. Then it will transition to
SEND_REQUEST2, where it sets eapResp to FALSE and eapReq to TRUE. Both
eapReq and eapRegData are interface variables from EAP to EAPOL (see Table
3-10). Next the EAP state machine will transition to IDLE2, where it sets
retransWhile by calling eap_sm calculateTimeout() and remains until atimeout. Note
that retransWhile is an interface variable from EAPOL to EAP (see Table 3-9). The
duration of eap sm calculateTimeout() determines how long the authenticator will
wait for a valid response. When the EAP state machine is steady, then
eapol_auth_step() returns to the restart state and tries to run EAPOL state machines.
However, one machine has changed this time. Thisis the Backend Authenticator state
machine, which isin charge of transmitting messages between EAPOL and EAP. The
Backend Authenticator state machine will enter the REQUEST state from one of the
following states: IGNORE, IDLE, or RESPONSE. In the REQUEST state, it will send
an EAP Request frame by calling txReq() and set eapReq to FALSE. Note that
retransWhile is controlled by eapol_port_timers tick(). The following code expounds
the above process of Backend Authenticator state machine.

/**
* eapol_sm.c: struct eapol_authenticator
x|

SM_STEP(BE_AUTH)

{

if (sm->portControl != Auto || sm->initialize || sm->authAbort) {
SM_ENTER_GLOBAL(BE_AUTH, INITIALIZE);
return;

}

switch (sm->be_auth_state) {
case BE_AUTH_INITIALIZE:
SM_ENTER(BE_AUTH, IDLE);
break;
case BE_AUTH_REQUEST:
if (sm->eapol Eap)
SM_ENTER(BE_AUTH, RESPONSE);
elseif (sm->eap_if->eapReq)
SM_ENTER(BE_AUTH, REQUEST):
elseif (sm->eap if->eapTimeout)
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SM_ENTER(BE_AUTH, TIMEOUT);
break;
case BE_ AUTH_RESPONSE:

if (sm->eap _if->eapNoReq)
SM_ENTER(BE_AUTH, IGNORE);

if (sm->eap _if->eapReq) {
sm->backendA ccessChallenges++;
SM_ENTER(BE_AUTH, REQUEST);

} elseif (sm->awhile == 0)
SM_ENTER(BE_AUTH, TIMEOUT);

elseif (sm->eap_if->eapFail) {
sm->backendAuthFails++;
SM_ENTER(BE_AUTH, FAIL);

} elseif (sm->eap_if->eapSuccess) {
sm->backendAuthSuccessest+;
SM_ENTER(BE_AUTH, SUCCESS);

}

bresk;

case BE_ AUTH_SUCCESS:

SM_ENTER(BE_AUTH, IDLE);

break;
case BE_AUTH_FAIL:

SM_ENTER(BE_AUTH, IDLE);

break;
case BE_AUTH_TIMEOUT:

SM_ENTER(BE_AUTH, IDLE);

break;
case BE_ AUTH_IDLE:

if (sm->eap_if->eapFail && sm->authStart)
SM_ENTER(BE_AUTH, FAIL);

elseif (sm->eap if->eapReq & & sm->authStart)
SM_ENTER(BE_AUTH, REQUEST);

elseif (sm->eap_if->eapSuccess & & sm->authStart)
SM_ENTER(BE_AUTH, SUCCESS);

break;

case BE_ AUTH_IGNORE:

if (sm->eapolEap)
SM_ENTER(BE_AUTH, RESPONSE);

elseif (sm->eap_if->eapReq)
SM_ENTER(BE_AUTH, REQUEST);

elseif (sm->eap if->eapTimeout)
SM_ENTER(BE_AUTH, TIMEOUT);
break;

}

SM_STATE(BE_AUTH, REQUEST)

{
SM_ENTRY_MA(BE_AUTH, REQUEST, be auth);

txReq();
sm->eap_if->eapReq = FALSE;
sm->backendOtherRequestsToSupplicant++;

/*
* Clearing eapol Eap here is not specified in |EEE Std 802.1X-2004, but
* it looks like thiswould be logical thing to do there since the old
* EAP response would not be valid anymore after the new EAP request
* was sent out.
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}

* A race condition has been reported, in which hostapd ended up
* sending out EAP-Response/ldentity as aresponse to the first
* EAP-Request from the main EAP method. This can be avoided by
* clearing eapol Eap here.
*/
sm->eapol Eap = FAL SE;

SM_STATE(BE_AUTH, RESPONSE)

{

}

SM_ENTRY_MA(BE_AUTH, RESPONSE, be_auith);

sm->authTimeout = FAL SE;
sm->eapol Eap = FAL SE;
sm->eap_if->eapNoReq = FALSE;
sm->aWhile = sm->serverTimeout;
sm->eap_if->eapResp = TRUE;

[* sendRespToServer(); */
sm->backendResponsest+;

SM_STATE(BE_AUTH, IDLE)

{

SM_ENTRY_MA(BE_AUTH, IDLE, be_auth);

sm->authStart = FAL SE;

SM_STATE(BE_AUTH, IGNORE)
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[ hostapd\ ieeeB802_1x.c: ieeeB802_1x_receive auth() ]
|

Z

hostapd\ ieeeB02_1x.c: ieee802_1x_decapsulate_radius( )
sm->eap_if-> asaEapReq=TRUE
sm->eap_if->aaaEapReqData = wpabuf_alloc_ext data( )

|
VS

src\eapol_auth\eapol_auth sm.c: eapol_auth_step(sta->eapol_sm)

Zz
[ eloop_register_timeout(0, 0, eapol_sm_step _ch, sm, NULL) ]

NS
[ eap_server_sm_step(sm->eap) ]

restart:

do{

SM_STEP_RUN SM_STEP_RUN

EAP

AAA_IDLE

AAA_RESPONSE:
eapRegData=
asaEapRegData

BE_AUTH

REQUEST:

txReq()
eapReqg=FAL SE

SEND_REQUEST2:
eapResp=FAL SE; eapReq=TRUE

IDLE2: src\eapol _auth\eapol _auth_sm.c:
retransWhile eapol_port_timers tick()

}

while (sm->changed);

Figure 3-14. EAP & EAPOL SMson Transmitting EAP Requests
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3.3.2.2 EAPOL State Machines

Most of the information in this section is based upon IEEE 802.1x Section 8.2.
You can refer to the standard to dig deeper in specific state machines. Appendix C
gives the definition of eapol_state_machine in hostapd. We will modify this definition
later to implement the non-binary authenticator.

There are 10 different state machines. Table 3-11 lists them out and summarizes
the requirements of them for implementations that support Authenticator, Supplicant,
or both. An X mark meansit is necessary while an O mark meansit is optional.

Table 3-11. Sate Machine Support Requirements[33]

o™
=1
=

State Machine Authenticator Supplicant

Port Timers state machine X

Authenticator PAE state machine

O | X |X

Authenticator Key Transmit state machine

Supplicant Key Transmit state machine O

Reauthentication Timer state machine

Backend Authentication state machine

XX | X

Controlled Direction state machine

Supplicant PAE state machine

XXX X[ X|X[|O|O|X|X

X
Supplicant Backend state machine X
Key Receive state machine X X

The rest of this section will focus on the state machines which is necessary for
Authenticator. For each state machine it gives a brief introduction plus the state
diagram. For timers and global variables, please refer to IEEE 802.1X Section 8.2.2.
For local variables, constants and procedures of each state machine, you can refer to
the corresponding state machine' s explanation in IEEE 802.1X Section 8.2.

The Port Timers state machine for a given Port is responsible for decrementing the
timer variables for that Port each second, in response to an external system clock
function. The timer variables, like retransWhile, are used and set to their initial values
by the operation of the individual state machines for the Port.
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inttialize

i

{ ONE_SECOND
N

tick=FTRUE

ucT

TICK

L de.:(aWh||e),dec(aumvm||e).dec(hemvh||e).dec(qu|etwm|e).J

dec(reAuthWhen);dec(startWhen);tick=FALSE;

Figure 3-15. Port Timers State Machine [33]

The Authenticator PAE state machine represents the authenticating status of the
corresponding supplicant, revealing the status of controlled port. It has two separate
states, FORCE_AUTH and FORCE_UNAUTH, which are described in Figure 3-16
and Figure 3-17. The rest of the state machine are described in Figure 3-18.
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(portControl == ForceAuthorized)
& (portMode '= portControl)
& !(Initialize || 'portEnabled)

il FORCE_AUTH =

authPortStatus = Authorized;
portMode = ForceAuthorized,
eapolStart = FALSE;
txCannedSuccess();

Figure 3-16. Authenticator PAE Sate Machine- 1[33]

(portControl == ForceUnauthorized)
& (portMode '= portControl)
& !(Initialize | 'portEnabled)

—

4 FORCE_UNAUTH i |

authPortStatus = Unauthorized;
portiode = ForceUnauthorized;
eapolStart = FALSE;
txCannedFail();

eapolStart

Figure 3-17. Authenticator PAE Sate Machine - 2 [33]
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(portControl == auto) &
(portMode '= portControl) ||
Initialize |j 'portEnabled

!

il INTIALIZE L

entry /
portiiode = auto;

UcT

)

~ DsCoNNECTED I

authPortStatus = Unauthorized;
reAuthCount = 0;
eapolLogoff = FALSE;

)

ucT

HELD

authPortStatus = Unauthorized;
quietWhile = quietPeriod;
eapolLogoff = FALSE;

\ﬁJ

e RESTART 7\

quietWhile ==

eapRestart = TRUE;

‘eapRestart
Y

{ CONNECTNG

reAuthenticate = FALSE;
Inc(reAuthCount);

eapolLogoff ||
(reAuthCount > reAuthMax)

(eapReq &
(reAuthCount <= reAuthMax)) ||
eapSuccess ||

; eapFail
(" AUTHENTICATING
eapoiStart = FALSE;
authSuccess = FALSE;
authFail = FALSE;
authTimeout = FALSE;
authStart = TRUE;
keyRun = FALSE;
2 authFail
I
authSucce: eapolStart | : "
& portValid eapolLogoff | Gaytoss & etvese
authTimeout
r
{  AUTHENTICATED \ / ABORTING
authPortStatus = Authorized; authAbort = TRUE;
reAuthCount = 0; keyRun = FALSE;
keyDone = FALSE;
'eapolLogoff
eapolStart || - & 'authAbort
reAuthenticate| £2P° n.ogoffl
'portValid eapolLogoff &
'authAbort

Fiaure 3-18. Authenticator PAE Sate Machine - 3[33]
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The Key Receive state machine allows EAPOL-Keys PDUs to be received from
the Supplicant or Authenticator and processed in accordance with any encryption
mechanisms being employed by the Authenticator or Supplicant.

Initialize || 'portEnabled

NO_KEY_RECENE

—_

rxKey

"]-' W

{  KEY_RECENVE

processKey();
rxKey = FALSE;

rxKey

Figure 3-19. Key Receive Sate M achine [33]

The Reauthentication Timer state machine for a given Port is responsible for
ensuring that periodic reauthentication of the Supplicant takes place, if periodic
reauthentication is enabled (reAuthEnabled is TRUE). The state machine is held in
the INITIALIZE state until such a time as the portControl for the Port is Auto, the
portStatus for the Port becomes Authorized, the port is not being initialized, and
thereAuthEnabled control is TRUE. The reAuthWhen timer is set to itsinitial value;
when it expires, the state machine will then transition to the REAUTHENTICATE
state, setting the reAuthenticate variable TRUE, and then transitioning back to
INITIALIZE for a further timer cycle. It is important to note that the Authenticator
PAE state machine stays in AUTEHTICATED status during the reauthentication
period until the reauthentication fails.
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(portControl '= Auto) || Initialize
(portStatus == Unauthorized) || 'reAuthEnabled

—

{ INTIALIZE B

teAuthWhen = reAuthPeriocJ

reAuthWhen == 0

\
{ REAUTHENTICATE

teAuthenticate = TRUEJ

UcT

Figure 3-16. Reauthentication Timer Sate Machine [33]

The Backend Authentication state machine, which represents the authentication
process, is responsible for transmitting EAP messages between EAPOL and EAP. Its
use can be found in Section 3.2. Distinguish this Backend Authentication state
machine from the EAP Backend Authenticator state machine in Figure 3-6.
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(portControl '= Auto) |
Initialize || authAbort
INMALIEZE
abortAuth();
eaphoReg = FALSE;
authAbnrt = FAI SF-
;L v
. DLE i
authStart = FALSE;
eapFail & eapReq & authStart eapSuccess & authStart d
authStart
_\|/ i \117
f REQUEST \
txReq();
eapReq = FALSE;
eapTimeout eapolEap |eapReq
:|i y
4 RESPONSE N
authTimeout = FALSE;
eapolEap = FALSE;
eapNoReq = FALSE;
aWhile = serverTimeout;
eapResp = TRUE;
sendRespToServer();
3 £
eapNoReq aWhile == eapFail ]eapReq
eapSucce...
onoRe , , luer
i SUCCESS )
eapNoReg = FALSE;
PR txReq();
authSuccess = TRUE;
eapolEap eapTimeout keyRun = TRUE;
eapReq
i
f TIMEOUT \
authTimeout = TRUE;
uct |
'
i FAIL 7y
txReq();
authFail = TRUE;
ucT |

Figure 3-17. Backend Authentication State M achine [33]
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The Controlled Directions state machine for a given Port is responsible for
ensuring that the value of the OperControlledDirections parameter for the Port
correctly reflects the current state of the AdminControlledDirections parameter
coupled with the operational state of the MAC and the presence or absence of a
Bridge (see IEEE 802.1X Section 6.5)

If OperControlledDirectionsis set to IN on a Bridge Port, this allows the Bridge to
forward frames received from its other Bridge Ports onto that Port, but prevents
frames received on that Port (including BPDUSs) from being processed or forwarded
by the Bridge. In order to prevent the possibility of configuring inadvertent loops as a
result of connecting a Bridge to a Bridge Port that is set to IN,
OperControlledDirections is forced to BOTH if the operEdge variable (see Clause 17
of IEEE Std 802.1D) for the Port is FALSE.

)
{ FORCE_BOTH 7\
t:perContrclIeanrectnons = BotrJ
! Initializ portEnabled &
Hinkialze |ooercdge
'\L’ 1 A\
s IN_OR_BOTH
t:perControlledDirectoins = admchntroliedDirectionsJ
operControlledDirections != portEnabled
adminControlledDirections opertdge

Figure 3-18. Controlled Directions Sate Machine [33]

3.4 EAPOL Sender & Receiver

This part explains the EAPOL sending and receiving process in hostapd. The
EAPOL sending process is actually a succeeding process of EAPOL receiving EAP
request (see Section 3.3.2.1). And the EAPOL receiving process is a pre-action of
EAPOL sending EAP response (see Section 3.2.2).

Figure 3-21 shows how hostapd receives EAPOL frames in a top-down manner.
Structure wpa_driver_ops is defined in src\drivers\driver.h. It defines the API that
each driver interface needs to implement. Through this wrapper, callback functions
are called by hostapd for requesting driver operations. All driver specific functionality
is captured in this wrapper.

In the fold “drivers’, each file named “driver_xxx” maps to one type of driver.
Each file also defines the callback functions according to its driver’s character. In the
end of the file, it will define the wrapper for that driver in the structure
wpa_driver_ops with name wpa driver_Xxx_ops. In our case, we are using hostap
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driver, thus the interface is named wpa_ driver_hostap_ops. Of course, only hostap
and common partsin structure wpa driver_ops are assigned value in our case.

Among various driver operations, one is hostap_init(). It first alocates memory
for hostapd driver data. Next it tries to open ioctl_sock, which is used for system
communication. Thirdly it enables hostapd mode for that interface. Finaly it cals
hostap_init_sockets() or hostap_wireless _event_init() if hostap_init_sockets() failed.

hostap_init_sockets() opens raw packet socket and registers call back handler
handle read() for that socket. handle read() does only two things: receive packets
from the socket by calling recv() and calls handle frame() to deal with the frame
stored in the buf. handle_frame() checks the frame type and sub type as well as frame
length. After validation, it checks the protocol version. Protocol version 3 indicates
extra data after the payload, version 2 indicates an ACKed frame (TX callbacks), and
version 1 indicates a failed frame (no ACK, TX callbacks). If the protocol version is
not 1, 2 or 3, then the function simply reports the error and returns. If the version
number is 1 or 2, it calls handle_tx_callback() to deal with the frame. But if protocol
versionis 3, it will first try to get the complete frame and then check the frame type. If
it is a management frame, wpa_supplicant_event() will be caled. If it is a control
frame, nothing is done. If it is a data frame, handle data() will be called.
wpa_supplicant_event() plays a core role in hostapd wireless receiving. It is not only
called by handle frame(), but also by handle tx callback() and handle data()(see
Figure 3-23).

wpa_supplicant_event() (defined in drv_callbacks.c) reports a driver event for
wpa_supplicant. The driver wrapper, wpa_driver_hostap ops (illustrated in Figure
3-24) cals this function whenever an event is received from the driver. All the events
are abstracted into wpa_event_data, which is aunion defined in driver.h. These events
are also categorized and their types are enumerated in enum wpa_event_type in
driver.h. wpa_supplicant_event() handles the event according to the event type.

In handle_frame(), after the whole frame is collected, if it is a management frame,
it will be put into eventrx mgmt.frame and a cal will be made to
wpa_supplicant_event(drv->hapd, EVENT _RX MGMT, &event). The function
wpa_supplicant_event() calls hostapd mgmt_rx() to process the event.

In handle_tx_callback(), it is already clear if it is a failed or ACKed frame. Thus
this function assigns an appropriate value to event.tx status.xxx, and cals
wpa_supplicant_event(drv->hapd, EVENT_TX_ STATUS &event) directly.

In handle_frame(), when it is a data frame, the function calls handle_data(). Since
it is aready known to be a 802.11 data frame, the function will check the frame's
header first and then processes the contents of the frame. It puts the 802.11 header in
event.rx_from unknown.frame and cals wpa supplicant_event(drv->hapd,
EVENT_RX FROM_UNKNOWN, &event). The function wpa_supplicant_event()
calls hostapd _rx_from_unknown_sta(), which will return if it finds that this message
is not destined for any of the BSSes in this AP. If it is destined to a BSS on this AP,
then hostapd_rx_from_unknown_sta() callsieee802 11 rx from unknown() to check
if the sender is associated or not and disassociates or disauthenticates with it
accordingly. If everything is ok, then handle_frame() will move the pointer from the
end of header to the start of body. It cals drv_event_eapol_rx() to deal with an
ethertype packet, which places the Ethernet frame in event.eapol rx.xxx and calls
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wpa_supplicant_event(ctx, EVENT_EAPOL_RX, &event). For EVENT_EAPOL_RX,
hostapd _event_eapol rx is called, which locates the corresponding BSS for the inter
face and callsieeeB02_1x_receive().

Each incoming EAPOL frame from the wireless interface is processed by
ieee802_1x receive(struct hostapd data *hapd, const u8 *sa, const u8 *buf, size t
len). The structure hostapd data is a giant structure containing al the information
about a BSS. The argument sa is the source address (supplicant) of the EAPOL frame.
While buf contains the EAPOL frame, len represents the length of buf in octets. Each
supplicant’s information is stored in a structure sta_info. This structure is initialized
and assigned during the search phase whenever a supplicant’s existence is sensed by
the AP. By calling ap_get_sta(hapd, sa), the AP learns which supplicant the EAPOL
frame belongs to. Next it will check if the station information is available, whether the
whole 802.1X packet istoo short, or if the frame (without the IEEE 802.1X header) is
too short. After verification, it will update the frame version, WPA or RSN key, and
increment the total number of EAPOL frames received. If there is no EAPOL state
machine for the supplicant yet (!sta->eapol _sm), one will be initiated.

[src\drivers\driver_hostap.c: struct wpa._driver_opswpa_driver_hostap_ops{ \
#ifdef HOSTAPD
.hapd_init = hostap_init,
else
.init = wpa_driver_hostap _init, }
}
[ hostap_init_sockets() ] [ hostap_wireless_event_init( ) ]

I J

[ eloop_register_read _sock(drv->sock, handle read, drv, NULL) ] [ hostapd_wireless_event_rtm_newlink() ]
L

Il
| handle_frame() ' . [ handle_tx_callback() ] [ hostapd_wireless event wireless( ) ]

\ handle_data( ) / Il,
\ l / [ hostapd_wireless_event_wireless custom( ) ]

[ wpa_supplicant_event() ]«w---""“ o

[ src\ap\drv_callbacks.c: hostapd_event_eapol_rx() ]

[ hostapd\ieee802_1x.c: ieee802_1x_receive() ]

Figure 3-19. EAPOL Receiver
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U

[ main.c:hostapd_interface init ]

[ hostap_init: hapd_ iface->config_read cb= ]

hostapd_config_read

[ config_file.c: hostapd_config_read: J

conf->driver = wpa_drivers[0];

\I

drivers.c: struct wpa_driver_ops *wpa_drivers[]={
#ifdef CONFIG_DRIVER_HOSTAP

&wpa _driver_hostap_ops,
#endif /¥ CONFIG_DRIVER_HOSTAP*/ ... }

Figure 3-20. wpa_driver_hostap_opsfor Initialization

The EAPOL sending process is activated when the Backend Authentication state
machine transits to REQUEST and calls txReq(). Figure 3-25 shows in a top-down
manner how hostapd sends EAPOL frames. An explanation is omitted since the figure
provides sufficient information for our purposes.

108



2
Method

[ eapol_auth_sm.c: #define txReq() eapol_auth_tx_req(sm) ]

I

[ eapol_auth_sm.c: eapol_auth_tx_req() ]

1

[ sm->eapol->cb.eapol _send() ]

[ ieee802_1x.c: ieee802_1x_eapol_send() ]

U
[ |033802_1X_33nd() ]—% hapd->drv_%nd_eap0|() ]

[ preauth_auth.c: rsn_preauth_send() ] [ driver_hostap.c: hostap_send_eapol() ]
| |
I I

[ 12 packet_linux.c: 12_packet_send() ] [ driver_hostap.c: hostap_send_mlme ]

Figure 3-21. EAPOL Sender
3.5 Non-Binary Authenticator

Section 3.5.1 is a comprehensive study of the controlled port. Then based upon the
idea of a controlled port Section 3.5.2 will describe the none-binary authenticator.

3.5.1 Port Control in hostapd

In a none-binary authenticator, a new supplicant can enjoy free communication for
a certain period of time. This means that the controlled port is kept open from the
initialization of the EAPOL state machines till the free open duration times out.
Focusing on the key word “port”, it is necessary to answer the following questions
before continuing:

1. Which elements can affect the status of the controlled port?

2. How to organize these elements? (To provide logic control of the port)
3. What isthereal function of acontrolled port?

4. What will happen after the port status changes?

In IEEE 802.1X, the AuthControlledPortStatus represents the controlled Port’s
status. This is logicaly viewed as a switch that can be turned on or off, thus
permitting or denying the flow of PDUs via that Port. When access is enabled, the
status value is “authorized”; when it isdisabled, its value is “unauthorized”.

In addition to the AuthControlledPortStatus, an AuthControlledPortControl
parameter associated with the controlled Port allows administrative control over the
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port's authorization status. This parameter will have one of the values:
ForceUnauthorized, Auto and ForceAuthorized; where Auto is the default value.
The relationship between the AuthControlledPortStatus and
AuthControlledPortControl parametersis:

a) An AuthControlledPortControl value of ForceUnauthorized forces the
Authenticator PAE state machine to set the value of AuthControlledPortStatus
to be unauthorized; i.e., the Controlled Port is unauthorized unconditionally.

b) An AuthControlledPortControl value of ForceAuthorized forces the
Authenticator PAE state machine to set the value of AuthControlledPortStatus
to be authorized; i.e., the Controlled Port is authorized unconditionally.

¢) An AuthControlledPortControl value of Auto allows the Authenticator PAE
state machine to control the value of AuthControlledPortStatus to reflect the
outcome of the authentication exchanges between Supplicant PAE,
Authenticator PAE, and Authentication Server.

In all three cases, the value of AuthControlledPortStatus directly reflects the
value of the portStatus variable maintained by the Authenticator and Supplicant PAE
state machines. Three factors contribute to the value of the portStatus variable:

a) The authorization state of the Authenticator PAE state machine (assumed to

be “ Authorized” if the state machine is not implemented for that port).

b) The authorization state of the Supplicant PAE state machine (assumed to be
“Authorized” if the state machine is not implemented for that port).

c) The state of the Supplicant Access Control With Authenticator
administrative control parameter. This parameter has two possible values:
active and inactive. The default value of this control parameter is inactive;
support of the active value is optional. The value of this parameter takes
effect only if both Authenticator PAE and Supplicant PAE state machines are
implemented for that port. If the value of the parameter is inactive , then the
portStatus parameter value is determined only by the authorization state of
the Authenticator PAE state machine. If the value of the parameter is active,
then the portStatus parameter value is determined by the authorization state
of both the Authenticator PAE and Supplicant PAE state machines; if either
state machine is in an unauthorized state, then the value of portStatus is
unauthorized.

The value of the AuthControlledPortControl parameter for every port of a System
can be overridden by means of the SystemAuthControl parameter for the System.
This parameter has one of the values Enabled or Disabled; its default value is
Disabled. If SystemAuthControl is set to Enabled, then authentication is enabled for
the System, and each port’ s authorization status is controlled by the value of the port’s
AuthControlledPortControl parameter. If SystemAuthControl is set to Disabled, then
all ports behave as if their AuthControlledPortControl parameter is set to
ForceAuthorized. In effect, setting the SystemAuthControl parameter to Disabled
causes authentication to be disabled on all ports, and it forces all controlled ports to be
Authorized.

Any access to the LAN is subject to the current administrative and operational
state of the MAC (or logicd MAC) associated with the port, in addition to
AuthControlledPortStatus. If the MAC is physically or administratively inoperable,
then no protocol exchanges of any kind can take place using that MAC on either the
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controlled or the uncontrolled port. The inoperable state of the MAC has also caused
the Authenticator PAE to transit the controlled port to the Unauthorized state.

All the above parameters can directly determine the portStatus. Their relationship
and impact are listed in the Table 3-12 below:

Table 3-5. Parametersfor portSatus

Relationship of Parameters Authenticator portStatus Supplicant portStatus

1MAC - Disabled Unauthorized same

> Enabled > 2
2 SystemAuthControl > Disabled Authorized | same

2> Enabled > 3 AuthControlledPortStatus = = portStatus of both
3 AuthControlledPortControl

- ForceAuthorized Authorized same

- ForceUnauthorized Unauthorized same

- Auto 2> 4

4 Supplicant Access Control With Controlled by the Authenticator PAE state machine
Authenticator - inactive

(authorization state of the Authenticator PAE)
-> active || (authorization state of the Supplicant PAE)

Section 6.6.4 of IEEE 802.1X indicates several mechanisms that can result in the
controlled port state changing to unauthorized:

a) The authentication exchanges between the Supplicant and the Authentication
Server can result in failure to authorize the port.

b) Management controls can prevent the port from being authorized, regardless
of the credentials of the Supplicant.

¢) TheMAC associated with the port can be non-operational for any reason
(including for hardware failure or administrative reasons).

d) Connection failure between the Supplicant and the Authenticator can result in
the Authenticator timing out the authorization state.

€) Expiry of areauthentication timer can occur without successful
reauthorization.

f) The Supplicant PAE can fail to respond to arequest for authentication
information by the Authenticator PAE.

0) The Supplicant PAE can issue an explicit logoff request.

Some of the mechanisms mentioned above are actually duplicates of the
parameters in Table 3-12. Still, with so many elements affecting the status of the
controlled port, there should be some logic to organize them. The logic lies in the
Authenticator PAE state machine, which represents the authentication status of the
supplicant.

All the elements and mechanisms above are described as timers and global
variables in Section 8.2.2 IEEE802.1X, and they are used later to explain the
performance of PACP state machines as well as interstate-machine communication. A
comprehensive understanding of them acquaint us with: (1) what effect from outside
(of the Authenticator PAE state machine) can cause status change of the port; and (2)
what outside will be affected as a result of port’s status change in the Authenticator
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PAE state machine. Later this will help us modify the Authenticator state machine.
Timers and global variables related to port are explicitly introduced below.

Mechanism a) occurs in situation 4 in Table 3-12. This is represented by the
global variable authFail. Mechanism b) means ForceUnauthorized in situation 3 in
Table 3-12, which is represented by portControl. Mechanism c) is equal to a disabled
MAC in situation 1, which is represented by portEnabled. Mechanisms d) and f)
occur in situation 4 in Table 3-12, and they are represented by the global variables
authTimeout. Mechanism e) is represented by reAuthenticate and Mechanism Q) is
represented by “eapolLogoff”. Table 3-13 explains port-related global variables and
timers on the basis of Section 8.2.2 of IEEE802.1X.

Table 3-13. port-related Global Variablesand Timers[51]
Variable Description

reAuthWhen A timer used by the Reauthentication Timer state machine to
determine when reauthentication of the Supplicant takes place.
Theinitial value of thistimer is reAuthPeriod.

authAbort Thisvariable is set TRUE by the Authenticator PAE state
machine in order to signal to the Backend Authentication state
machine to abort its authentication procedure. Itsvalue is set
FAL SE by the Backend Authentication state machine once the
authentication procedure has been aborted.

authFail Thisvariable is set TRUE if the authentication process
(represented by the Backend Authentication state machine) fails.
Itisset FALSE by the operation of the Authenticator PAE state
machine, prior to initiating authentication.

authPortStatus | The current authorization state of the Authenticator PAE state
machine. Thisvariable is set to Unauthorized or Authorized by
the operation of the state machine. If the Authenticator PAE state
machine is not implemented, then this variable has the value
Authorized.

authStart Thisvariable is set TRUE by the Authenticator PAE state
machinein order to signal to the Backend Authentication state
machine to start its authentication procedure. Its value is set
FALSE by the Backend Authentication state machine once the
authentication procedure has been started.

authTimeout Thisvariable is set TRUE if the authentication process
(represented by the Backend Authentication state machine) fails
to obtain aresponse from the Supplicant. The variable may be set
by management action, or by the operation of atimeout whilein
the AUTHENTICATED state. Thisvariableis set FALSE by the
operation of the Authenticator PAE state machine.

authSuccess Thisvariableis set TRUE if the authentication process
(represented by the Backend Authentication state machine)
succeeds. It is set FAL SE by the operation of the Authenticator
PAE state machine, prior to initiating authentication.

eapFail Thisvariable is set TRUE by the higher layer if it determines that
the authentication has failed.
eapolEap Thisvariable is set TRUE by an external entity if an EAPOL
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Variable

Description

PDU carrying a Packet Type of EAP-Packet is received.

eapSuccess

Thisvariable is set TRUE by the higher layer if it determines that
the authentication has been successful.

eapTimeout

Thisvariable is set TRUE by the higher layer if it determines that
the Supplicant is not responding to requests.

initialize

Thisvariable is externally controlled. When asserted, it forces all
EAPOL state machinesto their initial state. The PACP state
machines are held in their initial state until initialize is deasserted.

portControl

Thisvariable is derived from the current values of the
AuthControlledPortControl and SystemAuthControl parameter
for the port. This variable can take the following values:

1) ForceUnauthorized. The controlled port is required to be held
in the Unauthorized state.

2) ForceAuthorized. The controlled port isrequired to be held in
the Authorized state.

3) Auto. The controlled port is set to the Authorized or
Unauthorized state in accordance with the outcome of an
authentication exchange between the Supplicant and the
Authentication Server. If SystemAuthControl is set to Enabled,
then portControl directly reflects the value of the
AuthControlledPortControl parameter. If SystemAuthControl is
set to Disabled, then the value of portControl is ForceAuthorized.

portEnabled

Thisvariable is externally controlled. Its value reflects the
operational state of the MAC service supporting the port. Its
valueis TRUE if the MAC service supporting the port isin an
operable condition (see 6.4), and it is otherwise FAL SE. Both the
PAE state machine and the higher layer should bein sync at
initialization time. Thus portEnabled is set true together with
EAPOL state machine sinialization
(sta->eapol_sm->eap_if->portEnabled = TRUE , see
ieee802_1x receive()). The higher layer is expected to initialize
itself when this signal becomes true. The higher layer is expected
to reset eapSuccess and eapFail when portEnabled isinitialy set
true.

portStatus

The current authorization state of the controlled port. This
variable is set to Unauthorized or Authorized by the operation of
the PAE state machines. The value of portStatus directly
determines the value of the AuthControlledPortStatus parameter
for the port. The value of portStatusis determined from the
values of authPortStatus, suppPortStatus, and the Supplicant
Access Control With Authenticator administrative control
parameter, as follows:

1) If both Supplicant PAE and Authenticator PAE state machines
are implemented for the port, and the value of the Supplicant
Access Control With Authenticator administrative control
parameter isinactive, then the value of portStatus directly reflects
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the value of authPortStatus. Otherwise:

2) If the value of either authPortStatus or suppPortStatusis
Unauthorized, then the value of portStatus is Unauthorized.
Otherwise:

3) If the values of authPortStatus and suppPortStatus are both
Authorized, then the value of portStatus is Authorized.

reAuthenticate | Thisvariableis set TRUE by the Reauthentication Timer state
machine on expiry of the reAuthWhen timer. This variable may
also be set TRUE by management action. It is set FALSE by the
operation of the Authenticator PAE state machine.
Reauthentication may not begin immediately. The Authenticator
does not interrupt the current authentication, but instead waits for
it to complete before beginning a new authentication. Only one
pending reauthentication will be tracked.

Question 1 and 2 have aready been answered. Actually their explanations are
directly from IEEE 802.1X. But question 3 and 4 are implementation dependent.

The standard states that the port is controlled like atap and there should be no data
flow if it is unauthorized. In hostapd, the parameter portStatus is just a symbol that
only helps the Authenticator PAE state machine to execute. There is no real port or
filtering functions. In short, everything in hostapd is part of the logic of port control.
The intrinsic port and the control functions are in the hostap driver.

Nevertheless, there is a connection between the port in hostapd and the real port in
the hostap driver. This coupling is used whenever portStatus is changed. This
connection is the answer to question 4. Figure 3-26 shows the functions' flow along
this connection. Although this figure considers “ Authorized” as an example, the flow
of “Unauthorized” is the same. The connection ends by calling ioctl() to send signals
to the driver.
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[ eapol_auth_sm.c: sm->authPortStatus=A uthorized ]

[ eapol_auth _sm.c: setPortAuthorized() ]

[ ieeeB02_1x.c: ieeeB02_1x_set port_authorized() ]

Il

[ ieeeB02_1x.c: ieeeB02_1x_set sta authorized() ]

[ ieee802_1x.c: hapd->drv.set_authorized() ]
|
I
[ hostapd.h: struct hostapd_driver_ops {int (*set_authorized)} ]

ap_driver_ops.c: hostapd_set_driver_ops{
ops->set_authorized = hostapd_set_authorized;}

\II

[ ap_driver_ops.c: hostapd_sta._set_flags() ]
Il
[ hapd->driver->sta_set_flags() ]

\I/'

[ driver.h: wpa_driver_ops ]

[ driver_hostap.c: hostapd_ioctl() ]

1

[ ioctl(drv->ioctl_sock, PRISM2_IOCTL_HOSTAPD, &iwr) ]

Figure 3-22. After portSatus Change

It is not necessary to consider how the real port is implemented or how the traffic
filter is done, as long as we know that the driver will handle it and we know how to
inform the driver to do it. The reason for putting port control and traffic filtering in
the driver isit takes too much time and requires unnecessary communication between
kernel and user space if they are implemented in the user space. If the controlled port
was implemented in user space, then all the traffic would need to travel through the
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kernel and network stack to the user space where the traffic is finally discarded or
redirected. Thus the implementation of the port should be located as close to the
hardware as possible. The port should be turned off when the supplicant is first
discovered. hostapd deals with 802.11 management and 802.1X authentication frames
once the link layer becomes active (see wpa_supplicant_event()). Hostap driver never
transmits normal data frames to hostapd.

3.5.2 Modification of the Authenticator PAE State Machine

The primary difference between the traditional AP and the non-binary AP is that,
the non-binary AP starts authentication with the controlled port open for a period of
time. If the supplicant is still not authorized by the time this period expires, then the
port will be closed and subsequent authentication will be the same as for IEEE
802.1X. No matter before or after the free open period, the EAP authentication
process itself does not change. Therefore the changes should be to the control logic of
the port - the Authenticator PAE state machine.

In the new Authenticator PAE state machine, the parameter AuthPortStatus does
not change. It is still ether Authorized or Unauthorized. Additionally, it is
unnecessary to modify the intrinsic port and the control functionalities in the hostap
driver. Accordingly what happens after the status change of a port remains the same.
The elements affecting PortStatus also remains the same. However, there is a new
element “freeTimeout” added to the Authenticator PAE state machine, which
represents expiration of theinitial free open time.

As was mentioned, the whole authentication process will be the same as 802.1X
after the free open period expires. Thus it is necessary to preserve all the PACP state
machines listed in Section 3.3.2. According to the analysis above, al the state
machines remain the same except for the Authenticator PAE state machine.

Although the authentication process (represented by the Backend Authentication
state machine) and the authentication status (represented by the Authenticator PAE
state machine) are separated, the Authenticator PAE state machine (see Figure 3-16,
3-17 and 3-18) till has to be synchronized with the Backend Authentication state
machine as well as other PACP state machines. Thus it is impossible to set the port
ForceAuthorized in the Authenticator PAE state machine while letting the
authentication process go on in the Backend Authentication state machine during free
open period. As can be seen in Figure 3-16, FORCE_AUTH is a separate state.

Another design is to add two new statess FREE DISCONNECTED and
FREE_HELD. These two states are clones of DISCONNECTED and HELD except
that “authPortSatus = authorized” in both of them. The INITIALIZE state
unconditionally transits to FREE_DISCONNECTED, where authPortStatus is set
authorized and freeTimeout is assigned. These clones have exactly the same
relationship with other states (except their origina ones) as their origina ones, which
means that the transitioning logic of authPortStatus in the free open time is identical
to the traditional system except that the port stays authorized regardiess of the
authentication result. In order to differentiate the clones from origina states,
freeTimeout serves as the indicator. If it is not zero, then the states that originaly
transitted to DISCONNECTED will go to FREE_DISCONNECTED and those states
that originally transited to HELD will go to FREE_HELD. When freeTimeout
becomes zero, any other state except AUTHENTICATED should transit to
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DISCONNECTED unconditionally. However, collisions come after the free open
period when freeTimeout keeps zero, since other states cannot decide if they should
advance normally or transit to DISCONNECTED unconditionally.

My solution is to introduce a complete colon of the Authenticator PAE state
machine, which serves specifically for the free open authentication period. All states
in the colon have the prefix “FREE " added to their origina names. The
modifications are:

1. In FREE_DISCONNECTED, authPortStatus = Authorized; freeTimeout is
set; ascript can be called to use IPTable to shape the traffic of the supplicant.

2. In FREE HELD and FREE_AUTHENTICATED, authPortStatus is left
untouched:;

3. The INITIALIZE state moves from the original state machine to the clone; it
serves as a kick start for the clone state machine -- as well as the whole
authentication process.

4. A new state FREE_ENDING replaces the INITIALIZE state in the original
state machine. In this state, eapolLogoff is set TRUE and it transits
unconditionally to the state ABORTING.

5. When freeTimeout becomes zero, any state in the clone should transit to
FREE_ENDING except for INITIALIZE, FREE _DISCONNECTED and
FREE_AUTHENTICATED. In this case, FREE_ AUTHENTICATED
transits to AUTHENTICATED. FREE _DISCONNECTED ill transits
unditionally to FREE_RESTART.

Figure 3-27 and Figure 3-28 shows the new Authenticator PAE state machine for
the non-binary authenticator.

117



1
Method

(portControl == auto) &
(portMode '= portControl) |
Initialize || 'portEnabled

INMIALIZE

ucTt

(portControl == ForceAuthorized)
& (portMode != portControl)
& '(Initialize || 'portEnabled)

(portControl == ForceUnauthorized)
& (portMode '= portControl)
& '(Initialize || 'portEnabled)

—

FORCE_AUTH

4 R’

-

FORCE_UNAUTH B

authPortStatus = Authorized,
portMode = ForceAuthorized,
eapolStart = FALSE;
txCannedSuccess():

authPortStatus = Unauthorized;
poriMode = ForceUnauthorized;
eapolStart = FALSE;
txCannedFail();

eapolStart

5 FREE_DISCONNECTED

if (sm--authPortStatus !=
Authorized) {
sm->authPortStatus =
Authorized;
setPortAuthorized();
}

sm->freeTimeout =

kreAuthCounl =0,

AUTH_PAE_DEFAULT_FreeTimeout,

f

FREE_HELD

quietVWhile = quietPeriod;
eapolLogoff = FALSE;

fteeTimeout

quietWhile = 0
S

)

ucT

-~

FREE_RESTART

\ gapRestart = TRUE;

freeTimeout

S

'eapRestart

(" FREE_CONNECTING

reAuthenticate = FALSE;
Inc{reAuthCount);

freeTimeout

eapolLogoff |
(reAuthCount > reAuthMax)

=4
(eapReq &
(reAuthCount <= reAuthMax)) |
eapSuccess ||
eapFail

( FREE_AUTHENTICATING )

eapolStart = FALSE;
authSuccess = FALSE,
authFail = FALSE;
authTimeout = FALSE;
authStart =
keyRun = FALSE;

freeTimeout

(~ FREE_ENDNG

TRUE;

J

authSucce

& portVaid

s eapolStart ||

eapolLogoff

authFail ||
(keyDone & 'portVald)

\ eapolLogoff = TRUEJ
ucTt

authTimeout

(~ FREE_AUTHENTICATED

( FREE_ABORTING \

reAuthCount = 0; authAbort = TRUE; |freeTimeout
keyRun = FALSE; —

T keyDone = FALSE; | ‘€apoiLogo
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freeTimeout |  reaythenticate
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AUTHENTICATED 1\ KWRTNT\

)

_

Figure 3-27. non-binary Authenticator PAE state machine- 1
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{ FREE_AUTHENTICATED
e {~ FREE_ENDING "\ &
reeTimeout | authPortStatus = Authorized: e
\ reAuthCount = 0; eapolLogoff = TRUE; )
7 DISCONNECTED oy i HELD
authPortStatus = Unauthorized, authPortStatus = Unauthorized,
reAuthCount = 0; quietWhile = quietPeriod,;
l\Lv.eapoll_l:lgtﬂ’l' = FALSE; eapolLogoff = FALSE;
UcT quietiVhile ==

3
{  RESTART

l eapRestart = TRUE; )I

'eapRestart

'
{ CONNECTNG )

reAuthenticate = FALSE;

Inc(reAuthCount);

] {eapReg &

(reAuthCount <= reAuthMax)) |
eapSuccess ||

eapFail

eapolLogoff |
(reAuthCount > reAuthMax)

W
¢/~ AUTHENTICATING

eapolStart = FALSE;
authSuccess = FALSE;
authFail = FALSE;
authTimeout = FALSE;
authStart = TRUE;

keyRun = FALSE;
auth SUC:;S eapolStart | ') authFail |
& portValid eapu}.f_ugoff i (keyDone & 'portValid)
authTimeout

/~  AUTHENTICATED Y\ { ABORTNG

= authPortStatus = Authorized; authAbort = TRUE;
\LreAuthCount =0; keyRun = FALSE;
T keyDone = FALSE; 'eapolLogoff
eapolStart || & 'authAbort
reAuthenticate| €aPOIL0goffll
'‘portValid eapolLogoff &
'authAbort

Figure 3-28. non-binary Authenticator PAE state machine - 2

When freeTimeout is zero, it is unnecessary to remember the current state of the
clone by transitting to its counterpart in the original state machine in order to avoid a
discontinuity in the authentication progress, because it has been given long enough to
carry out alegitimate authentication.
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Also when freeTimeout becomes zero, the system is not supposed to transit to
DISCONNECTED simply to make authPortStatus Unauthorized. The Authenticator
PAE must firstly inform the Backend Authentication state machine to terminate the
authentication procedure in order to be synchronized for RESTART. Thus the state
machine should transit to ABORTING rather than DISCONNCTED. However, exit
from ABORING to DISCONNECTED requires EAPOL-Logoff to be TRUE.
Otherwise it will transit to RESTART where the authPortStatus remains authorized.
So anew state FREE_ENDING is added which sets the variable eapol Logoff FALSE.
Sequentially an EAPOL-Logoff causes a transition from FREE_ENDING to
ABORING. In ABORTING, authAbort is set TRUE to signa to the Backend
Authentication state machine that it should terminate the current authentication
procedure. Once the termination is confirmed, the Backend Authentication state
machine sets authAbort to FALSE, then it transits to DISCONNECTED. In this case,
the port state is forced to Unauthorized and the whole system is successfully
synchronized before moving unconditionally to RESTART. In RESTART, the
Authenticator PAE informs the higher layer that it has restarted by setting the variable
eapRestart TRUE. EAP will acknowledge the restart by resetting eapRestart to
FALSE and the Authenticator PAE will advance to CONNECTING as aresult.

Appendix B shows the code of the original Authenticator PAE state machine. The
following code shows the modification to eapol state machine, new Authenticator
PAE state machine as well as Port Timers state machine.

/**
* src\eapol_auth\eapol_auth sm_i.h:
* struct eapol_state_ machine - Per-Supplicant Authenticator state machines
*/
struct eapol_state_machine {
[* timers*/

[* anew timer */
int freeTimeout;
[* global variables*/

* Port Timers state machine */
/* 'Boolean tick' implicitly handled as registered timeout */

/* Authenticator PAE state machine */

enum {
[* new states with prefix FREE_ */
AUTH_PAE_FREE_DISCONNECTED, AUTH_PAE FREE CONNECTING,
AUTH_PAE_FREE_AUTHENTICATING AUTH_PAE FREE AUTHENTICATED,
AUTH_PAE_FREE _ABORTING AUTH_PAE FREE HELD,
AUTH_PAE FREE_RESTART,AUTH _PAE_FREE ENDING,
...} auth_pae state;

[* variables*/

[* constants */

#defineAUTH_PAE_DEFAULT _quietPeriod 60
unsigned int reAuthMax; /* default 2 */

/* new timeout value for freeTimeout */

#defineAUTH_PAE _DEFAULT _freeTimeout 90

#defineAUTH_PAE_DEFAULT reAuthMax 2
[* counters*/
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#endif /* EAPOL_AUTH_SM | H*/

/**

* src\eapol_auth\eapol _auth _sm.c:

* eapol_port_timers_tick - Port Timers state machine

* @eloop_ctx: struct eapol_state_machine *

* @timeout_ctx: Not used

*

* This statemachine is implemented as a function that will be called

* once a second as aregistered event loop timeout.

*/
static void eapol_port_timers_tick(void *eloop_ctx, void *timeout_ctx)
{

struct eapol_state machine * state = timeout_ctx;

if (state->freeTimeout > 0) {
state-> freeTimeout --;
if (state->aWhile ==0) {
wpa _printf(MSG_DEBUG, "non-binary AP. " MACSTR
" - freeTimeout --> 0",

MAC2STR(state->addr));
}
}
if (state->awhile > 0) {
state->aWhile--;
if (state->aWhile==0) {
wpa _printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR
" - awhile-->0",
MAC2STR(state->addr));
}
}

if (state->quietWhile> 0) {
state->quietWhile--;
if (state->quietWhile==0) {
wpa printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR

" - quietWhile --> 0",
MAC2STR(state->addr));
}
}
if (state->reAuthWhen > 0) {
state->reAuthWhen--;
if (state->reAuthWhen ==0) {
wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR
" - reAuthWhen --> 0",
MAC2STR(state->addr));
}
}

if (state->eap_if->retransWhile > 0) {
state->eap if->retranswWhile--;
if (state->eap _if->retranswWhile == 0) {
wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR
" - (EAP) retransWhile --> 0",
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MAC2STR(state->addr));

}
eapol_sm_step run(state);

eloop_register_timeout(1, 0, eapol_port_timers tick, eloop_ctx, state);
}

/**

* src\eapol_auth\eapol _auth _sm.c : New Authenticator PAE state machine
*/

/* clone part */

SM_STATE(AUTH_PAE, FREE_DISCONNECTED)

{
int from_initialize = sm->auth_pae_state == AUTH_PAE_INITIALIZE;

if (sm->eapolLogoff) {
if (sm->auth_pae state == AUTH_PAE_FREE_CONNECTING)
sm->authEapL ogoffswhileConnecting++;
elseif (sm->auth_pae state==AUTH_PAE_FREE_AUTHENTICATED)
sm->authA uthEapL ogoffWhileAuthenticated++;

}

SM_ENTRY_MA(AUTH_PAE, FREE_DISCONNECTED, auth_pae);

if (sm->authPortStatus != Authorized) {
sm->authPortStatus = Authorized;
setPortAuthorized();

}

sm->freeTimeout = AUTH_PAE _DEFAULT_FreeTimeout;

sm->reAuthCount = 0;

sm->eapol Logoff = FALSE;

/*

* script to call IPTable
* for traffic shaping

*/

if (Ifrom_initialize) {
sm->eapol ->cb.finished(sm->eapol->conf.ctx, sm->sta, 0,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, FREE_RESTART)
{
if (sm->auth_pae state==AUTH_PAE_FREE_AUTHENTICATED) {
if (sm->reAuthenticate)
sm->authA uthReauthsWhileAuthenti cated++;
if (sm->eapol Start)
sm->authA uthEapStartswWhil eAuthenticated++;
if (sm->eapolL ogoff)
sm->authA uthEapL ogoffWhileAuthenticated++;
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SM_ENTRY_MA(AUTH_PAE, FREE_RESTART, auth_pae);

sm->eap_if->eapRestart = TRUE;

SM_STATE(AUTH_PAE, FREE_CONNECTING)
{
if (sm->auth_pae state!=AUTH_PAE _FREE_CONNECTING)
sm->authEntersConnecting++;

SM_ENTRY_MA(AUTH_PAE, FREE_CONNECTING, auth_pae);

sm->reAuthenticate = FAL SE;
sm->reAuthCount++;

SM_STATE(AUTH_PAE, FREE_HELD)
{
if (sm->auth_pae state==AUTH_PAE_FREE_AUTHENTICATING && sm->authFail)
sm->authAuthFailWhileAuthenticating++;

SM_ENTRY_MA(AUTH_PAE, FREE_HELD, auth_pae);
[** obsolete

*sm->authPortStatus = Authorized;

* setPortAuthorized();

*/

sm->quietWhile = sm->quietPeriod;

sm->eapol L ogoff = FALSE;

eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_L OGGER_WARNING,
"authentication failed - EAP type: %d (%s)",
sm->eap_type authsrv,
eap_server_get name(0, sm->eap_type authsrv));
if (sm->eap_type authsrv != sm->eap type supp) {
eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO,
"Supplicant used different EAPtype: "
"%d (%s)", sm->eap_type_supp,
eap_server_get_name(0, sm->eap_type_supp));
}
sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 0,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, FREE_AUTHENTICATED)
{

char *extra="";

if (sm->auth_pae state== AUTH_PAE_FREE_AUTHENTICATING && sm->authSuccess)
sm->authA uthSuccessesWhileAuthenticating++;

SM_ENTRY_MA(AUTH_PAE, FREE_AUTHENTICATED, auth_pae);

/** obsolete
* sm->authPortStatus = Authorized;
* setPortAuthorized();
*/
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sm->reAuthCount = 0;
if (sm->flags & EAPOL_SM_PREAUTH)
extra=" (pre-authentication)";
elseif (sm->flags & EAPOL_SM_FROM_PMKSA_CACHE)
extra=" (PMKSA cache)";
eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_L OGGER_INFO,
"authenticated - EAPtype: %d (%5)%s",
sm->eap_type authsrv,
eap_server_get _name(0, sm->eap_type authsrv),
extra);
sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 1,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, FREE_AUTHENTICATING)

{
SM_ENTRY_MA(AUTH_PAE, FREE_AUTHENTICATING, auth_pae);

sm->eapol Start = FAL SE;
sm->authSuccess = FAL SE;
sm->authFail = FALSE;
sm->authTimeout = FALSE;
sm->authStart = TRUE;
sm->keyRun = FALSE;
sm->keyDone = FAL SE;

SM_STATE(AUTH_PAE, FREE_ABORTING)

{
if (sm->auth_pae state== AUTH_PAE_FREE_AUTHENTICATING) {

if (sm->authTimeout)
sm->authA uthTimeoutsWhileAuthenticating++;
if (sm->eapol Start)
sm->authA uthEapStartsWhileAuthenticating++;
if (sm->eapolLogoff)
sm->authA uthEapL ogoffWhileA uthenticating++;
}

SM_ENTRY_MA(AUTH_PAE, FREE_ABORTING, auth_pae);

sm->authAbort = TRUE;

sm->keyRun = FAL SE;

sm->keyDone = FAL SE;
}

SM_STATE(AUTH_PAE, FREE_ENDING)

{
SM_ENTRY_MA(AUTH_PAE, FREE_ENDING, auth_pae);

sm->eapol Logoff = TRUE;
}

/* orignial part */

SM_STATE(AUTH_PAE, FORCE_AUTH)
{

}
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SM_STATE(AUTH_PAE, FORCE_UNAUTH)

{
}

SM_STATE(AUTH_PAE, INITIALIZE)

{
}

SM_STATE(AUTH_PAE, DISCONNECTED)

{
}

SM_STATE(AUTH_PAE, RESTART)

{
}

SM_STATE(AUTH_PAE, CONNECTING)

{
}

SM_STATE(AUTH_PAE, HELD)

{
}

SM_STATE(AUTH_PAE, AUTHENTICATED)

{

126

char *extra="";

if (sm->auth_pae state==AUTH_PAE_AUTHENTICATING && sm->authSuccess)
sm->authA uthSuccessesWhileAuthenticating++;

SM_ENTRY_MA(AUTH_PAE, AUTHENTICATED, auth_pae);

if (sm->authPortStatus != Authorized) {
sm->authPortStatus = Authorized;
setPortAuthorized();
}
sm->reAuthCount = 0;
if (sm->flags & EAPOL_SM_PREAUTH)
extra=" (pre-authentication)";
elseif (sm->flags& EAPOL_SM_FROM_PMKSA_CACHE)
extra=" (PMKSA cache)";
eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_L OGGER_INFO,
"authenticated - EAPtype: %d (%3)%s",
sm->eap_type authsrv,
eap_server_get _name(0, sm->eap_type authsrv),
extra);
sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 1,
sm->flags & EAPOL_SM_PREAUTH);
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}
SM_STATE(AUTH_PAE, AUTHENTICATING)

{
}

SM_STATE(AUTH_PAE, ABORTING)

{
}

SM_STEP(AUTH_PAE)

{

if ((sm->portControl == Auto & & sm->portMode != sm->portControl) ||

sm->initialize || 'sm->eap_if->portEnabled)
SM_ENTER_GLOBAL(AUTH_PAE, INITIALIZE);
elseif (sm->portControl == ForceAuthorized & &
sm->portMode !'= sm->portControl & &
I(sm->initialize || !sm->eap_if->portEnabled))
SM_ENTER_GLOBAL(AUTH_PAE, FORCE_AUTH);
elseif (sm->portControl == ForceUnauthorized & &
sm->portMode !'= sm->portControl & &
I(sm->initialize || !sm->eap_if->portEnabled))
SM_ENTER_GLOBAL(AUTH_PAE, FORCE_UNAUTH);
ese{
switch (sm->auth_pae state) {
case AUTH_PAE_INITIALIZE:
SM_ENTER(AUTH_PAE, FREE_DISCONNECTED);
bresk;
caseAUTH_PAE FREE DISCONNECTED:
SM_ENTER(AUTH_PAE, FREE_RESTART);
break;
case AUTH_PAE_FREE_RESTART:
if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, FREE_ENDING);
break;

}
if (lsm->eap_if->eapRestart)
SM_ENTER(AUTH_PAE, FREE_CONNECTING);
bresk;
caseAUTH_PAE_FREE_HELD:
if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, FREE_ENDING);
break;
}
if (sm->quietWhile==0)
SM_ENTER(AUTH_PAE, FREE_RESTART);
break;
caseAUTH_PAE_FREE_CONNECTING:
if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, FREE_ENDING);
bresk;

if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax)
SM_ENTER(AUTH_PAE, FREE_DISCONNECTED);

elseif ((sm->eap_if->eapReq & &
sm->reAuthCount <= sm->reAuthMax) ||
sm->eap_if->eapSuccess || sm->eap_if->eapFail)

SM_ENTER(AUTH_PAE, FREE_AUTHENTICATING);
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break;
caseAUTH_PAE FREE_AUTHENTICATED:
if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, AUTHENTICATED);
bresk;

if (sm->eapolStart || sm->reA uthenticate)
SM_ENTER(AUTH_PAE, FREE _RESTART);

elseif (sm->eapolLogoff || 'sm->portValid)
SM_ENTER(AUTH_PAE, FREE_DISCONNECTED);

break;

case AUTH_PAE_FREE_AUTHENTICATING:

if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, FREE_ENDING);
break;

}
if (sm->authSuccess & & sm->portValid)
SM_ENTER(AUTH_PAE, FREE_AUTHENTICATED);
elseif (sm->authFail ||
(sm->keyDone & & !sm->portValid))
SM_ENTER(AUTH_PAE, FREE_HELD);
elseif (sm->eapol Start || sm->eapol Logoff ||
sm->authTimeout)
SM_ENTER(AUTH_PAE, FREE_ABORTING);
break;
case AUTH_PAE_FREE_ABORTING:
if (sm->freeTimeout == 0) {
SM_ENTER(AUTH_PAE, FREE_ENDING);
bresk;

}
if (sm->eapolLogoff && !'sm->authAbort)
SM_ENTER(AUTH_PAE, FREE_DISCONNECTED);
elseif ('sm->eapolLogoff && !'sm->authAbort)
SM_ENTER(AUTH_PAE, FREE_RESTART);
break;
case AUTH_PAE_FREE_ENDING:
SM_ENTER(AUTH_PAE, ABORTING);
break;
case AUTH_PAE_DISCONNECTED:
SM_ENTER(AUTH_PAE, RESTART);
bresk;
case AUTH_PAE_RESTART:
if (lsm->eap_if->eapRestart)
SM_ENTER(AUTH_PAE, CONNECTING);
break;
caseAUTH_PAE_HELD:
if (sm->quietWhile ==0)
SM_ENTER(AUTH_PAE, RESTART);
break;
case AUTH_PAE_CONNECTING:
if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax)
SM_ENTER(AUTH_PAE, DISCONNECTED);
elseif ((sm->eap if->eapReq & &
sm->reAuthCount <= sm->reAuthMax) ||
sm->eap_if->eapSuccess || sm->eap_if->egpFail)
SM_ENTER(AUTH_PAE, AUTHENTICATING);
break;
case AUTH_PAE_AUTHENTICATED:
if (sm->eapolStart || sm->reAuthenticate)
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SM_ENTER(AUTH_PAE, RESTART);
elseif (sm->eapolLogoff || !sm->portValid)
SM_ENTER(AUTH_PAE, DISCONNECTED);
break;
case AUTH_PAE_AUTHENTICATING:
if (sm->authSuccess & & sm->portValid)
SM_ENTER(AUTH_PAE, AUTHENTICATED);
elseif (sm->authFall ||
(sm->keyDone & & !sm->portValid))
SM_ENTER(AUTH_PAE, HELD);
elseif (sm->eapol Start || sm->eapol Logoff ||
sm->authTimeout)
SM_ENTER(AUTH_PAE, ABORTING);
break;
caseAUTH_PAE_ABORTING:
if (sm->eapolLogoff && !sm->authAbort)
SM_ENTER(AUTH_PAE, DISCONNECTED);
elseif (Ism->eapolL ogoff & & !'sm->authAbort)
SM_ENTER(AUTH_PAE, RESTART);
break;
case AUTH_PAE_FORCE_AUTH:
if (sm->eapol Sart)
SM_ENTER(AUTH_PAE, FORCE_AUTH);
break;
caseAUTH_PAE_FORCE_UNAUTH:
if (sm->eapol Start)
SM_ENTER(AUTH_PAE, FORCE_UNAUTH);
break;

}
3.6 Another Method by Using Linux Firewall

Another thought of implementing none binary authenticator is to utilize Linux firewall
system — netfilter. In this scenario, port control is completely disabled. Thus it relies on
netfilter to do user access control. In the incoming hook, functions can be created to
differentiate authentication packets from normal packets. In the local hook, functions can be
made to pass authentication packets to the RADIUS client. There is awhite list for legitimate
users, a black list keeps track of malicious supplcants, and an on-going list is used to keep
track of user addresses that are being authenticated. A new match function can be made to
differentiate packets whose source addresses are not found in any of the above lists as coming
from new supplicants. IPSet is used to set a timer for each new IP (corresponding to a new
supplciant). IPTableis used for traffic filtering if the supplicant fails authentication.

The problem is, if there is no 802.1X context sensed by the supplicant, it would
treat its own port as ForceAuthorized, which means that 802.1X and EAP state
machines stop working. However, in this scenario, athough without port control,
EAP state machines are needed for both the supplicant and AP. Thus it is necessary
for AP to write a new target function that send out the first 802.1X start message
when it detects a new supplicant. So asimplified scenario could be:

1. Write anew match that finds out new MAC addresses.
2. Write anew target that sends out the first 802.1X start.

3. IPSet helps automate steps 1 and 2. If 1 is matched, then go to step 2, with an
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upper time limit.

4. If the timer expired, put that user into the black list.

For hook functions, match and target, IPTable, and IPSet refer to Section 2.4, 2.5
and 2.6. For questions regarding Linux kernel, please refer to “Hacking the Linux
Kernel Network Stack” [14].

To enhance this system, state machines are needed to handle various time out
events, direction control issues, communications between netfilter system and upper
layers (EAP & RADIUS Client), and to perform decision making for user access
control. This process is more or less equal to rewritting 802.1X, thus the method
proposed in the previous section is recommended.
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4 Testing and Evaluation

As is mentioned, the real port in hostap driver is closed at the very start. To
support seamless roaming, it needs a signal authorized from the state
FREE_DISCONNECTED in the new Authenticator PAE state machine. It is desirable
to modify the driver itself to set the port open by default so that there is not delay.

Moreover, during free open phase the behavior of the new Authenticator PAE
state machine can be further simplified. It can focus on ensuring that the supplicant is
authentcated and ignore the statistics and signals related to failures. However, if we
keep the statistics and signals untouched, which is like Figure 3-27, it is more
identical to the original state machine, thus it is easier to understand and has less
potentical mistakes.

According to the source code given in Section 3.5.2, to achieve link layer mobility,
we only need to add one new integer (freeTimeout), one macro definition
(AUTH_PAE_DEFAULT _freeTimeout) and eight new enumertaion members for the
new states. Total code lines added are 215.

Besides link layer mobility mechanisms, the new none binary authenticator should
also support IP mobility to cover the latency introduced by DHCP [1]. This can be
achieved by Mobile IP and SIP. Relevant information can be found in in Chapter 6 of
J-O Vatn' s dissertation [20].

Nevertheless, there is a big risk for such a new non-binary authenticator. A
malicious user can utilize the free access resource as long as he wants by simply
wandering back and forth at the boundary of the BSS. The fundamental question
regarding this risk is how to define a new supplicant in the AP. As was introduced, a
supplicant’ information is initialized and accumulated in sta info since it is first
sensed by the AP. All recognized supplicants are put in a list. If a user cannot be
found in that list, it is viewed as a new supplicant. For a supplicant that already exists
in the BSS, it can become a new supplicant only if its EAPOL state machines are
destroyed. In hostapd, this process can be smplified as following:
ap_sta disassociate() or ap_sta deauthenticate() - i1eeeB02_1x free station() >
os_free(sm->identity) & eapol_auth free(sm) - eap_server-sm deinit(sm->eap) &
os free(sm). Note that eapol auth free() is called to destroy the supplicant’s
information while eapol_auth deinit() destroys the structure eapol authenticator --
which is used as system configuration by the structure hostapd. No matter
ap_sta disassociate() or ap_sta deauthenticate(), they are called as a result of a
system call from hostap driver. Thus it is up to the driver to decide which supplicant
should be exterminated (for example, when the wireless signal degrades below a
certain threshold).

There are two basic solutions to this problem. The first solution is to make the
variable freeTimeout a random value rather than a constant. Since it is not possible to
change the diameter of BSS by modifying the radio strength in real life, it is feasible
to change the duration of the free authentication. In order to get constant service, a
malicious user’s behavior is restricted in both location and time. This user needs to
move from the boundary after timing out and to reenter immediately afterwards. By
giving freeTimeout a random value, the malicious user will not know when they
should simulate departing and returning. This random value should range between a
value that is neither too short ( so that normal supplicants would fail to be
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authenticated) nor too long (so that malicious supplicants may count on frequently
enjoying free network access).

However, if the malicious user does not need constant service, then he is quite
immune to the first solution. For this reason we introduce a second solution, to add
those users who are requested to be destroyed by hostap driver, but not yet
authenticated in the 802.1X state machine in hostapd to a list named suspicious list.
As was mentioned, the supplicant information is put in a structure sta_info, thus to
keep a suspicious list similar to sta list would be a heavy burden for the AP. Instead
we can copy sm->identity to suspicious list before os free(sm->identity) in the step
of ieee802_1x free station(). After that, the user information will be totally destroyed
and resources are released. Accordingly, the AP has to check not only sta list, but
also suspicious list. If the node isin suspicious list, then it must jump over the clone
state machine and go directly to the state DISCONNECTED.

The last question is that, during free open period, users may suffer from
communication over an unsafe network (802.1X is a mutua authentication scheme).
Since most applications provide higher layer security protection, it will remain safe as
long as IP layer mobility is provided.
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5 Conclusionsand Future work

5.1 Conclusions

For along time security and flexibility were seen as mutually exclusive in wireless
IP access networks. The existence of IEEE 802.1X is crucial for security, but
introduces a big hurdle for WiFi users to get out of their zoo. This thesis proposed an
innovative method to facilitate seamless WiFi roaming while maintaining the security
context required by Robust Security Network. Moreover, it has successfully achieved
the goals listed at start: (1) allow the network to provide continued services to
supplicants, so that customer’s communications will not be cut-off during handover;
(2) be completely acceptable to existing supplicant devices and authentication servers,
so that both customers and service providers preserve their investments; (3) be
compatible with the most commonly used authentication protocol, i.e., IEEE 802.1X;
(4) leverage existing access points by a upgrading software rather than requiring
installation of specia firmware or an upgrade of the hardware. In short our solution
increases system functionality remarkably while keeping the cost low.

5.2 Future work

Potential future work would be to address those pitfalls mentioned in Chapter 4.
Moreover atest bed for IP Mobility and SIP are required to test this new none-binary
authenticator. Wireless |P access will continue to rapidly advancing with additional
new standards, thus it is necessary to match our method to both existing and future
standard. Ideally there should be a standardization effort to add non-binary
authentication to the |IEEE 802.1X standard.
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Appendix A. sta_info

/**
* ap.h : structure sta_info — It stores al the information of a supplicant
*/
struct sta_info {
struct sta_info *next; /* next entry in stalist */
struct sta_info *hnext; /* next entry in hash table list */
u8 addr[6];
ul6 aid; /* STA'suniqueAlID (1 .. 2007) or O if not yet assigned */
u32 flags;
ul6 capability;
ul6 listen_interval; /* or beacon_int for APs*/
u8 supported rates§WLAN_SUPP_RATES MAX];
int supported_rates len;

unsigned int nonerp_set:1;

unsigned int no_short_slot_time set:1;
unsigned int no_short_preamble set:1;
unsigned int no_ht_gf set:1;

unsigned int no_ht_set:1;

unsigned int ht 20mhz_set:1;

ul6 auth alg;
u8 previous ap[6];

enum {
STA_NULLFUNC =0, STA_DISASSOC, STA_DEAUTH, STA_ REMOVE
} timeout_next;

[* |EEE 802.1X related data */
struct eapol_state machine *eapol_sm;

[* 1EEE 802.11f (IAPP) related data */
struct ieee80211 mgmt *last_assoc req;

u32 acct_session_id_hi;

u32 acct_session_id _lo;

time_t acct_session_start;

int acct_session_started;

int acct_terminate_cause; /* Acct-Terminate-Cause */
int acct_interim_interval; /* Acct-Interim-Interval */

unsigned long last_rx_bytes;

unsigned long last_tx_bytes,

u32 acct_input_gigawords; /* Acct-Input-Gigawords */

u32 acct_output_gigawords; /* Acct-Output-Gigawords */

u8 *challenge; /* IEEE 802.11 Shared Key Authentication Challenge */

struct wpa_state_machine *wpa_sm;
struct rsn_preauth_interface * preauth_iface;

struct hostapd_ssid *ssid; /* SSID selection based on (Re)AssocReq */
struct hostapd_ssid *ssid_probe; /* SSID selection based on ProbeReq */

intvlan _id;

#ifdef CONFIG_IEEE80211N
struct ht_cap_ie ht_capahilities; /* |EEE 802.11n capabilities */
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#endif /* CONFIG_IEEE80211N */

#ifdef CONFIG_|EEE80211W
int sa_query_count; /* number of pending SA Query requests;
* 0 =no SA Query in progress */
int sa_query_timed_out;
u8 *sa_query_trans id; /* buffer of WLAN_SA_QUERY_TR_ID_LEN *
* sa_query_count octets of pending SA Query
* transaction identifiers*/
struct os _time sa_query_start;
#endif /* CONFIG_IEEE80211W */

struct wpabuf *wps ie; /* WPS |E from (Re)Association Request */
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Appendix B. Original Authenticator PAE SM

/**
* src\eapol_auth\eapol_auth _sm.c : Authenticator PAE state machine
*/

SM_STATE(AUTH_PAE, INITIALIZE)

SM_ENTRY_MA(AUTH_PAE, INITIALIZE, auth_pae);
sm->portMode = Auto;

SM_STATE(AUTH_PAE, DISCONNECTED)

{
int from_initialize = sm->auth_pae_state == AUTH_PAE_INITIALIZE;

if (sm->eapolLogoff) {
if (sm->auth_pae state == AUTH_PAE_CONNECTING)
sm->authEapL ogoffswhileConnecting++;
elseif (sm->auth_pae_state == AUTH_PAE_AUTHENTICATED)
sm->authA uthEapL ogoffWhileAuthenticated++;

}
SM_ENTRY_MA(AUTH_PAE, DISCONNECTED, auth_pae);

sm->authPortStatus = Unauthorized;
setPortUnauthorized();
sm->reAuthCount = 0;
sm->eagpol L ogoff = FALSE;
if (ffrom_initialize) {
sm->eapol ->cb.finished(sm->hapd, sm->sta, O,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, RESTART)

{
if (sm->auth_pae state == AUTH_PAE_AUTHENTICATED) {

if (sm->reAuthenticate)
sm->authA uthReauthsWhileAuthenticated++;
if (sm->eapol Start)
sm->authAuthEapStartswWhil eAuthenticated++;
if (sm->eapolLogoff)
sm->authA uthEapL ogoffWhileAuthenticated++;
}

SM_ENTRY_MA(AUTH_PAE, RESTART, auth_pae);

sm->eap_if->eapRestart = TRUE;

SM_STATE(AUTH_PAE, CONNECTING)

{
if (sm->auth_pae state!=AUTH_PAE_CONNECTING)
sm->authEntersConnecting++;

SM_ENTRY_MA(AUTH_PAE, CONNECTING, auth_pae);
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sm->reAuthenticate = FAL SE;
sm->reAuthCount++;

SM_STATE(AUTH_PAE, HELD)
{
if (sm->auth_pae state == AUTH_PAE_AUTHENTICATING && sm->authFail)
sm->authAuthFailWhileAuthenticating++;

SM_ENTRY_MA(AUTH_PAE, HELD, auth_pae);

sm->authPortStatus = Unauthorized,;
setPortUnauthorized();
sm->quietWhile = sm->quietPeriod,;
sm->eapol Logoff = FALSE;

eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_WARNING,
"authentication failed - EAPtype: %d (%s)",
sm->eap_type authsrv,
eap_type text(sm->eap_type authsrv));
if (sm->eap_type authsrv !=sm->eap type supp) {
eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_L OGGER_INFO,
"Supplicant used different EAPtype: "
"%(d (%s)", sm->eap_type supp,
eap_type_text(sm->eap_type_supp));

sm->eapol->cb.finished(sm->hapd, sm->sta, O,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, AUTHENTICATED)
{

char *extra="";

if (sm->auth_pae state == AUTH_PAE_AUTHENTICATING & & sm->authSuccess)
sm->authA uthSuccessesWhileAuthenticating++;

SM_ENTRY_MA(AUTH_PAE, AUTHENTICATED, auth_pae);

sm->authPortStatus = Authorized;
setPortAuthorized();
sm->reAuthCount = 0;
if (sm->flags & EAPOL_SM_PREAUTH)
extra=" (pre-authentication)";
elseif (wpa_auth_sta get_pmksa(sm->sta->wpa_sm))
extra=" (PMKSA cache)";
eapol_auth vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO,
"authenticated - EAP type: %d (%3)%s",
sm->eap_type authsrv,
eap_type _text(sm->eap_type authsrv), extra);
sm->eapol->cb.finished(sm->hapd, sm->sta, 1,
sm->flags & EAPOL_SM_PREAUTH);

SM_STATE(AUTH_PAE, AUTHENTICATING)
{
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SM_ENTRY_MA(AUTH_PAE, AUTHENTICATING, auth_pae);

sm->eapol Start = FAL SE;
sm->authSuccess = FAL SE;
sm->authFail = FAL SE;
sm->authTimeout = FAL SE;
sm->authStart = TRUE;
sm->keyRun = FALSE;
sm->keyDone = FAL SE;

SM_STATE(AUTH_PAE, ABORTING)

{

if (sm->auth_pae state==AUTH_PAE_AUTHENTICATING) {
if (sm->authTimeout)
sm->authA uthTimeoutsWhileAuthenticating++;
if (sm->eapol Start)
sm->authA uthEapStartswWhileAuthenticating++;
if (sm->eapolLogoff)
sm->authA uthEapL ogoffWhileA uthenticating++;
}

SM_ENTRY_MA(AUTH_PAE, ABORTING, auth_pae);

sm->authAbort = TRUE;
sm->keyRun = FAL SE;
sm->keyDone = FAL SE;

SM_STATE(AUTH_PAE, FORCE_AUTH)

{

SM_ENTRY_MA(AUTH_PAE, FORCE_AUTH, auth_pae);

sm->authPortStatus = Authorized;
setPortAuthorized();
sm->portMode = ForceAuthorized;
sm->eapol Start = FAL SE;
txCannedSuccess();

SM_STATE(AUTH_PAE, FORCE_UNAUTH)

SM_ENTRY_MA(AUTH_PAE, FORCE_UNAUTH, auth_pae);

sm->authPortStatus = Unauthorized;
setPortUnauthorized();
sm->portMode = ForceUnauthorized;
sm->eapol Start = FAL SE;
txCannedFail();

SM_STEP(AUTH_PAE)

if ((sm->portControl == Auto && sm->portMode != sm->portControl) ||
sm->initialize || lsm->eap_if->portEnabled)
SM_ENTER_GLOBAL(AUTH_PAE, INITIALIZE);

145



Appendix B

elseif (sm->portControl == ForceAuthorized & &
sm->portMode !'= sm->portControl & &
I(sm->initialize || !sm->eap_if->portEnabled))
SM_ENTER_GLOBAL(AUTH_PAE, FORCE_AUTH);
elseif (sm->portControl == ForceUnauthorized & &
sm->portMode !'= sm->portControl & &
I(sm->initialize || !sm->eap_if->portEnabled))
SM_ENTER_GLOBAL(AUTH_PAE, FORCE_UNAUTH);
ese{
switch (sm->auth_pae state) {
case AUTH_PAE_INITIALIZE:
SM_ENTER(AUTH_PAE, DISCONNECTED);
bresk;
case AUTH_PAE_DISCONNECTED:
SM_ENTER(AUTH_PAE, RESTART);
break;
case AUTH_PAE_RESTART:
if (lsm->eap_if->eapRestart)
SM_ENTER(AUTH_PAE, CONNECTING);
break;
case AUTH_PAE_HELD:
if (sm->quietWhile ==0)
SM_ENTER(AUTH_PAE, RESTART);
bresk;
case AUTH_PAE_CONNECTING:
if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax)
SM_ENTER(AUTH_PAE, DISCONNECTED);
elseif ((sm->eap_if->eapReq & &
sm->reAuthCount <= sm->reAuthMax) ||
sm->eap_if->eapSuccess || sm->eap_if->eapFail)
SM_ENTER(AUTH_PAE, AUTHENTICATING);
break;
case AUTH_PAE_AUTHENTICATED:
if (sm->eapolStart || sm->reA uthenticate)
SM_ENTER(AUTH_PAE, RESTART);
elseif (sm->eapolLogoff || !sm->portValid)
SM_ENTER(AUTH_PAE, DISCONNECTED);
break;
case AUTH_PAE_AUTHENTICATING:
if (sm->authSuccess & & sm->portValid)
SM_ENTER(AUTH_PAE, AUTHENTICATED);
elseif (sm->authFail ||
(sm->keyDone & & !sm->portValid))
SM_ENTER(AUTH_PAE, HELD);
elseif (sm->eapol Start || sm->eapol L ogoff ||
sm->authTimeout)
SM_ENTER(AUTH_PAE, ABORTING);
bresk;
case AUTH_PAE_ABORTING:
if (sm->eapolLogoff && !'sm->authAbort)
SM_ENTER(AUTH_PAE, DISCONNECTED);
eseif (lsm->eapolLogoff && !'sm->authAbort)
SM_ENTER(AUTH_PAE, RESTART);
break;
case AUTH_PAE_FORCE_AUTH:
if (sm->eapol Start)
SM_ENTER(AUTH_PAE, FORCE_AUTH);
bresk;
caseAUTH_PAE_FORCE_UNAUTH:
if (sm->eapol Sart)
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SM_ENTER(AUTH_PAE, FORCE_UNAUTH);
break;
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Appendix C. Original eapol_state_machine

/**

* src\eapol _auth\eapol_auth sm_i.h:
* struct eapol_state_ machine - Per-Supplicant Authenticator state machines
*/
struct eapol_state_machine {
[* timers*/
int awhile;
int quietWhile;
int reAuthWhen;

[* global variables*/
Boolean authAbort;
Boolean authFail;
PortState authPortStatus,
Boolean authStart;
Boolean authTimeout;
Boolean authSuccess;
Boolean eapol Eap;
Boolean initidize;
Boolean keyDone;
Boolean keyRun;
Boolean key TxEnabled;
PortTypes portControl;
Boolean portValid;
Boolean reAuthenticate;

* Port Timers state machine */
/* 'Boolean tick' implicitly handled as registered timeout */

/* Authenticator PAE state machine */

enum { AUTH_PAE_INITIALIZE, AUTH_PAE _DISCONNECTED,
AUTH_PAE_CONNECTING AUTH_PAE_AUTHENTICATING,
AUTH_PAE AUTHENTICATED, AUTH_PAE_ABORTING
AUTH_PAE HELD, AUTH_PAE_FORCE_AUTH,
AUTH_PAE_FORCE_UNAUTH, AUTH_PAE RESTART } auth pae state;

[* variables*/

Boolean eapol L ogoff;

Boolean eapol Start;

PortTypes portMode;

unsigned int reAuthCount;

[* constants */

unsigned int quietPeriod; /* default 60; 0..65535 */

#define AUTH_PAE_DEFAULT_quietPeriod 60
unsigned int reAuthMax; /* default 2 */
#defineAUTH_PAE_DEFAULT_reAuthMax 2

[* counters*/

Counter authEntersConnecting;

Counter authEapL ogoffsWhileConnecting;

Counter authEntersAuthenticating;

Counter authAuthSuccessesWhileAuthenticating;

Counter authAuthTimeoutswWhileAuthenticating;

Counter authAuthFail\WhileAuthenticating;

Counter authAuthEapStartswWhileAuthenticating;

Counter authAuthEapL ogoffWhileAuthenticating;

Counter authAuthReauthswWhileAuthenti cated;

Counter authAuthEapStartsWhileAuthenticated;

Counter authAuthEapL ogoffWhileAuthenticated;
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[* Backend Authentication state machine */

enum{ BE_AUTH_REQUEST, BE_ AUTH_RESPONSE, BE AUTH_SUCCESS,
BE AUTH_FAIL, BE AUTH_TIMEOUT, BE_ AUTH_IDLE,
BE_AUTH_INITIALIZE, BE_AUTH_IGNORE} be auth state;

[* constants */

unsigned int serverTimeout; /* default 30; 1..X */

#define BE_AUTH_DEFAULT_serverTimeout 30
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[* counters*/

Counter backendResponses;

Counter backendA ccessChallenges,

Counter backendOtherRequestsToSupplicant;
Counter backendA uthSuccesses,

Counter backendAuthFails;

[* Reauthentication Timer state machine */

enum{ REAUTH_TIMER_INITIALIZE, REAUTH_TIMER_REAUTHENTICATE
} reauth_timer_state;

[* constants */

unsigned int reAuthPeriod; /* default 3600 s*/

Boolean reAuthEnabled;

[* Authenticator Key Transmit state machine */
enum{ AUTH_KEY_TX_NO_KEY_TRANSMIT,AUTH KEY_TX_KEY_TRANSMIT
} auth_key tx_state;

[* Key Receive state machine */

enum { KEY_RX_NO_KEY_RECEIVE, KEY_RX_KEY_RECEIVE} key rx_state;
[* variables*/

Boolean rxKey;

[* Controlled Directions state machine */

enum{ CTRL_DIR FORCE BOTH, CTRL_DIR IN_OR BOTH } ctrl_dir_state;
[* variables*/

ControlledDirection adminControlledDirections;

ControlledDirection operControlledDirections;

Boolean operEdge;

[* Authenticator Statistics Table */

Counter dot1xAuthEapol FramesRx;
Counter dot1xAuthEapol FramesTx;
Counter dot1xA uthEapol StartFramesRx;
Counter dot1xA uthEapol L ogoff FramesRX;
Counter dot1xAuthEapol Respl dFramesRX;
Counter dot1xAuthEapol RespFramesRXx;
Counter dot1xAuthEapol Regl dFramesTx;
Counter dot1xAuthEapol ReqFramesTX;
Counter dot1xAuthlnvalidEapol FramesRx;
Counter dot1xAuthEapL engthErrorFramesRXx;
Counter dot1xAuthL astEapol FrameVersion;

[* Other variables - not defined in IEEE 802.1X */
u8 addr[ETH_ALEN]; /* Supplicant address */
int flags, /* EAPOL_SM_* */

[* EAPOL/AAA <-> EAPfull authenticator interface */
struct eap_eapol_interface *eap_if;

int radius_identifier;
[* TODO: check when the last messages can be released */
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1

struct radius_msg *last_recv_radius;

u8last_eap id; /* last used EAP Identifier */

u8 *identity;

size tidentity len;

u8 eap_type authsrv; /* EAPtype of the last EAP packet from Authentication server */
u8 eap_type supp; /* EAPtype of the last EAP packet from Supplicant */

struct radius_class _dataradius _class;

[* Keysfor encrypting and signing EAPOL-Key frames*/

u8 *eapol_key sign;

size teapol _key sign_len;
u8 *eapol_key_crypt;

size teapol_key crypt_len;

struct eap_sm *eap;

Boolean initializing; /* in process of initializing state machines */
Boolean changed;

struct eapol_authenticator * eapol;

void *sta; /* station context pointer to usein callbacks */

#endif /* EAPOL_AUTH_SM_|_H */
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