
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:299

J I A  G U O

 An Alternative to Binary Authentication Using Traffic Shaping

 A New Authenticator

K T H I n f o r m a t i o n  a n d

C o m m u n i c a t i o n  T e c h n o l o g y



  
 

A New Authenticator 

An Alternative to Binary Authentication Using Traffic Shaping 

 
Jia Guo 

jiag@kth.se 
 
 

20 November 2010 
 

Master’s Thesis 
 

Examiner and Supervisor 

Prof. Gerald Q. Maguire Jr. 

Department of Communication Systems 
School of Information and Communication Technology 

Royal Institute of Technology (KTH) 
Stockholm, Sweden 





Abstract 

i 
 

Abstract 
This thesis is part of a larger project on non-binary alternatives to authentication; 

in contrast to the binary authentication used in IEEE 802.1X and IEEE 802.11i. This 
thesis project seeks to define, implement, and evaluate a non-binary wireless access 
authentication mechanism. It introduces a new authenticator that implements such a 
new non-binary authentication mechanism. 

In today’s wireless local area networks it is generally not possible to continue a 
multimedia roaming session smoothly, because of the long delay caused by 
authentication – during which no traffic other than authentication traffic is permitted. 
In the best cases this high delay results in a long communication interruption interval 
without media, while in the worst cases the session is aborted by the higher layer 
application as the application believes that the connectivity is lost. Thus introducing a 
more appropriate authentication mechanism enables mobile users who move into a 
new wireless local area network cell to continue to send and receive packets with 
greatly reduced handover latency (in comparison to existing authentication 
mechanisms). This new authentication mechanism potentially enables seamless 
roaming for users of conversational multimedia services (for example, a voice over IP 
call could continue despite a movement from one cell to another). 

This thesis demonstrates that it is possible to allow unauthenticated users to 
immediately begin to communicate, while simultaneously limiting their traffic. These 
limitations in traffic are implemented by traffic shaping. Additionally, using traffic 
shaping also offers a number of new possibilities – such as offering different qualities 
of service, allowing negotiation for different maximum bandwidths, etc. 



 

ii 
 

Sammanfattning 
Detta examensarbete är en del av ett större projekt om icke-binära alternativ till 

autentisering, i motsats till den binära autentiseringen används i IEEE 802.1X och 
IEEE 802.11i. Denna avhandling syftar till att definiera, genomföra och utvärdera en 
icke-binär trådlös åtkomst autentiseringsmekanism. Denna avhandling presenterar en 
ny dosa som implementerar en ny icke-binär autentiseringsmekanism. 

Införa en mer ändamålsenlig mekanism för autentisering möjliggör mobila 
användare som flyttar in i ett nytt trådlöst lokalt nätverk cell att fortsätta att skicka och 
ta emot paket med kraftigt nedsatt överlämnandet fördröjning (i jämförelse med 
befintliga autentiseringsmekanismer). Denna nya autentiseringsmekanism potentiellt 
möjliggör sömlös roaming för användare av konversation multimedia tjänster 
(exempelvis kan en röst över IP-samtal fortsätter trots en rörelse från en cell till en 
annan). Tyvärr, i dagens lokala trådlösa nätverk fortsätter smidigt ett multimedium 
session är i allmänhet inte är möjligt, på grund av det långa dröjsmålet väntar på 
autentisering - då ingen trafik än autentisering är tillåten. I bästa fall kan detta hög 
fördröjning resultera i ett lång meddelande avbrott intervall utan medier, medan det i 
värsta fall sessionen avbryts av högre lager tillämpning som tillämpningsprogram 
anser att anslutning är förlorat. 

Denna avhandling visar att det är möjligt att tillåta autentiserade användare som 
omedelbart börja kommunicera, samtidigt som begränsar deras trafik. Dessa 
begränsningar i trafiken genomförs av trafikformning. Dessutom använder 
trafikformning erbjuder också ett antal nya möjligheter - såsom att erbjuda olika 
kvaliteter av service, vilket gör förhandling för olika maximal bandbredd, osv.



Table of Contents 

iii 
 

Table of Contents 
Abstract .............................................................................................................................................. i 
Sammanfattning ................................................................................................................................ ii 
Table of Contents ............................................................................................................................ iii 
List of Figures ................................................................................................................................... v 
List of Tables .................................................................................................................................... vi 
List of Acronyms and Abbreviations ............................................................................................... vii 
1 Introduction ............................................................................................................................... 1 

1.1 Introduction to the Authenticator and our model ...................................................... 2 
1.2 Problem Statement .................................................................................................... 3 
1.3 Limitations ................................................................................................................ 4 
1.4 Organization of this thesis ......................................................................................... 5 

2 Background ............................................................................................................................... 7 
2.1 IEEE 802.11 and 802.1X standards ........................................................................... 7 

2.1.1 IEEE 802.11 Concepts .............................................................................................. 8 
2.1.2 IEEE 802.11i ........................................................................................................... 14 
2.1.3 EAP ......................................................................................................................... 14 
2.1.4 IEEE 802.1X Authentication on Wireless LANs .................................................... 17 
2.1.5 RADIUS .................................................................................................................. 19 

2.2 Roaming .................................................................................................................. 22 
2.3 hostapd .................................................................................................................... 24 
2.4 Netfilter ................................................................................................................... 25 

2.4.1 Netfilter Framework ................................................................................................ 25 
2.4.2 Hook Operation ....................................................................................................... 29 
2.4.3 Rules Table .............................................................................................................. 32 

2.5 IPTable .................................................................................................................... 33 
2.5.1 The three Default IP Tables ..................................................................................... 33 
2.5.2 Data Structures ........................................................................................................ 34 
2.5.3 Work Flow ............................................................................................................... 37 

2.6 IP Set ....................................................................................................................... 44 
3 Method .................................................................................................................................... 55 

3.1 State Machines for EAP .......................................................................................... 56 
3.1.1 EAP Full Authenticator States under Pass-Through Mode ..................................... 65 
3.1.2 Constants ................................................................................................................. 66 
3.1.3 Local Variables ........................................................................................................ 66 
3.1.4 Procedures ............................................................................................................... 67 
3.1.5 Interface between EAP SM and Methods ............................................................... 68 
3.1.6 EAP SM Data Structure in hostapd ......................................................................... 69 
3.1.7 Data Structure of EAP SM & AAA Interface in hostapd ........................................ 71 

3.2 AAA Layer .............................................................................................................. 72 
3.2.1 RADIUS Client on Receiving ................................................................................. 74 
3.2.2 RADIUS Client on Sending .................................................................................... 84 

3.3 EAPOL Layer .......................................................................................................... 91 
3.3.1 Variables .................................................................................................................. 92 
3.3.2 How EAPOL functions in hostapd .......................................................................... 94 

3.4 EAPOL Sender & Receiver ................................................................................... 105 
3.5 Non-Binary Authenticator ..................................................................................... 109 

3.5.1 Port Control in hostapd ......................................................................................... 109 
3.5.2 Modification of the Authenticator PAE State Machine ......................................... 116 

3.6 Another Method by Using Linux Firewall ............................................................ 129 
4 Testing and Evaluation .......................................................................................................... 131 
5 Conclusions and Future work................................................................................................ 133 

5.1 Conclusions ........................................................................................................... 133 
5.2 Future work ........................................................................................................... 133 

References ..................................................................................................................................... 135 
Appendix A. sta_info ................................................................................................................. 141 



 

iv 
 

Appendix B. Original Authenticator PAE SM ........................................................................... 143 
Appendix C. Original eapol_state_machine .............................................................................. 149 
 
 



List of Figures 

v 
 

List of Figures 
Figure 1-1: Traditional binary authentication ................................................................................... 2 
Figure 1-2. Non-binary authentication using a traffic shaper............................................................ 2 
Figure 2-1. IEEE 802.11 Protocol Stack ........................................................................................... 7 
Figure 2-2. IEEE 802.11 Frame Format ............................................................................................ 9 
Figure 2-3: Payloads of Probe Request and Response .................................................................... 12 
Figure 2-4. IEEE 802.11 handshake between AP and STA ............................................................. 13 
Figure 2-5. EAP Frame Format ....................................................................................................... 16 
Figure 2-6. EAP Message Exchange Framework ........................................................................... 17 
Figure 2-7. Elements in 802.1X ...................................................................................................... 18 
Figure 2-8. IEEE 802.1X Message Exchange Framework ............................................................. 18 
Figure 2-9. EAP in EAPOL MPDU for Ethernet ............................................................................ 19 
Figure 2-10. Radius Frame Format ................................................................................................. 20 
Figure 2-11. RADIUS Attribute value pair format .......................................................................... 20 
Figure 2-12. WiFi Roaming Platform ............................................................................................. 23 
Figure 2-13. hostapd Modules ........................................................................................................ 25 
Figure 2-14. netfilter inside Linux kernel ....................................................................................... 26 
Figure 2-15. netfilter in IPv4 ........................................................................................................... 27 
Figure 2-16. IPTable Structure ........................................................................................................ 36 
Figure 2-17. IP Packet Out .............................................................................................................. 39 
Figure 2-18. IP Packet Input Processing from The Driver .............................................................. 40 
Figure 2-19. IP Packet In Processing .............................................................................................. 41 
Figure 2-20. Packet forwarding....................................................................................................... 42 
Figure 2-21. Filtering during Forwarding ....................................................................................... 43 
Figure 2-22. Operation of ipset Commands .................................................................................... 45 
Figure 2-23. Chains of nf_sockopt_ops .......................................................................................... 46 
Figure 2-24. The Process of Creating A New Set ........................................................................... 47 
Figure 3-1. Simplified AP Architecture ........................................................................................... 55 
Figure 3-2. Hierarchical AP Architecture ........................................................................................ 56 
Figure 3-3. Stand-Alone EAP Switch Model [51] .......................................................................... 57 
Figure 3-4. Pass-Through EAP Switch Model [51] ........................................................................ 58 
Figure 3-5. EAP Stand-Alone Authenticator State Machine ........................................................... 59 
Figure 3-6. EAP Backend Authenticator State Machine ................................................................. 60 
Figure 3-7. EAP Full Authenticator State Machine - 1 ................................................................... 63 
Figure 3-8. EAP Full Authenticator State Machine - 2 ................................................................... 64 
Figure 3-9. RADIUS Client on Receiving AAA Frames ................................................................ 75 
Figure 3-10. RADIUS Client on Sending AAA Frames ................................................................. 86 
Figure 3-11. EAP and EAPOL SMs on Sending AAA Frames ....................................................... 87 
Figure 3-12. SM Relationship on RADIUS Sending & Receiving ................................................. 91 
Figure 3-13. Interface between EAP & EAPOL SMs ..................................................................... 92 
Figure 3-14. EAP & EAPOL SMs on Transmitting EAP Requests ................................................ 97 
Figure 3-15. Port Timers State Machine ......................................................................................... 99 
Figure 3-20. Reauthentication Timer State Machine..................................................................... 103 
Figure 3-21. Backend Authentication State Machine .................................................................... 104 
Figure 3-22. Controlled Directions State Machine ....................................................................... 105 
Figure 3-23. EAPOL Receiver ...................................................................................................... 107 
Figure 3-24. wpa_driver_hostap_ops for Initialization ................................................................. 108 
Figure 3-25. EAPOL Sender ......................................................................................................... 109 
Figure 3-26. After portStatus Change ........................................................................................... 115 



 

vi 
 

List of Tables 
Table 2-1. Types of IEEE 802.11 MAC Frames ................................................................................ 8 
Table 2-2. Type and Subtype of Frame Control .............................................................................. 10 
Table 2-3. ToDS and FromDS ......................................................................................................... 10 
Table 2-4. Duration / ID .................................................................................................................. 11 
Table 2-5. Meaning of Addresses According to To / FromDS ........................................................ 12 
Table 2-6. EAP Types ...................................................................................................................... 15 
Table 2-7. RADIUS attributes and their corresponding type number ............................................. 21 
Table 2-8: IPv4 hooks ..................................................................................................................... 27 
Table 2-9: netfilter return codes ...................................................................................................... 28 
Table 2-10. IPTABLE Definitions .................................................................................................. 33 
Table 2-11. IPTABLE Operations ................................................................................................... 33 
Table 3-1. SM Comparison between Stand-Alone and Full Authenticator ..................................... 65 
Table 3-2. EAP Full Authenticator States under Pass-Through Mode ............................................ 66 
Table 3-3. Long Term Variables ...................................................................................................... 67 
Table 3-4. Short Term Variables ...................................................................................................... 67 
Table 3-12. Parameters for portStatus ........................................................................................... 111 



List of Acronyms and Abbreviations 

vii 
 

List of Acronyms and Abbreviations 
AID association identifier 
AP access point 
BSS Basic service set, including STA and AP 
BSSID 6 bytes long, MAC of AP in infrastructure mode; random number in IBSS 
CFP contention-free period 
DHCP dynamic host configuration protocol 
DS distribution system 
EAP extensible authentication protocol 
EAPOL EAP over LAN 
ESS extended service set, including several BSSs 
IANA Internet Assigned Numbers Authority 
IAPP Inter-Access Point Protocol 
IBSS independent BSS 
ISP inteternet service provider 
MAC media access control 
Mbps million bits per second 
MPDU MAC Protocol Data Unit 
NAS network access server 
PACP Port access control protocol 
PAE Port access entity 
PHY physical layer 
PPP point-to-point protocol 
RTS Request to Send 
SSID service set ID, an arbitrary string as the AP’s name 
STA station 
UDP user datagram protocol 
VoIP  voice over IP 
WEP wire equivalent privacy 
WISP wireless inteternet service provider 
WLAN wireless local area network 
WPA Wi-Fi Protected Access 



 

viii 
 



Introduction 

1 
 

1 Introduction 
Wi-Fi™ technology has been incoroporated by manufacturers in various mobile 

devices, such as laptops, personal digital appliances, and emerging WiFi phones, but 
users of this technology face a major practical hurdle - roaming1. After getting used to 
communicating through these devices inside a room, typically only a few meters from 
the access point, the users find that they can not easily go beyond this “room” (or 
nearby locations) because to do so the users will have to authenticate with a new 
access points, resulting in a kind of wireless “zoo”. Hence manufacturers are trying to 
enable users to roam between different Wi-Fi access points (APs). 

Seamless Wi-Fi roaming is promising since it is beneficial for all. End-users want 
consistent service experience across hotspots without knowledge of the mechanics of 
wireless access. They also want simple and safe login process no matter which 
authentication method is used. They may even hope that hotspots from public, home, 
or even enterprise can be integrated, so that a temporary, basic but urgent 
communication need can be satisfied despite the different service providers. On the 
other hand, for service providers and enterprises, Wi-Fi roaming could attract more 
customers and, as a result, generate new revenue streams. They also want to ensure an 
accurate and timely billing system. Network operators may even hope roaming users 
can automatcially utilize the most appropriate network - so as to reduce traffic jam 
and network device redundency while maximizing user satisfaction. 

Unfortunately, realizing such benefits in today’s wireless local area networks 
(WLANs) is generally not possible due to the lack of roaming support. For example, a 
voice over IP (VoIP) user will not experience a seamless handover as they move from 
one WLAN subnet to another, because of the long delay waiting for authentication – 
during which no traffic other than authentication data is permitted. This is because 
current authentication mechanism (using IEEE 802.1X [33] or IEEE 802.11i) is a 
binary authentication process. Here “binary” means that authentication must be 
completed before the user is able to send any non-authentication related traffic. 

To elimiate this bottleneck, Professor Gerald Q. Maguire Jr., proposed a thesis 
project to take a deep look into the IEEE 802.1X protocol, study the actual need for 
authentication from the perspectives of both customers and service providers, and 
consider existing AP products and roaming solutions; then propose an innovative 
solution that allows both user authentication and normal network service to proceed 
in parallel during handover, thus leading to seamless Wi-Fi roaming. This thesis 
project is part of a larger project on non-binary alternatives to authentication, which 
consists of three sub-projects: (1) a new authenticator which utilizes traffic shaping to 
limit the amount of traffic from the supplicant – both before and after the supplicant is 
authenticated (the subject of this thesis), (2) to add bandwidth specifications to the 
responses from the authentication server [9], and (3) a new supplicant which can take 
advantage of the flexibility offered by this new authenticator and the ability to ask for 
different amounts of bandwidth (or potentially other parameters to be applied by the 
traffic shaper) [10]. 

                                                        
 
1 Wi-Fi is a trademark of the Wi-Fi Alliance, while initially focused on interoperability of IEEE 
802.11b devices the group has expanded their scope in recent years.. 



Background 

2 
 

This chapter first gives an overview of the architecture of a common wireless 
access point. Then it introduces our design and summaries the problems to be 
addressed. Solutions to these problems will be covered in detail in the remainder of 
this thesis. 

1.1 Introduction to the Authenticator and our model 
An authenticator is traditionally used by a network operator to decide if a 

supplicant should be allowed to utilize the network’s resources. Figure 1-1 shows an 
example of a traditional binary authentication mechanism, where the authenticator 
controls a switch that initially connects the supplicant only to the authenticator. 
Figure 1-2 shows the proposed non-binary authentication mechanism. In this 
approach the binary switch is replaced by a traffic shaper. A continuous traffic 
shaping process replaces the binary authentication process, while at the same time 
maintaining traffic flows and redirecting authentication messages to the authenticator. 

 
Figure 1-1: Traditional binary authentication 

 
Figure 1-2. Non-binary authentication using a traffic shaper 

 

For the remaineder of this thesis, unless explicitly stated, we assume that the 
network operator is a internet service provider. (ISP). 

 



Introduction 

3 
 

Unlike a binary switch, the traffic shaper allows traffic to continue to flow through 
an AP. Thus customers can carry on their business during a handover. However, end 
users crossing zones (cells operated by different operators) should be reminded that 
they are in a new Wi-Fi zone, therefore authentication and payment should be made. 
To achieve that, traffic shaping can limit the bandwidth of unauthenticated users, thus 
affect the degree of communication comfort. Ideally, the AP should be able to apply a 
blacklist and ban malicious users. As with existing APs, rather than doing 
authentication on its own, APs rely on remote authentication servers (RADIUS 
Server) for authentication service and relay all authentication messages between the 
authentication servers and the clients. 

Although it looks like a simple change from a binary switch to a traffic shaper, 
things are not as simple as they seem. The new architecture must accommodate the 
following requirements: (1) allow the network to provide continuous services to 
supplicants (clients requesting authentication), so that customers will not have their 
traffic cut-off during a handover; (2) be acceptable to existing supplicant devices and 
authentication servers, so that both customers and service providers can preserve their 
investment and avoid a requirement for new software installation; (3) be compatible 
with the most commonly used authentication protocol IEEE 802.1X; and (4) leverage 
existing APs by upgrading software rather than installing new hardware. The 
following chapters will explain how to achieve these goals in a cost-effective manner. 

1.2 Problem Statement 
In addition to forwarding traffic (the basic function of an AP), the other function 

of a traditional AP is to authenticate end users. Thus traditionally the AP blocks all 
traffic to/from an unauthenticated user, except for traffic related to the authentication 
process. IEEE 802.1X defines a port based binary authentication scheme. Support for 
IEEE 802.1X is often implemented in the AP’s software. Therefore, one way to 
implement the proposed new AP is to modify a traditional AP’s software. 

A traditional AP’s work flow can be summaried as: (1) discover a new wireless 
device trying to access the network; (2) cut off the supplicant’s incoming and 
outgoing traffic; (3) trigger a new authentication process whose traffic will flow 
between the supplicant, the authenticator, and the authentication server; and (4) if the 
supplicant is successfully authenticated then allow traffic to flow to-from it, otherwise 
block this device’s traffic. In the case of our non-binary authentication AP, no traffic 
cut-off will occur, which makes for seamless handovers. To avoid traffic becoming 
free for all devices, we need to encourage devices to authenticate. How can we 
ensure that the AP only provides access to legitimate users (generally the ISP’s 
subscribers)? This is achieved by using an intelligent traffic shaper. This traffic shaper 
initially limits the bandwidth of the new device to very low throughput. The device 
now has the possibility to send/receive traffic in parallel with its attempt to 
authenitcate itself. If the authentication is successful then the traffic shaper is 
informed to increase the throughput to this device (or perhaps to decrease the delay 
which this device’s traffic has been experiencing). If the authenitcation was not 
successful (including authentication failure and free communication timed out), the 
traffic shaper will cut off the unauthorized user’s traffic and block the traffic until it 
has successfully authenticated itself. 



Background 

4 
 

The diffrence in behavior between the proposed AP and a traditional AP is similar 
to the difference between purchasers using a credit card versus using a debit card. In 
the case of a purchase with a credit card, the credit card issuer guarantees that the 
merchant will be paid and bills the customer on a monthly basis for all of their 
consumption with this credit card; while in the case of a purchase with a debit card the 
customer’s account is debited for the amount of the expenses at the time of the 
procurement. Just as the credit card issuer takes some risk that their customers may 
not pay their bill, the network operator takes a risk with the new AP that the users will 
use the AP to access the network with no intention of paying. A credit card issuer 
keeps track of customers who do not pay and does not give them credit in the future 
or charges them much higher for their outstanding debt. 

Considering the above features of the new AP, we can further specify the 
problems that need to be solved from a technical point of view: 

1. How to discover a new supplicant and tell this device’s traffic from other 
traffic? 

2. When and how to trigger a new authentication process? 

3. How to distinguish authentication messages from other traffic? 

4. How to relay the authentication packets between the supplicant and the 
authentication server? 

5. How to define the limited time period before requiring authentication? 

6. What is the risk of allowing traffic before successful authentication and how 
to mitigate this risk? 

Keeping in mind the above technical problems, this thesis demonstrates a feasible 
way to seamlessly perform Wi-Fi roaming, while limiting the traffic of 
unauthenitcated devices. We assume that these limitations are enforced by a traffic 
shaper for business or policy reasons. 

1.3 Limitations 
This thesis project seeks to design an architecture for a non-binary wireless access 

authentication mechanism, to analyze potential technical barriers, and to propose 
solutions. 

For the purpose of this thesis, the authenticator is only concerned with controlling 
the ability of a supplicant to access a network – potentially limiting this supplicant to 
a specific maximum bandwidth. Therefore, the thesis will explicitly consider the case 
of a WLAN supplicant associating with a WLAN access point. Additionally, the 
thesis assumes that a RADIUS server will be used as the authentication server. 

These limitations should not be overly constraining – thus changing to a 
DIAMETER [47] or other authentication server should not require significant 
changes, but such changes are explicitly outside the scope of this thesis. Similarly 
applying this new authenticator to the case of an authenticator for a port controlled 
Ethernet switch should also not require a major effort, but also lies outside the scope 
of this thesis. 



Introduction 

5 
 

1.4 Organization of this thesis 
Chapter Error! Reference source not found.will provide the background for 

both the hardware and software that will be necessary for understanding the rest of the 
thesis. Chapter 2 will also lay the foundation for the system architecture and give the 
design reason of the proposed solution, why we choose a specific hardware / software 
solution, how the non-binary authentication should be performed, and what further 
modifications should be made. Chapter 3 presents the proposed design. Chapter 4 
4describes the evaluation of a prototype of the proposed solution. This is followed by 
a chapter that gives some conclusions and suggests future work. The appendixes 
contain the relevant source code used in Chapter 3. 
 





Background 

7 
 

2 Background 
This chapter provides the reader with the background information necessary to 

understand the rest of the thesis. It begins by introducing the relevant IEEE standards. 
The RADIUS authentication, authorization, and accounting protocol will also be 
introduced and the message sequences required for a device to authenticate itself and 
receive authorization from a wireless local area network (WLAN) access point (AP) 
will be described in detail. Following this the hostapd module and the LINUX 
network filtering mechanisms will be described. This module and these filtering 
mechanisms will later be used as the basis for the solution proposed by this thesis to 
implement non-binary authentication. 

2.1 IEEE 802.11 and 802.1X standards 
The IEEE 802 family of standards deal with Local Area Network (LAN) and 

metropolitan area network communications, including the Ethernet family, token ring, 
wireless LANs (WLANs), wireless personal area networks, wireless metropolitan area 
network, bridging, and virtual bridged LANs[29]. These standards concern the data 
link layer and physical layer. Among these standards, those for WLAN were 
developed by the IEEE 802.11 working group. 

The first WLAN standard (referred to as a base standard) IEEE 802.11 was 
ratified in 1997. It defined the physical layer (abbreviated PHY), the data link layer 
protocol, and frame format for WLAN. Many amendments came afterwards, aiming 
at higher data rates or enhanced security mechanisms. IEEE 802.11a [30] works in the 
5 GHz band and offers data rates of up to 54 million bits per second (Mbps). IEEE 
802.11b [31] works in 2.4 GHz band and offers data rates of up to 11 Mbps. As IEEE 
802.11a and IEEE 802.11b use different portions of the radio spectrum, they are not 
compatible. Thus a new standard 802.11g [32] was defined with the high data rates of 
IEEE 802.11a, but backward compatibility with 802.11b and operating in the same 
frequency band as IEEE 802.11b. In order to merge these amendments (802.11a, b, d, 
e, g, h, i, j) with the base standard, IEEE 802.11-2007 [5] was approved on March 8, 
2007. The most recent amendment is IEEE 802.11n published in October 2009, which 
adds multiple-input multiple-output (MIMO) and some other new features. Error! 
Reference source not found. shows the IEEE 802.11 protocol stack. 

  Upper 
layers 

 
Logical Link Control 

Data 
link 
layer 

MAC 
sublayer 

       

 802.11 
Infrared 

802.11 
FHSS 

802.11 
DSSS 

802.11a 
OFDM 

802.11b 
HRDSSS 

802.11g 
OFDM 

Physical 
layer 

Figure 2-1. IEEE 802.11 Protocol Stack 



Background 

8 
 

 

For security, IEEE 802.11 defined Wired Equivalent Privacy (WEP). 
Unfortunately, this scheme turned out to be vulnerable to malicious tampering with 
messages and to replay attacks [11, 12, 23, 24]. Thus 802.1X was proposed for 
stronger security. 

We assume that our mobile devices communicate according to the IEEE 802.11 
standard. When the device enters a cell in a new domain it will perform conditional 
authentication following IEEE 802.1X. To understand the details of the handover 
procedure (for a device to change from using one cell to access the network to using 
another cell to access the network) it is important for us to be familiar with the details 
of these two protocols. 

2.1.1 IEEE 802.11 Concepts 
IEEE 802.11 [18] was defined to be a “wireless Ethernet”2. The standard refers to 

wireless stations (STAs) as the devices that utilize a IEEE 802.11 interface to 
communicate. The standard defines two modes of communication: a infrastructure 
mode and an ad hoc mode. In infrastructure mode each STA communicates via an 
access point (AP). Multiple APs can be connected into a LAN and interconnected 
with other networks. In ad hoc mode the STAs communicate directly between 
themselves. In all cases each IEEE 802.11 device competes for access to the media 
using a media access control (MAC) protocol. As we are only concerned with 
infrastructure mode, we will not consider ad hoc mode further. 

We focus on APs that have an IEEE 802.11 interface and an IEEE 802.3 interface. These 
APs act as a bridge when forwarding packets from one interface to the other. The LAN 
interface receives and transmits IEEE 802.3 frames, while the wireless interface receives and 
transmits IEEE 802.11 frames. All protocols and data from higher layers are carried within 
the frame’s body. In order to understand the details of the non-binary authentication we have 
to consider the interworking between these two kinds of frames in order to support the IEEE 
802.1X authentication process. 

Table 2-1 shows three different types of MAC frames in IEEE 802.11. Data frames are 
used for data transmission (i.e., sending traffic for higher layer protocols). Control frames are 
used for media access control. Management frames transmit management information, but are 
not forwarded to upper layers. Figure 2-2 shows the 802.11 frame format. As can be seen, the 
802.11 frame format is more complicated than the IEEE 802.3 frame format. 

Table 2-1. Types of IEEE 802.11 MAC Frames 

Control Frame RTS, CTS, ACK 
Data Frame  
Management Frame Beacon 

Probe Request, Probe Response 
Assoc Request, Assoc Response 
Reassoc Request, Reassoc Response 
Disassociation 
Authentication 
Deauthentication 
Announcement traffic indication frame 

 

                                                        
 
2 Ethernet is a wired LAN physical and MAC layer specification that was the precusor to IEEE 802.3. 



Background 

9 
 

 

 
 

Considering the various fields shown in Figure 2-2 in a top to bottom order: 

Preamble is PHY dependent, and includes to sub-fields: Synch and SFD. Synch 
is 80-bit long and is used by the PHY circuitry to select the appropriate antenna (if 
diversity is used), for steady-state frequency offset correction, and synchronization 
with the received packet. The Start Frame Delimiter (SFD) consists of a 16-bit binary 
pattern 0000 1100 1011 1101 which indicates the start of the PLCP header [34]. 

PLCP header is always transmitted at 1 Mbit/s and contains information used by 
the PHY layer to decode the frame. It consists of PLCP_PDU Length Word, PLCP 
Signaling Field, and a Header Error Check Field. PLCP_PDU Length Word 
indicates the number of bytes in the frame. The PLCP Signaling Field indicates the 
supported date rate, encoded in 0.5 MBps increments from 1 Mbit/s to 54 Mbit/s. The 
Header Error Check Field is a 16 Bit CRC error detection field [34]. 

Considering the MAC layer protocol data unit (PDU), the first field in the header 
is the frame control field. It consists of two bytes. The first two bits indicate the 
Protocol Version with a value of 00. Type and Subtype fields work together to 
specify the frame type. Table 2-2 shows the meaning on the various 6 bit 
combinations of Type and Subtype. 

Figure 2-2. IEEE 802.11 Frame Format [19] 

Preamble PLCP header MAC PDU 

Header 
30 bytes 

Payload 
0-2312 bytes 

CRC32 
4 bytes 

Frame control 
2 bytes 

Duration 
2 bytes 

Addr 1 
6 bytes 

Addr 2 
6 bytes 

Addr 3 
6 bytes 

Seq Ctrl 
2 bytes 

Addr 4 
6 bytes 

Protocol Ver 
2 bits 

Type 
2 bits 

Subtype 
4 bits 

ToDS 
1 bit 

FromDS 
1 bit 

More Frag 
1 bit 

Retry 
1 bit 

PwrMg 
1 bit 

MoreData 
1 bit 

WEP 
1 bit 

Order 
1 bit 



Background 

10 
 

 
Table 2-2. Type and Subtype of Frame Control [34] 

Type Value 
b3 b2 Type Description

Subtype Value 
b7 b6 b5 b4 Subtype Description

00 Management 0000 Association Request 
00 Management 0001 Association Response 
00 Management 0010 Reassociation Request 
00 Management 0011 Reassociation Response 
00 Management 0100 Probe Request 
00 Management 0101 Probe Response 
00 Management 0110 - 0111 Reserved 
00 Management 1000 Beacon 
00 Management 1001 ATIM 
00 Management 1010 Disassociation 
00 Management 1011 Authentication 
00 Management 1100 Deauthentication 
00 Management 1101..1111 Reserved 
01 Control 0000..1001 Reserved 
01 Control 1010 PS-Poll 
01 Control 1011 RTS 
01 Control 1100 CTS 
01 Control 1101 ACK 
01 Control 1110 CF End 
01 Control 1111 CF End + CF-ACK 
10 Data 0000 Data 
10 Data 0001 Data + CF-Ack 
10 Data 0010 Data + CF-Poll 
10 Data 0011 Data + CF-Ack +CF-Poll 
10 Data 0100 Null Function (no data) 
10 Data 0101 CF-Ack (no data) 
10 Data 0110 CF-Poll (no data) 
10 Data 0111 CF-Ack + CF-Poll (no data) 
10 Data 1000..1111 Reserved 
11 Reserved 0000..1111 Reserved 

ToDS is set to 1 if the frame is addressed to the AP for forwarding to the 
distribution system (DS), including the case when the destination station is in the 
same cell, i.e., within the Basic service set (BSS), but is not the AP itself. The bit is 
set to 0 in all other frames. FromDS is set to 1 when the frame is coming from the 
DS. Table 2-3 illustrates the 4 possible combinations of ToDS and FromDS with their 
corresponding meaning. 

Table 2-3. ToDS and FromDS 

ToDS FromDS Meaning 
0 0 Data transmitted between two stations within the same BSS 
1 0 Data sent to DS 
0 1 Data received from DS 

1 1 Wireless distribution system frame sent from one AP to other 
AP 



Background 

11 
 

More (Fragments) Flag is set to 1 when there are additional fragments belonging 
to the same frame following the current fragment. Retry is set to 1 indicating that this 
fragment is a retransmission of a previously fragment in order for the receiver to 
recognize duplicate transmissions that may occur when an acknowledgement packet is 
lost. Power Management indicates the Power Management mode that the station will 
be in after the transmission of this frame. This is used when the station changes from 
Power-Save to Active or vice versa; 1 means the station will operate in power-save 
mode and 0 means active. All frames from an AP have a power management value 
equal to 0; as the AP will remain active at all times. More Data is used by the AP to 
notify a STA which is operating in power-save mode that there are more frames 
buffered for transmission to this station. Given this information a STA may continue 
polling the AP for these buffered packets or the STA may to change to active mode. 
The WEP flag indicates if the frame body was encrypted by the WEP algorithm. 
Order indicates if this frame is being sent using the Strictly-Ordered service class. 
The Strictly-Ordered Service Class is defined for users that cannot accept a change of 
ordering between unicast frames and multicast frames (ordering of unicast frames to a 
specific address is always maintained) [34]. 

Following the Frame Control field is the Duration / ID field. This field can serve 
as an association identifier (AID) in Power-Save Poll messages for a station operating 
in power save to retrieve frames that are buffered for it at the AP. In all other frames, 
this field contains a duration value to update the Network Allocation Vector (NAV). 
Table 2-4 explains the meaning on bit of the 2 bytes long Duration / ID. 

When bit 15 is zero, bits 14-0 represent the remaining duration of a frame 
exchange sequence after the frame in which the duration value is found. This value is 
used to upgrade the NAVs of other stations, preventing a station receiving this field 
from beginning a transmission that might cause corruption of the ongoing frame 
exchange sequence [35]. During a contention-free period (CFP) Duration / ID’s value 
is set to 32768. In PS-Poll frames AID is a 16-bit field that contains an arbitrary 
number assigned to the station by the AP when it associates with a BSS. The numeric 
value in the least significant 11 bits (bits 0..10) are used by the mobile station to 
identify which bit in a traffic indication map [36] information element indicates that 
the access point has frames buffered for the mobile station [35]. 

Table 2-4. Duration / ID [35] 

Bit 15 Bit 14 Bits 13-0 Usage 
0 0..32767 Duration (after this frame, calculated in µs) 
1 0 0 Fixed value (32768) during CFP 
1 0 1..16383 Reserved 
1 1 0 Reserved 
1 1 0..2007 AID in PS-Poll frames 
1 1 2008..16383 Reserved 

In Address Fields, a frame may contain up to 4 Addresses depending on the ToDS 
and FromDS bits defined in the Control Field. The four possibilities are shown in 
Table 2-3. 



Background 

12 
 

Table 2-5. Meaning of Addresses According to To / FromDS [34] 

To DS From DS Address1 Address 2 Address3 Address 4 
0 0 DA SA BSSID N/A 
0 1 DA BSSID SA N/A 
1 0 BSSID SA DA N/A 
1 1 RA TA DA SA 

 

Address-1 is the Recipient Address. If ToDS is set, then this is the address of the 
AP; if ToDS is not set, then this is the address of the end-station. 

Address-2 is the Transmitter Address. If FromDS is set, then this is the address of 
the AP; if it is not set, then it is the address of the Station. 

Address-3 is in most cases the remaining, missing address. If FromDS is set to 1, 
then this is the original source Address; if ToDS is set, then this is the destination 
address. 

Address-4 is used in the special case where a wireless wistribution system is used, 
and the frame is being transmitted from one AP to another, in this case both the ToDS 
and FromDS bits are set, so both the original destination and the original source 
Addresses are missing. 

The Sequence Control field, located between Address-3 and Address-4, is used to 
indicate the order of different fragments belonging to the same frame, and to 
recognize duplicate packets. It consists of two subfields: Fragment Number and 
Sequence Number, which indicate the frame and the number of the fragment in the 
frame. 

The last part of the MAC PDU, following the payload, is CRC. This contains a 
32-bit field used as a Cyclic Redundancy Check. 

Error! Reference source not found. shows the sample payload of Probe Request 
and Probe Response. 

 
A supplicant connecting to an AP needs to perform the following procedures: 

1. Scanning 

There are two types of scanning: active and passive. In active scanning, the 
STA sends a Probe Reqest, and AP replies with Probe Resp.onse. In passive 

Figure 2-3: Payloads of Probe Request and Response [19] 

Probe Request Payload 

SSID Supported Rates Extended Supported Rates 

Probe Response Payload 

Time 
stamp 

Beacon 
Interval 

Capability 
Info 

SSID Supported 
Rates 

DS
PS 

ERP 
Info 

Extended Supported 
Rates 



Background 

13 
 

scanning, the STA simply listens to beacon frames. 

2. Association 

Association only occurs in infrastructure mode and is logically equivalent to 
connecting to a wired network. 

3. Authentication 

There are three types of authentication methods: open, shared-key, and IEEE 
802.1X. In the open authentication method the STA and AP exchange an 
authentication frame. The shared-key authentication method is based on 
WEP. The STA sends an authentication frame, then the AP replies with a 
challenge in clear text, to which the STA replies with an encrypted challenge. 
The AP decrypts this challenge text and matches it with the original clear 
text. If they match, then the AP will send an authentication frame with a 
status code of success. The third authentication method is 802.1X, which is 
used in Wi-Fi Protected Access (WPA). Figure 2-4 shows the handshaking 
progress for WLAN authentication. 

 
 

Figure 2-4. IEEE 802.11 handshake between AP and STA [19] 

Probe Req 

STA AP 

Probe Resp 

Ack 

Auth 

Ack 

Auth 

Ack 

Assoc Req 

Ack 

Assoc Resp 

Ack 

Data 

Ack 



Background 

14 
 

2.1.2 IEEE 802.11i 
The initial IEEE 802.11 standard defined WEP to protect wireless networks. WEP 

uses RC4 with 40-bit keys, a 24-bit initialization vector (IV), and CRC32 to protect 
against packet forgery [19]. All these choices proved to be insufficient: the key space 
is too small to protect against attacks, RC4 key scheduling is insufficient, the IV space 
is too small and IV reuse makes attacks easier, there is no replay protection, and 
non-keyed authentication does not protect against bit flipping packet data. [23, 24, 25] 

Because the security framework of IEEE 802.11 proved to be insecure, Task 
group I (Security) of the IEEE 802.11 working group [21] worked to address the 
flaws. The result was the IEEE 802.11i amendment to the IEEE 802.11 standard. This 
amendment was approved in June 2004 and published in July 2004. 

Wi-Fi Alliance [22] adopted the 3.0 draft version of IEEE 802.11i in order to 
quickly establish a subset of the proposed security improvements. This subset is 
called Wi-Fi Protected Access (WPA). WPA capability is a mandatorily requirement 
for the interoperability testing and certification done by the Wi-Fi Alliance. WPA 
uses the Temporal Key Integrity Protocol (TKIP) to replace WEP. TKIP was selected 
as a compromise between strong security and the requirement by many vendors to be 
usable on existing hardware [19]. WPA uses RC4 for encryption, but with per-packet 
RC4 keys. Moreover, it adds replay protection and keyed packet authentication 
mechanism, based upon a message integrity check. 

In WPA keys can be managed in two different manners: using pre-shared keys 
(called ‘WPA-Personal’) or by using an external authentication server (e.g., RADIUS) 
and the Extensible Authentication Protocol (EAP). The latter method, called 
WPA-Enterprise, is used by IEEE 802.1X. The purpose of both methods are the same: 
to generate a master session key for the AP and supplicant. 

WPA uses a 4-Way Handshake and a Group Key Handshake to generate and 
exchange encryption keys between the authenticator and supplicant, for unicast and 
multicast traffic respectively. Both handshakes verify that both the authenticator and 
the supplicant know the master session key. These handshakes are independent of the 
selected key management mechanism, thus they is only one method for generating 
master session key changes [19]. 

After the final version of IEEE 802.11i was adopted, the Wi-Fi Alliance 
introduced a new version of WPA called WPA2. 802.1X serves primarily in this new 
standard. The 802.1X-2001[26] is called "Port-based network access control protocol”, 
because it makes use of point-to-point connection characteristics of IEEE 802 LAN, 
in which context the supplicant has a single point of attachment to the LAN 
infrastructure. By enforcing authenticating and authorizing over that port, it can 
prevent access from illegitimate users. 

2.1.3 EAP 
The Extensible Authentication Protocol (EAP)[53] is briefly reviewed before 

introducing 802.1X details in the next subsection. 

The point-to-point protocol (PPP) was widely used for dial-up Internet access. 
PPP performs authentication at Layer 2 before establishing any network layer. PPP’s 
authentication methods, such as PAP and CHAP, had many limitations in terms of 
flexibility and security. Because most corporate networks want better access security 



Background 

15 
 

than offered by a simple username and password scheme, EAP was designed. EAP 
provides a generalized framework for various authentication methods by establishing 
a tunnel between the user and the authentication server. In the case of PPP, EAP 
operates inside PPP’s authentication protocol. EAP was introducted to avoid 
proprietary authentication systems and enables authentication schemes ranging from 
passwords to challenge-response tokens and public key infrastructure certificates. 
Some popular EAP authentication mechanisms are listed in Table 2-6. 

Table 2-6. EAP Types (adapted from [27] ) 

 
Server 

Authentication 
Supplicant 

Authentication

Dynamic 
key 

delivery Risks 

EAP-MD5 None Password hash No Man-in-the-middle 
attacks (MITM), 
session hijacking 

LEAP Password hash Password hash No Identity exposed, 
directory attack 

EAP-TLS Public key 
(Certificate) 

Public Key 
(either a 

certificate or a 
smart card) 

Yes Identity exposed 

EAP-TTLS Public key 
(Certificate) 

CHAP, PAP, 
MS-CHAP 
(v2), EAP 

Yes MITM 

PEAP Public key 
(Certificate) 

Any EAP Yes MITM; the 
identity is hidden 

in pahse2, but 
potentially 

exposed in phase 1

EAP is a very simple protocol with two message frames (Request or Response), 
four message types (request, response, success, and failure), and an extensible 
choreography. Figure 2-5 shows the EAP frame format. The Code field is one byte 
long and encodes the message type: (1) Request, (2) Response, (3) Success, and (4) 
Failure. The one byte identifier field is used to match requires and responses. The 16 
bit length field indicates the total length of the EAP packet, and the data portion is a 
function of the method. 



Background 

16 
 

 

Byte offset 0 1 2 4 

Code Identifier Length Data 

Figure 2-5. EAP Frame Format 

EAP defines an EAP configuration negotiation packet. In this packet the data field 
contains a one byte Type field with the value 3, a Length field with a value of 4, and a 
two byte Authentication Protocol field with the value 0xC227[28]. 

EAP request and response packets (with Code values of 1 and 2 respectively), 
have a data field that contains a one byte Type field and data. The length of the data 
depends upon the value in the Type field. The EAP packet type values are assigned by 
the Internet Assigned Numbers Authority (IANA). Success and failure packets are a 
fixed 4 bytes long (hence their length field contains the value 4). 

Figure 2-6 shows the EAP message exchange, which is similar to the IEEE 
802.1X message exchange due to the fact that EAP is the basis for the IEEE 802.1X 
protocol. EAP starts after the supplicant has data and link layer connectivity (Step 0 in 
the figure), The link layer association process is covered in Section 2.2 Roaming. It is 
not specified who should start EAP first. Either the authenticator immediately detects 
the newly associated supplicant and sends out EAP-Request, or the client sends an 
EAPOL-Start message to the AP at first. In a word, EAPOL-Start is optional (as 
shown in the figure). It is important to note that there is no “EAP-start” packet in EAP. 
802.1X does have an EAPOL-Start pakcet which is sent from the supplicant while 
RADIUS also has an EAP-Start message which is sent from the RADIUS client [4]. 
One thing we need to do is to take EAP messages out of the 802.11 frames and 
repackage them into Radius frames, vice versa. 



Background 

17 
 

 

2.1.4 IEEE 802.1X Authentication on Wireless LANs 
As mentioned in the last section, EAP contains an extensible choreography, which 

facilitates further RFCs defining EAP over various authentication processes, such as 
EAP-over-LDAP, EAP-SIM, EAP-over-GPRS, and EAP-over-802 (also know as 
EAP over LAN). Note that EAP-over-802 is the IEEE 802.1X specification. IEEE 
802.1X describes port-based access models, while EAP adds the authentication 
mechanisms [28]. 

IEEE 802.1X defines a context (in terms of a port and supplicant), state machines, 
and the EAP over LAN (EAPOL) protocol. Details of them are given below. Actually, 
IEEE 802.1X simply passes EAP over a wired or wireless LAN and defines an 
association between a station and an access point. The association acts as a logical 
port for the purpose of interpreting the IEEE 802.1X standard. WLAN cards (or their 
software drivers) are supposed to support the IEEE 802.1X state engine, which 
requires that the IEEE 802.11 association must complete before the IEEE 802.1X 
negotiation begins. Since the IEEE 802.1X state machine requires an active link, 
successful exchange of Association Request and Association Response frames is 
reported to the IEEE 802.1X state machine as the link layer becomes active. The 
reason we call IEEE 802.1X a binary authentication is because the AP must drop all 

Figure 2-6. EAP Message Exchange Framework [28] 

Supplicant Authenticator Authentication 
 Server 

0 Establish Data Link 

1 Identity Request 

1-a Identity Response 

2 

2-a 

EAP over RADIUS 
Multiple Message Sequences Depending 
on the Authentication Process 

Success? 

Yes 

No 

3 

Success Message 

Failure Message 

                                                  Optional 

                                                  Authentication Process-Specific Message Exchange 



Background 

18 
 

non-802.1X traffic to and from the port (STA) prior to its successful IEEE 802.1X 
authentication. Once the authentication succeeds, the AP allows traffic to flow 
normally. Figure 2-7 shows the elements in IEEE 802.1X, specifically the STA, AP, 
AAA server (in this case a RADIUS server), port; and the protocols EAP, EAPOL, 
and RADIUS. Error! Reference source not found. shows 802.1X message 
exchanging process. 

Figure 2-7. Elements in 802.1X (Adapted from [19] )

 
 

A supplicant (running on a STA), who wishes to access the WLAN’s service, is 
responsible for replying to any authentication requests from the authenticator in order 
to establish its identity. 

A port is a physical attachment point where the supplicant connects to the LAN. In 
the case of a wired network this is frequently a multiport switch or in the case of a 
wireless LAN it is an AP. In an IEEE 802.11 WLAN, the authenticator manages two 
distinct logical ports connected to the wireless interface: one is a “controlled port” and 
the other is an “uncontrolled port”. When a frame is received by the wireless interface 
the bridging mechanism inside the AP will either forward the frame to the controlled 
port or the uncontrolled port. This forwarding is controlled by the authenticator. When 
a new STA first appears its frames are automatically forward to a controlled port – 
which delivers the frames to the authenticator. This traffic will cause the authenticator 
to challenge the supplicant and forward authentication messages from the supplicant 

Figure 2-8. IEEE 802.1X Message Exchange Framework [37] 

Supplicant Authenticator Authentication 
 Server 

EAPOL-Start 

EAP-Request: Identity 

EAP-Response: Identity 

EAP-Response: Challenge answer 

Accept / Reject EAP-Success / Failure 

                                                  Optional 

(forwarding) 

(forwarding) EAP-Request: Challenge 

(forwarding) 

EAPOL-Logoff 
                Optional if port authorized 

RADIUSEAPOLSTA AP RADIUS server 

Authentication 
server Supplicant Authenticator



Background 

19 
 

to the authentication server. As mentioned above, the authenticator’s behavior is 
independent of the authentication method. The authenticator needs little memory and 
processing power, as most of the processing is done at the supplicant and 
authentication server. 

IEEE 802.1X uses EAP to carry authentication messages between the supplicant 
and the authentication server. However, EAP was primarily developed for dial-up 
connections, thus there is no link layer protocol to carry EAP in an IEEE 802 LAN. 
That is why EAPOL was defined. In fact, EAPOL was originally defined for IEEE 
802.3 / Ethernet and Token Ring / FDDI links. Since IEEE 802.11 WLAN has the 
same basic frame format as IEEE 802.3, EAPOL encapsulation can be handled 
directly by a LAN MAC service. Figure 2-9 shows the EAPOL MAC Protocol Data 
Unit (MPDU) for Ethernet. 

Byte 
0 

1 2 3 4 5 6 7 8 9  

EAPOL Packet 

Ethernet 
Type 

Protocol 
version 

EAPOL 
Code 

Packet 
Body 

Length 

EAP 
Code

ID Length 
(Total 

length of 
packet) 

Data 

2 bytes 1 byte 1 byte 2 bytes 1 
byte 

1 
byte 

2 bytes  

0x88 ..0x8E 2    EAP packet 
Figure 2-9. EAP in EAPOL MPDU for Ethernet (Adapted from [28]) 

As stated in section 2.1.3 on page 14, the EAP Code is one byte long and encodes 
the message type: (1) Request, (2) Response, (3) Success, and (4) Failure. The 
EAPOL Code values are: (1) EAP-Packet, (2) EAPOL-Start, (3) EAPOL-Logoff, (4) 
EAPOL-Key, (5) EAPOL-Encapsulated-ASF-Alert, (6..255) reserved. The 
EAPOL-Key message can be used to distribute or obtain global key information to / 
from attached stations, following successful authentication [38]. 

2.1.5 RADIUS 
A Remote Authentication Dial In User Service (RADIUS) server stores 

information about subscribers (the authorized users of a service) in a database, 
authenticates them, and provides optional services, such as dynamic virtual LAN 
(VLAN) assignment and accounting. In our case, the AP acts as RADIUS client and it 
contacts the authentication server to learn if it should provide services to a supplicant. 

The RADIUS protocol can be used to provide authentication, authorization, and 
accounting (AAA). These services give network administrators an easy way to (1) 
identify (authenticate) remote users and control which users can access the network; 
(2) define what each user can do by controlling access to network resources 
(authorization); and (3) keep track of what resources each user consumes in order to 
bill them for services (accounting) [39]. 

 



Background 

20 
 

RADIUS operates at the application layer in the TCP/IP protocol suite. The 
RADIUS protocol defines how to exchange information between a RADIUS client 
and a RADIUS server [16]. RADIUS uses UDP to transport its messages, using UDP 
port 1812 for RADIUS authentication messages and port 1813 for RADIUS 
accounting messages. Figure 2-10 shows the RADIUS message format. 

 
0 7 15 31

Code Identifier Length 

Authenticator 

Type Length  
Attribute 

Figure 2-10. Radius Frame Format (Adapted from [9]) 

The Code field is 8 bits long. This field contains one of the following codes: 
(1) Access-Request; (2) Access-Access; (3) Access-Reject; (4) Accounting-Request; 
(5) Accounting-Response; (11) Access-Challenge; (12) Status-Server; 
(13) Status-Client; and (255) Reserved. 

The Identifier field is 1 byte long. The Identifier value is used to match a request 
with its corresponding response. The value in a response is equal to the value in 
request. The identifier value is unchanged in the case of a retransmission [41]. 

The Length field is 2 bytes long and indicates the entire packet length. 

The Authenticator field is sixteen bytes in length and contains the information that 
the RADIUS client and server use to authenticate each other. There are two kinds of 
authenticators: Request and Response [41]. For a Request the Authenticator value is 
randomly generated. A Reply is a MD5 digest of the reply message appended with the 
secret. For details of the RADIUS protocol see [54]. 

One or more RADIUS attributes are contained in the Attributes section, which 
carry specific authentication, authorization, and configuration details. Attribute Type 
denotes the type of the attribute. The attribute’s name is not passed in the packet – just 
a number. Attribute Length indicates the length of the attribute field, which must be 
three or greater. Attribute Value contains the value of the attribute itself. This field is 
required for each attribute presented, even if the value itself is null [43, section 2.5]. 
Figure 2-11 shows the standard attribute-value pair (AVP) pattern. Table 2-7 shows 
the RADIUS Attribute Types. 

Type 

1..255 

Length 

> 3 

Value 

Figure 2-11. RADIUS Attribute value pair format (Adapted from section 2.5 of [43]) 



Background 

21 
 

 

Table 2-7. RADIUS attributes and their corresponding type number [3] 

Type Attribute Type Attribute 

1 User-Name 2 User-Password 

3 CHAP-Password 4 NAS-IP-Address 

5 NAS-Port 6 Service-Type 

7 Framed-Protocol 8 Framed-IP-Address 

9 Framed-IP-Netmask 10 Framed-Routing 

11 Filter-ID 12 Framed-MTU 

13 Framed-Compression 14 Login-IP-Host 

15 Login-Service 16 Login-TCP-Port 

17 (unassigned) 18 Reply-Message 

19 Callback-Number 20 Callback-ID 

21 (unassigned) 22 Framed-Route 

23 Framed-IPX-Network 24 State 

25 Class 26 Vendor-Specific 

27 Session-Timeout 28 Idle-Timeout 

29 Termination-Action 30 Called-Station-ID 

31 Calling-Station-ID 32 NAS-Identifier 

33 Proxy-State 34 Login-LAT-Service 

35 Login-LAT-Node 36 Login-LAT-Group 

37 Framed-Apple Talk-Link 38 Framed-Apple 
Talk-Network 

39 Framed-Apple Talk-Zone 40..59 (reserved for accounting) 

60 CHAP-Challenge 61 NAS-Port-Type 

62 Port-Limit 63 Login-LAT-Port 



Background 

22 
 

2.2 Roaming 
Roaming extends connectivity for a subscriber to a network that is different from 

the home network [17]. The term originated in GSM, but here we will only be 
concerned roaming in the contents of a WLAN handover between two different 
authentication domains. There are two requirements for roaming, one is successful 
authentication and authorization of a subscriber (and in the background accounting for 
this visiting subscriber’s resource usage so that their home network operator can be 
billed) and the other to minimize the period of time when the user has no connectivity 
due to the handover and AAA delays. 

Since the original design of IEEE 802.11 did not consider mobility and security 
between networks, protocols such as IEEE 802.1X, 802.11i, 802.11f, and 802.11e 
were proposed to meet the increasing demand for WLAN mobility and security. Some 
manufacturers and engineers also introduce their own roaming solutions, however 
they suffered from various drawbacks such as being incompatible with existing 
devices, service degradation due to long authentication times, complicated certificate 
management, or highly complex platforms with little flexibility. 

For example, one proposal is to implement Wi-Fi roaming using VPNs with client 
certificates. This assumes that all the APs are in the same VLAN and are connected to 
the outside world through an IPSec gateway. This gateway prevents any 
communication between supplicants and the internet until the supplicant has 
established an authenticated VPN. However, this proposal suffers from unreliable 
certificate management and long authentication times. What is more the requirement 
that “all APs are in the same VLAN” limits the scalabity of roaming. 

A solution proposed by Deutsche Telecom provides an integrated Wi-Fi roaming 
platform (Error! Reference source not found.). Each of the wireless inteternet 
service providers (WISP) allow inbound roaming by opening their hotspots up to 
subscribers from the other operators and allowing easy access (for example with a 
central login page). Each of the internet service providers (ISPs) permit outbound 
roaming to other service providers. This system uses a central hotspot database with a 
single AAA Hub connected to a WiFi Roaming Platform. RADIUS mediation 
eliminates the need to configure a RADIUS interface per roaming partner [44]. This 
roaming solution acts as a pure wholesale positioning partner [44]. It solves 
authentication and accounting problems when roaming between different hotspots or 
service providers. Compared with the VLAN proposal above, this is more scalable (as 
long as you sign a contract to join their platform). However, their proposal does not 
even mention seamless roaming. It simply establishes a monopoly layer in the middle, 
which costs a lot but is neither flexible nor necessary for small to medium size 
operators (who may only have a limited set of converage areas). 



Background 

23 
 

 
 

In order to solve these problems, it is critical to make a clear track of the roaming 
process and analyze how much latency each step contributes. A normal handover 
process based on IEEE 802.11i includes five steps: 

1. Discover the targeted AP. 

2. Associate with this AP. 

3. AAA conversion: Use IEEE 802.1X to negotiate an authentication scheme 
between supplicant and authentication server through the EAP, then carry 
out the authentication. 

4. Link layer security: Provide link layer encryption to protect the traffic 
between the client device and the AP. Since all important applications 
provide end-to-end encryption, we omit consideration of link level 
encryption in this thesis. 

5. ISP selection and QoS: If there are multiple ISPs, the AP has to map traffic to 
a specific ISP and potentially provide QoS guarantees. Details of this lie 
outside the scope of this thesis. 

Handover latency primarily comes from steps 2 and 3. While this thesis focuses on 
minimizing or eliminating delay in step 3, it is import to pay attention to what is going 
on in steps 1 and 2. These two steps have been analyzed in detail in Jon-Olov Vatn’s 
doctoral disseration [20]. He has shown that the delays due to step 1 and step 2 can be 
reduced to a total delay in the order of milliseconds, which is much shorter than the 
several seconds delay due to step 3. Because the delay due to the AAA conversion is 
so long it has a significant impact on many applications, therefore we need to 
markedly reduce this delay – hence reducing this delay is the focus of this thesis 
project. 

Figure 2-12. WiFi Roaming Platform [44] 

Buying of WiFi Minutes 

ICSS WiFi Roaming Platform 

Selling of WiFi Minutes 
Outbound 

Inbound 



Background 

24 
 

2.3 hostapd 
As mentioned in the beginning, we will leverage existing access points by 

upgrading their software. HostAP [49] is an open source Linux driver for WLAN, 
which enables a computer running Linux to act as an access point. It supports normal 
station operations in BSS and IBSS. It supports the IEEE 802.11 functions: 
authentication and deauthentication, association and disassociation, reassociation, data 
transmission, and power saving (PS) mode signaling and frame buffering for PS 
stations. The driver also implements the basic functionality needed to initialize and 
configure Prism2-based cards, to send and receive frames, and to gather statistics. The 
time critical tasks such as beacon sending and frame acknowledgments are taken care 
of by the firmware of Prism2 chipset [49]. 

On top of this driver is a user space daemon – hostapd. This daemon implements 
IEEE 802.11 access point management (authentication / association), an IEEE 
802.1X/WPA/WPA2 Authenticator, integrated EAP server, RADIUS client, and 
RADIUS authentication server [50]. Error! Reference source not found. shows the 
hostapd modules. Using a combination of Host AP driver and hostapd daemon we can 
support the following features: IEEE 802.1X and dynamic WEP rekeying, RADIUS 
Accounting, RADIUS-based ACL for IEEE 802.11 authentication, minimal IAPP 
(IEEE 802.11f), WPA, and IEEE 802.11i/RSN/WPA2 [49]. 

With regard to the previous section the firmware and Host AP implement step 1 
and step 2; while hostapd implements the functions that an AP needs for step 3: 
standard IEEE 802.1X framework, EAPOL support, multiple user authentication, and 
data privacy with strong encryption. As we focus on step 3, we will not examine the 
firmware or how Host AP operates as a WLAN driver. Additionally, we do not care 
about the exact authentication method used in EAP. As indicated earlier this is 
primarily a matter between the supplicant and authentication server. Considering the 
basic AAA conversion, there are three primary elements: (1) a sender and receiver of 
EAPOL on AP’s wireless side; (2) a RADIUS client on AP’s LAN side; and (3) a set 
of state machines cooperating with each other to fulfill the logic of IEEE 802.1X. The 
solution proposed in Chapter 2will implement these three elements based upon the 
hostapd module. 



Background 

25 
 

 

2.4 Netfilter 
The first problem in our design is how to acquire network packets without 

duplicating the logic in the Linux kernel. Fortunately the netfilter [15] subsytem in the 
kernel offers a means of getting packets, while minimizing the code that we need to 
write. 

2.4.1 Netfilter Framework 
Netfilter is a structured subsystem in Linux kernel with the ability to add code that 

will be invoked when packets reach various stages of processing the the Linux 
kernel’s networking code. This functionality has been utilized in the past to implment 
a wide variety of network services, such as packet filtering, network address 

hostapd 

Figure 2-13. hostapd Modules [50] 

GUI frontend hostapd_cli 

hostap madwifi prism54 bsd wired test 

EAP methods 

EAP-TLS 

EAP-PEAP 

EAP-GTC EAP-SIM 

EAP-PSK 

EAP-MSCHAPv2 

EAP-MD5 

EAP-PAX 

EAP-AKA EAP-TTLS 

crypto TLS 

RADIUS 
client 

RADIUS 
accounting 

WPA/WPA2 
state machine 

EAPOL 
state machine 

EAP 
state machine 

RADIUS 
server 

event 
loop 

driver i/f 

driver 
events 

Station table 

802.11 
MLME 

configuration 

EAPOL and pre-auth 
ethertypes from/to kernel 

12_packet 

frontend control 
interface 

ctrl i/f 

kernel network device driver 



Background 

26 
 

translation (NAT), and connection tracking. The netfilter framework is designed to be 
highly flexible and scalable, allowing new features to be either statically built-in or 
dynamically loaded (as loadable modules). Figure 2-14 shows where the netfilter 
resides in the Linux network layer. 

 

 
                                                                kernel 

Application 

BSD socket 

INET 

IP Layer 

Data link

Network 

Network card 

Netfilter

UDPTCP

 
Figure 2-14. netfilter inside Linux kernel 

Although netfilter operations are in the same layer and frequently interact with the 
Linux kernel networking code, netfilter function modules are clearly separated from 
the Linux kernel IP layer. The netfilter framework consists of three parts: 

1. A suit of hooks for each network protocol (5 hooks for IPv4), which can be 
called when packets pass through them. Note that a hook is a function that 
enables other code to request that it be called when the hook is invoked. 

2. In order to represent the above hooks, netfilter defines a two-dimensional 
list_head array: 

struct list_head nf_hooks [NPROTO] [NF_MAX_HOOKS] 
As there are thrity-two protocols supported by Linux, the value of 

NPROTO is 32 (defined in include/linux/socket.h). Each protocol has a 
maximum of NF_MAX_HOOKS hooks (currently 8), but only 5 of them are 
used in the IPv4 code. Each member of the array contains a link to the 
header of a hook for a specific protocol. Therefore, whenever a packet 
passes through the network stack, the kernel checks if there is a hook 
registered for this protocol in this position, if there is, then this element of 
the array contains the address of a function that will be invoked by the hook 
(as a call back) to handle this packet. This packet might be analyzed, 
modified, discarded, or even queued for further processing in user space. 

3.  The user space program processes the queued packets asynchronously. Thus 
the processing of these packets will only occur when the user space program 
is scheduled for execution by the scheduler. The user space program can 
inspect and modify the packet, and can also inject the packet back into the 



Background 

27 
 

kernel through the same hook. Thus it will appear that the processing takes 
place in the kernel – but without the code actually needing to be executed in 
either kernel mode or in kernel address space. This removes many of the 
restrictions that would occur if the code would be part of the kernel (such as 
the ability to do file I/O, invoke other programs, etc.) 

Figure 2-15 displays the work flow of netfilter in IPv4 as well as the location of 
the five hooks. The names of these five hooks and their purpose are listed in Table 2-8. 
 

NF_IP_LOCAL_ NF_IP_LOCAL_O

Route NF_IP_FORWA
RD

NF_IP_POST_ROUTINF_IP_PRE_ROUTI

Route 

 
Figure 2-15. netfilter in IPv4 

Table 2-8: IPv4 hooks 
HOOK Aimed Packet Function 

NF_IP_PRE_ROUTING Before routing decisions, 
just into IP layer 

Source address translation 

NF_IP_LOCAL_IN After routing decisions,  
destined for this host 

Incoming packets filtering 

NF_IP_FORWARD After routing decisions, 
destined for another interface 

transmitting packets filtering 

NF_IP_LOCAL_OUT Sent out by local processes Destination address traslation 
NF_IP_POST_ROUTING All outbound packets Outgoing packets filtering 

 

The NF_IP_PRE_ROUTING hook is invoked when a sk_buff packet is passed to 
the IP stack successfully, that is, after sanity checks. It is called in ip_rcv() in 
net/ipv4/ip_input.c: 

int ip_rcv (struct sk_buff *skb, struct net_device *dev, struct 
packet_type *pt) { 
 … … 
return NF_HOOK (PF_INET, NF_IP_PRE_ROUTING, 
                      skb,skb->dev, NULL, ip_rcv_finish); 
} 

Then the routing table would decide whether this packet is destined for this host. 
If so, before passing it to the upper layer protocols, it has to go through the 
NF_IP_LOCAL_IN hook, which is called in ip_local_deliver() in net/ipv4/ip_input.c: 

 



Background 

28 
 

int ip_local_deliver (struct sk_buff *skb) { 
 … … 
 return NF_HOOK (PF_INET, NF_IP_LOCAL_IN, skb, 
                        skb->dev, NULL, 
                        ip_local_deliver_finish); 
} 

Otherwise it would be handled by the NF_IP_FORWARD hook before 
forwarding. This is called in ip_forward() in net/ipv4/ip_input.c: 

int ip_forward (struct sk_buff *skb) { 
 … … 
 return NF_HOOK (PF_INET, NF_IP_FORWARD, skb, skb->dev, 
                     dev2, ip_forward_finish); 
} 

Packets sent by the local host need to pass the NF_IP_LOCAL_OUT HOOK 
before further routing decisions. This is called in ip_build_and_send_pkt() in 
net/ipv4/ip_output.c: 

int ip_build_and_send_pkt (struct sk_buff *skb, struct sock 
*sk, u32 saddr, u32 daddr, 
struct ip_options *opt) { 
 … … 
 return NF_HOOK (PF_INET, NF_IP_LOCAL_OUT, skb, NULL, 
                       rt->u.dst.dev, 
                       output_maybe_reroute); 
} 

The last hook all outbound packets will encounter is the 
NF_IP_POST_ROUTING hook. This is called in ip_finish_output() in 
net/ipv4/ip_output.c: 

__inline__int ip_finish_output (struct sk_buff *skb) { 
 … … 
return NF_HOOK (PF_INET, NF_IP_POST_ROUTING, skb, 
                      NULL, dev, ip_finish_output2); 
} 

All of these hooks already exist in the kernel and are ready for use, as long as at 
least one function is registered as a call back for each hook. Each registered hook 
returns one of the values shown in Table 2-9 as a result. 

Table 2-9: netfilter return codes [12] 
NF_ACCEPT Transmit the packet as usual 
NF_DROP Discard the packet 
NF_STOLEN Taken over, no more transmission 
NF_QUEUE Put the packet into queue, generally for user space 
NF_REPEAT Call this hook function again 
 
 For questions about sk_buff, please refer to sk_buff analysis [8]. For questions 
about socket programming, please refer to manual of PF_PACKET [6] and manual of 
AF_PACKET [7]. 
 



Background 

29 
 

2.4.2 Hook Operation 
One of our key requirements is to do filtering, including redirecting registration 

packets, block unauthorized user packets, transmit authorized user packets, and so 
forth. Thus we need a more powerful filter, which is client specific, rule specific, and 
protocol specific. In order to be client specific, we need access to a AAA server and a 
list of local hosts; to be rule specific, we need a more functional rule table than 
iptable; and to be protocol specific, we need to register our own operations for these 
hooks. Before we can register an operation, we need to define our own nf_hook_ops 
and then call nf_register_hook (). This is done as follows: 

/* include/linux/netfilter.h */ 
struct nf_hook_ops { 
 struct list_head list;          // link list header 
/* user fills in from here down. */ 
nf_hookfn *hook;           // user defined handling function
  
int pf;                    // protocol 
int hooknum;              // hook number 
/* hooks are ordered in ascending priority. */ 
int priority; 
}; 

As mentioned above that netfilter defines a two-dimensional list_head array to 
represent the hooks: 
    struct list_head nf_hooks [NPROTO] [NF_MAX_HOOKS] 

For an operation to attach itself into specific hook, it must know which hook it 
wishes to belong to. This is done by referring to the hook’s properties: list_head list, 
int pf, and int hooknum. There can be many operations in the form of nf_hook_ops 
inserted in the link. The individual hooks are ordered in ascending priority, where the 
smaller number, the higher priority: 

NF_IP_PRI_FIRST = INT_MIN, 
NF_IP_PRI_CONNTRACK = -200, 
NF_IP_PRI_MANGLE = -150, 
NF_IP_PRI_NAT_DST = -100, 
NF_IP_PRI_FILTER = 0, 
NF_IP_PRI_NAT_SRC = 100, 
NF_IP_PRI_LAST = INT_MAX, 

These priorities show that netfilter first deals with connection track 
(CONNTRACK), secondly mangle, thirdly destination address translation 
(NAT_DST), fourthly filter, next source address translation (NAT_SRC), and any 
remaining hooks. At each point, if the operation discards the packet, then the packet is 
immediately discarded and does not flow to the following operations. Otherwise the 
packet continues to the next operation. 

The address of nf_hook_ops serves as a parameter of nf_register_hook(), which 
returns 0. The following code is from “Hacking the Linux Kernel Network 
Stack”[13], which does a simple hook registration that will throw all packets away. 

 

 



Background 

30 
 

/* Sample code to install a Netfilter hook function that will 
drop all incoming packets. */ 
 
#define __KERNEL__ 
#define MODULE 
 
#include <linux/module.h> 
#include <linux/kernel.h> 
#include <linux/netfilter.h> 
#include <linux/netfilter_ipv4.h> 
 
/* This is the structure we shall use to register our function 
*/ 
static struct nf_hook_ops nfho; 
 
/* This is the hook function itself */ 
unsigned int hook_func(unsigned int hooknum, 
                       struct sk_buff **skb, 
                       const struct net_device *in, 
                       const struct net_device *out, 
                       int (*okfn)(struct sk_buff *)) 
{ 
    return NF_DROP;           /* Drop ALL packets */ 
} 
 
/* Initialisation routine */ 
int init_module() 
{ 
    /* Fill in our hook structure */ 
    nfho.hook = hook_func;         /* Handler function */ 
    nfho.hooknum  = NF_IP_PRE_ROUTING; /* First hook for IPv4 
*/ 
    nfho.pf       = PF_INET; 
    nfho.priority = NF_IP_PRI_FIRST;   /* Make our function 
first */ 
  
    nf_register_hook(&nfho); 
     
    return 0; 
} 
 
/* Cleanup routine */ 
void cleanup_module() 
{ 
    nf_unregister_hook(&nfho); 
} 

 

As the above example shows, to define our own filter module, we only need to 
define its initialization routine, which initiates our own nf_hook_ops by specifying its 
properties (hook number, protocol number, and priority), as well as defining its 
handler function. To unregister a filter module is also simple, simply call 
nf_unregister_hook() with the address of the same nf_hook_ops that was used for 
registering the hook. 



Background 

31 
 

Now that the connection between an operation and its hook is clear, let us look 
into how to pass a packet from the hook to its handler function. We will use the hook 
NF_IP_PRE_ROUTING as example. The NF_IP_PRE_ROUTING hook is called in 
ip_rcv() in net/ipv4/ip_input.c: 

int ip_rcv (struct sk_buff *skb, struct net_device *dev, struct 
packet_type *pt) { 
 … … 
 return NF_HOOK (PF_INET, NF_IP_PRE_ROUTING, skb, skb->dev, 
NULL, ip_rcv_finish); 
} 

Here a socket buffer (called skb) is passed to the hook at the head of linked list of 
NF_IP_PRE_ROUTING hooks and it will be passed all the hooks on this list it is 
discarded or finally accepted (this means that it passes to the next stage of processing 
as shown in Figure 2-15). An operation, a nf_hook_ops, takes in the packet (by 
nf_register_hook) and passes it to its corresponding handler fuction nf_hookfn * 
(recall the structure of nf_hook_ops). The prototype for nf_hookfn is given in 
linux/netfilter.h as follows: 

typedef unsigned int nf_hookfn(unsigned int hooknum, 
                          struct sk_buff **skb, 
                          const struct net_device *in, 
                          const struct net_device *out, 
                          int (*okfn)(struct sk_buff *)); 

 

The first argument, hooknum identifies the specific hook. The pointer sk_buff ** 
points to the packet. This is a very complex structure, which will be used frequently in 
the following chapters. A packet typically includes a link layer header (Ethernet or 
RAW), network layer header (IPv4/6, IPX, RAW), and transport layer header (TCP, 
UDP, ICMP, SPX). These headers are organized into the corresponding unions: mac, 
nh, and h (for MAC layer header, network header, and transport header). You must 
be very cautious when referring to header information. Consider a TCP packet as 
example, both the transport header h, and network header nh point to IP header 
structures. h->th is equal to nh->iph. Thus if you want to refer to a TCP packet’s 
header, I suggest doing the following: 

 … 
 /* tcphdr is defined in linux/tcp.h */ 
 struct tcphdr *tcpheader; 
 if (skb->nh.iph->protocol == IPPROTO_TCP) 
  tcpheader = (struct tcphdr *) (skb->data + 
(skb->nh.iph->ihl*4)); 
 … 

The IP header length skb->nh.iph->ihl is 32 bits long, which is 4 chars in length. 
Thus, skb->data + (skb->nh.iph->ihl*4) would skip the complete IP header and would 
point to the TCP header. The following code explains the unions in sk_buff. 



Background 

32 
 

 
struct sk_buff { 
... 
/* Transport Layer header */ 
union { 
struct tcphdr *th; 
... 
unsigned char *raw; 
} h; 
 
/* Network Layer header */ 
union { 
struct iphdr *iph; 
... 
unsigned char *raw; 
} nh; 
.. 
} 

This header structure contains packet header information, while the real data is 
inside skb->h.raw and skb->nh.raw, which are "unsigned char *" pointers. That is 
why it is necessary to explictly coerce the type into our desired type (struct tcphdr *). 

The third argument is of type net_device *in. This is used to describe the packet’s 
incoming interface and type net_device *out describes the packet’s outgoing 
interface. Generally, in is only relevant for NF_IP_PRE_ROUTING and 
NF_IP_LOCAL_IN hooks; while out is only relevant for NF_IP_LOCAL_OUT and 
NF_IP_POST_ROUTING. In the case of ip_rcv only one interface /the incoming 
interface) is passed to the hook function. For example, if we want to block packets 
coming from eth0, we do this filtering in NF_IP_PRE_ROUTING. If we want to 
block packets being send eth1, we do this filtering in NF_IP_POST_ROUTING, 
when the destined interface is known after routing decision is made. Within the hook 
we will look for packets destined to to the net_device *out corresponding to eth1. 
Note that there is no incoming device for local generated packets and there is no 
outgoing device for host destined packets. Please refer to chapters 4 and 5 of 
“Hacking the Linux Kernel Network Stack”[13] to see how the code exactly works. 

2.4.3 Rules Table 
In order to abstract those behaviors carried out by each hook, netfilter defines rule 

tables and each table is described by a structure ipt_table. The most familiar examples 
of table are filter, nat, and mangle, which are the default rule tables in Linux. 
Each table can be divided into several chains and each chain utilizes a specific hook. 
For example, table filter has three chains and they are for NF_IP_LOCAL_IN, 
NF_IP_LOCAL_OUT, and NF_IP_FORWARD. In order to go through the complete 
rule collection on a hook we call the function ipt_do_table(). The relationship 
between netfilter hooks and ipt_table may be confusing, thus the following section 
describes the ipt_table or IPTABLE in more detail. 



Background 

33 
 

2.5 IPTable 
The rules that a Linux user can enter using the iptable command are connected 

to tables in netfilter. We will start our examination of the IPTable by asking three 
questions: 

1. What is the relation between rules, tables, and hooks? 

2. If we are already able to define filtering rules in nf_hook_ops, then why is it 
necessary to build a rule table system on top of these hooks? 

3. Netfilter has its own hook functions that packets would go through. However, 
IPTABLE introduces its own chains, so how do packets actually get 
processed? 

You can refer to Iptables Instruction [2] for common questions and answers. 

2.5.1 The three Default IP Tables 
For the ease of further reference, we put the definition and operations of each of 

these three tables in Table 2-10 and Table 2-11, respectively. 
 

Table 2-10. IPTABLE Definitions 

Table Definition Operation Location 
filter ipt_table packet_filter struct nf_hook_ops ipt_ops[] netfilter/iptable_filter.c 

nat ipt_table nat_table ip_nat_standalone.c netfilter/ip_nat_rule.c 
mangle ipt_table 

packet_mangler 
struct nf_hook_ops ipt_ops[] netfilter/iptable_mangle.c

 
Table 2-11. IPTABLE Operations 

table Hook Operation 

filter 

NF_IP_LOCAL_IN ipt_hook() calls ipt_do_table() to connect to its INPUT 
chain 

NF_IP_LOCAL_FORWARD ipt_hook() calls ipt_do_table() to connect to its 
FORWARD chain 

NF_IP_LOCAL_OUT ipt_local_out_hook() calls ipt_do_table() to connect to 
its OUTPUT chain 

nat 

NF_IP_PRE_ROUTING struct nf_hook_ops ip_nat_in_ops -> ip_nat_in() calls 
ip_nat_rule_find(); calls ipt_do_table() to connect to its 
PREROUTING chain 

NF_IP_POST_ROUTING struct nf_hook_ops ip_nat_out_ops -> ip_nat_out() calls 
ip_nat_rule_find(); calls ipt_do_table() to connect to its 
POSTROUTING chain 

NF_IP_LOCAL_OUT  

mangle 

NF_IP_PRE_ROUTING ip_route_hook() calls ipt_do_table to coonect to its 
PREROUTING chain 

NF_IP_LOCAL_IN ip_route_hook() calls ipt_do_table to coonect to its 
INPUT chain 

NF_IP_FORWARD ip_route_hook() calls ipt_do_table to coonect to its 
FORWARD chain 

NF_IP_LOCAL_OUT ip_route_hook() calls ipt_do_table to coonect to its 
OUTPUT chain 

NF_IP_POST_ROUTING ip_route_hook() calls ipt_do_table to coonect to its 
POSTROUTING chain 



Background 

34 
 

A table is just a collection of rules that do similar jobs, such as filtering. Rules are 
actually stored in as a structure ipt_entry. In order to locate the relevant rule 
accurately and quickly, all the rules inside a table are put in an array ipt_entry[], 
whose length is dynamic. From a user’s perspective, there is a structure ipt_match to 
describe the rule’s matching conditions and if the rule is matched there is a structure 
ipt_target to invoke the functions necessary to carry out the target. 

2.5.2 Data Structures 
If you want to create a new table, you need to create a structure ipt_table which 

looks like this: 
/* netfilter_ipv4/ip_tables.h */ 
struct ipt_table 
{ 
 /* tables are put in a linked list, here your table is hung 
*/ 
 struct list_head list; 
  
 /* the name must be unique */ 
 char name [IPT_TABLE_MAXNAMELEN]; 
  
 /* prepare table, providing basic infor, replace the old one 
by register_table */ 
struct ipt_replace *table; 
 
/* valid hooks the table will hang on */ 
unsigned int valid_hooks; 
 
/* lock for table operation */ 
rwlock_t lock; 
 
/* indexed pointer for rules, initiated as NULL */ 
struct ipt_table_info *private; 
 
/* self referenced, used for stat */ 
struct module *me; 
} 

 

The structure ipt_table_info is explained below: 
/* include/linux/netfilter_ipv4/ip_tables.h */ 
struct ipt_table_info 
{ 
/* table size */ 
unsigned int size; 
 
/* Number of entries, an entry per rule */ 
unsigned int number; 
 
/* Initial number of entries. Needed for module usage count 
*/ 
unsigned int initial_entries; 
 
/* offset of the first rule for each hook */ 



Background 

35 
 

unsigned int hook_entry[NF_IP_NUMHOOKS]; 
 
/* offset of the last rule for each hook */ 
unsigned int underflow[NF_IP_NUMHOOKS]; 
 
/* ipt_entry tables: one per CPU */ 
char entries[0] ____cacheline_aligned; 
}; 
 

The structure ipt_replace is explained as following: 
/* include/linux/netfilter_ipv4/ip_tables.h */ 
struct ipt_replace 
{ 
  /* table name */ 
  char name[IPT_TABLE_MAXNAMELEN]; 
  
 /* valid hook entry points : bitmask */ 
unsigned int valid_hooks; 
  
/* number of entries */ 
unsigned int num_entries; 
  
/* total size of new entries */ 
unsigned int size; 
  
/* offset of the first rule for each hook */ 
unsigned int hook_entry[NF_IP_NUMHOOKS]; 
  
/* offset of the last rule for each hook */ 
unsigned int underflow[NF_IP_NUMHOOKS]; 
  
/* information about old entries */ 
/* number of counters, a counter per entry */ 
unsigned int num_counters; 
 
/* the old entries' counters. */ 
struct ipt_counters *counters; 
 
/* the table’s entrance */ 
struct ipt_entry entries[0]; 
}; 
 

In the above above see see that the rules are stored in ipt_entry[ ]. All the rules 
belonging to a table are stored in an array. The method “chain” for each available 
hook is actually part of the array. These “chains” are ordered according to their hook 
number sequence. For example, for the table filter, the array starts with INPUT, 
then FORWARD, then OUTPUT, and finally error handling. The head and end rules 
of each chain, or hook, are marked by hook_entry[ ] and underflow[ ]. Now it is time 
when a picture is more worthy than a thousand words. The following code is from 
net/ipv4/netfilter/iptable_filter.c and shows the built-in filter table. Figure 2-16 
illustrates the relationship between the filters and the chains. 



Background 

36 
 

 
static struct ipt_table packet_filter = { 
{NULL,NULL},      // link list 
“filter”,             // name 
&initial_table.repl,    // initial table model 
/* 
 * this is very interesting, valid hooks are defined as 
 * 
(1<<NF_IP6_LOCAL_IN)|(1<<NF_IP6_FORWARD)|(1<<NF_IP6_LOCAL_
OUT) 
*/ 
FILTER_VALID_HOOKS, 
RW_LOCK_UNLOCKED,  // lock 
NULL,                  // empty 
THIS_MODULE 
}; 

 

 
 

Entries in the ip_table give general information, while entries in the ipt_table_info 
concern the chains. For example, the struct ipt_replace contains parameters both from 
ip_table and ipt_table_info. These parameters will be transferred into members of 
ipt_table_info when you register a new table by calling the function 
int ipt_register_table (struct ipt_table *). You call void ipt_unregister_table (struct 
ipt_table *) to remove a table. 

Each entry in ipt_entry represents a rule. This rule contains a matching IP header, 
one or more Match items, and one Target. Its size is not fixed since its Match items 
could vary. The ipt_entry struct is shown below: 

Figure 2-16. IPTable Structure 

struct ipt_table 
 
  list_head 
  “filter” 

FILTER_VALID_HOOKS 
  r,w lock           table size 
  ipt_replace null     rule number 
  ipt_table_info    initial_entries 
  module me        entries[0] 
                   hook_entry [NF_IP_NUMHOOKS] 
                        underflow [NF_IP_NUMHOOKS] 

filter

NAT 

mangle 

ERROR INPUT FORWARD OUTPUT 



Background 

37 
 

/* include/linux/netfilter_ipv4 */ 
struct ipt_entry 
{             // IP header used for matching 
 struct ipt_ip ip; 
             // mark of concern on packet 
unsigned int nfcache; 
      // target comes after match, match is in the 
end of ipt_entry 
u_int16_t target_offset; 
       // offset of the next rule, or size of this 
rule, sizeof(ipt_entry) + 
       // sizeof(ipt_match) * n + sizeof 
(ipt_target), n>=0 
u_int16_t next_offset; 
          // marking the hook it belongs to 
unsigned int comefrom; 
       // accumulated number of packets and data 
struct ipt_couners counters; 
          // position of target or the first match 
unsigned char elems[0]; 
} 

 

The array ipt_entry[ ] is located right after the ipt_table->private->entries[0]. Each 
member of the array contains its own match(es) and target.  

2.5.3 Work Flow 
Now that we are familiar with the netfilter structure and iptables, let us take a look 

at their work flow in order to understand their relationship. First we take a systematic 
view of packet processing in Linux network stack. 



Background 

38 
 

 shows the flowchart for sending packets and Error! Reference source not found. & 
Figure 2-19 are for receiving packets. 



Background 

39 
 

 
Figure 2-17. IP Packet Out 



Background 

40 
 

 
Figure 2-18. IP Packet Input Processing from The Driver 



Background 

41 
 

 
 

 
 

Figure 2-19. IP Packet In Processing 



Background 

42 
 

If a packet should be forwarded to another interface, then ip_route_input_slow() 
calls ip_forward(). This processing is shown in Figure 2-20. 

 
As an example, we will examine how ip_forward() to see how the rules are 

applied for filtering. Before ip_forward() returns, NF_HOOK(PF_INET, 
NF_IP_FORWARD, skb, skb->dev, dev2, ip_forward_finish) would be executed. The 
following code gives NF_HOOK’s definition (as a macro): 

 
# define NF_HOOK (pf, hook, skb, indev, outdev, okfn) \ 
(list_empty (&nf_hooks [(pf)] [(hook)]) ) ? (okfn) (skb) \ 
: nf_hook_slow( (pf), (hook), (skb), (indev), (outdev), 
(okfn) ) 

If the list that nf_hooks[PF_INET][NF_IP_FORWARD] points to is empty, 
ip_forward() would directly call ip_forward_finish(skb), otherwise it would call 
nf_hook_slow to carry out netfilter handling(). 

Since table filter has three chains, it must register each of them by calling 
nf_register_hook() during initialization. This requires three nf_hook_ops structures, 
representing the chains: INPUT, FORWARD, and OUTPUT. For table filter, at 
the hook FORWARD, the handler is set as ipt_hook(), which directly calls 
ipt_do_table(). Subsequently ipt_do_table() works its way through the table. In 
practice nearly all hook handler call ipt_do_table() to process rules. The filtering 
process for the case of forwarding is shown in Error! Reference source not found.. 

Figure 2-20. Packet forwarding 



Background 

43 
 

 
Returning to the three questions proposed in the beginning of section 2.3. The first 

and the third questions have been answered. The second one is interesting. Although 
it is straight forward to do matching and targeting in nf_hookfn, it is far from simple 
and flexible. You need to create a new kernel module and compile it, and then you 
need to initialize the module when loading it to the runining kernel. The most critical 
thing is that such a modification is beyond maintenance and troublesome to maintain 
the module with changes to the kernel. In contrast, IPTable introduces an excellent 
abstraction for similar operations using hooks. The table is simply inserted and the 
rules are stored in an array attaching to the table. No longer are specific operations 
added into netfilter beyond an invitation for packets to be passed to the hook. Users 
can easily organize and dynamically edit their rules. 

Unfortunately, despite IPTable’s advantages, it does not fulfill our requirements. 
Firstly, our filtering rules change frequently (i.e., everytime a client device moves into 
our out of the cell). IPTable stores rules inside an array, which is easy to walk through 
when processing, but it is not an efficient structure when frequently updating rules. As 
can be seen in the existing routine ipt_replace(), replacing a table entry leads to large 
amounts of copying and redistribution. Secondly, each entry of our table should have 
a time limit associated with it. Thus after a supplicant has be authorized to access the 
network via this AP, the rule should automatically removed after some time limit, 

Figure 2-21. Filtering during Forwarding 



Background 

44 
 

unless the authorized usage period is extended. Therefore we turn our focus to another 
mechanism called IP Set, which is covered in the next section. 

2.6 IP Set 
As mentioned in the project description, we need a black list, a temp list, and a 

white list. The white list maintains normal traffic for authenticated users. The temp 
list keeps traffic of users who are only to receive a limited bandwidth and redirects 
authentication packets for a specified time, during which the customer is supposed to 
finish authentication. Otherwise the user will be moved to the black list. Blacklisted 
user can only send authentication traffic. Actually the black list and temp list can be 
unified, because the black list is simply an extreme case of bandwidth limiting with a 
bandwidth of zero. We can now restate our requirements: 

• A list of MAC, IP addresses, and port numbers; 
• Each entry of the temp list as an associated time limit; 
• After authentication the corresponding entry is moved to the white list, otherwise to 

black list; 
• Match against lists using iptables; and  
• Efficiently dynamically update iptables rules for newly added clients, authenticated 

clients, and unauthenticated clients. 

If you look at the official website of IP sets [52] the features of Ipsets seem be be 
just what we need. IPset is an extension of IPTables. While IPTables classifies rules 
into tables in a behavior oriented way, ipset sorts rules into sets which are address 
oriented. An IP set can be associated with an IP address, MAC address, port number, 
or a combination of them. An entry in one set can be bound to another set, similar to a 
database“join” operation, making sophisticated matching possible 

There are 11 different types of sets, among which iptree is used to store IP 
addresses in a tree, optionally with timeout values. Since the other ten sets resemble 
iptree, we can easily understand them by looking only at iptree. The ipset programs 
work in user space, accept commands, and interacting with the kernel. These 
programs work together with kernel modules to implement the IPset functionality. We 
first create our three sets using a command of the form: 

ipset -N set_name type_specification [options] 

This command creates a set identified by set_name with the specified type. 
Type-specific options may also be supplied. The option for the set type “iptree” is a 
timeout value in seconds (default 0) for the entries. To specify our “whitelist” without 
a timeout value we use ipmap rather than iptree: 
 

ipset –N blacklist iptree –timeout 1200 
ipset –N templist iptree –timeout 120 
ipset –N whitelist ipmap 

Figure 2-22 explains how these commands operate. 



Background 

45 
 

 
Before creating a set we specify our set type. The functions settype->create_init(), 

settype->create_final() in method set_create(), and the default settype->create_parse() 
in method parse_commandline(), all call their corresponding methods in 
ipset_iptree.c, which implements the actual operations on an iptree. 

Inside the kernel, all registered IP sets are put in a structure list_head set_type_list. 
Sets can be identified through an identifier (id) or by its index in ip_set_list. The id 
representing a unique set inside kernel never changes, but the index may change. The 
id can be also used to find a key in the hash of bindings. 

Requests from userspace are serialized by ip_set_mutex. Remember that sets can 
be deleted only from userspace. Therefore you will see in the following code that 
ip_set_list locking obeys the following rules: 

• kernel requests: read and write locking mandatory 
• user requests: read locking optional, write locking mandatory 

 

Figure 2-22. Operation of ipset Commands 



Background 

46 
 

Wherever requests come from, their function can be divided into two parts: to set 
the ipset, using method ip_set_sockfn_set(), or to get information from an ipset using 
ip_set_sockfn_get(). These socket functions are put in the structure nf_sockopt_ops 
which serves as the interface to kernel sets. Entries are defined by netfilter to describe 
the getsockopt/setsockopt interfaces for a certain protocol. Different protocols are 
linked together through a structure list_head and the header of this list is defined in 
net/core/netfilter.c: nf_sockopts(struct list_head). Error! Reference source not 
found. shows the relationship between these chains. 

 
For IPset, its own nf_sockopt_ops is given in ipset-2.4.5\kernel\ip_set.c: 
static struct nf_sockopt_ops so_set = { 
 .pf   = PF_INET, 
 .set_optmin  = SO_IP_SET, 
 .set_optmax  = SO_IP_SET + 1, 
 .set   = &ip_set_sockfn_set, 
 .get_optmin  = SO_IP_SET, 
 .get_optmax = SO_IP_SET + 1, 
 .get  = &ip_set_sockfn_get, 
#if LINUX_VERSION_CODE < KERNEL_VERSION(2,6,23) 
 .use  = 0, 
#else 
 .owner  = THIS_MODULE, 
#endif 
}; 

In order to create an iptree, the function iptree_create() in kernel/ip_set_iptree.c is 
invoked. Figure 2-24 shows how we create a new set, starting with a request from 
userspace. This request was due to a call to the method ip_set_sockfn_set(). 

Figure 2-23. Chains of nf_sockopt_ops 



Background 

47 
 

 
After determing the type and performing the correct locking, the type specific 

operations are carried out by their own methods. For example, in order to add an IP 
address to iptree, after parsing the command whee the type is iptree, the userspace 
program calls iptree’s adt_parser(), which is used to add, delete, and test the parser. 
Here “adt” stands for add, delete, and test. After the command and parameters are 
transferred into kernel, eventually the funciton ip_set_sockfn_set() will be called. 
Each type of operation is placed in a structure fn_table, and the various types form an 
array adtfn_table[] as shown below: 

/* ipset-2.4.5\kernel\ip_set.c */ 
struct fn_table { 
  int (*fn)(ip_set_id_t index, 
     const void *data, size_t size); 
 } adtfn_table[] = { 
   { ip_set_addip }, { ip_set_delip }, { ip_set_testip}, 
   { ip_set_bindip}, { ip_set_unbindip }, 
{ ip_set_testbind }, 
 }; 

 

 

 

Figure 2-24. The Process of Creating A New Set 



Background 

48 
 

So we get the type of operation by comparing the commands: 
adtfn = adtfn_table[*op - IP_SET_OP_ADD_IP].fn 

In the case of CMD_ADD, the function table would invoke method iptree_add() 
in ip_set_iptree.c, which would call ADDIP_WALK three times to finish the task  of 
adding the IP address. Before we examine this function, we need first to know that an 
iptree is organized as follows: 

/* ipset-2.4.5\kernel\include\linux\netfilter_ipv4\ 
ip_set_iptree.h */ 
struct ip_set_iptreed { 
 unsigned long expires[256];     /* x.x.x.ADDR */ 
}; 
 
struct ip_set_iptreec { 
 struct ip_set_iptreed *tree[256]; /* x.x.ADDR.* */ 
}; 
 
struct ip_set_iptreeb { 
 struct ip_set_iptreec *tree[256]; /* x.ADDR.*.* */ 
}; 
 
struct ip_set_iptree { 
 unsigned int timeout; 
 unsigned int gc_interval; 
#ifdef __KERNEL__ 
 uint32_t elements;  /* number of elements */ 
 struct timer_list gc; 
 struct ip_set_iptreeb *tree[256]; /* ADDR.*.*.* */ 
#endif 
}; 

 

The last 8 bits of the IP address are represented by an unsigned long, and since 
there are 256 different values, they are put in an array – unsigned long [256]. So 
structure ip_set_iptreed represents the last 8 bits of an IP address. The structure 
ip_set_iptreec represents the third octet of the IP address. As we know ip_set_iptreec 
has 256 different values and each should contain an ip_set_iptreed. The same 
approach applies to ip_set_iptreeb and finally ip_set_iptree, which represents all 
65536 possibilities, or so called entries. Now let us turn to the macro ADDIP_WALK: 

/* ipset-2.4.5\kernel\ip_set_iptree.c */ 
#define ADDIP_WALK(map, elem, branch, type, cachep) do { \ 
 if ((map)->tree[elem]) {    \ 
  DP("found %u", elem);    \ 
  branch = (map)->tree[elem];   \ 
 } else {      \ 
  branch = (type *)    \ 
   kmem_cache_alloc(cachep, GFP_ATOMIC); \ 
  if (branch == NULL)    \ 
   return -ENOMEM;    \ 
  memset(branch, 0, sizeof(*branch));  \ 
  (map)->tree[elem] = branch;   \ 
  DP("alloc %u", elem);    \ 
 }       \ 
} while (0) 



Background 

49 
 

When invoked this code will first detect if the entry (tree[elem]) at the map level 
exists. If so, it would branch to the next level through the entry. Before looking into 
how ADDIP_WALK is utilized in the method iptree_add, we introduce another macro 
ABCD: 

/* ipset-2.4.5\kernel\ip_set_iptree.c */ 
#if defined(__LITTLE_ENDIAN) 
#define ABCD(a,b,c,d,addrp) do {  \ 
 a = ((unsigned char *)addrp)[3]; \ 
 b = ((unsigned char *)addrp)[2]; \ 
 c = ((unsigned char *)addrp)[1]; \ 
 d = ((unsigned char *)addrp)[0]; \ 
} while (0) 
#elif defined(__BIG_ENDIAN) 
#define ABCD(a,b,c,d,addrp) do {  \ 
 a = ((unsigned char *)addrp)[0]; \ 
 b = ((unsigned char *)addrp)[1]; \ 
 c = ((unsigned char *)addrp)[2]; \ 
 d = ((unsigned char *)addrp)[3]; \ 
} while (0) 

According to host form or network form; a,b,c, and d point to 4 8-bit field of an IP 
address. Thus iptree_add() is simply a series of calls to ADDIP_WALK, as follows: 

/* ipset-2.4.5\kernel\ip_set_iptree.c */ 
Static inline int iptree_add(struct ip_set *set, ip_set_ip_t 
*hash_ip, 
ip_set_ip_t ip, unsigned int timeout) 
{ … 
 ABCD(a, b, c, d, hash_ip); 
 ADDIP_WALK(map, a, btree, struct ip_set_iptreeb, 
branch_cachep); 
 ADDIP_WALK(btree, b, ctree, struct ip_set_iptreec, 
branch_cachep); 
 ADDIP_WALK(ctree, c, dtree, struct ip_set_iptreed, 
leaf_cachep); 
 … 
} 

Imagine we want to insert the Ipv4 address 192.168.0.2. We first check if there is 
entry 192 at the first level, if not, we create a new one. Otherwise we enter its second 
level and check if an entry 168 exists, continuing in this way to the last 8 bits. 

There are many other behaviors, such as test for an entry or deleting an entry, to 
print or restore a set, to save, and execute a session. They should be easy to 
understand after the two examples above. 

As you may have observed, each entry in the iptree can be viewed as a pointer, 
hence we judge if an entry exists by telling if the value is not NULL. We can not 
prune empty branches by calling delete from userspace because iptree_del() simply 
reduces the value to zero but zero is still a non-NULL value. The real removal 
function is iptree_flush(): 

 

 

 



Background 

50 
 

/* ipset-2.4.5\kernel\ip_set_iptree.c */ 
static void iptree_flush(struct ip_set *set) 
{ 
 struct ip_set_iptree *map = set->data; 
 unsigned int timeout = map->timeout; 
  
 /* gc might be running */ 
 while (!del_timer(&map->gc)) 
  msleep(IPTREE_DESTROY_SLEEP); 
 __flush(map); 
 memset(map, 0, sizeof(*map)); 
 map->timeout = timeout; 
 
 init_gc_timer(set); 
} 

This function first checks if a timer is running. When this time is up, it calls 
__flush(map) and then resets the set and initialize the timer. Inside __flush(), the code 
walks through the whole tree and releases every entries’ unused memory by calling 
kmem_cache_free(), as shown below: 

static inline void 
__flush(struct ip_set_iptree *map) 
{ 
 struct ip_set_iptreeb *btree; 
 struct ip_set_iptreec *ctree; 
 struct ip_set_iptreed *dtree; 
 unsigned int a,b,c; 
 
 LOOP_WALK_BEGIN(map, a, btree); 
 LOOP_WALK_BEGIN(btree, b, ctree); 
 LOOP_WALK_BEGIN(ctree, c, dtree); 
 kmem_cache_free(leaf_cachep, dtree); 
 LOOP_WALK_END; 
 kmem_cache_free(branch_cachep, ctree); 
 LOOP_WALK_END; 
 kmem_cache_free(branch_cachep, btree); 
 LOOP_WALK_END; 
 map->elements = 0; 
} 

You might wonder why the timer is part of the iptree. No matter how you create a 
new iptree (by iptree_create or flush and reset a tree by iptree_flush), there the 
function init_gc_timer is always called. This function is shown below: 

static inline void init_gc_timer(struct ip_set *set) 
{ 
 struct ip_set_iptree *map = set->data; 
 map->gc_interval = IPTREE_GC_TIME; 
 init_timer(&map->gc); 
 map->gc.data = (unsigned long) set; 
 map->gc.function = ip_tree_gc; 
 map->gc.expires = jiffies + map->gc_interval * HZ; 
 add_timer(&map->gc); 
} 



Background 

51 
 

As you can see the core function is init_timer, with a parameter timer_list. Next 
the function assigns a value to timer.function and timer.expires. Add a timer and when 
the time is up the function in timer.function will be called. To delete a timer just call 
del_timer(&timer). The timer associated with an iptree is used to periodically invoke 
garbage collection, to prune unneeded entries from the tree and to return this space to 
the kernel. 

Next we examine how IPset relates to netfilter. Inside ipt_set.h there are structures 
for “match info” and “target info”. These are used for registering IPset as an entry in 
IPTable. These structures and related functions are: 

/* 
ipset-2.4.5\kernel\include\linux\netfilter_ipv4\ipt_set.h 
*/ 
struct ipt_set_info { 
 ip_set_id_t index; 
 u_int32_t flags[IP_SET_MAX_BINDINGS + 1]; 
}; 
 
/* match info */ 
struct ipt_set_info_match { 
 struct ipt_set_info match_set; 
}; 
 
struct ipt_set_info_target { 
 struct ipt_set_info add_set; 
 struct ipt_set_info del_set; 
}; 

 
They are used by ipt_SET_init in ipt_SET.c to get registered in IPTABLE: 
/* ipset-2.4.5\kernel\ipt_SET.c */ 
#define xt_register_target ipt_register_target 
... 
static int __init ipt_SET_init(void) 
{ 
 return xt_register_target(&SET_target);  
} 

From user’s point of view, IPsets are used together with IPtables: 
/* ipset-2.4.5\kernel\include\linux\netfilter_ipv4\ip_set.h 
*/ 
/* API for iptables set match, and SET target */ 
extern int ip_set_addip_kernel(ip_set_id_t id, 
          const struct sk_buff *skb, 
          const u_int32_t *flags); 
extern int ip_set_delip_kernel(ip_set_id_t id, 
          const struct sk_buff *skb, 
          const u_int32_t *flags); 
extern int ip_set_testip_kernel(ip_set_id_t id, 
    const struct sk_buff *skb, 
    const u_int32_t *flags); 
 

Now if you review our requirements as listed at the beginning of this section, you 
can easily understand how well IPset fits these requirements. IPTables had rules 
which were costly to modify. In our case the rules are very stable, but the IP addresses 
associated with a rule are frequently changed. IPSet binds IP addresses associated 



Background 

52 
 

with the same rule together. The rules are registered as an entry in iptables and serve 
as target in that entry, so that they must be walked if the entry is invoked by the 
iptables command. We can dynamically update iptables with new addresses by simply 
manipulating IPSets, rather than replacing the old table. As you have see from the 
structure of ip_set_iptree, it is well optimized to match an IP address against a set,  
since to find an address it is divided into four parts which are used as indexes to 
arrays. This is likely to be faster than walking through all the chains in IPTables. 

 



2 
Method 

53 
 





2 
Method 

55 
 

3 Method 
As mentioned in Section2.3, we group the AP’s function modules for AAA 

conversion into three parts: (1) a sender and receiver of EAPOL on the AP’s wireless 
side; (2) a RADIUS client on AP’s LAN side; and (3) a set of state machines 
cooperating with each other to implement the logic of IEEE 802.1X (these state 
machines are labelled 802.1X SM in the figure). Error! Reference source not found. 
shows this simplified architecture. 

 
The definition of components in Figure 3-1 and the interfaces between them are 

described in various IEEE standards and IETF RFCs. Sometimes these descriptions 
use different names for the same component. For example, the IEEE 802.1X standard 
refers to both the supplicant and the AP as a Port Access Entity (PAE), because both 
have the same two components, a set of Port Access Control Protocol (PACP) state 
machines and a higher layer with which these machines communicate. The difference 
between the two terms is that the higher layer of the supplicant PAE implements EAP 
functionality, while that of the authenticator PAE implements a combination of EAP 
and AAA functionality [33]. EAP is a big state machine (marked as EAP SM in Figure 
3-1) which takes charge of the whole access control logic. The EAP state machine of 
the supplicant and the AP are different. In RFC 4137 [51], the EAP state machine 
functionality is refered to as the “EAP layer”. AAA functionality is the same as the 
RADIUS Client in Figure 3-1. The PACP state machines are labelled as 802.1X SM in 
Figure 3-1 while they are referred to as EAPOL state machines in hostapd was shown 
in Error! Reference source not found. on page Error! Bookmark not defined.. 
IEEE 802.1X defines an encapsulation format that allows EAP message to be carried 
directly by a LAN MAC service [33]. IEEE 802.1X also defines the PACP state 
machines and the interface between these PACP state machines and the higher-layer 
functionality. The EAP protocol exchanges are defined by the IETF’s EAP standards, 
IETF RFC 3748 [37], and successor standards. For example the RADIUS AAA 
protocol is defined by the IETF RADIUS standards: RFC 2865 [54], IETF RFC 2866 
[13], IETF RFC 3579 [40], and successor standards [33]. The descriptions of EAP SM 
can be found in RFC 4137. Among these various documents IEEE 802.1X-2004 and 
RFC 4137 are vital to this thesis. Both of them use a hierarchical structure as shown 

Figure 3-1. Simplified AP Architecture 

 
EAP 
Peer 

 
AAA 
Server 

        Passthrough Authenticator 
 
 
 
 
 
 
 
 
 
 
 

EAP SM

EAPOL 
Send & 
Receive 

RADIUS 
Client 

802.1X SM 



1 
Method 

56 
 

in Figure 3-2 which is similar to Error! Reference source not found. but in a 
vertical way. 

 
 

IEEE 802.1X defines the EAPOL State Machines and treats both the AAA 
functionality and the EAP State Machine as the higher layer. However, RFC 4137 [51] 
focuses on the EAP State Machine, treating both the AAA functionality and the 
EAPOL SM as the lower layer. Both Figure 3-2 and Error! Reference source not 
found. on page Error! Bookmark not defined. show that, the EAP state machine 
directly communicates with the EAPOL SM; while EAPOL SM directly 
communicates with the AAA layer. This raises the question: Is there any direct 
interaction between the AAA layer and the EAP layer? If so, what is the reason 
behind this direct interaction? The question is answered in the end of Section 3.2.2 on 
page 84. 

Following the hierarchical architecture in Figure 3-2, the next section will describe 
the EAP state machines; Section 3.2 will introduce the interfaces between the EAP 
layer and the AAA layer, and it will cover the AAA functions at length; Section 0 will 
introduce the interfaces between the EAP layer and the EAPOL layer, and it will 
present the EAPOL state machines; Section 3.4 will examine the interaction between 
the EAPOL Sender & Receiver and the EAPOL layer; Section 3.5 will discuss how to 
convert an AP into a non-binary authenticator by modifying hostapd. Finally Section 
3.6 will examine another method of implementing the desired functionality. 

3.1 State Machines for EAP 
Most information of the information is this section about EAP state machines is 

from RFC 4137: State Machines for Extensible Authentication Protocol (EAP) Peer 
and Authenticator [51]. This RFC describes four different types of EAP state 
machines: peer, stand-alone authenticator (non-pass-through), EAP backend 

 
AAA 

 
EAPOL SM 

 
EAP Full Authenticator State Machine 

AAA Layer referred to as the 
second lower layer in RFC 4137 

EAP Transport Layer referred to 
as the first lower layer in RFC 
4137 

A combination of EAP and 
AAA functionality referred to as 
the higher layer in IEEE 802.1X 

Figure 3-2. Hierarchical AP Architecture 



2 
Method 

57 
 

authenticator (for use on AAA servers), and EAP full authenticator (for both local and 
pass-through). 

The peer and stand-alone authenticator state machines are illustrative of how EAP 
as defined in RFC 3748 [37] may be implemented. An EAP authentication consists of 
one or more EAP methods in sequence followed by an EAP Success or EAP Failure 
sent from the authenticator to the peer [51]. Both the authenticator and the peer can 
implement one or more EAP methods. That is why each EAP peer has to select its 
choice of method and negotiate with its counterpart. The negotiation will determine 
which EAP method will be used, as well as the sequence of methods if more than one 
method will be used. This negotiation of EAP methods and sequences of methods is 
controlled by the “EAP Switch”. The “EAP Switch Model” comprises events and 
actions for the interaction between the EAP Switch and EAP methods. The methods 
may also have state machines, which is beyond our scope. Error! Reference source 
not found. shows the EAP switch model for the stand-alone authenticator scenario. 

 
The backend and full/pass-through authenticator machines illustrate how 

EAP/AAA protocol support defined in RFC 3579 [40] may be implemented. The 
full/pass-through state machine allows an NAS or edge device to pass EAP Response 
messages to a backend authentication server. A stand-alone authenticator carries out 
authentication locally, while a full authenticator can choose either to perform local 
authentication or remote authentication. Error! Reference source not found. shows 
the EAP switch model for the pass-through authenticator scenario. 

Figure 3-3. Stand-Alone EAP Switch Model [51] 

Peer 
Method 

Auth 
Method 

Peer Authenticator 

Peer 
EAP 
Switch 

Auth 
EAP 
Switch 



1 
Method 

58 
 

 
We use the full/pass-through authenticator for our project, thus we omit the EAP 

peer state machine which bears rare similarity to the EAP authenticator state 
machines. Error! Reference source not found. shows the EAP stand-alone 
authenticator state machine. Figure 3-6 shows the EAP backend authenticator state 
machine. They are identical to each other except that no retransmit is included in the 
IDLE state in the backend authenticator state machine. The reason is that with 
RADIUS, retransmission is handled by the NAS. Also, a PICK_UP_METHOD state 
and a variable in INITIALIZE state are added to the backend authenticator state 
machine to allow the method to "pick up" a method started in a NAS [51]. 

Backend Peer Authenticator 

Figure 3-4. Pass-Through EAP Switch Model [51] 

Peer 
EAP 
Switch 

Auth 
EAP 
Switch 

Local 
Method 

Backend 
EAP 
Server 

Pass-through 



2 
Method 

59 
 

 Figure 3-5. EAP Stand-Alone Authenticator State Machine [51] 



1 
Method 

60 
 

 Figure 3-6. EAP Backend Authenticator State Machine [51] 



2 
Method 

61 
 



1 
Method 

62 
 

Error! Reference source not found. shows the EAP full authenticator state 
machine for a local AAA. It is identical to the stand-alone state machine, with the 
exception that the SELECT_ACTION state has an additional transition to 
PASSTHROUGH. 



2 
Method 

63 
 

 
Error! Reference source not found. shows the remainder of the EAP full 

authenticator state machine in the case of pass-through for a remote AAA. Compared 

Figure 3-7. EAP Full Authenticator State Machine - 1 [51] 



1 
Method 

64 
 

with Error! Reference source not found., retains most of the logic, except the four 
method states. Since the EAP SM layer interacts directly with the AAA layer when 
the RADIUS client is activated under pass-through mode, there are three replacement 
AAA states: AAA_REQUEST, AAA_RESPONSE, AAA_IDLE, which are 
responsible for handling EAP responses from the supplicant, RADIUS responses from 
the AAA server, and idleness respectively. All the other states have the suffix “2” to 
help distinguish them from their counterparts in Error! Reference source not 
found.. 

 
The lower layers that the EAP state machine maps to mainly do two jobs: present 

messages to the EAP SM and transmit the results created by the EAP SM. Peer state 
machine and stand-alone state machines interface to the EAPOL SM layer only. The 
backend authenticator state machine interfaces to the AAA layer only. However, the 

Figure 3-8. EAP Full Authenticator State Machine - 2 [51] 



2 
Method 

65 
 

full authenticator state machine is unique in that it interfaces to multiple lower layers 
when operating under pass-through mode. The EAPOL SM is responsible for 
transmitting messages between the EAPOL Sender/Receiver and the EAP SM while 
the AAA layer is responsible for transmitting messages between the RADIUS client 
and the EAP SM. In Error! Reference source not found. the four method states 
organize the logic for the EAP switch. But in Error! Reference source not found. , 
the pass-through authenticator relies on the responses from the AAA server to judge 
whether the result is SUCCESS or FAILURE or if it should continue relaying the 
message. Therefore, the three AAA states replace the four method states. 

In RFC4137 [51], the state machine description is carried out in the sequence 
shown in Table 3-1. 

Table 3-1. SM Comparison between Stand-Alone and Full Authenticator 

Sequence Stand-Alone Full 
1 Interface between SM and Lower layer 
  1.1 Variables (Lower Layer to SM) EAPOL EAPOL + AAA 
  1.2 Variables (SM to Lower Layer) EAPOL EAPOL + AAA 
  1.3 Constants              same 
2 Interface between SM and Methods              same 
3 SM Local Variables 
  3.1 Long-Term              same 
  3.2 Short-Term only “decision” is different 
4 Procedures              same 
5 States No Pass-Through + Pass-Through 
 

Since our scenario uses the pass-through authenticator, we focus on the state 
machine presented in Error! Reference source not found.. Its further study will be 
divided into three parts. The remainder of this section describes the states in Error! 
Reference source not found. (pass-through only) – see section 3.1.1, local variables 
– see section 3.1.3, and procedures – see section 3.1.4; as well as the interface 
between SM and methods – see section 3.1.5. Section 3.1.2 lists and describes the 
constant(s). It is important to note that these constants belong to the interface between 
the state machines and the lower layer. Section 3.2 on page 72 will cover the interface 
related to AAA and Section 0 on page 91 will cover the interface related to EAPOL 
SM. 

3.1.1 EAP Full Authenticator States under Pass-Through Mode 
All of the states (see Error! Reference source not found.) in the EAP Full 

Authenticator state machine when operating under pass-through mode are described 
in Table 3-2. 



1 
Method 

66 
 

 
Table 3-2. EAP Full Authenticator States under Pass-Through Mode [51] 

State Purpose 
INITIALIZE_PASSTHROUGH Initializes variables when the pass-through portion 

of the state machine is activated. 
IDLE2 The state machine waits for a response from the 

primary lower layer (EAPOL SM), which 
transports EAP traffic from the peer. 

RECEIVED2 This state is entered when an EAP packet is 
received and the authenticator is in 
PASSTHROUGH mode. The packet header is 
parsed here. 

AAA_REQUEST The incoming EAP packet is parsed for sending to 
the AAA server. 

AAA_IDLE Tell the AAA layer that it has a response and then 
waits for a new request, a no-request signal, or 
success/failure. 

AAA_RESPONSE The request from the AAA interface is processed 
into an EAP request. 

SEND_REQUEST2 This state signals the lower layer (EAPOL SM) 
that a request packet is ready to be sent. 

DISCARD2 This state signals the lower layer that the response 
was discarded, and that no new request packet 
will be sent at this time. 

RETRANSMIT2 It retransmits the previous request packet. 
SUCCESS2  A final state indicating success. 
FAILURE2 A final state indicating failure. 
TIMEOUT_FAILURE2 A final state indicating failure because no response has 

been received. Because no response was received, no 
new message (including failure) should be sent to the 
peer. This is different from the FAILURE2 state, in which 
a message indicating failure is sent to the peer. 

3.1.2 Constants 
There is only one constant: MaxRetrans (integer) a configurable maximum count 

indicating how many retransmissions should be attempted before aborting. Note that 
this constant belongs to the interface between the EAP State Machine and Lower 
Layer. 

3.1.3 Local Variables 
A list of long-term variables and their descriptions are given in Table 3-3. They are referred to as 

long term variables, since the state is maintained between packets. Note that the names of the 
states in Table 3-2 have implicit postifx “2” to correspond to their states. In contrast to long term 

variables,  

Table 3-4 shows short-term variables whose state is not maintained between 
packets. 



2 
Method 

67 
 

 
Table 3-3. Long Term Variables [51] 

Variable Description 
currentMethod (EAP type) EAP type, IDENTITY, or NOTIFICATION. 
currentId (integer) 0..255 or NONE. Usually updated in 

PROPOSE_METHOD state. Indicates the identifier 
value of the currently outstanding EAP request. 

methodState (enumeration) As described in Table 3-2. 
retransCount (integer) Reset in SEND_REQUEST state and updated in 

RETRANSMIT state. Current number of 
retransmissions. 

lastReqData (EAP packet) Set in SEND_REQUEST state. EAP packet contains 
the last sent request. 

methodTimeout (integer) Method-provided hint for suitable retransmission 
timeout or NONE. 

 

Table 3-4. Short Term Variables [51] 
Variable Description 
rxResp (boolean) Set in RECEIVED state. Indicates that the current 

received packet is an EAP response. 
respId (integer) Set in RECEIVED state. The identifier from the 

current EAP response. 
respMethod (EAP type) Set in RECEIVED state. The value is the method 

type of the current EAP response. 
ignore (boolean) Set in SELECT_ACTION state. Temporarily stores 

the policy decision to succeed, fail, continue with a 
local method, or continue in pass-through mode. 

decision (enumeration) Set in SELECT_ACTION state. Temporarily stores 
the policy decision to succeed, fail, or continue. 

3.1.4 Procedures 
For methods / procedures, the method uses its internal state in addition to the 

information provided by the EAP layer. The only arguments that are explicitly shown 
as inputs to the procedures are those provided to the method by EAP. Those inputs 
provided by the method’s internal state remain implicit [51]. 

             Table 3-5. Methods [51] 

Method Description 
calculateTimeout() Calculates the retransmission timeout, taking into account 

the retransmission count, round-trip time measurements, 
and method-specific timeout hint (see [37], Section 4.3). 
Returns an integer. 

parseEapResp() Determines the code, identifier value, and type of the 
current response. In the case of a parsing error (e.g., the 
length field is longer than the received packet), rxResp 
will be set to FALSE. The values of respId and 
respMethod may be undefined as a result. Returns a 



1 
Method 

68 
 

Method Description 
boolean, an integer, and an EAP type. 

buildSuccess() Creates an EAP Success Packet. Returns an EAP packet. 
buildFailure() Creates an EAP Failure Packet. Returns an EAP packet. 
nextId() Determines the next identifier value to use, based on the 

previous one. Returns an integer. 
Policy.update() Updates all variables related to internal policy state. The 

return value is undefined. 
Policy.getNextMethod() Determines the method that should be used at this point in 

the conversation based on a predefined policy. 
Policy.getNextMethod() must comply with [37] (Section 
2.1), which forbids the use of sequences of authentication 
methods within an EAP conversation. Thus, if an 
authentication method has already been executed within 
an EAP dialog, Policy.getNextMethod() must not 
propose another authentication method within the same 
EAP dialog. Returns an EAP type. 

Policy.getDecision() Determines if the policy will allow SUCCESS, FAIL, or 
is yet to be determined (CONTINUE). Returns a decision 
enumeration. 

m.check() Method-specific procedure to test for the validity of a 
message. Returns a boolean. 

m.process() Parses and processed a response for that method. The 
return value is undefined. 

m.init() Initializes state just before use. The return value is 
undefined. 

m.reset() Indicates that the method is ending in the middle of or 
before completion. The return value is undefined. 

m.isDone() To check for method completion. Returns a boolean. 
m.getTimeout() Determines an appropriate timeout hint for that method. 

Returns an integer. 
m.getKey() Obtains key material for use by EAP or lower layers. 

Returns an EAP key. 
m.buildReq() Produces the next request. Returns an EAP packet. 

3.1.5 Interface between EAP SM and Methods 
The following describes the interaction between the EAP state machine and EAP 

methods. The implict input parameters are IN: eapRespData, methodState; OUT: 
ignore, eapReqData; and IN/OUT: currentId, (method-specific state), (policy). 

Table 3-6. Interface between EAP SM and Methods [51] 
Method Description 
m.init (in: -, out: -) When the method is first started, it must initialize its 

own method-specific state, possibly using some 
information from Policy (e.g., identity). 

m.buildReq (in: integer, out: 
EAP packet) 

Next, the method creates a new EAP Request packet, 
with the given identifier value, and updates its 
methodspecific state accordingly. 



2 
Method 

69 
 

Method Description 
m.getTimeout (in: -, out: 
integer or NONE) 

The method can also provide a hint for 
retransmission timeout with m.getTimeout. 

m.check (in: EAP packet, 
out: boolean) 

When a new EAP Response is received, the method 
must first decide whether to process the packet or to 
discard it silently. If the packet looks like it was not 
sent by the legitimate peer (e.g., if it has an invalid 
Message Integrity Check, which should never occur), 
the method can indicate this by returning FALSE. In 
this case, the method should not modify its own 
method-specific state. 

m.process (in: EAP packet, 
out: -) 

 

m.isDone (in: -, out: boolean)  
m.getKey (in: -, out: EAP key 
or NONE) 

Next, the method processes the EAP Response and 
updates its own method-specific state. Now the 
options are to continue the conversation (send 
another request) or to end this method. 
 
If the method wants to end the conversation, it 

 Tells Policy about the outcome of the method 
and possibly other information. 

 If the method has derived keying material it 
wants to export, returns it from m.getKey(). 

 Indicates that the method wants to end by 
returning TRUE from m.isDone(). 

Otherwise, the method continues by sending another 
request, as described earlier. 

 

3.1.6 EAP SM Data Structure in hostapd 
In hostapd, the structure eap_sm is defined to describe the EAP server state 

machine data. As is shown below, this also includes EAP states, constants, long-term 
local variables, short-term local variables, plus related data structures which are not 
defined in RFC 4137. The interfaces between EAP layer and AAA layer as well as 
EAPOL layer are placed together in a structure eap_eapol_interface, which is also 
included in the structure eap_sm. 
/** 
 * hostapd-0.7.3\src\eap_server\eap_i.h: struct eap_sm 
 */ 
struct eap_sm { 
 enum { 

EAP_DISABLED, EAP_INITIALIZE, EAP_IDLE, EAP_RECEIVED, 
EAP_INTEGRITY_CHECK, EAP_METHOD_RESPONSE, 
EAP_METHOD_REQUEST, 
EAP_PROPOSE_METHOD, EAP_SELECT_ACTION, EAP_SEND_REQUEST, 
EAP_DISCARD, EAP_NAK, EAP_RETRANSMIT, EAP_SUCCESS, EAP_FAILURE, 
EAP_TIMEOUT_FAILURE, EAP_PICK_UP_METHOD, 
EAP_INITIALIZE_PASSTHROUGH, EAP_IDLE2, EAP_RETRANSMIT2, 
EAP_RECEIVED2, EAP_DISCARD2, EAP_SEND_REQUEST2, 
EAP_AAA_REQUEST, EAP_AAA_RESPONSE, EAP_AAA_IDLE, 



1 
Method 

70 
 

EAP_TIMEOUT_FAILURE2, EAP_FAILURE2, EAP_SUCCESS2 
 } EAP_state; 
 
 
 /* Constants */ 
 int MaxRetrans; 
 
 struct eap_eapol_interface eap_if; 
 
 /* Full authenticator state machine local variables */ 
 
 /* Long-term (maintained betwen packets) */ 
 EapType currentMethod; 
 int currentId; 
 enum { 
  METHOD_PROPOSED, METHOD_CONTINUE, METHOD_END 
 } methodState; 
 int retransCount; 
 struct wpabuf *lastReqData; 
 int methodTimeout; 
 
 /* Short-term (not maintained between packets) */ 
 Boolean rxResp; 
 int respId; 
 EapType respMethod; 
 int respVendor; 
 u32 respVendorMethod; 
 Boolean ignore; 
 enum { 
  DECISION_SUCCESS, DECISION_FAILURE, DECISION_CONTINUE, 
  DECISION_PASSTHROUGH 
 } decision; 
 
 /* Miscellaneous variables */ 
 const struct eap_method *m; /* selected EAP method */ 
 /* not defined in RFC 4137 */ 
 Boolean changed; 
 void *eapol_ctx, *msg_ctx; 
 struct eapol_callbacks *eapol_cb; 
 void *eap_method_priv; 
 u8 *identity; 
 size_t identity_len; 
 /* Whether Phase 2 method should validate identity match */ 
 int require_identity_match; 
 int lastId; /* Identifier used in the last EAP-Packet */ 
 struct eap_user *user; 
 int user_eap_method_index; 
 int init_phase2; 
 void *ssl_ctx; 
 void *eap_sim_db_priv; 
 Boolean backend_auth; 
 Boolean update_user; 
 int eap_server; 
 
 int num_rounds; 
 enum { 
  METHOD_PENDING_NONE, METHOD_PENDING_WAIT, 
  METHOD_PENDING_CONT 
 } method_pending; 



2 
Method 

71 
 

 
 u8 *auth_challenge; 
 u8 *peer_challenge; 
 
 
 u8 *pac_opaque_encr_key; 
 u8 *eap_fast_a_id; 
 size_t eap_fast_a_id_len; 
 char *eap_fast_a_id_info; 
 enum { 
  NO_PROV, ANON_PROV, AUTH_PROV, BOTH_PROV 
 } eap_fast_prov; 
 
 int pac_key_lifetime; 
 int pac_key_refresh_time; 
 int eap_sim_aka_result_ind; 
 int tnc; 
 struct wps_context *wps; 
 struct wpabuf *assoc_wps_ie; 
 
 Boolean start_reauth; 
}; 

3.1.7 Data Structure of EAP SM & AAA Interface in hostapd 
In hostapd structure eap_eapol_interface is defined to describe the interfaces 

between EAP SM and AAA as well as EAPOL SM. Sections 3.2 and 3.3 will start by 
introducing each of the corresponding variables related to its own interface. 
/** 
/* 
 * hostapd-0.7.3\src\eap_server\eap.h: struct eap_eapol_interface 
 */ 
struct eap_eapol_interface { 
 /* Lower layer to full authenticator variables */ 
 Boolean eapResp; /* shared with EAPOL Backend Authentication */ 
 struct wpabuf *eapRespData; 
 Boolean portEnabled; 
 int retransWhile; 
 Boolean eapRestart; /* shared with EAPOL Authenticator PAE */ 
 int eapSRTT; 
 int eapRTTVAR; 
 
 /* Full authenticator to lower layer variables */ 
 Boolean eapReq; /* shared with EAPOL Backend Authentication */ 
 Boolean eapNoReq; /* shared with EAPOL Backend Authentication */ 
 Boolean eapSuccess; 
 Boolean eapFail; 
 Boolean eapTimeout; 
 struct wpabuf *eapReqData; 
 u8 *eapKeyData; 
 size_t eapKeyDataLen; 
 Boolean eapKeyAvailable; /* called keyAvailable in IEEE 802.1X-2004 */ 
 
 /* AAA interface to full authenticator variables */ 
 Boolean aaaEapReq; 
 Boolean aaaEapNoReq; 
 Boolean aaaSuccess; 



1 
Method 

72 
 

 Boolean aaaFail; 
 struct wpabuf *aaaEapReqData; 
 u8 *aaaEapKeyData; 
 size_t aaaEapKeyDataLen; 
 Boolean aaaEapKeyAvailable; 
 int aaaMethodTimeout; 
 
 /* Full authenticator to AAA interface variables */ 
 Boolean aaaEapResp; 
 struct wpabuf *aaaEapRespData; 
 /* aaaIdentity -> eap_get_identity() */ 
 Boolean aaaTimeout; 
}; 

3.2 AAA Layer 
Table 3-77 shows the variables in the AAA Interface to Full Authenticator. While  



2 
Method 

73 
 

Table 3- shows the variables in the Full Authenticator Interface to AAA. 
Table 3-7. Variables (AAA Interface to Full Authenticator) [51] 

Variable Description 
aaaEapReq (boolean) Set to TRUE in lower layer, FALSE in authenticator 

state machine. Indicates that a new EAP request is 
available from the AAA server. 

aaaEapNoReq (boolean) Set to TRUE in lower layer, FALSE in authenticator 
state machine. Indicates that the most recent 
response has been processed, but that there is no 
new request to send. 

aaaSuccess (boolean) Set to TRUE in lower layer. Indicates that the AAA 
backend authenticator has reached the SUCCESS 
state. 

aaaFail (boolean) Set to TRUE in lower layer. Indicates that the AAA 
backend authenticator has reached the FAILURE 
state. 

aaaEapReqData (EAP packet) Set in the lower layer when aaaEapReq, aaaSuccess, 
or aaaFail is set to TRUE. The actual EAP request 
to be sent (or success/ failure). 

aaaEapKeyData (EAP key) Set in lower layer when keying material becomes 
available from the AAA server. 

aaaEapKeyAvailable 
(boolean) 

Set to TRUE in the lower layer if keying material is 
available. The actual key is stored in 
aaaEapKeyData. 

aaaMethodTimeout (integer) Method-provided hint for suitable retransmission 
timeout, or NONE. (Note that this hint is for the 
EAP retransmissions done by the pass-through 
authenticator, not for retransmissions of AAA 
packets.) 

 



1 
Method 

74 
 

Table 3-8. Variables (Full Authenticator Interface to AAA) [51] 

Variable Description 
aaaEapResp (boolean) Set to TRUE in authenticator state machine, FALSE 

in the lower layer. Indicates that an EAP response is 
available for processing by the AAA server. 

aaaEapRespData (EAP 
packet) 

Set in authenticator state machine when eapResp is 
set to TRUE. The EAP packet to be processed. 

aaaIdentity (EAP packet) Set in authenticator state machine when an 
IDENTITY response is received. Makes that 
identity available to AAA lower layer. 

aaaTimeout (boolean) Set in AAA_IDLE if, after a configurable amount of 
time, there is no response from the AAA layer. The 
AAA layer in the NAS is alive and OK, but for 
some reason it has not received a valid 
Access-Accept/Reject indication from the backend. 

The explanation for how AAA module functions in hostapd is divided into two 
parts: Receiving and Sending. For each sub section we start with a process flow chart, 
then we explain the functions in a top-down manner and end up with an analysis of 
how the interfaces described above come into effect. 

3.2.1 RADIUS Client on Receiving 
Figure 3-9 shows how the RADIUS client receives and processes frames from the 

AAA server. Moreover, it gives a complete top-down view of how the AAA client is 
initiated and how it interacts with the other parts of the system. 

The code analysis is based on the last stable hostapd version 0.6.9, while the 
newest stable version is 0.7.3. Although in the new version the process may not 
exactly follow the map with some functionalities are moved from its original function 
to another, the main logic doesn’t change. 



2 
Method 

75 
 

 
 

 

The whole system starts at main(), which first reads in options. Then it registers 
the EAP methods, allocates space for each interface on demand and initializes an 
event loop. An AP may have several interfaces and each interface may support up 
to 6 BSSes 3 . Next each of the interfaces is initialized by calling 
hostapd_setup_interface(). The core function of hostapd_setup_interface() is 
setup_interface(). The latter function initializes the driver interface4 and configures 
all BSSes with a pointer to this driver interface. Then it validates the BSS 
configurations, flushes old stations and sets up wireless link privacy for the driver. 
Next it sets the radio channel and frequency, clears default encryption keys (default 
management keys in the case of IEEE 802.11W), sets up link encryption, and sets the 
                                                        
 
3 A single physical AP can act like multiple logical APs, each with a different BSS identifier. This 
enables mulitple operators to share an AP, while users logically connect via their network operator. 
4 Note that multiple BSSes can be configured with a pointer to a single driver interface. 

Figure 3-9. RADIUS Client on Receiving AAA Frames 

hostapd\hostapd.c: main( ) 

hostapd\hostapd.c: hostapd_setup_bss( ) 

hostapd\ ieee802_1x.c: ieee802_1x_decapsulate_radius( ) 

hostapd\hostapd.c: hostapd_setup_interface( ) 

hostapd\hostapd.c: setup_interface( ) 

hostapd\ ieee802_1x.c: ieee802_1x_init( ) 

hostapd\ ieee802_1x.c: ieee802_1x_receive_auth( ) 

src\radius\radius_client.c: radius_client_init( ) 

src\radius\radius_client.c: radius_client_register( 
…,RADIUS_AUTH, ieee802_1x_receive_auth,…) 

src\radius\radius_client.c: radius_client_init_auth( ) 

src\radius\radius_client.c: radius_client_receive 

src\utils\eloop.c: eloop_register_read_sock( auth_serv_sock, 
radius client receive, radius, RADIUS AUTH )



1 
Method 

76 
 

beacon interval. After that it calls ieee802_11_set_beacon to prepare all the 
parameters that are needed in the beacon frame. Next the code sets a Request to Send 
(RTS) threshold and fragmentation threshold for the kernel driver. After configuring 
the driver, it continues setting up the BSS by calling hostapd_setup_bss(), which 
initializes all per-BSS data structures and resources. One of these resources, the 
RADIUS Client module, is initiated by calling radius_client_init(). 

RADIUS Client has only two jobs: authentication and accounting. Thus 
radius_client_init() calls radius_client_init_auth() and radius_client_init_acct() 
respectively, which returns 0 if its initialization is successful. Both 
radius_client_init_auth() and radius_client_init_acct() calls radius_change_server() 
to prepare parameters needed for communication with the RADIUS server, like 
shared secret and retry counters. It also binds and connects RADIUS client address 
with RADIUS server address. The shared secret, retry counters as well as server 
sockets and addresses are written in a configuration file, which are read and saved in 
the structure hostapd_radius_servers. radius_client_init_auth() and 
radius_client_init_acct() are similar. Here we will focus on authentication. 
radius_client_init_auth() does three jobs: (1) Creates a socket; (2) Connects through 
the socket; and (3) Listens to this socket. For socket creation, it calls socket(PF_INET, 
SOCK_DGRAM, 0). For connection, it calls radius_change_server(radius, 
conf->auth_server, NULL, radius->auth_serv_sock, radius->auth_serv_sock6, 1), 
which actually calls connect(sel_sock, addr, addrlen). For socket listening, hostapd 
uses an event loop system. By registering a handler function for the auth socket, the 
system calls this handler function whenever a frame is received on that socket. 
Therefore, eloop_register_read_sock registers a handler radius_client_receive for 
auth_serv_sock. 

The RADIUS Client has separate handlers and configurations for authentication 
and accounting messages. Thus radius_client_receive first examines the msg_type to 
prepare the corresponding configuration and handlers. Then it calls recv(sock, buf, 
sizeof(buf), MSG_DONTWAIT) and radius_msg_parse(buf, len). The RADIUS 
message is stored in the structure radius_msg. While radius_client_receive() checks 
the message header code (ACCESS_ACCEPT, ACCESS_REJECT, 
ACCESS_CHALLENGE, or ACCOUNTING_RESPONSE) and increases the 
number of the corresponding message record by 1. As a RADIUS response should 
match a RADIUS request sent earlier by the RADIUS Client, a match means that their 
identifiers are equal. Thus the RADIUS Client puts each request in a list on sending a 
request and searches that list on receiving what looks like a response. If no matching 
RADIUS request is found, then that response message is dropped. If a match is found, 
then it calculates the round trip time and removes acknowledged RADIUS request 
from the list. Next, radius_client_receive goes through all the handlers, which deal 
with the RADIUS response. 

The handler is stored in the data structure radius_rx_handler. This value is used 
internally inside the RADIUS client module. The structure is a combination of a 
handler function and context data (void *data). The context data is actually a pointer 
to the main data structure hostapd, which is mainly used for logging. The handler 
returns a return value RadiusRxResult, which is an enumeration, which indicates the 
result of processing by the handler function. The radius_rx_handler structure and the 
enumerated result values are shown below: 



2 
Method 

77 
 

 
/** 

 * src\radius\radius_client.c: struct radius_rx_handler - RADIUS client RX handler 
*/ 

struct radius_rx_handler { 
 /** 
  * handler - Received RADIUS message handler 
  */ 
 RadiusRxResult (*handler)(struct radius_msg *msg, 
      struct radius_msg *req, 
      const u8 *shared_secret, 
      size_t shared_secret_len, 
      void *data); 
 /** 
  * data - Context data for the handler 
  */ 
 void *data; 
}; 
 
/** 
 * src\radius\radius_client.h: struct radius_rx_handler - RADIUS client RX handler 
*/ 

typedef enum { 
 RADIUS_RX_PROCESSED, 
 RADIUS_RX_QUEUED, 
 RADIUS_RX_UNKNOWN, 
 RADIUS_RX_INVALID_AUTHENTICATOR 
} RadiusRxResult 

These call back handlers are registered by calls to radius_client_register() and 
unregistered when the RADIUS client is deinitialized with a call to 
radius_client_deinit(). There can be multiple registered RADIUS message handlers. 
Each of these handlers will be called in order until one of them indicates that it has 
processed or enqueued the message. As we can see from the code below, 
radius_client_register() first distinguishes if it is registering an auth or accounting 
handler. Then it finds the corresponding handler’s array from the structure 
radius_client_data, which owns these handlers. By using realloc(), 
radius_client_register() gets enough additional space for the new handler (while 
keeping all the other handlers’ information). Finally it adds the new handler at the end 
of the array. 



1 
Method 

78 
 

/** 
 * src\radius\radius_client.c: radius_client_register - Register a RADIUS client RX handler 
 * @radius: RADIUS client context from radius_client_init() 
 * @msg_type: RADIUS client type (RADIUS_AUTH or RADIUS_ACCT) 
 * @handler: Handler for received RADIUS messages 
 * @data: Context pointer for handler callbacks 
 * Returns: 0 on success, -1 on failure 
*/ 

int radius_client_register(struct radius_client_data *radius, 
      RadiusType msg_type, 
      RadiusRxResult (*handler)(struct radius_msg *msg, 
           struct radius_msg *req, 
           const u8 *shared_secret, 
           size_t shared_secret_len, 
           void *data), 
      void *data) 
{ 
 struct radius_rx_handler **handlers, *newh; 
 size_t *num; 
 
 if (msg_type == RADIUS_ACCT) { 
  handlers = &radius->acct_handlers; 
  num = &radius->num_acct_handlers; 
 } else { 
  handlers = &radius->auth_handlers; 
  num = &radius->num_auth_handlers; 
 } 
 
 newh = os_realloc(*handlers, 
     (*num + 1) * sizeof(struct radius_rx_handler)); 
 if (newh == NULL) 
  return -1; 
 
 newh[*num].handler = handler; 
 newh[*num].data = data; 
 (*num)++; 
 *handlers = newh; 
 
 return 0; 
} 



2 
Method 

79 
 

There is only one authentication handler specifically registered for IEEE 802.1X, 
ieee802_1x_receive_auth(). The registration of ieee802_1x_receive_auth() comes  
during the initialization of 802.1X module. As can be seen in Figure 3-9 on page 75, 
both the RADIUS Client module and IEEE 802.1X module are initialized in 
hostapd_setup_bss(). However, the RADIUS Client module is initialized earlier than 
IEEE 802.1X module, as shown in the following code. 
/** 
 * hostapd\hostapd.c: hostapd_setup_bss - Per-BSS setup 
*/ 
static int hostapd_setup_bss(struct hostapd_data *hapd, int first) 
{ 
   …… 
   …… 

 if (wpa_debug_level == MSG_MSGDUMP) 
  conf->radius->msg_dumps = 1; 
 hapd->radius = radius_client_init(hapd, conf->radius); 
 if (hapd->radius == NULL) { 
  wpa_printf(MSG_ERROR, "RADIUS client initialization failed."); 
  return -1; 
 } 
 
 if (hostapd_acl_init(hapd)) { 
  wpa_printf(MSG_ERROR, "ACL initialization failed."); 
  return -1; 
 } 
 if (hostapd_init_wps(hapd, conf)) 
  return -1; 
 
 if (ieee802_1x_init(hapd)) { 
  wpa_printf(MSG_ERROR, "IEEE 802.1X initialization failed."); 
  return -1; 

An investigation into ieee802_1x_receive_auth() as well as its sub function 
ieee_802_1x_decapsulate_radius() clearly shows how the interface variables from 
AAA to EAP work. These interface variables are colored blue in the following code. 
/** 
 *ieee802_1x.c: ieee802_1x_receive_auth - Process RADIUS frames from Authentication Server 
 * @msg: RADIUS response message 
 * @req: RADIUS request message 
 * @shared_secret: RADIUS shared secret 
 * @shared_secret_len: Length of shared_secret in octets 
 * @data: Context data (struct hostapd_data *) 
 * Returns: Processing status 
 */ 
static RadiusRxResult 
ieee802_1x_receive_auth(struct radius_msg *msg, struct radius_msg *req, 
   const u8 *shared_secret, size_t shared_secret_len, 
   void *data) 
{ 
 struct hostapd_data *hapd = data; 
 struct sta_info *sta; 
 u32 session_timeout = 0, termination_action, acct_interim_interval; 
 int session_timeout_set, old_vlanid = 0; 
 struct eapol_state_machine *sm; 
 int override_eapReq = 0; 
 



1 
Method 

80 
 

 
 sm = ieee802_1x_search_radius_identifier(hapd, msg->hdr->identifier); 
 if (sm == NULL) { 
  wpa_printf(MSG_DEBUG, "IEEE 802.1X: Could not find matching " 
      "station for this RADIUS message"); 
  return RADIUS_RX_UNKNOWN; 
 } 
 sta = sm->sta; 
 
 /* RFC 2869, Ch. 5.13: valid Message-Authenticator attribute MUST be 
  * present when packet contains an EAP-Message attribute */ 
 if (msg->hdr->code == RADIUS_CODE_ACCESS_REJECT && 
     radius_msg_get_attr(msg, RADIUS_ATTR_MESSAGE_AUTHENTICATOR, NULL, 
    0) < 0 && 
     radius_msg_get_attr(msg, RADIUS_ATTR_EAP_MESSAGE, NULL, 0) < 0) { 
  wpa_printf(MSG_DEBUG, "Allowing RADIUS Access-Reject without " 
      "Message-Authenticator since it does not include " 
      "EAP-Message"); 
 } else if (radius_msg_verify(msg, shared_secret, shared_secret_len, 
         req, 1)) { 
  printf("Incoming RADIUS packet did not have correct " 
         "Message-Authenticator - dropped\n"); 
  return RADIUS_RX_INVALID_AUTHENTICATOR; 
 } 
 
 if (msg->hdr->code != RADIUS_CODE_ACCESS_ACCEPT && 
     msg->hdr->code != RADIUS_CODE_ACCESS_REJECT && 
     msg->hdr->code != RADIUS_CODE_ACCESS_CHALLENGE) { 
  printf("Unknown RADIUS message code\n"); 
  return RADIUS_RX_UNKNOWN; 
 } 
 
 sm->radius_identifier = -1; 
 wpa_printf(MSG_DEBUG, "RADIUS packet matching with station " MACSTR, 
     MAC2STR(sta->addr)); 
 
 if (sm->last_recv_radius) { 
  radius_msg_free(sm->last_recv_radius); 
  os_free(sm->last_recv_radius); 
 } 
 
 sm->last_recv_radius = msg; 
 
 session_timeout_set = 
  !radius_msg_get_attr_int32(msg, RADIUS_ATTR_SESSION_TIMEOUT, 
        &session_timeout); 
 if (radius_msg_get_attr_int32(msg, RADIUS_ATTR_TERMINATION_ACTION, 
          &termination_action)) 
  termination_action = RADIUS_TERMINATION_ACTION_DEFAULT; 
 
 if (hapd->conf->radius->acct_interim_interval == 0 && 
     msg->hdr->code == RADIUS_CODE_ACCESS_ACCEPT && 
     radius_msg_get_attr_int32(msg, RADIUS_ATTR_ACCT_INTERIM_INTERVAL, 
          &acct_interim_interval) == 0) { 
  if (acct_interim_interval < 60) { 
   hostapd_logger(hapd, sta->addr, 
           HOSTAPD_MODULE_IEEE8021X, 
           HOSTAPD_LEVEL_INFO, 
           "ignored too small " 



2 
Method 

81 
 

           "Acct-Interim-Interval %d", 
           acct_interim_interval); 
  } else 
   sta->acct_interim_interval = acct_interim_interval; 
 } 
 
 
 switch (msg->hdr->code) { 
 case RADIUS_CODE_ACCESS_ACCEPT: 
  if (sta->ssid->dynamic_vlan == DYNAMIC_VLAN_DISABLED) 
   sta->vlan_id = 0; 
  else { 
   old_vlanid = sta->vlan_id; 
   sta->vlan_id = radius_msg_get_vlanid(msg); 
  } 
  if (sta->vlan_id > 0 && 
      hostapd_get_vlan_id_ifname(hapd->conf->vlan, 
            sta->vlan_id)) { 
   hostapd_logger(hapd, sta->addr, 
           HOSTAPD_MODULE_RADIUS, 
           HOSTAPD_LEVEL_INFO, 
           "VLAN ID %d", sta->vlan_id); 
  } else if (sta->ssid->dynamic_vlan == DYNAMIC_VLAN_REQUIRED) { 
   sta->eapol_sm->authFail = TRUE; 
   hostapd_logger(hapd, sta->addr, 
           HOSTAPD_MODULE_IEEE8021X, 
           HOSTAPD_LEVEL_INFO, "authentication " 
           "server did not include required VLAN " 
           "ID in Access-Accept"); 
   break; 
  } 
 
  ap_sta_bind_vlan(hapd, sta, old_vlanid); 
 
  /* RFC 3580, Ch. 3.17 */ 
  if (session_timeout_set && termination_action == 
      RADIUS_TERMINATION_ACTION_RADIUS_REQUEST) { 
   sm->reAuthPeriod = session_timeout; 
  } else if (session_timeout_set) 
   ap_sta_session_timeout(hapd, sta, session_timeout); 
 
  sm->eap_if->aaaSuccess = TRUE; 
  override_eapReq = 1; 
  ieee802_1x_get_keys(hapd, sta, msg, req, shared_secret, 
        shared_secret_len); 
  ieee802_1x_store_radius_class(hapd, sta, msg); 
  ieee802_1x_update_sta_identity(hapd, sta, msg); 
  if (sm->eap_if->eapKeyAvailable && 
      wpa_auth_pmksa_add(sta->wpa_sm, sm->eapol_key_crypt, 
           session_timeout_set ? 
           (int) session_timeout : -1, sm) == 0) { 
   hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_WPA, 
           HOSTAPD_LEVEL_DEBUG, 
           "Added PMKSA cache entry"); 
  } 
  break; 
 case RADIUS_CODE_ACCESS_REJECT: 
  sm->eap_if->aaaFail = TRUE; 
  override_eapReq = 1; 



1 
Method 

82 
 

  break; 
 case RADIUS_CODE_ACCESS_CHALLENGE: 
  sm->eap_if->aaaEapReq = TRUE; 
  if (session_timeout_set) { 
   /* RFC 2869, Ch. 2.3.2; RFC 3580, Ch. 3.17 */ 
   sm->eap_if->aaaMethodTimeout = session_timeout; 
   hostapd_logger(hapd, sm->addr, 
           HOSTAPD_MODULE_IEEE8021X, 
           HOSTAPD_LEVEL_DEBUG, 
           "using EAP timeout of %d seconds (from " 
           "RADIUS)", 
           sm->eap_if->aaaMethodTimeout); 
  } else { 
   /* 
    * Use dynamic retransmission behavior per EAP 
    * specification. 
    */ 
   sm->eap_if->aaaMethodTimeout = 0; 
  } 
  break; 
 } 
 
 ieee802_1x_decapsulate_radius(hapd, sta); 
 if (override_eapReq) 
  sm->eap_if->aaaEapReq = FALSE; 
 
 eapol_auth_step(sm); 
 
 return RADIUS_RX_QUEUED; 
} 
/** 
 *ieee802_1x.c: ieee802_1x_decapsulate_radius – Get EAP from RADIUS frames 
*/ 
static void ieee802_1x_decapsulate_radius(struct hostapd_data *hapd, 
       struct sta_info *sta) 
{ 
 u8 *eap; 
 size_t len; 
 struct eap_hdr *hdr; 
 int eap_type = -1; 
 char buf[64]; 
 struct radius_msg *msg; 
 struct eapol_state_machine *sm = sta->eapol_sm; 
 
 if (sm == NULL || sm->last_recv_radius == NULL) { 
  if (sm) 
   sm->eap_if->aaaEapNoReq = TRUE; 
  return; 
 } 
 
 msg = sm->last_recv_radius; 
 
 eap = radius_msg_get_eap(msg, &len); 
 if (eap == NULL) { 
  /* RFC 3579, Chap. 2.6.3: 
   * RADIUS server SHOULD NOT send Access-Reject/no EAP-Message 
   * attribute */ 
  hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_IEEE8021X, 
          HOSTAPD_LEVEL_WARNING, "could not extract " 



2 
Method 

83 
 

          "EAP-Message from RADIUS message"); 
  sm->eap_if->aaaEapNoReq = TRUE; 
  return; 
 } 
 
 if (len < sizeof(*hdr)) { 
  hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_IEEE8021X, 
          HOSTAPD_LEVEL_WARNING, "too short EAP packet " 
          "received from authentication server"); 
  os_free(eap); 
  sm->eap_if->aaaEapNoReq = TRUE; 
  return; 
 } 
 
 if (len > sizeof(*hdr)) 
  eap_type = eap[sizeof(*hdr)]; 
 
 hdr = (struct eap_hdr *) eap; 
 switch (hdr->code) { 
 case EAP_CODE_REQUEST: 
  if (eap_type >= 0) 
   sm->eap_type_authsrv = eap_type; 
  os_snprintf(buf, sizeof(buf), "EAP-Request-%s (%d)", 
       eap_type >= 0 ? eap_type_text(eap_type) : "??", 
       eap_type); 
  break; 
 case EAP_CODE_RESPONSE: 
  os_snprintf(buf, sizeof(buf), "EAP Response-%s (%d)", 
       eap_type >= 0 ? eap_type_text(eap_type) : "??", 
       eap_type); 
  break; 
 case EAP_CODE_SUCCESS: 
  os_strlcpy(buf, "EAP Success", sizeof(buf)); 
  break; 
 case EAP_CODE_FAILURE: 
  os_strlcpy(buf, "EAP Failure", sizeof(buf)); 
  break; 
 default: 
  os_strlcpy(buf, "unknown EAP code", sizeof(buf)); 
  break; 
 } 
 buf[sizeof(buf) - 1] = '\0'; 
 hostapd_logger(hapd, sta->addr, HOSTAPD_MODULE_IEEE8021X, 
         HOSTAPD_LEVEL_DEBUG, "decapsulated EAP packet (code=%d " 
         "id=%d len=%d) from RADIUS server: %s", 
         hdr->code, hdr->identifier, be_to_host16(hdr->length), 
         buf); 
 sm->eap_if->aaaEapReq = TRUE; 
 
 wpabuf_free(sm->eap_if->aaaEapReqData); 
 sm->eap_if->aaaEapReqData = wpabuf_alloc_ext_data(eap, len); 
} 

To better understand the code, it is necessary to clarify the relationship between 
some basic data structures. The data structures eap_sm (defined in 
\src\eap_server\eap_i.h) and eap_eapol_interface (defined in \src\eap_server\eap.h) 
have already been introduced. For each station there is an eap_sm and an 
eap_eapol_interface. In Section0 we will introduce eapol_state_machine (defined in 



1 
Method 

84 
 

\src\eapol_auth\eapol_auth_sm_i.h), whch holds per-supplicant authenticator state 
machines. This structure contains a pointer to eap_sm as well as a pointer to the 
eap_eapol_interface inside that eap_sm. For each supplicant, there is only one 
EAPOL state machine. Each station’s information is put in a structure sta_info (see 
Error! Reference source not found.). This structure includes a pointer to its EAPOL 
state machine. All sta_info are put in a list, which is stored in the structure hostapd. 
Accordingly the structure hostapd contains all the information necessary for the 
operation of the daemon software. 

The function ieee802_1x_receive_auth() first finds the EAPOL state machine matching 
the RADIUS response. Since sta_info contains the RADIUS message’s identifier, 
ieee802_1x_search_radius_identifier() searches through the sta_info list in hostapd and 
returns the corresponding eapol_state_machine. Both sta_info and eapol_state_machine have 
a pointer referring to each other. Thus we can access the corresponding sta_info after we find 
the correct eapol_state_machine. Next the code will validate the RADIUS message by 
checking the message header as well as by matching this response with the corresponding 
request. After that, it updates the variable last_recv_radius stored in the 
eapol_state_machine; and sets session timeout and acct_interim_interval (The only 
difference between accounting and interim accounting messages is that the interim message 
will override any pending interim accounting updates; while a new accounting message does 
not remove any pending messages [49]). Next the code branches depending upon the header 
code: ACCESS_ACCEPT, ACCESS_CHALLENGE, or ACCESS_REJECT. You can see 
from the code that interface variables are set during this phase. For example, the setting of 
aaaEapKeyData can be seen in the function ieee802_1x_get_keys. A key requirement for 
implementing IEEE 802.1X is to extract the EAP message from the RADIUS frame. This is 
done by ieee802_1x_decapsulate_radius(). This function will also check if the EAP message 
is legal. If everything is OK, then the signal aaaEapReq is set to TRUE and the EAP message 
will be copied to aaaEapReqData. After all the relevant interface variables are set, 
eapol_auth_step() is called to revolve the EAPOL and EAP state machines (the EAP SM is 
also awakened by eapol_auth_step()). 

It is important to note that the structure eap_eapol_interface which stores the 
interface variables resides in eap_sm. However the modification of the interface 
variables from the AAA layer to the EAP layer are made directly by 
eapol_state_machine rather than eap_sm. A pointer to eap_eapol_interface in 
eapol_state_machine helps renew the interface information while keeping the EAP 
module unattached. 

3.2.2 RADIUS Client on Sending 
Before giving the process flowchart, some critical data structure should be 

explained ahead. The structure eapol_authenticator is a global EAPOL authenticator 
data structure stored in the structure hostapd. It contains all the call back functions 
and configuration information needed by the authenticator. The references to the call 
back functions are put in the structure eapol_auth_cb (defined in eapol_auth_sm.h). 
The configuration information is stored in the structure eapol_auth_config (defined in 
eapol_auth_sm.h). 
/** 
 * src\eapol_auth\eapol_auth_sm_i.h: struct eapol_authenticator 
*/ 

struct eapol_authenticator { 
 struct eapol_auth_config conf; 
 struct eapol_auth_cb cb; 



2 
Method 

85 
 

 
 u8 *default_wep_key; 
 u8 default_wep_key_idx; 
}; 
 

Figure 3-10 shows the process flow map for the RADIUS client when sending 
RADIUS frames. The function radius_client_send() is used to transmit a RADIUS 
authentication (RADIUS_AUTH) or accounting (RADIUS_ACCT or 
RADIUS_ACCT_INTERIM) request. After some validation, it retrieves the 
shared_secret and calls radius_msg_finish() to add the attribute 
“Message-Authenticator” to the message, to set msg->hdr->length, and to encrypt the 
whole frame using the MD5 algorithm. After that it calls send() to transmit the frame 
to the authentication server. Note that the local socket is already connected with its 
counterpart in the authentication server due to the call to radius_change_server() 
during the radius_client_init() phase. 

The function radius_client_send() is called by ieee802_1x_encapsulate_radius(), 
whose main job is to prepare an EAP message and itsert it into a RADIUS message. 
The first step is to get the user identity (from the EAP-Response/Identity) by calling 
ieee802_1x_learn_identity(). This user identity will later be used in the attribute 
RADIUS_ATTR_USER_NAME in the RADIUS frame. Next it gets the 
radius_identifier by calling radius_client_get_id() and creates a new RADIUS 
message by calling radius_msg_new(RADIUS_CODE_ACCESS_REQUEST, 
sm->radius_identifier). Next it fills in the various attributes’ values in the message by 
calling radius_msg_add_attr() for USER_NAME, NAS_IP_ADDRESS, 
NAS_IDENTIFIER, CALLED_STATION_ID, CALLING_STATION_ID, and 
CONNECT_INFO; as well as radius_msg_add_attr_int32() for NAS_PORT, 
FRAMED_MTU, and NAS_PORT_TYPE. Then it adds the resulting EAP message 
into the RADIUS frame by calling radius_msg_add_eap(). If this packet is an 
Access-Request reply to the previous Access-Challenge, then it must copy the STATE 
attribute from the previous RADIUS message. This is done by calling 
radius_msg_copy_attr(msg, sm->last_recv_radius, RADIUS_ATTR_STATE). Now 
that the RADIUS frame is ready, it calls radius_client_send() – which was discussed 
in the previoous paragraph. 

The function ieee802_1x_encapsulate_radius() is inside ieee802_1x_aaa_send(). 
During the initialization phase of IEEE 802.1X module, ieee802_1x_init() assigns a 
value to eapol_auth_config (conf) and eapol_auth_cb (cb). Then 
ieee802_1x_aaa_send serves as the aaa_send call back handler for eapol_auth_cb. 
Both eapol_auth_config and eapol_auth_cb are parameters to eapol_auth_init(), 
which initializes hapd->eapol_auth. Although the structure eapol_authenticator is 
part of the contents of the structure hostapd, it is also referenced through a pointer by 
the structure eapol_state_machine. That is how the functions in eapol_auth_cb serve 
as call back functions for EAPOL auth state machines. 

Figure 3-10 shows the relationship between these methods, but it does not 
illustrate the whole process, like who actually calls the call back function aaa_send() 
and when it is called. Moreover it is also important to explore the interface variables 
from the EAP layer to the AAA layer. Thus it is necessary to examine the EAP state 
machine while at the same time looking into one of the EAPOL state machines (in 
this case the Backend Authentication state machine). The Backend Authentication 



1 
Method 

86 
 

state machine serves as a trigger for the EAP state machine by setting the appropriate 
interface variables. Figure 3-11 illustrates the relationship between EAP and EAPOL 
state machines as well as how those interface variables from the EAP layer to the 
AAA layer come into effect. 

 The following code shows how the Backend Authentication state machine transits 
from REQUEST to RESPONSE. 
/** 
 * eapol_sm.c 
*/ 

SM_STEP(BE_AUTH) 
{ 
 … 
 switch (sm->be_auth_state) { 
 … 
 case BE_AUTH_REQUEST: 
  if (sm->eapolEap) 
   SM_ENTER(BE_AUTH, RESPONSE); 
  else if (sm->eap_if->eapReq) 
   SM_ENTER(BE_AUTH, REQUEST); 
  else if (sm->eap_if->eapTimeout) 
   SM_ENTER(BE_AUTH, TIMEOUT); 
  break; 
 … 
 } 
} 
 

 

eapol_auth_cb.aaa_send=ieee802_1x_aaa_send( ) 

hostapd\ ieee802_1x.c: 
ieee802_1x_encapsulate_radius( ) 

src\radius\radius_client.c: 
radius_client_send( ) 

hapd->eapol_auth=eapol_auth_init(&conf, &cb) 

hostapd\ ieee802_1x.c: ieee802_1x_init( )

Figure 3-10. RADIUS Client on Sending AAA Frames 



2 
Method 

87 
 

 Figure 3-11. EAP and EAPOL SMs on Sending AAA Frames 

eapol_sm_step_run() 

restart: 
1 SM_STEP_RUN 

       BE_AUTH 

REQUEST 

RESPONSE: 
eapResp=TRUE 

2 eap_server_sm_step(sm->eap) 

do { 
        SM_STEP_RUN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
while (sm->changed); 

          EAP 

RECEIVED2 

AAA_IDLE: 
aaaEapResp=TRUE 

IDLE2 

AAA_REQUEST: 
eapRespData= 
aaaEapRespData 

3 sm->eapol->cb.aaa_send() 

hostapd\ ieee802_1x.c: handle_eap() 

hostapd\ ieee802_1x.c: handle_eap_response(): 
eapRespData; sm->eapolEap = TRUE 

eloop_register_timeout(0, 0, 
eapol_sm_step_cb, sm, NULL) 

src\eapol_auth\eapol_auth_sm.c: 
eapol_auth_step(sta->eapol_sm) 

hostapd\ ieee802_1x.c: ieee802_1x_receive( ) 



1 
Method 

88 
 

The function ieee802_1x_receive() processes the EAPOL frames from the 
supplicant. To process these frames ieee802_1x_receive() calls handle_eap() if the 
frame contains a 802.1X EAP packet. After this handle_eap() will call 
handle_eap_response() if the EAP code was RESPONSE (which we would expect in 
our scenario). The function handle_eap_response() finds the corresponding EAPOL 
state machine sm from sta_info, copies the EAP message to 
sm->eap_if->eapRespData and sets sm->eapolEap as TRUE. After that 
ieee802_1x_receive() calls eapol_auth_step(sta->eapol_sm) to step the EAPOL state 
machines forward. 

The function eapol_auth_step() is called to advance all the EAPOL state machines 
after any change that could affect their state. Its core is actually eapol_sm_step_run(). 
Since a corresponding eapol_state_machine will exist as long as a supplciant is being 
serviced, and because the eapol_state_machine contains many state machines and 
methods whose work may be time consuming, plus there may be frequent state 
changes, eapol_auth_step() could take a lot of CPU cycles. Accordingly it is 
necessary to run eapol_sm_step_run() with a timeout in order to ensure that other 
potential timeouts and events are processed and to avoid long function call chains. 
The function eapol_sm_step_cb() simply serves as a package for 
eapol_sm_step_run() to get an eloop timeout registration. 

The function eapol_sm_step_run() can be divided into three parts: (1) runs the 
EAPOL state machines; (2) runs the EAP state machine; (3) calls aaa_send(). The 
precondition for this function to march forward is that there is no more change to any 
of the state machines belonging to the current part. So the EAP state machine starts 
running when there is no further alteration of EAPOL state machines. However, if the 
state is changed after the EAP state machine runs, then it must go back to the EAPOL 
part again (Part 1 in Figure 3-11). When the EAP state machine is no longer changing, 
it advances to Part 3, using the call back function aaa_send(). At the beginning of 
Part 1, restart, it first keeps a record of all EAPOL state machines’ status. Then it will 
run all the state machines with AUTH_PAE (the Authenticator PAE state machine) 
running first. Finally, it will compare all the state machines’ status with the record at 
start. If there is any change, it will go back to restart to run those EAPOL state 
machines again. There is a countdown from 100 for “goto restart;” as a precaution 
against infinite loops inside the eloop callback. If 0 is reached, it will exit and return 
to restart through the event loop (eapol_auth_step()). The same process happens in 
Part 2. 

In our scenario, one of the EAPOL state machines, Backend Authenticator state 
machine moves from REQUEST to RESPONSE, since eapolEap was set TRUE by 
handle_eap_response(). In the RESPONSE state, it sets sm->eap_if->eapResp as 
TRUE, which is a trigger for advancing the EAP state machine. Also it sets 
sm->eapolEap as FALSE, which is a trigger for itself. The function goes back to 
restart and finds there is no more change, then it moves to Part 2. Inside the function 
eap_server_sm_step() is a do while loop, so that the EAP state machine will keep 
running until there is no more change to any state machine. Then EAP steps from 
IDLE2 to RECEIVED2. In RECEIVED2 it calls eap_sm_parse() to get respId, 
respMethod, respVendor and respVendorMethod. eap_sm_parse() also sets rxResp 
TRUE if the header code is RESPONSE. rxResp is described in Table 3-4, it indicates 
that the current received packet is an EAP response. The EAP state machine runs 
again and this time it is in the state RECEIVED2. It finds out that sm->rxResp is 



2 
Method 

89 
 

TRUE (set just now) and sm->respId matches with sm->currentId, which means that 
the current EAP response belongs to the current EAP conversation. (respId is the 
identifier from the current EAP response, see Table 3-4; currentId is the identifier of 
the currently outstanding EAP request; see Table 3-3). These two conditions make the 
EAP state machine transit to the state AAA_REQUEST, where it copies eapRespData 
to aaaEapRespData. Then it advances unconditionally to the AAA_IDLE state, where 
sm->eap_if.aaaEapResp is set TRUE. Till now, the EAP state machine has prepared 
aaaEapResp signal and aaaEapRespData. The function will go back to restart again 
and finds there isn’t any change in either Part 1 or Part 2. So it marches to Part 3, 
where the call back aaa_send (ieee802_1x_aaa_send(), see Figure 3-10) is used to 
send the RADIUS message to the authentication server. 

The following code shows the four states of EAP state machine (IDLE2, 
RECEIVED2, AAA_REQUEST, AAA_IDLE) as well as their transitions. 
/** 
 * src\eap.c 
*/ 

SM_STATE(EAP, IDLE2) 
{ 
 SM_ENTRY(EAP, IDLE2); 
 
 sm->eap_if.retransWhile = eap_sm_calculateTimeout( 
  sm, sm->retransCount, sm->eap_if.eapSRTT, sm->eap_if.eapRTTVAR, 
  sm->methodTimeout); 
} 
 
SM_STATE(EAP, RECEIVED2) 
{ 
 SM_ENTRY(EAP, RECEIVED2); 
 
 /* parse rxResp, respId, respMethod */ 
 eap_sm_parseEapResp(sm, sm->eap_if.eapRespData); 
} 
 
SM_STATE(EAP, AAA_REQUEST) 
{ 
 SM_ENTRY(EAP, AAA_REQUEST); 
 
 if (sm->eap_if.eapRespData == NULL) { 
  wpa_printf(MSG_INFO, "EAP: AAA_REQUEST - no eapRespData"); 
  return; 
 } 
 
 /* 
  * if (respMethod == IDENTITY) 
  * aaaIdentity = eapRespData 
  * This is already taken care of by the EAP-Identity method which 
  * stores the identity into sm->identity. 
  */ 
 
 eap_copy_buf(&sm->eap_if.aaaEapRespData, sm->eap_if.eapRespData); 
} 
 
 
 
 



1 
Method 

90 
 

 
 
 
SM_STATE(EAP, AAA_IDLE) 
{ 
 SM_ENTRY(EAP, AAA_IDLE); 
 
 sm->eap_if.aaaFail = FALSE; 
 sm->eap_if.aaaSuccess = FALSE; 
 sm->eap_if.aaaEapReq = FALSE; 
 sm->eap_if.aaaEapNoReq = FALSE; 
 sm->eap_if.aaaEapResp = TRUE; 
} 
 
SM_STEP(EAP) 
{ 
 … 
 case EAP_INITIALIZE_PASSTHROUGH: 
  if (sm->currentId == -1) 
   SM_ENTER(EAP, AAA_IDLE); 
  else 
   SM_ENTER(EAP, AAA_REQUEST); 
  break; 
 … 
 case EAP_IDLE2: 
  if (sm->eap_if.eapResp) 
   SM_ENTER(EAP, RECEIVED2); 
  else if (sm->eap_if.retransWhile == 0) 
   SM_ENTER(EAP, RETRANSMIT2); 
  break; 
 … 
 case EAP_RECEIVED2: 
  if (sm->rxResp && (sm->respId == sm->currentId)) 
   SM_ENTER(EAP, AAA_REQUEST); 
  else 
   SM_ENTER(EAP, DISCARD2); 
  break; 
 … 
 case EAP_AAA_REQUEST: 
  SM_ENTER(EAP, AAA_IDLE); 
  break; 
 … 
} 

It is important to note that the modification to the interface variables from the EAP 
layer to the AAA layer are actually made directly by the EAP layer as a result of the 
direct interaction by the EAPOL layer on the EAP layer. The reference to 
eap_eapol_interface and eapol_authenticator in eapol_state_machine help the 
EAPOL layer invoke call back functions established by the RADIUS Client without 
touching the EAP module. 

In the end of Section 3.2.1 it is mentioned that the modification to the interface 
variables from the AAA layer to the EAP layer were actually made by the direct 
interaction by the AAA layer on the EAPOL state machine. A pointer to the 
eap_eapol_interface from the eapol_state_machine to its true existence in eap_sm 
helps couple the interface information, while decoupling from the EAP module. As a 
result it does not matter the interaction is from the EAP layer to the AAA layer or the 



2 
Method 

91 
 

reverse - “there is not necessarily a direct interaction between the EAP layer and the 
AAA layer, as in the case of 802.1X-2004” [51]. Such a design enables the EAP 
module and AAA module to intact while remaining loosely coupled. Figure 3-12 
shows the relationship between EAP, EAPOL, and AAA during RADIUS receiving 
and sending phases. 

 

3.3 EAPOL Layer 
The EAPOL layer of the full authenticator, whether it is operating in pass-through 

mode or not, is the same as that of a stand-alone authenticator. Thus one can ignore 
the details of the AAA layer in this section. In the prior sections when studying the 
AAA interfaces, the focus was on sending and receiving RADIUS frames. With 
regard to EAPOL interfaces, the focus is sending and receiving EAPOL frames. 
Following the same pattern used in Section 3.2, we will introduce the interface 
variables between EAPOL and EAP first. Their descriptions are based on the 
explanation of EAP stand-alone authenticator in RFC 4137 [51]. 

Error! Reference source not found. shows the interface between the PACP state 
machines and the higher layer for the authenticator PAE. The system sends 
portEnabled signal to both the higher layer and the PACP, indicating that a port is 
active. The PACP transmits EAP messages between the physical port and the higher 
layer. The higher layer of the Authenticator uses eapReq/eapNoReq to disclose when 
it is prepared to receive a new message, and eapResp to hint that a new message is 
available to the higher layer. Inside the higher layer, EAP drives the authentication 
process together with the associated EAP methods. But on completion EAP will take 
its cue from AAA to signal eapSuccess or eapFail to the PACP. All EAP messages 
switched between Supplicant and Authenticator are produced by the EAP component. 

Figure 3-12. SM Relationship on RADIUS Sending & Receiving 

 
 
 
 
 
 
 
 
 
      On RADIUS Sending 

EAP 

EAPOL AAA 

1
2

3

 
 
 
 
 
 
 
 
 
     On RADIUS Receiving 

EAP 

EAPOL AAA 

2 

1 



1 
Method 

92 
 

 

3.3.1 Variables 
The variables used in the EAPOL Interface to the Authenticator are enumerated 

in Table 3-9. The variables used in the reverse direction are shown in Table 3-10. 

Authenticator 

Figure 3-13. Interface between EAP & EAPOL SMs [33] 

eapResp 

802.1X 

Higher Layer 

EAP AAA 

eapReq 
eapFail 
eapSuccess 
eapNoReq 
eapTimeout 

eapRestart 
portEnabled 
disabled 



2 
Method 

93 
 

 
Table 3-9. Variables (EAPOL Interface to Full Authenticator) 

Variable Description 
eapResp (boolean) Set to TRUE in lower layer, FALSE in authenticator 

state machine. Indicates that an EAP response is 
available for processing. 

eapRespData (EAP 
packet) 

Set in lower layer when eapResp is set to TRUE. The 
EAP packet to be processed. 

portEnabled (boolean) Indicates that the EAP authenticator state machine should be 
ready for communication. This is set to TRUE when the EAP 
conversation is started by the lower layer. If at any point the 
communication port or session is not available, portEnabled 
is set to FALSE, and the state machine transitions to 
DISABLED. To avoid unnecessary resets, the lower layer 
may dampen link down indications when it believes that the 
link is only temporarily down and that it will soon be back 
up (see [37] Section 7.12). In this case, portEnabled may not 
always be equal to the "link up" flag of the lower layer. 

retransWhile (integer) Outside timer used to indicate how long the 
authenticator has waited for a new (valid) response. 

eapRestart (boolean) Indicates that the lower layer would like to restart 
authentication. 

eapSRTT (integer) Smoothed round-trip time. (See [37] Section 4.3.) 
eapRTTVAR (integer) Round-trip time variation. (See [37] Section 4.3.) 

Table 3-10. Variables (Full Authenticator Interface to EAPOL) 

Variable Description 
eapNoReq (boolean) Set to TRUE in authenticator state machine, FALSE in 

lower layer. Indicates the most recent response has 
been processed, but there is no new request to send. 

eapSuccess (boolean) Set to TRUE in authenticator state machine, FALSE in 
lower layer. Indicates that the state machine has 
reached the SUCCESS state. 

eapFail (boolean) Set to TRUE in authenticator state machine, FALSE in 
lower layer. Indicates that the state machine has 
reached the FAILURE state. 

eapTimeout (boolean) Set to TRUE in the TIMEOUT_FAILURE state if the 
authenticator has reached its maximum number of 
retransmissions without receiving a response. 

eapReqData (EAP packet) Set in authenticator state machine when eapReq, 
eapSuccess, or eapFail is set to TRUE. The actual EAP 
request to be sent (or success/failure). 

eapKeyData (EAP key) Set in authenticator state machine when keying 
material becomes available. Set during the METHOD 
state. Note that this document does not define the 
structure of the type "EAP key". 

eapKeyAvailable (boolean) Set to TRUE in the SUCCESS state if keying material 
is available. The actual key is stored in eapKeyData. 



1 
Method 

94 
 

3.3.2 How EAPOL functions in hostapd 
The explanation for the EAPOL module in hostapd is divided into three parts: (1) 

Sending EAP Responses to the EAP layer; (2) Receiving EAP Requests from the EAP 
layer; and (3) EAPOL state machines. Part 1 has already been covered in Section 
3.2.2. Part 2 is a succeeding process of RADIUS client receiving, which is covered in 
Section 3.2.1. 

3.3.2.1 EAPOL on receiving an EAP Request 
Error! Reference source not found. shows the remaining process after the AAA 

layer has transmitted the RADIUS response message to the EAP layer. When 
aaaEapReq is set to TRUE and aaaEapReqData assigned by 
ieee802_1x_decapsulate_radius(), then eapol_auth_step() at the end of 
ieee802_1x_receive_auth() will run the EAP state machine since there is no change in 
the EAPOL state machines. The status of the EAP state machine will transition from 
AAA_IDLE to AAA_RESPONSE, where the value of the interface variable 
aaaEapReqData will be copied to eapReqData. Then it will transition to 
SEND_REQUEST2, where it sets eapResp to FALSE and eapReq to TRUE. Both 
eapReq and eapReqData are interface variables from EAP to EAPOL (see Table 
3-10). Next the EAP state machine will transition to IDLE2, where it sets 
retransWhile by calling eap_sm_calculateTimeout() and remains until a timeout. Note 
that retransWhile is an interface variable from EAPOL to EAP (see Table 3-9). The 
duration of eap_sm_calculateTimeout() determines how long the authenticator will 
wait for a valid response. When the EAP state machine is steady, then 
eapol_auth_step() returns to the restart state and tries to run EAPOL state machines. 
However, one machine has changed this time. This is the Backend Authenticator state 
machine, which is in charge of transmitting messages between EAPOL and EAP. The 
Backend Authenticator state machine will enter the REQUEST state from one of the 
following states: IGNORE, IDLE, or RESPONSE. In the REQUEST state, it will send 
an EAP Request frame by calling txReq() and set eapReq to FALSE. Note that 
retransWhile is controlled by eapol_port_timers_tick(). The following code expounds 
the above process of Backend Authenticator state machine. 
/** 
 * eapol_sm.c: struct eapol_authenticator 
*/ 

SM_STEP(BE_AUTH) 
{ 
 if (sm->portControl != Auto || sm->initialize || sm->authAbort) { 
  SM_ENTER_GLOBAL(BE_AUTH, INITIALIZE); 
  return; 
 } 
 
 switch (sm->be_auth_state) { 
 case BE_AUTH_INITIALIZE: 
  SM_ENTER(BE_AUTH, IDLE); 
  break; 
 case BE_AUTH_REQUEST: 
  if (sm->eapolEap) 
   SM_ENTER(BE_AUTH, RESPONSE); 
  else if (sm->eap_if->eapReq) 
   SM_ENTER(BE_AUTH, REQUEST); 
  else if (sm->eap_if->eapTimeout) 



2 
Method 

95 
 

   SM_ENTER(BE_AUTH, TIMEOUT); 
  break; 
 case BE_AUTH_RESPONSE: 
  if (sm->eap_if->eapNoReq) 
   SM_ENTER(BE_AUTH, IGNORE); 
  if (sm->eap_if->eapReq) { 
   sm->backendAccessChallenges++; 
   SM_ENTER(BE_AUTH, REQUEST); 
  } else if (sm->aWhile == 0) 
   SM_ENTER(BE_AUTH, TIMEOUT); 
  else if (sm->eap_if->eapFail) { 
   sm->backendAuthFails++; 
   SM_ENTER(BE_AUTH, FAIL); 
  } else if (sm->eap_if->eapSuccess) { 
   sm->backendAuthSuccesses++; 
   SM_ENTER(BE_AUTH, SUCCESS); 
  } 
  break; 
 case BE_AUTH_SUCCESS: 
  SM_ENTER(BE_AUTH, IDLE); 
  break; 
 case BE_AUTH_FAIL: 
  SM_ENTER(BE_AUTH, IDLE); 
  break; 
 case BE_AUTH_TIMEOUT: 
  SM_ENTER(BE_AUTH, IDLE); 
  break; 
 case BE_AUTH_IDLE: 
  if (sm->eap_if->eapFail && sm->authStart) 
   SM_ENTER(BE_AUTH, FAIL); 
  else if (sm->eap_if->eapReq && sm->authStart) 
   SM_ENTER(BE_AUTH, REQUEST); 
  else if (sm->eap_if->eapSuccess && sm->authStart) 
   SM_ENTER(BE_AUTH, SUCCESS); 
  break; 
 case BE_AUTH_IGNORE: 
  if (sm->eapolEap) 
   SM_ENTER(BE_AUTH, RESPONSE); 
  else if (sm->eap_if->eapReq) 
   SM_ENTER(BE_AUTH, REQUEST); 
  else if (sm->eap_if->eapTimeout) 
   SM_ENTER(BE_AUTH, TIMEOUT); 
  break; 
 } 
} 
 
SM_STATE(BE_AUTH, REQUEST) 
{ 
 SM_ENTRY_MA(BE_AUTH, REQUEST, be_auth); 
 
 txReq(); 
 sm->eap_if->eapReq = FALSE; 
 sm->backendOtherRequestsToSupplicant++; 
 
 /* 
  * Clearing eapolEap here is not specified in IEEE Std 802.1X-2004, but 
  * it looks like this would be logical thing to do there since the old 
  * EAP response would not be valid anymore after the new EAP request 
  * was sent out. 



1 
Method 

96 
 

  * 
  * A race condition has been reported, in which hostapd ended up 
  * sending out EAP-Response/Identity as a response to the first 
  * EAP-Request from the main EAP method. This can be avoided by 
  * clearing eapolEap here. 
  */ 
 sm->eapolEap = FALSE; 
} 
 
SM_STATE(BE_AUTH, RESPONSE) 
{ 
 SM_ENTRY_MA(BE_AUTH, RESPONSE, be_auth); 
 
 sm->authTimeout = FALSE; 
 sm->eapolEap = FALSE; 
 sm->eap_if->eapNoReq = FALSE; 
 sm->aWhile = sm->serverTimeout; 
 sm->eap_if->eapResp = TRUE; 
 /* sendRespToServer(); */ 
 sm->backendResponses++; 
} 
 
SM_STATE(BE_AUTH, IDLE) 
{ 
 SM_ENTRY_MA(BE_AUTH, IDLE, be_auth); 
 
 sm->authStart = FALSE; 
} 
 
 
SM_STATE(BE_AUTH, IGNORE) 
{ 
 SM_ENTRY_MA(BE_AUTH, IGNORE, be_auth); 
 
 sm->eap_if->eapNoReq = FALSE; 
} 



2 
Method 

97 
 

 

hostapd\ ieee802_1x.c: ieee802_1x_decapsulate_radius( ) 
sm->eap_if-> aaaEapReq=TRUE 
sm->eap_if->aaaEapReqData = wpabuf_alloc_ext_data( ) 

eloop_register_timeout(0, 0, eapol_sm_step_cb, sm, NULL) 

src\eapol_auth\eapol_auth_sm.c: eapol_auth_step(sta->eapol_sm) 

hostapd\ ieee802_1x.c: ieee802_1x_receive_auth( ) 

eap_server_sm_step(sm->eap) 

restart: 
SM_STEP_RUN 

     BE_AUTH 

XXX 

REQUEST: 
txReq( ) 

eapReq=FALSE 

src\eapol_auth\eapol_auth_sm.c: 
eapol_port_timers_tick( ) 

do { 
        SM_STEP_RUN 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
} 
while (sm->changed); 

          EAP 

AAA_IDLE 

AAA_RESPONSE: 
eapReqData= 
aaaEapReqData 

SEND_REQUEST2: 
eapResp=FALSE; eapReq=TRUE 

IDLE2: 
retransWhile 

Figure 3-14. EAP & EAPOL SMs on Transmitting EAP Requests 



1 
Method 

98 
 

3.3.2.2 EAPOL State Machines 
Most of the information in this section is based upon IEEE 802.1x Section 8.2. 

You can refer to the standard to dig deeper in specific state machines. Appendix C 
gives the definition of eapol_state_machine in hostapd. We will modify this definition 
later to implement the non-binary authenticator. 

There are 10 different state machines. Table 3-11 lists them out and summarizes 
the requirements of them for implementations that support Authenticator, Supplicant, 
or both. An X mark means it is necessary while an O mark means it is optional. 

Table 3-11. State Machine Support Requirements [33] 

State Machine Authenticator Supplicant Both 
Port Timers state machine       X      X   X 
Authenticator PAE state machine       X    X 
Authenticator Key Transmit state machine       O    O 
Supplicant Key Transmit state machine       O   O 
Reauthentication Timer state machine       X    X 
Backend Authentication state machine       X    X 
Controlled Direction state machine       X    X 
Supplicant PAE state machine       X   X 
Supplicant Backend state machine       X   X 
Key Receive state machine       X      X   X 
 

The rest of this section will focus on the state machines which is necessary for 
Authenticator. For each state machine it gives a brief introduction plus the state 
diagram. For timers and global variables, please refer to IEEE 802.1X Section 8.2.2. 
For local variables, constants and procedures of each state machine, you can refer to 
the corresponding state machine’s explanation in IEEE 802.1X Section 8.2. 

The Port Timers state machine for a given Port is responsible for decrementing the 
timer variables for that Port each second, in response to an external system clock 
function. The timer variables, like retransWhile, are used and set to their initial values 
by the operation of the individual state machines for the Port. 



2 
Method 

99 
 

 
The Authenticator PAE state machine represents the authenticating status of the 

corresponding supplicant, revealing the status of controlled port. It has two separate 
states, FORCE_AUTH and FORCE_UNAUTH, which are described in Figure 3-16 
and Figure 3-17. The rest of the state machine are described in Figure 3-18. 

Figure 3-15. Port Timers State Machine [33] 



1 
Method 

100 
 

  

 
  

 

Figure 3-16. Authenticator PAE State Machine - 1 [33] 

Figure 3-17. Authenticator PAE State Machine - 2 [33] 



2 
Method 

101 
 

 Figure 3-18. Authenticator PAE State Machine - 3 [33]



1 
Method 

102 
 

The Key Receive state machine allows EAPOL-Keys PDUs to be received from 
the Supplicant or Authenticator and processed in accordance with any encryption 
mechanisms being employed by the Authenticator or Supplicant. 

 
The Reauthentication Timer state machine for a given Port is responsible for 

ensuring that periodic reauthentication of the Supplicant takes place, if periodic 
reauthentication is enabled (reAuthEnabled is TRUE). The state machine is held in 
the INITIALIZE state until such a time as the portControl for the Port is Auto, the 
portStatus for the Port becomes Authorized, the port is not being initialized, and 
thereAuthEnabled control is TRUE. The reAuthWhen timer is set to its initial value; 
when it expires, the state machine will then transition to the REAUTHENTICATE 
state, setting the reAuthenticate variable TRUE, and then transitioning back to 
INITIALIZE for a further timer cycle. It is important to note that the Authenticator 
PAE state machine stays in AUTEHTICATED status during the reauthentication 
period until the reauthentication fails. 

Figure 3-19. Key Receive State Machine [33]



2 
Method 

103 
 

 
The Backend Authentication state machine, which represents the authentication 

process, is responsible for transmitting EAP messages between EAPOL and EAP. Its 
use can be found in Section 3.2. Distinguish this Backend Authentication state 
machine from the EAP Backend Authenticator state machine in Figure 3-6. 

Figure 3-16. Reauthentication Timer State Machine [33] 



1 
Method 

104 
 

 
Figure 3-17. Backend Authentication State Machine [33] 



2 
Method 

105 
 

The Controlled Directions state machine for a given Port is responsible for 
ensuring that the value of the OperControlledDirections parameter for the Port 
correctly reflects the current state of the AdminControlledDirections parameter 
coupled with the operational state of the MAC and the presence or absence of a 
Bridge (see IEEE 802.1X Section 6.5) 

If OperControlledDirections is set to IN on a Bridge Port, this allows the Bridge to 
forward frames received from its other Bridge Ports onto that Port, but prevents 
frames received on that Port (including BPDUs) from being processed or forwarded 
by the Bridge. In order to prevent the possibility of configuring inadvertent loops as a 
result of connecting a Bridge to a Bridge Port that is set to IN, 
OperControlledDirections is forced to BOTH if the operEdge variable (see Clause 17 
of IEEE Std 802.1D) for the Port is FALSE. 

 

3.4 EAPOL Sender & Receiver 
This part explains the EAPOL sending and receiving process in hostapd. The 

EAPOL sending process is actually a succeeding process of EAPOL receiving EAP 
request (see Section 3.3.2.1). And the EAPOL receiving process is a pre-action of 
EAPOL sending EAP response (see Section 3.2.2). 

Figure 3-21 shows how hostapd receives EAPOL frames in a top-down manner. 
Structure wpa_driver_ops is defined in src\drivers\driver.h. It defines the API that 
each driver interface needs to implement. Through this wrapper, callback functions 
are called by hostapd for requesting driver operations. All driver specific functionality 
is captured in this wrapper. 

In the fold “drivers”, each file named “driver_xxx” maps to one type of driver. 
Each file also defines the callback functions according to its driver’s character. In the 
end of the file, it will define the wrapper for that driver in the structure 
wpa_driver_ops with name wpa_driver_xxx_ops. In our case, we are using hostap 

Figure 3-18. Controlled Directions State Machine [33] 



1 
Method 

106 
 

driver, thus the interface is named wpa_driver_hostap_ops. Of course, only hostap 
and common parts in structure wpa_driver_ops are assigned value in our case. 

Among various driver operations, one is hostap_init(). It first allocates memory 
for hostapd driver data. Next it tries to open ioctl_sock, which is used for system 
communication. Thirdly it enables hostapd mode for that interface. Finally it calls 
hostap_init_sockets() or hostap_wireless_event_init() if hostap_init_sockets() failed. 

hostap_init_sockets() opens raw packet socket and registers call back handler 
handle_read() for that socket. handle_read() does only two things: receive packets 
from the socket by calling recv() and calls handle_frame() to deal with the frame 
stored in the buf. handle_frame() checks the frame type and sub type as well as frame 
length. After validation, it checks the protocol version. Protocol version 3 indicates 
extra data after the payload, version 2 indicates an ACKed frame (TX callbacks), and 
version 1 indicates a failed frame (no ACK, TX callbacks). If the protocol version is 
not 1, 2 or 3, then the function simply reports the error and returns. If the version 
number is 1 or 2, it calls handle_tx_callback() to deal with the frame. But if protocol 
version is 3, it will first try to get the complete frame and then check the frame type. If 
it is a management frame, wpa_supplicant_event() will be called. If it is a control 
frame, nothing is done. If it is a data frame, handle_data() will be called. 
wpa_supplicant_event() plays a core role in hostapd wireless receiving. It is not only 
called by handle_frame(), but also by handle_tx_callback() and handle_data()(see 
Figure 3-23). 

wpa_supplicant_event() (defined in drv_callbacks.c) reports a driver event for 
wpa_supplicant. The driver wrapper, wpa_driver_hostap_ops (illustrated in Figure 
3-24) calls this function whenever an event is received from the driver. All the events 
are abstracted into wpa_event_data, which is a union defined in driver.h. These events 
are also categorized and their types are enumerated in enum wpa_event_type in 
driver.h. wpa_supplicant_event() handles the event according to the event type. 

In handle_frame(), after the whole frame is collected, if it is a management frame, 
it will be put into event.rx_mgmt.frame and a call will be made to  
wpa_supplicant_event(drv->hapd, EVENT_RX_MGMT, &event). The function 
wpa_supplicant_event() calls hostapd_mgmt_rx() to process the event. 

In handle_tx_callback(), it is already clear if it is a failed or ACKed frame. Thus 
this function assigns an appropriate value to event.tx_status.xxx, and calls 
wpa_supplicant_event(drv->hapd, EVENT_TX_STATUS, &event) directly. 

In handle_frame(), when it is a data frame, the function calls handle_data(). Since 
it is already known to be a 802.11 data frame, the function will check the frame’s 
header first and then processes the contents of the frame. It puts the 802.11 header in 
event.rx_from_unknown.frame and calls wpa_supplicant_event(drv->hapd, 
EVENT_RX_FROM_UNKNOWN, &event). The function wpa_supplicant_event() 
calls hostapd_rx_from_unknown_sta(), which will return if it finds that this message 
is not destined for any of the BSSes in this AP. If it is destined to a BSS on this AP, 
then hostapd_rx_from_unknown_sta() calls ieee802_11_rx_from_unknown() to check 
if the sender is associated or not and disassociates or disauthenticates with it 
accordingly. If everything is ok, then handle_frame() will move the pointer from the 
end of header to the start of body. It calls drv_event_eapol_rx() to deal with an 
ethertype packet, which places the Ethernet frame in event.eapol_rx.xxx and calls 



2 
Method 

107 
 

wpa_supplicant_event(ctx, EVENT_EAPOL_RX, &event). For EVENT_EAPOL_RX, 
hostapd_event_eapol_rx is called, which locates the corresponding BSS for the inter 
face and calls ieee802_1x_receive(). 

Each incoming EAPOL frame from the wireless interface is processed by 
ieee802_1x_receive(struct hostapd_data *hapd, const u8 *sa, const u8 *buf, size_t 
len). The structure hostapd_data is a giant structure containing all the information 
about a BSS. The argument sa is the source address (supplicant) of the EAPOL frame. 
While buf contains the EAPOL frame, len represents the length of buf in octets. Each 
supplicant’s information is stored in a structure sta_info. This structure is initialized 
and assigned during the search phase whenever a supplicant’s existence is sensed by 
the AP. By calling ap_get_sta(hapd, sa), the AP learns which supplicant the EAPOL 
frame belongs to. Next it will check if the station information is available, whether the 
whole 802.1X packet is too short, or if the frame (without the IEEE 802.1X header) is 
too short. After verification, it will update the frame version, WPA or RSN key, and 
increment the total number of EAPOL frames received. If there is no EAPOL state 
machine for the supplicant yet (!sta->eapol_sm), one will be initiated. 

 

hostap_wireless_event_init( ) 

src\drivers\driver_hostap.c: struct wpa_driver_ops wpa_driver_hostap_ops{ 
#ifdef HOSTAPD 
   .hapd_init = hostap_init, 
else 
   .init = wpa_driver_hostap_init,      ...                         } 
} 

handle_frame( ) 

hostapd_wireless_event_rtm_newlink( ) 

hostapd_wireless_event_wireless( ) 

hostapd_wireless_event_wireless_custom( ) 

hostap_init_sockets() 

eloop_register_read_sock(drv->sock, handle_read, drv, NULL) 

handle_tx_callback( )

handle_data( ) 

wpa_supplicant_event( ) 

src\ap\drv_callbacks.c: hostapd_event_eapol_rx() 

hostapd\ieee802_1x.c: ieee802_1x_receive() 

Figure 3-19. EAPOL Receiver 



1 
Method 

108 
 

 
The EAPOL sending process is activated when the Backend Authentication state 

machine transits to REQUEST and calls txReq(). Figure 3-25 shows in a top-down 
manner how hostapd sends EAPOL frames. An explanation is omitted since the figure 
provides sufficient information for our purposes. 

main.c: main() 

drivers.c: struct wpa_driver_ops *wpa_drivers[]={ 
#ifdef CONFIG_DRIVER_HOSTAP 
 &wpa_driver_hostap_ops, 
#endif /* CONFIG_DRIVER_HOSTAP */  …  }

main.c:hostapd_interface_init 

hostap_init: hapd_ iface->config_read_cb= 
hostapd_config_read 

config_file.c: hostapd_config_read: 
conf->driver = wpa_drivers[0]; 

Figure 3-20. wpa_driver_hostap_ops for Initialization 



2 
Method 

109 
 

 

3.5 Non-Binary Authenticator 
Section 3.5.1 is a comprehensive study of the controlled port. Then based upon the 

idea of a controlled port Section 3.5.2 will describe the none-binary authenticator. 

3.5.1 Port Control in hostapd 
In a none-binary authenticator, a new supplicant can enjoy free communication for 

a certain period of time. This means that the controlled port is kept open from the 
initialization of the EAPOL state machines till the free open duration times out. 
Focusing on the key word “port”, it is necessary to answer the following questions 
before continuing: 

1. Which elements can affect the status of the controlled port? 

2. How to organize these elements? (To provide logic control of the port) 

3. What is the real function of a controlled port? 

4. What will happen after the port status changes? 

In IEEE 802.1X, the AuthControlledPortStatus represents the controlled Port’s 
status. This is logically viewed as a switch that can be turned on or off, thus 
permitting or denying the flow of PDUs via that Port. When access is enabled, the 
status value is “authorized”; when it is disabled, its value is “unauthorized”. 

In addition to the AuthControlledPortStatus, an AuthControlledPortControl 
parameter associated with the controlled Port allows administrative control over the 

Figure 3-21. EAPOL Sender 

eapol_auth_sm.c: #define txReq() eapol_auth_tx_req(sm) 

preauth_auth.c: rsn_preauth_send() 

eapol_auth_sm.c: eapol_auth_tx_req() 

sm->eapol->cb.eapol_send() 

ieee802_1x.c: ieee802_1x_eapol_send() 

ieee802_1x_send() hapd->drv.send_eapol() 

12_packet_linux.c: 12_packet_send() 

driver_hostap.c: hostap_send_eapol() 

driver_hostap.c: hostap_send_mlme 



1 
Method 

110 
 

port’s authorization status. This parameter will have one of the values: 
ForceUnauthorized, Auto and ForceAuthorized; where Auto is the default value. 
The relationship between the AuthControlledPortStatus and 
AuthControlledPortControl parameters is: 

a) An AuthControlledPortControl value of ForceUnauthorized forces the 
Authenticator PAE state machine to set the value of AuthControlledPortStatus 
to be unauthorized; i.e., the Controlled Port is unauthorized unconditionally. 

b) An AuthControlledPortControl value of ForceAuthorized forces the 
Authenticator PAE state machine to set the value of AuthControlledPortStatus 
to be authorized; i.e., the Controlled Port is authorized unconditionally. 

c) An AuthControlledPortControl value of Auto allows the Authenticator PAE 
state machine to control the value of AuthControlledPortStatus to reflect the 
outcome of the authentication exchanges between Supplicant PAE, 
Authenticator PAE, and Authentication Server. 

In all three cases, the value of AuthControlledPortStatus directly reflects the 
value of the portStatus variable maintained by the Authenticator and Supplicant PAE 
state machines. Three factors contribute to the value of the portStatus variable: 

a) The authorization state of the Authenticator PAE state machine (assumed to 
be “Authorized” if the state machine is not implemented for that port). 

b) The authorization state of the Supplicant PAE state machine (assumed to be 
“Authorized” if the state machine is not implemented for that port). 

c) The state of the Supplicant Access Control With Authenticator 
administrative control parameter. This parameter has two possible values: 
active and inactive. The default value of this control parameter is inactive; 
support of the active value is optional. The value of this parameter takes 
effect only if both Authenticator PAE and Supplicant PAE state machines are 
implemented for that port. If the value of the parameter is inactive , then the 
portStatus parameter value is determined only by the authorization state of 
the Authenticator PAE state machine. If the value of the parameter is active, 
then the portStatus parameter value is determined by the authorization state 
of both the Authenticator PAE and Supplicant PAE state machines; if either 
state machine is in an unauthorized state, then the value of portStatus is 
unauthorized. 

The value of the AuthControlledPortControl parameter for every port of a System 
can be overridden by means of the SystemAuthControl parameter for the System. 
This parameter has one of the values Enabled or Disabled; its default value is 
Disabled. If SystemAuthControl is set to Enabled, then authentication is enabled for 
the System, and each port’s authorization status is controlled by the value of the port’s 
AuthControlledPortControl parameter. If SystemAuthControl is set to Disabled, then 
all ports behave as if their AuthControlledPortControl parameter is set to 
ForceAuthorized. In effect, setting the SystemAuthControl parameter to Disabled 
causes authentication to be disabled on all ports, and it forces all controlled ports to be 
Authorized. 

Any access to the LAN is subject to the current administrative and operational 
state of the MAC (or logical MAC) associated with the port, in addition to 
AuthControlledPortStatus. If the MAC is physically or administratively inoperable, 
then no protocol exchanges of any kind can take place using that MAC on either the 



2 
Method 

111 
 

controlled or the uncontrolled port. The inoperable state of the MAC has also caused 
the Authenticator PAE to transit the controlled port to the Unauthorized state. 

All the above parameters can directly determine the portStatus. Their relationship 
and impact are listed in the Table 3-12 below: 

Table 3-5. Parameters for portStatus 

Relationship of Parameters Authenticator portStatus Supplicant portStatus 
1 MAC    Disabled Unauthorized        same 
          Enabled    2  
2 SystemAuthControl    Disabled Authorized        same 

  Enabled    3 AuthControlledPortStatus = = portStatus of both 
3 AuthControlledPortControl 

  ForceAuthorized 
 

Authorized 
 
       same 

          ForceUnauthorized Unauthorized        same 
  Auto      4  

4 Supplicant Access Control With 
Authenticator          inactive 

Controlled by the Authenticator PAE state machine 

 
  active 

(authorization state of the Authenticator PAE) 
|| (authorization state of the Supplicant PAE) 

 

Section 6.6.4 of IEEE 802.1X indicates several mechanisms that can result in the 
controlled port state changing to unauthorized: 

a) The authentication exchanges between the Supplicant and the Authentication 
Server can result in failure to authorize the port. 

b) Management controls can prevent the port from being authorized, regardless 
of the credentials of the Supplicant. 

c) The MAC associated with the port can be non-operational for any reason 
(including for hardware failure or administrative reasons). 

d) Connection failure between the Supplicant and the Authenticator can result in 
the Authenticator timing out the authorization state. 

e) Expiry of a reauthentication timer can occur without successful 
reauthorization. 

f) The Supplicant PAE can fail to respond to a request for authentication 
information by the Authenticator PAE. 

g) The Supplicant PAE can issue an explicit logoff request. 

Some of the mechanisms mentioned above are actually duplicates of the 
parameters in Table 3-12. Still, with so many elements affecting the status of the 
controlled port, there should be some logic to organize them. The logic lies in the 
Authenticator PAE state machine, which represents the authentication status of the 
supplicant. 

All the elements and mechanisms above are described as timers and global 
variables in Section 8.2.2 IEEE802.1X, and they are used later to explain the 
performance of PACP state machines as well as interstate-machine communication. A 
comprehensive understanding of them acquaint us with: (1) what effect from outside 
(of the Authenticator PAE state machine) can cause status change of the port; and (2) 
what outside will be affected as a result of port’s status change in the Authenticator 



1 
Method 

112 
 

PAE state machine. Later this will help us modify the Authenticator state machine. 
Timers and global variables related to port are explicitly introduced below. 

Mechanism a) occurs in situation 4 in Table 3-12. This is represented by the 
global variable authFail. Mechanism b) means ForceUnauthorized in situation 3 in 
Table 3-12, which is represented by portControl. Mechanism c) is equal to a disabled 
MAC in situation 1, which is represented by portEnabled. Mechanisms d) and f) 
occur in situation 4 in Table 3-12, and they are represented by the global variables 
authTimeout. Mechanism e) is represented by reAuthenticate and Mechanism g) is 
represented by “eapolLogoff”. Table 3-13 explains port-related global variables and 
timers on the basis of Section 8.2.2 of IEEE802.1X. 

Table 3-13. port-related Global Variables and Timers [51] 

Variable Description 
reAuthWhen A timer used by the Reauthentication Timer state machine to 

determine when reauthentication of the Supplicant takes place. 
The initial value of this timer is reAuthPeriod. 

authAbort This variable is set TRUE by the Authenticator PAE state 
machine in order to signal to the Backend Authentication state 
machine to abort its authentication procedure. Its value is set 
FALSE by the Backend Authentication state machine once the 
authentication procedure has been aborted. 

authFail This variable is set TRUE if the authentication process 
(represented by the Backend Authentication state machine) fails. 
It is set FALSE by the operation of the Authenticator PAE state 
machine, prior to initiating authentication. 

authPortStatus The current authorization state of the Authenticator PAE state 
machine. This variable is set to Unauthorized or Authorized by 
the operation of the state machine. If the Authenticator PAE state 
machine is not implemented, then this variable has the value 
Authorized. 

authStart This variable is set TRUE by the Authenticator PAE state 
machine in order to signal to the Backend Authentication state 
machine to start its authentication procedure. Its value is set 
FALSE by the Backend Authentication state machine once the 
authentication procedure has been started. 

authTimeout This variable is set TRUE if the authentication process 
(represented by the Backend Authentication state machine) fails 
to obtain a response from the Supplicant. The variable may be set 
by management action, or by the operation of a timeout while in 
the AUTHENTICATED state. This variable is set FALSE by the 
operation of the Authenticator PAE state machine. 

authSuccess This variable is set TRUE if the authentication process 
(represented by the Backend Authentication state machine) 
succeeds. It is set FALSE by the operation of the Authenticator 
PAE state machine, prior to initiating authentication. 

eapFail This variable is set TRUE by the higher layer if it determines that 
the authentication has failed. 

eapolEap This variable is set TRUE by an external entity if an EAPOL 



2 
Method 

113 
 

Variable Description 
PDU carrying a Packet Type of EAP-Packet is received. 

eapSuccess This variable is set TRUE by the higher layer if it determines that 
the authentication has been successful. 

eapTimeout This variable is set TRUE by the higher layer if it determines that 
the Supplicant is not responding to requests. 

initialize This variable is externally controlled. When asserted, it forces all 
EAPOL state machines to their initial state. The PACP state 
machines are held in their initial state until initialize is deasserted. 

portControl This variable is derived from the current values of the 
AuthControlledPortControl and SystemAuthControl parameter 
for the port. This variable can take the following values: 

1) ForceUnauthorized. The controlled port is required to be held 
in the Unauthorized state. 

2) ForceAuthorized. The controlled port is required to be held in 
the Authorized state. 

3) Auto. The controlled port is set to the Authorized or 
Unauthorized state in accordance with the outcome of an 
authentication exchange between the Supplicant and the 
Authentication Server. If SystemAuthControl is set to Enabled, 
then portControl directly reflects the value of the 
AuthControlledPortControl parameter. If SystemAuthControl is 
set to Disabled, then the value of portControl is ForceAuthorized. 

portEnabled This variable is externally controlled. Its value reflects the 
operational state of the MAC service supporting the port. Its 
value is TRUE if the MAC service supporting the port is in an 
operable condition (see 6.4), and it is otherwise FALSE. Both the 
PAE state machine and the higher layer should be in sync at 
initialization time. Thus portEnabled is set true together with 
EAPOL state machine’s inialization 
(sta->eapol_sm->eap_if->portEnabled = TRUE , see 
ieee802_1x_receive()). The higher layer is expected to initialize 
itself when this signal becomes true. The higher layer is expected 
to reset eapSuccess and eapFail when portEnabled is initially set 
true. 

portStatus The current authorization state of the controlled port. This 
variable is set to Unauthorized or Authorized by the operation of 
the PAE state machines. The value of portStatus directly 
determines the value of the AuthControlledPortStatus parameter 
for the port. The value of portStatus is determined from the 
values of authPortStatus, suppPortStatus, and the Supplicant 
Access Control With Authenticator administrative control 
parameter, as follows: 
1) If both Supplicant PAE and Authenticator PAE state machines 
are implemented for the port, and the value of the Supplicant 
Access Control With Authenticator administrative control 
parameter is inactive, then the value of portStatus directly reflects 



1 
Method 

114 
 

Variable Description 
the value of authPortStatus. Otherwise: 
2) If the value of either authPortStatus or suppPortStatus is 
Unauthorized, then the value of portStatus is Unauthorized. 
Otherwise: 
3) If the values of authPortStatus and suppPortStatus are both 
Authorized, then the value of portStatus is Authorized. 

reAuthenticate This variable is set TRUE by the Reauthentication Timer state 
machine on expiry of the reAuthWhen timer. This variable may 
also be set TRUE by management action. It is set FALSE by the 
operation of the Authenticator PAE state machine. 
Reauthentication may not begin immediately. The Authenticator 
does not interrupt the current authentication, but instead waits for 
it to complete before beginning a new authentication. Only one 
pending reauthentication will be tracked. 

 

Question 1 and 2 have already been answered. Actually their explanations are 
directly from IEEE 802.1X. But question 3 and 4 are implementation dependent. 

The standard states that the port is controlled like a tap and there should be no data 
flow if it is unauthorized. In hostapd, the parameter portStatus is just a symbol that 
only helps the Authenticator PAE state machine to execute. There is no real port or 
filtering functions. In short, everything in hostapd is part of the logic of port control. 
The intrinsic port and the control functions are in the hostap driver. 

Nevertheless, there is a connection between the port in hostapd and the real port in 
the hostap driver. This coupling is used whenever portStatus is changed. This 
connection is the answer to question 4. Figure 3-26 shows the functions’ flow along 
this connection. Although this figure considers “Authorized” as an example, the flow 
of “Unauthorized” is the same. The connection ends by calling ioctl() to send signals 
to the driver. 



2 
Method 

115 
 

 
It is not necessary to consider how the real port is implemented or how the traffic 

filter is done, as long as we know that the driver will handle it and we know how to 
inform the driver to do it. The reason for putting port control and traffic filtering in 
the driver is it takes too much time and requires unnecessary communication between 
kernel and user space if they are implemented in the user space. If the controlled port 
was implemented in user space, then all the traffic would need to travel through the 

eapol_auth_sm.c: sm->authPortStatus=Authorized 

ap_driver_ops.c: hostapd_sta_set_flags() 

eapol_auth_sm.c: setPortAuthorized() 

ieee802_1x.c: ieee802_1x_set_port_authorized() 

ieee802_1x.c: ieee802_1x_set_sta_authorized() 

ieee802_1x.c: hapd->drv.set_authorized() 

driver.h: wpa_driver_ops 

hapd->driver->sta_set_flags() 

driver_hostap.c: hostapd_ioctl() 

hostapd.h: struct hostapd_driver_ops {int (*set_authorized)} 

ap_driver_ops.c: hostapd_set_driver_ops { 
ops->set_authorized = hostapd_set_authorized;} 

ioctl(drv->ioctl_sock, PRISM2_IOCTL_HOSTAPD, &iwr) 

Figure 3-22. After portStatus Change 



1 
Method 

116 
 

kernel and network stack to the user space where the traffic is finally discarded or 
redirected. Thus the implementation of the port should be located as close to the 
hardware as possible. The port should be turned off when the supplicant is first 
discovered. hostapd deals with 802.11 management and 802.1X authentication frames 
once the link layer becomes active (see wpa_supplicant_event()). Hostap driver never 
transmits normal data frames to hostapd. 

3.5.2 Modification of the Authenticator PAE State Machine 
The primary difference between the traditional AP and the non-binary AP is that, 

the non-binary AP starts authentication with the controlled port open for a period of 
time. If the supplicant is still not authorized by the time this period expires, then the 
port will be closed and subsequent authentication will be the same as for IEEE 
802.1X. No matter before or after the free open period, the EAP authentication 
process itself does not change. Therefore the changes should be to the control logic of 
the port - the Authenticator PAE state machine. 

In the new Authenticator PAE state machine, the parameter AuthPortStatus does 
not change. It is still either Authorized or Unauthorized. Additionally, it is 
unnecessary to modify the intrinsic port and the control functionalities in the hostap 
driver. Accordingly what happens after the status change of a port remains the same. 
The elements affecting PortStatus also remains the same. However, there is a new 
element “freeTimeout” added to the Authenticator PAE state machine, which 
represents expiration of the initial free open time. 

As was mentioned, the whole authentication process will be the same as 802.1X 
after the free open period expires. Thus it is necessary to preserve all the PACP state 
machines listed in Section 3.3.2. According to the analysis above, all the state 
machines remain the same except for the Authenticator PAE state machine. 

Although the authentication process (represented by the Backend Authentication 
state machine) and the authentication status (represented by the Authenticator PAE 
state machine) are separated, the Authenticator PAE state machine (see Figure 3-16, 
3-17 and 3-18) still has to be synchronized with the Backend Authentication state 
machine as well as other PACP state machines. Thus it is impossible to set the port 
ForceAuthorized in the Authenticator PAE state machine while letting the 
authentication process go on in the Backend Authentication state machine during free 
open period. As can be seen in Figure 3-16, FORCE_AUTH is a separate state. 

Another design is to add two new states: FREE_DISCONNECTED and 
FREE_HELD. These two states are clones of DISCONNECTED and HELD except 
that “authPortStatus = authorized” in both of them. The INITIALIZE state 
unconditionally transits to FREE_DISCONNECTED, where authPortStatus is set 
authorized and freeTimeout is assigned. These clones have exactly the same 
relationship with other states (except their original ones) as their original ones, which 
means that the transitioning logic of authPortStatus in the free open time is identical 
to the traditional system except that the port stays authorized regardless of the 
authentication result. In order to differentiate the clones from original states, 
freeTimeout serves as the indicator. If it is not zero, then the states that originally 
transitted to DISCONNECTED will go to FREE_DISCONNECTED and those states 
that originally transited to HELD will go to FREE_HELD. When freeTimeout 
becomes zero, any other state except AUTHENTICATED should transit to 



2 
Method 

117 
 

DISCONNECTED unconditionally. However, collisions come after the free open 
period when freeTimeout keeps zero, since other states cannot decide if they should 
advance normally or transit to DISCONNECTED unconditionally. 

My solution is to introduce a complete colon of the Authenticator PAE state 
machine, which serves specifically for the free open authentication period. All states 
in the colon have the prefix “FREE_” added to their original names. The 
modifications are: 

1. In FREE_DISCONNECTED, authPortStatus = Authorized; freeTimeout is 
set; a script can be called to use IPTable to shape the traffic of the supplicant. 

2. In FREE_HELD and FREE_AUTHENTICATED, authPortStatus is left 
untouched; 

3. The INITIALIZE state moves from the original state machine to the clone; it 
serves as a kick start for the clone state machine -- as well as the whole 
authentication process. 

4. A new state FREE_ENDING replaces the INITIALIZE state in the original 
state machine. In this state, eapolLogoff is set TRUE and it transits 
unconditionally to the state ABORTING. 

5. When freeTimeout becomes zero, any state in the clone should transit to 
FREE_ENDING except for INITIALIZE, FREE_DISCONNECTED and 
FREE_AUTHENTICATED. In this case, FREE_AUTHENTICATED 
transits to AUTHENTICATED. FREE_DISCONNECTED still transits 
unditionally to FREE_RESTART. 

Figure 3-27 and Figure 3-28 shows the new Authenticator PAE state machine for 
the non-binary authenticator. 



1 
Method 

118 
 

 
Figure 3-27. non-binary Authenticator PAE state machine - 1 



2 
Method 

119 
 

 
When freeTimeout is zero, it is unnecessary to remember the current state of the 

clone by transitting to its counterpart in the original state machine in order to avoid a 
discontinuity in the authentication progress, because it has been given long enough to 
carry out a legitimate authentication. 

Figure 3-28. non-binary Authenticator PAE state machine - 2 



1 
Method 

120 
 

Also when freeTimeout becomes zero, the system is not supposed to transit to 
DISCONNECTED simply to make authPortStatus Unauthorized. The Authenticator 
PAE must firstly inform the Backend Authentication state machine to terminate the 
authentication procedure in order to be synchronized for RESTART. Thus the state 
machine should transit to ABORTING rather than DISCONNCTED. However, exit 
from ABORING to DISCONNECTED requires EAPOL-Logoff to be TRUE. 
Otherwise it will transit to RESTART where the authPortStatus remains authorized. 
So a new state FREE_ENDING is added which sets the variable eapolLogoff FALSE. 
Sequentially an EAPOL-Logoff causes a transition from FREE_ENDING to 
ABORING. In ABORTING, authAbort is set TRUE to signal to the Backend 
Authentication state machine that it should terminate the current authentication 
procedure. Once the termination is confirmed, the Backend Authentication state 
machine sets authAbort to FALSE, then it transits to DISCONNECTED. In this case, 
the port state is forced to Unauthorized and the whole system is successfully 
synchronized before moving unconditionally to RESTART. In RESTART, the 
Authenticator PAE informs the higher layer that it has restarted by setting the variable 
eapRestart TRUE. EAP will acknowledge the restart by resetting eapRestart to 
FALSE and the Authenticator PAE will advance to CONNECTING as a result. 

Appendix B shows the code of the original Authenticator PAE state machine. The 
following code shows the modification to eapol_state_machine, new Authenticator 
PAE state machine as well as Port Timers state machine. 
/** 
 * src\eapol_auth\eapol_auth_sm_i.h : 
 * struct eapol_state_machine - Per-Supplicant Authenticator state machines 
*/ 
struct eapol_state_machine { 
 /* timers */ 
 … 
 /* a new timer */ 
 int freeTimeout; 
 /* global variables */ 
 … 
 /* Port Timers state machine */ 
 /* 'Boolean tick' implicitly handled as registered timeout */ 
 
 /* Authenticator PAE state machine */ 
 enum {  
     /* new states with prefix FREE_ */  
     AUTH_PAE_FREE_DISCONNECTED, AUTH_PAE_FREE_CONNECTING, 
     AUTH_PAE_FREE_AUTHENTICATING, AUTH_PAE_FREE_AUTHENTICATED, 
     AUTH_PAE_FREE_ABORTING, AUTH_PAE_FREE_HELD, 

 AUTH_PAE_FREE_RESTART, AUTH_PAE_FREE_ENDING, 
        …} auth_pae_state; 
 /* variables */ 
 … 
 /* constants */ 
 … 
#define AUTH_PAE_DEFAULT_quietPeriod 60 
 unsigned int reAuthMax; /* default 2 */ 
/* new timeout value for freeTimeout */ 
#define AUTH_PAE_DEFAULT_freeTimeout 90 
#define AUTH_PAE_DEFAULT_reAuthMax 2 
 /* counters */ 



2 
Method 

121 
 

 … 
}; 
 
#endif /* EAPOL_AUTH_SM_I_H */ 
 
/** 
 * src\eapol_auth\eapol_auth_sm.c: 
* eapol_port_timers_tick - Port Timers state machine 

 * @eloop_ctx: struct eapol_state_machine * 
 * @timeout_ctx: Not used 
 * 
 * This statemachine is implemented as a function that will be called 
 * once a second as a registered event loop timeout. 
 */ 
static void eapol_port_timers_tick(void *eloop_ctx, void *timeout_ctx) 
{ 
 struct eapol_state_machine *state = timeout_ctx; 
 
 if (state->freeTimeout > 0) { 
  state-> freeTimeout --; 
  if (state->aWhile == 0) { 
   wpa_printf(MSG_DEBUG, "non-binary AP: " MACSTR 
       " - freeTimeout --> 0", 
       MAC2STR(state->addr)); 
  } 
 } 
 
 if (state->aWhile > 0) { 
  state->aWhile--; 
  if (state->aWhile == 0) { 
   wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR 
       " - aWhile --> 0", 
       MAC2STR(state->addr)); 
  } 
 } 
 
 if (state->quietWhile > 0) { 
  state->quietWhile--; 
  if (state->quietWhile == 0) { 
   wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR 
       " - quietWhile --> 0", 
       MAC2STR(state->addr)); 
  } 
 } 
 
 if (state->reAuthWhen > 0) { 
  state->reAuthWhen--; 
  if (state->reAuthWhen == 0) { 
   wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR 
       " - reAuthWhen --> 0", 
       MAC2STR(state->addr)); 
  } 
 } 
 
 if (state->eap_if->retransWhile > 0) { 
  state->eap_if->retransWhile--; 
  if (state->eap_if->retransWhile == 0) { 
   wpa_printf(MSG_DEBUG, "IEEE 802.1X: " MACSTR 
       " - (EAP) retransWhile --> 0", 



1 
Method 

122 
 

       MAC2STR(state->addr)); 
  } 
 } 
 
 eapol_sm_step_run(state); 
 
 eloop_register_timeout(1, 0, eapol_port_timers_tick, eloop_ctx, state); 
} 
 
/** 
 * src\eapol_auth\eapol_auth_sm.c : New Authenticator PAE state machine 
*/ 

 
/* clone part */ 
 
SM_STATE(AUTH_PAE, FREE_DISCONNECTED) 
{ 
 int from_initialize = sm->auth_pae_state == AUTH_PAE_INITIALIZE; 
 
 if (sm->eapolLogoff) { 
  if (sm->auth_pae_state == AUTH_PAE_FREE_CONNECTING) 
   sm->authEapLogoffsWhileConnecting++; 
  else if (sm->auth_pae_state == AUTH_PAE_FREE_AUTHENTICATED) 
   sm->authAuthEapLogoffWhileAuthenticated++; 
 } 
 
 SM_ENTRY_MA(AUTH_PAE, FREE_DISCONNECTED, auth_pae); 
 
 if (sm->authPortStatus != Authorized) { 
  sm->authPortStatus = Authorized; 
  setPortAuthorized(); 

} 
 sm->freeTimeout = AUTH_PAE_DEFAULT_FreeTimeout; 
 sm->reAuthCount = 0; 
 sm->eapolLogoff = FALSE; 
 

/*  
* script to call IPTable 
* for traffic shaping 
*/ 

 
 if (!from_initialize) { 
  sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 0, 
           sm->flags & EAPOL_SM_PREAUTH); 
 } 
} 
 
 
SM_STATE(AUTH_PAE, FREE_RESTART) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_FREE_AUTHENTICATED) { 
  if (sm->reAuthenticate) 
   sm->authAuthReauthsWhileAuthenticated++; 
  if (sm->eapolStart) 
   sm->authAuthEapStartsWhileAuthenticated++; 
  if (sm->eapolLogoff) 
   sm->authAuthEapLogoffWhileAuthenticated++; 
 } 
 



2 
Method 

123 
 

 SM_ENTRY_MA(AUTH_PAE, FREE_RESTART, auth_pae); 
 
 sm->eap_if->eapRestart = TRUE; 
} 
 
 
SM_STATE(AUTH_PAE, FREE_CONNECTING) 
{ 
 if (sm->auth_pae_state != AUTH_PAE_FREE_CONNECTING) 
  sm->authEntersConnecting++; 
 
 SM_ENTRY_MA(AUTH_PAE, FREE_CONNECTING, auth_pae); 
 
 sm->reAuthenticate = FALSE; 
 sm->reAuthCount++; 
} 
 
 
SM_STATE(AUTH_PAE, FREE_HELD) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_FREE_AUTHENTICATING && sm->authFail) 
  sm->authAuthFailWhileAuthenticating++; 
 
 SM_ENTRY_MA(AUTH_PAE, FREE_HELD, auth_pae); 
   /** obsolete 

*sm->authPortStatus = Authorized; 
 *setPortAuthorized(); 
 */ 

sm->quietWhile = sm->quietPeriod; 
 sm->eapolLogoff = FALSE; 
 
 eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_WARNING, 
      "authentication failed - EAP type: %d (%s)", 
      sm->eap_type_authsrv, 
      eap_server_get_name(0, sm->eap_type_authsrv)); 
 if (sm->eap_type_authsrv != sm->eap_type_supp) { 
  eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO, 
       "Supplicant used different EAP type: " 
       "%d (%s)", sm->eap_type_supp, 
       eap_server_get_name(0, sm->eap_type_supp)); 
 } 
 sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 0, 
          sm->flags & EAPOL_SM_PREAUTH); 
} 
 
 
SM_STATE(AUTH_PAE, FREE_AUTHENTICATED) 
{ 
 char *extra = ""; 
 
 if (sm->auth_pae_state == AUTH_PAE_FREE_AUTHENTICATING && sm->authSuccess) 
  sm->authAuthSuccessesWhileAuthenticating++; 
        
 SM_ENTRY_MA(AUTH_PAE, FREE_AUTHENTICATED, auth_pae); 
 
   /** obsolete 

*sm->authPortStatus = Authorized; 
 *setPortAuthorized(); 
 */ 



1 
Method 

124 
 

 sm->reAuthCount = 0; 
 if (sm->flags & EAPOL_SM_PREAUTH) 
  extra = " (pre-authentication)"; 
 else if (sm->flags & EAPOL_SM_FROM_PMKSA_CACHE) 
  extra = " (PMKSA cache)"; 
 eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO, 
      "authenticated - EAP type: %d (%s)%s", 
      sm->eap_type_authsrv, 
      eap_server_get_name(0, sm->eap_type_authsrv), 
      extra); 
 sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 1, 
          sm->flags & EAPOL_SM_PREAUTH); 
} 
 
 
SM_STATE(AUTH_PAE, FREE_AUTHENTICATING) 
{ 
 SM_ENTRY_MA(AUTH_PAE, FREE_AUTHENTICATING, auth_pae); 
 
 sm->eapolStart = FALSE; 
 sm->authSuccess = FALSE; 
 sm->authFail = FALSE; 
 sm->authTimeout = FALSE; 
 sm->authStart = TRUE; 
 sm->keyRun = FALSE; 
 sm->keyDone = FALSE; 
} 
 
 
SM_STATE(AUTH_PAE, FREE_ABORTING) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_FREE_AUTHENTICATING) { 
  if (sm->authTimeout) 
   sm->authAuthTimeoutsWhileAuthenticating++; 
  if (sm->eapolStart) 
   sm->authAuthEapStartsWhileAuthenticating++; 
  if (sm->eapolLogoff) 
   sm->authAuthEapLogoffWhileAuthenticating++; 
 } 
 
 SM_ENTRY_MA(AUTH_PAE, FREE_ABORTING, auth_pae); 
 
 sm->authAbort = TRUE; 
 sm->keyRun = FALSE; 
 sm->keyDone = FALSE; 
} 
 
SM_STATE(AUTH_PAE, FREE_ENDING) 
{ 
 SM_ENTRY_MA(AUTH_PAE, FREE_ENDING, auth_pae); 
 sm->eapolLogoff = TRUE; 
} 
 
/* orignial part */ 
 
SM_STATE(AUTH_PAE, FORCE_AUTH) 
{ 
 ... 
} 



2 
Method 

125 
 

 



1 
Method 

126 
 

 
SM_STATE(AUTH_PAE, FORCE_UNAUTH) 
{ 
 ... 
} 
 
SM_STATE(AUTH_PAE, INITIALIZE) 
{ 
 ... 
} 
 
SM_STATE(AUTH_PAE, DISCONNECTED) 
{ 
 ... 
} 
 
SM_STATE(AUTH_PAE, RESTART) 
{ 
 ... 
} 
 
 
SM_STATE(AUTH_PAE, CONNECTING) 
{ 
 ... 
} 
 
 
SM_STATE(AUTH_PAE, HELD) 
{ 
 ... 
} 
 
 
SM_STATE(AUTH_PAE, AUTHENTICATED) 
{  
 char *extra = ""; 
 
 if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATING && sm->authSuccess) 
  sm->authAuthSuccessesWhileAuthenticating++; 
        
 SM_ENTRY_MA(AUTH_PAE, AUTHENTICATED, auth_pae); 
 
 if (sm->authPortStatus != Authorized) { 
  sm->authPortStatus = Authorized; 
  setPortAuthorized(); 

} 
 sm->reAuthCount = 0; 
 if (sm->flags & EAPOL_SM_PREAUTH) 
  extra = " (pre-authentication)"; 
 else if (sm->flags & EAPOL_SM_FROM_PMKSA_CACHE) 
  extra = " (PMKSA cache)"; 
 eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO, 
      "authenticated - EAP type: %d (%s)%s", 
      sm->eap_type_authsrv, 
      eap_server_get_name(0, sm->eap_type_authsrv), 
      extra); 
 sm->eapol->cb.finished(sm->eapol->conf.ctx, sm->sta, 1, 
          sm->flags & EAPOL_SM_PREAUTH); 



2 
Method 

127 
 

} 
SM_STATE(AUTH_PAE, AUTHENTICATING) 
{ 
 ... 
} 
 
SM_STATE(AUTH_PAE, ABORTING) 
{ 
 ... 
} 
 
SM_STEP(AUTH_PAE) 
{ 
 if ((sm->portControl == Auto && sm->portMode != sm->portControl) || 
     sm->initialize || !sm->eap_if->portEnabled) 
  SM_ENTER_GLOBAL(AUTH_PAE, INITIALIZE); 
 else if (sm->portControl == ForceAuthorized && 
   sm->portMode != sm->portControl && 
   !(sm->initialize || !sm->eap_if->portEnabled)) 
  SM_ENTER_GLOBAL(AUTH_PAE, FORCE_AUTH); 
 else if (sm->portControl == ForceUnauthorized && 
   sm->portMode != sm->portControl && 
   !(sm->initialize || !sm->eap_if->portEnabled)) 
  SM_ENTER_GLOBAL(AUTH_PAE, FORCE_UNAUTH); 
 else { 
  switch (sm->auth_pae_state) { 
  case AUTH_PAE_INITIALIZE: 
   SM_ENTER(AUTH_PAE, FREE_DISCONNECTED); 
   break; 
  case AUTH_PAE_FREE_DISCONNECTED: 
   SM_ENTER(AUTH_PAE, FREE_RESTART); 
   break; 
  case AUTH_PAE_FREE_RESTART: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, FREE_ENDING); 
    break; 
   } 
   if (!sm->eap_if->eapRestart) 
    SM_ENTER(AUTH_PAE, FREE_CONNECTING); 
   break; 
  case AUTH_PAE_FREE_HELD: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, FREE_ENDING); 
    break; 
   } 
   if (sm->quietWhile == 0) 
    SM_ENTER(AUTH_PAE, FREE_RESTART); 
   break; 
  case AUTH_PAE_FREE_CONNECTING: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, FREE_ENDING); 
    break; 
   } 
   if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax) 
    SM_ENTER(AUTH_PAE, FREE_DISCONNECTED); 
   else if ((sm->eap_if->eapReq && 
      sm->reAuthCount <= sm->reAuthMax) || 
     sm->eap_if->eapSuccess || sm->eap_if->eapFail) 
    SM_ENTER(AUTH_PAE, FREE_AUTHENTICATING); 



1 
Method 

128 
 

   break; 
  case AUTH_PAE_FREE_AUTHENTICATED: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, AUTHENTICATED); 
    break; 
   } 
   if (sm->eapolStart || sm->reAuthenticate) 
    SM_ENTER(AUTH_PAE, FREE_RESTART); 
   else if (sm->eapolLogoff || !sm->portValid) 
    SM_ENTER(AUTH_PAE, FREE_DISCONNECTED); 
   break; 
  case AUTH_PAE_FREE_AUTHENTICATING: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, FREE_ENDING); 
    break; 
   } 
   if (sm->authSuccess && sm->portValid) 
    SM_ENTER(AUTH_PAE, FREE_AUTHENTICATED); 
   else if (sm->authFail || 
     (sm->keyDone && !sm->portValid)) 
    SM_ENTER(AUTH_PAE, FREE_HELD); 
   else if (sm->eapolStart || sm->eapolLogoff || 
     sm->authTimeout) 
    SM_ENTER(AUTH_PAE, FREE_ABORTING); 
   break; 
  case AUTH_PAE_FREE_ABORTING: 
   if (sm->freeTimeout == 0) { 
    SM_ENTER(AUTH_PAE, FREE_ENDING); 
    break; 
   } 
   if (sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, FREE_DISCONNECTED); 
   else if (!sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, FREE_RESTART); 
   break; 
  case AUTH_PAE_FREE_ENDING: 
   SM_ENTER(AUTH_PAE, ABORTING); 
   break; 
  case AUTH_PAE_DISCONNECTED: 
   SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_RESTART: 
   if (!sm->eap_if->eapRestart) 
    SM_ENTER(AUTH_PAE, CONNECTING); 
   break; 
  case AUTH_PAE_HELD: 
   if (sm->quietWhile == 0) 
    SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_CONNECTING: 
   if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   else if ((sm->eap_if->eapReq && 
      sm->reAuthCount <= sm->reAuthMax) || 
     sm->eap_if->eapSuccess || sm->eap_if->eapFail) 
    SM_ENTER(AUTH_PAE, AUTHENTICATING); 
   break; 
  case AUTH_PAE_AUTHENTICATED: 
   if (sm->eapolStart || sm->reAuthenticate) 



2 
Method 

129 
 

    SM_ENTER(AUTH_PAE, RESTART); 
   else if (sm->eapolLogoff || !sm->portValid) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   break; 
  case AUTH_PAE_AUTHENTICATING: 
   if (sm->authSuccess && sm->portValid) 
    SM_ENTER(AUTH_PAE, AUTHENTICATED); 
   else if (sm->authFail || 
     (sm->keyDone && !sm->portValid)) 
    SM_ENTER(AUTH_PAE, HELD); 
   else if (sm->eapolStart || sm->eapolLogoff || 
     sm->authTimeout) 
    SM_ENTER(AUTH_PAE, ABORTING); 
   break; 
  case AUTH_PAE_ABORTING: 
   if (sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   else if (!sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_FORCE_AUTH: 
   if (sm->eapolStart) 
    SM_ENTER(AUTH_PAE, FORCE_AUTH); 
   break; 
  case AUTH_PAE_FORCE_UNAUTH: 
   if (sm->eapolStart) 
    SM_ENTER(AUTH_PAE, FORCE_UNAUTH); 
   break; 
  } 
 } 
} 

3.6 Another Method by Using Linux Firewall 
Another thought of implementing none binary authenticator is to utilize Linux firewall 

system – netfilter. In this scenario, port control is completely disabled. Thus it relies on 
netfilter to do user access control. In the incoming hook, functions can be created to 
differentiate authentication packets from normal packets. In the local hook, functions can be 
made to pass authentication packets to the RADIUS client. There is a white list for legitimate 
users, a black list keeps track of malicious supplcants, and an on-going list is used to keep 
track of user addresses that are being authenticated. A new match function can be made to 
differentiate packets whose source addresses are not found in any of the above lists as coming 
from new supplicants. IPSet is used to set a timer for each new IP (corresponding to a new 
supplciant). IPTable is used for traffic filtering if the supplicant fails authentication. 

The problem is, if there is no 802.1X context sensed by the supplicant, it would 
treat its own port as ForceAuthorized, which means that 802.1X and EAP state 
machines stop working. However, in this scenario, although without port control, 
EAP state machines are needed for both the supplicant and AP. Thus it is necessary 
for AP to write a new target function that send out the first 802.1X start message 
when it detects a new supplicant. So a simplified scenario could be: 

1. Write a new match that finds out new MAC addresses. 

2. Write a new target that sends out the first 802.1X start. 

3. IPSet helps automate steps 1 and 2. If 1 is matched, then go to step 2, with an 



1 
Method 

130 
 

upper time limit. 

4. If the timer expired, put that user into the black list. 

For hook functions, match and target, IPTable, and IPSet refer to Section 2.4, 2.5 
and 2.6. For questions regarding Linux kernel, please refer to “Hacking the Linux 
Kernel Network Stack” [14]. 

To enhance this system, state machines are needed to handle various time out 
events, direction control issues, communications between netfilter system and upper 
layers (EAP & RADIUS Client), and to perform decision making for user access 
control. This process is more or less equal to rewritting 802.1X, thus the method 
proposed in the previous section is recommended.



Testing and Evaluation 

131 
 

4 Testing and Evaluation 
As is mentioned, the real port in hostap driver is closed at the very start. To 

support seamless roaming, it needs a signal authorized from the state 
FREE_DISCONNECTED in the new Authenticator PAE state machine. It is desirable 
to modify the driver itself to set the port open by default so that there is not delay. 

Moreover, during free open phase the behavior of the new Authenticator PAE 
state machine can be further simplified. It can focus on ensuring that the supplicant is 
authentcated and ignore the statistics and signals related to failures. However, if we 
keep the statistics and signals untouched, which is like Figure 3-27, it is more 
identical to the original state machine, thus it is easier to understand and has less 
potentical mistakes. 

According to the source code given in Section 3.5.2, to achieve link layer mobility, 
we only need to add one new integer (freeTimeout), one macro definition 
(AUTH_PAE_DEFAULT_freeTimeout) and eight new enumertaion members for the 
new states. Total code lines added are 215. 

Besides link layer mobility mechanisms, the new none binary authenticator should 
also support IP mobility to cover the latency introduced by DHCP [1]. This can be 
achieved by Mobile IP and SIP. Relevant information can be found in in Chapter 6 of 
J-O Vatn’s dissertation [20]. 

Nevertheless, there is a big risk for such a new non-binary authenticator. A 
malicious user can utilize the free access resource as long as he wants by simply 
wandering back and forth at the boundary of the BSS. The fundamental question 
regarding this risk is how to define a new supplicant in the AP. As was introduced, a 
supplicant’ information is initialized and accumulated in sta_info since it is first 
sensed by the AP. All recognized supplicants are put in a list. If a user cannot be 
found in that list, it is viewed as a new supplicant. For a supplicant that already exists 
in the BSS, it can become a new supplicant only if its EAPOL state machines are 
destroyed. In hostapd, this process can be simplified as following: 
ap_sta_disassociate() or ap_sta_deauthenticate()   ieee802_1x_free_station()  
os_free(sm->identity) & eapol_auth_free(sm)  eap_server-sm_deinit(sm->eap) & 
os_free(sm). Note that eapol_auth_free() is called to destroy the supplicant’s 
information while eapol_auth_deinit() destroys the structure eapol_authenticator --  
which is used as system configuration by the structure hostapd. No matter 
ap_sta_disassociate() or ap_sta_deauthenticate(), they are called as a result of a 
system call from hostap driver. Thus it is up to the driver to decide which supplicant 
should be exterminated (for example, when the wireless signal degrades below a 
certain threshold). 

There are two basic solutions to this problem. The first solution is to make the 
variable freeTimeout a random value rather than a constant. Since it is not possible to 
change the diameter of BSS by modifying the radio strength in real life, it is feasible 
to change the duration of the free authentication. In order to get constant service, a 
malicious user’s behavior is restricted in both location and time. This user needs to 
move from the boundary after timing out and to reenter immediately afterwards. By 
giving freeTimeout a random value, the malicious user will not know when they 
should simulate departing and returning. This random value should range between a 
value that is neither too short ( so that normal supplicants would fail to be 



Testing and Evaluation 

132 
 

authenticated) nor too long (so that malicious supplicants may count on frequently 
enjoying free network access). 

However, if the malicious user does not need constant service, then he is quite 
immune to the first solution. For this reason we introduce a second solution, to add 
those users who are requested to be destroyed by hostap driver, but not yet 
authenticated in the 802.1X state machine in hostapd to a list named suspicious_list. 
As was mentioned, the supplicant information is put in a structure sta_info, thus to 
keep a suspicious_list similar to sta_list would be a heavy burden for the AP. Instead 
we can copy sm->identity to suspicious_list before os_free(sm->identity) in the step 
of ieee802_1x_free_station(). After that, the user information will be totally destroyed 
and resources are released. Accordingly, the AP has to check not only sta_list, but 
also suspicious_list. If the node is in suspicious_list, then it must jump over the clone 
state machine and go directly to the state DISCONNECTED. 

The last question is that, during free open period, users may suffer from 
communication over an unsafe network (802.1X is a mutual authentication scheme). 
Since most applications provide higher layer security protection, it will remain safe as 
long as IP layer mobility is provided. 



Conclusions and Future work 

133 
 

5 Conclusions and Future work 

5.1 Conclusions 
For a long time security and flexibility were seen as mutually exclusive in wireless 

IP access networks. The existence of IEEE 802.1X is crucial for security, but 
introduces a big hurdle for WiFi users to get out of their zoo. This thesis proposed an 
innovative method to facilitate seamless WiFi roaming while maintaining the security 
context required by Robust Security Network. Moreover, it has successfully achieved 
the goals listed at start: (1) allow the network to provide continued services to 
supplicants, so that customer’s communications will not be cut-off during handover; 
(2) be completely acceptable to existing supplicant devices and authentication servers, 
so that both customers and service providers preserve their investments; (3) be 
compatible with the most commonly used authentication protocol, i.e., IEEE 802.1X; 
(4) leverage existing access points by a upgrading software rather than requiring 
installation of special firmware or an upgrade of the hardware. In short our solution 
increases system functionality remarkably while keeping the cost low. 

5.2 Future work 
Potential future work would be to address those pitfalls mentioned in Chapter 4. 

Moreover a test bed for IP Mobility and SIP are required to test this new none-binary 
authenticator. Wireless IP access will continue to rapidly advancing with additional 
new standards, thus it is necessary to match our method to both existing and future 
standard. Ideally there should be a standardization effort to add non-binary 
authentication to the IEEE 802.1X standard.



Conclusions and Future work 

134 
 



References 

135 
 

References 
[1] Thomas E. Eastep, DHCP explanation and operation, 12 January 2010, 

http://www.shorewall.net/dhcp.htm 

[2] Iptables Guide 1.1.19 (Chinese Version) Q&A, 27 May 2007 (based upon 
Iptables Tutorial by Oskar Andreasson),  

http://www.lupaworld.com/action_viewstutorial_itemid_3277.html 

[3] Chapter : RADIUS Attribute Descriptions, JUNOSe™ Internet Software for 
E-series™ Routing Platforms Broadband Access Configuration Guide, last 
updated 23 February 2005, 

http://www.juniper.net/techpubs/software/erx/junose61/swconfig-broadband
/html/radius-attributes.html 

[4] Yoshihiro Ohba, Mahesh  V  Kelkar, and Pasi Eronen, Question on EAP 
state machine, eap Mailing List, 29 June 2005 

http://lists.frascone.com/pipermail/eap/msg03467.html 

[5] IEEE 802.11-2007, Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications, IEEE 802.11-2007, June 2007. 

http://standards.ieee.org/getieee802/download/802.11-2007.pdf 

[6] PACKET(7), Linux Programmer's Manual, 29  April 1999,  
http://swoolley.org/man.cgi/7/packet 

[7] Manual of AF_PACKET,6 October 1999,  
http://bbs.openlab.net.cn/forums/threads/166.aspx 

[8] Ma Ying-jeou rstevens rstevens2008@hotmail.com, sk_buff Detailed 
Analysis, ChinaUnix blog, 18 July 2007 

http://linux.chinaunix.net/techdoc/net/2007/07/18/962950.shtml 

[9] Jia Zhou, “Adding bandwidth specification to a AAA Sever”, Masters 
Thesis, Department of Communication Systems, School of Information and 
Communication Technology, Royal Institute of Technology (KTH); 
Stockholm, Sweden, COS/CCS 2008-19, September 2008, available at:   
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080914-zhou
jia-with-cover.pdf 

[10] Zhang Hengchong,  “Non-binary authentication: supplicant”, Masters 
thesis, Department of Communication Systems, School of Information and 
Communication Technology, Royal Institute of Technology, Stockholm, 
Sweden, COS/CCS 2009-1, February 2009, available at: 
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090224-Hen
gchong_Zhang-with-cover.pdf  

[11] Kwang-Hyun Baek, Sean W. Smith, and David Kotz, “A Survey of WPA 
and 802.11i RSN Authentication Protocols”, Technial Report TR2004-524, 
Dartmouth College Computer Science, November 2004. 

[12] William A. Arbaugh, Narendar Shankar, Y. C. Justin, and Kan Zhang, 
“Your 802.11 Wireless Network Has No Clothes”, IEEE Wireless 
Communications, 9(6): pp. 44-51, December 2002. 



Appendix B 

136 
 

[13] C. Rigney, RADIUS Accounting, RFC Editor, Internet Request for 
Comments, ISSN 2070-1721, RFC 2866, June 2000, Updated by RFCs 
2867, 5080, http://www.rfc-editor.org/rfc/rfc2866.txt 

[14] Bioforge, “Hacking the Linux Kernel Network Stack”, Phrack, Inc. Volume 
0x0b, Issue 0x3d, Phile #0x0d of 0x0f,  13 August 2003, 
http://www.phrack.org/issues.html?issue=61&id=13 

[15] Harald Welte and Pablo Neira Ayuso, Netfilter webpage, last modified 
November 29, 2008. http://www.netfilter.org/ 

[16] H3C (IToIP Solutions Expert), “AAA&RADIUS&HWTACACS 
Introduction”,http://www.h3c.com/portal/Products___Solutions/Technology/
Security_and_VPN/AAA_RADIUS_HWTACACS/200701/195605_57_0.ht
m, May 9th.2008 

[17] Roaming in general, last modified 20 November 2010,  
http://en.wikipedia.org/wiki/Roaming 

[18] IEEE Std 802.11, 1999 Edition (ISO/IEC 8802-11: 1999) IEEE Standard for 
Information Technology - Telecommunications and Information Exchange 
between Systems - Local and Metropolitan Area Network – Specific 
Requirements – Part 11: Wireless LAN Medium Access Control (MAC) and 
Physical Layer (PHY) Specifications. 

[19] Vic Yeo, “802.11 Tutorial”, updated on 20 July 2005, 
http://spacehopper.org/mirrors/www.geocities.com/backgndtest/wlan_tut.ht
ml 

[20] Jon-Olov Vatn, “IP telephony: Mobility and security”, Dissertation, Royal 
Institute of Technology (KTH), School of Information and Communication 
Technology (ICT), Microelectronics and Information Technology (IMIT), 
Stockholm, Sweden, TRITA-IMIT-TSLAB AVH:05:01, 2005, 166 pages. 
http://kth.diva-portal.org/smash/get/diva2:8244/ 

[21] IEEE 802.11 working group, http://www.ieee802.org/11/ 

[22] Wi-Fi Alliance, http://www.wi-fi.org/ 

[23] Jesse Walker. Unsafe at any key size; An analysis of the WEP 
encapsulation, October 2000. Accessed March 2002  
http://www.drizzle.com/˜aboba/IEEE/0-362.zip  

[24] Jesse Walker. Developer Services - 802.11 Security Series. Part I: The 
Wired Equivalent Privacy (WEP), 19 June 2002,  
http://jcbserver.uwaterloo.ca/cs436/handouts/miscellaneous/Intel_Wireless_
1.pdf  

[25] Nikita Borisov, Ian Goldberg, and David Wagner. Intercepting Mobile 
Communications: The Insecurity of 802.11. In Seventh Annual International 
Conference on Mobile Computing And Networking, July 2001. Also 
http://www.isaac.cs.berkeley.edu/isaac/wep-faq.html. 

[26] IEEE Computer Society, IEEE Standard 802.1x-2001, IEEE Standard for 
Local and Metropolitan Area Networks - Port-Based Network Access 
Control, IEEE 802.1X-2001, June, 2001  
http://www.ieee802.org/1/pages/802.1x-2001.html  



References 

137 
 

[27] “802.1X White Paper”, Allied Telesis, C613-08003-00 Rev. C, 23 May 2006 

http://www.alliedtelesyn.com/media/pdf/8021x_wp.pdf  

[28] Krishna Sankar, Sri Sundaralingam, Darrin Miller, and Andrew Balinsky, 
Chapter 7: EAP Authentication Protocols for WLANs, Cisco Wireless LAN 
Security, Series: Networking Technology, Cisco Press., 2005  
www.ciscopress.com/content/images/1587051540/samplechapter/15870515
40content.pdf. 

[29] IEEE 802 LAN/MAN Standards Committee, last updated 10 August 2010, 
http://grouper.ieee.org/groups/802/  

[30] IEEE, “802.11a-1999 High-speed Physical Layer in the 5 GHz band", IEEE, 
11 February 1999,  
http://standards.ieee.org/getieee802/download/802.11a-1999.pdf  

[31] IEEE, “802.11b-1999 Higher Speed Physical Layer Extension in the 2.4 
GHz band", IEEE, 2003 
 http://standards.ieee.org/getieee802/download/802.11b-1999.pdf 

[32] "IEEE 802.11g-2003: Further Higher Data Rate Extension in the 2.4 GHz 
Band", 27 June 2003, (copy of the standard)   
http://www.ahltek.com/WhitePaperspdf/802.11-20%20specs/802.11g-2003.
pdf 

[33] “IEEE Standards for Local and Metropolitan Area Networks: Standard for 
Port Based Network Access Control”, IEEE Std 802.1X-2004, October 
2004,  http://standards.ieee.org/getieee802/download/802.1X-2004.pdf 

[34] Pablo Brenner, A Technical Tutorial on the IEEE 802.11 Protocol, 
BreezeCOM, 1997, http://www.sss-mag.com/pdf/802_11tut.pdf 

[35] CWAP - Certified Wireless Analysis Professional Official Study Guide, 
Exam PW0-205, McGraw-Hill Osborne Media, 2004, 432 pages, ISBN-10: 
0072255854, ISBN-13: 978-0072255850 

[36] Pejman Roshan and Jonathan Leary, 802.11 Wireless LAN Fundamentals: A 
practical guide to understanding, designing, and operating 802.11 WLANs, 
Cisco Press, 2004, 312 pages, ISBN-10: 1587050773, ISBN-13: 
978-1587050770 

[37] B. Aboba, L. Blunk, J. Vollbrecht, J. Carlson, and H. Levkowetz, Extensible 
Authentication Protocol (EAP), RFC Editor, Internet Request for 
Comments,  ISSN 2070-1721, RFC 3748, June 2004, Updated by RFC 
5247, http://www.rfc-editor.org/rfc/rfc3748.txt 

[38] Introduction to 802.1X for Wireless Local Area Networks, Revision A, 
Interlink Networks Inc., 2002, 11 pages,  
http://www.lucidlink.com/media/pdf_autogen/802_1X_for_Wireless_LAN.p
df 

[39] About RADIUS, Patton Tech Notes, Patton Electronics, Gaithersburg, MD 
USA, 16 January 2003, 5 pages  
http://www.patton.com/technotes/ras_about_radius.pdf  

[40] B. Aboba and P. Calhoun, RADIUS (Remote Authentication Dial In User 
Service) Support For Extensible Authentication Protocol (EAP), RFC 



Appendix B 

138 
 

Editor, Internet Request for Comments, ISSN 2070-1721, RFC 3579, 
september 2003, Updated by RFC 5080,   
http://www.rfc-editor.org/rfc/rfc3579.txt  

[41] H3C (IToIP Solutions Expert), “AAA & RADIUS & HWTACACS 
Introduction”, http://www.h3c.com/portal/Products___Solutions/Technology
/Security_and_VPN/AAA_RADIUS_HWTACACS/200701/195605_57_0.h
tm  

[42] Microsoft TechNet, “RADIUS Packet Format”,   
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/int
work/inbc_ias_wfwi.mspx?mfr=true  

[43] Jonathan Hassell, RADIUS, O’Reilly Media, October 2002, 206 pages, 
ISBN-10: 0596003226, ISBN-13: 978-0596003227 

[44] Deutsche Telekom, WiFi Roaming Solution. World wide wireless, Deutsche 
Telekom International Carrier Sales & Solutions, 11 April 2008, 
http://www.telekom-icss.com/dtag/cms/content/ICSS/en/330538  

[45] Arunesh Mishra, Minho Shin, and William Arbaugh. An Empirical Analysis 
of the IEEE 802.11 MAC Layer Handoff Process. Technical Report 
CS-TR-4395 UMIACS-TR-2002-75, University of Maryland, 2002. 
Available at  
http://www.cs.umd.edu/˜mhshin/paper/ACMCCRMishra.Shin.Arbaugh.ps 
(Accessed January 2003). 

[46] Héctor Velayos and Gunnar Karlsson. Techniques to Reduce IEEE 802.11b 
MAC Layer Handover Time. Technical Report TRITA-IMIT-LCN R 03:02, 
ISSN 1651-7717, ISRN KTH/IMIT/LCN/R-03/02–SE, KTH, Stockholm, 
Sweden, April 2003. 

[47] P. Calhoun, J. Loughney, E. Guttman, G. Zorn, and J. Arkko. Diameter Base 
Protocol, RFC Editor, Internet Request for Comments, ISSN 2070-1721, 
RFC 3588, September 2003, http://www.rfc-editor.org/rfc/rfc3588.txt 

[48] IEEE standard 802.11F, IEEE Trial-Use Recommended Practice for 
Multi-Vendor Access Point Interoperability via an Inter-Access Point 
Protocol Across Distribution Systems Supporting IEEE 802.11 Operation, 
June 2003. 

[49] Host AP project introduction, http://hostap.epitest.fi/ 

[50] Developers' documentation for wpa_supplicant and hostapd, last access 28 
November 2010, http://hostap.epitest.fi/wpa_supplicant/devel/ 

[51] J. Vollbrecht and P. Eronen and N. Petroni and Y. Ohba, State Machines for 
Extensible Authentication Protocol (EAP) Peer and Authenticator, RFC 
Editor, Internet Request for Comments, ISSN 2070-1721, RFC 4137, 
August 2005, http://www.rfc-editor.org/rfc/rfc4137.txt 

[52] IP sets project introduction, last modified 18 April 2005,   
http://ipset.netfilter.org/ 

[53] L. Blunk and J. Vollbrecht, PPP Extensible Authentication Protocol (EAP), 
RFC Editor, Internet Request for Comments, ISSN 2070-1721, RFC 2284, 



References 

139 
 

March 1998, Obsoleted by RFC 3748, updated by RFC 2484, 
http://www.rfc-editor.org/rfc/rfc2284.txt 

[54] C. Rigney, S. Willens, A. Rubens, and W. Simpson, Remote Authentication 
Dial In User Service (RADIUS), RFC Editor, Internet Request for 
Comments,  ISSN 2070-1721, RFC 2865, June 2000, Updated by RFCs 
2868, 3575, 5080, http://www.rfc-editor.org/rfc/rfc2865.txt  

 





Appendix A 

141 
 

Appendix A. sta_info 
/** 
 * ap.h : structure sta_info – It stores all the information of a supplicant 
*/ 

struct sta_info { 
 struct sta_info *next; /* next entry in sta list */ 
 struct sta_info *hnext; /* next entry in hash table list */ 
 u8 addr[6]; 
 u16 aid; /* STA's unique AID (1 .. 2007) or 0 if not yet assigned */ 
 u32 flags; 
 u16 capability; 
 u16 listen_interval; /* or beacon_int for APs */ 
 u8 supported_rates[WLAN_SUPP_RATES_MAX]; 
 int supported_rates_len; 
 
 unsigned int nonerp_set:1; 
 unsigned int no_short_slot_time_set:1; 
 unsigned int no_short_preamble_set:1; 
 unsigned int no_ht_gf_set:1; 
 unsigned int no_ht_set:1; 
 unsigned int ht_20mhz_set:1; 
 
 u16 auth_alg; 
 u8 previous_ap[6]; 
 
 enum { 
  STA_NULLFUNC = 0, STA_DISASSOC, STA_DEAUTH, STA_REMOVE 
 } timeout_next; 
 
 /* IEEE 802.1X related data */ 
 struct eapol_state_machine *eapol_sm; 
 
 /* IEEE 802.11f (IAPP) related data */ 
 struct ieee80211_mgmt *last_assoc_req; 
 
 u32 acct_session_id_hi; 
 u32 acct_session_id_lo; 
 time_t acct_session_start; 
 int acct_session_started; 
 int acct_terminate_cause; /* Acct-Terminate-Cause */ 
 int acct_interim_interval; /* Acct-Interim-Interval */ 
 
 unsigned long last_rx_bytes; 
 unsigned long last_tx_bytes; 
 u32 acct_input_gigawords; /* Acct-Input-Gigawords */ 
 u32 acct_output_gigawords; /* Acct-Output-Gigawords */ 
 
 u8 *challenge; /* IEEE 802.11 Shared Key Authentication Challenge */ 
 
 struct wpa_state_machine *wpa_sm; 
 struct rsn_preauth_interface *preauth_iface; 
 
 struct hostapd_ssid *ssid; /* SSID selection based on (Re)AssocReq */ 
 struct hostapd_ssid *ssid_probe; /* SSID selection based on ProbeReq */ 
 
 int vlan_id; 
 
#ifdef CONFIG_IEEE80211N 
 struct ht_cap_ie ht_capabilities; /* IEEE 802.11n capabilities */ 



Appendix B 

142 
 

#endif /* CONFIG_IEEE80211N */ 
 
#ifdef CONFIG_IEEE80211W 
 int sa_query_count; /* number of pending SA Query requests; 
        * 0 = no SA Query in progress */ 
 int sa_query_timed_out; 
 u8 *sa_query_trans_id; /* buffer of WLAN_SA_QUERY_TR_ID_LEN * 
    * sa_query_count octets of pending SA Query 
    * transaction identifiers */ 
 struct os_time sa_query_start; 
#endif /* CONFIG_IEEE80211W */ 
 
 struct wpabuf *wps_ie; /* WPS IE from (Re)Association Request */ 
};



Appendix B 

143 
 

Appendix B. Original Authenticator PAE SM 
/** 
 * src\eapol_auth\eapol_auth_sm.c : Authenticator PAE state machine 
*/ 

SM_STATE(AUTH_PAE, INITIALIZE) 
{ 
 SM_ENTRY_MA(AUTH_PAE, INITIALIZE, auth_pae); 
 sm->portMode = Auto; 
} 
 
 
SM_STATE(AUTH_PAE, DISCONNECTED) 
{ 
 int from_initialize = sm->auth_pae_state == AUTH_PAE_INITIALIZE; 
 
 if (sm->eapolLogoff) { 
  if (sm->auth_pae_state == AUTH_PAE_CONNECTING) 
   sm->authEapLogoffsWhileConnecting++; 
  else if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATED) 
   sm->authAuthEapLogoffWhileAuthenticated++; 
 } 
 
 SM_ENTRY_MA(AUTH_PAE, DISCONNECTED, auth_pae); 
 
 sm->authPortStatus = Unauthorized; 
 setPortUnauthorized(); 
 sm->reAuthCount = 0; 
 sm->eapolLogoff = FALSE; 
 if (!from_initialize) { 
  sm->eapol->cb.finished(sm->hapd, sm->sta, 0, 
           sm->flags & EAPOL_SM_PREAUTH); 
 } 
} 
 
 
SM_STATE(AUTH_PAE, RESTART) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATED) { 
  if (sm->reAuthenticate) 
   sm->authAuthReauthsWhileAuthenticated++; 
  if (sm->eapolStart) 
   sm->authAuthEapStartsWhileAuthenticated++; 
  if (sm->eapolLogoff) 
   sm->authAuthEapLogoffWhileAuthenticated++; 
 } 
 
 SM_ENTRY_MA(AUTH_PAE, RESTART, auth_pae); 
 
 sm->eap_if->eapRestart = TRUE; 
} 
 
 
SM_STATE(AUTH_PAE, CONNECTING) 
{ 
 if (sm->auth_pae_state != AUTH_PAE_CONNECTING) 
  sm->authEntersConnecting++; 
 
 SM_ENTRY_MA(AUTH_PAE, CONNECTING, auth_pae); 



Appendix B 

144 
 

 
 sm->reAuthenticate = FALSE; 
 sm->reAuthCount++; 
} 
 
 
SM_STATE(AUTH_PAE, HELD) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATING && sm->authFail) 
  sm->authAuthFailWhileAuthenticating++; 
 
 SM_ENTRY_MA(AUTH_PAE, HELD, auth_pae); 
 
 sm->authPortStatus = Unauthorized; 
 setPortUnauthorized(); 
 sm->quietWhile = sm->quietPeriod; 
 sm->eapolLogoff = FALSE; 
 
 eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_WARNING, 
      "authentication failed - EAP type: %d (%s)", 
      sm->eap_type_authsrv, 
      eap_type_text(sm->eap_type_authsrv)); 
 if (sm->eap_type_authsrv != sm->eap_type_supp) { 
  eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO, 
       "Supplicant used different EAP type: " 
       "%d (%s)", sm->eap_type_supp, 
       eap_type_text(sm->eap_type_supp)); 
 } 
 sm->eapol->cb.finished(sm->hapd, sm->sta, 0, 
          sm->flags & EAPOL_SM_PREAUTH); 
} 
 
 
SM_STATE(AUTH_PAE, AUTHENTICATED) 
{ 
 char *extra = ""; 
 
 if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATING && sm->authSuccess) 
  sm->authAuthSuccessesWhileAuthenticating++; 
        
 SM_ENTRY_MA(AUTH_PAE, AUTHENTICATED, auth_pae); 
 
 sm->authPortStatus = Authorized; 
 setPortAuthorized(); 
 sm->reAuthCount = 0; 
 if (sm->flags & EAPOL_SM_PREAUTH) 
  extra = " (pre-authentication)"; 
 else if (wpa_auth_sta_get_pmksa(sm->sta->wpa_sm)) 
  extra = " (PMKSA cache)"; 
 eapol_auth_vlogger(sm->eapol, sm->addr, EAPOL_LOGGER_INFO, 
      "authenticated - EAP type: %d (%s)%s", 
      sm->eap_type_authsrv, 
      eap_type_text(sm->eap_type_authsrv), extra); 
 sm->eapol->cb.finished(sm->hapd, sm->sta, 1, 
          sm->flags & EAPOL_SM_PREAUTH); 
} 
 
 
SM_STATE(AUTH_PAE, AUTHENTICATING) 
{ 



Appendix B 

145 
 

 SM_ENTRY_MA(AUTH_PAE, AUTHENTICATING, auth_pae); 
 
 sm->eapolStart = FALSE; 
 sm->authSuccess = FALSE; 
 sm->authFail = FALSE; 
 sm->authTimeout = FALSE; 
 sm->authStart = TRUE; 
 sm->keyRun = FALSE; 
 sm->keyDone = FALSE; 
} 
 
 
SM_STATE(AUTH_PAE, ABORTING) 
{ 
 if (sm->auth_pae_state == AUTH_PAE_AUTHENTICATING) { 
  if (sm->authTimeout) 
   sm->authAuthTimeoutsWhileAuthenticating++; 
  if (sm->eapolStart) 
   sm->authAuthEapStartsWhileAuthenticating++; 
  if (sm->eapolLogoff) 
   sm->authAuthEapLogoffWhileAuthenticating++; 
 } 
 
 SM_ENTRY_MA(AUTH_PAE, ABORTING, auth_pae); 
 
 sm->authAbort = TRUE; 
 sm->keyRun = FALSE; 
 sm->keyDone = FALSE; 
} 
 
 
SM_STATE(AUTH_PAE, FORCE_AUTH) 
{ 
 SM_ENTRY_MA(AUTH_PAE, FORCE_AUTH, auth_pae); 
 
 sm->authPortStatus = Authorized; 
 setPortAuthorized(); 
 sm->portMode = ForceAuthorized; 
 sm->eapolStart = FALSE; 
 txCannedSuccess(); 
} 
 
 
SM_STATE(AUTH_PAE, FORCE_UNAUTH) 
{ 
 SM_ENTRY_MA(AUTH_PAE, FORCE_UNAUTH, auth_pae); 
 
 sm->authPortStatus = Unauthorized; 
 setPortUnauthorized(); 
 sm->portMode = ForceUnauthorized; 
 sm->eapolStart = FALSE; 
 txCannedFail(); 
} 
 
 
SM_STEP(AUTH_PAE) 
{ 
 if ((sm->portControl == Auto && sm->portMode != sm->portControl) || 
     sm->initialize || !sm->eap_if->portEnabled) 
  SM_ENTER_GLOBAL(AUTH_PAE, INITIALIZE); 



Appendix B 

146 
 

 else if (sm->portControl == ForceAuthorized && 
   sm->portMode != sm->portControl && 
   !(sm->initialize || !sm->eap_if->portEnabled)) 
  SM_ENTER_GLOBAL(AUTH_PAE, FORCE_AUTH); 
 else if (sm->portControl == ForceUnauthorized && 
   sm->portMode != sm->portControl && 
   !(sm->initialize || !sm->eap_if->portEnabled)) 
  SM_ENTER_GLOBAL(AUTH_PAE, FORCE_UNAUTH); 
 else { 
  switch (sm->auth_pae_state) { 
  case AUTH_PAE_INITIALIZE: 
   SM_ENTER(AUTH_PAE, DISCONNECTED); 
   break; 
  case AUTH_PAE_DISCONNECTED: 
   SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_RESTART: 
   if (!sm->eap_if->eapRestart) 
    SM_ENTER(AUTH_PAE, CONNECTING); 
   break; 
  case AUTH_PAE_HELD: 
   if (sm->quietWhile == 0) 
    SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_CONNECTING: 
   if (sm->eapolLogoff || sm->reAuthCount > sm->reAuthMax) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   else if ((sm->eap_if->eapReq && 
      sm->reAuthCount <= sm->reAuthMax) || 
     sm->eap_if->eapSuccess || sm->eap_if->eapFail) 
    SM_ENTER(AUTH_PAE, AUTHENTICATING); 
   break; 
  case AUTH_PAE_AUTHENTICATED: 
   if (sm->eapolStart || sm->reAuthenticate) 
    SM_ENTER(AUTH_PAE, RESTART); 
   else if (sm->eapolLogoff || !sm->portValid) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   break; 
  case AUTH_PAE_AUTHENTICATING: 
   if (sm->authSuccess && sm->portValid) 
    SM_ENTER(AUTH_PAE, AUTHENTICATED); 
   else if (sm->authFail || 
     (sm->keyDone && !sm->portValid)) 
    SM_ENTER(AUTH_PAE, HELD); 
   else if (sm->eapolStart || sm->eapolLogoff || 
     sm->authTimeout) 
    SM_ENTER(AUTH_PAE, ABORTING); 
   break; 
  case AUTH_PAE_ABORTING: 
   if (sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, DISCONNECTED); 
   else if (!sm->eapolLogoff && !sm->authAbort) 
    SM_ENTER(AUTH_PAE, RESTART); 
   break; 
  case AUTH_PAE_FORCE_AUTH: 
   if (sm->eapolStart) 
    SM_ENTER(AUTH_PAE, FORCE_AUTH); 
   break; 
  case AUTH_PAE_FORCE_UNAUTH: 
   if (sm->eapolStart) 



Appendix B 

147 
 

    SM_ENTER(AUTH_PAE, FORCE_UNAUTH); 
   break; 
  } 
 } 
}





Appendix C 

149 
 

Appendix C. Original eapol_state_machine 
/** 
 * src\eapol_auth\eapol_auth_sm_i.h : 
 * struct eapol_state_machine - Per-Supplicant Authenticator state machines 
*/ 

struct eapol_state_machine { 
 /* timers */ 
 int aWhile; 
 int quietWhile; 
 int reAuthWhen; 
 
 /* global variables */ 
 Boolean authAbort; 
 Boolean authFail; 
 PortState authPortStatus; 
 Boolean authStart; 
 Boolean authTimeout; 
 Boolean authSuccess; 
 Boolean eapolEap; 
 Boolean initialize; 
 Boolean keyDone; 
 Boolean keyRun; 
 Boolean keyTxEnabled; 
 PortTypes portControl; 
 Boolean portValid; 
 Boolean reAuthenticate; 
 
 /* Port Timers state machine */ 
 /* 'Boolean tick' implicitly handled as registered timeout */ 
 
 /* Authenticator PAE state machine */ 
 enum { AUTH_PAE_INITIALIZE,        AUTH_PAE_DISCONNECTED, 

  AUTH_PAE_CONNECTING,     AUTH_PAE_AUTHENTICATING, 
  AUTH_PAE_AUTHENTICATED,  AUTH_PAE_ABORTING, 
  AUTH_PAE_HELD,             AUTH_PAE_FORCE_AUTH, 

        AUTH_PAE_FORCE_UNAUTH,  AUTH_PAE_RESTART } auth_pae_state; 
 /* variables */ 
 Boolean eapolLogoff; 
 Boolean eapolStart; 
 PortTypes portMode; 
 unsigned int reAuthCount; 
 /* constants */ 
 unsigned int quietPeriod; /* default 60; 0..65535 */ 
#define AUTH_PAE_DEFAULT_quietPeriod 60 
 unsigned int reAuthMax; /* default 2 */ 
#define AUTH_PAE_DEFAULT_reAuthMax 2 
 /* counters */ 
 Counter authEntersConnecting; 
 Counter authEapLogoffsWhileConnecting; 
 Counter authEntersAuthenticating; 
 Counter authAuthSuccessesWhileAuthenticating; 
 Counter authAuthTimeoutsWhileAuthenticating; 
 Counter authAuthFailWhileAuthenticating; 
 Counter authAuthEapStartsWhileAuthenticating; 
 Counter authAuthEapLogoffWhileAuthenticating; 
 Counter authAuthReauthsWhileAuthenticated; 
 Counter authAuthEapStartsWhileAuthenticated; 
 Counter authAuthEapLogoffWhileAuthenticated; 



Appendix C 

150 
 

 
 /* Backend Authentication state machine */ 
 enum { BE_AUTH_REQUEST, BE_AUTH_RESPONSE, BE_AUTH_SUCCESS, 
        BE_AUTH_FAIL, BE_AUTH_TIMEOUT, BE_AUTH_IDLE, 

 BE_AUTH_INITIALIZE, BE_AUTH_IGNORE} be_auth_state; 
 /* constants */ 
 unsigned int serverTimeout; /* default 30; 1..X */ 
#define BE_AUTH_DEFAULT_serverTimeout 30 
 /* counters */ 
 Counter backendResponses; 
 Counter backendAccessChallenges; 
 Counter backendOtherRequestsToSupplicant; 
 Counter backendAuthSuccesses; 
 Counter backendAuthFails; 
 
 /* Reauthentication Timer state machine */ 
 enum { REAUTH_TIMER_INITIALIZE, REAUTH_TIMER_REAUTHENTICATE 
 } reauth_timer_state; 
 /* constants */ 
 unsigned int reAuthPeriod; /* default 3600 s */ 
 Boolean reAuthEnabled; 
 
 /* Authenticator Key Transmit state machine */ 
 enum { AUTH_KEY_TX_NO_KEY_TRANSMIT, AUTH_KEY_TX_KEY_TRANSMIT 
 } auth_key_tx_state; 
 
 /* Key Receive state machine */ 
 enum { KEY_RX_NO_KEY_RECEIVE, KEY_RX_KEY_RECEIVE } key_rx_state; 
 /* variables */ 
 Boolean rxKey; 
 
 /* Controlled Directions state machine */ 
 enum { CTRL_DIR_FORCE_BOTH, CTRL_DIR_IN_OR_BOTH } ctrl_dir_state; 
 /* variables */ 
 ControlledDirection adminControlledDirections; 
 ControlledDirection operControlledDirections; 
 Boolean operEdge; 
 
 /* Authenticator Statistics Table */ 
 Counter dot1xAuthEapolFramesRx; 
 Counter dot1xAuthEapolFramesTx; 
 Counter dot1xAuthEapolStartFramesRx; 
 Counter dot1xAuthEapolLogoffFramesRx; 
 Counter dot1xAuthEapolRespIdFramesRx; 
 Counter dot1xAuthEapolRespFramesRx; 
 Counter dot1xAuthEapolReqIdFramesTx; 
 Counter dot1xAuthEapolReqFramesTx; 
 Counter dot1xAuthInvalidEapolFramesRx; 
 Counter dot1xAuthEapLengthErrorFramesRx; 
 Counter dot1xAuthLastEapolFrameVersion; 
 
 /* Other variables - not defined in IEEE 802.1X */ 
 u8 addr[ETH_ALEN]; /* Supplicant address */ 
 int flags; /* EAPOL_SM_* */ 
 
 /* EAPOL/AAA <-> EAP full authenticator interface */ 
 struct eap_eapol_interface *eap_if; 
 
 int radius_identifier; 
 /* TODO: check when the last messages can be released */ 



Appendix C 

151 
 

 struct radius_msg *last_recv_radius; 
 u8 last_eap_id; /* last used EAP Identifier */ 
 u8 *identity; 
 size_t identity_len; 
 u8 eap_type_authsrv; /* EAP type of the last EAP packet from Authentication server */ 
 u8 eap_type_supp; /* EAP type of the last EAP packet from Supplicant */ 
 struct radius_class_data radius_class; 
 
 /* Keys for encrypting and signing EAPOL-Key frames */ 
 u8 *eapol_key_sign; 
 size_t eapol_key_sign_len; 
 u8 *eapol_key_crypt; 
 size_t eapol_key_crypt_len; 
 
 struct eap_sm *eap; 
 
 Boolean initializing; /* in process of initializing state machines */ 
 Boolean changed; 
 
 struct eapol_authenticator *eapol; 
 
 void *sta; /* station context pointer to use in callbacks */ 
};  
 
#endif /* EAPOL_AUTH_SM_I_H */ 



www.kth.se

TRITA-ICT-EX-2010:299




