
Report for Project in Computer Communications
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:105

M E H D I Z E R O U A L I

 Implementation of a new downlink transmission protocol

VoIP Communications over WLANs

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

VoIP Communications over WLANs

Implementation of a new downlink transmission protocol

Mehdi Zerouali, mehdi.zerouali@insa-lyon.fr

Stockholm, May 25
th

, 2010

School of Information and Communication Technology (ICT)

Department of Communication Systems (Cos)

Royal Institute of Technology (KTH)

Supervisor: Professor Gerald Q. Maguire Jr.

i

Abstract

Voice over IP (VoIP) is becoming more and more popular every day. The number of

VoIP service providers is continuously increasing along with the number of

customers they serve. Moreover, the latest generation of smartphones and mobile

devices now incorporate VoIP support. This enables users within a wireless local

area network (WLAN) cell to exchange VoIP traffic with other peers.

This new traffic potentially poses a problem for WLANs, as the WLAN access point

could be required to handle a large number of small packets of encoded speech.

Since the access to the media can only be made by one node at a time, all of the

devices must contend to access it. If there are multiple calls between nodes in the

WLAN and nodes in the fixed network, then all of these packets must go to and from

the access point. Moreover the access point needs to transmit the downlink traffic

for all of these nodes. Because the Access Point has the same probability of getting

access to the media as any other node, this can lead to high delays, and limits the

maximum number of simultaneous calls to a rather small number, despite the

increasing data rates that the WLAN interfaces are capable of.

This project implements and evaluates a new solution that consists of aggregating

downlink packets at the access point and transmitting a large multicast packet

containing a set of voice frames that need to be sent to nodes within the cell. A

demultiplexing process at node extracts the appropriate RTP content from the

multicast packet and delivers it locally.

ii

Acknowledgment

I am heartily thankful to my supervisor, Professor Gerald Q. Maguire Jr., whose

encouragement, guidance, and support from the initial to the final level enabled me

to develop an understanding of the subject. His answers to my questions were very

helpful.

I would also like to thank my home university in France, INSA Lyon, which offered

this amazing opportunity to go and study for a whole year at the Royal Institute of

Technology of Stockholm, discovering a new culture and new teaching methods.

iii

Table of Contents

Abstract ...i

Acknowledgment...ii

1. Introduction..1

1.1. Context and delimitation...1

1.2. Problems to be addressed by this project..2

1.3. Main goals...3

2. Overview of the protocol..5

2.1. The Model...5

2.2. Packets Format...7

2.3. Registration process...8

2.4. Period of multicast frame emission...9

3. Implementation..11

3.1. Choice of the tools used...11

3.1.1. Linux Bridge...12

3.1.2. Netfilter and iptables..13

3.1.3. Libnetfilter_queue..15

3.1.4. IP aliases..16

3.2. The Aggregator...16

3.2.1. Traffic shaper...16

3.2.2. Sender..18

3.2.3. Mutual Exclusion..18

3.3. The Demultiplexer...19

3.3.1. Receiver ..19

3.3.2. Extractor ..20

3.4. Registration / Unregistration Mechanism..21

4. Tests and Performances Measures...24

4.1. Tools used ..24

4.2. Different Scenarios..27

4.2.1. Testing the correct reception of three packets: payload comparison27

4.2.2. From one single outer node to one single inner node29

4.2.3. Multiple simultaneous calls..32

4.3. Results analysis...35

5. Conclusion...36

References ..37

1

1 Introduction

1.1 Context and Delimitation

This study has been specially designed to address the problem of media contention

for IEEE 802.11b/g/n Wireless Local Area Networks (WLANs) in the particular case

of encoded data speech transmission traffic - with a focus on the downlink. In this

kind of network, when a node inside the cell (an inner node) wants to exchange

traffic with a node in the fixed network, (or more generally attached to any node

topologically on the far side of the access point) packets must be forwarded through

the Access Point (AP). The AP is usually connected to (or includes in itself) a router

and can relay data between the wireless devices (computers, smartphones,

printers, …) within the cell and the devices connected to the external network

(Internet, other LANs, other WLANs, etc).

The new protocol presented and implemented in this work is specifically intended

for the case of VoIP communications involving both both both both inner nodes and outer nodes.

This implies that the RTP frames must be forwarded through the AP, in order to be

delivered to the correct destination. See Figure 1 for a schematic example of the

case that this work will focus on.

Figure 1: Illustration of the context of this work

2

1.2 Problems to be addressed by this project

Nowadays, WLANs are capable of providing high data rates, up to 600 Mbit/s for the

latest “n” version of the IEEE 802.11 standard [1]. This might lead one to think that a

very large number of VoIP users could be accepted within the same WLAN cell,

since the amount of data that needs to be exchanged in the case of a standard VoIP

session is relatively small (because of the small number of bits that are required to

encode speech at sufficient quality for conversations), comparing to the high

throughputs that WLANs are capable of.

But as Tony Rybczynski, director of strategic enterprise technology at Nortel

Networks Ltd., said during an Internet Telephony Conference & Exposition, “If you

think that Wi-Fi is like a LAN and voice is just another application, you will fail” [2].

Indeed, VoIP exchanges have many particularities that must be taken into account

to provide higher capacity for managing calls and to increase the number

simultaneous calls that can be supported.

Assume that many users within the WLAN cell are exchanging VoIP traffic with other

users outside the cell. In the case of ITU-T G.711 encoding each one of these inner

nodes needs to receive packets from the outside network every 20ms, that means

that without our new downlink transmission protocol, the AP will have to contend for

the media access each time there is an encoded speech data to be forwarded.

Since it has the same probability of accessing the media as the other inner nodes,

but has to deliver 50% of all the RTP traffic, the contention that occurs leads to high

delays for this traffic.

Our model proposes a solution to reduce this contention. Instead of trying to access

the media each time there is a RTP packet to be forwarded by the AP to a node in

the cell, we can aggregate all of the RTP packets into one large frame, then

multicast this frame to all the inner nodes involved in a VoIP session with the outside

network. Therefore, the AP will only have to compete for access to the media every

20ms. If we assume that there is only VoIP traffic to be exchanged, then we see that

we have enabled the AP to compete fairly while still getting to deliver the RTP

contents that it should. This solution will not interfere with other types of data

exchanged with the outer network, since the AP will keep on forwarding non-RTP

frames as usual, but aggregating the RTP frames will enable the AP to handle more

VoIP users within the cell and will reduce the amount of contention that it generates

within the cell (this can even have a beneficial effect for the non-RTP traffic).

3

1.3 Main goals

The aim of this project is to create a prototype implementation of the new downlink

scheme and to evaluate it. Prior work conducted at KTH proposed a system that

also included a cooperative behavior for VoIP communication nodes in the WLAN

cell (i.e., focusing on avoiding contention on the uplink) [3]. In contrast, in this work

we wanted to focus on the downlink protocol, in order to enhance the work done by

the former students, by modifying the protocol and proposing a new implementation

at a lower level.

We initially targeted our work to use Linux pseudo device drivers and implement a

solution as a kernel module. After digging into the world of kernel hacking, and after

weeks of research, the contacts that we established with many contributors to the

kernel community led us to the conclusion that there was a better way of handling

this problem that writing virtual network interfaces as kernel modules. In the

following text we will present and explain this method, which relies on ipqueue and

Netfilter hooks, in the implementation section of this paper.

The principal requirement of this solution is to respect the time constrained delivery

of the RTP packets, which is inherent to maintaining the user's perception of good

quality audio. Hence when adding this traffic shaping process at the AP, we must

notnotnotnot significantly increase the forwarding delays; otherwise we would have reduce

the perceived quality of the speech and thus degraded the apparent performance of

the AP.

To complete the process of RTP datagram delivery, there must be a demultiplexing

mechanism in the inner nodes in order to extract the relevant RTP packet and to

deliver it to the application level. In this case as well, high packet delay & delay

variation should be avoided.

In the ideal case, this process must be transparent for the outer nodes. Thus any SIP

clients or other SIP software must be able to reach inner nodes without needing any

modification, as if no downlink process was implemented. This means that we must

be able to automatically detect that there is suitable RTP traffic for downlink

multiplexing and that the relevant nodes in the cell have the demultiplexing support

that is required.

In order to know that the nodes in the cell do have support for downlink

demultiplexing there must be a mechanism to register the inner nodes for

participating in the multicast process. This process will allow inner nodes that are

not (yet) registered to utilize the new downlink protocol to have the opportunity to

continue to exchange RTP datagrams with outer nodes, in a transparent way.

4

Thus inner nodes that do not participate in the downlink multicast will receive by

receiving from the AP their RTP frames forwarded individually by the AP in a unicast

transmission.

The next section of the report will present the actual protocol, and the structure of

the frames exchanged in the proposed new process.

5

2 Overview of the protocol

2-1 The Model

Assume N inner nodes communicating simultaneously with N outer nodes - with all

nodes using G.711 encoding. The volume of the resulting RTP traffic will be 2*N

packets every 20ms (assuming that there is no silence suppression). 50% of this

traffic is going through the downlink, from the outer nodes to the inner nodes.

Therefore, the AP needs to access the media much more often than any other single

node. Additionally each of the frames carrying an RTP datagram is quite small, so

with the minimum interframe gap and other elements of the WLAN MAC protocol, the

available bandwidth is very inefficiently utilized. By aggregating all the downlink RTP

frames, we will significantly reduce the AP's need to contend for the media. With this

new approach, instead of trying to use the link layer N times every 20ms, it will only

transmit bigger frames at a lower rate.

At the AP level, a process waits for incoming packets. If these packets are RTP

packets, intended for an inner node registered to use the new protocol, then the

packet is queued in a buffer. Actually before being placed in the buffer, the packet’s

IP and UDP headers are removed (as these are completely predictable). Indeed,

there is no need to send the complete IP packet as it arrived at the AP level, but

rather we only include the necessary information needed by the demultiplexer to

recreate these headers when it extracts the RTP datagrams from this multicast

frame. The demultiplexer will recreate and to rebuild the original IP packet and

deliver it locally.. So instead of including the 28 bytes of header (20 bytes for the IP

header, 8 bytes for the UDP header) in each sub RTP packet of the multiplexed

frame, we create a “custom header” that includes the necessary information for the

demultiplexer.

This custom header process has been inspired by the Transport Multiplexing

Protocol (TMux, RFC 1692) [4], which was created to optimize the frequent

transmission of small data packets, for instance in the case of Telnet and Rlogin

sessions. It multiplexes several packets into one big frame, and adds a “TMux Mini

Header” to each one of them, followed by a “Transport Segment”. This model allows

the aggregation of different protocols into one frame; for instance, a multiplexed

frame could include multiple UDP and TCP sub-packets, thanks to this transport

segment.

Since encoded voice data is generally small in terms of the number of bytes

needed, RTP packets carrying speech do not generally need to be fragmented and

6

the usual MTU (Maximum transmission Unit) is never reached by a RTP frame, for

the voice case. Therefore, all the fields related to fragmentation contained in the IP

header need not to be included: hence our custom header does not include the

following fields: Identification (16 bits), Flags (3 bits) and Fragment offset (13 bits).

Moreover, other IP header fields can be dropped in the multiplexed frame, because

they do not vary from one packet to another and therefore they are completely

predictable. For instance, the Version field (4 bits) is always set to 4 for IPv4 data,

which is the context of our work. The header length (4 bits) as well will assume that

no particular options are used in the transmission of RTP packets.

Because RTP relies on UDP, we will always have the same value (17) in the Protocol

field (8 bits). Concerning the TTL (Time to Live) field, the last hop passed by the

packet is the AP, so there is no need to include this parameter in our custom

header: if the packet succeeded in arriving at the AP, then the datagram should be

delivered.

The Differentiated Services field (8 bits) is dedicated to the control and the provision

of QoS (Quality of Service) [5]. It allows network devices to handle in a particular

way specific types of packets, by prioritizing their processing depending on the

value of this field. This is done relative to an administrative policy. Our protocol does

not handle this prioritization system, since it is intended to be used with only RTP

packets and no differentiation is needed between the RTP frames. Therefore, this

value is not included in our custom header.

Finally, the Header checksum field (16 bits) can be computed at the inner node after

receiving the RTP frame and putting together all the information included in the

custom header to re-generate the IP header.

On the other hand, the IP destination and source addresses (32 bits for each) must

be included so that the demultiplexer will be able to extract the appropriate RTP

sub-packet from the large multicast frame (by checking the IP destination address)

and so that the receiver can create an IP packet with the appropriate source

address (using the IP source field).

Concerning the UDP header, it is necessary to keep the ports (source and

destination, 16 bits each), since the demultiplexer has to know on which port the

application is waiting for the RTP frames. The checksum field (16 bits) can be

computed later, hence there is no need to include it in the custom header. Note that

the overall multicast frame is protected by a link layer checksum.

The length fields of both the UDP header and IP header carry the same information:

the payload size transported, together with the header lengths. In our reduced

7

header, we will only include the length of the payload (RTP header size + RTP

payload size), thus the demultiplexer can compute the two length fields from this

information.

2-2 Packets Format

The custom header has the following structure:

IP addressIP addressIP addressIP address

Outer node source

4 4 4 4 octetsoctetsoctetsoctets

IP addressIP addressIP addressIP address

Inner node destination

4 octets4 octets4 octets4 octets

LengthLengthLengthLength

RTP length

2 octets2 octets2 octets2 octets

UDP PortUDP PortUDP PortUDP Port

Source

2 octets2 octets2 octets2 octets

UDP PortUDP PortUDP PortUDP Port

Destination

2 octets2 octets2 octets2 octets

Figure 2: Custom header structure

As we can see, the total length of this header is 14 octets. It is half of the IP and UDP

headers’ size, thus we are saving 14 bytes for each RTP frame included in the

multicast frame. In our source code, this structure is encoded as follows:

struct Custom_Header_struct
{
 u_int32_t ip_src;
 u_int32_t ip_dest;
 u_int16_t length;
 u_int16_t udp_port_src;
 u_int16_t udp_port_dest;
};

The types u_int32_t and u_int16_t (unsigned 32 bit integer and unsigned 16 bit

integer respectively) allow us to specify the exact size that we want the field values

to take. It is very important to keep a consistent size and byte order (in our case

network byte order), since at the demultiplexer level we will have to fetch the five

fields according to their position in the frame.

Figure 3 illustrates the aggregation mechanism

8

Figure 3: Illustration of the aggregation mechanism

2-3 Registration process

One of our requirements is to let inner nodes that do not want to participate in this

particular downlink protocol to exchange RTP traffic as usual with the external

network. This means that the AP will not aggregate their incoming RTP packets into

the multicast frames, but instead forward them as usual as unicast frames, these

transmissions will contend for access to the media as usual.

To allow this transparency, we must register the users that want to participate, in

order to enqueue their RTP packets into a queue where they can be processed. To

do so, we created two programs: one at the inner node level, and another at the AP.

Note that when referring to the “AP level”, we actually mean the aggregator

machine, in our implementation this is connected between the wired network and

the AP. This aggregator looks like by an Ethernet bridge to all of the non-aggregated

traffic. Details of this aggregator will be give later, in the implementation section.

At the inner node level, before setting up SIP session for a VoIP session, the users

must run a program to indicate that they want to use this new downlink transmission

protocol. This program will send to the aggregator (via a TCP socket) a message

containing the IP address of the node and the range of ports that will be used for its

RTP packets. This information is needed by the aggregator in order to queue the

relevant traffic, hence the aggregator must know both the IP address of the

participant and the ports that will be used for the RTP packets carrying encoded

speech traffic. This is the reason why we created a specific registration message.

Still to be addressed is the question of how the software running on this inner node

knows the address to send this message to - this will be described in section 3.4.

9

Rather than introducing a new message we could have used the reception of an

IGMP join request to the downlink aggregation multicast group, then add a specific

entry into the aggregator with the IP address of the sender of this request. However,

since the port range information is not included in this message, and since we do

not want to queue inappropriate traffic to the aggregator, a dedicated message was

necessary. Although for future work, we should consider if learning the IP address of

nodes that want to participate because their demultiplexer joins the multicast group,

that we could simply watch for RTP traffic to this node and apply the downlink

multiplexing to it.

Consider that the inner node sends to the AP the following message before initiating

a SIP session:

Register 192.168.0.5:6600:6700

After receiving this message, the aggregator will start forwarding to the queue all of

the UDP packets destined to 192.168.0.5 and that have their UDP destination port in

the range between 6600 and 6700.

If the same inner node wants to unregister, hence start receiving packets in the

classical unicast way, it sends an unregister message, i.e., a message:

Unregister 192.168.0.5

Since we used a TCP connection exchanging these messages, we can also simple

unregister the inner node when the TCP socket, and therefore the TCP connection is

closed

2-4 Period of multicast frame emission

Naturally, a question comes to mind when designing the different programs

implementing our protocol: When should the aggregator issue the aggregated

multicast frame? This leads to the question: How long should the period be during

which we buffer incoming RTP frames, i.e., when exactly should it stop aggregating

and transmit the frame?

Two parameters must be taken into consideration in order to provide a consistent

answer to this question. The first one is the maximum frame size for WLAN link.

Indeed, if the buffer reaches this limit, the frame should be sent. For an Ethernet

wired network the maximum frame size (without fragmentation) is 1500 bytes [6]. For

an 802.11 network, the theoretical MTU value is 2336 octets including the full MAC

layer header. This number is a maximum theoretical value, and in most cases, the

actual maximum frame length is less than 2300 octets. So we will set this value to

10

2300, leaving enough space to the 802.11 header, of a minimum size of 34 bytes

[7]. Note that for our testing phase, which will initially use a wired network replacing

the WLAN, we will set the maximum frame size to 1450.

The other parameter that is important for transmitting the multicast frame is the delay

between two incoming frames for the same destination at the AP level. Since we

want to avoid introducing any significant delay, then knowing that the sources

outside the cell will transmit RTP packets every 20 ms, the AP must forward its

aggregated frame at least at this same frequency, in order for the inner node to

receive RTP packets every 20ms, so that it can send them to the application with the

expected interarrival delay distribution. This means that the aggregator will increase

the delay of RTP packets by at most roughly 20 ms (on average 10ms). It also

means that the interarrival delays experienced by the RTP traffic arriving at the

demultiplexer should be integer multiples of 20 ms.

Therefore the aggregator will emit the aggregated frame when either the buffer size

reaches its maximum value, or it has been 20 ms since the last aggregated frame

was transmitted. After transmitting the multicast message, we clear the buffer and

rest our 20 ms timer.

We will see, in the Test and Measurement section, if modifying this 20ms period by a

smaller amount enhances the perceived quality of the communication.

11

3 Implementation

3-1 Choice of the tools used

In order to construct the most efficient system, we needed to operate at the lowest

possible level of the computer model. With this assumption, we began working on

the conception of a pseudo-device driver, which would act as an aggregator. In the

Linux environment, most network interfaces are related to a real physical which is

responsible for the packet transport. However, some network interfaces can be

exclusively software based, thus it is possible to create virtual network interfaces

that uses other network interfaces for actually emitting and transmitting network

packets. When it comes to writing device drivers, it is important to distinguish

between kernel space and the user space [8].

The user space constitutes the memory reserved for end-users programs. For

instance, the UNIX shell and all the Graphical User Interface (GUI) programs

execute in user space , but may make calls to the operating system that result in a

context switch to process this call into and out of kernel space. Obviously, programs

in user space need to communicate with the underlying hardware, for example to

output character onto the user’s screen. However, these programs generally do not

interact with the hardware directly. The relationship between these two spaces and

the underling hardware is shown in Figure 4.

Figure 4: Linux Operating System model

12

We first started by thinking about the aggregator as a pseudo-device driver, to

which we route incoming RTP traffic, do the aggregation, and then emit a multicast

frame. After many hours of research to become more familiar with module writing,

we found out that there was an easier and possibly more efficient way to perform

these tasks. We contacted one of the authors of the reference book O’Reilly Linux

Device Drivers [9], who kindly helped us find this alternative method: exploiting the

Linux bridging functionality.

3-1-1 Linux Bridge

In our model, we have two sub networks: the wired network (or the outside network)

another sub network: the wireless cell. We need to have a mechanism to forward

frames or packets between these two independent networks. This could be done by

bridging code, routing code, or an application level gateway. The Linux bridge

code, fully integrated to most Linux distributions since the 2.4 kernel series, provides

a way to connect two network segments (such as two Ethernets) together in a

protocol independent way. The bridge operates at level 2 of the OSI model,

forwarding is based on the Media Access and Control (MAC) addresses rather than

being routed based upon IP addresses.

A bridge actually acts as a switch. Assume that the bridge links two networks via

network interfaces eth0 and eth1. The first network (supporting the IP subnet

192.168.1.0/24) is connected to the bridge via the interface eth0, while the second

network (supporting the IP subnet 192.168.2.0/24) is connected via interface eth1.

When a frame arrives at the bridge, for example an IP packet from the source

address 192.168.1.3 would arrive on the eth0 interface, the bridge examines the

destination MAC address and if it is not one of the MAC addresses know to be

connected to the network attached to interface eth0, then it will forward the frame to

the second interface eth1. Note that unlike a router, the bridge will not use the IP

addresses to decide where to forward the frame, but rather it only uses the MAC

addresses instead [10].

Figure 5: Linux Bridge illustration

13

In order to set up the bridge between two interfaces, the commands shown in Figure

6 must be typed into a shell, with the root privileges. The first of these commands

"brctl" invokes the bridge control program to create a new bridge named "br0". The

seconds and third commands add the interfaces eth0 and eth1 to this bridge. The

fourth and fifth commands reset the network interface to remove the IP addresses

that were associated with these two interfaces. The result is that the two network

segments are now connected via bridge "br0" and routing is no longer done

between these two IP subnets.

Create the Bridge

brctl add br0

Add physical interfaces to the bridge

brctl addif br0 eth0
brctl addif br0 eth1

Reset IP interface

ifconfig eth0 0.0.0.0 up
ifconfig eth1 0.0.0.0 up

Figure 6: Bridge configuration

This bridge will now forward packets from the outer nodes to the inner nodes (those

connected to the IP subnet 192.168.1.0/24).

This mechanism is actually not fully used in our implementation, since the traffic

rules rely on the IP level of the OSI model.

The next subsection will present the tool used to actually aggregate the RTP traffic

coming to the downlink.

3-1-2 Netfilter and iptables

Netfilter is a framework that provides hooks to intercept and process network

packets. Merged into Linux kernel version 2.3 in March 2000, it is a powerful tool

used for packet filtering. This framework is the basis for a number of other network

tools, such as the user space tool “iptables” that we use in this project.

14

Iptables replaced Ipchains within the Linux kernel versions 2.4 and beyond. Iptables

is used for IPv4 frames, whereas other tools exist for other types of frames: ip6tables

applies to IPv6, arptables to ARP, and ebtables for Ethernet layer 2 frames.

Iptables enables users (with root privileges) to specify specific traffic rules, based

on the header of the packets transmitted or received. For example, iptables can

perform firewalling tasks, by examining if the IP packets meet the rules of a

particular policy (i.e., the policy is implemented by specifying a set of rules which

iptables then uses to process the traffic). These rules are organized as chains, and

every network packet arriving at or leaving from the computer traverses at least one

chain.

There are five predefined chains, although one can create as many chains as

desired.

“INPUT” chain Used for traffic entering our system, the packet

will be delivered to an IP address present on

our local address.

“OUTPUT” chain Used for packet emitted by our station.

“PREROUTING” chain Before any routing rule is applied, the packets

will enter this chain.

“FORWARD” chain Used for packets that have been routed and

that were not intended to an IP address of our

station.

“POSTROUTING” chain After routing rules were applied, the packets

will enter this chain

For the purpose of this work, we will be using the INPUT chain, to catch traffic

entering our system, since the Forward chain is exclusively utilized for routing

processes.

After entering a chain, the packet is examined according to the rules of the chain.

Each rule contains a target, or verdict, stating the action that is to be performed for

packets matching this rule. There are four targets:

15

“ACCEPT” target Allow the packet to continue its path, as if no

firewalling action happened. The packet is not

modified

“DROP” target Blocks the packet, it will not be delivered and the

station will act as if it has never been received or

created

“REJECT” target Also blocks the packet and deny access to traffic,

but sends back the appropriate ICMP error message

to the originator of the packet

“QUEUE” target Transfer and queue packet to user-land programs

and applications. It allows the processing of the

packet to be done in the user space

For our project, it is the last target, “QUEUE” target, which we will be using. We will

add the appropriate rule to extract the RTP frames and send them to user space

where aggregation will take place. To process the extracted frames, we will use the

libnetfilter_queue user space library as it provides an API for handling the packets

that have been enqueued by the kernel packet filter [11, 12].

3-1-3 Libnetfilter_queue

The Libnetfilter_queue API has deprecated the former libipq development library.

This library requires other libraries to be present on the system , specifically the

following:

• The iptables development package. This can be installed (on systems that

have apt-get installed) with the following command :

sudo apt-get install iptables-dev

• The low level library for Netfilter related kernel space/user space

communication. The necessary files for the installation can be downloaded

from: http://ftp.netfilter.org/pub/libnfnetlink/

After successfully adding these two libraries, the libnetfilter_queue API can be

installe. The necessary files can be found at:

http://ftp.netfilter.org/pub/libnetfilter_queue/ . Note that it is important to follow the

above order when installing the libraries (due to each of the libraries dependencies).

We assumed that the kernel to be used is at least at version 2.4, so that the kernel

already incorporates Netfilter and ipqueue [13].

16

 3-1-4 IP aliases

For the purpose of our work, we need to either have a number of computers or

simulate multiple nodes within one system. Each of these physical or virtual nodes

will be identified by different IP addresses. One simple way of having multiple IP

addresses bound to a single network interface is to use aliases. Thanks to this

mechanism, one physical node can have several logical IP addresses. For instance,

the following command shows how to create the alias eth0:0 that will be associated

with the physical interface eth0:

ifconfig eth0:0 192.168.0.10 netmask 255.255.255.0 up

3-2 The Aggregator:

Once the packets are enqueued into the user space process, the aggregator

program processes them in the way we want, generating the multiplexed frame. The

same program sends the resulting frame onto the multicast address, to which the

inner nodes are listening. Two independent threads are needed to perform these

actions. One of these threads will be used for receiving and processing intercepted

frames and the other will emit the resulting multicast frame. We will refer to these

threads as the traffic shaper and the emitter (respectively)

 3-2-1 Traffic shaper

The traffic_shaper extracts packets from the queue, one by one, and calls

build_multiplex(). This function will extract from the packet the RTP payload,

and generate from the IP and UDP headers the custom header specific to each sub

packet.

The function ipq_read , provided by the libnetfilter_queue API, reads one packet at

a time from a queue and copies it to a buffer. The ipq_get_packet function,

called with this buffer as the only parameter, returns a packet whose structure is as

defined as shown in figure 7:

17

typedef struct ipq_packet_msg
{
 unsigned long packet_id; /* ID of queued packet */
 unsigned long mark; /* Netfilter ma rk value */
 long timestamp_sec; /* Packet arriv al time (seconds) */
 long timestamp_usec; /* Packet arriv al time (+useconds) */
 unsigned int hook; /* Netfilter ho ok we rode in on */
 char indev_name[IFNAMSIZ]; /* Name of inco ming interface */
 char outdev_name[IFNAMSIZ]; /* Name of outg oing interface */
 unsigned short hw_protocol; /* Hardware pro tocol (network order) */
 unsigned short hw_type; /* Hardware typ e */
 unsigned char hw_addrlen; /* Hardware add ress length */
 unsigned char hw_addr[8]; /* Hardware add ress */
 size_t data_len; /* Length of pa cket data */
 unsigned char payload[0]; /* Optional pac ket data */

} ipq_packet_msg_t;

Figure 7: IP packet message structure

The actual packet is accessible with the following syntax: msg->payload . The other

attributes of the structure are not used in this project. Although in future work these

other attributes might be used.

After fetching the message, we call the build_multiplex() function with the

following parameters:

• The message, msg, obtained with the functions above.

• Another buffer, multiplex , which is the multiplexed frame to be updated by

this function.

• An offset parameter, to know the size of the data already contained in the

multiplex buffer. This offset will be modified by the function after adding

the new RTP sub frame.

Since the size of the multiplex frame is always changing, and increasing with

each call to this function, we use a realloc call that allows us to increase the size

of the buffer. When an RTP packet is processed, we simply drop the incoming

frame, so that it will not be delivered by AP.

Note the realloc call is not necessary. Since we know the upper bound on the size of

the multiplexed frame, we can simply create a buffer of this maximum size initially.

18

3-2-2 Sender

Before beginning an infinite loop, the sender thread creates a UDP socket for

multicast. The destination IP multicast address chosen is 225.0.0.10, and the port

used is 8888 (these values can be different, as long as they match those used by

the demultiplexer). The addresses in the range 224.0.0.0 – 224.0.0.255 are reserved

for routing and maintenance protocol.

Within an infinite loop, the sender thread is responsible for sending the multiplexed

frame to the destination IP multicast address. If the offset variable, which is common

to the two threads (i.e., the offset in the multiplex buffer) reaches the maximum

value of 1440, then the thread sends the packet directly. Otherwise, the thread will

wait 20ms and then send the multicast frame. In both cases, before sending the

frame, it will compute the number of sub packets contained in the multiplex

buffer, in order to make the demultiplexing process at the inner node level easier

and faster. This value is increased each time the build_multiplex function is

called in the traffic_shaper thread.

After sending the packet, we must reset all the shared variables. The thread will free

the multiplex buffer , reinitialize the offset and the number of packet values,

and allocate space for the buffer multiplex , by using a call to the malloc

function.

3-2-3 Mutual Exclusion

As we saw in the previous section, the two threads share three variables: the offset,

the number of packets, and of course the multiplexed frame. It is extremely

important to provide a mechanism to protect these variables from simultaneous and

concurrent access. For instance, it must be forbidden for the sender thread to emit

the multiplexed frame while the traffic shaper thread is still updating it.

The pthread library provides a way to prohibit this concurrent access that could lead

to inconsistent results. By using mutexes in an appropriate way, we can lock some

parts of the code and therefore prevent data inconsistencies due to race conditions.

Mutexes are declared and initialized with the following commands:

19

//Declaration of the mutex
pthread_mutex_t mut;

//Initialization of the mutex
pthread_mutex_init(&mut, NULL);

Each time before a global resource is accessed, the thread must try to lock the

mutex, by calling the function: pthread_mutex_lock(&mut) . The thread is

therefore blocked, waiting for the mutex to be released by the other thread. When

the mutex is free, the thread can enter the “critical section” and then modify the

shared variables. When the process is finished, the function

pthread_mutex_unlock(&mut) is called in order to unlock the mutex, allowing the

other thread to get the access to it and to enter its “critical section”.

Note in contrast to semaphores, mutex can only be used for threads belonging to

the same process [14].

In order to avoid the concurrent access problem, we also could have implemented

the aggregator as one single thread with an infinite loop and an event timer. The

arrival of an RTP packet would play the role of the trigger, and the program will

check for how long the oldest packet contained in the buffer has been queued. If

this time reaches 20ms, the multicast frame is sent. It is also sent if the limit size of

the buffer (the MTU) is reached.

3-3 The Demultiplexer

Upon receiving the multiplexed frames, the inner nodes need to extract the

appropriate content (i.e., the sub-frames that are intended for their IP address). To

do so, here again, two threads are needed: a receiver and an extractor.

.

3-3-1 Receiver

The receiver thread simply listens to the multicast socket to get the multiplexed

frames emitted by the aggregator. An IGMP join request structure is created and an

ADD Membership message is sent, before starting an infinite loop. Sending this

IGMP join message is done by using the socket API, particularly the setsockopt ()

method that enables us to specify particular settings for a socket. Another socket is

created during this phase, a Raw socket, used for sending the actual RTP packets

extracted from the multiplexed frame. Within the infinite loop, after each packet is

received from the multiplex frame, the frame content is copied to another buffer,

20

shared with the second thread, in which extraction of the RTP frame occurs. Note

that for this process, we also use mutexes to ensure that no concurrent access will

occur and to prevent inconsistent results.

3-3-2 Extractor

The extractor thread must run after each multicast packet to port 8888 is received.

In addition to the mutexes, we are using a Boolean as a flag to know if a new packet

has arrived and if additional processing needs to be done. The thread must not run

twice on the same multiplexed frame; as this would result into duplicated RTP

packets. It would have no effect on the conversation quality since the SIP user agent

would put the contents in the same place for playout - hence the content will only be

played once (this can be done because of the sequence number and timestamp in

the RTP packet header).

When the extractor thread enters its “critical section”, by locking the mutex, it begins

by extracting the first two bytes of the packet, which represents the number of sub

RTP packet contained in the large packet. Thanks to the custom header of each of

these sub packets, the extractor can determine their length by checking the length

field. Therefore, the extractor knows where an RTP frames ends and where the next

one starts.

The thread invokes the function addresse_ip_check() for each one of the sub

packets. As its name indicates, this function looks at the IP destination field of the

customer header, and returns 1 if this destination IP address matches the IP

address used by the process.

If the value one is returned, this means that the particular sub packet treated is

intended for this particular inner node. Hence we need to re-generate the original IP

packet, i.e., we will produce an IP packet that is identical to the one emitted by the

outer node. To perform this action, the extractor thread calls the raw_packet

function, with the sub_packet and the descriptor of the Raw socket as parameters.

In this function, the IP and UDP headers will be recreated exactly the same as the

original, thanks to the custom header. Raw sockets, supported by the Berkley

socket API, provide a way to bypass the encapsulation processes done by the

network stack of the operating system. This allows the program to forge a packet

with a different IP source address than the running program. Note that Raw sockets

can be used in a malicious way, to impersonate other computers of a network by

spoofing their IP addresses in order to perform intrusion attacks, such as for a SYN

DoS attack [15].

21

To perform this packet forging successfully, both the IP header and the UDP

checksums must be recalculated before sending the packet to the wired network.

Moreover, we must tell the kernel not to add headers to these packets, since the

thread already created these headers

.

{

 int one = 1;
 const int *val = &one;
 setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, siz eof (one)

}

The demultiplexer program must be run with the root privileges, since this is a

requirement for performing Raw socket operations.

3-4 Registration / Unregistration Mechanism:

In order to forward the UDP packets destined to IP address X with a destination port

between Y and Z, the following command must be entered at the aggregator:

Iptables –A INPUT –p UDP –d X/32 –-dport Y:Z –j QUE UE

The above code cause iptables to add a new entry to the INPUT chain that will

cause packets destined to exactly the IP address X (indicate by saying that all 32

bits of the IP address must match X) and that the destination port is within the range

Y to Z. If a packet matches these requirements, it is enqueued for further

processing.

When the demultiplexer is launched, the program asks the user to enter the IP

address to which it will listen for packets, and the range of ports that will be used for

exchanging encoded speech data with the wired network

22

Figure 8: Demultiplexer screenshot

The program creates a socket for communication with the aggregator and then

transmits this information. After receiving this message, the aggregator calls a

function that takes the message as a parameter, and generates the appropriate

iptables command. Using a call to the “system()” function, the command is

executed which adds the iptables rule to the INPUT chain.

To enable unregistration, we implemented a means to dynamically stop the

forwarding of the UDP packets to the queue. When the user wants to stop using our

downlink protocol, he or she simply stops the demultiplexing program by pressing

the combination of key Ctrl+C. By doing so, an interruption signal or SIG INT is sent

to the process [16]. For most C programs without a specific interrupt handler, this

will simply stop the programs execution. If this were to happen, the queuing process

at the aggregator would continue, hence the RTP frames intended for the node

would still be aggregated into the large multiplexed frame and sent to the multicast

group. Therefore, because the demultiplexing program has terminated, a VoIP

application waiting for these packets will not be able to receive them.

In our program, we implemented an interrupt handler function that is called when a

SIG INT is received. By calling signal(SIGINT, unregistration) we catch the signal

and call our own unregistration function, which sends a message to the aggregator

through the socket. When the aggregator receives this message, the iptables_rule

function will delete the rule matching this particular inner node (based upon its

particular IP address) and the specified port range. Therefore, as soon as the Ctrl+C

is pressed by the user, the system will switch to unicast transmission of RTP frames

to this destination IP address.

23

There is a potential security problem here someone could generate packets to the

TCP port indicating that someone else's use of the aggregator should be terminated.

Note that the only effect that this will have is to prevent RTP packet aggregation and

all of the RTP packets will be delivered via the usual unicast mechanism. Rather

than being a pure denial of service attack this would simply be a degradation of

service attack, by preventing aggregation.

To solve this problem, we can encrypt the registration and unregistration message

with a secret key shared by the aggregator and a unique inner node. To do so, we

must have a Key exchange protocol, such as a Diffie–Hellman key exchange.

Note that most users do not know their IP address, they just connect the network

and use their machine to accessing the data they want. Hence, they would not be

able to specify the IP address when running the demultiplexer program. To solve

this problem, we could have implemented a sniffer that sends the registration

message when it detects RTP streams exchanged by the machine. In this way, the

registration will be transparent for the user.

Another problem is how do the inner nodes know the address of the aggregator

machine? It can be configured manually in the software, which means that it should

be modified each time the aggregator changes its IP address. Another solution is

actually to send the registration and unregistration messages in a broadcast packet,

which can be interpreted only by the aggregator. Note this solution brings other

potential security issues.

24

4 Tests and Performance Measurement

In order to validate our model, we will perform a number of tests to show that all the

different components of our system work correctly and produce the desired results.

We will also analyze parameters such as the delay, the number of packets lost and

the amount of jitter that is induced. In general, when a sequence of RTP packets is

sent from machine 1 to machine 2, these packets will take a different time to reach

their destination. Assuming that a source emits RTP frames every 20 ms, then the

receiving party will probably receive these packets with different time intervals. This

variance in the periodic arrivals is referred to as jitter. This jitter can be cause by

queuing in routers, contention for links, etc.

Figure 9: Illustration of the difference in arriving time between packets

4-1 Tools used

To perform the tests, we used two different programs to emit RTP packets from an

outer node. The first one is a C program that we wrote, which sends RTP packets to

different IP addresses, using RAW sockets to forge the UDP and IP header fields.

Used within an infinite loop, in conjunction with a sleep(20000) call, it sends packets

every 20 ms packets to the IP addresses of inner nodes. Each of these packets has

a different payload. We have implemented a function that randomizes the payload

before sending the packet, so that no two packets will ever be identical. The length

of the payload is also a random parameter, that is generated each time a new

packet is to be created. This represents a more demanding stream of packets that

would be expected from encoded audio, but might be more representative of

encoded video RTP packets.

Concerning the RTP header, except for some fields (version = 2, extension and

padding = 0, and payload type = RTP_PAYLOADTYPE_G711), that are constants for

all the sequences; we increment the sequence number and increase the timestamp

by 20ms each time a packet is sent.

25

To deliver a RTP stream which can be interpreted and analyzed to extract useful

parameters, we used a Linux GUI packet generator tool, specifically the packETH

software [17]. This tool allows users to create and send many different kind of

frames: Ipv4 (UDP, TCP, IGMP, ICMP...), ARP, and custom network layer frame.

The user interface to this program is shown in Figure 8.

Figure 10: Screenshot from the software packETH: Main interface

Using the tool we can specify the destination and source IP addresses or the source

and destination MAC addresses for layer 2 headers. Moreover, the “Interface”

button permits user to select which interface the packet is sent through.

The features of this software that interests us are the possibility to send a continuous

RTP data flow. For example, we can encode a sinusoidal wave of any frequency

between zero and 4000 Hz with the G 711 CODEC. The GUI for generating RTP

flows is shown in Figure 11.

26

Figure 11: Screenshot from the software packETH: RTP Interface

The other essential feature of this tool that is necessary for our testing is the ability to

modify of some fields during the sending process. For example, the software has an

option to transmit sequence of packets leaving the choice of the delay between the

frames to the user. One can specify changes to be made on some parameters of the

packets while sending. One of these options allows us to increment the sequence

number of the RTP header, and to increase by 20ms the timestamp field. (See

Figure 12)

Figure 12: Screenshot from the software packETH: modification of parameters

27

4-2 Different Test Scenarios

4.2.1. Testing the correct reception of three packets: payload comparison.

In order to validate the correct reception of the frames at the inner node level, we

performed the following test:

Figure 13: Illustration of the test 1: three RTP packets exchanged

Using our sender program, we sent three RTP frames to an inner node. The

aggregator multiplexed them into one large multicast frame and transmitted this

frame to the multicast group, to which the demultiplexer program of the inner node is

listening. The demultiplexer processes the frame and re-creates the initial three

frames and sends them via the loopback interface. Comparing the payload of the

initial frames emitted by the sender program (shown in figure 14) with the final three

28

frames extracted from the multiplexed one show that the aggregator and

demultiplexer work as expected The packet that is received by one of the inner

nodes is shown in Figure 15.

It is clear that this matches the fields in the packet shown in Figure 14 except for the

destination IP address which in the locally generated packet which shows the loop-

back interface's IP address rather than the node's network interface's IP address.

While this does enable the packet to be delivered to the waiting RTP listener, it might

not be acceptable from a security point of view - because even though the

checksums have been re-computed with the IP address that is used as the

destination - the application might not be accept the change in the destination IP

address.

We capture the packets exchanged using Wireshark. Wireshark can display the

payload and can decode the RTP packets. This makes it easier for us to compare

the original RTP datagrams with the final RTP datagrams.

Figure 14: Packet emitted by the outer node using the sender program

Figure 15: Packet recreated by the inner node demultiplexer after receiving the

multicast frame

29

As we can see, the payloads are quite similar, which means that the demultiplexer

largely succeeded in regenerating the packet that was issued by the outer node.

The result was the same for the two other frames. Since no time delay between the

packets was specified in the sender for this test, the three packets were sent

sequentially resulting in all of them being multiplexed into a single multiplexed

packet emitted by the aggregator.

4.2.2. Transmission of a flow of RTP packets from a single outer node to a

single inner node:

The main goal of this test is to verify the consistency of the delays and jitters as

experienced at the receiving side, by comparing them to the delay and jitter at the

emission side. In this test, there is only one outer node sending encoded voice data

multiplexed by the aggregator. The results of this test will allow us to know if the

presence of our multiplexing system introduces traffic latency, or if the RTP packets

will not be affected by the new protocol.

Figure 14: Illustration of the test 2: one single RTP stream

30

Every 20ms, the sender transmits a packet to the inner node. At the bridge level, the

aggregator processes the incoming frames and puts them into a multicast packet

and sends them to the multicast group every 20ms. In this test case, the maximum

size of 1460 octets is never reached, since only one RTP stream is simulated.

We recorded the traffic with Wireshark on both the network where the traffic

generator was running and on the inner node., and thanks to the stream analysis

function of this software we can display the number of packets lost, the mean and

maximum jitter, and the maximum delay.

Note that we purposely put short pauses in both the demultiplexer and the

aggregator threads. This was because we found that in order to ensure the correct

synchronization between the threads, a mutex is not always sufficient. We added a

call to the usleep function within the infinite loop of both threads. We modified the

duration of these pauses to see how they affected the performance of the protocol.

a) Without any pauses in the threads (a) Without any pauses in the threads (a) Without any pauses in the threads (a) Without any pauses in the threads (i.e., i.e., i.e., i.e., usleep is not called at the eusleep is not called at the eusleep is not called at the eusleep is not called at the end of the nd of the nd of the nd of the

threads):threads):threads):threads):

Figure 17: Wireshark Stream Analysis N°1

The first line of Figure 17 reports statistics for the packets leaving the outer node’s

interface, whereas the second lines represent the packets sent by the demultiplexer

to itself, after fetching the data from the multiplexed frame. As we can see, the

results are not satisfying at all, since almost 40% of the packets that arrived at the

node were lost. Moreover, the jitter and the delay are way too high comparing to

their values in the initial stream. Note that this packet loss occurs inside the software

and not on the network.

31

bbbb) With a short t) With a short t) With a short t) With a short time out (0.ime out (0.ime out (0.ime out (0.5 ms) added inside the threads:5 ms) added inside the threads:5 ms) added inside the threads:5 ms) added inside the threads:

By adding a small delay in the loops we obtained better results (see figure 18). No

packets were lost. Actually one packet was received twice, but this will probably not

affect the quality of the communication at all. The mean jitter and the maximum jitter

values are very close to the initial ones. The maximum delay is more important

though, but this maximum value occurred only on one packet.

Figure 18: Wireshark Stream Analysis N°2

With these results we bring to the fore the necessity of adding a sleep call to the

infinite loops of the threads running at the bridge level and at the inner node level. In

the next test we will see if increasing the duration of the pause leads to better

results.

b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:

The results of the use of a 1 ms pause are shown in Figure 17. As we can see they

are similar to the previous ones. In fact, the mean jitter at the reception is really close

to the initial stream's jitter (less than 1ms longer). However, the maximum delay is

63% bigger than the initial delay, and in contrast to the previous test, many packets

had a high delay.

Figure 19: Wireshark Stream Analysis N°3

In the following tests we will use the short pause value (0.5 ms).

32

c) Longer streamsc) Longer streamsc) Longer streamsc) Longer streams

In the previous tests, we only transmitted a “few” packets (less than 210 packets).

This test of our system is much longer, hence processing many more packets than

before. During a test lasting 30 seconds, the outer node sends RTP frames with a

20ms period. The results of this test are shown in Figure 18.

Figure 20: Wireshark Stream Analysis N°3

The results that we get from this test are similar to the previous ones, so no effect is

noticed in real VoIP exchange conditions.

4.2.3. Multiple simultaneous calls

Until now we have measured the performance of the system in terms of delay and

jitter for only one call. Now we will consider a case where the new downlink

transmission protocol can actually be useful, specifically when multiple users are

inside the cell and they are streaming RTP traffic to and from other users outside the

cell.

In order to simulate such a scheme, we modify the sender program to make it send

RTP content to 10 different nodes. We only run one demultiplexer node, but we also

add an iptables rule for the others to the aggregator, so that the multiplexed frame

can also contain their traffic.

Iptables –A INPUT -p udp -d 192.168.1.0/24 –-dport 6600:6700 -j
QUEUE.

The above iptables rule will forward all the UDP packets, with a destination port

between 6600 and 6700 and destined to any node of the 192.168.1.0/24 sub

network.

Because there are now ten different simultaneous RTP streams, the multicast frame

is therefore much bigger, with an average length of 1400 octets. On the destination

node we must also create as much IP aliases as necessary. The logical

configuration for this test is shown in Figure 21.

33

Figure 21: 10 outer nodes (A -> J) communicating with 10 inner nodes (A’ -> J’)

We obtain the following results from this test. Note that since we used a single

machine for simulating the outer nodes, the inner nodes and the aggregator, we are

able to analyze all the streams in one single Wireshark session, allowing us to have

a time synchronization.

Figure 22: Wireshark Stream Analysis N°4

34

To get a jitter closer to 20ms, we changed the usleep value of the sender program,

from 20000 (i.e., 20 ms) to 16000 (16 ms). This needed to be done because of the

time it takes for the program to actually send the packets.

Comparing the first line to the last; we can see that the jitter greater when more RTP

sub packet are contained within the multiplexed frame, even though the jitter is still

relatively close to that of the original stream.

The maximum delay is also longer, but in comparison with the previous tests it is

closer to the original stream (e.g., it is only 15% larger than the original maximum

delay).

We increased the number of simultaneous communication simulated, up to 20, using

the packETH software, and we obtain similar results. (See Figure 23.)

Figure 23: Wireshark Stream Analysis N°4

Here again, the last line should be compared to the first one. The jitter and delay

values are higher than in the previous tests, because of the additional processing

time required by needing to handle 10 more RTP packets (that have to be created

and transmitted). Nevertheless, at the receiver, the delay and jitter values are quite

similar to the parameters observed at the outer node level.

35

We also notice that some packets are lost in the original streams sent by

192.168.0.14-15-16-17-18-19-20. We cannot provide a consistent explanation for

this problem, although we suppose the problem comes from the packETH software

which might experience some problems increasing correctly the sequence number

at the emission.

4-3 Results analysis

This set of tests, conducted with one single computer, allows us to validate the

model proposed in this project. Indeed, even though experiments under real

conditions have not been made, these results are encouraging. The next step is to

measure the performance with an actual WLAN cell and several computers playing

the roles of the inner nodes and the outer nodes. . However, from these earlier tests

we observed that the aggregation processing and the demultiplexing tasks do not

add too much delay, and do not lead to higher jitter values. Packet lost was minimal,

so we expect that the quality of the RTP Stream is not affected by this new downlink

protocol.

Due to a limited time for this project, we were not able to conduct all the tests we

wanted to. It would have been interesting to analyze the behavior of the system with

a real WLAN cell. Moreover, the use of a real SIP user agent would have allowed us

to send and receive real encoded speech, and would also let use test the perceived

quality of the sessions. Unfortunately, it is rather difficult to use such a software for

both the callee and the caller on a single machine, that is the reason why we utilized

to our sender program and the packETH software.

36

5 Conclusion

This project was a great opportunity to dig deeper into networking research.

Conceiving a system, gaining knowledge of some new technologies, confronting the

practical problems, and being able to modify and adapt the initial goals, were

among the lessons that we learned. Moreover, our understanding of the protocols

and technology improved thanks to this work.

As mentioned previously, the tests and experiments conducted to validate our

model, but show that it can be improved. Thus the testing needs to be extended to

real VoIP sessions under realistic conditions. Nevertheless, the tests showed that

while there was some increase in the delay and jitter these increases seem to be

quite small. This means that our system should not impair the perceived quality of

the communication session.

Even though we did not manage to test the system with a large number of inner and

outer users, we assume that it will support more concurrent VoIP sessions than the

same cell could without this downlink multiplexing protocol at the same time, since

the contention for the medium is significantly reduced. However, this should be

verified and quantitated.

This new downlink transmission protocol is not intended exclusively for VoIP

sessions, and could be adapted and extended for other similar kinds of traffic.

Indeed, every protocol that requires exchanging small packets at a high rate and in

a periodic fashion can benefit from our downlink model. For instance, we can

imagine a Video on Demand service operating over a WLAN link. The frames

carrying the video content can be aggregated at the AP level, and sent as a

multicast to the users, who will simply demultiplex the packet to extract the

appropriate content. Note that this can even be used to simply multiplex the audio

and video RTP datagrams into a single flow of datagrams.

37

References

[1]: Gokul Rajagopalan, “802.11n Client Throughput Performance”, Aruba Networks

White Paper http://www.arubanetworks.com/pdf/technology/TB_11NPERF.pdf

[2]: Jim Rendon, “WLAN and VoIP: A match made in heaven?”, Networking News,

12 Oct 2004 (Accessed on the 15th May 2010)

http://searchnetworking.techtarget.com/news/article/0,289142,sid7_gci1015068,00.h

tml

[3]: Guillaume Collin and Boris Chazalet, “Exploiting cooperative behaviors for VoIP

communication nodes in a wireless local area network”, Project in Computer

Communications, Department of Communication Systems, Royal Institute of

Technology (KTH), 4th March 2007 http://web.it.kth.se/~maguire/Boris-

Chazalet_and_Guillaume-cooperative-behaviors-final-report-20070816.pdf

[4]: P. Cameron, D. Crocker, D. Cohen, J. Postel, “Transport Multiplexing Protocol

(TMux) ”, IETF, RFC 1692, August 1994. http://www.rfc-editor.org/rfc/rfc1692.txt

[5]: K. Nichols, S. Blake, F. Baker, D. Black, “Definition of the Differentiated Services

Field (DS Field) in the IPv4 and IPv6 Headers”, IETF, RFC 2474, December 1998.

http://www.ietf.org/rfc/rfc2474.txt

[6]: Wikipedia Article, “Maximum transmission unit”, (Accessed on the 14th May

2010) http://en.wikipedia.org/wiki/Maximum_transmission_unit

[7]: Pablo Brenner, “A technical tutorial on the IEEE 802.11 Protocol”, BreezeCom

White paper, 1997 http://www.sss-mag.com/pdf/802_11tut.pdf

[8]: Alessandro Rubini, “Virtual Network Interfaces”, (Accessed on the 10th May

2010) http://www.linux.it/~rubini/docs/vinter/vinter.html

[9]: J. Corbet, A. Rubini, G. Kroah-Harman, “Linux Device Drivers” 3rd Edition,

O’Reilly Collection, February 2005

[10]: Bridge Linux Foundation, Bridge webpage, (Accessed on the 15th May 2010)

http://www.linuxfoundation.org/collaborate/workgroups/networking/bridge

[11]: Rusty Russel, « Linux 2.4 Packet Filtering HOWTO », January 2002, (Accessed

on the 15th May 2010) http://netfilter.org/documentation/HOWTO//packet-filtering-

HOWTO.html

38

[12]: Rusty Russell and Harald Welte, “Linux netfilter Hacking HOWTO”, July 2002,

(Accessed on the 15th May 2010)

http://netfilter.org/documentation/HOWTO//netfilter-hacking-HOWTO.html

[13]: Chris, Christy and Frank, “The quick intro to libipq”, Accessed on the 15th May

2010. http://www.imchris.org/projects/libipq.html

[14]: Greg Ippolito, YoLinux team, “POSIX thread (pthread) libraries”, Accessed on

the 20th May 2010

http://www.yolinux.com/TUTORIALS/LinuxTutorialPosixThreads.html

[15]: Mixter, BlackCode Magazine, “A brief programming tutorial in C for raw

sockets”, Accessed on the 20th May 2010 http://mixter.void.ru/rawip.html

[16]: Dave Marshall, “IPC:Interrupts and Signals”, May 1999, (Accessed on the 20th

May 2010) http://www.cs.cf.ac.uk/Dave/C/node24.html

[17]: PackETH source forge web page , (Accessed on the 20th May 2010)

http://packeth.sourceforge.net/

www.kth.se

TRITA-ICT-EX-2010:105

