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Abstract 

 

 

 

 

Voice over IP (VoIP) is becoming more and more popular every day. The number of 

VoIP service providers is continuously increasing along with the number of 

customers they serve. Moreover, the latest generation of smartphones and mobile 

devices now incorporate VoIP support. This enables users within a wireless local 

area network (WLAN) cell to exchange VoIP traffic with other peers. 

 

This new traffic potentially poses a problem for WLANs, as the WLAN access point 

could be required to handle a large number of small packets of encoded speech. 

Since the access to the media can only be made by one node at a time, all of the 

devices must contend to access it. If there are multiple calls between nodes in the 

WLAN and nodes in the fixed network, then all of these packets must go to and from 

the access point. Moreover the access point needs to transmit the downlink traffic 

for all of these nodes. Because the Access Point has the same probability of getting 

access to the media as any other node, this can lead to high delays, and limits the 

maximum number of simultaneous calls to a rather small number, despite the 

increasing data rates that the WLAN interfaces are capable of. 

 

This project implements and evaluates a new solution that consists of aggregating 

downlink packets at the access point and transmitting a large multicast packet 

containing a set of voice frames that need to be sent to nodes within the cell. A 

demultiplexing process at node extracts the appropriate RTP content from the 

multicast packet and delivers it locally.  
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1 Introduction 

 

1.1 Context and Delimitation 

This study has been specially designed to address the problem of media contention 

for IEEE 802.11b/g/n Wireless Local Area Networks (WLANs) in the particular case 

of encoded data speech transmission traffic - with a focus on the downlink. In this 

kind of network, when a node inside the cell (an inner node) wants to exchange 

traffic with a node in the fixed network, (or more generally attached to any node 

topologically on the far side of the access point) packets must be forwarded through 

the Access Point (AP). The AP is usually connected to (or includes in itself) a router 

and can relay data between the wireless devices (computers, smartphones, 

printers, …) within the cell and the devices connected to the external network 

(Internet, other LANs, other WLANs, etc). 

The new protocol presented and implemented in this work is specifically intended 

for the case of VoIP communications involving both both both both inner nodes and outer nodes. 

This implies that the RTP frames must be forwarded through the AP, in order to be 

delivered to the correct destination. See Figure 1 for a schematic example of the 

case that this work will focus on. 

 

 

Figure 1: Illustration of the context of this work 
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1.2 Problems to be addressed by this project 

 

Nowadays, WLANs are capable of providing high data rates, up to 600 Mbit/s for the 

latest “n” version of the IEEE 802.11 standard [1]. This might lead one to think that a 

very large number of VoIP users could be accepted within the same WLAN cell, 

since the amount of data that needs to be exchanged in the case of a standard VoIP 

session is relatively small (because of the small number of bits that are required to 

encode speech at sufficient quality for conversations), comparing to the high 

throughputs that WLANs are capable of. 

But as Tony Rybczynski, director of strategic enterprise technology at Nortel 

Networks Ltd., said during an Internet Telephony Conference & Exposition, “If you 

think that Wi-Fi is like a LAN and voice is just another application, you will fail” [2]. 

Indeed, VoIP exchanges have many particularities that must be taken into account 

to provide higher capacity for managing calls and to increase the number 

simultaneous calls that can be supported. 

Assume that many users within the WLAN cell are exchanging VoIP traffic with other 

users outside the cell. In the case of ITU-T G.711 encoding each one of these inner 

nodes needs to receive packets from the outside network every 20ms, that means 

that without our new downlink transmission protocol, the AP will have to contend for 

the media access each time there is an encoded speech data to be forwarded. 

Since it has the same probability of accessing the media as the other inner nodes, 

but has to deliver 50% of all the RTP traffic, the contention that occurs leads to high 

delays for this traffic. 

Our model proposes a solution to reduce this contention. Instead of trying to access 

the media each time there is a RTP packet to be forwarded by the AP to a node in 

the cell, we can aggregate all of the RTP packets into one large frame, then 

multicast this frame to all the inner nodes involved in a VoIP session with the outside 

network. Therefore, the AP will only have to compete for access to the media every 

20ms. If we assume that there is only VoIP traffic to be exchanged, then we see that 

we have enabled the AP to compete fairly while still getting to deliver the RTP 

contents that it should. This solution will not interfere with other types of data 

exchanged with the outer network, since the AP will keep on forwarding non-RTP 

frames as usual, but aggregating the RTP frames will enable the AP to handle more 

VoIP users within the cell and will reduce the amount of contention that it generates 

within the cell (this can even have a beneficial effect for the non-RTP traffic). 
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1.3 Main goals 

 

The aim of this project is to create a prototype implementation of the new downlink 

scheme and to evaluate it. Prior work conducted at KTH proposed a system that 

also included a cooperative behavior for VoIP communication nodes in the WLAN 

cell (i.e., focusing on avoiding contention on the uplink) [3]. In contrast, in this work 

we wanted to focus on the downlink protocol, in order to enhance the work done by 

the former students, by modifying the protocol and proposing a new implementation 

at a lower level. 

We initially targeted our work to use Linux pseudo device drivers and implement a 

solution as a kernel module. After digging into the world of kernel hacking, and after 

weeks of research, the contacts that we established with many contributors to the 

kernel community led us to the conclusion that there was a better way of handling 

this problem that writing virtual network interfaces as kernel modules. In the 

following text we will present and explain this method, which relies on ipqueue and 

Netfilter hooks, in the implementation section of this paper. 

The principal requirement of this solution is to respect the time constrained delivery 

of the RTP packets, which is inherent to maintaining the user's perception of good 

quality audio. Hence when adding this traffic shaping process at the AP, we must 

notnotnotnot significantly increase the forwarding delays; otherwise we would have reduce 

the perceived quality of the speech and thus degraded the apparent performance of 

the AP.  

To complete the process of RTP datagram delivery, there must be a demultiplexing 

mechanism in the inner nodes in order to extract the relevant RTP packet and to 

deliver it to the application level. In this case as well, high packet delay & delay 

variation should be avoided. 

In the ideal case, this process must be transparent for the outer nodes. Thus any SIP 

clients or other SIP software must be able to reach inner nodes without needing any 

modification, as if no downlink process was implemented. This means that we must 

be able to automatically detect that there is suitable RTP traffic for downlink 

multiplexing and that the relevant nodes in the cell have the demultiplexing support 

that is required. 

In order to know that the nodes in the cell do have support for downlink 

demultiplexing there must be a mechanism to register the inner nodes for 

participating in the multicast process. This process will allow inner nodes that are 

not (yet) registered to utilize the new downlink protocol to have the opportunity to 

continue to exchange RTP datagrams with outer nodes, in a transparent way.  
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Thus inner nodes that do not participate in the downlink multicast will receive by 

receiving from the AP their RTP frames forwarded individually by the AP in a unicast 

transmission. 

The next section of the report will present the actual protocol, and the structure of 

the frames exchanged in the proposed new process. 
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2 Overview of the protocol 

 

2-1 The Model 

 

Assume N inner nodes communicating simultaneously with N outer nodes - with all 

nodes using G.711 encoding. The volume of the resulting RTP traffic will be 2*N 

packets every 20ms (assuming that there is no silence suppression). 50% of this 

traffic is going through the downlink, from the outer nodes to the inner nodes. 

Therefore, the AP needs to access the media much more often than any other single 

node. Additionally each of the frames carrying an RTP datagram is quite small, so 

with the minimum interframe gap and other elements of the WLAN MAC protocol, the 

available bandwidth is very inefficiently utilized. By aggregating all the downlink RTP 

frames, we will significantly reduce the AP's need to contend for the media. With this 

new approach, instead of trying to use the link layer N times every 20ms, it will only 

transmit bigger frames at a lower rate. 

At the AP level, a process waits for incoming packets. If these packets are RTP 

packets, intended for an inner node registered to use the new protocol, then the 

packet is queued in a buffer. Actually before being placed in the buffer, the packet’s 

IP and UDP headers are removed (as these are completely predictable). Indeed, 

there is no need to send the complete IP packet as it arrived at the AP level, but 

rather we only include the necessary information needed by the demultiplexer to 

recreate these headers when it extracts the RTP datagrams from this multicast 

frame. The demultiplexer will recreate and to rebuild the original IP packet and 

deliver it locally.. So instead of including the 28 bytes of header (20 bytes for the IP 

header, 8 bytes for the UDP header) in each sub RTP packet of the multiplexed 

frame, we create a “custom header” that includes the necessary information for the 

demultiplexer.  

This custom header process has been inspired by the Transport Multiplexing 

Protocol (TMux, RFC 1692) [4], which was created to optimize the frequent 

transmission of small data packets, for instance in the case of Telnet and Rlogin 

sessions. It multiplexes several packets into one big frame, and adds a “TMux Mini 

Header” to each one of them, followed by a “Transport Segment”. This model allows 

the aggregation of different protocols into one frame; for instance, a multiplexed 

frame could include multiple UDP and TCP sub-packets, thanks to this transport 

segment. 

Since encoded voice data is generally small in terms of the number of bytes 

needed, RTP packets carrying speech do not generally need to be fragmented and 
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the usual MTU (Maximum transmission Unit) is never reached by a RTP frame, for 

the voice case. Therefore, all the fields related to fragmentation contained in the IP 

header need not to be included: hence our custom header does not include the 

following fields: Identification (16 bits), Flags (3 bits) and Fragment offset (13 bits). 

 

Moreover, other IP header fields can be dropped in the multiplexed frame, because 

they do not vary from one packet to another and therefore they are completely 

predictable. For instance, the Version field (4 bits) is always set to 4 for IPv4 data, 

which is the context of our work. The header length (4 bits) as well will assume that 

no particular options are used in the transmission of RTP packets.  

Because RTP relies on UDP, we will always have the same value (17) in the Protocol 

field (8 bits). Concerning the TTL (Time to Live) field, the last hop passed by the 

packet is the AP, so there is no need to include this parameter in our custom 

header: if the packet succeeded in arriving at the AP, then the datagram should be 

delivered. 

The Differentiated Services field (8 bits) is dedicated to the control and the provision 

of QoS (Quality of Service) [5]. It allows network devices to handle in a particular 

way specific types of packets, by prioritizing their processing depending on the 

value of this field. This is done relative to an administrative policy. Our protocol does 

not handle this prioritization system, since it is intended to be used with only RTP 

packets and no differentiation is needed between the RTP frames. Therefore, this 

value is not included in our custom header.  

Finally, the Header checksum field (16 bits) can be computed at the inner node after 

receiving the RTP frame and putting together all the information included in the 

custom header to re-generate the IP header. 

On the other hand, the IP destination and source addresses (32 bits for each) must 

be included so that the demultiplexer will be able to extract the appropriate RTP 

sub-packet from the large multicast frame (by checking the IP destination address) 

and so that the receiver can create an IP packet with the appropriate source 

address (using the IP source field). 

Concerning the UDP header, it is necessary to keep the ports (source and 

destination, 16 bits each), since the demultiplexer has to know on which port the 

application is waiting for the RTP frames. The checksum field (16 bits) can be 

computed later, hence there is no need to include it in the custom header. Note that 

the overall multicast frame is protected by a link layer checksum. 

The length fields of both the UDP header and IP header carry the same information: 

the payload size transported, together with the header lengths. In our reduced 
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header, we will only include the length of the payload (RTP header size + RTP 

payload size), thus the demultiplexer can compute the two length fields from this 

information. 

 

2-2 Packets Format 

The custom header has the following structure: 

IP addressIP addressIP addressIP address    

Outer node source 

4 4 4 4 octetsoctetsoctetsoctets    

IP addressIP addressIP addressIP address    

Inner node destination 

4 octets4 octets4 octets4 octets    

LengthLengthLengthLength    

RTP length 

2 octets2 octets2 octets2 octets    

UDP PortUDP PortUDP PortUDP Port 

Source 

2 octets2 octets2 octets2 octets    

UDP PortUDP PortUDP PortUDP Port 

Destination 

2 octets2 octets2 octets2 octets    

Figure 2: Custom header structure 

As we can see, the total length of this header is 14 octets. It is half of the IP and UDP 

headers’ size, thus we are saving 14 bytes for each RTP frame included in the 

multicast frame. In our source code, this structure is encoded as follows: 

 
struct Custom_Header_struct 
{ 
      u_int32_t ip_src;              
      u_int32_t ip_dest; 
      u_int16_t length; 
      u_int16_t udp_port_src; 
      u_int16_t udp_port_dest; 
}; 
 

  

The types u_int32_t and u_int16_t (unsigned 32 bit integer and unsigned 16 bit 

integer respectively) allow us to specify the exact size that we want the field values 

to take. It is very important to keep a consistent size and byte order (in our case 

network byte order), since at the demultiplexer level we will have to fetch the five 

fields according to their position in the frame.  

Figure 3 illustrates the aggregation mechanism 
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Figure 3: Illustration of the aggregation mechanism 

 

2-3 Registration process 

One of our requirements is to let inner nodes that do not want to participate in this 

particular downlink protocol to exchange RTP traffic as usual with the external 

network. This means that the AP will not aggregate their incoming RTP packets into 

the multicast frames, but instead forward them as usual as unicast frames, these 

transmissions will contend for access to the media as usual. 

To allow this transparency, we must register the users that want to participate, in 

order to enqueue their RTP packets into a queue where they can be processed. To 

do so, we created two programs: one at the inner node level, and another at the AP. 

Note that when referring to the “AP level”, we actually mean the aggregator 

machine, in our implementation this is connected between the wired network and 

the AP. This aggregator looks like by an Ethernet bridge to all of the non-aggregated 

traffic. Details of this aggregator will be give later, in the implementation section. 

At the inner node level, before setting up SIP session for a VoIP session, the users 

must run a program to indicate that they want to use this new downlink transmission 

protocol. This program will send to the aggregator (via a TCP socket) a message 

containing the IP address of the node and the range of ports that will be used for its 

RTP packets. This information is needed by the aggregator in order to queue the 

relevant traffic, hence the aggregator must know both the IP address of the 

participant and the ports that will be used for the RTP packets carrying encoded 

speech traffic. This is the reason why we created a specific registration message. 

Still to be addressed is the question of how the software running on this inner node 

knows the address to send this message to - this will be described in section 3.4.    
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Rather than introducing a new message we could have used the reception of an 

IGMP join request to the downlink aggregation multicast group, then add a specific 

entry into the aggregator with the IP address of the sender of this request. However, 

since the port range information is not included in this message, and since we do 

not want to queue inappropriate traffic to the aggregator, a dedicated message was 

necessary. Although for future work, we should consider if learning the IP address of 

nodes that want to participate because their demultiplexer joins the multicast group, 

that we could simply watch for RTP traffic to this node and apply the downlink 

multiplexing to it. 

 

Consider that the inner node sends to the AP the following message before initiating 

a SIP session: 

Register 192.168.0.5:6600:6700 

After receiving this message, the aggregator will start forwarding to the queue all of 

the UDP packets destined to 192.168.0.5 and that have their UDP destination port in 

the range between 6600 and 6700. 

If the same inner node wants to unregister, hence start receiving packets in the 

classical unicast way, it sends an unregister message, i.e., a message: 

Unregister 192.168.0.5 

Since we used a TCP connection exchanging these messages, we can also simple 

unregister the inner node when the TCP socket, and therefore the TCP connection is 

closed 

2-4 Period of multicast frame emission 

Naturally, a question comes to mind when designing the different programs 

implementing our protocol: When should the aggregator issue the aggregated 

multicast frame? This leads to the question: How long should the period be during 

which we buffer incoming RTP frames, i.e., when exactly should it stop aggregating 

and transmit the frame? 

Two parameters must be taken into consideration in order to provide a consistent 

answer to this question. The first one is the maximum frame size for WLAN link. 

Indeed, if the buffer reaches this limit, the frame should be sent. For an Ethernet 

wired network the maximum frame size (without fragmentation) is 1500 bytes [6]. For 

an 802.11 network, the theoretical MTU value is 2336 octets including the full MAC 

layer header. This number is a maximum theoretical value, and in most cases, the 

actual maximum frame length is less than 2300 octets. So we will set this value to 
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2300, leaving enough space to the 802.11 header, of a minimum size of 34 bytes 

[7]. Note that for our testing phase, which will initially use a wired network replacing 

the WLAN, we will set the maximum frame size to 1450. 

The other parameter that is important for transmitting the multicast frame is the delay 

between two incoming frames for the same destination at the AP level. Since we 

want to avoid introducing any significant delay, then knowing that the sources 

outside the cell will transmit RTP packets every 20 ms, the AP must forward its 

aggregated frame at least at this same frequency, in order for the inner node to 

receive RTP packets every 20ms, so that it can send them to the application with the 

expected interarrival delay distribution. This means that the aggregator will increase 

the delay of RTP packets by at most roughly 20 ms (on average 10ms). It also 

means that the interarrival delays experienced by the RTP traffic arriving at the 

demultiplexer should be integer multiples of 20 ms. 

Therefore the aggregator will emit the aggregated frame when either the buffer size 

reaches its maximum value, or it has been 20 ms since the last aggregated frame 

was transmitted. After transmitting the multicast message, we clear the buffer and 

rest our 20 ms timer. 

We will see, in the Test and Measurement section, if modifying this 20ms period by a 

smaller amount enhances the perceived quality of the communication. 
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3 Implementation 

 

3-1 Choice of the tools used 

In order to construct the most efficient system, we needed to operate at the lowest 

possible level of the computer model. With this assumption, we began working on 

the conception of a pseudo-device driver, which would act as an aggregator. In the 

Linux environment, most network interfaces are related to a real physical which is 

responsible for the packet transport. However, some network interfaces can be 

exclusively software based, thus it is possible to create virtual network interfaces 

that uses other network interfaces for actually emitting and transmitting network 

packets. When it comes to writing device drivers, it is important to distinguish 

between kernel space and the user space [8]. 

The user space constitutes the memory reserved for end-users programs. For 

instance, the UNIX shell and all the Graphical User Interface (GUI) programs 

execute in user space , but may make calls to the operating system that result in a 

context switch to process this call into and out of kernel space. Obviously, programs 

in user space need to communicate with the underlying hardware, for example to 

output character onto the user’s screen. However, these programs generally do not 

interact with the hardware directly. The relationship between these two spaces and 

the underling hardware is shown in Figure 4. 

 

 

Figure 4: Linux Operating System model 
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We first started by thinking about the aggregator as a pseudo-device driver, to 

which we route incoming RTP traffic, do the aggregation, and then emit a multicast 

frame. After many hours of research to become more familiar with module writing, 

we found out that there was an easier and possibly more efficient way to perform 

these tasks. We contacted one of the authors of the reference book O’Reilly Linux 

Device Drivers [9], who kindly helped us find this alternative method: exploiting the 

Linux bridging functionality. 

3-1-1 Linux Bridge 

In our model, we have two sub networks: the wired network (or the outside network) 

another sub network: the wireless cell. We need to have a mechanism to forward 

frames or packets between these two independent networks. This could be done by 

bridging code, routing code, or an application level gateway. The Linux bridge 

code, fully integrated to most Linux distributions since the 2.4 kernel series, provides 

a way to connect two network segments (such as two Ethernets) together in a 

protocol independent way. The bridge operates at level 2 of the OSI model, 

forwarding is based on the Media Access and Control (MAC) addresses rather than 

being routed based upon IP addresses. 

A bridge actually acts as a switch. Assume that the bridge links two networks via 

network interfaces eth0 and eth1. The first network (supporting the IP subnet 

192.168.1.0/24) is connected to the bridge via the interface eth0, while the second 

network (supporting the IP subnet 192.168.2.0/24) is connected via interface eth1. 

When a frame arrives at the bridge, for example an IP packet from the source 

address 192.168.1.3 would arrive on the eth0 interface, the bridge examines the 

destination MAC address and if it is not one of the MAC addresses know to be 

connected to the network attached to interface eth0, then it will forward the frame to 

the second interface eth1. Note that unlike a router, the bridge will not use the IP 

addresses to decide where to forward the frame, but rather it only uses the MAC 

addresses instead [10].  

 

Figure 5: Linux Bridge illustration 
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In order to set up the bridge between two interfaces, the commands shown in Figure 

6 must be typed into a shell, with the root privileges. The first of these commands 

"brctl" invokes the bridge control program to create a new bridge named "br0". The 

seconds and third commands add the interfaces eth0 and eth1 to this bridge.  The 

fourth and fifth commands reset the network interface to remove the IP addresses 

that were associated with these two interfaces. The result is that the two network 

segments are now connected via bridge "br0" and routing is no longer done 

between these two IP subnets. 

 

## Create the Bridge 

brctl add br0 
 
## Add physical interfaces to the bridge 

brctl addif br0 eth0 
brctl addif br0 eth1 
 
## Reset IP interface 

ifconfig eth0 0.0.0.0 up 
ifconfig eth1 0.0.0.0 up 

 

Figure 6: Bridge configuration 

 

This bridge will now forward packets from the outer nodes to the inner nodes (those 

connected to the IP subnet 192.168.1.0/24).  

This mechanism is actually not fully used in our implementation, since the traffic 

rules rely on the IP level of the OSI model. 

The next subsection will present the tool used to actually aggregate the RTP traffic 

coming to the downlink.  

 

3-1-2 Netfilter and iptables 

 

Netfilter is a framework that provides hooks to intercept and process network 

packets. Merged into Linux kernel version 2.3 in March 2000, it is a powerful tool 

used for packet filtering. This framework is the basis for a number of other network 

tools, such as the user space tool “iptables” that we use in this project. 
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Iptables replaced Ipchains within the Linux kernel versions 2.4 and beyond. Iptables 

is used for IPv4 frames, whereas other tools exist for other types of frames: ip6tables 

applies to IPv6, arptables to ARP, and ebtables for Ethernet layer 2 frames.  

Iptables enables users (with root privileges) to specify specific traffic rules, based 

on the header of the packets transmitted or received. For example, iptables can 

perform firewalling tasks, by examining if the IP packets meet the rules of a 

particular policy (i.e., the policy is implemented by specifying a set of rules which 

iptables then uses to process the traffic). These rules are organized as chains, and 

every network packet arriving at or leaving from the computer traverses at least one 

chain. 

There are five predefined chains, although one can create as many chains as 

desired. 

 

“INPUT” chain Used for traffic entering our system, the packet 

will be delivered to an IP address present on 

our local address. 

 

“OUTPUT” chain Used for packet emitted by our station. 

 

“PREROUTING” chain Before any routing rule is applied, the packets 

will enter this chain. 

 

“FORWARD” chain Used for packets that have been routed and 

that were not intended to an IP address of our 

station. 

 

“POSTROUTING” chain After routing rules were applied, the packets 

will enter this chain 

 

 

For the purpose of this work, we will be using the INPUT chain, to catch traffic 

entering our system, since the Forward chain is exclusively utilized for routing 

processes. 

After entering a chain, the packet is examined according to the rules of the chain. 

Each rule contains a target, or verdict, stating the action that is to be performed for 

packets matching this rule. There are four targets: 
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“ACCEPT” target Allow the packet to continue its path, as if no 

firewalling action happened. The packet is not 

modified 

 

“DROP” target Blocks the packet, it will not be delivered and the 

station will act as if it has never been received or 

created 

 

“REJECT” target Also blocks the packet and deny access to traffic, 

but sends back the appropriate ICMP error message 

to the originator of the packet 

 

“QUEUE” target Transfer and queue packet to user-land programs 

and applications. It allows the processing of the 

packet to be done in the user space 

For our project, it is the last target, “QUEUE” target, which we will be using. We will 

add the appropriate rule to extract the RTP frames and send them to user space 

where aggregation will take place. To process the extracted frames, we will use the 

libnetfilter_queue user space library as it provides an API for handling the packets 

that have been enqueued by the kernel packet filter [11, 12]. 

 

3-1-3 Libnetfilter_queue 

The Libnetfilter_queue API has deprecated the former libipq development library. 

This library requires other libraries to be present on the system , specifically the 

following: 

• The iptables development package. This can be installed (on systems that 

have apt-get installed) with the following command :   

sudo apt-get install iptables-dev  

 

• The low level library for Netfilter related kernel space/user space 

communication. The necessary files for the installation can be downloaded 

from:    http://ftp.netfilter.org/pub/libnfnetlink/  

 

After successfully adding these two libraries, the libnetfilter_queue API can be 

installe. The necessary files can be found at: 

http://ftp.netfilter.org/pub/libnetfilter_queue/ . Note that it is important to follow the 

above order when installing the libraries (due to each of the libraries dependencies). 

We assumed that the kernel to be used is at least at version 2.4, so that the kernel 

already incorporates Netfilter and ipqueue [13].  
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 3-1-4 IP aliases 

 

For the purpose of our work, we need to either have a number of computers or 

simulate multiple nodes within one system. Each of these physical or virtual nodes 

will be identified by different IP addresses. One simple way of having multiple IP 

addresses bound to a single network interface is to use aliases. Thanks to this 

mechanism, one physical node can have several logical IP addresses. For instance, 

the following command shows how to create the alias eth0:0 that will be associated 

with the physical interface eth0: 

ifconfig eth0:0 192.168.0.10 netmask 255.255.255.0 up 

 

3-2 The Aggregator: 

Once the packets are enqueued into the user space process, the aggregator 

program processes them in the way we want, generating the multiplexed frame. The 

same program sends the resulting frame onto the multicast address, to which the 

inner nodes are listening. Two independent threads are needed to perform these 

actions. One of these threads will be used for receiving and processing intercepted 

frames and the other will emit the resulting multicast frame. We will refer to these 

threads as the traffic shaper and the emitter (respectively) 

 

 3-2-1 Traffic shaper 

The traffic_shaper extracts packets from the queue, one by one, and calls 

build_multiplex(). This function will extract from the packet the RTP payload, 

and generate from the IP and UDP headers the custom header specific to each sub 

packet. 

The function ipq_read , provided by the libnetfilter_queue API, reads one packet at 

a time from a queue and copies it to a buffer. The ipq_get_packet  function, 

called with this buffer as the only parameter, returns a packet whose structure is as 

defined as shown in figure 7: 
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typedef struct ipq_packet_msg  
{ 
    unsigned long packet_id;        /* ID of queued  packet */ 
    unsigned long mark;             /* Netfilter ma rk value */ 
    long timestamp_sec;             /* Packet arriv al time (seconds) */ 
    long timestamp_usec;            /* Packet arriv al time (+useconds) */ 
    unsigned int hook;              /* Netfilter ho ok we rode in on */ 
    char indev_name[IFNAMSIZ];      /* Name of inco ming interface */ 
    char outdev_name[IFNAMSIZ];     /* Name of outg oing interface */ 
    unsigned short hw_protocol;     /* Hardware pro tocol (network order) */ 
    unsigned short hw_type;         /* Hardware typ e */ 
    unsigned char hw_addrlen;       /* Hardware add ress length */ 
    unsigned char hw_addr[8];       /* Hardware add ress */ 
    size_t data_len;                /* Length of pa cket data */ 
    unsigned char payload[0];       /* Optional pac ket data */ 
 
} ipq_packet_msg_t; 
 

 

Figure 7: IP packet message structure 

 

The actual packet is accessible with the following syntax: msg->payload . The other 

attributes of the structure are not used in this project. Although in future work these 

other attributes might be used. 

 

After fetching the message, we call the build_multiplex()  function with the 

following parameters: 

• The message, msg,  obtained with the functions above. 

• Another buffer, multiplex , which is the multiplexed frame to be updated by 

this function. 

• An offset parameter, to know the size of the data already contained in the 

multiplex  buffer. This offset will be modified by the function after adding 

the new RTP sub frame. 

Since the size of the multiplex  frame is always changing, and increasing with 

each call to this function, we use a realloc  call that allows us to increase the size 

of the buffer. When an RTP packet is processed, we simply drop the incoming 

frame, so that it will not be delivered by AP. 

Note the realloc call is not necessary. Since we know the upper bound on the size of 

the multiplexed frame, we can simply create a buffer of this maximum size initially. 
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3-2-2 Sender 

 

Before beginning an infinite loop, the sender thread creates a UDP socket for 

multicast. The destination IP multicast address chosen is 225.0.0.10, and the port 

used is 8888 (these values can be different, as long as they match those used by 

the demultiplexer). The addresses in the range 224.0.0.0 – 224.0.0.255 are reserved 

for routing and maintenance protocol. 

Within an infinite loop, the sender  thread is responsible for sending the multiplexed 

frame to the destination IP multicast address. If the offset variable, which is common 

to the two threads (i.e., the offset in the multiplex  buffer) reaches the maximum 

value of 1440, then the thread sends the packet directly. Otherwise, the thread will 

wait 20ms and then send the multicast frame. In both cases, before sending the 

frame, it will compute the number of sub packets contained in the multiplex  

buffer, in order to make the demultiplexing process at the inner node level easier 

and faster. This value is increased each time the build_multiplex  function is 

called in the traffic_shaper  thread.  

After sending the packet, we must reset all the shared variables. The thread will free 

the multiplex buffer , reinitialize the offset  and the number of packet values, 

and allocate space for the buffer multiplex , by using a call to the malloc  

function. 

 

3-2-3 Mutual Exclusion 

 

As we saw in the previous section, the two threads share three variables: the offset, 

the number of packets, and of course the multiplexed frame. It is extremely 

important to provide a mechanism to protect these variables from simultaneous and 

concurrent access. For instance, it must be forbidden for the sender thread to emit 

the multiplexed frame while the traffic shaper thread is still updating it. 

 

The pthread library provides a way to prohibit this concurrent access that could lead 

to inconsistent results. By using mutexes in an appropriate way, we can lock some 

parts of the code and therefore prevent data inconsistencies due to race conditions. 

Mutexes are declared and initialized with the following commands: 
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//Declaration of the mutex 
pthread_mutex_t mut; 
 
//Initialization of the mutex 
pthread_mutex_init(&mut, NULL); 

 

 

Each time before a global resource is accessed, the thread must try to lock the 

mutex, by calling the function: pthread_mutex_lock(&mut) . The thread is 

therefore blocked, waiting for the mutex to be released by the other thread. When 

the mutex is free, the thread can enter the “critical section” and then modify the 

shared variables. When the process is finished, the function 

pthread_mutex_unlock(&mut) is called in order to unlock the mutex, allowing the 

other thread to get the access to it  and to enter its “critical section”. 

Note in contrast to semaphores, mutex can only be used for threads belonging to 

the same process [14]. 

In order to avoid the concurrent access problem, we also could have implemented 

the aggregator as one single thread with an infinite loop and an event timer. The 

arrival of an RTP packet would play the role of the trigger, and the program will 

check for how long the oldest packet contained in the buffer has been queued. If 

this time reaches 20ms, the multicast frame is sent. It is also sent if the limit size of 

the buffer (the MTU) is reached. 

 

3-3 The Demultiplexer 

Upon receiving the multiplexed frames, the inner nodes need to extract the 

appropriate content (i.e., the sub-frames that are intended for their IP address). To 

do so, here again, two threads are needed: a receiver and an extractor. 

. 

3-3-1 Receiver 

The receiver thread simply listens to the multicast socket to get the multiplexed 

frames emitted by the aggregator. An IGMP join request structure is created and an 

ADD Membership message is sent, before starting an infinite loop. Sending this 

IGMP join message is done by using the socket API, particularly the setsockopt  () 

method that enables us to specify particular settings for a socket. Another socket is 

created during this phase, a Raw socket, used for sending the actual RTP packets 

extracted from the multiplexed frame. Within the infinite loop, after each packet is 

received from the multiplex frame, the frame content is copied to another buffer, 
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shared with the second thread, in which extraction of the RTP frame occurs. Note 

that for this process, we also use mutexes to ensure that no concurrent access will 

occur and to prevent inconsistent results. 

3-3-2 Extractor 

The extractor thread must run after each multicast packet to port 8888 is received. 

In addition to the mutexes, we are using a Boolean as a flag to know if a new packet 

has arrived and if additional processing needs to be done. The thread must not run 

twice on the same multiplexed frame; as this would result into duplicated RTP 

packets. It would have no effect on the conversation quality since the SIP user agent 

would put the contents in the same place for playout - hence the content will only be 

played once (this can be done because of the sequence number and timestamp in 

the RTP packet header). 

 

When the extractor thread enters its “critical section”, by locking the mutex, it begins 

by extracting the first two bytes of the packet, which represents the number of sub 

RTP packet contained in the large packet. Thanks to the custom header of each of 

these sub packets, the extractor can determine their length by checking the length 

field. Therefore, the extractor knows where an RTP frames ends and where the next 

one starts.  

The thread invokes the function addresse_ip_check() for each one of the sub 

packets. As its name indicates, this function looks at the IP destination field of the 

customer header, and returns 1 if this destination IP address matches the IP 

address used by the process. 

If the value one is returned, this means that the particular sub packet treated is 

intended for this particular inner node. Hence we need to re-generate the original IP 

packet, i.e., we will produce an IP packet that is identical to the one emitted by the 

outer node. To perform this action, the extractor thread calls the raw_packet  

function, with the sub_packet and the descriptor of the Raw socket as parameters. 

In this function, the IP and UDP headers will be recreated exactly the same as the 

original, thanks to the custom header. Raw sockets, supported by the Berkley 

socket API, provide a way to bypass the encapsulation processes done by the 

network stack of the operating system. This allows the program to forge a packet 

with a different IP source address than the running program. Note that Raw sockets 

can be used in a malicious way, to impersonate other computers of a network by 

spoofing their IP addresses in order to perform intrusion attacks, such as for a SYN 

DoS attack [15]. 
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To perform this packet forging successfully, both the IP header and the UDP 

checksums must be recalculated before sending the packet to the wired network. 

Moreover, we must tell the kernel not to add headers to these packets, since the 

thread already created these headers 

. 

{ 
     
    int one = 1; 
    const int *val = &one; 
    setsockopt (s, IPPROTO_IP, IP_HDRINCL, val, siz eof (one) 
         
} 

 

The demultiplexer program must be run with the root privileges, since this is a 

requirement for performing Raw socket operations. 

 

3-4 Registration / Unregistration Mechanism: 

 

In order to forward the UDP packets destined to IP address X with a destination port 

between Y and Z, the following command must be entered at the aggregator: 

Iptables –A INPUT –p UDP –d X/32 –-dport Y:Z –j QUE UE 

The above code cause iptables to add a new entry to the INPUT chain that will 

cause packets destined to exactly the IP address X (indicate by saying that all 32 

bits of the IP address must match X) and that the destination port is within the range 

Y to Z. If a packet matches these requirements, it is enqueued for further 

processing. 

 

 

When the demultiplexer is launched, the program asks the user to enter the IP 

address to which it will listen for packets, and the range of ports that will be used for 

exchanging encoded speech data with the wired network 
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Figure 8: Demultiplexer screenshot 

 

The program creates a socket for communication with the aggregator and then 

transmits this information. After receiving this message, the aggregator calls a 

function that takes the message as a parameter, and generates the appropriate 

iptables command. Using a call to the “system()” function, the command is 

executed which adds the iptables rule to the INPUT chain. 

To enable unregistration, we implemented a means to dynamically stop the 

forwarding of the UDP packets to the queue. When the user wants to stop using our 

downlink protocol, he or she simply stops the demultiplexing program by pressing 

the combination of key Ctrl+C. By doing so, an interruption signal or SIG INT is sent 

to the process [16]. For most C programs without a specific interrupt handler, this 

will simply stop the programs execution. If this were to happen, the queuing process 

at the aggregator would continue, hence the RTP frames intended for the node 

would still be aggregated into the large multiplexed frame and sent to the multicast 

group. Therefore, because the demultiplexing program has terminated, a VoIP 

application waiting for these packets will not be able to receive them. 

In our program, we implemented an interrupt handler function that is called when a 

SIG INT is received. By calling signal(SIGINT, unregistration) we catch the signal 

and call our own unregistration function, which sends a message to the aggregator 

through the socket. When the aggregator receives this message, the iptables_rule 

function will delete the rule matching this particular inner node (based upon its 

particular IP address) and the specified port range. Therefore, as soon as the Ctrl+C 

is pressed by the user, the system will switch to unicast transmission of RTP frames 

to this destination IP address.  
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There is a potential security problem here someone could generate packets to the 

TCP port indicating that someone else's use of the aggregator should be terminated. 

Note that the only effect that this will have is to prevent RTP packet aggregation and 

all of the RTP packets will be delivered via the usual unicast mechanism. Rather 

than being a pure denial of service attack this would simply be a degradation of 

service attack, by preventing aggregation. 

To solve this problem, we can encrypt the registration and unregistration message 

with a secret key shared by the aggregator and a unique inner node. To do so, we 

must have a Key exchange protocol, such as a Diffie–Hellman key exchange. 

Note that most users do not know their IP address, they just connect the network 

and use their machine to accessing the data they want. Hence, they would not be 

able to specify the IP address when running the demultiplexer program. To solve 

this problem, we could have implemented a sniffer that sends the registration 

message when it detects RTP streams exchanged by the machine. In this way, the 

registration will be transparent for the user. 

Another problem is how do the inner nodes know the address of the aggregator 

machine? It can be configured manually in the software, which means that it should 

be modified each time the aggregator changes its IP address. Another solution is 

actually to send the registration and unregistration messages in a broadcast packet, 

which can be interpreted only by the aggregator. Note this solution brings other 

potential security issues. 
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4 Tests and Performance Measurement 

 

In order to validate our model, we will perform a number of tests to show that all the 

different components of our system work correctly and produce the desired results. 

We will also analyze parameters such as the delay, the number of packets lost and 

the amount of jitter that is induced. In general, when a sequence of RTP packets is 

sent from machine 1 to machine 2, these packets will take a different time to reach 

their destination. Assuming that a source emits RTP frames every 20 ms, then the 

receiving party will probably receive these packets with different time intervals. This 

variance in the periodic arrivals is referred to as jitter. This jitter can be cause by 

queuing in routers, contention for links, etc. 

 

 

Figure 9: Illustration of the difference in arriving time between packets 

 

4-1 Tools used  

 

To perform the tests, we used two different programs to emit RTP packets from an 

outer node. The first one is a C program that we wrote, which sends RTP packets to 

different IP addresses, using RAW sockets to forge the UDP and IP header fields. 

Used within an infinite loop, in conjunction with a sleep(20000) call, it sends packets 

every 20 ms packets to the IP addresses of inner nodes. Each of these packets has 

a different payload. We have implemented a function that randomizes the payload 

before sending the packet, so that no two packets will ever be identical. The length 

of the payload is also a random parameter, that is generated each time a new 

packet is to be created. This represents a more demanding stream of packets that 

would be expected from encoded audio, but might be more representative of 

encoded video RTP packets. 

Concerning the RTP header, except for some fields (version = 2, extension and 

padding = 0, and payload type = RTP_PAYLOADTYPE_G711), that are constants for 

all the sequences; we increment the sequence number and increase the timestamp 

by 20ms each time a packet is sent. 
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To deliver a RTP stream which can be interpreted and analyzed to extract useful 

parameters, we used a Linux GUI packet generator tool, specifically the packETH 

software [17]. This tool allows users to create and send many different kind of 

frames: Ipv4 (UDP, TCP, IGMP, ICMP...), ARP, and custom network layer frame.  

The user interface to this program is shown in Figure 8. 

Figure 10: Screenshot from the software packETH: Main interface 

 

Using the tool we can specify the destination and source IP addresses or the source 

and destination MAC addresses for layer 2 headers. Moreover, the “Interface” 

button permits user to select which interface the packet is sent through. 

The features of this software that interests us are the possibility to send a continuous 

RTP data flow. For example, we can encode a sinusoidal wave of any frequency 

between zero and 4000 Hz with the G 711 CODEC. The GUI for generating RTP 

flows is shown in Figure 11. 
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Figure 11: Screenshot from the software packETH: RTP Interface 

 

The other essential feature of this tool that is necessary for our testing is the ability to 

modify of some fields during the sending process. For example, the software has an 

option to transmit sequence of packets leaving the choice of the delay between the 

frames to the user. One can specify changes to be made on some parameters of the 

packets while sending. One of these options allows us to increment the sequence 

number of the RTP header, and to increase by 20ms the timestamp field. (See 

Figure 12) 

 

 

 

Figure 12: Screenshot from the software packETH: modification of parameters 
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4-2 Different Test Scenarios 

 

4.2.1. Testing the correct reception of three packets: payload comparison. 

In order to validate the correct reception of the frames at the inner node level, we 

performed the following test: 

 

 

 

 

Figure 13: Illustration of the test 1: three RTP packets exchanged 

 

Using our sender program, we sent three RTP frames to an inner node. The 

aggregator multiplexed them into one large multicast frame and transmitted this 

frame to the multicast group, to which the demultiplexer program of the inner node is 

listening. The demultiplexer processes the frame and re-creates the initial three 

frames and sends them via the loopback interface. Comparing the payload of the 

initial frames emitted by the sender program (shown in figure 14) with the final three 
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frames extracted from the multiplexed one show that the aggregator and 

demultiplexer work as expected The packet that is received by one of the inner 

nodes is shown in Figure 15.  

It is clear that this matches the fields in the packet shown in Figure 14 except for the 

destination IP address which in the locally generated packet which shows the loop-

back interface's IP address rather than the node's network interface's IP address. 

While this does enable the packet to be delivered to the waiting RTP listener, it might 

not be acceptable from a security point of view - because even though the 

checksums have been re-computed with the IP address that is used as the 

destination - the application might not be accept the change in the destination IP 

address. 

We capture the packets exchanged using Wireshark. Wireshark can display the 

payload and can decode the RTP packets. This makes it easier for us to compare 

the original RTP datagrams with the final RTP datagrams. 

 

 

 

 

 

 

 

Figure 14: Packet emitted by the outer node using the sender program 

 

 

 

 

 

 

 

Figure 15: Packet recreated by the inner node demultiplexer after receiving the 

multicast frame 
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As we can see, the payloads are quite similar, which means that the demultiplexer 

largely succeeded in regenerating the packet that was issued by the outer node. 

The result was the same for the two other frames. Since no time delay between the 

packets was specified in the sender for this test, the three packets were sent 

sequentially resulting in all of them being multiplexed into a single multiplexed 

packet emitted by the aggregator. 

4.2.2. Transmission of a flow of RTP packets from a single outer node to a 

single inner node: 

The main goal of this test is to verify the consistency of the delays and jitters as 

experienced at the receiving side, by comparing them to the delay and jitter at the 

emission side. In this test, there is only one outer node sending encoded voice data 

multiplexed by the aggregator. The results of this test will allow us to know if the 

presence of our multiplexing system introduces traffic latency, or if the RTP packets 

will not be affected by the new protocol. 

 

 

 

 

Figure 14: Illustration of the test 2: one single RTP stream 
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Every 20ms, the sender transmits a packet to the inner node. At the bridge level, the 

aggregator processes the incoming frames and puts them into a multicast packet 

and sends them to the multicast group every 20ms. In this test case, the maximum 

size of 1460 octets is never reached, since only one RTP stream is simulated. 

We recorded the traffic with Wireshark on both the network where the traffic 

generator was running and on the inner node., and thanks to the stream analysis 

function of this software we can display the number of packets lost, the mean and 

maximum jitter, and the maximum delay.  

Note that we purposely put short pauses in both the demultiplexer and the 

aggregator threads. This was because we found that  in order to ensure the correct 

synchronization between the threads, a mutex is not always sufficient. We added a 

call to the usleep function within the infinite loop of both threads. We modified the 

duration of these pauses to see how they affected the performance of the protocol. 

a) Without any pauses in the threads (a) Without any pauses in the threads (a) Without any pauses in the threads (a) Without any pauses in the threads (i.e., i.e., i.e., i.e., usleep is not called at the eusleep is not called at the eusleep is not called at the eusleep is not called at the end of the nd of the nd of the nd of the 

threads):threads):threads):threads):    

 

 

 

 

 

Figure 17: Wireshark Stream Analysis N°1 

 

The first line of Figure 17 reports statistics for the packets leaving the outer node’s 

interface, whereas the second lines represent the packets sent by the demultiplexer 

to itself, after fetching the data from the multiplexed frame. As we can see, the 

results are not satisfying at all, since almost 40% of the packets that arrived at the 

node were lost.  Moreover, the jitter and the delay are way too high comparing to 

their values in the initial stream. Note that this packet loss occurs inside the software 

and not on the network. 
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bbbb) With a short t) With a short t) With a short t) With a short time out (0.ime out (0.ime out (0.ime out (0.5 ms) added inside the threads:5 ms) added inside the threads:5 ms) added inside the threads:5 ms) added inside the threads:    

By adding a small delay in the loops we obtained better results (see figure 18). No 

packets were lost. Actually one packet was received twice, but this will probably not 

affect the quality of the communication at all. The mean jitter and the maximum jitter 

values are very close to the initial ones. The maximum delay is more important 

though, but this maximum value occurred only on one packet.  

 

 

 

 

Figure 18: Wireshark Stream Analysis N°2 

 

With these results we bring to the fore the necessity of adding a sleep call to the 

infinite loops of the threads running at the bridge level and at the inner node level. In 

the next test we will see if increasing the duration of the pause leads to better 

results. 

 

b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:b) With a longer time out (1ms) added inside the threats:    

The results of the use of a 1 ms pause are shown in Figure 17. As we can see they 

are similar to the previous ones. In fact, the mean jitter at the reception is really close 

to the initial stream's jitter (less than 1ms longer). However, the maximum delay is 

63% bigger than the initial delay, and in contrast to the previous test, many packets 

had a high delay. 

 

 

 

Figure 19: Wireshark Stream Analysis N°3 

 

In the following tests we will use the short pause value (0.5 ms). 
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c) Longer streamsc) Longer streamsc) Longer streamsc) Longer streams    

In the previous tests, we only transmitted a “few” packets (less than 210 packets). 

This test of our system is much longer, hence processing many more packets than 

before. During a test lasting 30 seconds, the outer node sends RTP frames with a 

20ms period. The results of this test are shown in Figure 18. 

 

 

Figure 20: Wireshark Stream Analysis N°3 

 

The results that we get from this test are similar to the previous ones, so no effect is 

noticed in real VoIP exchange conditions.  

4.2.3. Multiple simultaneous calls 

Until now we have measured the performance of the system in terms of delay and 

jitter for only one call. Now we will consider a case where the new downlink 

transmission protocol can actually be useful, specifically when multiple users are 

inside the cell and they are streaming RTP traffic to and from other users outside the 

cell. 

In order to simulate such a scheme, we modify the sender program to make it send 

RTP content to 10 different nodes. We only run one demultiplexer node, but we also 

add an iptables rule for the others to the aggregator, so that the multiplexed frame 

can also contain their traffic. 

Iptables –A INPUT -p udp -d 192.168.1.0/24 –-dport 6600:6700 -j 
QUEUE. 

The above iptables rule will forward all the UDP packets, with a destination port 

between 6600 and 6700 and destined to any node of the 192.168.1.0/24 sub 

network. 

Because there are now ten different simultaneous RTP streams, the multicast frame 

is therefore much bigger, with an average length of 1400 octets. On the destination 

node we must also create as much IP aliases as necessary. The logical 

configuration for this test is shown in Figure 21. 
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Figure 21: 10 outer nodes (A -> J) communicating with 10 inner nodes (A’ -> J’) 

We obtain the following results from this test. Note that since we used a single 

machine  for simulating the outer nodes, the inner nodes and the aggregator, we are 

able to analyze all the streams in one single Wireshark session, allowing us to have 

a time synchronization. 

 

 

Figure 22: Wireshark Stream Analysis N°4 
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To get a jitter closer to 20ms, we changed the usleep value of the sender program, 

from 20000 (i.e., 20 ms) to 16000 (16 ms). This needed to be done because of the 

time it takes for the program to actually send the packets. 

Comparing the first line to the last; we can see that the jitter greater when more RTP 

sub packet are contained within the multiplexed frame, even though the jitter is still 

relatively close to that of the original stream. 

The maximum delay is also longer, but in comparison with the previous tests it is 

closer to the original stream (e.g., it is only 15% larger than the original maximum 

delay).  

We increased the number of simultaneous communication simulated, up to 20, using 

the packETH software, and we obtain similar results. (See Figure 23.) 

 

 

 

Figure 23: Wireshark Stream Analysis N°4 

 

Here again, the last line should be compared to the first one. The jitter and delay 

values are higher than in the previous tests, because of the additional processing 

time required by needing to handle 10 more RTP packets (that have to be created 

and transmitted). Nevertheless, at the receiver, the delay and jitter values are quite 

similar to the parameters observed at the outer node level. 



35 

 

We also notice that some packets are lost in the original streams sent by 

192.168.0.14-15-16-17-18-19-20. We cannot provide a consistent explanation for 

this problem, although we suppose the problem comes from the packETH software 

which might experience some problems increasing correctly the sequence number 

at the emission. 

4-3 Results analysis 

This set of tests, conducted with one single computer, allows us to validate the 

model proposed in this project. Indeed, even though experiments under real 

conditions have not been made, these results are encouraging. The next step is to 

measure the performance with an actual WLAN cell and several computers playing 

the roles of the inner nodes and the outer nodes. . However, from these earlier tests 

we observed that the aggregation processing and the demultiplexing tasks do not 

add too much delay, and do not lead to higher jitter values. Packet lost was minimal, 

so we expect that the quality of the RTP Stream is not affected by this new downlink 

protocol. 

Due to a limited time for this project, we were not able to conduct all the tests we 

wanted to. It would have been interesting to analyze the behavior of the system with 

a real WLAN cell. Moreover, the use of a real SIP user agent would have allowed us 

to send and receive real encoded speech, and would also let use test the perceived 

quality of the sessions. Unfortunately, it is rather difficult to use such a software for 

both the callee and the caller on a single machine, that is the reason why we utilized 

to our sender program and the packETH software. 
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5  Conclusion 

 

This project was a great opportunity to dig deeper into networking research. 

Conceiving a system, gaining knowledge of some new technologies, confronting the 

practical problems, and being able to modify and adapt the initial goals, were 

among the lessons that we learned. Moreover, our understanding of the protocols 

and technology improved thanks to this work. 

As mentioned previously, the tests and experiments conducted to validate our 

model, but show that it can be improved. Thus the testing needs to be extended to 

real VoIP sessions under realistic conditions. Nevertheless, the tests showed that 

while there was some increase in the delay and jitter these increases seem to be 

quite small. This means that our system should not impair the perceived quality of 

the communication session.  

Even though we did not manage to test the system with a large number of inner and 

outer users, we assume that it will support more concurrent VoIP sessions than the 

same cell could without this downlink multiplexing protocol at the same time, since 

the contention for the medium is significantly reduced. However, this should be 

verified and quantitated. 

This new downlink transmission protocol is not intended exclusively for VoIP 

sessions, and could be adapted and extended for other similar kinds of traffic. 

Indeed, every protocol that requires exchanging small packets at a high rate and in 

a periodic fashion can benefit from our downlink model. For instance, we can 

imagine a Video on Demand service operating over a WLAN link. The frames 

carrying the video content can be aggregated at the AP level, and sent as a 

multicast to the users, who will simply demultiplex the packet to extract the 

appropriate content. Note that this can even be used to simply multiplex the audio 

and video RTP datagrams into a single flow of datagrams. 
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