
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:46

M D . S A F I Q U L I S L A M

 A HTTP Streaming Video Server with
Dynamic Advertisement Splicing

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A HTTP Streaming Video Server

with Dynamic Advertisement

Splicing

Md. Safiqul Islam

March 21, 2010

Master of Science Thesis

Royal Institute of Technology (KTH)

School of Information and Communication Technology

Academic Supervisor: Professor Gerald Q. Maguire Jr., Royal Institute of

Technology (KTH)

Industrial Supervisors: Ignacio Mas and Calin Curescu, Ericsson Research

Dedicated to my wife Monita for bearing with me - then, now and forever

Abstract

The Internet today is experiencing a large growth in the amount of traffic due to

the number of users consuming streaming media. For both the operator and

content providers, streaming of media generates most of its revenue through

advertisements inserted in the content. One common approach is to pre-stitched

(i.e. insert) advertisements into the content. Another approach is dynamic

advertisement insertion, which inserts advertisements at run-time while the

media is being streamed. Dynamic advertisement insertion gives operators the

flexibility to insert advertisements based on context, such as the user’s geographic

location or the user’s preferences. Developing a technique to successfully insert

advertisements dynamically into the streaming media has several challenges, such

as maintaining synchronization of the media, choosing the appropriate transport

format for media delivery, and finding a splicing boundary that starts with a key

frame. The details of these challenges are detailed in this thesis.

We carried out extensive research to find the best transport format for

delivery of media and we studied prior work in an effort to find an appropriate

streaming solution to perform dynamic advertisement insertion. Based upon this

research and our study of prior work we identify the best transport format for

delivery of media chunks, then propose, implement, and evaluate a technique for

advertisement insertion.

Keywords: HTTP Stream, MPEG-2 TS, MP4, Advertisements, Media Plane

Management.

i

Sammanfattning

Idag har internet mycket trafik p̊a grund av att alltfler servrar erbjuder

högkvalitativa videon som strömmas till internetanvändare. B̊ade för operatörer

och leverantörer av s̊adan inneh̊all genererar direktuppspelning mest intäkter

genom annonser som lagts till i videon. Det är väldigt vanligt att lägga till

annonser i videon genom att sy in dem i videofiler. En annan metod är att lägga

till annonser dynamiskt. Det betyder att resulterande videofilen genereras medan

den blir strömmad till användare. Att sätta in annonser dynamiskt har som

fördel för operatörer att välja reklam beroende p̊a kontexten, s̊asom användarens

position eller preferenser.

Det är utmanande att utveckla den teknik som krävs för att kunna sätta in

annonser dynamiskt i strömmade videofiler. Till exempel är det viktigt att tänka

p̊a följande: synkronisering av strömmad inneh̊all, val av lämplig transportformat

för videoleveransen och gränsen för skarvning (s̊a kallad splicing boundary).

Detaljerna kring denna teknik finns i denna avhandling.

Vi har forskat p̊a att hitta det bästa transportformatet för videoleverans och vi

har studerat relevant arbete som gjorts tidigare för att hitta en lämplig mekanism

för dynamisk annonsinsättning. Baserat p̊a v̊ar forskning och studerande

av tidigare arbeten har vi klassificerat det bästa formatet för leveransen av

videostycken, implementerat och evaluerat en teknik för annonsinlägg.

iii

Acknowledgements

I have no words to express my gratitude to my academic supervisor and

examiner Professor Gerald Q. Maguire Jr. of Royal Institute of Technology.

Throughout my work, he has been helping me with critical reviews, providing

detailed background knowledge. His personal involvement in the project made it

possible to write a successful thesis and I am immensly debted to him for this.

I would like to show my heartiest gratitude to my supervisor Ignacio Mas of

Ericsson Research for his continuous encouragement, inspiration and technical

advices that helped me to look beyond the boundaries. I am also thankful my

another superviser Calin Curescu of Ericsson Research for asking me lots of

3 questions (what, when, and why) that influenced me to look deeper into that

area. I would like to thank my colleague Peter Woerndle for his extensive

support for helping me during the analysis process.

I want to express my respect and gratitude to my parents, especially my mother

for allowing me to do my masters studies in KTH and maintaing faith in me.

Thanks to all my friends who have inspired me, especially Rezaul Hoque,

Raisul Hassan, Riyadh-ul Islam, and Ferdous Alam for believing in me

and keeping me alive in this frozen land.

Finally, I would like to thank my wife Zannatul Naim Monita for providing

my best inspiration and support, because without you my love, it would not be

possible at all.

Stockholm, March 21, 2010

Safiqul Islam

v

Contents

Abstract i

Sammanfattning iii

Acknowledgements v

Contents vi

List of Figures x

List of Tables xii

Listings xiii

List of Acronyms and Abbreviations xv

1 Introduction 1

1.1 Motivation . 1

1.2 Goal . 2

1.3 Research Questions . 2

1.4 Thesis Outline . 3

2 Background 5

2.1 Streaming . 5

2.1.1 Traditional Streaming . 5

2.1.2 Progressive Download . 5

2.1.3 Adaptive streaming - HTTP based delivery of chunks . . . 6

2.2 CODECs . 7

2.2.1 MPEG-2 . 7

2.2.2 MPEG-4 Part 10 . 8

2.3 Container Formats . 9

2.3.1 MPEG-2 Transport Stream 9

vi

CONTENTS vii

2.3.1.1 Packetized Elementary System 10

2.3.1.2 MPEG-2 TS packet Format 11

2.3.1.3 Transport Stream Generation 13

2.3.1.4 Synchronization 13

2.3.1.5 Program Specific Information 14

2.3.2 MPEG-4 Part 14 . 15

2.4 Content Delivery Networks . 15

2.4.1 Amazon Cloud Front . 16

2.4.2 Akamai HD Network . 16

2.5 Advertisement Insertion and Detection 16

2.5.1 Advertisement Insertion . 16

2.5.2 Advertisement Detection . 17

2.6 Ericsson’s Media Plane Management Reference Architecture 18

2.6.1 Overview . 19

2.7 Thesis Overview . 19

3 Related Work 21

3.1 Apple Live Streaming . 21

3.2 Microsoft Smooth Streaming . 23

3.2.1 Why MP4? . 23

3.2.2 Disk File Format . 23

3.2.3 Wire File Format . 24

3.2.4 Media Assets . 25

3.2.5 Smooth Streaming Playback 25

3.3 Advertisement Insertion . 25

4 Design and Implementation 27

4.1 Design Overview . 27

4.1.1 Choosing an Appropriate Container 29

4.1.2 Transcoding . 29

4.1.3 Segmentation . 30

4.1.4 Distribution Network . 30

4.1.5 Client Devices . 30

4.1.6 Proxy Streaming Server . 31

4.1.6.1 Request Handler 32

4.1.6.2 Clock Synchronization 33

4.1.6.3 Setting the Discontinuity Indicator 33

4.1.6.4 Changing the Program Clock Reference 33

4.1.6.5 Changing Time Stamp 34

4.1.6.6 Output Streamer 35

4.2 Advantages of Dynamic Advertisement Insertion 36

4.2.1 Reduce Storage Cost . 36

viii CONTENTS

4.2.2 Runtime Decision for Advertisement Insertion 36

4.2.3 Personalized Advertisement Insertion 36

4.2.4 Advertisement Insertion based on Geographical and IP

Topological Location . 37

4.3 Disadvantages of the proposed solution 37

5 System Analysis 39

5.1 Validity checking of a TS file . 39

5.2 Measuring Response Time . 41

5.2.1 Test Environment . 41

5.2.2 Test Procedure . 42

5.2.3 Transaction Time . 43

5.2.3.1 Client requests one stitched file from the content

server directly . 43

5.2.3.2 Client requests several chunks from the content

server through the proxy streaming server 43

5.2.3.3 Client requests several chunks directly from the

content server . 44

5.2.4 Response Time . 48

5.2.4.1 Client requests one stitched file from the content

server directly . 48

5.2.4.2 Client requests several chunks directly from the

content server . 48

5.2.4.3 Client requests several chunks from the content

server through the proxy streaming server 49

6 Conclusion 53

6.1 Summary of Work . 53

6.2 Research Findings . 53

6.3 Future Work . 54

Bibliography 57

A PAT and PMT Table 65

A.1 PAT and PMT header . 65

A.1.1 Program Association Table 65

A.1.2 Program Map Table . 66

B Fragmented MP4 file for Streaming 69

B.1 Moving Header Information . 69

B.2 Transcoding . 70

B.3 Generating Fragmented MP4 and Manifest Files 70

CONTENTS ix

C Java Client For Analysis 73

C.1 Java Client for Concurrent Request 73

D System Testing 77

D.1 Scenario 1: Laptop running Microsoft’s Windows Vista as a client 77

D.2 Scenario 2: Apple iPhone as a client 78

D.3 Scenario 3: PlayStation 3 as a client 80

D.4 Scenario 4: Motorola Set Top Box as a client 80

E Test Results 83

E.1 Test Results . 83

List of Figures

2.1 MPEG-2 Video Structure, adapted from [9] 8

2.2 H.264 video encoding and decoding process, adapted from [13] 9

2.3 Overall Transport Stream, adapted from [18] 10

2.4 PES Packet Header, adapted from [19] 11

2.5 MPEG-2 TS packet, adapted from [19] 11

2.6 MPEG-2 TS header, adapted from [19] 12

2.7 Adaptation Field, adapted from [19] 12

2.8 Optional field, adapted from [19] . 13

2.9 Transport Stream Generation, adapted from [19] 14

2.10 Relation between PAT and PMT table, adapted from [21] 15

2.11 MP4 file format, adapted from [23] . 15

2.12 Ericsson’s MPM Architecture, taken from [5] (Appears with permis-

sion of the MPM project.) . 18

2.13 Overview showing the context of the splicing and advertisement

insertion logic . 20

3.1 HTTP streaming configuration, adapted from [37] 22

3.2 Disk File Format, adapted from [8] . 24

3.3 Wire file format, adapted from [8] . 24

3.4 Cisco’s advertising solution, adapted from [43] 26

4.1 Overall Architecture . 28

4.2 Message Flow . 29

4.3 Transcoding and Segmentation . 30

4.4 Request Handling . 32

4.5 Output Streamer . 36

5.1 TS packet analyzer . 40

5.2 TS packet information . 40

x

LIST OF FIGURES xi

5.3 (a) Client requests one stitched file from the content server directly;

(b) Client requests several chunks from the content server through the

proxy streaming server; and (c) Client requests several chunks directly

from the content server . 41

5.4 Transaction time vs number of concurrent requests - Client requesting

one stitched file directly from the server 45

5.5 Transaction time vs number of concurrent requests - client requests

several chunks directly from the content server 45

5.6 Transaction time vs number of concurrent requests - client requests

several chunks through proxy . 46

5.7 Comparison graph . 47

5.8 Response time vs number of concurrent requests - client requests one

stitched file directly from the content server 50

5.9 Response time vs number of concurrent request - client requests

several chunks directly from the content server 50

5.10 Response time vs number of concurrent requests - Client requests

several chunks through proxy . 51

B.1 Traditional MP4 file format . 69

B.2 Traditional MP4 file format . 70

B.3 Fragmented MP4 file in MP4 Explorer 71

D.1 VLC requesting . 78

D.2 Proxy Server - URL fetching . 78

D.3 (a) iPhone 3G and (b) iPhone request for m3u8 playlist 79

D.4 (a) PlayStation 3 and (b) Playstation 3 requesting for media 80

D.5 Motorola Set Top Box . 80

E.1 comparison between request through proxy and request of one single

file . 85

E.2 comparison between request through proxy and request of multiple files 85

List of Tables

4.1 Client Hardware . 31

4.2 Programming Languages and Application Server 32

5.1 Average transaction time and standard deviation value - Client

requesting one stitched file directly from the server 43

5.2 Average transaction time and standard deviation value - client

requests several chunks through proxy 44

5.3 Average transaction time and standard deviation value - Client

requests several chunks directly from the content server 44

5.4 Excess transaction time for sending the file 47

5.5 Average response time and standard deviation value - Client requests

one stitched file directly from the content server 48

5.6 Average response time and standard deviation value - Client requests

several chunks directly from the content server 48

5.7 Average response time and standard deviation value - Client requests

several chunks through the proxy streaming server 49

D.1 List of players used . 77

E.1 Client requesting one stitched file from the content server directly . . 83

E.2 Client requesting several chunks from the content server through proxy

streaming server . 84

E.3 Client requesting several chunks from the content server 84

xii

Listings

4.1 Setting the Discontinuity Indicator 33

4.2 Changing Program Clock Reference 34

4.3 Changing the Time Stamp . 35

5.1 Transcoding command . 42

B.1 Moving header information . 69

B.2 Shell script - transcoding . 70

B.3 Downloading and installing MP4split 70

B.4 MP4split commands . 71

C.1 Java Client . 73

D.1 M3U8 playslist format . 79

D.2 Requesting from Motorola STB . 81

xiii

List of Acronyms

and Abbreviations

CDN Content Delivery Network

CIM Context Information Module

DI Discontinuity Indicator

DTS Decoding Time Stamp

FMP4 Fragmented MP4

HD High Definition

HTTP Hyper Text Transfer Protocol

MDL Media Delivery Logic

MP4 MPEG 4 Part 14

MPEG Moving Picture Expert Group

MPM Media Plane Management

PAIL Personalized Advertisement Insertion Logic

PAT Program Association Table

PMT Program Map Table

PES Packetized Elementary Stream

PCR Program Clock Reference

PTS Presentation Time Stamp

SIP Session Initiation Protocol

STB Set Top Boxes

TS Transport Stream

URL Uniform Resource Locator

xv

Chapter 1

Introduction

1.1 Motivation

In recent times, streaming has been a widely used approach for media delivery.

Delivering media over Hypertext Transfer Protocol (HTTP) [1] has been popular

for content providers since the introduction of HTTP. Additionally, classic

streaming protocols (such as RTP) [2] are popular for audio and video streaming

via the Internet. In recent years, many content providers have migrated from

classic streaming protocols to HTTP. This has been driven by four factors [3]:

(1) HTTP download is less expensive than media streaming services offered by

Content Delivery Networks (CDN) and hosting providers, (2) HTTP protocol

can generally bypass firewalls; as most firewalls allow return HTTP traffic from

TCP source port 80 through the firewall - while most firewalls block UDP traffic

except for some specific ports, (3) HTTP delivery works with any web cache,

without requiring special proxies or caches, and (4) it is easier and cheaper to

move HTTP data to the edge of the network, i.e., close to users, than for other

protocols. As a result, HTTP based adaptive streaming is the current paradigm

for streaming media content. In addition to the advantages noted above for

HTTP, this approach has gained immense popularity due to a shift from delivering

a single large file to the delivery of many small chunks of content.

It is well known that advertising is most effective when the advertisements are

relevant to the viewer. If operators are able to deliver advertisements dynamically

during online streaming by inserting advertisements based on context, such as

geographic location or the user’s preferences, then the operator can provide

relevant advertisements to the target audience. However, finding the appropriate

splicing boundaries is a challenging task when inserting advertisements into

streaming video. If done successfully, advertisement insertion in HTTP based

streaming media can generate revenue for both the operator and content

1

2 CHAPTER 1. INTRODUCTION

providers[4].

Ericsson’s Media Plane Management (MPM) reference architecture [5] works

as a mediator between operators and Internet content providers to optimize and

manage media delivery. Additionally, in this framework the operator acts as

a mediator between the content providers and end users by offering intelligent

media delivery. The architecture describes the requirements for advertisement

insertion techniques to be implemented in a media server. One of the key

requirements of the MPM project is to select the best transport format for media

delivery; to enable an advertisement’s contents to be fetched, synchronized, and

spliced into the stream being delivered to the target user.

1.2 Goal

The main goal for this thesis project was to implement a streaming server that will

fetch streaming contents and advertisements from their respective content servers

and to cleverly stitch the advertisements into the media stream before feeding the

stream to a client. The project began with a study of existing streaming solutions

using HTTP with an adaptive streaming extension. A secondary goal was to find

the most appropriate transport stream format. The overall goal is to propose,

implement, and evaluate a solution based upon the best transport format for

delivery of chunks of streaming media based upon an advertisement insertion

technique that was proposed as part of this thesis project.

1.3 Research Questions

Based on the main thesis goal (and the secondary goal) mentioned in the previous

section, here are some research questions that this thesis project attempts to

answer. This thesis project focused on the following four questions:

Question 1 To deliver the media chunks an appropriate container is

required. Which is the most appropriate container?

Question 2 Can the solution be sufficiently portable that it will support

different vendors’ end-devices, such as Motorola’s set top

boxes (STBs), SONY’s Play Station 3, and Apple’s iPhone?

Question 3 How can we maintain the continuous flow of a stream

including the advertisement? This means that it is very

important to find out the proper splicing boundaries for

advertisement insertion in order to maintain the stream’s

continuity.

Question 4 Can the solution be implemented successfully on a

constrained server, while delivering media to the client

within the appropriate delay bound?

1.4. THESIS OUTLINE 3

1.4 Thesis Outline

This thesis is organized so that the reader is first presented with the appropriate

theoretical background before delving into the details. Chapter 2 gives an

overview of streaming, CODECs, containers, and MPM architecture. Chapter 2

also delimits the scope of our thesis in terms of the Ericsson MPM architecture.

Several existing streaming approaches are described in chapter 3 in order to

understand their transport techniques. Our proposed solution is given in chapter

4. Chapter 5 presents an evaluation of the proposed solution. Finally, chapter

6 summarizes our conclusions, research findings, and offers some suggestions for

further improvements.

Chapter 2

Background

2.1 Streaming

Media streaming is a process to deliver continuous media such as video or audio

to a receiver as a continuous stream of packets. Due to this stream of packets,

the receiver does not need to download the entire file before starting to play (or

render) the media. Media delivery is currently based on three general methods:

traditional streaming, progressive download, and HTTP chunk based streaming.

The following subsections will describe these three streaming techniques.

2.1.1 Traditional Streaming

Using a traditional streaming protocol media is delivered to the client as a series

of packets. Clients can issue commands to the media server to play (i.e., to send

a media stream, to temporarily suspend this stream (i.e., to pause the media),

or to terminate the media stream (i.e., to teardown the media stream). One of

the standard protocols for issuing these commands is the Real Time Streaming

Protocol (RTSP)[6].

One of the traditional streaming protocols is the Real-Time Transport

Protocol (RTP)[2]. Traditional streaming is based on a stateful protocol (RTSP)

where the server keeps track of the client’s state. However, Microsoft used

the stateless HTTP protocol for the streaming - this is officially known as MS-

WSMP[7]. To keep track of the state of the client they used a modified version

of HTTP.

2.1.2 Progressive Download

One of the most widely used methods of media delivery on the web today is

progressive download. This is basically a download of a file from the web server,

5

6 CHAPTER 2. BACKGROUND

but with the client starting to play the media contents of this file before the file

is completely downloaded. Unless the media stream is terminated, eventually the

entire file will be downloaded. In progressive download, downloading continues

even if the user pauses the player. The Internet’s most popular video sharing

website - YouTube – uses progressive download [8].

2.1.3 Adaptive streaming - HTTP based delivery of chunks

Adaptive streaming is based upon progressive download of small fragments of

the media, but the particular fragments that are downloaded are chosen based

upon an estimate of the current network conditions. Each of these fragments is

called a chunk. Thus “adaptive streaming” is not actually streaming the media

content, but instead it is an adaptive version of HTTP progressive download!

However, adaptive streaming is actually adaptive since once the input media

was split into a series of small chunks, each of these chunks can be encoded into

one or more of the desired delivery formats for later delivery by an HTTP server.

Each chunks can be encoded at several bit rates (i.e., using different CODECs

(see next section) and different parameters), hence the resulting encoded chunks

can be of different sizes. The client requests the chunks from the server and

downloads the chunks using the HTTP progressive download technique. The

actual adaptation is based upon the client choosing a particular version of each

chunk. The version of the chunk that is requested is based upon the client’s

estimate of the current network conditions and the load on the server (i.e., if the

server is heavily loaded or the network seems congested, then the client requests

a smaller instance of the chunk, otherwise it can request a larger version of the

chunk - potentially providing higher resolution or greater color fidelity). After a

chunk is downloaded to the client, the client schedules the play out of the chunk

in the correct order – enabling the user to watch a seamless video (and or hear a

seamless audio track). The client can also play the available chunks in any order

that the user would like, allowing “instant” replays, freeze frame, and other video

effects.

This thesis project focuses on adaptive streaming because it provides the

following benefits to the user:

• It provides fast start-up and seek times with in a given item of content by

initiating the video at the lowest video rate and later switching to a higher

bit rate.

• There is no disconnection, buffering, or playback stutter problem.

• It provides seamless bit rate switching based on network conditions.

• It also provides the user with seamless video playback.

2.2. CODECS 7

2.2 CODECs

A coder/decoder (CODEC) is used to encode (decode) video or audio. Many

CODECs are designed to compress the media input produced by the source in

order to reduce the data rate needed for the media or to reduce the storage

spaced required to store the resulting media or some combination of these two.

A CODEC can be lossless, i.e., the decoded data is identical to the original data,

or the CODEC can be lossy, i.e., the decoded data is not identical to the original

data. Lossy coding schemes can achieve higher compression ratios (the ratio of

the output size to the input size is much less than 1); however, there will be some

loss in quality. In recent years lossy perceptual-based CODECs have become

popular as they minimize the number of bits used to encode the original content

yby eliminationg content that is least relevant to the perception of the viewer.

As we are concerned with video, we will describe in the next paragraphs the

two most popular standard video CODECs. There are also many proprietary

video CODECs, but we will not consider them in the scope of this thesis project.

2.2.1 MPEG-2

The Moving Picture Expert Group (MPEG) 2 standard [9][10] is a popular

CODECs for compressed video. A MPEG-2 video sequence can be divided into

groups of pictures. Within the group of pictures, each picture is referred to as

frame. Pictures can also be divided into a slice. A group of four blocks is known

as macroblock. A block is the smallest group of pixels that can be displayed on

the screen. Figure 2.1 illustrates the relationships between these entities.

The MPEG standard defines three types of pictures:

Intra Pictures

(I-Pictures)

I-pictures are encoded using only the information that

is present in the picture.

Predicted

Pictures

(P-Pictures)

P-pictures are encoded while exploiting the infor-

mation from the nearest previous I-pictures or P

pictures. The technique is normally known as forward

prediction. P-pictures provide higher compression

than I-pictures.

Bidirectional

Pictures

(B-Pictures)

B-pictures use both the previous and subsequent

pictures for reference. This is known as bi-

directional prediction. These pictures provide the

highest compression, because the compression can

take advantage of both the past and future contents.

However, the computational cost of encoding is higher

than for I-pictures or P pictures.

8 CHAPTER 2. BACKGROUND

Figure 2.1: MPEG-2 Video Structure, adapted from [9]

2.2.2 MPEG-4 Part 10

H.264, also known as MPEG-4 part 10, is a standard jointly developed by the

ITU-T Video Coding experts and the ISO/IEC Picture Expert Group [11][12].

The standard deals with error resilience by using slicing and data partitioning.

The main advantage of this standard as compared to MPEG-2 is that it can

deliver better image quality at the same bit rate for the compressed stream or a

lower bit rate while offering the same quality [13]. Compared to earlier standards,

H.264 includes two additional slice types: SI and SP [14]. In general, SI and SP

slices are used for synchronization and switching. These slice types are used

while switching between similar video contents at different bit rates and for data

recovery in the event of losses or errors. Arbitrary slice ordering offers reduced

processing latency in IP networks [15] as packets may arrive out of order.

H.264 has gained popularity in several application areas, including [13][16]:

• High Definition (HD) DVDs,

• HD TV broadcasting,

• Apple’s multimedia products,

• Mobile TV broadcasting, and

• Videoconferencing.

The H.264 video encoding process takes video input from a source and feeds

it to prediction, transform, and encoding processes to produce a compressed

2.3. CONTAINER FORMATS 9

bitstream. The encoder processes a video frame in units of macroblocks and forms

a prediction of the macroblock with the information from either the current frame

(for intra prediction) or from other coded or transmitted information (known as

inter prediction). The prediction method of H.264 is much more flexible and

accurate than the prior standards. The transform process produces a quantized

transform of coefficients as its output [17]. Finally, the encoding process produces

the compressed bitstream.

The decoding process is the reverse of the encoding process. It feeds the

compressed stream to a decoder, does an inverse transform, and reconstructs the

pictures to generate video output. The entire process is illustrated in figure 2.2.

Figure 2.2: H.264 video encoding and decoding process, adapted from [13]

2.3 Container Formats

A container format is a wrapper that contains information such as: video, audio,

or subtitles. A container format is also known as a meta format as it stores both

the data itself along with additional information. The following two sub-sections

describe two popular container formats used for streaming audio and video.

2.3.1 MPEG-2 Transport Stream

An MPEG-2 transport stream (MPEG-2 TS) multiplexes various Packetized

Elementary Streams (PESs) into a single stream along with synchronization

information. A program is formed from the PES packets from the elementary

streams. MPEG 2 defines a transport stream for storing or transmitting a

program. Logically a transport stream is simply a set of time-multiplexed packets

10 CHAPTER 2. BACKGROUND

from several different streams [10][18][19][20]. The overall transport stream

format is shown in Figure 2.3. The packet format and stream generation process

are described in the following paragraphs.

Figure 2.3: Overall Transport Stream, adapted from [18]

2.3.1.1 Packetized Elementary System

An elementary stream is a compressed form of an input source, such as video

or audio. A packetized elementary stream (PES) is formed by packetizing the

elementary streams into fixed size or variable size packets. Each PES packet

consists of a PES header and payload. Figure 2.4 illustrates the packet format

of a PES.

2.3. CONTAINER FORMATS 11

Figure 2.4: PES Packet Header, adapted from [19]

The PES header begins with a start code prefix (three bytes containing the

value 0x000001). The Stream ID is followed by the PES packet length and an

optional header. This stream ID (1 byte) specifies the type of stream. The PES

packet length (2 bytes) defines the length of the packet.

2.3.1.2 MPEG-2 TS packet Format

MPEG-2 TS uses a short, fixed length packet of 188 bytes; consisting of 4 bytes

of header, an optional adaptation field, and payload as shown in Figure 2.5.

Figure 2.5: MPEG-2 TS packet, adapted from [19]

Figure 2.6 shows the MPEG-2 TS header. The fields in this header are:

• A sync byte used for random access to the stream.

• The transport error indicator provides error indication during transport.

• The payload unit start indicator is followed by the transport priority, this

indicates the presence of a new packet.

• A Program ID (PID) allows identification of all packets belonging to the

same data stream. Different streams may belong to different programs or to

the same program. PIDs are used to distinguish between different streams.

12 CHAPTER 2. BACKGROUND

• The scrambling mode used for the packet’s payload is indicated by the

transport scrambling control field.

• The continuity counter field (CC) is incremented by one for each packet

belonging to the same PID.

• The presence of the adaptation field in the packet is indicated by the

adaptation control field.

Figure 2.6: MPEG-2 TS header, adapted from [19]

Figure 2.7 shows the contents of the adaptation field. The sub-fields of the

adaption field are:

• Field Length indicates the number of bytes following.

• Discontinuity indicator indicates whether there is a discontinuity in the

program’s clock reference.

• Random access Indicator indicates whether the next packet is a video frame

or an audio frame.

• Elementary stream indicator is used to distinguish the priority of different

elementary streams.

• Stuffing bytes in the adaptation field are used to pad the transport packet

to 188 bytes.

Figure 2.7: Adaptation Field, adapted from [19]

Figure 2.8 illustrates the format of the optional field. The fields are:

• PCR flag indicates the presence of a program clock reference (PCR).

2.3. CONTAINER FORMATS 13

• The OPCR flag represents the presence of an original program clock

reference (OPCR).

• Splice countdown (8 bits) is used to identify the remaining number of TS

packets of the same PID until a splicing point is reached.

• The number of private data bytes is specified by the Transport private

data. The number of bytes of the extended adaptation length is indicated

by Adaptation field extension length.

Figure 2.8: Optional field, adapted from [19]

2.3.1.3 Transport Stream Generation

A PES is the result of a packetization process and the payload is created from

the original elementary stream. The transport stream is created from the PES

packet as shown in Figure 2.9.

2.3.1.4 Synchronization

Synchronization in achieved through the use of time stamps and clock references.

A time stamp indicates a time according to a system time clock that a particular

presentation unit should be decoded and presented to the output device. There

are two kinds of time stamps: Presentation Time Stamp (PTS) and Decoding

Time Stamp (DTS). PTS indicates when an access unit should be displayed in

the receiving end. In contrast, DTS indicates when it should be decoded. These

time stamps (if present) are placed into the PES packet header’s optional field.

A clock reference is included in a transport stream through a Program Clock

Reference (PCR). The PCR provides synchronization between a transmitter and

receiver; it is used to assist the decoder to present the program on time.

14 CHAPTER 2. BACKGROUND

Figure 2.9: Transport Stream Generation, adapted from [19]

2.3.1.5 Program Specific Information

Program specific information (PSI) transport packets enable the decoder to learn

about the transport stream. The PSI is a specialized TS stream that contains

program descriptions and the assignments of PIDs and packetized elementary

streams to a program. The PSI transport stream consists of the following:

• Program Association Table (PAT),

• Program Map Table (PMT),

• Network Information Table, and

• Conditional Access Table.

The PMT contains the PID for each of the channels associated with a

particular program. The PAT is transmitted in transport packets with PID 0

- this table contains a list of all programs in the transport stream along with

the PID for the PMT for each program. The details of header information of

PAT and PMT can be found in appendix A. Figure 2.10 illustrates the relation

between PAT and PMT and more details can be found in [21]. In this thesis we

can ignore both the Network Information Table and Conditional Access Table

because they are not relevant to us.

2.4. CONTENT DELIVERY NETWORKS 15

Figure 2.10: Relation between PAT and PMT table, adapted from [21]

2.3.2 MPEG-4 Part 14

MPEG-4 part 14 is an ISO standard multimedia container format specified as

part of MPEG 4[22]. In general, this format is used to store audio and video

streams as well as subtitles and still images. This format is frequently used for

streaming over the internet and is referred to as “MP4” (the file extension of this

format is “.mp4”).

A MP4 file consists of a moov box that contains time-sample-metadata

information. The moov box can be placed either at the beginning or at the

end of the media file. The Media Data Container box (mdat) contains the audio

and video data. Figure 2.11 shows the MP4 file format (see [23]).

Figure 2.11: MP4 file format, adapted from [23]

In smooth streaming [8], Microsoft uses fragmented MP4 (FMP4) [24] for

streaming. Section 3.2 describes these concepts in detail.

2.4 Content Delivery Networks

A content delivery network (CDN) consists of a group of computers that are

situated between content providers and content consumers. In a CDN, contents

16 CHAPTER 2. BACKGROUND

are replicated to a distributed set of content servers so that consumers can

access a copy of the content from the “nearest” content server∗. A CDN offers

a number of advantages over a traditional centralized content server because

content replication alleviates the bottleneck of a single server[25], allows increased

scalability, and increases the robustness and reliability of the system by avoiding

a single point of failure (once the content has been distributed to the CDN).

2.4.1 Amazon Cloud Front

Amazon’s CloudFront [26] is a web service for content delivery using a global

network of web servers. Amazon’s CloudFront caches copies of content close to

the end user. A request generated from a client is automatically routed to the

nearest web server. All the objects are managed by an Amazon S3 bucket [27],

which stores the original files, while CloudFront is responsible for replicating and

distributing the files to the various servers. By distributing the content to server

close to the requestor, Amazon CloudFront reduces the latency of downloading

an object. In addition, the end user pays only for the data transfer and requests

that they initiated.

2.4.2 Akamai HD Network

The Akamai HD Network is an on-line high definition (HD) video delivery solution

[28]. It supports delivery of live and on demand HD quality video. Together

with Akamai’s HD Edge Platform solution, content is replicated close to the

consumer. HD Adaptive Bitrate Streaming provides fast video start up (i.e.,

the time between the user selecting content and this content being displayed is

short) and uninterrupted playback at HD quality. The Akamai HD network also

supports an HD Authentication feature to ensure authorization for each Flash

player before delivering content.

2.5 Advertisement Insertion and Detection

Advertisement based revenue has always been a major components of business

models for distributing contents. This section describes advertisement insertion

and detection techniques for placing advertisements in the bit stream. However,

advertisement detection techniques are outside the scope of thesis.

2.5.1 Advertisement Insertion

Advertisement insertion techniques described in [29] have considered the following

parties for the process: Content providers, Network operators, and Clients.

∗Here “nearest” refers to nearness from a network topology and delay point of view. The
nearest server is the server that can deliver the desired content in the shortest amount of time.

2.5. ADVERTISEMENT INSERTION AND DETECTION 17

Content providers locate one or more advertisement insertion points and send

the encrypted media to the network operators. Subsequently, network operators

decrypt the encrypted media, and then using an advertisement inserter module,

the network operators insert advertisements. Finally, network operators encrypt

the media with the included advertisements and send it to one or more clients.

Advertisers rely upon the advertisement insertion points selected by the

content provider. This thesis work does not focus on the advertisement insertion

points selected by the content providers or the encryption and decryption of the

media; rather, this thesis work focuses on the advertisement inserting module.

The Society of Cable and Telecommunications Engineers (SCTE), introduced

the SCTE35 [30] standard. This standard was published by the American Na-

tional Standards Institute (ANSI). The standard describes the timing information

and upcoming splicing points. The standard defines two types of splice points;

• In point splicing defines the entry of a bitsream.

• Out point splicing defines the exit from the bitstream.

A splice information table is used for defining the splice events and this table

is carried by PID values that reside in a PMT table.

Schulman [31] proposed a method for digital advertisement insertion in video

programming. The method describes using externally supplied programming

that contains embedded cue tones (pre-roll cue and roll cue), are detected prior

to converting the analog video to digital video. In [32], Safadi proposed a method

for digital advertisement insertion in a bitstream by providing a digial cue message

– corresponding analog cue tones. An advertiser inserts the advertisement

after detecting the digital cue message. A method for non-seamless splicing of

transport streams is described in [33].

2.5.2 Advertisement Detection

This thesis project did not focus on advertisement detection technique, there are

several exisiting methods for detecting advertisement. Peter T. Barrett describes

local advertisement detection in [34]. His patent describes an insertion detection

service, where a splice point in the video is detected in order to identify where

the advertisement has been inserted through the following conditions (details can

be found in [34]):

• Forced quantization match

• Video frame pattern change

• Timing clock change

• Picture group signaling change

• Insertion equipment signature

• Bit rate change

18 CHAPTER 2. BACKGROUND

• Extended data service discontinuity

• Audio bit rate change

Jen-Hao et al. has described telvision commercial detection in news program

videos in [35]. More information regarding advertisement detection, along with

advertisement signature tracking is described in [36].

2.6 Ericsson’s Media Plane Management Reference Ar-

chitecture

Ericsson’s media plane management project proposed a media plane management

reference architecture which works as a mediator between operators and Internet

content providers to optimize managed media delivery [5]. (See figure 2.12.)

Their goals were to:

• Combine a smart storage and caching solution in both the Internet and

network operator’s network.

• Adapt the Internet content consumption based on the client device’s

capabilities.

• Allow personalized advertisement insertion.

• Provide access control and digital right management facilities.

Figure 2.12: Ericsson’s MPM Architecture, taken from [5] (Appears with
permission of the MPM project.)

2.7. THESIS OVERVIEW 19

2.6.1 Overview

The MPM architecture allows content providers and advertisers to upload their

files along with the relevant metadata information. After the content is uploaded,

then the Media Delivery Logic (MDL) sends this content to a transcoding service

that transcodes the content to different formats to be later used depending upon

the user’s context. After this, Personalization and Ad Insertion Logic (PAIL)

together with MDL selects the best matching advertisement(s) for a given user.

The Context Information Module (CIM) gathers context information from various

sources such as the Home Subscriber Server. Based on the popularity of the

contents and context information (such as the user’s location), contents are

uploaded to the operator’s network used by the target users and to Amazon’s

CloudFront[26].

The main key idea of the MPM architecture is to use several storage and

caching locations to minimize costs while maximizing the quality of the delivered

media content. The following storage components were considered:

• Internal Storage - Contents and Advertisement database (DB),

• Amazon’s CloudFront, and

• Operator provided storage.

The client initiates their media consumption by making a request either via

Session Initiation Protocol (SIP) or HTTP. The SIP interface will be used if the

request comes from an IP Multimedia Subsytem (IMS) domain.

2.7 Thesis Overview

This thesis project was conducted as part of the MPM project. The thesis project

focuses specifically on the segmentation of the video contents and advertisement

insertion at splicing points, i.e., an advertisement can be spliced in between two

segments of the original contents.

Together the MDL and PAIL select the best matching advertisements based

on information provided by the CIM. Two approaches have been described:

splicing by the client or splicing by a server [5]. The first approach delivers the

playlist directly to the client. This approach allows the client to flexibly fetch the

media items itself, thus optimal transport paths can be used. However, the major

disadvantage of this approach is that since the client fetches the information by

itself an improperly secured client could allow users to skip the advertisements

and play only the contents.

The second approach uses a streaming server to fetch all the media files from

their respective locations, splice them together while inserting the advertisement,

and then serving the result as a single media stream to the client. The

disadvantage of this approach is it has poor scalability, because the streaming

20 CHAPTER 2. BACKGROUND

server performing the splicing for each user resides in the MPM framework and

the hardware for this splicing has to be provided by someone other than the end

user.

Because Ericsson’s main focus is on the communications infrastructure, rather

than the handset, this thesis project has adopted the second approach and focuses

on segmenting the content at splicing boundaries and inserting an advertisement

prepared by MDL and PAIL. The core design of our system is the proxy streaming

server with advertisement insertion logic. When the client requests a video, the

streaming server communicates with the node that maintains the video chunks

along with advertisement and splices the video. After this the media will be

delivered to the client as a single HTTP resource. Figure 2.13 shows an overview

of the splicing and advertisement insertion logic.

Figure 2.13: Overview showing the context of the splicing and advertisement
insertion logic

Chapter 3

Related Work

This chapter discusses two existing approaches, specifically the Apple and

Microsoft streaming approaches. These solutions are relevant to our thesis

because they stream content to the client after segmentation. These two solutions

are also widely used; as they are bundled with the operating systems from these

two vendors. We will focus on identifying the key components of these two

approaches. In addition, we will describe some existing advertisement insertion

technologies.

3.1 Apple Live Streaming

In [37], Apple describes their HTTP live streaming solution. Their solution takes

advantage of MPEG-2 TS and uses HTTP for streaming. Their solution consists

of three components: Server Component, Distribution Component, and Client

Software.

• The Server Component handles the media streams and digitally encodes

them, then encapsulates the result in a deliverable format. This component

consists of an encoder and a stream segmenter to break the media into a

series of short media files.

• The Distribution Component is simply a set of web servers that accept

client requests and deliver prepared short media files to these clients.

• Client Software initiates a request and downloads the requested content and

reassembles the stream in order to play the media as a continuous stream

at the client.

Figure 3.1 shows the resulting simple HTTP streaming configuration. The

encoder in the server component takes and audio/video stream and encodes and

21

22 CHAPTER 3. RELATED WORK

encapsulates it as MPEG-2 TS, then delivers the resulting MPEG-2 TS to the

stream segmenter.

Figure 3.1: HTTP streaming configuration, adapted from [37]

The stream segmenter reads the transport stream and divides the media into

a series of small media files. For broadcast content, Apple suggests placing 10

seconds of media in each file [37]. In addition to the segmentation, the segmenter

creates an index file containing references to the individual media files. This

index file is updated if a new media file is segmented. The client fetches this

index file, then requests the URLs specified in the index file, finally the client

reassembles the stream and plays it.

Apple provides three modes for configuring encryption in the media stream

segmenter to protect the contents [37]. In the first mode, the segmenter inserts

the URL and an encryption key in the index file. This single key is used to

encrypt all the files. In the second mode, the segmenter generates a random

key file and saves it to a location, then add this reference to the index file. A

key rotation concept is used in the third mode, where the segmenter generates a

random key file of n keys, stores this file and references it in the index file, then

the segmenter cycles through this set of keys as it encrypts each specific file. The

result is that each file in a group of n files is encrypted with a different key, but

the same n keys are used for the next n files.

While using a unique key for each file is desirable, having to fetch a key file

per segment increase the overhead and load on the infrastructure. Apple has

submitted their approach for HTTP live streaming to the IETF[38].

3.2. MICROSOFT SMOOTH STREAMING 23

3.2 Microsoft Smooth Streaming

Microsoft introduced “Smooth Streaming” [8], based on an adaptive streaming

extension to HTTP. This extension was added as a feature of their Internet

Information Services (IIS) 7 - web server. Smooth Streaming provides seamless

bit rate switching of video by dynamically detecting the network conditions. They

have used an MP4 container for delivering the media stream. The MP4 container

is used as both a disk (file) format for storage purposes and a wire format for

transporting the media.

Each chunk is known as an MPEG-4 movie fragment. Each fragment is stored

within a contiguous MP4 file. File chunks are created virtually upon a client’s

request. However, the actual video is stored on disk as a full length MP4 file. A

separate MP4 file is created for each bit rate that is to be made available.

The complete set of protocol specifications are available at [39]. Microsoft’s

Silverlight browser plug-in supports smooth streaming.

3.2.1 Why MP4?

Microsoft has proposed several reasons for their migration from their Advanced

Systems Format (ASF) [40] to MP4. Four of these reasons are:

Lightweight the MP4 container format is lightweight (i.e. less

overhead than the “asf” format)

Simple Parsing parsing an MP4 container in .Net code is easy

H.264 CODEC

support

the MP4 container supports the standard H.264

CODEC

Fragmentation an MP4 container has native support for payload

fragmentation

3.2.2 Disk File Format

Smooth Streaming defines a disk file format for a contiguous file on the disk (see

figure 3.2). The basic unit of a container is referred to as a box. Each box may

contain both data and metadata.

This disk file format contains Movie Meta Data (moov) - basically file-level

metadata. The fragment section contains the payload. We have shown only two

fragments in the figure; however, there could be more fragments depending upon

the file’s size. Each fragment section consists of two parts: a Movie Fragment

(moof) and media data (mdat). The moof section carries more accurate fragment

level metadata and the media is contained in the mdat section. Random access

24 CHAPTER 3. RELATED WORK

Figure 3.2: Disk File Format, adapted from [8]

and accurate seeking within a file is provided by the Movie Fragment Random

Access (mfra) information.

3.2.3 Wire File Format

The wire file format is a subset of the disk file format, because all fragments are

internally organized as a MP4 file. If a client requests a video time slice from

the server (i.e., video from a starting time to and ending time), then the server

seeks to the appropriate fragment file from within the MP4 file and transports

this fragment file to the client. Figure 3.3 shows the wire file format.

Figure 3.3: Wire file format, adapted from [8]

3.3. ADVERTISEMENT INSERTION 25

3.2.4 Media Assets

MP4 files In order to differentiate from the traditional

MP4 files , Smooth Streaming uses two new

file extensions “.isma” and “.ismv”. A file with

the first extension contains only audio. A file

with the second extension contains video and

optionally can contain audio.)

Server manifest file

(*.ism)

This file describes the relationship between the

media tracks, the available bit rates, and the

files on disk.

Client Manifest file

(*.ismc)

This file describes the availability of streams to

the client. It also describes what CODECs are

used, the encoded bit rates, video resolution,

and other information.

3.2.5 Smooth Streaming Playback

In Smooth Streaming, a player (client) requests a Client Manifest file from the

server. Based on this information the client can initialize the decoder at runtime

and build a media playout pipeline for playback. When the server receives

the client’s request, it examines the relevant server manifest files and maps the

requested file to a MP4 file (e.g., a file with the extension of either .isma or .ismv)

on disk. Next it reads the MP4 file and based on its Track Fragment (tfra) index

box, it finds the exact fragment (containing the moof and mdat) corresponding

to the client request. After that, it extracts the fragment file and sends it to

the client. The fragment that is sent can be cached in Amazon’s CloudFront for

rapid delivery to other clients that request this same fragment (i.e., requesting

the same URL). For example:

http://Serveraddress/server.ism/QualityLevels(bitrate)/Fragments

(video=fragment number)

The above URL is used to request a fragment with specific values of bit rate

and fragment number. The bit rate and fragment numbers are determined from

the client manifest file.

3.3 Advertisement Insertion

Digital Program Insertion (DPI) allows the content distributor to insert digitally

generated advertisements or short programs into the distributed program [41].

An SCTE 35 message is used for control signaling and an SCTE 30 [42] message

is used for communication between splicer and content distributor. Most of the

industry oriented advertisement insertion solutions are based on SCTE 35.

26 CHAPTER 3. RELATED WORK

Cisco’s advance advertising solution [43] supports SCTE 35 and uses a digital

content manager for splicing. It also supports video insertion for video, before

or during playback. Figure 3.4 shows Cisco’s advanced advertising solution. An

SCTE 35 digital cue tones is identified for the advertisement insertion opportunity

and then, splicing digital content manager uses SCTE 30 message to collect the

advertisement and splices accordingly, and send it to the end user.

Figure 3.4: Cisco’s advertising solution, adapted from [43]

There are some DPI monitor tools [44] [45] [46] that detect SCTE 35 digital

cue tones. Alcatel Lucent’s advertisement insertion [47] is also based on SCTE

35. Packet Vision has created a “Ad Marker Insertion System” that also supports

SCTE 35 ad markers in the program stream for precise timing of advertisement

insertion[48].

Innovid’s platform [49] provides advertisement insertion in suitable areas of

a video. It detects suitable advertisement insertion areas within the video, such

as table or empty wall in the background. After mapping the ad space onto the

video content, their ad server selects a specific advertisement for this mapped

space. Advertisements are dynamically served to the mapped space at viewing

time. These advertisements allow two-way interaction with between the user and

the advertisement.

Chapter 4

Design and Implementation of a

Prototype Streaming System

with Dynamic Insertion of

Advertisements

4.1 Design Overview

The proposed solution for a HTTP Streaming Server with Dynamic Advertise-

ment was implemented using Java technologies, Python, a MPEG-2 TS container,

and FFMPEG [50]. Details of each of these will be presented in this chapter. A

laptop computer, an iPhone, a set top box (STB), and a Sony PlayStation are

used as clients for testing our implementation. The overall system architecture

is illustrated in figure 4.1 and it shows several modules communicating with

each other. Initially, files are transcoded using a transcoder module and then

segmented into chunks. Finally, as noted previously they are stored in three

different places in the network: Amazon CloudFront, Operators Storage, and

Internal Storage. The following steps are performed in conjunction with a client’s

request for media.

1. Client sends a resource request to the streaming server.

2. Streaming server fetches media based upon the Uniform Resource Locator

(URL) [51] and requests the media’s location from the node (i.e. tracker),

who keeps all the media information along with the advertisement timing

information.

3. Streaming server retrieves the media’s location from the node.

27

28 CHAPTER 4. DESIGN AND IMPLEMENTATION

4. Streaming server requests the resource chunks from their respective loca-

tions.

5. Streaming server fetches the contents received from the storage server and

synchronizes their clock information.

6. Finally, the server combines the previously transcoded chunks together with

the advertisement at run-time and streams the results to the client.

Figure 4.1: Overall Architecture

4.1. DESIGN OVERVIEW 29

The overall message flow for requesting and providing the media is shown in

figure 4.2. The following subsections describe how to choose the appropriate

container and give details of the modules shown in figure 4.1.

Figure 4.2: Message Flow

4.1.1 Choosing an Appropriate Container

One of the key research issues that needed to be addressed by this implementation

was to select an appropriate container. The two most widely used containers

for chunk based adaptive streaming are fragmented MP4 (FMP4) and MPEG2-

TS. We explored both alternatives. Detailed information regarding streaming

with FMP4 can be found in appendix B. MP4Split [52] was used for generating

the FMP4 file and MP4Explorer [53] was used to analyze the file structure.

Unfortunately, fragmented MP4 is only supported by Microsoft’s Silverlight

player. As a result our implementation uses MPEG 2-TS as the container because

all the devices (laptop, Apple iPhone, STB, and Sony PlayStation) selected for

our testing can play an MPEG 2-TS file.

4.1.2 Transcoding

The transcoding encodes the video using a H.264 CODEC and the audio using the

AAC/MP3 CODEC and places the output in a MPEG-2 TS container (shown as

a TS File in Figure 4.3). The media server stores the resulting encoded chunks.

30 CHAPTER 4. DESIGN AND IMPLEMENTATION

4.1.3 Segmentation

Segmentation is the process of dividing the content into several parts. Segmen-

tation takes an input video stream and produces several fixed length chunks.

A segmenter developed in Python has been used to segment the video into

several fixed length chunks. Figure 4.3 illustrates the combined Transcoding

and Segmentation processes. In our implementation, the segmentation process

provides the chunk based HTTP streaming.

Figure 4.3: Transcoding and Segmentation

4.1.4 Distribution Network

After the transcoding and segmentation phase, segmented chunks are stored in

three different places in the network. As noted previously the segmented chunks

are stored in: Internal Storage, Amazon CloudFront, and Operators Storage.

4.1.5 Client Devices

The list of client devices that have been used in the project are summarized in

Table 4.1 . These client devices are responsible for initiating a resource request

to the proxy server.

4.1. DESIGN OVERVIEW 31

Table 4.1: Client Hardware

Client Devices Description

Laptop computer An HP Pavilion dv7 laptop was used for both development
and testing of a client. The configuration of this laptop was
as follows:

• Processor: Intel core 2 Duo P8400 2.26 GHz
• RAM: 2GB
• Disk Space: 120GB

Apple iPhone 3G An Apple iPhone 3G used for testing as client was configured
as follows:

• OS version: 3.0
• Firmware Version: 04.26.08
• Disk Space : 8 GB

Motorola Kreatel TV
STB

VIP 1970-9T used for testing as client was configured as
follows:

• Architecture - MIPS
• CPU Speed - 266 MHZ
• Main Memory - 128 MB
• Disk Space - 160GB

Sony PlayStation 3 Sony PlayStation 3 used for testing as a client was configured
as follows:

• Processor - IBM Cell 3.2 GHz
• Disk Space - 60 GB

4.1.6 Proxy Streaming Server

This project implemented a streaming server that receives a media request from a

client, then fetches the requested media contents and combines this media with an

advertisement before providing the combined results to the client. This streaming

proxy server acts as both a server and a client. It acts as a client to fetch content

from the media server, but it acts as a server to the end-user’s client. A proxy

server acts as a mediator between clients and content servers to accept client

requests for content from other web servers [54]. In general, the client connects

to a proxy server to request a resource. We developed our own proxy streaming

server, as most of the client devices used for testing cannot handle an HTTP

REDIRECT request. (Table 4.2 summarizes the language and libraries used for

developing our proxy streaming server.)

32 CHAPTER 4. DESIGN AND IMPLEMENTATION

Table 4.2: Programming Languages and Application Server

Client Devices Description

JAVA J2EE (servlet), ApacheHTTPClient Library [55] used by the
streaming server to handle HTTP GET requests from clients.

Python Python is used for parsing the MPEG2-TS header and
synchronizing the clock information.

GlassFish Application server used for Proxy.

4.1.6.1 Request Handler

When a client sends a HTTP GET request to the proxy server, the proxy parses

the Uniform Resource Locator (URL) [51] to find out which asset is requested.

Figure 4.4 illustrates this request handling. Client requests the media using the

proxy server’s URL and media asset’s ID (http://proxyserverurl:8080/mediaassetid).

After that, the proxy fetches the requested media using this URL and retrieves

the media asset ID and requests the media locations from the node for asset and

sends HTTP GET requests to the respective locations in the network.

Figure 4.4: Request Handling

4.1. DESIGN OVERVIEW 33

4.1.6.2 Clock Synchronization

Advertisement insertion in the TS file for continuous streaming requires the

synchronization of the clock, specifically the PCR, PTS or DTS value. However,

this requires parsing the TS header, PAT and PMT tables, and parsing PES

header. We started our research by setting the Discontinuity Indicator (DI)

field true in the TS header for advertisement that needs to be inserted in the

stream and after that we tested the files with different client devices. All of the

devices except for the iPhone were able to play the stream. In order to add an

advertisement in a movie, iPhone requires modification of the clock information

to let the device know that the advertisement is a continuation of the same movie.

4.1.6.3 Setting the Discontinuity Indicator

To set the Discontinuity Indicator (DI) in the advertisement chunk we need to

parse first 4 bytes of TS header and check if there is any adaptation field present.

If so, then we parse the adaptation field and set the DI. Listing 4.1 shows the

algorithm of setting the DI.

Listing 4.1: Setting the Discontinuity Indicator

TS_Packet_Length = 188
TS_Header_Size = 4
Take TS_Packet_Length bytes
Parse TS_header_Size from TS_Packet_Length
If Adaptation_Field_Control==2 || Adaptation_Field_Control==3
Parse Adaptation Field
Set the Discontinuity_Indicator

4.1.6.4 Changing the Program Clock Reference

To make a continuous streaming flow, the PCR value of the advertisement chunk

should continue from the Last PCR value and PCRs for the following chunks

of the movie should be modified to follow the last PCR of the advertisement.

Listing 4.2 shows the algorithm for changing the timestamps.

34 CHAPTER 4. DESIGN AND IMPLEMENTATION

Listing 4.2: Changing Program Clock Reference

TS_Packet_Length = 188
TS_Header_Size = 4
Take TS_Packet_Length bytes
// To get PID and Adaptation Field Control
Parse TS_header_Size from TS_Packet_Length
Parse PAT and PMT table to get PCR_PID
If PID == PCR_PID // PID

If Adaptation Field Control ==2 || Adaptation Field Control ==3
Parse Adaptation Field

If PCR Flag == 1
Read PCR

Check PCR with the Previous PCR
If current PCR != Previous PCR
//To check the continuity
Change the PCR
Store the changed PCR
//for comparing with next

else
Store the PCR

//for comparing with next

4.1.6.5 Changing Time Stamp

The Presentation Time Stamp (PTS) or Decoding Time Stamp (DTS) should also

be changed for the inserted advertisement and should follow the last PTS/DTS

value of the movie where the advertisement is going to be inserted and the

PTS/DTS of all the remainder of the movie should be changed to follow the

PTS/DTS of the last advertisement chunk. Listing 4.3 shows the algorithm of

changing the timestamps.

4.1. DESIGN OVERVIEW 35

Listing 4.3: Changing the Time Stamp

TS_Packet_Length = 188
TS_Header_Size = 4
Take TS_Packet_Length bytes
// To get PID and Adaptation Field
Parse TS_header_Size from TS_Packet_Length
Parse PAT and PMT table to get Elementary_Stream_IDs
If PID in Elementary_Stream_IDs
If adaptation field is present

H = TS_header_Size + Adaptation_Field_Length
Parse PES header after H bytes

If PTS or PTS_DTS flag is present
Read PTS/DTS

If current PTS/DTS != previous PTS/DTS
Change the PTS/DTS

Store the PTS/DTS
//for comparing with the next PTS/DTS

else
Store the PTS/DTS
//for comparing with the next PTS/DTS

else
Parse PES header after TS_Header_Size
If PTS or PTS_DTS flag is present
Read PTS/DTS
If current PTS/DTS != previous PTS/DTS
Change the PTS/DTS
Store the PTS/DTS
//for comparing with the next PTS/DTS

else
Store the PTS/DTS
//for comparing with the next PTS/DTS

4.1.6.6 Output Streamer

To stream the file as a single HTTP resource to the client, the proxy streaming

server splices the content together after performing the clock synchronization.

The proxy streaming server reads bytes continuously and modifies the header

information and places the output bytes in a output pipe after one another.

Therefore, the client on the other side of the output pipe experiences the output

as a single HTTP resource. Figure 4.5 shows the splicing process of the proxy

server.

36 CHAPTER 4. DESIGN AND IMPLEMENTATION

Figure 4.5: Output Streamer

4.2 Advantages of Dynamic Advertisement Insertion

The advantages introduced by the proposed dynamic advertisement insertion

solution are described in the following paragraphs.

4.2.1 Reduce Storage Cost

Reducing the storage cost at the server is the main advantage introduced by

the proposed solution. This solution can combine the same video chunks with

several different advertisements, thus lowering the storage costs at the server side

(in comparison to having to create a separate complete file for each combination

of content and advertisements). For example, in a traditional advertisement

insertion system, if there are five advertisements then creating a version of

the content together with each of these five advertisements takes four times

more space than a single copy of a movie. However, using adaptive chunk

based HTTP streaming with the implemented dynamic ad insertion solution;

the storage cost at the server’s side requires storage only of the movie and each

of the advertisements.

4.2.2 Runtime Decision for Advertisement Insertion

The implemented solution has the advantage of inserting the advertisement

at runtime. Since the advertisement is inserted into the content at runtime,

providers have the flexibility of changing the advertisement or altering the

location (with respect to the relative time that the advertisement is presented

in the media stream) of an advertisement at runtime.

4.2.3 Personalized Advertisement Insertion

Dynamic advertisement insertion allows personalized advertisement insertion.

Using this context information, it is possible to select the best matching

4.3. DISADVANTAGES OF THE PROPOSED SOLUTION 37

advertisement for a specific client for insertion at runtime. For example, a

Swedish-speaking user might prefer to watch a Swedish advertisement rather

than an advertisement in German.

4.2.4 Advertisement Insertion based on Geographical and IP Topo-

logical Location

Advertisement insertion based on geographic location and/or IP topological

location has been widely exploited in advertisement based revenue schemes. The

best matching advertisements can be selected based on the user’s geographic

location. For example, a user in Sweden might be presented with a advertisement

for a product that is actually available in Sweden rather than a product that is

only available in Japan. Alternatively, it is possible to insert an advertisement

based on the user’s location within the network (for example, presenting an

advertisement that is made available via the local network operator - this might

even be a very local network operator - such as the owner of a cafe that provides

Wi-Fi access to its customers).

4.3 Disadvantages of the proposed solution

The implemented solution does not scale well since it has to do advertisement

insertion for the sum of all of the clients that are viewing streaming content with

advertisements. This should be contrasted with the alternative solution of using

client based advertisement insertion.

Chapter 5

System Analysis

This section describes the analysis of our implemented system. The system

has been analyzed by performing validity checking of the resulting content plus

advertisement (as a TS stream), by measuring the transaction time and download

response time when using a proxy streaming server. Details of the system testing

with vendor specific devices can be found in appendix D.

5.1 Validity checking of a TS file

To achieve continuous flow of a TS stream, we have modified the clock information

of TS streams. To check whether the modified TS file is valid or not we have

used an MPEG-TS analyzer [56] to show the header information. The analyzer

is unable to read the TS packet if the packet is corrupted. Figure 5.1 shows a

screenshot from the analyzer for a TS packet.

Figure 5.2 shows the header information of first few TS packet to illustrate

the header information after the modification (including the PCR, PTS and DTS

value). In addition to that, movie player is able to play the modified file.

39

40 CHAPTER 5. SYSTEM ANALYSIS

Figure 5.1: TS packet analyzer

Figure 5.2: TS packet information

5.2. MEASURING RESPONSE TIME 41

5.2 Measuring Transaction Time and Download Response

Time using Proxy Streaming Server

This thesis project analyzed the transaction time and download response time

from when the clients requests content through the proxy streaming server until

the content is provided to the client. Three scenarios have been considered to

check whether the proxy is able to deliver the video within an appropriate delay

bound compared to two other scenarios where clients request the files directly

from the server. Figures 5.3a , 5.3b, and 5.3c illustrate the three scenarios:

1. Client requests one stitched file from the content server directly;

2. Client requests several chunks from the content server through the proxy

streaming server; and

3. Client requests several chunks directly from the content server.

(a) Client requests one stitched file

(b) Client requests several chunks through proxy

(c) Client requests multiple chunks

Figure 5.3: (a) Client requests one stitched file from the content server directly;
(b) Client requests several chunks from the content server through the proxy
streaming server; and (c) Client requests several chunks directly from the content
server

The following subsections give details of the test environment, procedures,

data collection, and analysis.

5.2.1 Test Environment

To perform the test we have used an HTTP Server for storing the contents, a

proxy streaming server, and a client running Microsoft’s Winodows Vista. All of

these computers are connected to an unmanaged 1Gbit/s Ethernet Switch. The

specifications of the machine used for our testing are:

42 CHAPTER 5. SYSTEM ANALYSIS

Proxy Streaming Server Proxy Streaming Server used for analysis was configured as

follows:

CPU: Intel Pentium D 3.2 GHz

RAM: 2048 MB

OS: Ubuntu 9.10 (Kernel: 2.6.31)

Application Server: Glassfish v2.1

NIC: 1 Gbit/s

HTTP Server HTTP Server used for analysis was configured as follows:

CPU: Intel Atmon 360 1.6 GHz

RAM: 2048MB

OS: Windows7

HTTP Server: Apache2

NIC: 1 Gbit/s

Client Machine Client machine used for analysis was configured as follows:

Processor: Intel core 2 Duo P8400 2.26 GHz

RAM: 2 GB

Disk Space: 120GB

OS: Windows Vista

NIC: 1 Gbit/s

Netgear GS 108 1 Gbit/s Ethernet switch

We transcoded the files with the following command for testing:

Listing 5.1: Transcoding command

ffmpeg -i inputfile -f mpegts -acodec libmp3lame -ar 48000 -ab 64k
-s 320x240 -vcodec libx264 -b 1000K -flags +loop -cmp +chroma -
partitions +parti4x4+partp8x8+partb8x8 -subq 5 -trellis 1 -refs
1 -coder 0 -me_range 16 -keyint_min 25 -sc_threshold 40 -
i_qfactor 0.71 -bt 200k -maxrate 1000K -bufsize 1000K -rc_eq ’
blurCplxˆ(1-qComp)’ -qcomp 0.6 -qmin 10 -qmax 51 -qdiff 4 -level
30 -aspect 320:240 -g 30 -async 2 output.ts

5.2.2 Test Procedure

We developed a Java Client that can make concurrent requests. Initially, we

started our test with 1 request, then 2 requests, and increased the number of

requests in increments of 2 until reaching 20 concurrent requests. Then 20 tests

were run for each different number of concurrent requests. Using our java client,

we calculated the transaction time and download response time for the requests.

We performed the test for all the three scenarios shown in figures 5.3a , 5.3b,

5.2. MEASURING RESPONSE TIME 43

and 5.3c. Using the same test environment and test procedure, we measured

the download transaction time for 1 to 46 concurrent requests for a file size of 10

MB, details of these measurements can be found in appendix E.

5.2.3 Transaction Time

5.2.3.1 Client requests one stitched file from the content server directly

Data Collected

We calculated the average value and standard deviation for the tests for each

different number of concurrent requests. Note that the systems were all

idle except for the processing of these requests. No attempt was made to

terminate background tasks or otherwise adapt the systems from their default

configurations. Table 5.1 summarizes the results.

Table 5.1: Average transaction time and standard deviation value - Client
requesting one stitched file directly from the server

Concurrent requests Average transaction time (ms) Standard Deviation

1 2563.05 2095.22
2 2490.43 2123.94
4 4374.98 1334.07
6 8252.58 1733.06
8 11224.92 1790.56
10 15487.10 1748.62
12 19134.77 2136.12
14 23992.81 2427.93
16 26563.13 2665.90
18 30867.27 2725.81
20 35304.47 2956.99

5.2.3.2 Client requests several chunks from the content server through the

proxy streaming server

Data Collected

Table 5.2 summarizes the average value and standard deviation for the tests for

each different number of concurrent requests.

44 CHAPTER 5. SYSTEM ANALYSIS

Table 5.2: Average transaction time and standard deviation value - client requests
several chunks through proxy

Concurrent requests Average transaction time (ms) Standard Deviation

1 2096.65 83.66
2 2757.53 79.65
4 5385.48 183.64
6 6993.93 790.27
8 8197.56 1965.78
10 9935.37 3294.71
12 10847.25 3756.51
14 12163.55 4699.40
16 13654.42 5638.94
18 14818.98 6375.36
20 16650.07 7404.54

5.2.3.3 Client requests several chunks directly from the content server

Data Collected

We calculated the average value and standard deviation for the tests for each

different number of concurrent requests. Table 5.3 summarizes the results.

Table 5.3: Average transaction time and standard deviation value - Client
requests several chunks directly from the content server

Concurrent requests Average transaction time (ms) Standard Deviation

1 2391.55 1746.96
2 2614.28 1868.99
4 4426.06 1272.70
6 7345.19 1225.63
8 10572.97 1354.57
10 13588.53 1402.28
12 16909.55 1665.63
14 19389.44 1350.56
16 21927.54 1641.33
18 24872.35 1968.74
20 28189.21 1881.89

Data Analysis

Figures 5.4, 5.5, and 5.6 show the graph for a client requesting one stitched file

directly from the HTTP server, a client requesting multiple chunks directly, and

a client requesting multiple chunks through the proxy. Here the x axis represents

the number of concurrent requests and the y axis represents the average values of

the transaction time. We performed a regression analysis and found that all the

graphs follow a polynomial function. But, for more than 4 concurrent requests,

transaction time increases linearly.

5.2. MEASURING RESPONSE TIME 45

Figure 5.4: Transaction time vs number of concurrent requests - Client requesting
one stitched file directly from the server

Figure 5.5: Transaction time vs number of concurrent requests - client requests
several chunks directly from the content server

46 CHAPTER 5. SYSTEM ANALYSIS

Figure 5.6: Transaction time vs number of concurrent requests - client requests
several chunks through proxy

We have checked the apache configuration to see why download time is

increasing linearly for more than 4 concurrent requests and found that apache

server was not optimized. Server needs to create extra thread to handle more

than 5 concurrent requests. This is why we can see that there is a linear growth

in the download time for more than four councurrent requests. Apache HTTP

server was configured with the following information:

• Start servers - 5

• MinSpareServer - 5

• MaxSpareServer - 10

• MaxClient - 150

• MaxRequestperchild - 0

We have used iperf to check the bandwidth for client to content server, client

to the proxy streaming server, and content server to the proxy streaming server

and found the bandwidth is 900 Mb/s. Based on the calculated bandwidth, the

time for a single client to get a file of 10 MB is 1200 ms if they all share the

same bandwidth. Figure 5.7 illustrates the comparison graph for all the three

scenarios for more than 4 concurrent requests.

We can see from the graph that transaction time is increasing linearly for

more than 4 concurrent requests for the three scenarios and transaction time for

client requesting through proxy is less compared to the direct delivery of the file.

5.2. MEASURING RESPONSE TIME 47

Figure 5.7: Comparison graph

Based on the measured bandwidth, we calculated excess time required for all the

scenarios and are shown in table 5.4.

Table 5.4: Excess transaction time for sending the file

Concurrent
requests

Time for
sending the
file (ms)

Excess time
- client re-
questing one
stitched file

Excess time
- client
requesting
through
proxy

Excess time
- client
requesting
multiple
chunks

1 1200 1363.05 896.65 1191.55

2 2400 90.43 357.53 214.28

4 4800 −425.02 585.47 −373.94

6 7200 1052.58 −206.08 145.19

8 9600 1624.92 −1402.44 972.97

10 12000 3487.10 −2064.63 1588.53

12 14400 4734.77 −3552.75 2509.55

14 16800 7192.81 −4636.45 2589.44

16 19200 7363.13 −5545.58 2727.54

18 21600 9267.27 −6781.03 3272.35

20 24000 11304.47 −7349.94 4189.21

48 CHAPTER 5. SYSTEM ANALYSIS

5.2.4 Response Time

5.2.4.1 Client requests one stitched file from the content server directly

Data Collected

Table 5.5 summarizes the average value and standard deviation for the tests for

each different number of concurrent requests.

Table 5.5: Average response time and standard deviation value - Client requests
one stitched file directly from the content server

Concurrent requests Average response time (ms) Standard Deviation

1 43.55 13.90
2 45.53 4.21
4 66.46 49.39
6 76.93 44.78
8 107.78 77.85
10 132.12 88.77
12 166.53 108.61
14 187.14 123.67
16 226.56 141.91
18 237.03 142.90
20 252.15 152.38

5.2.4.2 Client requests several chunks directly from the content server

Data Collected

We calculated the average response time and standard deviation for the tests for

each different number of concurrent requests. Table 5.6 summarizes the results.

Table 5.6: Average response time and standard deviation value - Client requests
several chunks directly from the content server

Concurrent requests Average response time (ms) Standard Deviation

1 46.55 45.54
2 42.43 4.38
4 62.81 37.94
6 73.62 36.53
8 125.81 85.94
10 148.87 88.83
12 187.75 111.61
14 178.12 95.01
16 216.66 113.46
18 292.59 151.29
20 304.85 168.92

5.2. MEASURING RESPONSE TIME 49

5.2.4.3 Client requests several chunks from the content server through the

proxy streaming server

Data Collected

Table 5.7 summarizes the average value and standard deviation for the tests for

each different number of concurrent requests.

Table 5.7: Average response time and standard deviation value - Client requests
several chunks through the proxy streaming server

Concurrent requests Average response time (ms) Standard Deviation

1 51.75 3.34
2 60.93 4.59
4 87.83 16.62
6 1183.22 2430.80
8 2573.19 3206.79
10 3412.15 3322.26
12 4985.94 4703.06
14 6106.91 5173.51
16 7429.64 6063.41
18 8783.19 6883.20
20 10099.87 7469.37

Data Analysis

Figures 5.8, 5.9, and 5.10 illustrate the graph for client requesting one stitched

file directly from the HTTP server, where the x axis shows the the number of

concurrent requests and the y axis represents the average values of the download

response time.

It can be seen from the graph that for more concurrent request, data tends to

be more deviated from the average value when a client requests through the

proxy streaming server. We performed a regression analysis and found that

the graph follows a polynomial function. However, for more than 4 concurrent

requests download response time is increasing linearly because the configuration

of HTTP server was not optimized and download response time is higher for

more concurrent requests for client requesting through proxy streaming server

compared to client requesting files directly from the server. This was expected

because number of requests through the proxy is one greater than the number

of requests directly to the server. And, proxy streaming server is performing

the file operatation to read the URL of the media files. Our proxy has been

deployed in an application server of the MPM project but developing the proxy

directly using JAVA or C and optimizing the apache configuration could lower

the response time.

50 CHAPTER 5. SYSTEM ANALYSIS

Figure 5.8: Response time vs number of concurrent requests - client requests one
stitched file directly from the content server

Figure 5.9: Response time vs number of concurrent request - client requests
several chunks directly from the content server

5.2. MEASURING RESPONSE TIME 51

Figure 5.10: Response time vs number of concurrent requests - Client requests
several chunks through proxy

Chapter 6

Conclusion

6.1 Summary of Work

The thesis project included extensive study to find out the best transport format

for the media delivery and also studied two exisiting streaming solutions in order

to select an appropriate solution. The thesis also documents the current state of

the art (see section 3.1 and 3.2). The challenges of making a streaming video

server that supports dynamic advertisement splicing were investigated and the

research challenges were identified. A proxy streaming server was proposed and

implemented. This proxy supports chunk based streaming and allows splicing of

the advertisements into a media stream. The implemented solution was tested

with a number of different devices.

6.2 Research Findings

The research questions stated in section 1.3 which were posted at the start of

the thesis are summarized below with the findings from our work.

53

54 CHAPTER 6. CONCLUSION

Question 1 To deliver the media chunks an appropriate container is

required. Which is the most appropriate container?

Findings This thesis recommends using MPEG-2 TS because it is

supported by most of the different vendor’s devices that

we tested. Video splicing at the splicing boundary is quite

flexible in MPEG TS.

Question 2 Can the solution be sufficiently portable that it will support

different vendors’ end-devices, such as Motorola’s set top

boxes (STBs), SONY’s Play Station 3, and Apple’s iPhone?

Findings The proposed solution has been successfully tested with all

three devices.

Question 3 How can we maintain the continuous flow of a stream

including the advertisement? This means that it is very

important to find out the proper splicing boundaries for

advertisement insertion in order to maintain the stream’s

continuity.

Findings To maintain the continuous flow of stream, we have modified

the clock informations (specifically PCR, PTS and DTS).

Question 4 Can the solution be implemented successfully on a

constrained server, while delivering media to the client

within the appropriate delay bound?

Findings The implemented system has been analyzed and we

found that our implemented solution takes somewhat more

transaction time when there are few concurrent request (i.e.

2 or 4). However, it takes less time for more concurrent

request. We also found that configuration of our apache

server was not optimized.

6.3 Future Work

The thesis work project has created platform for additional research work.

Specifically the following future works are suggested:

• The whole solution was tested with a constant bitrate stream. The solution

should be tested with variable bitrate streams in order to examine its ability

to support adaptive streaming.

• More analysis parameters should be selected to evaluate the performance

of the proxy server (i.e., changing the file size or transcoding parameters).

6.3. FUTURE WORK 55

• While working with fragmented MP4, we found that it is possible to remove

the fragment(moof) from the file using MP4split [52]. If we can split out

all the fragments from the file and insert the advertisement fragment and

then append the header for the file, then it would be possible to provide

advertisement insertion support in a rather simple fashion. However,

further study and investigation is required to implement this approach of

inserting advertisements into for fragmented MP4 content.

• All of our processing was performed on plain text content, the measurements

and evaluation should be repeated with encrypted content. Further

development is required to make the system work with encrypted content.

Bibliography

[1] R. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-

Lee. Hypertext Transfer Protocol – HTTP/1.1. IETF, Network Working Group,

Request for Comments: 2616, June 1999. http://tools.ietf.org/html/

rfc2616. [cited at p. 1]

[2] H. Schulzrinne, S. Casner, R. Frederick, and V. Jacobson. RTP: A Transport

Protocol for Real-Time Applications. IETF Network Working Group, Request

for Comments: 3550, July 2003. http://www.ietf.org/rfc/rfc3550.txt.

[cited at p. 1, 5]

[3] Alex Zambelli. A Brief History of Multi-Bitrate Streaming. Blog entry, December

17th 2008. Available from http://alexzambelli.com/blog/2008/12/17/

a-brief-history-of-multi-bitrate-streaming/. [cited at p. 1]

[4] Using Advanced Advertising to Unlock Revenues. Visionary paper, Tandberg

television (part of the Ericsson group), http://www.tandbergtv.com/

uploads/documents/AdvancedAdvertising.pdf, 7 July 2009. Last accessed

Sep, 2009. [cited at p. 2]

[5] M. Vorwerk, C. Curescu, H. Perkuhn, I. Ms, and R. Rembarz. Media Plane

Management Reference Architecture. Technical Report EDD-09:000866, Ericsson,

27 April 2009. [cited at p. 2, 18, 19]

[6] H. Schulzrinne, A. Rao, and R. Lanphier. Real Time Streaming Protocol (RTSP).

IETF Network Working Group, Request for Comments: 2326, April 1998. http:

//www.ietf.org/rfc/rfc2326.txt. [cited at p. 5]

[7] Alex Zambelli. The Birth of Smooth Streaming. Blog entry, February

4th 2009. Available from http://alexzambelli.com/blog/2009/02/04/

the-birth-of-smooth-streaming/. [cited at p. 5]

[8] IIS Smooth Streaming Technical Overview. Available From http:

//www.microsoft.com/downloads/details.aspx?displaylang=

en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520;. [cited at p. 6, 15,

23]

57

http://tools.ietf.org/html/rfc2616
http://tools.ietf.org/html/rfc2616
http://www.ietf.org/rfc/rfc3550.txt
http://alexzambelli.com/blog/2008/12/17/a-brief-history-of-multi-bitrate-streaming/
http://alexzambelli.com/blog/2008/12/17/a-brief-history-of-multi-bitrate-streaming/
http://www.tandbergtv.com/uploads/documents/AdvancedAdvertising.pdf
http://www.tandbergtv.com/uploads/documents/AdvancedAdvertising.pdf
http://www.ietf.org/rfc/rfc2326.txt
http://www.ietf.org/rfc/rfc2326.txt
http://alexzambelli.com/blog/2009/02/04/the-birth-of-smooth-streaming/
http://alexzambelli.com/blog/2009/02/04/the-birth-of-smooth-streaming/
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520
http://www.microsoft.com/downloads/details.aspx?displaylang=en&FamilyID=03d22583-3ed6-44da-8464-b1b4b5ca7520

58 BIBLIOGRAPHY

[9] MPEG-2 Overview. http://www.fh-friedberg.de/fachbereiche/e2/

telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm;. Last Visited -

September 2009. [cited at p. 7]

[10] Barry G. Haskell, Atui Puri, and Arun N Netravali. An Introduction to MPEG-2.

New York. Springer-Verlag, second edition edition, 1996. ISBN-10: 0412084112 and

ISBN-13: 978-0412084119. [cited at p. 7, 10]

[11] Draft ITU-T recommendation and final draft international standard of joint video

specification (ITU-T Rec. H.264/ISO/IEC 14 496-10 AVC. in Joint Video Team

(JVT) of ISO/IEC MPEG and ITU-T VCEG, 2003. JVTG050,2003. [cited at p. 8]

[12] Thomas Wiegand, Gary J. Sullivan, Gisle Bjontegaard, and Ajay Luthra. Overview

of the H.264/AVC Video Coding Standard. IEEE Transactions on Circuits and

Systems for Video Technology, 13(7):560–576, July 2003. [cited at p. 8]

[13] I. Richardson. An Overview of H.264 Advanced Video Coding - White paper. http:

//www.videosurveillance.co.in/H.264.pdf. Last Visited - September

2009. [cited at p. 8]

[14] Marta Karczewicz and Ragip Kureren. The SP and SI frames Design for H.264/AVC.

IEEE Transactions on Circuits and Systems for Video Technology, 13(7):637–644,

July 2003. [cited at p. 8]

[15] Stephan Wenger. H.264/AVC over IP. IEEE Transactions on Circuits and Systems

for Video Technology, 13(7):645–656, July 2003. [cited at p. 8]

[16] Ramin Soheili. MPEG-4 Part 10 - White paper. http://www.flexspeech.

com/pdf/mpeg_4_part_10_white_paper_1.pdf. Last Visited-October 2009.

[cited at p. 8]

[17] Henrique Malvar, Antti Hallapuro, Marta Karczewicz, and Louis Kerofsky. Low-

Complexity Transform and Quantization in H.264/AVC. IEEE Transactions on

Circuits and Systems for Video Technology, 13(7):598–603, July 2003. [cited at p. 9]

[18] MPEG-2 Transport Stream. http://en.wikipedia.org/wiki/MPEG_

transport_stream. Last Accessed -September 2009. [cited at p. 10]

[19] Jerker Bjrkqvist. Digital Television Lecture Slide. Abo Akademi University,

http://users.abo.fi/˜jbjorkqv/digitv/lect4.pdf. Last Accessed -

September 2009. [cited at p. 10]

[20] Information Technology - Generic Coding of Moving Pictures and Associated Audio

Information: System. ISO/IEC 13818-1:2007. [cited at p. 10]

[21] Michail Vlasenko. Supervision of Video and Audio Content in Digital

TV Broadcasts. Royal Institute of Technology, School of Information

and Communication Technology, COS/CCS 2007-30, December 2007.

http://web.it.kth.se/˜maguire/DEGREE-PROJECT-REPORTS/

071225-Michail_Vlasenko-with-cover.pdf. [cited at p. 14]

[22] MPEG-4 Part 14: MP4 file format. ISO/IEC 14496-14:2003. [cited at p. 15]

http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm;
http://www.fh-friedberg.de/fachbereiche/e2/telekom-labor/zinke/mk/mpeg2beg/beginnzi.htm;
http://www.videosurveillance.co.in/H.264.pdf
http://www.videosurveillance.co.in/H.264.pdf
http://www.flexspeech.com/pdf/mpeg_4_part_10_white_paper_1.pdf
http://www.flexspeech.com/pdf/mpeg_4_part_10_white_paper_1.pdf
http://en.wikipedia.org/wiki/MPEG_transport_stream
http://en.wikipedia.org/wiki/MPEG_transport_stream
http://users.abo.fi/~jbjorkqv/digitv/lect4.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/071225-Michail_Vlasenko-with-cover.pdf
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/071225-Michail_Vlasenko-with-cover.pdf

BIBLIOGRAPHY 59

[23] Smooth Streaming and Fragmented MP4. http://blog.cmstream.net/

2009/07/fragmented-mp4-and-smooth-streaming.html. Last Accessed

- September 2009. [cited at p. 15]

[24] Fragmented MP4 Structure. ISO/IEC 14496-12:2008. [cited at p. 15]

[25] Content Delivery Networks. http://en.wikipedia.org/wiki/Content_

delivery_network. Last Accessed - November 2009. [cited at p. 16]

[26] Amazon CloudFront. http://aws.amazon.com/cloudfront/. Last Accessed

- September 2009. [cited at p. 16, 19]

[27] Amazon Simple Storage Service - S3. http://aws.amazon.com/s3/. Last

Accessed - November 2009. [cited at p. 16]

[28] Akamai HD Network. http://www.akamai.com/hdnetwork. Last Accessed -

December 2009. [cited at p. 16]

[29] Peter T. Barrett, David L. De Heer, and Edward A. Ludvig. Advertisement

Insertion, 2009. United States Patent 20090199236. [cited at p. 16]

[30] Digital Program Insertion Cueing Message for Cable. American National Standard

- ANSI/SCTE 35 2007, 2007. http://www.scte.org/documents/pdf/

standards/. [cited at p. 17]

[31] Martin A. Schulman. Methods and Apparatus For Digital Advertisement Insertion

in Video Programming, 1997. United States Patent 5600366. [cited at p. 17]

[32] Reem Safadi. Apparatus and Method for Digital Advertisement Insertion in a

Bitstream, 2002. United States Patent 6487721. [cited at p. 17]

[33] Michael G. Perkins and William L. Helms. Non-seamless Splicing of Audio-Video

Transport Streams, 1999. United States Patent 5859660. [cited at p. 17]

[34] Peter T. Barrett. Local Advertisement Insertion Detection, 2009. United States

Patent 20090320063. [cited at p. 17]

[35] Jen-Hao, Yeh Jun-Cheng Chen, Jin-Hau Kuo, and Ja-Ling Wu. TV Commercial

Detection in News Program Videos. Circuits and Systems, 2005. ISCAS 2005. IEEE

International Symposium on, 5:4594 – 4597, May 2005. [cited at p. 18]

[36] Peter T. Barrett. Advertisement Signature Tracking, 2009. United States Patent

20090320060. [cited at p. 18]

[37] Apple, HTTP Live Streaming Overview. Last Visited -September 2009.

http://developer.apple.com/iphone/library/documentation/

NetworkingInternet/Conceptual/StreamingMediaGuide/

StreamingMediaGuide.pdf. [cited at p. 21, 22, 79]

[38] R. Pantos (Editor). HTTP Live Streaming. IETF, Informational Internet-

Draft, June 2009. Available from: http://tools.ietf.org/html/

draft-pantos-http-live-streaming-01. [cited at p. 22]

http://blog.cmstream.net/2009/07/fragmented-mp4-and-smooth-streaming.html
http://blog.cmstream.net/2009/07/fragmented-mp4-and-smooth-streaming.html
http://en.wikipedia.org/wiki/Content_delivery_network
http://en.wikipedia.org/wiki/Content_delivery_network
http://aws.amazon.com/cloudfront/
http://aws.amazon.com/s3/
http://www.akamai.com/hdnetwork
http://www.scte.org/documents/pdf/standards/
http://www.scte.org/documents/pdf/standards/
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://developer.apple.com/iphone/library/documentation/NetworkingInternet/Conceptual/StreamingMediaGuide/StreamingMediaGuide.pdf
http://tools.ietf.org/html/draft-pantos-http-live-streaming-01
http://tools.ietf.org/html/draft-pantos-http-live-streaming-01

60 BIBLIOGRAPHY

[39] Windows Media HTTP Streaming Protocol Specification (MS-WMSP). version

3.1, September 2009. Available from http://msdn.microsoft.com/en-us/

library/cc251059(PROT.10).aspx. [cited at p. 23]

[40] Advanced Systems Format (ASF) Specification. Revision 01.20.03, December

2004. http://www.microsoft.com/windows/windowsmedia/format/

asfspec.aspx. [cited at p. 23]

[41] Digital Program Insertion. Last Visited - January 2010. http://en.wikipedia.

org/wiki/Digital_Program_Insertion. [cited at p. 25]

[42] Digital Program Insertion Splicing API. Amerian national standard - ANSI/SCTE

30 2009, 2009. http://www.scte.org/documents/pdf/standards/.

[cited at p. 25]

[43] Cisco Advanced Advertising. Last Visited - January 2010. http://www.cisco.

com/en/US/netsol/ns800/networking_solutions_solution.html.

[cited at p. 26]

[44] Thales Digital Program Insertion Monitor. Available From http://catalogs.

infocommiq.com/AVCat/images/documents/pdfs/DPI_monitor.pdf.

[cited at p. 26]

[45] Thomson Digital Program Insertion Monitor. Available From http://www.

grassvalley.com/assets/media/2039/CDT-3052D.pdf. [cited at p. 26]

[46] Transport Stream Detector. Available From http://www.norpak.ca/pages/

TSD-100.php?L1=TSD-100. [cited at p. 26]

[47] Alcatel-Lucent - Emerging IPTV Advertising Opportunities. Available From

http://next-generation-communications.tmcnet.com/topics/

innovative-services-advanced-business-models/articles/

42283-emerging-iptv-advertising-opportunities.htm. [cited at p. 26]

[48] AD Marker Insertion System. Available From http://www.packetvision.

com/dmdocuments/AMIS_Product_Brief.pdf. [cited at p. 26]

[49] Innovid Video Mapping for the ad space. Available From http://www.innovid.

com/technology.php. [cited at p. 26]

[50] FFMPEG - A Command Line Tool for Media Conversion. Available From http:

//ffmpeg.org/. [cited at p. 27]

[51] URL - Uniform Request Locator. IETF Network Working Group- Request for

Comments- 1738, December 1994. Available at Availableathttp://www.

ietf.org/rfc/rfc1738.txt. [cited at p. 27, 32]

[52] MP4Split- Tool for generating fragmented MP4. Available

From http://smoothstreaming.code-shop.com/trac/wiki/

Smooth-Streaming-Encoding. [cited at p. 29, 55]

[53] MP4Explorer- Tool for analyzing MP4 file. Available From http://

mp4explorer.codeplex.com/. [cited at p. 29]

http://msdn.microsoft.com/en-us/library/cc251059(PROT.10).aspx
http://msdn.microsoft.com/en-us/library/cc251059(PROT.10).aspx
http://www.microsoft.com/windows/windowsmedia/format/asfspec.aspx
http://www.microsoft.com/windows/windowsmedia/format/asfspec.aspx
http://en.wikipedia.org/wiki/Digital_Program_Insertion
http://en.wikipedia.org/wiki/Digital_Program_Insertion
http://www.scte.org/documents/pdf/standards/
http://www.cisco.com/en/US/netsol/ns800/networking_solutions_solution.html
http://www.cisco.com/en/US/netsol/ns800/networking_solutions_solution.html
http://catalogs.infocommiq.com/AVCat/images/documents/pdfs/DPI_monitor.pdf
http://catalogs.infocommiq.com/AVCat/images/documents/pdfs/DPI_monitor.pdf
http://www.grassvalley.com/assets/media/2039/CDT-3052D.pdf
http://www.grassvalley.com/assets/media/2039/CDT-3052D.pdf
http://www.norpak.ca/pages/TSD-100.php?L1=TSD-100
http://www.norpak.ca/pages/TSD-100.php?L1=TSD-100
http://next-generation-communications.tmcnet.com/topics/innovative-services-advanced-business-models/articles/42283-emerging-iptv-advertising-opportunities.htm
http://next-generation-communications.tmcnet.com/topics/innovative-services-advanced-business-models/articles/42283-emerging-iptv-advertising-opportunities.htm
http://next-generation-communications.tmcnet.com/topics/innovative-services-advanced-business-models/articles/42283-emerging-iptv-advertising-opportunities.htm
http://www.packetvision.com/dmdocuments/AMIS_Product_Brief.pdf
http://www.packetvision.com/dmdocuments/AMIS_Product_Brief.pdf
http://www.innovid.com/technology.php
http://www.innovid.com/technology.php
http://ffmpeg.org/
http://ffmpeg.org/
Available at http://www.ietf.org/rfc/rfc1738.txt
Available at http://www.ietf.org/rfc/rfc1738.txt
http://smoothstreaming.code-shop.com/trac/wiki/Smooth-Streaming-Encoding
http://smoothstreaming.code-shop.com/trac/wiki/Smooth-Streaming-Encoding
http://mp4explorer.codeplex.com/
http://mp4explorer.codeplex.com/

BIBLIOGRAPHY 61

[54] About Proxy Server. Last Accessed - December 2009. http://en.wikipedia.

org/wiki/Proxy_server. [cited at p. 31]

[55] Apache HTTP Client API. Available From http://hc.apache.org/

httpclient-3.x/. [cited at p. 32]

[56] MPEG-TS analyzer. Available From http://www.pjdaniel.org.uk/mpeg/

index.php. [cited at p. 39]

[57] VLC Media Player. Available From http://www.videolan.org/vlc/.

[cited at p. 77]

[58] Mplayer Movie Player. Available From http://www.mplayerhq.hu/design7/

dload.html. [cited at p. 77]

[59] Safari Browser for iPhone. Available From http://www.apple.com/iphone/

iphone-3g/safari.html. [cited at p. 79]

http://en.wikipedia.org/wiki/Proxy_server
http://en.wikipedia.org/wiki/Proxy_server
http://hc.apache.org/httpclient-3.x/
http://hc.apache.org/httpclient-3.x/
http://www.pjdaniel.org.uk/mpeg/index.php
http://www.pjdaniel.org.uk/mpeg/index.php
http://www.videolan.org/vlc/
http://www.mplayerhq.hu/design7/dload.html
http://www.mplayerhq.hu/design7/dload.html
http://www.apple.com/iphone/iphone-3g/safari.html
http://www.apple.com/iphone/iphone-3g/safari.html

Appendices

63

Appendix A

PAT and PMT Table

A.1 PAT and PMT header

A.1.1 Program Association Table

Program Association Table(PAT) contains informaion about the PID values of

the transport stream packets which holds the program definition. It also contains

the program number to show whether it is network PID or program map PID.

PAT consists of the following informations:

• Table id is a 8 bit field and set to 0x00.

• Section syntax indicator is a 1 bit field which should be set to 1.

• Section length is a 12 bit field. First 2 bits are always set to ’00’ and

remaining 10 bits indicate the number of bytes of section following the

section lengh.

• Transport stream id is a 16 bit field used to identify this transport stream

from any other multiplex within the network.

• Version number is 5 bit field to indicate the version of PAT table and

should be changed along with changes of PAT.

• Current next indicator is a 1 bit field to indicate whether the current

sent PAT table is applicable or not.

• Section number provides the number of this section. The field lenght is

8 bit.

• Last section number is a bit field and indicates the number of the last

section.

65

66 APPENDIX A. PAT AND PMT TABLE

• N Loop contains the following information

– Program number is a 16 bit field and indicates the program to which

program map PID is applicable. If program number value is 0x0000

then network PID exists, otherwise program map PID exists.

– Network PID is 13 bit field. It specifies the PID values of the TS

packets which represents network information table.

– Program map PID is also and 13 bit field and specifies the PID

values of the TS packets that contains the program map section

• CRC32 is a 32 bit that contains the CRC value.

A.1.2 Program Map Table

Program Map Table(PMT) provides the complete collection of all program

definitions of Tranpost packet. It contains the following header information.

• Table id is a 8 bit field and should be set to 0x02 in the case of a TS

program map section.

• Section syntax indicator is a 1 bit field which should be set to 1.

• Section length is a 12 bit field. First 2 bits are always set to ’00’ and

remaining 10 bits indicate the number of bytes of section following the

section lengh.

• Program number is a 16 bit field and indicates the program to which

program map PID is applicable.

• Version number is 5 bit field to indicate the version of PMT and should

be changed along with changes of PMT.

• Current next indicatoris a 1 bit field to indicate whether the current

sent PMT is applicable or not.

• Section number is a 8 bit field and it should be set to 0x00.

• Last section number is also a 8 bit field and it should be set to 0x00.

• PCR PID is a 13 bits field and indicates the PID values which will contain

PCR in the TS packet.

• Program info lengthis a 12 bit field. First 2 bits are always set to ’00’

and remaining 10 bits indicate the number of bytes of the descriptor.

• N Loop contains the following information in the loop that will iterate N

times.

A.1. PAT AND PMT HEADER 67

– Stream type is a 8 bit field indicates the type of program elements

carried in TS packet.

– Elementary PID is a 13 bit field and provides the PID values that

carries the elemenatary stream.

– ES info length is a 12 bit field. First 2 bits are always set to ’00’

and remaining 10 bits indicate the number of bytes of descriptor.

• CRC32 is a 32 bit that contains the CRC value.

Appendix B

Fragmented MP4 file for

Streaming

B.1 Moving Header Information

Microsoft introduced ”Smooth Streaming” that provides seamless bit rate

switching of video by dynamically detecting the network conditions. In order

to deliver the media, they have used MP4 container. Normally, a MP4 file

format contains a header and media data where the header contains the metadata

information. In order to use it for streaming the header information should be

placed in the beginning. But, the traditional MP4 file has the header information

at the last. Figure B.1 below shows the traditional file MP4 file format.

Figure B.1: Traditional MP4 file format

To move the header in the front, we have used qt-faststart that can be

found in: /ffmpeg/tools/qt-faststart and listing B.1 shows the command used

for altering the header information.

Listing B.1: Moving header information

qt-faststart input.mp4 output.mp4

69

70 APPENDIX B. FRAGMENTED MP4 FILE FOR STREAMING

The format of output.mp4 will be as figure B.2:

Figure B.2: Traditional MP4 file format

B.2 Transcoding

FFmpeg is used to encode the input video into H264 format where MP4 is used

as container. Listing B.2 shows the shell script used for transcoding.

Listing B.2: Shell script - transcoding

#!/bin/bash

outfile="video.mp4"

options="-vcodec libx264 -b 512k -flags +loop+mv4 -cmp 256 \

-partitions +parti44+parti88+partp44+partp88+partb88 \

-me_method hex -subq 7 -trellis 1 -refs 5 -bf 3 \

-flags2 +bpyramid+wpred+mixed_refs+dct88 -coder 1 -me_range 16 \

-g 250 -keyint_min 25 -sc_threshold 40 -i_qfactor 0.71 -qmin 10\

-qmax 51 -qdiff 4"

ffmpeg -y -i "imputfile" -an -pass 1 -threads 2 "options" "

outfile"

B.3 Generating Fragmented MP4 and Manifest Files

An open source tool ”MP4Split” is used to create server and client manifest

files and fragmented mp4 in *.ismv format. Each terminology is represented by

”box” in MP4 file format. Each fragment section consists of two parts: Movie

Fragment (moof) and media data (mdat). Moof section carries more accurate

fragment level metadata and media is contained in the mdat section. Installation

of mp4split in ubuntu is done with the commands listed in listing B.3.

Listing B.3: Downloading and installing MP4split

wget http://smoothstreaming.code-shop.com/download/mp4split-1.0.2.

tar.gz

tar -zxvf mp4split-1.0.2.tar.gz

cd ˜/mp4split-1.0.2

B.3. GENERATING FRAGMENTED MP4 AND MANIFEST FILES 71

./configure -with-expat

make

sudo make install

Listing B.4 shows mp4split commands used to generate a client manifest file,

server manifest files and fragmented MP4 .

Listing B.4: MP4split commands

mp4split - i input.mp4 -o output.ismc

mp4split - i input.mp4 -o output.ism

mp4split - i input.mp4 -o output.ismv

There is another open source tool MP4 explorer from cmstream that is used

to analyze the header information of a MP4 file. Figure B.3 shows the fragments

information of encoded MP4 file. Chunks information are delivered to the client

through client manifest file (*.ismc).

Figure B.3: Fragmented MP4 file in MP4 Explorer

Appendix C

Java Client For Analysis

C.1 Java Client for Concurrent Request

Listing C.1: Java Client

package proxyperformanceclient;

import java.io.IOException;

import java.io.InputStream;

import java.net.HttpURLConnection;

import java.net.URL;

import java.util.Date;

class clientThread implements Runnable

{

public String[] urls;

public int id;

clientThread() {

}

clientThread(String[] urls, int id) {

this.id = id;

this.urls = urls;

}

public void run()

{

long time1 = new Date().getTime();

long time2 = -1;

HttpURLConnection uCon = null;

int responseCode = -1;

for(String src : this.urls) {

73

74 APPENDIX C. JAVA CLIENT FOR ANALYSIS

InputStream is = null;

try {

URL Url;

byte[] buf;

int ByteRead,ByteWritten=0;

Url= new URL(src);

uCon = (HttpURLConnection)Url.openConnection();

responseCode = uCon.getResponseCode();

is = uCon.getInputStream();

buf = new byte[1024];

while ((ByteRead = is.read(buf)) != -1) {

if(time2<0)

time2 = new Date().getTime();

}

}

catch (IOException e) {

responseCode = -1;

// e.printStackTrace();

}

finally {

try {

is.close();

}

catch (Exception e) {

//e.printStackTrace();

}

}

}

long time3 = new Date().getTime();

System.out.println("[" + this.id + "] " + responseCode

+ " " + (time2-time1) + " ms " + (time3-time1) + "

ms");

}

}

public class Main {

/**

* @param args the command line arguments

*/

public static void main(String[] args) {

int num_Threads = Integer.parseInt(args[0]);

Thread[] threads = new Thread[num_Threads];

String[] urls = new String[args.length-1];

for(int a = 1; a<args.length;a++) {

urls[a-1] = args[a];

}

for(int i=0; i < num_Threads; i++) {

threads[i] = new Thread(new clientThread(urls, i));

//threads[i].run();

C.1. JAVA CLIENT FOR CONCURRENT REQUEST 75

}

for(int i=0; i < num_Threads; i++) {

threads[i].start();

}

// Thread myThread = new Thread(new clientThread(args, 0));

// myThread.start();

}

}

Appendix D

System Testing

The implemented solution has been tested with four clients: a laptop, Sony

PlayStation 3, Motorola Kreatel STB, and an Apple iPhone. The following

subsections describe the testing scenarios based on a client request to proxy,

the proxy’s request to the content servers and proxy’s response to client.

D.1 Scenario 1: Laptop running Microsoft’s Windows

Vista as a client

The implemented system has been tested with the players listed in table D.1.

This section describes the testing with the VLC player only.

Table D.1: List of players used

Name Description

VLC Player VLC player is an open source media player that can receive
and playout a HTTP media stream [?]. VLC player is used to
for playout of the media stream at the laptop client.

Mplayer Mplayer was also used by the laptop client to playout the
received HTTP media stream [?].

To initiate a request from a VLC player, we requested the proxy server’s URL

along with the media asset’s ID, shown in figure D.1 below.

Figure D.2 shows that the request has been received by the proxy server and

fetched the URL and requesting the media from the respective locations.

77

78 APPENDIX D. SYSTEM TESTING

Figure D.1: VLC requesting

Figure D.2: Proxy Server - URL fetching

D.2 Scenario 2: Apple iPhone as a client

To test the implemented system, we have used an Apple Iphone as a client.

The Apple iPhone cannot play MPEG-TS files directly, but it can play TS files

through a m3u8 playlist. To test the system, we have placed the URL of the proxy

server in a m3u8 playlist, residing in the Ubuntu Server. Listing D.1 describes

D.2. SCENARIO 2: APPLE IPHONE AS A CLIENT 79

the content in the m3u8 playlist. Tag information can be found in Apple IETF

draft [37].

Listing D.1: M3U8 playslist format

#EXTM3U
#EXT-X-TARGETDURATION:5220
#EXTINF:5220,
http:/proxyserver’sURL/Assetid.ts
#EXT-X-ENDLIST

Apple iPhone’s Safari browser [?] has been used for requesting the URL of

m3u8. Figure D.3a and D.3b shows the image of iPhone and request initiation

to the proxy server through Safari.

http://severurl/iPhone.m3u8

(a) iPhone 3G (b) iPhone request for m3u8 playlist

Figure D.3: (a) iPhone 3G and (b) iPhone request for m3u8 playlist

Hence, through m3u8 playlist, a request to proxy server is initiated. The

proxy streaming server performs the same operation shown in above figure D.2.

80 APPENDIX D. SYSTEM TESTING

D.3 Scenario 3: PlayStation 3 as a client

To initiate the request for the media from the PlayStation. The playstation

browser has been used to initiate a request. Figure D.4a and D.4b illustrates

the image of playstation and request initiation to the proxy server.

(a) PlayStation 3 (b) Playstation 3 requesting for media

Figure D.4: (a) PlayStation 3 and (b) Playstation 3 requesting for media

The proxy streaming server performs the same operation shown in above

figure D.2.

D.4 Scenario 4: Motorola Set Top Box as a client

To test the implemented system with the Motorola STB, first we need to connect

to the STB using telnet, then give the command in listing D.2 to initiate the

request to the proxy server. Figure D.5 shows the image of Motorola STB.

Figure D.5: Motorola Set Top Box

D.4. SCENARIO 4: MOTOROLA SET TOP BOX AS A CLIENT 81

Listing D.2: Requesting from Motorola STB

toish uri LoadUri http://internalserver:8080/stb/video-test.svg?
video=URLproxy image/svg+xml

Appendix E

Test Results

E.1 Test Results

We have calculated the download transaction time for the file size of 10 MB.

Initially, we started our test with 1 request, then increased the number of requests

in increments of 5 until reaching 46 concurrent requests. Table E.1, E.2, and

E.3 summarizes the results with tests of a client requesting one stitched file,

client requesting several chunks from the content server through proxy streaming

server, and client requesting several chunks from the content server.

Table E.1: Client requesting one stitched file from the content server directly

Concurrent request Average transaction time (ms)

1 224,6

6 598,8

11 1042,44

16 1517,27

21 1971,44

26 2397,89

31 2867,28

36 3311,56

41 3751,17

46 4182,52

83

84 APPENDIX E. TEST RESULTS

Table E.2: Client requesting several chunks from the content server through proxy
streaming server

Concurrent request Average transaction time (ms)

1 314,55

6 883,57

11 1291,57

16 1687,12

21 2092,40

26 2474,98

31 2859,06

36 3243,33

41 3636,73

46 4003,28

Table E.3: Client requesting several chunks from the content server

Concurrent request Average transaction time(ms)

1 237,75

6 762,20

11 1441,16

16 1956,78

21 2460,67

26 2959,65

31 3455,82

36 3961,63

41 4508,33

46 5009,57

E.1. TEST RESULTS 85

We have compared the average time required for a client making request

through the proxy when the client requests one file (see figure E.1) and when the

client requests multiple files (see figure E.2) from content servers. After analyzing

the values, we can see that proxy takes more time to deliver the files when the few

concurrent requests in comparison to when there are many concurrent requests.

Figure E.1: comparison between request through proxy and request of one single
file

Figure E.2: comparison between request through proxy and request of multiple
files

www.kth.se

TRITA-ICT-EX-2010:46

	Abstract
	Sammanfattning
	Acknowledgements
	Contents
	List of Figures
	List of Tables
	Listings
	List of Acronyms and Abbreviations
	1 Introduction
	1.1 Motivation
	1.2 Goal
	1.3 Research Questions
	1.4 Thesis Outline

	2 Background
	2.1 Streaming
	2.1.1 Traditional Streaming
	2.1.2 Progressive Download
	2.1.3 Adaptive streaming - HTTP based delivery of chunks

	2.2 CODECs
	2.2.1 MPEG-2
	2.2.2 MPEG-4 Part 10

	2.3 Container Formats
	2.3.1 MPEG-2 Transport Stream
	2.3.1.1 Packetized Elementary System
	2.3.1.2 MPEG-2 TS packet Format
	2.3.1.3 Transport Stream Generation
	2.3.1.4 Synchronization
	2.3.1.5 Program Specific Information

	2.3.2 MPEG-4 Part 14

	2.4 Content Delivery Networks
	2.4.1 Amazon Cloud Front
	2.4.2 Akamai HD Network

	2.5 Advertisement Insertion and Detection
	2.5.1 Advertisement Insertion
	2.5.2 Advertisement Detection

	2.6 Ericsson's Media Plane Management Reference Architecture
	2.6.1 Overview

	2.7 Thesis Overview

	3 Related Work
	3.1 Apple Live Streaming
	3.2 Microsoft Smooth Streaming
	3.2.1 Why MP4?
	3.2.2 Disk File Format
	3.2.3 Wire File Format
	3.2.4 Media Assets
	3.2.5 Smooth Streaming Playback

	3.3 Advertisement Insertion

	4 Design and Implementation
	4.1 Design Overview
	4.1.1 Choosing an Appropriate Container
	4.1.2 Transcoding
	4.1.3 Segmentation
	4.1.4 Distribution Network
	4.1.5 Client Devices
	4.1.6 Proxy Streaming Server
	4.1.6.1 Request Handler
	4.1.6.2 Clock Synchronization
	4.1.6.3 Setting the Discontinuity Indicator
	4.1.6.4 Changing the Program Clock Reference
	4.1.6.5 Changing Time Stamp
	4.1.6.6 Output Streamer

	4.2 Advantages of Dynamic Advertisement Insertion
	4.2.1 Reduce Storage Cost
	4.2.2 Runtime Decision for Advertisement Insertion
	4.2.3 Personalized Advertisement Insertion
	4.2.4 Advertisement Insertion based on Geographical and IP Topological Location

	4.3 Disadvantages of the proposed solution

	5 System Analysis
	5.1 Validity checking of a TS file
	5.2 Measuring Response Time
	5.2.1 Test Environment
	5.2.2 Test Procedure
	5.2.3 Transaction Time
	5.2.3.1 Client requests one stitched file from the content server directly
	5.2.3.2 Client requests several chunks from the content server through the proxy streaming server
	5.2.3.3 Client requests several chunks directly from the content server

	5.2.4 Response Time
	5.2.4.1 Client requests one stitched file from the content server directly
	5.2.4.2 Client requests several chunks directly from the content server
	5.2.4.3 Client requests several chunks from the content server through the proxy streaming server

	6 Conclusion
	6.1 Summary of Work
	6.2 Research Findings
	6.3 Future Work

	Bibliography
	A PAT and PMT Table
	A.1 PAT and PMT header
	A.1.1 Program Association Table
	A.1.2 Program Map Table

	B Fragmented MP4 file for Streaming
	B.1 Moving Header Information
	B.2 Transcoding
	B.3 Generating Fragmented MP4 and Manifest Files

	C Java Client For Analysis
	C.1 Java Client for Concurrent Request

	D System Testing
	D.1 Scenario 1: Laptop running Microsoft's Windows Vista as a client
	D.2 Scenario 2: Apple iPhone as a client
	D.3 Scenario 3: PlayStation 3 as a client
	D.4 Scenario 4: Motorola Set Top Box as a client

	E Test Results
	E.1 Test Results

