
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:36

A L E J A N D R O A R C O S

 A context-aware application
offering map orientation

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

A context-aware application offering map
orientation

Alejandro Arcos
alej@kth.se

11-03-2010

Masters Thesis

Examiner and supervisor:
Professor Gerald Q. Maguire Jr.

Abstract

In this thesis context refers to information about the environment (the user or entity's
surroundings) that can influence and determine the behavior of a computing system.
Context-awareness means that the computer can adapt to the situation in which it is working.
Context is a key issue in mobile computing, especially with handheld devices (such as PDAs
and mobile phones), due to the fact that they can be used while on the move; hence the
environment around them can change. The environment of a static device may also change
and require the device to adapt. Applications and systems that exploit context by both sensing
and reacting to their environment are called context-aware applications. Devices that are
context-aware are able to perceive stimuli and react accordingly, with minimal interaction
with the user.

Providing context-aware services to users of mobile devices via context-aware
applications is becoming an important and significant factor in the market and is a developing
industry. In this thesis we analyze and develop an application that exploits context to provide
a service that improves the interaction between humans and a computer. The thesis begins
with a study of what types of sensors are available to provide information about the device's
context. This is followed by the design of an appropriate way of using the selected sensor (e-
compass) to provide a means of adapting a service to the user's and device's context. The
focus is every day activities of a student at a university - specifically finding the location of a
meeting room for a seminar; however, similar scenarios exist for other types of users.

After determining that it was feasible to add a e-compass as a sensor to an existing
personal digital assistant and to provide a map to the mobile user, the focus of the thesis
shifted to an examination of the performance of the adaptation of the map as the user moved
the device. Initially it required excessive time to render the map on the device, thus as the user
moved the device the map was not updated quickly enough for the user to know their correct
orientation with respect to the map. Therefore the thesis project examined how this
performance could be improved sufficiently that the rendering would keep up with the change
in orientation of the device. This investigation lead to a shift from server based rendering of
the map as an image, followed by the transfer of the image to the device for display; to a
sending a scalable vector graphics version of the map to the device for local rendering. While
initially this was expected to be much faster than transferring an image for an actual map of
the building where this work was taking place the local rendering was actually slower. This
subsequently lead to server based pruning of the irrelevant details from the map, then a
transfer of the relevant portion of the map to the device, followed by local rendering.

i

Sammanfattning

I den här avhandlingen hänvisar 'context' till information om miljön (i användarens eller
enhetens omgivning) som kan bestämma och påverka beteendet hos ett datorsystem.
Contex-awareness innebär att datorn kan anpassa sig till den situation där den arbetar. Context
är en central fråga för mobila enheter, speciellt för handhållna enheter (t.ex. handdatorer och
mobiltelefoner), på grund av att de kan användas på resande fot där omgivningen hela tiden
förändras. Omgivningen för en statisk enhet kan också förändras och kräver att enheten kan
anpassa sig. Applikationer och system som utnyttjar context genom att både känna av och
reagera på sin omgivning kallas context-aware applications. Enheter som är kontextmedvetna
kan uppfatta stimuli och reagera på den med minimal användarinteraktion.

Att tillhandahålla kontextmedvetna tjänster till användare av mobila enheter via
kontextmedvetna applikationer blir en allt viktigare och betydelsefullare faktor på marknaden
och är en växande industri. I den här avhandlingen analyserar och utvecklar vi ett program
som utnyttjar kontext för att tillhandahålla en tjänst som förbättrar samspelet mellan människa
och dator. Avhandlingen inleds med en undersökning av vilka typer av sensorer som finns
tillgängliga för att tillhandahålla information om enhetens kontext. Detta följs av en design för
att på lämpligaste sätt använda den valda sensorn (e-kompass) för att tillhandahålla ett sätt att
anpassa en tjänst till användaren och enhetens kontext. Fokus är vardagsaktivitieter för en
student vid ett universitet - särskilt att hitta till ett konferensrum för ett seminarium, liknande
scenarier finns även för andra typer av användare.

Efter att ha fastställt att det var möjligt att koppla en sensor, i form av en e-kompass, till
en befintlig personal digital assistant samt att visa en karta för användaren, flyttades fokus för
avhandlingen till en undersökning om tjänstens prestanda när användaren flyttade enheten.
Initialt krävde enheten väldigt lång tid att rendera kartan och när enheten flyttades
uppdaterades kartan inte tillräckligt snabbt för att användaren skulle veta sin riktning i relation
till kartan. Därför undersöktes hur prestandan kunde förbättras så att enheten skulle kunna
hänga med bättre när enhetens riktning förändrades. Undersökningen ledde till att istället för
att rendera en bild på servern och sedan skicka till enheten, skapa en vektorbaserad bild på
servern, skicka till enheten och rendera lokalt. Även om detta initialt förväntades vara mycket
snabbare än att överföra en bild av en verklig karta var den lokala renderingen faktiskt ännu
långsammare. Detta ledde till en serverbaserad gallring av ovidkommande kartdetaljer samt
beskärning innan kartan fördes över till enheten och renderades lokalt.

ii

Acknowledgements

Firstly I would like to thank my academic advisor and examiner Professor
G. Q. Maguire Jr. for his constructive advice, and always fast and profitable
feedback when I delivered my problems to him. His continuous support and
guidance in various stages of the project was essential in the development of
this thesis.

I would also like to thank some students that helped me to complete the
project and made my stay at the Wireless@KTH lab an enjoyable
experience: Alexander Riedel, who helped me in the first stages of the
thesis; Yunlong Huang, who was a nice company during long time in the
laboratory and gave me great advices for programming the WASA board;
Petter Lindgren, who made a very satisfactory translation of the abstract in
Swedish; and Carlos Herranz with whom I shared a lot of coffee and
chocolate breaks, and made my time in the laboratory more entertaining.

iii

Table of Contents
 1 Introduction...1
 2 Background...4

 2.1 Context-awareness...4
 2.2 Sensors...5

 2.2.1 Light...5
 2.2.2 Audio...6
 2.2.3 Movement and acceleration...6
 2.2.4 Magnetic Field and Orientation...7
 2.2.5 Proximity, Touch and User Interaction..7
 2.2.6 Temperature, Humidity, and Air Pressure..8
 2.2.7 Motion Detection...8
 2.2.8 Bio-Sensors..9

 2.3 Session Initiation Protocol..9
 2.4 WASA Board...10
 2.5 Magnetic Field Sensor...12

 2.5.1 Magnetic Field Sensors..14
 2.5.2 Signal conditioning unit...14
 2.5.3 Direction determination unit..14
 2.5.4 Other Features..14

 2.6 Web Services...15
 3 Sensor interfacing...16

 3.1 Serial connection between PDA and WASA board...16
 3.1.1 Serial data exchange..16
 3.1.2 Power via the PDA's serial port...19

 3.2 Interfacing to the NXP Semiconductors KMZ52..24
 4 Software applications..29

 4.1 Orientation-aware map display...29
 4.1.1 Scalable Vector Graphics...29
 4.1.2 Server SVG rendering..30

 4.1.2.1 Image rotation..31
 4.1.2.2 Process summary...34
 4.1.2.3 Image rotation on the SVG data...35

 4.1.3 Client SVG rendering..39
 4.1.3.1 SVG for mobile devices...39
 4.1.3.2 Implementation of a SVG rasterizer..40

 4.1.3.2.1 Web server's filtering..42
 4.1.3.2.2 Client application...47

 5 Conclusion and future work..56
 5.1 Future work...57

iv

Table of Figures
Figure 1: Map positioning using orientation...2
Figure 2: WASA board with some connections in GPIO pins..11
Figure 3: Earth's magnetic field..12
Figure 4: Earth magnetic field as a vector quantity..13
Figure 5: Level shifting schematics..17
Figure 6: Level shifting board...18
Figure 7: Connections between the level shifting board and the WASA board........................19
Figure 8: IPAQ cradle connector...20
Figure 9: Male RS-232 pinout..21
Figure 10: Offset compensation..24
Figure 11: SCU with microcontroller..26
Figure 12: Flipping signals...27
Figure 13: Rotation by GD Library...32
Figure 14: Example of rotation without empty space...32
Figure 15: Trigonometric representation...33
Figure 16: Example of execution..35
Figure 17: Image quality comparison between Batik and Inkscape...37
Figure 18: Image quality comparison between SVG rotation and PNG rotation.....................38
Figure 19: Savings relative to previous parameter value..44
Figure 20: Cumulative savings...44
Figure 21: Appearance of a map after filtering with different filtering parameters..................46
Figure 22: Time for filtering vs. filtering parameter...47
Figure 23: Structure used to store the data of the picture...48
Figure 24: Transformations for a specific point..49
Figure 25: Box containing the clipping frame..50
Figure 26: Processing time versus scale versus filtering parameter...53
Figure 27: HP iPAQ 5550 displaying the sample map..54

v

List of Tables
Table 1: Serial signal description..21
Table 2: PDA's serial output current...22
Table 3: Power requirements of the major integrated circuits that concern us.........................23
Table 4: KMZ52 pinout...26
Table 5: Timing comparison between Batik and Inkscape for rendering a sample map...........36
Table 6: Timing comparison between SVG rotation and PNG rotation....................................38
Table 7: SVG Path commands..41
Table 8: Sizes after filtering an SVG file..42
Table 9: Filtering statistics..43
Table 10: Execution times of the web server application...47
Table 11: Display times on the client..52
Table 12: Load times in the client...54
Table 13: Drawing time statistics..55

vi

List of Acronyms and Abbreviations

ADC Analog to Digital Converter

API Aplication Programming Interface

CPU Central Processing Unit

CTS Clear To Send

DCD Data Carrier Detect

DCE Data Circuit-terminating Equipment

DNS Domain Name System

DSR Data Set Ready

DTE Data Terminal Equipment

DTR Data Terminal Ready

FTDI Future Technology Devices International

GPIO General Purpose Input/Output

GPL General Public License

GPS Global Positioning System

GSM Global System for Mobile communications

HTTP Hypertext Transfer Protocol

I/O In/Out

ID Identifier

IDE Integrated Development Environment

IETF Internet Engineering Task Force

IP Internet Protocol

IR Infrared radiation

IRDA Infrared Data Association

LDR Light Dependent Resistor

MMUSIC Multiparty Multimedia Session Control

NGDC National Geophysical Data Center

OS Operative System

PC Personal Computer

vii

PDA Personal Digital Assistant

PHP Hypertext Pre-processor

PIR Passive Infrared Sensors

PNG Portable Network Graphics

PSTN Public Switched Telephone Network

RTS Request To Send

RxD Receive Data

SCL Signal Conditioning Unit

SIP Session Initiation Protocol

SMTP Simple Mail Transport Protocol

SOAP Simple Object Acces Protocol

SVG Scalable Vector Graphics

TxD Transmit Data

UART Universal Asynchronous Receiver-Transmitter

UA User Agent

URI Universal Resource Identifier

URL Uniform Resource Locator

USB Universal Serial Bus

UV Ultraviolet Light

W3C World Wide Web Consortium

WLAN Wireless Local Area Network

XML Extensible Markup Language

viii

 1 Introduction
Modern sensing technology and research is fostering the development of context-aware

services for different kinds of environments and purposes. Using context potentially improves
human-computer interaction (i.e., interaction is easier and more comfortable for the users),
thus sensing technologies have many important commercial opportunities.

For each type of sensor some value can be measured about the environment, we start by
considering the range of possible and useful context-aware applications that might make use
of the data. It is important to design application programming interfaces (APIs) to retrieve the
information provided by these sensors, as suitable interfaces make it easier to develop
applications and services based on the data from these sensors. The application programmer
should not have to be concerned with data acquisition details or the details of the hardware.
However, the application programmer might need to know details of the sensor's
characteristics in order to take advantage of the properties of a particular sensor.

Additionally, the information provided by these sensors may be used by computers that
are not directly attached to the sensor. In this case, we need to implement a sensor network or
otherwise communicate the data from the different devices to applications that may make use
of it. At the same time, it is necessary to protect the user's privacy and integrity, by only
passing this data to the devices and applications that he or she wants to have access to this
data at this time. There are many existing approaches to communicate information from
sensors to other devices. In some of these approaches, modular devices with sensors
communicate with servers. These servers in turn listen for client requests, in order to make the
data supplied by the sensors available to other computers. This has the advantage that the
sensor node can focus on sensing and does not need to process requests from various clients,
hence it is quite scalable. In other approaches, the sensors make client requests (and pass the
sensed information) to servers. These servers can compute some function over the data and
send a response back to the client. This later approach might be used by sensors to do sensor
synthesis over the data from many sensors or from different types of sensors. Depending upon
the use that will be made of the sensor data, the developer should choose the most suitable
approach to build their sensor enabled application.

The initial goal of this thesis project was to analyze and evaluate different types of
sensors, suggest new context-aware applications, provide a suitable Application Programming
Interface (API) to access these sensors that are used, and to design, implement, and evaluate
an approach that would provide mobile users with interesting and useful content-aware
services.

More specifically for this thesis project, we have at our disposal a highly sensitive
magnetic field sensor, which can be used to measure the weak magnetic field of the earth, that
can be used to build an electronic compass application. Given the device's location, for
example, from GPS receiver, and information about orientation provided by such an

1

electronic compass, a service could be implemented that displays a map for the user's
positioning properly oriented on the screen according to the current orientation of the device
(See Figure 1). In order to provide such a map, the user request includes as parameters:
orientation and position. This information could be included by adding this information to the
header of an HTTP request, in the body of a request, or as part of the URL being requested.
(See section 2.6 for examples and details.). The web server could generate a map with the
appropriate orientation and send it in the response to the user. Alternatively the server could
provide a map for this location, but the application could render it locally. Later in this thesis
we will compare these two approaches.

Figure 1. Map positioning using orientation

Another example involves using an accelerometer to provide information concerning
which way the screen of a device is oriented. This information can be communicated to a
presence information system for example in a Session Initiation Protocol (SIP) architecture. If
the device (for example, a Personal Digital Assistant - PDA) is turned upside-down
(determined by measuring gravitational acceleration), this might indicate that the user is not
available. When the device is turned face upwards again, the SIP presence server might be
notified that this user is now available.

Other sensing technologies that measure light, temperature, presence, sound, image
pixels, etc. can be used for different applications (see section 2.2 in page 5). This thesis
begins by describing context-awareness, sensing, existing applications, and describes new

2

sensors and new applications.

The thesis is organized as follows. Chapter 2 will summarize the basic concepts
(context-awareness, SIP, and web services) and technologies (sensors, WASA board, and
magnetic field sensor) on which this thesis is based. Chapter 3 will present a description about
interfacing sensors to a PDA, which covers the communication and powering from the PDA
to the WASA board, and the specific interface for the magnetic field sensor. Chapter 4 analyze
different approaches to implement an application that makes use of the data provided by the
magnetic field sensor and displays orientated maps in a PDA. Finally chapter 5 contains some
concluding remarks and presents some open paths left by this thesis that can be faced in the
future.

3

 2 Background
This chapter gives a description of the concepts needed to understand this thesis and

next chapters, and an overview of the different technologies used.

 2.1 Context-awareness
In computer science context-awareness refers to the idea that computers can both sense,

and react, adapting to the situation in which they are working. The goal of context-awareness
is to minimize the required user interaction by automatically responding to changes in the
environment. As stated by Dey [1], context is "any information that can be used to
characterize the situation of an entity." According to this definition, it is possible to consider
any data collected by sensing as context, thus with advances in sensor technologies, the scope
of context-aware computing increases.

The most common information used by context-aware systems is the user’s location and
position. These two sources of context information have been widely investigated. Albrecht
Schmidt [2] in his dissertation "Ubiquitous Computing - Computing in Context" describes
several different technologies for sensing location.

GPS is very popular and easy to use for determining location outdoors. The output of a
GPS receiver is the position of the device and the local time. The accuracy of this approach
depends on the number of satellites which are visible, the signal strength of the signal from
these satellites, and the availability of other information that can be used to improve the time
to first position report (for example, getting a rough location using another technology so that
the search time can be reduced, getting an accurate time value from another source so that the
synchronization with the pseudo-random spreading code used for the radio signals can be
improved, differential updates transmitted by fixed GPS receivers located at known locations,
phase differential receivers, ...). While GPS allows rather accurate positioning (ranging from
10m to sub-cm accuracy) outdoors, the penetration of GPS signals is very limited in many
buildings and is also limited at high latitude (especially those with trees or buildings).
Unfortunately, Stockholm is located at a high latitude and many of the applications that would
like to use positioning occur indoors. In addition, a large portion of users spend much of their
time in doors - so while GPS works well for vehicular based systems, it is not as suitable for
human carried systems.

Another method is to listen for radio or TV transmissions, for example using the
information provided by base stations of wide area cellular networks. Many applications
simply use the cellular basestation's ID to estimate the location of the receiver. More
sophisticated solutions use information about the range and link quality of the signal received
from multiple cellular base stations. This approach of listening for transmitted signals and
using this information to estimate the location of the receiver has been widely explored - with
both simple and very sophisticated solutions. These solutions are often useful both indoors

4

and outdoors, because of the penetration of the signal into (and out of) buildings and because
many transmitters exist. So in the locations where there are regularly people, there are
frequently transmitters that can be heard.

Many researchers have used information from WLAN base stations (or WLAN
equipped mobiles) to estimate the position of mobile WLAN equipped devices. These range
from very sophisticated commercial systems (such as that by Ekahau [3]) to very simple
systems that simply compute a signature based upon the transmitters that can be heard
(possibly also considering their signal strengths). An example of such a simple location
system is that described by Haruumi Shiode [4] in his masters thesis. He utilized
measurements of WLAN signal strength from mobile devices as they moved down a corridor
of a building. An interesting aspect of his solution was the use of a highly directional antenna
directed along this corridor and the use of both the received signal strength and the choice of
frequency used by a mobile - that is communicating with various access points in the building
(as the mobile station will choose which base station, i.e., access point) it associates with as it
changes position. This very simple system was able to estimate the user's position in this
corridor to ~2 m (sufficient to know which doorway a user was in front of).

Although initially context-awareness was widely perceived to be primarily based upon
using the user’s location, there are many other measurable aspects of a user’s context that can
provide useful information to develop context-aware applications, such as light, vision,
temperature, humidity, air pressure, sound, motion, acceleration, orientation, human touch…,
etc. For example, one of the earliest context-aware platforms with multiple sensors was the
first SmartBadge at KTH. This device used temperature, humidity, light level, and orientation.
(See [5] for further details.)

 2.2 Sensors
In this section we present a description of sensing technologies that exist today and

could be useful for context-awareness. Many of these context sources have been examined
before (such as in [2] and [5]).

It is important to say that there have been great improvements made with respect to
physical size and weight, power consumption, processing requirements, interfacing options,
reliability, robustness, and price for many of these sensor technologies. Due to these
developments, we believe that a variety of sensors are now useful (although they previously
were not as practical or feasible) and it is now worth the effort to re-consider them for
context-aware systems.

 2.2.1 Light
Optical sensors can be used to gain information about the light intensity, reflection, and

wavelength or the type of light (such as sunlight or artificial light). The last of these is
possible by using two or more light sensors by exploiting their differences in sensitivity

5

(response) to specific wavelengths or an specific spectral range. Sensors that measure the
colour temperature of the light (wavelength) or UV (ultraviolet light) sensors can be used to
determine if a device is indoors or outdoors.

Light sensors can have very low cost and are a rich source of information. The most
common light sensor is the photoresistor or Light Dependent Resistor (LDR), whose
resistance decreases with increasing incident light intensity. The energy consumption of a
LDR is low, and they are simple to interface to a microcontroller.

Additionally, many devices are equipped with an IR transmitter and receiver, for
example for use as a communication link following the IRDA standards [7]. Such a receiver
can be used to listen for an IRDA beacon, such as the HP Laboratories CoolTown beacons (for
an example of this see [8]).

 2.2.2 Audio
Microphones and amplifiers can be used to capture audio information in an

environment. The audio can be restricted to certain frequencies, by using microphones with
different frequency spectra. Today a very large number of devices are already equipped with a
microphone and an analog to digital converter - often a converter with a sampling rate of 44.1
or 48KHz. This enables very wide band audio signal processing (limited largely by the
microphone(s) used).

It is possible to get information about the location of an audio source by employing
multiple microphones that are spatially distributed (see for example the microphone arrays -
such as those supported under Microsoft's Vista operating system). Identifying context can
also take advantage of detecting specific sound sources, such as background sounds (trains,
clocks, fans, ...), the voice of a specific person or animal, the acoustics of a room (due to the
differences in the way that sound is reflected or not from the walls, furniture, people, etc.),

 2.2.3 Movement and acceleration
As people and objects generally do not change their whereabouts without movement

and acceleration, information about acceleration is a very helpful source of context
information. This source of data is even more important when considering light weight and
ultra-mobile hand-held devices, because changes in the way they are handled can provide
functional information. Human interaction with artifacts usually involves some movement,
hence acceleration.

There are diverse ways of sensing movement, with different cost and accuracy. As a
representative example, consider: motion switches, accelerometers, and gyroscopes.

Motion switches are a simple mechanism for detecting movement. Any movement that
results in a change of the position of the conductive element in the switch will cause a change
in its state (closed or open). These sensors are often very useful as they offer a simple means

6

for waking up microcontrollers when they are in an energy saving (sleep) mode.

Accelerometers are usually integrated micro-machine devices combined with driving
electronics in an integrated circuit. These sensors are easy to connect to a microcontroller, and
their power consumption is low and their size is rather small. Accelerometers provide
information on the acceleration in one (single axis models), two or three (multi-axis models)
directions. Multi-axis models can detect magnitude and direction of the acceleration as a
vector quantity. They make it possible to detect the inclination of a device, by determining the
component of the acceleration caused by gravity. If the original position, velocity, and
orientation of a device are known, it may be possible to find out its current position by
estimating its movements based upon integrating the acceleration sensed. However, the
magnitude of acceleration is less useful if there is no knowledge of the device's orientation.
For examples, of devices using accelerometers see [9], [10], [11], [12], [13], and [14].

Gyroscopes are used when angular velocity is of interest. These devices are generally
more expensive, bigger in size, and have greater power consumption than accelerometers.

 2.2.4 Magnetic Field and Orientation
There are different types of sensors that are able to detect magnetic fields. Some of them

are used to perceive the earth's magnetic field, whereas others are designed to detect the
proximity of a generated magnetic field. Sensors that use information about the earth's
magnetic field can be used as an electronic compass, i.e., its output can be used to know
which direction is north. More about this in section 2.5 on page 12.

 2.2.5 Proximity, Touch and User Interaction
Sensing that a user interacts with a device can be implemented in a variety of ways and

using several sensor technologies. Detecting that a person is close to a device can indicate that
a user interaction is likely to happen. Capacitive sensors are a simple and frequently used
solution for this. They can output a digital signal when a limit is crossed or their analog output
can be used to provide a much more complex control signal (for example as in the musical
instrument: theremin). Humidity sensors can also be used to detect proximity, as humidity
increases when a human approaches. However, the rise in humidity is small, hence high
sensitivity sensors are required.

For capturing direct user touch, conductive surfaces are used, which exploit skin
conductance. Another option is to use force sensitive resistors, which change their resistance
according to the force applied to them.

Information about touch and proximity enables us to know when the device is being
used or to anticipate that the device will be operated in the near future. If devices are only
operational when in the user's hand (or being manipulated by the user's hand), these sensors
can be used to significantly reduce power consumption.

7

 2.2.6 Temperature, Humidity, and Air Pressure
Sensing temperature is rather simple and cheap using temperature dependent resistors.

Knowing the temperature can be helpful to determine in which environment a device is being
used. For example, given a temperature reading of +3ºC, it is high likely that the device is
outdoors at that moment, but a temperature reading of +20ºC does not indicate if the device is
indoors or outdoors, because this temperature could be common to both scenarios. However, a
temperature measurement at the device could be compared with temperature measurements of
the outdoors and various locations indoors. Temperature measurements are generally part of
the weather news and are often available on-line, while there are an increasing number of
networked environmental sensors in buildings (for climate control) and lots of sensors
transmit their readings over a wireless link. See for example the TFA-Dostmann weather
stations [31] and other 433 MHz sensors (see section 7.2 of [15]).

By using high accuracy measurements, we are able to find transitions between
situations, clues about usage patterns, and changes in the surrounding environment. Often the
information about a transition may be more useful than an exact measurement of the
temperature or humidity. For example, knowing that there is a change may indicate that the
user has changed their location or their activity.

Sensors for humidity can be used for measuring weather conditions, detecting changes
in the environment, and, as described in section 2.2.5, perceiving presence.

Air pressure gives an indication about altitude and can be used as a barometer. Changes
in air pressure can indicate actions such as closing a door in a room or a vehicle, going up or
down in an elevator (or stairs), or driving through a tunnel.

 2.2.7 Motion Detection
Detecting motion of subjects within a certain space can be obtained using different

technologies. Two of the major methods are infrared sensors and cameras.

A common way of motion sensing is the use of Passive Infrared Sensors (PIR). PIR
sensors perceive changes of heat flow in the environment and can detect people or animals
moving in the detector region of the sensor. Some of them can offer binary information about
if someone entered or left the detector region. They can have different observation angles and
detection distances. The use of PIRs for determining the direction of the user's movement (in
particular whether a user is entering or leaving a room is described in [16] and [17]).

Motion sensing is specially useful with low cost stationary sensors, for example to
detect if someone enters or leaves a room. In mobile devices, motion sensing is more difficult
because when the device is moving, it is hard to determine if something around is in motion
or it is the device itself that is moving. However, changes in relative positions between objects
may still be a useful source of information.

Video analysis for detecting motion is more powerful than PIR sensors, but by far more

8

expensive and complex to implement. As described in the thesis by Daniel Hübinette we will
not further consider video analysis because of the prohibitions on public cameras at KTH (and
in most working environments in Sweden).

 2.2.8 Bio-Sensors
Bio-sensors are used to measure signals from living creatures in different ways. Their

use is common in medical applications, but some sensors are integrated in mobile devices for
everyday use.

There are various sensors available to measure pulse or heart rate at different body
points. This indicates how calm, nervous, or exhausted someone is, and is especially helpful
in applications that are designed to be used during practicing for a sport. See for example the
use of remote monitoring of an athlete by a coach in [18].

There exists other sensors that measure skin resistance to provide an indication of the
tension and excitement of the user, for example as lie-detectors. Muscle tension can also be
measured and this information can be used in bio-feedback systems. Finally, there are also
sensors to acquire blood pressure values, and measure the activation pulse of the heart, both of
them with evident medical applications.

 2.3 Session Initiation Protocol
The Session Initiation Protocol (SIP) is a signaling protocol, used for controlling (to

establish, modify, and end) a multimedia communication session, such as voice or video calls,
over the Internet Protocol (IP). SIP is a text-encoded protocol and is based on elements from
the Hyper Text Transport Protocol (HTTP) and Simple Mail Transport Protocol (SMTP),
which are used for Web browsing and for e-mail on the Internet (respectively). It was initially
developed by IETF’s Multiparty Multimedia Session Control (MMUSIC) working group, but
evolved to have its own SIP working group within the IETF. The protocol was designed to
provide call setup and signaling in an IP based network, but it also has other functions, such
as presence notification and short messaging [6]. The differences between SIP and the
traditional Public Switched Telephone Network (PSTN) are large because SIP end-points have
significant computing capabilities that can provide multiple services, while PSTN systems
generally have a fixed quality as the end-point do not have any significant processing
capabilities.

There are three main elements in a SIP network: User Agents, Servers, and Location
servers. These SIP user entities are introduced in Bemnet Tesfaye Merha's master thesis [8].
Here we will only give a brief introduction, please see his thesis for additional details of a SIP
network.

SIP users are addressable entities that participate in SIP sessions. Users are indentified
with a Universal Resource Identifier (URI), with a format similar to an e-mail address. A SIP

9

URI generally has the form sip:name@domain:port where name is the name of the user;
domain is the fully qualified domain name of the user’s proxy server, and port is the port
number where the proxy server is listening for a connection. It is also possible to specify
phone numbers that can be reached via a gateway between the SIP network and the PSTN.
For example, the URI of the form sip:+46-700-680-137@gateway.com; user=phone may
refer to a PSTN phone number.

SIP user agents (UAs) are end-point devices in a SIP network used for sending and
receiving messages. They originate SIP requests to establish media sessions and send &
receive media. A user agent can be either a hardware device (for example, a SIP phone), or a
SIP client software running on a PC or handheld device. Alternatively SIP user agents can
also be a gateway to another network, such as a PSTN gateway.

Each user agent must have at least one valid IP address, and should be able to resolve a
domain name (by utilizing a DNS server or other means). SIP users, with their corresponding
fully qualified URI, are associated with a user agent by registering with a SIP registrar server.
A user agent will be able to receive an incoming invitation once its current SIP user agent and
its location are known by the registrar server.

SIP user agents can communicate in a peer-to-peer way, but its convenient to use
another network element called a SIP proxy to help user agents to initiate SIP sessions. A SIP
proxy receives SIP requests from a user agent or another proxy and forwards the request to
another SIP entity. SIP proxies also provide a number of security functions and support the
definition and enforcement of user preferences.

A redirect server receives a request from a user agent or proxy and returns a redirection
response (3xx), indicating where the request should be retried. The main reason for utilizing
these servers is to reduce the load on proxy servers, which are also responsible for routing
tasks.

As it has been said before, a SIP user agent must register its contact information with a
registrar server in order to receive incoming invitations. The registrar server uses a location
server to store the information related to a SIP user. Location servers utilize a database to
store each user's contact information, IP addresses, and port numbers. These location servers
are not accessed directly by user agents, but registrar servers and proxies utilize this
information to provide services to user agents.

 2.4 WASA Board
The WASA board is a circuit board designed and developed for teaching by Professor

Mark T. Smith of KTH for his Sensor Based Systems course. A bachelors thesis by Thor
Hådén [15] earlier described the WASA board. This board already has some on-board sensors
and a number of General Purpose Input Output (GPIO) ports. On-board sensors integrated
with the board are a temperature sensor, a LDR light sensor, and a 3-axis accelerometer. Most

10

other sensors can be connected to the GPIO ports or to the analog input or output ports (that
are internally connected to an analog to digital or digital to analog converter respectively).

The WASA board communicates with a computer through a USB interface, emulating a
serial port. They were designed this way because most students' laptops do not have serial
interface, but do have a USB interface. In addition, USB provides power, thus there is no need
for a separate power supply for the board. A user can directly send and receive data from the
board using a terminal program such as Hyperterminal on Windows. There are also APIs for
using serial ports in most programming languages. The software that is running in the WASA
board accepts AT-commands for communication, which are based on a system created by
Hayes to communicate with modems and dialers, where all commands begin with the string
“AT”. These letters come from the word "attention", which is the first command that the
computer sends to a modem/dialer in order to get its attention. The characters "AT" allow the
modem/dialer to learn the proper data rate and to synchronize with the computer's serial
interface. AT style commands have been used for the WASA board as they are straight
forward to generate and decode, and because it is easy to add new commands to the protocol.
In the case of the WASA board there exists a small program running in a microcontroller on
the board that decodes the AT command to learn what sensor should be sampled and returns
the sensor's current value as output.

A user, or computer program, writes a text string to the serial port's output buffers,
which is transmitted to the board through the computer's USB interface. The program in the
microcontroller on the board will receive the string from the computer, decode it, and execute
some function according to the command string. If the command requests a reading from a
GPIO port or sensor, the WASA board collects the value and writes a reply to its output buffer,
which is transmitted back to the computer. To read the reply, the computer simply reads from
its input buffer. Thor Håden describes in his thesis how he add a new 433 MHz radio
transmitter to the WASA board and how he added a new command to the board to
continuously digitize the output of this receiver. See [15] for details.

Figure 2. WASA board

11

 2.5 Magnetic Field Sensor
The KMZ52 from NPX (formerly Philips Semiconductors) is a magnetic field sensor,

designed for compass applications. This sensor relies on the magnetoresistive effect and
provides the required sensitivity and linearity to measure the weak magnetic field of the earth.
It implements a two-dimensional field sensor (note that the KMZ51 is single axis magnetic
field sensor), as this is required for a compass.

The earth's magnetic field lines point from the earth's south pole to its north pole. These
lines are perpendicular to the earth's surface at the poles and parallel at the equator. It is
important to point out that the magnetic poles do not coincide with the geographical poles,
which are defined by the earth's axis of rotation. The angle between the magnetic and the axis
of rotation is about 11.5º. Thus we differentiate between "true North" (the North pole of the
axis of rotation and point at 90 degrees north latitude) and "magnetic North" (see figure 3).

Figure 3. Earth's magnetic field

In Figure 4, vector He is the earth's magnetic field vector at some point on the earth.
Some other quantities that are of importance for a compass are also defined. In this
illustration, the x- and y-coordinates are parallel to the earth's surface, and the z-coordinate
points vertically downwards (into the earth). Note that this is a righthanded coordinate system.

12

True north

True south Magnetic
south

Magnetic
north

11.5º

11.5º

Figure 4. Earth magnetic field as a vector quantity

The angle between magnetic north and the heading direction is called azimuth and is
represented by α. Magnetic north is the direction of Heh, the earth's field component
perpendicular to gravity. Azimuth is the desired output of a compass, and is defined by:

Inclination δ is the angle between the earth's field vector and the horizontal plane. The
inclination varies with the actual location on earth. If a compass is tilted, the inclination has to
be considered.

Declination λ is the angle between geographic north and magnetic north.

The main building blocks of an electronic compass are two sensor elements for
measuring the x- and the y-components of the earth field in the horizontal plane, a signal
conditioning unit, and a direction determination unit.

13

α=arctan
He y

He x

X
(heading
direction)

z
(down)

y
(right)

He
x

He
z

He
y

He
h

α

δ

azimuth

Inclination
or dip

true northλ

declination

magnetic north

He

 2.5.1 Magnetic Field Sensors
The task of a compass is to measure the azimuth, as stated before. Therefore, the

strengths of two horizontal earth magnetic field components have to be measured: one in
heading direction (Hex) and one sidewards (Hey). This requires two magnetic field sensors,
both aligned parallel to the earth's surface, but rotated by 90 degrees with respect to each
other.

 2.5.2 Signal conditioning unit
The purpose of this unit is to deliver output voltages proportional to the field strengths

Hex and Hey respectively. The signals delivered by the magnetic field sensors are very small,
hence they have to be amplified. Optional features for high performance systems are
temperature compensation of sensitivity and compensation for the error due to
non-orthogonality between the sensors. To carry out these tasks, the signal conditioning unit
has to control the set/reset and compensation coils of the sensors.

 2.5.3 Direction determination unit
The function of this unit is to calculate the desired azimuth information from the

measured field strengths Hex and Hey. The measured azimuth has to be indicated on some
external display or communicated to another electronic system.

 2.5.4 Other Features
In most practical scenarios, other magnetic fields can cause interference with the earth's

magnetic field, which could produce a significant measurement error. Fortunately, there are
calibration methods to compensate for this error.

It is also possible to correct for the deviation between the magnetic north direction as
measured by the compass and the true or geographic north. The value of declination varies
with the position on earth and can be to the east or to the west (east declination means that the
magnetic north indicated by the compass is east of true north). Declination also varies in time,
hence for compensation only updated information about declination can be used. The
correction can use information from a remote data server as a function of the user's geo-
coordinates. Such data for locations world-wide can be found at the website of the U.S.
National Geophysical Data Center (NGDC) [19].

The azimuth equation only yields the correct value if Hex and Hey are the earth's field
components in the horizontal plane. Because of this, the basic compass must be held exactly
horizontal to work properly. However, it is possible to electronically compensate for the error
that appears when a compass is tilted.

14

 2.6 Web Services
In some applications it may be necessary to make client requests to servers that compute

some function over the data provided by sensors, and return a response back to the client. Web
services support interoperable machine-to-machine interaction over a network and provide a
simple means of implementing client-server communication. Web services are typically
conveyed using HTTP and are frequently based upon Internet Application Programming
Interfaces that can be accessed over a network (such as Internet), and executed on a remote
system hosting the requested services.

For transmitting data in the body of an HTTP request, web services can use Extensible
Markup Language (XML) messages that follow the Simple Object Access Protocol (SOAP)
stardard. SOAP is an standard protocol that defines how two objects in different processes can
communicate by exchanging XML data. For example, a SOAP message could be sent to a
web service enabled web site (for example, a flights company database) with the parameters
needed for a search. The site would then return an XML-formatted document with the
resulting data.

This could be the SOAP message of the client:
<source lang="xml"> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body> <getFlightInfo xmlns=" http://flightcompany.example.com"> <flightNumber>1234</flightNumber>
</getFlightInfo> </soap:Body>
</soap:Envelope> </source>

And the response of the server:
<source lang="xml"> <soap:Envelope xmlns:soap="http://schemas.xmlsoap.org/soap/envelope/">
<soap:Body> <getFlightInfoResponse xmlns=" http://flightcompany.example.com">
<getFlightInfoResult> <flightTime>15.45</flightTime>
<flightNumber>1234</flightNumber> <availabeSeats>43</availabeSeats>
<departure>London</departure> <destination>Paris</destination> </getFlightInfoResult>
</getFlightInfoResponse>
</soap:Body> </soap:Envelope>
</source>

Even easier implementations of web services can be done if client adds the data
parameters to the URL of an HTTP request. For example:

http://flightcompany.example.com?flightNumber=1234

Web services can be a useful tool to implement functions that use information captured
by sensors, but where the service cannot be executed in the device to which the sensors are
attached. An extreme example of this is the emerging netbooks. These are portable devices
that locally only have a browser and OS, as all other processing is done somewhere else in the
network.

15

 3 Sensor interfacing
This chapter will describe the design and implementation of the interface that connects

the sensor to the mobile device. The interface is designed in terms of data communication and
powering. The technologies used are also described.

 3.1 Serial connection between PDA and WASA board
As has been said in section 2.4, the WASA board can communicate with a computer

through a USB interface, emulating a serial port. The MSP430F2618 microcontroller on the
WASA board has two Universal Asynchronous Receiver-Transmitter (UART) interfaces, each
one with one pin to transmit output data and another to receive input data. To provide the USB
interface to the board, it is necessary to convert the USB data from the computer, to serial
UART data to the microcontroller. The WASA board integrates a FTDI Chip FT232R ([20])
for this purpose.

This thesis project is focused on handheld devices that collect information from sensors.
Unfortunately, few of these devices offer a USB master interface, as they do not have enough
power to supply the current required by the USB standard to attached devices. Some recent
devices support USB To-Go, a USB interface standard that allows devices to be a USB master
or slave, with the master providing much more limited power than a traditional USB master.
Unfortunately, the HP iPAQ 5550 PDA that we will use for our experiments has only a slave
USB interface and a serial port. We can use the iPAQ's serial interface to directly exchange
data between the PDA and the microcontroller (i.e., we do not need to use the FT232R USB
to serial interface chip). However, not using the USB interface raises another problem: How
can we power the WASA board? If the power consumption of the WASA board and sensors is
low enough, then we can power the board via the serial port. While the WASA board was
designed to operate on very little power, is the available power enough in practice to power
the WASA board? We will examine this issue in the following sections. However, first we
have to address the basic issues required for the PDA to communicate with the WASA board.

 3.1.1 Serial data exchange
The MSP430F2618 microcontroller in the WASA board has 4 general-purpose I/O pins

that provide two UART interfaces: UART0 and UART1. The transmit and receive pins of
UART0 are already connected to the USB-to-serial converter (i.e., FT232R chip), hence to
enable serial communication between the PDA and the microcontroller the easiest approach is
to use the UART1 pins. These two pins can easily be accessed on the board, as they are
brought out to connectors on one side of the board (see Figure 7).

To enable the use of this second UART some changes were made in the software that is
running in the microcontroller of the board1. These changes are required to set up the UART1

1 This code was provided by Prof. Smith on his course web site.

16

interface (setting the serial clock's frequency and modulation), define an interrupt handler that
handles the reception of data by the UART1, and add a function to write data through the
transmit pin of the UART1. The code can be compiled specifically for the MSP430F2618
using the Texas Instruments' IAR Embedded Workbench IDE [21]. The necessary changes to
the initial are shown in Appendix A.

However, to actually enable communication between the PDA and the microcontroller,
it is necessary to shift the output of the MSP430F2618's GPIO pins to RS232 voltage levels.
This level shifting can be made using the MAXIM (now Dallas Semiconductor) MAX3241
transceiver [22], which can run at 3.3V (the same voltage as the MSP430F2618 chip). The
device requires five small 0.1 μF external capacitors that are used by the transciever to create
a charge-pump. The necessary circuit for this level shifting is shown in detail in Figure 5. To
prototype this level shifting an existing power supply and level shifting board that was
developed for the earlier SmartBadge was used. The attachment to the level shifter is shown
in Figure 6.

Figure 5. Level shifting schematics

17

Figure 6. Level shifting board

Figure 7 shows the connections between the WASA board and the board with the
MAX3241 and DB-9 (serial connector). The red wire provides 5V DC power from the WASA
board to the level shifter and the black wire is a ground connection. The yellow wire connects
the transmit pin of UART1 of the MSP430F2618 microcontroller with the T1IN pin of the
MAX3241. The purple wire connects the receive pin of UART1 with the R1OUT pin of the
MAX3241 chip.

18

Figure 7. Connections between the level shifting board and the WASA board

Once these connections have been made, serial communication between the PDA and
microcontroller is possible. However, the WASA board is still powered by means of the USB
interface. The 3.3 V source that powers the MAX3241 could be provided by the WASA board
(however, in the configuration shown in Figure 7, the 3.3V power for the MAX3241 is
actually being provided by the small rectifier on the serial and power board).

Now that we have established a communication path between the PDA and the WASA
board, the next problem is to determine whether is possible (or not) to supply the power
needed using the PDA's serial port, rather than the Vcc (Common collector voltage) line of
the USB interface. This will be addressed in the next section.

 3.1.2 Power via the PDA's serial port
Powering a device using the serial port has been used in a number of applications. The

most common example of this is a serial mouse (even if most serially attached mice have been
replaced by mice with PS/2 or USB connections because these two interface can both provide
power to the mouse). A serial mouse typically uses the DTR and RTS lines (which are used
for handshaking, rather than for either transmitting or receiving user data) to provide power
for a microcontroller circuit in the mouse. Before going into details of the DTR and RTS lines
we described the RS-232 standard for serial interfaces.

19

UART1 transmit
(yellow) and
receive (purple)

3.3V power

The Electronics Industries Association (EIA) standard RS-232 is a standard for serial
binary data signals between a Data Terminal Equipment (DTE) device and a Data Circuit-
terminating Equipment (DCE) device. A DTE is the functional unit of a data station that
serves as a data source or a data sink and provides for the data communication control
function to be performed in accordance with a link protocol. A DCE is a device that sits
between the DTE and a data transmission circuit. The original purpose of RS232 was to
connect a terminal with a modem, hence the roles of DTE and DCE for the two ends of the
connection. Although the application of RS-232 has extended far beyond this purpose, the
original terms DTE and DCE are still used. Every device has to play the role of either a DTE
or DCE.

The standard specifies 20 different signal connections (hence older modems used a
DB-25 connector). Today most devices use only a few of these signals, enabling smaller
connectors to be used. For example, the 9 pin DE-9 connector is generally used for RS-232
communication. This is the connector that is provided by the iPAQ cradle. (See Figure 8)
Hence this is the connector that we will consider for designing the first version of our serial
port power and interface to the WASA board.

Figure 8. IPAQ cradle connector

Table 1 shows the different signals available on a DE-9 connector, their respective pin
numbers, and whether their origin is in DTE or DCE device (the origin will drive the signal
line with a voltage). Figure 9 shows the male pinout of this a DE-9 connector; while figure 8
shows the female connector.

20

Table 1. Serial signal description (pins are described from the view point of a DTE)

Name Typical purpose Abbreviation Origin Pin
Data Terminal
Ready

Originated by the DTE to instruct the DCE to
setup a connection. It means that the DTE is
up and running and ready to communicate.

DTR DTE 4

Data Carrier
Detect

A signal sent from the DCE to its DTE to
indicate that it has received a basic carrier
signal from a remote DCE.

DCD DCE 1

Data Set Ready Originated by the DCE indicating that it is
basically operating.

DSR DCE 6

Ring Indicator A signal from the DCE to the DTE that there
is an incoming call. Only used on switched
circuit connections.

RI DCE 9

Request To
Send

Originated by the DTE to initiate transmission
by the DCE.

RTS DTE 7

Clear To Send Sent by the DCE as a reply on the RTS after a
delay in ms, which gives the DCE enough
time to energize their circuits and synchronize
on basic modulation patterns.

CTS DCE 8

Transmitted
Data

Data sent by the DTE TxD DTE 3

Received Data Data received by the DTE RxD DCE 2
Common
Ground

G common 5

Figure 9. Male RS-232 pinout

Now that we are able to successfully exchange data between the iPAQ and the WASA
board, the next step is to determine if it is possible to supply the necessary power to the

21

DCD RxD TxD DTR G

 DSR RTS CTS RI

WASA using the PDA's serial port. We will do this by measuring the total power consumption
of the WASA board and the level shifting board. This can be done by measuring the current
flowing through the Vcc line when the WASA Board is connected to a PC by the USB
interface. The measurements were made using a Velleman DVM92 multimeter, with the
amperimeter function (black cable in COM plug, and red cable in 20A plug) at 2mA
resolution. The value obtained experimentally for this current was 20.4 mA at 5 volts (i.e., the
total power required is 102 mW power). Note that this power consumption includes the power
required by the FTDI chip.

The next step was to determine how the power is shared between the WASA board and
the level shifting board, by measuring the power carried by the +5V connection from the
WASA board (the red wire in the figure 7). The value obtained experimentally was a current
of 8.25 mA for the level shifting board (i.e., 41.25 mW). This implies that the WASA board
takes 60.75 mW of power, leading to a current of 12.15 mA at 5 volts for its own supply.

Now that we know approximately how much power (expressed in terms of a
combination of voltage and current) that is required for the WASA board and the level shifter,
we have to measure the voltage and current output capabilities of the PDA's serial interface.
However, first it is necessary to figure out if the PDA's serial interface is a DTE or a DCE, in
order to determine from which pins it is possible to get power. In general, a DTE provides a
voltage on TxD, RTS, and DTR pins; whereas a DCE provides voltage on RxD, CTS, DSR,
and DCD. Therefore, whether the PDA is a DTE or a DCE can be determined by measuring
voltages between the ground pin and the each of these pins. Non-zero voltage values were
obtained for RxD, CTS, DSR, and DCD pins, hence the IPAQ PDA interface is a DCE.
Specifically, the voltage value obtained was 5.64V for all four lines. This is in keeping with
the fact that the RS-232 standard says that a female connector is used on a DCE and a male
connector on a DTE (As can be seen in figure 8, the iPAQ cradle has a female connector).

Since the RxD pin carries out the task of transmitting data from the DCE, we have three
lines (CTS, DSR, and DCD) that can be used to supply power. Table 2 shows the current
driving capability obtained experimentally for each one of these pins (the measurements were
made with the Velleman DVM92 multimeter, opening the DSR, CTS and DCD lines in a
serial connection between the PDA and a PC, and using a resistor of 18 Ω):

Table 2. PDA's serial output current

Data Set Ready 1.21 mA
Clear To Send 1.27 mA
Data Carrier Detect 1.28 mA

Total 3.76 mA

From the measurements described earlier we know that 12.15 mA at 5V (60.75 mW) is
consumed by the WASA board and 8.25 mA at 5V (41.25 mW) is used by the level shifting

22

board. From Table 2 we can compute that we can supply 3.76mA at 5.64 V (21.21 mW) of
power using the three RS-232 pins from the PDA. As the amount of power available is not
enough to power the boards as they are, it is necessary to analyze each one of the chips on
both boards, and find out their power requirements, in order to understand if we can provide
the power that is needed by the microcontroller, sensors, and level shifting circuits.

The WASA Board has a Texas Instruments MSP430F2618 microcontroller, which has a
power consumption of 0.365 mA (in active mode running at 1 MHz at 2.2V), and can operate
on a voltage ranging from 1.8V to 3.6V. This equates to a power requirement of 0.8 mW. It
also has a FT232R USB to serial interface chip, which requires an operating supply current of
15 mA at a voltage ranging from 3.3V to 5.25V (i.e., ~50 mW). The WASA board includes a
serial 8-bit ADC MAX1039 chip, which provides analog-to-digital conversion, and can be
useful to interface to sensors. It needs a current of 0.350 mA at 188 kbps at a voltage between
2.7V and 3.6V (i.e., ~1 mW).

In the level shifting board, the MAX3241 transceiver is the only necessary chip. It
requires a current of 0.3 mA at a supply voltage of 3.3V to 5V (i.e., ~1 mW).

Table 3 summarizes this information:

Table 3. Power requirements of the major integrated circuits that concern us

Chip Vcc – voltage (V) Typical current (mA) Power at 3.3 V (mW)
MSP430F2618 1.8 to 3.6 0.365 ~1.21

FT232R 3.3 to 5.25 15.000 ~50.00
MAX1039 ADC 2.7 to 3.6 0.350 ~1.15

MAX3241 3.3 to 5 0.300 ~1.00

Given that the FT232 chip is unneeded in the case of a serial interface to the PDA and
that it is a major power consumer, we find that the remaining power requirements (1.21 + 1.15
+ 1 = 3.36 mW) can potentially be met by the power that can be supplied by the PDA's serial
port (3.76 mA x 5.64 V = 21 mW). It might even be possible to power the required chips
using a single pin (1.2 mA x 5.64 V = 6.7 mW) of the RS-232 interface.

The output voltage value obtained from the PDA's serial lines is 5.64V. The
STMicroelectronics ST763A step-down switching regulator on the WASA board can be used
to very efficiently convert the voltage from the PDA's serial port pins to the 3.3V needed by
the microcontroller, the level shifter, and the ADC. The ST763A operates from 3.3V to 11V
giving a fixed 3.3 output voltage. Given sufficient input current it can deliver up to 500 mA,
which is more than enough to power the chips involved in the sensors that we are concerned
with.

Now that we know that it may be feasible to power the WASA board via the serial
interface we turn to the design of the electronic compass in section 3.2.

23

 3.2 Interfacing to the NXP Semiconductors KMZ52
In section 2.5 an overview of the NXP Semiconductors KMZ52 magnetic field sensor

was given. In this section we examine how this sensor can be interfaced to the WASA board
in order to measure the device's orientation. In order to deliver output voltages proportional to
the field strengths of the two components Hex and Hey that determine the magnetic north, we
have to implement a Signal Conditioning Unit (SCU). Depending on the accuracy that is
desired in the system, this SCU has to fulfill up to three requirements in order to eliminate the
following error sources:

• Offset voltages Vox, Voy at the SCU output.

• Sensitivity difference ΔS between x and y channel of the SCU.

• Non-orthogonality ϐ of sensors.

For the offset compensation a technique called “flipping” can be used. This flipping is
generated by applying alternately positive and negative current pulses to the set/reset coil of
the sensor. When this is done repetitively, the desired output voltage will change polarity,
appearing as the amplitude of the signal. However, the offset voltage will not change polarity,
appearing as a measurable offset of the signal.

Figure 10. Offset compensation

As it is shown in Figure 10, the desired output voltages Vx,y can be calculated from the
high voltage Vp and the low voltage Vn of the flipped and amplified sensor signal as:

Vx , y=1/2 ·Vp−Vn

If the offset does not vary rapidly with time, then the processing load to measure the
device's orientation can be reduced by reading Vp and Vn at greater intervals. Each time they
are read, we calculate the offset voltage Vo, by computing Vo=1/2 · (Vp +Vn). Once we have
this estimate of Vo only one voltage of the flipped sensor signal has to be read, then we can
calculate Vx,y as:

24

Vx , y=Vp−Vo

The sensitivity difference ΔS is due to tolerance and temperature drift of the sensor and
the amplification circuit. The temperature drift can be compensated for by operating the
sensors at the zero point of field strength, because it causes an output voltage of zero
independently of temperature. Therefore, the earth field component at each sensor has to be
compensated for by an opposing field of equal strength. This compensation field can be
generated by supplying a current through a coil near the sensor that is integrated in the
KMZ52 chip.

We can assume that the two magnetic field sensors are placed at an angle of exactly 90º,
but in practice the displacement will deviate by an angle ϐ from the desired orthogonality due
to mounting tolerances. This deviation causes an error in compass reading. The maximum
error is approximately equal to ϐ. For the KMZ52 the specified maximum non-orthogonality
is 2º, thus the maximum azimuth error is also 2º. If the compass is rotated in respect to the
earth's field, then the phase shift between Vx and Vy is 90º±ϐ. Having determined ϐ, the error
can be eliminated mathematically correcting Vy:

V yCorrected=V y/cos −V x · tan

There are two major ways of implementing the SCU, which both include
pre-amplification of the voltage output, offset compensation by flipping, and temperature
compensation of sensitivity by electro-magnetic feedback. One solution involves building all
the blocks of the SCU using circuit components. The other solution, if a microcontroller is
available, allow us to perform some of the tasks by software, simplifying the circuitry. By
using a microcontroller, only the flip coil driver, pre-amps, and optionally the compensation
coil drivers are required. Offset compensation can be implemented in software, according to
the equations shown previously. Compensation coil drivers are unnecessary unless high
precision is demanded. Even if high precision is needed, if a temperature sensor is available,
then the error can be corrected by software. Further optional tasks, such as interference field
calibration or true north calibration (see section 2.5.4) can also be performed by the
microcontroller.

Figure 11 shows how the KMZ52 sensor can be interfaced to a microcontroller, without
a compensation coil driver. In this case we only need the pre-amps and flip coil driver
circuitry. The pinout of the sensor chip is shown in Table 4.

25

Figure 11. SCU with microcontroller

Table 4. KMZ52 pinout

Symbol Pin Description Symbol Pin Description
+Iflip2 1 flip coil +VO1 9 bridge output voltage
VCC2 2 bridge supply voltage -Iflip1 10 flip coil
GND2 3 ground +Iflip1 11 flip coil
+Icomp2 4 compensation coil VCC1 12 bridge output voltage
GND1 5 ground -Icomp2 13 compensation coil
+Icomp1 6 compensation coil -VO2 14 bridge output voltage
-Icomp1 7 compensation coil +VO2 15 bridge output voltage
-VO1 8 bridge output voltage -Iflip2 16 flip coil

26

The flipping driver generates current pulses at some repetition frequency. This
frequency is not critical (as long as it is sufficient to change the polarity of the output of the
KMZ52). The choice of frequency will depend on the response time we want to achieve, with
a faster response time increasing the average current consumption. According to the KMZ52
application note1, a frequency of approximately 1 kHz is a reasonable compromise. The
KMZ52 requires flip current pulses of typically ±1A for a duration of 3 μs (this implies an
average power consumption of 15 mW). It is necessary to generate two signals from the
microcontroller's I/O port. One of the signals produce a pulse that switches TR1 on. This
charges the capacitor and a short positive pulse is passed to the flipping coil. The second
signal forces TR2 to conduct, discharging the capacitor and providing a negative current pulse
through the coil. The waveform of the signals depends on the flipping frequency chosen and
the duration of the current pulses. Assuming a frequency of 1 kHz and a duration of 3 μs, the
waveform should look like that shown in Figure 12:

Figure 12. Flipping signals

The KMZ52 sensor typical sensitivity is 80 mV/(kA/m) at Vcc=5V. Considering a
minimum earth field strength in the sensor plane of approximately 15 A/m, the sensor will
deliver an amplitude of approximately 1.2 mV, when rotated in that field. The MAX1039
ADC chip has a voltage range for its analog input of ±Vref/2, where the external reference
voltage is 2.048 V. As this is an 8 bit ADC, each step represents 2.048/256 V = 4mV.
Therefore, some amplification is required in order to provide reasonable voltages to be read
by the ADC chip. For example, the pre-amplifier might be designed to provide a gain of 103,
thus allowing better utilize of the ADC's range (hence increasing the resolution in change in
magnetic field strength). The communication between the MAX1039 ADC chip and the
microcontroller is done by the Inter-Integrated Circuit (I²C) bus protocol. I²C uses only two
bidirectional lines: Serial Data Line(SDA) and Serial Clock (SCL).

During the development of this thesis, an effort was made to interface the sensor to the
ADC. The goal was to read the ADC's value using the I²C protocol. Despite a considerable

1 Note that since the start of this project NPX has removed the application note for KMZ51 and KMZ52

27

time being spent programming the MSP430F2618 microcontroller I was unable to get a
response from the ADC, hence this task has been left for future work (see section 5.1). As a
result of not being able to communicate with the ADC, the thesis re-focused on the software
presented in the next section. The design of the circuitry (including the values of the capacitor,
transceivers, resistor, and op-amps) is also left for future work.

28

 4 Software applications
This chapter will present the description of an application that makes use of the

information provided by a magnetic field sensor, as well as information about location.
Different approaches of the same application will be examined and compared in the different
sections, giving experimental results to support the most suitable solution. Concepts and
technologies used to design the software are also described.

 4.1 Orientation-aware map display
This application uses the information about the device's orientation provided by the

KMZ52 sensor, that combined with the device's location coordinates, enables a PDA to
display a map centered at the device's current position and rotated appropriately (depending
upon the orientation of the device, i.e. showing in the superior part of the picture what should
be in front of the user). The size of the portion of the map to be displayed (and the zoom
factor of the image) can also be specified.

The initial version of the application relies on a web server to store the map and to
generate the appropriate version of the map (as a picture) that is to be displayed. The web
service is implemented in Hypertext Pre-processor (PHP) language. The web service receives
the necessary parameters (x-y coordinates of the user, orientation angle, and image size)
together with the URL that is requested by the user's client. We will assume that the web
server already has stored the whole map in a file, thus it needs to generate a Portable Network
Graphics (PNG) picture of the desired size, rotation, and location requested by the URL. The
image is sent to the PDA's web client (i.e., the client's web browser or plug-in) to display it on
the screen. The application running on the PDA sends a request and displays the image(s)
received. In this initial version of the application most of the computational load is on the
server. A prototype of the application was implemented for Microsoft's Windows Mobile
using the .Net platform, and deployed on an HP iPAQ 5550.

The next section describes the solution in more detail, including how the map is stored
at the server and how an image of a portion of the map at a specified location, orientation, and
size is generated. However, before describing the processing we introduce the format used for
storing the map.

 4.1.1 Scalable Vector Graphics
Vector graphics uses geometrical primitives such as points, lines, curves, and shapes or

polygons, which are all based on mathematical equations, to generate an image using
computer graphics. Vector graphics formats are complementary to raster graphics, which
encode images as an array of pixels. The main advantage of vector graphics over raster
graphics, is that vector-based images can be scaled without degrading, while raster images

29

lose clarity when scaled up. If we want to achieve a reasonable clarity when enlarging a raster
image, we need an original image that has very high resolution (hence takes a lot of storage),
while vector images often take much less storage. Therefore, vector graphics are widely used
in computer applications that use maps, since maps usually need to be scaled, vector graphics
encode the map efficiently (minimizing memory requirements), and most applications do not
need the detail that a raster map can provide. Some applications combine both vector graphics
and raster graphics to enable rapid selection of a region of interest, followed by display of the
relevant area in detail using a raster image (see for example, Google Earth).

The World Wide Web Consortium (W3C) standard for vector graphics is Scalable
Vector Graphics (SVG). SVG images and their behaviours are defined in XML text files. This
means that they can be searched, indexed, scripted and, if required, compressed. Since they
are XML files, SVG images can be created and edited with any text editor. Additionally,
specialized SVG-based drawing programs are also available for creating and manipulating
SVG images.

 4.1.2 Server SVG rendering
In our prototype the web server stores an SVG-format map of the third floor of the

Electrum building in Kista, Stockholm, Sweden. Unfortunately, the Microsoft Compact
Framework for mobile devices of .Net platform does not have built-in support for displaying
SVG images, thus we need to render the SVG either locally ourselves or remotely (for
example at the web server). In this approach we can render the SVG image as a PNG image
(which can be displayed in the PDA) of the relevant portion of the map based upon the
location and size parameters sent by the device. The center of the image will correspond to the
x-y coordinates of the device's location. The resulting image should fit to the display, with its
width determined by a size parameter. This rendering can be done using the vector graphics
editor application Inkscape [23] or Batik [24]. Inkscape is distributed under a free software
license, specifically GNU GPL. Inkscape has a command-line interface that enables it to be
called from PHP code using the function exec. To implement the second approach above, we
render the SVG image as a PNG image, by a command-line, such as:

inkscape.exe -f map.svg -e map.png -a x0:y0:x1:y1 -w1000 -h1000 -y 255

The original SVG file is specified after the option -f and the output PNG file is specified
after the option -e. The parameters x0, y0, x1, and y1 specify the coordinates (in the original
SVG image) of the rectangle that we want to render as PNG. The options -w1000 and -h1000
determine the width and height of the output PNG image in units of pixels (in the example the
value is 1000, but can be set to any other value). Since the original image is a vector graphic,
it is possible to take a small portion of the map and generate a scaled PNG image without any
loss of quality (as would happen if we simply scaled a file in PNG format). The option -y sets
the opacity of the background of the exported PNG (1 meaning full transparency, and 255
meaning full opacity). We need to set it to 255, because transparency caused some problems

30

when displaying the image on the PDA.

Batik is a Java-based toolkit for applications or applets that want to use SVG images.
Specifically we will use the rasterizer utility. An example of a command-line using the Batik's
rasterizer is:

java -jar batik-rasterizer.jar map.svg -w 300 -h 300 -a 400,400,200,200 -bg
255.255.255.255

This command takes the file map.svg and generates map.png. Options -w and -h specify
the output width and height, and -a specifies the area of interest of the SVG file to rasterize
(in the format x,y,width,height). The option -bg specifies the background fill color (in the
format alpha.red.green.blue). It is necessary to avoid alpha transparency for a proper
visualization on the PDA screen.

The next step is to rotate the image. This process is described in the next section. It
should be noted that the rotation can also be performed on the SVG data, then the rotated
SVG image could be rendered as the final PNG file. Doing the rotation before rendering is
much more efficient. This alternative means of producing the desired PNG image will be
described in section 4.1.4.

 4.1.2.1 Image rotation

PHP GD library [25], can be used to create and manipulate image files in a variety of
different formats. With this library it is possible to read a PNG file, rotate the image by any
desired angle, and save the resulting image as a new PNG file. The first thing that we have to
take into consideration when rotating an image, is that if the angle of rotation is a multiple of
90º, then the rotation can be performed very easily. Otherwise the rotated image may include
areas that are not in the original image, while other areas may be out of the clipping
boundaries. Assuming that we want to rotate a picture that is part of a bigger map, we may
need to generate a PNG image (as described in the previous section) that covers a larger area
than specified by the desired size in order, to include the areas of the map that will be visible
due to the rotation (see Figure 10). The question is how large this picture has to be to
guarantee a successful rotation without having blank areas for which there actually is data.

The GD Library function imagerotate rotates the image in such a way that the rotated
image preserves the original image (hence the image dimensions may be larger) (See figure
13).

31

Figure 13. Rotation by GD Library. The first image is the original picture, and the second is
the one generated by the GD function. The red rectangle represents the dimensions of the

original image.

As we can see in the figure above, if we want to preserve size and zoom level without
having empty areas, we need to use a larger original image, otherwise we will end up with the
black areas shown in the figure. The new frame for the rotated picture resulting from the
imagerotate function determines the minimum size needed for the original image. Figure 14
shows this with an example.

Figure 14. Example of rotation without empty space. (a) represents the desired size of the
image (without rotation), (b) the rotated image containing the rotated image, (c) the large
original image that will contain the desired rotated image, and (d) the rotated version of

the desired image - before clipping out the desired subregion.

It is possible to calculate the minimum size required to avoid empty areas by using
simple trigonometry. The rotated picture and the frame that contains it generate four right

32

rectangles, as it is shown in Figure 15. The angle α of the right rectangle is the angle of
rotation of the picture. The length of one side of the frame is determined by the sum of the
opposite leg (a) and adjacent leg of the triangle (b). Since we know the value of the
hypotenuse (c, it is the size of the image to rotate) and the angle of rotation, we can calculate
the minimum size required for a correct rotation (s), using trigonometric functions.

a=c · sin ;b=c ·cos  ;

s=ab ;

s=c · sin c ·cos  ; s=c ·sin cos 

The required size will be the biggest possible when the angle of rotation is 45º. In this
case, the value of s will be c·((sin(45º) + cos(45º)) (i.e., 1.41·c). A picture that covers an area
1.41 times bigger than the original one will be sufficient to allow a rotation in any angle and
still extract a square picture of the same size as the non-rotated one.

Figure 15. Trigonometric representation

Once the rotated picture has been generated, we can cut a square portion in the image
with the same size of the non-rotated picture, using the GD Library function
imagecopyresampled. After this, the picture is ready to be sent and displayed on the screen of
a PDA.

33

α

a

b

s = a + b

c

 4.1.2.2 Process summary

The process (involving the PDA application and the web service) to display the map
with the proper rotation can be summarized in the following steps:

 1. The PDA sends a web the request to the server, specifying in the URL of the request
the value of the parameters of rotation angle, x-y position of the center of the image,
and size of the area to display. An example of such a request is:

http://192.168.2.2/mapdisplay.php?a=45&x=600&y=600&tam=200

 2. The web service extracts the parameters and executes the following steps:

• Call the Inkscape or Batik editor using the command-line interface. The goal is to
obtain a PNG format image of a piece of the map determined by the values of
position and size. The size of the image converted to PNG is 1.5 times bigger than
the size requested, since this value assures rotation without empty spaces (in the
worst case must be 1.41 times bigger). See Figure 16 (b).

• Rotate the PNG image using the GD library for PHP. See Figure 16 (c).

• Cut the image rotated to get an image of the size requested. The center of this
image must be the same as the center of the image before being cut. See Figure 16
(d).

• Send the image with the requested size in the HTTP response.

 3. The PDA application receives the picture's stream as a response, and displays the
image in a picture box.

Source code for using both Inkscape and Batik are shown in Appendix B.

34

Figure 16. Example of execution (change from 0º to 45º).
a) Image displayed previously on a PDA screen (angle 0º)

b) Image generated by Inskape editor, covers an area 1.5 bigger than the image displayed
c) Image rotated 45º

d) Image cut to the original size (the center point keeps being the same)

 4.1.2.3 Image rotation on the SVG data

The rotation process using PHP and the GD library that was described in section 4.1.2
can be easily performed by making changes in the SVG file that represents the image, before
rendering it as a PNG file. This approach avoids worrying about the blank areas that could
appear when rotating a square picture. The option “g transform” in the XML file allows us to
perform several transformations on the entire image if the option encapsulates all the
definitions in the XML file. Specifically we will use the transformations of rotation and
translation. An example of the use of this option is:

<g transform="translate(600,400), rotate(90)”>

xml image definition

</g>

The axis of rotation used by rotate is placed at the centerpoint (0,0) using a translate,
and the rotation is done clockwise. We need to rotate the image around an specific point, that
will be determined by the current location, hence before performing the rotation we need to
translate the image to assure that the current location point is placed at the centerpoint. After
the rotation the inverse translation can be done, and the current position point will have the
same value as before in the SVG file. Note that the rest of the points in the image (out of the
axis of rotation) may change because of the rotation. The order of the transformations that are
made with “g transform” is from right to left. This example shows how a rotation of 45º can
be made if the current location is placed at the coordinates (300,200):

35

a)

b)

c)

d)

<g transform="translate(300,200), rotate(45), translate(-300,-200)”>

xml image definition

</g>

Changes to the SVG files can be easily done by PHP using filesystem functions such as
fgets and fwrite.

After this we only need to render the SVG file with the desired size, assuming that the
center of the rendered image must be the chosen location.

The application that runs on the PDA can be used with both solutions (rotation by PHP
or SVG), as in both cases the server generates a PNG image. The web service's source code
for rotation in SVG is simpler than PHP rotation, and this code is included in Appendix B.

Table 5 compares both Inkscape and Batik rasterizer tools. The table shows the time
spent by the server to generate the picture to be sent and displayed on the PDA, depending on
the size of the frame to be displayed. Inkscape provides faster execution when the size of the
frame is smaller than 400. For larger frames Batik is a faster solution. However, Batik offers
lower image quality than Inkscape (see Figure 17). The measurements were made over 10
executions in a laptop machine (4 GB of RAM) with a Windows Vista OS running on a CPU
Intel Core 2 Duo T6600 running at 2.2 GHz. The SVG file used in the measurements
represents a map of the floor 3rd of Electrum building. Its size is 1840 KB and has a number
of different SVG elements. It has 9129 lines of data, and 1927871 characters. Simpler SVG
files will have considerably faster rendering times.

Table 5. Timing comparison between Batik and Inkscape for rendering a sample map

Size (pixels) Inkscape (seconds) Batik (seconds)
Average Minimum Maximum Average Minimum Maximum

50 5.027 4.681 5.512 7.059 6.889 7.289
100 5.067 4.930 5.130 7.078 6.845 7.336
200 5.975 5.653 6.475 7.050 6.939 7.283
400 7.126 6.978 7.361 8.103 7.748 8.446
800 8.925 8.661 9.309 8.107 7.782 8.780

36

Figure 17. Image quality comparison between Batik and Inkscape. Sizes of 50, 100 and 200
pixels. Angle of 45º. Inkscape: left, Batik: right.

Table 6 compares the solution that performs the rotation by modifying the SVG file and
the solution that rotates the PNG rasterized image. In the experiments, the rasterization of the
SVG file has been made in both cases by Inkscape. The time obtained are similar as much of
the computation is rendering the image, while in comparison the rotation of a PNG image is
fast. The measurements were made over 10 executions in a laptop machine (4 GB of RAM)
with a Windows Vista OS running on a CPU Intel Core 2 Duo T6600 with 2.2 GHz of speed.
The SVG file used in the measurements represents a map of the floor 3rd of Electrum
building. Its size is 1840 KB and has a number of different SVG elements. It has 9129 lines of
data, and 1927871 characters. Simpler SVG files will have considerably faster rendering
times.

37

Table 6. Timing comparison between SVG rotation and PNG rotation

Size (pixels) SVG rotation (seconds) PNG rotation (seconds)
Average Minimum Maximum Average Minimum Maximum

50 5.027 4.681 5.512 5.175 4.751 5.786
100 5.067 4.930 5.130 5.131 5.043 5.245
200 5.975 5.653 6.475 6.178 5.897 6.345
400 7.126 6.978 7.361 7.393 7.023 7.656
800 8.925 8.661 9.309 9.602 9.334 9.909

Figure 18. Image quality comparison between SVG rotation and PNG rotation. Sizes of 50,
100 and 200 pixels. Angle of 45º. SVG rotation: left, PNG rotation: right.

The rotation of a PNG image causes distortion and a loss of quality in the final output

38

(see Figure 18).

With any of the approaches described above based on a web server performing all the
computation, it is necessary to rasterize the SVG image every time a change in orientation,
size or position is requested. This makes the process very slow. Delays of 5, 6, or 7 seconds
are not acceptable in an application that sends requests very frequently as such an application
is likely to be used while on the move, with variations of orientation and position occuring in
short periods of time. In fact, rotating the device about its center (which should only require a
rotation) takes as long as rendering a new image for a new location and orientation. This
unacceptable performance motivated us to think of using a client-based solution in which the
extraction of a SVG image would be performed once, and all later changes would be
computed on the client side. This means that the client has to store the vector information and
render it on the display. This solution will be examined in section 4.1.5.

 4.1.3 Client SVG rendering

 4.1.3.1 SVG for mobile devices

Small devices are a target area for vector graphics display. In order to meet these
demands the SVG Working Group made an effort to create a profile specification that
addresses mobile devices. To address the range of different device families, two profiles were
defined. The first low-level profile, SVG Tiny is suitable for highly restricted mobile devices
such as cellphones. The second profile, SVG Basic is targeted for higher level mobile devices
such as PDAs. Mobile SVG introduces constraints on content, attribute types, properties, and
user agent behavior, because of the low memory, low CPU power and limited display of
mobile devices.

The most successful implementations for cellphones are developed by Ikivo [26] and
Bitflash [27], while for PDAs, Bitflash and Intesis [28] have popular implementations. Adobe
Flash Lite has optionally supported SVG Tiny since version 1.1.

Some mobile SVG players such as the ones from Ikivo and BitFlash come pre-installed,
the manufacturers burn the SVG player code into their mobiles before shipping to the
customers. There are also some web browsers for mobile devices (such as Opera Mini and the
iPhone's Safari) that include SVG support.

The level of SVG Tiny support available varies from mobile to mobile, depending on
the SVG engine installed. Many newer mobile products support additional features beyond
SVG Tiny 1.1, like gradient and opacity. The iPhone, for example, supports declarative
animation but not interactivity.

39

 4.1.3.2 Implementation of a SVG rasterizer

The idea of implementing our own rasterizer of SVG images involves reading the XML
file that represents the map, storing the vector information, and drawing on the screen the
objects defined by the information previously stored.

The SVG specification includes a set of features which can be exploited in order to gain
speed when displaying the picture, since the application is designed to show maps, which do
not need the level of detail that is provided by all of the objects. In order to avoid the client
having to deal with information that will not be necessary when rendering the map on the
display of the PDA (reducing the amount of information reduces the time needed for parsing,
the amount of time and space needed for processing the map), a web server can filter the SVG
file, sending to the PDA only an SVG image with relevant information. The filtering process
on the web server can exclude objects whose small size would not be displayed on the PDA
(hence they have little relevance). The client can specify the the level of detail and precision
when requesting the map. The level of detail can be specified by setting a limit on the size of
a bounding box for the object, thus the server can exclude objects smaller than this value.
Once the SVG file has been parsed by the client and the information stored, the client does
not need to receive or process a new SVG file unless a change in the precision is requested in
a new request to the server, since variations of position, scale, and orientation can be
performed using the vector information stored locally. Note that a large change in the location
of the device, will necessitate reading a new set of data - concerning the SVG representation
for objects around the new location.

Filtering the SVG picture to produce a simpler representation is a straight-forward idea,
but implementing it requires further knowledge of the SVG standard. The first step is to
separate the objects that are more representative in the image of the ones that can be saved
with a minor loss of quality. Normally in a map (either a street or a building map) the most
important elements are formed by straight lines. The following features of the SVG standard
can be left out of our limited implementation:

• Painting: SVG shapes can be filled and/or outlined (painted with a color, a gradient,
or a pattern). Fills can be opaque or have various degrees of transparency.

• Gradients and Patterns: SVG shapes can be filled or outlined with solid colors as
above, or with color gradients or with repeating patterns.

• Clipping, Masking, and Compositing: Graphic elements, including text, paths, basic
shapes, and combinations of these, can be used as outlines to define both inside and
outside regions that can be painted independently.

• Text: Unicode character text included in an SVG file is expressed as XML character
data. Many visual effects are possible. All text will be left out in our implementation.

Specifically we have focused on the SVG element called path. Paths describe a series of
connected points, and how connections between those points are drawn, be they straight lines

40

or a variety of curved ones. The syntax used to describe a path is explained in the following
paragraphs.

Quoting the specification, "A path is defined by including a 'path' element which
contains a d="(path data)" attribute, where the d attribute contains the moveto, line, curve
(both cubic and quadratic Béziers), arc, and closepath instructions." The path is defined in the
'd' attribute of the 'path' tag by a string of white space seperated commands and coordinates.
Path commands are case-sensitive. An uppercase command's points use absolute postioning
and a lowercase command's points are relative to the last point. The one exception to this is
the first point always uses absolute positioning.

A path is basically formed by moveto and lineto point commands. If we think of a pen
drawing on a sheet of paper, a new moveto point places the pen at the given coordinates
without drawing any line. A lineto point draws a line between the current position of the pen
(determined by the last command: either a moveto or a lineto command) and the new
coordinates given (which will become the current position). There are also commands for
drawing quadatric and cubic Bézier curves, and elliptical arc curves, but in our limited
implementation for the map display these commands are not implemented.

The following commands (from the W3C SVG specification [29]) are implemented in
our implementation:

Table 7. SVG Path commands

Command Name Description
M
(absolut)
m
(relative)

Moveto Start a new sub-path at the given (x,y) coordinate. M (uppercase)
indicates that absolute coordinates will follow; m (lowercase)
indicates that relative coordinates will follow. If a relative moveto
(m) appears as the first element of the path, then the point is treated
as a pair of absolute coordinates. If a moveto is followed by
multiple pairs of coordinates, the subsequent pairs are treated as
implicit lineto commands.

L
(absolute)
l (relative)

Lineto Draw a line from the current point to the given (x,y) coordinate
which becomes the new current point. L (uppercase) indicates that
absolute coordinates will follow; l (lowercase) indicates that relative
coordinates will follow. A number of coordinates pairs may be
specified to draw a polyline. At the end of the command, the new
current point is set to the final coordinates.

H
(absolute)
h (relative)

Horizontal
lineto

Draws a horizontal line from the current point (cpx, cpy) to (x, cpy).
H (uppercase) indicates that absolute coordinates will follow; h
(lowercase) indicates that relative coordinates will follow. Multiple
x values can be provided (although usually this does not make
sense). At the end of the command, the new current point becomes
(x, cpy) for the final value of x.

41

V
(absolute)
v (relative)

Vertical
lineto

Draws a vertical line from the current point (cpx, cpy) to (cpx, y). V
(uppercase) indicates that absolute coordinates will follow; v
(lowercase) indicates that relative coordinates will follow. Multiple
y values can be provided (although usually this does not make
sense). At the end of the command, the new current point becomes
(cpx, y) for the final value of y.

Z or z Closepath Close the current subpath by drawing a straight line from the current
point to current subpath's initial point.

 4.1.3.2.1 Web server's filtering

The web server application that has been implemented takes any SVG file containing a
map and generates a new file containing only straight lines defined by the commands in table
7 in a path element. It also removes all lines that are shorter than a bounding box determined
by a given length. This minimum value is specified by the client when it sends the parameter
(“minLength”) in the URL of the web request. This length is given in SVG user units.
According with the SVG specification, a “user unit in the initial coordinate system is
equivalenced to the parent environment's notion of a pixel unit” (See [30]). This filtering
process reduces the size of the SVG file to be read by the client, while limiting the loss of
clarity of the picture that will be displayed. Additionally, the web service also transforms all
the relative coordinates (lower-case commands) to absolute coordinates, in order to simplify
the parsing process in the client (as we need to store the information about lines in absolute
coordinates, the conversion from relative to absolute can be done in the server).

Table 8 shows the reduction in size for a SVG file that represents the 3rd floor of
Electrum Building. The original size of the file is 1840 KB (Note that this is the same file that
was used earlier for the rasterizer performance measurements)

Table 8. Sizes after filtering an SVG file

Minimum length
(user units)

Size of the
file (KB)

Minimum length
(user units)

Size of the file
(KB)

Original file 1840 10 168
0 1210 11 159
1 639 12 152
2 552 13 139
3 475 14 133
4 405 15 125
5 332 16 119
6 223 17 112
7 208 18 106
8 190 19 103

42

9 178 20 95

Table 9 shows the savings in size of the output file achieved with the filtering process
for different minimum lengths. Savings are presented in relation to the original file, and in
relation to the previous output file. For the specific SVG file used in the experiments, we can
reach some conclusions if we analyze the statistics. The largest savings are achieved when
filtering the smallest lengths, as this particular map has an important level of detail and
contains many tiny objects. Filtering lengths larger than 6 user units does not produce a big
difference in size in relation with previous minimum lengths.

Table 9. Filtering statistics

Minimum
length (user
units)

Saving
relative to
previous

Cumulative
saving

Minimum
length (user
units)

Saving
relative to
previous

Cumulative
saving

Original file 10 0.54% 90.87%
0 34.24% 34.24% 11 0.49% 91.36%
1 31.03% 65.27% 12 0.38% 91.74%
2 4.73% 70.00% 13 0.71% 92.45%
3 4.18% 74.18% 14 0.33% 92.77%
4 3.80% 77.99% 15 0.43% 93.21%
5 3.97% 81.96% 16 0.33% 93.53%
6 5.92% 87.88% 17 0.38% 93.91%
7 0.82% 88.70% 18 0.33% 94.24%
8 0.98% 89.67% 19 0.16% 94.40%
9 0.65% 90.33% 20 0.43% 94.84%

43

Figure 19. Savings relative to previous parameter value

Figure 20. Cumulative savings

The Figure 21 shows a comparison between a map (floor 3rd of Electrum building)
filtered by the server application with different filtering values, as it is displayed on a web
browser. (a) is the original SVG map. (b), (c), (d), (e) and (f) are the map filtered with
minimum length values of 1, 5, 10, 15, and 20 user units respectively. As it can be seen, for
this particular map, values larger than 15 remove relevant lines of the picture. An appropriate

44

Original file
0

1
2

3
4

5
6

7
8

9
10

11
12

13
14

15
16

17
18

19
20

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Savings relative to previous filtering parameter value

Filtering parameter

Sa
vi

ng
s

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

80.00%

90.00%

100.00%

Cumulative savings in percent as a function of the filtering parameter

compromise between image quality and efficiency has to be achieved for every picture. As the
image quality is a factor highly dependent on the user's subjectivity, there is not a general way
to achieve an optimal compromise, but at least we can determine when an increase of the
minimum length parameter is not relevant in efficiency, as we can see in the previous table
and graphics.

45

Figure 21. Appearance of a map after filtering with different filtering parameters

Table 10 shows the time the web server takes to generate a new SVG file from the

46

original 1840 KB file (the same as in the previous measurements: floor 3rd of Electrum
building). The measurements were made over 10 executions in a laptop machine (4 GB of
RAM) with a Windows Vista OS running on a CPU Intel Core 2 Duo T6600 with 2.2 GHz of
speed. The processing time decreases slightly when a larger filtering parameter is demanded,
as the larger filter parameter leads to fewer paths in the output file. Once a new reduced map
is generated, if the same filtering parameter is requested for the same map, the file can be
cached and the cached version served to the client without any computation. Simpler SVG
files will have considerably faster filtering times.

Table 10. Execution times of the web server application

Minumum length
(user units)

Time (seconds)

Average Minumum Maximum
1 3.043 2.941 3.323
5 3.033 2.921 3.294
10 3.007 2.834 3.298
15 2.980 2.872 3.138
20 2.853 2.790 3.031
25 2.800 2.734 3.003

Figure 22. Time for filtering vs. filtering parameter

 4.1.3.2.2 Client application

When the client receives the filtered picture, it is a XML-based format document and
has to be parsed. The path syntax has to be interpreted and the information corresponding to

47

1 5 10 15 20 25
2.65

2.7

2.75

2.8

2.85

2.9

2.95

3

3.05

3.1

Time for filtering vs. filtering parameter

Filtering parameter

Ti
m

e
(s

ec
on

ds
)

the lines to be drawn has to be stored in a data structure. This process is quite expensive with
regard to execution time, but once the information is stored any portion of the map can be
displayed in any scale, angle, or position.

As it has been explained in previous paragraphs, the path syntax give us a series of
coordinates which some of them are connected to form lines. The connections are determined
by the moveto, lineto and closepath commands. The implementation stores each separate line
in its own structure. Each line is represented by an array of points (x and y coordinates). The
line starts with the first point in the array and connects each point in the order of increasing
index in the array. The whole picture is stored as an array of lines. This structure is shown in
Figure 17. If the XML parser finds a path element with a d attribute “M 10 10 H 20 V 20 L 30
30 Z M 50 50 L 0 0 L 10 20”, two new arrays of points “(10,10) (20,10) (20,20) (30,30)
(10,10)” and “(50,50) (0,0) (10,20)” will be generated and included in the array of lines.

Figure 23. Structure used to store the data of the picture

The task of drawing the lines can be done by iterating along the arrays of lines. The
Graphics class of .Net implements a function to draw a line between two given
two-dimensional points. As the client application is running on a PDA, changes of orientation
and position could happen very frequently. The user also may change the zoom level (i.e. the
scale of the map) at any time. The goal of the client application is to provide the fastest
possible display of the map. Thus, it is important to calculate and display only the lines that
are going to be visible when the map is shown, given the current scale factor, the angle, and
the position values.

48

The computation that must be applied to every point consists of a translation equivalent
of placing the current location in the center of the frame, and a scaling and rotation in relation
to the current location. To perform the scaling and rotation the current point must be placed in
the (0,0) coordinates, hence the order for the transformations is: translation equivalent to place
current point in (0,0), scaling, rotation, and translation equivalent of placing (0,0) in the center
of the frame.

Figure 24 shows these transformations. The green spot represents the current location
point, and the blue spot is the point whose new position we want to calculate. The frame in
which the map is displayed is represented by the red square, whose left-superior corner is the
(0,0) point. Figure 24 (a) is the picture as it is stored in the PDA after parsing the SVG file. In
the current configuration of the application, the current location is placed on the green spot,
and a reduction in scale and a rotation of 90º have been applied. We want to calculate the
position for the blue spot point from the map information stored in the PDA (original
coordinates). Figure 24 (b) is the step in which the blue point is translated with the same
displacement that makes the current location to be placed in (0,0). In Figure 24 (c) the rotation
and scaling is performed on the point, and in Figure 24 (d) the blue point is translated to its
final position.

Figure 24. Transformations for a specific point

49

In order to display the picture more rapidly, it is possible to calculate only the position
of the points that are going to be (or are very likely to be) inside the frame, by computing a
clipping of an area of interest. Depending on the values of scale, rotation, and position, a
clipping frame can be defined that will determine which points have to be calculated and
displayed.. The clipping frame can be estimated by performing the inverse scaling, rotation,
and translation to the displaying frame, calculating the coordinates of the four corners of the
frame. To estimate if a given point is inside the clipping frame, we can discard the points that
will be out of the box containing it (see Figure 15 in section 4.1.2).

As it is shown in Figure 25, the box containing the clipping frame is defined by two
points (x1,y1) and (x2,y2). The following equations define these values, where x and y are the
coordinates of the current location. The origin of this formula has been explained in section
4.1.2:

x1=x−size/ 2∗1/ scale∗sinangle % 90cos angle %90

y1= y−size/2∗1/scale∗sin angle %90cos angle %90

x2= xsize /2∗1 /scale∗sinangle %90cos angle %90

y2= ysize/2∗1/ scale∗sin angle %90cosangle% 90

Figure 25. Box containing the clipping frame (scale=2, angle=20º)

With the current position in the center, the size of the box containing the clipping frame
is determined by the inverse of the scale (as it is bigger a smaller portion of the map is visible
on the screen) and the rotation angle. Depending on the angle the size of the box increases,
with its maximum when the angle is multiple of 45º. If a point is inside this box, more

50

accurate operations have to be performed to check if the point is inside the rotated clipping
frame, but we can save this computation is the point is out of the frame determined by (x1,y1)
and (x2,y2). If any of the end points of a line are inside the clipping frame, the line will be
displayed. To check if a point is inside the rotated clipping frame, we can calculate its final
position after the transformations, and only display it if is inside the displaying frame. As it
will be explained further (see Table 13), not drawing a line saves an important execution time.

This approach makes the display of a map generally fast as only the lines that are going
to appear in the screen are calculated and displayed. The process will be faster as the zoom
level increases because less lines have to be drawn on the screen. The time that it takes to
display a picture depends on the number of lines that are calculated and displayed, and this
number varies according to the zoom level, orientation angle, position, characteristic of the
map, and minimum length that is requested to the web server.

The following table shows the times that it takes to display a map (the same as in the
previous measurements: floor 3rd of Electrum building) that is already stored in a HP iPAQ
5550, for different zoom levels and different filtering values in the SVG file generated by the
server. Lines shorter than the minimum length value are removed. The table also shows the
number of lines displayed on the screen in each case. Tests have been done for a location
(350, 350) and an angle of 45º. The times obtained depend directly on the number of lines
calculated and displayed, but different current locations can make the times change
considerably, as some areas of a map can contain much more lines than other areas. However,
for a given current point of the same map, an increase of the scale will reduce (or at the most
it will stay the same) the number of lines to display, because some of them will be out of the
clipping frame. An increase in the filtering parameter for the same location point and scale
factor will always drive to a reduction of the lines to calculate and, consequently, of the
displaying time.

In this case, for scale values larger than 2 we get reasonable times for this kind of
application. For smaller values, it depends on the filtering parameter if the response time is
acceptable. A minimum length value of 10 user units is regard to be appropriate (see Figure
21) and gives reasonable response times for scale values 1.5 and 1.25 (Figure 26 shows how
the sample map is displayed for location (350,350), an angle of 45º, and a scale value of 2).
The application is likely to run generally with a scale value larger than 1, and not to show the
entire map, hence we think the results obtained are quite acceptable.

51

Table 11. Display times on the client

Min. Lenght = 5 Min. Lenght = 10 Min. Lenght = 15 Min. Lenght = 20
Scale Time

(ms)
Lines Time

(ms)
Lines Time

(ms)
Lines Time

(ms)
Lines

1 2190 3650 1160 1899 823 1290 635 987
1.25 1413 2449 768 1312 505 881 404 698
1.5 914 1489 537 842 398 557 296 477

1.75 594 898 369 563 264 351 212 316
2 477 636 313 428 187 254 174 233

2.25 391 436 243 299 151 178 138 164
2.5 332 360 210 245 135 151 127 150

2.75 292 313 187 215 130 137 118 136
3 256 262 161 176 114 116 104 116

3.25 232 216 143 144 98 91 90 91
3.5 216 188 133 125 92 78 83 78

3.75 192 159 125 109 85 69 76 69
4 184 139 109 93 76 57 71 57

4.25 174 116 103 81 72 49 62 49
4.5 169 106 96 71 68 41 60 41

4.75 156 85 94 59 63 33 53 33

52

Figure 26. Processing time versus scale versus filtering parameter

The time that is spent since the map is requested from the client, until the information is
stored locally depends on three steps: filtering process in the server, sending of the file, and
loading (i.e. the XML parsing and storing) of the map in the client. Table 12 shows the time
spent in all three steps and the total time since the map is requested until it is ready to display.
All measurements were made over 10 executions. The sending time was taken using the
KTHOPEN wireless LAN in Electrum building. This time was calculated since the client
sends the URL to the server (there was no DNS lookup to get the address of the web server),
until the complete SVG filtered map is received. From this time we have subtracted the time
spent by the server to generate the SVG file after receiving the request from the client, hence
the resulting time is only the one spent in communication.

53

1 1,251,51,75 2 2,252,52,75 3 3,253,53,75 4 4,254,54,75
0

500

1000

1500

2000

2500

Min. length 5

Processing time versus scale versus filtering parameter

Min. length 5
Min. length 10
Min. length 15
Min. length 20

Scale

Time (ms)

Table 12. Load times in the client

Minimum length
(user units)

Filtering time
(seconds)

Sending Time
(seconds)

Parsing Time
(seconds)

Total
(seconds)

5 3.033 6.214 35.194 44.411
10 3.007 3.412 15.283 21.702
15 2.980 3.079 12.122 18.181
20 2.853 2.972 8.968 14.793

Source code for the client and for the web service that generates the SVG filtered map
are included as Appendix C.

Figure 27. HP iPAQ 5550 displaying the sample map

We can divide the time that the client application takes to display a portion of the map in
two groups: the time that is spent in the iteration and transformations of the lines to display,
and the time that is spent in drawing the lines in the bitmap displayed on the screen. Table 13
shows a comparison between the total times obtained in the measurements of Table 11, and
the times corresponding to the drawing of the lines, for a number of scale values and filtering
parameters of 5, 10, and 15. The lines are drawn using the DrawLine method of the class
Graphics in .NET Framework, that “Draws a line connecting the two points specified by the
coordinate pairs”. The time spent drawing the lines represents an important percentage from
the total time, specially when the scale factor and the filtering parameter are low (more lines
have to be displayed). When small amounts of lines has to be drawn (larger scale values), the
time spent iterating in the lines and performing calculations gains importance regarding to the
drawing time, as the number of lines visited in the iteration stays the same, but less are

54

displayed.

Table 13. Drawing time statistics

Min. Lenght = 5 Min. Lenght = 10 Min. Lenght = 15
Scale Total

time (ms)
Drawing
time (ms)

% from
total

Total time
(ms)

Drawing
time (ms)

% from
total

Total time
(ms)

Drawing
time (ms)

% from
total

1 2190 1805 82.42% 1160 945 81.47% 823 659 80.07%
1.25 1413 1103 78.06% 768 604 78.65% 505 390 77.23%
1.5 914 661 72.32% 537 399 74.30% 398 298 74.87%

1.75 594 398 67.00% 369 263 71.27% 264 189 71.59%
2 477 299 62.68% 313 217 69.33% 187 118 63.10%

2.25 391 234 59.85% 243 152 62.55% 151 85 56.29%
2.5 332 183 55.12% 210 124 59.05% 135 76 56.30%

2.75 292 157 53.77% 187 109 58.29% 130 73 56.15%
3 256 126 49.22% 161 86 53.42% 114 59 51.75%

3.25 232 112 48.28% 143 69 48.25% 98 47 47.96%
3.5 216 99 45.83% 133 67 50.38% 92 43 46.74%

3.75 192 76 39.58% 125 59 47.2% 85 35 41.18%
4 184 68 36.58% 109 45 41.28% 76 27 35.53%

4.25 174 60 34.48% 103 37 35.92% 72 25 34.72%
4.5 169 58 34.32% 96 35 36.92% 68 16 23.53%

4.75 156 48 30.77% 94 32 34.04% 63 12 19.05%

55

 5 Conclusion and future work
The challenge of utilizing sensors to design an application that is aware of the user's

context was the core problem to be discussed in this project. The NXP Semiconductors
KMZ52 that measures magnetic fields was the selected sensor to implement an application
that allows the user of a personal digital assistant to visualize a map adapted to the device's
orientation. Interfacing the sensor to the device means powering the sensor by means of the
own device, and being able to read the values about earth's magnetic field offered by the
sensor. This interface was theoretically proved to be feasible in this thesis project, as the
device's serial lines were experimentally determined to provide enough power supply to feed
the components needed (MSP430F2618 microcontroller, MAX1039 ACD, level shifting chip
MAX3241, and KMZ52 sensor), and the serial communication was successful between the
device and the microcontroller. The achievement of a real interface was skipped in order to
focus the project on the implementation of the device's application.

The development of an application that displays a map according to the device's
position and orientation, and the zoom level selected by the user, led to the question of how to
distribute the computation between the client and the server. Since we have a server that
stores a number a files representing different maps, and a device that request some area of a
certain map with a given orientation and zoom level, different approaches can be analyzed.
The maps are stored in a vector graphics format (SVG) to allow transformations without
losing picture quality and avoid having files of large size. In the first approach attempted, the
computation load was placed completely on the server. In this solution the client requests the
area to display with the corresponding parameters, and the server renders the SVG file to a
PNG image rotated accordingly to the orientation of the device and send it to the client. In this
approach the client only has to request a map, receive the map as an image, and display this
image. Two different rendering programs for SVG files were tried, and two different ways of
rotating the image (modifying the SVG XML code before rendering, and rotating the PNG
file after rendering) were implemented, but the minimum response time obtained was in all
cases too excessive for the response requirements of the application. This lead to a more
client-oriented approach, where the SVG rendering is performed in the PDA. Due to the lack
of SVG viewers and libraries that could allow us to implement the application in the HP
IPAQ, we decided to develop our own (minimal) SVG viewer. With this solution, once the
SVG file is rendered in the client, the display of an area of the map and its corresponding
transformations is relatively fast, but we found that the rendering process is still excessively
slow for large SVG files. This led to a web service that filters the SVG file before sending it
to the client, to remove irrelevant objects and tiny lines that are not necessary for the required
level of detail in the client application. The client can specify the minimum length of the lines
that are to be displayed, and the server removes lines smaller than this value from the SVG
file. The result is a new file that can be parsed faster (as a function of the filtering parameter).
This parameter also has an influence on the time required by the client to display a certain

56

area of the map, as a higher value of the filter parameter leads to fewer lines to display. With
this solution we got fast responses (of the order of several hundreds of milliseconds) when the
application is running with certain zoom level and without the entire map being shown, while
still providing an acceptable quality of image.

An additional improvement in performance would have the server perform the
transformations on the map and only send to the client the lines that are going to appear on the
screen. However, the process of drawing the lines on a bitmap was generally more cost than
performing the transformations on the points. Hence there is no point in having the server
calculate the transformations, as the lines have to be drawn at the client anyway (this task
occupies most of the execution time), and sending and parsing the SVG file from the server
has to be done every time there is a change in location, scaling, or orientation.

 5.1 Future work
The near term future work includes the following:

• Interface between the sensor and the PDA: This involves the design of the circuitry
to connect the KMZ52 to the WASA board in order to be able to make readings of the
sensor from the microcontroller in the board. For this purpose I2C communication has
to be achieved between the microcontroller and the ADC chip where the outputs of the
sensor would be digitized. A more ambitious effort would be to design the circuit
powered by the PDA serial lines, only using the necessary components - leading to a
minimal part count and minimal power solution.

• Analysis of the efficiency and image quality compromise: When choosing the
minimum length parameter to filter a map, an appropriate compromise between image
quality and efficiency has to be achieved for every picture. Different pictures can have
different optimal filtering values, but an study with a number of building maps could
be done to evaluate if there is a way to estimate a good value for this parameter.

• Include other SVG features: Development of some features of SVG that were left
out of our limited implementation, such as colors, lines of different widths, and curves
in the path command.

• Experiments with more sample files: In this thesis all the experiments were
performed using the same sample SVG file. This was necessary to compare multiple
different alternative solutions, but more files should be tried to develop greater insight
into what is the most suitable way to implement the desired functionality.

57

References

[1] A.K. Dey Understanding and Using Context. Personal and Ubiquitous Computing

Journal, Vol. 5 (1), February 2001, pp. 4-7

[2] Albrecht Schmidt. Ubiquitous Computing – Computing in Context. Ph.D. Thesis.

Lancaster University, Computing Department. November, 2002.

http://www.comp.lancs.ac.uk/~albrecht/phd/

[3] Wi-Fi RTLS and Site Survey Solutions [last accessed February 22, 2010]

 http://www.ekahau.com/

[4] Haruumi Shiode. In-building Location Sensing Based on WLAN Signal Strenght:

Realizing a Presence User Agent, Master Thesis. Stockholm : Royal Institute of

Technology (KTH), School of Information and Communication, 2008. COS/CCS 2008-04,

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080314-Haruumi_Shiode-

with-cover.pdf

[5] H.W.P. Beadle, G.Q. Maguire Jr., and M.T. Smith. Smart Badge: It beeps, It flashes, It

knows when you are hot and sweaty, (Submitted to) IEEE International Symposium on

Wearable Computing, Cambridge, MA, USA, Oct. 1997,

http://web.it.kth.se/~maguire/LocationAware/wearable2/wearable2.html

[6] Henry Sinnreich and Alan B Johnston. Internet communications using SIP: delivering

VoIP and multimedia services with session initiation protocol. 2nd Edition, Wiley, August

2006, ISBN: 0-471-77657-2.

[7] Infrared Data Association [last accessed February 22, 2010]

 http://www.irda.org/

[8] Bemnet Tesfaye Merha. Secure Context-Aware Mobile SIP User Agent, Master Thesis.

Stockholm : Royal Institute of Technology (KTH), School of Information and

Communication, July 2009. http://web.it.kth.se/~maguire/DEGREE-PROJECT-

REPORTS/090705-Bemnet_Tesfaye_Merha-with-cover.pdf

[9] Mark T. Smith and Gerald Q. Maguire Jr. SmartBadge/BadgePad III , HP Labs and

Royal Institute of Technology (KTH) web page [last accessed February 22, 2010]

 http://web.it.kth.se/~maguire/badge3/badge3.html

59

[10] Mark T. Smith and Gerald Q. Maguire Jr. SmartBadge/BadgePad version 4, HP

Labs and Royal Institute of Technology (KTH) web page, last modified 27 June 2006,

page initially created in 2003 [last accessed February 22, 2010]

 http://www.it.kth.se/~maguire/badge4.html

[11] Mat Hans, April Slayden, Mark Smith, Banny Banerjee, and Arvind Gupta.

DJammer: A New Digital, Mobile, Virtual, Personal Musical Instrument, Technical Report

HPL-2005-81 , Hewlett-Packard Laboratories, Palo Alto, California · May 5, 2005.

[12] April Slayden, Mirjana Spasojevic, Mat Hans, and Mark T. Smith. The DJammer:

'Air-Scratching' and Freeing the DJ to Join the Party, presented as an interactive poster as

part of the Late Breaking Results Technical Program, ACM CHI (Conference on Human

Factors in Computing Systems) 2005, Portland, Oregon · April 2-7, 2005. Available as

Technical Report HPL-2005-26, Hewlett-Packard Laboratories, Palo Alto, California ·

March 19, 2005.

[13] Mat Hans and Mark Smith. Interacting with Audio Streams for Entertainment and

Communication, ACM Multimedia, Berkeley, California, November 2003.

[14] Mat Hans and Mark Smith. A Wearable Networked MP3 Player and "Turntable" for

Collaborative Scratching, IEEE International Symposium on Wearable Computers, White

Plains, New York, October 2003.

[15] Thor Hådén. IPv6 Home Automation, Bachelor Thesis. Stockholm: Royal Institute of

Technology (KTH), School of Information and Communication, June 2009.

http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/090601-Thor_Haaden.pdf

[16] Daniel Hübinette. Occupancy Sensor System: For Context-aware Computing, Masters

thesis, Department of Communication Systems, Royal Institute of Technology (KTH),

COS/CCS 2007-26, December 2007 http://web.it.kth.se/~maguire/DEGREE-PROJECT-

REPORTS/071221-Daniel_Hubinette_Master_Thesis-with-cover.pdf

[17] Xueliang Ren, A Meeting Detector to Provide Context to a SIP Proxy, Masters thesis,

Department of Communication Systems, Royal Institute of Technology (KTH), COS/CCS

2008-24, October 2008 http://web.it.kth.se/~maguire/DEGREE-PROJECT-

REPORTS/081025-Xueliang_Ren-with-cover.pdf

[18] Darwin Valderas Núñez. Integration of sensor nodes with IMS, Masters thesis,

Department of Communication Systems, Royal Institute of Technology (KTH), COS/CCS

2008-22, October 2008. http://web.it.kth.se/~maguire/DEGREE-PROJECT-

REPORTS/081008-DarwinValderas-with-cover.pdf

60

[19] NOAA's Geophysical Data Center – Geomagnetic Data [last accessed February 22,

2010]

 http://www.ngdc.noaa.gov/geomagmodels/Declination.jsp

[20] FT232R – USB UART [last accessed February 22, 2010]

 http://www.ftdichip.com/Products/FT232R.htm

[21] IAR Embedded Workbench Kickstart – Free IDE [last accessed February 22, 2010]

 http://focus.ti.com/docs/toolsw/folders/print/iar-kickstart.html

[22] MAX3241E [last accessed February 22, 2010]

 http://www.maxim-ic.com/quick_view2.cfm/qv_pk/1780

[23] Inkscape [last accessed February 22, 2010]

 http://www.inkscape.org

[24] Batik SVG Rasterizer [last accessed February 22, 2010]

 http://xmlgraphics.apache.org/batik/tools/rasterizer.html

[25] PHP GD library [last accessed February 22, 2010]

 http://php.net/manual/en/book.image.php

[26] Ikivo [last accessed February 22, 2010]

 http://www.ikivo.com

[27] Bitflash [last accessed February 22, 2010]

 http://www.bitflash.com/

[28] Intesis [last accessed February 22, 2010]

 http://www.intesis.com/eng/entrada_frame_eng.htm

[29] Paths – SVG 1.1 [last accessed February 22, 2010]

 http://www.w3.org/TR/SVG/paths.html

[30] Coordinate Systems, Transformations and Units – SVG [last accessed February 28,

2010]

 http://www.w3.org/TR/SVG/coords.html#Units

[31] TFA-Dostmann [last accessed March 04, 2010]

 http://www.tfa-dostmann.de

61

Appendix A: Changes to WASA board code to support the
second UART

Function to write in the transmit pin of UART1

void mts_putchar(char a_char_to_print)
{
 while (!(UC1IFG&UCA1TXIFG)); // wait until USCI_A1 TX buffer empty
 UCA1TXBUF = a_char_to_print;
}

Function to set up UART0 and UART1

void set_up_UART_A0_and_UART_A1(void)
{
 /* Now, set up UART A0. It defaults to 115200 baud. It uses XT2
 for the source of the baud clock.
*/
 P3SEL = 0xf0; // Use P3.4,5,6,7 for UART A0, A1 TXD and RXD
 BCSCTL2 |= SELS; // SMCLK now sourced from XT2
 UCA0CTL1 |= UCSSEL_2; // UART clock now sourced from SMCLK

 //Added by me
 UCA1CTL1 |= UCSSEL_2;

// Set up the baud divisors
 UCA0BR0 = 138; // 16 Mhz giving 115200 baud
 UCA0BR1 = 0; // 16 Mhz giving 115200 baud
 UCA0MCTL = UCBRS2 + UCBRS1 + UCBRS0; // Modulation UCBRSx = 7

 //Added by me
 UCA1BR0 = 138; // 16 Mhz giving 115200 baud
 UCA1BR1 = 0; // 16 Mhz giving 115200 baud
 UCA1MCTL = UCBRS2 + UCBRS1 + UCBRS0; // Modulation UCBRSx = 7

 UCA0CTL1 &= ~UCSWRST; // Start the UART
 IE2 |= UCA0RXIE; // And enable UART A0 RX interrupt

 //Added by me
 UCA1CTL1 &= ~UCSWRST; // Start the UART
 UC1IE |= UCA1RXIE; // And enable UART A0 RX interrupt

 __bis_SR_register(GIE); // And enable interupts
}

63

Interrupt routine for UART1 reception

// For UART1 receive
#pragma vector=USCIAB1RX_VECTOR
__interrupt void USCI1RX_ISR(void)
{
 UC1IE &= ~UCA1RXIE; // disable UART A0 RX interrupt
 input_queue[queue_in_ptr] = UCA1RXBUF; //put character in queue

// Only echo a character if the echo flag is on. The echo flag
// can be set or cleared using the E1 or E0 AT command.
// It defaults cleared (no echo).

 if(basic_at_command_flags & flag_e)
 mts_putchar(input_queue[queue_in_ptr]); // echo character

 ++queue_in_ptr; // increment the pointer
 _BIC_SR_IRQ(LPM0_bits); // Clear CPUOFF bit from 0(SR)
 UC1IE |= UCA1RXIE; // And enable UART A0 RX interrupt
 __bis_SR_register(GIE); // And enable interupts
}

64

Appendix B: Server-Oriented Map display: PDA and
server applications

PDA application's source code (C#)

 HttpWebRequest request = (HttpWebRequest)
 WebRequest.Create("http://192.168.2.2:85/mapdisplay.php?a=" + angle.Value.ToString() +
 "&x=" + x.Value.ToString() + "&y=" + y.Value.ToString() + "&tam=" + tam.Value.ToString());

 Stream stream = request.GetResponse().GetResponseStream();
 Bitmap img = new Bitmap(stream);

 map.Image = img;

 request.Abort();

Web service's source code for rotation of the PNG image (PHP)

<?php

function CutImage($imgOriginal, $ImgDest, $Width, $Heigth, $x, $y){

 $imgFinal = imagecreatetruecolor($Width, $Heigth);
 imagecopyresampled($imgFinal, $imgOriginal, 0, 0, $x, $y, $Width, $Heigth, $Width, $Heigth);
 imagepng($imgFinal, $ImgDest, 9);
 imagedestroy($imgFinal);
}

$angle=$_GET["a"];
$x=$_GET["x"];
$y=$_GET["y"];
$tam=$_GET["tam"];

$frameTam=250;
$frameBigTam=375;

exec("Inkscape\inkscape.exe -f ..\map.svg -e ..\map.png -a ".($x-intval($tam*0.75)).":".($y-
intval($tam*0.75)).":".($x+intval($tam*0.75)).":".($y+intval($tam*0.75))." -w".$frameBigTam." -h".
$frameBigTam." -y 255");

$image = 'map.png';

$source = imagecreatefrompng($image);

65

$rotate = imagerotate($source, $angle, 0);

$newTam=sin(deg2rad($angle%90))*$frameBigTam + cos(deg2rad($angle%90))*$frameBigTam;

CutImage($rotate,'mapfinal.png',$frameTam,$frameTam,($newTam/2)-($frameTam/2),($newTam/2)-
($frameTam/2));

header("Content-type: application/octet-stream");
header("Content-Disposition: attachment; filename=\mapfinal.png\n");
$fp=fopen("mapfinal.png", "r");
fpassthru($fp);

?>

Web service's source code for rotation of the SVG image (PHP)

<?php

$angle=$_GET["a"];
$x=$_GET["x"];
$y=$_GET["y"];
$tam=$_GET["tam"];

$handle = @fopen("batik-1.7/Electrum1-plan3and4-_0001.svg", "r+");

fgets($handle);
fwrite($handle,"<g transform=\"translate(".$x.",".$y."), rotate(".$angle."), translate(-".$x.",-".$y.")\">
");

fclose($handle);

exec("java -jar batik-1.7/batik-rasterizer.jar batik-1.7/Electrum1-plan3and4-_0001.svg -w 300 -h 300 -a
".($x-$tam/2).",".($y-$tam/2).",".$tam.",".$tam." -bg 255.255.255.255");

header("Content-type: application/octet-stream");
header("Content-Disposition: attachment; filename=\mapfinal.png\n");
$fp=fopen("batik-1.7/Electrum1-plan3and4-_0001.png", "r");
fpassthru($fp);

?>

66

Appendix C: Client-Oriented Map display: PDA and
server applications

PDA Application: Class Map

class Map
 {
 public ArrayList lines; //array to store connected lines
 public ArrayList points; //array to store the points of a connected line
 public float[] cos = new float[360]; //array to store Cos values of every angle
 public float[] sin = new float[360]; //array to store Sin values of every angle

 public Map()
 {
 lines = new ArrayList();
 points = new ArrayList();
 }

 //this function precalculates the Sin and Cos for every integer angle
 public void fillSinCosVectors()
 {

 for (int i = 0; i < 360; i++)
 {
 sin[i] = (float)Math.Sin((double)i * (Math.PI / 180));
 cos[i] = (float)Math.Cos((double)i * (Math.PI / 180));
 }
 }

 //this function inserts one point (two coordinates written in a string)
 //in the current points array
 //if one of the coordinates is "-1" means that the values is the same that
 //in the last point stored (H and V commands in SVG)
 public void insertPoint(string point)
 {
 float x = 0;
 float y = 0;

 StringReader reader = new StringReader(point);
 string num = "";
 char[] c = new char[1];
 int state=0;
 while (reader.Read(c, 0, 1) != 0)
 {
 if (c[0] != ' ' && c[0] != ',')
 num = num + c[0];
 else
 {
 if (state == 0 && num != "")
 {
 x = float.Parse(num);
 if (x == -1)
 x = ((FloatPoint)points[points.Count - 1]).X;
 state = 1;
 num = "";
 }

67

 else if (state == 1 && num != "")
 {
 y = float.Parse(num);
 num = "";
 if (y == -1)
 y = ((FloatPoint)points[points.Count - 1]).Y;
 points.Add(new FloatPoint(x, y));
 }
 }

 }
 if (num != "")
 {
 y = float.Parse(num);
 if (y == -1)
 y = ((FloatPoint)points[points.Count - 1]).Y;
 points.Add(new FloatPoint(x, y));
 }
 }

 //this function store the current array of points in the lines array
 //and create the new points array. It finishes the current connected line
 //and start a new one
 public void newLine()
 {
 if (points.Count != 0)
 {
 lines.Add(points);
 points = new ArrayList();
 }
 }

 //it inserts a new point that is the first one in the line, to make a closepath
 public void closePath()
 {
 if (points.Count != 0)
 points.Add(points[0]);

 }

 //this function return a bitmap with the picture drawn, taking the arguments of
 //position, scale, angle, width of the lines and size of the frame
 public Bitmap setPicture(int size, int x, int y, float scaleFactor, int angle, float penWidth)
 {
 Bitmap b = new Bitmap(size, size);
 Graphics g = Graphics.FromImage(b);
 float x1=0, x2, y1=0, y2, xTemp;
 float px1, px2, py1, py2;
 bool lastc;

 //convert the width of the lines according to the scale
 penWidth = penWidth * scaleFactor;

 Pen pen = new Pen(Color.Black, penWidth);
 g.Clear(Color.Cornsilk);

 g.DrawRectangle(pen, 0, 0, size, size);

 //calculation of the clipping frame
 int center = size / 2;

68

 int clipFrame = (int)(center * ((float)1 / scaleFactor) * (sin[angle % 90] + cos[angle % 90]));
 int minX = x - clipFrame;
 int maxX = x + clipFrame;
 int minY = y - clipFrame;
 int maxY = y + clipFrame;

 //as the angle does not change, we can store the result in a single variable
 //to make the access faster
 float cos_ = cos[angle];
 float sin_ = sin[angle];

 //iteration along the lines
 for (int i = 0; i < lines.Count; i++)
 {

 px1 = ((FloatPoint)((ArrayList)lines[i])[0]).X;
 py1 = ((FloatPoint)((ArrayList)lines[i])[0]).Y;

 lastc = false;

 //iteration along the points in a line
 for (int j = 1; j < ((ArrayList)lines[i]).Count; j++)
 {
 px2 = ((FloatPoint)((ArrayList)lines[i])[j]).X;
 py2 = ((FloatPoint)((ArrayList)lines[i])[j]).Y;

 //check if the line is inside the clipping frame
 if (((px1 > minX && px1 < maxX) && (py1 > minY && py1 < maxY)) ||
 ((px2 > minX && px2 < maxX) && (py2 > minY && py2 < maxY)))
 {
 //check if this point has been calculated in the previous iteration
 if (lastc == false)
 {
 x1 = px1 - x;
 y1 = py1 - y;
 xTemp = x1;

 x1 = (float)((double)((xTemp) * scaleFactor) * cos_ -
 (double)((y1) * scaleFactor) * sin_) + center;
 y1 = (float)((double)((xTemp) * scaleFactor) * sin_ +
 (double)((y1) * scaleFactor) * cos_) + center;

 if ((x1 - (int)x1) > 0.50)
 x1 = x1 + 1;
 if ((y1 - (int)y1) > 0.50)
 y1 = y1 + 1;
 }

 x2 = px2 - x;
 y2 = py2 - y;
 xTemp = x2;

 x2 = (float)((double)((xTemp) * scaleFactor) * cos_ -
 (double)((y2) * scaleFactor) * sin_) + center;
 y2 = (float)((double)((xTemp) * scaleFactor) * sin_ +
 (double)((y2) * scaleFactor) * cos_) + center;

 if ((x2 - (int)x2) > 0.50)

69

 x2 = x2 + 1;
 if ((y2 - (int)y2) > 0.50)
 y2 = y2 + 1;
 if (((x1 > 0 && x1 < size) && (y1 > 0 && y1 < size)) || ((x2 > 0 && x2 < size) && (y2 > 0

&& y2 < size)))
 {
 g.DrawLine(pen, (int)x1, (int)y1, (int)x2, (int)y2);

 }

 x1 = x2;
 y1 = y2;
 lastc = true;
 }
 else lastc = false;
 px1 = px2;
 py1 = py2;

 }
 }
 return b;
 }

 }

PDA Application: Class SVGParser

class SVGParser
 {

 Map map;

 public SVGParser(Map map)
 {
 this.map = map;
 }

 //this function read the XML file containing the map and gets every "d"
 //attribute in a "Path" element
 public void ReadSVG()
 {
 string d;
 string path =
 Path.GetDirectoryName(System.Reflection.Assembly.GetExecutingAssembly().GetName().CodeBase);

 XmlTextReader recXML = new XmlTextReader(path + @"\map.svg");

 recXML.WhitespaceHandling = WhitespaceHandling.None;
 recXML.MoveToContent();

 string prevNodeName = "";

 while (recXML.Read())
 {
 if (recXML.NodeType == XmlNodeType.Text)
 {

70

 }
 if (recXML.NodeType == XmlNodeType.Element)
 {
 prevNodeName = recXML.Name;
 if (prevNodeName == "path")
 {
 d = recXML.GetAttribute("d");
 saveLines(d);
 }
 }
 else
 {
 prevNodeName = "";
 }
 }

 recXML.Close();

 }

 //this function receives a string containing the "d" attribute of a "Path" element
 //and parses this information to store it in the data structures
 void saveLines(string d)
 {
 StringReader reader = new StringReader(d);
 string point="";
 char[] c = new char[1];
 string state = "ini";

 while (reader.Read(c, 0, 1)!=0)
 {
 if (c[0] == 'M' || c[0] == 'm')
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.insertPoint(point);
 }
 point = "";
 state = "moveto";
 }
 else if (c[0] == 'L' || c[0] == 'l')
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.insertPoint(point);
 }
 point = "";
 state = "lineto";

71

 }
 else if (c[0] == 'H' || c[0] == 'h')
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.insertPoint(point);
 }
 point = "";
 state = "horizontal";
 }
 else if (c[0] == 'V' || c[0] == 'v')
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.insertPoint(point);
 }
 point = "";
 state = "vertical";
 }
 else if (c[0] == 'Z' || c[0] == 'z')
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.insertPoint(point);
 map.closePath();
 }
 point = "";
 state = "nothing";
 }
 else if (c[0] >= 'A' && c[0] <= 'Z' && (c[0] != 'L' || c[0] != 'l') && (c[0] != 'M' || c[0] != 'm') &&
 (c[0] != 'Z' || c[0] != 'z'))
 {
 if (state != "ini" && state != "nothing")
 {
 if (state == "moveto")
 map.newLine();
 if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 map.newLine();
 map.insertPoint(point);

72

 }
 point = "";
 state = "nothing";
 }
 else
 {
 point = point + c[0];
 }
 }

 if (state == "moveto")
 map.newLine();
 else if (state == "horizontal")
 point = point + " -1";
 else if (state == "vertical")
 point = "-1 " + point;
 if (state != "ini" && state != "nothing")
 {
 map.insertPoint(point);
 }
 map.newLine();
 }
 }

PDA Application: Class FloatPoint

 class FloatPoint
 {
 public float X;
 public float Y;

 public FloatPoint(float X, float Y)
 {
 this.X = X;
 this.Y = Y;
 }
 }

PDA Application: Class Display

public partial class Display : Form
 {
 Map map;
 int size; //size of the box where the map is displayed
 float penWidth; //width of the lines of the map
 float scale; //scale factor of the map
 int x,y; //(x,y) current location
 int angle; //current angle of orientation

 public Display()
 {
 size = 600;
 penWidth = (float)2.5;
 map = new Map();
 scale = 1;
 x = 350;

73

 y = 350;
 angle = 0;

 InitializeComponent();

 //parse the SVG file and store the data in an instance of the class Map
 SVGParser s=new SVGParser(map);
 s.ReadSVG();
 //precalculation of Sin and Cos functions
 map.fillSinCosVectors();
 //display map
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //increase the scaleFactor and draw the picture
 private void zoomIn_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 scale += (float)0.1;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //decrease the scaleFactor and draw the picture
 private void zoomOut_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 scale -= (float)0.1;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change current position and draw the picture
 private void up_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 y -= 20;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change current position and draw the picture
 private void down_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 y += 20;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change current position and draw the picture
 private void right_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 x += 20;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change current position and draw the picture
 private void left_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 x -= 20;

74

 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change orientation and draw the picture
 private void clockWise_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 angle += 5;
 if (angle == 360) angle = 0;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }

 //change orientation and draw the picture
 private void counterClockWise_Click(object sender, EventArgs e)
 {
 pictureBox1.Image.Dispose();
 angle -= 5;
 if (angle < 0) angle = 355;
 pictureBox1.Image = map.setPicture(size, x, y, scale, angle, penWidth);
 }
 }

Web Service source code for filtering an SVG file according to a given
filtering value

<?php

include 'PHP_script_timer.php';

$timing_loops = 1;
for ($current_loop = 0; $current_loop < $timing_loops; $current_loop++) {
$time_start = microtime_float();

if (file_exists('map.svg')) {
 $xml = simplexml_load_file('map.svg');
}
else echo "No existe\n";

$info = $xml->xpath('//svg');
$width = $info[0]['width'];
$height = $info[0]['height'];
$precision=$_GET["minLenght"];

$xml2 = new XmlWriter();

$xml2->openURI('newMap.svg');

$xml2->startElement('svg');
$xml2->writeAttribute('xmlns:svg','http://www.w3.org/2000/svg');
$xml2->writeAttribute('xmlns','http://www.w3.org/2000/svg');
$xml2->writeAttribute('width',$width);
$xml2->writeAttribute('height',$height);
$xml2->startElement('g');

75

$result = $xml->xpath('//svg/g/g/g/path');

if($result){

foreach($result as $node){

 $state = "ini";
 $x = "";
 $y = "";
 $d = "";

 $lastx=0;
 $lasty=0;

 $points = (string)$node['d'];
 $tam = strlen($points);

 for($i=0;$i<$tam;$i++){

 if ($points[$i] == 'M' || $points[$i] == 'm')
 {
 $state="moveto";
 $i++;
 while($points[$i] != ' '){
 $x = $x.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;
 while($points[$i] != ' ' && $points[$i]<'A' && $i<$tam){
 $y = $y.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;

 //echo "M".(float)$x."-".(float)$y."
 \n";

 $lastx = (float)$x;
 $lasty = (float)$y;

 $i--;
 $x = "";
 $y = "";

 }

 else if ($points[$i] == 'L' || $points[$i] == 'l')
 {

 if($points[$i] == 'l')$lowercase=1;
 else $lowercase=0;

 $i++;

76

 while($points[$i] != ' '){
 $x = $x.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;
 while($points[$i] != ' ' && $points[$i]<'A' && $i<$tam){
 $y = $y.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;

 if($lowercase==1){
 $x = (float)$lastx + (float)$x;
 $y = (float)$lasty + (float)$y;
 }

 if(abs((float)$x - $lastx) > $precision || abs((float)$y - $lasty) > $precision){

 //echo "L".(float)$x."-".(float)$y."
 \n";

 if($state=="moveto"){
 $d = $d."M ".$lastx." ".$lasty." L ".$x." ".$y." ";
 }
 else if($state=="lineto"){
 $d = $d."L ".$x." ".$y." ";
 }

 $lastx = (float)$x;
 $lasty = (float)$y;

 $state="lineto";

 }
 //else echo "NO
 \n";

 $i--;
 $x = "";
 $y = "";

 }

 else if ($points[$i] == 'H' || $points[$i] == 'h')
 {

 if($points[$i] == 'h')$lowercase=1;
 else $lowercase=0;

 $i++;

 while($points[$i] != ' ' && $points[$i]<'A' && $i<$tam){
 $x = $x.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;

 if($lowercase==1){

77

 $x = (float)$lastx + (float)$x;
 }

 if(abs((float)$x - $lastx) > $precision){

 //echo "H".(float)$x."
 \n";

 if($state=="moveto"){
 $d = $d."M ".$lastx." ".$lasty." H ".$x." ";
 }
 else if($state=="lineto"){
 $d = $d." H ".$x." ";
 }

 $lastx = (float)$x;

 $state = "lineto";

 }
 //else echo "NO
 \n";

 $i--;
 $x = "";

 }

 else if ($points[$i] == 'V' || $points[$i] == 'v')
 {

 if($points[$i] == 'v')$lowercase=1;
 else $lowercase=0;

 $i++;

 while($points[$i] != ' ' && $points[$i]<'A' && $i<$tam){
 $y = $y.$points[$i];
 $i++;
 }
 while($points[$i] == ' ')
 $i++;

 if($lowercase==1){
 $y = (float)$lasty + (float)$y;
 }

 if(abs((float)$y - $lasty) > $precision){

 //echo "V".(float)$y."
 \n";

 if($state=="moveto"){
 $d = $d."M ".$lastx." ".$lasty." V ".$y." ";
 }
 else if($state=="lineto"){
 $d = $d." V ".$y." ";
 }

 $lasty = (float)$y;

 $state = "lineto";

78

 }
 //else echo "NO
 \n";

 $i--;
 $y = "";

 }

 else if ($points[$i] == 'Z' || $points[$i] == 'z')
 {
 // echo "Z
 \n";
 }
 }

 if($d!=""){
 $xml2->startElement('path');
 $xml2->writeAttribute('d', $d);
 $xml2->writeAttribute('stroke', '#000000');
 $xml2->writeAttribute('fill', 'none');
 $xml2->endElement();
 }
 }
}

$xml2->endElement();
$xml2->endElement();

$timing[] = microtime_float() - $time_start;
}
timing($timing);

header("Content-type: application/octet-stream");
header("Content-Disposition: attachment; filename=\map.svg\n");
$fp=fopen("newMap.svg", "r");
fpassthru($fp)

?>

79

www.kth.se

TRITA-ICT-EX-2010:36

	 1 Introduction
	 2 Background
	 2.1 Context-awareness
	 2.2 Sensors
	 2.2.1 Light
	 2.2.2 Audio
	 2.2.3 Movement and acceleration
	 2.2.4 Magnetic Field and Orientation
	 2.2.5 Proximity, Touch and User Interaction
	 2.2.6 Temperature, Humidity, and Air Pressure
	 2.2.7 Motion Detection
	 2.2.8 Bio-Sensors

	 2.3 Session Initiation Protocol
	 2.4 WASA Board
	 2.5 Magnetic Field Sensor
	 2.5.1 Magnetic Field Sensors
	 2.5.2 Signal conditioning unit
	 2.5.3 Direction determination unit
	 2.5.4 Other Features

	 2.6 Web Services

	 3 Sensor interfacing
	 3.1 Serial connection between PDA and WASA board
	 3.1.1 Serial data exchange
	 3.1.2 Power via the PDA's serial port

	 3.2 Interfacing to the NXP Semiconductors KMZ52

	 4 Software applications
	 4.1 Orientation-aware map display
	 4.1.1 Scalable Vector Graphics
	 4.1.2 Server SVG rendering
	 4.1.2.1 Image rotation
	 4.1.2.2 Process summary
	 4.1.2.3 Image rotation on the SVG data

	 4.1.3 Client SVG rendering
	 4.1.3.1 SVG for mobile devices
	 4.1.3.2 Implementation of a SVG rasterizer
	 4.1.3.2.1 Web server's filtering
	 4.1.3.2.2 Client application

	 5 Conclusion and future work
	 5.1 Future work

