
Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2009:206

A L A L E L D D I N M O H A M M E D

 Studying Media Access and
Control Protocols

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Studying Media Access and
Control Protocols

Alalelddin Mohammed

Email: hdm06amo@sth.kth.se

Master of Science Thesis

Date: 2010-01-19

Supervisor and Examiner
Prof. Gerald Q. Maguire Jr.

 ii

Abstract

This thesis project’s goal is to enable undergraduate students to gain insight into
media access and control protocols based upon carrying out laboratory experiments.
The educational goal is to de-mystifying radio and other link and physical layer
communication technologies as the students can follow packets from the higher layers
down through the physical layer and back up again.

The thesis fills the gap between the existing documentation for the Universal
Software Radio Peripheral (USRP) resources and the knowledge of undergraduate
students. This was necessary because the existing document is targeted at advanced
audiences rather than undergraduates. This thesis describes the design and evolution
of a workbench for students to experiment with a variety of media access and control
protocols, much as Wireshark gives students the ability to watch network and higher
layer protocols. Another motivation for this thesis is that an increasing number of
communication networks use complex media access and control protocols and
existing tools do not allow students to see the details of what is taking place in these
protocols, except via simulation. Today an software defined radio and computer are
affordable as laboratory equipment for an undergraduate course. Hence the time is
ripe for the development of undergraduate laboratory course material using these
tools.

The thesis is targeted at (1) instructors of undergraduates who might use this
work to develop their own lesson plans and course material and (2) students of
physical and link layer protocols who want a practical tool for carrying out
experiments in these layers. Hopefully by de-mystifying these lower layers and by
making the USRP more approachable by undergraduate students we will encourage
lots of students to view wireless network technology as being just as approachable as
a wired Ethernet.

Due to the widespread use of wireless communications technologies, there is a
great need by industry for more graduates who can understand communication
systems from the physical to the application layer - rather than the current situation
where there is a hard boundary between the lower two layers and the upper layers.
While there has been a lot of research concerning cross layer optimization, much of
this is theoretical and not very approachable by students. A desired outcome of this
thesis project is that undergraduate students will be able to understand tradeoffs at all
layers of the protocol stack and not be limited to the upper layers.

 iii

Sammanfattning

Detta examensarbete har som mål att göra det möjligt för studenter att få inblick i
tillgång till medierna och protokoll som grundar sig på att utföra
laboratorieexperiment. Det pedagogiska målet är att de-mystifierande radio och annan
länk och fysiska lagret kommunikationsteknik som studenterna kan följa paket från
högre skikt ner genom det fysiska lagret och upp igen.

Avhandlingen fyller gapet mellan den befintliga dokumentationen för Universal
Software Radio Peripheral (usrp) resurser och kunskap om studerande. Detta var
nödvändigt eftersom det befintliga dokument riktar sig till avancerade publik snarare
än studenter. Denna avhandling beskriver utformningen och utvecklingen av en
arbetsbänk för studenter att experimentera med olika tillgång till medierna och
protokoll kontroll, mycket som Wireshark ger studenterna möjlighet att titta på nätet
och högre skikt protokoll. Ett annat motiv för denna tes är att ett ökande antal
kommunikationsnät använda komplicerade tillgång till medierna och protokoll
kontroll och befintliga verktyg inte tillåter eleverna att se detaljer om vad som sker i
dessa protokoll, utom via simulering. Idag en programvarustyrd radio och dator är
överkomliga laboratorieutrustning för en grundutbildningskurs. Därför är tiden mogen
för utvecklingen av grundutbildningen laborationer material med hjälp av dessa
verktyg.

Avhandlingen riktar sig till (1) instruktörer för studenter som kan använda detta
arbete för att utveckla sin egen lektionsplanering och kursmaterial och (2) studenter
på fysisk och länka protokoll skikt som vill ha ett praktiskt verktyg för att utföra
experiment i dessa lager. Förhoppningsvis genom de-mystifierande de undre lagren
och genom att göra usrp mer tillgänglig genom att studenter ska vi uppmuntra många
elever att visa trådlös nätverksteknik vara lika lättillgänglig som ett ethernet.

På grund av den utbredda användningen av trådlös kommunikationsteknik, finns
ett stort behov från näringslivet för fler studenter som kan förstå
kommunikationssystem från det fysiska till applikationslagret - i stället för den
nuvarande situationen där det finns en hård gräns mellan de två lägre skikten och de
övre skikten. Samtidigt som det har varit en hel del forskning om cross lager
optimering, mycket av detta är teoretisk och inte särskilt tillgänglig av studenter. Ett
önskat resultat med detta examensarbete är att studenter ska kunna förstå
kompromisser på alla nivåer inom den protokollstack och inte vara begränsade till de
övre skikten.

 iv

Acknowledgement

 Let us think! We always look on the bright
side of life …. From him I learn Knowledge
not in the books! What to think and how to
look for the best solution! When I deliver my
problems to him, the feedback was always
new knowledge acquired to make this work
possible. Chip Maguire my supervisor Thank
you…. we swim in your knowledge.

 v

Table of Contents
Abstract .. ii

Sammanfattning ... iii

Acknowledgement .. iv

Table of Contents ... v

Table of Figures ... vii

List of Code Examples ... viii

List of Tables .. ix

List of Acronyms and Abbreviations ... x

1. Introduction .. 1

1.2 Master Thesis Overview .. 2

1.3 Master Thesis goal ... 2

2. Background .. 3

2.1 Software Defined Radio (SDR) History .. 3

2.2 Modern Software Defined Radio ... 4

2.2.1 Hardware Architecture .. 4

2.3 Software Defined radio (SDR) and Software Radio (SR) 5

2.4 SDR Forum .. 6

3. The Universal Software Radio Peripheral (USRP) .. 7

3.1 USRP Daughter boards .. 8

4. GNU Radio .. 10

4.1 Installing the GNU Radio .. 10

4.1.1 Installing GNU Radio on Fedora 10 ... 11

4.1.2 Installing GNU Radio on Ubuntu 8.04 ... 12

4.2 GNU Radio Python Applications ... 13

4.3 GNU Radio Signal Processing Blocks ... 15

4.3.1 Creating a Simple Signal Processing Block .. 18

5. Laboratory Experiments ... 22

5.1 Experiment 1: Simplex data transmission.. 22

5.1.1 Requirements .. 22

5.1.2 Simplex data transmission implementation .. 22

5.1.3 Understanding the code... 23

5.1.4 Setup and Perform a Simplex Data transmission .. 25

5.1.5 Student Exercises .. 26

 vi

5.2 Experiment 2: Voice Transmission .. 28

5.2.1 Requirements .. 28

5.2.2 Voice Transmission Code ... 28

5.2.3 Setup and Run Voice Transmission .. 28

5.2.4 Student Exercise.. 31

5.3 Experiment 3: Carrier Sense Multiple Access Protocol 32

5.3.1 Requirements .. 32

5.3.2 CSMA code ... 32

5.3.2 Setup and Run ... 34

5.3.3 Student Exercises .. 36

5.4 Experiment 4: Bluetooth (or IEEE 802.15.4) sniffer ... 37

5.4.1 Bluetooth Implementation .. 38

5.4.2 Installing the system ... 39

5.4.3 Student Exercise.. 40

5.5 Experiment 5: IEEE 802.11 Implementation ... 43

5.5.1 Requirements .. 43

5.5.2 Installing BBN 802.11 .. 43

5.5.3 Setup and Implementation .. 44

5.5.4 Student Exercises .. 46

6. Evaluation and Analysis .. 47

6.1 GNU Radio: Analysis .. 47

6.2 USRP: Analysis ... 47

6.1 Laboratory exercises: Analysis .. 49

7. Conclusions and suggested future work .. 51

7.1 Future work .. 51

References .. 52

Appendix A: gr_block.h ... 55

Appendix B: Laboratory Experiments ... 58

Appendix B.1 benchmark_tx.py .. 58

Appendix B.2 benchmark_rx.py .. 62

Appendix B.3 tx_voice.py ... 66

Appendix B.4 rx_voice.py ... 70

Appendix B.5 tunnel.py ... 75

 vii

Table of Figures
Figure 1: Introduction to USRP and GNU Radio .. 1

Figure 2: Basic hardware architecture of a modern SDR. ... 4

Figure 3: Signal processing block. ... 5

Figure 4: Universal Software Radio Peripheral (USRP) ... 7

Figure 5: USRP Block Diagram .. 8

Figure 6: USRP Daughter boards .. 9

Figure 7: A basic SDR system based on GNU Radio and USRP 10

Figure 8: Adding Repositories Using Software Sources in Ubuntu 8.04 12

Figure 9: Flow Graph to generate a Dial Tone .. 14

Figure 10: Simplex data transmitter ... 22

Figure 11: Simplex data receiver ... 22

Figure 12: Simplex data transmission; showing the relation between the packet and
the link frame ... 23

Figure 13: setup USRP for loopback simplex communication 25

Figure 14: Voice transmitter .. 28

Figure 15: Voice receiver ... 28

Figure 16: Connecting USRPA Basic RX USRPB Basic TX 29

Figure 17: TUN/TAP and GNU Radio .. 32

Figure 18: Connecting two USRP.. 34

Figure 19: Bluetooth BD_ADDR .. 38

Figure 20: USRP 2.4 GHz Antenna (designed for use with WLAN devices) 40

Figure 21: RFX2400, with an Antenna. Note the two sides of the USRP (A and B) .. 44

 viii

List of Code Examples
Code example 1: dial_tone.py .. 14

Code example 2: howto_square_ff.h ... 19

Code example 3: howto_square_ff.cc .. 20

Code example 4: howto.i ... 21

Code example 5: src/lib/Makefile.am .. 21

Code example 6: benchmark_tx.py; generate and send a packet, sleep after
sending 5 packets ... 24

Code example 7: Print packet summary for a receiver packet 25

Code example 8: gr_buffer.cc .. 31

Code example 9: CSMA (transmitter side is is implemented by the main_loop, while
the receiver is implemented by the phy_rx_callback) ... 33

 ix

List of Tables
Table 1: SDR time line with some representation examples[3] [16] 3

Table 2: USRP Daughter boards in use [15] .. 9

Table 3: GNU Radio Signal Processing Blocks .. 17

Table 4: Directory layout of a new signal srocessing block [22] 18

Table 5: The transmitter options .. 24

Table 6: btrx.py options. .. 42

Table 7: USRP and USRP2 [15] .. 49

 x

List of Acronyms and Abbreviations
GHz Giga Hertz

Hz Hertz

MAC Media Access and Control

RF Radio Frequency

SDR Software-Defined Radio

SR Software Radio

SWING Simplified Wrapper and Interface Generator

USRP Universal Software Radio Peripheral

 1

1. Introduction
The idea of a software-defined radio (SDR) is that all the modulation and demodulation

is done via software, rather than by specialized circuits. The benefit according to Susan
Karlin is “instead of having to build extra circuitry to handle different types of radio signals,
you can just load an appropriate program” [1]. An SDR uses programmable digital devices to
accomplish the signal processing, instead of fixed hardware.

SDR introduces flexibility and rapid development to radio communication systems by
using a software-oriented approach. As software-based approach offers greater flexibility
when developing wireless communication systems, since the wireless system architecture is
not frozen into the hardware, but can be changed at any time via changing the software which
is loaded into the device. By delaying the binding of design decisions until execution time,
the designers can incorporate the latest developments - enabling them to improve the
performance of the systems. This reduces the difference between the state of the art and the
state of practice for wireless communication systems. Additionally, this software-oriented
approach to wireless communication devices allows both flexibility and simpler maintenance,
as most upgrades can be done by loading new software, rather than changing physical
modules.

The Ettus Research Universal Software Radio Peripheral (USRP) is an example of an
SDR. It provides an “RF front end for a computer running the GNU Radio software,
converting radio waves picked up by an antenna into digital copies that the computer
software can handle or, conversely, converting a wave synthesized by the computer into a
radio transmission” [1]. This device can also be viewed as a general purpose front end for
receiving and generating all sorts of different kinds of signals (see Figure 1). In Figure 1, "IF"
standards for intermediate frequency, representing a version of the signal at a lower
frequency that the actual RF. Note that the bandwidth of the signal will need to be at least
twice the radio frequency bandwidth to avoid aliasing (As per Shannon's sampling theorem.)

Figure 1: Introduction to USRP and GNU Radio

The USRP motherboard can have up to two transmitters and two receivers that can
simultaneously transmit and receive from antennas (or wired connections) in real time. There
are various types of daughterboards that can be plugged into the USRP motherboard to
provide an interface between the baseband signal and a number of different frequency ranges.
USRP was design to operate in a number of different portions of the spectrum ranging from 0
Hz to 2.9 GHz. This wide range covers a large variety of different applications. In this thesis

 2

we will take advantage of this hardware platform to enable students to both observe and
create a number of different media access and control protocols.

1.2 Master Thesis Overview
This master’s thesis will design, implement, and evaluate a number of lab exercises for

undergraduate students using the USRP technology to understand a number of different
media access and control (MAC) protocols. Lab exercises will explore different types of
signals and MAC protocols. This thesis contains this introduction, followed by chapter 2 that
provides some basic background information concerning SDR. Chapter 3 describes the
particular SDR hardware platform that we have chosen (i.e., the USRP). Chapter 4 describes
the GNU Radio software that we have built upon. Chapter 5 describes some of the laboratory
exercises that have been designed during this project. Chapter 6 evaluates these laboratory
exercises from a pedagogical point of view. While Chapter 7 presents our conclusions and
suggests some future work. A number of appendices are included, containing the complete
laboratory exercises; along with details for the student (or instructor) on how to set up a
suitable laboratory environment.

1.3 Master Thesis goal
This thesis project has two goals:

1. Show a software defined radio application built on USRP and GNU Radio.

2. Develop laboratory exercises for undergraduate students, using USRP and
GNU Radio to explain the physical and MAC layers using examples drawn
from popular networks that the students are likely to encounter. These
exercises cover different applications with both wired network technology and
several wireless communication technologies.

 3

2. Background

This chapter introduces software defined radio – beginning with some of its history,
moving on to a discussion of underlying hardware architecture of an SDR, and describing the
role of the SDR forum in the development of SDR.

2.1 Software Defined Radio (SDR) History
A SDR is a radio in which software defines signals, frequencies, modulation, and

(optionally) cryptography. SDR design began 1987, when the United States Air Force’s
Rome Laboratory (AFRL) developed a programmable modem. The modem was based on the
Integrated Communications, Navigation, and Identification Architecture (ICNIA) [3]. Despite
of this earlier effort, Walter Tuttlebee argues that “Until the mid-1990’s most readers would
probably not have even come across the term SDR”. The term software defined radio was
introduced by Joseph Mitola III in 1991 "to signal the shift from digital radio to multiband
multimode software-defined radios where "80%" of the functionality is provided in software,
versus the "80%" hardware of the 1990's." [23]. Table 1 shows the time line of the
development of software defined radio.

Table 1: SDR time line with some representation examples[3] [16]

Prject Year Size Features

ICNIA 1978 Fit in a small room A collection of several
single-purpose radios in
one box

Speakeasy Phase I 1992 Six foot (182 cm) rack Included a programmable
cryptography chip.

Speakeasy Phase II 1995 Stack of two pizza
boxes

The first SDR to include
a voice coder and digital
signal processing
resources.

Digital Modular Radio Early 2000 44.45 x 48.90 x 55.9 cm Implemented four full
duplex channels and
could be remotely
controlled using the
Simple Network
Management Protocol via
an Ethernet interface.

USRP 2004 Fit in 21 x 17 x 5.5 cm
box

Allows creating a
software radio using any
computer with a USB2
port. Various plug-on
daughterboards allow
the USRP to be used on
different radio frequency
bands.

As shown in Table 1, SDR evolved from very large (and power hungry devices) to small
man portable devices. Additionally, they evolved from very expensive prototypes to systems
costing less than 1k€. Today an SDR and computer are affordable as laboratory equipment

 4

for an undergraduate course; hence the time is ripe for the development of undergraduate
laboratory course material.

2.2 Modern Software Defined Radio

2.2.1 Hardware Architecture
The basic hardware architecture of a SDR includes a radio front-end, modem, and

application functions (see Figure 2; where the modem and application functions have been
grouped together into a “Digital end” module). Additionally, there needs to be a means for
connecting to network services and for remote management. The following subsections will
discuss each of these elements of the SDR.

Figure 2: Basic hardware architecture of a modern SDR.

2.2.1.1 RF Front-End
The radio frequency (RF) front-end consists of functions to support transmit and receive

modes. Note that some instance of a SDR might be receive mode only or transmit mode only.
The receive mode utilizes:

• Antenna-matching unit

• Low-noise amplifier

• Filters

• Local oscillators

• analog-to-digital converters (ADCs).

This RF front end utilizes filters to reject (or reduce) undesired signals. An important part
of this filtering is to prevent high frequency signals from being aliased into the digitized
bandwidth of the ADC.

The transmit mode utilizes:

• Antenna-matching units

• Filters

• Local oscillator

• One or more digital-to-analog converters (DACs)

 5

The duplexer shown in Figure 2 is to enable the transmit and receiver subsystems to
share an antenna, while avoiding overwhelming the receiver with the high power transmit
signal.

2.2.1.2 The modem
The modulator/demodulator (modem) modulates signals to be transmitted or

demodulates received signals. The modem process to receive signals is basically the inverse
of the process used to modulate the signal to be transmitted. Figure 3 shows how this signal
processing function is performed by the modem.

In Figure 3, bits are taken from a higher layer (such as a network layer packet) for
transmission, grouped into frames, redundancy is added to enable error correction by the
receiver, the bits are mapped to sample(s), and a specific wave is used to provide the selected
representation of each symbol. Additional processing is performed to provide desirable
physical properties and the signal may be multiplexed with other signals before being passed
to the DAC.

Figure 3: Signal processing block.

2.3 Software Defined radio (SDR) and Software Radio (SR)
There are many different definitions of the terms Software Defined radio (SDR) and

Software Radio (SR). Walter Tuttlebee, et al. define SDR as “a radio in which the receive
digitization is performed at some stage downstream from the antenna, typically after
wideband filtering, low noise amplification, and down conversion to a lower frequency in
subsequent stages – with a reverse process occurring for the transmit digitization. Digital
signal processing in flexible and reconfigurable functional blocks defines the characteristics
of the radio.”[6]. These some authors define software radio (SR) by stating that as
“technology progresses, an SDR can move to an almost total SR, where the digitization is at
(or very near to) the antenna and all of the processing required for the radio is performed by
software residing in high-speed digital signal processing elements.” [6].

In this thesis project we will mostly be concerned with SR as we perform most of the
processing on the signal after it is available in a general purpose processor. This requires
either a very high performance computer or limiting the bandwidth and signaling rates of the
signals that we will deal with.

 6

2.4 SDR Forum
The SDR Forum was founded in 1996 by Wayne Bonser as “a non-profit international

industry association dedicated to promoting the success of next generation radio
technologies.”[12]. SDR Forum members came from a number of different areas, including
end customers, suppliers/manufacturers, standards organizations, academic institutions, and
industry associations. The SDR Forum established an Educational Working Group to develop
and deliver materials on a wide range of topics to facilitate the implementation of software
defined radios.

 7

3. The Universal Software Radio Peripheral (USRP)
The Ettus Research Universal Software Radio Peripheral (USRP) [15] provides a low

cost platform to develop SRs. The USRP has a Cypress FX2 USB 2.0 interface, four high
speeds digital to analog converters, four high speed analog to digital converters, and a large
Altera Cyclone field programmable gate array (FPGA) that interconnects all of the
aforementioned devices. The USRP is shown in Figure 4 and schematically in Figure 5.

Figure 4: Universal Software Radio Peripheral (USRP)

Each AD9862 contains four ADCs. Programmable gain amplifiers, placed in-front of the
ADCs provides input signal level adjustment. Further details of the AD9862 can be found at
[17]. More specifically the USRP has two Analog Devices AD9862 chips for analog to
digital and digital to analog conversions. These devices also support gain control for the
analog path and signal processing for the digital path.

Each of ADCs runs at 64 Million samples per second (64 Msps) with 12 bits per sample,
the DAC accept as input 14 bits per sample generating 128 Msps. As the maximum signaling
rate of a USB 2.0 link is 480 Mbps, this means that we can not simply forward the entire
received signal to an attached processor - nor can we receive a signal from an attached
processor and output it directly via the DAC. Reducing the sample rate in the receive path
and increasing the sample rate in the transmit path must be accomplished by the FPGA. Note
that it is possible to run the ADC and DAC at lower rates. For some bandwidth signals the
performance of the device may be sufficient to directly pass a digital version of the signal to
the USRP and/or receive a digital version of the signal from the USRP. For example at 40
Msps it is possible to send 12 bit digitized data from the USRP to the host computer (if there

Altera FPGA

Analog Devices
Mixed Signal
Processor
(AD9862)

Cypress FX2

 8

is no traffic in the reverse direction). Similarly 48 Msps at 10 bits per sample or 60Msps at 8
bits per sample might be possible.

Figure 5: USRP Block Diagram

The Altera FPGA can be programmed using tools from Altera. The descriptions of the
circuit to be mapped onto the FPGA are generally written in a hardware description language.
In the case of the tools we have used, this language is Verilog (first standardized in IEEE
1364-1995 [18]; now IEEE P1800 [19]). The global clock frequency of the FPGA is 64MHz.
This global clock frequency insures proper pipelining of everything within the FPGA.

3.1 USRP Daughter boards
There are four expansion slots on the USRP mother board. These enable a user to plug in

up to two transmitter daughter boards and two receiver daughterboards. These daughters
implement the specific radio frequency front end for a given range of frequencies. Thus the
motherboard only performs baseband (or intermediate frequency) processing of the signals.
On the USRP motherboard the transmitter expansion slots are labelled TXA and TXB, while
the receiver expansion slots are labeled RXA and RXB. Each transmitter expansion slot has
access to two high speed DACs; as the motherboard has four DACs with two connected to
TXA and two to TXB. Each receiver expansion slot has access to two high speed ADCs, as
the motherboard has four ADCs with two for RXA and two for RXB. This allows the system
to simultaneously have two different RFs front-ends, enabling a given USRP to connect to
two antennas for each of the two transmit and receive paths, for a total of four antennas in
total. Note that there is no requirement that the receiver (or transmitter) daughter cards be for
different frequencies, this flexibility might be used to have one daughter card tuned to one
part of a frequency band while the other is turned to a different part of the same frequency
band. Table 2 list a number of the different types of daughter boards that can be used with the
USRP motherboard. Figure 6 shows a number of these daughter boards.

 9

Basic TX Basic RX LFTX

LFRX TV
RX

DBSRX

RFX Transceiver

Figure 6: USRP Daughter boards

Table 2: USRP Daughter boards in use [15]

Daughter board Frequency Range Note

Basic TX 1MHz – 250MHz Gives direct access to all signals on the daughter board interface.
Designed for use with external RF and intermediate frequency
sources. Basic RX

LFTX DC – 30 MHz Frequency response extends down to DC. With a 30 MHz low pass
filter to support antaliasing. LFRX

TVRX 50 MHz – 860
MHz

Complete VHF and UHF receiver system based on a TV tuner
module. This is only a receiver and there is no corresponding
transmitter daughter card.

DBSRX 800 MHz – 2.4
GHz

3-5 dB noise. Covers many bands of interest for use for student labs
- since IEEE 802.11 WLAN and Bluetooth both use the 2.4 GHz
band. Additionally, IEEE 802.15.4 can use 868.0-868.6 MHz
(Europe), 902-928 (North America), and 2.4-2.483.5 (worldwide).

RFX; Series of
Transceivers

400-500 MHz

150-1450MHZ

800-1000MHz

1.5-2.1 GHz

2.3-2.9 GHz

RFX400 Transceiver, 100+mW output

RFX900 Transceiver, 200+mW output

RFX1200 Transceiver, 200+mW output

RFX1800 Transceiver, 100+mW output

RFX2400 Transceiver, 20+mW output

 10

4. GNU Radio
GNU Radio is free Python-based software architecture implemented to run on a Linux

platform. More specifically, GNU Radio provides a collection of signal possessing blocks
that support the USRP. This collection of signal processing blocks was developed by Eric
Blossom in early 2000 [8]. Bruce A. Fette et al. argue that “GNU Radio in general is a good
starting point for entry-level SDR and should prove successful in the market, especially in the
amateur radio and hobbyist market.” [3]. Figure 7 illustrates how the GNU Radio signal
processing blocks can be used together with the USRP.

The GNU Radio graphical user interface is written in Python. While a programmer could
use any programming language to build an interface, the GNU Radio project recommends
using wxPython [21] to maximize cross-platform portability.

The GNU Radio code is written in both C++ and Python. The computationally intensive
processing blocks are implemented in C++, while Python is used for developing applications
that sit on top (and control) these blocks. The GNU radio code assumes that the FPGA has
already been programmed with a configuration suitable for use by the GNU radio code.

Figure 7: A basic SDR system based on GNU Radio and USRP

4.1 Installing the GNU Radio
This section describes how to build GNU Radio version 3.2.2 - released on July 15,

2009. In this thesis we experienced problems installing GNU Radio as described in this
release’s build guide [25]. The problems are:

1- SVN version (svn co http://gnuradio.org/svn/gnuradio/branches/releases/3.2 gnuradio)
gives errors on installation. Instead, we used the tarball file to get the final stable release
(ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.2.2.tar.gz).

2- GNU Radio version 3.2.2 needs boost library version 1.35 or later which is not part of
Fedora 10 or Ubuntu 8.04. The build guide describes how to install boost version 1.37.
The build guide gives an example of installing boost in /opt/boost_1_37_0 by doing the
following:

 11

$ BOOST_PREFIX=/opt/boost_1_37_0

$./configure --prefix=$BOOST_PREFIX --with-libraries=thread,date_time,program_options

After this you should install GNU Radio:
$ export LD_LIBRARY_PATH=$BOOST_PREFIX/lib

$./configure --with-boost=$BOOST_PREFIX

Unfortunately, following these instructions will give an error that GNU Radio can not
find boost version 1.35 or later. This can be fixed by installing boost in the default directory
/usr/local/ ; thus, our installation solution is to install boost by saying:
$./configure --prefix=/usr/local/ --with-libraries=thread,date_time,program_option

Now GNU Radio can be installed by simply saying:
$./configure

4.1.1 Installing GNU Radio on Fedora 10
Preparing Fedora 10 for installations. Install basic requirements for building GNU Radio by
running the following:

$ yum groupinstall "Engineering and Scientific" "Development Tools"

$ yum install fftw-devel cppunit-devel wxPython-devel libusb-devel
guile alsa-lib-devel numpy gsl-devel python-devel pygsl python-cheetah
python-lxml

Build the firmware for the microcontroller on the USRP by running:
$ yum install sdcc

Add /usr/libexec/sdcc to your PATH before building GNU Radio by running:
$ export PATH=/usr/libexec/sdcc:$PATH

Install the HTML documentation generator by running:
$ yum install xmlto graphviz

Install the Qt plotting tools by running:
$ yum install qt4-devel qwt-devel qwtplot3d-qt4-devel

Set the PYTHONPATH environment variable to the appropriate value. This can be done by
the following two steps. First which determine Python version you are using. This can be
done by running:

$ python –V

Python 2.5.2

 Second set the PYTHONPATH environment variable to the appropriate value for this
version. This can be done by the following (be careful of the Python version):

$ export PYTHONPATH=/usr/local/lib/python2.5/site-packages

Download and install boost into /usr/local/
$ wget

http://sourceforge.net/projects/boost/files/boost/1.37.0/boost_1_37_0
.tar.bz2/download

$ tar –xf boost_1_37_0.tar.bz2

$ cd boost_1_37_0

 12

$./configure --prefix=/usr/local/ --with-\
libraries=thread,date_time,program_option

$ make

$ sudo make install

Download and install GNU Radio
$wget ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.2.2.tar.gz

$ tar –xzf gnuradio-3.2.2.tar.gz

$ cd gnuradio-3.2.2

$./bootstrap

$./configure

$ make

$ make check

$ sudo make install

4.1.2 Installing GNU Radio on Ubuntu 8.04
To prepare Ubuntu 8.04 10 for installation of the GNU Radio software you need to

install a nuber of modules. Add the following repositories in the source packages (see Figure
8)”

deb http://us.archive.ubuntu.com/ubuntu/ DIST main restricted universe
multiverse

deb http://us.archive.ubuntu.com/ubuntu/ DIST-updates main restricted universe
multiverse

deb http://security.ubuntu.com/ubuntu/ DIST-security main restricted universe
multiverse

Figure 8: Adding Repositories Using Software Sources in Ubuntu 8.04

Update the package management system
$ sudo apt-get update

 13

Install the required packages
$ sudo apt-get -y install swig g++ automake1.9 libtool python-dev
fftw3-dev /

 libcppunit-dev sdcc libusb-dev libasound2-dev libsdl1.2-dev /

python-wxgtk2.8 subversion guile-1.8-dev libqt4-dev python-numpy-ext /

ccache python-opengl libgsl0-dev python-cheetah python-lxml doxygen /

ccache python-opengl libgsl0-dev python-cheetah python-lxml doxygen-
tools

Install optional packages
sudo apt-get -y install gkrellm wx-common libwxgtk2.8-dev alsa-base
autoconf xorg-dev g77 gawk bison openssh-server emacs cvs usbview octave

Download and install boost into the /usr/local/
$ wget

http://sourceforge.net/projects/boost/files/boost/1.37.0/boost_1_37_0
.tar.bz2/download

$ tar –xf boost_1_37_0.tar.bz2

$ cd boost_1_37_0

$./configure --prefix=/usr/local/ --with-
libraries=thread,date_time,program_option

$ make

$ sudo make install

Download and install GNU Radio
$wget ftp://ftp.gnu.org/gnu/gnuradio/gnuradio-3.2.2.tar.gz

$ tar –xzf gnuradio-3.2.2.tar.gz

$ cd gnuradio-3.2.2

$./bootstrap

$./configure

$ make

$ make check

$ sudo make install

Provide non-root user access to the USRP
$ sudo addgroup usrp

$ sudo usermod -G usrp -a <YOUR_USERNAME>

$ echo 'ACTION=="add", BUS=="usb", SYSFS{idVendor}=="fffe",
SYSFS{idProduct}=="0002", GROUP:="usrp", MODE:="0660"' > tmpfile

$ sudo chown root.root tmpfile

$ sudo mv tmpfile /etc/udev/rules.d/10-usrp.rules

4.2 GNU Radio Python Applications
The basic concepts underlying the GNU Radio are flow graphs and blocks (nodes of the

graph). The blocks carry out the actual signal processing (see section 4.3). The data passed
between these blocks could be of any kind. Figure 9 shows an example of a dial tone flow

 14

graph (dial_tone.py). This code is one of the GNU Radio examples. The source code is
shown in Code example 1.

Figure 9: Flow Graph to generate a Dial Tone

In this example there are two sources. These sources generate 350Hz and 440Hz sine
waves (in order to make an American dial tone). These sources are connected to a single
audio sink with two inputs (the signal passed to one input is output by the audio sink on the
left channel of the sound card, while the input to the second input is output on the right
channel of the sound card). The result will be you will hear the two tone dial tone.
1 #!/usr/bin/env python

2 from gnuradio import gr

3 from gnuradio import audio

4 class my_top_block(gr.top_block):

5 def __init__(self):

6 gr.top_block.__init__(self)

7 sample_rate = 32000

8 ampl = 0.1

9 src0 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 350, ampl)

10 src1 = gr.sig_source_f (sample_rate, gr.GR_SIN_WAVE, 440, ampl)

11 dst = audio.sink (sample_rate, "")

12 self.connect (src0, (dst, 0))

13 self.connect (src1, (dst, 1))

14 if __name__ == '__main__':

15 try:

16 my_top_block().run()

17 except KeyboardInterrupt:

18 pass

Code example 1: dial_tone.py

Line 1 tells the shell that this is Python file and that it should use the Python interpreter
to execute it. On lines 2 and 3, the import command imports the GNU Radio (gr) and audio
modules from the GNU Radio. The gr module must be imported to run a GNU Radio
application. The audio module loads an audio device block (to input or output audio from a
sound card and to control this audio device). Lines 4 begins the definition of my_top_block
class which is derived from gr.top_block (a subclass of gr), this is a flow graph container.
The class my_top_block is defined from line 4 to 13. Line 5 defines a function (the
constructor of the class) my_top_block (__init__). The function is realized in line 6 by
calling the parent constructor, then in line 7 setting the sample_rate variable which controls
the sampling rate of the signal is set, and line 8 sets the ampl variable which controls the

 15

amplitude of the signal. The dial_tone example (see Figure 9) contains three blocks and two
edges (connections), line 9 defines a signal source (src0) which generates a sine wave at 350
Hz, 32k sampling rate, and 0.1 amplitute. While line 10 defines a signal source (src1) which
generates a sine wave at 440 Hz, 32k sampling rate, and 0.1 amplitude. The ‘f’ sufix of
gr.sig_source_f indicate that the source signal is a floating point value. Line 11 defines the
destination (dst) asan audio sink –this can be used to send/receive audio signals to a sound
card and to control this sound card. Lines 12 and 13 connect the block. The connect syntax
depends on the number of outputs of block1 and block2, the syntax is
self.connect(block1,block2,block3….), this would indicate that block1’s output should be
connected with block2’s input , and block2’s output should be connected to block3’s input.
The statements try and except on lines 15 and 17 stop the Python running program when the
user press Control-C on the keyboard. Line 14 indicates that if this code is the only module
being executed by the Python interpreter that the following code should be executed -- this
will cause my_top_block to be executed.

4.3 GNU Radio Signal Processing Blocks
The GNU Radio project provides many signal processing blocks (implemented in C++)

as a library and supports the ability to be establish connections between these blocks. The
programmer develops a radio by building a flow graph in which the signal processing blocks
are represented as vertices and the data flow between them is represented as edges. Blocks’
attributes specify the number of input ports and/or output ports and the data type (for
example: short, float, and complex) for this port. Blocks may be built outside the GNU Radio
core, then loaded as a shared library. Python dynamically loads shared library blocks using
import specifications. Simplified Wrapper and Interface Generator (SWING) can be used to
build the connections to allow code to be called from Python. GNU Radio includes a basic set
of signal processing blocks that programmers can import into their applications.

 16

Table 3 shows these blocks.

 17

Table 3: GNU Radio Signal Processing Blocks

Sources

 Signal Source

 Noise Source

 Vector Source

 Random Source

 Null Source

 File Source

 UDP Source

 Audio Source

 USRP Source

 USRP Dual Source

Sinks

 Variable Sink

 Null Sink

 File Sink

 UDP Sink

 Audio Sink

 USRP Sink

 USRP Dual Sink

Graphical Sinks

 Numerical Sink

 Scope Sink

 FFT Sink

 Waterfall Sink

Operators

 Add

 Multiply

 Divide

 nLog10

 Multiply Vector

 Add Constant

 Multiply Constant

 Add Constant Vector

 Multiply Constant
Vector

Coders

 Constellation
Decoder

 Differential Encoder

 Differential Decoder

 Differential Phasor

 Correlate Access
Code

Conversions
 Complex

Components

 Complex Conjugate

 Float to Complex

 Complex to Float

 Float to Short

 Short to float

 float to Char

 Char to Float

 Float to UChar

 UChar to Float

 Complex to IShort

 IShort to Complex

 Upacked to Packed

 Packet to Unpacked

 Unpacked k Bits

 Binary Slicer

 Chunks to Symbols

 Map

 VOC

 Interleave

 Deinterleave

 Stream to Stream

 Stream to Vector

 Vector to Stream

Generic Filters

 FIR Filter

 FFT Filter

 Freq Xlating FIR Filter

 Rational Resampler

 IIR Filter

 Filter Delay

 Channel Model

Filters
 Low Pass Filter

 High Pass Filter

 Band Pass Filter

 Band Reject Filter

 Window

 Root Raised Cosine

 Single Pole IIR Filter

 Hilbert

 Goertzel

 Power Squelch

 Downsample

 Upsample

 Fractional Resampler

 Fractional Interpolater

 Automatic Gain Control

 Automatic Gain Control2

 Free Forward AGC

 CMA Filter

 Clock Recovery

 FFT

 IFFT

Modulators
 Frequency Modulator

 Phase Modulator

 Quadrature
demodulator

 Costas Loop

 Phase Locked Loop

 WFM Receive

 WFM Transmit

 NBFM Receive

 NBFM Transmit

 AM Demodulator

 FM Demodulator

 PSK Modulator

 PSK Demodulator

 GMSK Modulator

 GMSK Demodulator

 QAM Modulator

 AQM Demodulator

 Packet Modulator

 Packet Demodulator

Misc

 Throttle

 Valve

 Selector

 Head

 Skip Head

 Input Terminator

 Copy

 Tun Tap

 RMS

 About

 Note

Trellis

 Trellis Encoder

 Metrics

 Viterbi Decoder

 Viterbi Decoder
Combined With Metric

 BCJR Algorithm

 BCJ Algorithim Combined
With Metric

 Intreleaver

 Deinterleaver

 18

The gr_block C++ class is the base of all classes. Writing a signal processing block
involves writing the following files:

1- .h file: Creates libraries of codes.

2- .cc file: Defines a new class and allows it to be called from python.

3- .i file: Tells SWIG how to build the connection.

The GNU Radio installation involves installing autotools (see 4.1), which includes
autoconf, automake, and libtool tools. These tools facilitate portability across a variety of
systems, and are used to generate Makefiles, read configure.ac, and producing a configure
shell script. Makefile.am specifies the libraries to be used and is read by automake to generate
a Makefile.in file. The directory layout of a new signal processing block is shown in Table 4.
Table 4: Directory layout of a new signal srocessing block [22]

Directory/File name Description

Your_dir/Makefile.am Top level Makefile.am

Your_dir /Makefile.common Common fragment included in sub-Makefiles

Your_dir /bootstrap Runs autoconf, automake, libtool first time through

Your_dir /config Directory of m4 macros used by configure.ac

Your_dir /configure.ac Input to autoconf

Your_dir /src Source directory

Your_dir /src/lib C++ code goes here

Your_dir /src/lib/Makefile.am

Your_dir /src/python Python code goes here

Your_dir src/python/Makefile.am

Your_dir /src/python/run_tests Script to run tests in the build tree

4.3.1 Creating a Simple Signal Processing Block
In this section we will describe how to write a simple signal processing block that

calculates the square of a single input floating point value. Writing the block involves
creating .h, .cc, and .i files. In this example, the block will be named howto_square_ff, while
the block in the Python module ends in the string gnuradio.howto. The gr_block.h (see
Appendix A) includes a general_work method which is responsible for the actual signal
processing, the simple signal processing block overrides the general_work code. The
following code and description show the howto_square_ff.h , howto_square_ff.cc, and
howto.i file.

 19

1 #ifndef INCLUDED_HOWTO_SQUARE_FF_H

 2 #define INCLUDED_HOWTO_SQUARE_FF_H

 3 #include <gr_block.h>

 4 class howto_square_ff;

 5 typedef boost::shared_ptr<howto_square_ff> howto_square_ff_sptr;

 6 howto_square_ff_sptr howto_make_square_ff ();

 7 class howto_square_ff : public gr_block

 8 {

 9 private:

 10 friend howto_square_ff_sptr howto_make_square_ff ();

 11 howto_square_ff ();

 12 public:

 13 ~howto_square_ff ();

 14 int general_work (int noutput_items,

 15 gr_vector_int &ninput_items,

 16 gr_vector_const_void_star &input_items,

 17 gr_vector_void_star &output_items);

 18 };

 19 #endif

Code example 2: howto_square_ff.h

Lines 1 and 2 in the code prevents multiple reference if this should be included more
than once, line 3 includes the gr_block.h library file, the class howto_square_ff is defined in
line 4. Line 5 defines that to access the gr_block.h we will use boost::shared_ptr which is
helpful in a C++/Python environment to dynamically allocate objects and automatically
delete pointers at the appropriate time [23]. Line 6 defines howto_make_square_ff as a public
interface. The friend declaration on line 10 allows howto_make_square_ff to access the
private constructor. Howto_square_ff is defined as a private constructor on line 11, while
~Howto_square_ff on line 13 is public destructor. Lines 14 to 17 override the general_work
method which is defined in gr_block.h. Finally, line 19 ends the
INCLUDED_HOWTO_SQUARE_FF_H conditional block.

 20

 1 #ifdef HAVE_CONFIG_H

 2 #include "config.h"

 3 #endif

 4 #include <howto_square_ff.h>

 5 #include <gr_io_signature.h>

 6 howto_square_ff_sptr

 7 howto_make_square_ff ()

 8 {

 9 return howto_square_ff_sptr (new howto_square_ff ());

 10 }

 11 static const int MIN_IN = 1;

 12 static const int MAX_IN = 1;

 13 static const int MIN_OUT = 1;

 14 static const int MAX_OUT = 1;

 15 howto_square_ff::howto_square_ff ()

 16 : gr_block ("square_ff",

 17 gr_make_io_signature (MIN_IN, MAX_IN, sizeof (float)),

 18 gr_make_io_signature (MIN_OUT, MAX_OUT, sizeof (float))){}

 19 howto_square_ff::~howto_square_ff (){}

 20 int

 21 howto_square_ff::general_work (int noutput_items,

 22 gr_vector_int &ninput_items,

 23 gr_vector_const_void_star &input_items,

 24 gr_vector_void_star &output_items)

 25 {

 26 const float *in = (const float *) input_items[0];

 27 float *out = (float *) output_items[0];

 28

 29 for (int i = 0; i < noutput_items; i++){

 30 out[i] = in[i] * in[i];

 31 }

 32 consume_each (noutput_items);

 33 return noutput_items; }

Code example 3: howto_square_ff.cc

The file config.h (line 2) contains probing results, and were generated by configure.
Lines 6 to 10 create a new instance of howto_squire_ff, return a boost shared_ptr. Lines 11 to
14 specify constraints on the maximum and minimum input and output streams (and the
width of the data values for these streams), in this simple signal processing block only one

 21

input and one output are accepted and the values are sizeof(float) bytes wide. Lines 15 to 18
define the private constructor, and lines 19 to 31 show the virtual destructor that calculates
the square of a single input floating point number. Lines 32 and 33 tell the run time system
how many input items will be consumed on each input stream and how many output items
will be produced.

 1 %include "exception.i"

 2 %import "gnuradio.i"

 3 %{

 4 #include "gnuradio_swig_bug_workaround.h"

 5 #include "howto_square_ff.h"

 6 #include <stdexcept>

 7 %}

 8 GR_SWIG_BLOCK_MAGIC(howto,square_ff);

 9 howto_square_ff_sptr howto_make_square_ff ();

 10 class howto_square_ff : public gr_block

 11 {

 12 private:

 13 howto_square_ff ();

 14 };

Code example 4: howto.i

Line 6 defines a mandatory bug fix. The arguments on line 8, howto: is the package
prefix, and square_ff: is the name of the class without the postfix prefix.

The file Makefile.am is needed to complete the simple signal processing block. This file
is located in the “Your_dir/src/lib/” directory (see Table 4). This file will be used to build
a shared library from the source file and includes additional rules to use SWING.
 1 include $(top_srcdir)/Makefile.common

 2 ourpythondir = $(grpythondir)

 3 ourlibdir = $(grpyexecdir)

 4 INCLUDES = $(STD_DEFINES_AND_INCLUDES) $(PYTHON_CPPFLAGS)

 5 ourlib_LTLIBRARIES = _howto.la

 6 _howto_la_SOURCES =

 7 howto_square_ff.cc

 8 _howto_la_LDFLAGS = -module -avoid-version

 9 grinclude_HEADERS =

 10 howto_square_ff.h

 11 MOSTLYCLEANFILES = $(BUILT_SOURCES) *.pyc

Code example 5: src/lib/Makefile.am

 22

5. Laboratory Experiments
This chapter describes some of the laboratory exercises that have been designed during

this project. The first exercise concerns simplex data transmission, the second exercise
concerns simplex voice transmission, the third exercise introduces carrier sense multiple
access, the fourth exercise realize a Bluetooth sniffer (IEEE 802.15.4 sniffer), the fifth
exercise realize a full IEEE 802.11 implementation.

5.1 Experiment 1: Simplex data transmission
In this exercise we will learn how simplex data communication can be implemented. In

this case there will not be any feedback from the receiver packets arrival of the packets at the
receiver. The transmitter sends 5 packets, then waits one second and sends the next 5 packets.
The equipment required for this exercise is a PC, together with one USRP, Basic TX, Basic
RX, and an RF cable. Based on the exercise plan, the following objectives were developed
for the simplex data transmission.

• Objective 1: Learning how to assemble and disassemble a simple header

• Objective 2: Learning how to generate and send a signal packet.

5.1.1 Requirements
• One USRP; with one Basic RX and one basic TX installed.

• One PC; GNU Radio installed.

• One RF Cable

5.1.2 Simplex data transmission implementation

Figure 10: Simplex data transmitter

Figure 11: Simplex data receiver

Note that in the figure the first (green) box shows the code that is running on the PC,
while the next (pink) box shows the USRP, and RF cable connected the transmitter with the

RF cable

 23

receiver (rather than using two antennas). The reasons that we do not use an antenna for this
experiment are we do not want to radiate energy into the world nor receive signals (other than
from the transmitter). Using a cable also allows multiple students to carry out this laboratory
exercise at the same time without interfering with each other.

5.1.3 Understanding the code
The code of this exercise is part of the GNU Radio examples located in (see Appendix

B.1 benchmark_tx.py and Appendix B.2 benchmark_rx.py ; benchmark_tx.py and
benchmark_rx.py and located in:

gnuradio-3.2.2/gnuradio-examples/python/digital/benchmark_tx.py

gnuradio-3.2.2/gnuradio-examples/python/digital/benchmark_rx.py

the file benchmark_tx.py is the transmitter code, while the file benchmark_rx.py is the
receiver code.

5.1.3.1 Transmitter
The file benchmark_tx.py generates packets and frames in the format as shown in Figure

12. The size of the frame specified by the user. The software running in the PC generates the
packets and frames and passed them via the USB interface to USRP.

Figure 12: Simplex data transmission; showing the relation between the packet and the link frame

The following code describes how to generate and send packets. There are two options
for the source of the file; the file is either defined by the user or generated by the program.
The transmitter waits one second after sending five packets; then repeats this process. The
default packet size (pkt_size) is 1500 bytes which includes two bytes containing the packet
number (show as pktno in the figure above). These two extra bytes, means that each frame
contains pkt_size – 2 bytes of data. Each frame ends with a octet containing 0x55 – this is
used as a marker to terminate the frame. The preamble is used by the receiver to recognize
the start of new frame. In Code example 6 we can see struct function which is responsible for
generating packets in the format represented in Figure 12. struct is Python function, the “!”
indicates that the byte order of the packed data is network (big-endian). The struct.pack() is
used to packing a packet, while struct.unpack() is used to unpack packet (see Code example 6
). The “H” format character in the struct function means the conversion between C language
and Python values should be obvious given its type (unsigned short C type to integer Python
type).

Frame

Packet

 24

 nbytes = int(1e6 * options.megabytes)

 n = 0

 pktno = 0

 pkt_size = int(options.size)

 while n < nbytes:

 if options.from_file is None:

 data = (pkt_size - 2) * chr(pktno & 0xff)

 else:

 data = source_file.read(pkt_size - 2)

 if data == '':

 break;

 payload = struct.pack('!H', pktno & 0xffff) + data

 send_pkt(payload)

 n += len(payload)

 sys.stderr.write('.')

 if options.discontinuous and pktno % 5 == 4:

 time.sleep(1)

 pktno += 1

 send_pkt(eof=True)

 tb.wait()

Code example 6: benchmark_tx.py; generate and send a packet, sleep after sending 5
packets

Table 5 shows the transmitter options when running the code.
Table 5: The transmitter options

Options Descriptions

-m The modulation choice. The user can choose between GMSK, DBPSK, and
DQPSK modulations. The default is GMSK. Details of these different modulations
can be found on [34].

-s The packet size choice. The user can define packet size he desire, the default
packet size is 1500 bytes.

-M Sets the number of megabytes to send. This option tells the program to generate a
file of indicated size.

-f Defines the desired frequency. This frequency must be set to the same value in
both the transmitter and receiver.

5.1.3.2 Receiver
The program implemented by benchmark_rx.py listens for incoming packets and prints a

summary of each packets, and checks for errors in each packet. In the printed summary the
strings “True” or “False” indicates that the CRC of the DATA is correct (“True”) or wrong
(“False”). The packet contains the field “pktno” and “payloaad”. Code example 7 (from
benchmark_rx.py) encapsulates the packet from the frame and prints a packet summary.

 25

global n_rcvd, n_right

def main():

 global n_rcvd, n_right

 n_rcvd = 0

 n_right = 0

 def rx_callback(ok, payload):

 global n_rcvd, n_right

 (pktno,) = struct.unpack('!H', payload[0:2])

 n_rcvd += 1

 if ok:

 n_right += 1

 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (

 ok, pktno, n_rcvd, n_right)

Code example 7: Print packet summary for a receiver packet

5.1.4 Setup and Perform a Simplex Data transmission
1. Connect the Basic TX and Basic RX by RF cable (we will not use antenna), see Figure 13.
Note that in this figure the RFX2400 is installed (for use in later experiment) – but it is not
used in this experiment.

2. Plug the USRP power in (you may need to use an adapted to go from the DC power supply
to the local mains power outlet) and connect USB cable to the PC (in this case we are using
laptop computer).

Figure 13: setup USRP for loopback simplex communication

RF cable
connecting the
transmitter and
receiver

USB cable
connected to the
PC (laptop) Transmitter

RFX4200

Receiver

DC power from
the DC power
supply

 26

3. Open a terminal and start the receiver first. We will use all default values, but specify a
900 MHz frequency.
 $./benchmark_rx.py –f 900M

4. Open a new terminal and start the transmitter. We will use all default values, but specify
900 MHz frequency.

$./benchmark_tx.py –f 900M

Here an example of the output of the transmitter and receiver

5.1.5 Student Exercises
Each student (or group of students) can write lab report cover the following.

1. Calculate the transmission time.

2. Use the other two defined types of modulation. What are the differences between each
modulation and how does it affect the transmission?

3. Run the application using two PCs; PCA for the transmitter and PCB for the receiver.
And repeat steps 1) and 2). Do you get the same results?

4. What would happen if you used two antennas rather than the RF cable to allow the
receiver to listen to the transmission of the transmitter? What frequencies would be
emitted? What existing services could this interfere with?

5. [Advanced optional exercise] Use a program such as SnoopyPro to look at the data
being set over the USB interface to and from the USRP. What can you learn from
examining this traffic?

root@mona:/sdr/gnuradio-3.2.2/gnuradio-examples/python/digital#
./benchmark_rx.py -f 900M

>>> gr_fir_fff: using SSE

Requested RX Bitrate: 100k

Actual Bitrate: 125k

ok = True pktno = 0 n_rcvd = 1 n_right = 1

ok = True pktno = 1 n_rcvd = 2 n_right = 2

ok = True pktno = 2 n_rcvd = 3 n_right = 3

root@mona:/sdr/gnuradio-3.2.2/gnuradio-examples/python/digital#
./benchmark_tx.py -f 900M

>>> gr_fir_fff: using SSE

Requested TX Bitrate: 100k Actual Bitrate: 125k

...

...

...

...

...

...

 One "." per packet
transmitted.

 27

6. [Advanced optional exercise] Replace the cable with a "tee" in the middle - connect
the tee to an oscilloscope. Look at the resulting signal on the oscilloscope. What do
you see when you use different forms of modulation. [Note that a USRP could also be
used as an oscilloscope.]

7. [Advanced optional exercise] Replace oscilloscope in the previous exercise with
another USRP and use it as a spectrum analyzer.

 28

5.2 Experiment 2: Voice Transmission
This experiment is similar to experiment 1; but instead of a file we are sending and

receiving a voice signal. The code uses GSM-FR encoder and decoder to as a voice CODEC.
see Figure 14 and Figure 15.

Figure 14: Voice transmitter

Figure 15: Voice receiver

5.2.1 Requirements
• Two USRPs; USRPA with one Basic RX and USRPB one basic TX installed.

• Two PCs; with GNU Radio installed.

• One RF Cable.

5.2.2 Voice Transmission Code
The code used in this exercise is part of the GNU Radio examples located in (see

Appendix B.3 tx_voice.py and Appendix B.4 rx_voice.py):

/gnuradio-3.2.2/gnuradio-examples/python/digital/tx_voice.py

/gnuradio-3.2.2/gnuradio-examples/python/digital/ rx_voice.py

5.2.3 Setup and Run Voice Transmission
1. Connect USRP-A Basic RX with USRP-B Basic TX. See Figure 16.

RF cable

 29

Figure 16: Connecting USRPA Basic RX USRPB Basic TX

2. Connect USRPA with PCA and USRPB with PCB using USB cable. Make sure that you
have connected a speaker to PCA and microphone to PCB.

3. On PCA open a terminal and enter the following command to start the receiver program.

 ./rx_voice.py -f 900M

4. On PCB open a terminal and write the following command to start the transmitter program.

 ./tx_voice.py -f 900M

Here an example of the output of the transmitter and receiver

USRPA
USRPB

Receiver

Transmitter

RF Cable

 30

./rx_voice.py -f 900M

>>> gr_fir_fff: using SSE

Requested RX Bitrate: 50k

Actual Bitrate: 125k

gr_buffer::allocate_buffer: warning: tried to allocate

 1985 items of size 33. Due to alignment requirements

 4096 were allocated. If this isn't OK, consider padding

 your structure to a power-of-two bytes.

 On this platform, our allocation granularity is 4096 bytes.

ok = True n_rcvd = 1 n_right = 1

aUok = True n_rcvd = 2 n_right = 2

ok = True n_rcvd = 3 n_right = 3

ok = True n_rcvd = 4 n_right = 4

aUok = True n_rcvd = 5 n_right = 5

./tx_voice.py -f 900M

>>> gr_fir_fff: using SSE

Requested TX Bitrate: 50k Actual Bitrate: 125k

gr_buffer::allocate_buffer: warning: tried to allocate

1985 items of size 33. Due to alignment requirements

4096 were allocated. If this isn't OK, consider padding

your structure to a power-of-two bytes.

On this platform, our allocation granularity is 4096 bytes.

............................uU............................uU............................uU............................uU.........................
...uU............................uU............................uU............................uU............................uU.........................

In Appendix B.4 rx_voice.py line 56 the number of messages to hold in the queue
specified 33 (you can see that the size of items in the output for both the transmitter and
receiver is 33). This information is used by rg_buffer.cc (located in gnuradio-3.2.2/gnuradio-
core/src/lib/runtime/) to generate the buffer. The message is a performance warning and it
means that the system (i.e. PC) will use more memory and run slower. Code example 1 show
part of the gr_buffer which is prints part of the past output samples:

“uU” means USRP
underrun (not enough
sample ready to send
to USRP sink)

“aU” means audio underrun (not
enough samples ready to send to
sound card sink)

 31

if (nitems > 2 * orig_nitems && nitems * (int) sizeof_item > granularity){

std::cerr << "gr_buffer::allocate_buffer: warning: tried to allocate\n"

<< " " << orig_nitems << " items of size "

<< sizeof_item << ". Due to alignment requirements\n"

<< " " << nitems << " were allocated. If this isn't OK,
consider padding\n"

<< " your structure to a power-of-two bytes.\n"

<< " On this platform, our allocation granularity is " <<
granularity << " bytes.\n";

Code example 8: gr_buffer.cc

There is a virtual memory to implement the circular buffer; which is having virtual page
mapping to the same physical page. The virtual memory requires first-in-first-out (FIFO)
which is an integral number of pages (“items”). Pages are 4096 bytes on x86 and x86-64
machines, the FIFO size is equal of the least common multiple of 4096 and the item size
which is one page of 4096 bytes. You can find more information of this circular buffer
implementation on [37], search for “how do I disable this buffer warning?”.

5.2.4 Student Exercise
1. Change the sample rate, decrease it 50 sample per second each time and examine

the voice quality. What is the best sample rate you for voice transmission over
USRP?

2. Use other modulation and examine the voice quality.
3. When the user is no speaking into the microphone attached to the PC that is acting as the

transmitter, what is being transmitter?

4. Does sending voice over the simplex channel differ from sending other data (as in lab
experiment #1)? Why?

5. [Advanced optional exercise] Replace the cable with a "tee" in the middle - connect
the tee to an oscilloscope. Look at the resulting signal on the oscilloscope. What do
you see when you use different forms of modulation. [Note that a USRP could also
be used as an oscilloscope.]

6. [Advanced optional exercise] Replace oscilloscope in the previous exercise with
another USRP and use it as a spectrum analyzer. You can use a spectrum analyzer
developed by Costa A. J. et. al. [36]. The code of the spectrum analyzer is part of
GNU radio and located in: gnuradio/gr-utils/src/python/

7. [Advanced optional exercise] Replace the signal that you look at with using an
oscilloscope or spectrum analyzer (in the previous exercises) with the base band voice
signal. What can you learn from observing this signal at the transmitter versus this signal
as seen at the receiver? What do the characteristics of this signal suggest about how the
voice should be encoded and when packets should be transmitted?

 32

5.3 Experiment 3: Carrier Sense Multiple Access Protocol
In this experiment we introduce Carrier Sense Multiple Access (CSMA) (without

collision detection) as a link layer protocol. This experiment illustrates a common media
access and control protocol (MAC). Its also provides a framework for students to build their
own MACs, by modifying the code. In this experiment we will use the “TUN/TAP” Linux
interface to intercept frames that are being sent to (or received from) a virtual network
interface. This enables the student to run any network protocol or higher level protocol of
their choice – while seeng the frames passed to their MAC and physical layer.

TUN/TAP provides virtual network device (in this experiment the device is “gr0”)
viewed as an Ethernet device. Packets are transmitted and received from or sent to a user
space network application. See Figure 17.

Figure 17: TUN/TAP and GNU Radio

5.3.1 Requirements
• Two USRPs; with one Basic RX and one basic TX installed.

• Two PCs; GNU Radio installed.

• Two RF cables

5.3.2 CSMA code
The code for this experiment is part of the GNU Radio examples located in (see

Appendix B.5 tunnel.py) /gnuradio-3.2.2/gnuradio-examples/python/digital/tunnely.py

The CSMA protocol enables multiple transmitter and receiver to share the same (radio)
channel. In CSMA each interface must wait until there is no traffic (this done by listening for
the absence of a carrier) on the transmission channel, after the channel is determined to be
idle, then the interface can use that channel to send a frame. CSMA can be used together with
collision detection (CD) or collision avoidance (CA). However in our case we are using pure
CSMA.

The code shown in Code example 9 installs a tap to intercept and deliver frames. For
each frame that is received from the tap the code listens for a carrier, if there is a carrier

 33

present then the code waits for a period of time before listening again. Note that in this code
the waiting period is initially 0.050 seconds and this delay is increased in a binary
exponential fashion (without limit) until the channel is idle. Each time the channel is sensed,
if it is busy the transmitter outputs 'B'.
class cs_mac(object):

 def __init__(self, tun_fd, verbose=False):

 self.tun_fd = tun_fd # file descriptor for TUN/TAP interface

 self.verbose = verbose

 self.tb = None # top block (access to PHY)

 def set_top_block(self, tb):

 self.tb = tb

 def phy_rx_callback(self, ok, payload):

 """

 Invoked by thread associated with PHY to pass received packet up.

 @param ok: bool indicating whether payload CRC was OK

 @param payload: contents of the packet (string)

 """

 if self.verbose:

 print "Rx: ok = %r len(payload) = %4d" % (ok, len(payload))

 if ok:

 os.write(self.tun_fd, payload)

 def main_loop(self):

 """

 Main loop for MAC.

 Only returns if we get an error reading from TUN.

 FIXME: may want to check for EINTR and EAGAIN and reissue read

 """

 min_delay = 0.001 # seconds

 while 1:

 payload = os.read(self.tun_fd, 10*1024)

 if not payload:

 self.tb.send_pkt(eof=True)

 break

 if self.verbose:

 print "Tx: len(payload) = %4d" % (len(payload),)

 delay = min_delay

 while self.tb.carrier_sensed():

 sys.stderr.write('B')

 time.sleep(delay)

 if delay < 0.050:

 delay = delay * 2 # exponential back-off

 self.tb.send_pkt(payload)

Code example 9: CSMA (transmitter side is is implemented by the main_loop, while the receiver is
implemented by the phy_rx_callback)

 34

5.3.2 Setup and Run
1. Connect the two USRP using two RF cables; (see Figure 18)

USRPA Basic TX USRPB Basic RX

USRPA Basic RX USRPB Basic TX

Figure 18: Connecting two USRP

2. On PCA open two terminals

On the first terminal enter the following line which tells the program to use a
frequency of 423 MHz with a 500 K bit per second and output some
information for each packet in the terminal’s window.

$./tunnel.py --freq 423.0M --bitrate 500k -v

 In the second terminal write the following line to configure interface gr0
$ ifconfig gr0 192.168.200.1

3. On PCB open two terminals

On the first terminal enter the following line which tells the program to use a
frequency of 423 MHz with a 500 K bit per second and output some
information for each packet in the terminal’s window.

$./tunnel.py --freq 423.0M --bitrate 500k -v

 In the second terminal write the following line to configure interface gr0
$ ifconfig gr0 192.168.200.2

USRPA
USRPB

 35

The following is the output from the first window of the PCA.

./tunnel.py --freq 423.0M --bitrate 500k -v

>>> gr_fir_fff: using SSE

bits per symbol = 1

Gaussian filter bt = 0.35

Tx amplitude 0.25

modulation: gmsk_mod

bitrate: 500kb/s

samples/symbol: 2

USRP Sink: A: Basic Tx

Requested TX Bitrate: 500k Actual Bitrate: 500k

bits per symbol = 1

M&M clock recovery omega = 2.000000

M&M clock recovery gain mu = 0.175000

M&M clock recovery mu = 0.500000

M&M clock recovery omega rel. limit = 0.005000

frequency error = 0.000000

Receive Path:

modulation: gmsk_demod

bitrate: 500kb/s

samples/symbol: 2

USRP Source: A: Basic Rx

Requested RX Bitrate: 500k

Actual Bitrate: 500k

modulation: gmsk

freq: 423M

bitrate: 500kb/sec

samples/symbol: 2

Carrier sense threshold: 30 dB

Allocated virtual ethernet interface: gr0

You must now use ifconfig to set its IP address. E.g.,

 $ sudo ifconfig gr0 192.168.200.1

 36

Be sure to use a different address in the same subnet for each machine.

Tx: len(payload) = 90

Tx: len(payload) = 54

Tx: len(payload) = 153

Tx: len(payload) = 82

Tx: len(payload) = 235

Rx: ok = False len(payload) = 235

Tx: len(payload) = 78

Tx: len(payload) = 235

5.3.3 Student Exercises
1. Open a terminal window on one machine and perform ping command. Look at the

delay sending a packet from one machine to the other and back. Compare and analysis
your results with Ethernet and IEEE 802.11b network.

2. Capture the traffic using Ethereal and analysis what you got.

3. Modify the code so that you can detect if there is any collision.

 37

5.4 Experiment 4: Bluetooth (or IEEE 802.15.4) sniffer

Bluetooth is low rate low power wireless personal area network solution. Bluetooth
devices operate at 2.4 GHz band. The 2.4 GHz band that is used is 83.5 MHz wide (from
2.400 to 2.435 GHz). This band is divided into 79 channels with a channel spacing of 1 MHz.
Bluetooth uses spectrum that may be used by other wireless systems (i.e. IEEE 802.11
wireless local area networks, locators (such as used in anti-theft systems in vehicles), cordless
telephones, etc.) and may cause interference to other wireless systems as well as receive
interference from those other systems. Each Bluetooth device makes 1600 hops per second to
implement a fast frequency hopping spread spectrum scheme (at 1/1600 hops per seconds this
means that each transmission occurs in a 0.625 millisecond long time slot).

Each Bluetooth device is either a master or a slave. The master Bluetooth device is the
device that initiates data exchange and the master Bluetooth device is the device that
responds to the master. Both the master and slave devices must use the same sequence of
frequency hops to communicate, the master device orders the clock of the piconets, where
slaves keeps track of their clocks’ offset form the master. In this experiment we will build an
application to sniff Bluetooth packets.

It is hard to sniff Bluetooth because of its wide frequency band and fast random hopping
(calculated by the master device). We need eleven USRPs to sniff the 83.5 MHz wide band
(USRP can work with 8 MHz wide band centred in a frequency), or we can use four USRP2.
see 6.2,

 38

Table 7 compares between USRP and USRP2.

5.4.1 Bluetooth Implementation
In this experiment we will use gr-bluetooth. This code was developed by Dominic Spill

and Michael Ossmann [35] and they made the code freely available [26]. In this experiment
we will use in which the Bluetooth baseband layer for GNU Radio to implement the
Bluetooth baseband processing. In this experiment students will see an example of a SDR.
This SDR will be used to listen to packets exchanged between a cellular phone and a
Bluetooth headset. Note that Bluetooth uses its own audio coding (using the SBC CODEC),
but to listen to the audio requires installing this CODEC.

Bluetooth MAC address is Bluetooth Device Address (BD_ADDR) which is 48 bits
comprised of three parts (see Figure 19). Local Area network Profile (LAP) is 24 bits section
of the BD_ADDR, Address Portion UAP is 8 bits, and NAP is 16 bits. The NAP and UAP
together expresses the company ID which is unique for each Bluetooth device.

Figure 19: Bluetooth BD_ADDR

 39

5.4.1.1 Equipment
• One USRP; with one RFX2400 installed (with reverse polarity SMA connector).

• One PC; GNU Radio installed.

• One 2.4 GHz antenna, this antenna we are using has the following specification
Part number: 30223
Type: whip
Frequency: 2.4 GHz
Gain: 5 dBi
Radiation Angle: H360°/V23°
Range: 200 m
Dimensions (mm): 197x19
Contact: Rev-SMA
Cable: --
Trivia: Multiangle

5.4.2 Installing the system
The software consists of a signal processing block and a front-end command line tool.

The code can be downloaded from the internet site http://sourceforge.net/projects/gr-
bluetooth/. using a web browser, browse to this side and choose “file”, then download gr-
bluetooth-0.3.tar.gz, extend Samples and download gr-bluetooth-samples.tar.gz. Next follow
the instructions below:

1. Open a terminal window and connect to the directory where you downloaded your
files, then enter the following command to unpack and install the code:

$ tar -xzf gr-bluetooth-0.3.tar.gz

$ cd gr-bluetooth-0.3

$./configure

$ make

$ sudo make install

$ cd ..

2. Copy the file gr-bluetooth-samples.tar.gz to the directory gr-bluetooth/src/python,
extract it and rename the output directory to sample. This can be done using the
following commands (assuming that you have downloaded the files into the
directory /tmp)

 $ cp /tmp/gr-bluetooth-samples.tar.gz gr-bluetooth/src/python gr-bluetooth-
samples.tar.gz

$ cd gr-bluetooth/src/python

$ tar –xzf gr-bluetooth-samples.tar.gz

$ mv gr-bluetooth-samples.tar.gz samples

3. Connect the USRP to your PC. See Figure 20.

 40

Figure 20: USRP 2.4 GHz Antenna (designed for use with WLAN devices)

5.4.3 Student Exercise
The student can carry a report to the instructor includes the solution of this exercises.

This exercise uses captured files which are prepared in section 5.4.2 and no need for the
USRP to solve the questions. captured files are:

• headset1.cfile: This sample file captured during a call between cell phone and
Bluetooth headset at 2.4765 GHz centred frequency with 8 MHz bandwidth using
usrp_rx_cfile.py.

• headset3.cfile: This sample file captured during a call between cell phone and
Bluetooth headset at 2.476 GHz centred frequency with 2 MHz bandwidth using
usrp_rx_cfile.py.

• keyboard1.cfile: This sample file captured during a keyboard typing rapidly plus idle
cell phone and headset at 2.4765 GHz centred frequency with 8 MHz bandwidth
usrp_rx_cfile.py.

The usrp_rx_cfile.py is part of GNU radio which used to read samples from the USRP
and write to file formatted as binary outputs single precision complex float values or complex
short values (interleaved 16 bit signed short integers).

This exercise is centred on btrx.py application located on gr-bluetooth/src/python
directory.

Antenna

RFX2400

 41

Table 6 shows btrx.py options.

 42

Table 6: btrx.py options.

code Option

-h Show this help message and exit

-N Number of samples to collect

-R Select USRP Rx side A or B

-S All-piconet sniffer

-a Using a particular aliasing receiver implementation

-c Comma separated list of ddc frequencies

-e Use specified Ethernet interface for USRP2

-d Set fgpa decimation rate to DECIM

-f Set USRP frequency to FREQ

-g Set USRP gain in dB

-i Use named input file instead of USRP

-l LAP of the master device

-m Use USRP2 at specified MAC address

-n Channel number for hop reversal (0-78)

-p Reverse hopping sequence to determine master clock

-r Sample rate of input

-s Input interleaved shorts instead of complex floats

-t Power squelch threshold in dB

-w Direct output to a tune interface

-2 use USRP2 (or file originating from USRP2) instead of USRP

1. Find packets and display Local Area network Profile (LAP) in headset3.cfile sample file.

2. Discover the Upper Address Portion (UAP) by CRC in keyboard1.cfile sample file.

3. Discover UAP/CLK1-6 by time interval in headset1.cfile sample file.

4. Decode all piconets on all available channels in keyboard1.cfile sample file.

 43

5.5 Experiment 5: IEEE 802.11 Implementation
In this experiment we will use the BBN 802.11 implementation by the Adaptive

Dynamic Radio Open-source Intelligent Team and funded by DARPA’s ACERT program.
This project used GNU Radio and implemented an 802.11 receiver and transmitter [28].

5.5.1 Requirements
• One USRP; with one RFX2400 installed (with reverse polarity SMA connector).

• One PC; GNU Radio version 3.1.1 installed.

• One 2.4 GHz antenna, this antenna we are using has the following specification
Part number: 30223
Type: whip
Frequency: 2.4 GHz
Gain: 5 dBi
Radiation Angle: H360°/V23°
Range: 200 m
Dimensions (mm): 197x19
Contact: Rev-SMA
Cable: --
Trivia: Multiangle

5.5.2 Installing BBN 802.11
This section describes how to build BBN 802.11. You will experience a problem

installing BBN 802.11 as described in [29] and this release’s build guide [25]. The problem is
that BBN 802.11 is not longer available with this SVN version. However, you can get the
correct code from the BBN80211 - The Comprehensive GNU Radio Archive Network [30].
You will see two versions (i.e. douggeiger for USRP-1 and usrp2_version), get the proper
version according to your USRP device (we are using a USRP rather than the newer USRP2).
To get the BBN 802.11 code do the following:

svn co https://128.2.212.19/cgran/projects/bbn_80211/branches/ douggeiger/

Before you install their code make sure that you have GNU Radio version 3.1.1 installed
on your Linux platform; if you have version 3.2.2 you will receive the following error -- thus
it is very important that you install the earlier version of the GNU Radio software. Now you
can install the BBN code. If you have not installed the earlier version of the GNU radio code
you will experience an error as shown below:
root@ala-laptop:/sdr/bbn/gr-bbn/src/examples# ./bbn_80211b_rx.py -f 2.437G -v -b

Traceback (most recent call last):

 File "./bbn_80211b_rx.py", line 126, in <module>

 main ()

 File "./bbn_80211b_rx.py", line 121, in main

 app = app_flow_graph()

 File "./bbn_80211b_rx.py", line 109, in __init__

 self.u = usrp_rx(options.decim, options.verbose, options.gain,options.freq)

 44

 File "./bbn_80211b_rx.py", line 57, in __init__

 gr.hier_block2.__init__(self, "usrp_rx", gr.io_signature(0, 0, 0), gr.io_signature(1, 2, gr.sizeof_gr_complex))

 File "/usr/local/lib/python2.5/site-packages/gnuradio/gr/hier_block2.py",

line 42, in __init__

 self._hb = hier_block2_swig(name, input_signature, output_signature)

 File "/usr/local/lib/python2.5/site-packages/gnuradio/gr/gnuradio_swig_py_runtime.py",

line 995, in hier_block2_swig

 return _gnuradio_swig_py_runtime.hier_block2_swig(*args, **kwargs)

RuntimeError: Hierarchical blocks do not yet support arbitrary or

variable numbers of inputs or outputs (usrp_rx)

The problem is that this BBN code was not converted to use the hier_block2 API which is
needed for GNU Radio version 3.2.0 and later.

If GNU Radio version 3.2.x I already installed on your machine you have to delete all
gnuradio directories and usrp* files from /usr/local/, then install GNU Radio 3.1.1. Finally go
to douggeiger (you can change the douggeiger name and for directory organization point of
view; we recommend to put BBN 802.11 in the dorectory gnuradio-3.1.1.) and do execute the
commands: ./bootstrap && ./configure && make && sudo make install.

5.5.3 Setup and Implementation
In this exercise you need one USRP with RFX2400 daughter board installed and 2.4

GHz antenna; as described in 5.5.2. See Figure 21.

Figure 21: RFX2400, with an Antenna. Note the two sides of the USRP (A and B)

Side B

Side A

 45

1. Open a terminal window and connect to the directory gr-bbn/src/examples/, then run the
receiver by entring:

./ bbn_80211b_rx.py -R B -f 2.437G -v –b

This will tell the program to use the receiver on “B” (-R B) side, the frequency 2.437 GHZ (-f
2.437G), verbose (-v), and Barker Spreading (-b).

The output will be similar to that shown below.
ala@hlllab2:~/gnuradio/gnuradio-3.1.1/adroitgrdevel/gr-bbn/src/examples> bbn_80211b_rx.py -R B -f 2.437G
-v -b

Bits Per Encoded Sample = 8

adc frequency = 64000000

decimation frequency = 16

input_rate = 4000000

gain = 45.0

desired freq = 2437000000.0

baseband frequency 2432000000.0

dxc frequency -5000000.0

Samples per data bit = 8

>>> gr_fir_ccf: using SSE

gr_vmcircbuf_createfilemapping: createfilemapping is not available

PKT: len=84, rssi=-43, src=00:1a:70:3e:4F:29, time=15856, rate=1 Mbps

PKT: len=84, rssi=-40, src=00:1a:70:3e:4F:29, time=18280, rate=1 Mbps

PKT: len=84, rssi=-40, src=00:1a:70:3e:4F:29, time=19664, rate=1 Mbps

PKT: len=84, rssi=-43, src=00:1a:70:3e:4F:29, time=21000, rate=1 Mbps

PKT: len=84, rssi=-41, src=00:1a:70:3e:4F:29, time=34456, rate=1 Mbps

2- Open a new terminal and run the transmitter (you will see your frame captured by the
receiver) do this:

./ bbn_80211b_tx.py -T B -f 2.437G -b

This will tell the program to use the transmitter on “B” (-T B) side, the frequency 2.437
GHZ (-f 2.437G), and Barker Spreading (-b)

The output will be similar to that shown below.
ala@hlllab2:~/gnuradio/gnuradio-3.1.1/adroitgrdevel/gr-bbn/src/examples> bbn_80211b_tx.py -T B -f 2.437G
-b

Using TX d'board B: Flex 2400 Tx MIMO B

>>> gr_fir_ccf: using SSE

spb: 8

interp: 32

The output on the receiver terminal will be similar to that shown below.
ala@hlllab2:~/gnuradio/gnuradio-3.1.1/adroitgrdevel/gr-bbn/src/examples> bbn_80211b_rx.py -R B -f 2.437G
-v -b

 46

Bits Per Encoded Sample = 8

adc frequency = 64000000

decimation frequency = 16

input_rate = 4000000

gain = 45.0

desired freq = 2437000000.0

baseband frequency 2432000000.0

dxc frequency -5000000.0

Samples per data bit = 8

>>> gr_fir_ccf: using SSE

gr_vmcircbuf_createfilemapping: createfilemapping is not available

uO

5.5.4 Student Exercises
1. Give examples of how to receive packets from bbn_80211b_rx.py (without

dropping them).
2. Look at all sniffed packets and check the rate of each packet. Do you

think this system is a full IEEE 802.11b sniffer? Why?

 “uO” means USRP overrun (USRP
samples dropped because they weren't
read in time.

 47

6. Evaluation and Analysis
In this section we will evaluate each of the laboratory experiment from a pedagogical

point of view. We should start by noting that these experiments target senior undergraduate
student and instructors. The undergraduate student must have studied the following subjects
attempting these laboratory experiment s:

1. The student need to have studied at least one high level programming language,
preferably object oriented programming language. This will enable the student to
understand and the GNU Radio code.

2. Communication systems and computer networks.

3. Signals and systems

4. Digital signal processing.

6.1 GNU Radio: Analysis
The GNU Radio provides a extensiv library of signal processing blocks and a glue to tie

thises blocks. The radio can be build by creating a flow graph. The signal processing blocks
are implemented in C++ programing language, while programers construc the graph and run
them in Python.

There is no enghough documentation of how GNU Radio is implemented, during runig
application we found that there are some messages printed from diffrernt classes (for
example see 5.2.3) and tracing and understanding these message takes some time. The GNU
Radio developers did not found acceptable way to provide unifed documentation for the
system [38]. However, there is some documentatins for GNU Radio C++ blocks, and you can
get help from other developers in [39].

The Gnu Radio has many releases developed. In release version 3.2.x the higher block of
the system is updated. This will affect applications developed under old release from running
in new releses.

6.2 USRP: Analysis
The USRP is a device we used in this thesis to develop undergraduate’s experiment .

This device has various daughterboards which operate on different radio frequency bands
(from DC to 2.9 GHz); you have to plug-in a sutable daughterboard for you application.

When we are running our applications we experience that closing application using
Cotrol+z will not flush the application running process; is you are going to run any
application after the one application you will receive a error. We used to unplug the USRP
DC power off, and then pulg it in again. Another solution introduced to us is to see all
running process, and then “kill” Python process. You can do that by:

ps (to see all running process. find the number of Python application process and enter)

kill -9 <Python process number>

USRP2 was developed and goes to the market on May 25, 2009. There are some benefits
of using USRP2 than USRP,

 48

Table 7 describes these benefits:

 49

Table 7: USRP and USRP2 [15]

USRP USRP2

8 MHz instantaneous of RF bandwidth 25 MHz instantaneous of RF bandwidth

The radio can be accessible from one
computer

the radio to be accessible from more than
one computer

USB interface Gigabit Ethernet interfaces

Lowest cost Highest cost

Slower FPGA Faster FPGA

ADCs (12-bits 64 MS/s) ADCs (14-bits 100 MS/s)

DACs (140bits 128 MS/s) DACs (16-bits 400 MS/s)

6.1 Laboratory exercises: Analysis
The laboratory exercises were designed based upon the idea of step-by-step learning. The

undergraduate student initialy follow the steps presented in each experiment to solve a
problem and understands subject terms. These experiments start with simple communication
systems first, a little bit complex systems, and finaly real world systems. In each experiment,
the student must solve specific problems and submit a written report to the instructor. The
instructor can choose which experiment are sutable for the students.

Experiment 1: simplex data communication, in a simple application to data transmission.
In this initial experiment , the student can exmine in detalis how the three lower layers of the
OSI model are implemented and different methods of modulation can be used – while
supporting the same higher level protocol. The student can develop a ptotocol in any packet
format, and can use the code represented for this exprimet to develop a feedback from the
receiver.

 Experiment 2 shows the student encoded voice data can be transmitted over a digital
channel. In the exercises the student is ask to think about what would happen if the cable
were replaced with a pair of antennas and the RF signal were to be transmitted and transmitt
on the air.

Experiment 3 exposed the student to a spesific MAC layer protocol. The student see how
he or she might can bulid his or her own MAC protocol A central element of this experiment
is that the MAC protocol simply implements a protocol. (An optional exercise for this
experiment would be to ask the student to write the protocol specification that is actually
implemented by the code.). It is difficult for the student to implemetnt CSMA/with collition
detection, because of the anttena power limitation. However, the student can implement
CSMA/with collition avoidance.

Experiment 4 takes students deep to Bluetooth protocol. This experiment illustrates some
very sophisticated aspects of protocol analysis and has some important observations for
student's about the lack of security through obscurity (specifically that fast frequency hopping
and not putting the complete MAC address in Bluetooth frames does not prevent someone
from listing to these packets nor does it hide the devices), and let bluetooth works.

 50

Experiment 5 tells the student how to implement 802.11 protocol. This experiment is
sutable only for last year undergraduate students. Moreover we can use it only with IEEE
802.11 and not IEEE 802.11b because of the limitation of USB2 transmission.

 51

7. Conclusions and suggested future work
We developed laboratory experiment for undergraduate students to help them

understands media and access control protocols protocol. The experiments are designed in a
way that easy to understand experiments first, and the complicated experiments. Instructors
might use these experiments and add more exercises to develop their own lessons plan and
course material.

In this thesis we present software defined radio application built on USRP and GNU
Radio. Thus, our first goal was achieved. However, we did not develop our own application
using USRP and GNU Radio, which is goal two. If we look at the laboratory experiments we
can see that it includes different kind of applications, in which we spend our time. But if this
thesis was designed to build specific application using USRP and GNU Radio, then we can
spend our time on single application. Moreover, the development time for applications using
USRP and GNU Radio is varied form application to other. For example, Bluetooth (or IEEE
802.15.4) sniffer developed by two developers and they spends three months to make it
running.

In conclusion, we can say that it is not easy job to implement applications using USRP
and GNU Radio because of the weak documentation of the GNU Radio. And if we started
this thesis again we would develop a documentations tool for GNU Radio to help developers
to implement their own applications.

The computer science department of Grove City College, has developed some exercises
based on SDR for undergraduate projects [13]. These exercises enable students to receive
real-time waveforms; specifically to receive AM, FM, and SSB signals. They are reported to
be developing a plug-in for commercial radio broadcasts in which an AM radio will have the
current FM station quality and the quality of broadcast FM stations will be CD quality.

Compared to our solution, the Grove City College research targets broadcast radio, while
we focus on wireless local area networks and personal area networks.

7.1 Future work
1) Create experiments based on GNU Radio Companion (a graphical tool for

creating signal graph to generate flow graph source code) [31].

2) Create experiments base simulink [32].

3) Create experiment to listen to a GSM cell phone [33].

4) Create experiment for ZigBee.

5) Create fully a receiver experiment for 802.11b

 52

References
[1] Susan Karlin,”Tools & Toys: Hardware for your Software Radio”, IEEE Spectrum,

34(10) , Oct. 2006, pp51-54.

[2] Paul Burns, ”Software Defined Radio for 3G”. London. Artech House, 2003.

[3] Bruce A. Fette, et al, ”Cognitive Radio Technology” Newnes, 2006, 656 pages,
ISBN-10: 0750679522, ISBN-13: 978-0750679527.

[4] T.W. Parks and J.J. McClellan, “Chebyshev Approximation for Nonrecursive Digital
Filters with Linear Phase,” IEEE Transactions on Circuit Theory, Vol. 19, 1972, pp.
189–194.

[5] L.R. Rabiner, J.H. McClellan, and T.W. Parks, “FIR Digital Filter Design Techniques
Using Weighted Chebyshev Approximations,” Proceedings of the IEEE, Vol. 63,
1975, pp. 595–610.

[6] Walter Tuttlebee, et al, ”Software Defined Radio: Enabling Technology”, USA, John
Wiley & Sons Ltd, 2002.

[7] John Bard and Vincent J. Kovarik Jr., ”Software Defined Radio: the software
communication Architecture”, John Wiley & Sons Ltd, 2007.

[8] GNU Radio, web page” www.gnuradio.org “, visited 2009-02-10

[9] F. Ge, Q. Chen, Y. Wang, T. W. Rondeau, B. Le, and C. W. Bostian, "Cognitive
Radio: From Spectrum Sharing to Adaptive Learning and Reconfiguration," in IEEE
Aerospace Conference. Big Sky Montana, MT, March 2008.

[10] Python Programming Language, web page “ www.python.org ”, visited 2009-02-10.

[11] Peter Norton, Alex Samuel, David Aitel, Eric Foster-Johnson, Leonard Richardson,
Jason Diamond, Aleatha Parker, and Michael Roberts, Beginning Python, Canada,
Wiley Publishing, Inc, 2005.

[12] SDR Forum, Web site “ www.sdrforum.org ”, visited 2009-02-10.

[13] William Birmingham and Leah Acker, ”Software-defined radio for undergraduate
projects”, ACM, session:Embded systems and architecture, Volume 39, Issue 1,
March 2007, pp. 293 – 297, ISSN:0097-8418.

[14] Open Source SCA Implementation - Embedded, web page
“http://ossie.wireless.vt.edu/index.html”, visited 2009-02-11.

[15] Ettus Research LLC, web page ” www.ettus.com”, visited 2009-11-11.

[16] General Dynamics C4 Systems, Web site ” www.gdc4s.com” visited 2009-07-01.

[17] Analog Design, AD9862 12-/14-Bit Mixed Signal Front-End (MxFE®) Processor for
Broadband Communications, Data Sheet, Revision 0, Dec. 2002, internet site
"http://www.analog.com/static/imported-files/data_sheets/AD9860_9862.pdf"

 53

[18] IEEE, Standard Hardware Description Language Based on the Verilog® Hardware
Description Language –Description, IEEE Std 1364-1995, IEEE, Oct. 1996, ISBN:
1-55937-727-5, E-ISBN: 0-7381-3065-6.

[19] IEEE SystemVerlog Working Group, IEEE 1800, Web Site ” http://www.eda.org/sv-
ieee1800/”.

[20] Deepak Kumar Tala, Verilog Tutorial, web page, Jan. 10, 2009 http://www.asic-
world.com/verilog/veritut.html.

[21] Eric Blossom, "Exploring GNU Radio: Tools fo Exploring the RF spectrum", Linux
Journal, Issue 122, June 2004.

[22] Eric Blossom, How to Write a Signal Processing Block, Web page, Jul 21,2006,
http://www.gnu.org/software/gnuradio/doc/howto-write-a-block.html.

[23] Greg Colvin and Beman Dawes, Smart Pointers, Web Page, March 11, 2009,
http://www.boost.org/libs/smart_ptr/smart_ptr.htm.

[24] Joseph Mitola III,web page, Nov 21, 2008 ”http://web.it.kth.se/~maguire/jmitola/”.

[25] Build Guide- GNU Radio, web page,2009-11-05 ”
http://gnuradio.org/trac/wiki/BuildGuide”.

[26] Gr-Bluetooth, web page, Aug 18, 2009,” http://sourceforge.net/projects/gr-
bluetooth/”

[27] “Wireless an Mobile Network Architecture”, G.Q.Maguire Jr. <maguire@kth.se>,
http://www.it.kth.se/courses/IK2555/Coursepage-Spring-2010.html

[28] Troxel Gregory D, Blossom Eric, et al “Adaptive Dynamic Radio Open-source
Intelligent Team (ADROIT): Cognitively-controlled Collaboration among SDR
Nodes”, Networking Technologies for Software Defined Radio Networks, 2006. SDR
'06.1st IEEE Workshop, Sep 2006, pp 8-17, ISBN: 1-4244-0733-8.

[29] Other Code – GNU Radio, web page, “http://gnuradio.org/trac/wiki/OtherCode”,
visited Nov 7, 2009.

[30] BBN80211 - The Comprehensive GNU Radio Archive Network, web page,
“https://128.2.212.19/wiki/BBN80211”, visited Nov 7, 2009.

[31] GNU Radio Companion, web page,
“http://gnuradio.org/trac/wiki/GNURadioCompanion” , visited Nov 7,2009.

[32] Simulink-USRP: Universal Software Radio Peripheral (USRP) Blockset, web page,
visited Nov 7, 2009.

[33] The NetBSD Packages Collection, web page,
“http://ftp.sunet.se/pub/NetBSD/packages/pkgsrc/ham/gnuradio-
gsm/README.html”, visited Nov 7,2009.

 54

[34] Alister Burr, “Modulation and coding: for wireless communications”, Prentice
Hall/Pearson Education, 2001, ISBN: 0201398575.

[35] Michael Ossmann and Dominic Spill, "Building an All-Challe Bluetooth Monitor",
ShmooCon 2009, 6 February 2009.

[36] Costa A. j. et. al., “Spectrum analyzer with USRP, GNU Radio and MATLAB”, 7th
Conference on Telecommunication, Portugal, May 2009.

[37] Discuss-Gnuradio Archives, web page, “http://lists.gnu.org/archive/html/discuss-
gnuradio/”.

[38] GNU Radio 3.2svn C++ API Documentation, web page,
“http://gnuradio.org/doc/doxygen/index.html”, May 22, 2009.

 55

 Appendix A: gr_block.h
00000 // gr_block.h
00001 /* -*- c++ -*- */
00002 /*
00003 * Copyright 2004 Free Software Foundation, Inc.
00004 *
00005 * This file is part of GNU Radio
00006 *
00007 * GNU Radio is free software; you can redistribute it and/or modify
00008 * it under the terms of the GNU General Public License as published by
00009 * the Free Software Foundation; either version 2, or (at your option)
00010 * any later version.
00011 *
00012 * GNU Radio is distributed in the hope that it will be useful,
00013 * but WITHOUT ANY WARRANTY; without even the implied warranty of
00014 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
00015 * GNU General Public License for more details.
00016 *
00017 * You should have received a copy of the GNU General Public License
00018 * along with GNU Radio; see the file COPYING. If not, write to
00019 * the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
00020 * Boston, MA 02111-1307, USA.
00021 */
00022
00023 #ifndef INCLUDED_GR_BLOCK_H
00024 #define INCLUDED_GR_BLOCK_H
00025
00026 #include <gr_runtime.h>
00027 #include <string>
00028
00052 class gr_block {
00053
00054 public:
00055
00056 virtual ~gr_block ();
00057
00058 std::string name () const { return d_name; }
00059 gr_io_signature_sptr input_signature () const { return d_input_signature; }
00060 gr_io_signature_sptr output_signature () const { return d_output_signature; }
00061 long unique_id () const { return d_unique_id; }
00062
00070 unsigned history () const { return d_history; }
00071 void set_history (unsigned history) { d_history = history; }
00072
00078 bool fixed_rate() const { return d_fixed_rate; }
00079
00080 // --
00081 // override these to define your behavior
00082 // --

 56

00083
00094 virtual void forecast (int noutput_items,
00095 gr_vector_int &ninput_items_required);
00096
00111 virtual int general_work (int noutput_items,
00112 gr_vector_int &ninput_items,
00113 gr_vector_const_void_star &input_items,
00114 gr_vector_void_star &output_items) = 0;
00115
00129 virtual bool check_topology (int ninputs, int noutputs);
00130
00139 virtual bool start();
00140
00144 virtual bool stop();
00145
00146 // --
00147
00155 void set_output_multiple (int multiple);
00156 int output_multiple () const { return d_output_multiple; }
00157
00161 void consume (int which_input, int how_many_items);
00162
00166 void consume_each (int how_many_items);
00167
00177 void set_relative_rate (double relative_rate);
00178
00182 double relative_rate () const { return d_relative_rate; }
00183
00184 /*
00185 * The following two methods provide special case info to the
00186 * scheduler in the event that a block has a fixed input to output
00187 * ratio. gr_sync_block, gr_sync_decimator and gr_sync_interpolator
00188 * override these. If you're fixed rate, subclass one of those.
00189 */
00195 virtual int fixed_rate_ninput_to_noutput(int ninput);
00196
00202 virtual int fixed_rate_noutput_to_ninput(int noutput);
00203
00204 // --
00205
00206 private:
00207
00208 std::string d_name;
00209 gr_io_signature_sptr d_input_signature;
00210 gr_io_signature_sptr d_output_signature;
00211 int d_output_multiple;
00212 double d_relative_rate; // approx output_rate / input_rate
00213 gr_block_detail_sptr d_detail; // implementation details
00214 long d_unique_id; // convenient for debugging

 57

00215 unsigned d_history;
00216 bool d_fixed_rate;
00217
00218
00219 protected:
00220
00221 gr_block (const std::string &name,
00222 gr_io_signature_sptr input_signature,
00223 gr_io_signature_sptr output_signature);
00224
00226 void set_input_signature (gr_io_signature_sptr iosig){
00227 d_input_signature = iosig;
00228 }
00229
00231 void set_output_signature (gr_io_signature_sptr iosig){
00232 d_output_signature = iosig;
00233 }
00234
00235 void set_fixed_rate(bool fixed_rate){ d_fixed_rate = fixed_rate; }
00236
00237 // These are really only for internal use, but leaving them public avoids
00238 // having to work up an ever-varying list of friends
00239
00240 public:
00241 gr_block_detail_sptr detail () const { return d_detail; }
00242 void set_detail (gr_block_detail_sptr detail) { d_detail = detail; }
00243 };
00244
00245 long gr_block_ncurrently_allocated ();
00246
00247 #endif /* INCLUDED_GR_BLOCK_H */

 58

Appendix B: Laboratory Experiments

Appendix B.1 benchmark_tx.py
Line

1 #!/usr/bin/env python

2 #

3 # Copyright 2005,2006,2007,2009 Free Software Foundation, Inc.

4 #

5 # This file is part of GNU Radio

6 #

7 # GNU Radio is free software; you can redistribute it and/or modify

8 # it under the terms of the GNU General Public License as published by

9 # the Free Software Foundation; either version 3, or (at your option)

10 # any later version.

11 #

12 # GNU Radio is distributed in the hope that it will be useful,

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Public License for more details.

16 #

17 # You should have received a copy of the GNU General Public License

18 # along with GNU Radio; see the file COPYING. If not, write to

19 # the Free Software Foundation, Inc., 51 Franklin Street,

20 # Boston, MA 02110-1301, USA.

21 #

22

23 from gnuradio import gr, gru, modulation_utils

24 from gnuradio import usrp

25 from gnuradio import eng_notation

26 from gnuradio.eng_option import eng_option

27 from optparse import OptionParser

28

29 import random, time, struct, sys

30

31 # from current dir

32 import usrp_transmit_path

33

34 #import os

35 #print os.getpid()

 59

36 #raw_input('Attach and press enter')

37

38 class my_top_block(gr.top_block):

39 def __init__(self, modulator, options):

40 gr.top_block.__init__(self)

41

42 self.txpath = usrp_transmit_path.usrp_transmit_path(modulator, options)

43

44 self.connect(self.txpath)

45

46 # ///

47 # main

48 # ///

49

50 def main():

51

52 def send_pkt(payload='', eof=False):

53 return tb.txpath.send_pkt(payload, eof)

54

55 def rx_callback(ok, payload):

56 print "ok = %r, payload = '%s'" % (ok, payload)

57

58 mods = modulation_utils.type_1_mods()

59

60 parser = OptionParser(option_class=eng_option, conflict_handler="resolve")

61 expert_grp = parser.add_option_group("Expert")

62

63 parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

64 default='gmsk',

65 help="Select modulation from: %s [default=%%default]"

66 % (', '.join(mods.keys()),))

67

68 parser.add_option("-s", "--size", type="eng_float", default=1500,

69 help="set packet size [default=%default]")

70 parser.add_option("-M", "--megabytes", type="eng_float", default=1.0,

71 help="set megabytes to transmit [default=%default]")

72 parser.add_option("","--discontinuous", action="store_true", default=False,

73 help="enable discontinous transmission (bursts of 5 packets)")

74 parser.add_option("","--from-file", default=None,

 60

75 help="use file for packet contents")

76

77 usrp_transmit_path.add_options(parser, expert_grp)

78

79 for mod in mods.values():

80 mod.add_options(expert_grp)

81

82 (options, args) = parser.parse_args ()

83

84 if len(args) != 0:

85 parser.print_help()

86 sys.exit(1)

87

88 if options.tx_freq is None:

89 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

90 parser.print_help(sys.stderr)

91 sys.exit(1)

92

93 if options.from_file is not None:

94 source_file = open(options.from_file, 'r')

95

96 # build the graph

97 tb = my_top_block(mods[options.modulation], options)

98

99 r = gr.enable_realtime_scheduling()

100 if r != gr.RT_OK:

101 print "Warning: failed to enable realtime scheduling"

102

103 tb.start() # start flow graph

104

105 # generate and send packets

106 nbytes = int(1e6 * options.megabytes)

107 n = 0

108 pktno = 0

109 pkt_size = int(options.size)

110

111 while n < nbytes:

112 if options.from_file is None:

113 data = (pkt_size - 2) * chr(pktno & 0xff)

 61

114 else:

115 data = source_file.read(pkt_size - 2)

116 if data == '':

117 break;

118

119 payload = struct.pack('!H', pktno & 0xffff) + data

120 send_pkt(payload)

121 n += len(payload)

122 sys.stderr.write('.')

123 if options.discontinuous and pktno % 5 == 4:

124 time.sleep(1)

125 pktno += 1

126

127 send_pkt(eof=True)

128

129 tb.wait() # wait for it to finish

130

131 if __name__ == '__main__':

132 try:

133 main()

134 except KeyboardInterrupt:

135 pass

 62

Appendix B.2 benchmark_rx.py
Line

1 #!/usr/bin/env python

2 #

3 # Copyright 2005,2006,2007,2009 Free Software Foundation, Inc.

4 #

5 # This file is part of GNU Radio

6 #

7 # GNU Radio is free software; you can redistribute it and/or modify

8 # it under the terms of the GNU General Public License as published by

9 # the Free Software Foundation; either version 3, or (at your option)

10 # any later version.

11 #

12 # GNU Radio is distributed in the hope that it will be useful,

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Public License for more details.

16 #

17 # You should have received a copy of the GNU General Public License

18 # along with GNU Radio; see the file COPYING. If not, write to

19 # the Free Software Foundation, Inc., 51 Franklin Street,

20 # Boston, MA 02110-1301, USA.

21 #

22

23 from gnuradio import gr, gru, modulation_utils

24 from gnuradio import usrp

25 from gnuradio import eng_notation

26 from gnuradio.eng_option import eng_option

27 from optparse import OptionParser

28

29 import random

30 import struct

31 import sys

32

33 # from current dir

34 import usrp_receive_path

35

36 #import os

37 #print os.getpid()

 63

Line

38 #raw_input('Attach and press enter: ')

39

40 class my_top_block(gr.top_block):

41 def __init__(self, demodulator, rx_callback, options):

42 gr.top_block.__init__(self)

43

44 # Set up receive path

45 self.rxpath = usrp_receive_path.usrp_receive_path(demodulator, rx_callback, options)

46

47 self.connect(self.rxpath)

48

49 # ///

50 # main

51 # ///

52

53 global n_rcvd, n_right

54

55 def main():

56 global n_rcvd, n_right

57

58 n_rcvd = 0

59 n_right = 0

60

61 def rx_callback(ok, payload):

62 global n_rcvd, n_right

63 (pktno,) = struct.unpack('!H', payload[0:2])

64 n_rcvd += 1

65 if ok:

66 n_right += 1

67

68 print "ok = %5s pktno = %4d n_rcvd = %4d n_right = %4d" % (

69 ok, pktno, n_rcvd, n_right)

70

71

72 demods = modulation_utils.type_1_demods()

73

74 # Create Options Parser:

75 parser = OptionParser (option_class=eng_option, conflict_handler="resolve")

 64

Line

76 expert_grp = parser.add_option_group("Expert")

77

78 parser.add_option("-m", "--modulation", type="choice", choices=demods.keys(),

79 default='gmsk',

80 help="Select modulation from: %s [default=%%default]"

81 % (', '.join(demods.keys()),))

82

83 usrp_receive_path.add_options(parser, expert_grp)

84

85 for mod in demods.values():

86 mod.add_options(expert_grp)

87

88 (options, args) = parser.parse_args ()

89

90 if len(args) != 0:

91 parser.print_help(sys.stderr)

92 sys.exit(1)

93

94 if options.rx_freq is None:

95 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

96 parser.print_help(sys.stderr)

97 sys.exit(1)

98

99

100 # build the graph

101 tb = my_top_block(demods[options.modulation], rx_callback, options)

102

103 r = gr.enable_realtime_scheduling()

104 if r != gr.RT_OK:

105 print "Warning: Failed to enable realtime scheduling."

106

107 tb.start() # start flow graph

108 tb.wait() # wait for it to finish

109

110 if __name__ == '__main__':

111 try:

112 main()

113 except KeyboardInterrupt:

 65

Line

114 pass

 66

Appendix B.3 tx_voice.py
Line

1 #!/usr/bin/env python

2 #

3 # Copyright 2005,2006,2007,2009 Free Software Foundation, Inc.

4 #

5 # This file is part of GNU Radio

6 #

7 # GNU Radio is free software; you can redistribute it and/or modify

8 # it under the terms of the GNU General Public License as published by

9 # the Free Software Foundation; either version 3, or (at your option)

10 # any later version.

11 #

12 # GNU Radio is distributed in the hope that it will be useful,

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Public License for more details.

16 #

17 # You should have received a copy of the GNU General Public License

18 # along with GNU Radio; see the file COPYING. If not, write to

19 # the Free Software Foundation, Inc., 51 Franklin Street,

20 # Boston, MA 02110-1301, USA.

21 #

22

23 from gnuradio import gr, gru, modulation_utils

24 from gnuradio import usrp

25 from gnuradio import audio

26 from gnuradio import eng_notation

27 from gnuradio.eng_option import eng_option

28 from optparse import OptionParser

29

30 from gnuradio.vocoder import gsm_full_rate

31

32 import random

33 import time

34 import struct

35 import sys

36

37 # from current dir

 67

Line

38 import usrp_transmit_path

39

40 #import os

41 #print os.getpid()

42 #raw_input('Attach and press enter')

43

44

45 class audio_rx(gr.hier_block2):

46 def __init__(self, audio_input_dev):

47 gr.hier_block2.__init__(self, "audio_rx",

48 gr.io_signature(0, 0, 0), # Input signature

49 gr.io_signature(0, 0, 0)) # Output signature

50 sample_rate = 8000

51 src = audio.source(sample_rate, audio_input_dev)

52 src_scale = gr.multiply_const_ff(32767)

53 f2s = gr.float_to_short()

54 voice_coder = gsm_full_rate.encode_sp()

55 self.packets_from_encoder = gr.msg_queue()

56 packet_sink = gr.message_sink(33, self.packets_from_encoder, False)

57 self.connect(src, src_scale, f2s, voice_coder, packet_sink)

58

59 def get_encoded_voice_packet(self):

60 return self.packets_from_encoder.delete_head()

61

62

63 class my_top_block(gr.top_block):

64

65 def __init__(self, modulator_class, options):

66 gr.top_block.__init__(self)

67 self.txpath = usrp_transmit_path.usrp_transmit_path(modulator_class, options)

68 self.audio_rx = audio_rx(options.audio_input)

69 self.connect(self.txpath)

70 self.connect(self.audio_rx)

71

72

73 # ///

74 # main

75 # ///

 68

Line

76

77 def main():

78

79 def send_pkt(payload='', eof=False):

80 return tb.txpath.send_pkt(payload, eof)

81

82 def rx_callback(ok, payload):

83 print "ok = %r, payload = '%s'" % (ok, payload)

84

85 mods = modulation_utils.type_1_mods()

86

87 parser = OptionParser(option_class=eng_option, conflict_handler="resolve")

88 expert_grp = parser.add_option_group("Expert")

89

90 parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

91 default='gmsk',

92 help="Select modulation from: %s [default=%%default]"

93 % (', '.join(mods.keys()),))

94 parser.add_option("-M", "--megabytes", type="eng_float", default=0,

95 help="set megabytes to transmit [default=inf]")

96 parser.add_option("-I", "--audio-input", type="string", default="",

97 help="pcm input device name. E.g., hw:0,0 or /dev/dsp")

98 usrp_transmit_path.add_options(parser, expert_grp)

99

100 for mod in mods.values():

101 mod.add_options(expert_grp)

102

103 parser.set_defaults(bitrate=50e3) # override default bitrate default

104 (options, args) = parser.parse_args ()

105

106 if len(args) != 0:

107 parser.print_help()

108 sys.exit(1)

109

110 if options.tx_freq is None:

111 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

112 parser.print_help(sys.stderr)

113 sys.exit(1)

 69

Line

114

115

116 # build the graph

117 tb = my_top_block(mods[options.modulation], options)

118

119 r = gr.enable_realtime_scheduling()

120 if r != gr.RT_OK:

121 print "Warning: failed to enable realtime scheduling"

122

123

124 tb.start() # start flow graph

125

126 # generate and send packets

127 nbytes = int(1e6 * options.megabytes)

128 n = 0

129 pktno = 0

130

131 while nbytes == 0 or n < nbytes:

132 packet = tb.audio_rx.get_encoded_voice_packet()

133 s = packet.to_string()

134 send_pkt(s)

135 n += len(s)

136 sys.stderr.write('.')

137 pktno += 1

138

139 send_pkt(eof=True)

140 tb.wait() # wait for it to finish

141

142

143 if __name__ == '__main__':

144 try:

145 main()

146 except KeyboardInterrupt:

147 pa

 70

Appendix B.4 rx_voice.py
Line

1 #!/usr/bin/env python

2 #

3 # Copyright 2005,2006,2009 Free Software Foundation, Inc.

4 #

5 # This file is part of GNU Radio

6 #

7 # GNU Radio is free software; you can redistribute it and/or modify

8 # it under the terms of the GNU General Public License as published by

9 # the Free Software Foundation; either version 3, or (at your option)

10 # any later version.

11 #

12 # GNU Radio is distributed in the hope that it will be useful,

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Public License for more details.

16 #

17 # You should have received a copy of the GNU General Public License

18 # along with GNU Radio; see the file COPYING. If not, write to

19 # the Free Software Foundation, Inc., 51 Franklin Street,

20 # Boston, MA 02110-1301, USA.

21 #

22

23 from gnuradio import gr, gru, modulation_utils

24 from gnuradio import usrp

25 from gnuradio import audio

26 from gnuradio import eng_notation

27 from gnuradio.eng_option import eng_option

28 from optparse import OptionParser

29

 71

Line

30 from gnuradio.vocoder import gsm_full_rate

31

32 import random

33 import struct

34 import sys

35

36 # from current dir

37 import usrp_receive_path

38

39 #import os

40 #print os.getpid()

41 #raw_input('Attach and press enter')

42

43

44 class audio_tx(gr.hier_block2):

45 def __init__(self, audio_output_dev):

46 gr.hier_block2.__init__(self, "audio_tx",

47 gr.io_signature(0, 0, 0), # Input signature

48 gr.io_signature(0, 0, 0)) # Output signature

49

50 self.packet_src = gr.message_source(33)

51 voice_decoder = gsm_full_rate.decode_ps()

52 s2f = gr.short_to_float ()

53 sink_scale = gr.multiply_const_ff(1.0/32767.)

54 audio_sink = audio.sink(8000, audio_output_dev)

55 self.connect(self.packet_src, voice_decoder, s2f, sink_scale,

audio_sink)

56

57 def msgq(self):

58 return self.packet_src.msgq()

59

60

 72

Line

61 class my_top_block(gr.top_block):

62 def __init__(self, demod_class, rx_callback, options):

63 gr.top_block.__init__(self)

64 self.rxpath = usrp_receive_path.usrp_receive_path(demod_class,

rx_callback, options)

65 self.audio_tx = audio_tx(options.audio_output)

66 self.connect(self.rxpath)

67 self.connect(self.audio_tx)

68

69 # ///

70 # main

71 # ///

72

73 global n_rcvd, n_right

74

75 def main():

76 global n_rcvd, n_right

77

78 n_rcvd = 0

79 n_right = 0

80

81 def rx_callback(ok, payload):

82 global n_rcvd, n_right

83 n_rcvd += 1

84 if ok:

85 n_right += 1

86

87 tb.audio_tx.msgq().insert_tail(gr.message_from_string(payload))

88

89 print "ok = %r n_rcvd = %4d n_right = %4d" % (

90 ok, n_rcvd, n_right)

91

 73

Line

92 demods = modulation_utils.type_1_demods()

93

94 # Create Options Parser:

95 parser = OptionParser (option_class=eng_option, conflict_handler="resolve")

96 expert_grp = parser.add_option_group("Expert")

97

98 parser.add_option("-m", "--modulation", type="choice",

choices=demods.keys(),

99 default='gmsk',

100 help="Select modulation from: %s [default=%%default]"

101 % (', '.join(demods.keys()),))

102 parser.add_option("-O", "--audio-output", type="string", default="",

103 help="pcm output device name. E.g., hw:0,0 or /dev/dsp")

104 usrp_receive_path.add_options(parser, expert_grp)

105

106 for mod in demods.values():

107 mod.add_options(expert_grp)

108

109 parser.set_defaults(bitrate=50e3) # override default bitrate default

110 (options, args) = parser.parse_args ()

111

112 if len(args) != 0:

113 parser.print_help(sys.stderr)

114 sys.exit(1)

115

116 if options.rx_freq is None:

117 sys.stderr.write("You must specify -f FREQ or --freq FREQ\n")

118 parser.print_help(sys.stderr)

119 sys.exit(1)

120

121

122 # build the graph

 74

Line

123 tb = my_top_block(demods[options.modulation], rx_callback, options)

124

125 r = gr.enable_realtime_scheduling()

126 if r != gr.RT_OK:

127 print "Warning: Failed to enable realtime scheduling."

128

129 tb.run()

130

131 if __name__ == '__main__':

132 try:

133 main()

134 except KeyboardInterrupt:

135 pass

 75

Appendix B.5 tunnel.py
Line

1 #!/usr/bin/env python

2 #

3 # Copyright 2005,2006,2009 Free Software Foundation, Inc.

4 #

5 # This file is part of GNU Radio

6 #

7 # GNU Radio is free software; you can redistribute it and/or modify

8 # it under the terms of the GNU General Public License as published by

9 # the Free Software Foundation; either version 3, or (at your option)

10 # any later version.

11 #

12 # GNU Radio is distributed in the hope that it will be useful,

13 # but WITHOUT ANY WARRANTY; without even the implied warranty of

14 # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the

15 # GNU General Public License for more details.

16 #

17 # You should have received a copy of the GNU General Public License

18 # along with GNU Radio; see the file COPYING. If not, write to

19 # the Free Software Foundation, Inc., 51 Franklin Street,

20 # Boston, MA 02110-1301, USA.

21 #

22

23

24 # ///

25 #

26 # This code sets up up a virtual ethernet interface (typically gr0),

27 # and relays packets between the interface and the GNU Radio PHY+MAC

28 #

29 # What this means in plain language, is that if you've got a couple

30 # of USRPs on different machines, and if you run this code on those

31 # machines, you can talk between them using normal TCP/IP networking.

32 #

33 # ///

34

35

36 from gnuradio import gr, gru, modulation_utils

37 from gnuradio import usrp

 76

Line

38 from gnuradio import eng_notation

39 from gnuradio.eng_option import eng_option

40 from optparse import OptionParser

41

42 import random

43 import time

44 import struct

45 import sys

46 import os

47

48 # from current dir

49 import usrp_transmit_path

50 import usrp_receive_path

51

52 #print os.getpid()

53 #raw_input('Attach and press enter')

54

55

56 # ///

57 #

58 # Use the Universal TUN/TAP device driver to move packets to/from kernel

59 #

60 # See /usr/src/linux/Documentation/networking/tuntap.txt

61 #

62 # ///

63

64 # Linux specific...

65 # TUNSETIFF ifr flags from <linux/tun_if.h>

66

67 IFF_TUN = 0x0001 # tunnel IP packets

68 IFF_TAP = 0x0002 # tunnel ethernet frames

69 IFF_NO_PI = 0x1000 # don't pass extra packet info

70 IFF_ONE_QUEUE = 0x2000 # beats me ;)

71

72 def open_tun_interface(tun_device_filename):

73 from fcntl import ioctl

74

75 mode = IFF_TAP | IFF_NO_PI

 77

Line

76 TUNSETIFF = 0x400454ca

77

78 tun = os.open(tun_device_filename, os.O_RDWR)

79 ifs = ioctl(tun, TUNSETIFF, struct.pack("16sH", "gr%d", mode))

80 ifname = ifs[:16].strip("\x00")

81 return (tun, ifname)

82

83

84 # ///

85 # the flow graph

86 # ///

87

88 class my_top_block(gr.top_block):

89

90 def __init__(self, mod_class, demod_class,

91 rx_callback, options):

92

93 gr.top_block.__init__(self)

94 self.txpath = usrp_transmit_path.usrp_transmit_path(mod_class, options)

95 self.rxpath = usrp_receive_path.usrp_receive_path(demod_class, rx_callback, options)

96 self.connect(self.txpath)

97 self.connect(self.rxpath)

98

99 def send_pkt(self, payload='', eof=False):

100 return self.txpath.send_pkt(payload, eof)

101

102 def carrier_sensed(self):

103 """

104 Return True if the receive path thinks there's carrier

105 """

106 return self.rxpath.carrier_sensed()

107

108

109 # ///

110 # Carrier Sense MAC

111 # ///

112

113 class cs_mac(object):

 78

Line

114 """

115 Prototype carrier sense MAC

116

117 Reads packets from the TUN/TAP interface, and sends them to the PHY.

118 Receives packets from the PHY via phy_rx_callback, and sends them

119 into the TUN/TAP interface.

120

121 Of course, we're not restricted to getting packets via TUN/TAP, this

122 is just an example.

123 """

124 def __init__(self, tun_fd, verbose=False):

125 self.tun_fd = tun_fd # file descriptor for TUN/TAP interface

126 self.verbose = verbose

127 self.tb = None # top block (access to PHY)

128

129 def set_top_block(self, tb):

130 self.tb = tb

131

132 def phy_rx_callback(self, ok, payload):

133 """

134 Invoked by thread associated with PHY to pass received packet up.

135

136 @param ok: bool indicating whether payload CRC was OK

137 @param payload: contents of the packet (string)

138 """

139 if self.verbose:

140 print "Rx: ok = %r len(payload) = %4d" % (ok, len(payload))

141 if ok:

142 os.write(self.tun_fd, payload)

143

144 def main_loop(self):

145 """

146 Main loop for MAC.

147 Only returns if we get an error reading from TUN.

148

149 FIXME: may want to check for EINTR and EAGAIN and reissue read

150 """

151 min_delay = 0.001 # seconds

 79

Line

152

153 while 1:

154 payload = os.read(self.tun_fd, 10*1024)

155 if not payload:

156 self.tb.send_pkt(eof=True)

157 break

158

159 if self.verbose:

160 print "Tx: len(payload) = %4d" % (len(payload),)

161

162 delay = min_delay

163 while self.tb.carrier_sensed():

164 sys.stderr.write('B')

165 time.sleep(delay)

166 if delay < 0.050:

167 delay = delay * 2 # exponential back-off

168

169 self.tb.send_pkt(payload)

170

171

172 # ///

173 # main

174 # ///

175

176 def main():

177

178 mods = modulation_utils.type_1_mods()

179 demods = modulation_utils.type_1_demods()

180

181 parser = OptionParser (option_class=eng_option, conflict_handler="resolve")

182 expert_grp = parser.add_option_group("Expert")

183 expert_grp.add_option("", "--rx-freq", type="eng_float", default=None,

184 help="set Rx frequency to FREQ [default=%default]", metavar="FREQ")

185 expert_grp.add_option("", "--tx-freq", type="eng_float", default=None,

186 help="set transmit frequency to FREQ [default=%default]", metavar="FREQ")

187 parser.add_option("-m", "--modulation", type="choice", choices=mods.keys(),

188 default='gmsk',

189 help="Select modulation from: %s [default=%%default]"

 80

Line

190 % (', '.join(mods.keys()),))

191

192 parser.add_option("-v","--verbose", action="store_true", default=False)

193 expert_grp.add_option("-c", "--carrier-threshold", type="eng_float", default=30,

194 help="set carrier detect threshold (dB) [default=%default]")

195 expert_grp.add_option("","--tun-device-filename", default="/dev/net/tun",

196 help="path to tun device file [default=%default]")

197

198 usrp_transmit_path.add_options(parser, expert_grp)

199 usrp_receive_path.add_options(parser, expert_grp)

200

201 for mod in mods.values():

202 mod.add_options(expert_grp)

203

204 for demod in demods.values():

205 demod.add_options(expert_grp)

206

207 (options, args) = parser.parse_args ()

208 if len(args) != 0:

209 parser.print_help(sys.stderr)

210 sys.exit(1)

211

212 # open the TUN/TAP interface

213 (tun_fd, tun_ifname) = open_tun_interface(options.tun_device_filename)

214

215 # Attempt to enable realtime scheduling

216 r = gr.enable_realtime_scheduling()

217 if r == gr.RT_OK:

218 realtime = True

219 else:

220 realtime = False

221 print "Note: failed to enable realtime scheduling"

222

223

224 # If the user hasn't set the fusb_* parameters on the command line,

225 # pick some values that will reduce latency.

226

227 if options.fusb_block_size == 0 and options.fusb_nblocks == 0:

 81

Line

228 if realtime: # be more aggressive

229 options.fusb_block_size = gr.prefs().get_long('fusb', 'rt_block_size', 1024)

230 options.fusb_nblocks = gr.prefs().get_long('fusb', 'rt_nblocks', 16)

231 else:

232 options.fusb_block_size = gr.prefs().get_long('fusb', 'block_size', 4096)

233 options.fusb_nblocks = gr.prefs().get_long('fusb', 'nblocks', 16)

234

235 #print "fusb_block_size =", options.fusb_block_size

236 #print "fusb_nblocks =", options.fusb_nblocks

237

238 # instantiate the MAC

239 mac = cs_mac(tun_fd, verbose=True)

240

241

242 # build the graph (PHY)

243 tb = my_top_block(mods[options.modulation],

244 demods[options.modulation],

245 mac.phy_rx_callback,

246 options)

247

248 mac.set_top_block(tb) # give the MAC a handle for the PHY

249

250 if tb.txpath.bitrate() != tb.rxpath.bitrate():

251 print "WARNING: Transmit bitrate = %sb/sec, Receive bitrate = %sb/sec" % (

252 eng_notation.num_to_str(tb.txpath.bitrate()),

253 eng_notation.num_to_str(tb.rxpath.bitrate()))

254

255 print "modulation: %s" % (options.modulation,)

256 print "freq: %s" % (eng_notation.num_to_str(options.tx_freq))

257 print "bitrate: %sb/sec" % (eng_notation.num_to_str(tb.txpath.bitrate()),)

258 print "samples/symbol: %3d" % (tb.txpath.samples_per_symbol(),)

259 #print "interp: %3d" % (tb.txpath.interp(),)

260 #print "decim: %3d" % (tb.rxpath.decim(),)

261

262 tb.rxpath.set_carrier_threshold(options.carrier_threshold)

263 print "Carrier sense threshold:", options.carrier_threshold, "dB"

264

265 print

 82

Line

266 print "Allocated virtual ethernet interface: %s" % (tun_ifname,)

267 print "You must now use ifconfig to set its IP address. E.g.,"

268 print

269 print " $ sudo ifconfig %s 192.168.200.1" % (tun_ifname,)

270 print

271 print "Be sure to use a different address in the same subnet for each machine."

272 print

273

274

275 tb.start() # Start executing the flow graph (runs in separate threads)

276

277 mac.main_loop() # don't expect this to return...

278

279 tb.stop() # but if it does, tell flow graph to stop.

280 tb.wait() # wait for it to finish

281

282

283 if __name__ == '__main__':

284 try:

285 main()

286 except KeyboardInterrupt:

287 pass

www.kth.se

TRITA-ICT-EX-2009:206

