A Session Initiation Protocol User
Agent with Key Escrow

Providing authenticity for recordings of secure sessions

&

L,
MD. SAKHAWAT HOSSEN EFKTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Master of Science Thesis
Stockholm, Sweden 2010

TRITA-ICT-EX-2010:1

A Session Initiation Protocol User Agent
with Key Escrow

Providing authenticity for recordings of secure sessions

Md. Sakhawat Hossen

hossen@kth.se

Masters Thesis

2010.01.18

Thisthesisis submitted in partial fulfilment of the requirements for a
Masters of Science degree in Internetworking.

School of Information and Communication Technology

Royal Institute of Technology (KTH)
Stockhom,Sweden

Supervisor and Examiner: Professor Gerald Q. Maguire Jr.

mailto:hossen@kth.se

Abstract

Voice over Internet Protocol (VolP), aso caled IP telephony is rapidly
becoming a familiar term and as a technology it is invading the enterprise, private
usage, and educational and government organizations. Exploiting advanced voice
coding & compression techniques and bandwidth sharing over packet switched
networks, VolP can dramatically improve bandwidth efficiency. Moreover enhanced
security features, mobility support, and cost reduction features of VolP are making it
a popular choice for personal communication. Due to its rapid growth in popularity
VolPisrapidly becoming the next generation phone system.

Lawful interception is a mean of monitoring private communication of users that
are suspected of criminal activities or to be a threat to national security. However,
government regulatory bodies and law enforcement agencies are becoming conscious
of the difficulty of lawful interception of public communication due to the mobility
support and advanced security features implemented in some implementations of
VolP technology. There has been continuous pressure from the government upon the
operators and vendors to find a solution that would make lawful interception feasible
and successful. Key escrow was proposed as a solution by the U. S. National Security
Agency. In key escrow the key(s) for a session are entrusted to a trusted third party
and upon proper authorization law enforcement agencies can receive the session
key(s) from this trusted third party However, key escrow adds some security
vulnerabilities and potential risks as an unethical employee of the key escrow agent
(or a law enforcement agency that has received the session key(s)) can misuse the
key(s) to forge content of a communication session -- as he or she possesses the same
key(s) as the user used for this session. This thesis addresses the issue of forged
session content, by proposing, implementing, and evaluating a cryptographic model
which allows key escrow without the possibility of undetectable fabrication of
session content. The implementation utilizes an existing implementation of a Session
Initiation Protocol (SIP) user agent ‘minisip’ developed at KTH. The performance
evaluation results suggest that the proposed model can support key escrow while
protecting the user communication from being forged with the cost of minimal
computational resource and negligible overhead.

Key words: Lawful Interception, Key escrow, SRTP, MIKEY, PKI, Digital Sgnature

Sammanfattning

RoOst 6ver Internet Protokoll (VolP), aven kallad IP-telefoni & snabbt bli en
valkand term och som teknik ar det invadera foretaget, privat bruk, och utbildning och
statliga organisationer. Utnyttja avancerad talkodning & tekniker kompression och
bandbredd utbyte dver paket-nét kan Vol P dramatiskt forbattra bandbredd effektivitet.
Dessutom forbéttrade sakerhetsfunktioner, stod till rérlighet och kostnader minskning
funktioner VolP gor det till ett populért val for personlig kommunikation. Grund av
sin snabba tillvaxt i popularitet VolP & snabbt pa att bli nédsta generation
telefonsystemet.

Avlyssning & ett medelvérde av Overvakning privat kommunikation for
anvandare som ar misstankta for brottslig verksamhet eller att vara ett hot mot den
nationella sakerhet. Regeringens tillsynsorgan och brottsbekémpande myndigheter
blir medvetna om svarigheten for avlyssning av allmanheten meddelande pa grund av
stod till rorlighet och avancerade sdkerhetsfunktioner genomforts i vissa
implementationer av VolP-teknologi. Det har standig press fran regeringen pa
operatOrer och leverantorer for att hitta en |6sning som skulle gora avlyssning mgjlig
och framgangsrik. Nyckeldeposition foresogs som en lésning av US National
Security Agency. In nyckeldeposition nyckeln (er) for en session anfortros en betrodd
tredje part och andamdlsenliga tillstand brottsbekdampande myndigheterna kan fa
sessionen nyckel (s) fran denna betrodd tredje part dock tillagt nyckel deposition nagot
trygghet sérbarheter och risker som en oetisk anstalld av nyckeldeposition agent (eller
en brottsbekampande myndighet som har fatt sessionsnyckeln (s)) kan missbruk kilen
(s) att skapa innehdllet i ett meddelande session - som han €eller hon besitter samma
nyckel (n) som anvandaren anvénde for denna session. Denna avhandling behandlar
fragan om forfalskade session innehdl, genom att foresld, genomféra och utvardera
ett kryptografiskt modell som tilléter nyckeldeposition utan méjligheten ométbara
tillverkning av sessionen innehdll. Genomférandet anvander en befintlig genomfora
en Session Initiation Protocol (SIP) anvandaragent "minisip” utvecklats pa KTH.
Utvéarderingen av prestanda resultat tyder pa att den foreslagna modellen kan stodja
nyckeldeposition och samtidigt skydda anvandar meddelande inte smidda med
kostnaden for minimal computational resurs och férsumbar omkostnader.

Table of Contents

N 61 1 = o USSP TRPRRPRPRO [
SAMMEANTAITNING ..ot b e eesneesre e e I
TablE Of CONTENTS. ..o e iii
IS o) [0 =SSR Vi
LISt Of TADIES ... e bbb Viii
IS o) T AT o 3PP IX
ACKNOWIEAGEMENTS ...t ae e sreenneenneas X
Abbreviation and ACIONYMIS.......cceciiiieieeie e ree et e e be e e s e e nesneennes Xi
Chapter 11 INtrOdUCTIONc.ooiiiiecse e 1
00 R |V o AV 1o S 1
1.2 TRESISOVEIVIEW ..c.eeeeieieiesiesie sttt sttt e ettt ne e 2
1.3 RESEAICN QUESLIONS.......ccueeeieiiesiieie ettt se e sne e 4
Chapter 2: BaCKgrOUNGooiiiiiriiiinieeieeeeiee et 5
21 Lawful INTErCaPt (L1) oo s 5
2.2 Public Key Infrastructure (PK1)cccoieieeeeseee e 6
221 Why IS @ PKI NECESSAIY?......eeviieiiierieeieeeie et 7
222 HOW dOES PKI WOIK?......eeieiesiesiecesee e 8

2.3 Keyed-Hash Message Authentication Code..........ccoooverirerieieeiencsesesenes 9
24 Trusted Third Party (TTP) or ESCrow agentcccceceeveeveveeveecie e 10
25 KEBY BSCIOW. ...ttt et 12
251 The Clipper Chip.....cccoceecece e 12
252 Why key escrow iS problematiC?...........ccooeverinineneneeeesese e 13
2521 COMPIEXITY .cuiiiriciecieite ettt es 14
W A O 0 S 14
25.2.3 Security vulnerability and risKS.........cccevveveeieieese e, 14

26 Secure Real Time Transport ProtOCOlccoceoerinereniriesieeieeseese e 16
26.1 Cryptographic context and key derivation............cccceeveveveeieceecneenne. 18
26.2 SRTP packet ProCESSINGcoerverieririeienie et 18
2.6.3 How encryption and authentication isdone?............ccccecceveeveeeecnenee. 19

2.7 Secure Real Time Transport Control Protocol............coovvoeeieeiencncnenicnens 20
2.8 Multimedialnternet KEYIing (MIKEY) .ccoooiiiiiieieceeceee e 22
281 MIKEY MENOUSccveiiieciesece e 23
2.8.1.1 Pre-Shared Key method..........cccooeveieiiieiierececeese e 23
2.8.1.2 Public Key Encryption method...........cccoiiiieninenieienee e 24
2.8.1.3 Diffie-Hellman method..........cccoviiininiinineceneee e 25

2.9 MINISIP ettt e n e nenne s 25

Chapter 3: Related WOrK ... 27

3.1 Security and non-repudiation for aVVoice-over-1P conversation................. 27
3.2 A CALEA compliant network to obtain session encryption key................. 28
3.21 The LI mediation device initiating the acquisition of the private key .28
322 Session border controller intermediary security negotiation............... 29

T T VA | == oSSR 29
Chapter 41 Key ESCrOW AQENT.....cccooiieiiiieseeiesee et s 31
4.1 Escrow agent and escrow dataDase...........ccoveeeeieenienieneene e 31
41.1 ESCrOW dat@base.........ccouiiirieiinierieneeee e 32
412 Implementation details..........cooevierinine e 33

I T 0 R (= o 0 1 USSR 34
4.3 HOW 10 ESCIOW?.... .ottt st nne e e nn e nneesnneen 35
4.3.1 Necessary modificationsto the minisip code..........ccccoeveeveeveeeesreenee. 35

4.4 When and from WHere t0 ESCrOW?coueveeierieiee e 38
44.1 Necessary modificationsto the minisip code..........cccccvveeveevecceeneeenee. 38
Chapter 5. Design and Implementation of a Solution...........c.ccccvevvvcevieerennnne 40
5.1 DESION OVEIVIEW ...ooueieieceieie e siee st eee e ste e sreesse e s e sseesessaesseesessansseenes 40
52 Creating SRTP DIOCKS.......cciiiiieiiee s 41
521 Necessary modificationsto the minisip code..........cccccvveevveveeceenreenne. 42

53 Hashing SRTP BIOCKS.......ccuiiiiiirieeee s 43
531 Necessary modificationsto the minisip code..........ccccovveevveveeceeseeenee. 44

54 Signing the hashed DIOCKS..........ccooiiiiieiie e 45
54.1 Necessary modificationsto the minisip code..........cccccvvvevveieeceenreenne. 46

55 Sending the Signed hash.........ccoooiieni s 46
55.1 Necessary modificationsto the minisip code..........cccccvveeveeveeceenreenee. 47

5.6 Detection of forgery by the proposed modelccceverveniinenienceneene, 48
Chapter 6: Performance Evaluation and DiSCUSSIONccccceeiieieeieveesieenans 51
CT A V7= TV (o g et) (= - VST 51
6.2 Evaluation of the forgery detection model............ccoooveririieieiinenencre 51
6.2.1 Delay introduced by the cryptographic operations.............cccccccveneee. 52
6.2.1.1 HaShING JelAY......ccceeeeiiieriee e s 53
6.2.1.2 SIgNING AE@Y ...oceeieeeiece e e 56
6.2.1.3 Total delay MeasuremMeENtcccueerreererene e 60

6.2.2 Extratraffic generated by the signed hashes.............ccceeevveieceecnenee. 63

6.3 Escrowing overhead MEeasUremMeNtcccoouerererereneneseeeeee e 67
6.4 Timebetween BY E and €SCrOW........ccceirieieienene s 71
6.5 SUMIMAIY ..ot r e sneenne s 72
Chapter 7. Conclusionsand FUTUre WorK...........ccoeverinenenienieecsese e 73
7.1 Summary of the theSISTeSUITS ... 73
7.2 FULUFE WOIK ...viiiticieeiieee ettt sttt s sne e 74
REFEI BNCES.....eeee ettt b e e e 76

N 0] 0 1< [0 [T =SSO 79

A. Script to enable Apache2 web server with SSL capability........cccccoeeevvecinnene. 79
B.HMAC_SHA hashing timefor 50 test rUNS........cccevvreneeie e 82
C. RSA signing time for 50 tESt FUNS.......ccvieeieeieceeeeee et 84
D.RSA signing timefor block size closer to 128 to find local minima................... 86
E. Total Delay (Signing +hashing + RTCP sending) timefor 50 test runs........... 88
F. Detailed of the CPU used by our User Agent.......ccecvieeneeie e 90
G. Schema definition of ESCrow Database............ccovvreireneneieneseeseseseeesees 92
H. SER configuration fil@.........couoiiiieeee e e 93
|. Important Apache configuration files (TWO fil€S)cceocvevvveevirie e, 98

List of Figures

Figure 1-1: Overview of the operation of the proposed System...........ccocereevereerenenns 3
Figure 2-1: PKIT WOFKFIOW........ocieiecie ettt nne e 9
FIQUIE 2-2: HIMAC ... ettt sttt sb e 10
Figure 2-3: SRTP packet FOrMaLccocveieieeieeie e 17
Figure 2-4: SRTP Key SPITHINGc.coiiiiiiieieeeee e e 18
Figure 2-5: AES N COUNLEr MOE.........ceiieieeeeseeie e eee et s 20
Figure 2-6: SRTCP packet fOrMatcccoeiirieniiieeieseee e 21
Figure 2-7: MIKEY key agreement proCeAUIE...........ooerererereneeeeeeseesee e 22
Figure 2-8: MIKEY message Payloadccceveeiieieeieeie e 23
Figure 2-9: Pre-shared method of MIKEYc.ccoiiiiiiniineeeeee e 24
Figure 2-10: Public Key Encryption (PKE) method of MIKEYccccccoveveiieiiecneene. 25
Figure 2-11: Diffie-Hellman method of MIKEY ..o 25
Figure 4-1: General architecture of the ESCrow agentccceeeveevecieceeseccie e 32
Figure 4-2: General Structure of the escrow database............cccoveeeeieeieierinc s 33
Figure 4-3: Initiator ending the SESSIONcccciieieiieieee e e 38
Figure 4-4: Responder ending the SESSIONccoieriirierirereseeee e 38
Figure 5-1: Cryptographic overview of the proposed modelcccccevvvveiiveiincnnne. 41
Figure 5-2: Flowchart of SRTP block Creation.............coevvrinineneieeceee e 42
Figure 5-3: Block diagram of HMAC_SHA hash function............cccceceevvieeieecincnnene 44
Figure 5-4: Block diagram of authentication key generation for HMAC_SHA.......... 44
Figure 5-5: Block diagram of Signing Operation.............ccccvevveeeeveseeseesiesee e 46
Figure 5-6: UML diagram showing the invocation of OpenSSL library functions.....47
Figure 5-7: Sending of Signed hash via SRTCP/RTCP path..........ccccccveviiieivecincnee a7
Figure 5-8: Signed hash verification by the proposed model ... 49
Figure 5-9: Detection of forgery by the proposed modelccoeoevieieiceececcieceee, 50
Figure 6-1: Delay produced by the cryptographic operations (Hash+Sign)................. 53
Figure 6-2: HMAC_SHA hashing time for 50 test runs of different block size.......... 54
Figure 6-3: R boxplot showing the HMAC_SHA hashing time..........ccccevvnirinennne 55
Figure 6-4: Averaged hashing time for different block SIZes..........cccoveiviieiieiece 55
Figure 6-5: RSA signing time for 50 test runs with different block sizes................... 57
Figure 6-6: R boxplot showing the RSA signing time..........ccccveveveevecce s 57
Figure 6-7: Averaged signing time for individual block Size...........cccoooiiiiinininnne 58
Figure 6-8: R boxplot showing the RSA signing time..........ccccoveveveeveciecee e 59

Vi

Figure 6-9: Averaged signing time for individual block size closer to 128................. 59

Figure 6-10: Total delay for 50 test runs of different block size..........cccoveiiennne 61
Figure 6-11: R plot showing the total delay.........cccovvoeveecrecereee e 61
Figure 6-13: Tota delay, signing time and hashing time for different size of block ..62
Figure 6-14: Signed hash value inside a UDP packet...........cccccuevereeveciesceeseecie e 63
Figure 6-15: Signed Hash Inter Arrival time for different block size.............c........... 65
Figure 6-16: log-log plotwith error bars showing the signed hash inter arrival time..66
Figure 6-17: Placing the signed hash inside RTCP SR/RR..........cccoceviriiniinencenne 67
Figure 6-18: Screenshot showing the packets involved in a single escrow operation.69
Figure 6-19: The flow of packetsfor asingle escrow operationcccccocereereerenne 69
Figure 6-20:Time between BY E and escrow (sorted inincreasing delay) 72

Vil

List of Tables

Table 1. Some important functions of minsip that have been utilized 26
Table 2: Some Cryptographic features of VIPSeC protocol............ccocovveeeveeienenneenne. 30
Table 3: Security parameters necessary along with TGK to generate session keys....35
Table 4: Statistical data of HMAC_SHA delay measurement in microsecond for

different block size. These statistical values are calculated for 50 test runs................ 53
Table 5: Statistical results of signing time delay measurement in millisecond for
different block size. These statistical values are calculated for 50 test runs................ 56

Table 6: Statistical results of signing time delay measurement in milliseconds for
different block sizes close to 128 to find the local minima. These statistical values are

calculated fOr 5O tESE FUNS.ccveiieceeie ettt e e sre e 58
Table 7: Statistical results of total delay measurement in milliseconds for different
block sizes. These statistical values are calculated for 50 test runs............ccccveevveenene 60
Table 8: Signed hash interval for different size of block. These average values are
calculated fOr 5O tESE FUNS.cocueiieceesie ettt sreesre e 65
Table 9: Increased size of the RTCP SR/RR report to carry the signed hash.............. 67

Table 10: Time required escrowing a session master key with the escrow agent 68

Table 11: Number of packets and bytes sent as overhead in addition to the master key
and other security parameters for asingle @SCroWcccveveieeviecieceese e 70

Table 12:Time between BY E and the escrow operation for 20 test runs.................... 71

viii

List of Listings

Listing 1: PHP script to automate the escrow agent functionality...........ccocceveecernene 34

Listing 2: escrowSessionKey() inside Mikey.cxx to escrow the session master key
where the top gray coloured area shows the formation of the URL of the escrow agent
with the TGK and other necessary parameters and the lower blue coloured area shows

the invocation of libcurl Method. ... 36
Listing 3: Partial listing of modified Mikey.hfile.......cccccveveneeiiiece e 37
Listing 4: Code snipped from Session::stop() of libminisip library showing the

invocation of escrowSessionKey() method after checking the escroFlag 39
Listing 5: updateBlock () function to incrementally update SRTP block.................... 43

Listing 6: Code snippet from RealtimeM ediaStreamSender::send () to deal with
(a) creating SRTP block (yellow coloured), (b) checking it it time to send the signed
hash, (c) hashing and signing the block (blue coloured), and (d) sending the Signed

hash (0range COIOUIE).........eouiieecece ettt esne e 43
Listing 7: hashAndSignTheBlock () function to perform (a) the hash (blue coloured
area) and (b) the signature (orange coloured are) of SRTP block.ccceevvvevienne 45
Listing 8: Code snipped from RealtimeM ediaStream::initCrypto () showing the
generation of the authentication key for use by the hmac_shal function.................... 45
Listing 9: sendSignedHash() function sends the signed hash viathe SRTCP/RTCP

07 11 USSP 48

Acknowledgements

It is an auspicious occasion for me as a student to express my deep feelings of
gratitude to the department; especially to my supervisor, teachers, and aso to the
departmental staffs.

| am immensely indebted to my supervisor and examiner, Professor Gerald Q.
Maguire Jr. for his wonderful guidance, inspiration, and continuous encouragement.
| would like to extend my gratitude for his sincere review and correction of thisthesis
project as it could not have been realized without his astute supervision. | consider
myself fortunate to have such awonderful person as my supervisor and the time that |
spent with him during the project will remain as an enjoyable experience for a long
time.

| give profound thanks to Erik Eliasson for his very vauable direction and
special attention. | also acknowledge my friends who, through their interest and work,
are my constant source of inspiration.

Finaly, I would like to acknowledge my parents in Bangladesh who always
believed in me. Their unconditional support and continuous inspiration kept me alive
in this frozen land. My only brother and sister have truly been a source of inspiration.
| hope that | have fulfilled their aspirations and | dedicate this thesis to my family
members.

Abbreviation and Acronyms

AES
AP
B2BUA
CA
CALEA
CODEC
CSR
DES
DNS
FCC
FQDN
FRA
FTPS
HDR
HMAC
HTTP
HTTPS
IETF
ISP

v
LDAP
LEAF
LEA
LI
MAC
MD
MD5
MKI
MIKEY
MIME
MKI
NSA
PKE
PKI
PSK
PRF
PSTN
QoS
RA
RFC
ROC
RSA
RTCP
RTP
SBC
SCP
SDP
SER

Advanced Encryption Standard
Application Programming Interface
Back-to-back User Agent

Certificate Authority

(U.S.) Communications Assistance for Law Enforcement Act
Encoder/decoder

Certificate Signing Request

Data Encryption Standard

Domain Name System

(U.S)) Federal Communications Commission
Fully Qualified Domain Name
(Sweden'’s) Forsvarets radioanstalt
File Transfer Protocol Secure

Header Payload

Keyed Hash Message Authentication Code
Hypertext Transfer protocol
Hypertext Transfer Protocol Secure
Internet Engineering Task Force
Internet service provider

Initialisation Vector

Lightweight Directory Access Protocol
Law Enforcement Access Field

Law Enforcement Agency

Lawful Intercept

Message Authentication Code
Message Digest

Message Digest algorithm 5
Master Key Identifier

Multimedia Internet Keying
Multipurpose Internet Mail Extension
Master Key Identifier

(U.S)) National Security Agency
Public key Encryption

Public Key Infrastructure

Pre Shared Key

Pseudo-random function

Public Switch Telephony Network
Quality of Service

Registration Authority

Request for Comments

Rollover Counter

Rivest Shamir Adleman

Real Time Transport Control Protocol
Real Time Transport Protocol
Session Border Controller

Secure Copy

Session Description Protocol

SIP Express Router

Xi

SHA
SIP
SIMIME
SRTP
SRTCP
SsL
SSRC
TCP
TEK
TFTP
TGK
TLS
TTP
VolP
UDP
uID
UML
URI
URL
us
VIPSec
VolP

Secure Hash Algorithm

Session Initiation Protocol
Secure/Multipurpose Internet Mail Extensions
Secured Real Time Transport Protocol
Secured Real Time Transport Control Protocol
Secure Socket Layer

Synchronization source

Transmission Control Protocol

Traffic Encryption Key

Trivial File Transfer Protocol

TEK Generation Key

Transport Layer Security

Trusted Third Party

Voice over Internet Protocol

User Datagram Protocol

User Identification

Unified Modelling Language

Uniform Resource |dentifier

Uniform Resource L ocator

United States

Voice Interactive Personalized Security
Voice over Internet Protocol

Xii

Chapter 1. Introduction

1.1 Motivation

Voice over Internet protocol (VolP), aso known as IP telephony is a familiar
term and killer application in the area of personal communication. As a technology it
is invading enterprise, educational and government organizations. This technology is
gaining popularity day by day due to its many attractive features. From a technical
point of view VolP can dramatically improve the bandwidth efficiency by exploiting
advanced voice coding and compression techniques and can share bandwidth with
data on packet switched networks. As the packets are processed at the end-points it
can incorporate advanced security features. Additionally, Vol P supports user, session,
and device mobility. Moreover users like this technology because it can reduce their
voice (and conferencing) costs. Due to the rapid growth in popularity VolP isin a
hurry to be the next generation phone system.

Lawful interception (LI) is a mean of monitoring private communication of users
that are suspected of criminal activities or to be a threat to nationa security. Lawful
Intercept (L1) is not a new requirement in the area of public telephony. LI was
conceived 50 to 60 years ago. Users have not been positiveto L1 as it raises a number
of controversial issues such as violation of human rights and decreased confidentiality
of commercia communication. However in recent years, government regulatory
bodies and law enforcement agencies (LEAS) are becoming conscious of the difficulty
of lawful interception of public communication due to the mobility support and
advanced security features implemented in some implementations of Vol P technology
[1] [2]. There has been continuous pressure from the government upon the operators
to find a solution that would make lawful interception feasible and successful. Key
escrow was proposed as a solution by the U. S. National Security Agency. In key
escrow the key(s) for a session are entrusted to a trusted third party and upon proper
authorization law enforcement agencies can receive the session key(s) from this
trusted third party However, key escrow adds some security vulnerabilities and
potential risks as an unethical employee of the key escrow agent (or a law
enforcement agency that has received the session key(s)) can misuse the key(s) to
forge content of a communication session -- as he or she possesses the same key(s) as
were used for this session.

Currently, LI in both the fixed and mobile networks is relatively easy due to the
network architecture; specifically the intelligent core with dumb end terminals. As a
result of this architecture it has been possible to require that the telecommunication
switch vendors build in mechanisms for LI. Increasingly, LI is not always successful
due countermeasure taken by users to prevent or reduce the ease of monitoring private
communications. Moreover these countermeasures can result in misleading
information.

Due to the Internet’s architecture of smart end devices and dumb core network it
has become more technically difficult to lawfully intercept private communications.
One of the major reasons for this is that smart end devices can implement
sophisticated encryption techniques that make it very difficult to retrieve the actua
communication contents. To facilitate LI ‘key escrow’ was first proposed during the
early 1990s. The main idea underlying key escrow is that the keys needed to decrypt
an encrypted communication session will be deposited with a trusted third party
(TTP) as an escrow agent. The LEA can get the session key from the TTP after

Chapter 1: Introduction

showing proper authorization. This method enables the LEA to perform LI of VolP
users encrypted communication. However, key escrow raises some Security
vulnerabilities and potential risks. Moreover a large-scale key escrow system has not
yet been implemented due to its high cost and complexity. Details of key escrow
systems are described in section 2.5.

The main concern regarding key escrow systems is the trustworthiness of the
TTP. Since the session keys are stored at the escrow agent an unethical employee of
the TTP could misuse this information. Such an employee could both divulge the
contents of a session or could forge contents of a communication session (for
example, in order to blackmail the user by fabricating evidence of criminal activity
that could be presented in court). This (dual) weakness of key escrow has caused
many people (such as cryptographers, human right workers, and individuals) to reject
key escrow as a viable solution for facilitating lawful interception. Therefore, some
mechanism is required that could make key escrow feasible while preventing
tampering with the communication session’s content. At the same time there is a need
to make key escrow desirable, i.e., there needs to be a reason for the users to want to
use key escrow. However, this later issue is outside the scope of this thesis. Making
key escrow feasible, while restoring a balance between users and LI, is the main
motivation that leads us to propose, implement, and evaluate a model that allows key
escrow without the possibility of undetectable fabrication of session content.

The implementation of the proposed solution utilizes an existing implementation
of a Session Initiation Protocol (SIP) [3] user agent ‘minisip’ developed at KTH. The
existence of a working implementation could have very high impact on businesses
that for regulatory and other legal reasons need to be able to store and retrieve
encrypted sessions. Such an implementation might also be valuable to other users.

1.2 Thessoverview

In this thesis a very simple key escrow agent is implemented— with whom the
session keys are deposited. Note that the session key is escrowed after a session is
over. During a session we sign blocks of hashes over the session contents and transmit
these signed hash values over the Real Time Transport Control Protocol (RTCP)
channel paralel to the Real Time Transport Protocol (RTP) traffic channel that is
being used. The private key of the sender is used to sign the hash of sent packets. The
receiver can use these signed hash values together with the sender’s public key to
detect modification of the sender’s traffic. In fact, any party that has access to the
signed hash values and the sender’s public key can detect an attempt to forge session
contents.

This thesis work has extended the existing minisip implementation to support
key escrow. Minisip is an open source SIP user agent developed in KTH (see section
2.9 on page 25). Minisip was chosen because of its extensive support for security.
Minisip aready implements severa security protocols to protect the media and
signalling information of a cal. Minisip implements Secure Real Time Transport
Protocol (SRTP) to protect the media data (offering privacy by using encryption and
integrity protection using signed hashes), Transport Layer Security (TLS) to secure
signalling, and Multimedia Internet Keying (MIKEY) as a key management protocol.
(SRTP and MIKEY are described in Chapter 2:). MIKEY provides the mechanism for
the parties to agree upon a session master key; from which SRTP generates separate
session keys for encryption and integrity protection for each media stream. SRTP uses
the session keys to protect the Real Time Transport Protocol (RTP) packets. Minisip

Chapter 1: Introduction

has been extended to deposit the session master key provided by MIKEY with the
escrow agent after asession is terminated (see section 2.4 on page 10).

Figure 1-1 gives an overview of how the overall system works. As noted earlier,
since the escrow agent has the same session key as the sender and receiver there is a
potential for interception & decryption and/or forgery of the content of the media
streams of the Secure Real Time Control Protocol (SRTCP) packets. To prevent real-
time interception and decryption of a media stream or its associated control stream we
only deposit the session key at the end of the session. The authors assume that the
LEA conducting an authorized interception of the communication between the parties
has some means of intercepting the packets that are part of the communication session
(including al of the SIP, SRTP, and SRTCP packets). The technical means that the
LEA usesto do thisis outside of the scope of this thesis (See the thesis of Muhammad
Sarwar Jahan Morshed [4].)

ér/ Deposited to E—
wasor NIV
Key

g
3

e
Session keys
RTP ‘ SRTP
-
hash P;l(\;ate (S)RTCP
Sender Y
L
Hash | pashof @ Signed
:5 SRTP :} hash
packets
b hash (I

Legal ——

Authority %

L]

Public key of the sender to
verify Signed hash

\

\
-0 UL

\ \
deny @ Receiver

Master
SN Key

Session keys

Figure 1-1: Overview of the operation of the proposed system

Chapter 1: Introduction

To prevent forgery of (or tampering with) a recorded media stream we compute a
signed hash over multiple SRTP packets. It is important to note that rather than
signing with a key associated with this specific session, we instead sign the hash using
the private key of the sender. The resulting signed hash is sent as part of a payload in
a Secure Real Time Control Protocol (SRTCP) packet. As there is no reason to
deposit the private key of the sender with escrow agent it will be impossible for
anyone to forge the digital signature of the hash over the SRTP packets. If someone
who has obtained access to the session key(s) (for example, a LEA who has presented
a lawful intercept order to the escrow agent) attempts to fabricate the contents of a
(captured) media stream by generating SRTP packets and encrypting them with the
correct session key, it will be possible using the sender’s public key to refute the
authenticity of these packets — since while they may be encrypted by the correct
session encryption key, anyone can use the public key of the sender to verifying if
media stream has the correct digital signature. This suggests that for convenience the
sender may also want to deposit the final signed hash value with the TTP. The details
of why this final signed hash value should be escrowed are presented in section 4.2.
The final signed hash value could be escrowed at the same time as the sender deposits
the session keys(s) that have been used for a session.

SRTP and SRTCP both make use of symmetric encryption in order to support
low delay and high throughput for the media streams. However, there is no need for
the signed hash values to be delivered with low delay — since they are only
(potentialy) relevant after the session has ended. It is the combination of signing the
hash of a group of SRTP packets at the same time and the lack of any requirement for
low delay that enables asymmetric public key techniques to be used for signing these
hashes.

1.3 Research questions

Based on the thesis overview presented in section 1.2 there are some open
research questions that need to be addressed. The questions are as follows:

Q1. How many SRTP packets should be grouped together?
Q2: What isasuitable rate for computing the signed hashes?

Q3: Should the number of packets that are group together be computed
adaptively based upon the rate at which the sender can compute and sign

the hashes?

Q4: Isthere any minimum number of SRTP packets that should be group
together?

Q5: Isthere any maximum number of SRTP packets that should be group
together?

Q6: Isthere any problem of too frequent signing, leading to aleaking of bits of
the sender’ s private key?

Q7: Arethere any weaknessesin this system design?
Q8: Arethere any weaknesses in the implementation of this system?

Some of these questions are addressed in this thesis; while some will be
addressed in the companion thesis of Muhammad Sarwar Jahan Morshed [4] and
other theses.

Chapter 2: Background

This chapter provides some background for the readers. It introduces some of the
key concepts and protocols that are used in the thesis. We start by presenting the basic
concepts of Lawful Intercept, a trusted third party, key escrow, a public key
infrastructure, and a signed hash. In Section 2.6 and later, we present three important
protocols for this work: SRTP, SRTCP, and MIKEY. In the fina section, we briefly
present an open source Session Initiation Protocol (SIP) user agent named as minisip
and our motivation for selecting it as the basis for our implementation.

2.1 Lawful Intercept (LI)

Lawful Intercept (LI) is the legal monitoring of private communication. LI
provides the means and mechanisms for the government and law enforcement
agencies (LEAS) to conduct electronic surveillance of either circuit or packet switched
communication. In most countries LI is only possible under a valid administrative or
judicial order. The criterion for issuance of such a LI order is generally collecting
evidence to be used in criminal proceedings or to prevent harm to the society (for
instance in conjunction with national security).

Although the concept of LI was conceived more than 50 years ago when the
government used technical means to tap and/or trace public telecommunication, there
have been many questions raised regarding the practice of LI. Initialy interception
was not primarily concerned with collecting evidence for criminal prosecution; in
most cases it was used for ensuring national security. Because the use of LI was
typically done in secret there was little discussion of individual privacy. However,
instances of politically motivated LI lead to a wider discussion of LI and the right of
individuals to private communication and association. As a result, illegal monitoring
is often framed in terms of being a violation of human rights. This has lead to the
creation of new laws to define a proper framework for LI. (For further discussions of
the framework for LI see [1]. Another potentially relevant publication is[5] where the
author discusses the retention of communication data as a security measure that
conflicts with the right to privacy. In her discussion she argues that perceived privacy
is a prerequisite for making independent decisions and freely communicating with
other persons while living in a participatory society. She has examined
communication monitoring as a law enforcement tool with respect to interception of
content, data retention, and data preservation.)

Two important requirements for successful LI are: (1) the user must not be
aware that he or she is the subject of LI (i.e., that their communication is being
intercepted) and (2) other users of the communication system must not be affected by
the LI. The exact details of how LI is performed vary from system to system and
depend on the architecture of the telecommunication system, laws, and regulatory
policy. However, today in many countries all public communication service providers
(operators) are generaly required to provide the government and LEAs with
assistance in conducting LI1[6].

The technical means and requirements for LI change due to the evolution of the
various communication systems. This evolution in telecommunication architecture
has meant that the technical means for LI as well as the laws and policies for LI have
had to adapt to the emergence of new technology. For example, in Sweden a major
change in LI law occurred because of the fact that most international

Chapter 2: Background

telecommunications is now carried via optical fibers and not via radio signals.
Unfortunately, the earlier law did not provide a framework for L1 of traffic carried via
such fibers; but did clearly describe how and who was responsible for LI for radio
communication. The new law is popularly referred to as the FRA-lagen (The FRA
law) — after the initials of the Forsvarets radioanstalt (FRA), the National Defence
Radio Establishment — as this agency has been given the assignment of LI for
international traffic under the new law. (For details see [7][8].) Similar changesin LI
laws and regulations have been made in a number of countries; see for example the
U.S. Communications Assistance for Law Enforcement Act (CALEA) regulations [9].

Until recently LI in fixed networks (primarily the Public Switch Telephony
Network (PSTN)) and mobile networks (such as Public Land Mobile Networks) has
been relatively easy to conduct due to the centraized nature of these
telecommunication network architectures and the limited number of operators (until
recently often only a single government owned and/or controlled operator). However,
the Internet lacks centralized network architecture and there are a very large numbers
of operators. Additionally, the Internet is based on packet switching; in such a
network individual packets are routed — potentially over many different networks and
routes between a source and destination(s). Asaresult LI is more challenging than for
the fixed and mobile telephony architectures.

Today, Voice over Internet Protocol (VolIP) is a killer application that is both
competing with and transforming the global telephony system. This revolutionary
technology supports user mobility and enables a user to have multiple identities.
When combined with the problems of LI in the Internet, LI for VolP traffic is very
problematic.

To further complicate the problem of LI for VolP the modern Internet is
characterized by having smart edge nodes with a dumb core (in contrast to fixed and
mobile telephony networks). The presence of computationally capable nodes at the
edge of the network makes it very easy to implement countermeasures against LI.
Moreover, Internet users can add their own services at any time from any point in
Internet without depending on their access operator, making LI even more challenging
asthereis no perfect location in the Internet to perform L1 [10].

Despite the many technical difficulties of performing LI for VolP traffic there
are many interested parties that want to be able to perform LI for VolP traffic. Thus
this thesis will assume that there is a desire for LI and that legal and technical
requirements have been (or will be) introduced to make the capture and storage of
Vol P packets feasible (at least when applied to a small number of targeted intercept
subjects).

2.2 PublicKey Infrastructure (PK1)

A public key infrastructure (PKI) is a collection of components including
hardware, software, people, policies, and procedure to securely distribute public keys
in the form of digital certificates to achieve communication security. A PKI supports

public-key cryptography.

Public key cryptography is based upon every entity that desires to communicate
privately having a pair of keys: a public and a private key. This approach depends
upon the assumption that data encrypted with a public key can only be decrypted by
using the corresponding private key. The public key is publicly available — it could be
printed in the newspaper, posted on a web site, printed on a user’s business cards,

Chapter 2: Background

painted on the side of a car, etc. While the private key is only known by the entity to
which the pair of keys belongs.

To be sure that a certain key pair really belongs to only one person it is hecessary
to use a specific "document” which binds a public key to one person. Such a
document or credential that contains a public key or information about the public key
of auser iscalled a"digital certificate".

Ideally a PKI consists of a certificate authority (CA) that issues and verifies
certificates, a registration authority (RA) that acts as the verifier for the certificate
authority before a certificate is issued to a requestor, a repository to store and retrieve
certificates, a method of revoking certificates, and a method of evaluating a chain of
certificates starting with public keys that are known and trusted in advanced to reach
the target.

In the following subsection the details of these digital certificates is presented;
along with a brief description of how such a certificate is created. These descriptions
are sufficient for the reader to understand the basic ideas utilized in the rest of the
thesis, but the interested reader is referred to other sources for further details (such as
[11]).

2.2.1 WhyisaPKI necessary?

Internet isincreasingly seen as a daily necessity in today’s personal and business
worlds due to its ubiquitous nature and because of e-commerce, e-health,
e-government, ... representing opportunities for increased efficiency, increased
flexibility, However, security and persona integrity are important issues that
must be considered.

In the corporate world various stakeholders are expected to maintain trusted
business relationships. This trusted business relationship generally requires mutual
authentication of the parties, confidentiality, integrity, and non-repudiation in order to
perform secure business transactions. Non-repudiation is generally required so that no
party can deny that a specific transaction has occurred. Similar requirements occur in
other settings, such as when a health care worker accesses and updates a patient’s
medical records, electronic voting (where the voter must be determined to be a valid
voter, but their actual vote can not be identified with the voter),

A traditiona face-to-face transaction in a small community generally required
only minimal interaction and normally did not necessitate the use of digital security
and integrity mechanisms (for example, relying on mutual knowledge of the parties or
via a human chain of trust, the ability of the community to enforce legally binding
agreements, etc.). However, today face-to-face transactions are not always possible or
even practical due to the physical distance between the parties. Additionally, these
face to face transactions are in some cases not even desirable — for example, it may be
easier to have an open electronic market for stocks, commodities, etc. where al of the
transaction is captured in digital form (for example, for enforcing regulations).

To establish a trusted business relationship the two parties can use some
credential (secret key or digital certificate) to securely authenticate each other. These
two parties can exchange such credentials via a face-to-face meeting to exchange
credentials, use postal mail or email to exchange their certificates, or can download
their public key from anywhere in the Internet to a location where their stored
certificate will be available to the other party (who can download it to where ever they
are attached to the Internet).

Chapter 2: Background

Because the exchange of credentials is so important, thisis often the focus of an
attacker. For example, the attacker could pose as a mail transfer agent to intercept the
email between the users — as a form of man-in-the-middle attack. Similarly the
attacker might use DNS poisoning to induce the two parties to deposit their public key
and retrieve the public key of the other party from the attacker’s site. Thus enabling
the attacker to replace each party’s public key with their own key, thus establishing
the attacker as a man-in-the-middle. In this case each of the parties will believe that
they are securely communicating with each other, when in fact they are securely
communicating with the attacker! As many believe that face-to-face exchange of
credentials is not sufficiently scalable, there is a desire for an infrastructure to
securely distribute public keys. Hence the idea of a PKI came into existence. Every
PKI provides the following functionalities [12]:

Public key the generation, distribution, administration, and control
cryptography of cryptographic keys

Certificate binds a public-key to an individual, organization, or
issuance other entity, or to some other data—for example, an

email or purchase order

Certificate the process that verifies that a trust relationship or

validation binding exists and that a certificate is till valid for a
specific operation

Certificate the process that cancels a previoudly issued certificate

revocation and either publishes the cancellation to a Certificate

Revocation List or enables an Online Certificate Status
Protocol process

2.2.2 How does PKI work?

This subsection briefly describes the workflow of a PKI (see Figure 2-1).
Initially a subject (a user) applies for a certificate to a RA. Next the RA performs
verification of the subject’ s identity. After verification of this identity, the RA sends a
certificate request to the CA on behalf of the subject. The CA checks the validity of
the RA and checks the information in the forwarded certificate requests if these
checks are passed, then the CA issues a certificate and stores a copy of the issued
certificate in its local storage. Later the CA publishes the certificate in a certificate
repository. The RA provides the user with the certificate issued by the CA. Given this
certificate the subject can now digitally sign any message with the private key
associated with this certificate. Upon receiving a digitally signed message the receiver
first retrieves the certificate from the certificate repository, then verifies the message
using the public key in the certificate. In some cases, the sender may include their
public certificate in the message.

Note that the details of the creation of the certificate and the validation of a
certificate lie outside the scope of this thesis (for further details see [13]). We ssimply
assume that the various parties have valid certificates and that minisip contains the
necessary code for using these certificates (the specifics of this will be described in
Section 2.9).

Chapter 2: Background

Store :
CA Repository
Verify and Issuance of
Certificate certificate
request
RA Retrieval of
: certificate
Apply for Deli_very of
certificate certificate
{ Signed
_ message -
Subject Recipient

Figure 2-1: PKI1 workflow (adapted from [14])

2.3 Keyed-Hash Message Authentication Code

Keyed-Hash Message Authentication Code (HMAC) is one type of message
authentication code (MAC) calculated using a specific cryptographic function
combined with a secret key. HMAC can be used for integrity protection and
authentication of a message. A message authentication code can be calculated using
secret key cryptography or using a hash function; whereas HMAC can be calculated
using any iterative hash function, such as Message Digest 5 (MD5) or the Secure
Hash Algorithm (SHA). When an HMAC is calculated using MD5 the resulting
message authentication code algorithm is referred to as HMAC-MD5 and similarly
when SHA is used to caculate the HMAC the agorithm is referred to as
HMAC -SHA. The security of HMAC depends on the underlying hash algorithm. All
such hash algorithms (or message digest functions) should possess two properties:

e Collision resistance (i.e., it should be infeasible to find two message that
produce same output); and

e lrreversible (i.e., given an output message authentication code, it will not be
possible to produce the message).

All the hash agorithms work in a similar manner. The message is first padded to
a multiple of some length (in practice this is generally 512 bytes) with a pad that
indicates the length of the message. The shared secret key (Ksared) IS CONcatenated
with the message and a hash is calculated. The resulting message authentication code
is Hash (Kshared | M), Where Kgareq IS the shared secret and m is the message. However,
this technique has a serious security flaw, as there is a chance of a message extension
attack. In this scenario an attacker could compute a message authentication code of a
longer message beginning with m, if he knows m and the correct message
authentication code of m.

Chapter 2: Background

HMAC overcomes this shortcoming by concatenating Kgaed to the front of the
message and digesting, then prepends the key to the output and digests again. This
nested digest with secret key inputs to both iterations prevents the extension attack
that could be performed if we simply hash the message concatenated with the key
once. Figure 2-2 shows the HMAC procedure where the HMAC function takes a
variable length key and variable size message and produces a fixed size output. The
output length is the same length as used by the underlying hash algorithm (128 bits
for MD5 and 160 bits for SHA). As noted earlier, the digest/hash operation first pads
the key to a 512-bit block length - if the key is larger than 512 bits, then HMAC first
computes a digest of the key then pads again to produce a 512-bit block. The padded
key is XORed with the constant const; (= 3616), then this result is appended to the
message and the first digest/hash is performed. The padded key is XORed with
another constant const, (= 5Cy6) and appended to the output of the previous digest.
Now afinal digest is performed to produce the HMAC of the message [13].

HMAC has lower performance than the normal procedure to produce a message
authentication code as it does a second digest. However, this second digest is
computed over the secret and a digest, hence it does not add much cost if the origina
message was large (as the computational cost of this second hash is independent of
the length of the message). For a large message HMAC' s performance is negligibly
worse than a single message authentication code, but its use prevents the message
extension attack. As will be described later, both SRTP and MIKEY use the
HMAC-SHA1 adgorithm to compute a message authentication code for
authentication and integrity protection.

Key 0

Constx(5c.¢) XOR XOR Const,(36,5)

message

¥
Digest/hash

HMAC (Key, message)

Figure 2-2. HMAC (Adapted from [13] page 143)

24 Trusted Third Party (TTP) or Escrow agent

A Trusted Third Party is a complementary solution to the need for a trusted
service in the field of electronic communication; especially in e-commerce. The
International Standards Organization definesa TTP as:

10

Chapter 2: Background

A Trusted Third Party is a security authority or its agent which is trusted by
other entities for the security functions it provides. When a Trusted Third Party is the
security authority for a domain, it can be trusted within that domain.[15]

A TTP must meet some functional requirements and these requirements may
vary according to the scale of the TTP. The law enforcement members of Germany,
England, France, and The Netherlands (known as The Security Group of G4) aong
with Sweden have defined fourteen functional requirements for an international TTP
architecture (see section 2.3 of [15]). A TTP must be used to realize a point of trust. A
TTP is mainly used to establish a secure communication channel between two parties
where the TTP plays the role of areferee. There are lots of services that a TTP can
provide, with an authentication service as the prominent service. Additional security
related services that a TTP can provide include: access control, key management, or
notary (non-repudiation) servers.

From a communication system point of view a TTP can provide either on-line,
in-line, or off-line services. In case of on-line services (an authentication service) the
TTP interacts in rea- time with the parties who trust it. For in-line services, the TTP
intercepts the path between the two communication parties if necessary by providing a
tranglation between two encryption algorithms. When a TTP (such as a CA) provides
off-line services, the TTP does not take part in the actual communication, but helps to
enable the communication. [15]

We are concerned with the key management service of a TTP. In this thesis
project, we implemented a very simple escrow agent as a TTP using an Apache web
server. We will escrow the session master key after a successful secure
communication session. The session master key should be stored in a secure database.
Upon proper authentication the escrow agent will also provide the requested session
master key to the LEA. In this case the TTP is responsible for operating the key
escrow component. The TTP stores and retrieves the escrowed key and delivers the
key to the LEA or government based on the specified warrant. When a TTP deals with
the escrowed key it is often referred as an escrow agent. Denning & Branstad have
described escrow agents in terms of the following characteristics [16]:

» Escrow agents can be entities in the government or private sectors. An escrow
agent for the private sector is often known as a commercia or private key
escrow agent.

e Escrow agents should be identified by their name and location.
e Escrow agent should be accessible during their hours of operation.

e [Escrow agents should be secured against compromise, loss, or abuse of
escrowed keys.

o Escrow agents must be certified and licensed with a government.

To escrow the session key with the TTP we use athird party application programming
interface (APl) named “libcurl” which is a free and easy-to-use client-side URL
transfer library supporting HTTP, HTTPS, and many other protocols. We use the
HTTPS protocol to securely escrow our session master key with the escrow agent.
Technical details of the libcurl library can be found in [17].

11

Chapter 2: Background

25 Keyescrow

Key escrow is a data security arrangement where the cryptographic keys are
entrusted to a trusted third party who acts as an escrow agent. Specifically, the
cryptographic keys necessary to decrypt encrypted data are stored in escrow and
under normal circumstances these keys are not revealed to anyone without proper
authorization'. When the agreement with the third party is made to escrow one or
more keys the user generaly specifies the terms under which the keys may be
released.

The trusted third party as escrow agent will provide the keys to an entity after
verifying that this entity has the proper authorization to receive the key. The
authorized entity may be a government or law enforcement agency (LEA)
representative who has the legal authority to access the content of encrypted
communication or this entity may be an authorized corporate official that has the legal
authority to access an employee’s communication due to a security concern [18]. The
entity might even be the entity that deposited the key(s), in case they forget or lost
their key(s). The details of how an entity establishes that they have authorization and
the escrow terms are outside of the scope of this thesis project.

U.S. National Security Agency (NSA) first conceived the key escrow concept
during the early 1990s. Their main motivation for introducing this concept was to
enable the wide spread introduction of encrypted telephony, while preserving the
ability to perform lawful interception. Their proposal was that government or LEA
agents would have 24 hour availability to master keys which could be used to provide
easy access to encrypted data. Another motivation for key escrow was the recovery of
encrypted data by the entity that had originally encrypted the data. For example, a
company could benefit from key escrow as a means of data recovery in case of an
accident such as an employee’s death or a physical disaster that destroyed the key [1].
An important aspect of the proposal for key escrow was that the key escrow system
should scale well (ideally there would be enough industrial or private paid use of the
system that the cost to the government for the operation of the system would be zero).

2.5.1 TheClipper Chip

The most prominent and widely known key escrow implementation was “The
Clipper Chip” developed and promoted by the U.S. Government in 1993. The Clipper
Chip was developed as cryptographic device intended to protect private
communication while at the same time permitting government agents to obtain the
keys upon presentation of proper authorization [19]. An escrow agent or a Trusted
Third Party (TTP) holds the keys.

The Clipper Chip was designed to be embedded in every telephony device (or
added via an external “bump in the wire”). This chip would provide high quality
encryption of all data passing through it. Every chip had a unique key and a unique
identifier. This unique key would be stored for this identifier with an escrow agent. In
operation the Clipper Chip would generate session keys to secure the session and the
session key would be encrypted using the specific chip’s key and transmitted in the
session along with the identifier. Therefore, once a specific chip’s key is known, then
the content of any session encrypted by this chip can easily be recovered.

! Note that the sender and receiver have another means of exchanging the keys that they will use, thus
in normal operation secret keys are only deposited for escrow.

12

Chapter 2: Background

Although the government could store the keys by themselves this would lead to
controversy, thus the government decided to store the keys with one or more TTPs.
To make it harder to get a key without proper authorization, every key was split into
two parts that must be XORed together to produce the actual key. Each of these parts
was stored by a different TTP. Thus the proper authorization must be presented to two
different TTPs, who must each be convinced to reveal their part of the key. Then
these two parts must be XORed to produce the original key. This has several
advantages:

o |f either of the TTPsrefusesto reveal the part of the key that it is holding, then
the full key cannot be retrieved.

e Each of the TTPsis simply storing what is effectively a random set of bits, so
they can not themselves compromise the security of any of the
communications encrypted with the Clipper Chip devices.

The Clipper Chip used a data encryption algorithm called Skipjack developed by
NSA to transmit the data and it used the Diffie-Hellman key exchange agorithm to
distribute the session keys between the pair of communicating Clipper Chips. The
customized Skipjack algorithm added a 128 bit Law Enforcement Access Field
(LEAF) that is sent in every session. This field contains the information necessary to
decrypt the packet (i.e., it includes the identity of the chip and the encrypted session
key). The Clipper Chip escrow system seemed to be very robust. However, it was
abandoned in 1996 due to a serious security vulnerability discovered by Matt Blaze
[20]. The vulnerability occurred because the Clipper chip used a 16 bit value in the
128 hit LEAF as a checksum to maintain the integrity of LEAF. Thus if a chip
recelves a packet and calculates a hash other than the received hash, then the
receiving Clipper Chip would not process the packet further. Matt Blaze pointed out
that a 16 bit hash was a sufficiently small field that a brute force attack could find
another value for the LEAF that would result in the same hash. Thus someone could
replace the valid LEAF field with a forged LEAF value, the receiving Clipper Chip
would correctly process the packet - but later it would impossible to decrypt this
packet using the key recovered from the escrow agent. This flaw enabled the Clipper
Chip to be used as an encryption device while effectively disabling the key escrow
functionality.

2.5.2 Why key escrow is problematic?

The main motivation (by the U.S. Government) for key escrow was to encourage
the use of encrypted communication (particularly for official and corporate
communications), while facilitating LI. The U.S. Government remains the main
supporter for the implementation of a key escrow system. However, implementing a
practica key escrow system is both complex and expensive. Moreover, correct
implementations of such a system must avoiding both security flaws and make the
abuse of such a system very difficult. In the following paragraphs we will briefly
explain the technical drawbacks of a key escrow system.

Another set of problems facing key escrow isthat key escrow iswidely view asa
potential threat to individual privacy and violation of human rights. These issues lie
outside the scope of this thesis, but have been well documented in the press, see for
example [21] [22].

13

Chapter 2: Background

2521 Complexity

It is commonly believed that a perfectly secure cryptographic system is
extremely difficult to create. Addition of new cryptographic parameters increases
design complexity, as all the keys need to be stored and securely maintained.
Unfortunately, key escrow adds lots of complexity to a cryptographic system. For
example, the major weakness of the Clipper Chip was not in the Skipjack algorithm,
but rather the design choice of a short checksum. Furthermore, a successful attack
against the Skipjack algorithm was published the year after the details of the
algorithm were published.

Due to the rapid growth of Internet the ability to scale to very large numbers of
users and devices is vital for a successful implementation of a key escrow system.
Today, there are millions of users using encrypted communication and lots of TTPs
and LEAs worldwide. Establishing a key escrow system would increase operational
complexity, as every LEA would expect and require fast response from each key
escrow system. The complexity of key escrow can be mitigated to some extent by a
well-designed system, well-trained staff, and proper technical control; but operational
vulnerability cannot be completely avoided. In akey escrow system it is essential that
only authorized entities be permitted to receive the requested key(s). Unfortunately,
authentication documents such as a passport or birth certificate can easily be forged as
can an authorization document -- which could lead to an unauthorized entity gaining
access to a deposited key.

2522 Cost

Today cryptography is becoming increasingly inexpensive. However, a key
escrow system can add lots of cost; depending on the scale of the key escrow system.
Deploying a key escrow system that extends beyond a national boundary adds lots of
operational cost due to the cost of maintaining and controlling sensitive and valuable
key information securely over along period of time. It requires a substantial number
of well-trained staff (as the facility must operate 24 hours per day — every day of the
year) and high-assurance hardware and software systems to meet government
requirements. In this regard new products might need to be designed which incurs
substantial product design cost. Moreover governments and LEAs may also need to
test and approve the entire key escrow system adding potentially substantial costs
associated with gover nment oversight.

One of the most difficult issues is the question of who is to pay for the operation
of the key escrow system. This raises the related questions of when does each entity
have to pay and how much do they have to pay?

2.5.2.3 Security vulnerability and risks

The major disadvantage of key escrow system is the introduction of new security
vulnerabilities, which can jeopardize the proper operation, underlying confidentiality,
and ultimate security of encryption system [23][1]. Some of the security
vulnerabilities and potential risks are:

e Potential inappropriate or illegal accessto private data: Every key escrow
system is expected to provide the requested escrowed key(s) to a LEA after
proper authorization. Moreover, the parties who have deposited keys with the
TTP should not be aware of the fact that their key(s) have been requested by a
LEA, whom has requested the key(s), or when the key(s) was/were requested.

14

Chapter 2: Background

If communicating parties knew that their keys had been obtain, then they
could potentially act to prevent further communication from being
compromised by discontinuing the use of these keys and they could also take
other actions to make monitoring or interception harder. However, the fact that
the party who has deposited a key is not aware that someone has obtain this
key means that this party has no way of preventing illegal or inappropriate use
of this key; thus potentialy compromising the privacy of data or
communication session content.

Insider abuse: One of the most dangerous threats of a key escrow system
arises when trusted persons misuse their position. An employee of a key
escrow system may be intimidated, bribed, blackmailed, ... to revea a key.
This key could be used for an illegal act (such as blackmail or extortion)
against an individual or a company. An untrustworthy employee can revea a
company’s confidential information. An unethical employee with access to a
key could fabricate the content of the session, in order to blackmail a user. An
unethical LEA agent could use a key to fabricate evidence. Unfortunately, the
user cannot prove that the data has been fabricated, as the fabricated data uses
the correct key. This kind of misuse can be even more dangerous than
inappropriately or illegally revealing encrypted information, as it may easily
be used to destroy an individua’s or company’s reputation and financial
status.

New targets for attack: If the keys are stored by a key escrow system in a
central database, then this central database becomes a new target for attacks. It
is a particularly rich target because if the attacker can extract keys from the
database it will enable the attacker to compromise the data or communication
of a company or individual. One of the worst aspects of such an attack is that
it could be used to compromise many keys. Although distributing the
databases and storing parts of each key in different databases can mitigate the
risk of a successful attack, this will increase the operating costs and may also
increase the response time to deliver the keysto a LEA.

Destruction of forward secrecy: One of the magor disadvantages of key
escrow system is the destruction of forward secrecy. Forward secrecy is a
security feature where by a secure session cannot be retrieved after the session
isover even if the session key for next session has been compromised. Usually
a system with forward secrecy destroys the session keys when the session is
over, i.e., the communicating parties do not store the session key. Forward
secrecy is simple to design and implement. Moreover, forward secrecy is
desirable because it increases security and decreases the cost of a system,
since the secrecy of the keys only needs to be maintained for the duration of
the part of the session that a session key is used for. Unfortunately, key escrow
destroys this property since if the master key for a session is stored with the
escrow agent (TTP) at the start of a session, then the derived sessions keys are
vulnerable — even if the session keys for the media streams are changed during
the session (as these keys can be derived given knowledge of the master key
and the earlier session keys).

Different kinds of keysto deposit: Various kinds of keys are used for various
kinds of communication. Some of these keys are used to provide
confidentiality while others are used to provide authenticity. Some keys are

15

Chapter 2: Background

used for stored data, while some others keys are used for real-time data. Keys
that are used to encrypt data for storage need to be preserved for the lifetime
of the data (potentialy a very long period of time for documents such as
deeds, sales contracts, etc.); while some keys used to secure red-time data
may not be of interest to the communicating parties after the session is over.
Deciding which keys need to be deposited in the TTP for the recovery of
encrypted data is a critical issue. This is particularly a problem when the
potential depositor has a different expectation of the lifetime of the key’s
usefulness than LEASs. For example, as noted above a set of communicating
parties might have no interest in escrowing the master key used for a corporate
videoconference, while a government regulator might want to have access to
this key (potentially many years after it was deposited). Thus the expectation
of LEA isthat all keys would be escrowed, leading to alot of keys needing to
be deposited with the TTP. This is a challenge for key escrow system as they
must implement a suitably scaled system.

A successful key escrow implementation needs to address a lot of challenges and
potentially suffers from lots of vulnerabilities when deployed on a large scale. At
present there are no successful implementations of a large-scale key escrow system.
Eric Verheul, et a. have presented the necessary and desirable criteria for the
deployment of worldwide key escrow system and also described a new concept of
using a PK1 as afraud detection alternative to key escrow system that will not hamper
law enforcement [24].

However, there is still pressure from governments on telecommunication
operators and manufacturers to adopt key escrow in order to reduce the difficulties
that LI faces. In this thesis project we will assume that there is an operational key
escrow system and that registered users can use this system. Issues of the cost of
becoming aregistered user and the cost of retrieving akey from one or more TTPs are
outside the scope of this thesis project.

In this thesis it is assumed that one or more TTPs exist and that they have
implemented a suitably scaled infrastructure to receive al of the keys that their
registered users wish to deposit. However, this thesis project will consider the time
and communication overhead required to authenticate the registered user to the TTP
and to deposit a key.

2.6 SecureReal TimeTransport Protocol

The Secure Rea Time Transport Protocol (SRTP) [25] is an application layer
protocol that is designed to secure the Real Time Transport Protocol (RTP) traffic.
SRTP defines a secure profile for RTP that provides message encryption, message
authentication and integrity protection, and replay protection to every RTP packet for
both unicast and multicast applications. Just as RTP is closely related with the Real
Time Transmission Control Protocol (RTCP) -- which provides control functionality
for an associated RTP session; SRTP has a sister protocol Secure Rea Time
Transmission Control Protocol (SRTCP) that provides the same security to RTCP as
SRTP providesto RTP.

The security services (confidentiality, integrity and authenticity, replay
protection) provided by SRTP are optional and independent from each other except

that SRTCP integrity protection is mandatory because alternation of RTCP could
disrupt the processing of the associated RTP stream[25]. Moreover, the use of SRTP

16

Chapter 2: Background

is independent of the underlying transport protocol. Thus SRTP can protect RTP
transported over UDP, TCP, or any other transport protocol.

SRTP provides security services to RTP on a per packet basis. It provides
confidentiality to the RTP payload by encryption and provides integrity protection to
both the header and payload of every packet by adding an authentication tag. Figure
2-3 shows the format of an SRTP packet. The (large) blue box shows the packet
contents that are integrity protected and the (smaller) green box shows that only the
actual payload of the RTP packet is encrypted.

V|P|x|CC M PT Sequence number
Time stamp
Synchronization Source (SSRC) identifier g
Contributing Source (CSRC) klentifiers §_
g
i
RTP extenslon (Optional)
Payload ...

RTP padding | RTP pad count

SRTP MKI (Optlonal)
Authentication Tag (Recommended)

™

Figure 2-3: SRTP packet format

There are two additional fields that can be present in an SRTP packet. The first
(optional) field is a variable length Master Key Identifier (MKI) field. The MKI field
is used by the Key-Management protocol and determines which master key has been
used to derive the session keys. Additionally, the MKI can aso be used by the Key-
Management protocol for re-keying in order to identify a particular master key within
the cryptographic context. The other optional but recommended field is an
authentication tag that has a configurable length and provides authentication of both
the RTP header and payload. This field also indirectly provides replay protection by
authenticating the packet’ s sequence number.

One of the important optimisations used in SRTP is the use the RTP sequence
number rather than adding a new field in the SRTP header. A sequence number is
necessary for synchronization, which in turn is a prerequisite for security processing.
However, the sequence number in the RTP header is only 16 bits -- which implies that
this sequence number will recur after every 2'° packets. This small sequence number
range would require re-keying and re-keying would require the execution of a key
management protocol, which is undesirable and resource consuming. SRTP solves
this problem by extending the RTP sequence number with a 32 bit local counter called
the Rollover Counter (ROC). This ROC is incremented when there is a wrap of the
RTP sequence number. The ROC together with the RTP sequence number is known
as the SRTP Index or simply Index. This index is used to generate session keys.
Fortunately, there is no need to transmit the ROC in the packet, limiting the expansion
of the packet, which is big advantage of SRTP over aternative protocols that do not
take advantage of the existing RTP sequence number.

17

Chapter 2: Background

2.6.1 Cryptographic context and key derivation

To provide security to an RTP session the sender and receiver must keep
cryptographic state information (security parameters) known as cryptographic context
for each media stream. Some examples of these security parameters are: the per
packet SRTP index, the key(s), an indication of the cryptographic algorithms used,
key derivation rate, key lifetime, and current ROC. Some of these parameters are
fixed for the duration of the entire session, while others need to be updated per packet.
SRTP uses different keys for encryption and authentication. SRTP actually requires
six different session keys for the protection of each RTP media stream. Three of these
session keys are required for the RTP traffic and a similar triplet are used to protect
the associated RTCP traffic. All of these session keys are generated from a single
master key. The master key is the key that was exchanged via the key management
protocol (e.g. MIKEY) (In our case we will escrow this master key with an escrow
agent at the end of asession.).

SRTP uses a key derivation function in the form of a pseudo-random function
(PRF) which takes the master key and some other parameters as input, then produces
the six session keys as output (see Figure 2-4). The other inputs to the PRF are a
master salt key provided by the key management protocol, derivation rate, and a label
(the SRTP index) [26]. The master salt key is used to prevent key collision and time-
memory trade-off attacks. The complete processis also known as key splitting.

[——> SRTP session authenticafion key
Master key > SRTP session encryption key

4r~>
e ——> SRTP i ff ki
Key Key Splitting session seiiey
Management PRE
Protocol Sait key () > SRTCP session authentication key
—
——> SRTCP session encryption key

——> SRTCP session sait key

I

Label , rate
Figure 2-4: SRTP key splitting (Adapted from [26], Figure: 24)

2.6.2 SRTP packet processing

This section briefly explains how SRTP packets are processed at both sender and
receiver. The following subsection will briefly explain the cryptographic algorithm
used for encryption and authentication

SRTP at the sender takes an RTP packet as input and transforms it into an SRTP
packet and forwards it to a transmission layer protocol for transmission. The first task
when processing an SRTP packet is to retrieve the correct cryptographic context. The
next task is to derive the session keys from the master key. The RTP payload is
encrypted using the appropriate session key and if message authentication is required
then a message authentication code is calculated and appended to SRTP packet.
Optionaly a MK field can aso be added. The resulting SRTP packet is passed to the
transport layer for transmission to the receiver.

Upon the arrival of the SRTP packet at the receiver the first task isto retrieve the
appropriate cryptographic context to be used. The next task is key splitting to generate

18

Chapter 2: Background

session keys from the master key. The next task is to check whether the packet is
replayed or not. SRTP performs this check by comparing the SRTP index against a
replay list. Next the receiver authenticates the packet. The packet is dropped if
authentication verification is unsuccessful or the packet is a replay. Otherwise the
packet’s encrypted portion is decrypted and the authentication tag is removed and the
RTP packet is forwarded to the next higher layer for processing.

2.6.3 How encryption and authentication is done?

By default SRTP uses the Advanced Encryption Standard (AES) for
encryption/decryption of the RTP packet's payload to provide confidentiality. This
algorithm was chosen due to its low computational requirements. AES can be used
with various lengths of keys and block sizes. In SRTP, a 128-bit block is encrypted
with a 128-hit key. SRTP supports two kinds of stream ciphers. The differences
between these two different streams ciphers are the mode AES is run in: counter mode
or f8 mode. The AES algorithm is used in a chain to produce a stream of keys that are
used as a one time pad to encrypt the actual data by a bit wise logical XOR operation.
AES in counter mode is the default method used by SRTP. When AES is run in
counter mode, AES is applied to consecutive integers to build a key stream. Figure
2-5 depicts the operation of AES in counter mode. The input to the stream cipher is
the session encryption key (ke) some synchronization data called an Initialization
Vector (1V) -- formed based upon the SRTP index of the packet, the synchronization
source (SSRC) field carried in the RTP packet header, and the SRTP session salt key.
In case of f8 mode a similar procedure is used to create the key stream, but the
difference is that when AES is run in f8 mode the IV depends on additional RTP
header fields, such as the timestamp, the sequence number, the source identifier, and
other flags.

The above method is used to provide confidentiality to RTP, but does not prevent
an attacker from forging RTP packets. To provide authentication and integrity
protection SRTP uses HMAC-SHA1 as keyed hash function. Integrity protection for
RTP includes the RTP header, RTP payload, and the local ROC. The HMAC uses a
session authentication key (kg) derived from the master key. HMAC-SHA1 produces
a 160-bit output, which is truncated to 80 or 32 bits to form a message authentication
tag that is appended to the SRTP packet by the sender.

19

Chapter 2: Background

v IV+1 mod 2 128 N+2 mod 2 128
K. K. K,
= Ity
AES AES AES
str:aml | | | Encrypted
stream
vl | | |

Figure 2-5: AESin counter mode

The receiver will calculate the hash similarly and check whether the locally
calculated message authentication code corresponds to the received one. If both
message authentication codes are equal, then the packet is accepted and sent for play
out, otherwise the packet is dropped.

It is important to note here that the authentication of the RTP packet is based
upon a key that is derived from the same master key that is used to encrypt the RTP
payload. Thus if a LEA learns the master key used for this session it is possible to
decrypt the encrypted content and to authenticate the packet. However, given the
master key it is aso possible to forge SRTP contents that would be valid, if this SRTP
packet were to arrive at the receiver before the SRTP packet that the sender sent, then
this forged packet would be accepted by the receiver and the actual sender’s packet
would be rejected as areplayed packet! Thisiswhy it isimportant that the master key
not be escrowed before the session has ended.

Further more it should be obvious that given the master key it is possible to forge
packets and make them appear to be valid packets in an SRTP stream. It is this
weakness that this thesis project will attempt to overcome.

2.7 SecureReal Time Transport Control Protocol

The Secure Real Time Transport Control Protocol (SRTCP) is a sister protocol
of SRTP that provides security related features to RTCP. More specifically, SRTCP
provides the security related features of confidentiality, authentication, and integrity
protection to RTCP. SRTCP provides the confidentiality to RTCP packets by
encrypting them. It provides authentication and integrity protection by adding an
authentication tag in the SRTCP packet in the same way as SRTP does for RTP.
Figure 2-6 shows a SRTCP packet. The shaded portion at the beginning corresponds
to the SRTCP header. The fields inside the (large) blue box are integrity protected and
fieldsinside the (smaller) green box are encrypted.

20

Chapter 2: Background

o] 7 15 31
V | P| RC PT=SR or RR Length

SSRC of sender

Sender info
Report Block 1
Report Block 2

SSRC/CCRC_1
SDES Item

Integrity protected

Encrypted

E SRTP Index
SRTPC MKI (Optional)
Authentication Tag

Figure 2-6: SRTCP packet format

SRTCP adds three mandatory fields (SRTCP index, encryption flag ‘E’, and
authentication tag) and an optional MKI field. The encryption flag ‘E’ indicates
whether the SRTCP packet is encrypted or not. The SRTCP index is a 31-bit field,
which isan explicit index in contrast to the implicit index utilized by SRTP. The index
value is set to zero before the first packet is sent. For every consecutive packet this
value is incremented by one. If re-keying is required, then this index value must not
be set to zero again and the situation is same for SRTP. For SRTP as the rollover
counter is 32 bits long and the sequence number is 16 bits long, the maximum number
of packets belonging to a given SRTP stream that can be secured with the same key is
2% using the predefined transforms. After that number of SRTP packets have been
sent with a given (master or session) key, the sender must not send any more packets
with that key. However, since SRTCP uses an explicit index of 31 bits the number of
packets that can be secured with SRTCP is 2*'.These limitations provide an upper
bound on the amount of traffic that can pass before the cryptographic keys are
changed [25].

The last mandatory field is an authentication tag, which is a 32-bit field by
default, but whose length is configurable. This field contains authentication data
similar to that for SRTP. The main difference is that in case of SRTP integrity
protection was optional, but in the case of SRTCP it is mandatory. The motivation
behind this is that RTCP is a control protocal, i.e., it can perform critical operations
(including terminating the session), hence it is important to ensure the integrity of
each SRTCP packet.

SRTCP shares most of the security parameters of SRTP, including the master
key and the kinds of protection that are offered. However, a separate protection suite
can aso be specified for the RTCP traffic; the optional MKI field can be used to
indicate this alternative suite. By using an alternative suite it is possible to expose the
SRTCP traffic to an operator, for example for network management and quality of
service (QoS) purposes, while preventing the operator from being able to decrypt the
SRTP traffic.

21

Chapter 2: Background

2.8 MultimediaInternet KEYing (MIKEY)

MIKEY is a key management protocol that provides an efficient key agreement
mechanism for peer-to-peer and (small to medium sized) group communication.
MIKEY was designed to provide key management functionality for IP multimedia
communication in heterogeneous networks. A multimedia session may include severd
media sessions, such as a bi-directional audio stream, a bi-directional video stream,
and/or and a HTTP session [26]. To protect these separate media sessions different
security protocols may be required (e.g., SRTP for audio and video sessionsand TLS
for HTTP sessions). A separate key management protocol may be required for
separate security protocols to exchange security parameters and keys. However,
running severa different key management protocols for a single multimedia session is
not a satisfactory solution, as every key management protocol adds delay due to
extensive cryptographic operations and due to the impact of the roundtrip time of
messages that must be exchanged. Minimizing the delay for multimedia key exchange
was one of the design considerations of MIKEY . A novelty of MIKEY isits ability to
instantiate the security of all media sessions within a single multimedia session in a
minimum amount of time.

The data stream protected by a single instance of a security protocol (i.e., a
secure session) is known as a crypto session and the multimedia session for which
MIKEY is negotiating security parameters is called a crypto session bundle. A crypto
session bundle is a collection of several crypto sessions. MIKEY can exchange
separate Traffic Encryption Keys (TEKS) for each crypto session or aternatively it
can agreed upon on a TEK Generation Key (TGK) for the whole crypto session
bundle from which separate TEKs can be generated for each crypto session in a
secure way. In the case of SRTP, this TEK acts as session master key. Figure 2-7
shows the basic key agreement of MIKEY for a data security protocol such as SRTP.

! i
1 1
I MIKEY i
' ;
1 1
1 1
! Key Agreement Method]
i |
1 1
1 1
- TGK 1
" 1 i
]

- Key '
1 Cryp?o - " Derivation . :
1 session ID, Function Security i
| credential parameters]
]

S e || ___:

Data security Protocol
(SRTP)

Figure2-7: MIKEY key agreement procedure (Adapted from [27], page 33)

Figure 2-7 shows that MIKEY generates keys for a data security protocol.
However, the MIKEY message itself encrypted and integrity protected in order to
provide end-to-end security between communicating peers. Thus MIKEY generates
keysfor itself, in order to encrypt the message and the security parameters that will be
signalled in-line. The cryptographic context used to encrypt the TGK/TEK depends

22

Chapter 2: Background

on the method used, e.g., a pre- shared or public key infrastructure (i.e., Certificate
based). A MIKEY message (in an Initiator or Responder message) may contain
several payloads, each containing different fields for carrying the relevant information
and signalling. An example payload is shown in Figure 2-8. Here the encrypted data
field contains the actual encrypted key material and other relevant fields containing
the necessary information for this encryption scheme, such as encryption agorithm,
length of the key, etc.

Next Payload | Encryption Length
Algorithm

Encrypted Data

Authentication MAC
Algorithm

Figure 2-8: MIKEY message payload (Adapted from [26], page 40)

Another design goal of MIKEY was to minimize the number of round trips
required for negotiating security parameters or cryptographic context. All other key
management protocols require at least three round trips for successful key agreement.
In contrast, MIKEY requires only one or a half roundtrip depending on the specific
method used. A challenge-response method is frequently used by a key management
protocol for authentication and replay protection; however, this requires at least three
messages. On the other hand MIKEY adopts a two-way handshake (one round trip)
method instead of a challenge-response (i.e, a three way handshake) method that uses
a timestamp as chalenge. Actually, MIKEY incorporates the key agreement process
into the media negotiation process. The media negotiation uses only two messages
and is usually performed using an offer/answer model via the Session Description
Protocol (SDP). In this process the initiator makes an offer based upon its own media
processing capabilities and the responder choose among the proposed media streams
(each with their own encoder/decoder (CODEC) and other parameters). Next
subsections briefly explain three different methods that can be used by MIKEY .

2.8.1 MIKEY Methods

MIKEY provides three different variants of key agreements. pre-shared key,
Public Key Encryption, and Diffie-Hellman [28] exchange. In the first two methods
the keys are pushed to the recipient in a secure way and the key agreement procedure
can be completed within one half or a single roundtrip; but in case of the Diffie-
Hellman exchange method both communicating parties must contribute to form the
key and a single full roundtrip is always required to complete the key agreement
procedure.

2.8.1.1 Pre-Shared Key method

In the pre-shared key (PSK) method both peers posses a shared key (K) prior to
communication between them. This pre-shared key (K) is used to derive an

23

Chapter 2: Background

encryption key (Ke) and an authentication key (K3) through a key derivation function.
Figure 2-9 shows the pre-shared method.

Initiator Responder

INIT_MESS
— 1 HDR, T, RAND, [IDi][IDr],{SP},KEMAC |——

RESP_MESS
HDR, T, [IDr], V

Figure 2-9: Pre-shared method of MIKEY
Where, [] indicates optional parametersand { } indicates zero or mor e occurrences of a
parameter, HDR=Header Payload, T= Time, RAND=Random value, I Di=Initiator
identification, | Dr=Responder | dentification, SP=Secur e Policy Payload,
KEMAC=Encrypted sub payload containing TGK and MAC, V= Verification Payload
carrying MAC of the entire message (Adapted from Figure 14 of [26])

The INIT_MESS is created by the initiator. This message includes severa fields
as shown in Figure 2-9. The Header Payload field (HDR) contain the identifier of the
crypto session bundle, number of crypto sessions, and a method for mapping the
crypto sessions to the data security protocol (currently only supports SRTP) for which
MIKEY is exchanging the parameters. The Secure Policy Payload (SP) field contain
the security parameters for setting up the data security protocol. The most important
field is KEMACG; this includes the encrypted sub payloads (see Figure 2-8) carrying
the TGK/TEK and a message authentication code. Upon receiving the INIT_MESS,
the responder first checks the authenticity of the message based on the message
authentication code value. Next the receiver retrieves the SP and TGK/TEK and if
requested by the initiator, then the responder sends back a RESP_MESS.

»

2.8.1.2 Public Key Encryption method

Public Key Encryption (PKE) method is similar to the pre-shared method.
However, each peer requires a pair of public/private keys for encryption and
signature. Figure 2-10 illustrates the PKE method used by MIKEY . It differs from the
pre-shared method in that instead of using a pre-shared key to generate the encryption
key (K¢) and authentication key (K,,) a random envelope key is first generated — this
envelope key isin turn used to generate K and K,. This envelope key is encrypted by
the initiator using the responder’s public key and sent to the responder in the PKE
field.

24

Chapter 2: Background

Initiator Responder

INIT_MESS

HDR, T, RAND, [IDI[CERTI], [IDr], {SP}, KEMAC,
[CHASH], PKE, SIGNi T

RESP_MESS
HDR, T, [IDr], V

r 3

Figure 2-10: Public Key Encryption (PKE) method of MIKEY
Where, CERTi= Initiator Certificate, PKE field Contain envelope key encrypted
with responder’s public key SIGNi field contain the signed value of the message by
Initiator’sprivate key CHASH field contain an indication of which public key of the
responder hasbeen used (Adapted from Figure 15 of [26])

2.8.1.3 DiffieeHellman method

The Diffie-Hellman (DH) method is optional and requires a full round trip to
complete the key agreement. This method differs from the first two methods as the
key is not pushed to the peers, but rather each peer contributes to form the key.

In this method, both peers need to have public/private key pairs for signatures in
order to authenticate each other and to protect against a man-in-middle attack. This
scheme is the most computationally intensive due to the increased number of public
key operations, but provides both greater flexibility and perfect forward secrecy.
Figure 2-11 illustrates the Diffie-Hellman method of MIKEY key agreement.

Initiator Responder

INIT_MESS

HDR, T, RAND, [IDi|CERTi], [IDr], {SP}, DHi,
SIGNi —

RESP_MESS
«— HDR, T, [IDr|CERTT], IDi, DHr,DHi, SIGNr —

Figure 2-11: Diffie-Hellman method of MIKEY
Where, DHi field contain the Diffie-Hellman public value calculated by Initiator DHr
field contain the Diffie-Hellman public value calculate by responder (Adapted from
Figure 16 of [26])

29 Minisip
Minisip [29] is a SIP user agent that has been developed by students at KTH and
others. It has been used as the platform for a number of master’s thesis projects,

including the first public implementation of SRTP [27] and the first public
implementation of MIKEY [30]. Details of the design of minisip and its

25

Chapter 2: Background

implementation decisions and performance are given in the licentiate thesis of Erik
Eliasson [31].

The functions of minisip that have been utilized are shown in Table 1. Details of
the modifications to minisip to implement the proposed design are described in detail
later in the thesis.

Table 1: Someimportant functions of minsip that have been utilized

Function Name Library Description
getSignature() Libmcrypto

To implement the signing operation we will
use the getSgnature() function of the
SipSim class of libmcrypto library. This
function is used to compute a digital
signature of fixed size data provided the
private key of signeer. The getSgnature()
function is a virtual function defined in the
SipSim class and implemented in the
SipSimSoft class.

hmag_shal() Libmerypto This function provides the hashing

operation. The hmac_shal() function takes
variable size data and produces a fixed size
hash using the HMAC_SHA protocol. We
will use this function to calculate the hash
of SRTP blocks.

genAuth() Libmikey This function generates the authentication

key from the master key. This function is
defined inside the KeyAgreement class. The
authentication key is used as one of the
parameters for hmac_shal().

tgk() Libmikey This function returns the session master key

for the current session. This master key is
used to generate several session keys. We
will escrow this master key with our escrow
agent. This function is defined inside the
KeyAgreement class.

26

Chapter 3. Related Work

In this chapter some related work concerning detection or prevention of the
forgery of RTP content and how to obtain the session keys for a secure Vol P session
are presented. Section 3.1 describes research dealing with ensuring the
non-repudiation of a VolP conversation by using asymmetric cryptography. Relevant
work dealing with obtaining the session encryption key for a CALEA compliant
network is presented in section 3.2. Finally a secure protocol to establish a session’s
symmetric key is described in section 3.3.

3.1 Security and non-repudiation for a Voice-over-IP
conver sation

Hett et al. [32] [33] presented a way to provide non-repudiation for a VolP
conversation. They mainly focused on ensuring the integrity of a voice conversation;
authentication of the speakers; and the ability of the speakers to have non-reputability
after a call has completed. To achieve these goals they computed a digital signature
over the whole conversation in both directions. They used public key cryptography to
perform the signing of data and they assumed a PKI1 structure was available.

The main scenario for this work is a bi-directional interactive conversation
between two parties where one party signs the conversation and sends it to the other
party as a declaration of his or her commitment to this content. Both parties sign the
complete conversation including both channels (comprising everything that each party
has said). Both parties also store the signed conversation in a secure archive. As a
result, either party can later prove to third parties or a court that the call occurred or
the call consisted of the claimed contents. If either party fails to store the conversation
in an archive or deletes it, then the other party can deny that the call ever occurred.

Instead of signing individual RTP packets the authors introduced a new concept
of intervals and interval signatures. The complete session is divided into intervals and
al of the packets in an interval are collected together and a hash is computed over
these packets. For the sake of simplicity the authors have used timer-based events.
Every second the collected packets are sorted by sequence number and their hashes
are assembled in a data-structure with additional meta-information, such as direction,
sequence numbers, and time. This small data-structure is then signed with a
conventional signing algorithm (such as RSA) using the private key of the sender.
These signed values are then sent to the other party who then stores them together
with the collected RTP packets he or she actually received. Note that the RTP packets
containing the content of the session are transported only once as in a normal RTP
Stream.

In this approach signatures and hashes are interleaved to ensure that there is a
continuous stream of signatures building an unbreakable chain. The reason behind
interleaving the signatures and hashes is that if they were separated an attacker could
replace some part of communication or could cut the signatures out. Additionally, these
researchers suggested using biometric data contained in the natural language content
for speaker dependent identification in order to detect forgery of call contents.

Chapter 3: Related Work

3.2 A CALEA compliant network to obtain session encryption
key

In [34], Stephen D. Guhl has examined the impact of SIP signalling messages
and media stream encryption and a proposed architecture for a key management
system that would obtain session encryption keys used in a Vol P session. The author
also claimed that the architecture will provide law enforcement with a more timely
ability to obtain and decrypt signalling and media data without reducing the security
of the Internet or users and that the architecture would also be applicable to
Communication Assistance for Law Enforcement Act (CALEA) compliant networks.
For proper functioning of the architecture some requirements must be pre-established.
One such requirement is the availability of session keys to the ISP. If an end user
attempts to establish a secure session (media and signalling) over SIP using keys not
available to the ISP, then the session set-up will be rejected and a corresponding error
message will be sent to user as a response message. The user agent will then be
offered a negotiation process to establish credentials (i.e., session encryption keys) in
an authenticated secure manner. If L1 is required for the current session, then keying
information will be stored with a timestamp correlating it with the media and
signalling session; otherwise the keys will be retained until the current session ends —
when they will be discarded. Another requirement for the proposed architecture is the
use of RSA digital signature cryptography and its use of a public key infrastructure.

Two approaches have been introduced to resolve the security issues concerning
how to obtain the session encryption keys. In both cases, the key issue is that as the
architecture utilizes public key cryptography, hence some means is necessary to
obtain the corresponding private key. In either of the approaches the SIP proxy server
needs to be modified to adapt to the new architecture. As an alternative the author
proposed the use of a Session Border Controller (SBC) as an intermediary to establish
a SIP session. The SBC acts as a user agent server to establish a border between the
public and private Vol P network. To accomplish this, the SBC utilizes a back-to-back
user agent (B2BUA) that responds to SIP requests from any user agent in the public
network, then apply policies and finally forwards the modified request to the target
user agent in the private network. When a call is initiated from the private network,
then the B2BUA functions in reverse. In the next subsections we briefly describe two
approaches proposed by the author.

3.2.1 ThelLl mediation deviceinitiating the acquisition of the private key

In this approach the mediation device initiates the process to obtain the session
keys. When a LEA requests a LI the mediation device will determine the relevant the
certificate authority (CA) and obtain the private keys of the appropriate parties in an
secure manner. If a user agent now initiates SIP signalling to set-up a call the SBC
will query the mediation device to verify whether the private keys have been obtained
or not. If SBC gets a positive response, then it informs the mediation device that a call
has been established and sends interception related information (including the session
key) to the interception point and allows the cal to be established. If the SBC gets a
negative response this means the call is not subject to LI, thus the SBC will wait for
an appropriate amount of time before allowing the call to continue. The reason for
waiting is to ensure that al cals have a similar call set-up delay - whether subject to
intercept or not. Without this additional waiting, it would be possible for the subject to
detect that their calls were subject to intercept by monitoring the call set-up delay.

28

Chapter 3: Related Work

The major drawback of this approach is the exposure of the session’s private
keys, hence the Internet community is very reluctant to implement such a scheme.

3.2.2 Session border controller intermediary security negotiation

In this approach the user agent negotiates with the local SBC for security
purposes using the public key of the SBC for the SSMIME encryption of messages to
be sent to the SBC. The SBC will use its private key for encryption when establishing
SIMIME or other security requirements. There will be SBC to SBC negotiation (as
necessary) to complete the security negotiation process. The initiating user agent
establishes a SIP signalling session with the local SBC. This communication may
utilize specific pre-established security suites for SDP authentication, integrity, and
privacy. If the user agent is subject to LI, then the SBC obtains the required intercept
related information and forwards this to the mediation device. Before sending the data
the SBC establishes a mutually authenticated secure connection to the mediation
device using a defined cipher suite for encryption and integrity protection. In addition
to sending the interception related information the SBC will also send the negotiated
keys for the SRTP session to the mediation device at the end of the key negotiation
process. If the message contents are required for LI, then SBC will capture individual
packets and forward them to the mediation device after getting the proper instructions
from the Mediation Device. Finaly the mediation device will forward all relevant
intercept related information and call content (over a secure channel) to the LEA.

This approach has some advantages over the former one. In this approach no
new security infrastructure is created with the ISP and the user agent has the freedom
to choose any set of standard cipher suite to secure a conversation.

The author has performed simulations and the results of this modelling have
demonstrated that utilizing a SBC as an intermediary device in a LI process is a
reasonable solution to provide the desired security to the user agent and at the same
time providing accessibility of call contents and intercept related information to a
LEA. The simulation results also suggest that the number of LI processed on asingle
SBC should be kept under a threshold, otherwise the processing will exceed the
available resources of the SBC.

3.3 VIPSec

Zisiadis et a. [35] have presented a voice interactive personalized security
(VIPSec) protocol for media path key exchange to securely establish a symmetric
session key for ensuring end-to-end secure communication. Although not directly
related to our work, VIPSec is presented here as it is deals with voice communication
security.

VIPSec is a symmetric key exchange protocol that uses the media path to
exchange the symmetric key during the call set-up, i.e, before any voice
communication starts. This symmetric key is used to encrypt/decrypt any media
exchanged by the application layer for this session. The communicating peers commit
to a challenge/signature token exchange before the voice communication takes place
and the integrity of these signatures are confirmed verbally when the voice
communicates starts. The main idea of VIPSec is that the users initialy exchange
random numbers encrypted with their private keys, then they exchange their
respective public keys. The reason behind the exchange of public keysis that VIPSec
does not rely on a Public Key Infrastructure (PK1). Next the initiator of the session
creates a symmetric key, encrypts it with the public key of the responder and sends it
to the responder. At this point a symmetricaly encrypted communication channel is

29

Chapter 3: Related Work

established. Finally, both the initiator and responder verbally confirm the exchanged
numbers as a proof of integrity protection.

VIPSec is based on some predefined assumptions and the author claims some
unique cryptographic features. Table 2 shows some of the important cryptographic
features claimed by the authors. Experimental analysis of VIPSec suggests that typical
end user terminals easily meet its requirements. Moreover, the authors also suggest
that by optimising the application’s performance and considering the low requirement
upon the end device that its global useisfeasible.

Table 2: Some Cryptographic features of VIPSec protocol [35]

e VIPSec doesnot rely on a public key infrastructure (PK1).

e VIPSec uses one-time keysinstead of using permanent keys.

e |t uses one time signature commitment and per session random numbers
as the exchanged object. Alternatively, it can also use one time biometric
user data such as photos, voice recordings, videos, etc.

e VIPSec can detect a man-in-the-middle attack by having the users
verbally compare the received objects.

e |t has perfect forward secrecy; as the keys are destroyed at the end of
every call.

e [t doesnot rely on SIP signalling for key management. It performs the
key management and key agreement in a purely peer-to-peer fashion.

e VIPSec providestwo verification levels: medium (voice verification) and
hard (video verification).

30

Chapter 4: Key Escrow Agent

This chapter starts by describing the design and implementation of a key escrow
agent as a TTP and how to escrow a session key with the escrow agent. Security
parameters required to escrow with the session master key to generate the session
keys are presented in section 4.2. Section 4.3 describes the mechanism to escrow the
session master key and other necessary parameters from a user agent along with the
necessary implementation details. Finally, section 4.4 discusses the time and place to
escrow the key with the escrow agent.

4.1 Escrow agent and escrow database

A very simple escrow agent has been implemented using the Apache web server
with MySQL database support. The primary task of the escrow agent is to receive the
key from an authenticated user and after proper validation of the received datato store
the escrowed data in a secure database. Figure 4-1 shows the general architecture of
our escrow agent. The web server is enabled with Secure Socket Layer (SSL)
functionality so that user agent can use secure HTTP (HTTPS) to escrow the key with
the escrow agent. To enable the SSL capability of the Apache web server a script has
been used that automates the complete process (see Appendix A).

The escrow server listens on TCP port 443%. Upon reception of a request from a
client the server first authenticates the user using the key value pair appended to the
URL. The escrow agent uses an authentication table that stores the list of al valid
users who can escrow keys. In a commercial escrow agent this would be a list of
subscribers. When the authentication is successful it inserts the data to be escrowed
(passed as the third key value pair) into the escrow database. Before inserting the
value into the database a validation check is performed so that no SQL injection
attack can be performed.

§ This is the TCP port number assigned by the Internet Assigned
Numbers Authority for HTTPS traffic. See
http://www.iana.org/assignments/port-numbers - last updated
2009.12.08.

http://www.iana.org/assignments/port-numbers

Chapter 4: Key Escrow Agent

Escrow Agent

(Apache Webserver)
‘\5 Session master key
° cen
N

Escrow Database
(MySql)

Session master key .. Session master key

Media data

SIP User Agent
(minisip)

SIP User Agent
{minisip)

SIP Signaling data SIP Signaling data

SiP prOx;f server
(OpenSER)

Dotted object represent secure tunnel (SSL
tunnel)

Figure 4-1: General architecture of the Escrow agent

4.1.1 Escrow database

A MySQL database has been utilized to store the session master keys that have
been escrowed by SIP user agents. The database consists of two tables: one for
authentication data and the other for the escrowed data. Figure 4-2 shows the genera
structure of the escrow database. The authentication table stores the username and
password of the valid users who can escrow data with our escrow agent. In this
implementation the SIP URI has been used as the username so that only users
registered with the proxy server are able to escrow data with this escrow agent. The
password is manually assigned and is established when a user is added to the
authentication table of the database. How this password is communicated to the user
and their user agent is outside the scope of this thesis project. We simply assume that
there is some secure off-line method of doing this.

32

Chapter 4: Key Escrow Agent

escrowdatabase

sipmasterkey

authentication

user_ | signed
name hash

id | user_name | pasword id | TGK | Rand cshiD date

Figure 4-2: General Structure of the escrow database

The sipmaseterkey table stores the actual key along with other parameters that
are needed (or useful) if the escrowed information is to be used to recover the
contents of a SRTP or SRTCP stream. What parameters are necessary to escrow along
with the TGK is presented in the next section. The sipmasterkey table also contains a
date field that stores the current local time as a timestamp to record when the entry in
the table was made.

4.1.2 Implementation details

A small PHP script has been written to automate the whole process. Listing 1
shows this PHP script.

33

Chapter 4: Key Escrow Agent

<?php
include ("config.php") ;

Suser = trim($_GET['user']);
Spass = trim($_GET]['password']) ;
Sdata = $S_GET['data'];

//Preventing SQL injection

Suser = mysqgl_real_ escape_string(Suser) ;
Spass = mysqgl_real_ escape_string(Spass) ;
Sdata = mysqgl_real_escape_string($data) ;

//parse the data

Spieces = explode("%", S$data);
Slogin = 0;
if($user == "" || $pass == "" || $data == ""){

print ("malformed URL") ;
}
else{
//authenticating valid user of the system from authentication table
Sresult = mysqgl_gquery ("SELECT * FROM authentication where

user_name = 'Suser' and password = 'Spass'") or die(mysqgl_error());
while (Srow = mysqgl_ fetch_ array($result)) {
Slogin = 1;

}

// If authentication successful then insert the value to the database
if(Slogin == 1)
{
mysgl_query ("insert into
sipmasterkey (key , ‘rand', "signedhash’, "csbID', "date’, ‘userid’)
values ('".Spieces[0]."',6'".Spieces[1l].""','".
Spieces[2]."','".Spieces[3].""',now(), " '".Suser."')") or
die (mysgl_error());

}

else

{

print ("User id Or Password not matched") ;

Listing 1: PHP script to automate the escrow agent functionality

4.2 What to escrow?

We escrow the session master key, i.e., the TEK Generation Key (TGK). This
key is exchanged by the key agreement protocol MIKEY . This TGK aong with some
security parameters are used to generate the session keys for encryption and integrity
protection. Table 3 shows the necessary parameters that are required to generate
session keys from the TGK. From the table we can see that we are escrowing the
TGK aong with the pseudo-random number (Rand) and csbiD value. For details
about these security parameters see section 2.6 and section 2.8. Interested readers are
encouraged to see [25] and [36]. All these parameters are necessary for the LEA to
(re-)generate the session keys. Additionally we are escrowing our final signed hash
value as a marker that indicates the end of a session.

34

Chapter 4: Key Escrow Agent

Table 3: Security parameter s necessary along with TGK to gener ate session keys

Need to
Parameter escrow?? Remarks

This value is exchanged at the time of key
agreement inside a MIKEY message which in turn
Rand Yes is inside a S/IMIME encoded SIP INVITE message.
Unless this value is stored with the escrow agent
the LEA would not have access to this value.

csbID Yes Same as above

SSRC is in clear text in the SRTP header, hence
there is no reason to escrow this value. The LEA
can recover this value from captured SRTP
packets

SSRC No

For the Initiator, the sender csID value is always 1
and receiver csID is always 2; while for Responder
the csID value is the reverse. The LEA can
csiD No determine the csID value from the captured
conversation by checking whether the subject is
the initiator or responder. Alternatively the csID
value can be generated from the SSRC.

The ROC can be calculated from the packet

ROC No
sequence number.
For the current implementation of minsip the policy
. number is always 0; hence there is no reason to
Policy no No

store it for this implementation, but this parameter
might need to be stored in the future.

43 How toescrow?

To escrow the session master key we are using secure HTTP (HTTPS) and the
key is transferred along with the URL of the escrow agent by appending a key value
pair in addition to the key value pairs used to provide the user name and password for
authentication to the escrow agent. We are using HTTPS to create a secure SSL
tunnel between the user agent and the server so that data can not be tampered with by
others and to protect our key from being intercepted. To escrow the session master
key with the escrow agent from the user agent (in our case: minisip) we use
libcurl[17], as described previously in section 2.4. We have written our own function
to escrow the session master key using several functions from the libcurl library.

4.3.1 Necessary modificationsto the minisip code

To successfully escrow the session master key we have modified two files
(Mikey.cxx and Mikey.h) in the libmikey library of the minisip source code. In the
Mikey.cxx file we added a functioned named escrowSessionKey() as a public member
of the Mikey class. Listing 2 shows our escrowSessionKey() function. In this function
we first form the URL that will be used by one of the libcurl fuctions to instantiate a
curl object. While forming the URL of the escrow agent we have used the base 64
encoding of TGK, Rand, and csbiD.

35

Chapter 4: Key Escrow Agent

void Mikey: :escrowSessionKey (unsigned char * signedHash, int
signedHashLength) {
static char errorBuffer [CURL_ERROR_SIZE] ;
// holds the base64 value of the required parameters to escrow
std: :string tgk b _64_ecoded;
std: :string rand_b_64_ecoded;
std: :string signedHash_b_64_ecoded;

static string buffer;
char * cstr;
tgk_b 64 _ecoded = baseb4_encode (ka->tgk() ,ka->tgkLength()) ;
rand_b_64_ecoded = base64_encode (ka->rand () ,ka->randLength()) ;
signedHash_b_64_ecoded =
baseb64_encode (signedHash, signedHashLength) ;
const char *csbId = itoa((int)ka->csbId()).c_str();

string urll ("https://localhost/~saki23/escrow_agent/?user=") ;

cstr=new char
[urll.length()+1+tgk_b_64_ecoded.length()+rand_b_64_ecoded.length() +s
ignedHash_b_64_ecoded.length()+2*ka->uri () .length()+100];
strcpy(cstr, urll.c_str());

(
strcat (cstr,ka->uri().c_str());// add sip uri as userid
strcat (cstr, "&password=") ;
strcat (cstr,ka->uri().c_str());// add sip uri as password
strcat (cstr, "&data=") ;

strcat (cstr,tgk_b 64 ecoded.c_str());

strcat (cstr, "%") ;

strcat (cstr,rand_b_ 64 ecoded.c_str()) ;
strcat (cstr, "%") ;

strcat (cstr, signedHash_b_64_ecoded.c_str()) ;
strcat (cstr, "%") ;

strcat (cstr, csbld) ;

// Our curl objects
CURL *curl;
CURLcode res;

curl = curl_easy_init();
if (curl) {
curl_easy_setopt (curl, CURLOPT URL, cstr);

#ifdef SKIP_PEER_VERIFICATION

curl_easy_ setopt (curl, CURLOPT_SSL_VERIFYPEER, OL) ;
#endif

res = curl_easy perform(curl) ;

/* always cleanup */

curl_easy. cleanup(curl) ;

if (res == CURLE_OK)

cout<< “successfull";
else
cout << "Error: [" << res << "] - " << errorBuffer;

delete [] cstr;
}

Listing 2: escrowSessionK ey() inside Mikey.cxx to escrow the session master key where
thetop gray coloured area shows the formation of the URL of the escrow agent with the
TGK and other necessary parametersand the lower blue coloured area showsthe
invocation of libcurl method.

36

Chapter 4: Key Escrow Agent

To support HTTPS with a self signed certificate libcurl provides the
SKIP_PEER_VERIFICATION Macro definition. If we want to connect to a site using a
certificate that is not signed by one of the certificate authorities in the CA bundle we
have, we can skip the verification of the server's certificate by defining this macro.
Although it makes the connection less secure, we are using this approach as our
escrow agent is using a self signed certificate. (Note that when the users receive their
password to use with the escrow agent the user could insert the escrow agent’s
certificate into the configuration of their user agent.)

In the Mikey.h file we have added some header files to support the libcurl
functions that we use to escrow the session master key. Listing 3 shows the necessary
modification to the Mikey.h file.

//Defined to skip the peer verification of self signed certificate
#ifndef SKIP_PEER_VERIFICATION

#define SKIP_PEER_VERIFICATION

/ *

Existing header files

*/

#include "curl/curl.h"
#include "curl/easy.h"
#include "curl/types.h"
//Added to take base_64 value
#include<libmcrypto/base64.h>

class LIBMIKEY_API IMikeyConfig: public virtual MObject{

b
class LIBMIKEY_API Mikey: public MObject{
public:
/*

Existing public members
;/
//definition of escrowSessionKey method
void escrowSessionKey (unsigned char * , int);

protected:
/*

Existing protected members
;/
private:

/*
Existing private members
;/

¥

#endif

Listing 3: Partial listing of modified Mikey.h file

37

Chapter 4: Key Escrow Agent

44 When and from whereto escrow?

It is a very important to decide when is the most appropriate time to escrow the
session key. Since the escrow agent will learn the same session key as the sender and
receiver, there is a potential for interception & decryption and/or forgery of the
content of the media streams of the Secure Real Time Control Protocol (SRTCP)
packets. To prevent real-time interception and decryption of a media stream or its
associated control stream we only deposit the session key at the end of a successful
session. Here we need to mention that either initiator or receiver may end a successful
session. Figure 4-3 and Figure 4-4 show the possible ending of a successful session,
along with the correct time to escrow the session master key. (Note that in this figure
we have shown only the time when the Initiator performs the escrow operation, the
Responder must also perform its own escrow operation when it ends the session. In
our implementation and testing we have used the same escrow agent for both parties,
but there is no requirement for this.)

Initiator Responder Initiator Responder
[[——IN
NVITE (Mikgy Init)—___| VITE (MIKEY Initg—___|
. 180 Ringing— " . 180 Ringing——|
v Reply)— | v Repy)— |
| ——200 OK (MIKE 200 OK (MIKE
- {S)RTP - -+ {S)RTP >
. —BYE— |
H—____‘_“—‘BYE..___________—‘___.
—] h_"‘—‘-——-._.______
Escrow the key 200 DK""‘—"-—-—-..__._
e 2000K—— |
—
Escrow the key

Figure 4-3: Initiator ending the session Figure 4-4: Responder ending the session

It is important to note here that the authentication of the RTP packet is based
upon a key that is derived from the same master key that is used to encrypt the RTP
payload. Thusif a LEA learns the master key used for this session, it can both decrypt
the encrypted content and authenticate the packets. However, given the master key it
is aso possible to forge SRTP content that would be valid. As noted previoudly in
section 2.6.3, if this forged SRTP packet were to arrive at the receiver before the
SRTP packet that the sender sent, then this forged packet would be accepted by the
receiver and the actual sender’s packet would be rejected as areplayed packet! Thisis
why it isimportant that the master key not be escrowed before the session has ended.

A special case considered in the design is the abnormal termination of a user
agent in the middle of an active session. If an ongoing call is terminated due to an
abnormal termination of the user agent (For example by closing the soft phone
window by clicking the ‘close’ button or by pressing Alt+F4.), then the key associated
with the current call(s) must be escrowed with the escrow agent.

4.4.1 Necessary modificationsto the minisip code

As mentioned in the previous section, we need to escrow our session key at the
end of a successful session, thus we set a flag when a session successful starts. At the
end of a session we check the flag and invoke the escrowSessionKey() method to

38

Chapter 4: Key Escrow Agent

escrow our session master key along with other security parameters. When a
successful session starts the start() method of the Session classisinvoked. A variable
named escrowFlag is set inside the start() method of the Session class and thisflag's
value will subsequently be checked inside the stop() method of the Session class.
Listing 4 shows the invocation of our escrowSessionKey() method. Actualy we
increment the escrowFlag inside the start() method. This flag is initialized inside the
constructor of the Session class with the value zero (0) and decremented inside the
stop() method. If the escrowFlag is zero (0), then the escrowSessionKey() method is
invoked. Instead of defining the escrowFlag as a Boolean type we declare it as an
integer. The reason for this design decision is that there may be multiple media
sessions (audio and video streams) going on at time, in such a situation we escrow the
key when all sessions have ended. Since every media session will invoke the start()
method; each invocation will increment the escrowFlag and the end of each session
will invoke the stop () method resulting in the escrowFl ag being decremented. When
the last session ends the escrowflag will have the value zero (0), hence it is time to
escrow the session key.

//decrement the escrowFlag
--escrowFlag;

//check the escrowFlag whether to escrow the key or not

if(escrowFlag == 0){

getMikey()->escrowSessi onK ey(signature,signaturelength);

}

Listing 4: Code snipped from Session::stop() of libminisip library showing the
invocation of escrowSessionK ey() method after checking the escroFlag

The default signal handler of the minisip code is designed such that for any kind
of interruption during an ongoing call it sendsaformal SIP ‘BYE’ message to its peer
before terminating. In the course of doing this minisip invokes the Session::stop()
function. This is another advantage for checking the escrowFlag inside the
Session::stop(), as it provides the escrow functionality even in case of abnormal
termination of the user agent during on-going session.

39

Chapter 5. Design and Implementation of a
Solution

This chapter presents the cryptographic operations performed to implement the
proposed system in order to support key escrow while enabling the users to detect
forgery of call content by a LEA and/or escrow agent. A design overview is presented
in section 5.1. The sections following this overview present the cryptographic
operations that need to be implemented to realize the proposed model; along with the
relevant implementation details. How the proposed model can detect forgery is
presented in section 5.6.

5.1 Design overview

In the previous chapter we described the escrow agent and how session keys are
escrowed by the user agent after the end of a session. The main concern regarding key
escrow systems is the trustworthiness of the TTP. Since the session keys are stored at
the escrow agent an unethical employee of the TTP could misuse this information.
Therefore, some mechanism is required that could make key escrow feasible and
desirable - while preventing tampering with the communication session’s content. To
prevent the undetectable fabrication of session content we compute a series of digital
signatures of the media stream and send them along with the media stream (by
sending them in the associated SRTCP stream). Figure 5-1 shows the overal
cryptographic operations performed to facilitate detection of forgery of call content.

As a first step we create a block of SRTP packets. Determination of the
appropriate block size is one of the open questions we seek to answer. The reason
behind creating blocks is that we want to compute the digital signature over a
collection of packets to reduce the overhead of these expensive cryptographic
operations. After creating the block we calculate a hash of the block. This hashing
operation produces a fixed length output. Finally we perform the signing operation on
the hash value, producing a fixed length signed hash (i.e., a digital signature of the
hash). To compute the digital signature we are use the private key of the user. Note
that the private key of the user is not escrowed — nor does any party other than the
user need to know this private key. While we escrow the session keys used to encrypt
the media stream, thus the TTP or a LEA who has access to the escrowed session key
can forge media content, they cannot compute the correct signed hash, as this requires
the user’s private key. Anyone with access to the recorded conversation, the session
key, and the user’s public key can readily detect fabrication of call contents, by verify
whether the hashes computed over the media stream have the correct digital signature
or not.

Because we use asymmetric cryptography to perform the digital signature and
because asymmetric cryptography is much more computationally expensive than
symmetric cryptography we need to examine (1) if it is feasible to compute such
signatures during the session and (2) what is a suitable block size (to balance
computational and communication overhead with the desired granularity of forgery
detection and the available resources).

SRTP and SRTCP both make use of symmetric encryption in order to support
low delay and high throughput for the media streams. However, there is no need for
the signed hash values to be delivered with low delay — since they are only
(potentialy) relevant after the session has ended. It is the combination of signing the

Chapter 5: Design and Implementation of a Solution

hash of ablock of SRTP packet at the same time and lack of any requirement for low
delay that enables asymmetric public key techniques to be used for signing these
hashes.

. e . ® s 8 8 SRTF
stream

M number of packets

%

Block
Size =

SRTP BLOCK A

_size

—

Hash Function

Fixed Size
Hash Value

l

Signing Function

Il

Fixed length
Signed Hash

Figure 5-1: Cryptographic overview of the proposed model

5.2 Creating SRTP blocks

We create the SRTP blocks in real-time while sending the SRTP packets. We
create a block based upon a pre-defined block size. After a successful session
establishment when the media stream starts we collect RTP packets and place them in
a buffer. When the number of packets in the buffer exceeds the block size
(BLOCK_SIZE), then we perform the necessary cryptographic operations over this
block. Figure 5-2 shows a flowchart of these operations.

41

Chapter 5: Design and Implementation of a Solution

MediaStream
Start

| Setcount=0

Update the block with the
currnt srtp packet and
increment count

Is count ==
BLOCK_SIZE ?

Perform Cryptographic operation
on block of srtp pacekts

Figure 5-2: Flowchart of SRTP block creation

A special case occurs when the session ends. For the last block the number of
packets can range between 1 and the BLOCK_SIZE. We process the buffer (which
may not be full) and send the final signed hash through the SRTCP/RTCP path. When
aLEA captures a conversation it should always capture the associated RTCP packets,
especialy the RTCP packet containing the last signed hash value as verifying this
signed hash can be used to show that there is no additional media content sent
following the last SRTP/RTP packet.

The most appropriate block size is a design choice. Increasing the number of
packets that are processed together in a block will reduce the overhead (in terms of
additional traffic that needs to be sent and the computation resources used). However,
larger blocks will increase the delay between the content and the hash over this
content and will also increase the granularity of any detected forgery. In the next
chapter, we will discuss the performance for different block size when we evauate
our proposed model.

5.2.1 Necessary modificationsto the minisip code

The libminisp library of the minisip code handles the media streams. Inside the
MediaStream.cxx file the RealtimeM ediaStreamSender class is mainly responsible for
sending SRTP packets. To create the SRTP block we have added a function
updateBlock() as a member function of RealtimeMediaStreamSender class. Listing 5
shows the updateBlock() function that takes SRTP packet data and packet size as

42

Chapter 5: Design and Implementation of a Solution

parameters and adds the data to the current buffer (i.e., the current block). This
updateBlock() function is cadled from the send() function of the
RealtimeM ediaStreamSender class.

void RealtimeM ediaStreamSender::updateBlock(char * packetData, unsigned int
pSize){

memcpy(& rawhashdata] blockSize], packetData, pSize);

blockSize += pSize;

}

Listing 5: updateBlock () function to incrementally update SRTP block

The yellow coloured areain Listing 6 shows the invocation of our updateBlock ()
function.

if (count == 0)
rawhashdata = new char [BLOCK _SIZE* packet->size()];

(a
updateBlock(packet->getBytes(),packet->siz&());
count++; (b)
if (count >= BLOCK_SIZE) {
(©
signature = hashAndSignTheBlock();
(d)
sendSignedHash(& signature);
/I reset the counters
count = 0
blockSize = 0;

delete [] signature;
delete [] rawhashdata;

}

Listing 6: Code snippet from RealtimeM ediaStreamSender::send () to deal with
(a) creating SRTP block (yellow coloured), (b) checking it it timeto send the signed
hash, (c) hashing and signing the block (blue coloured), and (d) sending the Signed hash
(orange coloured).

5.3 Hashing SRTP blocks

Instead of taking the digital signature of the raw SRTP block we first compute
the hash of the SRTP block, then sign — thus reducing the amount of data that has to
be processed using the asymmetric key. We use HMAC_SHA [37] as the hashing
algorithm to calculate this hash. The HMAC_SHA algorithm takes as input an
authentication key along with a variable size array of data and produces a fixed size
hash. Figure 5-3 shows the block diagram of HMAC_SHA hash function. The
authentication key we are using to calculate the hash value is generated from the
session master key (TGK) that we are escrowing with the escrow agent. Figure 5-4
shows the block diagram of authentication key generation for HMAC_SHA. When

Chapter 5: Design and Implementation of a Solution

the LEA wishes to verify the signed hash it can generate the same authentication key
from the TGK to calculate the hash of arecorded session.

Lenght of SRTP
SRTP BLOCK BLOCK

Authentication
Key

Authentication
Key Length

Fixed Size Hash Length of Hash
Value Value

Figure 5-3: Block diagram of HMAC_SHA hash function

{ csID,csbID,Rand value} TGK

Authentication
Key Length

Authentication Key

Figure 5-4: Block diagram of authentication key generation for HMAC_SHA

5.3.1 Necessary modificationsto the minisip code

To implement the hashing operation we have added a function named
hashAndSgnTheBlock() as a member function of the RealtimeM ediaStreamSender
class inside the MediaStream.cxx file of the minisip libminisip library. Inside this
function we invoke the hmac_shal() function from the libmcrypto library. This
hamc_shal() function in turn invokes the OpenSSL [38] library function that

44

Chapter 5: Design and Implementation of a Solution

performs the actual hash operation. Listing 7 shows our hashAndSignTheBlock()
function where blue coloured area shows the invocation of the hmac_shal() function.

unsigned char* RealtimeM ediaStreamSender::hashAndSignTheBlock() {

unsigned char * signature = new unsigned char[200];
unsigned char* hashValue = new unsigned char [20];
unsigned int hashLength;

delete [] hashValue;

return signature;

}

Listing 7: hashAndSignTheBlock () function to perform (&) the hash (blue coloured
area) and (b) the signature (orange coloured are) of SRTP block.

The first argument of the hmac_shal() function is the authentication key that we
generate from the TGK using the genAuth() function of the KeyAgreement class.
Listing 8 shows the generation of the authentication key for hmac_shal inside the
RealtimeMediaStream::initCrypto() function .The blue coloured area in Listing 7 (a)
shows the invocation of our hashAndSgnTheBlock() function.

uint8 t csld = ka->getSrtpCsld(ssrc);
ka->genAuth(csld, hmacAuthKey, AUTH _KEY_SIZE);

Listing 8: Code snipped from RealtimeM ediaStream::initCrypto () showing the
generation of the authentication key for use by the hmac_shal function.

54 Signing the hashed blocks

After computing the hash of the SRTP block we digitally signing the hash value
producing afixed length signed hash. For signing we use the RSA [39] algorithm. The
signing operation uses the private key of the sender; hence the corresponding public
key can be used to verify the signature. Figure 5-5 shows the block diagram of signing
operation.

Chapter 5: Design and Implementation of a Solution

Hash of SRTP block Hash Length

Private Key e S|gn|ng operatlon

Signed Hash Signed Hash Length
Figure 5-5: Block diagram of signing operation

5.4.1 Necessary modificationsto the minisip code

To implement the signing operation we are using the getSgnature() function of
the SipSim class from the libmcrypto library. The orange coloured areain Listing 7(b)
shows the invocation of the getSgnature() function to compute the digital signature
of the fixed size hash value of SRTP block. The getSgnature() function is a virtua
function defined in the SipSim class. Figure 5-6 shows the UML of the call to the
OpenSSL library function to compute a digital signature. The implementation of
getSgnature() inside the SipSimSoft class is actualy invoked by our
hashAndSgnTheBlock() function which in turn calls the signData() function of
Certificate and OsslPrivateKey class. The OpenSSL library function is finally called
from the signData() function of the OsslPrivateKey class to compute the digital
signature and produce the fixed length signed hash.

5.5 Sendingthesigned hash

The signed hashes are sent via the SRTCP/RTCP path after they are calculated.
When the LEA conducts a LI, they need to capture both the SRTP/RTP and
SRTCP/RTCP packets sent by the subjects. As we transmit the signed hashes in the
RTCP stream, then too will be captured.

Figure 5-7 depicts the logical view of sending these signed hashes. The
frequency of sending a signed hash depends on the SRTP block size. As the signed
hash value is potentially relevant only when the session is over, it does not need to be
sent with the low delay requirement of the SRTP packets. In our implementation we
send the signed hashes as soon as they are calculated, but they could be grouped
together and could be sent in a single SRTCP/RTCP packet which might reduce the
amount of overhead (thiswill be discussed in next chapter).

46

Chapter 5: Design and Implementation of a Solution

SipSimsoft —Inherits—| SipSim
Chain : MRef<CertificateChain *>CertificateChain
rgetSignature() : virtual bool _set ; MRef<CertificateSet *>CertificateSet
fgetSignature() : virtual bool
€
B
wn
Certificate
-m_pk : MRef<PrivateKey *>PrivateKey
* signData() : int
8
@
OsslPrivateKey —Inherits—= PrivateKey
— |+signData() : int ignData() : virtual int
©
o
w

Openssl Library
functions

Figure 5-6: UML diagram showing the invocation of OpenSSL library functions

Figure 5-7: Sending of Signed hash via SRTCP/RTCP path

5.5.1 Necessary modificationsto the minisip code

To send the signed hash in SRTCP/RTCP path we have added a simple function
named sendSignedHash() as a member function of the Rea TimeM ediaStreamSender
class inside the MediaStream.cxx file of libminisip library. Listing 9 shows the
sendSgnedHash(') function. We send the signed hash sequence number along with
the signed hash value. The orange coloured area of Listing 7(b) shows the invocation

a7

Chapter 5: Design and Implementation of a Solution

of our sendSgnedHash() function from the Send() function of the
Real TimeM ediaStreamSender class.

/**

* Send the signed hash in rtcp path at remote port +1

* First 128 bytesis the signed hash! 4 bytes signed Hash sequence Number

*/

void RealtimeM ediaStreamSender::sendSignedHash(unsigned char ** signature) {

/I convert the seq number to a string
const char *seq = itoa(signedHashSegNum++).c_str();

unsigned char * custom_packet = new unsigned
char[signaturelength+sizeof (seq)/sizeof (char)] ;
memcpy(custom_packet, * signature,signatureLength);

memcpy(& custom_packet[signaturelength],seq,si zeof (seq)/si zeof (char)-1);

rtcp_sock->sendTo(* * remoteAddress,getPort()+1,custom_packet,
signaturelength+sizeof (seq)/sizeof (char));

delete [Jcustom_packet;
}

Listing 9: sendSignedHash() function sends the signed hash viathe SRTCP/RTCP path

5.6 Detection of forgery by the proposed model

In our proposed model we escrow the session key with the escrow agent, who
acts as a trusted third party (TTP). However, due to the potentia for insider misuse
we are using asymmetric cryptographic operation to detect attempts at forgery of
contents. In the previous sections we have discussed how we computed the digital
signature (a signed hash) of the SRTP blocks and send these signed hashes along with
the control traffic of the associated media stream. In this section we describe how
these signed hash values of SRTP blocks provide authenticity for recordings of secure
sessions and enable anyone to detect fabrication of media content.

As we are sending the signed hash value along with the control traffic of the
associated media stream anyone who has the public key of the sender can verify
whether the received session is actually what the sender has sent. This verification is
shown in Figure 5-8. In this process the verifier (in this case shown as the LEA)
decrypts the signed hash using the public key of the sender to produce the hash of
SRTP blocks as calculated by the sender. Next the verifier processes the captured
session and does the hashing operations (in our case HMAC_SHA) to produce the
hash of the captured session. If these two hashes are identical, then the captured
packets have not been changed. Thus the digitally signed hash provides integrity
protection — using the user’ s public/private key pair.

Note that this integrity protection is in addition to the integrity protection
provided to the SRTP and SRTCP traffic, but uses a key that has not been disclosed
to the escrow agent (and by implication not disclosed to the LEA). This prevents
either the escrow agent or LEA from being able to successfully forge captured
contents.

Chapter 5: Design and Implementation of a Solution

Sender Receiver

|- \DDD"DDD) JUO-L) |

(S)RTCP
I ! l path

RSA HMAC-SHA

Public key of : ! Authentication key
the sender Dot Hashing derived from TGK
Hash of SRTP block A Hash of captured SRTP block

calculated by the sender calculated by verifier (LEA)

Matching of two hashes proves
that the captured block is

Signed hash
actually sent by the sender [SRTP packet Wl Sig

Figure 5-8: Signed hash verification by the proposed model

When the LEA captures a session for LI it should capture both the SRTP and
SRTPC/RTCP packets. The SRTCP/RTCP path carries the signed hash values over
the SRTP blocks; aong with the usual RTCP information. For successful decryption
of the session the LEA needs the session keys which it obtains from the escrow agent
after showing proper authorization. Without the digitally signed hashes a dishonest
employee of the LEA could modify packets in the captured session in order to present
fabricated evidence in court and the subjects of this LI would have no evidence to
prove this content was aforgery.

The LEA employee can forge SRTP packets as he or she has the session keys
from the escrow agent, but he or she cannot compute the signed hash value as the
signed hash value is calculated using the private key of the sender. However, the
signed hash values could be used by the subject (or the court) to detect fabrication by
the LEA of call contents. In Figure 5-9 we can see that the hash produced from the
forged SRTP block by HMAC_SHA differs from the hash value produced from the
signed hash value by RSA decryption operation. Note that if some SRTP packets were
lost, this too would also produce a different hash value; but we can detect the loss of
SRTP packets by using the sequence number and will ignore the failed verification of
the block.

49

Chapter 5: Design and Implementation of a Solution

Sender Receiver

= (UU-UUIE-O - S

l ! I (S)RTCP
path

RSA HMAC-SHA

Public key of : : Authentication key
the sender Lo Hashing derived from TGK
Hash of SRTP block Hash of captured SRTP block

calculated by the sender calculated by verifier (LEA)

Missmatch of two hashes]
proves the fOI'gEfy of captured |:| SRTP packet . Signed hash
SRTP block [Forged SRTP packet

Figure 5-9: Detection of forgery by the proposed model

The proposed model can detect forgery on a block basis, but not on a per packet
basis (unless the block size in one). Thus we can detect that a block that has been
forged, but we cannot determine which packets inside a block have been forged. The
granularity of our forgery detection depends on the block size (i.e., how many SRTP
packets are grouped together). The smaller the block’s size the finer the granularity of
forgery detection; however, a smaller block size produces greater computational
overhead due to frequent signing and hashing operations and will increase the amount
of information that has to be sent via SRTCP/RCTP. This trade-off will be discussed
in the next chapter where we will evaluate our proposed model.

50

Chapter 6. Performance Evaluation and
Discussion

This chapter evaluates the performance of the proposed forgery detection model.
It also presents a detailed discussion and analysis of the performance evaluation
results. Two aspects of this evaluation are presented in this chapter. The first set of
evaluations focus on the overhead introduced by our cryptographic operations to
detect forgery. The second set of evaluations deal with the performance of escrowing
the master key with the escrow agent.

6.1 Evaluation criteria

Quality of Service (QoS) isacentral issue to the operation of VolP. If the QoS of
a Vol P system is unacceptable, then most of the attractive features (low cost, network
convergence, increased security, etc.) of VolP cannot be realized. The QoS that a
Vol P user experiences can be degraded by the addition and/or poor implementation of
security measures [40]. For example, the existence of afirewall or NAT can increase
call set up delay or even block a call[41]; while use of encryption adds delay which
can produce unacceptable latency and jitter (i.e., delay variation). As we are using
asymmetric cryptographic operations that take significant CPU resources, there could
be excessive latency. Therefore, the first criterion of our evaluation is that the delay
introduced by our cryptographic operations to protect against forgery must not add
significantly to the delay of the RTP traffic. We first measured the CPU time taken by
the cryptographic operations, and then we measured the delay of the SRTP/RTP
traffic.

To measure the CPU time we have used the Boost c++ library [42]. The class
boost::posix_time::ptime is the primary interface for computations concerning time.
The class boost::posix_time::time_duration is the base type for representing the length
of a period of time. This duration can be either positive or negative. The genera
time_duration class provides a constructor that properly deals with hours, minutes,
seconds, and fractional seconds. These functions can be used as follows:

ptime time_start (microsec_clock::local_time()) ;
//do something

ptime time_end(microsec_clock::local_time());
time duration duration(time_end - time_start);
cout << duration << '\n';

The second evaluation criterion is the amount of extra traffic generated due to
the implementation of our model; as if there is too much additional traffic our model
might interfere with the session content’s transmission. This extra traffic consumes
bandwidth (that in some cases may be a scarce resource). A discussion about how
many extra bytes of traffic are sent and a possible way to minimize this
communication overhead is also presented.

6.2 Evaluation of theforgery detection model

In our implementation we create SRTP blocks by grouping together SRTP
packets and performing cryptographic operation over the SRTP blocks in order to be
able to detect forgery of call content later (as elaborated in Chapter 5). How many
packets should be grouped together is an important decision - as our model detects

Chapter 6: Performance Evaluation and Discussion

forgery on a per block basis rather than on a per packet basis (unless the block size is
one SRTP packet). As a result the forgery detection granularity of our model is a
function of the block size. If the block size is small, then our model will more
accurately locate the data that has been forged. On the other hand if the block sizeis
too large, the granularity of a detected forgery will be large, i.e., we cannot indicate
which of many packets have been forged. However, a small block size means that the
expensive cryptographic operation need to be performed more frequently, which
requires more CPU resources and could lead to increased delay and extratraffic.

6.2.1 Delay introduced by the cryptographic operations

In our experiments we measured the overhead as a function of different sized
SRTP blocks. Specifically we create blocks of 1, 8, 16, 32, 64, 128, 256, 512, and
1024 SRTP packets to perform the cryptographic operations according to our
proposed model and measured the CPU time for each block size. We have examined
the delay, both in terms of the total delay and in terms of its components.

Figure 6-1 shows a logical representation of the delay produced by our proposed
cryptographic model. Note that the label “delay” in the figure represents the
maximum delay that we can allow without affecting the inter-arrival times of the
SRTP packets. In the case of G.711, the inter-arrival times of the SRTP packets is
20ms — minus the time required to process the underlying RTP packet (coding and
placing the content into the RTP packet) and turning this into an SRTP packet. Note
that this model assumes that there is a single processor that it doing all the
computation and that the cryptographic operations for signing have to be completed
before the next RTP packet can be processed (i.e., that the processing is done
sequentially and not in parallel) — in practice this need not be true, but it represents the
worst case effects on the RTP delay of performing these additional computations and
it represents the current implementation. We will use this assumption of serial
computation in the discussion that follows.

52

Chapter 6: Performance Evaluation and Discussion

Time

A

First packet sent after
cryptographic operaticn Last packet sent before

\ cryptographic operation

= {000-T] ULDD--DDD—- -

Cryptograhpic
operations(Hash+Sign) to
produce Signed hash

+——delay——»

(S) RTCP
path

[] SRTP packet i} Signed hash

Figure 6-1. Delay produced by the cryptographic operations (Hash+Sign)

The total delay introduced by our model is the sum of CPU time taken by al of
the different operations performed. We have broken down the total delay as the delay
due to the hashing operation, the delay due to the signing operation, and a fixed delay
due to sending the signed hash value. The measurements were made on a Dell
OptiPlex GX620 computer with an Intel Pentium D dual core processor running at
2.8GHz with 2 GB of memory. For detailed information about this CPU see Appendix
F. In next two subsections we present our test results concerning hashing and signing
delay for different block sizes.

6.2.1.1 Hashing delay

We have calculated the hash time based upon 50 test runs with each different
block size using the posix::ptime class of the Boost c++ library. Table 4 shows the
statistics over these measurements for 50 test runs for each different block size. The
data for each of the individual runs areincluded in Appendix B.

Table 4: Statistical data of HMAC_SHA delay measurement in microsecond for
different block size. These statistical values are calculated for 50 test runs.

Block Average Median Minimum Maximum Standard
Size (1s) (us) (1s) (us) deviation (US)
1 8.94 9 8 13 1.202209
8 17 15 13 34 5.656854
16 25.08 21 19 37 6.638908
32 35.82 30 29 49 7.598845
64 52.78 50 49 66 5.207099
128 90.76 89 89 109 4.345112
256 168.58 167.5 167 182 3.35693
512 325.26 324 323 342 3.355227
1024 648.38 648 638 675 7.298001

53

Chapter 6: Performance Evaluation and Discussion

For better understanding of the results we have plotted the data using both R®
and Microsoft’'s Excel. Figure 6-2 shows an Excel plot of the hashing time for each
block in microseconds for the 50 test runs; while Figure 6-3 shows an R box plot of
the hashing time for different block size. From these two graphs we can see that the
hashing time increases with increasing block size. Figure 6-4 shows the average
hashing time for different block sizes.

Hash Time Per Block

0.7
@ Block Size 1
0.6)
¢ Block Size 8
m Block Size 16
0.5 A
w
Block Size 32
S
N—r
o 041 Block Size 64
£ .
| eeeeee-- Teeseeee- B R R R Teceeeee- Tl xBlock Size 128
0.3
+ Block Size 256
0.2 A - Block Size 512
++ +
+ ++++++++++++++ T4+ At
Block Size 1024
X
0.1 s FE DXy s XX KKK K KK KK K KKK KKK KK KK KK KKK X KK XK KK KK KKK K KK
Pums mw ™ El= mEn AnnAnpn n _,_/\“H_/‘\
R T A i A e T I Ry A i AT e i AN kA RE L

0 5 10 15 20 25 30 35 40 45 50
Run

Figure 6-2: HMAC_SHA hashing timefor 50 test runs of different block size
Where, X axisrepresentsthe Run number and Y axis correspondstotimein
millisecond

$ http://www.r-project.org

Chapter 6: Performance Evaluation and Discussion

HMAC-SHA Hashing Time

1024 “{ %
512 - }-

256 - =

128 - F

32 D+

Block Size
o
B
1

16 - '-
08 - | e
01 - F
T T T T T T T
De+00 1e-04 2e-04 3e-04 4e-04 5e-04 Ge-04 Te-04

Time in Seconds

Figure 6-3: R boxplot showingthe HMAC_SHA hashing time
Each box representsindividual block sizeindicated on Y axisand the Timein
second isplotted on the X axis.

HMAC_SHA hashing time per block (Average)

0.7

0.6 m

0.5
g 0.4
£ 03] =
'_

0.2

0.1 -

ey = TN s I O
1 8 16 32 64 128 256 512 1024
Block Size ‘ @ Hash Time per Block ‘

Figure 6-4: Averaged hashing time for different block sizes
Where, X axisshowstheblock sizeand Y axisrepresentstimein milliseconds (ms)

55

Chapter 6: Performance Evaluation and Discussion

6.2.1.2 Signing delay

We have calculated the signing time for different block sizes based upon 50 test
runs for each block size; in the same way as we calculated the hashing time. The
statistical result for the signing time measurement are shown in Table 5. The actua
measured data for individual run is included in Appendix C. Some plots of the data
are shown are Figure 6-5, Figure 6-6, and Figure 6-7. From all these graphs it is
notable that the signing time is amost constant for different block size and that this
signing time is close to 3.5 milliseconds. The reason behind this nearly constant
signing time is that we are always computing a signature of afixed size hash value.

When the block size is 1 it takes 3.5 milliseconds to perform the signing
operation. This 3.5 millisecond delay will occur every 20 milliseconds, as each SRTP
packet contains 20 milliseconds worth of audio samples. On the other hand a block
size of 128 requires the same overhead of approximately 3.5 milliseconds for signing,
but this computation will only occur every 2560 milliseconds (i.e., every 2.56
seconds).

From Figure 6-6 we see that there is a set of outliers that follow roughly the same
delay curve as the median values, but with an additional delay of ~1 ms. This is most
likely due to multitasking, since the Linux scheduler is running with a HZ value of
1000 (i.e., 1 second divided by 1000 is 1 ms).

Table5: Statistical results of signing time delay measurement in millisecond for
different block size. These statistical values are calculated for 50 test runs.

Block Average Median Minimum Maximum Standard

Size (ms) (ms) (ms) (ms) deviation (ms)
1| 3.4466 3.4305 3.376 4.243 0.118869
8| 3.47552 3.461 3.417 4.298 0.120857
16| 3.49208 3.4705 3.434 4.351 0.126334
321 3.49148 3.475 3.417 4.325 0.122656
64| 3.49654 3.477 3.435 4.327 0.124445
128 | 3.47526 3.459 3.425 4.324 0.123611
256 3.50686 3.4835 3.426 4.354 0.130582
512 | 3.4977 3.474 3.445 4.358 0.126379
1024 | 3.50232 3.4765 3.448 4.583 0.157692

56

Chapter 6: Performance Evaluation and Discussion

Actual Signing Time Per Block

5
4.5 ¢ Block Size 1
! = Block Size 8
= 4 Block Size16
g Block Size 32
N arF
] + X X Block Size 64
g 3.5 +xi P e s . -«I-:L*A:—g—'%%wwx‘" >
= v“?fv* W T T LT L LIS LT L BUSSIHESUERESEY | o Biock size 128
+ Block Size 256
3 - Block Size 512
Block Size 1024
2.5
2 T T T T T T T T T
0 5 10 15 20 25 30 35 40 45 50
Run
Figure 6-5: RSA signing timefor 50 test runswith different block sizes
Where X axisrepresentstherun number and Y axisisthe signing timein
milliseconds.
Actual Signing Time
1024 }H- { oo o
512 }-{:|-|o o
256 | © |- :”-i o o o o
128 }[[-foo °c @
8 -
Zeq H]- o 0o
= -
m
32 4 |- - -]:| - -I ° o @
16 | :D -4 o
08 | |-U 1 e o
01 - |- - m- -- -I o o
T T T T T T T
0.0034 0.0036 0.0038 0.0040 0.0042 0.0044 0.0046

Time in Seconds

Figure 6-6: R boxplot showing the RSA signing time

Each box representsthe signing timefor the block sizeindicated on Y axisand

timein secondsis shown on X axis.

57

Chapter 6: Performance Evaluation and Discussion

Actual Signing Time per block (Average)

3.52
351
35 T
3.49]] —
3.48 —
3.47
3.46
3.45 —
3.44
3.43 —
3.42
341

Time (ms)

1 8 16 32 64 128 256 512 1024

Block Size ‘ @ Actual Signing Time per Block ‘

Figure 6-7: Averaged signing timefor individual block size
Where, X axisrepresent block sizeand Y axisrepresent timein millisecond (ms)

There are two curious aspects of these results. One is that for the 32" run for all
block sizes, something happens that causes the time to be longer. Second the
processing time for 128 packets is comparable to the time for 8 packets and shorter
than the time for all other block sizes (except for 1 and 8 packets).

Measurements were taken with a dlightly different block size than the 128
which produces a local minimum. These measurement results are shown in Table 6.
The measured data was plotted to see where the inflection point is. From Figure 6-8 it
is notable that block size of 129 and 131 also require less signing time compared to
others block sizes, as the median value of the box plots suggest. A similar result is
also found in Figure 6-9 where the X axis represents the block size and the Y axis
shows the average signing time for 50 test runs. The data for each of the individual
runs are included in Appendix D.

Table 6: Statistical results of signing time delay measurement in milliseconds for
different block sizescloseto 128 to find the local minima. These statistical valuesare
calculated for 50 test runs.

Block Average Median Minimum Maximum Standard

Size (ms) (ms) (ms) (ms) deviation (ms)
120 3.49344 3.475 3.429 4.346 0.125309765
124] 3.49516 3.477 3.44 4.342 0.12402639
127 3.50306 3.4885 3.435 4.344 0.122551515
128 | 3.46642 3.447 3.426 4.378 0.132443148
129 | 3.48032 3.4605 3.414 4.32 0.125023172
130 | 3.49246 3.479 3.42 4.334 0.122959959
131] 3.48856 3.476 3.441 4.35 0.137902829
132 3.5061 3.4605 3.455 4.471 0.139973212
136 | 3.49774 3.4725 3.433 4.345 0.126292794

58

Chapter 6: Performance Evaluation and Discussion

Actual Signing Time

136 |--|]]--{ ° ° o

132 - |--|]}-Icp o °

131 - |-{|-|o © ° o o

130 I-I]]-I o ° ©°
2129' |"|° °e

128 - flﬂ{:o o o

127 o} [[l-io o

124 }|:[|-|=m ®

120 I--|:|:’--{ o o

0.0;)3-4 0.0:‘.!36 0.0038 0.0;140 0.0:)42 0.0;)44
Time in Seconds
Figure 6-8: R boxplot showing the RSA signing time
Each box in Y axisrepresentsthe signing timefor the block size closeto 128 to find
thelocal minima and timein secondsis shown on the X axis.
Actual Signing Time per block (Average)
3.52
3.51
35

349
g 3.48
® 347
E 346
'_

3.45

3.44

3.43

3.42 ‘ ‘

120 124 127 128 129 130 131 132 136

Block Size

@ Actual Signing Time per Black ‘

Figure 6-9: Averaged signing timefor individual block size closer to 128
Where, X axisrepresent block sizeand Y axis represent timein millisecond (ms)

59

Chapter 6: Performance Evaluation and Discussion

6.2.1.3 Total delay measurement

The total processing time (as noted in worst case this corresponds to added
delay) iscalculated in asimilar fashion as used for calculating the hashing and signing
time. The total delay includes the signing and hashing time plus the time required for
sending the signed hash value through SRTP/RTCP path. The statistical analysis of
these test results are presented in Table 7. The measured data for individual runs are
included in Appendix E. Plots of the measured data are presented in Figure 6-10,
Figure 6-11, Figure 6-12, and Figure 6-13, where the first two figures show the total
delay produced by different size blocks for 50 test runs.

Figure 6-12 shows the average of total delay introduced by our cryptographic
processing for different size blocks. From this figure it is clear that the total delay
increases owly with increasing block size. In Figure 6-13, the bars show the average
total delay, signing delay, and hashing delay for different size blocks. This figure
suggests that the lion’s share of total delay comes from the signing operation and this
isnearly a constant value. Actually the total delay increases with increasing block size
due to additional time required for computing a hash over alarger amount of data. We
can fit alinear curve to the total delay asfollows:

Y=m*X+cC
Where,
Y=Total Delay
X=Block Size (1, 8, 16, 32, ...)
m = Time per packet to hash (constant)
¢ = Signing time (constant)
From our experimental measurements we see that m=0.07 ms per packet and
c=3.41 ms.

The total delay for these computations is directly related to clock speed of
computer (used as the user agent). A user agent with the same type of processor but
with afaster CPU will experience less delay; while a machine with a slower CPU will
experience greater delay. At the same time increasing the block size means less
frequent production of signed hashes, as the signing occurs on a per block basis.
However, for smaller granularity of forgery detection we would like to use smaller
block sizes. So a machine with a faster CPU can utilize a smaller block size and offer
finer granularity of forgery detection without introducing too much delay.

Table 7: Statistical results of total delay measurement in milliseconds for different block
sizes. These statistical values are calculated for 50 test runs.

Block Average Median Minimum Maximum Standard

Size (ms) (ms) (ms) (ms) deviation (ms)
1] 3.55114 3.513 3.459 4.466 0.183084

8| 3.6507 3.626 3.582 4.471 0.12418
16| 3.62252 3.5985 3.548 4.447 0.121999
32 3.63178 3.613 3.53 4.462 0.121999

64| 3.68958 3.6695 3.636 4.52 0.12314
128 3.7219 3.6995 3.66 4.574 0.125689
256 | 3.78964 3.775 3.739 4.64 0.124207
512 3.9421 3.9255 3.891 4.759 0.119316
1024 | 4.27708 4.26 4.214 5.074 0.116868

60

Chapter 6: Performance Evaluation and Discussion

- Total Delay(Sign+Hash+RTCP send)
5 e Block Size 1
- # Block Size 8
g ; = Block Size 16
< 454 (] Al .
o ~ ° Block Size 32
£ G il Tt i bl P i L il Block Size 64
|_
4 X Block Size 128
000 Po590PeRge CeRn®ag,000000F TetTee- .- +Block Size 256
+ X +T4 + .
*;If i f;ifgﬁii ;x%; ¥ %;Hx;x e
- netn v-n" L JA15 NAJAL RAL Fug) ;
35 | ..’: P: Ve .!. "o %, . I.L..::il ..“’i- - Block Size 1024
3 T T T T T T T T T 1
0 5 10 15 20 25 30 35 40 45 50
Run
Figure 6-10: Total delay for 50 test runs of different block size
Where, X axisrepresentsthe Run number and Y axis correspondsto timein
micr osecond
Total Time(Signing+Hashing+Sending)
1024 - }ﬂ}{ ° °
512 }M{m oo
256 }[I]»«Io -] @
128 +.m.+nmo 0 ow
8
2 64 _ }ﬂh w0 @
o
m
32— OO]-|:[|-|@O o000 O
16 | }-{I]—‘I - . 1] < oo
08 _| |__ ___+00 o m
01 rm.-wo © o
T T T T
0.0035 0.0040 0.0045 0.0050
Time in Seconds

Figure6-11: R plot showing thetotal delay

Where, every box representsindividual block sizeindicated in Y axisand Timein

second isindicated in X axis.

61

Chapter 6: Performance Evaluation and Discussion

Total Delay per Block

n

da

Analogy

Y = Total Delay per Bock '
> Constant Signing Time (C) X = Block Size)
m = time per unit

C = Constant Signing Time

Tirme inms
>
R W o E

s

[
« w

J
=
[o%]
)

102

[+=]
)
4]
[+7]
o

—e— Total Delay per Block |

Figure 6-12: Averagetotal delay for individual block size
Where, X axisrepresent block sizeand Y axisrepresent timein millisecond (ms)

Time (Ms)

Total Delay vs Signing time vs Hashing time

@ Hashing Time
2.5 A W Signing Time

@ Total Delay

0.5 | I
N IR EENEN
5

1 8 16 32 64 128 256 12 1024

Block Size

Figure 6-13: Total delay, signing time and hashing time for different size of block

62

Chapter 6: Performance Evaluation and Discussion

6.2.2 Extratraffic generated by the signed hashes

To detect the forgery of the call content we send the signed hashes of SRTP
blocks via the SRTCP/RTCP path. In our current implementation we are sending a
signed hash (128 bytes) along with a signed hash sequence number (4 bytes) as an
UDP packet. When sent over an Ethernet there will be an additional 42 bytes of extra
protocol headers. Figure 6-14 shows the structure of a UDP packet containing a
signed hash value. For every SRTP block we send only 174 bytes of extra traffic out
the network interface. Of these 132 bytes are the application data and 42 bytes are
overhead for the different protocol headers.

Eth P UDP Signed Hash+Signed Hash
Sequence Number
(14 bytes) (20 bytes) (8 bytes) (132 bytes)
\ /

~

Different protocol headers
(42 bytes)

Figure 6-14: Signed hash valueinside a UDP packet

The extratraffic generated by our model directly depends on the block size. If
the block size is small then signed hashes are produced and sent across the network
more frequently.

63

Chapter 6: Performance Evaluation and Discussion

Table 8 shows the intervals between signed hashes for different size blocks and their
logarithm value. Asthe table shows with ablock size of 64 these 174 byte frames
would only be sent every 1.3 seconds. In comparison to the 50 frames per seconds
that are sent for G.711 encoded audio, thisis 2% additional traffic in term of the
number of packets and 1.2% additional bytes. (Note that RTCP alone would typically
generate ~5% more traffic.)

In Figure 6-15, the histogram shows the signed hashes' inter-arrival time as a
function of block size. For a better understanding a log-log plot with error bars is
presented in Figure 6-16. Fitting an equation to this data allows us to estimate the
inter-arrival times for other values of block size. From the log-log graph it can be
clearly understood that signed hash inter-arrival time maintains an exact linear
relationship as the R (correlation coefficient) squared value is 1. From the trend line
and the equation shown in the Figure 6-16 it can be observed that the curve intercepts
the Y axis at the value 4.33, this represents the constant portion. This constant value is
the logarithm of the signed hash inter-arrival time when the block sizeis 1.

Table 8: Signed hash interval for different size of block. These average valuesare

Chapter 6: Performance Evaluation and Discussion

calculated for 50 test runs.

8000
7000
6000

Block Average Inter Arrival | Log2(Block size) Log2(Average Inter
size Time (ms) Arrival time)
1 20.27826 0 4.34186196
8 159.89016 3 7.320937345
16 319.89166 4 8.32143957
32 639.8549 5 9.321600972
64 1290.14344 6 10.33331576
128 2559.78514 7 11.321807
256 5119.71994 8 12.32184918
512 10239.58178 9 13.32186917
1024 20498.5962 10 14.32323749
Signed hash Inter Arrival Time (Average)
22000
21000
20000
19000
18000
17000
16000
15000
14000
13000
£ 12000
o 11000
E 10000
= 9000

5000
4000

3000
2000
1000

E—
, T
8 16 32 64 128 256 512 1024
Block Size O Actual Signing Time per Block

Figure 6-15: Signed Hash Inter Arrival timefor different block size
Where, X axisrepresent block sizeand Y axisrepresent timein milliseconds

65

Chapter 6: Performance Evaluation and Discussion

Signed Hash Inter Arrival Time(log-log)

18
glG 7
c14 { JL
® e d
£12 L
T T i
>10 T ¢ Seriesl

] —— Linear
y =0.9987x + 4.3329 (Series1)

/ R?=1

log2(Avg inter arri

o N M O @

o 1 2 3 4 5 6 7 8 9 10 11 12
log2(Block Size)

Figure 6-16: log-log plotwith error bars showing the signed hash inter arrival time
Where, X axisrepresent logarithm of block sizeand Y axis showsthelogarithm of
averageinter arrival time

The 42 bytes of overhead due to the different protocol headers could be reduced
by sending the signed hash together with a RTCP Sender Report (SR) or Receiver
Report (RR); as these reports need to be sent by the user agent (see Figure 6-17). The
default interval between sender/receiver reports in a RTP/RTCP implementation is
five seconds (5000 milliseconds).

From Table 8 we can see that for a block size of 256 or more the signed hash
interval is greater than the RTCP SR/RR interval. Therefore we can place the signed
hashes inside a RTCP SR/RR for a block size of 256 or larger, hence avoiding the 42
bytes of extra overhead due to the lower layers. For a block size of 128 we can either
(2) place half of our signed hashesin RTCP SR/RR hence reducing the extra overhead
by 50% or (2) we could delay sending half the signed hashes and place two signed
hashes together with the RTCP SR/RR. Similarly 25% of extra overhead could be
avoided by placing the signed hash inside the next RTCP SR/RR for blocks of 64
SRTP packets or four signed hashes could be put in each RTCP SR/RR.

Note that since there is no need for low delay for the delivery of the signed
hashes, there is no reason not to delay sending the signed hashes until an RTCP
SR/RR needs to be sent. Hence the cost is 132 bytes of signed hash times the numbers
of hashes that have been done since the last RTCP SR/RR. Table 9 shows a simple
estimate of the additional number of bytes due to the signed hashes that need to be
sent as a function of the block size when piggy-backing the signed hashes on the
RTCP SR/RR packets. Unfortunately, we see that for small block sizes we quickly
regain some of the overhead due to the lower layers, since we will exceed the PATH
MTU size and will need to fragment the packets. Thus for a block size of 256, 128,
64, and perhaps even for 32 it may make sense to delay sending the signed hash and

66

Chapter 6: Performance Evaluation and Discussion

exploit the decrease in overhead due to piggy-backing, but this gain is small for
smaller block sizes.

Table9: Increased size of the RTCP SR/RR report to carry the signed hash

Block Size Number of bytes
1 8448
8 4224
16 2112
32 1056
64 528
128 264
256 132
RTCP
Sender
Report/
Receiver
Report Protocol
Headers
(42 bytes)

Sending Signed hash in
RTCP SE/RR can save 42
bytes overhead of different

protocol headers

Figure 6-17: Placing the signed hash inside RTCP SR/RR

6.3 Escrowing overhead measurement

One of the major contributions of this thesis is to build an escrow agent and to
escrow the session master key with this escrow agent. This section discusses the
performance of the escrow operation. The method of escrowing the session master
key was presented in Chapter 4:. However, we expect some performance problems
because we protect the escrowing of a session master key using an SSL/TLS tunnel.
While this tunnel protects the mastery key and information that is being escrowed we
have to set-up a tunnel before we can send any information to the escrow agent. For
simplicity we examined the case where this tunnel must be set up for each successful
call that has terminated.

The time required for escrowing a session’s master keys with the escrow agent
was measured using the same Boost c++ library function described earlier. For testing
the escrow agent was connected to (1) the same LAN as the user agent or (2) a

67

Chapter 6: Performance Evaluation and Discussion

different LAN from the user agent. Table 10 shows the measured time for 20 test runs
of each of these two configurations. Note that in the second configuration the escrow
agent has been moved to another subnet within the KTH campus network. From these
measurements we can see that the time to escrow a key (with an escrow agent located
in the same LAN) is very small, i.e., below 100 ms in most cases. (Note that in the
first case there are some extra costs as we have to resolve the IP address of the escrow
agent into aMAC address.)

Table 10: Time required escrowing a session master key with the escrow agent
Escrow agent is in the same Escrow agent is in
Run LAN (ms) different LAN(ms)
1 112.799 150.966
2 57.467 99.89
3 50.889 71.607
4 80.093 127.361
5 50.505 73.824
6 64.092 122.736
7 49.689 126.988
8 52.321 72.962
9 53.778 72.324
10 51.002 87.847
11 66.537 125.804
12 68.26 140.801
13 66.06 105.576
14 67.537 173.664
15 66.5 118.636
16 67.661 135.4
17 64.911 136.467
18 65.772 143.409
19 64.789 119.72
20 63.976 129
Average 64.2319 116.7491

While the escrow time is tens of milliseconds or more, this time may not be
significant as key escrow is performed at the end of a successful session. Therefore
the time required to escrow material has no effect on the media latency, but might add
some delay before a new session could be established.

However, the amount of communication required to escrow the desired
information may be significant —as this information has to be sent across what ever
network interface the user agent uses to communication with the escrow agent. Since
the SSL/TL S tunnel relies on TCP connection, we begin by considering the number of
packets required to establish a TCP connection and to tear down this connection. To
this we have to add the SSL/TLS handshake for keys and cipher suite negotiation.
Figure 6-18 shows the packets captured for a single call’s escrow operation. Figure
6-19 shows the flow of packets between the user agent (130.237.15.252) and the
escrow agent (130.237.251.98) in sequential order. From these two figures it can be
seen that the actual session key and other security parameters are transferred as
application data.

68

Chapter 6: Performance Evaluation and Discussion

{Urnitled) - Wireshark

Elle Edit View Go Caphwe Analze Stabishes Telephany Tools Help

SEHAN 300 ROOF00 |

7)o [poe=tes v | & Eyrssion. | % Ciar | Agpy.
Na... [Time | Soumce | Destination |Pratscol | oo [

481 11942268 138.237.15.250 138.237.251.98 TCP 52126 » https [ACK] Seq=l Ack=l Win=5838 Len=8 TSV=132834 TSER=1887761
482 11942393 130.237.15.292 139.237.251.98 TSl Client Hello
463 11.943643 130,237.251.98 136,237.15.252 TCP https » 52126 [ACK] Seq=l Ack=186 Nin=5824 Len=d TS\=1887761 TSER=192834
486 11.967381 138.237.251.98 136.237.15.252 TLSvl Server Hello, Certificate, Server Key Exchange, Server Hello Done
487 11,967394 130.237.15.2%2 138.237.251.98 TCP 52126 » https [ACK] Seq=168 Ack=1133 Win=192 Len=8 TSV=192841 TSER=1887767
498 11967554 138.237.15.290 136.237.251.98 TLS1 Client Key Exchange, Change Cipher Spec. Encrypted Handshake Hessage
495 12, 684384 138.237.251.98 138.237.15.2% TLSvl Change Cipher Spec, Encrypted Handshake Message
496 12865613 138.237.15.252 138.237.251.98 TSl Application Data
568 12817731 138,237.251.98 136.237.15.252 TLSv1 Application Data, Application Data
| 561 12.817897 138.237.15.2%2 136.237.251.98 Encrypted Alert

584 12.819384

Figure 6-18: Screenshot showing the packetsinvolved in a single escrow oper ation

130.237. 15 252
1T320.237 251 98

Figure 6-19: Theflow of packetsfor a single escrow operation

Table 11 shows the number of packets and number of bytes that need to be sent
for SSL/TLS tunnel establishment and closing of the tunnel. For a single escrow
operation 11 packets are exchanged between the user agent and the escrow agent
resulting in 2258 bytes of network traffic in addition to the application data (i.e., the
master key and other security parameters). Note that the number of packets required
to establish and close of atunnel is constant, while the size of the packets may vary
due to the use of different cipher suites by different servers.

69

Chapter 6: Performance Evaluation and Discussion

Table 11: Number of packets and bytes sent as overhead in addition to the master key
and other security parametersfor a single escrow

Activity Number of packets Number of bytes
TCP connection
establishment 3 76 + 76 + 68 = 220
SSL/TLS client
hello 2 167 + 68 = 235
SSL/TLS server
hello 2 1218 + 68 = 1286
Exchange of keys
and cipher
specification 2 266 + 127 = 393
TCP connection
tear down 2 68 + 56 = 124
Total 11 2258

We could reduce both the delay and number of packets (and bytes) that need to
be exchanged between the user agent and the escrow agent by keeping the SSL/TLS
tunnel open for subsequent escrow operations. Doing so would enable a significant
amount of overhead to be avoided. By keeping the tunnel open this constant overhead
(11 packets) per escrow operation can be omitted. The total overhead savings directly
depends on the frequency of calls. For N calls that can share the SSL/TLS tunnel set-
up this approach can save the following amount of overhead in comparison to opening
and closing the SSL/TL S connection for every escrow operation:

X=(N-1)*Y
Where,
X = total amount of overhead saved
N = Number of calls sharing atunnel set-up & teardown
Y = Fixed overhead per escrow operation

Moreover this approach would save a significant amount of time for every
escrow (except the first one) as (1) there will be no need for SSL/TL S handshake for
cipher suite negotiation as this involves asymmetric cryptographic operations and (2)
there are fewer round-trip packet exchanges. If the frequency of call is high, then
keeping the tunnel open would be beneficial. On the other hand if the frequency of
calls (and hence escrow operations) is too low, then it would be better to close the
tunnel. In this regard some important questions need to be addressed:

e How long should a SSL/TLS tunnel be kept open?

e When does the tunnel need to be closed?

e What isthe number of uniquely identified open connections that the escrow
server can support?

e How many active connections can an escrow agent support?

Since each SSL/TLS tunnél requires a TCP connection, each tunnel can be
uniquely identified by the source IP address, source port number, destination IP
address, and destination port number. Note that the destination port number is likely
to a fixed port, hence there will be only one such port number. Moreover, if a user
agent is located inside a NAT, then the total number of uniquely identifiable tunnels
could be limited based upon the number of IP addresses assigned for the externa
interface of the NAT (i.e., limiting the number of source IP addresses and source port
numbers that can be used) and the I P address and port number resources used by other
traffic passing through this NAT (since the NAT needs to assign different port

70

Chapter 6: Performance Evaluation and Discussion

number and IP address combinations for al of the TCP traffic passing through it). A
complete analysis regarding of these issuesis required before initiating deployment of
the proposed solution. While these issues are interesting they are left for future work.

6.4 Timebetween BYE and escrow

The time between SIP' s BY E message and the escrow operation is presented in
this section. The time required to escrow a key was presented in section 6.3 and it was
mentioned that escrow time may not be significant as key escrow is performed at the
end of a successful session. Therefore the time required to escrow the key materials
and the time between BY E and escrow have no effect on the media latency, but might
be significant as these two may add some delay before a new session could be
established. Table 12 shows the time between BY E and the escrow operation for 20
test runs in sorted order and a plot of the measured data is presented in Figure 6-20.
The total time between the BY E and the escrow operaiton is less than 100 ms - and
this is comparable to the time to send five audio frames (as they are each 20 mslong
with the G.711 CODEC that istypically used).

Table 12:Time between BYE and the escr ow operation for 20 test runs

Run Time in Milliseconds(ms)

1 8.836
2 10.109
3 13.531
4 15.396
5 17.94
6 18.039
7 18.728
8 20.874
9 25.247
10 27 .77
11 35.324
12 39.576
13 43 .866
14 45.052
15 47 .236
16 61.84
17 78.32
18 83.667
19 87.258
20 96.306
Average 39.74575

A LEA can not get the keys for a session until they have been escrowed. As we
only escrow the keys for a session at the close of the session (in the normal case thisis
indicated by the SIP BY E message), the time between this BY E message and the key
being escrowed is the minimum delay that a LEA would experience for LI of this
session. Note that the effective end of the media stream could be much sooner than

71

Chapter 6: Performance Evaluation and Discussion

the BY E message if the parties in the session do not transmit the BY E immediately
after they finish sending RTP packets.

Time between BYE and Escrow

110
100
90
80 - .
70
60 *
5 |
40 *
30
o ——FF—"—F—"—7
01 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Run

Time in Milliseconds (ms)

Figure 6-20: Time between BY E and escrow (sorted in increasing delay)

The major component of the delay between the BY E and the escrow operation is
taken by the operations responsible for the closing of the real time media stream
sender and the receiver. Separate measurements were taken to calculate the time
required to close the real time media stream sender and the receiver. An interesting
observation is that the time required to close the media stream sender is almost
constant (3.8 ms). This time is due to the cryptographic operations performed on the
last SRTP block as this operation is peformed insde the
RealtimeM ediaStreamSender::stop (). So the proposed key escrowing model is only
responsible for approximately 3.8 ms of the delay. The rest of the delay is produced
by the invocation of RealtimeMediaStreamReceiver::stop () that is responsible for
closing of the real time media stream receiver.

6.5 Summary

A complete performance evaluation of the proposed key escrowing model with
signed hashes to detect against forgery has been presented in this chapter. The
evaluation criteria were presented in section 6.1 based along with the measurements
that were made. Section 6.2 discusses the overhead produced by the proposed model
with relevant measurement data, charts, and graphs. The performance of the escrow
agent was presented in section 6.3 with a discussion of the details of the messages
required to do the key escrowing. Finally section 6.4 discussed the delay between the
BYE and the escrowing of the key; thus completing the discussion of the delays for
all of the processing due to the introduction of the proposed key escrow functionality.

172

Chapter 7. Conclusions and Future Work

Voice over Internet Protocol (VolP) is a revolutionary application both in its
effects upon the traditional telephony infrastructure and regulations, but VolP call
characteristics may be different than calls via the traditional fixed and mobile
telephony system. Part of the reason for the change in Vol P call characteristics is the
increasingly dynamic working habits of user and SIP's support for user, device, and
session mobility.

VoIP is aso a popular choice for real-time communication due to the security
features it can provide. Many security protocols have been used to provide encryption
and integrity protection of the real-time traffic and to provide authentication of the
parties participating in a session. While the Vol P users are happy with the benefits of
this additional security, governments and their Law Enforcement Agencies (LEAS)
are finding Lawfully Intercept (L1) of private communication of users to be harder
and harder to carry out in practice.

Key escrow was proposed as a remedy for the increasing difficulty for LI, based
upon the caller escrowing the session keys needed to decrypt an encrypted
communication session with a Trusted Third Party (TTP) who can provide the LEA
with the necessary keys after proper authorization. However, key escrow was not
accepted as a viable solution to this problem because it adds additional security
vulnerabilities and due to potential risks caused by an unethical employee of the key
escrow agent (or a law enforcement agency that has access to the session key(s)).
Unfortunately, an employee of the TTP or the LEA can misuse the escrowed keys to
forge session contents — as these are the same key(s) as the user used for this session.
A viable solution to this problem is need to foster acceptance of key escrow while
facilitating L.

7.1 Summary of thethesisresults

This thesis project focused on a proposal, implementation, and evauation of a
model that allows key escrow to be a viable means to facilitate lawful interception
while rendering fabrication of the call content detectable. The minisip SIP user agent
has been extended to escrow the session master key along with other security
parameters after a successful SIP session. An extensive analysis has been performed
in order to identify an optimized set of parameters that would be required by the LEA
to generate the session keys from the master key; this is the set of information that is
escrowed with the escrow agent. Additionally, a ssmple key escrow agent has been
implemented using an Apache web server with aMySQL database.

In order to detect forgery of recorded session content, asymmetric cryptography
has been used to create a digital signature for a block of SRTP packets. This signed
hash value is sent viathe SRTCP/RTCP control path as detailed in chapter 5.

A rigorous evauation of the implemented model has been performed as was
detailed in chapter 6. The evaluation result suggests that for different block sizes the
overhead due to the signing operation is roughly constant and that this is the dominant
factor in the additional processing that is required for the proposed model. Although
there is additional total delay due to the time required to compute the hash over the
SRTP packet, thistimeis quite small in comparison to the signing time.

Chapter 7: Conclusions and Future Works

While using a small block size provides finer granularity forgery detection, this

occurs at the cost of more frequent asymmetric cryptographic operations and
increased network traffic. The additional processing and additional data have been
carefully measured and can be used to decide on what is the most appropriate block
size for a given implementation and usage scenario. As aresult of the analysis of the
experiments that we have carried out, we can answer some of the open questions that
we presented in Chapter 1:

Q1.

Q2

Q3.

Q4.

Q5:

How many SRTP packets should be grouped together?

Using a block size of 64 enables the detection of forgery of contents to a 1.28
second interval while requiring no additional SRTP/RTCP packets to be sent
(but the packet that will be sent will be some what larger). The computational
timeis 0.3% of the total elapsed and 136 additional bytes per second of traffic.
This might also be possible with a block size of 32 in some settings if the
amount of SR and RR data is small and the PATH MTU is 1500 bytes.

What is asuitable rate for computing the signed hashes?

With a block size of 64, a signed hash would be calculated roughly every 1.28
seconds — hence the computation time required for signing is roughly 0.3% of
this time interval. Hence the CPU resources (on the processor that was used
for the measurements) are minimal.

Should the number of packets that are grouped together be computed
adaptively based upon the rate at which the sender can compute and sign the
hashes?

Yes, in the case of a processor with a slower CPU it may be necessary to
reduce the rate at which signed hashes are computed.

Is there any minimum number of SRTP packets that should be grouped
together?

No. If there is sufficient bandwidth and computational power available, then a
block size of 1 is feasible with the processor used for these measurements, but
the signing operation will take ~20% of the CPU’s resources. With a slower
CPU a block size of 1 may be infeasible if the device is to support any other
tasks.

Is there any maximum number of SRTP packets that should be grouped
together?

There seems to be little reason to use a block size of larger than 256, unless a
very slow CPU is used to compute the signature.

7.2 Futurework

This thesis considered only a single escrow agent with whom user agents escrow

their sesson master key. However, multiple escrow agents might need to be
implemented to allow a user agent to deposit parts of the session master key with
separate escrow agents. This is necessary to both reduce the risk of an escrow agent
misusing their knowledge of the escrowed information and to reduce the risks of an

74

Chapter 7: Conclusions and Future Works

escrow agent being unavailable for key recovery (for example, due to network
partitioning or financia failure of the escrow agent).

However, utilizing multiple escrow agents would require a suitable mechanism
to be implemented so that the LEA could reconstruct the secret from the information
provided by the escrow agents (i.e., form the whole session master key). This will be
the topic of anew thesis project starting in January 2010.

There is aso a need for the LEA to be able to determine which escrow agents
need to be contacted to learn a session key (or in the case of multiple escrow agents
with only part of the key — the set of escrow agents that need to be contacted). This
will aso be part of the new thesis project mentioned above.

In the current implementation the signed hash value are sent via the RTCP path
as soon as they are produced, by sending a UDP packet containing the signed hash
and a sequence number. The analysis presented in the previous chapter suggests
delaying sending the signed hash so that it can be piggy-backed inside the RTCP
sender Report (SR)/receiver Report (RR). This could reduce the number of packets
that need to be sent hence avoiding some unnecessary network overhead. However,
this remains to be implemented. Unfortunately, SRTCP is not currently implemented
in the Minisip code, thus as part of the future work SRTCP should be implemented
along with the possibility to send the signed hash values inside the SRTCP reports.

The user agent uses a SSL/TL S tunnel to escrow the session master key with the
escrow agent. A theoretical analysis has been performed to examine if the tunnel
should be kept open for subsequent call(s) or if each successful call should open a
new tunnel and after escrowing the key the tunnel would be closed. This needs to be
examined in practice and if found feasible, then some means of knowing how long the
tunnel should be kept open for a given calling pattern should be determined.

The escrow system should be evaluated to measure the time and communication
required to authenticate the registered user to the TTP and to deposit a key, as this
may set an upper rate limit on the rate at which keys can be stored at the TTP.

We have not answered the question: |Is there a problem of too frequent signing,
leading to a leaking of bits of the sender’s private key? Hence this question also
remains for future work.

75

Refer ences

[1]

[2]

[3]

[4]

[3]

[6]

[7]

[8]

[9]

[10]

[11]

Romanidis Evripidis, “Lawful Interception and Countermeasures:. In the era of
Internet Telephony”, Masters thesis, Royal Ingtitute of Technology (KTH),
School of Information and Communication Technology, COS/CCS 2008-20,
September 2008, http://web.it.kth.se/~maguire/ DEGREE-PROJECT -
REPORTS/080922-Romanidis _Evripidis-with-cover.pdf

F. Baker, B. Foster, and C. Sharp, “Cisco architecture for lawful intercept in
IP networks’, Internet Engineering Task Force, Network Working Group,
Request for Comments 3924, October 2004.
http://www.ietf.org/rfc/rfc3924.txt

J. Rosenberg et a., “SIP. Session Initiation Protocol”, IETF, Network
Working Group, RFC 3261, June 2002, http://www.ietf.org/rfc/rfc3261.txt,
Last accessed on 07-09-20009.

Muhammad Sarwar Jahan Morshed , “VolP Lawful Intercept:Good Cop/Bad
Cop”, Masters thesis, Roya Institute of Technology (KTH), School of
Information and Communication Technology, work in progress.

L. Mitrou, Communications Data Retention: A Pandoras Box for Rights and
Liberties?, Chapter 20 in Digital Privacy: Theory, Technologies, and
Practices, edited by Alessandro Acquisti, Stefanos Gritzalis, Costos
Lambrinoudakis, Sabrina di Vimercati, Auerbach Publications;, 1 edition,
December 22, 2007, pages 419-434. ISBN-10: 1420052179 and ISBN-13:
978-1420052176

“White Paper — Lawful Intercept Overview”, Newport Networks,
http://www.newport-networks.com/cust-docs/87-L awful-intercept.pdf , last
accessed 17/06/2009

Sveriges riksdag (Swedish Parlament), En anpassad
forsvarsunderréttel severksamhet, Proposition 2006/07:63, Motionstid slutar:
2007-03-27,

http://www.riksdagen.se/webbnav/?nid=3120& doktyp=proposition& bet=2006
/07:63

(Sveriges) FoOrsvarsdepartementet (Swedish Department of Defense),
Uppfdljning av lagen om signalspaning | forsvarsunderréttel severksamhet,
Directive 2009:10 2009-02-12.
http://www.riksdagen.se/webbnav/index.aspx?nid=3260& dok _id=DIR2009:1
0

United States Department of Justice, Federal Bureau of Investigation and Drug
Enforcement Administration, Joint Petition [to US FCC] for Rulemaking to
Resolve Various Outstanding Issues Concerning the Implementation of the
Communications Assistance for Law Enforcement Act, 10 March, 2004
http://www.steptoe.com/publications/FBI_Petition for Rulemaking_on_CAL
EA.pdf

Steven Bellovin, Matt Blaze, Ernest Brickell, Clinton Brooks, Vinton Cerf,
Whitfield Diffie, Susan Landau, Jon Peterson, and John Treichler, “Security
Implications of Applying the Communications Assistance to Law
Enforcement Act to Voice over IP’, June 13, 2006
http://radiata.cs.columbia.edu/~smb/papers/ CAL EAV Ol Preport. pdf

Jalal Feghhi, Jalil Feghhi, Peter Williams “Digital Certificates Applied
Internet Security” Addison Wesely Longman, Inc, 1998, 480 pages. |SBN
0-201-30980-7.

http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136/OSS1998-E1-08.pdf
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c6012940f8d0a3136/OSS1998-E1-08.pdf
http://w2.eff.org/Privacy/Key_escrow/
http://www.cdt.org/crypto/risks98/
http://www.cdt.org/crypto/risks98/
http://www.ietf.org/rfc/rfc3711.txt
http://web.it.kth.se/%7Ecarrara/licproposal.pdf
http://web.it.kth.se/%7Ecarrara/licproposal.pdf
http://www.ietf.org/rfc/rfc2631.txt%28diffie-helmann%29
http://www.ietf.org/rfc/rfc2631.txt%28diffie-helmann%29
http://www.ietf.org/rfc/rfc2631.txt%28diffie-helmann%29
http://www.ietf.org/rfc/rfc2631.txt%28diffie-helmann%29

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]
[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

References

“Public Key Infrastructure ~ Overview”, SUN Microsystems,
http://www.sun.com/blueprints/0801/publickey.pdf , last visited 18/06/2009
Charlie Kaufman, Radia Perlman, and Mike Speciner “Network Security-
Private communication in a public world”, Prentice Hall PTR, 2002, second
edition

Chen Jie, “Design Alternatives and Implementation of PKI Functionality for
VoIP’, Masters thesis, Royal Institute of Technology (KTH), School of
Information and Communication Technology, 2006,
http://minisip.org/publications/Thesis Jie jun2006.pdf

Theodor W. Schlickmann, Ensuring trust and security in electronic
communication, Eurolntel '98 Proceedings, First Annual Conference &
Exhibit,Brussels,Belgium, 23-26 March 1998, 1998-XE-08..
http://www.oss.net/dynamaster/file_archive/040319/e12138381ec03c1c60129
40f8d0a3136/0SS1998-E1-08.pdf, Last accessed November 14, 2009.

D.E. Denning and D.K. Branstad, A taxonomy for key escrow encryption
systems. Communications of the ACM 39 No. 3 (March 1996) 34-40.
“Libcurl-the multiprotocol file transfer library|” http://curl.haxx.sef/libcurl/
Last accessed September 09, 2009.

“Key Escrow- Wikipedia, the free encyclopaedia’
http://en.wikipedia.org/wiki/Key escrow, last visited 19/06/2009

"The Clipper Chip" http://epic.org/crypto/clipper/ last visited 12/06/09
“Clipper chip”, Wikipedia

http://en.wikipedia.org/wiki/Clipper_chip#cite note-3, last visited 12/06/2009
Barbara Simons, Regarding S.1726, the "Promotion of Commerce On-Linein
the Digital Era (Pro-CODE) Act", Testimony before the Subcommittee on
Science, Technology and Space Senate Commerce, Science, and
Transporation Committee of the U.S. Senate, 26 June 1996
http://usacm.acm.org/usacm/crypto/simons senate testimony.html

Electronic Frontier Foundation, "Key Escrow, Key Recovery, Trusted Third
Parties & Govt. Access to Keys', web page, last accessed 4 Aug 2009,
http://w2.eff.org/Privacy/Key escrow/

"The Risks of “Key Recovery,” "Key Escrow,” And “Trusted Third-Party
Encryption””, A report by and ad Hoc Group of Cryptographers and computer
scientists, http://www.cdt.org/crypto/risks98/ , last visited 15/07/2009

Eric Verheul, Bert-Jaap Koops, and Henk van Tilborg, “Binding cryptography
— A fraud-detectible alternative to Key-Escrow proposals’, Computer Law &
Security Report, Volume 13, Issue 1, January-February 1997, Pages 3-14.
doi:10.1016/S0267-3649(97)81186-7

M. Baugher, D. McGrew, M. Naslund, E. Carrara, and K. Norrman, “The
Secure Real-time Transport Protocol (SRTP)”, Internet Engineering Task
Force (IETF), Network Working Group, Request for Comments: 3711, March
2004. http://www.ietf.org/rfc/rfc3711.txt

Elisabetta Carrara, “Security for IP Multimedia Applications over
Heterogeneous Networks’, Licentiate thesis, Roya Institute of Technology
(KTH), Stockholm, Sweden, August 31 2004,
http://web.it.kth.se/~carrara/licproposal .pdf

Israel Abad Caballero, Secure Mobile Voice over IP, Masters thesis, Royal
Institute of Technology (KTH), School of Information Technology and
Microelectronics, June 2003, http://web.it.kth.se/~maguire/ DEGREE-
PROJECT-REPORTS/030626-1srael Abad Caballero-final-report.pdf

77

http://www.minisip.org/
http://arxiv.org/abs/cs.CR/0606068
http://arxiv.org/abs/cs.CR/0606068
http://arxiv.org/abs/cs.CR/0606068
http://andreas.schmidt.novalyst.de/docs/POSTER_Non-repudiation%20of%20Voice-over-IP%20conversations.pdf
http://andreas.schmidt.novalyst.de/docs/POSTER_Non-repudiation%20of%20Voice-over-IP%20conversations.pdf
http://hdl.handle.net/10057/1950
http://www.openssl.org/
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/090915-XiaoWu-with-cover.pdf
https://webmail.kth.se/owa/redir.aspx?C=fa22f48ae92e432686f17582c568f8b0&URL=http%3a%2f%2fwww.boost.org%2fdoc%2flibs%2f1%255F38%255F0%2fdoc%2fhtml%2fdate%255Ftime%2fposix%255Ftime.html

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]
[39]

[40]

[41]

[42]

References

E. Rescorla, “Diffie-Hellman Key Agreement Method”, RFC 2631, Network
Working Group, http://www.ietf.org/rfc/rfc2631.txt(diffie-helmann). Last
accessed on 23-09-2009.

MiniSIP homepage. "http://www.minisip.org", last visited 12/07/2009

Johan Bilien, Key Agreement for Secure Voice over IP, Masters thesis, Royal
Institute of Technology (KTH), School of Information Technology and
Microelectronics, IMIT/LCN 2003-14, December 2003
http://web.it.kth.se/~maguire/ DEGREE-PROJECT-REPORT $/031215-Johan-
Bilien-report-final -with-cover.pdf

Erik Eliasson, Secure Internet Telephony: Design, Implementation, and
Performance Measurement, Licentiate thesis, Roya Ingtitute of Technology
(KTH), School of Information and Communication Technology, June 2006.
Christian Hett, Nicola Kuntze, and Andreas U. Schmidt, "Security and
Non-repudiation for Voice over IP Conversation ", ISSA 2006 From Insight to
Foresight Conference, Sandton, South Africa, 5th-7th July 2006,
http://arxiv.org/abs/cs.CR/0606068 , last visited 12/07/09

Christian Hett, Nicolai Kuntze, and Andreas U. Schmidt, “Non-repudiation of
Voice-over-IP conversations with chained digital signatures’, Poster,
Fraunhofer Institute for Secure Information Technology (SIT), 30 June 2006,
8 panels http://andreas.schmidt.novalyst.de/docs/POSTER_Non-
repudiation%200f%20V oi ce-over-1P%20conversations.pdf

Stephen D. Guhl, “An architecture for obtaining Vol P session encryption keys
in a CALEA compliant network”, Doctora dissertation, Wichita State
University, College of Engineering, Dept. of Electrical and Computer
Engineering, May-2008. http://hdl.handle.net/10057/1950

Dimitris Zisiadis, Spyros Kopsidasa, and Leandros Tassiulasa. “VIPSec
defined”, Computer Networks, Volume 52, Issue 13, 17 September 2008,
Pages 2518-2528. doi:10.1016/j.comnet.2008.04.020

J. Arkko, E. Carrara, F. Lindholm, M. Naslund, and K. Norrman, “MIKEY:
Multimedia Internet KEYing ”, RFC 3830, IETF, Network Working Group,
August 2004, http://www.fags.org/rfcs/rfc3830.html.

M. Bellare and R. Canetti, and H. Krawczyk, “Keying hash functions for
message authentication”, Lecture Notes in Computer Science, Springer-
Verlag, pages 1-15, 1996

Ralf S. Engelschall. OpenSSL Project, 2002. http://www.openssl.org/, last
visited September 2009.

R. L. Rivest, A. Shamir, L. M. Adleman, “Cryptographic communications
system and method”, US Patent number 4405829, September 1983

D. Richard Kuhn, Thomas J. Walsh, and Steffen Fries, *“Security
Considerations for Voice Over |IP Systems’, National Institute of Standards
and Technology, Special Publication 800-58, January 2005 .
http://www.commserv.ucsb.edu/reference/background/\VV OIP_security conside
rations.pdf

Xiao Wu, SIP on an Overlay Network, Masters thesis, Royal Institute of
Technology (KTH), School of Information and Communication Technology,
TRITA-ICT-EX-2009:105, September 2009
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORT S/090915-
XiaoWu-with-cover.pdf

Posix time, Boost c++ library,

http://www.boost.org/doc/libs/ 1%5F38%5F0/doc/html/date%e5Ftime/posi x %5
Ftime.html, last visited November 20009.

78

Appendices

A. Script to enable Apache2 web server
with SSL capability

#!/bin/bash

#

0OS: openSuSE 10.3 (may apply to 10.2, but not tested)

#

This script will build the SSL server keys, csr and crt, install
them, and copy vhosts-ssl.conf

to the appropriate directory in /etc/apache2 to provide basic
https:// functionality on

opensuse 10.3

#

General Functions and Colors

#

green='\e[0;32m"

red='\e[0;31m"'

lightred='\e[1l;31m'

lightblue='\e[1;34m"'

lightgray='\e[0;37m"'

nc='\e[Om'

check_root () {

ROOT_UID=0
E_NOTROOT=67

if ["SUID" -ne "S$ROOT _UID"]; then

echo -e "\nS${lightblue}You must be ${lightred}root${lightblue} to run
this script.\nUser: ${lightgray}S$SUSERS$S{lightblue}, UID:
${lightgray}sUIDs${lightblue} can't!${ncl}\n"

exit SE_NOTROOT

return SE_NOTROOT

else

return SROOT_UID

fi

}

#

#check for root

#

check_root

#

Intro Line

#

echo -e "\n\tThis will create apache2 SSL server.key, .csr and .crt
and install them for basic\n https:// functionality on openSuSE 10.3.
It will aslo set the apache2 SSL sysconfig flag. \nIn your key, your
common name CN must be a FQDN. You must edit vhost-ssl.conf when
done.\n"

read -p " Continue (y/n)? " key

if [Skey == "y" 1 || [$key == "Y"]; then
echo -e "${green}\n\tLet's begin!${nc}\n"
else

echo -e "\n\t${lightgraylkey = S$key${lightblue} pressed, Apache2 SSL
Config - ${red}Canceleds${nc}\n"

Appendices

exit 1

fi

echo -e "${nc}"

#

Set SSL Flag

#

if a2enflag SSL; then

echo -e "\n\t${lightblue}Server SSL Flag Successfully Set\n${nc}"
else

echo -e "\n\t${lightblue}Server SSL Flag S${red}NOT
${lightblue}Set\nEdit /etc/sysconfig/apache2 manually\n${nc}"

fi

#

Create Temp Directory

#

echo -en "\n\t${lightblue}Creating Directory for New SSL KeySet"

if mkdir -p new_sslkeyset && cd new_sslkeyset; then
echo -e " - ${green}OK${nc}\n"

else

echo -e " - ${red}FAILED. Exiting...${nc}\n"

exit 1

fi

#

Generate Private Server Key

#

echo -e "\n\t${lightblue}Generating Private Server Key\n${nc}"
openssl genrsa -des3 -out server.key 1024

#
Generate Certificate Signing Request (CSR)
#

echo -e "\n\t${lightblue}Generating Certificate Signing Request
(CSR)\n${nc}"
openssl req -new -key server.key -out server.csr

#

Remove Passphrase from Key

#

echo -e "\n\t${lightblue}Removing Passphrase From Key To Eliminate PW
Request On Server Start\nS${nc}"

cp server.key server.key.protected

openssl rsa -in server.key.protected -out server.key

#
Generating a Self-Signed Certificate
#

echo -e "\n\t${lightblue}Generating Self-Signed Certificate\nS${nc}"
openssl x509 -req -days 3650 -in server.csr -signkey server.key -out
server.crt

#

Installing the Private Key and Certificates
#

echo -e "\n\t${lightblue}Installing server.crt, server.key and
server.csr in /etc/apache2/<dir>${ncl}\n"

if cp server.crt /etc/apachel2/ssl.crt && cp server.key

80

Appendices

/etc/apache2/ssl.key && cp server.csr /etc/apache2/ssl.csr; then
echo -e "\n\t${lightblue}Key, CSR and Certificate install
S{green}Succeededs{nc}\n"

else

echo -e "\n\t${lightblue}Key, CSR and Certificate install
S{red}Failed${nc}\n"

fi

#

Config Reminder

#

echo -e "${lightblue}\n\tDon't forget to create
/etc/apache2/vhosts.d/vhost-ssl.conf by copying
\n/etc/apache2/vhosts.d/vhost-ssl.template to
/etc/apache2/vhosts.d/vhost-ssl.conf and editing as \nnecessary. You
can check this script for the comments that contain a working example
of a \nvhost-ssl.conf${green}\n"

read -p " Would you like to copy /etc/apache2/vhosts.d/vhost-
ssl.template to vhost-ssl.conf now (y/n)? " key

if [$key == "y" 1 || [$key == "Y" 1; then
cp /etc/apache2/vhosts.d/vhost-ssl.template
/etc/apache2/vhosts.d/vhost-ssl.conf

fi

echo -e "\n\t${green}All Done! ${lightblue}Remember to edit
S{red}vhost-ssl.conf ${lightblue}as required and restart

apache2\n\ns${nc}"

read -p " Would you like to see the example vhost-ssl.conf? " key
if [$key == "y" 1 || [$key == "Y" 1; then

echo '

#

Virtual Host Configuration (/etc/apache2/vhosts.d/vhost-ssl.conf)
#

<IfDefine SSL>

<IfDefine !NOSSL>

<VirtualHost _default_:443>

DocumentRoot "/srv/www/htdocs"

fix -> #ServerName www.yourhost.com:443

-> #ServerAdmin youremail@XXXXXXXXXXXX

ErrorLog /var/log/apache2/error_log

TransferlLog /var/log/apache2/access_log

SSLEngine on

SSLCipherSuite

ALL:!ADH: !|EXPORT56 : RC4+RSA: +HIGH: +MEDIUM: +LOW: +SSLv2 : +EXP: +eNULL
SSLCertificateFile /etc/apache2/ssl.crt/server.crt
SSLCertificateKeyFile /etc/apache2/ssl.key/server.key

SSLOptions +FakeBasicAuth +ExportCertData +StrictRequire

<Files ~ "\.(cgi|shtml|phtml|php3?)$">
SSLOptions +StdEnvVars
</Files>

<Directory "/srv/www/cgi-bin">
SSLOptions +StdEnvVars
</Directory>

SetEnvIf User-Agent ".*MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0
CustomLog /var/log/apache2/ssl_request_log ssl_combined
</VirtualHost>

</IfDefine>

</IfDefine>"

fi

exit 0

81

Appendices

B. HMAC_SHA hashing timefor 50 test

Funs
HMAC_SHA hashing time in Microseconds
Run Block Size
01 08 16 32 64 128 | 256 512 1024

1 13 34 37 49 66 92 171 342 644
2 8 15 35 44 62 89 182 324 639
3 8 14 33 44 61| 103 181 324 639
4 12 14 35 45 62| 104 168 324 648
5 9 15 20 46 62| 109 168 325 638
6 8 13 34 44 61| 103 168 325 639
7 11 15 33 43 61 89 168 324 639
8 9 14 19 45 61 89 169 324 639
9 9 15 20 43 62 89 168 324 639
10 11 15 32 47 62 90 169 329 649
11 9 15 19 43 62 90 169 324 648
12 8 15 20 45 50 89 168 324 654
13 11 15 21 45 50 89 167 324 648
14 8 14 34 45 50 89 167 324 675
15 8 14 33 49 50 90 167 324 653
16 9 15 33 43 50 89 168 324 648
17 12 13 21 43 49 90 167 324 648
18 8 14 20 43 49 89 171 324 648
19 8 13 21 44 50 90 167 333 648
20 10 13 33 48 50 90 167 324 649
21 8 14 20 30 49 89 174 324 651
22 8 13 33 29 50 89 167 324 650
23 9 14 20 30 50 90 167 323 638
24 8 15 20 30 49 89 167 323 655
25 8 14 20 29 50 89 167 324 648
26 10 13 19 30 51 90 168 323 654
27 8 15 19 29 51 89 168 324 648
28 9 14 37 30 50 89 167 323 648
29 9 16 33 29 50 89 168 324 647
30 8 14 33 30 50 90 179 328 649
31 9 15 35 30 60 90 168 324 648
32 9 15 31 30 50 89 168 324 648
33 9 15 20 30 49 89 167 325 649
34 9 15 20 30 50 89 168 325 649
35 9 15 19 30 50 89 168 325 655
36 10 15 20 30 50 89 167 324 649
37 8 14 33 30 51 90 167 325 668
38 9 15 20 29 50 91 167 325 648
39 8 15 21 29 51 89 167 326 648

82

Appendices

40 8 15 21 31 50 90 167 324 648
41 8 16 21 30 50 90 167 334 648
42 9 15 21 30 49 95 167 325 648
43 8 26 21 30 50 89 167 326 648
44 9 28 20 30 50 89 167 325 649
45 9 26 21 29 50 89 168 324 648
46 8 29 20 30 49 90 167 324 653
47 9 33 20 29 50 89 167 324 648
48 8 28 20 30 50 89 169 324 668
49 9 25 22 30 50 89 167 324 640
50 8 28 21 30 50 89 167 332 639

83

mailto:hossen@kth.se

Appendices

C. RSA signing timefor 50 test runs

Run

Actual Signing time in Milliseconds

Block Size
01 08 16 32 64 128 256 512 1024
1 3.45| 3.468 | 3.495| 3.426 | 3.486 | 3.475| 3.473 | 3.475| 3.454
> 3.509 | 3.469 | 3.511 | 3.509 | 3.477 | 3.477 | 3.426 | 3.462 | 3.535
3 3.38 | 3.472 | 3.477 | 3.504 | 3.477 | 3.458 | 3.479 | 3.471 | 3.534
4 3.476 | 3.468 | 3.547 | 3.512 | 3.515 | 3.442 | 3.502 | 3.487 | 3.472
5 3.407 | 3.469 | 3.456 | 3.504 | 3.474 | 3.492 | 3.502 | 3.472 | 3.468
6 3.461 | 3.561 | 3.499 | 3.417 | 3.449 | 3.446 | 3.493 | 3.492 | 3.448
7 3.506 | 3.433 3.46 | 3.468 | 3.498 | 3.446 | 3.494 | 3.486 | 3.453
8 3.405 3.46 | 3.455| 3.451 | 3.484 | 3.443 | 3.483 | 3.544 | 3.458
9 3.398 | 3.444 | 3.481 | 3.507 | 3.464 | 3.438 | 3.488 | 3.507 | 3.482
10 3.478 | 3.478 | 3.434 | 3.521 | 3.461 | 3.436 3.5| 3.495| 3.483
11 3.426 | 3.483 | 3.498 | 3.467 | 3.476 | 3.432 | 3.467 | 3.493 | 3.465
12 3.398 | 3.479 | 3.456 | 3.494 | 3.469 | 3.442 | 3.461 | 3.507 | 3.449
13 3.411 | 3.461 | 3.458 | 3.548 | 3.463 | 3.459 | 3.486 | 3.453 | 3.466
14 3.39 | 3.469 | 3.505 3.48 3.48 | 3.463 | 3.487 | 3.467 | 3.452
15 3.45| 3.454 | 3.444 | 3.493 | 3.459 3.44 | 3.473 | 3.465| 3.548
16 3.404 3.42 | 3.488 | 3.493 | 3.464 | 3.425 | 3.482 | 3.474 | 3.492
17 3.449 | 3.466 | 3.471 | 3.475| 3.457 | 3.452 | 3.641 | 3.491 | 3.499
18 3.402 3.44 | 3.446 | 3.463 | 3.468 | 3.453 | 3.484 3.47 | 3.462
19 3.446 | 3.432 3.51| 3.475| 3.476 | 3.458 | 3.461 3.45| 3.459
20 3.464 | 3.468 | 3.443 | 3.473 | 3.441 | 3.449 | 3.467 3.47 | 3.488
21 3.452 3.45| 3.504 3.45| 3.472 | 3.444 | 3.463 | 3.461 | 3.473
22 3.424 | 3.466 | 3.458 | 3.482 | 3.455 | 3.463 | 3.479 | 3.474 | 3.493
23 3.428 | 3.448 | 3.518 | 3.447 | 3.473 | 3.453 | 3.747 | 3.448 3.48
24 3.383 3.44 | 3.497 | 3.449 | 3.485| 3.482 | 3.491 | 3.472 | 3.475
25 3.41 3.47 | 3.436 | 3.482 | 3.451 | 3.479 | 3.488 | 3.457 3.47
26 3.424 | 3.458 3.49 | 3.464 | 3.483 | 3.447 | 3.474 3.47 | 3.479
27 3.438 | 3.428 | 3.453 | 3.467 | 3.454 | 3.459 3.48 | 3.495| 3.551
28 3.398 | 3.433 | 3.496 | 3.487 | 3.441 | 3.439 | 3.472 | 3.464 | 3.472
o9 3.411 | 3.487 | 3.468 | 3.459 | 3.457 | 3.454 | 3.494 | 3.489 | 3.477
30 3.445 | 3.449 | 3.476 | 3.476 | 3.435 3.46 3.5| 3.462 | 3.461
31 4.243 | 4.298 | 4.351 | 4.325| 4.327 | 4.324 | 4.354 | 4.358 | 4.583
32 3.475| 3.473 3.47 | 3.464 | 3.448 | 3.485| 3.492 | 3.509 | 3.492
33 3.443 | 3.439 | 3.507 | 3.459 | 3.472 | 3.468 | 3.496 | 3.466 | 3.486
34 3.453 | 3.422 | 3.469 3.48 | 3.482 | 3.482 | 3.496 | 3.488 | 3.485
35 3.407 | 3.464 | 3.505| 3.463 | 3.493 | 3.425| 3.507 | 3.459 | 3.476
36 3.453 | 3.417 | 3.445| 3.492 | 3.492 | 3.459 | 3.491 | 3.545 3.48
37 3.376 | 3.457 3.47 | 3.461 | 3.499 | 3.466 | 3.481 | 3.474 3.47
38 3.399 | 3.458 | 3.455 | 3.476 3.48 3.46 | 3.488 | 3.499 | 3.452
39 3.406 | 3.461 | 3.462 | 3.467 3.51 | 3.466 | 3.471| 3.519 | 3.472
40 3.41 | 3.469 3.48 | 3.447 | 3.487 3.49 | 3.466 | 3.516 | 3.477

Appendices

41 3.435 3.46 | 3.451 | 3.489 3.49 | 3.478 | 3.465 | 3.486 3.484
42 3.433 | 3.433 | 3.463 | 3.485| 3.493 | 3.467 | 3.495 3.47 3.468
43 3.456 | 3.441 | 3.448 | 3.496 | 3.667 | 3.449 | 3.487 | 3.446 3.461
44 3.443 | 3.464 | 3.491 | 3.478 | 3.483 | 3.446 | 3.459 3.48 3.474
45 3.458 | 3.469 | 3.485 | 3.462 | 3.501 | 3.446 | 3.484 | 3.445 3.492
46 3.437 | 3.445| 3.451 | 3.438 | 3.528 | 3.469 | 3.473 | 3.449 3.495
47 3.407 | 3.472 3.45 | 3.475| 3.498 | 3.465 | 3.477 | 3.456 3.501
48 3.423 | 3.454 | 3.478 | 3.454 | 3.485 | 3.493 | 3.458 | 3.508 3.471
49 3.436 | 3.477 | 3.477 | 3.452 | 3.451 | 3.459 | 3.483 | 3.518 3.486
50 3.414 3.48 3.472 | 3.468 | 3.497 3.46 (3.483 | 3.471 3.513

85

Appendices

D.RSA signing time for block size closer to
128 to find local minima

Actual Signing timein Milliseconds
Run Block Size
120 124 127 128 129 130 131 132 136

1 3.45| 3.44 | 3.443| 3.463 | 3.456 | 3.461 | 3.453 | 3.47 | 3.458
2 3.453 | 3.481 | 3.485| 3.493 | 3.449 | 3.516 | 3.444 | 3.481 | 3.494
3 3.463 | 3.465| 3.506 | 3.453 | 3.451 | 3.475| 3.463 | 3.527 | 3.465
4 3.445| 3.495| 3.483 | 3.443 | 3.499 | 3.493 | 3.517 | 3.485| 3.463
5 3.464 | 3.473 | 3.518 | 3.473 | 3.45| 3.486 | 3.461 | 3.483 | 3.516
6 3.478 | 3.462 | 3.524 | 3.442 | 3.459 | 3.471 | 3.491 | 3.492 | 3.472
7 3.462 | 3.516 | 3.482 | 3.437 | 3.466 | 3.468 | 3.459 | 3.483 | 3.472
8 3.487 | 3.494 | 3.491| 3.451 | 3.484 | 3.455| 3.459 | 3.53| 3.482
9 3.492 | 3.484 | 3.492| 3.447 | 3.464 | 3.452 | 3.448 | 3.484 | 3.473
10 3.485 | 3.499 | 3.485| 3.431 | 3.459 | 3.485| 3.458 | 3.521 3.49
11 3.509 | 3.487 | 3.501 | 3.445| 3.464 | 3.451 | 3.478 | 3.49| 3.493
12 3.528 | 3.46 | 3.479| 3.439| 3.467 | 3.425| 3.49| 3.478 3.63
13 3.429 | 3.509 3.5| 3.426 | 3.509 | 3.44 | 3.455| 3.487 | 3.444
14 3.503 | 3.465| 3.477 | 3.448 | 3.469 | 3.451 | 3.468 | 3.487 | 3.459
15 3.521| 3.46 | 3.475| 3.452 | 3.463 | 3.482 | 3.467 | 3.489 | 3.491
16 3.529 | 3.484 | 3.468 | 3.449 | 3.47| 3.478 | 3.465| 3.48 | 3.455
17 3.451 | 3.484 | 3.467 | 3.476 | 3.466 | 3.463 | 3.462 | 3.488 3.46
18 3.463 | 3.483 | 3.476 | 3.445| 3.473 | 3.493 | 3.458 | 3.472 | 3.461
19 3.505 | 3.544 | 3.478 | 3.434 | 3.461 | 3.481 | 3.465| 3.486 | 3.448
20 3.443 | 3.473 | 3.477| 3.456 | 3.459 | 3.478 | 3.458 | 3.495| 3.491
21 3.487 | 3.46 | 3.485| 3.428 | 3.471| 3.479 | 3.462 | 3.489 | 3.473
22 3.471 | 3.527 3.47 | 3.494 | 3.466 | 3.489 | 3.477 | 3.48| 3.467
23 3.464 | 3.476 | 3.509 | 3.454 | 3.46 | 3.479 | 3.456 | 3.488 | 3.496
24 3.476 | 3.445| 3.504 | 3.435| 3.477 | 3.483 | 3.449 | 3.482 3.46
25 3.497 3.5 3.49 | 3.48 | 3.472| 3.479 | 3.874| 3.484 | 3.471
26 3.462 | 3.475| 3.492 | 3.446 | 3.461 | 3.473 | 3.479 | 3.512 | 3.478
27 3.514 | 3.46 | 3.498 | 3.435| 3.489 | 3.494 | 3.475| 3.498 | 3.433
28 3.502 | 3.498 | 3.496 | 3.429 | 3.462 | 3.478 | 3.463 | 3.485| 3.472
29 3.481 | 3.466 | 3.493 | 3.443 | 3.465| 3.42| 3.445| 3.493 | 3.467
30 4.346 | 3.455 3.48 | 3.448 | 3.46 | 3.486 | 3.441 | 3.489 3.47
31 3.482 | 4.342 | 4.344| 4.378 | 4.32| 4.334| 4.35| 4.471| 4.345
32 3.44 | 3.476 | 3.504 | 3.449 | 3.459 | 3.495| 3.456 | 3.485| 3.453
33 3.5| 3.44| 3.491 | 3.455| 3.457 | 3.475| 3.483 | 3.495| 3.499
34 3.451 | 3.482 | 3.508 | 3.446 | 3.462 | 3.479 | 3.469 | 3.471 | 3.434
35 3.484 | 3.49| 3.489| 3.45| 3.644 | 3.506 | 3.457 | 3.49| 3.458
36 3.454 | 3.472 | 3.502| 3.47| 3.459| 3.501 | 3.458 | 3.455| 3.476
37 3.468 | 3.457 | 3.486 | 3.446 | 3.453 | 3.491 | 3.454 | 3.489 | 3.462
38 3.476 | 3.487 | 3.492 | 3.452 | 3.468 | 3.478 | 3.461 | 3.478 | 3.475
39 3.462 | 3.508 3.49 | 3.428 | 3.432 | 3.483 | 3.457 | 3.497 3.46

86

Appendices

40 3.474 | 3.451 3.477 | 3.449 | 3.439 | 3.484 | 3.461 | 3.469 3.53
41 3.482 | 3.488 3.435 | 3.454 | 3.414 | 3.481 3.46 | 3.496 3.511
42 3.478 | 3.478 3.469 | 3.449 | 3.435| 3.503 | 3.467 | 3.469 3.524
43 3.469 | 3.452 3.461 | 3.436 | 3.442 | 3.482 | 3.457 | 3.495 3.507
44 3.454 | 3.487 3.471 | 3.448 | 3.448 | 3.482 | 3.463 | 3.469 3.501
45 3.455 | 3.468 3.459 | 3.438 | 3.451 | 3.479 | 3.458 | 3.492 3.499
46 3.52 | 3.472 3.488 3.44 | 3.442 | 3.491 | 3.445| 3.468 3.518
47 3.453 | 3.482 3.491 | 3.432 | 3.447 | 3.454 | 3.457 3.48 3.526
48 3.484 | 3.474 3.493 | 3.431 | 3.435 | 3.456 | 3.473 | 3.474 3.483
49 3.465 | 3.451 3.507 | 3.428 | 3.448 | 3.457 | 3.458 | 3.488 3.456
50 3.461 | 3.481 3.472 | 3.447 3.44 | 3.448 | 3.444 | 3.466 3.466

87

Appendices

E. Total Delay (Signing +hashing + RTCP
sending) time for 50 test runs

Total time(Signing + Hashing + Sending) in Milliseconds

RUR Block Size
01 08 16 32 64 128 256 512 1024

1 4.466 | 3.653 | 3.633 | 3.606| 3.666 | 3.763 | 3.743 | 3.919 | 4.299
2 3.534 | 3.641 | 3.644 | 3.611| 3.676 | 3.676 | 3.758 | 3.918 | 4.293
3 3.506 | 3.612 | 3.616 | 3.631 | 3.659 | 3.692 | 3.784 | 3.936 | 4.246
4 3.508 3.69 | 3.683| 3.615| 3.769 | 3.773 | 3.763 | 3.986 | 4.276
5 3.486 | 3.605| 3.556 | 3.613 | 3.702 | 3.741 | 3.783 | 3.924 | 4.272
6 3.592 | 3.616 | 3.575| 3.618 | 3.669 | 3.709 | 3.754 | 3.926 | 4.275
7 3.523 | 3.606 | 3.616 3.61 3.7 3.69 | 3.749 | 3.908 | 4.259
8 3.521 | 3.618 | 3.598 | 3.639 | 3.679 | 3.707 | 3.789 | 3.938 | 4.281
9 3.574 | 3.724 | 3.591 | 3.687 | 3.645| 3.731| 3.793 | 3.919 4.25
10 3.462 | 3.603 | 3.597 | 3.587 | 3.752| 3.726 | 3.772| 3.938 | 4.268
11 3.498 | 3.636 | 3.586 | 3.611| 3.698 | 3.699 | 3.754 | 3.929 | 4.256
12 3.531| 3.621 | 3.626 3.62 | 3.651 3.71| 3.783 | 3.935| 4.276
13 3.478 3.62 | 3.599 | 3.637 | 3.673 | 3.737 | 3.784 | 3.908 | 4.268
14 3.459 3.68| 3.595| 3.624 | 3.665| 3.712 | 3.752 | 3.921 | 4.281
15 3.474 3.63| 3.591 | 3.626 | 3.686| 3.704 | 3.756 3.94 | 4.265
16 3.564 | 3.595| 3.619 | 3.612 | 3.645 3.72 | 3.787 | 3.937 | 4.331
17 3.479 | 3.652 | 3.598 | 3.604 | 3.703| 3.717 | 3.778 | 3.912 | 4.259
18 3.503 | 3.614 | 3.604 | 3.609 | 3.662 | 3.714 | 3.778 | 3.935| 4.269
19 3.542 | 3.657 | 3.579 | 3.602| 3.696 | 3.741 | 3.752 | 3.936 | 4.269
20 3.471| 3.627 | 3.618 | 3.633 | 3.748 | 3.685| 3.805| 3.939 4.26
21 3.512 | 3.605| 3.556 | 3.628 | 3.645| 3.679 | 3.773 | 3.923 | 4.264
22 3.521 | 3.613 | 3.627 | 3.642 | 3.636 | 3.698 | 3.739 | 3.914 | 4.244
23 3.478 | 3.629 | 3.608 | 3.628 3.67 | 3.694| 3.772| 3.897 | 4.259
24 3.517 | 3.693 | 3.597 | 3.571 | 3.644 | 3.688 | 3.762 | 3.916 | 4.234
25 3.568 3.61| 3.566| 3.607 | 3.693 | 3.697 | 3.744 | 3.923 | 4.254
26 3.526 | 3.599 | 3.589 | 3.611| 3.678 | 3.711| 3.751| 3.917 | 4.253
27 3.483 3.63 | 3.607 3.53| 3.649 | 3.698 3.75| 3.921 | 4.232
28 3.555| 3.591 | 3.604 | 3.625| 3.652 | 3.689 | 3.788 | 3.916 4.26
29 3.491| 3.713 | 3.611| 3.601| 3.666 | 3.694 | 3.777 | 3.918 | 4.246
30 3.51| 3.631| 3.623 | 3.619 | 3.649 | 3.707 3.77 | 3.935| 4.214
31 4.381 | 4.471 | 4.447 | 4.462 4.52 | 4.574 4.64 | 4.759 | 5.074
32 3.552 | 3.682 | 3.766 | 3.572 3.69 | 3.705| 3.782| 3.941| 4.229
33 3.56 | 3.582 3.58| 3.616 | 3.652 | 3.795| 3.779 | 3.925 4.24
34 3.476 | 3.625| 3.606 | 3.601 | 3.653 | 3.679 | 3.751| 3.932 | 4.245
35 3.561 | 3.638 3.58 | 3.588 | 3.673 | 3.673 | 3.746 | 3.951 | 4.257
36 3.484 | 3.588 | 3.594 3.61| 3.644 | 3.711| 3.781 | 3.935| 4.235
37 3.525 | 3.623 | 3.597 | 3.624 | 3.679 | 3.709 3.78 | 3.934 | 4.222
38 3.533 | 3.593 | 3.593 3.63 3.67 | 3.713 | 3.755| 3.929 | 4.241
39 3.481 | 3.678 | 3.562 | 3.635| 3.654 3.7 | 3.763| 3.891 | 4.279

88

Appendices

40 3.514 | 3.602 | 3.548 3.64 3.69| 3.671| 3.802| 3.893 4.255
41 3.565| 3.588 | 3.557 | 3.603 | 3.673 | 3.694 | 3.832 | 3.927 4.251
42 3.483 | 3.686 | 3.596 | 3.604 | 3.638 | 3.698 | 3.804 | 3.898 4.285
43 3.491 | 3.746 | 3.601| 3.613 | 3.672 3.68 | 3.765| 3.926 4.26
44 3.534 | 3.653 | 3.609 | 3.643 3.7 | 3.684 | 3.799 | 3.891 | 4.251
45 3.505| 3.605| 3.645| 3.602 | 3.636 | 3.671 | 3.767 | 3.908 4.282
46 3.502 | 3.642 | 3.614 | 3.646 | 3.653 3.66 | 3.787 | 3.903 4.271
47 3.512 3.6 | 3.678 | 3.631| 3.657 | 3.684 | 3.786 | 3.922 4.275
48 3.541 | 3.641 3.58| 3.612| 3.671 | 3.682 | 3.779 | 3.954 4.264
49 3.557| 3.669 | 3.587 | 3.599 | 3.669 | 3.697 | 3.758 | 3.927 4.285
50 3.468 | 3.609 | 3.674 | 3.601| 3.659 | 3.713 | 3.783 | 3.975 4.24

89

Appendices

F. Detailed of the CPU used by our User
Agent

processor : 0
vendor_id : Genuinelntel
cpu family :15

model 4
model name : Intel(R) Pentium(R) D CPU 2.80GHz
stepping 7

cpu MHz 1 2793.144
cache size : 1024 KB

physica id :0
siblings 12
coreid :0
Cpu cores 2
fdiv_bug ' no
hit_bug ' Nno
fOOf_bug :no
coma bug :no
fpu :yes
fpu_exception : yes
cpuidlevel :5
wp :yes
flags : fpu vme de pse tsc msr pae mce ¢x8 apic sep mtrr pge mca cmov pat

pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx Im constant_tsc pni monitor
ds_cpl cid cx16 xtpr lahf_Im

bogomips : 5591.15

clflushsize :64

processor 11
vendor_id : Genuinelntel
cpu family :15

model 4
model name : Intel(R) Pentium(R) D CPU 2.80GHz
stepping 7

cpu MHz : 2793.144
cachesize :1024 KB

physica id :0
siblings 12
coreid 1
Cpu cores 2
fdiv_bug ' no
hit_bug ' no
fOOf_ bug :no
coma bug :no
fpu :yes
fpu_exception :yes
cpuidlevel :5

90

Appendices

wp :yes

flags : fpu vme de pse tsc msr pae mce ¢x8 apic sep mtrr pge mca cmov pat
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx Im constant_tsc pni monitor
ds_cpl cid cx16 xtpr lahf_Im

bogomips :5586.14

clflushsize :64

91

Appendices

G. Schema definition of Escrow Database

-- phpMyAdmin SQL Dump

--version 3.2.0

-- http://www.phpmyadmin.net

-- Host: localhost

-- Generation Time: Dec 02, 2009 at 10:06 PM
-- Server version: 5.1.36

-- PHP Version: 5.2.11

SET SQL_MODE="NO_AUTO_VALUE_ON_ZERO";

-- Database: "“escrowdatabase’

-- Table structure for table “authentication®

CREATE TABLE IF NOT EXISTS “authentication™ (
“id int(11) NOT NULL AUTO_INCREMENT,
“user_name varchar(100) NOT NULL,
“password” varchar(100) NOT NULL,
PRIMARY KEY (id),
UNIQUE KEY "user_name’ (‘user_name)
) ENGINE=MyYISAM DEFAULT CHARSET=latinl AUTO_INCREMENT=3;

-- Table structure for table "sipmasterkey”

CREATE TABLE IF NOT EXISTS “sipmasterkey” (
id” int(11) NOT NULL AUTO_INCREMENT,
“userid” text NOT NULL,
"key” text NOT NULL,
‘rand” text NOT NULL,
‘csbID” text NOT NULL,
“signedhash™ text NOT NULL,
“date’ datetime DEFAULT NULL,
PRIMARY KEY (id")
) ENGINE=MyYISAM DEFAULT CHARSET=latinl AUTO INCREMENT=621;

92

Appendices

H. SER configuration file

debug=3
fork=yes
log_stderror=yes

listen=130.237.209.238 # put your server |P address here
listen=192.168.2.238

port=5060

children=4

dns=no
rev_dns=no

loadmodule "/usr/local/lib/ser/modul es/mysgl.so"
loadmodule "/usr/local/lib/ser/modul es/sl .s0"
loadmodul e "/usr/local/lib/ser/modul es/'tm.so"
loadmodule "/usr/local/lib/ser/modul es/rr.so"
loadmodule "/usr/local/lib/ser/modul esy'maxfwd.so"
loadmodule "/usr/local/lib/ser/modul es/usrloc.so"
loadmodule "/usr/local/lib/ser/modul es/registrar.so”
loadmodule "/usr/local/lib/ser/modules/uri_db.so"
loadmodule "/usr/local/lib/ser/modul es/auth.so"
loadmodule "/usr/local/lib/ser/modul es/auth_db.so"

#Presence related modules

loadmodule "/usr/local/lib/ser/modul es/dial og.so"
loadmodule "/usr/local/lib/ser/modul es/pa.so”
loadmodul e "/usr/local/lib/ser/modul es/presence_b2b.so"
loadmodule "/usr/local/lib/ser/modul es/xl0g.so"

- setting module-specific parameters ---------------
modparam("auth_dbluri_db|usrloc”, "db_url", "mysql://ser:heslo@l ocal host/ser")
modparam("auth_db", "calculate_hal", 1)

modparam("auth_db", "password_column”, "password")

modparam("usrloc”, "db_mode", 2)

modparam("'rr", "enable full_Ir", 1)

#presence module related params

modparam("pa’, "use_db", 1)

modparam("pa", "db_url", "mysgl://ser:hed o@l ocal host/ser")
modparam("pa’, "offline_winfo_timer", 3600)
modparam(“pa’, "offline_winfo_expiration”, 259200)

modparam("pa’, "auth”, "none™)

modparam("pa’, "winfo_auth”, "none")
modparam("pa’, "use_callbacks", 0)

modparam("pa", "accept_internal_subscriptions’, 0)
modparam("pa’, "max_subscription_expiration”, 3600)

93

Appendices

modparam("pa’, "timer_interval", 1)

modparam("presence_b2b", "on_error_retry time", 60)
modparam("presence_b2b", "wait_for_term_notify", 33)
modparam("presence_b2b", "resubscribe_delta’, 30)
modparam("presence_b2b", "min_resubscribe_time", 60)
modparam("presence_b2b", "default_expiration™, 3600)
#modparam("presence_b2b", "handle_presence_subscriptions’, 1)

#----Main routing logic--------
route {

if ("mf_process maxfwd_header("10")) {
d_send reply("483", "Too Many Hops');
break;

¥

if (msg:len > max_len) {
s_send_reply("513", "Message Overflow");

if (method!="REGISTER") {
record_route();

b

if (loose_route()) {
route(1);
break;

if (uri!=myself) {
route(1);
break;

¥

if (method=="ACK") {
route(1);
break;
} eseif (method=="INVITE") {

94

Appendices

route(3);
break;
} else if (method=="REGISTER") {
route(2);
break;
} elseif(method =="SUBSCRIBE") {
route(4);
break;
} elseif(method =="PUBLISH"){
route(5);
break;
¥

/*lookup("aliases2");*/
if (uri'=myself) {
route(1);
break;
H

if ('lookup("'location™)) {

d_send reply("404", "User Not Found");

break;
H

route(l);
}

route[1] {

if ('t_relay()) {
s_reply_error();

¥

}

route[2] {

s _send reply("100", "Trying");

[*if ('www_authorize("","subscriber")) {
www_challenge("","0");
break;

|3

if (!check to()) {

95

Appendices

s_send_reply("401", "Unauthorized");
break;
3

[*consume_credentials();*/

if ("save("location")) {
g _reply_error();

}
routef 3] {

[*if ('proxy_authorize("","subscriber")) {
proxy_challenge("","0");
break;

} dseif (!check_from()) {
d_send reply("403", "Use From=ID");
break;

pl

/* consume_credentials();

lookup("aliases2");*/
if (uri!=myself) {

route(1);
break;
};

if (Mookup("location")) {
s_send_reply("404", "User Not Found");
break;

|

route(1);
}

route[4] {

if ("t_newtran()) {

g _reply error();
break;
H

xlog("L_ERR", "PA: handling subscription: %tu from: %fu\n");
handle subscription("registrar");

96

Appendices

}

break;

route[5] {

if ('t_newtran()) {

d_reply_error();
break;
};

xlog("L_ERR", "PA: handling publish: %tu from: %fu\n");

handle_publish("registrar");
break;

97

Appendices

|. Important Apache configuration files
(Two files)

#H Global Environment #HHHHE

run under this user/group id
Include /etc/apache2/uid.conf

- how many server processes to start (server pool regulation)
- usage of KeepAlive
Include /etc/apache2/server-tuning.conf

ErrorLog: The location of the error log file.
ErrorLog /var/log/apache2/error_log

generated from APACHE_MODULES in /etc/sysconfig/apache2
Include /etc/apache2/sysconfig.d/loadmodul e.conf

|P addresses / portsto listen on
Include /etc/apache?/listen.conf

predefined logging formats
Include /etc/apache2/mod_log_config.conf

generated from global settings in /etc/sysconfig/apache2
Include /etc/apache2/sysconfig.d/global .conf

optional mod_status, mod_info
Include /etc/apache2/mod_status.conf
Include /etc/apache2/mod_info.conf

optional cookie-based user tracking
read the documentation before using it!!
Include /etc/apache2/mod_usertrack.conf

configuration of server-generated directory listings
Include /etc/apache2/mod_autoindex-defaults.conf

associate MIME types with filename extensions
TypesConfig /etc/apache2/mime.types
DefaultType text/plain

Include /etc/apache2/mod_mime-defaults.conf

set up (customizable) error responses
Include /etc/apache?2/errors.conf

Appendices

global (server-wide) SSL configuration, that is not specific to any virtual host
Include /etc/apache?/ssl-global .conf

forbid access to the entire filesystem by default
<Directory />

Options None

AllowOverride None

Order deny,allow

Deny from all
</Directory>

use .htaccess files for overriding,
AccessFileName .htaccess
and never show them
<Files~""\.ht">

Order alow,deny

Deny from all
</Files>

List of resourcesto look for when the client requests a directory
Directorylndex index.html index.html.var

#H# 'Main' server configuration
Include /etc/apache?2/default-server.conf

Include /etc/apache2/sysconfig.d/include.conf

Virtual server configuration
Include /etc/apache2/vhosts.d/* .conf

<|fDefine SSL>
<|fDefine INOSSL >

#H
SSL Virtual Host Context
H#H

<VirtuaHost _default_:443>

General setup for the virtual host
DocumentRoot "/srv/iwww/htdocs"
ServerName ccsmoto:443
ServerAdmin sakhawat23@gmail.com

99

Appendices

ErrorLog /var/log/apache2/error_log
TransferLog /var/log/apache2/access |og

SSL Engine Switch:
Enable/Disable SSL for thisvirtual host.
SSLENgine on

SSL Cipher Suite:
List the ciphersthat the client is permitted to negotiate.

SSL CipherSuiteALL:!ADH:'EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SS
Lv2:+EXP:+eNULL

Server Certificate:
SSL CertificateFile /etc/apache2/sdl.crt/server.crt

Server Private Key:
SSL CertificateK eyFile /etc/apache2/ssl.key/server.key

SSL Engine Options:
#SSL Options +FakeBasicAuth +ExportCertData +CompatEnvVars
+StrictRequire

<Files ~ "\.(cgi|shtml|phtml|php3?)$">

SSL Options +StdEnvVars
</Files>
<Directory "/srviwww/cgi-bin">

SSL Options +StdEnvVars
</Directory>

SSL Protocol Adjustments:
SetEnvif User-Agent " *MSIE.*" \
nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

Per-Server Logging:
CustomL og /var/log/apache2/ss_request_log ssl_combined

</VirtualHost>

</IfDefine>
</IfDefine>

100

TRITA-ICT-EX-2010:1

www.kth.se

	Chapter 1: Introduction
	1.1 Motivation
	1.2 Thesis overview
	1.3 Research questions

	Chapter 2: Background
	2.1 Lawful Intercept (LI)
	2.2 Public Key Infrastructure (PKI)
	2.2.1 Why is a PKI necessary?
	2.2.2 How does PKI work?

	2.3 Keyed-Hash Message Authentication Code
	2.4 Trusted Third Party (TTP) or Escrow agent
	2.5 Key escrow
	2.5.1 The Clipper Chip
	2.5.2 Why key escrow is problematic?
	2.5.2.1 Complexity
	2.5.2.2 Cost
	2.5.2.3 Security vulnerability and risks

	2.6 Secure Real Time Transport Protocol
	2.6.1 Cryptographic context and key derivation
	2.6.2 SRTP packet processing
	2.6.3 How encryption and authentication is done?

	2.7 Secure Real Time Transport Control Protocol
	2.8 Multimedia Internet KEYing (MIKEY)
	2.8.1 MIKEY Methods
	2.8.1.1 Pre-Shared Key method
	2.8.1.2 Public Key Encryption method
	2.8.1.3 DiffieHellman method

	2.9 Minisip

	Chapter 3: Related Work
	3.1 Security and non-repudiation for a Voice-over-IP conversation
	3.2 A CALEA compliant network to obtain session encryption key
	3.2.1 The LI mediation device initiating the acquisition of the private key
	3.2.2 Session border controller intermediary security negotiation

	3.3 VIPSec

	Chapter 4: Key Escrow Agent
	4.1 Escrow agent and escrow database
	4.1.1 Escrow database
	4.1.2 Implementation details

	4.2 What to escrow?
	4.3 How to escrow?
	4.3.1 Necessary modifications to the minisip code

	4.4 When and from where to escrow?
	4.4.1 Necessary modifications to the minisip code

	Chapter 5: Design and Implementation of a Solution
	5.1 Design overview
	5.2 Creating SRTP blocks
	5.2.1 Necessary modifications to the minisip code

	5.3 Hashing SRTP blocks
	5.3.1 Necessary modifications to the minisip code

	5.4 Signing the hashed blocks
	5.4.1 Necessary modifications to the minisip code

	5.5 Sending the signed hash
	5.5.1 Necessary modifications to the minisip code

	5.6 Detection of forgery by the proposed model

	Chapter 6: Performance Evaluation and Discussion
	6.1 Evaluation criteria
	6.2 Evaluation of the forgery detection model
	6.2.1 Delay introduced by the cryptographic operations
	6.2.1.1 Hashing delay
	6.2.1.2 Signing delay
	6.2.1.3 Total delay measurement

	6.2.2 Extra traffic generated by the signed hashes

	6.3 Escrowing overhead measurement
	6.4 Time between BYE and escrow
	6.5 Summary

	Chapter 7: Conclusions and Future Work
	7.1 Summary of the thesis results
	7.2 Future work

