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Abstract 
Voice over Internet Protocol (VoIP), also called IP telephony is rapidly 

becoming a familiar term and as a technology it is invading the enterprise, private 
usage, and educational and government organizations. Exploiting advanced voice 
coding & compression techniques and bandwidth sharing over packet switched 
networks, VoIP can dramatically improve bandwidth efficiency. Moreover enhanced 
security features, mobility support, and cost reduction features of VoIP are making it 
a popular choice for personal communication. Due to its rapid growth in popularity 
VoIP is rapidly becoming the next generation phone system. 

Lawful interception is a mean of monitoring private communication of users that 
are suspected of criminal activities or to be a threat to national security. However, 
government regulatory bodies and law enforcement agencies are becoming conscious 
of the difficulty of lawful interception of public communication due to the mobility 
support and advanced security features implemented in some implementations of 
VoIP technology. There has been continuous pressure from the government upon the 
operators and vendors to find a solution that would make lawful interception feasible 
and successful. Key escrow was proposed as a solution by the U. S. National Security 
Agency. In key escrow the key(s) for a session are entrusted to a trusted third party 
and upon proper authorization law enforcement agencies can receive the session 
key(s) from this trusted third party However, key escrow adds some security 
vulnerabilities and potential risks as an unethical employee of the key escrow agent 
(or a law enforcement agency that has received the session key(s)) can misuse the 
key(s) to forge content of a communication session -- as he or she possesses the same 
key(s) as the user used for this session. This thesis addresses the issue of forged 
session content, by proposing, implementing, and evaluating a cryptographic model 
which allows key escrow without the possibility of undetectable fabrication of 
session content. The implementation utilizes an existing implementation of a Session 
Initiation Protocol (SIP) user agent ‘minisip’ developed at KTH. The performance 
evaluation results suggest that the proposed model can support key escrow while 
protecting the user communication from being forged with the cost of minimal 
computational resource and negligible overhead.  
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Sammanfattning 
Röst över Internet Protokoll (VoIP), även kallad IP-telefoni är snabbt bli en 

välkänd term och som teknik är det invadera företaget, privat bruk, och utbildning och 
statliga organisationer. Utnyttja avancerad talkodning & tekniker kompression och 
bandbredd utbyte över paket-nät kan VoIP dramatiskt förbättra bandbredd effektivitet. 
Dessutom förbättrade säkerhetsfunktioner, stöd till rörlighet och kostnader minskning 
funktioner VoIP gör det till ett populärt val för personlig kommunikation. Grund av 
sin snabba tillväxt i popularitet VoIP är snabbt på att bli nästa generation 
telefonsystemet. 

Avlyssning är ett medelvärde av övervakning privat kommunikation för 
användare som är misstänkta för brottslig verksamhet eller att vara ett hot mot den 
nationella säkerhet. Regeringens tillsynsorgan och brottsbekämpande myndigheter 
blir medvetna om svårigheten för avlyssning av allmänheten meddelande på grund av 
stöd till rörlighet och avancerade säkerhetsfunktioner genomförts i vissa 
implementationer av VoIP-teknologi. Det har ständig press från regeringen på 
operatörer och leverantörer för att hitta en lösning som skulle göra avlyssning möjlig 
och framgångsrik. Nyckeldeposition föreslogs som en lösning av US National 
Security Agency. In nyckeldeposition nyckeln (er) för en session anförtros en betrodd 
tredje part och ändamålsenliga tillstånd brottsbekämpande myndigheterna kan få 
sessionen nyckel (s) från denna betrodd tredje part dock tillagt nyckeldeposition något 
trygghet sårbarheter och risker som en oetisk anställd av nyckeldeposition agent (eller 
en brottsbekämpande myndighet som har fått sessionsnyckeln (s)) kan missbruk kilen 
(s) att skapa innehållet i ett meddelande session - som han eller hon besitter samma 
nyckel (n) som användaren använde för denna session. Denna avhandling behandlar 
frågan om förfalskade session innehåll, genom att föreslå, genomföra och utvärdera 
ett kryptografiskt modell som tillåter nyckeldeposition utan möjligheten omätbara 
tillverkning av sessionen innehåll. Genomförandet använder en befintlig genomföra 
en Session Initiation Protocol (SIP) användaragent "minisip" utvecklats på KTH. 
Utvärderingen av prestanda resultat tyder på att den föreslagna modellen kan stödja 
nyckeldeposition och samtidigt skydda användar meddelande inte smidda med 
kostnaden för minimal computational resurs och försumbar omkostnader. 
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Chapter 1: Introduction 
1.1 Motivation 
Voice over Internet protocol (VoIP), also known as IP telephony is a familiar 

term and killer application in the area of personal communication. As a technology it 
is invading enterprise, educational and government organizations. This technology is 
gaining popularity day by day due to its many attractive features. From a technical 
point of view VoIP can dramatically improve the bandwidth efficiency by exploiting 
advanced voice coding and compression techniques and can share bandwidth with 
data on packet switched networks. As the packets are processed at the end-points it 
can incorporate advanced security features. Additionally, VoIP supports user, session, 
and device mobility. Moreover users like this technology because it can reduce their 
voice (and conferencing) costs. Due to the rapid growth in popularity VoIP is in a 
hurry to be the next generation phone system. 

Lawful interception (LI) is a mean of monitoring private communication of users 
that are suspected of criminal activities or to be a threat to national security. Lawful 
Intercept (LI) is not a new requirement in the area of public telephony. LI was 
conceived 50 to 60 years ago. Users have not been positive to LI as it raises a number 
of controversial issues such as violation of human rights and decreased confidentiality 
of commercial communication. However in recent years, government regulatory 
bodies and law enforcement agencies (LEAs) are becoming conscious of the difficulty 
of lawful interception of public communication due to the mobility support and 
advanced security features implemented in some implementations of VoIP technology 
[1] [2]. There has been continuous pressure from the government upon the operators 
to find a solution that would make lawful interception feasible and successful. Key 
escrow was proposed as a solution by the U. S. National Security Agency. In key 
escrow the key(s) for a session are entrusted to a trusted third party and upon proper 
authorization law enforcement agencies can receive the session key(s) from this 
trusted third party However, key escrow adds some security vulnerabilities and 
potential risks as an unethical employee of the key escrow agent (or a law 
enforcement agency that has received the session key(s)) can misuse the key(s) to 
forge content of a communication session -- as he or she possesses the same key(s) as 
were used for this session. 

Currently, LI in both the fixed and mobile networks is relatively easy due to the 
network architecture; specifically the intelligent core with dumb end terminals. As a 
result of this architecture it has been possible to require that the telecommunication 
switch vendors build in mechanisms for LI. Increasingly, LI is not always successful 
due countermeasure taken by users to prevent or reduce the ease of monitoring private 
communications. Moreover these countermeasures can result in misleading 
information. 

Due to the Internet’s architecture of smart end devices and dumb core network it 
has become more technically difficult to lawfully intercept private communications. 
One of the major reasons for this is that smart end devices can implement 
sophisticated encryption techniques that make it very difficult to retrieve the actual 
communication contents. To facilitate LI ‘key escrow’ was first proposed during the 
early 1990s. The main idea underlying key escrow is that the keys needed to decrypt 
an encrypted communication session will be deposited with a trusted third party 
(TTP) as an escrow agent. The LEA can get the session key from the TTP after 
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showing proper authorization. This method enables the LEA to perform LI of VoIP 
users’ encrypted communication. However, key escrow raises some security 
vulnerabilities and potential risks. Moreover a large-scale key escrow system has not 
yet been implemented due to its high cost and complexity. Details of key escrow 
systems are described in section 2.5. 

The main concern regarding key escrow systems is the trustworthiness of the 
TTP. Since the session keys are stored at the escrow agent an unethical employee of 
the TTP could misuse this information. Such an employee could both divulge the 
contents of a session or could forge contents of a communication session (for 
example, in order to blackmail the user by fabricating evidence of criminal activity 
that could be presented in court). This (dual) weakness of key escrow has caused 
many people (such as cryptographers, human right workers, and individuals) to reject 
key escrow as a viable solution for facilitating lawful interception. Therefore, some 
mechanism is required that could make key escrow feasible while preventing 
tampering with the communication session’s content. At the same time there is a need 
to make key escrow desirable, i.e., there needs to be a reason for the users to want to 
use key escrow. However, this later issue is outside the scope of this thesis. Making 
key escrow feasible, while restoring a balance between users and LI, is the main 
motivation that leads us to propose, implement, and evaluate a model that allows key 
escrow without the possibility of undetectable fabrication of session content. 

The implementation of the proposed solution utilizes an existing implementation 
of a Session Initiation Protocol (SIP) [3] user agent ‘minisip’ developed at KTH. The 
existence of a working implementation could have very high impact on businesses 
that for regulatory and other legal reasons need to be able to store and retrieve 
encrypted sessions. Such an implementation might also be valuable to other users. 

1.2 Thesis overview 
In this thesis a very simple key escrow agent is implemented– with whom the 

session keys are deposited. Note that the session key is escrowed after a session is 
over. During a session we sign blocks of hashes over the session contents and transmit 
these signed hash values over the Real Time Transport Control Protocol (RTCP) 
channel parallel to the Real Time Transport Protocol (RTP) traffic channel that is 
being used. The private key of the sender is used to sign the hash of sent packets. The 
receiver can use these signed hash values together with the sender’s public key to 
detect modification of the sender’s traffic. In fact, any party that has access to the 
signed hash values and the sender’s public key can detect an attempt to forge session 
contents. 

This thesis work has extended the existing minisip implementation to support 
key escrow. Minisip is an open source SIP user agent developed in KTH (see section 
2.9 on page 25). Minisip was chosen because of its extensive support for security. 
Minisip already implements several security protocols to protect the media and 
signalling information of a call. Minisip implements Secure Real Time Transport 
Protocol (SRTP) to protect the media data (offering privacy by using encryption and 
integrity protection using signed hashes), Transport Layer Security (TLS) to secure 
signalling, and Multimedia Internet Keying (MIKEY) as a key management protocol. 
(SRTP and MIKEY are described in Chapter 2:). MIKEY provides the mechanism for 
the parties to agree upon a session master key; from which SRTP generates separate 
session keys for encryption and integrity protection for each media stream. SRTP uses 
the session keys to protect the Real Time Transport Protocol (RTP) packets. Minisip 
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has been extended to deposit the session master key provided by MIKEY with the 
escrow agent after a session is terminated (see section 2.4 on page 10). 

Figure 1-1 gives an overview of how the overall system works. As noted earlier, 
since the escrow agent has the same session key as the sender and receiver there is a 
potential for interception & decryption and/or forgery of the content of the media 
streams of the Secure Real Time Control Protocol (SRTCP) packets. To prevent real-
time interception and decryption of a media stream or its associated control stream we 
only deposit the session key at the end of the session. The authors assume that the 
LEA conducting an authorized interception of the communication between the parties 
has some means of intercepting the packets that are part of the communication session 
(including all of the SIP, SRTP, and SRTCP packets). The technical means that the 
LEA uses to do this is outside of the scope of this thesis (See the thesis of Muhammad 
Sarwar Jahan Morshed [4].)  
 

 

Figure 1-1: Overview of the operation of the proposed system 
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To prevent forgery of (or tampering with) a recorded media stream we compute a 
signed hash over multiple SRTP packets. It is important to note that rather than 
signing with a key associated with this specific session, we instead sign the hash using 
the private key of the sender. The resulting signed hash is sent as part of a payload in 
a Secure Real Time Control Protocol (SRTCP) packet. As there is no reason to 
deposit the private key of the sender with escrow agent it will be impossible for 
anyone to forge the digital signature of the hash over the SRTP packets. If someone 
who has obtained access to the session key(s) (for example, a LEA who has presented 
a lawful intercept order to the escrow agent) attempts to fabricate the contents of a 
(captured) media stream by generating SRTP packets and encrypting them with the 
correct session key, it will be possible using the sender’s public key to refute the 
authenticity of these packets – since while they may be encrypted by the correct 
session encryption key, anyone can use the public key of the sender to verifying if 
media stream has the correct digital signature. This suggests that for convenience the 
sender may also want to deposit the final signed hash value with the TTP. The details 
of why this final signed hash value should be escrowed are presented in section 4.2. 
The final signed hash value could be escrowed at the same time as the sender deposits 
the session keys(s) that have been used for a session. 

SRTP and SRTCP both make use of symmetric encryption in order to support 
low delay and high throughput for the media streams. However, there is no need for 
the signed hash values to be delivered with low delay – since they are only 
(potentially) relevant after the session has ended. It is the combination of signing the 
hash of a group of SRTP packets at the same time and the lack of any requirement for 
low delay that enables asymmetric public key techniques to be used for signing these 
hashes. 

1.3 Research questions 
Based on the thesis overview presented in section 1.2 there are some open 

research questions that need to be addressed. The questions are as follows: 

Q1:  How many SRTP packets should be grouped together? 

Q2:  What is a suitable rate for computing the signed hashes? 

Q3:  Should the number of packets that are group together be computed 
adaptively based upon the rate at which the sender can compute and sign 
the hashes? 

Q4:  Is there any minimum number of SRTP packets that should be group 
together? 

Q5: Is there any maximum number of SRTP packets that should be group 
together? 

Q6:  Is there any problem of too frequent signing, leading to a leaking of bits of 
the sender’s private key? 

Q7:  Are there any weaknesses in this system design? 

Q8: Are there any weaknesses in the implementation of this system? 

Some of these questions are addressed in this thesis; while some will be 
addressed in the companion thesis of Muhammad Sarwar Jahan Morshed [4] and 
other theses. 



 

Chapter 2: Background  
This chapter provides some background for the readers. It introduces some of the 

key concepts and protocols that are used in the thesis. We start by presenting the basic 
concepts of Lawful Intercept, a trusted third party, key escrow, a public key 
infrastructure, and a signed hash. In Section 2.6 and later, we present three important 
protocols for this work: SRTP, SRTCP, and MIKEY. In the final section, we briefly 
present an open source Session Initiation Protocol (SIP) user agent named as minisip 
and our motivation for selecting it as the basis for our implementation. 

2.1 Lawful Intercept (LI) 
Lawful Intercept (LI) is the legal monitoring of private communication. LI 

provides the means and mechanisms for the government and law enforcement 
agencies (LEAs) to conduct electronic surveillance of either circuit or packet switched 
communication. In most countries LI is only possible under a valid administrative or 
judicial order. The criterion for issuance of such a LI order is generally collecting 
evidence to be used in criminal proceedings or to prevent harm to the society (for 
instance in conjunction with national security). 

Although the concept of LI was conceived more than 50 years ago when the 
government used technical means to tap and/or trace public telecommunication, there 
have been many questions raised regarding the practice of LI. Initially interception 
was not primarily concerned with collecting evidence for criminal prosecution; in 
most cases it was used for ensuring national security. Because the use of LI was 
typically done in secret there was little discussion of individual privacy. However, 
instances of politically motivated LI lead to a wider discussion of LI and the right of 
individuals to private communication and association. As a result, illegal monitoring 
is often framed in terms of being a violation of human rights. This has lead to the 
creation of new laws to define a proper framework for LI. (For further discussions of 
the framework for LI see [1]. Another potentially relevant publication is [5] where the 
author discusses the retention of communication data as a security measure that 
conflicts with the right to privacy. In her discussion she argues that perceived privacy 
is a prerequisite for making independent decisions and freely communicating with 
other persons while living in a participatory society. She has examined 
communication monitoring as a law enforcement tool with respect to interception of 
content, data retention, and data preservation.) 

Two important requirements for successful LI are: (1) the user must not be 
aware that he or she is the subject of LI (i.e., that their communication is being 
intercepted) and (2) other users of the communication system must not be affected by 
the LI. The exact details of how LI is performed vary from system to system and 
depend on the architecture of the telecommunication system, laws, and regulatory 
policy. However, today in many countries all public communication service providers 
(operators) are generally required to provide the government and LEAs with 
assistance in conducting LI[6]. 

The technical means and requirements for LI change due to the evolution of the 
various communication systems. This evolution in telecommunication architecture 
has meant that the technical means for LI as well as the laws and policies for LI have 
had to adapt to the emergence of new technology. For example, in Sweden a major 
change in LI law occurred because of the fact that most international 
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telecommunications is now carried via optical fibers and not via radio signals. 
Unfortunately, the earlier law did not provide a framework for LI of traffic carried via 
such fibers; but did clearly describe how and who was responsible for LI for radio 
communication. The new law is popularly referred to as the FRA-lagen (The FRA 
law) – after the initials of the Försvarets radioanstalt (FRA), the National Defence 
Radio Establishment – as this agency has been given the assignment of LI for 
international traffic under the new law. (For details see [7][8].) Similar changes in LI 
laws and regulations have been made in a number of countries; see for example the 
U.S. Communications Assistance for Law Enforcement Act (CALEA) regulations [9]. 

Until recently LI in fixed networks (primarily the Public Switch Telephony 
Network (PSTN)) and mobile networks (such as Public Land Mobile Networks) has 
been relatively easy to conduct due to the centralized nature of these 
telecommunication network architectures and the limited number of operators (until 
recently often only a single government owned and/or controlled operator). However, 
the Internet lacks centralized network architecture and there are a very large numbers 
of operators. Additionally, the Internet is based on packet switching; in such a 
network individual packets are routed – potentially over many different networks and 
routes between a source and destination(s). As a result LI is more challenging than for 
the fixed and mobile telephony architectures. 

Today, Voice over Internet Protocol (VoIP) is a killer application that is both 
competing with and transforming the global telephony system. This revolutionary 
technology supports user mobility and enables a user to have multiple identities. 
When combined with the problems of LI in the Internet, LI for VoIP traffic is very 
problematic. 

To further complicate the problem of LI for VoIP the modern Internet is 
characterized by having smart edge nodes with a dumb core (in contrast to fixed and 
mobile telephony networks). The presence of computationally capable nodes at the 
edge of the network makes it very easy to implement countermeasures against LI. 
Moreover, Internet users can add their own services at any time from any point in 
Internet without depending on their access operator, making LI even more challenging 
as there is no perfect location in the Internet to perform LI [10]. 

Despite the many technical difficulties of performing LI for VoIP traffic there 
are many interested parties that want to be able to perform LI for VoIP traffic. Thus 
this thesis will assume that there is a desire for LI and that legal and technical 
requirements have been (or will be) introduced to make the capture and storage of 
VoIP packets feasible (at least when applied to a small number of targeted intercept 
subjects).  

2.2 Public Key Infrastructure (PKI) 
A public key infrastructure (PKI) is a collection of components including 

hardware, software, people, policies, and procedure to securely distribute public keys 
in the form of digital certificates to achieve communication security. A PKI supports 
public-key cryptography. 

Public key cryptography is based upon every entity that desires to communicate 
privately having a pair of keys: a public and a private key. This approach depends 
upon the assumption that data encrypted with a public key can only be decrypted by 
using the corresponding private key. The public key is publicly available – it could be 
printed in the newspaper, posted on a web site, printed on a user’s business cards, 
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painted on the side of a car, etc. While the private key is only known by the entity to 
which the pair of keys belongs. 

To be sure that a certain key pair really belongs to only one person it is necessary 
to use a specific "document" which binds a public key to one person. Such a 
document or credential that contains a public key or information about the public key 
of a user is called a "digital certificate". 

Ideally a PKI consists of a certificate authority (CA) that issues and verifies 
certificates, a registration authority (RA) that acts as the verifier for the certificate 
authority before a certificate is issued to a requestor, a repository to store and retrieve 
certificates, a method of revoking certificates, and a method of evaluating a chain of 
certificates starting with public keys that are known and trusted in advanced to reach 
the target. 

In the following subsection the details of these digital certificates is presented; 
along with a brief description of how such a certificate is created. These descriptions 
are sufficient for the reader to understand the basic ideas utilized in the rest of the 
thesis, but the interested reader is referred to other sources for further details (such as 
[11]). 

2.2.1 Why is a PKI necessary? 
Internet is increasingly seen as a daily necessity in today’s personal and business 

worlds due to its ubiquitous nature and because of e-commerce, e-health, 
e-government, … representing opportunities for increased efficiency, increased 
flexibility, … . However, security and personal integrity are important issues that 
must be considered. 

In the corporate world various stakeholders are expected to maintain trusted 
business relationships. This trusted business relationship generally requires mutual 
authentication of the parties, confidentiality, integrity, and non-repudiation in order to 
perform secure business transactions. Non-repudiation is generally required so that no 
party can deny that a specific transaction has occurred. Similar requirements occur in 
other settings, such as when a health care worker accesses and updates a patient’s 
medical records, electronic voting (where the voter must be determined to be a valid 
voter, but their actual vote can not be identified with the voter), … . 

A traditional face-to-face transaction in a small community generally required 
only minimal interaction and normally did not necessitate the use of digital security 
and integrity mechanisms (for example, relying on mutual knowledge of the parties or 
via a human chain of trust, the ability of the community to enforce legally binding 
agreements, etc.). However, today face-to-face transactions are not always possible or 
even practical due to the physical distance between the parties. Additionally, these 
face to face transactions are in some cases not even desirable – for example, it may be 
easier to have an open electronic market for stocks, commodities, etc. where all of the 
transaction is captured in digital form (for example, for enforcing regulations). 

To establish a trusted business relationship the two parties can use some 
credential (secret key or digital certificate) to securely authenticate each other. These 
two parties can exchange such credentials via a face-to-face meeting to exchange 
credentials, use postal mail or email to exchange their certificates, or can download 
their public key from anywhere in the Internet to a location where their stored 
certificate will be available to the other party (who can download it to where ever they 
are attached to the Internet). 
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Because the exchange of credentials is so important, this is often the focus of an 
attacker. For example, the attacker could pose as a mail transfer agent to intercept the 
email between the users – as a form of man-in-the-middle attack. Similarly the 
attacker might use DNS poisoning to induce the two parties to deposit their public key 
and retrieve the public key of the other party from the attacker’s site. Thus enabling 
the attacker to replace each party’s public key with their own key, thus establishing 
the attacker as a man-in-the-middle. In this case each of the parties will believe that 
they are securely communicating with each other, when in fact they are securely 
communicating with the attacker! As many believe that face-to-face exchange of 
credentials is not sufficiently scalable, there is a desire for an infrastructure to 
securely distribute public keys. Hence the idea of a PKI came into existence. Every 
PKI provides the following functionalities [12]: 

Public key 
cryptography 

the generation, distribution, administration, and control 
of cryptographic keys 
 

Certificate 
issuance 

binds a public-key to an individual, organization, or 
other entity, or to some other data—for example, an 
email or purchase order 
 

Certificate 
validation 

the process that verifies that a trust relationship or 
binding exists and that a certificate is still valid for a 
specific operation 
 

Certificate 
revocation 

the process that cancels a previously issued certificate 
and either publishes the cancellation to a Certificate 
Revocation List or enables an Online Certificate Status 
Protocol process 

2.2.2 How does PKI work? 
This subsection briefly describes the workflow of a PKI (see Figure 2-1). 

Initially a subject (a user) applies for a certificate to a RA. Next the RA performs 
verification of the subject’s identity. After verification of this identity, the RA sends a 
certificate request to the CA on behalf of the subject. The CA checks the validity of 
the RA and checks the information in the forwarded certificate requests if these 
checks are passed, then the CA issues a certificate and stores a copy of the issued 
certificate in its local storage. Later the CA publishes the certificate in a certificate 
repository. The RA provides the user with the certificate issued by the CA. Given this 
certificate the subject can now digitally sign any message with the private key 
associated with this certificate. Upon receiving a digitally signed message the receiver 
first retrieves the certificate from the certificate repository, then verifies the message 
using the public key in the certificate. In some cases, the sender may include their 
public certificate in the message. 

Note that the details of the creation of the certificate and the validation of a 
certificate lie outside the scope of this thesis (for further details see [13]). We simply 
assume that the various parties have valid certificates and that minisip contains the 
necessary code for using these certificates (the specifics of this will be described in 
Section 2.9). 
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Figure 2-1: PKI workflow (adapted from [14]) 

2.3 Keyed-Hash Message Authentication Code 
Keyed-Hash Message Authentication Code (HMAC) is one type of message 

authentication code (MAC) calculated using a specific cryptographic function 
combined with a secret key. HMAC can be used for integrity protection and 
authentication of a message. A message authentication code can be calculated using 
secret key cryptography or using a hash function; whereas HMAC can be calculated 
using any iterative hash function, such as Message Digest 5 (MD5) or the Secure 
Hash Algorithm (SHA). When an HMAC is calculated using MD5 the resulting 
message authentication code algorithm is referred to as HMAC-MD5 and similarly 
when SHA is used to calculate the HMAC the algorithm is referred to as 
HMAC -SHA. The security of HMAC depends on the underlying hash algorithm. All 
such hash algorithms (or message digest functions) should possess two properties: 

• Collision resistance (i.e., it should be infeasible to find two message that 
produce same output); and 

• Irreversible (i.e., given an output message authentication code, it will not be 
possible to produce the message).  

All the hash algorithms work in a similar manner. The message is first padded to 
a multiple of some length (in practice this is generally 512 bytes) with a pad that 
indicates the length of the message. The shared secret key (Kshared) is concatenated 
with the message and a hash is calculated. The resulting message authentication code 
is Hash (Kshared | m), where Kshared is the shared secret and m is the message. However, 
this technique has a serious security flaw, as there is a chance of a message extension 
attack. In this scenario an attacker could compute a message authentication code of a 
longer message beginning with m, if he knows m and the correct message 
authentication code of m. 
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HMAC overcomes this shortcoming by concatenating Kshared to the front of the 
message and digesting, then prepends the key to the output and digests again. This 
nested digest with secret key inputs to both iterations prevents the extension attack 
that could be performed if we simply hash the message concatenated with the key 
once. Figure 2-2 shows the HMAC procedure where the HMAC function takes a 
variable length key and variable size message and produces a fixed size output. The 
output length is the same length as used by the underlying hash algorithm (128 bits 
for MD5 and 160 bits for SHA). As noted earlier, the digest/hash operation first pads 
the key to a 512-bit block length - if the key is larger than 512 bits, then HMAC first 
computes a digest of the key then pads again to produce a 512-bit block. The padded 
key is XORed with the constant const1 (= 3616), then this result is appended to the 
message and the first digest/hash is performed. The padded key is XORed with 
another constant const2 (= 5C16) and appended to the output of the previous digest. 
Now a final digest is performed to produce the HMAC of the message [13].  

HMAC has lower performance than the normal procedure to produce a message 
authentication code as it does a second digest. However, this second digest is 
computed over the secret and a digest, hence it does not add much cost if the original 
message was large (as the computational cost of this second hash is independent of 
the length of the message). For a large message HMAC’s performance is negligibly 
worse than a single message authentication code, but its use prevents the message 
extension attack. As will be described later, both SRTP and MIKEY use the 
HMAC -SHA1 algorithm to compute a message authentication code for 
authentication and integrity protection. 

 

Figure 2-2: HMAC (Adapted from [13] page 143) 

2.4 Trusted Third Party (TTP) or Escrow agent  
A Trusted Third Party is a complementary solution to the need for a trusted 

service in the field of electronic communication; especially in e-commerce. The 
International Standards Organization defines a TTP as: 
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A Trusted Third Party is a security authority or its agent which is trusted by 
other entities for the security functions it provides. When a Trusted Third Party is the 
security authority for a domain, it can be trusted within that domain.[15] 

A TTP must meet some functional requirements and these requirements may 
vary according to the scale of the TTP. The law enforcement members of Germany, 
England, France, and The Netherlands (known as The Security Group of G4) along 
with Sweden have defined fourteen functional requirements for an international TTP 
architecture (see section 2.3 of [15]). A TTP must be used to realize a point of trust. A 
TTP is mainly used to establish a secure communication channel between two parties 
where the TTP plays the role of a referee. There are lots of services that a TTP can 
provide, with an authentication service as the prominent service. Additional security 
related services that a TTP can provide include: access control, key management, or 
notary (non-repudiation) servers. 

From a communication system point of view a TTP can provide either on-line, 
in-line, or off-line services. In case of on-line services (an authentication service) the 
TTP interacts in real- time with the parties who trust it. For in-line services, the TTP 
intercepts the path between the two communication parties if necessary by providing a 
translation between two encryption algorithms. When a TTP (such as a CA) provides 
off-line services, the TTP does not take part in the actual communication, but helps to 
enable the communication. [15]  

We are concerned with the key management service of a TTP. In this thesis 
project, we implemented a very simple escrow agent as a TTP using an Apache web 
server. We will escrow the session master key after a successful secure 
communication session. The session master key should be stored in a secure database. 
Upon proper authentication the escrow agent will also provide the requested session 
master key to the LEA. In this case the TTP is responsible for operating the key 
escrow component. The TTP stores and retrieves the escrowed key and delivers the 
key to the LEA or government based on the specified warrant. When a TTP deals with 
the escrowed key it is often referred as an escrow agent. Denning & Branstad have 
described escrow agents in terms of the following characteristics [16]: 

• Escrow agents can be entities in the government or private sectors. An escrow 
agent for the private sector is often known as a commercial or private key 
escrow agent.  

• Escrow agents should be identified by their name and location. 

• Escrow agent should be accessible during their hours of operation. 

• Escrow agents should be secured against compromise, loss, or abuse of 
escrowed keys. 

• Escrow agents must be certified and licensed with a government. 

To escrow the session key with the TTP we use a third party application programming 
interface (API) named “libcurl” which is a free and easy-to-use client-side URL 
transfer library supporting HTTP, HTTPS, and many other protocols. We use the 
HTTPS protocol to securely escrow our session master key with the escrow agent. 
Technical details of the libcurl library can be found in [17]. 
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2.5 Key escrow 
Key escrow is a data security arrangement where the cryptographic keys are 

entrusted to a trusted third party who acts as an escrow agent. Specifically, the 
cryptographic keys necessary to decrypt encrypted data are stored in escrow and 
under normal circumstances these keys are not revealed to anyone without proper 
authorization1. When the agreement with the third party is made to escrow one or 
more keys the user generally specifies the terms under which the keys may be 
released. 

The trusted third party as escrow agent will provide the keys to an entity after 
verifying that this entity has the proper authorization to receive the key. The 
authorized entity may be a government or law enforcement agency (LEA) 
representative who has the legal authority to access the content of encrypted 
communication or this entity may be an authorized corporate official that has the legal 
authority to access an employee’s communication due to a security concern [18]. The 
entity might even be the entity that deposited the key(s), in case they forget or lost 
their key(s). The details of how an entity establishes that they have authorization and 
the escrow terms are outside of the scope of this thesis project. 

U.S. National Security Agency (NSA) first conceived the key escrow concept 
during the early 1990s. Their main motivation for introducing this concept was to 
enable the wide spread introduction of encrypted telephony, while preserving the 
ability to perform lawful interception. Their proposal was that government or LEA 
agents would have 24 hour availability to master keys which could be used to provide 
easy access to encrypted data. Another motivation for key escrow was the recovery of 
encrypted data by the entity that had originally encrypted the data. For example, a 
company could benefit from key escrow as a means of data recovery in case of an 
accident such as an employee’s death or a physical disaster that destroyed the key [1]. 
An important aspect of the proposal for key escrow was that the key escrow system 
should scale well (ideally there would be enough industrial or private paid use of the 
system that the cost to the government for the operation of the system would be zero). 

2.5.1 The Clipper Chip 
The most prominent and widely known key escrow implementation was “The 

Clipper Chip” developed and promoted by the U.S. Government in 1993. The Clipper 
Chip was developed as cryptographic device intended to protect private 
communication while at the same time permitting government agents to obtain the 
keys upon presentation of proper authorization [19]. An escrow agent or a Trusted 
Third Party (TTP) holds the keys. 

The Clipper Chip was designed to be embedded in every telephony device (or 
added via an external “bump in the wire”). This chip would provide high quality 
encryption of all data passing through it. Every chip had a unique key and a unique 
identifier. This unique key would be stored for this identifier with an escrow agent. In 
operation the Clipper Chip would generate session keys to secure the session and the 
session key would be encrypted using the specific chip’s key and transmitted in the 
session along with the identifier. Therefore, once a specific chip’s key is known, then 
the content of any session encrypted by this chip can easily be recovered. 

                                                 
1 Note that the sender and receiver have another means of exchanging the keys that they will use, thus 
in normal operation secret keys are only deposited for escrow. 
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Although the government could store the keys by themselves this would lead to 
controversy, thus the government decided to store the keys with one or more TTPs. 
To make it harder to get a key without proper authorization, every key was split into 
two parts that must be XORed together to produce the actual key. Each of these parts 
was stored by a different TTP. Thus the proper authorization must be presented to two 
different TTPs, who must each be convinced to reveal their part of the key. Then 
these two parts must be XORed to produce the original key. This has several 
advantages: 

• If either of the TTPs refuses to reveal the part of the key that it is holding, then 
the full key cannot be retrieved. 

• Each of the TTPs is simply storing what is effectively a random set of bits, so 
they can not themselves compromise the security of any of the 
communications encrypted with the Clipper Chip devices. 

The Clipper Chip used a data encryption algorithm called Skipjack developed by 
NSA to transmit the data and it used the Diffie-Hellman key exchange algorithm to 
distribute the session keys between the pair of communicating Clipper Chips. The 
customized Skipjack algorithm added a 128 bit Law Enforcement Access Field 
(LEAF) that is sent in every session. This field contains the information necessary to 
decrypt the packet (i.e., it includes the identity of the chip and the encrypted session 
key). The Clipper Chip escrow system seemed to be very robust. However, it was 
abandoned in 1996 due to a serious security vulnerability discovered by Matt Blaze 
[20]. The vulnerability occurred because the Clipper chip used a 16 bit value in the 
128 bit LEAF as a checksum to maintain the integrity of LEAF. Thus if a chip 
receives a packet and calculates a hash other than the received hash, then the 
receiving Clipper Chip would not process the packet further. Matt Blaze pointed out 
that a 16 bit hash was a sufficiently small field that a brute force attack could find 
another value for the LEAF that would result in the same hash. Thus someone could 
replace the valid LEAF field with a forged LEAF value, the receiving Clipper Chip 
would correctly process the packet - but later it would impossible to decrypt this 
packet using the key recovered from the escrow agent. This flaw enabled the Clipper 
Chip to be used as an encryption device while effectively disabling the key escrow 
functionality. 

2.5.2 Why key escrow is problematic? 
The main motivation (by the U.S. Government) for key escrow was to encourage 

the use of encrypted communication (particularly for official and corporate 
communications), while facilitating LI. The U.S. Government remains the main 
supporter for the implementation of a key escrow system. However, implementing a 
practical key escrow system is both complex and expensive. Moreover, correct 
implementations of such a system must avoiding both security flaws and make the 
abuse of such a system very difficult. In the following paragraphs we will briefly 
explain the technical drawbacks of a key escrow system. 

Another set of problems facing key escrow is that key escrow is widely view as a 
potential threat to individual privacy and violation of human rights. These issues lie 
outside the scope of this thesis, but have been well documented in the press, see for 
example [21] [22]. 

 13



Chapter 2: Background 

2.5.2.1 Complexity 
It is commonly believed that a perfectly secure cryptographic system is 

extremely difficult to create. Addition of new cryptographic parameters increases 
design complexity, as all the keys need to be stored and securely maintained. 
Unfortunately, key escrow adds lots of complexity to a cryptographic system. For 
example, the major weakness of the Clipper Chip was not in the Skipjack algorithm, 
but rather the design choice of a short checksum. Furthermore, a successful attack 
against the Skipjack algorithm was published the year after the details of the 
algorithm were published. 

Due to the rapid growth of Internet the ability to scale to very large numbers of 
users and devices is vital for a successful implementation of a key escrow system. 
Today, there are millions of users using encrypted communication and lots of TTPs 
and LEAs worldwide. Establishing a key escrow system would increase operational 
complexity, as every LEA would expect and require fast response from each key 
escrow system. The complexity of key escrow can be mitigated to some extent by a 
well-designed system, well-trained staff, and proper technical control; but operational 
vulnerability cannot be completely avoided. In a key escrow system it is essential that 
only authorized entities be permitted to receive the requested key(s). Unfortunately, 
authentication documents such as a passport or birth certificate can easily be forged as 
can an authorization document -- which could lead to an unauthorized entity gaining 
access to a deposited key. 

2.5.2.2 Cost  
Today cryptography is becoming increasingly inexpensive. However, a key 

escrow system can add lots of cost; depending on the scale of the key escrow system. 
Deploying a key escrow system that extends beyond a national boundary adds lots of 
operational cost due to the cost of maintaining and controlling sensitive and valuable 
key information securely over a long period of time. It requires a substantial number 
of well-trained staff (as the facility must operate 24 hours per day – every day of the 
year) and high-assurance hardware and software systems to meet government 
requirements. In this regard new products might need to be designed which incurs 
substantial product design cost. Moreover governments and LEAs may also need to 
test and approve the entire key escrow system adding potentially substantial costs 
associated with government oversight. 

One of the most difficult issues is the question of who is to pay for the operation 
of the key escrow system. This raises the related questions of when does each entity 
have to pay and how much do they have to pay? 

2.5.2.3 Security vulnerability and risks 
The major disadvantage of key escrow system is the introduction of new security 

vulnerabilities, which can jeopardize the proper operation, underlying confidentiality, 
and ultimate security of encryption system [23][1]. Some of the security 
vulnerabilities and potential risks are: 

• Potential inappropriate or illegal access to private data: Every key escrow 
system is expected to provide the requested escrowed key(s) to a LEA after 
proper authorization. Moreover, the parties who have deposited keys with the 
TTP should not be aware of the fact that their key(s) have been requested by a 
LEA, whom has requested the key(s), or when the key(s) was/were requested. 
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If communicating parties knew that their keys had been obtain, then they 
could potentially act to prevent further communication from being 
compromised by discontinuing the use of these keys and they could also take 
other actions to make monitoring or interception harder. However, the fact that 
the party who has deposited a key is not aware that someone has obtain this 
key means that this party has no way of preventing illegal or inappropriate use 
of this key; thus potentially compromising the privacy of data or 
communication session content. 

• Insider abuse: One of the most dangerous threats of a key escrow system 
arises when trusted persons misuse their position. An employee of a key 
escrow system may be intimidated, bribed, blackmailed, … to reveal a key. 
This key could be used for an illegal act (such as blackmail or extortion) 
against an individual or a company. An untrustworthy employee can reveal a 
company’s confidential information. An unethical employee with access to a 
key could fabricate the content of the session, in order to blackmail a user. An 
unethical LEA agent could use a key to fabricate evidence. Unfortunately, the 
user cannot prove that the data has been fabricated, as the fabricated data uses 
the correct key. This kind of misuse can be even more dangerous than 
inappropriately or illegally revealing encrypted information, as it may easily 
be used to destroy an individual’s or company’s reputation and financial 
status. 

• New targets for attack: If the keys are stored by a key escrow system in a 
central database, then this central database becomes a new target for attacks. It 
is a particularly rich target because if the attacker can extract keys from the 
database it will enable the attacker to compromise the data or communication 
of a company or individual. One of the worst aspects of such an attack is that 
it could be used to compromise many keys. Although distributing the 
databases and storing parts of each key in different databases can mitigate the 
risk of a successful attack, this will increase the operating costs and may also 
increase the response time to deliver the keys to a LEA. 

• Destruction of forward secrecy: One of the major disadvantages of key 
escrow system is the destruction of forward secrecy. Forward secrecy is a 
security feature where by a secure session cannot be retrieved after the session 
is over even if the session key for next session has been compromised. Usually 
a system with forward secrecy destroys the session keys when the session is 
over, i.e., the communicating parties do not store the session key. Forward 
secrecy is simple to design and implement. Moreover, forward secrecy is 
desirable because it increases security and decreases the cost of a system, 
since the secrecy of the keys only needs to be maintained for the duration of 
the part of the session that a session key is used for. Unfortunately, key escrow 
destroys this property since if the master key for a session is stored with the 
escrow agent (TTP) at the start of a session, then the derived sessions keys are 
vulnerable – even if the session keys for the media streams are changed during 
the session (as these keys can be derived given knowledge of the master key 
and the earlier session keys). 

• Different kinds of keys to deposit: Various kinds of keys are used for various 
kinds of communication. Some of these keys are used to provide 
confidentiality while others are used to provide authenticity. Some keys are 
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used for stored data, while some others keys are used for real-time data. Keys 
that are used to encrypt data for storage need to be preserved for the lifetime 
of the data (potentially a very long period of time for documents such as 
deeds, sales contracts, etc.); while some keys used to secure real-time data 
may not be of interest to the communicating parties after the session is over. 
Deciding which keys need to be deposited in the TTP for the recovery of 
encrypted data is a critical issue. This is particularly a problem when the 
potential depositor has a different expectation of the lifetime of the key’s 
usefulness than LEAs. For example, as noted above a set of communicating 
parties might have no interest in escrowing the master key used for a corporate 
videoconference, while a government regulator might want to have access to 
this key (potentially many years after it was deposited). Thus the expectation 
of LEA is that all keys would be escrowed, leading to a lot of keys needing to 
be deposited with the TTP. This is a challenge for key escrow system as they 
must implement a suitably scaled system. 

A successful key escrow implementation needs to address a lot of challenges and 
potentially suffers from lots of vulnerabilities when deployed on a large scale. At 
present there are no successful implementations of a large-scale key escrow system. 
Eric Verheul, et al. have presented the necessary and desirable criteria for the 
deployment of worldwide key escrow system and also described a new concept of 
using a PKI as a fraud detection alternative to key escrow system that will not hamper 
law enforcement [24]. 

However, there is still pressure from governments on telecommunication 
operators and manufacturers to adopt key escrow in order to reduce the difficulties 
that LI faces. In this thesis project we will assume that there is an operational key 
escrow system and that registered users can use this system. Issues of the cost of 
becoming a registered user and the cost of retrieving a key from one or more TTPs are 
outside the scope of this thesis project. 

In this thesis it is assumed that one or more TTPs exist and that they have 
implemented a suitably scaled infrastructure to receive all of the keys that their 
registered users wish to deposit. However, this thesis project will consider the time 
and communication overhead required to authenticate the registered user to the TTP 
and to deposit a key. 

2.6 Secure Real Time Transport Protocol 
The Secure Real Time Transport Protocol (SRTP) [25] is an application layer 

protocol that is designed to secure the Real Time Transport Protocol (RTP) traffic. 
SRTP defines a secure profile for RTP that provides message encryption, message 
authentication and integrity protection, and replay protection to every RTP packet for 
both unicast and multicast applications. Just as RTP is closely related with the Real 
Time Transmission Control Protocol (RTCP) -- which provides control functionality 
for an associated RTP session; SRTP has a sister protocol Secure Real Time 
Transmission Control Protocol (SRTCP) that provides the same security to RTCP as 
SRTP provides to RTP. 

The security services (confidentiality, integrity and authenticity, replay 
protection) provided by SRTP are optional and independent from each other except 
that SRTCP integrity protection is mandatory because alternation of RTCP could 
disrupt the processing of the associated RTP stream[25]. Moreover, the use of SRTP 
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is independent of the underlying transport protocol. Thus SRTP can protect RTP 
transported over UDP, TCP, or any other transport protocol. 

SRTP provides security services to RTP on a per packet basis. It provides 
confidentiality to the RTP payload by encryption and provides integrity protection to 
both the header and payload of every packet by adding an authentication tag. Figure 
2-3 shows the format of an SRTP packet. The (large) blue box shows the packet 
contents that are integrity protected and the (smaller) green box shows that only the 
actual payload of the RTP packet is encrypted. 

 

Figure 2-3: SRTP packet format 

There are two additional fields that can be present in an SRTP packet. The first 
(optional) field is a variable length Master Key Identifier (MKI) field. The MKI field 
is used by the Key-Management protocol and determines which master key has been 
used to derive the session keys. Additionally, the MKI can also be used by the Key-
Management protocol for re-keying in order to identify a particular master key within 
the cryptographic context. The other optional but recommended field is an 
authentication tag that has a configurable length and provides authentication of both 
the RTP header and payload. This field also indirectly provides replay protection by 
authenticating the packet’s sequence number. 

One of the important optimisations used in SRTP is the use the RTP sequence 
number rather than adding a new field in the SRTP header. A sequence number is 
necessary for synchronization, which in turn is a prerequisite for security processing. 
However, the sequence number in the RTP header is only 16 bits -- which implies that 
this sequence number will recur after every 216 packets. This small sequence number 
range would require re-keying and re-keying would require the execution of a key 
management protocol, which is undesirable and resource consuming. SRTP solves 
this problem by extending the RTP sequence number with a 32 bit local counter called 
the Rollover Counter (ROC). This ROC is incremented when there is a wrap of the 
RTP sequence number. The ROC together with the RTP sequence number is known 
as the SRTP Index or simply Index. This index is used to generate session keys. 
Fortunately, there is no need to transmit the ROC in the packet, limiting the expansion 
of the packet, which is big advantage of SRTP over alternative protocols that do not 
take advantage of the existing RTP sequence number. 
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2.6.1 Cryptographic context and key derivation 
To provide security to an RTP session the sender and receiver must keep 

cryptographic state information (security parameters) known as cryptographic context 
for each media stream. Some examples of these security parameters are: the per 
packet SRTP index, the key(s), an indication of the cryptographic algorithms used, 
key derivation rate, key lifetime, and current ROC. Some of these parameters are 
fixed for the duration of the entire session, while others need to be updated per packet. 
SRTP uses different keys for encryption and authentication. SRTP actually requires 
six different session keys for the protection of each RTP media stream. Three of these 
session keys are required for the RTP traffic and a similar triplet are used to protect 
the associated RTCP traffic. All of these session keys are generated from a single 
master key. The master key is the key that was exchanged via the key management 
protocol (e.g. MIKEY) (In our case we will escrow this master key with an escrow 
agent at the end of a session.). 

SRTP uses a key derivation function in the form of a pseudo-random function 
(PRF) which takes the master key and some other parameters as input, then produces 
the six session keys as output (see Figure 2-4). The other inputs to the PRF are a 
master salt key provided by the key management protocol, derivation rate, and a label 
(the SRTP index) [26]. The master salt key is used to prevent key collision and time-
memory trade-off attacks. The complete process is also known as key splitting. 

 

Figure 2-4: SRTP key splitting (Adapted from [26], Figure: 24) 

2.6.2 SRTP packet processing 
This section briefly explains how SRTP packets are processed at both sender and 

receiver. The following subsection will briefly explain the cryptographic algorithm 
used for encryption and authentication 

SRTP at the sender takes an RTP packet as input and transforms it into an SRTP 
packet and forwards it to a transmission layer protocol for transmission. The first task 
when processing an SRTP packet is to retrieve the correct cryptographic context. The 
next task is to derive the session keys from the master key. The RTP payload is 
encrypted using the appropriate session key and if message authentication is required 
then a message authentication code is calculated and appended to SRTP packet. 
Optionally a MKI field can also be added. The resulting SRTP packet is passed to the 
transport layer for transmission to the receiver. 

Upon the arrival of the SRTP packet at the receiver the first task is to retrieve the 
appropriate cryptographic context to be used. The next task is key splitting to generate 
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session keys from the master key. The next task is to check whether the packet is 
replayed or not. SRTP performs this check by comparing the SRTP index against a 
replay list. Next the receiver authenticates the packet. The packet is dropped if 
authentication verification is unsuccessful or the packet is a replay. Otherwise the 
packet’s encrypted portion is decrypted and the authentication tag is removed and the 
RTP packet is forwarded to the next higher layer for processing. 

2.6.3 How encryption and authentication is done? 
By default SRTP uses the Advanced Encryption Standard (AES) for 

encryption/decryption of the RTP packet’s payload to provide confidentiality. This 
algorithm was chosen due to its low computational requirements. AES can be used 
with various lengths of keys and block sizes. In SRTP, a 128-bit block is encrypted 
with a 128-bit key. SRTP supports two kinds of stream ciphers. The differences 
between these two different streams ciphers are the mode AES is run in: counter mode 
or f8 mode. The AES algorithm is used in a chain to produce a stream of keys that are 
used as a one time pad to encrypt the actual data by a bit wise logical XOR operation. 
AES in counter mode is the default method used by SRTP. When AES is run in 
counter mode, AES is applied to consecutive integers to build a key stream. Figure 
2-5 depicts the operation of AES in counter mode. The input to the stream cipher is 
the session encryption key (ke,) some synchronization data called an Initialization 
Vector (IV) -- formed based upon the SRTP index of the packet, the synchronization 
source (SSRC) field carried in the RTP packet header, and the SRTP session salt key. 
In case of f8 mode a similar procedure is used to create the key stream, but the 
difference is that when AES is run in f8 mode the IV depends on additional RTP 
header fields, such as the timestamp, the sequence number, the source identifier, and 
other flags. 

The above method is used to provide confidentiality to RTP, but does not prevent 
an attacker from forging RTP packets. To provide authentication and integrity 
protection SRTP uses HMAC-SHA1 as keyed hash function. Integrity protection for 
RTP includes the RTP header, RTP payload, and the local ROC. The HMAC uses a 
session authentication key (ka) derived from the master key. HMAC-SHA1 produces 
a 160-bit output, which is truncated to 80 or 32 bits to form a message authentication 
tag that is appended to the SRTP packet by the sender. 
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Figure 2-5: AES in counter mode 

The receiver will calculate the hash similarly and check whether the locally 
calculated message authentication code corresponds to the received one. If both 
message authentication codes are equal, then the packet is accepted and sent for play 
out, otherwise the packet is dropped. 

It is important to note here that the authentication of the RTP packet is based 
upon a key that is derived from the same master key that is used to encrypt the RTP 
payload. Thus if a LEA learns the master key used for this session it is possible to 
decrypt the encrypted content and to authenticate the packet. However, given the 
master key it is also possible to forge SRTP contents that would be valid, if this SRTP 
packet were to arrive at the receiver before the SRTP packet that the sender sent, then 
this forged packet would be accepted by the receiver and the actual sender’s packet 
would be rejected as a replayed packet! This is why it is important that the master key 
not be escrowed before the session has ended. 

Further more it should be obvious that given the master key it is possible to forge 
packets and make them appear to be valid packets in an SRTP stream. It is this 
weakness that this thesis project will attempt to overcome. 

2.7 Secure Real Time Transport Control Protocol 
The Secure Real Time Transport Control Protocol (SRTCP) is a sister protocol 

of SRTP that provides security related features to RTCP. More specifically, SRTCP 
provides the security related features of confidentiality, authentication, and integrity 
protection to RTCP. SRTCP provides the confidentiality to RTCP packets by 
encrypting them. It provides authentication and integrity protection by adding an 
authentication tag in the SRTCP packet in the same way as SRTP does for RTP. 
Figure 2-6 shows a SRTCP packet. The shaded portion at the beginning corresponds 
to the SRTCP header. The fields inside the (large) blue box are integrity protected and 
fields inside the (smaller) green box are encrypted. 
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Figure 2-6: SRTCP packet format 

SRTCP adds three mandatory fields (SRTCP index, encryption flag ‘E’, and 
authentication tag) and an optional MKI field. The encryption flag ‘E’ indicates 
whether the SRTCP packet is encrypted or not. The SRTCP index is a 31-bit field, 
which is an explicit index in contrast to the implicit index utilized by SRTP. The index 
value is set to zero before the first packet is sent. For every consecutive packet this 
value is incremented by one. If re-keying is required, then this index value must not 
be set to zero again and the situation is same for SRTP. For SRTP as the rollover 
counter is 32 bits long and the sequence number is 16 bits long, the maximum number 
of packets belonging to a given SRTP stream that can be secured with the same key is 
248 using the predefined transforms. After that number of SRTP packets have been 
sent with a given (master or session) key, the sender must not send any more packets 
with that key. However, since SRTCP uses an explicit index of 31 bits the number of 
packets that can be secured with SRTCP is 231.These limitations provide an upper 
bound on the amount of traffic that can pass before the cryptographic keys are 
changed [25]. 

The last mandatory field is an authentication tag, which is a 32-bit field by 
default, but whose length is configurable. This field contains authentication data 
similar to that for SRTP. The main difference is that in case of SRTP integrity 
protection was optional, but in the case of SRTCP it is mandatory. The motivation 
behind this is that RTCP is a control protocol, i.e., it can perform critical operations 
(including terminating the session), hence it is important to ensure the integrity of 
each SRTCP packet. 

SRTCP shares most of the security parameters of SRTP, including the master 
key and the kinds of protection that are offered. However, a separate protection suite 
can also be specified for the RTCP traffic; the optional MKI field can be used to 
indicate this alternative suite. By using an alternative suite it is possible to expose the 
SRTCP traffic to an operator, for example for network management and quality of 
service (QoS) purposes; while preventing the operator from being able to decrypt the 
SRTP traffic. 
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2.8 Multimedia Internet KEYing (MIKEY) 
MIKEY is a key management protocol that provides an efficient key agreement 

mechanism for peer-to-peer and (small to medium sized) group communication. 
MIKEY was designed to provide key management functionality for IP multimedia 
communication in heterogeneous networks. A multimedia session may include several 
media sessions, such as a bi-directional audio stream, a bi-directional video stream, 
and/or and a HTTP session [26]. To protect these separate media sessions different 
security protocols may be required (e.g., SRTP for audio and video sessions and TLS 
for HTTP sessions). A separate key management protocol may be required for 
separate security protocols to exchange security parameters and keys. However, 
running several different key management protocols for a single multimedia session is 
not a satisfactory solution, as every key management protocol adds delay due to 
extensive cryptographic operations and due to the impact of the roundtrip time of 
messages that must be exchanged. Minimizing the delay for multimedia key exchange 
was one of the design considerations of MIKEY. A novelty of MIKEY is its ability to 
instantiate the security of all media sessions within a single multimedia session in a 
minimum amount of time. 

The data stream protected by a single instance of a security protocol (i.e., a 
secure session) is known as a crypto session and the multimedia session for which 
MIKEY is negotiating security parameters is called a crypto session bundle. A crypto 
session bundle is a collection of several crypto sessions. MIKEY can exchange 
separate Traffic Encryption Keys (TEKs) for each crypto session or alternatively it 
can agreed upon on a TEK Generation Key (TGK) for the whole crypto session 
bundle from which separate TEKs can be generated for each crypto session in a 
secure way. In the case of SRTP, this TEK acts as session master key. Figure 2-7 
shows the basic key agreement of MIKEY for a data security protocol such as SRTP. 

 

Figure 2-7: MIKEY key agreement procedure (Adapted from [27], page 33) 

Figure 2-7 shows that MIKEY generates keys for a data security protocol. 
However, the MIKEY message itself encrypted and integrity protected in order to 
provide end-to-end security between communicating peers. Thus MIKEY generates 
keys for itself, in order to encrypt the message and the security parameters that will be 
signalled in-line. The cryptographic context used to encrypt the TGK/TEK depends 
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on the method used, e.g., a pre- shared or public key infrastructure (i.e., Certificate 
based). A MIKEY message (in an Initiator or Responder message) may contain 
several payloads, each containing different fields for carrying the relevant information 
and signalling. An example payload is shown in Figure 2-8. Here the encrypted data 
field contains the actual encrypted key material and other relevant fields containing 
the necessary information for this encryption scheme, such as encryption algorithm, 
length of the key, etc. 

 

Figure 2-8: MIKEY message payload (Adapted from [26], page 40) 

Another design goal of MIKEY was to minimize the number of round trips 
required for negotiating security parameters or cryptographic context. All other key 
management protocols require at least three round trips for successful key agreement. 
In contrast, MIKEY requires only one or a half roundtrip depending on the specific 
method used. A challenge-response method is frequently used by a key management 
protocol for authentication and replay protection; however, this requires at least three 
messages. On the other hand MIKEY adopts a two-way handshake (one round trip) 
method instead of a challenge-response (i.e, a three way handshake) method that uses 
a timestamp as challenge. Actually, MIKEY incorporates the key agreement process 
into the media negotiation process. The media negotiation uses only two messages 
and is usually performed using an offer/answer model via the Session Description 
Protocol (SDP). In this process the initiator makes an offer based upon its own media 
processing capabilities and the responder choose among the proposed media streams 
(each with their own encoder/decoder (CODEC) and other parameters). Next 
subsections briefly explain three different methods that can be used by MIKEY. 

2.8.1 MIKEY Methods 
MIKEY provides three different variants of key agreements: pre-shared key, 

Public Key Encryption, and Diffie-Hellman [28] exchange. In the first two methods 
the keys are pushed to the recipient in a secure way and the key agreement procedure 
can be completed within one half or a single roundtrip; but in case of the Diffie-
Hellman exchange method both communicating parties must contribute to form the 
key and a single full roundtrip is always required to complete the key agreement 
procedure. 

2.8.1.1 Pre-Shared Key method 
In the pre-shared key (PSK) method both peers posses a shared key (K) prior to 

communication between them. This pre-shared key (K) is used to derive an 
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encryption key (Ke) and an authentication key (Ka) through a key derivation function. 
Figure 2-9 shows the pre-shared method. 

 
Figure 2-9: Pre-shared method of MIKEY   

Where, [ ] indicates optional parameters and { } indicates zero or more occurrences of a 
parameter, HDR=Header Payload, T= Time, RAND=Random value, IDi=Initiator 

identification, IDr=Responder Identification, SP=Secure Policy Payload, 
KEMAC=Encrypted sub payload containing TGK and MAC, V= Verification Payload 

carrying MAC of the entire message (Adapted from Figure 14 of [26]) 

The INIT_MESS is created by the initiator. This message includes several fields 
as shown in Figure 2-9. The Header Payload field (HDR) contain the identifier of the 
crypto session bundle, number of crypto sessions, and a method for mapping the 
crypto sessions to the data security protocol (currently only supports SRTP) for which 
MIKEY is exchanging the parameters. The Secure Policy Payload (SP) field contain 
the security parameters for setting up the data security protocol. The most important 
field is KEMAC; this includes the encrypted sub payloads (see Figure 2-8) carrying 
the TGK/TEK and a message authentication code. Upon receiving the INIT_MESS, 
the responder first checks the authenticity of the message based on the message 
authentication code value. Next the receiver retrieves the SP and TGK/TEK and if 
requested by the initiator, then the responder sends back a RESP_MESS. 

2.8.1.2 Public Key Encryption method 

Public Key Encryption (PKE) method is similar to the pre-shared method. 
However, each peer requires a pair of public/private keys for encryption and 
signature. Figure 2-10 illustrates the PKE method used by MIKEY. It differs from the 
pre-shared method in that instead of using a pre-shared key to generate the encryption 
key (Ke) and authentication key (Ka,) a random envelope key is first generated – this 
envelope key is in turn used to generate Ke and Ka. This envelope key is encrypted by 
the initiator using the responder’s public key and sent to the responder in the PKE 
field. 
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Figure 2-10: Public Key Encryption (PKE) method of MIKEY  
Where, CERTi= Initiator Certificate , PKE field Contain envelope key encrypted 

with responder’s public key SIGNi field contain the signed value of the message by 
Initiator’s private key CHASH field contain an indication of  which public key of the 

responder has been used (Adapted from Figure 15 of [26]) 

2.8.1.3 Diffie-Hellman method 
The Diffie-Hellman (DH) method is optional and requires a full round trip to 

complete the key agreement. This method differs from the first two methods as the 
key is not pushed to the peers, but rather each peer contributes to form the key. 

In this method, both peers need to have public/private key pairs for signatures in 
order to authenticate each other and to protect against a man-in-middle attack. This 
scheme is the most computationally intensive due to the increased number of public 
key operations, but provides both greater flexibility and perfect forward secrecy. 
Figure 2-11 illustrates the Diffie-Hellman method of MIKEY key agreement. 

 

Figure 2-11: Diffie-Hellman method of MIKEY  
Where, DHi field contain the Diffie-Hellman public value calculated by Initiator DHr 
field contain the Diffie-Hellman public value calculate by responder (Adapted from 

Figure 16 of [26]) 

2.9 Minisip 
Minisip [29] is a SIP user agent that has been developed by students at KTH and 

others. It has been used as the platform for a number of master’s thesis projects, 
including the first public implementation of SRTP [27] and the first public 
implementation of MIKEY [30]. Details of the design of minisip and its 
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implementation decisions and performance are given in the licentiate thesis of Erik 
Eliasson [31]. 

The functions of minisip that have been utilized are shown in Table 1. Details of 
the modifications to minisip to implement the proposed design are described in detail 
later in the thesis. 

 
Table 1: Some important functions of minsip that have been utilized 

Function Name Library Description 

getSignature( ) Libmcrypto To implement the signing operation we will 
use the getSignature( ) function of the 
SipSim class of libmcrypto library. This 
function is used to compute a digital 
signature of fixed size data provided the 
private key of signeer. The getSignature( ) 
function is a virtual function defined in the 
SipSim class and implemented in the 
SipSimSoft class. 

hmac_sha1( ) Libmcrypto This function provides the hashing 
operation. The hmac_sha1( ) function takes 
variable size data and produces a fixed size 
hash using the HMAC_SHA protocol. We 
will use this function to calculate the hash 
of SRTP blocks.  

genAuth( ) Libmikey This function generates the authentication 
key from the master key. This function is 
defined inside the KeyAgreement class. The 
authentication key is used as one of the 
parameters for hmac_sha1( ). 

tgk( ) Libmikey This function returns the session master key 
for the current session. This master key is 
used to generate several session keys. We 
will escrow this master key with our escrow 
agent. This function is defined inside the 
KeyAgreement class.  



 

Chapter 3: Related Work 
In this chapter some related work concerning detection or prevention of the 

forgery of RTP content and how to obtain the session keys for a secure VoIP session 
are presented. Section 3.1 describes research dealing with ensuring the 
non-repudiation of a VoIP conversation by using asymmetric cryptography. Relevant 
work dealing with obtaining the session encryption key for a CALEA compliant 
network is presented in section 3.2. Finally a secure protocol to establish a session’s 
symmetric key is described in section 3.3. 

3.1 Security and non-repudiation for a Voice-over-IP 
conversation 

Hett et al. [32] [33] presented a way to provide non-repudiation for a VoIP 
conversation. They mainly focused on ensuring the integrity of a voice conversation; 
authentication of the speakers; and the ability of the speakers to have non-reputability 
after a call has completed. To achieve these goals they computed a digital signature 
over the whole conversation in both directions. They used public key cryptography to 
perform the signing of data and they assumed a PKI structure was available. 

The main scenario for this work is a bi-directional interactive conversation 
between two parties where one party signs the conversation and sends it to the other 
party as a declaration of his or her commitment to this content. Both parties sign the 
complete conversation including both channels (comprising everything that each party 
has said). Both parties also store the signed conversation in a secure archive. As a 
result, either party can later prove to third parties or a court that the call occurred or 
the call consisted of the claimed contents. If either party fails to store the conversation 
in an archive or deletes it, then the other party can deny that the call ever occurred. 

Instead of signing individual RTP packets the authors introduced a new concept 
of intervals and interval signatures. The complete session is divided into intervals and 
all of the packets in an interval are collected together and a hash is computed over 
these packets. For the sake of simplicity the authors have used timer-based events. 
Every second the collected packets are sorted by sequence number and their hashes 
are assembled in a data-structure with additional meta-information, such as direction, 
sequence numbers, and time. This small data-structure is then signed with a 
conventional signing algorithm (such as RSA) using the private key of the sender. 
These signed values are then sent to the other party who then stores them together 
with the collected RTP packets he or she actually received. Note that the RTP packets 
containing the content of the session are transported only once as in a normal RTP 
stream. 

In this approach signatures and hashes are interleaved to ensure that there is a 
continuous stream of signatures building an unbreakable chain. The reason behind 
interleaving the signatures and hashes is that if they were separated an attacker could 
replace some part of communication or could cut the signatures out. Additionally, these 
researchers suggested using biometric data contained in the natural language content 
for speaker dependent identification in order to detect forgery of call contents. 
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3.2 A CALEA compliant network to obtain session encryption 
key  

In [34], Stephen D. Guhl has examined the impact of SIP signalling messages 
and media stream encryption and a proposed architecture for a key management 
system that would obtain session encryption keys used in a VoIP session. The author 
also claimed that the architecture will provide law enforcement with a more timely 
ability to obtain and decrypt signalling and media data without reducing the security 
of the Internet or users and that the architecture would also be applicable to 
Communication Assistance for Law Enforcement Act (CALEA) compliant networks. 
For proper functioning of the architecture some requirements must be pre-established. 
One such requirement is the availability of session keys to the ISP. If an end user 
attempts to establish a secure session (media and signalling) over SIP using keys not 
available to the ISP, then the session set-up will be rejected and a corresponding error 
message will be sent to user as a response message. The user agent will then be 
offered a negotiation process to establish credentials (i.e., session encryption keys) in 
an authenticated secure manner. If LI is required for the current session, then keying 
information will be stored with a timestamp correlating it with the media and 
signalling session; otherwise the keys will be retained until the current session ends – 
when they will be discarded. Another requirement for the proposed architecture is the 
use of RSA digital signature cryptography and its use of a public key infrastructure. 

Two approaches have been introduced to resolve the security issues concerning 
how to obtain the session encryption keys. In both cases, the key issue is that as the 
architecture utilizes public key cryptography, hence some means is necessary to 
obtain the corresponding private key. In either of the approaches the SIP proxy server 
needs to be modified to adapt to the new architecture. As an alternative the author 
proposed the use of a Session Border Controller (SBC) as an intermediary to establish 
a SIP session. The SBC acts as a user agent server to establish a border between the 
public and private VoIP network. To accomplish this, the SBC utilizes a back-to-back 
user agent (B2BUA) that responds to SIP requests from any user agent in the public 
network, then apply policies and finally forwards the modified request to the target 
user agent in the private network. When a call is initiated from the private network, 
then the B2BUA functions in reverse. In the next subsections we briefly describe two 
approaches proposed by the author. 

3.2.1 The LI mediation device initiating the acquisition of the private key 
In this approach the mediation device initiates the process to obtain the session 

keys. When a LEA requests a LI the mediation device will determine the relevant the 
certificate authority (CA) and obtain the private keys of the appropriate parties in an 
secure manner. If a user agent now initiates SIP signalling to set-up a call the SBC 
will query the mediation device to verify whether the private keys have been obtained 
or not. If SBC gets a positive response, then it informs the mediation device that a call 
has been established and sends interception related information (including the session 
key) to the interception point and allows the call to be established. If the SBC gets a 
negative response this means the call is not subject to LI, thus the SBC will wait for 
an appropriate amount of time before allowing the call to continue. The reason for 
waiting is to ensure that all calls have a similar call set-up delay - whether subject to 
intercept or not. Without this additional waiting, it would be possible for the subject to 
detect that their calls were subject to intercept by monitoring the call set-up delay. 
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The major drawback of this approach is the exposure of the session’s private 
keys; hence the Internet community is very reluctant to implement such a scheme. 

3.2.2  Session border controller intermediary security negotiation 
In this approach the user agent negotiates with the local SBC for security 

purposes using the public key of the SBC for the S/MIME encryption of messages to 
be sent to the SBC. The SBC will use its private key for encryption when establishing 
S/MIME or other security requirements. There will be SBC to SBC negotiation (as 
necessary) to complete the security negotiation process. The initiating user agent 
establishes a SIP signalling session with the local SBC. This communication may 
utilize specific pre-established security suites for SDP authentication, integrity, and 
privacy. If the user agent is subject to LI, then the SBC obtains the required intercept 
related information and forwards this to the mediation device. Before sending the data 
the SBC establishes a mutually authenticated secure connection to the mediation 
device using a defined cipher suite for encryption and integrity protection. In addition 
to sending the interception related information the SBC will also send the negotiated 
keys for the SRTP session to the mediation device at the end of the key negotiation 
process. If the message contents are required for LI, then SBC will capture individual 
packets and forward them to the mediation device after getting the proper instructions 
from the Mediation Device. Finally the mediation device will forward all relevant 
intercept related information and call content (over a secure channel) to the LEA. 

This approach has some advantages over the former one. In this approach no 
new security infrastructure is created with the ISP and the user agent has the freedom 
to choose any set of standard cipher suite to secure a conversation. 

The author has performed simulations and the results of this modelling have 
demonstrated that utilizing a SBC as an intermediary device in a LI process is a 
reasonable solution to provide the desired security to the user agent and at the same 
time providing accessibility of call contents and intercept related information to a 
LEA. The simulation results also suggest that the number of LI processed on a single 
SBC should be kept under a threshold, otherwise the processing will exceed the 
available resources of the SBC. 

3.3 VIPSec  
Zisiadis et al. [35] have presented a voice interactive personalized security 

(VIPSec) protocol for media path key exchange to securely establish a symmetric 
session key for ensuring end-to-end secure communication. Although not directly 
related to our work, VIPSec is presented here as it is deals with voice communication 
security. 

VIPSec is a symmetric key exchange protocol that uses the media path to 
exchange the symmetric key during the call set-up, i.e., before any voice 
communication starts. This symmetric key is used to encrypt/decrypt any media 
exchanged by the application layer for this session. The communicating peers commit 
to a challenge/signature token exchange before the voice communication takes place 
and the integrity of these signatures are confirmed verbally when the voice 
communicates starts. The main idea of VIPSec is that the users initially exchange 
random numbers encrypted with their private keys, then they exchange their 
respective public keys. The reason behind the exchange of public keys is that VIPSec 
does not rely on a Public Key Infrastructure (PKI). Next the initiator of the session 
creates a symmetric key, encrypts it with the public key of the responder and sends it 
to the responder. At this point a symmetrically encrypted communication channel is 
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established. Finally, both the initiator and responder verbally confirm the exchanged 
numbers as a proof of integrity protection. 

VIPSec is based on some predefined assumptions and the author claims some 
unique cryptographic features. Table 2 shows some of the important cryptographic 
features claimed by the authors. Experimental analysis of VIPSec suggests that typical 
end user terminals easily meet its requirements. Moreover, the authors also suggest 
that by optimising the application’s performance and considering the low requirement 
upon the end device that its global use is feasible. 

 
Table 2: Some Cryptographic features of VIPSec protocol [35] 

• VIPSec does not rely on a public key infrastructure (PKI). 
• VIPSec uses one-time keys instead of using permanent keys. 
• It uses one time signature commitment and per session random numbers 

as the exchanged object. Alternatively, it can also use one time biometric 
user data such as photos, voice recordings, videos, etc. 

• VIPSec can detect a man-in-the-middle attack by having the users 
verbally compare the received objects. 

• It has perfect forward secrecy; as the keys are destroyed at the end of 
every call. 

• It does not rely on SIP signalling for key management. It performs the 
key management and key agreement in a purely peer-to-peer fashion.  

• VIPSec provides two verification levels: medium (voice verification) and 
hard (video verification). 



 

Chapter 4: Key Escrow Agent  
This chapter starts by describing the design and implementation of a key escrow 

agent as a TTP and how to escrow a session key with the escrow agent. Security 
parameters required to escrow with the session master key to generate the session 
keys are presented in section 4.2. Section 4.3 describes the mechanism to escrow the 
session master key and other necessary parameters from a user agent along with the 
necessary implementation details. Finally, section 4.4 discusses the time and place to 
escrow the key with the escrow agent. 

4.1 Escrow agent and escrow database 
A very simple escrow agent has been implemented using the Apache web server 

with MySQL database support. The primary task of the escrow agent is to receive the 
key from an authenticated user and after proper validation of the received data to store 
the escrowed data in a secure database. Figure 4-1 shows the general architecture of 
our escrow agent. The web server is enabled with Secure Socket Layer (SSL) 
functionality so that user agent can use secure HTTP (HTTPS) to escrow the key with 
the escrow agent. To enable the SSL capability of the Apache web server a script has 
been used that automates the complete process (see Appendix A). 

The escrow server listens on TCP port 443§. Upon reception of a request from a 
client the server first authenticates the user using the key value pair appended to the 
URL. The escrow agent uses an authentication table that stores the list of all valid 
users who can escrow keys. In a commercial escrow agent this would be a list of 
subscribers. When the authentication is successful it inserts the data to be escrowed 
(passed as the third key value pair) into the escrow database. Before inserting the 
value into the database a validation check is performed so that no SQL injection 
attack can be performed. 

                                                 
§ This is the TCP port number assigned by the Internet Assigned 
Numbers Authority for HTTPS traffic. See 
http://www.iana.org/assignments/port-numbers - last updated 
2009.12.08. 

http://www.iana.org/assignments/port-numbers
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Figure 4-1: General architecture of the Escrow agent 

4.1.1 Escrow database 
A MySQL database has been utilized to store the session master keys that have 

been escrowed by SIP user agents. The database consists of two tables: one for 
authentication data and the other for the escrowed data. Figure 4-2 shows the general 
structure of the escrow database. The authentication table stores the username and 
password of the valid users who can escrow data with our escrow agent. In this 
implementation the SIP URI has been used as the username so that only users 
registered with the proxy server are able to escrow data with this escrow agent. The 
password is manually assigned and is established when a user is added to the 
authentication table of the database. How this password is communicated to the user 
and their user agent is outside the scope of this thesis project. We simply assume that 
there is some secure off-line method of doing this. 
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Figure 4-2: General Structure of the escrow database 

The sipmaseterkey table stores the actual key along with other parameters that 
are needed (or useful) if the escrowed information is to be used to recover the 
contents of a SRTP or SRTCP stream. What parameters are necessary to escrow along 
with the TGK is presented in the next section. The sipmasterkey table also contains a 
date field that stores the current local time as a timestamp to record when the entry in 
the table was made.  

4.1.2 Implementation details 
A small PHP script has been written to automate the whole process. Listing 1 

shows this PHP script. 
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<?php  
 include("config.php"); 
 $user = trim($_GET['user']); 
 $pass = trim($_GET['password']); 
 $data = $_GET['data']; 
//Preventing SQL injection 
 $user = mysql_real_escape_string($user);  
 $pass = mysql_real_escape_string($pass); 
 $data = mysql_real_escape_string($data); 
 
  
//parse the data 
     $pieces = explode("%", $data); 
  
 $login = 0; 
      if($user == "" || $pass == "" || $data == ""){ 
   print("malformed URL"); 
 } 
 else{ 
//authenticating valid user of the system from authentication table 
     $result = mysql_query("SELECT * FROM authentication where 
user_name = '$user' and password  = '$pass'") or die(mysql_error()); 
     while($row = mysql_fetch_array($result)){ 
      $login = 1; 
     } 
      
// If authentication successful then insert the value to the database 
     if($login == 1) 
     { 
mysql_query("insert into 
sipmasterkey(`key`,`rand`,`signedhash`,`csbID`,`date`,`userid`) 
values ('".$pieces[0]."','".$pieces[1]."','". 
        $pieces[2]."','".$pieces[3]."',now(),'".$user."')") or 
die(mysql_error());  
       
     } 
     else 
     { 
      print("<b>User id Or Password not matched</b>"); 
       
     }  
 } 
?> 

Listing 1: PHP script to automate the escrow agent functionality 

4.2 What to escrow? 
We escrow the session master key, i.e., the TEK Generation Key (TGK). This 

key is exchanged by the key agreement protocol MIKEY. This TGK along with some 
security parameters are used to generate the session keys for encryption and integrity 
protection. Table 3 shows the necessary parameters that are required to generate 
session keys from the TGK. From the table we can see that we are escrowing the 
TGK along with the pseudo-random number (Rand) and csbID value. For details 
about these security parameters see section 2.6 and section 2.8. Interested readers are 
encouraged to see [25] and [36]. All these parameters are necessary for the LEA to 
(re-)generate the session keys. Additionally we are escrowing our final signed hash 
value as a marker that indicates the end of a session. 
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Table 3: Security parameters necessary along with TGK to generate session keys  

Parameter 
Need to 

escrow?? Remarks 

Rand Yes 

This value is exchanged at the time of key 
agreement inside a MIKEY message which in turn 
is inside a S/MIME encoded SIP INVITE message. 
Unless this value is stored with the escrow agent 
the LEA would not have access to this value. 

csbID Yes Same as above 

SSRC No 
SSRC is in clear text in the SRTP header, hence 
there is no reason to escrow this value. The LEA 
can recover this value from captured SRTP 
packets 

csID No 

For the Initiator, the sender csID value is always 1 
and receiver csID is always 2; while for Responder 
the csID value is the reverse. The LEA can 
determine the csID value from the captured 
conversation by checking whether the subject is 
the initiator or responder. Alternatively the csID 
value can be generated from the SSRC.  

ROC No The ROC can be calculated from the packet 
sequence number. 

Policy no No 
For the current implementation of minsip the policy 
number is always 0; hence there is no reason to 
store it for this implementation, but this parameter 
might need to be stored in the future. 

4.3 How to escrow? 
To escrow the session master key we are using secure HTTP (HTTPS) and the 

key is transferred along with the URL of the escrow agent by appending a key value 
pair in addition to the key value pairs used to provide the user name and password for 
authentication to the escrow agent. We are using HTTPS to create a secure SSL 
tunnel between the user agent and the server so that data can not be tampered with by 
others and to protect our key from being intercepted. To escrow the session master 
key with the escrow agent from the user agent (in our case: minisip) we use 
libcurl[17], as described previously in section 2.4. We have written our own function 
to escrow the session master key using several functions from the libcurl library. 

4.3.1 Necessary modifications to the minisip code  
To successfully escrow the session master key we have modified two files 

(Mikey.cxx and Mikey.h) in the libmikey library of the minisip source code. In the 
Mikey.cxx file we added a functioned named escrowSessionKey() as a public member 
of the Mikey class. Listing 2 shows our escrowSessionKey() function. In this function 
we first form the URL that will be used by one of the libcurl fuctions to instantiate a 
curl object. While forming the URL of the escrow agent we have used the base_64 
encoding of TGK, Rand, and csbID. 
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Listing 2: escrowSessionKey() inside Mikey.cxx to escrow the session master key where 
the top gray coloured area shows the formation of the URL of the escrow agent with the 

TGK and other necessary parameters and the lower blue coloured area shows the 
invocation of libcurl method. 

void Mikey::escrowSessionKey(unsigned char * signedHash, int 
signedHashLength){ 
    static char errorBuffer[CURL_ERROR_SIZE];     
    // holds the base64 value of the required parameters to escrow 
    std::string tgk_b_64_ecoded; 
    std::string rand_b_64_ecoded; 
    std::string signedHash_b_64_ecoded; 
 
     static string buffer; 
     char * cstr;         
      tgk_b_64_ecoded = base64_encode(ka->tgk(),ka->tgkLength());      
      rand_b_64_ecoded = base64_encode(ka->rand(),ka->randLength()); 
      signedHash_b_64_ecoded = 
base64_encode(signedHash,signedHashLength); 
      const char *csbId = itoa((int)ka->csbId()).c_str(); 
      
     string url1("https://localhost/~saki23/escrow_agent/?user="); 
      
     cstr=new char 
[url1.length()+1+tgk_b_64_ecoded.length()+rand_b_64_ecoded.length()+s
ignedHash_b_64_ecoded.length()+2*ka->uri().length()+100 ]; 
     strcpy(cstr, url1.c_str()); 
     strcat(cstr,ka->uri().c_str());// add sip uri as userid 
     strcat(cstr,"&password="); 
     strcat(cstr,ka->uri().c_str());// add sip uri as password 
     strcat(cstr,"&data="); 
 
     strcat(cstr,tgk_b_64_ecoded.c_str()); 
     strcat(cstr,"%"); 
     strcat(cstr,rand_b_64_ecoded.c_str()); 
     strcat(cstr,"%"); 
     strcat(cstr,signedHash_b_64_ecoded.c_str()); 
     strcat(cstr,"%"); 
     strcat(cstr,csbId);  

 
// Our curl objects 
     CURL *curl; 
     CURLcode res; 
 
  curl = curl_easy_init(); 
  if(curl) { 
     curl_easy_setopt(curl, CURLOPT_URL, cstr); 
 
#ifdef SKIP_PEER_VERIFICATION     
    curl_easy_setopt(curl, CURLOPT_SSL_VERIFYPEER, 0L); 
#endif 
    res = curl_easy_perform(curl); 
    /* always cleanup */ 
    curl_easy_cleanup(curl); 
    if (res == CURLE_OK) 
               cout<< “successfull";          
    else        
         cout << "Error: [" << res << "] - " << errorBuffer;    
  } 
     delete [] cstr; 
} 
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To support HTTPS with a self signed certificate libcurl provides the 
SKIP_PEER_VERIFICATION macro definition. If we want to connect to a site using a 
certificate that is not signed by one of the certificate authorities in the CA bundle we 
have, we can skip the verification of the server's certificate by defining this macro. 
Although it makes the connection less secure, we are using this approach as our 
escrow agent is using a self signed certificate. (Note that when the users receive their 
password to use with the escrow agent the user could insert the escrow agent’s 
certificate into the configuration of their user agent.) 

In the Mikey.h file we have added some header files to support the libcurl 
functions that we use to escrow the session master key. Listing 3 shows the necessary 
modification to the Mikey.h file. 
//Defined to skip the peer verification of self signed certificate 
#ifndef SKIP_PEER_VERIFICATION 
#define SKIP_PEER_VERIFICATION 
/* 
. 
Existing header files 
. 
*/ 
#include "curl/curl.h" 
#include "curl/easy.h" 
#include "curl/types.h" 
//Added to take base_64 value   
#include<libmcrypto/base64.h> 
 
class LIBMIKEY_API IMikeyConfig: public virtual MObject{ 
  
}; 
class LIBMIKEY_API Mikey: public MObject{ 
 public: 
             /* 
              . 
              Existing public members 
              . 
              */        
       //definition of escrowSessionKey method 
       void escrowSessionKey(unsigned char * , int); 
 
 protected: 
             /* 
              .               
              Existing protected members                
              . 
              */  
 private: 
              /* 
              . 
              Existing private members 
              . 
              */        
}; 
#endif 

Listing 3: Partial listing of modified Mikey.h file 
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4.4 When and from where to escrow? 
It is a very important to decide when is the most appropriate time to escrow the 

session key. Since the escrow agent will learn the same session key as the sender and 
receiver, there is a potential for interception & decryption and/or forgery of the 
content of the media streams of the Secure Real Time Control Protocol (SRTCP) 
packets. To prevent real-time interception and decryption of a media stream or its 
associated control stream we only deposit the session key at the end of a successful 
session. Here we need to mention that either initiator or receiver may end a successful 
session. Figure 4-3 and Figure 4-4 show the possible ending of a successful session, 
along with the correct time to escrow the session master key. (Note that in this figure 
we have shown only the time when the Initiator performs the escrow operation, the 
Responder must also perform its own escrow operation when it ends the session. In 
our implementation and testing we have used the same escrow agent for both parties, 
but there is no requirement for this.) 

 
Figure 4-3: Initiator ending the session 

 
Figure 4-4: Responder ending the session 

It is important to note here that the authentication of the RTP packet is based 
upon a key that is derived from the same master key that is used to encrypt the RTP 
payload. Thus if a LEA learns the master key used for this session, it can both decrypt 
the encrypted content and authenticate the packets. However, given the master key it 
is also possible to forge SRTP content that would be valid. As noted previously in 
section 2.6.3, if this forged SRTP packet were to arrive at the receiver before the 
SRTP packet that the sender sent, then this forged packet would be accepted by the 
receiver and the actual sender’s packet would be rejected as a replayed packet! This is 
why it is important that the master key not be escrowed before the session has ended. 

A special case considered in the design is the abnormal termination of a user 
agent in the middle of an active session. If an ongoing call is terminated due to an 
abnormal termination of the user agent (For example by closing the soft phone 
window by clicking the ‘close’ button or by pressing Alt+F4.), then the key associated 
with the current call(s) must be escrowed with the escrow agent. 

4.4.1 Necessary modifications to the minisip code 
As mentioned in the previous section, we need to escrow our session key at the 

end of a successful session, thus we set a flag when a session successful starts. At the 
end of a session we check the flag and invoke the escrowSessionKey( ) method to 
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escrow our session master key along with other security parameters. When a 
successful session starts the start( ) method of the Session class is invoked. A variable 
named escrowFlag is set inside the start( ) method of the Session class and this flag’s 
value will subsequently be checked inside the stop( ) method of the Session class. 
Listing 4 shows the invocation of our escrowSessionKey( ) method. Actually we 
increment the escrowFlag inside the start( ) method. This flag is initialized inside the 
constructor of the Session class with the value zero (0) and decremented inside the 
stop() method. If the escrowFlag is zero (0), then the escrowSessionKey() method is 
invoked. Instead of defining the escrowFlag as a Boolean type we declare it as an 
integer. The reason for this design decision is that there may be multiple media 
sessions (audio and video streams) going on at time, in such a situation we escrow the 
key when all sessions have ended. Since every media session will invoke the start( ) 
method; each invocation will increment the escrowFlag and the end of each session 
will invoke the stop () method resulting in the escrowFlag being decremented. When 
the last session ends the escrowflag will have the value zero (0), hence it is time to 
escrow the session key. 

 
//decrement the escrowFlag 
--escrowFlag; 
         
//check the escrowFlag whether to escrow the key or not 
 
        if(escrowFlag == 0){ 
             
            
         getMikey()->escrowSessionKey(signature,signatureLength); 
 
                    
        }       
 

Listing 4: Code snipped from Session::stop() of libminisip library showing the 
invocation of escrowSessionKey() method after checking the escroFlag 

The default signal handler of the minisip code is designed such that for any kind 
of interruption during an ongoing call it sends a formal SIP ‘BYE’ message to its peer 
before terminating. In the course of doing this minisip invokes the Session::stop( ) 
function. This is another advantage for checking the escrowFlag inside the 
Session::stop( ), as it provides the escrow functionality even in case of abnormal 
termination of the user agent during on-going session. 



 

Chapter 5: Design and Implementation of a 
Solution 
This chapter presents the cryptographic operations performed to implement the 

proposed system in order to support key escrow while enabling the users to detect 
forgery of call content by a LEA and/or escrow agent. A design overview is presented 
in section 5.1. The sections following this overview present the cryptographic 
operations that need to be implemented to realize the proposed model; along with the 
relevant implementation details. How the proposed model can detect forgery is 
presented in section 5.6. 

5.1 Design overview 
In the previous chapter we described the escrow agent and how session keys are 

escrowed by the user agent after the end of a session. The main concern regarding key 
escrow systems is the trustworthiness of the TTP. Since the session keys are stored at 
the escrow agent an unethical employee of the TTP could misuse this information. 
Therefore, some mechanism is required that could make key escrow feasible and 
desirable - while preventing tampering with the communication session’s content. To 
prevent the undetectable fabrication of session content we compute a series of digital 
signatures of the media stream and send them along with the media stream (by 
sending them in the associated SRTCP stream). Figure 5-1 shows the overall 
cryptographic operations performed to facilitate detection of forgery of call content. 

As a first step we create a block of SRTP packets. Determination of the 
appropriate block size is one of the open questions we seek to answer. The reason 
behind creating blocks is that we want to compute the digital signature over a 
collection of packets to reduce the overhead of these expensive cryptographic 
operations. After creating the block we calculate a hash of the block. This hashing 
operation produces a fixed length output. Finally we perform the signing operation on 
the hash value, producing a fixed length signed hash (i.e., a digital signature of the 
hash). To compute the digital signature we are use the private key of the user. Note 
that the private key of the user is not escrowed – nor does any party other than the 
user need to know this private key. While we escrow the session keys used to encrypt 
the media stream, thus the TTP or a LEA who has access to the escrowed session key 
can forge media content, they cannot compute the correct signed hash, as this requires 
the user’s private key. Anyone with access to the recorded conversation, the session 
key, and the user’s public key can readily detect fabrication of call contents, by verify 
whether the hashes computed over the media stream have the correct digital signature 
or not. 

Because we use asymmetric cryptography to perform the digital signature and 
because asymmetric cryptography is much more computationally expensive than 
symmetric cryptography we need to examine (1) if it is feasible to compute such 
signatures during the session and (2) what is a suitable block size (to balance 
computational and communication overhead with the desired granularity of forgery 
detection and the available resources). 

SRTP and SRTCP both make use of symmetric encryption in order to support 
low delay and high throughput for the media streams. However, there is no need for 
the signed hash values to be delivered with low delay – since they are only 
(potentially) relevant after the session has ended. It is the combination of signing the 
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hash of a block of SRTP packet at the same time and lack of any requirement for low 
delay that enables asymmetric public key techniques to be used for signing these 
hashes. 

 

Figure 5-1: Cryptographic overview of the proposed model 

5.2 Creating SRTP blocks 
We create the SRTP blocks in real-time while sending the SRTP packets. We 

create a block based upon a pre-defined block size. After a successful session 
establishment when the media stream starts we collect RTP packets and place them in 
a buffer. When the number of packets in the buffer exceeds the block size 
(BLOCK_SIZE), then we perform the necessary cryptographic operations over this 
block. Figure 5-2 shows a flowchart of these operations. 
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Figure 5-2: Flowchart of SRTP block creation 

A special case occurs when the session ends. For the last block the number of 
packets can range between 1 and the BLOCK_SIZE. We process the buffer (which 
may not be full) and send the final signed hash through the SRTCP/RTCP path. When 
a LEA captures a conversation it should always capture the associated RTCP packets, 
especially the RTCP packet containing the last signed hash value as verifying this 
signed hash can be used to show that there is no additional media content sent 
following the last SRTP/RTP packet. 

The most appropriate block size is a design choice. Increasing the number of 
packets that are processed together in a block will reduce the overhead (in terms of 
additional traffic that needs to be sent and the computation resources used). However, 
larger blocks will increase the delay between the content and the hash over this 
content and will also increase the granularity of any detected forgery. In the next 
chapter, we will discuss the performance for different block size when we evaluate 
our proposed model. 

5.2.1 Necessary modifications to the minisip code  
The libminisp library of the minisip code handles the media streams. Inside the 

MediaStream.cxx file the RealtimeMediaStreamSender class is mainly responsible for 
sending SRTP packets. To create the SRTP block we have added a function 
updateBlock( ) as a member function of RealtimeMediaStreamSender class. Listing 5 
shows the updateBlock( ) function that takes SRTP packet data and packet size as 
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parameters and adds the data to the current buffer (i.e., the current block). This 
updateBlock( ) function is called from the send( ) function of the 
RealtimeMediaStreamSender class. 

void RealtimeMediaStreamSender::updateBlock(char *packetData, unsigned int 
pSize){ 
    memcpy(& rawhashdata[blockSize], packetData, pSize); 
    blockSize += pSize; 
} 

Listing 5: updateBlock () function to incrementally update SRTP block 

The yellow coloured area in Listing 6 shows the invocation of our updateBlock () 
function. 

if (count == 0) 
            rawhashdata = new char [BLOCK_SIZE*packet->size()];   
        

 

    
updateBlock(packet->getBytes(),packet->size()); 
 

(a) 

count++;        
        if (count >= BLOCK_SIZE) { 
          

(b) 

               
       signature = hashAndSignTheBlock();         
     

(c) 

 
       sendSignedHash(&signature);  
 

(d) 

            // reset the counters 
            count = 0; 
            blockSize = 0; 
 
            delete [] signature; 
            delete [] rawhashdata; 
                 } 
 

 

Listing 6: Code snippet from RealtimeMediaStreamSender::send () to deal with 
(a) creating SRTP block (yellow coloured), (b) checking it it time to send the signed 

hash, (c) hashing and signing the block (blue coloured), and (d) sending the Signed hash 
(orange coloured). 

5.3 Hashing SRTP blocks 
Instead of taking the digital signature of the raw SRTP block we first compute 

the hash of the SRTP block, then sign – thus reducing the amount of data that has to 
be processed using the asymmetric key. We use HMAC_SHA [37] as the hashing 
algorithm to calculate this hash. The HMAC_SHA algorithm takes as input an 
authentication key along with a variable size array of data and produces a fixed size 
hash. Figure 5-3 shows the block diagram of HMAC_SHA hash function. The 
authentication key we are using to calculate the hash value is generated from the 
session master key (TGK) that we are escrowing with the escrow agent. Figure 5-4 
shows the block diagram of authentication key generation for HMAC_SHA. When 
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the LEA wishes to verify the signed hash it can generate the same authentication key 
from the TGK to calculate the hash of a recorded session. 

 

Figure 5-3: Block diagram of HMAC_SHA hash function 
 

 

Figure 5-4: Block diagram of authentication key generation for HMAC_SHA 

5.3.1 Necessary modifications to the minisip code 
To implement the hashing operation we have added a function named 

hashAndSignTheBlock( ) as a member function of the RealtimeMediaStreamSender 
class inside the MediaStream.cxx file of the minisip libminisip library. Inside this 
function we invoke the hmac_sha1( ) function from the libmcrypto library. This 
hamc_sha1( ) function in turn invokes the OpenSSL [38] library function that 
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performs the actual hash operation. Listing 7 shows our hashAndSignTheBlock( ) 
function where blue coloured area shows the invocation of the hmac_sha1( ) function. 

unsigned char* RealtimeMediaStreamSender::hashAndSignTheBlock() { 
        
        unsigned char *signature = new unsigned char[200]; 
        unsigned char* hashValue = new  unsigned char [20]; 
        unsigned int hashLength;           
                       

 

// perform hash 
        hmac_sha1( hmacAuthKey, 32, 
                (unsigned char *)rawhashdata,   /*data*/ 
                blockSize,                    /* data length*/ 
                hashValue,                      /*tag*/ 
                &hashLength ); 
 

(a)

// perform signature 
        if (!ka->getSim()->getSignature(hashValue, 
                (int)hashLength, signature, signatureLength, true)) { 
            cout << "\n ERROR : Could not perform digital signature of the 
message"; 
        } 
        else { 
            cout << " INFO : Signature Successful "; 
        } 

(b)

delete [] hashValue; 
 
   return signature; 
} 

 

Listing 7: hashAndSignTheBlock () function to perform (a) the hash (blue coloured 
area) and (b) the signature (orange coloured are) of SRTP block. 

The first argument of the hmac_sha1( ) function is the authentication key that we 
generate from the TGK using the genAuth( ) function of the KeyAgreement class. 
Listing 8 shows the generation of the authentication key for hmac_sha1 inside the 
RealtimeMediaStream::initCrypto( ) function .The blue coloured area in Listing 7 (a) 
shows the invocation of our hashAndSignTheBlock( ) function. 

uint8_t  csId = ka->getSrtpCsId( ssrc ); 
ka->genAuth(csId, hmacAuthKey, AUTH_KEY_SIZE); 

Listing 8: Code snipped from RealtimeMediaStream::initCrypto () showing the 
generation of the authentication key for use by the hmac_sha1 function. 

 

5.4 Signing the hashed blocks 
After computing the hash of the SRTP block we digitally signing the hash value 

producing a fixed length signed hash. For signing we use the RSA [39] algorithm. The 
signing operation uses the private key of the sender; hence the corresponding public 
key can be used to verify the signature. Figure 5-5 shows the block diagram of signing 
operation.  
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Figure 5-5: Block diagram of signing operation 

5.4.1 Necessary modifications to the minisip code 
To implement the signing operation we are using the getSignature( ) function of  

the SipSim class from the libmcrypto library. The orange coloured area in Listing 7(b) 
shows the invocation of the getSignature( ) function to compute the digital signature 
of the fixed size hash value of SRTP block. The getSignature( ) function is a virtual 
function defined in the SipSim class. Figure 5-6 shows the UML of the call to the 
OpenSSL library function to compute a digital signature. The implementation of 
getSignature( ) inside the SipSimSoft class is actually invoked by our 
hashAndSignTheBlock( ) function which in turn calls the signData( ) function of 
Certificate and OsslPrivateKey class. The OpenSSL library function is finally called 
from the signData( ) function of the OsslPrivateKey class to compute the digital 
signature and produce the fixed length signed hash. 

5.5 Sending the signed hash 
The signed hashes are sent via the SRTCP/RTCP path after they are calculated. 

When the LEA conducts a LI, they need to capture both the SRTP/RTP and 
SRTCP/RTCP packets sent by the subjects. As we transmit the signed hashes in the 
RTCP stream, then too will be captured. 

Figure 5-7 depicts the logical view of sending these signed hashes. The 
frequency of sending a signed hash depends on the SRTP block size. As the signed 
hash value is potentially relevant only when the session is over, it does not need to be 
sent with the low delay requirement of the SRTP packets. In our implementation we 
send the signed hashes as soon as they are calculated, but they could be grouped 
together and could be sent in a single SRTCP/RTCP packet which might reduce the 
amount of overhead (this will be discussed in next chapter). 
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Figure 5-6: UML diagram showing the invocation of OpenSSL library functions  
 

 

Figure 5-7: Sending of Signed hash via SRTCP/RTCP path 

5.5.1 Necessary modifications to the minisip code 
To send the signed hash in SRTCP/RTCP path we have added a simple function 

named sendSignedHash( ) as a member function of the RealTimeMediaStreamSender 
class inside the MediaStream.cxx file of libminisip library. Listing 9 shows the 
sendSignedHash( ) function. We send the signed hash sequence number along with 
the signed hash value. The orange coloured area of Listing 7(b) shows the invocation 
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of our sendSignedHash( ) function from the Send( ) function of the 
RealTimeMediaStreamSender class. 

/**  
 * Send the signed hash in rtcp path at remote port +1 
 * First 128 bytes is the signed hash!  4 bytes signed Hash sequence Number  
 */ 
void RealtimeMediaStreamSender::sendSignedHash(unsigned char **signature) { 
 
         // convert the seq number to a string 
         const char *seq = itoa(signedHashSeqNum++).c_str();               
 
             unsigned char *custom_packet = new unsigned 
char[signatureLength+sizeof(seq)/sizeof(char)] ; 
                                
        
         memcpy(custom_packet, *signature,signatureLength); 
         memcpy(&custom_packet[signatureLength],seq,sizeof(seq)/sizeof(char)-1);       
         
         rtcp_sock->sendTo(**remoteAddress,getPort()+1,custom_packet, 
signatureLength+sizeof(seq)/sizeof(char)); 
 
                 delete []custom_packet; 
} 
Listing 9: sendSignedHash( ) function sends the signed hash via the SRTCP/RTCP path 

5.6 Detection of forgery by the proposed model 
In our proposed model we escrow the session key with the escrow agent, who 

acts as a trusted third party (TTP). However, due to the potential for insider misuse 
we are using asymmetric cryptographic operation to detect attempts at forgery of 
contents. In the previous sections we have discussed how we computed the digital 
signature (a signed hash) of the SRTP blocks and send these signed hashes along with 
the control traffic of the associated media stream. In this section we describe how 
these signed hash values of SRTP blocks provide authenticity for recordings of secure 
sessions and enable anyone to detect fabrication of media content. 

As we are sending the signed hash value along with the control traffic of the 
associated media stream anyone who has the public key of the sender can verify 
whether the received session is actually what the sender has sent. This verification is 
shown in Figure 5-8. In this process the verifier (in this case shown as the LEA) 
decrypts the signed hash using the public key of the sender to produce the hash of 
SRTP blocks as calculated by the sender. Next the verifier processes the captured 
session and does the hashing operations (in our case HMAC_SHA) to produce the 
hash of the captured session. If these two hashes are identical, then the captured 
packets have not been changed. Thus the digitally signed hash provides integrity 
protection – using the user’s public/private key pair. 

Note that this integrity protection is in addition to the integrity protection 
provided to the SRTP and SRTCP traffic, but uses a key that has not been disclosed 
to the escrow agent (and by implication not disclosed to the LEA). This prevents 
either the escrow agent or LEA from being able to successfully forge captured 
contents. 
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Figure 5-8: Signed hash verification by the proposed model 

When the LEA captures a session for LI it should capture both the SRTP and 
SRTPC/RTCP packets. The SRTCP/RTCP path carries the signed hash values over 
the SRTP blocks; along with the usual RTCP information. For successful decryption 
of the session the LEA needs the session keys which it obtains from the escrow agent 
after showing proper authorization. Without the digitally signed hashes a dishonest 
employee of the LEA could modify packets in the captured session in order to present 
fabricated evidence in court and the subjects of this LI would have no evidence to 
prove this content was a forgery. 

The LEA employee can forge SRTP packets as he or she has the session keys 
from the escrow agent, but he or she cannot compute the signed hash value as the 
signed hash value is calculated using the private key of the sender. However, the 
signed hash values could be used by the subject (or the court) to detect fabrication by 
the LEA of call contents. In Figure 5-9 we can see that the hash produced from the 
forged SRTP block by HMAC_SHA differs from the hash value produced from the 
signed hash value by RSA decryption operation. Note that if some SRTP packets were 
lost, this too would also produce a different hash value; but we can detect the loss of 
SRTP packets by using the sequence number and will ignore the failed verification of 
the block. 
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Figure 5-9: Detection of forgery by the proposed model 

The proposed model can detect forgery on a block basis, but not on a per packet 
basis (unless the block size in one). Thus we can detect that a block that has been 
forged, but we cannot determine which packets inside a block have been forged. The 
granularity of our forgery detection depends on the block size (i.e., how many SRTP 
packets are grouped together). The smaller the block’s size the finer the granularity of 
forgery detection; however, a smaller block size produces greater computational 
overhead due to frequent signing and hashing operations and will increase the amount 
of information that has to be sent via SRTCP/RCTP. This trade-off will be discussed 
in the next chapter where we will evaluate our proposed model. 



 

Chapter 6: Performance Evaluation and 
Discussion 
This chapter evaluates the performance of the proposed forgery detection model. 

It also presents a detailed discussion and analysis of the performance evaluation 
results. Two aspects of this evaluation are presented in this chapter. The first set of 
evaluations focus on the overhead introduced by our cryptographic operations to 
detect forgery. The second set of evaluations deal with the performance of escrowing 
the master key with the escrow agent. 

6.1 Evaluation criteria 
Quality of Service (QoS) is a central issue to the operation of VoIP. If the QoS of 

a VoIP system is unacceptable, then most of the attractive features (low cost, network 
convergence, increased security, etc.) of VoIP cannot be realized. The QoS that a 
VoIP user experiences can be degraded by the addition and/or poor implementation of 
security measures [40]. For example, the existence of a firewall or NAT can increase 
call set up delay or even block a call[41]; while use of encryption adds delay which 
can produce unacceptable latency and jitter (i.e., delay variation). As we are using 
asymmetric cryptographic operations that take significant CPU resources, there could 
be excessive latency. Therefore, the first criterion of our evaluation is that the delay 
introduced by our cryptographic operations to protect against forgery must not add 
significantly to the delay of the RTP traffic. We first measured the CPU time taken by 
the cryptographic operations, and then we measured the delay of the SRTP/RTP 
traffic. 

To measure the CPU time we have used the Boost c++ library [42]. The class 
boost::posix_time::ptime is the primary interface for computations concerning time. 
The class boost::posix_time::time_duration is the base type for representing the length 
of a period of time. This duration can be either positive or negative. The general 
time_duration class provides a constructor that properly deals with hours, minutes, 
seconds, and fractional seconds. These functions can be used as follows: 

ptime time_start(microsec_clock::local_time()); 
//do something 
ptime time_end(microsec_clock::local_time()); 
time_duration duration(time_end - time_start); 
cout << duration << '\n'; 

The second evaluation criterion is the amount of extra traffic generated due to 
the implementation of our model; as if there is too much additional traffic our model 
might interfere with the session content’s transmission. This extra traffic consumes 
bandwidth (that in some cases may be a scarce resource). A discussion about how 
many extra bytes of traffic are sent and a possible way to minimize this 
communication overhead is also presented. 

6.2 Evaluation of the forgery detection model 
In our implementation we create SRTP blocks by grouping together SRTP 

packets and performing cryptographic operation over the SRTP blocks in order to be 
able to detect forgery of call content later (as elaborated in Chapter 5). How many 
packets should be grouped together is an important decision - as our model detects 
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forgery on a per block basis rather than on a per packet basis (unless the block size is 
one SRTP packet). As a result the forgery detection granularity of our model is a 
function of the block size. If the block size is small, then our model will more 
accurately locate the data that has been forged. On the other hand if the block size is 
too large, the granularity of a detected forgery will be large, i.e., we cannot indicate 
which of many packets have been forged. However, a small block size means that the 
expensive cryptographic operation need to be performed more frequently, which 
requires more CPU resources and could lead to increased delay and extra traffic. 

6.2.1 Delay introduced by the cryptographic operations 
In our experiments we measured the overhead as a function of different sized 

SRTP blocks. Specifically we create blocks of 1, 8, 16, 32, 64, 128, 256, 512, and 
1024 SRTP packets to perform the cryptographic operations according to our 
proposed model and measured the CPU time for each block size. We have examined 
the delay, both in terms of the total delay and in terms of its components. 

Figure 6-1 shows a logical representation of the delay produced by our proposed 
cryptographic model. Note that the label “delay” in the figure represents the 
maximum delay that we can allow without affecting the inter-arrival times of the 
SRTP packets. In the case of G.711, the inter-arrival times of the SRTP packets is 
20ms – minus the time required to process the underlying RTP packet (coding and 
placing the content into the RTP packet) and turning this into an SRTP packet. Note 
that this model assumes that there is a single processor that it doing all the 
computation and that the cryptographic operations for signing have to be completed 
before the next RTP packet can be processed (i.e., that the processing is done 
sequentially and not in parallel) – in practice this need not be true, but it represents the 
worst case effects on the RTP delay of performing these additional computations and 
it represents the current implementation. We will use this assumption of serial 
computation in the discussion that follows. 
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Figure 6-1: Delay produced by the cryptographic operations (Hash+Sign) 

The total delay introduced by our model is the sum of CPU time taken by all of 
the different operations performed. We have broken down the total delay as the delay 
due to the hashing operation, the delay due to the signing operation, and a fixed delay 
due to sending the signed hash value. The measurements were made on a Dell 
OptiPlex GX620 computer with an Intel Pentium D dual core processor running at 
2.8GHz with 2 GB of memory. For detailed information about this CPU see Appendix 
F. In next two subsections we present our test results concerning hashing and signing 
delay for different block sizes. 

6.2.1.1 Hashing delay 
We have calculated the hash time based upon 50 test runs with each different 

block size using the posix::ptime class of the Boost c++ library. Table 4 shows the 
statistics over these measurements for 50 test runs for each different block size. The 
data for each of the individual runs are included in Appendix B. 

Table 4: Statistical data of HMAC_SHA delay measurement in microsecond for 
different block size. These statistical values are calculated for 50 test runs. 

Block 
Size 

Average 
(μs) 

Median 
(μs) 

Minimum 
(μs) 

Maximum 
(μs) 

Standard 
deviation (μs) 

1 8.94 9  8 13 1.202209
8 17    15  13 34 5.656854

16 25.08 21  19 37 6.638908
32 35.82 30  29 49 7.598845
64 52.78 50  49 66 5.207099
128 90.76 89  89 109 4.345112
256 168.58 167.5 167 182 3.35693 
512 325.26 324  323 342 3.355227

1024 648.38 648  638 675 7.298001
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For better understanding of the results we have plotted the data using both R§ 
and Microsoft’s Excel. Figure 6-2 shows an Excel plot of the hashing time for each 
block in microseconds for the 50 test runs; while Figure 6-3 shows an R box plot of 
the hashing time for different block size. From these two graphs we can see that the 
hashing time increases with increasing block size. Figure 6-4 shows the average 
hashing time for different block sizes. 
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Figure 6-2: HMAC_SHA hashing time for 50 test runs of different block size 
          Where, X axis represents the Run number and Y axis corresponds to time in 

millisecond 
 

                                                 
§ http://www.r-project.org  
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Figure 6-3: R boxplot showing the HMAC_SHA hashing time 
 Each box represents individual block size indicated on Y axis and the Time in 

second is plotted on the X axis. 
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Figure 6-4: Averaged hashing time for different block sizes 
 Where, X axis shows the block size and Y axis represents time in milliseconds (ms) 
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6.2.1.2 Signing delay 

We have calculated the signing time for different block sizes based upon 50 test 
runs for each block size; in the same way as we calculated the hashing time. The 
statistical result for the signing time measurement are shown in Table 5. The actual 
measured data for individual run is included in Appendix C. Some plots of the data 
are shown are Figure 6-5, Figure 6-6, and Figure 6-7. From all these graphs it is 
notable that the signing time is almost constant for different block size and that this 
signing time is close to 3.5 milliseconds. The reason behind this nearly constant 
signing time is that we are always computing a signature of a fixed size hash value. 

When the block size is 1 it takes 3.5 milliseconds to perform the signing 
operation. This 3.5 millisecond delay will occur every 20 milliseconds, as each SRTP 
packet contains 20 milliseconds worth of audio samples. On the other hand a block 
size of 128 requires the same overhead of approximately 3.5 milliseconds for signing, 
but this computation will only occur every 2560 milliseconds (i.e., every 2.56 
seconds). 

From Figure 6-6 we see that there is a set of outliers that follow roughly the same 
delay curve as the median values, but with an additional delay of ~1 ms. This is most 
likely due to multitasking, since the Linux scheduler is running with a HZ value of 
1000 (i.e., 1 second divided by 1000 is 1 ms). 

 

 
Table 5: Statistical results of signing time delay measurement in millisecond for 

different block size. These statistical values are calculated for 50 test runs. 

Block 
Size 

Average 
(ms) 

Median 
(ms) 

Minimum 
(ms) 

Maximum 
(ms) 

Standard 
deviation (ms) 

1 3.4466  3.4305 3.376 4.243 0.118869
8 3.47552 3.461 3.417 4.298 0.120857
16 3.49208 3.4705 3.434 4.351 0.126334
32 3.49148 3.475 3.417 4.325 0.122656
64 3.49654 3.477 3.435 4.327 0.124445

128 3.47526 3.459 3.425 4.324 0.123611
256 3.50686 3.4835 3.426 4.354 0.130582
512 3.4977  3.474 3.445 4.358 0.126379
1024 3.50232 3.4765 3.448 4.583 0.157692
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Figure 6-5: RSA signing time for 50 test runs with different block sizes 
 Where X axis represents the run number and Y axis is the signing time in 

milliseconds. 
 

 

Figure 6-6: R boxplot showing the RSA signing time 
Each box represents the signing time for the block size indicated on Y axis and 

time in seconds is shown on X axis. 
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Figure 6-7: Averaged signing time for individual block size  
Where, X axis represent block size and Y axis represent time in millisecond (ms) 

 

There are two curious aspects of these results. One is that for the 32nd run for all 
block sizes, something happens that causes the time to be longer. Second the 
processing time for 128 packets is comparable to the time for 8 packets and shorter 
than the time for all other block sizes (except for 1 and 8 packets). 

Measurements were taken with a slightly different block size than the 128 
which produces a local minimum. These measurement results are shown in Table 6. 
The measured data was plotted to see where the inflection point is. From Figure 6-8 it 
is notable that block size of 129 and 131 also require less signing time compared to 
others block sizes, as the median value of the box plots suggest. A similar result is 
also found in Figure 6-9 where the X axis represents the block size and the Y axis 
shows the average signing time for 50 test runs. The data for each of the individual 
runs are included in Appendix D.   

 
Table 6: Statistical results of signing time delay measurement in milliseconds for 

different block sizes close to 128 to find the local minima. These statistical values are 
calculated for 50 test runs. 

Block 
Size 

Average 
(ms) 

Median 
(ms) 

Minimum 
(ms) 

Maximum 
(ms) 

Standard 
deviation (ms) 

120 3.49344 3.475 3.429 4.346 0.125309765
124 3.49516 3.477 3.44 4.342 0.12402639
127 3.50306 3.4885 3.435 4.344 0.122551515
128 3.46642 3.447 3.426 4.378 0.132443148
129 3.48032 3.4605 3.414 4.32 0.125023172
130 3.49246 3.479 3.42 4.334 0.122959959
131 3.48856 3.476 3.441 4.35 0.137902829
132 3.5061 3.4605 3.455 4.471 0.139973212
136 3.49774 3.4725 3.433 4.345 0.126292794
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Figure 6-8: R boxplot showing the RSA signing time  
Each box in Y axis represents the signing time for the block size close to 128 to find 

the local minima and time in seconds is shown on the X axis. 
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Figure 6-9: Averaged signing time for individual block size closer to 128  
Where, X axis represent block size and Y axis represent time in millisecond (ms) 
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6.2.1.3 Total delay measurement 
The total processing time (as noted in worst case this corresponds to added 

delay) is calculated in a similar fashion as used for calculating the hashing and signing 
time. The total delay includes the signing and hashing time plus the time required for 
sending the signed hash value through SRTP/RTCP path. The statistical analysis of 
these test results are presented in Table 7. The measured data for individual runs are 
included in Appendix E. Plots of the measured data are presented in Figure 6-10, 
Figure 6-11, Figure 6-12, and Figure 6-13, where the first two figures show the total 
delay produced by different size blocks for 50 test runs. 

Figure 6-12 shows the average of total delay introduced by our cryptographic 
processing for different size blocks. From this figure it is clear that the total delay 
increases slowly with increasing block size. In Figure 6-13, the bars show the average 
total delay, signing delay, and hashing delay for different size blocks. This figure 
suggests that the lion’s share of total delay comes from the signing operation and this 
is nearly a constant value. Actually the total delay increases with increasing block size 
due to additional time required for computing a hash over a larger amount of data. We 
can fit a linear curve to the total delay as follows: 

                 Y = m*X + c 
    Where, 
                Y= Total Delay 
                X= Block Size (1, 8, 16, 32, ...)  
                m = Time per packet to hash (constant) 
                c = Signing time (constant) 
From our experimental measurements we see that m=0.07 ms per packet and 

c=3.41 ms. 

The total delay for these computations is directly related to clock speed of 
computer (used as the user agent). A user agent with the same type of processor but 
with a faster CPU will experience less delay; while a machine with a slower CPU will 
experience greater delay. At the same time increasing the block size means less 
frequent production of signed hashes, as the signing occurs on a per block basis. 
However, for smaller granularity of forgery detection we would like to use smaller 
block sizes. So a machine with a faster CPU can utilize a smaller block size and offer 
finer granularity of forgery detection without introducing too much delay. 
Table 7: Statistical results of total delay measurement in milliseconds for different block 

sizes. These statistical values are calculated for 50 test runs. 
Block 
Size 

Average 
(ms) 

Median 
(ms) 

Minimum 
(ms) 

Maximum 
(ms) 

Standard 
deviation (ms) 

1 3.55114 3.513 3.459 4.466 0.183084
8 3.6507  3.626 3.582 4.471 0.12418 
16 3.62252 3.5985 3.548 4.447 0.121999
32 3.63178 3.613 3.53  4.462 0.121999
64 3.68958 3.6695 3.636 4.52 0.12314 

128 3.7219  3.6995 3.66 4.574 0.125689
256 3.78964 3.775 3.739 4.64 0.124207
512 3.9421  3.9255 3.891 4.759 0.119316
1024 4.27708 4.26  4.214 5.074 0.116868
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Figure 6-10: Total delay for 50 test runs of different block size  
Where, X axis represents the Run number and Y axis corresponds to time in 

microsecond 
 

 

Figure 6-11: R plot showing the total delay  
Where, every box represents individual block size indicated in Y axis and Time in 

second is indicated in X axis. 
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Figure 6-12: Average total delay for individual block size 
Where, X axis represent block size and Y axis represent time in millisecond (ms) 
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Figure 6-13: Total delay, signing time and hashing time for different size of block 
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6.2.2 Extra traffic generated by the signed hashes 

To detect the forgery of the call content we send the signed hashes of SRTP 
blocks via the SRTCP/RTCP path. In our current implementation we are sending a 
signed hash (128 bytes) along with a signed hash sequence number (4 bytes) as an 
UDP packet. When sent over an Ethernet there will be an additional 42 bytes of extra 
protocol headers. Figure 6-14 shows the structure of a UDP packet containing a 
signed hash value. For every SRTP block we send only 174 bytes of extra traffic out 
the network interface. Of these 132 bytes are the application data and 42 bytes are 
overhead for the different protocol headers. 

 

Figure 6-14: Signed hash value inside a UDP packet 

The extra traffic generated by our model directly depends on the block size. If 
the block size is small then signed hashes are produced and sent across the network 
more frequently.
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Table 8: Signed hash interval for different size of block. These average values are 
calculated for 50 test runs. 

Block 
size 

Average Inter Arrival 
Time (ms) 

Log2(Block size) Log2(Average Inter 
Arrival time) 

1 20.27826 0 4.34186196 
8 159.89016 3 7.320937345 

16 319.89166 4 8.32143957 
32 639.8549 5 9.321600972 
64 1290.14344 6 10.33331576 
128 2559.78514 7 11.321807 
256 5119.71994 8 12.32184918 
512 10239.58178 9 13.32186917 
1024 20498.5962 10 14.32323749 
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Figure 6-15: Signed Hash Inter Arrival time for different block size  
Where, X axis represent block size and Y axis represent time in milliseconds 
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Figure 6-16: log-log plotwith error bars showing the signed hash inter arrival time  
Where, X axis represent logarithm of block size and Y axis shows the logarithm of 

average inter arrival time 

The 42 bytes of overhead due to the different protocol headers could be reduced 
by sending the signed hash together with a RTCP Sender Report (SR) or Receiver 
Report (RR); as these reports need to be sent by the user agent (see Figure 6-17). The 
default interval between sender/receiver reports in a RTP/RTCP implementation is 
five seconds (5000 milliseconds). 

From Table 8 we can see that for a block size of 256 or more the signed hash 
interval is greater than the RTCP SR/RR interval. Therefore we can place the signed 
hashes inside a RTCP SR/RR for a block size of 256 or larger, hence avoiding the 42 
bytes of extra o  we can either 

) place half o
 the signed hashes and place two signed 

 of extra overhead could be 
SR/RR for blocks of 64 

wer layers, since we will exceed the PATH 
MTU

verhead due to the lower layers. For a block size of 128
f our signed hashes in RTCP SR/RR hence reducing the extra overhead (1

by 50% or (2) we could delay sending half
hashes together with the RTCP SR/RR. Similarly 25%
avoided by placing the signed hash inside the next RTCP 
SRTP packets or four signed hashes could be put in each RTCP SR/RR. 

 Note that since there is no need for low delay for the delivery of the signed 
hashes, there is no reason not to delay sending the signed hashes until an RTCP 
SR/RR needs to be sent. Hence the cost is 132 bytes of signed hash times the numbers 
of hashes that have been done since the last RTCP SR/RR. Table 9 shows a simple 
estimate of the additional number of bytes due to the signed hashes that need to be 
sent as a function of the block size when piggy-backing the signed hashes on the 
RTCP SR/RR packets. Unfortunately, we see that for small block sizes we quickly 
regain some of the overhead due to the lo

 size and will need to fragment the packets. Thus for a block size of 256, 128, 
64, and perhaps even for 32 it may make sense to delay sending the signed hash and 
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exploit the decrease in overhead due to piggy-backing, but this gain is small for 
smaller block sizes. 

Table 9: Increased size of the RTCP SR/RR report to carry the signed hash 

 Block Size 
 

Number of bytes 
1 8448 

8 4224 

16 2112 

32 1056 

64 528  
264 128 
132 256 

 

 

Figure 6-17: Placing the signed hash inside RTCP S
 

 build an escrow agent and to 
escro

 was connected to (1) the same LAN as the user agent or (2) a 

R/RR 

6.3 Escrowing overhead measurement 
One of the major contributions of this thesis is to
w the session master key with this escrow agent. This section discusses the 

performance of the escrow operation. The method of escrowing the session master 
key was presented in Chapter 4:. However, we expect some performance problems 
because we protect the escrowing of a session master key using an SSL/TLS tunnel. 
While this tunnel protects the mastery key and information that is being escrowed we 
have to set-up a tunnel before we can send any information to the escrow agent. For 
simplicity we examined the case where this tunnel must be set up for each successful 
call that has terminated.  

The time required for escrowing a session’s master keys with the escrow agent 
was measured using the same Boost c++ library function described earlier. For testing 
the escrow agent
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different LAN from the user agent. Table 10 shows the measured time for 20 test runs 
of each of these two configurations. Note that in the second configuration the escrow 
agent has been moved to another subnet within the KTH campus network. From these 
measurements we can see that the time to escrow a key (with an escrow agent located 
in the same LAN) is very small, i.e., below 100 ms in most cases. (Note that in the 
first case there are some extra costs as we have to resolve the IP address of the escrow 
agent into a MAC address.) 

Table 10: Time required escrowing a session master key with the escrow agent 

Escrow agent is in the same Escrow agent is in 
Run LAN (ms) different LAN(ms) 

1 112.799 150.966 

2 57.467 99.89  

3 50.889 71.607 

4 80.093 127.361 

5 50.505 73.824 

6 64.092 122.736 

7 49.689 126.988 

8 52.321 72.962 

9 53.778 72.324 

10 51.002 87.847 

11 66.537 125.804 

12 68.26 140.801 

13 66.06 105.576 

14 67.537 173.664 

15 66.5  118.636 

16 67.661 135.4   

17 64.911 136.467 

18 65.772 143.409 

19 64.789 119.72  

20 63.976 129     

Average 64.2319 116.7491 

While the escrow time is tens of milliseconds or more, this time may not be 
significant as key escrow is performed at the end of a successful session. Therefore 
the time required to escrow material has no effect on the media latency, but might add 
some delay before a new session could be established. 

However, the amount of communication required to escrow the desired 
information may be significant –as this information has to be sent across what ever 
network inte gent. Since 
the SSL/TLS e number of 
pack

rface the user agent uses to communication with the escrow a
 tunnel relies on TCP connection, we begin by considering th

ets required to establish a TCP connection and to tear down this connection. To 
this we have to add the SSL/TLS handshake for keys and cipher suite negotiation. 
Figure 6-18 shows the packets captured for a single call’s escrow operation. Figure 
6-19 shows the flow of packets between the user agent (130.237.15.252) and the 
escrow agent (130.237.251.98) in sequential order. From these two figures it can be 
seen that the actual session key and other security parameters are transferred as 
application data. 
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Figure 6-18: Screenshot showing the packets involved in a single escrow operation 
 

 

Figure 6-19: The flow of packets for a single escrow operation 

Table 11 shows the number of packets and number of bytes that need to be sent 
for SSL/TLS tunnel establishment and closing of the tunnel. For a single escrow 
operation 11 packets are exchanged between the user agent and the escrow agent 
resulting in 2258 bytes of network traffic in addition to the application data (i.e., the 
master key and other security parameters). Note that the number of packets required 
to establish and close of a tunnel is constant, while the size of the packets may vary 
due to the use of different cipher suites by different servers. 
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Table 11: Number of packets and bytes sent as overhead in addition to the master key 
and other security parameters for a single escrow  

Activity Number of packets  Number of bytes  
TCP connection 
esta 76 + 76 + 68 =  220 blishment 3 
SSL/TLS client 

hello 2 167 + 68 =  235 
SSL/TLS server 

hello 2 1218 + 68 = 1286 
Exchange of keys 

and cipher 
specification  2 266 + 127 = 393 

TCP connection 
tear down 2 68 + 56 =  124 

Total 11 2258 

We could reduce both the delay and number of packets (and bytes) that need to 
be exchanged between the user agent and the escrow agent by keeping the SSL/TLS 

pen for subsequent escrow operations. Doing so would enable a sigtunnel o nificant 
amount of overhead to be avoided. By keeping the tunnel open this constant overhead 
(11 packets) per escrow operation can ings directly 
depends on the frequency of calls. For N calls that can share the SSL/TLS tunnel set-
up this approach can save the following amount of overhea arison to opening 
and closing the SSL/TLS connection for every escrow ope

                              X = (N-1) * Y 
     Where,     
                             X = total a nt of overhead saved    
                             N = Number of calls sharing a tunnel set-up & teardown 
       Y = Fixed rhead per escrow operatio

Moreover this approach would save a significant f time for every 
escrow (except the first one) as (1) there will be no need for SSL/TLS handshake for 
cipher suite negotiation as this involves asymmetric cryptographic operations and (2) 
there are fewer round-trip packet exchanges. If the frequency of call is high, then 
keeping the tunnel open would be beneficial. On the oth  the frequency of 
calls (and hence escrow o ons) is too low, then it w etter to close the 
tunnel. In this regard some tant questions need to be addressed: 

• How long should a SSL/TLS tunnel be kept open?
• When does the tunnel need to be closed? 
• What is the number of uniquely identified open connections that the escrow 

server can support?
• How many active connections can an escrow agent support? 

Since each SSL/TLS tunnel requires a TCP conne ch tunnel can be 
uniquely identified by the source IP address, source r, destination IP 
address, and destination port number. Note that the destination port number is likely 

traffic passing through this NAT (since the NAT needs to assign different port 

 be omitted. The total overhead sav

d in comp
ration: 

mou   

ove n 

amount o

er hand if
perati ould be b
impor

 

 

ction, ea
 port numbe

to a fixed port, hence there will be only one such port number. Moreover, if a user 
agent is located inside a NAT, then the total number of uniquely identifiable tunnels 
could be limited based upon the number of IP addresses assigned for the external 
interface of the NAT (i.e., limiting the number of source IP addresses and source port 
numbers that can be used) and the IP address and port number resources used by other 
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ues is required before initiating deployment of 
e proposed solution. While these issues are interesting they are left for future work. 

6.4 Time between BYE and escrow 
The time between SIP’s BYE message and the escrow operation is presented in 

this section. The time required to escrow a key was presented in section 6.3 and it was 
mentioned that escrow time may not be significant as key escrow is performed at the 
end of a successful session. Therefore the time required to escrow the key materials 
and the time between BYE and escrow have no effect on the media latency, but might 
be significant as these two may add some delay before a new session could be 
established. Table 12 shows the time between BYE and the escrow operation for 20 
test runs in sorted order and a plot of the measured data is presented in Figure 6-20. 
The total time between the BYE and the escrow operaiton is less than 100 ms - and 
this is comparable to the time to send five audio frames (as they are each 20 ms long 
with the G.711 CODEC that is typically used). 

Table 12:Time between BYE and the escrow operation for 20 test runs 

number and IP address combinations for all of the TCP traffic passing through it). A 
complete analysis regarding of these iss
th

Run Time in Milliseconds(ms) 
1 8.836

2 10.109

3 13.531

4 15.396

5 17.94

6 18.039

7 18.728

8 20.874

9 25.247

10 27.77

11 35.324

12 39.576

13 43.866

14 45.052

15 47.236

16 61.84

17 78.32

18 83.667

19 87.258

20 96.306

Average 39.74575

A LEA can not get the keys for a session until they have been escrowed. As we 
only escrow the keys for a session at the close of the session (in the normal case this is 
indic ted by the SIP BYE message), the time between this BYE message and the key 
being escrowed is the minimum delay that a LEA would experience for LI of this 
session. Note that the effective end of the media stream could be much sooner than 

a
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ely 

 

the BYE message if the parties in the session do not transmit the BYE immediat
after they finish sending RTP packets. 
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Figure 6-20:Time between BYE and escrow (sorted in increasing delay) 
The major component of the delay between the BYE and the escrow operation is 

taken by the operations responsible for the closing of the real time media stream 
sender and the receiver. Separate measurements were taken to calculate the time 
required to close the real time media stream sender and the receiver. An interesting 

he media stream sender is almost 

wing model with 
signe

 escrow 
agen

observation is that the time required to close t
constant (3.8 ms). This time is due to the cryptographic operations performed on the 
last SRTP block as this operation is performed inside the 
RealtimeMediaStreamSender::stop (). So the proposed key escrowing model is only 
responsible for approximately 3.8 ms of the delay. The rest of the delay is produced 
by the invocation of RealtimeMediaStreamReceiver::stop () that is responsible for 
closing of the real time media stream receiver. 

6.5 Summary 
A complete performance evaluation of the proposed key escro
d hashes to detect against forgery has been presented in this chapter. The 

evaluation criteria were presented in section 6.1 based along with the measurements 
that were made. Section 6.2 discusses the overhead produced by the proposed model 
with relevant measurement data, charts, and graphs. The performance of the

t was presented in section 6.3 with a discussion of the details of the messages 
required to do the key escrowing. Finally section 6.4 discussed the delay between the 
BYE and the escrowing of the key; thus completing the discussion of the delays for 
all of the processing due to the introduction of the proposed key escrow functionality. 

 



 

Chapter 7: Conclusions and Future Work 
Voice over Internet Protocol (VoIP) is a revolutionary application both in its 

effects upon the traditional telephony infrastructure and regulations, but VoIP call 
characteristics may be different than calls via the traditional fixed and mobile 
telephony system. Part of the reason for the change in VoIP call characteristics is the 
increasingly dynamic working habits of user and SIP’s support fo
session mobility. 

r user, device, and 

Vo
feature
and int
parties 
this ad
are find

upon t
commu
with th
accepte

e key(s) as the user used for this session. 
A viable solution to th
facilita

sed on a proposal, implementation, and evaluation of a 
model that allows key escrow to be a viable
while r
has be
parame
in orde
to generate the session keys from the master key; this is the set of information that is 

g an Apache web server with a MySQL database. 

In order to detect forgery of recorded 
has bee
hash va etailed in chapter 5. 

of the implemented model has been performed as was 
ation result suggests that for different block sizes the 

IP is also a popular choice for real-time communication due to the security 
s it can provide. Many security protocols have been used to provide encryption 
egrity protection of the real-time traffic and to provide authentication of the 
participating in a session. While the VoIP users are happy with the benefits of 
ditional security, governments and their Law Enforcement Agencies (LEAs) 
ing Lawfully Intercept (LI) of private communication of users to be harder 

and harder to carry out in practice. 

Key escrow was proposed as a remedy for the increasing difficulty for LI, based 
he caller escrowing the session keys needed to decrypt an encrypted 
nication session with a Trusted Third Party (TTP) who can provide the LEA 
e necessary keys after proper authorization. However, key escrow was not 
d as a viable solution to this problem because it adds additional security 

vulnerabilities and due to potential risks caused by an unethical employee of the key 
escrow agent (or a law enforcement agency that has access to the session key(s)). 
Unfortunately, an employee of the TTP or the LEA can misuse the escrowed keys to 
forge session contents – as these are the sam

is problem is need to foster acceptance of key escrow while 
ting LI. 

7.1 Summary of the thesis results  
This thesis project focu

 means to facilitate lawful interception 
endering fabrication of the call content detectable. The minisip SIP user agent 
en extended to escrow the session master key along with other security 
ters after a successful SIP session. An extensive analysis has been performed 
r to identify an optimized set of parameters that would be required by the LEA 

escrowed with the escrow agent. Additionally, a simple key escrow agent has been 
implemented usin

session content, asymmetric cryptography 
n used to create a digital signature for a block of SRTP packets. This signed 
lue is sent via the SRTCP/RTCP control path as d

A rigorous evaluation 
detailed in chapter 6. The evalu
overhead due to the signing operation is roughly constant and that this is the dominant 
factor in the additional processing that is required for the proposed model. Although 
there is additional total delay due to the time required to compute the hash over the 
SRTP packet, this time is quite small in comparison to the signing time. 
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 cryptographic operations and 
incre

/RTCP packets to be sent 

ed 

ssary to 

easible with the processor used for these measurements, but 
the signing operation will take ~20% of the CPU’s resources. With a slower 
CPU a block size of 1 may be infeasible if the device is to support any other 
tasks. 

Q5: Is there any maximum number of SRTP packets that should be grouped 
together? 
 
There seems to be little reason to use a block size of larger than 256, unless a 
very slow CPU is used to compute the signature. 

7.2 Future work 
This thesis considered only a single escrow agent with whom user agents escrow 

their session master key. However, multiple escrow agents might need to be 
implemented to allow a user agent to deposit parts of the session master key with 
separate escrow agents. This is necessary to both reduce the risk of an escrow agent 
misusing their knowledge of the escrowed information and to reduce the risks of an 

While using a small block size provides finer granularity forgery detection, this 
occurs at the cost of more frequent asymmetric

ased network traffic. The additional processing and additional data have been 
carefully measured and can be used to decide on what is the most appropriate block 
size for a given implementation and usage scenario. As a result of the analysis of the 
experiments that we have carried out, we can answer some of the open questions that 
we presented in Chapter 1: 

Q1: How many SRTP packets should be grouped together? 
 
Using a block size of 64 enables the detection of forgery of contents to a 1.28 
second interval while requiring no additional SRTP
(but the packet that will be sent will be some what larger). The computational 
time is 0.3% of the total elapsed and 136 additional bytes per second of traffic. 
This might also be possible with a block size of 32 in some settings if the 
amount of SR and RR data is small and the PATH MTU is 1500 bytes. 

Q2: What is a suitable rate for computing the signed hashes? 
 
With a block size of 64, a signed hash would be calculated roughly every 1.28 
seconds – hence the computation time required for signing is roughly 0.3% of 
this time interval. Hence the CPU resources (on the processor that was us
for the measurements) are minimal. 

Q3: Should the number of packets that are grouped together be computed 
adaptively based upon the rate at which the sender can compute and sign the 
hashes? 
 
Yes, in the case of a processor with a slower CPU it may be nece
reduce the rate at which signed hashes are computed. 

Q4: Is there any minimum number of SRTP packets that should be grouped 
together? 
 
No. If there is sufficient bandwidth and computational power available, then a 
block size of 1 is f

 74



Chapter 7: Conclusions and Future Works 
 

 75

navailable for key recovery (for example, due to network 
l failure of the escrow agent). 

bove. 

ed hash value are sent via the RTCP path 

 that it can be piggy-backed inside the RTCP 

implemented 

the rate at which keys can be stored at the TTP. 

 

escrow agent being u
partitioning or financia

However, utilizing multiple escrow agents would require a suitable mechanism 
to be implemented so that the LEA could reconstruct the secret from the information 
provided by the escrow agents (i.e., form the whole session master key). This will be 
the topic of a new thesis project starting in January 2010. 

There is also a need for the LEA to be able to determine which escrow agents 
need to be contacted to learn a session key (or in the case of multiple escrow agents 
with only part of the key – the set of escrow agents that need to be contacted). This 
will also be part of the new thesis project mentioned a

In the current implementation the sign
as soon as they are produced, by sending a UDP packet containing the signed hash 
and a sequence number. The analysis presented in the previous chapter suggests 
delaying sending the signed hash so
sender Report (SR)/receiver Report (RR). This could reduce the number of packets 
that need to be sent hence avoiding some unnecessary network overhead. However, 
this remains to be implemented. Unfortunately, SRTCP is not currently 
in the Minisip code, thus as part of the future work SRTCP should be implemented 
along with the possibility to send the signed hash values inside the SRTCP reports. 

The user agent uses a SSL/TLS tunnel to escrow the session master key with the 
escrow agent. A theoretical analysis has been performed to examine if the tunnel 
should be kept open for subsequent call(s) or if each successful call should open a 
new tunnel and after escrowing the key the tunnel would be closed. This needs to be 
examined in practice and if found feasible, then some means of knowing how long the 
tunnel should be kept open for a given calling pattern should be determined.  

The escrow system should be evaluated to measure the time and communication 
required to authenticate the registered user to the TTP and to deposit a key, as this 
may set an upper rate limit on 

We have not answered the question: Is there a problem of too frequent signing,
leading to a leaking of bits of the sender’s private key? Hence this question also 
remains for future work. 
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Appendices  

. Script to enable Apache2 web server 

OS: openSuSE 10.3 (may apply to 10.2, but not tested) 

This script will build the SSL server keys, csr and crt, install 

 to the appropriate directory in /etc/apache2 to provide basic 

n='\e[0;32m' 
='\e[0;31m' 

htblue='\e[1;34m' 
ghtgray='\e[0;37m' 

eck_root () { 

OTROOT=67 

ghtblue}You must be ${lightred}root${lightblue} to run 
 UID: 

lightgray}$UID${lightblue} can't!${nc}\n" 
t $E_NOTROOT 

e 

heck for root 

 Intro Line 

them for basic\n https:// functionality on openSuSE 10.3. 
 will aslo set the apache2 SSL sysconfig flag. \nIn your key, your 
mon name CN must be a FQDN. You must edit vhost-ssl.conf when 

d -p " Continue (y/n)? " key 
 [ $key == "y" ] || [ $key == "Y" ]; then 

ho -e "\n\t${lightgray}key = $key${lightblue} pressed, Apache2 SSL 

A
with SSL capability 
#!/bin/bash 
# 
## 
# 
## 
them, and copy vhosts-ssl.conf 
##
https:// functionality on 
## opensuse 10.3 
# 
## General Functions and Colors 
# 
gree
red
lightred='\e[1;31m' 
lig
li
nc='\e[0m' 
 
ch
 
ROOT_UID=0 
E_N
 
if [ "$UID" -ne "$ROOT_UID" ]; then 
echo -e "\n${li
this script.\nUser: ${lightgray}$USER${lightblue},
${
exi
# return $E_NOTROOT 
els
return $ROOT_UID 
fi 
} 
# 
#c
# 
check_root 
# 
##
# 
echo -e "\n\tThis will create apache2 SSL server.key, .csr and .crt 
and install 
It
com
done.\n" 
rea
if
echo -e "${green}\n\tLet's begin!${nc}\n" 
else 
ec
Config - ${red}Canceled${nc}\n" 
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exit 1 
fi 
echo -e "${nc}" 
# 
## Set SSL Flag 
# 
if a2enflag SSL; then 

o -e "\n\t${lightblue}Server SSL Flag Successfully Set\n${nc}" 

o -e "\n\t${lightblue}Server SSL Flag ${red}NOT 
ally\n${nc}" 

 Directory for New SSL KeySet" 

en 
ho -e " - ${green}OK${nc}\n" 

tblue}Generating Certificate Signing Request 

 -out server.csr 

{lightblue}Removing Passphrase From Key To Eliminate PW 
r Start\n${nc}" 

 

ing Self-Signed Certificate\n${nc}" 
3650 -in server.csr -signkey server.key -out 

Certificates 

${lightblue}Installing server.crt, server.key and 
/etc/apache2/<dir>${nc}\n" 

server.crt /etc/apache2/ssl.crt && cp server.key 

ech
else 
ech
${lightblue}Set\nEdit /etc/sysconfig/apache2 manu
fi 
# 
## Create Temp Directory 
# 
echo -en "\n\t${lightblue}Creating
 
if mkdir -p new_sslkeyset && cd new_sslkeyset; th
ec
else 
echo -e " - ${red}FAILED. Exiting...${nc}\n" 
exit 1 
fi 
# 
## Generate Private Server Key 
# 
 
echo -e "\n\t${lightblue}Generating Private Server Key\n${nc}" 
openssl genrsa -des3 -out server.key 1024 
 
# 
## Generate Certificate Signing Request (CSR) 
# 
 
echo -e "\n\t${ligh
(CSR)\n${nc}" 
openssl req -new -key server.key
 
# 
## Remove Passphrase from Key 
# 
echo -e "\n\t$
Request On Serve
cp server.key server.key.protected 
openssl rsa -in server.key.protected -out server.key
 
# 
## Generating a Self-Signed Certificate 
# 
 
echo -e "\n\t${lightblue}Generat
openssl x509 -req -days 
server.crt 
 
# 
## Installing the Private Key and 
# 
 
echo -e "\n\t
server.csr in 
 
if cp 
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/etc/apache2/ssl.key && cp server.csr /etc/apache2/ssl.csr; then 
echo -e "\n\t${lightblue}Key, CSR and Certificate install 
${green}Succeeded${nc}\n" 
else 
echo -e "\n\t${lightblue}Key, CSR and Certificate install 
{red}Failed${nc}\n" 

## Config Reminder 
# 
echo -e "${lightblue}\n\tDon't forget to create 
tc/apach vho .d/vh -ssl. nf by pyin
/etc/apa 2/v ts.d/ st-ss templa  to 
tc/apache ho d/vh ssl. nf an diti as \ ess You
n check t  s t fo e co ents t c in a kin mpl
 a \nvho sl f${g }\n"
ad -p " ld  like  copy etc/ap he2 osts. ost-
l.templat o t-ss nf n  (y/n " k

 [ $key y" | [  == " ]; n 
 /etc/ap e2/ sts.d ost-s .templ e 
tc/apache ho d/vh ssl. nf 
 

o -e "\n ${g n}All ne! $ ightbl }Rem ber t it 
ed}vhost l.  ${l blue s req ed a rest
che2\n\n c}
d -p " d like see e exa e vh -ssl f?  
[ $key = y" | [  == " ]; n 
o ' 

Virtual t igur n (/ c/apa 2/vh s.d/ t-s nf)

Define > 
Define ! SL
rtualHos de t_:4
umentRo /s ww/h s" 
 -> #Ser rNa www.y host. m:443 
#ServerA n emai xxxx xxxx 
orLog /v lo ache ror_ g 
nsferLog ar /apa /acc s_log
Engine o
CipherSu e 
:!ADH:!E RT C4+R HIGH MEDIU LOW: Lv2: :+e
Certifi Fi etc/ he2/ l.crt rver t 
Certific Ke e /e pach /ssl. /ser .key
Options ake icAut Expor ertDat +Str tRequ
les ~ "\ gi ml|p |php )$"> 
Options dE rs 
iles> 
rectory srv w/cgi n"> 
Options dE rs 
irectory
EnvIf Us Ag ".*M *" \
eepalive l- ean- down  
ngrade-1  fo -resp e-1.0
tomLog / /l pach sl_r uest_  ssl mbin
irtualH  
fDefine>
fDefine>

 0 

$
fi 
# 

/e
\n

e2/
che

sts
hos

ost
vho

co
l.

co
te

g 

/e 2/v sts. ost- co d e ng nnec ary.  
ca his crip r th mm tha onta  wor g exa e 
of
re

st-s
Wou

.con
you

reen
 to

 
 / ac /vh d/vh

ss e t vhos l.co ow )? ey 
 
if
cp

== "
ach

 ] |
vho

$key
/vh

"Y
sl

the
at

/e 2/v sts. ost- co
fi
 
ech
${r

\t
-ss

ree
conf

 Do
ight

{l
}a

ue
uir

em
nd 

o ed
art 

apa ${n " 
rea Woul you  to th mpl ost .con " key
if 
ech

= "  ] | $key "Y the

# 
## Hos Conf atio et che ost vhos sl.co  
# 
<If SSL

NOS<If > 
<Vi t _ faul 43> 
Doc ot " rv/w tdoc
fix
-> 

ve
dmi

me 
your

our
l@xx

co
xx

Err ar/ g/ap 2/er lo
Tra  /v /log che2 es  
SSL
SSL

n 
it

ALL XPO 56:R SA:+ :+ M:+ +SS +EXP NULL 
SSL cate le / apac ss /se .cr
SSL
SSL

ate yFil tc/a e2 key ver  
+F
.(c

Bas
|sht

h +
html

tC
3?

a ic ire 
<Fi
SSL +St nvVa
</F
<Di
SSL

"/
+St

/ww
nvVa

-bi

</D > 
Set er- ent SIE.  
nok
dow

 ss
.0

uncl
rce

shut
ons

 \
 

Cus var og/a e2/s eq log _co ed 
</V ost>
</I
</I

 
' 

fi 

exit
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B. HM C HA as ng e or te
ns 

A _S  h hi tim  f 50 st 
ru

 HMAC_SHA hashing time in Microseconds 

Block Size 

 
Run 

01 08 16 32 64 128 256 512 1024 

1 13 34 37 49 66 92 171 342 644

2 8 15 35 44 62 89 182 324 639

3 8 14 33 44 61 103 181 324 639

4 12 14 35 45 62 104 168 324 648

5 9 15 20 46 62 109 168 325 638

6 8 13 34 44 61 103 168 325 639

7 11 15 33 43 61 89 168 324 639

8 9 14 19 45 61 89 169 324 639

9 9 15 20 43 62 89 168 324 639

10 11 15 32 47 62 90 169 329 649

11 9 15 19 43 62 90 169 324 648

12 8 15 20 45 50 89 168 324 654

13 11 15 21 45 50 89 167 324 648

14 8 14 34 45 50 89 167 324 675

15 8 14 33 49 50 90 167 324 653

16 9 15 33 43 50 89 168 324 648

17 12 13 21 43 49 90 167 324 648

18 8 14 20 43 49 89 171 324 648

19 8 13 21 44 50 90 167 333 648

20 10 13 33 48 50 90 167 324 649

21 8 14 20 30 49 89 174 324 651

22 8 13 33 29 50 89 167 324 650

23 9 14 20 30 50 90 167 323 638

24 8 15 20 30 49 89 167 323 655

25 8 14 20 29 50 89 167 324 648

26 10 13 19 30 51 90 168 323 654

27 8 15 19 29 51 89 168 324 648

28 9 14 37 30 50 89 167 323 648

29 9 16 33 29 50 89 168 324 647

30 8 14 33 30 50 90 179 328 649

31 9 15 35 30 60 90 168 324 648

32 9 15 31 30 50 89 168 324 648

33 9 15 20 30 49 89 167 325 649

34 9 15 20 30 50 89 168 325 649

35 9 15 19 30 50 89 168 325 655

36 10 15 20 30 50 89 167 324 649

37 8 14 33 30 51 90 167 325 668

38 9 15 20 29 50 91 167 325 648

39 8 15 21 29 51 89 167 326 648
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40 8 15 21 31 50 90 167 324 648

41 8 16 21 30 50 90 167 334 648

42 9 15 21 30 49 95 167 325 648

43 8 26 7 326 64821 30 50 89 16

44 9 28 20 30 89 167 325 64950

45 9 26 21 29 89 168 324 64850

46 8 29 20 30 49 0 7 4 39 16 32 65

47 9 33 20 29 50 89 167 324 648

48 8 28 20 30 50 89 169 324 668
49 9 25 22 30 50 89 167 324 640

50 8 28 21 30 50 89 167 332 639
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C. RSA signin m o  t rg ti e f r 50 est uns 
 Actual Signing tim onde in Millisec s 

Block Size 

 
Run 

01 08 16 32 64 128 256 512 1024 

1 3.45 3.468 3.495 3.426 3.486 3.475 3.473 3.475 3.454

2 3.509 3 3.469 3.511 3.509 3.477 .477 3.426 3.462 3.535

3 3.38 3.472 3.477 3.504 3.477 3.458 3.479 3.471 3.534

4 3.476 3.468 3.547 3.512 3.515 3.442 3.502 3.487 3.472

5 3.407 3.469 3.456 3.504 3.474 3.492 3.502 3.472 3.468

6 3.461 3.561 3.499 3.417 3.449 3.446 3.493 3.492 3.448

7 3.506 3.433 3.46 3.468 3.498 3.446 3.494 3.486 3.453

8 3.405 3.46 3.455 3.451 3.484 3.443 3.483 3.544 3.458

9 3.398 3.444 3.481 3.507 3.464 3.438 3.488 3.507 3.482

10 3.478 3.478 3.434 3.521 3.461 3.436 3.5 3.495 3.483

11 3.426 3.483 3.498 3.467 3.476 3.432 3.467 3.493 3.465

12 3.398 3.479 3.456 3.494 3.469 3.442 3.461 3.507 3.449

13 3.411 3.461 3.458 3.548 3.463 3.459 3.486 3.453 3.466

14 3.39 3.469 3.505 3.48 3.48 3.463 3.487 3.467 3.452

15 3.45 3.454 3.444 3.493 3.459 3.44 3.473 3.465 3.548

16 3.404 3.42 3.488 3.493 3.464 3.425 3.482 3.474 3.492

17 3.449 3.466 3.471 3.475 3.457 3.452 3.641 3.491 3.499

18 3.402 3.44 3.446 3.463 3.468 3.453 3.484 3.47 3.462

19 3.446 3.432 3.51 3.475 3.476 3.458 3.461 3.45 3.459

20 3.464 3.468 3.443 3.473 3.441 3.449 3.467 3.47 3.488

21 3.452 3.45 3.504 3.45 3.472 3.444 3.463 3.461 3.473

22 3.424 3.466 3.458 3.482 3.455 3.463 3.479 3.474 3.493

23 3.428 3.448 3.518 3.447 3.473 3.453 3.747 3.448 3.48

24 3.383 3.44 3.497 3.449 3.485 3.482 3.491 3.472 3.475

25 3.41 3.47 3.436 3.482 3.451 3.479 3.488 3.457 3.47

26 3.424 3.458 3.49 3.464 3.483 3.447 3.474 3.47 3.479

27 3.438 3.428 3.453 3.467 3.454 3.459 3.48 3.495 3.551

28 3.398 3.433 3.496 3.487 3.441 3.439 3.472 3.464 3.472

29 3.411 3.487 3.468 3.459 3.457 3.454 3.494 3.489 3.477

30 3.445 3.449 3.476 3.476 3.435 3.46 3.5 3.462 3.461

31 4.243 4.298 4.351 4.325 4.327 4.324 4.354 4.358 4.583

32 3.475 3.473 3.47 3.464 3.448 3.485 3.492 3.509 3.492

33 3.443 3.439 3.507 3.459 3.472 3.468 3.496 3.466 3.486

34 3.453 3.422 3.469 3.48 3.482 3.482 3.496 3.488 3.485

35 3.407 3.464 3.505 3.463 3.493 3.425 3.507 3.459 3.476

36 3.453 3.417 3.445 3.492 3.492 3.459 3.491 3.545 3.48

37 3.376 3.457 3.47 3.461 3.499 3.466 3.481 3.474 3.47

38 3.399 3.458 3.455 3.476 3.48 3.46 3.488 3.499 3.452

39 3.406 3.461 3.462 3.467 3.51 3.466 3.471 3.519 3.472

40 3.41 3.469 3.48 3.447 3.487 3.49 3.466 3.516 3.477
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41 3.435 3.46 3.451 3.489 3.49 3.478 3.465 3.486 3.484

42 3.433 3.433 3.463 3.485 3.493 3.467 3.495 3.47 3.468

43 3.456 3.441 3.448 3.496 3.667 3.449 3.487 3.446 3.461

44 3.443 3.464 3.491 3.478 3.483 3.446 3.459 3.48 3.474

45 01 3.446 3.484 3.445 3.4923.458 3.469 3.485 3.462 3.5

46 3.437 3.445 3.4 73 3.449 3.49551 3.438 3.528 3.469 3.4

47 3.407 3.472 3.45 3.475 3.465 3.477 3.456 3.5013.498

48 3.423 3.454 3.478 3.454 3.458 3.508 3.4713.485 3.493

49 6 7 7 2 1 9 3 8 863.43 3.47 3.47 3.45 3.45 3.45 3.48 3.51 3.4

50 3.414 3.48 3.472 3.468 3.497 3.46 3.483 3.471 3.513
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D.R r c ze o
8 c

SA signing time fo  blo k si  closer t  
12 to find lo al minima 

 Actua ng  M onl Signi  time in illisec ds 

Block Size 

 
Run 

120 124 127 128 129 130 131 132 136 

1 3.45 3.44 3.443 3.463 3.456 3.461 3.453 3.47 3.458

2 3.453 3.481 3.485 3.493 3.449 3.516 3.444 3.481 3.494

3 3.463 3.465 3.506 3.453 3.451 3.475 3.463 3.527 3.465

4 3.445 3.495 3.483 3.443 3.499 3.493 3.517 3.485 3.463

5 3.464 3.473 3.518 3.473 3.45 3.486 3.461 3.483 3.516

6 3.478 3.462 3.524 3.442 3.459 3.471 3.491 3.492 3.472

7 3.462 3.516 3.482 3.437 3.466 3.468 3.459 3.483 3.472

8 3.487 3.494 3.491 3.451 3.484 3.455 3.459 3.53 3.482

9 3.492 3.484 3.492 3.447 3.464 3.452 3.448 3.484 3.473

10 3.485 3.499 3.485 3.431 3.459 3.485 3.458 3.521 3.49

11 3.509 3.487 3.501 3.445 3.464 3.451 3.478 3.49 3.493

12 3.528 3.46 3.479 3.439 3.467 3.425 3.49 3.478 3.63

13 3.429 3.509 3.5 3.426 3.509 3.44 3.455 3.487 3.444

14 3.503 3.465 3.477 3.448 3.469 3.451 3.468 3.487 3.459

15 3.521 3.46 3.475 3.452 3.463 3.482 3.467 3.489 3.491

16 3.529 3.484 3.468 3.449 3.47 3.478 3.465 3.48 3.455

17 3.451 3.484 3.467 3.476 3.466 3.463 3.462 3.488 3.46

18 3.463 3.483 3.476 3.445 3.473 3.493 3.458 3.472 3.461

19 3.505 3.544 3.478 3.434 3.461 3.481 3.465 3.486 3.448

20 3.443 3.473 3.477 3.456 3.459 3.478 3.458 3.495 3.491

21 3.487 3.46 3.485 3.428 3.471 3.479 3.462 3.489 3.473

22 3.471 3.527 3.47 3.494 3.466 3.489 3.477 3.48 3.467

23 3.464 3.476 3.509 3.454 3.46 3.479 3.456 3.488 3.496

24 3.476 3.445 3.504 3.435 3.477 3.483 3.449 3.482 3.46

25 3.497 3.5 3.49 3.48 3.472 3.479 3.874 3.484 3.471

26 3.462 3.475 3.492 3.446 3.461 3.473 3.479 3.512 3.478

27 3.514 3.46 3.498 3.435 3.489 3.494 3.475 3.498 3.433

28 3.502 3.498 3.496 3.429 3.462 3.478 3.463 3.485 3.472

29 3.481 3.466 3.493 3.443 3.465 3.42 3.445 3.493 3.467

30 4.346 3.455 3.48 3.448 3.46 3.486 3.441 3.489 3.47

31 3.482 4.342 4.344 4.378 4.32 4.334 4.35 4.471 4.345

32 3.44 3.476 3.504 3.449 3.459 3.495 3.456 3.485 3.453

33 3.5 3.44 3.491 3.455 3.457 3.475 3.483 3.495 3.499

34 3.451 3.482 3.508 3.446 3.462 3.479 3.469 3.471 3.434

35 3.484 3.49 3.489 3.45 3.644 3.506 3.457 3.49 3.458

36 3.454 3.472 3.502 3.47 3.459 3.501 3.458 3.455 3.476

37 3.468 3.457 3.486 3.446 3.453 3.491 3.454 3.489 3.462

38 3.476 3.487 3.492 3.452 3.468 3.478 3.461 3.478 3.475

39 3.462 3.508 3.49 3.428 3.432 3.483 3.457 3.497 3.46
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40 3.474 3.451 3.477 3.449 3.439 3.484 3.461 3.469 3.53

41 3.482 3.488 3.435 3.454 3.414 3.481 3.46 3.496 3.511

42 3.478 3.478 3.469 3.449 3.435 3.503 3.467 3.469 3.524

43 3.469 3.452 3.461 3.436 3.442 3.482 3.457 3.495 3.507

44 3.454 3.487 3.471 3.448 3.448 3.482 3.463 3.469 3.501

45 3.455 3 2 3.499.468 3.459 3.438 3.451 3.479 3.458 3.49

46 3.52 3.472 3.488 3.44 3.491 3.445 3.468 3.5183.442

47 3.453 3.482 3.491 3.432 3.454 3.457 3.48 3.5263.447

48 484 474 493 431 435 6 3 4 33. 3. 3. 3. 3. 3.45 3.47 3.47 3.48

49 3.465 3.451 3.507 3.428 3.448 3.457 3.458 3.488 3.456

50 3.461 3.481 3.472 3.447 3.44 3.448 3.444 3.466 3.466
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E. T  ig g a g  
nd  5 s n

otal Delay (S nin  +h shin  + RTCP
se ing) time for 0 te t ru s 

Total t ni as e in oime(Sig ng + H hing + S nding)  Millisec nds 

Block Size 

 
Run 

01 08 16 32 64 128 256 512 1024 

1 4.466 3.653 3.633 3.606 3.666 3.763 3.743 3.919 4.299

2 3.534 3.641 3.644 3.611 3.676 3.676 3.758 3.918 4.293

3 3.506 3.612 3.616 3.631 3.659 3.692 3.784 3.936 4.246

4 3.508 3.69 3.683 3.615 3.769 3.773 3.763 3.986 4.276

5 3.486 3.605 3.556 3.613 3.702 3.741 3.783 3.924 4.272

6 3.592 3.616 3.575 3.618 3.669 3.709 3.754 3.926 4.275

7 3.523 3.606 3.616 3.61 3.7 3.69 3.749 3.908 4.259

8 3.521 3.618 3.598 3.639 3.679 3.707 3.789 3.938 4.281

9 3.574 3.724 3.591 3.687 3.645 3.731 3.793 3.919 4.25

10 3.462 3.603 3.597 3.587 3.752 3.726 3.772 3.938 4.268

11 3.498 3.636 3.586 3.611 3.698 3.699 3.754 3.929 4.256

12 3.531 3.621 3.626 3.62 3.651 3.71 3.783 3.935 4.276

13 3.478 3.62 3.599 3.637 3.673 3.737 3.784 3.908 4.268

14 3.459 3.68 3.595 3.624 3.665 3.712 3.752 3.921 4.281

15 3.474 3.63 3.591 3.626 3.686 3.704 3.756 3.94 4.265

16 3.564 3.595 3.619 3.612 3.645 3.72 3.787 3.937 4.331

17 3.479 3.652 3.598 3.604 3.703 3.717 3.778 3.912 4.259

18 3.503 3.614 3.604 3.609 3.662 3.714 3.778 3.935 4.269

19 3.542 3.657 3.579 3.602 3.696 3.741 3.752 3.936 4.269

20 3.471 3.627 3.618 3.633 3.748 3.685 3.805 3.939 4.26

21 3.512 3.605 3.556 3.628 3.645 3.679 3.773 3.923 4.264

22 3.521 3.613 3.627 3.642 3.636 3.698 3.739 3.914 4.244

23 3.478 3.629 3.608 3.628 3.67 3.694 3.772 3.897 4.259

24 3.517 3.693 3.597 3.571 3.644 3.688 3.762 3.916 4.234

25 3.568 3.61 3.566 3.607 3.693 3.697 3.744 3.923 4.254

26 3.526 3.599 3.589 3.611 3.678 3.711 3.751 3.917 4.253

27 3.483 3.63 3.607 3.53 3.649 3.698 3.75 3.921 4.232

28 3.555 3.591 3.604 3.625 3.652 3.689 3.788 3.916 4.26

29 3.491 3.713 3.611 3.601 3.666 3.694 3.777 3.918 4.246

30 3.51 3.631 3.623 3.619 3.649 3.707 3.77 3.935 4.214

31 4.381 4.471 4.447 4.462 4.52 4.574 4.64 4.759 5.074

32 3.552 3.682 3.766 3.572 3.69 3.705 3.782 3.941 4.229

33 3.56 3.582 3.58 3.616 3.652 3.795 3.779 3.925 4.24

34 3.476 3.625 3.606 3.601 3.653 3.679 3.751 3.932 4.245

35 3.561 3.638 3.58 3.588 3.673 3.673 3.746 3.951 4.257

36 3.484 3.588 3.594 3.61 3.644 3.711 3.781 3.935 4.235

37 3.525 3.623 3.597 3.624 3.679 3.709 3.78 3.934 4.222

38 3.533 3.593 3.593 3.63 3.67 3.713 3.755 3.929 4.241

39 3.481 3.678 3.562 3.635 3.654 3.7 3.763 3.891 4.279
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40 3.514 3.602 3.548 3.64 3.69 3.671 3.802 3.893 4.255

41 3.565 3.588 3.557 3.603 3.673 3.694 3.832 3.927 4.251

42 3.483 3.686 3.596 3.604 3.638 3.698 3.804 3.898 4.285

43 3.491 3.746 3.601 3.613 3.672 3.68 3.765 3.926 4.26

44 3.534 3.653 3.609 3.643 3.7 3.684 3.799 3.891 4.251

45 3.505 3.605 3.645 3.602 3.636 3.671 3.767 3.908 4.282

46 3.502 3.642 3.614 3.646 3.653 3.66 3.787 3.903 4.271

47 3.512 3.6 3.678 3.631 3.657 3.684 3.786 3.922 4.275

48 3.541 3.641 3.58 3.612 3.671 3.682 3.779 3.954 4.264

49 3.557 3.669 3.587 3.599 3.669 3.697 3.758 3.927 4.285

50 3.468 3.609 3.674 3.601 3.659 3.713 3.783 3.975 4.24
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F. Detailed of the CPU used by our User 
Agent 
processor       : 0 
vendor_id      : GenuineIntel 
cpu family      : 15 
model             : 4 
model name    : Intel(R) Pentium(R) D CPU 2.80GHz 
stepping          : 7 
cpu MHz        : 2793.144 
cache size       : 1024 KB 
physical id      : 0 
siblings           : 2 
core id            : 0 
cpu cores        : 2 
fdiv_bug        : no 
hlt_bug           : no 
f00f_bug        : no 
coma_bug       : no 
fpu                  : yes 
fpu_exception : yes 
cpuid level      : 5 
wp                   : yes 
flags                 : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat 
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc pni monitor 
ds_cpl cid cx16 xtpr lahf_lm 
bogomips        : 5591.15 
clflush size      : 64 
 
processor       : 1 
vendor_id      : GenuineIntel 
cpu family      : 15 
model             : 4 
model name   : Intel(R) Pentium(R) D CPU 2.80GHz 
stepping         : 7 
cpu MHz       : 2793.144 
cache size      : 1024 KB 
physical id     : 0 
siblings          : 2 
core id            : 1 
cpu cores        : 2 
fdiv_bug        : no 
hlt_bug          : no 
f00f_bug       : no 
coma_bug     : no 
fpu                : yes 
fpu_exception   : yes 
cpuid level      : 5 
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wp                 : yes 
flags              : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pa
pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe nx lm constant_tsc pni monit

t 
or 

ds_cpl cid cx16 xtpr lahf_lm 
bogomips       : 5586.14 
clflush size     : 64 
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G. Schema definition of Escrow Database 
dmin SQL Dump 

3.2.0 
myadmin.net

-- phpMyA
-- version 
-- http://www.php  

 

ec 02, 2009 at 10:06 PM 
rsion: 5.1.36 
ion: 5.2.11 

_MODE="NO_AUTO_VALUE_ON_ZERO"; 

 

--- 

 ( 
`id` int(11) NOT NULL AUTO_INCREMENT, 

NOT NULL, 

tin1 AUTO_INCREMENT=3 ; 

`sipmasterkey` ( 
REMENT, 

`userid` text NOT NULL, 

PRIMARY KEY (`id`) 
 CHARSET=latin1 AUTO_INCREMENT=621 ; 

--
-- Host: localhost 
-- Generation Time: D
-- Server ve
-- PHP Vers
 
SET SQL
 
--
-- Database: `escrowdatabase` 
-- 
 
-- -----------------------------------------------------
 
-- 
-- Table structure for table `authentication` 
-- 
 
CREATE TABLE IF NOT EXISTS `authentication`
  
  `user_name` varchar(100) 
  `password` varchar(100) NOT NULL, 
  PRIMARY KEY (`id`), 
  UNIQUE KEY `user_name` (`user_name`) 
) ENGINE=MyISAM  DEFAULT CHARSET=la
 
-- 
-- Table structure for table `sipmasterkey` 
-- 
 
CREATE TABLE IF NOT EXISTS 
  `id` int(11) NOT NULL AUTO_INC
  
  `key` text NOT NULL, 
  `rand` text NOT NULL, 
  `csbID` text NOT NULL, 
  `signedhash` text NOT NULL, 
  `date` datetime DEFAULT NULL, 
  
) ENGINE=MyISAM  DEFAULT
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H. SER configuration file 
debug=3 
fork=yes 
log_stderror=yes 
 
listen=130.237.209.238           #
listen=192.168.2.238 
port=50
children=4 
 
dns=no 
rev_dns=no 
 
loadmodule "/usr/local/lib/ser/modules/mysql.so
loadmodule 
loadm
loadmodule "/usr/local/lib/se
loadmodule "/usr/local/lib/ser/modules/maxfwd.so
loadmodule "/usr/local/lib/ser/modules/usrloc.so" 
loadmodule 
loadm
loadmodule "/usr/local/lib/ser/modules/auth.so" 
loadmodule "/usr/local/lib/ser/modules/auth_db.so" 
 
#Presence related modules 
loadmodule "/usr/local/lib/ser/modules/dialog.so" 
loadmodule "/usr/loca
loadm
loadmodule "/usr/local/lib/ser/modules/xlog.so" 
 
# ----------------- setting module-specific parameters ---------
modparam("auth_db|uri_db|usrloc", "db_url", "mysql://ser:h
modparam("auth_db", 
modparam("au
modparam("usrloc", "db_m
modp
 
#presence module related params 
modparam("pa", "use_db", 1) 
modparam("pa", "db_url", "mysql://ser:heslo@localhost/ser
modparam("pa", "off
modparam("pa
 
modp
modparam("pa", "winfo_au
modparam("pa", "use_callb
modparam("pa
modparam("pa", "max_subscription_

 put your server IP address here 

60 

" 
"/usr/local/lib/ser/modules/sl.so" 

odule "/usr/local/lib/ser/modules/tm.so" 
r/modules/rr.so" 

" 

"/usr/local/lib/ser/modules/registrar.so" 
odule "/usr/local/lib/ser/modules/uri_db.so" 

l/lib/ser/modules/pa.so" 
odule "/usr/local/lib/ser/modules/presence_b2b.so" 

------ 
eslo@localhost/ser") 

"calculate_ha1", 1) 
th_db", "password_column", "password") 

ode", 2) 
aram("rr", "enable_full_lr", 1) 

") 
line_winfo_timer", 3600) 

", "offline_winfo_expiration", 259200) 

aram("pa", "auth", "none") 
th", "none") 
acks", 0) 

", "accept_internal_subscriptions", 0) 
expiration", 3600) 
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modparam("pa
modparam("presence_b2b", "on_error_retry_tim
modparam("presence_b2b", "wait_for_term
modparam("pre
modparam("presence_b2b", "m
modparam("presence_b2b", "default_expi
#modparam("p
 
#----Main routing logic-------- 
route { 
 
    # --
    #
  
    if (!mf_process_maxfwd
        sl_send_reply("4
        break; 
    }; 
 
  
        sl_send_reply("513", "M
        break; 
    }; 
 
  
    # Record 
    
  
        record
  
 
    # --------------------------------
    # Loose Route Section 
    # ------------------
    if (loose_route()) { 
        r
    
  
 
  
    # Call Type Processing Section 
    # --------------------------------------
    if (uri!=myself) { 
        route(1); 
      
    }; 
 
    if (method
        r
  
    } else if (method=

", "timer_interval", 1) 
e", 60) 

_notify", 33) 
sence_b2b", "resubscribe_delta", 30) 

in_resubscribe_time", 60) 
ration", 3600) 

resence_b2b", "handle_presence_subscriptions", 1) 

--------------------------------------------------------------- 
 Sanity Check Section 

  # ----------------------------------------------------------------- 
_header("10")) { 

83", "Too Many Hops"); 

  if (msg:len > max_len) { 
essage Overflow"); 

  # ----------------------------------------------------------------- 
Route Section 

# ----------------------------------------------------------------- 
  if (method!="REGISTER") { 

_route(); 
  }; 

--------------------------------- 

----------------------------------------------- 

oute(1); 
    break; 

  }; 

  # ----------------------------------------------------------------- 

--------------------------- 

  break; 

=="ACK") { 
oute(1); 

      break; 
="INVITE") { 
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        route(3); 
        break; 
    } else
  
        break; 
  
        route(4); 
        break;     
    } e
    
  
    }; 
     
 
    /*lookup("aliases2");*/ 
    if (uri!=myself) { 
        route(1); 
        break; 
    }; 
 
    if (!lookup
        sl_
  
    }; 
 
    route(1); 
} 
 
route[1] { 
 
    # --
  
    # ------------------------------
    if (!t_relay()) { 
        sl_reply
    }; 
}
 
rou
 
    # --------
    # REGISTER Message Handler 
    # ----------------------------------------
    sl_send_reply("100", "Trying"); 
     
    /*if (!www_authorize
        www_challenge("","0"); 
        b
    }
 
    if (!check_to()) { 

     if (method=="REGISTER") { 
      route(2); 

  } else if(method =="SUBSCRIBE") { 

lse if(method =="PUBLISH"){ 
    route(5); 

      break;     

("location")) { 
send_reply("404", "User Not Found"); 

      break; 

--------------------------------------------------------------- 
  # Default Message Handler 

----------------------------------- 

_error(); 

 

te[2] { 

--------------------------------------------------------- 

------------------------ 

("","subscriber")) { 

reak; 
; 
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        sl_se
    
  
 
    /*consume_credentials();*/ 
 
    if (!save("location")) { 
        sl_reply_error(); 
    }; 
} 
 
rout
    # ----------------------------------------------------------------- 
    # INVITE Message Handler 
    # -------
    

nd_reply("401", "Unauthorized"); 
    break; 

  };*/ 

e[3] { 

---------------------------------------------------------- 
/*if (!proxy_authorize("","subscriber")) { 

      proxy_challenge("","0"); 
        break; 
    } else if (!check_from()) { 
        sl_send_reply("403", "Use From=ID"); 
        break; 
    };*/ 
 
     /*consume_credentials(); 
 
    lookup("aliases2");*/ 
    if (uri!=myself) { 
         
        route(1); 
        break; 
    }; 
 
    if (!lookup("location")) { 
        sl_send_reply("404", "User Not Found"); 
        break; 
    }; 
 
    route(1); 
} 
 
route[4] { 
    # ----------------------------------------------------------------- 
    # SUBSCRIBE Message Handler 
    # ----------------------------------------------------------------- 
    if (!t_newtran()) { 
         sl_reply_error(); 
            break; 
    }; 
     
    xlog("L_ERR", "PA: handling subscription: %tu from: %fu\n"); 
    handle_subscription("registrar"); 
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ng publish: %tu from: %fu\n"); 

    break; 
} 
 
route[5] { 
    # ----------------------------------------------------------------- 
    # PUBLISH Message Handler 
    # ----------------------------------------------------------------- 
    if (!t_newtran()) { 
         sl_reply_error(); 
            break; 
    }; 
     
    xlog("L_ERR", "PA: handli
    handle_publish("registrar"); 
    break; 
} 
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I. Important Apache configuration files 
(Two files) 
########################################
# /etc/apache2/htt
####################
 
### Global Environm
 
# run under th
Include /etc/apache2/uid.conf 
 
# - how many server proces
# - usage of KeepAlive 
Include /etc/apache2/
 
# ErrorLog: The l
ErrorLog 
 
# generated from APACHE_MODULES in /etc/sysconfig/apache2
Include /etc/apache2/sysconfig.d/loadmodu
 

############################ 
pd.conf  

#################################################

ent ##### 

is user/group id 

ses to start (server pool regulation) 

server-tuning.conf 

ocation of the error log file. 
 /var/log/apache2/error_log 

 
le.conf 

 /etc/sysconfig/apache2 
al.conf 

 optional mod_status, mod_info 

entation before using it!! 
od_usertrack.conf 

nfiguration of server-generated directory listings 
oindex-defaults.conf 

sociate MIME types with filename extensions 
e.types 

lts.conf 

 

# IP addresses / ports to listen on 
Include /etc/apache2/listen.conf 
 
# predefined logging formats 
Include /etc/apache2/mod_log_config.conf 
 
# generated from global settings in
Include /etc/apache2/sysconfig.d/glob
 
#
Include /etc/apache2/mod_status.conf 
Include /etc/apache2/mod_info.conf 
 
# optional cookie-based user tracking 
# read the docum
Include /etc/apache2/m
 
# co
Include /etc/apache2/mod_aut
 
# as
TypesConfig /etc/apache2/mim

efaultType text/plain D
Include /etc/apache2/mod_mime-defau
 
# set up (customizable) error responses
Include /etc/apache2/errors.conf 
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# global (server-wide) SSL configuration, tha
In
 
# forbid access to the entire filesystem by default 
<Directory /> 
  
    AllowOverride None 
    Order deny,allow 
    D

t is not specific to  any virtual host 
clude /etc/apache2/ssl-global.conf 

  Options None 

eny from all 

 use .htaccess files for overriding, 
s 

Files ~ "^\.ht"> 

iles> 

r when the client requests a directory 

er.conf 

/include.conf 

################################################################### 
t-ssl.conf  

################

IfDefine !NOSSL> 

# SSL Virtual Host Context 
# 

 
<VirtualHost _default_:443> 
 
    # General setup for the virtual host 
    DocumentRoot "/srv/www/htdocs" 
    ServerName ccsmoto:443 
    ServerAdmin sakhawat23@gmail.com

</Directory> 
 
#
AccessFileName .htacces
# and never show them 
<
    Order allow,deny 
    Deny from all 
</F
 
# List of resources to look fo
DirectoryIndex index.html index.html.var 
 
### 'Main' server configuration  
Include /etc/apache2/default-serv
 
 
Include /etc/apache2/sysconfig.d
 
 
### Virtual server configuration  
Include /etc/apache2/vhosts.d/*.conf 
 
 
#
# /etc/apache2/vhost.d/vhos
#####################################################
 
<IfDefine SSL> 
<
 
## 
#
#
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    ErrorLog /var/log/apache2/error_log 
    TransferLog /var/log/apache2/access_log 
 
    #   SSL Engine Switch: 
    #   Enable/Disable SSL for this virtual host. 
    SSLEngine on 
 
    #   SSL Cipher Suite: 
    #   List the ciphers that the client is permitted to negotiate. 
    
SSLCipherSuiteALL:!ADH:!EXPORT56:RC4+RSA:+HIGH:+MEDIUM:+LOW:+SS
Lv2:+EXP:+eNULL 
 
    #   Server Certificate: 
       SSLCertificateFile /etc/apache2/ssl.crt/server.crt   
 
    #   Server Private Key: 
       SSLCertificateKeyFile /etc/apache2/ssl.key/server.key 
    
 
    #   SSL Engine Options: 
       #SSLOptions +FakeBasicAuth +ExportCertData +CompatEnvVars 
+StrictRequire 
    <Files ~ "\.(cgi|shtml|phtml|php3?)$"> 
        SSLOptions +StdEnvVars 
    </Files> 
    <Directory "/srv/www/cgi-bin"> 
        SSLOptions +StdEnvVars 
    </Directory> 
 
    #   SSL Protocol Adjustments: 
       SetEnvIf User-Agent ".*MSIE.*" \ 
        nokeepalive ssl-unclean-shutdown \ 
        downgrade-1.0 force-response-1.0 
 
    #   Per-Server Logging: 
       CustomLog /var/log/apache2/ssl_request_log   ssl_combined 
 
</VirtualHost>                                   
 
</IfDefine> 
</IfDefine> 
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