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Abstract 
Haptic feedback is feedback relating to the sense of touch. Current research suggests that 

the use of haptic feedback could give an increase in speed and accuracy when doing certain 
tasks such as outlining organ contours in medical applications or even filling in spreadsheets. 
This master thesis project has two different goals concerning haptic feedback. The first is to 
try to improve the forces for the SensAble PHANTOM Omni® Haptic Device when used in 
an application to outline contours in medical images, to give the user better feedback. The 
PHANTOM Omni is a device able to read in user movement of an arm attached to it in three 
dimensions, but it is also able to output forces through this arm back to the user, i.e. giving 
haptic feedback. By improving these forces and thus providing better feedback, we hope that 
speed and accuracy increases for a user working with the mentioned application. 

The second part of the project consists of evaluating if delays in a network between the 
haptic feedback device and the place where the data sets are located impact the user perceived 
quality or the outcome of the task. We do this by considering a number of potential 
architectures for distributing the image processing and generation of haptic feedback. By 
considering both of these goals we hope to demonstrate both a way to get faster and more 
accurate results when doing the tasks already mentioned (and other tasks), but also to 
understand the limitations of haptic performance with regard to distributed processing. 

We have successfully fulfilled our first goal by introducing a haptic force which seems 
quite promising. This should mean that the people working with outlining contours in medical 
images can work more effectively; which is good both economically for hospitals and quality 
of service-wise for patients. 

Our results concerning the second goal indicate that a haptic system for outlining contour 
can work well when using this new haptic force, even on low quality data links (which can be 
used for example in battlefield medicine or by specialists to conduct long distance operations 
or examinations) -- if the system architecture distributes the functionality so as to provide low 
delay haptic feedback locally. 

We have tried to compare our results from the second part with a model for the impact of 
network delay on voice traffic quality developed by Cole and Rosenbluth, but as there is not 
necessarily a numeric correspondence between the quality values that we used and the ITU 
MOS quality values for voice we cannot make a numeric comparison between our results and 
that model. However our experimental data seem to suggest that the decrease in perceived 
quality was not as fast as one might expect considering simply the ratios of the voice packet 
rate (typically 50 Hz) and the 1000 Hz rate of the haptic feedback loop. The decrease in 
quality seems to only be about one half of what the ratio of these rates might suggest (i.e., a 
factor of 10x faster decrease in quality with increasing delay rather than 20x). 
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Sammanfattning 
Haptisk återkoppling är återkoppling som fås genom känseln. Nutida forskning visar att 

användandet av sådan återkoppling kan öka effektiviteten vid vissa arbetsuppgifter inom 
sjukvård, till exempel vid förberedande uppgifter inom strålbehandling, men också vid 
kontorsarbete såsom att fylla i värden i ett kalkylark. Detta examensarbete har två mål som rör 
haptisk återkoppling. Det första är att försöka förbättra krafterna som ges från den haptiska 
enheten SensAble PHANTOM Omni® Haptic Device vid användning i ett medicinskt 
datorprogram rörande strålbehandling, i syfte att förbättra användareffektiviteten. PHANTOM 
Omni är en maskin som har en arm kopplad till sig som både kan läsa av rörelser och ge ut 
krafter med hjälp av en inbyggd motor, det vill säga ge haptisk återkoppling. Genom att 
förbättra dessa krafter och därigenom ge mer realistisk återkoppling hoppas vi att 
effektiviteten kan öka för en användare av det nämnda datorprogrammet. 

Det andra målet är att utvärdera hur fördröjningar i ett nätverk mellan den plats där 
enheten är placerad och den plats där informationen som ska bearbetas finns, påverkar 
upplevelsen för användaren och därmed resultatet av arbetet. Vi genomför detta genom att 
analysera flera olika tänkbara arkitekturer, där placeringen av bilddatat och uträkningen av 
krafter som ska ges ut av den haptiska enheten varierar. Genom att undersöka dessa två olika 
aspekter hoppas vi att vi både kan visa ett sätt att få snabbare och bättre resultat när man 
arbetar med uppgifter av den karaktären som redan beskrivits, men också att förstå 
begränsningarna för att använda haptisk återkoppling i distribuerade system. 

Vi har framgångsrikt lyckats uppfylla vårt första mål genom att utveckla en kraft till den 
haptiska enheten som verkar lovande. Om denna kraft funkar i praktiken innebär det att 
personer som arbetar med förberedande uppgifter inom strålbehandling kan göra dessa 
uppgifter effektivare vilket är positivt både ekonomiskt för sjukhusen och kvalitetsmässigt för 
patienterna. 

De resultat vi har fått fram avseende vårt andra mål indikerar att användandet av en 
haptisk enhet inom medicinsk bildbehandling kan fungera bra med vår nyutvecklade kraft, 
även på nätverkslänkar med dålig kvalitet (som kan vara fallet exempelvis när medicinska 
specialister utför undersökningar eller operationer på distans) – om systemet är uppbyggt så 
att den haptiska återkopplingen sker lokalt med en minimal fördröjning. 

Vi har försökt att jämföra våra resultat från nätverksdelen med en modell beskriven av 
Cole och Rosenbluth, som ger kvaliteten på rösttrafik som en funktion av fördröjningen i ett 
nätverk. Dock finns det inte nödvändigtvis någon korrelation mellan de värden vi har fått 
fram och den kvalitetsskala för rösttrafik som de använde. Vi kan därmed inte göra en 
jämförelse rakt av mellan våra resultat och deras modell. Däremot så pekar de data vi har fått i 
våra experiment på att den användarupplevda kvaliteten inte sänktes lika snabbt som man 
kunde ha väntat sig om man bara tar hänsyn till förhållandet mellan uppdateringsfrekvenserna 
för rösttrafik (vanligtvis 50 Hz) och den haptiska återkopplingen (1000 Hz). 
Kvalitetssänkningen verkar vara hälften av vad detta förhållande skulle kunna antyda (det vill 
säga en faktor på 10 gånger snabbare sänkning i kvalitet med ökande fördröjning snarare än 
20 gånger). 
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Chapter 1 -  Introduction 
In medical science, an interesting field of current research is the use of haptic feedback 

in different applications as a tool for increasing productivity. The concept of haptic feedback, 
also known as haptics, means that the user gets feedback through the sense of touch. Haptics 
has been extensively used in medical applications for education, particularly in surgical 
simulation -- so that a user can practice surgery in order to improve their surgical technique. 
Haptics is also being studied for use within medical applications as a mean to speed up certain 
tasks, for example outlining organ contours on CT-images for use in radiation treatment. 
Research suggests that the use of haptic feedback in addition to regular visual feedback could 
give an increase in speed and accuracy when doing such medical tasks, as described in the 
masters thesis by Eva Anderlind[1]. Furthermore, other tasks of a non-medical nature may 
also take advantage of these types of feedback systems, for example filling in data in 
spreadsheets*, training in flight simulators or to enhance the user experience in gaming. 

This master thesis project builds upon Anderlind’s work by examining how delays 
between the haptic feedback device and where the data sets are located, impacts the quality of 
the outcome of the task. The reason for examining such delays is because of the interesting 
possibility to use haptics in medical tasks over longer distances, for example letting surgeons 
perform tasks from a safe place while the patient is located in a battlefield hospital, when 
using distributed computing with the user interface implemented on one computer and 
computation taking place on one or more other computers, or for collaborative haptics. 
Additionally, we also wanted to understand if the type of force which is used changes the 
effect of delay on the user's performance. 

In order to experimentally evaluate the effects of delay on haptic feedback during one or 
more tasks, we needed an implementation or simulation in order to be able to do experiments 
with changes in the delay. One such system was already implemented by Professor Marilyn E. 
Noz in OpenDX and was described in Eva Anderlind’s thesis[1]. This application gives haptic 
feedback through gradient based forces multiplied by an exponential function and also 
through a viscous resisting force when moving the pointer. However, there are other kinds of 
forces that could be used as haptic feedback forces. At present it is not clear what kind of 
forces are the best suited for giving haptic feedback, therefore we will try to evaluate several 
different types of forces in order to learn what forces are likely to be most useful for haptic 
feedback purposes. As an example of another type of force, Karljohan Lundin Palmerius 
modeled surface forces in his dissertation Direct Volume Haptics for Visualization as a 
gradient force with an added viscous force[3]. In addition, he added a friction force that resists 
movement unless a large enough force is applied, hoping to achieve a force that is as natural 
as possible[3]. When implementing and testing our own forces we kept his results in mind. 

Another issue is that a force that produces good feedback when used in a low delay 
system might be a bad choice when the delay increases. Therefore we implemented several 
different types of forces and tested them both with and without delay, then we evaluated what 
type(s) of force(s) were best in different scenarios. 

                                                 
* The desire for using haptic feedback in filling in spreadsheets actually dates back as early as 1992, see the 
section “The Failure of Force Feedback” on page 25 of van Mensvoort’s dissertation What You See is What You 
Feel: On the simulation of touch in graphical user interfaces.[2] 
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Chapter 2 -  Background 

2.1 Haptics 
Haptics is a word originating from the Greek word hapthestai meaning “to contact” or 

“to touch”[1]. Haptics is generally used as a description for the science of using tactile and 
force feedback in computer applications. However, it can more correctly be described as 
referring to the sense of touch regardless of context[3]. 

By using a haptic device for output in addition to the usual visual output via a 
monitor/display, there are indications that one can decrease the time used and increase the 
accuracy of performing some tasks. This use of haptic force feedback has been evaluated in 
several studies with positive results. The general impression is that the feeling of realism is 
increased and the interaction in turn is made more precise. Eva Anderlind explains this by 
saying that people tend to trust what they feel more than what they see, but at the same time 
states that any discrepancies between the haptic and the visual feedback can seriously 
decrease performance[1]. We conclude from this that an important aspect is to make sure that 
the scenarios that are going to be used in our experiments have consistent visual and haptic 
feedback. 

The haptic device we used (a SensAble PHANTOM Omni® - for details see section 2.2) 
is using a point interaction system, where you control the device through an arm similar to a 
pen with a probe at the tip[3]. The probe is the point that allows the user to interact with the 
computer, but this device can only locate one point and give feedback for this point – one 
point at a time, whereas in the real world we can feel objects with our whole hand containing 
many different receptors (or probes) at the same time. This is a limitation of the haptic 
feedback interface that we are using, but studies show that people can be given sufficient 
feedback through point interaction that they can easily explore and manipulate a world with 
it[1]. 

A good example of how well haptics with point interaction works is an experiment by 
Ridel and Burton[4]. The goal of their experiment was to evaluate how accurately people 
could process different gradients of line graphs on either paper or via the haptic system while 
blindfolded. Their virtual haptic system consisted of a Logitech WingMan Force Feedback 
Mouse[11] (also mentioned in section 2.3 on page 5); while the analog system was raised 
lines on paper. The experiment showed that the test subjects were very accurate at the task. 
The results were also very similar between both the virtual and physical media, even though 
the physical paper would seem to have offered more data to the users. Their conclusion was 
that a haptic mouse allowed very accurate readings of simple line graphs. 

2.2 SensAble PHANTOM Omni Haptic Device 
The SensAble Technologies PHANTOM Omni® Haptic Device is a haptic feedback 

device with six degree-of-freedom positional sensing[5]. This device, shown in Figure 1, 
allows the user to input coordinates in three dimensions, as well as getting force feedback. 
The user can not only move the cursor within an X and Y plane, but also in Z which allows 
the user to navigate in 3D. The device will be used in our experiments as it has already been 
used by physicians for some medical tasks and there is a desire to improve the sense of 
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feedback that this device can offer users working with large three dimensional data sets. Via 
experiments we evaluate whether using this device yields a notable increase in accuracy 
and/or speed of certain medical tasks. 

 
Figure 1: Photo of the PHANTOM Omni Haptic Device 

Figure 2 shows the same photo of the haptic device with added illustrations to explain 
the usage of the device. The user holds the part of the haptic device that looks like a pen and 
the user is able to move it in three dimensions. The interaction is in a single point, in contrast 
to for example the human hand which has the ability to feel shapes via its large amount of 
receptors. The tip of the pen, marked with a green circle in Figure 2, is the interaction point 
and on a monitor this point is the equivalent to the cursor for an ordinary mouse. 

The pen can be moved in x-, y-, and z-direction, marked by the blue arrows, and the 
device also outputs force feedback as a vector of those directions. In order to register this 
movement and to output forces the arms can be moved and the sphere rotated as showed by 
the red arrows. The pen also has two buttons for user input. 
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Figure 2: PHANTOM Omni with illustrated force components and possible movement of arms 

2.2.1 Writing applications for the SensAble PHANTOM Omni Haptic Device 
There are two different application programming interfaces (APIs) available for use with 

the Omni Haptic Device: HDAPI and HLAPI. HDAPI provides low-level access to the haptic 
device and offers the programmer direct control over how to render forces. In contrast, 
HLAPI provides high-level haptic rendering. HLAPI is designed to be used in applications 
that synchronize haptics and graphics threads and is designed to be familiar to OpenGL 
programmers. When testing the device we almost exclusively used the HDAPI to get a feel 
for how the device works without spending too much time writing graphics code. Next we 
will explain how the code is structured to make the use of the Omni Haptic Device possible in 
a program using HDAPI. 

The rs ation, the first of these is an 
explicit c  shown in 

 fi t calls in a HDAPI application are for device initializ
all to initialize the haptic device that is to be used. This is1. HHD hHD = hdInitDevice(HD_DEFAULT_DEVICE); Example 1. 

Example 1: Haptic device initialization call 
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HD_DEFAULT_DEVICE is the default haptic device. We have only been working with a 
single haptic device attached to our computer, but if multiple haptic devices are used then the 
code must initialize all of the devices by calling this function with different names as 
arguments. The next step is to enable force output from the device; since all forces are turned 
off at ini li ling of forces can be seen in tia zation for safety reasons. This enab1. hdEnable(HD_FORCE_OUTPUT); Example 2. 

Example 2: Force output enabling call 

At this point there are still not any forces being sent to the device – forces will only be 
applied after the scheduler is started. The line above merely enables the possibility of force 
output from the device. To start the scheduler that runs the feedback servo control loop, i.e. 
the control loop that calculates the forces to send to the haptic device, the programmer makes 
a call as in Example 3. 1. hdStartScheduler(); 

Example 3: Servo control loop scheduler starting call 

Haptic feedback differs from visual feedback in that while a 30 Hz refresh rate is 
sufficient for the eyes to not perceive any discontinuities in an animation, a 1000 Hz refresh 
rate is needed for a user not to perceive force discontinuities or force fidelity losses. Thus to 
render a stable haptic feedback this servo control loop has to be executed at 1000 Hz, 
therefore the scheduler call creates a new high priority thread that runs at that rate. 

There are two types of scheduler calls: asynchronous and synchronous. The difference 
between these is that the synchronous call only returns when it is complete, so the application 
thread waits for this call to return before continuing, whereas an asynchronous call returns 
immediately after being scheduled. Synchronous calls are best used for getting the state of the 
scheduler, e.g. position or button state queries or for variable modifications during runtime, 
such as increasing the stiffness of a spring force. Asynchronous calls on the other hand are the 
most common choice for managing the haptic loop that outputs forces to the device (to be 
perceived by the user). If the asynchronous call returns HD_CALLBACK_CONTINUE the called 
function will continue to run until it eventually returns HD_CALLBACK_DONE. The call can 
terminate because of an error or because the program is terminated. Asynchronous calls 
managing the haptic loop should usually be called before the scheduler is started so that they 
begin executing as soon as the scheduler is started. 

To define a section of code where the state of the device is guaranteed to be consistent, 
the programmer can create haptic frames similar to frames used for visual feedback. The 
syntax for creating a haptic frame is hdBeginFrame() and to define the end of the frame’s 
scope hdEndFrame() is used. When a new frame is created the device state is updated and 
saved for use within that frame so that all state queries in the frame give consistent return 
values. At the end of the frame all state changes are pushed back to the device, e.g. force 
changes. Most of the operations in haptic programs should be framed to ensure data 
consistency in the program. According to the SensAble Technologies’ Sensable Open Haptics 
Toolkit Programmer’s Guide[6], it is recommended that the scheduler run one haptic frame 
per tick (when the scheduler is called) per device, but there is a possibility to override this.  

2.3 Two-dimensional haptic devices 
In addition to using the three dimensional SensAble Technologies PHANTOM Omni 

device we also considered using a two-dimensional mouse with haptic feedback capability as 
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it is probably one of the simplest ways of setting up a force feedback interface. Due to its 
simplicity, one can model forces in an easy way and conduct experiments that are easy to 
analyze and get results from. This could have been a useful way to recognize what kind of 
forces are the best for supplying haptic feedback and in turn speed up the task at hand. The 
mouse that was available to us was a Belkin Nostromo n30[7]. However, due to the fact that 
we started working with the PHANTOM Omni before getting access to this device and we 
had already got a good overview of working with a three dimensional device, we decided to 
continue working only with the PHANTOM Omni. 

However, for a user new to working with haptic devices using a two dimensional device 
may be a good way to start. There are several applications that can generate simple haptic 
feedback that work with the Belkin Nostromo n30, for example Immersion’s TouchWare 
Desktop[8] and iFeelPixel[9]. There are also other devices that work with the mentioned 
haptic feedback software, for example Logitech’s iFeel Mouse[10], Logitech’s WingMan 
Force Feedback Mouse[11], Kensington’s Orbit 3D Trackball[12][13], Saitek’s W07 Touch 
Force Gaming Mouse[14], and HP’s Force Feedback Web Mouse[15]. 

2.4 OpenDX 
OpenDX[16] is an open source visualization software package based on IBM's 

Visualization Data Explorer. OpenDX uses an object-oriented data model and moreover 
handles all data input in a uniform way, regardless of what the source is. The package 
provides hundreds of different functions grouped into powerful modules, but it also allows the 
user to create or import custom made modules. It also features a graphical user interface 
where a programmer/user can create a visual program based upon placing the modules and 
functions that you want to invoke on a “programming canvas”, and connecting the different 
parts with “wires” thus implementing a graphical data flow program. Using OpenDX we can 
easily create a program in an intuitive and visually well structured way, and with this program 
we can import haptic feedback modules allowing us to quickly and easily conduct 
experiments with different kind of forces. 

There is another reason for using OpenDX and that is because we can use a visual 
network coded and supplied by Professors Marilyn E. Noz & Gerald Q. Maguire Jr. This 
visual network has implemented methods and forces used in medical image processing and 
was used earlier in Eva Anderlind’s masters thesis project that examined how haptic feedback 
could speed up and make radiation treatment planning more accurate[1]. Professors Noz and 
Maguire implemented a haptics module that allows an OpenDX programmer to easily pass an 
array of three dimensional forces to be used by the haptic feedback loop. This code also sends 
the coordinates of the probe and the state of the buttons on the probe as UDP datagrams. A 
further advantage of using OpenDX is that we can leverage all of the existing work that has 
been done to read in medical images and manipulate them, without having to do very much of 
this work ourselves. This enables us to concentrate on our two project goals (see section 4.1 
on page 23). 

2.5 UDP 
The User Datagram Protocol (UDP)[17] is a minimal transport protocol that is part of the 

TCP/IP communication protocol stack. UDP is widely used in the Internet to carry real-time 
traffic (for example carrying real-time multimedia using the real-time protocol (RTP) which 
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in turn uses UDP as its transport protocol). Transmissions between devices utilizing UDP 
occur without session establishment. UDP does not provide any reliability, thus it is up to the 
programmer to provide their own timeouts, retransmissions, and acknowledgements if they 
want reliable data delivery, and as a result UDP has minimal overhead. The main alternative 
to UDP is TCP (Transmission Control Protocol), but that protocol requires that data be 
delivered in byte serial order. Otherwise, any loss of data forces all the data behind it to be 
buffered until the missing data is delivered. This can lead to very high variance in the time to 
deliver data between two applications. Hence TCP is unsuitable for our application†. 

Since our haptic device is a real-time based system, retransmission of packets which 
arrive late with old data are of no use. Therefore UDP seems to be the correct choice of 
protocol; hence we will use UDP during our tests with networked haptics. 

2.6 Traffic Control – tc 
Traffic Control, (“tc”) is a UNIX tool that can be used to shape network traffic. Tc[18] is 

part of the Linux package “iproute2”[19]. Using tc, one can model a link with a certain 
amount of packet loss or a certain latency, by using actual traffic shaped by tc to simulate 
different network links between two computers. In this project we will use different values for 
packet loss and latency to try to determine how the perceived quality of haptic interaction 
varies as a function of the delay. The sub sections below describe the tests we made to learn 
how to configure and use traffic control. 

2.6.1 Traffic control: delay setup 
The following command can be used to add additional delay to traffic going through the 

target interface[20]: 

tc qdisc add dev <device> root handle 1:0 netem delay <x>msec 

Here tc is the program name. This command adds the specified queuing behavior to the 
indicated interface. The queuing discipline (Qdisc) is a scheduling mechanism. This 
scheduling mechanism determines how packets are handled; specifically it allows you to 
specify the flow of packets through a queue. The default scheduler (pfifo_fast) is a First In 
First Out (FIFO) scheduler. 

There are two different places tc can manipulate traffic: outgoing traffic (egress also 
known as root) and incoming traffic (ingress). In our experiments we used root to affect 
all the outgoing traffic through the specified interface (<device>). 

The target device for the intended manipulation is specified as “dev <device>”. In Linux 
systems the Ethernet network interfaces are (typically) assigned a name of the form ethX 
where X is an index to the specific interface. Numbering usually starts at 0, e.g. if there are 
several Ethernet interfaces they would be named: eth0, eth1, eth2, … . 

The handle consists of the pair major:minor. The major is the name and identifier of the 
handler. This can be used to access the handler once created. If you have several classes under 
the same queuing discipline they are assigned different minor numbers. 

                                                 
† There exist other transmission protocols, such as the Stream Transmission Control Protocol, that could be used, 
but UDP is sufficient for our purposes. 
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Netemulation (Netem) is a part of the Linux kernel used to emulate packet loss, delay, 
duplication, and re-ordering of packets[21]. In Linux kernel 2.6 or later this kernel module 
should be included by default. You can include this module during kernel configuration 
through the following path: 

Networking --> Networking Options --> 
QoS and/or fair queuing --> Network emulator 

The delay parameter delay <X> msec; indicates that the traffic should be delayed by X 
milliseconds. As we will describe below this actually specifies a delay of at least X ms and 
does not guarantee a delay of exactly X ms. 

The result of executing a tc command with a delay of 500 ms (shown in the lower 
window in Figure 3) can be seen in the upper window of Figure 3. The top window of the 
figure shows the output of a ping of the server as shown on our workstation and the bottom 
window shows the command being given on the server. These two computers are connected 
to the same network and the command ping is being executed on the workstation in order to 
send packets between the two computers. As soon as the tc command to add 500 ms of delay 
is executed on the server, we see that the delay increases accordingly. The change in the delay 
is highlighted by the arrow in the top window. As you can see, the delay is not exactly 500 
ms, but a little more. The reason for this is that the tc queuing process adds 500 ms of delay, 
but does not take into account any processing delay. So when the process has been suspended 
for 500 ms there may be some additional time spent waiting for the operating system’s 
process scheduler to give an execution time slice to tc – thus enabling the delayed packet to 
be sent. 
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Figure 3: The white arrow shows the breakpoint where the response time starts to differ after the 

command in the lower part of the figure was issued. 

2.6.2 Traffic control: packet loss setup 
To emulate packet loss the following command can be used: 

tc qdisc add dev <interface> root netem loss X% 

The only difference from our previous delay example is that instead of specifying the 
delay parameter we use the parameter loss (which also is implemented by the package netem). 
Here X is the percentage of packets to be dropped. According to the tc manual page the 
smallest possible non-zero number is 1/232 = 0.0000000232%, thus this is the smallest 
non-zero loss rate that can be specified. 

To test the loss rate functionality we configured the system to inflict a packet loss of 50 
percent on communication with our server. The command ping was then used to send 100 
packets between our workstation and the server. The results can be seen in Figure 4. Due to 
the limited number of samples in our test the result is not exactly 50 percent lost packets, but 
it is close enough to convince us that the setup is working as intended. 
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Figure 4: Results of the ping command when tc was configured to generate a 50% packet loss  

2.6.3 Traffic control: reset 
In order to reset the interface to its default (i.e., without any manipulation of the traffic 

flow) the following command can be issued: 

tc qdisc del dev <device> root 

2.7 Difference in coordinate systems 
One problem we encountered when developing forces in the provided OpenDX program, 

was that different parts of the system used different coordinate systems. The force field array 
is a one dimensional array that consists of the gradient values of all the pixels in the dataset. 
That is, for each pixel in every slice there is an x-, y-, and z-value for the pixel’s gradient. The 
array is indexed in such a way that the first slice’s top-left pixel’s gradient values occupy the 
first three elements of the array. Then the pixel just to the right of the first occupies the next 
three elements. The array is filled one row at a time until all the gradients from the first slice 
are stored, then it continues with the next slice, etc. The natural way of thinking for us was 
that the top-left pixel of the first slice had the coordinates (0, 0, 0), thus the positive x 
direction is to the right and the positive y direction is downwards as shown in Figure 5. 

Since there are three values per pixel the total number of elements in the array is 
x*y*z*3. For example, in a volume with 5 slices 10*10 pixels each, there are 
10*10*5*3=1500 array elements. The way that that volume’s gradient values are put into the 
array is shown in Figure 6 with the front slice as slice number 1 in the volume. 
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Figure 5: Coordinate system used by the force field array 

 
Figure 6: Mapping of the pixel gradient values into the force_field array 
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As can be seen in Figure 5, there are no negative values in the force field coordinate 
system; but that is quite understandable since the coordinates that we are using are actually 
the indexing of an array. However, in the coordinate system used in the OpenDX network 
there are both negative and positive coordinates since origin is in the center of the volume, as 
shown in Figure 7. 

 
Figure 7: Coordinate system used by OpenDX 

Additionally, the units used by OpenDX for x and y are millimeters, thus there has to be 
a mapping between the device coordinates, the OpenDX coordinates, and the force_field array 
indices. Figure 8 show a very simple (magnified) image of a hip prosthesis. The image is 32 
by 32 pixels in size and the red dots are landmarks that we placed on the corners of an image 
pixel and as close to the middle as possible, in order to show the values associated with their 
coordinates. Since the width and length of the image is even it is not possible to put a 
landmark right in the middle, i.e. at OpenDX coordinate (0, 0). The glyph, shown as a green 
dot in Figure 8, can be moved around with the haptic input device. The location of this glyph 
snaps to each pixel of the underlying image. In the image in Figure 8, the top-left red dot is 
landmark number 5, with the OpenDX coordinates x = -49.406265 mm and 
y = 49.406265 mm (as shown in Figure 9). The other seven landmarks in Figure 9 are 
indicated by the other seven red dots in Figure 8 with positive and negative values in 
compliance with the coordinate system shown in Figure 7. 
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Figure 8: An extremely zoomed in image of a hip 

prosthesis 
Figure 9: Coordinate outputs in OpenDX 

There is also a third coordinate system used by the haptic device. Since it is a three-
dimensional environment we also have a z-axis in addition to x and y axis. It is a standard 
right-handed three-dimensional Cartesian coordinate system. Figure 10 shows a screenshot 
from the test and calibration program supplied with the PHANTOM OmniDevice. The 
interesting values shown in this image are the “Positions” values. There is a rough three 
dimensional rendered model of the device in the black box that follows the movements of the 
device in the real world. At the moment when this screenshot was taken the device was 
rotated to the left, slightly lowered, and pushed inwards towards the base - this translates to 
the haptic device position values shown. According to the manufacturer these are measured in 
millimeters; however, we have not measured how accurate these values are. 

 
Figure 10: PHANTOM Test – Test and calibration program for the haptic device 
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To learn the maximum range of position values of the device, we wrote a small program 
and used hdGetDoublev(HD_USABLE_WORKSPACE_DIMENSIONS, aUsableWorkspace) and 
hdGetDoublev(HD_MAX_WORKSPACE_DIMENSIONS, aMaxWorkspace) to learn the dimensions 
of the available workspace. The maximum workspace is the maximum extents of the haptic 
device workspace, although due to the mechanical nature of the device there is no guarantee 
that forces will be rendered correctly throughout all of this volume. Instead one should limit 
the usage of forces to within the usable workspace, which is a volume in which the forces are 
guaranteed to be rendered reliably. The workspace values we found using our program are 
shown in Table 1. 

Table 1: Maximum and usable workspace of the Omni device 
 Maximum workspace Usable workspace 

Axis Minimum Maximum Minimum Maximum 
x -210 210 -80 80 
y -110 205 -60 60 
z -85 130 -35 35 

As stated before these three coordinate systems are different, thus we have to map 
between the various coordinate systems as appropriate. For example, in the 32x32 pixel image 
in Figure 8, there is a force_field matrix where x and y range from 0 to 31, i.e. 32 values for 
each of the indices. For the OpenDX system there are also 32*32 (=1024) different points 
where a glyph can be. However, the OpenDX coordinate system ranges from -49.4 to 49.4 for 
both x and y, thus a changing by slightly more than 3mm for each movement of the glyph. 
Meanwhile the haptic device operates with much smaller increments (~0.055 mm according 
to the PHANTOM Omni® Haptic Device product info[5]) and it feels seamless to move the 
haptic device, even though the glyph’s movement on the display does not immediately follow 
the movement of the haptic device. 

2.8 Summary of background 
In this chapter we have provided an introduction to all of the concepts, devices, and 

technologies that we will use in the rest of the thesis. Specifically we have described the 
haptics device that is to be used, the rate of the feedback servo control loop, how the device 
can be programmed, the software that we used for writing programs, the different coordinate 
systems that the different parts of the system use, and the tools that can be used to delay or 
drop network packets. Before we examine in detail how we use the haptics device and 
software to generate specific types of forces and send information about forces via UDP 
packets, we will introduce some of the related work that has help guide our work.  
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Chapter 3 -  Related work 
This section describes related work in the area of haptics that we found useful prior to 

and during our work. 

3.1 Design considerations for stand-alone Haptic Interfaces 
communicating via the UDP Protocol 

Traylor, et al. in their paper “Design Considerations for Stand-alone Haptic Interfaces 
Communicating via UDP Protocol”[22], describe the results of building and testing a system 
consisting of a stand-alone haptic interface communicating with a computer over a network 
using UDP. A haptic device needs a fast update-rate in order to operate properly. Their 
measurements show that it is possible to achieve an update rate of 3800 Hz with the use of a 
10 Mbit/s half-duplex Ethernet link. They found that a limitation in performance was due to 
the maximum rate of interrupts allowed by the operating system. When using a gigabit 
network card the default interrupt rate of 5000 interrupts per second limited the achieved 
haptic update rate to 2300 Hz. This report also discusses in detail why UDP was their choice 
of protocol. This report helped us understand the effects of network delay and the impact of 
the system’s maximum interrupt rate. 

3.2 Haptic Feedback for Medical Imaging and Treatment Planning 
Eva Anderlind's masters thesis Haptic Feedback for Medical Imaging and Treatment 

Planning[1] investigates if haptic feedback can produce speedups and increase accuracy when 
applied to medical imaging and treatment planning systems. The author studied physicians in 
their working context, using a haptic application implemented in OpenDX. An experiment 
was conducted with a group of physicians to evaluate their use of this application in order to 
see if haptic feedback gave any performance improvement for this task. The conclusion was 
that haptic feedback can decrease the time required to perform the tasks studied, i.e. outlining 
organs and volumes on CT-scans. However, no significant increases could be detected for 
accuracy or perceived usability[1]. A limitation of this study was the relatively small number 
of test subjects studied. 

This thesis was important in both providing a motivation for their being a potential gain 
from using haptic feedback in these task. However, it was also cautionary concerning how 
hard it is to get volunteers for such experiments. This also proved to be problem for our 
experiments, i.e., we also had only a small number of volunteers. 

3.3 Voice over IP Performance Monitoring 
Cole and Rosenbluth in their paper “Voice over IP Performance Monitoring”[23] 

describe a method that uses a simplification of the ITU-T’s E-Model for monitoring and 
measuring the quality of Voice over IP applications. One of the conclusions of their report is 
that the transport level quantities that are relevant to measuring quality are (1) the delay and 
(2) the packet loss in the network. We want to adapt their method to measure how the quality 
perceived for haptics interactions over IP varies with regard to delay and packet loss. Their 
model provided the basic motivation for this thesis project. Figure 11 shows a plot of their 
model of user perceived quality of voice over IP as a function of the network delay. 
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Figure 11: Relation between delay and perceived quality for voice over IP traffic 

 (based upon the equations shown in [23]) 

3.4 Nyudemo 
Nyudemo is an OpenDX program coded by Profs. Noz and Maguire. This program 

consisted initially of six pages of data flow diagrams in the OpenDX, and was named test.net. 
During our work with this project we came across some difficulties with getting the 3D 
environment working, so Prof. Noz tried to enhance the network to get it in shape for 3D. In 
the end we did not have time to do any tests on 3D images, nor did the 3D system work 
perfectly, but some enhancements were introduced into the network and it was renamed 
test2.net. 

Using test2.net we implemented some input configuration sliders in order to be able to 
control our magnetic and anchor forces better. This enhanced network was used in the later 
parts of this project and was used in all of our subsequent tests and experiments. This network 
consists of only five pages of data flow diagrams and each of these five pages is described 
below. 
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Figure 12 shows the HapticOpen page. This page is responsible for opening and 
initializing the haptic device. The first input to the HapticOpen operator is the complete path 
name of an image file (as selected by the user using the FileSelector operator). The second 
input is a string indicating the name of the default haptic device. The third input is an integer 
indicating whether a slice or an iso-surface is being shown. The fourth input is another integer 
- the value 0 indicates a single slice of a volume (which the user will be constrained to); while 
the value 1 indicates that a single slice can be chosen from anywhere within the volume. 
When the HapticOpen module ("m_HapticOpen") executes it take the inputs from the input 
arcs and initializes the haptic device (including starting the haptic server loop) and outputs a 
device_handle that can be used to access the haptics device and a file_name (as selected 
using the file selector). 

 
Figure 12: Nyudemo - HapticOpen page 
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Figure 13 shows the Import page. This page is responsible for the import of the data set 
and the calculation of the gradient vectors. It is also here that the user can reduce the volume 
(i.e., subsample) before the gradients are calculated. This page is also where the coloring of 
the volume is performed using the window width and window level scalar interactors in 
preparation for showing it as a 3D rendered volume. Coloring is the process of mapping the 
voxel values of the input image to colors to be used when rendering (i.e., displaying) the 
image. Interactors are graphic user interfaces that can be used to change the value of an 
OpenDX variable. At the bottom of this page is the HapticForce module that takes the 
gradient vectors and slice maximums as input and uses this information to apply forces via the 
haptic device. 

 
Figure 13: Nyudemo - Import page 
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Figure 14 shows the Slices page. This page takes the original volume and creates a slice 
selected by the slice integer interactor. This slice is then colored based upon the window level 
and width selectors, then passed on to the Display page. 

 
Figure 14: Nyudemo - Slices page 
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Figure 15 is a screenshot of the Display page. This page is responsible for displaying the 
volume and different slices based on the various options chosen via the earlier pages. 

 
Figure 15: Nyudemo - Display page 

Figure 16 is a screenshot of the findslicemax page. This page finds the maximum of the 
x, y, and z values for each slice and puts them in a list. 

 
Figure 16: Nyudemo - findslicemax page 
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We ran this program with a simple image in order to understand how the forces were 
applied. The forces often forced the glyph a little bit into the whiter area, which is not 
optimal. The user wants to stay at the border between the black and white areas, because that 
is where you want to place the landmarks to outline the object. The image processing required 
to do this seemed at a first glance to be somewhat hard to implement. Initially the image was 
parsed when loaded and the intensity value of each pixel was input into the OpenDX network. 
Next the gradient at each pixel was calculated and saved into a matrix implemented as a one-
dimensional array. The elements of this array were the three force values associated with each 
pixel in succession. For example the x, y, and z gradient vector values of the pixel (0,0,0) are 
located at force_field[0], force_field[1], and force_field[2] respectively. The forces 
were created from these gradients for each pixel. 

We took a couple of screenshots while testing the program to try to identify the direction 
of the forces and see of what magnitude they were. Figure 17 shows the gradient at (14, 11) 
that is the topmost red landmark and the value of the gradient is (0.000, -0.387, 0.000). The 
haptic device produces a force that makes the glyph want to go downwards; this seems 
consistent with our expectation, since –y is towards the bottom of the image. 

 
Figure 17: First screenshot while testing Nyudemo 
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Figure 18 shows in a similar fashion the gradient at (11, 15), i.e., the leftmost landmark. 
The gradient value is (0.396, 0.000, 0.000), thus the force should be directed to the right, 
which is also consistent with our expectation. 

 
Figure 18: Second screenshot while testing Nyudemo 

However, we thought that forcing the user from the border area between grey and white 
areas, into the white area, was not optimal considering that the user wants to place landmarks 
on the border. This led us to investigate if it was possible to generate forces so that the glyph 
would stay on the border, instead of the device forcing the glyph into another area. The 
changes required to do this are described in Chapter 5 - . 

3.5 Summary of the related work 
Eva Anderlind's masters thesis suggested that haptic feedback was useful, while 

cautioning us of the difficulty of doing user experiments that relied on volunteers. The work 
of Traylor, et al. indicated that added delay could substantially affect the feedback control 
servo loop. The work of Cole and Rosenbluth suggested that at least for voice over IP that 
with delays below ~250 milliseconds that the perceived quality of the voice was good to very 
good. The existing OpenDX Nyudemo gave us a substantial code base, while enabling us to 
focus on the haptic forces and avoid having to worry about the image formats or basic image 
processing operations. Given this background we were prepared to consider our specific 
project goals and how we would achieve them. These are the topics of the next chapter. 
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Chapter 4 -  Method  

4.1 Goals 
Since this thesis has two major parts, forces and networked haptics, we have two 

different (but inter-related) sets of goals. The first major set of goals concerns understanding 
and being able to implement different types of forces. The second major set of goals concerns 
examining what the effect of network effects (explicitly delay and packet loss) are on the 
user’s perception of these different types of forces. 

If we are successful in understanding both the forces and how the network affects these 
forces, then we expect to be able to fit a model (such as Cole and Rosenbluth – see section 
3.3) to the experimental data. Unfortunately, as of the time of writing this thesis we have been 
unable to create a model for haptics performance over IP networks. However, we understand 
how to overcome (at least) some amount of delay and loss, while maintaining user perceived 
performance. 

4.1.1 Forces 
When we started working with the existing software the haptic forces were not 

functioning as a user would have wanted them to. The forces were not helping the user to stay 
with the glyph on the border of regions of interest, but rather forced the glyph into these 
regions. In order to improve this behavior and hopefully help the user to stay with the glyph at 
these borders, we needed to understand (1) how haptic forces work & (2) how we could 
control the device to generate different types of forces. As a result we had two sub goals 
concerning the forces part of the thesis project: 

1. List and discuss different types of forces. 
2. Implement and evaluate the suggested forces. 

4.1.2 Networked haptics 
Our second major goal was to understand how a haptic system behaves when used over a 

network. The sending of data or forces via the network introduces delay and may also 
introduce packet loss. As a result we had two sub goals for the networked haptics part of the 
thesis project: 

1. Analyze how delay and packet loss affects the user’s perception of the haptic system. 
2. If delay negatively affects the user’s perception of the haptic force, then find a solution 

that allows the haptic system to work despite high delay. 

4.2 Plan for this thesis project 
In keeping with the set of goals and sub goals described above we began by focusing on 

forces, starting with the existing system and its forces, then introducing new forces. After 
developing a solid understanding of haptic forces we initiated measurements of network 
effects on the user perceived haptic performance. Details of these steps in our plan are 
described below. 
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4.2.1 The existing system 
The existing system that we used as a base was described in section 3.4. The task that we 

will focus on is the same task as explored by Eva Anderlind in her thesis (see section 3.2), i.e. 
a user outlining regions of interest (ROI) in medical images. As noted earlier this task is 
ordinarily done by using an ordinary mouse. In order to both speed up this task and make it 
more accurate Eva Anderlind showed that a haptic device can be beneficial. Thus in our first 
step we used this existing system to learn about haptic forces and to understand the task that 
was to be done by each user. An example of the existing system running with two partially 
completed ROI is shown in Figure 19. 

 
Figure 19: OpenDX network running with two partially completed regions of interests (ROI) 

4.2.2 Forces 
We want to find a force that helps users to do their work (in this case the selected task) 

faster and potentially with better precision. Thus in our second step we developed a list of 
different possible forces. Following this we implemented these forces in the system, in order 
to later evaluate how each of these is perceived by the user. Specifically we want to 
understand which type of force seems to work best. This chosen force would be used for the 
second part of the thesis. This work will be described in Chapter 5 -  
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4.2.3 Networked haptics 
In this step we analyze the behavior of the haptic system when the task is performed over 

a network when delay or packet loss is introduced. We will use TC to introduce this delay 
and/or packet loss between two different computers (see section 2.6). This work will be 
described in Chapter 6 - . 

Once we can introduce a controlled amount of delay and/or packet loss the next step is to 
test the system with different users in order to analyze how the perceived quality of the haptic 
interaction during the task changes with different amounts of delay and/or packet loss. The 
experiments and the analysis of the data from them are given in Chapter 7 - . 

Based upon the analysis of this experimental data we will describe a solution that can 
maintain the quality of haptic interaction for this task, despite some amount of added delay 
and/or packet loss. While we describe the idea in section 7.2.3 and give an evaluation, a 
complete implementation and measurements of this remain for future work. 
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Chapter 5 -  Forces 

5.1 Introduction to forces 
In this chapter we will describe what a force is, how we are going to use forces, some 

different possible forces, and our implementations of some of these possible forces. 

5.1.1 What is a force? 
Halliday, Resnick, and Walter define a force as an interaction that can cause an 

acceleration or deceleration of a body[24]. Such an interaction is, loosely speaking, a push or 
a pull on the body and the force is then said to act on the body. The way that a force and the 
acceleration relate to each other was first understood by Isaac Newton (1642-1727) and is 
called Newtonian mechanics. 

A force is a vector quantity, i.e. it has both a magnitude and a direction. This means that 
force has x-, y-, and z-components to the force. The magnitude of this vector describes how 
strong the force is. Forces combine according to standard mathematical vector rules.  

5.1.2 How are we going to use forces 
In the original system the forces that were applied at each pixel were based on the 

gradient of the pixel intensity values in the pixel itself and its neighbors. Considering that the 
original gradient was calculated in three dimensions, the computations were actually in terms 
of a voxel (volumetric pixel, the three-dimensional counterpart to a pixel) and its 26 
neighbors. After the gradient was calculated it was normalized to assure that the force sent to 
the device would not be too strong for the device to handle. The magnitudes of these forces 
were perceived to be at a good level for the user, in that they could clearly be felt, but were 
not too strong. However, the direction of the force did not help in the process of finding the 
border between a brighter and a darker area, since the gradient on such a border is directed 
into the brighter area, thus the force from the device pushed the point locator (and hence the 
glyph) into this area instead of helping the user stay on the border. 

Thus we wanted to continue to use the gradient as a way to find regions of interest, but to 
apply another force that was more suited to help the user stay on the border of the region 
instead of pushing them away. This led us to explore alternative forces. 

5.1.3 Different potential forces 
After using the existing system and reading the documentation concerning the haptic 

device we tried a number of the sample programs provided by the manufacturer. Based upon 
this experience we made a list of the types of forces that we might consider further in the 
context of this thesis project: 

• Spring forces: Forces that follows the formula F = -k*x, where F is the force, k is the 
spring constant and x is the distance the spring has been extended or contracted. The 
spring force is the most common type of force calculation used in haptics rendering due 
to its versatility and because it is simple to use. 

• Viscous or damping forces: Forces that follows the formula F = -b*v, where F is the 
force, b is the damping constant and v is the velocity of the body that is being affected 
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by the viscous force. (Note that velocity is the derivative with respect to time of the 
position.) 

• Friction forces: There are several friction forces that can be simulated with the haptic 
device according to the Programmer’s Guide[6]. These include coulombic friction and 
viscous friction that can be represented by the equation F = -c*sgn(v). These two 
forces help to create smooth movement and transitions when changing directions due to 
friction being proportional to velocity for slow movement. Friction forces also include 
static and dynamic friction. Static friction is friction between two objects that have no 
relative motion to each other, e.g. prevents an object from sliding down a sloped 
surface. Dynamic friction is between two objects that are moving relative to each other 
and is resisting this motion. 

The three types of forces in the above list are forces that are motion dependant, i.e. they 
are computed based on the motion of the haptic device. There are also time dependant forces 
that are computed as a function of time. In the list below are two examples of time dependant 
forces: 

• Constant forces: A force with a fixed magnitude and direction. Such a force can be 
used to compensate for the gravity that is affecting the pen or end-effector of the haptic 
device, thus making it feel weightless. 

• Impulse forces: An impulse force is an instantaneously applied force. In practice, for a 
haptic device, this type of force is best applied over a small duration of time. 

5.2 Possible implementable forces 
In order to find out which of the potential forces might be the most suitable we created a 

list of candidate forces to be examined in more detail. These candidates are: 
• Bump force 
• Magnetic force 
• Spring force 
• Wall force 
• Viscous force 

We tried to implement each of these different types of forces in order to test them in the 
real system. However, before describing the implementations and experiments with these 
candidates, we first describe each of these candidates in the following sub sections. 

5.2.1 Bump force 
The idea behind the bump force is to have the haptic device make a small “bump” when 

the tip of the device enters or passes a potential area of interest. The bump will be created by 
either a fast short force in one direction or a cycle of forces back and forth to create a 
vibration like experience. See Figure 20. Our implementation of this force is described in 
section 5.4.2. 
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Figure 20: Bump force 

5.2.2 Magnetic force 
The magnetic force is supposed to pull the cursor and haptic device towards an area of 

interest in the same way a magnet attracts metal. This force may be combined with any of the 
other forces to keep the user at the right position or allow them to trace a line or shape. Figure 
21 illustrates that as soon as you are close enough (specified by a parameter), illustrated by 
the black dotted line, you will be attracted to the edge of the area of interest. Our 
implementation of the magnetic force is described in section 5.9. 

 
Figure 21: Magnetic force shown for two different shapes 
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5.2.3 Spring force 
A spring force is supposed to help the user to keep the cursor at the right position or 

allow them to move along a curve or shape by imposing a spring like force if they either try to 
leave the area or move in the wrong direction (as determined by the curve or the shape) that 
the user tries to follow. 

Figure 22 illustrates the concept. If you start out at point (1), then move towards point (2) 
it will feel like a spring is trying to drag you back to point (1). The further away from point 
(1) you get, the harder the force will try to pull you back. If you continue towards point (3) 
you will pass the threshold for release, illustrated by the black dotted ring, and the force will 
disappear. Our initial implementations of a spring force are described in section 5.3 on page 
31. 

 
Figure 22: Spring force 
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5.2.4 Wall force 
Here we thought that we could “encapsulate” areas of interest with walls, therefore 

disallowing the user from entering them. This would give the user the ability to know when 
he or she is at the right position by not being able to move further. Figure 23 illustrates an 
example of this where the cursor cannot pass the solid black ring in order to enter into the 
gray circle. One type of force that has the possibility of acting as a wall force is discussed in 
section 5.3.2. 

 
Figure 23: Wall force 

5.2.5 Viscous force 
A viscous force is a force in the opposite direction of the current movement and velocity 

of the cursor. A viscous force makes it harder to move the cursor as long as it is inside the 
area of interest, therefore the user would be able to feel both when he or she is in the area or 
interest (a viscous region) and when exiting the area since the viscous force would disappear 
outside this region. 

Figure 24 shows opposing forces while inside the circle, but not outside. The idea is to 
also have these forces inside smaller regions, but we choose a larger circle for illustrative 
purposes. More on our tries to implement this type of force is described in section 5.4.1. 
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Figure 24: Viscous force 

5.3 Spring forces 
We explored several types of spring forces, as described in the sub sections below. 

5.3.1 Anchored Spring Forces 
SensAble supplies with the Omni device some small sample programs to illustrate what 

the device is able to do. One of these programs is called AnchoredSpringForce. This program 
simulates a spring with adjustable stiffness. The way the program functions is that when you 
hold down the first button on the device an anchor is created at that position in space. When 
you move the probe away from this anchor while still holding down the button, you feel a 
spring force trying to drag the probe back. The force that is applied is created using Hooke’s 
Law: F = -k*x, where F is the applied force, x is the relative distance from the anchor and k is 
the spring constant. The spring constant is variable in the program and can be set to a value 
between 0.0 and 1.0 using increments of 0.025. 

The spring is not fixed in direction, so you can move around the anchor freely and feel 
the same force as long as you are at the same distance from the anchor. It is hard to find an 
equivalent in the real world, since that requires something like a spring attached to a ball that 
is fixed in an electric or a magnetic field. However, it still is a good simulation of a spring 
force. 

The coordinate system in the program is defined with the positive x axis to the right, 
positive y axis upwards, and positive z axis up from the paper pointing towards the reader, i.e. 
a right-handed three-dimensional Cartesian coordinate system. See Figure 25. 
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Figure 25: Right-handed three dimensional Cartesian Coordinate system[25] 

We o  of the probe’s 
coordina  

 m dified their example program to provide force vectors as a function
 adding the code shown in Example 4. 

 
tes by2. if(force[0]<force_old[0]-0.500 || force[0]>force_old[0]+0.500) 3. {  4. ce is %f, %f, %f\n", force[0], force[1], force[2]);   printf("\nResulting for5.   f orce_old[0]=force[0]; 6. } 

Example 4: Code added to the AnchoredSpringForce program 

The code in Example 4 checks if we have supplied enough force in the x-direction to 
exceed a r e vector’s coordinates in the form of (x, 
y, z). Th u

 th eshold, and if so, it prints out the new forc

 
e o tput we got is shown in Example 5. sulting force is -0.001, 0.131, -0.045 1. Re2. sulting force is -0.614, 0.139, -0.424 Re3. … 4. …  5. … 

Example 5: Example output from the modified AnchoredSpringForce program 

A positive number means that the force vector is in the positive direction of the 
coordinate system, whereas a negative number means that the coordinate is in the negative 
direction respectively. Higher numbers generally means that we are further away from the 
anchor, which in turn causes the haptic device to apply a stronger force to pulls us back 
towards the anchor. 
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5.3.2 FrictionlessPlane 
Another example program is called FrictionlessPlane. This program simulates a plane at 

(x, 0, z) that has no friction when probing along it. However, it has a spring force pushing you 
back when you try to penetrate the plane. The force applied is similar to the one in 
AnchoredSpringForce, since it is also using the formula F = -k*x. By default k has a value of 
0.25 and you can penetrate the plane noticeably. By default at an applied force of 5 N (i.e., 
five Newton), you will pop through the plane and the direction of the plane will change. After 
doing this you will feel the force the other way if you try to go back to where you started. 
This is implemented by a direction flag set to either 1 or -1. Here 1 means the plane is facing 
+Y while -1 . The default value is 1, this means that the plane is 
facing +Y to is flag is shown in 

 means the plane is facing -Y
  begin with. The setting of th1. static int directionFlag = 1; Example 6. 

Example 6: Direction flag in FrictionlessPlane program 

The ar d is shown in  p t of the code that checks if the plane has been penetrate1. # Get the position of the device: Example 7. 
 2. hdGetDoublev(HD_CURRENT_POSITION, position); 3. # Check if the probe has penetrated the plane:  4. if ((position[1] <= 0 && directionFlag > 0) || (position[1] > 0) && (directionFlag < 0)) 

Example 7: Check for plane penetration in the FrictionlessPlane program 

If the plane has been penetrated, the program calculates a force perpendicular to the 
plane an ce and chosen spring stiffness 
as shown in 

d with a magnitude depending on the penetration distan

 
Example 8. e = fabs(position[1]); 1. double penetrationDistanc2. hduVector3Dd forceDirection(0,directionFlag,0);  3. double k = planeStiffness;  4. hduVector3Dd x = pene trationDistance*forceDirection; 5. hduVector3Dd f = k*x; 

Example 8: Force calculation in the FrictionlessPlane Program 

We e xample 9 th n added one line of code to output the calculated force as in E1. printf("\nResulting force is %f, %f, %f\n", f[0], f[1], f[2]); . 

Example 9: Code added to enable output of calculated force 

Nex th shold has been reached, if so 
then the n ed as in 

t ere is a check to see whether the pop-through thre
pla e should change facing, otherwise the force is appli

 d) Example 10. 1. if (f.magnitude() > popthroughForceThreshol  directionFlag = -directionFlag; 2. else hdSetDoublev(HD_CURRENT_FORCE, f); 
Example 10: Check for pop-through and possibly apply force 

Example output from the program is shown in Example 11. The increase in force is 
obviously because we tried to push through the plane more and more and 4.979 is just before 
the pop-through threshold had been reached. 
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1. Resulting force is 0, 0.196, 0  2. Resulting force is 0, 0.945, 0  3. Resulting force is 0, 1.761, 0  4. Resulting force is 0, 2.139, 0 5. Resulting force is 0, 3.921, 0  6. Resulting force is 0, 4.979, 0 
Example 11: Example output from the modified FrictionlessPlane program 

This example program is quite interesting because with a high enough stiffness we could 
use this to simulate a hard structure such as bone or a prosthesis that should not be penetrable. 
This is of course harder than in this theoretical example with a plane because we cannot 
simply set the x and z parts of the force vector to zero, but instead we have to calculate the 
shape of the object and use varying x, y, and z values for the components of the force at 
different points of the object. 

This was the closest we came to implementing the wall force from section 5.2.4. In the 
end there was not enough time and motivation to implement the wall force since we already 
had implemented some forces that we thought might be suitable. However, if a wall force is to 
be implemented in the future, the ideas that we had to make it work correctly were: 

• Find out a way to get the shape of the volume or area that is going to be 
impenetrable. 

• Find vectors that are perpendicular to this volume or area at every point and make 
sure that they are pointing outwards from it. Using gradients might work. 

• Decide what magnitudes those vectors will have, probably by basing them on the 
penetration distance as in the FrictionlessPlane example program. 

The most difficult to realize of these ideas is probably how to find a way to get the shape 
of the volume and how to know if this volume has been penetrated, and as said we did not 
have time to find a solution to this problem. 

5.4 Viscous forces 

5.4.1 Viscosity 
The example program Viscosity is a simple program that simulates a viscous damping 

effect (i.e., F = -b*v). Initially the program did not work well, but after examining the code 
we realized that the damping constant, b in the formula, was set to too high a value and the 
consequence was that the haptic device applied a too strong force. This force was enough to 
literally grab the device’s arm out of your hands if you did not have a firm grip. This 
happened when we tried to move the arm rapidly as the force is controlled by a formula that 
opposes the movement proportional to the velocity of the device. Our solution was to make 
sure the damping constant was set to a smaller value as originally intended in the program. 
However, when we tested the program with that value the force was very weak. We tried to 
setting the damping constant to the maximum value recommended for the device, i.e. by 
setting it to HD_NOMINAL_MAX_DAMPING, but the force still felt quite weak and was not what 
we had hoped. 
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At this point we understood why the damping constant initially had been set to a higher 
value than recommended. Our theory is that for high velocities the force would be too strong 
for the device if the damping constant is not limited, due to the nature of the force equation 
being used. In spite of the viscous force not being very effective in this example we wanted to 
give it a try in other applications; because it could prove useful as a way to increase the 
accuracy when outlining contours. 

One idea we had was to get the direction from the velocity parameter, but set the 
magnitude to a fixed value. In this way we would be able to get a force that is similar to the 
viscous force discussed in section 5.2.5, but without the strange behaviours we described 
earlier in this section of strong forces grabbing the device out of the user’s hand. However, 
after more testing we realized that reading of the velocity parameter from the device was 
buggy. It tends to stop updating the velocity from time to time and instead output an old value 
for as long as 10 seconds. This effectively prevented us from implementing a viscous force, 
since if the user would change direction and the velocity parameter was not updated correctly, 
then the result would be a force going in completely the wrong direction. 

5.4.2 Bump force 
In the process of evaluating how good different forces were in terms of giving useful 

feedback, we started thinking about what kind of forces we wanted to try. One idea was to 
apply a small force to the user when entering a specific area with the haptic device. The 
specific type of force we thought about was that the user would feel a small “bump” when 
entering the area either as an impulse force perpendicular to the direction of motion or 
perhaps as some kind of vibration. 

We started to write a small program consisting of a main function with the required 
haptic device initialization, a call to the device scheduler starting our callback code, and a 
while loop running until we hit a key to stop. In our callback function we check if we have 
moved the device across the y-axis, if so, then we applied a force for a certain amount of time. 
By movi  ition changed 
from a p iti le 12

ng the device across the y-axis we mean that the y component of pos
een in Examp

 agnitude); os ve to a negative value. Our callback function can be s, &forceM1. hdGetDoublev(HD_NOMINAL_MAX_FORCE . 2. 0.5), 0); hduVecSet(kickForce, 0, (forceMagnitude*3. if(last_position[1]<=0 && position[1]>0){  4.   printf("\n Passed 0 \n");  5.   hdSetDoublev(HD_CURRENT_FORCE, kickForce); 6.   printf("\n BUMP! \n");  7. t kickForce is: %f, %f, %f\n", kickForce[0], kickForce[1],    printf("Curren  kickForce[2]); 8.   startBump(); 9. }else{ 10.   hdSetDoublev(HD_CURRENT_FORCE, zeroForce);  11. }  12. hdGetDoublev(HD_CURRENT_POSITION, last_position);     
Example 12: Callback function of the bump force implementation 
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The startBump( ) function on line 8 of Example 12 is a small function consisting of an 
asynchronous call to bumpCallback() and waiting for it to complete before continuing. This 
function s 3is hown in Example 1

 mp() 1. void startBu . 2. { 3.  int nFr = 0;  4. dScheduleAsynchronous(bumpCallback,&nFr,  h HD_DEFAULT_SCHEDULER_PRIORITY); 5. } 
Example 13: The startBump() function 

Our um b pCallback() function consists of the code shown in Example 14. 
 K bumpCallback(void *pUserData) 1. HDCallbackCode HDCALLBAC2. {  3.   static int pFrameCount = 0;  4. de ran! - %d \n", pFrameCount);   printf("bump Callback co5.   pFrameCount += 1;  6.   if (pFrameCount < 100)  7. K_CONTINUE;   return HD_CALLBAC8.   else{ 9.     pFrameCount = 0; 10.     eturn HD_CALLBACK_DONE;  r11.   }  12. } 

Example 14: The bumpCallback() function 

These two functions, startBump( ) and bumpCallback( ) were a way for us to stall the 
scheduler for 100 loops so the user could feel a force for a certain amount of time. One 
hundred loops was roughly 100 ms in our tests, because we ran the scheduler at the default 
rate of 1000 Hz. 

The end result of this program was a clearly palpable force felt as a bump, when you 
moved across the y-axis. We had this force in mind for later use, but eventually chose not to 
implement it into the OpenDX program. This choice was based on the nature of the force, as 
it would not really fit in to the concept of following a line. However, it would probably work 
well as a way to feel the cell walls of a spreadsheet. 

5.5 Implementing a spring force in the OpenDX HapticsModule 
In this section we describe how we implemented a spring force (the force is described in 

section 5.3.1) in the OpenDX HapticsModule, thus we could use it with actual image values. 

5.5.1 Overview 
The idea is to use the gradients in the force matrix as positions where we want to attach 

the spring. Whenever the glyph is at a position in the image where the gradient is larger than a 
predefined anchor threshold, we set the anchor at that position. The anchor will then 
correspond to one end of the spring and the current position of the glyph will be the other end 
of the spring. This would correspond to Figure 22, with (1) being the anchor and (2) being the 
position of the glyph. 
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5.5.2 Movement 
When the glyph is at a position where the corresponding gradient is 0, then no force will 

be applied. This allows the user to move the glyph freely in the image where there are no 
regions of interest. When the glyph comes in contact with a point where the gradient is larger 
than the anchor threshold, the anchor is set. As long as any further movement is along a line 
or in a region where the gradient is larger than the anchor threshold, then the anchor will be 
moved and there will be no resulting force. However, as soon as the glyph leaves the line or 
region, the anchor will remain set. The distance between the anchor and the current position 
of the glyph will be used to calculate a force in the opposite direction in order to drag the 
glyph back to the anchor’s position. If the user tries to leave the current region or line, the 
distance will increase (as will the force) until the release threshold is reached. When this 
happens the force will disappear, allowing the user to easily move the glyph to other parts of 
the image. Figure 27 shows a flow chart of the proposed algorithm. 

We need to define two values: 
1. Anchor threshold determines how large the gradient needs to be in order to set 

the anchor. 
2. Release threshold determines how far away from the anchor the glyph needs to 

be in order to be released. 

The actual value to use for the thresholds will probably change from image to image and 
may also depend on what parts in the image the user wants to snap to. Hence it was desirable 
to make it easy to change this value. Note that the anchor threshold always has to be larger 
than 0, since otherwise we would set the anchor on every single point of the image. We added 
the possibility to change both the anchor and release threshold in the application’s 
configuration via a set of interactors. See Figure 26. 

 
Figure 26: OpenDX configuration panel 
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YES 

Get the current position of the glyph 
 

Is the gradient larger than our 
threshold? 

Get the corresponding gradient value 
from the force matrix 

NO 

Set anchor at current position 

YES Is the anchor set? NO 

Calculate force

YES Is the glyph far enough away from the 
anchor to be released? NO

Remove the anchor. Disable the force. Send the force to the haptic device. 

 
 

 Figure 27: Algorithm for implementing spring forces in the HapticsModule 
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5.6 Stage one: Implement a test application 

5.6.1 Overview 
In order to make changes quickly and easy and to have smaller data sets we decided to 

start our implementation by creating a standalone application. In this way it is much easier to 
control and understand the data in the force matrix. We used the example program 
AnchoredSpringForce as the basis for our test application since this code produced a good 
spring force. 

5.6.2 Implementation 
First we create an N by N matrix. For our test we choose N to be 50. Each element of this 

matrix contains either 0 or 1. Every element with a 1 is equal to a point of interest where we 
want to set the anchor. This is a simpler model of the full system where the matrix contains 
vectors, but for testing purposes it was easier to have 0 or 1 at each point. We decided to 
make two test shapes: a box and a frame. There is no visual display of the movement of the 
probe, but for testing purposes these two shapes worked well. Figure 28 shows a screenshot of 
the frame. 

 
Figure 28: The "frame" test shape 
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5.6.3 The spring force 
The force is calculated as F = -k*x; where x is the vector distance between the anchor 

and the current position of the glyph and k is the stiffness of the spring. The larger the value 
of k the more difficult it will be for the user to expand the spring. The API offers a method to 
query the device, in order to get the maximum stiffness of the spring that the device can 
handle: 

hdGetDoublev(HD_NOMINAL_MAX_STIFFNESS, &gMaxStiffness); 

Since we only have a two dimensional matrix and no visualization of the movement we 
ignore the z-dimension and always set the component of the force in the z-direction to 0. 

5.6.4 Callback loop 
The callback loop functions as described by Figure 27. We need to supply a value for the 

threshold. This is the maximum magnitude of the force vector before we release the anchor; 
that is the maximum length of the spring as shown by the dotted line in Figure 22. The 
callback loop consists of: 

• First the current position is converted to an integer in order to be able to index into our 
force matrix. 

• If the value from the force matrix at the current position equals 1, then we place the 
anchor and set the RenderForce to true. 

• If RenderForce is true, then we calculate the force as explained above, see section 
5.6.3. If the force is smaller than our release threshold value, then we apply the force, 
else we set RenderForce to false and send a zero force to the device. 

5.6.5 Evaluation of the spring force test application 
The force worked as we had expected. The anchor is set when entering the frame without 

any delay or strange behavior. The probe can also be moved around freely as long as you 
follow the frame. The one problem is that it can be a bit hard to trace a line or shape. As soon 
as you move just a bit outside the shape you are trying to follow, a force will be felt, stopping 
your movement until the cursor is moved sideways to move back onto the frame. One 
possible solution to this could be to combine a magnetic force (see section 5.2.2) with this 
spring force. If the cursor is still trying to follow the line, but leaves the frame just a little bit, 
then the anchor will be moved to the closest point of the frame and the cursor will be dragged 
back to the frame. 

5.7 Stage two: Adding the spring force to the HapticsModule in two 
dimensions 

In order to implement the spring force into the OpenDX HapticsModule we had to 
change the HandleCallback function. The functionality of the algorithm is exactly the same as 
in the test application implemented in section 5.6.2. The only modification we had to make 
was to change the way it locates the current position in the force matrix. Our test application 
used a simplified matrix where every point contained one one of two values: 0 or 1. The way 
the matrix containing the gradients is implemented in HapticsModule was described in section 
2.7 and shown in Figure 6 in the same section. Since the gradients are stored in a single array 
and the mapping between the haptic device coordinate system and the OpenDX coordinate 
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system is not 1:1 some conversion is needed in order to find the position in the array that 
corresponds to the current position of the glyph. 

5.7.1 Evaluation of the spring force OpenDX HapticsModule implementation 
The problem with tracing lines from the test application still persists. We tried using two 

different thresholds in order to solve the problem with “nagging” when tracing lines. The idea 
was to lower the threshold when an anchor is already set in order to make movement along a 
line easier. The result was that the movement became easier, but the precision became much 
worse. The loss of precision was not acceptable and the idea of using two thresholds was 
dismissed. 

Except for the problem that tracing lines is not as smooth as we would have wanted it to 
be, we felt that the implementation of the spring force worked well. 

5.8 Stage three: Implement in a OpenDX network in three dimensions 
The current OpenDX net and the HapticsModule code do not consider a 3D environment 

(although the 3D image is read in and used to calculate a three dimensional force matrix). The 
limited time available for this thesis project did not allow us to extend our implementation to 
three dimensions; therefore we did not try our spring force in 3D. 

5.9 Implementing a magnetic force  
This section describes our implementation of a magnetic force.  

5.9.1 Overview 
The idea behind the magnetic force is to make the glyph on screen, and with it also the 

haptic device, automatically move to points of interest when in close proximity. The 
implementation of this is quite straightforward. Our spring force implementation checks if the 
current position of the glyph meets the requirements for an anchor to be set. In order to 
produce the desired magnetic force we scan all the points in an area (or volume) around the 
glyph and check if any of these points meet the requirements for shifting the anchor point.  

5.9.2 Test application 
We began by using our test application (see section 5.6) as the basis for our magnetic 

force implementation. We decided to do the scan in the shape of a diamond, since we thought 
we had a fairly easy algorithm for this. The scan could of course also be done in the shape of 
a box or a circle. 

Figure 29 is a graphic representation of the algorithm. The green dot in the middle 
represents the glyph. The blue dots are visited on the first loop of the scan and the red dots 
represent the second loop of the scan. 
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Figure 29: Magnetic force scan 

Example 15 shows the code for this scan. The only value that can be modified is radius. 
This value decides how far away from the glyph we will scan for new anchor points, the 
metric is in terms of the number of points. The example has this metric set to 5, therefore our 
scan will begin at point (1) in the figure. We start the scan with the outermost shell of the 
diamond shape and progress inwards. This is due to the fact that we want the anchor point 
closest to the glyph as the final one. 

The for-loop on line 7 steps through the different “shells”. The blue shell is the first one, 
the red which is the second, the loop then continues until the glyph in the middle has been 
reached. Lines 9-13 check to see if the point that currently is being scanned is an anchor 
point, if so an anchor is set. Lines 16-28 are responsible for changing the temporary position 
in order to rotate through the current shell. 

We start out at position (1) in Figure 29. Since line 16 is true we will move the position 
to (2). This continues until we are at position (6). Now line 19 will be true and the movement 
will continue towards position (11). When we have reached point (20) and thus have 
completed the outer shell, then radius will shrink by one and the red shell will be evaluated. 
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1. int radius=5;  2. int counter1;  3. int temp_set=0;  4. i nt temp_x=0; 5. int temp_y=radius;  6.   7. for (radius; radius>0; radius=radius-1){  8.    for (counter1=0; counter1<radius*4; counter1=counter1+1){ 9.      if (matrix[xPos+temp_x][yPos+temp_y]==1){ 10.        if (!(matrix[xPos][yPos]==1)){  11.        tempAnchor[ 0]=xPos+temp_x; 12.        te 1]=yPos+temp_y; mpAnchor[13.        t mp_set=1; e14.        }  15.      }  16.      if (counter1<radius) { 17.        temp_y=temp_y-1;  18.        temp_x=temp_x+1;  19.      }else if (counter1<ra dius*2){ 20.        temp_y=temp_y-1;  21.        temp_x=temp_x-1;  22.      }else if (counter1<ra dius*3){ 23.        temp_  y=temp_y+1;24.        temp_x=temp_x-1;  25.      }else {  26.        te mp_y=temp_y+1; 27.        t mp_x=temp_x+1; e28.          }29.       } 30. } 
Example 15: Magnetic force algorithm 

5.9.3 Evaluation of the magnetic test-application 
The implementation in our test application worked very well. It behaved as expected and 

drags the user towards the anchor points without any delay or glitches. The only slight 
problem that the current algorithm has is that if we have several points in the same shell it will 
choose the point closest to the end, which is the one closest to it, or point (20). 

A smarter way to do this is to keep track of which direction the glyph (the green dot) is 
moving, then give the corresponding side precedence. For example, if we are moving 
south-east, then points between (6) and (11) should be chosen as anchor points over the 
others. 
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5.9.4 Use the magnetic force to make tracing of a line easier 
An idea was to use the magnetic force to make the movement along a line or shape 

easier. However, in practice this did not work well at all. If we allowed the magnetic force to 
set anchors while there already was an anchor set two problems arose.  

First the glyph and haptic device started to move themselves, since the algorithm found 
new points at all times when on a line. The next problem occurred when there were several 
different lines or shapes in close proximity. The glyph started to bounce back and forth 
between these in an endless loop. 

In order to make a smarter algorithm that helps the user to move along a shape more 
variables have to be taken into account, for example checking if the user is actively moving 
the glyph and if so in what direction they are moving it. 

5.9.5 Implement the magnetic force into the OpenDX network 
As with the spring force implementation, the only changes we needed to make between 

our magnetic test implementation and the implementation in the HapticsModule concerned 
the coordinate system. All other functionality works the same. 

5.9.6 Evaluation of the magnetic force OpenDX HapticsModule implementation 
We are very pleased with the way the magnetic force turned out. It really adds an extra 

layer to the functionality when the user is drawn towards the regions of interest (ROI) in the 
image. During all our testing the magnetic force has worked flawlessly. As described in 
section 5.9.4 we tried to use the magnetic force in the test application implementation to 
improve movement along lines. We were unfortunately not successful at implementing this 
idea in the HapticsModule either. 
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Chapter 6 -  Networked haptics 
This is the second logical part of this masters thesis. We were asked to analyze the haptic 

system’s behavior over a network with different amounts of delay and packet loss. After this, 
the next task was to see if we could make the system work over links with a large amount of 
delay. 

6.1 Networked haptics introduction 
In the following subsections we introduce the networked haptics part of this thesis 

project. 

6.1.1 Networked haptics: What will we do? 
How does the system behave when there is delay or packet loss? It is desirable to be able 

to use the haptic device over a network. There may be several different reasons for this: 
• The device is expensive; you cannot have one attached to each computer. 
• The device is fragile, try to avoid unnecessary movement. 
• The data may be at a different location than the operator. 

In order to see if and how networked haptics would work we designed a method to use 
the haptic device over a network. When the system was up and running we could introduce 
both delay and packet loss in our test network in order to observe the behavior of the system 
under specific delay and packet loss conditions. 

6.1.2 Networked haptics: Initial configuration 
The initial configuration was previously developed by M. E. Noz and G. Q. Maguire Jr 

and was described in section 3.4. 

6.1.3 Networked haptics: How to split the code 
In order to do the network testing we have to decide how to split the system. The system 

has several different parts and the first question is where to place each of these parts, 
specifically the: 

• Haptic device 
• Screen (we assume that this consists of the frame buffer and display) 
• Image data 
• Force matrix 
• Force calculation software 

The goal is to place a network between the haptic device and the rest of the system. 
However, there is not a single obvious way to do this. We had three different ideas about how 
to divide the different parts of the system between the two locations. The basic equipment to 
have at each location is a computer and these two computers are connected through a 
network. 
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6.2 Proposed method 1 
When the computers are in close proximity or even share the same screen it would be 

convenient to be able to enable a user at one of these computers to use the haptic device 
without having to move cables around. 

This method has the following setup: 
• Computer A has the haptic device connected. 
• Computer B has the force calculation software, the image data, and outputs the image 

data to the screen. 

In Figure 30 below is a picture of this setup. 

 
Figure 30: A scenario with the haptic device in close proximity to the computer computing and 

displaying the image data 

The only thing computer A does is to get the device position, send the position to 
computer B, and receive a force update to apply to the haptic device. Computer B receives the 
position update, calculates the force, and sends it to computer A. Computer B also displays 
the image and shows the movement of the glyph. See Figure 31 below for the data flow of 
this method. 

 
Figure 31: Data flow for proposed method 1 
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6.3 Proposed method 2 
The second possible scenario is when the operator and the haptic device are at a different 

location than the image data. In this scenario we want to be able to use the system without 
first having to transfer all the image data. 

This method has the following setup: 
• Computer A has the haptic device and outputs to the screen. 
• Computer B has the image data and the force calculation software. 

See Figure 32 below for a picture of this setup. 

 
Figure 32: A scenario with a local haptic device and image display, but with remote computation of 

forces 

Here computer A gets the position of the device and sends it to computer B. Computer A 
then receives the force for the haptic device and an update for the screen. Computer B 
receives the position update and calculates the force. It then sends the force and a screen 
update. If either of the two computations show to be time consuming it may be a good idea to 
decide which one to prioritize and send two messages. One message for the force update and 
another message for the screen update. This allows the most important update to be sent 
without having to wait for the computation of the second calculation. See Figure 33 for the 
data flow for this method. 

 
Figure 33: Data flow for proposed method 2 
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A slightly different approach to this idea would be to handle the screen updates locally 
since there is instant access to the device position available at Computer A. See Figure 34 for 
a flow chart of this approach. 

 
Figure 34: Updated data flow for proposed method 2 

 

6.4 Proposed method 3 
The last method was designed to quickly set up a test system linking the two computers. 

This method would allow us to quickly start our testing, but does not have real world usage. 

This method has the following setup: 
• Computer A has the haptic device, the force calculation software and outputs to the 

screen. 
• Computer B would just bounce IP-packets back to computer A. 

See Figure 35 for this setup. 

 
Figure 35: Configuration for testing delays 

Computer A would get the device position and calculate the force. It would then send the 
calculated force to computer B, which in turn would bounce it back. While waiting for the 
force reply it would update the screen. The last step is to send the force to the device. The 
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only thing that computer B does is to receive an IP-packet and then directly send it back to 
computer A. Figure 36 shows the data flow for proposed method 3. 

 
Figure 36: Using a remote loopback of force messages for testing 

6.5 Obstacles with these methods 
The haptic device loop runs at a default rate of 1000 Hz; as mentioned in section 2.2.1. If 

this speed cannot be maintained, then the device may start to behave strangely. When 
experiencing delay and packet loss a decision of how to maintain the control loop rate has to 
be made. The problem arises inside the haptic callback loop. Each iteration of the loop should 
send a force to the device. However, because it may take tens or hundreds of milliseconds 
between sending the position update and receiving the calculated force a strategy for how to 
maintaining the control loop rate needs to be formed. Possible solutions: 

• A: Continue to send the last received force until a new update is available. 
• B: Send a zero force until a new force is available. 
• C: Block the loop and wait for an update. 

6.5.1 Idea A 
For small amounts of delay this solution could work well. But for longer delays this 

would output an unwanted force of a magnitude large enough for the user to notice and also 
move the haptic device in an unwanted direction. 

6.5.2 Idea B 
This solution has the advantage that it cannot produce any incorrect forces. However, 

there is a risk that the force from the haptic device will feel choppy instead of smooth. 

6.5.3 Idea C 
This idea is probably the worst alternative. If we block the loop in order to be able to do 

a force update, then all of the other things the loop does, such as checking for movement and 
starting and stopping the force rendering would also be halted. 
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6.5.4 A fourth approach 
A fourth solution was proposed by G. Q. Maguire Jr. Instead of computing only the force 

at the current position, the remote computer should also calculate forces for the locations near 
the current location and send these force values in advance. With this approach as long as the 
movements are within the cached area no delay for applying the force will occur. In order to 
maintain a good cache hit rate the computation of new nearby forces should continue when 
the position is changed, even though the current force is already known. This because we still 
need to expand the area of known forces in advance of movement to one of these locations. 
Rapid movements might still move the cursor outside the cached area, thus we still need a 
way to handle the case when no fresh force data is available in the cache. 

6.5.5 Caching and problems due to caching 
The computer with the haptic device needs code to convert between the haptic device 

coordinate system and the force matrix which is indexed with integers. This matrix of forces 
is needed in order to maintain the cache and to allow a simple index operation to find the 
force to be applied at the new location – rather than having to wait for this force to be 
calculated (thus decoupling the feedback servo loop from the computation of forces). To 
transform from the device coordinate system (in mm) to the pixel or voxel coordinate system 
we need to know the transformation between the different coordinate systems. The cost of 
performing the transformation from one coordinate system to another is roughly 16 multiply 
and 12 add operations.  

However, the problem becomes much more complex when a non-static force algorithm 
is used. For example, the spring force we developed, see section 5.5, may not work well with 
a cache. This is because the force at one location can be different, depending on if and where 
the anchor of the spring is located. At the time of creation of the forces in neighborhood, 
initially no anchor may be set, but this area may be large enough to include a point where the 
anchor can be set. In this case the anchor would be set and a spring force should be rendered, 
but since the forces are already cached, the wrong force would be sent to the device. 

Figure 37 shows a possible lapse. (1) Shows the system’s state when the cache is created. 
In (2) the user moves the glyph over the black line, and an anchor is set at the red dot. In (3) 
the glyph is back to the same position as in (1), but since we now have an anchor set we also 
should have a force applied at this location. If we simply used the cached value that was 
stored earlier at this point when the system´s state was as shown in (1), then we will not get 
the correct force. 

 
Figure 37: Possible problem with stale cached state 
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A possible solution for this could be to flush all the currently cached forces every time an 
anchor is set, moved, or released. The problem is that it would increase the delay from when 
the position is sent by the haptic device to the attached computer until the new force(s) are 
received by the computer attached to the haptic device. In order to discard the current cache at 
the computer attached directly to the haptic device we need to know the locations where the 
anchor would be set, moved, or released. If such a location is reached, then all the current 
forces would be discarded. However, it will now take a full roundtrip cycle of delay and the 
time to perform the new force calculations before any new forces could be in the cache. 

Another possible solution to this problem would be to calculate all the different sets of 
forces in advance relative to all the different anchor positions within the selected area. The 
downside of this is that it would require more CPU time, bandwidth, and memory for storage. 
The required resources would scale linear with the number of possible anchor positions inside 
the current working area. The worst case scenario would be that every point inside the current 
working area is a possible anchor position. However, it should be kept in mind that each force 
consists of three double precision floating point values (i.e., 3*8 = 24 bytes). To put this in 
some perspective, if the working area were 10x10, then a complete set of forces for a single 
anchor point would be 2400 bytes (less than two full Ethernet frames worth of data); while if 
each of these points were a potential anchor point then it would take 100 times this much data 
(240000 bytes). It would take less than 14 milliseconds to transmit 200 packets using a 10 
Mbps Ethernet and proportionally less time for faster links. As an optimization the cache 
could be refilled in advance, thus as the user moves the locator new values would be filled in 
primarily on the boundaries of the working area. The modeling of a sophisticated force 
caching scheme remains for future work. 

6.5.6 A different approach 
What about local computation of the spring force and only send info about where to set 

and release the anchor instead? This could work great. All forces will be calculated locally 
and if you move outside the cached area, the only downside would be that you will not place 
your anchor for the time before you have received any new anchor position data. Since the 
force is computed locally and the release of the anchor depends of the length of the spring the 
force should work as intended. 

6.5.7 How do we solve the problem of rapid movement of the locator 
Another problem that arose is how to handle rapid and long movements. At some point 

the movement of the location will be so fast that the glyph leaves the area for which the 
requested cache information has not arrived (in fact the computer doing the force calculations 
might not even have received the required for these forces yet). This can lead to unnecessary 
computation and the large amounts of data that has been required (only to be thrown away) 
may clog the network connection. Possible solutions include reducing the working area of 
cached points to avoid this becoming a problem; or if the movement speed exceeds some 
threshold, to disable caching. We have not calculated the tradeoffs between movement speeds 
and the amount of unnecessary computation and wasted/used bandwidth. This too remains a 
topic for future work. 
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6.5.8 Conclusion 
Our conclusion is that a cache system (particularly for dynamic forces) is significantly 

more complex than for the static case; and involves many design decisions that depend on 
what type of force is being used. Hence we have chosen not to pursue this matter any further 
in this thesis project, but suggest that it is a ripe area for future work. 

6.6 Network tests: Description of the test setup 
We chose to use proposed method 3 as described in section 6.4 for our network tests. 

Therefore our network test setup consisted of the components in the following list: 

• Two computers, where the first computer had: 

o An OpenDX program running with our test network and the 256*256 hip 
phantom image loaded. 

o A haptic device connected it IEEE 1394a interface to a IEEE 1394a/b 
interface on the computer. (Note: no other IEEE 1394 devices were 
connected to this computer’s interface.) 

o A network socket opened for sending/receiving UDP packets to the 
second computer by code included in the HapticsModule. 

• The second computer had: 

o Our server bouncer program running. This application takes UDP packets 
sent from the first computer and returns them. 

o TC running to be able to shape the network traffic with regards to packet 
loss and delay. 

• One test user was sitting at the first computer using the haptic device to interact 
with the OpenDX program. 

• One operator that was sitting at the second computer. The operator altered the 
packet loss and delay parameters and record the user’s orally stated perceived 
quality from each test run. 

The two computers were connected through an Ethernet switch. We did some ping tests 
to check out the delay and packet loss between the computers and the result was that the delay 
varied between 0.1 and 0.2 milliseconds while we did not get any lost packets at all. Since the 
test delay increase steps were 5 milliseconds we think that was a negligible amount of delay 
that should have no impact on our test data validity. Additionally, the fluctuating delay caused 
by the scheduling of the tc process was between 4 and 8 milliseconds, and that further 
diminishes the influence of the innate delay between the computers. 

6.7 Network tests: How was the testing done? 
After setting up our testing system we started our network tests. The data that we wanted 

to collect was the user’s perceived quality while increasing either delay or packet loss. The 
quality scale went from zero to four where zero was no loss of quality and four was a totally 
unusable system. A comprehensive description of the different quality steps in the scale can 
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be seen in section 7.2.1. Each user was told about the quality scale and given a chance to ask 
questions about it before testing began. 

We first let the test user play with the haptic device and the image for a while without 
any artificially increased delay or packet loss. When the test user stated that they understood 
how the system felt to work with and how might help with the task of outlining a contour, we 
started the test. We gradually increased the delay in steps of 5 ms and ask the user to grade 
their perceived quality on our zero to four scale for each step. There was not a time limit set 
for the user for each step, thus the user could mark as many points on the contour as they 
wanted. We continued to increasing the delay until the user deemed the system was unusable, 
i.e. a grade of four. After this point was reached, we set the delay to 0 ms and instead 
increased the packet loss by 5% steps, until the user once more felt the system was unusable. 

In these first two tests the data we sent to the second computer and back (i.e., reflected or 
bounced) was only the anchor positions. The forces were still computed locally at the first 
computer. Thus the worst case scenario for increased delay was when the anchor position 
arrived too late, thus the user had already moved far from that position and the release 
threshold was reached and disabled the force right after setting the anchor. For increased 
packet loss, the worst case scenario was that an anchor position was lost and no force was 
being set at all. Due to the similar nature of these scenarios, they were both expected to yield 
similar results for a user; for example, less smoother movement when trying to follow a line 
of interest. 

In the second pair of tests we tried a different approach. Instead of just sending the 
anchor positions we sent the full force vector to the second computer and bounced it back. We 
did the same tests as earlier, i.e. first increasing delay until the user deemed the system 
unusable, then tests with increasing packet loss instead of delay. The difference between this 
method and the first was that when increasing delay the forces got back later than they should, 
with regards to where the user had moved the glyph on the monitor, whereas when increasing 
packet loss some of the forces were lost - quite similar to the first packet loss test but with the 
forces rather than just the anchor points. 

Our data was collected in a spreadsheet. Using this collected date we drew a number of 
graphs showing how the different users graded the quality of the system for the different test 
parameters. An analysis of these data sets is given in section 7.2.1. 

6.8 Network tests: Evaluation 
Our tests concerning the networked haptics part went well. All test users completed the 

tests and one of them even did the tests more than once. The results of the tests varied quite a 
bit between both different users and also between different testing rounds by the user who did 
the tests more than once. In that case, the user tended to be pickier from test to test, i.e. 
deemed the system unusable at a lower delay or packet loss than in the earlier tests. 

With the anchor sent and increased delay some points were missed and there was 
sometimes a jerky movement if the user moved the glyph too fast. The same occurred when 
we increased the packet loss instead. Rapid movement of the input locator caused irregular 
movement and lead to a longer distance between anchor points, which for the user feels less 
smooth. 
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In contrast, when we sent the forces to the other computer and increased delay the 
perceived quality from the users went to unusable faster than in the first test, whereas when 
we sent the forces and increased packet loss, the perceived quality decrease was quite similar 
to the first packet loss test. More on the analysis of this test will be presented in section 7.2. 
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Chapter 7 -  Analysis  
This chapter presents the analysis of the results of our tests and implementations. 

7.1 Forces 
We decided to use a system that looks for places in the image to set anchors instead of 

having fixed force values for each point of the image. When an anchor is set the system starts 
to decide how to render the force. 

The current system creates a matrix of gradients for each pixel in the image. When the 
user moves the glyph around the image the gradient for each point it passes by is checked. If 
the gradient is larger than the threshold value, then an anchor is set and the system starts to 
render a force. 

As discussed in section 8.3.1 on page 79 the current usage of gradients may not be the 
best way to decide which points should be anchor points. However, this was the method used 
for all of our testing. 

7.1.1 Anchor points in different images 
This section will show the anchor points in three different types of images. There are two 

different sets of parameters for each image: 
• Level and width - these levels determine how the image is displayed on screen. 
• The snap threshold sets the value that the gradient has to exceed in order for an anchor 

to be set. 

We used two different values for “level and width” on the first image. The lower values 
are a simple (blind) mapping of the pixel values to the displayed intensity and color. The 
larger values for level and width are representative of how a user would prefer to work with 
the image. The reason for showing this is that what the application reads in and computes the 
gradients from are directly reflected in the actual pixel values (visually these correspond to 
the lower values for window width and level). When the user changes these settings there 
might be a difference between the displayed image and the actual positions of anchor points. 
Because of this difference, at some places the anchor points seem to be missing. While in 
other places you get stuck (i.e., it is hard to move), even though it seems like there is nothing 
there. Again this is a problem concerning how to calculate the anchor points, rather than with 
the force algorithm. 

The snap threshold was set to two different values. 0.5 is the value that worked best for 
our testing. While the value 0.3 was used to illustrate how many more bad points became 
anchor points at this lowered value. The light grey rows contain snap threshold values of 0.3. 
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Table 2: Description of images 
Image Figure Size Slice Window 

level 
Window 

width 
Snap 

threshold 
Number 
of points

Hip phantom Figure 38 256*256 130 500 500 0.3 1673 
Hip phantom Figure 39 256*256 130 500 500 0.5 698 
Hip phantom Figure 40 256*256 130 3300 500 0.5 698 
Hip phantom 
(zoomed in) 

Figure 41 256*256 130 3300 500 0.3 1673 
 

Hip phantom 
(zoomed in) 

Figure 42 256*256 130 3300 500 0.5 698 

Abdomen Appendix 
A: 

 Figure 64 

512*512 50 1150 350 0.3 8442 

Abdomen 
(zoomed in) 

Appendix 
A: 

 Figure 65 

512*512 50 1150 350 0.3 8442 

Abdomen Appendix 
A: 

 Figure 66 

512*512 50 1150 350 0.5 3883 

Abdomen 
(zoomed in) 

Appendix 
A: 

 Figure 67 

512*512 50 1150 350 0.5 3883 

Hip patient Appendix 
A: 

 Figure 68 

512*512 110 1100 600 0.3 928 

Hip patient 
(zoomed in) 

Appendix 
A: 

 Figure 69 

512*512 110 1100 600 0.3 928 

Hip patient Appendix 
A: 

 Figure 70 

512*512 110 1100 600 0.5 437 

Hip patient 
(zoomed in) 

Appendix 
A: Figure 

71 

512*512 110 1100 600 0.5 437 
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Figure 38 shows that an image with a threshold of 0.3 results in a lot of unwanted anchor 
points. Each anchor point is shown as a red colored square. 

 
Figure 38: Hip phantom with a threshold value of 0.3 
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In comparison, Figure 39 has the settings that represent the actual image used when 
working. In this case, there seems to be some points missing. We can see gaps on the left side 
of the circle in the middle and on the upper side of the shape to the bottom left. 

At first this seems strange, but when you change the settings to show the data with a low 
window level then the problem reveals itself. This is shown in Figure 40. Where Figure 39 
seemed to be fine, edges now are white areas. This occurs because the computation of 
gradients does not produce a correct value at these positions. This is a problem that needs to 
be solved in order for the forces to work better. This the computation should consider the 
window width and level when computing the gradient values. 

 

Missing anchor points? 

Figure 39: Hip phantom with a threshold value of 0.5 
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Figure 40: Hip phantom with a threshold value of 0.5 
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Figure 41 and Figure 42 show the 256 phantom hip image in a zoomed-in mode in order 
to show the anchor points close up. 

 
Figure 41: Zoomed in hip phantom with a threshold value of 0.3  
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Figure 42: Zoomed in hip phantom with a threshold value of 0.5 

7.1.2 Summary of force analysis 
We started out with two different goals: 

1. List and discuss different types of forces. 
2. Implement and evaluate the suggested forces. 

Goal one was achieved in Chapter 5 -  where we listed and discuss a number of different 
possible forces. Out of the five possible forces presented, we decided to implement two, the 
spring force (described in section 5.2.3) and the magnetic force (section 5.2.2). In addition to 
ourselves we have had five other persons using the forces while doing network delay testing 
(for a total of 7 test users). The results of these network tests are given in section 7.2.1. 

Before doing the network tests we also asked the users what they thought about the two 
different forces we had implemented. All users were very positive to the functionality of both 
the magnetic and the spring force. They also gave us two types of negative feedback: 

1. Movement along lines. Some of our test users noticed the problem with a not 
completely smooth movement along lines as discussed I section 8.3.2. 

2. Faulty or missing anchor points. As described in sections 7.1.1 and 8.3.1, some 
users noticed that there were anchor points missing at some places or present at 
places where they should not be. 

Even though these two problems still remain, we feel that our second goal concerning 
forces was met. We successfully construct a new system to decide where forces should be 
applied, as well as two very well functioning types of forces. 
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7.2 Networked haptics 
In this section we describe the tests and our analysis concerning the networked haptics part of 
this thesis project. 

7.2.1 Delay and packet loss testing 
In order to find out how much delay or packet loss the system can tolerate before being 

perceived by the user as useless we did some testing. The test consisted of giving a test 
subject a single task: try to follow and outline a shape in a medical image. The image chosen 
was the phantom hip in Figure 39. 

The user got to test the system for a while without any delay. After each test run we 
increased the delay or the packet loss and ask the user to evaluate the quality of the haptic 
performance on a five grade scale. These five grades were: 

0. No loss of quality, the system feels as responsive as when no delay was present. 
1. A small change in quality is noticed but the system still works well 
2. The user can now really feel that the system is affected but can still complete the task 

without problem 
3. The quality is beginning to get really bad and the user may have a slight difficulty in 

completing the task 
4. The system is totally useless 

In order to plot graphs with decreasing values indicating worse quality (in order to be 
comparable to Cole and Rosenbluth’s model as shown in Figure 11 on page 16) we decided to 
reverse the scale. Therefore, in the graphs in this chapter a 4 represents the best quality and 0 
represents a totally useless system. 

We had two different implementations of the network part of the code as described in 
section 6.7. Therefore every tester had to do the tests twice, once for each version. One user 
did some of the tests several times and these tests have their own graphs. 

As described in section 2.6.1 we cannot add an exact amount of extra delay due to the 
functionality of the operating system. On our test system we had between 4 and 8 
milliseconds extra delay. Thus if we told Traffic Control to add 1 ms delay, the actual delays 
varied between 5 and 9 ms. Therefore we will add 6 ms to the delay values shown in our 
results – in order to show the actual delay introduced. This is the reason why the values in the 
graphs are 0, 7, 11, 16, 21, … ms instead of 0, 1, 5, 10, 15, … ms. 

What do these tests tell us? When we started working on this thesis we were not sure 
how the haptic system would behave over a network link. We did not know in what way the 
user experience was going to change with worsening conditions over the network link (in 
terms of higher delay and packet loss). 

First a note about the user that did the tests several times, the results got worse for each 
repetition of the test. This is probably due to the fact that the user became more experienced 
with the system and therefore changed her view of how to apply the quality scale. It would 
have been better if all users would have had the possibility to do the tests several times, but 
unfortunately this was not the case. 
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7.2.2 Test results 
Figure 44 and Figure 46 shows the results of the delay testing with the two different 

implementations. The figures show us that the quality loss seems to be falling linear with 
increased delay. 

A thing that is noticeable is that most users gave the anchor implementation (Figure 44) 
several scores of 1 and 0.5 before they deemed the system totally useless. The anchor version 
of the system also maintained a higher quality for quite a bit longer when compared to the 
force version, see Figure 51. But since these large differences only occur when the quality is 
lower than 1 on the quality scale – this corresponds to a almost useless system; hence our 
conclusion is that we can not say that one of the two implementations works better than the 
other.  

User 3’s scores differ quite a bit from the others in some of the tests. We are unsure if 
this is due to technical reasons during the tests or if this user just had much higher demands 
on the system’s functionality. A removal of user 3 changes the anchor system from being 
worse than the force to being slightly better. Due to user 3’s difference in scores from the 
other users, we decided to include a graph comparing the anchor and force test results without 
user 3´s results. See Figure 52. The case with user 3 also illustrates that it is not a simple task 
to create a quality scale that users can apply easy and consistently. Every user has their own 
experiences, thresholds, and expectations of the system’s performance. 

As for the system’s total tolerance against delay over a network link we found the results 
a bit disappointing. Quality 2 which represents a still well usable system was reached at as 
little as 30 milliseconds of delay. Quality 1 was reached around 40 milliseconds, a bit higher 
for the anchor system at around 45 milliseconds. Our results clearly show that some kind of 
caching has to be done in order to get this haptic system working with a satisfying quality 
over network links where high delay might be present. 

The packet loss results were much better. The system shows a greater tolerance towards 
packet loss than delay. We still have what looks like a linear relationship between increased 
packet loss and falling quality. See Figure 50 for the anchor version and Figure 48 for the 
force version. We still see quite different results from user 3 in these tests too, and therefore 
we decided to do two different comparison graphs, again one with user 3 and one without. 

The system can tolerate somewhere around 25-30 percent packet loss before it reaches a 
quality of 2 and up to around 45 percent packet loss before the quality is down to 1 (i.e., 
unusable). We think that this is impressive since a network with 25 percent or more packet 
loss probably would be seen by most used as very bad. 

The greater tolerance against packet loss than delay is explained by the way the system 
works. A lost packet results in either a missed placement of an anchor (in the anchor version) 
or a momentarily zero force (in the force version). But since both the detection of an anchor 
point and the force update is done every callback loop, which runs a thousand times every 
second, even quite high losses still do not affect the functionality to a point where the user 
finds it irritating. Note that even at a 45% packet loss rate, if we assume that these losses are 
roughly uniformly distributed, the user is still getting a correct update at about 450 Hz or once 
every 2ms! The delay on the other hand still causes all the force output to happen, but too late. 
This behavior seemed to be noticed very quickly by the test users. 
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It is interesting to note that user 3 was less tolerate of delay that the other users in the 
case of delays with the anchor, while more tolerate than the other users in the case of delays 
with the forces. The same user was more sensitive to packet loss in the case of forces that in 
the case of anchors; but consistently much more sensitive to packet loss than the other users. 

 
Figure 43: Anchor version – User 1 – Delay 

 
Figure 44: Anchor version – All users comparison – Delay 
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Figure 45: Force version – User 1 – Delay 

 
Figure 46: Force version – All users comparison – Delay 
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Figure 47: Force version – User 1 – Packet loss 

 
Figure 48: Force version – Comparison – Packet loss 

66 
 



 

 
Figure 49: Anchor version – User 1 – Packet loss 

 
Figure 50: Anchor version – Comparison – Packet loss 
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Figure 51: Force VS anchor – Delay 

 
Figure 52: Force VS anchor without user 3 – Delay 
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Figure 53: Force VS anchor – Packet loss 

 

 
Figure 54: Force VS anchor without user 3 – Packet loss 
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7.2.3 Network caching 
A caching system was mentioned in section 6.5.4 as a possible approach to mitigate the 

impact of delay while working with a networked haptics system. We did not have time to 
implement such a caching system, but we collected data, evaluated it, and analyzed it with the 
intention to find a formula giving the probability of a cache hit as a function of bandwidth, 
number of data points, and time. 

In order to do some calculations concerning the potential effect of caching, we collected 
data from four different images, by using the OpenDX network to count anchor points and 
generate log files. We collected data from 100 slices per image. We did this twice per image; 
once with a 0.3 gradient threshold and once with a 0.5 gradient threshold. The number of 
anchor points for the different images and parameters can be seen in Table 3. 

 
Table 3: Number of anchor points in different images and with different thresholds 

Image Size Threshold Min 
points 

Median Mean Max 
points 

Phantom hip 256*256 0.3 966 1530 1528 2736
Phantom hip 512*512 0.3 4820 14260 14020 23250
Hip patient 512*512 0.3 620 1058 1807 10130
Abdomen 512*512 0.3 49 8167 8922 23860
Phantom hip 256*256 0.5 575 707 721 956
Phantom hip 512*512 0.5 1229 2404 2398 4276
Hip patient 512*512 0.5 96 336 448 2296
Abdomen 512*512 0.5 24 3808 3835 13610

Some inconsistencies can be noted in the table, for example the minimum number of 
anchor points in a slice for the abdomen image is 49 and 24 for the 0.3 and 0.5 gradient 
thresholds respectively. After we examined this more we realized it was because those slices 
with such an exceptionally low number of anchor points had radiation therapy markers in 
them. Such markers are very bright and have a pixel intensity value that is very high. Since 
the gradients for each slice are normalized with regards to the highest pixel intensity value in 
the slice, all other gradients apart from the ones at the marker positions were scaled down 
much lower than in the other slices. The result was that the number of gradients that were 
above the threshold was much lower than in slices without these radiation therapy markers. 
One possible solution to this problem is to not normalize the gradients and instead use the 
original gradient values when comparing to the threshold. The reason for normalizing the 
gradients in the first place, was to make sure that the forces were not too high in the original 
system. However, since we did not use the gradients as forces in our system, we should not 
need to normalize them. However, we did not have time to further evaluate this idea in our 
project. 

Another discrepancy we noticed in the data logs was that if we took a subset of the 100 
slices and collected data only from this subset, the first and/or last slices’ values differ from 
the values in the full data set. We realized that this is due to the way the gradients were 
calculated. Since for each pixel the gradient is computed based upon the 26 surrounding 
voxels’ intensity values in three dimensions, hence have an edge effect where the gradient 
values are computed as if there is a “ghost” slice before and after the slice data set where all 
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intensity values are zero. This is what makes the first and last slices’ gradients different from 
what they should be. Our solution to this problem was to remove the first and last slices’ 
values from our collected data set. 

After we completed our data collection and made the above adjustments to our collected 
data set, we created box-plot graphs using this data. Figure 55 to Figure 57 shows the box-
plots that we drew. Note that the columns are in the same order as the rows in each half of 
Table 3; thus the first two columns are for a phantom and the last two columns for patients. 

A box-plot is a graph where you can see the minimum and maximum values, in addition 
to the first quartile, the median, and the third quartile, i.e. you can see at what points there are 
25%, 50%, and 75% collected values. It also shows possible outliers, i.e. observations that are 
numerically distant from the rest of the data. An example of an outlier is in the abdomen data 
set. For the 0.3 threshold abdomen data set the minimum anchor points was 49 as can be seen 
in Table 3; while the median was more than 8000. The result of this can be seen in our box-
plots as an outlier at the bottom of Figure 55.  

outlier 

 
Figure 55: Box-plot of the four images with 0.3 gradient threshold 
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Figure 56: Box-plot of the four images with 0.5 gradient threshold 

 
Figure 57: Box-plot of three images with 0.5 gradient threshold 

The difference between Figure 56 and Figure 57 are that we removed the abdominal 
therapy patient from the box-plot to make it a little easier to see the quartiles and medians of 
the other three box-plots. As a result we can see that the image with the hip prosthesis in an 
actual patient at 512*512 resolution had a lower first quartile, median, and third quartile than 
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an image of a hip prosthesis in a phantom at the same resolution. This suggests that evaluating 
algorithms using these anchor positions using such a hip phantom will have different results 
than evaluating the same algorithms with patient data. Thus we should note that our network 
tests used a test image consisting of the hip phantom data at 256*256 resolution. 

Our network tests in sections 7.2.1 and 7.2.2 showed that the system was quite 
vulnerable to delay and also to high rates of packet loss. In order to make the system more 
tolerant of such network impairments, it was suggested that a cache could be implemented. 
For a given image the potential anchor points are constant, while the forces at a given position 
will vary for different choices of anchor point. This makes the anchor points easy to cache for 
an image. This could easily be used to augment the anchor implementation of the networked 
system which communicates only the anchor points and computes the haptic forces locally at 
the client machine as described in section 6.4. 

Based upon the data in Table 3 we can compute that with a threshold value of 0.5 we get 
between 0.88% and 5.19% anchor points out of the total number of pixels. The resulting small 
amount of anchor points makes it possible to do caching of these anchor point since we only 
need to send and store the anchor points rather than keeping a full matrix of forces for each 
point in the image at the client (this would require large amounts of bandwidth and memory). 

Table 4 and Table 5 show the amount of memory required for the different numbers of 
anchor points both for 1 slice, and for 3D with 100 slices. The (median) required memory is 
computed as the (median number of points)*3*sizeof(double). We multiply by 3 since an 
anchor point is a gradient which has the form of (x, y, z) where each variable is a double. The 
size of a double is 8 bytes.  

Table 4: kB of data for 1 slice 
Image Size Threshold Min Median Mean Max 
Phantom hip 256*256 0.5 13.477 16.570 16.898 22.406 
Phantom hip 512*512 0.5 28.805 56.344 56.203 100.219 
Hip patient 512*512 0.5 2.250 7.875 10.500 53.813 
Abdomen 512*512 0.5 0.563 89.250 89.883 318.984 

 
Table 5: MB of data for 100 slices 

Image Size Threshold Min Median Mean Max 
Phantom hip 256*256 0.5 1.3 1.6 1.7 2.2 
Phantom hip 512*512 0.5 2.8 5.5 5.5 9.8 
Hip patient 512*512 0.5 0.2 0.8 1.0 5.3 
Abdomen 512*512 0.5 0.1 8.7 8.8 31.2 

 
In order to show the bandwidth required for a certain probability of getting a cache hit 

after 1, 15, 30, and 60 seconds we have drawn graphs. The choice of these time intervals was 
to show that given the relatively small amount of memory required to store the anchor points, 
even with 100 slices for a 3D dataset, this data can be fully cached in a reasonable time. 

The algorithm for calculating the probability is simplistic. We made two assumptions: 
1. The points are evenly spread. 
2. The user can (and would like) to move to any part of the image instantly. 
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The probability of a hit is calculated by: (available bandwidth * time) / total number 
of anchor points. 

It should be possible to extend this model in various ways. Some ideas are: 
1. Take into account that the anchor points seem not to be evenly spread through the 

image. Several large parts of the image contain no regions of interests for the user. 
Therefore the anchor point density will probably be higher at the places where the 
users actually will move around. 

2. Take into account the user’s movement patterns, e.g. when outlining a shape the user 
will probably not move very fast or very far. Therefore it should be possible to shrink 
the area needing to be cached. 

3. Does the user often zoom in the image? This will further reduce the area in need of 
caching. 

A more advanced algorithm is outside the scope of this thesis, but could be a topic for 
future work. 

How to deal with the time variable is the next problem we consider. When drawing the 
graphs we set 60 seconds as the upper limit of time before achieving a 100% cache 
probability. We selected this value, because we thought that if cache misses still occur after 
one minute, users will probably end up irritated. Secondly, the amount of data that needs to be 
cached can be completely transferred in one minute even on slow links. The small amount of 
data required for a single slice makes it possible to transfer a full cache even via very low 
bandwidths as shown in Figure 58 and Figure 59. Even for 100 slices, no more than 1.2 
Mbit/s is necessary in order to fully cache the anchor points for the image with the largest 
number of anchor points in 60 seconds, as can be seen in Figure 60 to Figure 63. 

 
Figure 58: Probability of a cache hit with one slice after 1 second 
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Figure 59: Probability of a cache hit with one slice after 15 seconds 

 
Figure 60: Probability of a cache hit with 100 slices after 1 second 
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Figure 61: Probability of a cache hit with 100 slices after 15 seconds 

 
Figure 62: Probability of a cache hit with 100 slices after 30 seconds 
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Figure 63: Probability of a cache hit with 100 slices after 60 seconds 

 

7.2.4 Network analysis 
As mentioned before, we had two different goals for the network part of this thesis: 

1. Analyze how delay and packet loss affects the user’s perception of the haptic 
system. 

2. If delay negatively affects the user’s perception of the haptic force, then find a 
solution that allows the haptic system to work despite high delay. 

We constructed a test setup that allowed us to collect data with the help of test users. 
This data helped us describe the system’s behavior and to analyze how the user’s perception 
of the haptic system was affected when delay and packet loss were (separately) introduced. 
The only shortcoming in reaching our first goal was the relatively small number of users we 
had performing the test. 

The second goal was met with the description of a cache system as described in section 
7.2.3. We described a possible solution to allow the system to work during high delay, but 
unfortunately we did not have time to do an implementation, tests, and evaluation of this 
implementation. 
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Chapter 8 -  Conclusions and Future Work 
This chapter briefly summarizes our conclusions and suggests future work for potential 

subsequent projects. 

8.1 Conclusions  
We believe that we meet our goals. More details about this are given in sections 7.1.2 

and 7.2.4. While we did not establish as clear a model for the decrease in perceived quality of 
haptic feedback as a function of increased delay, plots of our experimental data for delay are 
similar to that of Cole and Rosenbluth’s model of decreasing voice over IP quality as a 
function of delay, but with a much faster decrease in quality as a function of delay. As there is 
not necessarily a numeric correspondence between the quality values that we used and the 
ITU MOS quality values, we cannot make a numeric comparison between our data and the 
Cole and Rosenbluth model, but our data would seem to suggest that there is not an initial 
linear decrease in quality for low delays and that the decrease in perceived quality was not as 
fast as one might expect considering simply the ratios of the voice packet rate (typically 50 
Hz) and the 1000 Hz rate of the haptic feedback loop. The rate of decrease in quality seems to 
only be about one half of what you might expect based upon the ratio of these packet rates 
(i.e., a factor of 10x rather than 20x). 

8.2 Suggestions for others working in this area 

8.2.1 Examine how much computation actually needs to be done each time the 
haptic loop runs 

During our tests we had access to machines with dual and quad core CPUs as well as 8 
gigabytes or more of RAM. Therefore, our code is probably not optimized as much as 
possible. One thing that should be considered is which parts of the code need to be executed 
in every loop of the callback code, which currently runs 1000 times a second. For example, a 
user will probably not be able to move the cursor to different positions a thousand times each 
second. 

8.2.2 Usage of another haptic device 
We only used the SensAble PHANTOM Omni haptic device in our project so our results 

might not be completely accurate for similar devices. However, the big differences are 
probably in the way the programmer communicates with the different brands of haptic 
devices, i.e. the different API, thus our theories and results should be fairly the same 
regardless of what device is being used. Although, a different device might have handled the 
velocity parameter better and thereby would have opened up the possibility of an 
implementation of a viscous force. 

8.2.3 If we had to do it again, what would we have done differently? 
The things that caused us the most trouble were related to the fact that we were two 

people doing this thesis together. 
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We had two different versions of Microsoft Word which caused much trouble when the 
older version opened files from the newer one (.docx), and then saved them with loss of 
formatting and functions such as automatic figure numbering as a result. The solution to this 
problem is to keep the document in the older format at all times. 

Google Wave[26] says it will allow several people to edit the same documents 
simultaneously and we think that a function like that would really help when writing one 
report together. 

We also felt that we would have benefitted from using some sort of versioning system 
when doing the actual programming. We stuck to the plan with manually saving and naming 
different versions of the files and it became a real hassle to know what we had done in each 
file after a while. 

Another problematic aspect was all the movement of files (e.g. logs, screenshots, data, 
texts, manuals, the actual thesis, and so on). We had two different machines at the Karolinska 
Institute, one laptop each, and several machines at home for testing and writing. We used 
email and an USB-memory stick to move and share files, but this was really annoying and did 
not give us instant access to each other’s up-to-date files. Some sort central storage of the files 
would have been useful. For example we found Dropbox[27], but discovered it much too late 
into the project. 

Write every day! You cannot get this advice too many times (or too often)! It is way too 
easy to get caught up with something you are currently doing, and think “I will just finish this 
and write tomorrow instead”. Then tomorrow you say “tomorrow” again and soon you will 
lose the flow of writing and end up with days or even weeks of material that needs to be put 
into the report. 

8.3 Future work  

8.3.1 Better ways to calculate anchor points 
The resulting quality of our idea of snapping the cursor to anchor points relies on how 

you process your image and how you decide which points should be anchor points. If you do 
this badly, you will end up with way too many anchor points that should not have been there 
and the resulting user experience will be bad. 

For this thesis we used the OpenDX network and code previously developed by 
Professors Marilyn E. Noz & Gerald Q. Maguire Jr. This system computes the gradient at 
every voxel of the image, and stores this into a force matrix. The system originally used these 
gradients as the force sent to the haptic device. Therefore every gradient was normalized by 
the maximum gradient of its slice in the image in order to stay within the range of force 
suggested for the haptic device. 

Based upon our experience we believe that it would be better to skip the normalization 
and leave the gradients as they are. This could prove to be a better way to set the threshold, 
hence choosing better anchor points. 

Another idea, proposed by Marilyn E. Noz, is to take the points around the current one 
into consideration. By doing this, it should be possible to find and exclude single points that 
are unsuitable as anchor points. 
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8.3.2 Improve movement along lines 
As discussed in our results, we are not completely satisfied with the forces when moving 

along lines. As you can see in Figure 39, several shapes produce more or less a single line of 
anchor points. This requires the user to move exactly over the points for a smooth movement. 
Any movement outside these points would result in a force trying to get the user back on the 
line. 

Our attempts to implement a feature to make it easier to move along a line were not 
successful, see section 5.9.6. 

8.3.3 Cached network haptics 
Or original intent was to make the system tolerant to high latency by implementing the 

cache described in section 6.5. This part is still left undone, but we think that we have 
documented our work and theories sufficiently for someone else to continue this work. 

8.3.4 Experimental measurements with very low added delays 
The absence of the initial linear portion of the Cole and Rosenbluth model might simply 

be missed because this would correspond to very short delays and there were only a very 
limited number of test users. This effect is unlikely to have any practical effect on network 
induced delays beyond a campus local area network – as the network delay will be large 
enough that the next portion of the Cole and Rosenbluth model would seem to apply. 
However, measurements with much shorter delays might be an interesting task for future 
work. 

8.4 Work that we have not completed 

8.4.1 Introduce a way to disable the forces 
During our tests and implementation we could not temporary disable the force output. 

We also think that a user of the finished system would find it useful to be able to temporary 
disable the forces. One reason that this might be desirable is that they find that they are not 
able to reach certain parts of the image or get stuck at a point or in a region. 

8.4.2 Extending the work and experiments to 3D 
We did not get a chance to implement our forces in 3 dimensions. We feel that our idea 

with anchor points works very well in two dimensions and we cannot think of any 
circumstances that would prevent it from working in three dimensions. 

8.4.3 Add a viscous force and wall force 
Due to the fact that the velocity parameter of the device did not work as we expected it 

to, we did not have a chance to try our idea for a viscous force, see section 5.2.5. 

After finishing the implementation and evaluation of the spring force and the magnetic 
force we decided that these forces worked sufficiently well to allow us to skip the wall force, 
as we thought that our time was better spent completing some of the network part. 
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8.4.4 Completely split the code for the network part 
We only implemented a bouncer solution as mentioned in section 6.4. In order to add the 

functionality to use the system in a real world scenario, i.e., between two different locations a 
complete split of the code is necessary; this is described in section “Proposed method 2”. 

8.5 The most obvious next steps 
For the forces part support should be added for 3D. This has been our most requested 

feature. As for the network part, a complete split of the code and support for caching is 
needed. 

8.6 Hints for someone who is going to follow up this work 
We really learned a lot and got a good understanding of how the haptic device worked by 

reading and trying the simple applications. The sample applications that SensAble provided 
with their API were really good. Thus we strongly recommend that anyone who continues 
with this work try the basics first, before trying more sophisticated haptic programming. 
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Appendix A: Medical images with anchor 
points 

 
Figure 64: Abdomen with a threshold value of 0.3 
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Figure 65: Zoomed in abdomen with a threshold value of 0.3 
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Figure 66: Abdomen with a threshold value of 0.5 
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Figure 67: Zoomed in abdomen with a threshold value of 0.5 
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Figure 68: Hip patient with a threshold value of 0.3 
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Figure 69: Zoomed in hip patient with a threshold value of 0.3 
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Figure 70: Hip patient with a threshold value of 0.5 
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Figure 71: Zoomed in hip patient with a threshold value of 0.5 
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