Evaluation of Capuchin Application
Programming Interface

Implementing a Mobile TV Client

&

£y,
XUAN FENG $KTHS

{B VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Master of Science Thesis
Stockholm, Sweden 2009

TRITA-ICT-EX-2009:97

Evaluation of Capuchin Application
Programming Interface:
Implementing a Mobile TV Client

Xuan Feng

07 August 2009

Examiner: Professor Gerald Q. Maguire Jr., KTH
Supervisor: Nils Edvardsson, Ericsson

School of Information and Communication Technology
Royal Institute of Technology
Stockholm, Sweden

Abstract

The purpose of this research was to evaluate the Capuchin API launched by Sony Ericsson at Lund,
Sweden in 2008. The Capuchin API bridges Adobe's Flash graphics and effects with JSR support
from Java ME. We evauated Capuchin API with regard to its suitability for aMobile TV application.
We tested this APl in Ericsson’'s TV lab where we had access to live TV streams and online
multimedia resources by implementing a Mobile TV client. This test application was named “Min
TV”,in English: “My TV".

Using Capuchin in the Ericsson TV lab environment has shown that it has some benefits, but also
has many drawbacks. The Flash developer can be used to create an animated user interface and Java
developers can do complex programming. At this early stage Capuchin technology is not mature
enough, nor is it suitable for Mobile TV client development. Only after Sony Ericsson adds features
such as soft keys, easier debugging of Flash Lite standalone applications, test emulator support in the
software development kit, and more data communication methods than string and number, only then it
will be a suitable technology for Maobile TV applications.

Ericsson’s current Mobile TV application client was built using a framework called ECAF, which
supports a graphics frontend and Java ME as backend. We compared ECAF and Min TV with respect
to parameters such as: flexibility, performance, memory footprint, code size, and cost of skinning. (All
these parameters are explained in detail in the methodology chapter.)

As a possible future technology for Mobile TV, we evaluated a number of different
presentation/graphics technologies including HECL, SVG Tiny, MIDP 3.0, .NET Compact
Framework, etc. Moreover, we examed if a pure Flash Lite client application is a viable solution for
Mobile TV. The comparison of different presentation technologies showed that Java ME is a
comprehensive platform for mobile development offering al the necessary support from third party
graphical user interface makers. .NET CF also looks like a good option for development with the
scaled down capabilities for different programming languages supported using CLR.

Keywords

Capuchin API, JAVA ME, Action Script 2.0, VoD, Linear TV, Min TV, Mobile TV, presentation
technologies, experimental evaluation

Sammanfattning

Syftet med denna forskning var att utvardera Capuchin API lanserades av Sony Ericsson i Lund,
Sverige 2008. Den Capuchin API broar Adobe Flash grafik och effekter med JSR stod fran Java ME.
Vi utvérderade Capuchin APl med avseende pa dess lamplighet for ett mobil-tv ansokan. Vi testade
detta APl i Ericssons TV lab dar vi hade tillgang till TV-strommar och online multimediaresurser
genom en mobil-TV-klient. Detta test anstkan hette "Min TV", paengelska: "My TV".

Anvanda Capuchin i Ericsson TV lab miljo har visat att det har vissa fordelar, men ocksa manga
nackdelar. Flash-utvecklare kan anvandas for att skapa en animerad anvandargranssnitt och Java
utvecklare kan gora komplexa programmering. Pa detta tidiga stadium Capuchin tekniken inte mogen,
det &r inte heller lampliga for mobil-TV-klient utveckling. Forst efter Sony Ericsson lagger till detaljer
sasom mjuka nycklar, enklare felstkning av Flash Lite fristdende program, testa emulator stod i
Software Development Kit, och mer data kommunikationsmetoder an string och antal, forst da
kommer det att vara en |amplig teknik fér mobil-TV-program .

Ericssons nuvarande mobil-tv ansokan klient byggdes med hjalp av en ram som kallas ECAF, som
stoder en grafiska granssnittet och Java ME som backend. Vi jamférde ECAF och min TV med
avseende pa parametrar sasom flexibilitet, prestanda, minne fotavtryck kod storlek och kostnaden for
avhudning. (Alla dessa parametrar forklarasi detalj i den metod kapitel.)

Som en mojlig framtida teknik for mobil-TV Vi utvérderade ett antal olika presentation / grafik
teknik inklusive HECL, SVG Tiny, MIDP 3.0,. NET Compact Framework, etc. Dessutom har vi
examed om en ren Flash Lite klientprogrammet & en hdllbar 16sning for mobil-TV. Jamforelsen
mellan olika presentation teknik visade att Java ME & en Overgripande plattform for mobila
utvecklingen erbjuder allt nodvandigt stod fran tredje part grafiskt anvandargranssnitt beslutsfattare. .
NET CF ocksa ser ut som ett bra alternativ for utvecklingen med ned kapacitet for olika programsprak
som stods med hjélp av CLR.

Nyckelord

Capuchin API, Java ME, Action Script 2.0, VoD, Linjar TV, Min TV, mobil-TV, presentation teknik,
experimentell utvardering

Acknowledgements

First, | express sincere gratitude to my examiner Professor Gerald Q. "Chip" Maguire Jr. His
encouragement and suggestions helped me alot to start and complete the thesis. He told me not to be
panic, so that | would always see the possibility of successin thisthesis project. He al'so suggested me
to write something everyday; as aresult | had a lot of raw material for the thesis. | also deeply thank
my supervisor Nils Edvardsson at Ericsson for his continuous support and encouragement. He taught
me how to think critically and showed me a different way to approach research problems. | am greatly
indebted to Christian Olofsson (Consultant to Ericsson from Tactel AB) for extending his extreme
support in helping me start my project and in setting up the mobile lab environment.

Thanks to all the employees at Ericsson who offered their technical support and expertise related to
the CTV lab and networking. | would like to thank my manager Hans Bystorm for being a very
delightful person in the department. In short, | feel lucky for having the privilege and the opportunity
to work with real expertsin a zealous working environment.

Last, but not least, | would like to thank my family and friends for their love and presence. | pay my
gratitude to my father for the motivation he gave me, my mother for her commendable prayers &
wishes, and rest of my family for their support and love for me.

Contents

N o 1= = Lo TP [
SAMMANTATINING ..oiiiiiiiiiieieii ettt ettt et e et e et et e e e e e eeeeeseneeeees I
Y o2 g g LoV TAT=To Lo L= 4 1=T | £ SRS iii
(070 01 (=] 01 TSP iv
LISt OF FIQUIES oottt e et e e e e e e e et et e e e e e e e e e e aeaaa s eeeeeeeennnnes Vi
I ESY A0 1= o] = S Vii
List Of ADDreviations ..o viii
1 T o o 1¥ Tox o o I USRS 1
1.1 AM OF this rESEAICH .. 1
1.2 1Yo 0 o =P 1
1.3 DIIMITALIONS ..eeeiieie ettt e e e ettt e e e e e e s e bbbt e e e e e e e e e e eeaaeas 2
1.4 (@70 014 1 o 11 4 T Y o P 2
15 LU A B = o A I Y=o 2
2 BACKGIOUNG ..o s 3
2.1 17T o 1= N SRS 3
2.2 Linear TV versus Video on Demand ... 3
2.3 B A et e et e e e e e a bt e e e e e e e e s 4
2.4 What iS Project CapUCRINT ... e e 4
2.5 Flash Lite versus Java ME attribute COmpariSON..........cccciiiiiiiiiieiiiii e 5
2.6 Different approaches for using Project Capuchinccccccc 6
2.7 Y VAT A P PEEERR PP 7
2.8 DBVEIOPIMENT ..ttt e e e e e e e e e e e e 7
3 MIN TV d@VEIOPIMENT. ...ttt 9
3.1 Min TV CommuNication OVEIVIEWcccceiiiiiieiieeceeee et 9
3.2 Mobile handset and CTV 1ab SetUPoooiiiiiiiii e 10
3.3 Setting up java environment for Project Capuchin...........ccccvviiiiiii e 12
3.4 IMPlemMeNntation ETAIIScooiiiiiiiii e 12
20 o R O £ o T =T 10 o 1 1A . 12
7 T I L= T o T I T o7 o SRR 12
R 0 I 1= = Y = U - o SRR 15
3.4.1.3 Data transfer in Min TV @pPliCALIONcooiiiiiiiiiii e 20
3.4.2 Making the Internet available to the mobile via a Laptop PC ..o, 21
3.4.2.1 SettiNgS FOr CO0B5... ... ittt e e e ettt et e e e e e e e b bttt e e e e e e s e aaa bt et e e e e e e e aaanbbbeneeaaeeeaannnreees 21
3.4.3 Development in ACHON SCHPL 2.0 ..uuuuii i e e e e e e e e e e eneeee 22
3.4.3.1 PUre ACION SCIPL fiES ..uueiiiieeiiiiiii e s e e e e e e e s st e e e e e e e s s e nnnn e e eeeaeeeannnnees 22
3.4.3.2 ACHION SCHPLIN fTAMES ..eeeiiiie it e e e s s e e e e e e s s s san e e e e eeessanssnteneeeaeessnnnnne 23
I T IS T 1T R (g1 (0] o =1 g 2 SRR 25
3.4.4 Compiling the application using Another Neat TOO! (ANT)coooieiiiiiiiiiiiiiiiee e 26
3.4.4.1 BUIIAING USING ANT L.ttt et e e e e e oottt et e e e e e e s e abbee e e e e e e e s e aanbbeeeeaaeeesaanbnbeeeeaaeeesannnreees 26
3.4.5 Debugging and Testing the APPlICAtION.............uuuiuuiiiiiiii e 27
T N I =1 o 10T PSSR 27
3.4.5.2 TeStNG the SIHBAMSuuiiiiiii e e e e e e e e s s s et e e e e e e s s s s aabe e e e e eeessaasnntaneeeaeeeannnnnrenes 30

4 FINAINGS AnNd DISCUSSIONS .ceeiiiiiiiiiiieeeeeeieiiiiie e e ettt e e e e e e eeeaaaa e e e e e e eeeeenes 31
4.1 Evaluation of CapUChin APl ... e e e e e eeaaea 31
O R 0 V7= Y| = T =2 31
L B 1T o AV 7= o] r= (o [31
I B @) o3 01 (o [PPSR 33
4.2 (0T o 1U o] a 1T g IRV 2= T BT ST = O AN PPN 33
4.2.1 Animation capabilities..........coooi i 34
4.2.2 Code Size in lINES Of COUR ..o 34
4.2.3 MEMOIY TOOLPIINT ..ceiieeiiiiiitt ettt e e e e e e e e e e e e r e e e e e e e e e nnnbneees 36
424 ReUuSability ... 37
S 1 (] o] 1 YRR 37
4.3 Presentation technologies for mobile TV ... e 37
4.3.1 Hecl suUpPOrt fOr JAVA MEooooiiiiiiiii e 38
IRt O o [N I I TP SPPTTPPTTR 38
e 2 4/ | PO UPPTTPPTTR 38
R I T @ 1 o 1= o (=Tl N 1= (o] PR TP 38
4.3.1.4 Evaluation of Hecl + Jave ME for our Mobile TV applicationcccceeviviiiiieeieee e e 39
4.3.2 SVG Tiny 1.2 support for Java ME.............coooiiiiii 39
e R B V.11 = T 0 N < 72 PSSR 40
4.3.4 Microsoft NET Compact Framework (.NET CF).....ccooiiiiiiiii e 40
4.4 Pure Flash Lite TV Client Application CONCEePL........cuviiiiiiiiiiieie e 40
5 Conclusions and fULUIE WOTKcoovviiiiiiieee e e e 43
5.1 1070 ¢ [od [V =77 Y o 1= 43
5.2 FUTUTE WOTK 43
S =T =T o =TSR 45
A. Configuration fIl@Scooveiiic e e a7
A.l. Fetching and inserting EPG data...............coooiiiiiiiii et 47
A.2. Loading an EPG into the EPG AQQregator........ccuuiiiiiiiiiiiiiiiiieeeeee e 47
A3, ProCeAUIE ... 47
A, CTVProperties file .. 48
A5, Problems and SOIULIONScii i e e e e eans 49
B. Phone configUIratioNS.......coooiiiiiii e e e e e eaaens 50
B.1. 8.1 megapixel Cyber-shot phone with Project Capuchin APlcccccvvvviiiiiinniinnnnnn. 50
S 37 = ToT a L= 1Y (o Yo [PRSPPIt 50
2 TR = 110] 0 1 R 50
B4, SCIEEIN SIZES oottt ettt e et e e e e e e et e e e e e e e e as 50
B LD, IS RS & A PIS e a 50
= G T AN U o [o Y 4 T L= o P 51
= = T IR 51
= T Y PP POPPTPPR 52
[TR G0 T | =T o 4 Y21 52
0 O TR (o 0 N 52
B.11. MISCEIIANEOUSot e e e et e e e e e e e eeaaaeeas 52
C. Cource code for the ActionScript files ..., 53
L I € =V 4=] 1 o - T 53
O3 O 1 - T g] 1] = PP PPUPPR PP 54
C .3, PrOQIAIMILAS .oueiiiiiiiiiiiiiiitie e e 54
L S D T 1] - 1T 55
(O T S 1TSS o] o - SO PPURPR PP 57
C.6. retrieVeVOAINTO.AS . oo e e e e ea 58
LG Yo To | o Yo | =0 1T 58

List of Figures

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure 6:
Figure 7:
Figure 8:
Figure 9:
Figure 10

Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:
Figure 32:
Figure 33:
Figure 34:

Vi

Mobile TV Streams delivery to mobile
Capuchin High level diagram (Adapted from [12])
SWF2JAR compiling tool (Adapted from [13])
Min TV Communication Overview

C905, First Capuchin Enabled handset

CTV lab network configuration

Generating the EPG data

Setting the security level for the emulator
First Window

: Set Screen Size

Design Interface

A sample .swf file

Sample Capuchin code for loading a .swf file
Min TV import statements in Java ME
StartApp() code for MIDlet startup

VoD xml accessing and parsing

Playing the video Stream

Data flow between Flash and Java

Java event notification to Flash

Settings for Windows Vista

Coding for a Specific Frame

Code for onKeyDown

Code for DataRequest and ExtendedEvents
Variable named currentTime

Code for the frame shown above

Time displayed in the upper right corner
Build.xml for Min TV

Connection proxy connecting C905
Setting the static IP address to the handset

ECAF Screen.xml
ECAF Screenl.xml

DebugMux while debugging using C905 DeviceExplorer

Ericsson’s Device Explorer showing output for the EPG fetcher MIDlet from C905
Running a VoD resource in VideoLAN’s VLC player

List of Tables

Table 1: Comparison between Flash Lite and Java ME
23

Table 2: Action Script files
Table 3: Relation between ECAF tags and Flash Lite 34

Vii

List of Abbreviations

viii

ANT

AP

APN

AS

CODEC
CTV
DataRequest
ECAF

EPG

ESG
ExtendedEvent
FLV

GUI

HTTP

IDE

IMS
JavaME
JRE

JSR

VM

LTV
LWUIT
MMAPI
MTV

OMA

OMA BCAST

RTSP
SDK
SEMC
SIP
SVG
TV

ul
VoD
XML
3G

Another Neat Tool

Application program interface

Access Point Name

Application Server

Coder/Decoder

Converged TV

Request for data delivery from Action Script to Java ME
Ericsson Client Application Framework
Electronic Program Guide

Electronic Service Guide same as Electronic Program Guide
Event notification from Java ME to Action Script
Flash Video

Graphical user interface

Hypertext transport protocol

Integrated development environment

IP Multimedia Subsystem

Java Micro Edition (also as 2ME)

Java Runtime Environment

Java standardization request

Java Virtual Machine

Linear TV

LightWeight User Interface Toolkit

Mobile Media APl (JSR-135)

Mobile TV

Open Mobile Alliance

Open Mobile Alliance Broadcast

Real-time streaming protocol

Software development kit

Sony Ericsson Mobile Communication
Session Initiation Protocol

Scalable Vector Graphics

Television

User Interface

Video on Demand

Extensible mark-up language
Third-generation mobile system

3GP
3GPP
.class
fla
.NET CF

3GPP file format for multimedia

Third Generation Partnership Project

A blueprint to create objects

File extension for an Adobe (Macromedia) Flash source document
Microsoft .NET Compact framework

1 Introduction

With the evolution of technology, mobile phones have become more and more functional. Besides
the basic function of making phone calls, sending and receiving SMS, etc., a lot of interesting and
useful mobile applications have been developed to provide a better user experience. Users have the
opportunity to check their e-mail or surf the Internet via their mobile phone. In the meanwhile, mobile
TV has been introduced to allow users to watch television, movies, or other on-line multimedia on
their phone. However, an unresolved question is how best to design amobile TV client. In recent time,
this has become the main concern for many mobile devel opers.

1.1 AiIm of this research

The aim of this research project has been to explore new presentation technologies, to exploit the
new graphics capabilities of modern cellular phones, and to find new ways to present data to the end
user. Earlier, the Ericsson Client Application Framework (ECAF) was used to create the existing
Ericsson Mobile TV client. In our work we were looking for an alternative solution to replace ECAF
asit is not sufficiently scalable in terms of graphics and programming. Additionally, devel opers need
to write alot of codeto create afront end in ECAF.

The desire is to find an alternate technology which supports easy-to-develop graphics and effects
with excellent programming capabilities. The first option which comes to mind is Adobe’s Flash Lite
[1], as it offers rapid graphics development and well established designer tools. Additionaly, using
Java provides a good base for services, numerous security functions, etc. Fortunately, Sony Ericsson’s
Capuchin Project has developed an API bridging the gap between Flash Lite and Java ME, by
encapsulating Flash Lite content in Java ME applications. Thus Flash Lite can handle the presentation
layer issues; while Java is used to feed the presentation layer with the necessary data. Therefore, in
this project we opted to explore the flexibility of Capuchin API for aMobile TV application.

1.2 Scope

There are three main parts of thisthesis.

1. The first part is to evaluate the Sony Ericsson’s Capuchin API [2], i.e. to evaluate what is
good, what is bad, and what is missing from this APl — with regard to a Mobile TV
application.

2. The second part is to design and implement a mobile TV client using the Capuchin APl and
Java ME (for the backend communication). The frontend will be pure Flash using Flash Lite
and Action Script 2.0. The Capuchin enabled client was implemented using Ericsson’s Mobile
TV environment. Thus the client can access Oracle (formerly Sun Microsystems) Application
Servers (AS) in an IP Multimedia System (IMS) [3]. The user can browse the schedules of
programs similar to those found in a newspaper, then select and watch their media selection.
They can also see what videos are currently hot (i.e., the most in demand).

Two Flash graphical user interfaces (GUIs) have been implemented. One of the GUI themes has
simple graphics and the other one has dlightly fancier graphics. The presentation of the data, color
management, and access to the streams are different in the second theme. The actual media content is
displayed using Flash Lite. These Flash GUIs serve as examples of different styles of interfaces, having
different color palettes, fonts, and screen layouts.

3. The third part is to compare different GUI technologies for Mobile TV. We examined and compared:
HECL, SVG Tiny 1.2, .NET Compact Framework (CF) and MIDP 3.0 as possible front ends for a
Mobile TV application.

1.3 Delimitations

The existing Ericsson mobile TV client is called the Converged TV client. It is IP Multimedia
Subsystem (IMS) enabled; this that the client gets al its information through IMS by using Session
Initiation Protocol (SIP) signaling.

IMS was designed to help operators develop cost-effective networks that alow the convergence of
voice and data. It has been position by Ericsson (and other) as the key to building networks that can
combine ongoing communication sessions with multimedia elements, such as sharing live videos
while simultaneously supporting conversational voice communication. Ericsson’s IMS Solution is a
complete end-to-end offering for fixed and mobile operators that combine media such as voice, text,
pictures, and video while giving users the tools to personalize their communication experience [3]. In
our implementation, our client should have some of the Converged TV client’s functionality and use
the same communication method as well (i.e., use IMS). However, for our prototyping and testing we
did not use SIP signaling to the IMS, due to lack of time and insufficient technical support with
respect to the programming necessary to establish network connections. Additionally, we were unable
to test the second Flash theme on real-time data from the application servers due to an upgrade of lab
configuration (that was outside of our control).

1.4 Contribution

This research examines the question of whether the Capuchin API is suitable for mobile TV
application development. If the answer is yes, then a secondary goa is to enumerate the benefits of
using this technology and what are the disadvantages of using this technology. We will also compare
this technology to other suitable presentation technologies for the Mobile TV, both for playing TV
streams and for other on-line multimedia.

1.5 Structure of Thesis

This report consists of six chapters. The first chapter set out the goals and limitations of the project.
Chapter two provides the reader with background necessary for the subsequent chapters, specifically
concerning mobile TV, Linear TV (LTV), Video on Demand (VoD), and the basics of an Electronic
Program Guide (EPG). It describes the existing ECAF based Mobile TV client, i.e., the Ericsson
Converged TV client.

Chapter three presents a detailed overview of Ericsson’s Capuchin API. It describes a number of
different approaches for using the Capuchin API. The chapter concludes by explaining the six steps
necessary to develop a Capuchin application.

Chapter four described the research methodology that was used. It provides detail about the
development environment and how we conducted the research. This includes details of the design,
implementation, debugging, and testing of the prototype (“Min TV”) client.

The testing and evaluation of this new client are discussed in chapter five. Other potential
presentation technologies and the existing ECAF based Converged TV client are compared with our
Capuchin enabled Min TV client. This chapter enumerates in detail the benefits and the drawbacks of
the Capuchin API for aMobile TV client.

Chapter six summarizes our work and gives some concluding remarks about the Capuchin API’s
usefulness as well as suggests some potential future work.

2 Background

2.1 Mobile TV

Mobile TV is a service which allows cellular phone owners to watch television on their phones
from a service provider. In our Mobile TV project we receive 10 streams in MPEG2-TS [4] from
Alcom [5]. Each of these ten streams is being sent at 4 Mbits/s which is much faster than is desirable
for the mobiles (as this would be taxing for current mobile devices and take a lot of the operator’s
capacity). Thus these streams are transcoded to alower bit rate to make them more suitable for mobile
phones (see Figure 1). The resulting data rate is ~200K bits/s per stream. This specific data rate was
chosen as it is a 3GPP [6]. file format (with the extension “.3GP’) for a video stream encoded in
H.264 [7] with audio AAC. The node labeled “EMTV” in the figure is a streaming server which
simultaneously serves several mobiles with VoD content.

TRAMSCODING

ALCOM EMTV

Figure 1: Mobile TV Streams delivery to mobile

2.2 Linear TV versus Video on Demand

A Linear TV (LTV) service allows end-users to watch what is currently being transmitted to all
subscribers. This can be used for broadcast TV channels and programs. The end-user can choose to
display the TV portal, select other services, or choose other TV channels. The end-user can learn what
programs are available by an Electronic Program Guide (EPG). The EPG presents the programs of
different TV channels. It includes information about the name of the program, when it will be
transmitted, a description of the program, and the URL of the stream associated with this program.

Video on Demand (VoD) [8] is an interactive multimedia system. The customer selects a movie (or
other prerecorded multimedia content) from a large multimedia database. VoD allows the user to
select the content that they are interested in and the media playout is personalized, i.e., the user can
pause, play, fast forward, and rewind their media selection. This allows end-users to have complete
control over what they watch, when they watch it, and even how watch it. Thus there is no need to
wait for a set time to watch your choice of movie; instead, you simply make your selection, then hit
the play button when you are ready [9].

The format for the media to be shown on the mobile is 3GP. 3GP files are in an encoded,
compressed format. A user can choose different versions content — offering high definition or lower
definition (with corresponding higher and lower throughputs being required to deliver the content to
the user). Further details of thisformat can be found in [6].

2.3 ECAF

As mentioned earlier Ericsson’s current Mobile TV application client was built using a framework
called Ericsson Client Application Framework (ECAF). ECAF supports graphics for creating a front
end and Java ME as a backend. All graphical components and user interaction in applications
developed with ECAF are defined in XML -pages which are written and organized according to how
the ECAF interprets the XML-logic. Compared with Internet browser, ECAF parses XML-pages
while a general browser parses HTML-pages. And one more difference between XML and HTML is
that XML allows for any sophisticated user interaction while HTML doesn’t. Except for this, they
have many similarities. As for an example the XML-pages, that defines how the applications look and
feel, how the users interact as well as all the other application contents, may be put on a server. ECAF
is not used to just parse any XML-pages. The XML-page has to be encoded especially for ECAF. As
aresult, the designer needs to know what kind of structure to design and what kind of tagsto use[9].

The text between <!-- and --> will be ignored when ECAF parses the XML-document, thus it will
not have an affect on the appearance or function of the application. The four main tags are: xml1,
ECAF, layer, and text. The xml-tag serves to identify which version of XML ECAF is being used.
ECAF needs the ECAF-tag to be able to parse the XML correctly. Those two tags must always be
present in al XML-documents and must be written in a particular order. All components of the
application should be placed inside the ECAF-tag. Everything that is supposed to be displayed by the
application hasto be put inside a layer-tag. ECAF is able to work with several layers at the same time.
A number of graphical interactive tags are also available, these include: event, image, group,
1ink, open, and move tags.

2.4 What is Project Capuchin?

Project Capuchin is a technology developed by Sony Ericsson to provide a high quality GUI and
good programming support [11]. Since it is developed by Sony Ericsson, it is available in their phones
released after June 2008. The first phonein this series was model C905.

Project Capuchin is a Java ME APl which makes it possible for Javato run a Flash Lite content file
(.swf) and to display the output on the phone’s screen. An important aspect of this method is mixing
the two worlds of Flash Lite and Java ME, and enforcing the relationship between User Interface (Ul)
designers and developers [12]. Figure 2 shows a high level architecture presentation of Capuchin. As
can be seen in the figure, the user interface is designed and implemented in Adobe Flash Lite while
the application’ s semantics are implemented in Java ME.

All system events such as key events are forwarded from Java to Flash Lite and the Flash Lite
player will process these events. If Flash Lite needs to access some information, it asks Java for help.
Communication between Flash Lite and Java are handled through a middleware (working as a
trandator). This middleware class listens to Flash Lite requests, transfers the requests to Java, and
sends the response back to Flash Lite. The data transfer between Flash Lite and Javais bi-directional:
Flash Lite can send requests to and receive events from Java; while Java can send eventsto and listens
to requests from Flash Lite.

Java MIDlet Suite (.jar)

Device

a N
« D
Flash Content e Y
(.swf)
_ Vi Java MIDlet class
A Play Flash
Play Flash Data transfer 0 4
_ Data transfer Data transfer /

Figure 2: Capuchin High level diagram (Adapted from [12])

2.5 Flash Lite versus Java ME attribute comparison

In order to find the strengths of two technologies and to know their weaknesses, the best method is
to compare them with each other. Since the Capuchin API is using both the technologies, we should
examine what is best for each of these two technologies. A simple comparison is shown in Table 1.

Table 1. Comparison between Flash Lite and Java ME

Flash Lite JavaME

Pros Pros

Drag-and-drop toolbox Wide platform access. JSRs

Online Community Security: MIDP protection

books, forums, tutorials Distribution infrastructure using JAR
Wide adoption language

Cons Cons

Difficult debugging Lack of graphic design tools

No security solution like javarunsin asandbox | The Ul isnot support rich animations,
Lack of distribution channel (only .swf isthe transformation and effects
way to run Flash on phonesand jar istheonly | difficult to keep separation between presentation

way to run application on the phone less for and service layer
Flash Lite) Designers depend on programmersin Ul
memory/cpu consumption development

The combined benefits and drawbacks of using both the technol ogies together according to Thomas
Menguy are summarized below. (These items are based upon the presentation in [12].)
Advantages.
e Rapid development due to Adobe's Flash IDE. This makes iterative software prototyping
and software testing relatively easy.
e Graphics are vector based (although bitmap support is also included). Vector graphics
allows easy scaling, rotation, and other transformations without loss of graphic quality.
e Vector graphics also allows the programmer to pack more animation and graphics into the
same file size that would be the case when using bitmapped animation and graphics.
e Web-based (desktop) Flash content can be converted to mobile content and vice versa, with
minimal effort.
e This approach can take advantage of the many programmers and content produces who have
Flash development skills. Their understanding of the IDE and of the scripting language
facilitates porting applications from a desktop IDE to the mobile development environment.

Disadvantages:

e Asof April 2008, only a minority of phones offer support for Flash Lite. However, thisis
changing rapidly in North America and Europe with carriers such as Verizon. Moreover
Nokia, Sony Ericsson, and LG announced Flash Lite devices in 2006 and 2007. However,
the limited availability of Flash Lite capable mobiles means a more limited audience
compared with that of Java ME or Symbian platforms.

e Poor handling of sound.

2.6 Different approaches for using Project Capuchin

Project Capuchin can be used in three ways to create innovative content:
1. PureFash Lite Content (Full Flash skin and services, without Java ME support)

This is the simplest way of using Project Capuchin. We can create a pure Flash Lite application and
encapsulate it in MIDIet suites (creating a .jar file) using Sony Ericsson’s packaging tools. In this way,
the Flash Lite content will be treated the same way as Java contentthus the same distribution
infrastructure and system capabilities can be used as are currently used for Java ME content.

2. Java MIDlet using Project Capuchin as Ul presentation layer (Full Flash skin and Java
services)

In this approach, Flash Lite is used to handle the whole presentation layer; while Java acts as a
service provider that transfers data to the presentation layer.

3. Java MIDlet using Project Capuchin for some Ul components (Java and Flash Ul, with Java
services)

In some cases, it is not feasible to use Flash Lite as the only technology for the presentation layer, for
example, in 3D games. Hence another more suitable Java technology, such as Mascot API, JSR 184, or
JSR 239, will be needed. However, Project Capuchin can be used for presentation of some Ul
components such as menus in 3D games.

We used the second of these approach withFlash’s Ul as our front end and Java ME as the backend.
We tried to implement all possible GUI features in Flash Lite. Some features could not be handled
using Flash Lite, so we used Java ME’s GUI, specifically MIDP 2.0's |cdui. We mostly used Java for
data processing and video playing using JSR-135 (which isavailable in MIDP 2.0 as MMARPI).

http://en.wikipedia.org/wiki/Software_prototyping
http://en.wikipedia.org/wiki/Vector_Graphics
http://en.wikipedia.org/wiki/Verizon
http://en.wikipedia.org/wiki/Nokia
http://en.wikipedia.org/wiki/Sony_Ericsson
http://en.wikipedia.org/wiki/LG

2.7 SWF2JAR

SWF2JAR is atool for automatically embedding a Flash Lite file in a .jar suite. This application
can only handle Flash Lite files that do not use Project Capuchin’s data transfer mechanisms (such as
DataRequest or ExtendedEvent). If data transfer mechanism between Flash Lite and Javais used, then
SWF2JAR cannot be used because Java code is needed to compl ete the communication.

SWF2JAR

i

Capuchin API

Figure 3: SWF2JAR compiling tool (Adapted from [13])

2.8 Development

There are six fundamental steps when devel oping Capuchin projects:

1

Applications requirement and Ul draft.
Collect the application requirements and plan the Ul.
Decide data transfer mechanisms.

Decide which of the available data transfer mechanisms to use: DataRequest, ExtendedEvent, or
both. If Flash content needs to request information from the device, for example, as a result of user
interaction, then the DataRequest mechanism is the most suitable choice. If Flash content should be
notified when something happens in the phone, then the ExtendedEvent mechanism should be used.

Format of data transfer.

Developers should agree upon the format in which data will be passed. It is currently only possible to
pass string and number data types. Agreement on the formats and how these can be identified must be
reached between the Java programmer and the Flash designer.

Implement and test Flash UI.

The Flash designer/developer implements and simulates the Flash Ul separately from Java using
loadVariables() Action Script functions to read dummy data from an external file such us atext file.

5. Javaimplementation.

The Java programmer writes the Java code using the Project Capuchin APl and implements the
required services, for example, by using services from the relevant JSRs.

6. Test and release the application.

The Java programmer tests the application in the device and releasesiit.

3 Min TV development

This chapter describes the research approach (methodology) adopted for the implementation of our
application —Min TV, in English: “My TV”. After the overview of Min TV, the lab environment and
the programming required to realize the two GUI themes are discussed.

3.1 Min TV Communication Overview

Figure 4 shows how Min TV client communicates with the two most important application servers.
When Java first receives a request from Flash Lite, it sends an HTTP request to the EPG server to ask
for fresh data. An XML file transferred using the OMA BCAST standard [14] will be returned to Java.
After Java parses this XML file, it sends back a response containing the information to Flash Lite. If
the end-user would like to watch streaming TV or a movie, then a Real-time streaming protocol
(RTSP) request is sent from Java to the media server. The media server will send back the appropriate
.3gp file (afile format that can be played on mobile devices using a media player).

>

' DY

[Flash Lite GUI }

[Capuchin API }

N HTTP request
[Java ME OMA BCAST XML file
- - RTSP request
.3gp files/ TV streams

Figure 4: Min TV Communication Overview

3.2 Mobile handset and CTV lab setup

At the time of this research, there were only two handsets available in the market that support
Capuchin. By the end of year 2009 there will be total of 6 handsets that support Capuchin. We used a
Sony Ericsson C905 handset which is the first model that supports the software development kit
(SDK) for the Capuchin API. The C905 mobile phoneis an A200 series handset, this means that it has

three soft keys (l€ft, right, and middle keys) and has access to the 3G network. This handset is shown
in Figure 5.

Figure 5: C905, First Capuchin Enabled handset

Before testing the phone in the lab environment we need to set some properties in order to access
the wireless lab network. We used a data account with internet settings named “Raza in lab”. The
access point name (APN) was set to “dmmp.g-external”. Similarly streaming settings to access live
TV were also set to “Raza in lab”. Figure 6 shows the IP addresses of each of the nodes in our test
network.

PC Proxy

10.10.30.13

HTTR Teques 10.10.30.15
OMA BCAST XML file eI
RTSP request
3gp filesTV streams - 10.10.30.31

Figure 6: CTV lab network configuration

10

We fetch the data for the service guide every week from a database server and put it in to the EPG
server (running using a Java Application Server). Thisinput consists of two files: an XMLTV file and
a Converged TV (CTV) Profile. The CTV Profile is a workaround to define some extra metadata
needed when creating the Access and PreviewData fragments. The process is explained in detail in
appendix A. This processis shown schematically in Figure 7.

T
XMLTV

Channel

Program

-

A

CTV Profile

CTYV Profile

-

OMA BCAST
Service |«— Access
Y
Schedule PreviewData
A
Content

Figure 7: Generating the EPG data

We had to set some preferences in the SDK. In the network configuration of the “Preferences of
Emulator” we set the HTTP proxy to be “www-proxy.ericsson.se” with port “8080". The memory
monitor and network monitoring were also enabled. The security was set to “manufacturer” in the
“Security Domain” (see Figure 8).

@3 Preferences w -uliga E

,. Default Emulator
- Metwark Configuration Security Policy MSA -
- Performance N
- Monitor Security domain : Ln'.bam:l'a::mre.r
- Storage ‘manuﬁ:ch.lrer
--AMA rririrndT
identified_third_party
- Bluetooth /OBEX unidentified_third_party
--Location maxirmum
~-Payment

N

Figure 8: Setting the security level for the emulator

11

3.3 Setting up java environment for Project Capuchin

The Java environment described in this section consists of:

1. Java Runtime Environment (JRE) 16 or later. JRE is avalable at
http://www.java.com/en/download/manual .jsp . Download and install it.

2. Sony Ericsson SDK for the Java ME platform. Sony Ericsson SDK for the Java ME Platform,
found at Sony Ericsson website at:
http://devel oper.sonyericsson.com/site/global/docstool gjavalp_java,jsp .

3. Eclipse. Download Eclipse Integrated Development Environment, available for download at:
http://www.eclipse.org/downloads/ .

4. EclipseME plugin. This can be installed by using the EclipseME update site:
http://eclipseme.org/docs/installation.html .

5. Project Capuchin Classes. The Project Capuchin APl is available for download at:
http://devel oper.sonyericsson.com .

3.4 Implementation details

3.4.1 Using Capuchin API

Two programming languages are used in parallel (Action Script 2.0 and Java ME). We developed
an application in Java ME which does tasks such as XML parsing, playing the video streams after
accessing them from media server, implementing the soft keys to move forward and backward in the
video, implementing an Alert signal, and implementing the Capuchin code.

The graphics and the screens are created using Flash Lite, while Action Script is used to implement
the communication between the Flash Lite and the Java ME using the Capuchin API. Phone control
keys such as up, down, left, and right keys are also implemented using ActionScript. You can see it
Figure 22.

We made a .jar file of the Capuchin classes which are available from the Capuchin web page on the
Sony Ericsson website.

34.1.1 The Flash Lite part

The Flash files are created using Adobe Device Central CS3 [15]. In this program we first choose to
create a new mobile Flash File, as shown in Figure 9.

12

http://www.java.com/en/download/manual.jsp
http://developer.sonyericsson.com/site/global/docstools/java/p_java.jsp
http://www.eclipse.org/downloads/
http://eclipseme.org/docs/installation.html
http://developer.sonyericsson.com/

Adobe Device Central CS3 .

File Edit Devices View Help

Device Sets

+ = ! Belice: Pmm“—

=] ﬂ My Favorites
= [sample Device Set

[Fiash Lite 2.1 15 2
] Frash Lite 2.1 32 2

Drag devices here

[Flash Lite 1.1 16 176x208
[Flash Lite 1.1 32 176x208
[Fiash Lite 2.0 16 2403320
@ Flash Lite 2.0 32 2404320

Available Devices
Name ¥ | Di

Casio Hitachi
[l] Flash Lite

[l Fujitsu

[kyocera

LG

] Mitsubishi
&l Motorola

[lj nEC

Mokia

[} Panasonic
] samsung
Sanyo

Sharp

[J] sany-Ericsson
[} Toshiba

] Tottori Sanyo

HEEHEFHEHEHEHEEEEHE® BB

ADOBE" DEVICE CENTRAL €53

open for Testing Create New Mobile
() Open... ﬁ Flash File
n Photoshop File

2B ﬁ Hiustrator File

) Erowse Devices >>

Resources >>
IC' more available at Adobe.com >>

||:| Getting Started >> 5 Get the most out of Device Central,
connect with the mobile community and

||:| Device Updates >>

| Don't show again

Figure 9: First Window

Next we have to choose different parameters such as: Player version, Action Script version, and the
screen size. Our Min TV application requires a screen size of 273*302 (due to lack of full screen
capability and soft key support at the same time in Capuchin) instead of the standard 240* 320 pixels.
Thisis set by specifying a custom size, as shown in Figure 10.

Device Sets

= [My Favorites
= [0 Sample Device Set

+ = 1 DwicePloﬂIe51 New Document =
-

Player Version: Flash Lite 2.0 - Target Devices: 1
] Flash Lite 1.1 16 176x208 ActionScript Version: ActionScript 2.0 - Document Size: 273 x 302 px m

a| Flash Lite 1.1 32 176x208
E Flash Lite 2.0 16 240:320

Content Type: Standalone Player -

@ Flash Lite 2.0 32 2405320 Matching Size Presets: 5

E Flash Lite 2.1 16 240:320
E Flash Lite 2.1 32 240x320

Drag devices here

Available Devices 0. S
Name [Display Size
[l Casio Hitachi -
[Flash Lite

L] Fujitsu

[kyocera

L Ls

L] Mitsubishi

Lf] Motorola

@) NEC

[mokia

LJ] Panasonic

L] samsung

L] sanyo

[sharp

[sony-Ericsson

[h Toshiba

[Tottori Sanyo

240 x 320 px L,
Matching Devices: 1

Flash Lite 2.0 32
24E20

Custom Size for All Selected Devices

Width: 273 Height: 302

Figure 10: Set Screen Size

13

After pressing the “Create” button we get the Adobe Device CS3 Professional start up screen (see
Figure 11). The interface is like following. This interface displays the timeline, the layers, and the
scene mode, etc. Details of how to use Adobe Device Central CS3 can be seen in [16].

&l Adobe Flash CS3 Professional - [Untitled-1*] / oo o
File Edit View Inset Modify Tet Commands Control Debug Window Help
Layers _ = TS
%
5 0 15 0 25] s 45 50 55 0 s =[] e =
L3 o [l |untitied-1 va @
% £l Empty library
SCene \ 23 BRSO] f mH B 1 120fs 00s <[’
%’7\ o 4 Scene 1 Workspace ¥ é. é. 100% -
T \
Name Type &
™ 5]
=)
e
& |
(]
o "
7 ga <[m v
—=
=4 | cotor x | Swatches | =
) 7 Type:|Soid
Q il
7 i LER) Ill
Lol B i v o2 [B
— % G 134
& | ¢ Properties x | Filters | Parameters | = .‘
L S B 22
fl Document size: [273x 302pwels | Background: | Framerate: 12 fos ® Alpha: 100% B 2668615 |
Lk ——
A Untitied-1 Fubiish: Settings. Flayer: Flash Lite 2.0 Profile: Default
- 2 | —

Figure 11: Design Interface

After generating our GUI we output the results as a Flash file. This creates a file with the extension:
“.fla’. Next we compile this to produce a file with the extension “.swf” using “Ctrl+Enter” (test
movie). A sample of such acompiled .swf fileis shown in Figure 12.

{9 Adobe Flash Player 9 E=NAE X

File View Control Help

Figure 12: A sample .swf file

14

34.12 The java part

The .swf file is exported to the Java ME Capuchin code where it is added as a resource (to a
project). Figure 13 shows sample Capuchin code for loading afile “theTwo3ASV .swf”.

try {
InputStream inp = getClass|() .getResourcebksStream "/ themeTwo3IASV.swi™) ;
flashImage = FlashImage.createlmage (inp,null);
flashCanvas = new FlashCanvas (flashImage) ;
flashFlaver = FlashPlavyer.createFlashPlayer (flashImage, flashCanvas);
f flashCanvas.setFullScreenMode (true) ;

flashImage.setFlashDataRequestListener (this) ;

flashCanwvas.addCommand (back)
flashCanwvas.addCommand (next) ;
flashCanvas.addCommand (guitl) ;

flashCanvas.setCommandListener (this) ;
flashImage.setFlashEventHManager (this) ;

catech (Exception e)
{
e.printStackTrace()

Figure 13: Sample Capuchin code for loading a .swf file

The themeTwo3ASV.swf file is loaded as a resource to the project by using the method
getResourceStream. Flashimage is created to provide an InputStream as an argument to the
flashimage factory method. This flashimage is then put on a flashCanvas. On the mobile phone screen
we have flashCanvas and on this cavas it shows the flashimage which we get from the inputStream.

Thisiswhat the constructor looks like. It is the same whether loading this particular .swf file or any
other .swf file. If we want to load another .swf file, all we need to do is to change the name of the file
in the code and put the file in the resource folder.

However, before loading the .swf file we need to parse the XML and retrieve the relevant data from
the EPG and VoD servers. The classes for the parsing come from the southend libraries. Therefore,
these libraries need to be added to the Java ME project. An example list of import statements are
shown in Figure 14.

15

E MinTVjava |

2 hmpurt java.util .Vector;
3
4 import se.scuthend. platform.CurrentPlatform;)
5 import se.scuthend platform.Platformlimpel; Forparﬂng
o import se.scuthend. platform. IApplication;
7 import se.southend. xml EMLParser; ,
8
g import com.sonyericsson.capuchin.FlashDataBequest;)
10 inport com.sonyericsson.capuchin. FlashDataBequeatlListener
11 import com.sonyericsson.capuchin. FlashEventListener;
1z import com.scnyericsson.capuchin.FlashEventManager; For Capuchin
13 import com.sonyericsson.capuchin.FlashImage;
14 import com.sonyericsaon.capuchin.FlashPlayer;
15 import com.sonyericsson.capuchin.FlashCanvas; ~
1ls
17 import eef.utils.logger.Logger;
18 inport eef.mtv.Config;
all import eef.core.Store;
Z0 import eef mtv.tv.Channellist; ~
21 import eef mtv.vod.S5impleVod:; For VoD server
22 import eef mbtv.vod.VodFolder;
Z3 import eef mbtv.vod. VodContent;
Z4 import eef mbv.vod.VodItem: -
£5 inport eef.mbtv.broadcast.esg.Serviceluide; 0
£ inport eef.mbtv.broadcast.esg.ServiceCuidelatar For EPG
£7 imnport eef.mtv.broadcast.esg.Servicefuidelistener;
Z8 import eef.utils.logger.Appender; -
259 import eef.utils.logger.Filelppender;
20 import eef.utils.logger.Logger;
31 import eef.utils.logger.05DAppender;
3z inport eef.mtv.tv.Channellist;
33 import eef . mtv.tv.Epglist;
34
35 import java.io.®;
3e import jevax microedition.media.*;
a7 import jevax microedition.media.control.*;
1

16

Figure 14: Min TV import statements in Java ME

In the Java startApp() method when the MIDlet starts we load the EPG and VoD as shown in Figure
15. We begin by creating an instance of the TestMtvEsg class to fetch the ESG — this will give the
user information about programs that are available now or in the near future. Then we create an
instance of the VodDat class so that we can retrieve the VoD catalog, thus the user will be able to
choose any VoD file available from the VoD server. In this test code we wait for 45,000 ms =
45 seconds for the VoD catalog information. This value was chosen to make sure that the VoD data as
awhole can be retrieved. Note that the combination of sleeping periods means that we give the EPG
server 50,000 ms = 50 seconds to start delivering EPG data. This value was set so that al the EPG
data can be retrieved.

H MinT‘u’.jaua‘

144 rotected vold startipp()
145 H
l4g teat = new TestMevEag();
147 vodd=new VodDat();
143 Logger . getRootLogger () . debug("atartipp()");
150 CurrentPlatform.getInstance() . sethpplication(thia);
151 final Platformimpl platform = new PlatformImpl();
152 CurrentPlatform.getInstance () .setPlatform(platiom) ;
153
154 System.out.println("TESTING OMA 5C retrival");
155 //Config.getInstance() . setlmaEntryPointUrl ("http://192.36.163.40: 8181 /dist-interaction-channel-war/InteractionChannel/ServiceCy
156 //Config.getInatance() . setOmaintryPointUrl ("http://localhoat:8080/epg/epg 5 letter lang fixed.aml");
157 Config.getInstance() .setCmaEntryPointUel{"http://10.10.30.15:8282/dist-interaction-channel-war/InteractionChannel/Servicefuide/
159 test. startRetch() The address of the Electronic Program
. Guide containing information like name,
162 //Thread. currentThread() . sleep(5000); Start & end t"TIe descrlptlon E!TC
183 Thread. currentThread() . sleep(42000);
led 1
185 catch (Exception e){}
168
187 vodd. setVOD() ;
158
189 [/ Rllowing enough fresh zir to TestMtvEsg class to breath for find the EPG |

H tryl

//Thread.currentThread() . sleep(20000);
172 Thread. currentThread() . sleep (2000} ;
IVER }
174 catch (Exception e) {}
178 // Getting the EPE data to be displayed on the screen
zpplimplepg=test.getZBE();
Prrmtom ren mmima T e I1Tee Tonns £ ol amm? St 1 chateata] 1

Figure 15: StartApp() code for MIDlet startup

17

The Video on Demand catalog information is encoded in XML, thus it can be accessed and parsed
as shown in Figure 16.

public void setVOD()

{

Tal

System.out.println("TESTING VoD Catalog retrival");
HttpConnection conn=null;
InputStream is=null;
try
{ GStore.getInstance().put("vod item genre" "A11");
//conn = (HttpConnection)Connector.open("http://localhost:8080/simlator/vod. jsp");

ffeonn = (HttpConnection)Connector open ("http://192_38.1%3_40:8181/vod-distributor-war/service?frorFl5ssublevel=1&lang=en");

//8tring contentlength = conn.getHeaderField("Content-Length");

is = conn.openlnputStresn(); The address of the VoD Catalog
WlFerser parsermnen KilFarser(); containing the media information
parser.parselowerCase (falae); . L
parser_open(is, new SimpleVod()); like name, url, description etc

/fget the rootfolder...
VodFolder vodfolder = Config.getInstance () .getVodCatalog():

printVodFolderInfo(vodfolder) ;

}
catch (Exception e)

{System.out .println{"Exception caught in ApplicationImpl"); g.printStackTrace();}

private void printVedFolderInfo(VodFolder wi)
{

Vector items = vi.getltems(};

System.out.println("Vod Category(Movie/Dramz/Comedy/Music) size iz "+items.aize()};

if (getItemName () .equals ("Comedy"))
{

vodeomedycount=items. size () ;

Figure 16: VoD xml accessing and parsing

18

We play the RTSP streams using the MMAPI as specified in JSR-135 [17]. Sample code showing
how this playout can be invoked is shown in Figure 17.

public class TvStream extends MIDlet

1

puklic Form f=new Form{("").

public Blayer p:

public VideoControl wve;

public TestMtvEsg tester=new TestMtvEag():;

public void startdppl)

1

ml
f/ This function plays the TV stream
ff It i3 called by ApplicationImpl in DataBeguest when "Watch"™ is pressed in flas

public void play({String urlToPlay,Display d)

11
//8tring name0fProgram—tester.getielectedProgramiame () ;
String name0fPrograrrTlestMtvEsg. forTvitreamProglame ;
Ticker t=new Ticker("Acessing :: "+nameQfProgramt+” At UZL "+ urlTocPlay);
play("rtap://10.10_30.11/1ive /conv0l . adp™);
try
=
f.getTicker(t);
Sfgood rtsp Vol streams are
Sfrtap:/fl0.10.30.11:554/mtvelip/40]l low.3gp
;I:tsp:;;lﬂ.lD.ED.ll:554;ntvclip;4ﬂl_high.3gp
p=Manager.crestePlayer (urlToPlay) ;
p.realize();
/fget the wvideoc controll
wvo=({VideoControl) p.getControl ("VideoControl")
if{wel=null)
=
f.zppend ({Item)ve.initDisplayMode (ve USE_GUI_PRIMITIVE "javex.microedition. ledui Ttem"))
p-3tart();
| f_setTitle("Playing the TV !");

Figure 17: Playing the video Stream

As we can see in the figure, method play is used to play the TV Steams. It has two arguments:
urlToPlay and d. It creates a player and passes the URL to it, then the actual TV stream can be

played by the player.

19

34.13 Data transfer in Min TV application

The Capuchin uses Flash DataRequests to send requests to Java. Javareplies by setting the property
parameters. Sample code showing this communication is shown in Figure 18. In this case a
DataRequest is created with the string value “vodRequest”. When the onLoad function is triggered,
the request will be sent to Java. The Java code check to see if thisis the “vodRequest”, if so then it
sets the properties of the DataRequest dr. When the Flash code invokes the SayHelloworld() method
it ssimple access the properties of the DataRequest dataRequestV od.

AASH

stop () ;

var dataRequestVod = new DataRequest ("vodReguest™);
dataRequestVod.request () :

dataBequestVod.onLoad = function(success:Boolean)

{
if (success)

r
1

JAVA

SayHelloWorld () : if (i=[0).compareTlo(new String("wvodRegquest")) == 0)

dr

function SayHelloWorld() dr.
{ "—’________———””—————’—————— dr.
dr

var vodall:Number = dataBequestVod.wvodAllCount; dr.

var vodComedy:Number = dataRequestVod.vodComedyCount;

var vodDrama:Number = dataRequestVod.vodDramaCount; hr_

var vodMovie:Number = dataRequestVod.vodMovieCount;
var vodMusic:Number = dataReguestVod.vodMusicCount:

A1l = wodRll;
Comedy = vodComedy:
Drama = wodDrama;
Movie = wvodMovie:
Mu=ic = wodMusic;

.setProperty("vodR11Count™, applimplvodall);

zetProperty("vodComedyCount”, applinplvodcomed
setProperty ("vodDramaCount™, applimplvoddrama)
.getProperty ("vodMovieCount™, applinplvodmovie)
zetProperty ("vodMusicCount™, applimplvodmusic)

complete () ;

Figure 18: Data flow between Flash and Java

20

If Java needs to send an event to Flash it uses extendedEvents as shown in Figure 19.

JAVA SIDE

public synchronized woid addFlashEventListener (String name, FlashEventListener fe1
{

if ("CapuchinEvent™.equals (name}) Ext Events to get
{ var myEventListener:Cbje = newW Object ()
myFlashEventListener=fe; ExtendedEvents.CapuchinEvent.addListener (myEventListener);

myEventListener.onEvent = function (SomeText,wholeString)
i

if (SomeText = "EPG")
{
_global .EPGdata = wholeString;
var retri:retrieveInfo = new retrievelInfo()};
var menultems:Array = new Array():
var strPFrogram:firray = new Array():
var str:Array =retri.getChannels(glcobal.EPGdata):
for (wvar i=0; i<str.length;i++)

v var temp:S5tring=str[i].getChannelName () ;
menultems[i]={itemName:temp};

if (c==Dback)
i var temp:Array=strfi].getProgramList():

EEG strProgram[i]={currentPro:temp[0] .getProgramName () };
text=new String[l{"EEG"};

myFlashEventListener.handleEvent (text) !
xdlistPro.setDataSource {menultems, strProgran) ;
xdlistPro.activate():

if (SomeText =— "Hext™)
3

Figure 19: Java event notification to Flash

Once the Capuchin application is compiled using Another Neat Tool (ANT) in Java ME, the file
can be sent via Bluetooth or USB connection to the C905 handset as a .jar file. See section 3.4.4.1 on

page 26.
3.4.2 Making the Internet available to the mobile via a Laptop PC

3421 Settings for C905

The mobile phone which we are using is a member of the Sony Ericsson A200 series, thus it has 3
soft keys and can access a 3G network. However, we can also connect the mobile using a USB cable
to alaptop or a desktop PC for development purposes. This requires that we install the device drivers
viathe installation CD available in the phone’s package.” As aresult this PC will be able to see all of
the traffic going to and from the mobile handset. Thisis very useful for development purposes as if the
phone were to communicate via a 3G network we would not be easily able to see the traffic that the
phone is sending and receiving; this also ensures that we know what competing traffic is being set (as
we can easily watch all of the traffic on the fixed networks in out lab environment); additionaly if we
used a commercial 3G network we might run into problems due to the amount of traffic that we are
going to exchange when testing our code.

Secondly we need to set “ON” two properties on the mobile phone. This can be done by going to
the “ Connectivity” tab in the “ Settings’ menu, then:

1. Set“ON” the Local connection property in the internet settings.

" Alternatively we can use the PCSuite. This can be found via any search engine by searching for “ PCSuite C905
download”.

21

2. GototheUSB -- > USB Mode -- > Connect -- > from here choose “Via Computer”.
This setting causes the phone to access the internet via USB , rather than over the air.

When using Microsoft’s Windows VISTA, after we have connected the mobile phone we see that
there is a local area network (LAN) connection in the network settings for the mobile phone (see
Figure 20). If we examine the properties of this connection we will seethat it isa 10 Mbps connection.
Using the properties of this LAN connection we can manually select the TCP/IP properties and click
on the radio box “Set Manual”, then we can manually set the | P address of the phone to “192.168.1.1”".
The set subnet mask will automatically be set to 255.255.255.0.

Next go to local Area Connection as depicted in Figure 20 and go to its properties. There are two
tabs. The second tab is labeled “ Sharing”. Selecting this allows this PC to share the internet with the
LAN connected mobile phone by choosing that LAN from the list of available networks. This PC will
act as a network address translator (proxy) for the phone.

Details of the features of the Sony Ericsson C905 handset are listed in Appendix B.

e

it) |E-' <« Metwork and Internet » MNetwork Connections »

Bevice Name Connectivity MNetwork Category Owner Type Phone # or Host Addre... |

-~

JEQ L‘:.-.‘-* Mot connected
ect Vi. b4 .{Eﬂ] Intel(R) Wireless WiFi Link 4.,

Bfoeton il
Connection

Mot connected

Figure 20: Settings for Windows Vista

3.4.3 Development in Action Script 2.0

When making a Flash Lite file with communication, you need Action Script to support it. We used
Action Script 2.0 in several ways. For background about Action Script see[18][19].

3.4.3.1 Pure Action Script files

An Action Script fileis similar to the .class file in a Java project. We implemented a “class’ in each
Action Script file. Subsequently we can call the methods of it at in any frame in the .flafile. We have
written a number of Action Script files, specifically: Channel.as, DataProcess.as, DataRequest.as,
ExtendedEvents.as, Program.as, retrievelnfo.as, retrieveVodinfo.as, Session.as, vodProgram.as,
XDList.as, etc. A brief summary of these is given in Table 2. The source code of these files can be
seen in Appendix C.

22

Table 2: Action Script files

ExtendedEvents.as This script defines a listener object in Flash and registers this with an
event in Java. When the event is triggered in Java, Flash is notified
and the necessary data is passed from Javato Flash. Thisfileisaclass
from Capuchin API. Although we are not able to see the details of
how it is implemented, cell phones that support Capuchin API can
execute thisfile.

retrievelnfo.as This file is used to process the large string received from Java
containing all the channel information, so that you can extract the
information you need (such as. channel name, program name, €tc).

Channel.as This file is used to get the channel name and the programs of this
specific channel.

Program.as This script extracts detailed information about each program in a
channel, such as: program name, start time, end time, description, etc.

XDList.as This class makes a list and shows the channels and programs in a

scrolling way. It tells how many items can be shown on one page, how
to scroll down the page, and how to know which program is selected.

DataRequest.as This is another class Capuchin API. DataRequest is used for
asynchronous communication when Flash content wants to request
data from Java. It isimplemented in the phones supporting Capuchin.

Session.as This script saves session information so that you can access the datain
different MovieClips.

retrieveVodinfo.as This script is similar to retrievelnfo.as, but it is used to retrieve VoD
information.

vodProgram.as This script is similar to Program.as, but it is used to extract the

resources concerning VoD.

3.4.3.2 Action Script in frames

We need to call classes to perform various functions. The interaction between the scriprt (a .as file)
and Flash (as written in a .flafile) is encoded as an Action Script in a frame. An example of who to
specific an action for aframe is shown in Figure 21.

- &
5 10 15 20 25 30 35 40 45 50 55 [:10] 65 70 75 80 85 S0
write code on this frame

| *

m

t mH W[1 120fps 005 4| m .
Workspacev B8 48

4

Figure 21: Coding for a Specific Frame

23

For example, if we want to write codes to control the up, down, left, or right keys, we need to create
an instance of an Object and add event listeners for onKeyDown. An example of this code is seen in
Figure 22.

wvar keyListenerChn:0bject = new Cbhbject () :
kevListenerChn.onKeyDown = function () {
switch (Eeyv.getCode (}) {

case Kevy.UP
xdlistPro.previtem () ;
break;

case Key.DOWH
xdlistPro.nexctItem () ;
break;

case Key.RIGHT
Sezzion.setSelectedT=t () !

break;

Fey.addListener (keyListenerChn) ;

Figure 22: Code for onKeyDown
Alternatively we can add code to process DataRequest and ExtendedEvents, as shown in Figure 23.

If, __ St a HEOUEST FTAT TG TAcal 7 T sy I

var myDaTCaBReguest = new DataBeguest ("sendEPFGE™) ;
myDataRequest.regquest ()

_global .EPGdata="";

VPP ERtended EvENt et gt thHe EBG aata, o rrrrrrrrr]

var myEventLi=stener::Obhject = new CObject():
ExtendedEvents.CapuchinEvent . addListener (myEventLi=stener) ;

myEventListener.onEvent = function (SomeText,wholeString)
{
if (SomeText = "EPGE")
{
_global.EPGdata = wholeString:
var retri:rectrievelInfo = new retrievelInfol():
var menultem=s:Array = new Arrav():
wvar strProgram:Array = new Array ()

var str:i:Array =retri.getChannels(global.EPGdata):
for (wvar i=0; i<str.length;i++)
{
wvar temp:String=str[i] .getChannelName () ;
menultens [1]={itemMName : tcemp} ;

var temp:Array=str[i] .getProgramlis=st ()}

Figure 23: Code for DataRequest and ExtendedEvents

If the DataRequest mechanism is used, then a DataRequest object is created in ActionScript.
The argument passed in the constructor is preserved for Java later (this method can be used to pass the
DataRequest identifier from Flash to Java). The DataRequest object has a function caled
request () whichisused to send arequest to Java.

An Object is defined in ActionScript. This object is later registered as a FlashEventListner.
The listener myEventListener has afunction handler called onEvent, this function is called by
Javawhen the event is triggered.

24

3.4.3.3 Setting the Property

When writing the Flash Lite Gui we can name elements and write code to be attached to these

elements in order to show something. For example, in Figure 24, the selected element has a variable
name of currentTime. The code for this frameis shown in Figure 25.

| themelList6-2arg fla* | e I
eanf 5 o 5. 5 0, B, 0 6 0 5 0 6 D B W s 0 =
Wl action . . I|$| B
0 btn - - ol
S XDList - - mj E
Al channelstor . . Dul

1

9l infobar « « @
it has ActionSript on this frame
B @ —b & % [1 120fps 005 <[m |

]
|i:| (=] = Scene1 [channellist

| Workspace ® 5_ @_ o]

4

Converged TV the element
Channel Store
Q ‘,
— . ; - x|
|| Actions | Help | Properties x Compiler Errors | =
o Domcod o] A spene s @mrEe@E=s @
<Instance Name> | &Y |0 E| d Use device fonts || Embed...

H: 245 y: -15L5 | @ " Target: |

wPe x50 | B [pagee <]@e @ the’ﬁame_,@foumuﬁrnt
|

Figure 24: Variable named currentTime
var today =new Date():

var minutes=today.getMinutes=s () ;
var hours=today.getHoursz{() ;

if (minutes<10) {

iz zero min="0";

}
elseq
iz zero min="";
}
currentTime = hours+":"+iz zero min+minutes;

Figure 25: Code for the frame shown above
If later you test the movie, you can see the time in the upper right corner, as shown in Figure 26
Converged TV .
Channel Store
CNN
Larry King

Eurosport
Tennis

Fashion TV

Fashion week

Bloomberg
Round the clock

Figure 26: Time displayed in the upper right corner

25

3.4.4 Compiling the application using Another Neat Tool (ANT)

Apache Another Neat Tool (ANT) [20] is considered by many the Holy Grail of build tools in the
Java™ development world. Most Java projects have some sort of custom build process attached to
them in the form of an ANT build script. Keeping with this tradition, our Min TV project is compiled
and managed by using ANT as a compiling tool within the Eclipse Integrated Development
Environment (IDE) [21].

3441 Building using ANT

After ANT has been successfully installed, go to command prompt and write “ant”. If it shows:

Buildfile: build.xml does not exist!
Build failed

This means that the ANT isinstalled correctly. Now write a build.xml file and place it in the same
folder as the main code. Build.xml is a configuration file where you define the process of compiling,
building and deploying. The Min TV application build.xml fileis shown in Figure 27.

H buidxm |

<?xml version="1.0"7>
2 [<project name="OMA EXTRACTION" defzult="build" basedir="."»

3 <!-- Define the Wireless Toolkit home directory. Meeded by the tasks. --»
4 <property name="wtk. home" vzlue="C:\SonyEricason\JavalE_SOK CLDC\WTE2" />
] <l-- Define some additional properties for this project. Not reguired. --»

<property neme="midlet.name" value="OMA EXTRACTION" />

<l-—<property name="midlet home" value="%{wtk_ home}/azpps/%{midlet name}" />-->

3 <property name="midlet home" value="C:\Users\erazhab\workspace\§{midlet name}" />
10 <property name="wtk.optionalpda.enabled" walue="trua" /¥

11 <property neme="wtk.wma.enabled" value="true" /¥

12 <property neme="wtk.wma.wversion" wvalue="2.0" /»

13 <property name="wtk.cldc.version" walue="1.1" />

14 <property name="wtk.midp.version" walue="2.0" /¥

15 <property name="wtk. mmapi.enabled" welue="true" /¥ <!--Not needed for this test epg stuff but Southend.jar needs it so..
i <l-- Define the tasks. --»

1 <taskdef resource="antenna.properties” clzsspath="C:\java\antenna-bin-1.1.0-beta.jar"/>
<target name="clean"¥</target>

3 [<target name="build"»

20 <mkdir dir="classea" />

21 <l-- Bet class paths -->

22 [<path id="classpath.OMA EXTRACTION'>

23 <path location="§{midlet home}/clazses}"/>

24 <path locetion="§{midlet home}/lib/scuthend.jar"/>

25 <path location="§{midlet home}/lib/tinylinegzip.jar"/>

26 <path location="§{midlet home}/lib/capuchin.jar"/>

27 </path>

@ [<wtkbuild sredir="§{midlet .home}/src" destdir="classes" preverify="true" encoding="UTF-8" source="1.3"»
z5 <classpath refid="classpath OMA EXTRACTION"/>

30 I </wtkbuild>

i1 [|<1~rtkpackage jerfile="4{midlet name}.jar" jadfile="5{midlet.name}.jad">
32 <fileset dir="claases" />

33 <fileset dir="§[midlet home}/res" />

34 €= -

35 <zipfileset src="§{midlet home}/lib/scuthend.jar"/>

36 <zipfileset src="§{nidlet.home}/lib/tinylinegzip.jar"/>

Figure 27: Build.xml for Min TV

26

The first line shows the document type declaration which is xml version 1.0. The second lineis the
project tag. Each buildfile includes one project tag and all the instructions are written in it. The project
is named OMA_EXTRACTION. The rest defines some properties, tasks, classpaths, and Wireless
Toolkit home directory, etc.

3.45 Debugging and Testing the Application

Testing is only possible on Capuchin capable devices such as the Sony Ericsson C905 Cyber-shot
handset. Unfortunately, the Sony Ericsson emulator cannot (yet) read a Capuchin .jar file. The reason
IS that the C905 handset is under the Java Platform 8 sub category (JP 8.4), for which the device skin
is still to be released (although sub category JP 8.0 is available). Note that the C905 is the first JP 8.4
handset [22].

3.45.1 Testing Tools

We used two debugging tools: Ericsson’s DebugMux and Sony Ericsson’s DeviceExplorer. We will
describe them separately in the following sections.

3.45.1.1 DebugMux

Ericsson’s DebugMux is a logger. It shows the phone’s outputs, e.g. the status of the heap, stacks
and what file the phone is currently trying to access. We used it mostly to see what RTSP stream it is
accessing at the backend from the VOD Server.

File Edit Tools Miew Window Help

(T S
ox ; ;
R EA Sony Ericsson C905357602028825471 : APP - Print Server Channel
IL.J Datughlus 7318361 [UI_NW_EVENT]: Badio status received
e ESWE”CSW_” LI0E57602028825471 [LOM31) 7318967 CHARGING DATA: ¥ 5000, I 4000, Vb 4140, Ib 1010, ¥ 4200, I 5000, P 755, T 24
& ALC - Print Server Channel 7318957 [EATTMGE] (CHARGE] [USE] [Typell (951
& = 73130038 FSFLASH: Super header block written @ Ox054600000
& SDKSERVER 7319009 FSFLASH: Flaszh device 1 iz clean!
& T\"D 7313008 FSFLASH: Flash Dewvice: 1
& Ul Disbug - Print Server Charmnel 7319009 FSFLASH: TOTAL nuwher of blocks: 49152
.J Log Files 7319003 FSFLASH: AVATLABLE blocks: 4E3ED
- ; 7319009 FSFLASH: MAX logical block nbr: 90926
Sony_Enicsson_C305357602028825471_4PP_-_Print_Server_Channe| 200¢ 2319008 FEFLASH. COMMITTED blocks: 10608
7319003 FSFLASH: FREE hlocks: z6342
7319003 FSFLASH: DIRTY blocks: 163 (163)
7319009 | FEFLASH: CLEAN blecks: 29330 {29330}
7319005 FSFLASH: HEADER blocks: 50
7319003 FSFLASH: SLACK blocks: 3202
7319009 FSFLASH: EAD blocks:
7319009 FSFLASH: SPALE blecks: EEH
7319009 FSFLASH: MIN CLEAN blocks: 64
7319003 FEFLASH: Pange tree nodes: 18380 (17E)
7319009 FSFLASH: DAM used for LUT's=: 464 EE

7212008 FSFLASH:

7319003 FSFLASH: Flash power is off.

7319024 FEFLASH: Write cqueus 1 size: 64 FE (Z3Z3Z KB free)
7319024 FSFLASH: Write gqueus 0 size: 128 KB (23168 KB free)
7215024 FS: Partition / set to clean

73190268 F3FLASH: Write gqueus 0 size: 64 FE (23168 KB free)
7219027 FSFLASH: Write cueus 1 size: 0 EB (23232 KB free)
7313068 [UL_NW_EVENT]: Radio status received

7319413 [UI_HW_EVENT]: Radio status received

7313737 [CUIDisplayableBookfE4€] Add gui [ListObjectfi7E8]
9319738 trrrrrrrr

7313738 [fession window list]

7319738 [Window§l.1l "Scandby"] Guilbjects:
7319738 [Standby#3] [RESTicker#lE] (invis) [StandbyInputfs] (£) (invis)
72197328 [Windowf307.1 "Desktop"] Guilbjects: [ListObject#3T2&]if)

Figure 28: DebugMux while debugging using C905 DeviceExplorer

27

3.45.1.2

Sony Ericsson’s DeviceExplorer

To use it we need to have a connection proxy up and running with the phone. How to set this proxy
up is described below and in section 3.4.2.1 on page 21. The Connection Proxy is the "glue" between
the laptop and the Sony Ericsson mobile phone. It communicates with the phone using the Ethernet
driver installed as a device driver. When the communication between the proxy and handset is
functioning properly the connection proxy shows the visual identification of the connected handset (in
our case for C905) as shown in Figure 29.

% Connection Proxy

4% Disconnect OB @ -

Java

Platform

Status: Connected

Phone: C905(JP-8)
Interface: Sony ErHcsson Device 1018 USB
| Bytes sent: &
Bytes received: 135

Figure 29: Connection proxy connecting C905

Before making the connection to the proxy, we need to assign a static or dynamic IP (depending on
ation) to the handset. This I P address can be configured as shown in Figure 30.

the situ

28

© ¥ Oseacn [roders | [FT-

[&] Creste a new connection

%) 5t up a hame or small
"~ office netwark

@ Change Windows Firswall
settings

@ Disable this netwark device

Q Repair this connection

Eﬂ Rename this connection

&) View status of this
connection

Change settings of this
connection

Other Places

B Control Panel
&3 My Network Places
(5} My Documents

:] My Computer

Details

Local Area Connection 12
LAM ar High-Speed Internet
Connected

Sony Ericsson Device 1018 USE
Ethernet Emulation (NDIS 5)

1P Address: 192,162.8.14
Subnet Mask: 255,255, 255.0
Assigned by DHCP

Mame Type Status Device Marme Phone # or Ho:
LAN or High-Speed Internet

<Llocal Area Connection LAN or High-Speed Inter... Metwork cable unplugged Broadcom MetXkreme Gigabit Ethernet For hp
LLocal Area Connection 12 LAMN or High-Speed Inter.,. Connected Sony Ericsson Device 1018 USE Ethernet Emulation (NDIS 5)

[?x]

- Local Area Connection 12 Properties

General ‘ Advanced|

Connect using:

using ————————
| {/Suny Ericsson Device 1018 USE El%|
e ——

4= (o5 Packet Soheduler
26 Metwork Moritor Driver
%= Interet Protocol [TCP/IP)

~

Internet Protocol (TCP/IP) Properties

i | [General

Install Unitistall
hss i e T S R S e b
Description this capability. Otherwise, pou need to ask your network administratar for

Transmission Control Protocol/|ntemet {hie sppicpriate i seitings

wide area netwark pratacol that provids
acrozs diverse interconnected nebwork: () Obtainan

3¢ the following IP address:

IP address: 192 168 1 1
Subret mask. 265,255,255 . 0}

Drefault gatevmy:

[Show icon in natification area when o
Naotity me when this connection has li

. i

Obtain DNS zerver address automatically

(@) Use the follawing DNS server addresses:

Prefened DNS server: g :
Altermate DNS server:

Figure 30: Setting the static IP address to the handset

We used Microsoft’s Windows XP in the CTV lab environment to connect to Ericsson’s Device
Explorer [23], as our laptop is running Microsoft’'s Windows Vista which does not alow us to
connect to DeviceExplorer. DeviceExplorer gives a three-pane window that provisions and controls
the MIDlets in an easy-to-use way (see Figure 31). The DeviceExplorer view pane (labeled “ Sony
Ericsson MIDLet Favorites’ in the figure) shows MIDlets that are currently installed on this C905, the
File Explorer pane (labeled “ Sony Ericsson Device Explorer” in the figure) shows the file structure of
the laptop to which the C905 is connected, and the console pane (labeled “Console” in the figure)
provides the information we request from the phone, including garbage collection and memory
utilization information.

b Sony Ericsson Device Explorer.
File Window Help

B%SWY Eticsson Device Explorer = B | & sony Ericsson MIClet Favarites B8 a @ - =B
B v By & =53 ,_'.\iTK application Folder ~
a s +- e AdvancedMultimediaSupplements
23 Audiod
#-E accuweather.com ¥ H udiademo
- B ECaF] H EBluegammon
#-E Hed +- 53 BlusPad_Poux
(53 BluetacthCar_Pa I
% B HelloworlcMidiet Midet Suite i E: B ooy
#-[El Meed for Speed Prostreet

+ 23 CHAPIDEmo
OMA-ESG-FETCHER. =
8 +-) CityGuide

B EPG-Fetcher 1B Demos

#-[E Photo Mate = [
[t

#- B slideshow Wallpaper : E G:;n::s

#1- B Tennis Multiplay +-[2 i18nDemo

#-E test Midlet Suite +-[23 IBricks

B ThesisThemez Midiet Suite
B ThesisThemez
+-E TwStream Midlet Suite
#-E wayfinder 7
+-E vyoo Midlet Suite

+ (23 J5R172Dema

+-[23 MascotCapsuleDernno
+- 23 Mobile3D

+- (23 MobileMediafPT |
+- (2 MetworkDema
+-[23 ObexDema

+ D 2penGLESDemo
+- 23 FDAPDEmo

+- 23 Photoalbum

S CATE A

Sony Ericsson mobile device output

FEESRENEEET

Has Send all

FEEEEENEREEY

Has Send all

0 [Thread-1] DEBUG root - startlppi)

TESTING OMA 3G retrival

52 [Thread-1] INFQ root - INFO: Setting CwaEntryPointUrl url to: http://10.10.30.15:8282/dist-interact
83 [Thread-1] INFO root — INFO: Initisting OMA BCAST service guide...

626 [Thread-1] INFO root - INFO: ...Done initiating OMA BCAST service guide

625 [Thread-1] INFO root - INFO: (maController: 3tate changed, STATE NOT STARTED-->3TATE NOT STARTED
KOLO [OmaController): Attempting to start 3G retrival

631 [Thread-1] INFO root - INFO: OmaController: 3State changed, 3TATE NOT 3TARTED-->3TATE FETCH SERVICE
632 [Thread-6] INFO root — INFO: Posting 'type=sgdusfragwentType=1' to http://10.10.30.15:82582/dist-in

< b

Figure 31: Ericsson’s Device Explorer showing output for the EPG fetcher MIDlet from C905

One key feature of Ericsson’ Device Explore is the "drag and drop” of jar/jad files from a File
Explorer pane (the usual Windows based view of a directory and its files) to the DeviceExplorer pane
of Ericsson’s DeviceExplore. This enables the programmer to easy installation MIDlets on the phone.
Additionally, DeviceExplorer provides button controls to easily start, pause, resume, and stop a
MIDIet executing on the phone.

The only difference between DebugMux logger and DeviceExplorer is that the first one only shows
the printout commands using System.out.printin(*) for research and Development phones. We need
to enable the java mode before using it. On the other hand DeviceExplorer can run with any phone
which is java enabled through connection proxy by connecting with the Ethernet driver of that phone.

29

3.45.2 Testing the streams

VideoLAN’s VLC player [24] was used to test the streams to see if the media server was up and
running. This player can be invoked as shown in Figure 32.

£ YLC media player

N view Settings Audio Yideo Mavigation Help

Cuick Open File... Chrl-0 (ﬂ [E]

Open File. .. Ckrl-F
Open Directory. .. Chrl-E
o D Ctrl-D

Open Capture Device, . Chrl-8 File Disc | Metwork | DirectShow |
wizard... Chrl-wy (UDPJRTP Part 1234 Force IPve

Exit Chrl-x
() UDP{RTP Multicast address I:I Part 1234

() HTTRHTTRS/ETR{MMS uRL | |

(®IRTSP URL |rtsp:.l'.I'IU.10.29.1l:554,l'mtvc|ipll'201.3g |

Allow Emeshifting

Advanced options

[stream|save Settings. .. []caching 1200

Cuskorize: rtsp:,l',l'lU.10.29.11:554,|'mtvclip,|'201.3gp_-\> v|

[QK][Cancel]

Figure 32: Running a VoD resource in VideoLAN’s VLC player

This IP address shown in the figure is the real address of the stream on media server. This must be
tested in the CTV lab while connecting to the internal network.

30

4 Findings and Discussions

This chapter describes the results of testing designing, implementing, and testing a mobile TV
application using the Capuchin APl in our testbed.

4.1 Evaluation of Capuchin API

First we consider the Capuchin API itself.

4.1.1 Advantages

The Capuchin API offers a number of advantages over writing a pure Flash Lite application.
However, there are some limitations that have to be considered.

e The Capuchin API effectively bridges Flash Lite and Java ME, as expected. This enables the
developer to easily create a GUI using Flash Lite and implement the semantics of the
application using Jave ME.

e Although the Capuchin API isin an early stage of maturity, the documentation for the APIs,
the installation guide, and the examples were all well written and easy to understand”.

e The Capuchin API isamore efficient way of processing and rendering data than using Flash
Lite alone. In terms of performance, Project Capuchin renders Flash Lite content in the same
way as a phone render Flash Lite content in the native browser. However, using Java for
calculations and more extensive processing improves the performance compared to native
Flash Lite applications. This optimization can be achieved while keeping the amount of data
and the number of DataRequest and ExtendedEvent constructions to the minimum. For
example, if Java has to update 100 notes, a DataRequest for each note should not be used as
this would create 100 DataRequest objects in Flash Lite and would consume a lot of
memory. Unfortunately, creating a single DataRequest with 100 notes is also ineffective,
since it leads to a large overhead if the notes are not going to be presented at the same time.
Because Java performs calculations more efficiently than Flash Lite objects creation and
extensive computations should be done in Java as much as possible. The optimal number of
notes to passin asingle request is not yet known.

4.1.2 Disadvantages

While Capuchin API offers a number of advanges, there are also some disadvanages of using it.

e Currently the Capuchin API only alows String and Integer as transfer methods. Other
important data types for data transfers between Flash and Java such as vectors, doubles, and
floats are not supported. These data types are needed in order to transfer extensive data
to/from Java ME. Note that trandating all of the values to and from strings is a very
inefficient way to transfer data on a single platform.

e The current Sony Ericsson wireless toolkit emulator does not have an SDK for Capuchin.
Thus testing can only be done using mobile handsets which are Capuchin enabled. This
creates trouble as for testing the .jar file it needs to be sent to the phone in order to execute it
after compiling and building it in ANT.

e The Capuchin API which Sony Ericsson has released is implementation less. This means it
is actually a stub. A stub is a client side representation of a remote object that is used to
invoke methods on the implementation of remote object. See for example details of remote

"1 wish to give our thanks to the Sony Ericsson developers for providing this ease of use. It was greatly appreciated.

31

32

procedure calls as defined in RPC [25]. Y ou need to know what functions are available and
in which scenario can be used. This means that if we are using Eclipse as an IDE, then
adding the Capuchin Stub will help building the code, but will give null values if we try to
run the code (unless there is a server application that implements the semantics of each of
the calls).

Unfortunately, currently the soft keys are not supported. This means we cannot write code in
our Action Script to handle these keys. If a devel oper needs to have the keys such as “Back”,
“Forward”, “Exit”, and “Play” there are two options:

1. Handle the soft keys completely in Jave ME. The developer will use command Listeners
and command Actions, then execute the appropriate .swf file for playing or traversing
back. This means that there will be not be large swf scene in the code -- but rather alot of
small .swf scenes.

2. Combing Java ME and Action Script. After handling the command in Java ME it will be
sent to Action Script using Capuchin classes, then the Action Script will handle the

command by playing the file or traversing backward or forwardward.

If we use the soft keys in Java ME, then the relevant .swf files need to be loaded as a
resource which makes the application consume more resource. This approach will also
create a lot of redundancy in the Java ME code for loading the swf file, as the same code
will be repeated again and again with the different .swf files. This redundancy also occursin
the action listener code and the code that attaches the commands to the different Flash
canvas. Another approach is to have al the movie clips linked together using a single action
script with one scene. In this approach Capuchin‘s extendedEvent can be used to send the
Java ME commands back to Flash where they are listened for and handled. However, there
are two drawbacks to this approach. First is that if Action Script needs to send data back to
the Java ME after it has listened to the event it is notified about, then it has to use
Capuchin’s dataRequest. This method involves signaling between the extendedEvent and
dataRequest implementation in Java ME by using flags to notify the two parts of code. A
second drawback is that all the screens must have the same name for the soft keys. This
means that we cannot change the name of soft keys by dynamic binding, i.e., they can not
depend on the Flash screen. So either VoD or the EPG Guide will have same names for the
soft keys. Unfortunately, this means that sometimes the “Next” key will act like a “forward”
button and it will take the user to the next Flash screen, but sometimes it will act like a
“Play” button an start the playing of the actual stream. This would mean that the user has to
guess what the “Next” key meansin each particular Flash screen’s context.

When using the dataRequested transfer method, from Java ME to Flash, as we can only send
the data in two formats (i.e. as an integer or as a string), these transfers will be insufficient.
If we want to send a long String with 1300 characters there will be a buffer overflow error.
Unfortunately, sometimes we need a long string in order to send Flash all the channel
names, the respective program names, the start and end times, and the description of the
programs so that the Action Script can split this string into the relevant parts and display it
appropriately. An alternative solution is to split this string in Java, then send parts of this
information to Flash (for instance substring by substring). This will require a lot of
dr.setProperty() notes for each of above mentioned attributes and a loop. Moreover this will
not work if we have dynamic data of unknown length, as we can not know the number of
property attributes that would be needed. Another dternative is to use the
FlashEventManager interface in Capuchin APl together with the CommandListener
interface from Java ME's LCDUI, however - whenever the screen is changed the string data
is posted to Flash Lite creating alot of redundancy.

Currently we cannot debug Flash Lite using DeviceExplorer. We can only see the console
sent by Java ME. This makes it nearly impossible to debug Flash Lite problems. On the 3rd

e Wetried the option of loading multiple Flash files as a resource in Java ME in order to solve
the problem of having different soft key names on different canvases. While we managed to
do thisin theory, a practical problem remains as every screen in Flash canvasesis loaded as
an independent Flash file, i.e. on top of one another. Two possible reasons are:

1. Data transfer using ExtendedEvents is not currently working. The data cannot be
transferred from Java to Flash from one Flash canvas to another Flash canvas. This
means that although Java is sending an extendedEvent as a result of a dataRequest from
Flash, if the listener is on another screen it does not work.

2. Screen switching is a mess. When we switch from Screen; to Screen,, we are able go
back to Screen;. But the problem is now the soft keys do not work, hence no matter how
many times we press the “Select” or “Back” key again, it stays on the same screen and
does not switch again.

e In full screen mode, the soft keys do not show up on the Flash canvas. We think there are
two reasons for this. First is that since Capuchin does not support soft keys it has no
mechanism to handle the keys in full screen mode. The other possibility is that the soft key
commands are attached to the screen via Java ME, thus since the Flash canvasis loaded as a
resource file on top of LCDUI screen, when in full screen mode the soft keys remain on the
second layer while canvas shows up on the top layer. In order to see the underlying screen
we want to see, we have to click twice on the Flash canvas.

e |f the compiled .swf Flash Lite file is larger than 5MB, it cannot be played on the mobile.
Thus while we can include animations we can not include too many animations. Our simple
application with a movie clip with splashing light effects and rotation was about 8.65 MB —
thus this could not be played.

41.3 Conclusion

No full screen mode, no support for soft keys, poorly developed debugging software, inefficient
data transfer methods (using data Request and a reply from Java ME using setProperty()), make the
current environment unsuitable for developing a mobile TV application. Additionally, because the
Capuchin development API is a stub and there is no support for the Java ME developer to see the
working of the basic APl and there is no SDK emulator we need to use an actual phone to test
Capuchin applications; this reduces the speed of devel oping code.

In summary, although Capuchin is a good technology which merges Flash Lite and Java ME, it is
currently very difficult to develop professional applications in which Java ME has to continuously
interact with Flash Lite. However, applications that have very little interaction are relatively easy to
develop.

4.2 Capuchin versus ECAF

In this section we will compare the Capuchin and ECAF technologies in terms of parameters such
as. memory size, lines of code, processing time, etc.

33

4.2.1 Animation capabilities

Theoretically, Flash is far superior for creating animations compared to any other currently
available software. However, we will compare it with ECAF. Some interesting ECAF animations
were compared with their Flash Lite alternative and we observed that there is a clear relationship
between ECAF tags and Flash Lite (see Table 3). Note that the graphic concept of “tweening” (a
shortened version of “inbetweening”) involves automatically generating the frames in between to key
frames — without needing to explicitly define each of the in between frames.

Table 3: Relation between ECAF tags and Flash Lite

ECAF tags Flash Lite

<move> Motion Tween in a defined path

<frame > Frame by frame motion

<rollover> In Action Script using “onRollover” event

<transparency> Transparency of image

<wave> Wave surfing like effect

<rectangle> Simple choose and draw from pallet

<animation> using <frame> The same effect can be done using the layering
concept on the screen


20 <!—— Button 2 —-->
21 —]<image id="btnTwo" url="button2.png" x="-50" v="20">
22 Ec:.‘—— Keypressed generated event -->
23 —|<event type="up">
24 <link target="parent.parent.btnOne" />
25 <move target="root.selector" destination="root.btnOne" duration="150"
26 interpolation="decelerating" />
27 F</event>
28 F</image>
29 <!—— Belector image —--Z»
30 <image id="selector" url="selector.png" =="0" v="0" />
31 re/layer>
32 <!—— SBecond Layer —->
33 [H<laver id="example2":>
35 Fr</layer>
36 < /ecaf>

Figure 34: ECAF Screenl.xml

4.2.3 Memory footprint

Flash has a smaller memory footprint as compared to ECAF when doing typical simple animations.
To compare the two for a more complex case, we implemented the same application using both
methods, and observed that it is possible to implement complex animations in ECAF and the similar
animations using Capuchin in Flash Lite. We observed that in this more complex application the total
memory resources used were roughly the same.

We cannot compare the application in an emulator using a profiler as there is no skin available for
the emulator for JP 8.4 phones which are Capuchin enabled. Another approach would be to use a
common background application tester in order to see the running time and memory size of the object
loaded. Unfortunately, we can not do this as Java runs in a sandbox and does not allow other
applications to access the array, heaps, and stacks which are already in use by other application.
However, another thread could be implementing that runs in the same Java Virtual Machine (JVM),
hence it could access the information about heap free space and collect other information of interest.

36

Thus we considered a possible way to compare both ECAF and Capuchin applications using the
same metric. Hence we compared the jar size before putting it on the phone for testing. The jar file
size of ECAF for our sample application was 589 kb which was much larger than the jar file size of
Capuchin - 136kb. Thus the Capuchin application is only ~23% of the size of the ECAF application,
when we compared the applications using the formula:

(Capuchin Jar SizelECAF Jar Size) * 100%

We believe that Capuchin will have a larger footprint when more effects or animations are used
(rather than only simple animations); however, we do not have numerical examines to establish this
yet. Moreover, animation in ECAF is not very efficient. For example, in ECAF texts will not ticker if
the text does not fit in some percentage of the width defined in the <ticker> tag.

4.2.4 Reusability

Both ECAF and Capuchin are equally reusable. In ECAF we can reuse the code in other XML files
or by adding more layers in the same file. In Flash Lite a MovieClip can be considered as a class and
it can be reused many times by initiating instances of it.

4.2.5 Flexibility

Flash Lite is more flexible to develop and program in. It uses Action Script as a programming
language. Moreover, the drag and drop feature of the development environment makes it very easy to
draw changes and add additional effects. Additionally, there is a property pallet where we can set the
properties of items. In ECAF we have to make changes in the XML tags, hence we need to write new
XML files and delete the old ones to make changes. Furthermore, there is no drag and drop pallet in
the ECAF development environment.

4.3 Presentation technologies for mobile TV

There have been three major technologies that have been developed to meet the needs of the
cellular phone community. They are:

e JavaMicro Edition (Java ME)
e Microsoft's NET Mobile Edition
e Adobe's (formerly Macromedias) Flash Lite

There are a number of other technologies that are in use, but the majority of development today is
centered on these three main technologies. Some of these other languages are:

e Hecl -- Hecl is a small language written in Java to facilitate writing applications for a
cellular phone. See section 4.3.1.

e ECAF—worksalong side Jave ME (see section 2.3 on page 4)

e LWUIT [26] -- The LightWeight User Interface Toolkit (LWUIT) is an Ul library that is
binded together with applications and helps content developers create compelling and
consistent Java ME applications. It supports a basic set of visual components, flexible
layouts, style and theming, animated screen transitions, a simple and useful event handling
mechanism, and more.

e SVGTiny 1.2 [27]—has support for Java using JSR 287 (see section 4.3.2)

37

In this section we will evaluate these various technologies for the specific task of creating a Mobile
TV application. For such an application we need:
XML parsing,
ameans to play the video stream(s),
soft keysto enable the user to easily move forward and backward in the video,
ameans of drawing graphics on a 2D screen, and
easy means of communication between the graphics APl and the backend programming
language.

We will judge the technologies in terms of each of these criteria. If one of these technologies
supports al of these features, then we can create amobile TV application using this technology. If the
underlying technology does not support all of these criteria, then we can see if there is another
technology that can be used along side it to implement our desired mobile TV application.

4.3.1 Hecl support for Java ME

Hecl was designed by David Welton to make it easy for a Java programmer to developed
applications for a cellular phone. Details of Hecl can be found at [28].

4311 HTTP

Even a basic Java ME-enabled cell phone can access web pages. However, Hecl provides some
additional (and quite basic) HTTP commands:
e http.geturl Fetch the contents of a URL
e http.formatQuery URL Encode arequest

Hecl aso includes three short cuts, http.data to get the data from http.geturl reponse, http.ncode to
get a numeric code from such areponse, and status to get the status of such aresponse.

43.1.2 K-XML

The K-XML extension provides a kXML 2 parser for Hecl. In particular it implements an XmlPull
parser (for further details see the interface documentation is at http://xmlpull.org/). This extension
provides a number of kXML methods:

e kxml.create — Returns akXML parser object
e kxml.input — Sets the input stream to the kXML -parser
e kxml.nexttag — Call kxml.next and return an event if the tag is START_TAG or
END_TAG, otherwise throw an exception
kxml.next — Get the next parsing event
kxml.requirestart — check if the current event is START_TAG
kxml.requireend — check if the current event isEND_TAG
kxml.attrcount — return the number of attributes of the current (start) tag
kxml.attrvalue — returns the value of the attribute
kxml.getname — return the name of the current element for aSTART _TAG or END_TAG

431.3 Other Hecl extensions

Hecl also provides functions to implement a RecordStore, functions for encoding and decoding base
64 strings, and a small set of functions to facilitate file interactions. For details see the Hecl
documentation at http://www.hecl.org/docy .

38

http://xmlpull.org/
http://www.hecl.org/docs/

4.3.1.4 Evaluation of Hecl + Jave ME for our Mobile TV application

As seen above Hecl provides an easy and effective means of parsing XML, Java can invoke amedia
player (such as VideoLAN’s VLC — see section 3.4.5.2 on page 30), Java can implement soft keys,
Java has a number of tool kitsfor 2D graphics, and using one of these Java graphical tool kits thereis
not problem with communication as all of the communication can be done within Java. Thus Hecl +
Java ME would seem to meet all of the criteriafor implementing our Mobile TV application.

The weakness of Hecl + Java ME with regard to implementing our application is lack of scalable
graphics (making nice text and graphics hard to render to the screen).

4.3.2 SVG Tiny 1.2 support for Java ME

Scalable Vector Graphics (SVG) [29] is an XML-based file format that describes two-dimensional
vector graphics, both interactive and animated. SVG is strict in compliance with the XML syntax, and
it has nothing to do image resolution. SV G graphics format has the following advantages:

e Theimagefiles are readable and easy to modify and edit.

e SVG files can embed JavaScript /ECMAScript to control the SV G objects.

e SVG can easily create atext index in order to achieve content-based image search

e SVG can be used to dynamicaly generate graphics such as using SVG to dynamically
generate interactive maps embedded in web pages, and display it to the end-user.

e It supports for embeded external images including PNG, JPEG, SV G etc.

SVG Tiny, also known as SVGT, short for Scalable Vector Graphics, Tiny Profile, is also a subset
of standards SVG. Its main goal is to provide vector graphics format for highly restricted mobile
devices such as cellphones. The SVG Tiny 1.2 specification adds new features for the use of mobile
devices. It is compatible with video, audio and scripts, as well as style-related graphical features such
as gradients, stroke and text styles.

We can play HTTP resources in the SVG Tiny 1.2 viewer (which is supported by Java ME as per
JSR 287) [30]. The code [31] for playing a video stream by accessing it from HTTP writtenin XML is
simply:
<g requiredFeatures="http://www.w3.0rg/Graphics/SV G/feature/1.2/#TransformedVideo"

transform="trandl ate(-21,-34) scale(1.24) rotate(-30)">

<rect x="6" y="166" width="184" height="140" fill="none" stroke="blue" stroke-width="4"
/>

<video xlink:href="http://www.kth.se/~xuanf/ski.avi" audio-level=".8" type="video/x-
msvideo"

x="10" y="170" width="176" height="132"/>

</g>

Its scalable vector feature makes it suitable for developing Mobile TV applications associating with
Java ME, although it needs to face the problems like how to compete with Flash/Flex and the level of
support from manufacturersin the local environment.

39

433 MIDP3.0[32]

As Java for mobiles was released in 1998, MIDP has been widely accepted and adopted by more
and more manufacturers and developers. It has become a well known and popular programming
environment for handsets due to its availability. Hence, it is a good choice for mobile application
programmers.

Although it is popular, Java ME has some major drawbacks. For example, MIDP 1.0 and 2.0 do not
support concurrency, background execution, or inter-MIDIlet communications. MIDP 3.0, specified in
JSR 271, is anew upcoming version of MIDP. MIDP 3.0 extends MIDP 2.0 by enhancing MIDlets to
be auto-launched, run in the background, and it also enables inter-MI1Dlet communication. New User
Interface functionality includes support for splash, idle screen and screensavers, text input into Canvas
elements, tables, tabbed panes, splash screen, scalable images and animated GIF, menus, and form
layouts help developers create compelling content which makes it easier to satisfy users' needs.

MIDP 3.0 would seem to be a suitable platform on which to develop a Mobile TV application. The
enhanced functionality plus Java’s high efficiency might make it the best choice for Mobile TV client.

4.3.4 Microsoft .NET Compact Framework (.NET CF)

The Microsoft .NET Compact Framework (.NET CF) is a version of the .NET Framework that is
designed to run on Windows CE based mobile/embedded devices such as PDAs and mobile phones.
The .NET Compact Framework uses some of the same class libraries as the full .NET Framework and
also afew libraries specifically designed for mobile devices (for example, to support the Windows CE
InputPanel a soft keyboard). The librariesin the .NET Compact Framework are scaled down to require
less memory space [33].

To run applications developed for the .NET Compact Framework, the device must support the
Microsoft .NET Compact Framework runtime. Some of the operating systems which include .NET CF
are Microsoft’s Windows CE 4.1, Microsoft Pocket PC, Microsoft Pocket PC 2002, and Microsoft’s
Smart phone 2003. The Microsoft .NET Compact Framework 3.5 Redistributable package contains
the common language runtime and class libraries for the .NET Compact Framework.

NET CF aso supports ASP.net for GUI development, C#.net for XML parsing (XmlReader,
XmIDocument) and ADO.net for handling data in the DataSet. The ADO.NET DataSet is natively an
XML structure and therefore lends itself to XML-based communication and persistence very well. A
dataset can be stored as local XML files between application sessions. XML retrieved from a dataset
can easily be used in system integration between client and server, especialy if the server aso relies
on the .NET Framework. The XML file passed to the server can then be used to instantiate and
popul ate a dataset that can be processed on the server. Additional information is available at [34].

Thus Microsoft .NET Compact Framework is also an option for a Maobile TV application. But a
prerequisite is that the mobile devices must run one of the embeded operating systems such as Pocket
PC 2000, Pocket PC 2002, Pocket PC 2003, Pocket PC Phone Edition, or Windows CE .NET 4.1 or
later.

4.4 Pure Flash Lite TV Client Application Concept

A pure Flash Lite client can be used to implement a Mobile TV application. As Flash Lite supports
the requirements stated earlier. Specifically:

1. Graphicsdesign
Since Flash is famous for the graphics development, it is not surprising that Flash Lite provides a
good graphical interface.

40

http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/Personal_digital_assistant
http://en.wikipedia.org/wiki/Mobile_phones
http://en.wikipedia.org/wiki/Windows_CE
http://en.wikipedia.org/wiki/Operating_systems
http://en.wikipedia.org/wiki/Pocket_PC

2. Accessing an XML file

Before loading external XML data, it is vital to set the ignoreWhite property of the my_xml
object to true, because this strips white space from between elements.

Var my_xml:XML = new XML();
my_xml.ignoreWhite = true;

It is easy to load the XML into the XML object simply by passing the path to the XML file as a
parameter to the load() method:

/labsolute path to XML file in external domain
my_xml.load(“http://www.xuanworld.com”);

3. XML parsing

The Flash Lite player on mobile devices does not contain an automatic way of parsing XML filesinto
its native Action Script data structure. Therefore, we have to manualy do this. The methods of the
XML class (for example, appendChild(), removeNode(), and insertBefore()) enable the programmer to
structure XML data inside Flash to send data to a server and to manipulate and interpret downloaded
XML data.

However, in our project, the XML files are written in OMA BCAST format, and require extensive
effort to do parse. It takes quite a lot of time to write al the code necessary to do this parsing. Some of
the main fragments that need to be parsed include: the Service fragment, Schedule fragment, Content
fragment, Access fragment, Preview data fragment, Interactivity data fragment and Supported structure
of the service guide delivery descriptor.

4. Datadisplay

To display the dynamic loaded XML data on the screen, it requires communication between the
graphics API and the backend programming language. Here we need to create some variables and give
them values so that they can be displayed.

Data processing can be done by writing pure ActionScript files (these can be considered as classes),
then call these methods to communicate between the frontend and the backend.

5. Availability of Soft keysto move back and forth

In the Capuchin project, soft keys are not supported from inside Flash Lite using ActionScript; as
these can only be set by Java. Therefore, Flash Lite does not have flexible control of these soft keys.
However, in pure Flash Lite applications, it can exercise full control of these soft keys by adding a
keyListener. First, the set of soft keys are organized into the Action panel:

fscommand2("SetSoftKeys", "Left", "Right™);

Next, the programmer creates and registers an object to respond to keypress events by using the
following code in the Actions panel:

var myListener:Object = new Object();
myListener.onKeyDown = function() {

if (Key.getCode() == ExtendedKey.SOFT1) {

// Handle left soft keypress event.

status.text = "You pressed the Left soft key.";

} else if (Key.getCode() == ExtendedKey.SOFT2) {
/ Handle right soft keypress event.

status.text = "You pressed the Right soft key.";

}
h

Key.addListener(myListener);

41

6. Playing the video streams

Flash Lite 2.0 does not play a Flash video, but it plays device video. In other words, Flash Lite 2.0
provides the rectangle for the device to play the video and passes several rudimentary commands to the
underlying system to control the playing of that video. It appears that the video is being played by the
Flash Lite player inline, but the actual work is being done by the device. However, this means that the
video playback is device dependent, thus we will need to pay close attention to the device's capahility.
For instance, what video format(s) and CODEC(s) is/are supported by the device. To view video we
have to utilize the device video (so it is really up to the phone to provide the appropriate video
CODEC).

Using External Device Video is very useful because storage is always a concern on a mobile device
and because this approach gives the flexibility of offering multiple files inside a Flash Lite application.
However, this is not to say that there are not potential limitations; in fact certain carriers block some
network ports and files, thus the file has to be completely downloaded before Flash Lite can call the
device s video player to render it.

Streaming video is perhaps the most difficult aspect to implement in Flash Lite, because there are
several limitations of the target device (the Sony Ericsson C905 handset that we are using). Thisis due
to the fact that not all the devices actually support the streaming of a video and some operators block
the streaming if a user is not using the operator’ s streaming services. In order to start the playback of a
streaming video through an ActionScript, the developer needs only to pass the URL of the video to the
play method.

video_instance.play("rtsp://server/folder/file.3GP");

Adobe has announced that Flash Lite 3.0 will support Flash Video (FLV) and that the Flash Media
Server 3 will support Flash Lite. This feature helps al the Flash Lite developers create more interactive
applications and offers much more visual impact for the users.

In a nutshell, although we did not have time to create the pure Flash Lite mobile TV client, our

conclusion is that based upon the above analysis it would be possible to do so.

42

5 Conclusions and future work

This research concerned designing, implementing, and evaluating a mobile TV client using Sony
Ericsson’s Capuchin API [2]. The Capuchin API uses Java ME for backend development offering
extensive JSR support; while the front end will be pure Flash Lite and Action Script 2.0.

The focus of this research was the evaluation in CTV lab environment of Sony Ericsson’s Capuchin
API, i.e. what is good, what is bad, and what is missing from this APl in comparison to the existing
Ericsson solutions. The Min TV client currently supports the use cases of LTV (Linear TV) and VoD
(Video on Demand). Min TV represents aworking prototype of a Capuchin based Mobile TV client.

5.1 Conclusions

Using Capuchin in the CTV lab environment has shown that Capuchin has some benefits, but
suffers from many drawbacks. At this early stage Capuchin technology is not mature enough and does
not offer a better solution for Mobile TV than the existing ECAF solution. However, if Sony Ericsson
develops the missing features such as soft keys, easy debugging of Flash Lite standalone application
by emulating the Java data coming from dataRequests or extendedEvents, and provides test emulator
support in the SDK, then Capuchin would be better technology than ECAF for future Mobile TV
applications.

The comparison of different presentation technologies showed that Java ME is a comprehensive
platform for mobile development with all the support needed from third party GUI makers like HECL,
SVG Tiny 1.2 etc. Additionally, .NET CF also looks like a good option for development with the
scaled down capabilities of different programming language support using Common Language
Runtime. MIDP 3.0 is also a possible choice for Mobile TV client with its enhanced functionality plus
Java s high efficiency.

Moreover apure Flash Lite application also looks quite suitable for Mobile TV.As Flash Lite has its
own comprehensive programming language, called Action Script, which has support for al the basic
programming requirements of the mobile TV application.

5.2 Future Work

e |Implement the SIP protocol to communicate with IMS at CTV lab.

As we wrote in section 1.3, there was an existing Mobile TV client in CTV lab which was
implemented using IMS as the communi cation method. Our Min TV application should also have been
designed in the same or similar way to use SIP signaling through IMS, because it is an efficient and
functional approach. Although we did not use SIP in our implementation, it would be good to add this
functionality in the future.

e |norder to compare the memory size of ECAF and Flash Lite, test and measure the heap free
space, running time, and memory size of the object loaded a new thread should be created
and run in the same JV M. (See section 4.2.3 on page 47)

e Development of acomplete Flash Lite Mobile TV application.

Due to limited time we could only suggest the development of a complete Flash Lite Mobile TV
client. However, we expect that if implemented, the user would have awonderful experience due to the
excellent graphical interface.

43

44

Implement a MIDP 3.0 Enabled mobile TV client with enhanced LCDUI, inter MIDlet
communication support, and developing shared LIBlets.

As written in section 4.3.3 on page40, the numerous additions and changes in MIDP 3.0 make it a
better choice for Mobile TV application. Thus when the final version of JSR 271 has been released, the
Mobile TV client can be developed using it.

References

[1]
[2]
[3]
[4]
[3]
6]

[7]
(8]
[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]
[18]

[19]

Wikepedia, 2009, Adobe FlashLite, [online] [Available at]

http://en.wikipedia.org/wiki/Adobe Flash Lite [Accessed on 07 May 2009]

Capuchin API, 2009, Project Capuchin Docs and Tools[onling] [Available at]

http://devel oper.sonyericsson.com/site/global/docstool s/projectCapuchin/p_projectCapuchin.jsp
[Accessed on 13 February 2009]

Ericsson, 2009, IMS product info [online][Available at]
http://prodcat.ericsson.se/Default.asp?Articlel D=C31A 70E1-A7CD-4817-9E16-8257F5765034
[Accessed on 09 May 2009]

AfterDawn, 2009, MPEG-2 Transport Stream [online][Available at]
http://www.afterdawn.com/glossary/terms/mpeg2 _transport_stream.cfm [Accessed on 07 May 2009]
Alands Datakommunikation Ab (Alcom) http://www.aland.tv/ [Accessed 07 July 2009]

ETSI 3GPP. 3GPP TS 26.244; Transparent end-to-end packet switched streaming service (PSS); 3GPP
fileformat (3GP), Release-8, 11 December 2008, [online] [Available at]
http://www.3gpp.org/ftp/Specs/html-info/26244.htm [Accessed on 09 July 2009]

V codex White Paper, 2007-2008, Overview of H.264 / AV C, [online][Available at]
http://www.vcodex.com/h264overview.html [Accessed on 12 May 2009]

Harindra Rajapakshe and Derek Paul Quek, 1995, Video on Demand, [online][Available at]
http://www.doc.ic.ac.uk/~nd/surprise _95/journal/vol4/shr/report.html [Accessed on 12 May 2009]
Northwestel Inc, 2009, Video on demand FAQ [online] [Available at]

http://www.nwtel .ca/services-and-products-frequently-asked-questions/video-on-demand-fag/
[Accessed on 13 February 2009]

Fredrik Bornskold and Robert Johansson, “ Touchscreen GUI Desigh and Evaluation of an On-Device
Portal”, Master's Thesisin Computing Science, Department of Computing Science, Umed University,
December 7, 2008. [online] [Available at]

http://www.cs.umu.se/educati on/examina/Rapporter/Bjornskiol dJohansson.pdf [Accessed on 08 July
2009]

Sony Ericsson. "More Project Capuchin resources. Service MXPs, Service APl Generator tool and
tutorial”, June 2, 2009 [online] [Available at]

http://devel oper.sonyericsson.com/site/global/newsandevents/| atestnews/newsjune09/p_new_projectca
puchin_mxps serviceapi _generator tool.jsp [Accessed on 10 July 2009]

Thomas Menguy, 2008, Capuchin: Sony Ericsson strikes back [online][Available at]
http://tmenguy.free.fr/TechBlog/?p=317 [Accessed on 21 April 2009]

Sony Ericsson, 2009, Getting started with Project Capuchin for Flash and Java devel opers,
[onling][Available at]

http://devel oper.sonyericsson.com/site/global/docstool s/projectcapuchin/p_projectcapuchin.jsp
[Accessed on 09 July 2009]

Service Guide for Mobile Broadcase Services, Approved Version 1.0 — 12 Feb 2009 , Open Mobile
Alliance OMA-TS-BCAST_Services-vl_0-20090212 A [online][Available at]
http://www.openmobilealliance.org/Technical/release_program/bcast_v1_0.aspx [Accessed on 09 July
2009]

Adobe Device Central CS3, [online][Available at]
http://www.clevelandmmug.org/presos/cs3_device central_overview.pdf [Accessed on 09 July 2009]
Adobe Device Central CS3 video tutorials, [online][Available at]
http://bloggy.kuneri.net/2007/04/17/adobe-device-central-cs3-video-tutorial s/ [Accessed on 09 July
2009]

Java Community Process, Mobile Media API, JSR-000135, 22 June 2006 [online] [Available at]
http://jcp.org/aboutJava/communityprocess/final/jsr135/ [Accessed on 09 July 2009]

Adobe Systems, 2007, Introduction to Flash® Lite™ 2.x Action Script, [onling][Available at]
http://livedocs.adobe.com/flash/9.0/main/flashlite? as intro.pdf [Accessed on 07 May 2009]

Action Script Technology Center, 2009, [onling] [Available at]

http://www.adobe.com/devnet/acti onscript/references/ [Accessed on 07 May 2009]

45

http://en.wikipedia.org/wiki/Adobe_Flash_Lite
http://developer.sonyericsson.com/site/global/docstools/projectCapuchin/p_projectCapuchin.jsp
http://prodcat.ericsson.se/Default.asp?ArticleID=C31A70E1-A7CD-4817-9E16-8257F5765034
http://www.afterdawn.com/glossary/terms/mpeg2_transport_stream.cfm
http://www.aland.tv/
http://www.3gpp.org/ftp/Specs/html-info/26244.htm
http://www.vcodex.com/h264overview.html
http://www.doc.ic.ac.uk/%7End/surprise_95/journal/vol4/shr/report.html
http://www.nwtel.ca/services-and-products-frequently-asked-questions/video-on-demand-faq/
http://www.cs.umu.se/education/examina/Rapporter/BjornskioldJohansson.pdf
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsjune09/p_new_projectcapuchin_mxps_serviceapi_generator_tool.jsp
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsjune09/p_new_projectcapuchin_mxps_serviceapi_generator_tool.jsp
http://tmenguy.free.fr/TechBlog/?p=317
http://www.clevelandmmug.org/presos/cs3_device_central_overview.pdf
http://bloggy.kuneri.net/2007/04/17/adobe-device-central-cs3-video-tutorials/
http://jcp.org/aboutJava/communityprocess/final/jsr135/
http://livedocs.adobe.com/flash/9.0/main/flashlite2_as_intro.pdf
http://www.adobe.com/devnet/actionscript/references/

[20]
[21]

[22]

[23]

[24]
[25]
[26]
[27]
[28]
[29]

[30]

[31]
[32]
[33]

[34]

46

Apache Ant User Manual, [online][Available at] http://ant.apache.org/manual/index.html [Accessed
09 July 2009]

An Introduction to the Eclipse IDE, [online][Available at]
http://www.onjava.com/pub/a/onjava/2002/12/11/eclipse.html [Accessed on 09 July 2009]

Mark Hirs, "Sony Ericsson C905 With Project Capuchin”, Editoria, Streetdirectory, 2009 [onling]
[Available at]

http://www.streetdirectory.com/travel _guide/128155/sony_ericsson/sony_ericsson_c905 with _project

capuchin.html [Accessed on 08 July 2009]

Sony Ericsson Mobile Communications AB, Sony Ericsson 2ME SDK 2.2.0 released, March 31,
2005, [onling] [Available at]

http://devel oper.sonyericsson.com/site/gl obal/newsandevents/| atestnews/newsmar05/p_j2me sdk.jsp
[Accessed on 08 July 2009]

VideoLAN, VLC mediaplayer, 7 July 2009 [online] [Available at] http://www.videolan.org/vic/
[Accessed on 08 July 2009]

R. Thurlow, RPC: Remote Procedure Call Protocol Specification Version 2, IETF, Network Working
Group, Request for Comments: 5531, Draft standard, May 2009. [onling] [Available at]
http://tools.ietf.org/html/rfc5531 [Accessed on 07 July 2009]

LWUIT, [onling] [Available at] https.//lwuit.dev.java.net/ [Accessed on 10 July 2009]

Introduction SVG Tiny 1.2, [online] [Available at] http://www.w3.org/ TR/SV GMobilel2/intro.htmi
[Accessed on 10 July 2009]

Hecl, [onling] [Available at] http://www.hecl.org/ [Accessed on 10 July 2009]

W3C, 2005, Scalable Vector Graphics (SVG) Tiny 1.2 Specification [online] [Available at]
http://www.w3.0rg/TR/2005/WD-SV GM obile12-20051207/SV GMobilel2.pdf [Accessed on 07 May
2009]

Java Community Process, Scalable 2D Vector Graphics API 2.0 for JavaTM ME, JSR-000287 [online€]
[Available at] http://jcp.org/aboutJava/communityprocess/pfd/jsr287/index3.html [Accessed on 08 July
2009]

SVG Tiny 1.2, 2008, Multimedia,[online][Available at]

http://web4.w3.org/ TR/SV GMobilel2/multimedia.html [Accessed on 07 May 2009]

JSR 271: Mobile Information Device Profile 3, [online] [Available at]

http://jcp.ora/en/jsr/detail 2id=271 [Accessed on 10 July 2009]

Wikipediaon .NET CF, 2009,.NET Compact Framework, [online][Available at]
http://en.wikipedia.org/wiki/.NET _Compact Framework [Accessed on 07 May 2009]

Manage XML Using .NET Compact Framework, [onling] [Available at] http://msdn.microsoft.com/en-
us/library/aad46526.aspx [Accessed on 10 July 2009]

http://ant.apache.org/manual/index.html
http://www.onjava.com/pub/a/onjava/2002/12/11/eclipse.html
http://www.streetdirectory.com/travel_guide/128155/sony_ericsson/sony_ericsson_c905_with_project_capuchin.html
http://www.streetdirectory.com/travel_guide/128155/sony_ericsson/sony_ericsson_c905_with_project_capuchin.html
http://developer.sonyericsson.com/site/global/newsandevents/latestnews/newsmar05/p_j2me_sdk.jsp
http://www.videolan.org/vlc/
http://tools.ietf.org/html/rfc5531
https://lwuit.dev.java.net/
http://www.w3.org/TR/SVGMobile12/intro.html
http://www.hecl.org/
http://www.w3.org/TR/2005/WD-SVGMobile12-20051207/SVGMobile12.pdf
http://jcp.org/aboutJava/communityprocess/pfd/jsr287/index3.html
http://web4.w3.org/TR/SVGMobile12/multimedia.html
http://jcp.org/en/jsr/detail?id=271
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://msdn.microsoft.com/en-us/library/aa446526.aspx
http://msdn.microsoft.com/en-us/library/aa446526.aspx

A. Configuration files
A.1l. Fetching and inserting EPG data

The following process has to be done on weekly basisin the CTV lab to fetch the EPG data

1) log in to (ssh) 130.100.202.133 (root/root123)
ssh 130.100.202.133

2) From there, ssh till the "catcher”, 130.100.202.70 (xmltv/xmltv123)
ssh -I xmitv 130.100.202.70

3) Here the xml fileis called
epg_5 letter_lang_fixed.zip
4) Move the file with scp to /tmp on 130.100.202.133
e.g. from 130.100.202.133 run

scp xmitv@130.100.202.70:epg_5_letter _lang_fixed.zip /tmp

6) Use winscp or filezillato copy it to your PC

address: 130.100.202.133
user: root

password: root123

port: 22

A.2. Loading an EPG into the EPG Aggregator

Here are instructions on how to upload an XMLTV EPG into the EPG Aggregator. We need:
- An XMLTV file containing an EPG for all the channels thoughout the desired time period
- A CTV profile (See further below in this README)

- The tool SOAPUI

A.3. Procedure

1) Zip the XMLTV fileand the CTV profile
2) Base64 encode the zipped file

e.g. using atool like this http://www.opinionatedgeek.com/dotnet/tool /Base64Encode/Default.aspx

3) Now we will use SOAP Ul tool upload this base64 encoded file.
In SoapUl: File->New WSDL project

Fill out the the "New WSDL project” dialog..
Project name: My Approver Service project

47

Initial WSDL.: http://10.10.30.32:8080/ApproverService/ Approver Servicel mpl wsdl
Note: "Initial WSDL" isthe URL to the WSDL of the Aggregators ApproverService
4) The ApproverService has a method insertPackage(arg0.argl)
arg0 : Paste the base64 encoded data here
argl : set thisto the aggregator user admin

Example:

<soapenv:Envel ope xmlns:soapenv="http://schemas.xml soap.org/soap/envel ope/"
xmins.sg="http://sg.webservices.common.mtv.ericsson.com/" >
<soapenv:Header/>
<soapenv:Body>
<sg:insertPackage>
<!--Optional:-->
<arg0>UESDBBQAAAAIAAN/VTI4dAI7IGIMADFySw...QAAAAKGQMAAAA</arg0>
<!--Optional:-->
<argl>admin</argl>
</sg:.insertPackage>
</soapenv:Body>
</soapenv:Envel ope>

5) Send this request
Y ou should get a successful response.

<S:Envelope xmlns: S="http://schemas.xml soap.org/soap/envel ope/" >
<S:Body>
<ns2:insertPackageResponse xmlns:ns2="http://sg.webservices.common.mtv.ericsson.com/"/>
</S:Body>
</S.Envelope>

The EPG is now loaded into the system

A.4. CTV Properties file

The CTV profileisa properties file containing additional information needed for

- Specifying a subset of the channels that should be imported at upload

- Declaring additional information needed to create the OMA BCAST fragments needed for the
Mobile TV EPG

For more information, seefile:
ExampleProfile.properties

48

A.5. Problems and solutions

If you get an error...

1) Y ou can try emptying the EPG database...
- First undeploy the Aggregator from the EPG server (http://10.10.30.32:4848)
Aggregator-CXC1725098 1
- Empty the database by removing the tablesin this order
FRAGMENT_FRAGMENT_REFERENCES
FRAGMENT
FRAGMENT_REFERENCES
FRAGMENT_SEARCH_CRITERIA
SEQUENCE
SUBSCRIBER
- Deploy the aggregator again
Browse Folders and select: /usr/local/SUNWappserver/domai ns/domainl/applications/j 2ee-
apps/Aggregator-CXC1725098 1
- Upload the EPG using the procedure above

2) If the mobile phone is not updated with EPG data, restart jboss on the MTV-Application server
(10.10.30.15):

svcadm disable jboss

svcadm enable jboss (then wait approx 3-4 minutes)

check that new data has arrived to MTV aggregator with "Fragility"
address: http://10.10.30.15:8282/dist-interaction-channel -
war/InteractionChannel/ServiceGuide/

49

B. Phone configurations

B.1. 8.1 megapixel Cyber-shot phone with Project
Capuchin API

The C905 Cyber-shot is a HSDPA dlider-format phone featuring a 8.1 megapixel camera with face
detection, Xenon flash, auto focus, horizontal camera Ul and illuminated icons for settings shortcuts.
The C905 aso features a 320x240 pixel 262K TFT QVGA display, 160MB internal memory, Wi-Fi,
GPS and a Digital Living Network Alliance (DLNA)server to connect to compatible devices.

B.2. Phone Model

C905

B.3. Platforms

Sony Ericsson Java Platform 8

B.4. Screen Sizes

240x320

B.5. JSRs & APIs

CLDC11

Project Capuchin

WMA (JSR-120)

MMAPI (JSR-135)
Webservices (JSR-172)
Security and trust (JSR-177)
Location (JSR-179)

SIP (JSR-180)

Mobile 3D (JSR-184)

Java Technology for the Wireless Industry (JSR-185)
WMA 2.0 (JSR-205)

Content Handler (JSR-211)
SVG (ISR 226)

Payment API (JSR 229)

AMS Camera Capabilities only (JSR-234)
Internationalization (JSR-238)
Open GL ES (JSR-239)

MSA (ISR 248)

Mobile Sensor (JSR-256)
File/PIM (JSR-75)

Bluetooth (JSR-82)

50

Mascot Capsule V3
NokiaUl APl 1.1
VSCL 2.0

B.6. Audio & Video

Audio CODEC: AAC+; Advanced Audio Coding; Adaptive MultiRate - Narrow Band; Adaptive
MultiRate - Wide Band; DLS (ringtones); General MIDI (ringtones); MPEG-1 layer 3, MPEG-2 layer
3, MPEG-2.5 layer 3; RealAudio 8; SP-MIDI (ringtones); Wave format PCM; Windows Media Audio
8; Windows Media Audio 9; Extensible Music Format; enhanced AAC+ ; iMelody (ringtones)

Audio CODEC Encoding: Adaptive MultiRate - Narrow Band - Encoding

Audio Mime Type: audio/3gpp ; audio/amr-wb; audio/midi; audio/mid Receiving only; audio/mp3;
audio/mpeg3 Receiving only; audio/mpeg Receiving only; audio/mpg3 Receiving only; audio/mpg
Recelving only; audio/x-mp3 Receiving only; audio/x-mpeg Receiving only; audio/x-mpg Receiving
only; audio/mp4; audio/mpda-latm Receiving only; audio/rawhz; audio/rhz; AMR audio/amr; AMR
audio/x-amr Receiving only; audio/vnd.rn-realaudio; audio/x-pn-realaudio Receiving only; audio/sp-
midi Receiving only; audio/wav ; audio/x-wav Receiving only; audio/wma; audio/mobile-xmf;
audio/x-midi Receiving only; audio/iMelody Receiving only; audio/x-iMelody Receiving only;
audio/x-mda; text/x-iMelody

Video CODEC: H.263 Profile O level 10; H.263 Profile O level 45; H.263 Profile 3 level 10; H.263
Profile 3 level 45; H.264 Level 1; H.264 Level 1b; MPEG-4 Level 0 Part 2 Visua Simple profile;
MPEG-4 Level Ob Part 2 Visual Simple profile;, MPEG-4 Level 1 Part 2 Visua Simple profile;
MPEG-4 Level 2 Part 2 Visua Simple profile; MPEG-4 Level 3 Part 2 Visual Simple profile; Real
Video 8; Windows MediaVideo 9 Local + streaming: QCIF@15 fps 128 khit/s

Video CODEC Encoding: H.263 Profile O level 10 Encoding; MPEG-4 Level O Level Ob Level 1
Level 2 Level 3 Visual Simple profile

Video MIME Type: 3GPP video/3gpp; MP4 video/mp4; MP4 video/mp4v-se Receiving only; MP4
video/mpeg4 Receiving only; Real8 Video video/vnd.rnrealvideo; Real8 Video video/x-pn-realvideo
Receiving only; SDP application/sdp; Windows Media video/wmv

B.7. Flash

Flash Lite version 2.0; Flash colour depth, 16-bit (536 colours); Flash in Screensaver; Flash in
Wallpaper; Flash in browser; Heap size for Flash per content type (MB) 2; Language support for
device fonts and input according to i-mode specifications; Enabled sound formats for Flash: MIDI

51

B.8. SVG

Anti-aliasing; Links; Opacity and gradients; SVGT 1.1; SVGT 1.2; System fonts

B.9. Connectivity
Networ k Data Support: EDGE; GSM/GPRS; UMTS; HSDPA
Radio Bands: 1800; 1900; 2100 ; 850 ; 900 MHz

Local Connectivity: Bluetooth Wireless Technology; WLAN (Wireless Local Area Network);
GPS/aGPS

B.10. Regions
Americas, Asia Pacific (including China); Europe; Middle East, and Africa

B.11. Miscellaneous
Theme Version: ThemesVersion 4.7
External Storage: Memory Stick Micro™ (M2™)
Browser: NetFront™ v 3.4

DRM: OMA v1.0: OMA v2.0

52

C. Cource code for the ActionScript files

C.1. retrievelnfo.as

o b R

oW o

B oW Rk

=] &

= I V= B)

== Ve I = B

L Ll L0 KO L3 R B ORI B R BRI R B M R R b e e e e e
W ko = I s VI Y R R S R]

s

public function retrieveInfao() {
H

public function getChannels (totalInfo:5tring) :Array {

he big string into channels

var channels:Array = totallnfo.split("}"):;

var chammellist:Array = new Array();

for (var i = 0; i<channels.length; ++i) {
channellist[1i] = getChannel (channels[i]);

1

return channelList;

f/get channenl name and programs from big channel strin

[T}

public function getChannel (channels:5tring) :Channel {
var programlList:Array = new Array();

var channel:Array = channels.split ("#"):
var channelName = channel[0]:
var programsStr = channel[1l]:;

var programs:Array = programsStcr.splic("&"):

for (var i = 0; i<programs.length:; ++i) {
programlList[i] = getProgram (programs[i]);
1

return new Channel (channelName, programlist);

ffget detailed program information

var programInfo:Array = program.splic(™”""):
var programMName:S5tring = programInfo[0]:
var startTime:S5tring = programInfo[l]:

var endTime:5tring = programInfo[2]:

var description:S5tring = programInfo[3]:

return new Program (programName, startTime, endTime, description);

53

C.2. Channel.as

class Channel {
private var channelName:String;
private var programList:Array;

LOL IR ¥V I R

/ fconstructor

public function Channel {channelWName:S5tring, programlList:aArray) {
this.channelName = channelName;
this.programlist = programlList;

e
(=T ¥e 0 = BCS B]
-

Jfextract the name info
public function getChannelName () :String {
return channelName;

wn

ffa list,each element i= a string of one p:cg:ad
public function getProgramlis=st () :Array {
return programList:;

6
i

C.3. Program.as

1 /*written by Xuan Feng¥®/
2 class Program {
3 private wvar programMame:S5tring;
4 private var startTime:53tring;
5 private var endTime:String;
8 private wvar pDescription:5tring;
7
8 //fconstructor
g8 public function Program (programfame:5tring, startTime:5tring, endTime:5tring, description:5tring)
10 this.programName = programName;
11 this.startTime = startTime;
12 thiz.endTime = endTime;
13 this.pDescription = description;
14 }
15 public function getProgramMame () :5tring {
16 return programName;
¢ 7 }
18 public function getStartTime () :5tring {
15 return startTime;
20 }
21 public function getEndTime () :5tring {
22 return endTime;
7] }
24 public function getDescription():5tring {
25 return pDescription;
28 }
27 }

54

C.4. XDList.as

=] M on B L R

LA Ly Ry R R ORD RD RS R R RS
O o =] o s Ll R

]
(TR)

w

20
21
52
53
a4
1]

(o T T N T T T ¥ ¥ ¥
(1O I R o e R T R = RS B)

[R T -
W =1 modn

class XDList extends MovieClip {

config

private static wvar cSelection:Number;

private wvar cScroll:Humber;

private var items mc:MovieClip:
private wvar scrollbar mc:MovieClip:

depths

private static var scrollbar depth:Number

private static var items depth:Number = 1;

data properties
private static var dataSet:Cbject:
private war dataSetPro:Cbjectc:
private var nlItems:HNumber;
private var showingltems:Number:;
private wvar sessionName:S5tring;

total

. user defined

[Inspectable (defaultValue=4)]
public var nlItemsShowing:Number:;
[Inspectable (defaultValues=0)]
public war itemPadding:Number;
[Inspectable {defaultValue=250)]
public war scrollbarXpos:Number:;

[Inspectable (defaultValue="itemRendersr™)]
public war itemLinkage:S5tring; // 1i

YOList Constricbor
ADEISE LONSCIructo

public function XDList () {
}
public function activate() {
setSelectedIten ()
}
public function deactivate() {
hideSelectedItem ()

[
I

total

vertical

nkage

= 2:

item =

nane

does not support < 3

of item renderer

private function setDataSource (listData:0bject,proData:Cbject) ::Void {

cSelection = 1;

cScroll = 0;

get new data

dataSet = listData;
dataSetPra = proData:;
nItems = dataSet.length;

createList ()

private function setDataSourcePro (chanMName:S5tring,proglata:Cbject,proTime::Object) :Void

sessionName = chanName;
reset
cSelection = 1;
eScroll =0

dataSet = progData:
dataSetPro = proTime;
nItems = dataSet.length;
trace (nItems) ;

build list

createList ()}

the data for the list

55

o =]
[S U X I R I V- T -]

LF= I = I = Ve ¥ OV TV TV T L+ R T - T
M o=] o otn b b R D W 8 =] & tn

o
(5]

100
101
102
103
104
105
106
107
108
108
110
abaksl

56

private function createList () :Void {

clear old item containe
removeMovieClip (items_mc) ;

create new item contair

this.createEmptyMovieClip ("items mc", items depth);

check that showingltems isn't greater than total items

showingltems = Math.min (nItemsShowing, nItems);

items

private function drawltems () :Void {
create items
for (var i=1l; i<=showingltems; i++) {
var cltem:MovieClip = items mc.attachMovie (itemLinkage, "item"+i, 1); // create
cltem. x = 250;
cItem. y = (cItem._ height+itemPadding)* (i-1):
cItem.itemMName str = dataSet[(i-1)+cScroll].itemName;
cItem.itemMame . cext = cltem.itemMame =tr;
cltem.currentPro atr = dataSetPro[(i-1)+cScroll].currentPro;
cltem.currentPFro.text = cltem.currentPro str;

H

private function setSelectedltem() :Void {
wvar cltem = items mc["item"™ + (cSelection - cScroll)]:
/fvar cItem = ;teEs mc["item™ + cSelection]:;
cItem.gotnAndStnptZT:
clten.itemName.text = cItem.itemMName str;
cIten.currentPro.text = clten.currentPro str;

¥
private function hideSelectedItem ()} :Void {

var cltem = items_mc["icem" + cSelection];
cIten.gotoAndStop (1) ;
clten.itemName.text = cItem.itemName str;
clten.currentPro.text = cItem.currentPro str;
H
public function prevItem () :Void {
if (eSelection<=1} {

loop a d menu

cSelection = nItems;
if (nTtem=>showingItems) {
cScroll = nItem=s-showingItems;

set cScreoll, check for hint push
if (({cBelection-cScroll)<l && cSelection>0) {
cScroll--;

create the new list
createlist ()
setSelectedIten () ;

item 1

151
152

public function nexctItem ()} :Void {
if (cSelection>=nlItems) {

/{ loop around menu
cSelection = 1;
cScroll = 0O;

} else {
'/ next item

cSelection++;

}

f{ set eScroll, check for hint push

if ((cSelection-cScroll)> (showingltems) && cSelection<=nItems)
cScrollt+:

}

f/ create the new list

createlis=t ()
setSelectedItem|);

public static function getSelectedIxt():5tring {
return dataSet [cSelection-1].itemName;

C.5. Session.as

=l oo W R

[T]

[y
PO T Vi

o I T Y L % N T e R ¥ O = S Y . N

[ST L T L T B S T U T % T - I B L T I N i el e
M= D WM

L
Lad

/S*Written by Xuan Feng*®/
class Sessiond
private static var selectedChannel:5tring;
private static var selectedPro:5tring:

private static var selectedChannelTwo:String = "defaulc™:

public static function setSelectedT=xt () :Void {
selectedChannel = XDList.getSelectedIxt ()

public static function getSelectedIxt () :S5tring {
return selectedChannel;

¥

public function setSelectedVod(str:5tring) :Void {
selectedChannel = sStr;

¥

public function getSelectedVod () :S5tring {
return selectedChannel;

H

public function setSelectedContent (str:S5tring) :Void {
selectedChannel = str;

H

public function getSelectedContent ()} :String {
return selectedChannel;

H

public static function setSelectedChannelTwo () :Void {
selectedChannelTwo = XDItemGapper.getSelectedT=xt ()
trace ("selectedChannelTwo i=s "+zelectedChannelTwo) !

H

public static function getSelectedChannelTwo () :S5tring {
return selectedChannelTwo;

{

57

C.6. retrieveVodIlnfo.as

class retrieveVodInfo {

public function retrieveVodInfo() {
}

[T PV I

i

o

public function getProgrammes (wholeString:String) :Array {

var programmes:Array = wholeString.splic(™}"):
return programmes;

[Ep
B o w m
gt

1z

public function getProgramDetails (program:5tring) :vodProgram {

var programInfo:Array = program.splic(™&"):
var programMame:S5tring = programInfo[0]:
var programDes:5tring = programInfo[l]:
var programIcon:S5tring = programInfo[2]:
var programURL:5tring = programInfo[3]:

return new vodProgram (programMame, programbDes, programlcon, programURL):;

FJ R R
i
bt

Pa
L R

O

. 7. vodProgram.as

1 class vodProgram {
2 private var programName:String:
3 private var programDescription:String:
4 privace var programlcon:Stcring:;
o private wvar programURL:S5tring;
6
7 public function vodProgram (programName:String, programDescription:String, programIcom:S5tring,
8 cthis.programiName = programName;
£ thisz.programDPe=scripcion = programDescription:
1o this.programlIcon = programlcon;
11 this.programURL = programURL;
12 }
it public function getProgramMame () : String {
14 return programMName
by }
1& public function getProgramDescriptioni():5tring {
= g return programbDescription;
B }
is public function getProgramIcon{):S5tring {
20 return programlicon;
21 }
22 public function getProgramlURL () :5tring {
23 return programURL;
24 }
25 I

58

TRITA-ICT-EX-2009:97

www.kth.se

	1 Introduction
	1.2 Scope
	1.3 Delimitations

	2 Background
	2.8 Development

	3 Min TV development
	3.1 Min TV Communication Overview
	3.2 Mobile handset and CTV lab setup
	3.3 Setting up java environment for Project Capuchin
	3.4 Implementation details
	3.4.1.1 The Flash Lite part
	3.4.1.2 The java part
	3.4.1.3 Data transfer in Min TV application
	3.4.2.1 Settings for C905
	3.4.3 Development in Action Script 2.0
	3.4.3.1 Pure Action Script files
	3.4.3.2 Action Script in frames
	3.4.3.3 Setting the Property

	3.4.4 Compiling the application using Another Neat Tool (ANT)
	3.4.4.1 Building using ANT

	3.4.5 Debugging and Testing the Application
	3.4.5.1 Testing Tools
	3.4.5.1.1 DebugMux
	3.4.5.1.2 Sony Ericsson’s DeviceExplorer

	3.4.5.2 Testing the streams

	4 Findings and Discussions
	4.1 Evaluation of Capuchin API
	4.1.1 Advantages
	4.1.2 Disadvantages
	4.1.3 Conclusion

	4.2 Capuchin versus ECAF
	4.2.1 Animation capabilities
	4.2.2 Code size in lines of code
	4.2.3 Memory footprint
	4.2.4 Reusability
	4.2.5 Flexibility

	4.3 Presentation technologies for mobile TV
	4.3.1 Hecl support for Java ME
	4.3.1.1 HTTP
	4.3.1.2 K-XML
	4.3.1.4 Evaluation of Hecl + Jave ME for our Mobile TV application

	4.3.2 SVG Tiny 1.2 support for Java ME
	4.3.3 MIDP 3.0 [32]
	4.3.4 Microsoft .NET Compact Framework (.NET CF)

	4.4 Pure Flash Lite TV Client Application Concept

	5 Conclusions and future work
	5.1 Conclusions
	5.2 Future Work

