
Master of Science Thesis
Stockholm, Sweden 2009

TRITA-ICT-EX-2009:6

Y I K E L I U

WCDMA Test Automation Workflow
Analysis and Implementation

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

WCDMA Test Automation Workflow Analysis and

Implementation

Yike Liu
yi_liu33@hotmail.com

 23 April 2009

Industrial Supervisor
Peder Sandelin

Ericsson WRBS I&V

Examiner and Academic Supervisor
Prof. Gerald Q. Maguire Jr.

Department of Communication Systems
School of Information and Communication Technology

Royal Institute of Technology
Stockholm, Sweden

Abstract

In the modern wireless communication industry, radio communication equipment
vendors not only produce communication hardware, but also produce software. In
fact, software revenue is now a large part of the total revenue. As technology has
developed and traffic demands increase, more and more functions required to
implement the radio system are implemented via software rather than hardware.
Today, many hardware functions are actually implemented with reconfigurable and
programmable hardware. Therefore, it is often possible to perform an upgrade by
loading new software (a software upgrade) rather than needing to change the physical
hardware with every technology advance. However, introducing new elements and
features in existing (often mature) software may cause unexpected problems. These
problems may include new parts malfunctioning and failure or degradation of old
functions. To avoid these problems, each version of software has to be thoroughly
tested, not only to test the new parts, but also to verify that the old functions still work
properly. Testing all the old functions is time and human resource consuming. Thus,
there is an increasing demand for automated testing. This thesis will focus on why
automated regression testing is necessary and how to implement automated testing in
a specific environment.

The thesis results show that automated testing can improve the test coverage by at
least 40% for one of Ericsson’s WCDMA software releases. This coupled with a
reduction in testing time enables more rapid development by significantly reducing
the test time without compromising quality. All of these results lead to improved
profitability and increased customer satisfaction.

Sammanfattning

I den moderna trådlösa kommunikationen industrin, radioutrustning
leverantörerna inte bara producera kommunikation hårdvara, utan också producera
mjukvara. Faktum är programvara inkomster är nu en stor del av de totala
inkomsterna. Eftersom tekniken har utvecklat och trafik krav ökar, fler och fler
funktioner som krävs att genomföra radiosystem genomförs via mjukvara istället för
maskinvara. Många hårdvara fungerar faktiskt genomförs med omkonfigurerbara och
programmerbar hårdvara. Därför är det ofta möjligt att utföra en uppgradering av
lastning ny programvara (en mjukvaruversionen) snarare än behöver för att ändra den
fysiska hårdvaran med varje teknik förväg. Men att införa nya element och funktioner
i befintliga (ofta äldre) programvara kan orsaka oväntade problem. Dessa problem kan
innehålla nya delar brister och fel eller försämring av gamla funktioner. För att
undvika dessa problem, varje version av programvaran måste testas, inte bara att testa
de nya delarna, men även för att kontrollera att de gamla funktionerna fortfarande
arbete ordentligt. Testa alla gamla funktioner konsumera tid och personal. Således
finns det en ökad efterfrågan på automatiserade tester. Den här avhandlingen kommer
att fokusera på varför automatiserad regression testning krävs och hur man genomföra
automatiserade tester i en viss miljö.

Avhandlingen visar att automatiserade tester kan förbättra testbunt täckning med
minst 40% för ett av Ericssons WCDMA programversionerna. Detta i kombination
med en minskning av provning tid möjliggör en snabbare utveckling av avsevärt
minska test tid utan att kompromissa med kvaliteten. Alla dessa resultat leda till bättre
lönsamhet och ökat kundvärde belåtenhet.

 ii

Table of Contents

Abstract... i

Table of Contents ... iii

List of Figures ... v

Acronyms and abbreviations.. vi

Chapter 1. WCDMA Overview .. 1

1.1 WCDMA Introduction.. 1
1.2 WCDMA Architecture ... 1

1.2.1 UTRAN architecture introduction.. 2
1.2.2 CN architecture introduction... 3

Chapter 2: Automated Testing ... 5

2.1 What is software testing? ... 5
2.1.1 Definition of a test... 5
2.1.2 Why testing should be automated .. 5

2.2 Software Test Basic Concepts ... 7
2.2.1 Test Organization ... 7

2.3 Ericsson’s WRBS Automation Introduction .. 9
2.3.1 Ericsson WRBS I&V Test Target.. 9
2.3.2 Ericsson WRBS I&V Test Platform... 10
2.3.3 Automated Testing Tool Development ... 10

Chapter 3 TMAP in Ericsson ...11

3.1 TMAP introduction .. 11
3.1.1 What is TMAP? .. 11
3.1.2 Basic TMAP Concept ... 11

3.2 TMAP Components .. 12
3.2.1 Lifecycle model for testing activities ... 12
3.2.2 Techniques... 13
3.2.3 Organization ... 13
3.2.4 Infrastructure .. 14

3.3 Ericsson’s WRBS I&V Software Test Process ... 15
3.3.1 Ericsson’s WRBS Software Test Projects .. 15
3.3.2 Ericsson’s WRBS I&V Workflow Model .. 16
3.3.3 Automation Test Workflow ... 16
3.3.4 Benefit of TMAP when using Automated Testing............................... 17

 iii

Chapter 4 Automation Test Tool Design ... 19

4.1 Automated Test Case workflow .. 19
4.1.1 Automated test case development workflow 19
4.1.2 Automated test case maintenance workflow 20

4.2 Automation Test Tool Design Rules.. 20
4.2.1 Scripts Automated Precondition ... 20
4.2.2 Predefined Method Usage.. 20
4.2.3 Comments in the Code... 21
4.2.4 Logging... 21
4.2.5 Result Report ... 22
4.2.6 Syntax Checking of the test scripts .. 22
4.2.7 Version Control of the test scripts .. 22

Chapter 5 Implementation and Integration ... 24

5.1 Automated Test Tool development with TMAP .. 24
5.2 Automated Test Tool Implementation ... 24

5.2.1 Development Preparation... 24
5.2.2 Test Script Development .. 25

5.2.2.1 Test Script Structure .. 25

5.2.3 Legacy Regression Suite Usage .. 31

Chapter 6 Automation Tool Evaluation and Status .. 34

6.1 Test Coverage Improvement... 34
6.2 Money saved by avoiding the error slipping into the next stage 34
6.4 Manual versus automated testing ... 35
6.5 Test coverage over time.. 36
6.6 Future work ... 36
References.. 38

 iv

List of Figures

Figure 1: WCDMA architecture overview ..2
Figure 2: WCDMA RAN architecture..3
Figure 3: WCDMA core network overview ..4
Figure 4: Software lifecycle TMAP model..12
Figure 5: Ericsson WRBS I&V workflow model ..16
Figure 6: Ericsson WRBS I&V workflow with automation ...17
Figure 7: Ericsson WRBS I&V automation script development workflow19
Figure 8: Increase in the number of test cases found in Ericsson’s automated test tool
as a function of time. ...36

 v

Acronyms and abbreviations

3GPP 3rd Generation Partnership Project
API Application Programming Interface
ASC Antenna System Controller
ATM Asynchronous Transfer Mode
CDMA Code Division Multiple Access
CN Core Network
CS Circuit Switch
Chan_STM1_E1 Channel for STM1 and E1
DRH Dedicate Radio link Handling
E1 Euro Data Transmission Standard 1 (2.048 Mbps)
E3 Euro Data Transmission Standard 1 (34.368 Mbps)
EDCH Enhanced Dedicate Channel
EUL Enhanced Uplink
FCCU Function Cross Coupling Unit
FVS Function Verification Specification
GGSN Gateway GPRS Serving Support Node
GMSC Gateway Mobile Service Switching Controller
GPRS General Packet Radio Service
GSM Global System for Mobile Communication
HARQ Hybrid Auto Repeat Request
HLR Home Location Register
HS High Speed (short for HSDPA in this report)
HSDPA High Speed Downlink Packet Access
HSPA High Speed Packet Access
HSUPA High Speed Uplink Packet Access
I&V Integration & Verification
IS-95 Interim Standard 95
ISO International Standardization Organization
IEC International Electro Technical Commission
IT Information Technology
LED Light Emitting Diode
LTE Long term Evolution
MBMS Multimedia Broadcast Multicast Service
MDL Mobile Data Logger
MIMO Multi Input Multi Output
MS Mobile Station
MSC Mobile Service Switching Controller
MUE Multi User Equipment
Mbps Megabits per second
NBAP Node B Application Part
NITE Node B Integrated Test Environment

 vi

 vii

NodeB 3GPP name for a WCDMA base station
O&M/OAM Operation & Maintenance
QoS Quality of Service
R99 3GPP UMTS Specification release 99
RAB Radio Access Bearer
RAN Radio Access Network
RBS Radio Base Station
RDBTH Radio Data Bulk Tracing Handler
RLS Radio Link Set
RNC Radio Network Controller
RRM Radio Resource Management
SGSN Serving GPRS Support Node
SRB Signaling Radio Bearer
STM1 Synchronous Transport Module-1 (155.52 Mbps)
SW Software
T1 US Data Transmission Standard 1 (1.544 Mbps)
T3 US Data Transmission Standard 1 (44.736 Mbps)
TC Test Case
TFR Transmit Format Reconfiguration
TMAP Test Management Approach
TV Television
TX_DIV Transmit (Tx) Diversity
TcData Testcase Data
UE User Equipment
UMTS Universal Mobile Telecommunication System
UTRAN UMTS Terrestrial Radio Access Network
Uu 3GPP defined Air interface (between UE & UTRAN)
VLR Visitor Location Register
WBTS WCDMA Base Transceiver Station
WCDMA Wideband Code Division Multiple Access
WRBS WCDMA Radio Base Station

WCDMA Automation Workflow Analysis and Implementation

Chapter 1. WCDMA Overview

1.1 WCDMA Introduction

Wideband Code Division Multiple Access (WCDMA) is a modern standard for
mobile telecommunication systems. More specifically, WCDMA is a third generation
wide area cellular communication technology. Unlike the second generation cellular
communication systems such as GSM and CDMA IS-95, WCDMA provides better
quality of service and higher throughput.

The WCDMA specification was first released in 1999 by the 3rd Generation
Partnership Project (3GPP) [9] as release 99 (R99). WCDMA was designed for
multimedia communication. More specifically it was design to provide the user with
video calls, internet access, and video streaming so that users can utilize multimedia
applications, such as Mobile TV. The higher data rates provided in WCDMA enables
a content provider to provide higher quality image and video services than the earlier
GSM system. The system not only provides a more flexible and high quality service
infrastructure, but also creates a large market opportunity for application and
information (e.g., content) companies.

As the technology developed and live networks were launched, R99 could no
longer satisfy users, operators, or the cellular equipment vendors. Thus, a technology
evolution has occurred. The most important features that have been proposed and
implemented are: high speed downlink packet access (HSDPA) and enhanced uplink
(EUL). By optimizing the R99 time and code resources, WCDMA has evolved to
provide downlink data rates of up to 14.4 Mbps.

Today, a new evolutionary step, Long term Evolution (LTE), has been proposed
in 3GPP. LTE is expected to provide up to 100 Mbps throughput. It is believed by
some that in a near future, wide area cellular systems will provide such good service
that it will be possible to mobilize all office work, i.e., there will not longer be a need
for fixed telephones or fixed office locations.

All of the evolutionary steps mentioned above could be realized with very limited
hardware modification, as most changes could be made via changes to the basestation
and core network software.

1.2 WCDMA Architecture

This section introduces the basic concepts of a WCDMA system by presenting its
architecture, including the key components and the interfaces between all the network
elements. The WCDMA architecture is similar to the 2nd generation GSM cellular
system. This was done purposely by 3GPP to enable 2nd generation systems to be

 1

WCDMA Automation Workflow Analysis and Implementation

upgraded in steps to a 3rd generation system while minimizing the cost of such a
transition.

The WCDMA system can be divided into two parts: Universal Mobile
Telecommunication system (UMTS) Terrestrial Radio Access Network (UTRAN)
and Core Network (CN). UTRAN provides the radio functionality, such as wireless
data transmission, call service, and so on; while the CN is responsible for of all the
switching and routing of service requests and data – along with interfacing to external
networks. The basic architecture is shown in Figure 1. As shown in this figure, the
interface between the User Equipment (UE), also called the mobile station (MS), and
the UTRAN is called the Uu interface, while Iu is the interface between the UTRAN
and the CN.

Figure 1: WCDMA architecture overview

1.2.1 UTRAN architecture introduction

UTRAN consists of two parts: Radio Network Controller (RNC) and Radio Base
Station (RBS). The RNC controls all the radio resources in its domain, including all
the physical resources such as the RBSs connected to it and all of their the logical
resources (for instance the code resources and interference resources). The RBS
converts all the data received from the RNC on the downlink and all the data from the
UE for the uplink into/from encoded and modulated radio signals. The RBSs converts
all of the downlink data to a radio signal and sends it to one or more UEs. Similarly
the RBS converts the received uplink radio signal from the UEs into data and sends it
to the RNC. However, as part of the HSPA evolution, the RBS performs some of the
Radio Resource Management (RRM) that in earlier releases was handled by the RNC.
Specifically, some of the RNC functions such as scheduling have been moved to
RBS, in part to reduce retransmission delay. Figure 2 illustrates the UTRAN concept.

 2

WCDMA Automation Workflow Analysis and Implementation

Figure 2: WCDMA RAN architecture

1.2.2 CN architecture introduction

The Core Network (CN) of an existing GSM network can largely be reused for a
WCDMA network. As mentioned above, this provides compatibility and cost
reduction. The CN includes the following subsystems:

Home Location Register (HLR): The HLR is a database located in the
subscriber’s home system that stores the master copy of the subscriber’s service
profile. When a user subscribes to a network, the HLR is updated to include the basic
information concerning this subscription. The HLR also stores the subscription’s
Quality of Service (QoS), as well as (current) roaming information and location
information.

Mobile Service Switching Controller (MSC) / Visitor Location Register (VLR):
The MSC is a circuit switch and the VLR is a database. Together with the RNC and
RBS they provide Circuit Switched (CS) service to the UE in its current location. The
VLR stores all the visiting subscriber’s service profiles.

Gateway Mobile Service Switching Controller (GMSC): A GMSC is a switching
point between the WCDMA system and external CS networks. The GMSC acts as a
circuit switched gateway, hence all incoming and outgoing circuit switched traffic
passes through the GMSC.

Serving GPRS (General Packet Radio Service) Support Node (SGSN): The
SGSN is similar to a MSC/VLR, but for packet switch service. More specifically it is
a router for packet traffic.

Gateway GPRS Serving Support Node (GGSN): the GGSN provides for the
packet switched domain similar functions as the GMSC provides for the CS domain.

The CN architecture in WCDMA is shown in Figure 3. Further details of the
WCDMA architecture can be found in [10]. Additional information about HSPA and
LTE can be found in [11].

 3

WCDMA Automation Workflow Analysis and Implementation

CN

GGSN

SGSNGMSC

MSC

VLR

Figure 3: WCDMA core network overview

 4

WCDMA Automation Workflow Analysis and Implementation

Chapter 2: Automated Testing

2.1 What is software testing?

2.1.1 Definition of a test

According to the International Standardization Organization (ISO), a test can be
defined as “Technical operation that consists of the determination of one or more
characteristics of a given product, process or service according to a specified
procedure” [22]. Testing examines if a certain item meets specific requirements.
Generally this testing is done to ensure that a certain item meets a commonly used set
of requirements (where these requirements are often specified by a standard or by a
standardized testing procedure).

In the IT industry, especially the software industry, testing is usually performed
to ensure that the product has all the required features and has no bugs. This requires
testing all the (new) features which have been implemented in a new build of the
software, along with sufficient test coverage to ensure that all of the old functions
continue to work correctly. The later form of testing is referred to as regression
testing. Regression testing is designed to ensure that the introduction of new features
or improvements to old features does not introduce bugs into the software.

2.1.2 Why testing should be automated

As stated in the previous section, test coverage must be sufficient to detect errors
in the device under test. In backward compatibility test, the purpose of the test is to
verify that newly introduced software is compatible with the previous version. Thus
for each new version of the software, it is important to determine if this new version
will degrade the system’s performance (in comparison with the performance of the
earlier version of software). There is generally pressure to both improve a system’s
performance and to implement new features. However, it is important to keep the
system stable – i.e., so that it continues to correctly perform the tasks that the previous
version of the software correctly performed. Regression testing has to be performed
for each new version of software. This regression testing can be very time consuming
because the test must cover all features of all prior versions (or in most cases at least
the previous version) and verify the stability of the new release. Additionally, testing
is needed to verify that the new version correctly implements the new features and
functions. As the complexity of the software for the systems of concern to this thesis,
a very large number of tests are needed. Therefore, it is highly desirable to implement
a tool to automate testing (especially regression testing) as this will save a lot of
human resources and reduce the cost of the verification process.

 5

WCDMA Automation Workflow Analysis and Implementation

The following are some of the advantages of automated testing:

 Automated testing will save time during the verification process

 If the testbed or test platform is designed to be a general testing platform, then
it will accommodate many different test cases. This increases the number and
variety of tests which can be automatically performed – reducing personnel
costs and reducing testing time.

 Human resources and costs can be reduced by using an automated test tool.

 Reducing the testing time can reduce the software verification life cycle (i.e.,
detecting errors sooner can enable rework or correction sooner – which means
that the product is able to be shipped sooner and hopefully reduces the need
for field maintenance).

 Eliminating the need for human interaction during the verification process can
reduce testing cost and decrease testing time; additionally, it permits the
testing to take place at any time of the day or night.

 Automated testing permits better test coverage for each software build (as
some of the time saved by automating the testing can be used to run a wider
set of test cases).

 Automated testing can help reduce the time need to identify potential bugs
introduced by new features; thus enabling them to be corrected sooner rather
than later.

However, even with all of the advantages above, automated testing has its
limitations. Some of the drawbacks are:

 Maintenance is required. Automated test tools need to be supported by a group
of talented engineers who are familiar with both software engineering and the
specific system being tested (in this case, a basestation of a WCDMA system).
A group is responsible for developing the automated testing tool and will
maintain the tool(s), or another group will be required to maintain the test
tools. The expense of developing automated testing and the resulting cost
savings must be calculated and compared to manual regression testing.

 Poorly designed test cases will reduce the performance of an automated testing
tool. (Just as poorly designed test cases reduce the performance of manual
regression testing.)

 New bugs can be introduced by each new version of the automated testing
tools. Especially damaging are bugs due to added facilities that were inserted
into the software in order to perform or facilitate automated testing.

 Automated testing tools require a very stable test environment. This is because
if is very hard to tell if the reason a test failed was because the device under
test actually failed or if the test environment is incorrectly configured or
operating incorrectly. Thus, if there are failures detected by an automated test,

 6

WCDMA Automation Workflow Analysis and Implementation

then human testers have to identify whether the failure was caused by the test
tool, the test environment, or the actual test target.

However, it is widely believed that automated testing can significantly improve
the verification process and increase the performance of the testing process. Today
more and more IT companies are adopting automated testing. Therefore, there are lots
of employment opportunities within this area – while the number of manual testers
decreases.

2.2 Software Test Basic Concepts

2.2.1 Test Organization

For both system and software testing, a good test plan and organization will
dramatically improve test efficiency. The basic concepts and test organization design
have to be clear and the tests well designed in order to achieve stability and good test
coverage.

The following points are the essential factors in the test process:

 Test Cases

Software and systems will be run in different scenarios such as different
radio access bearers (RAB) establishing requests, different transmission
types of requests, etc. Most of the bugs are introduce during implementation.
Usually these bugs are due to improper implementation of algorithms [1].
Test cases are designed to simulate a variety of different scenarios.
Moreover, a specific test case is usually designed for each new software
feature to establish that the new feature or function works. The test cases
also include some regression cases to ensure functional compatibility of the
software. For instance, Ericsson’s latest WCDMA base station software
introduced a feature called enhanced uplink with a 2 millisecond
transmission interval. The test case to test this feature requires HSDPA
service, since the enhanced uplink service has to work together with
HSDPA. Thus, this test case must not only test that the feature works, but
also test that the two features (enhanced uplink and HSDPA) are compatible
with each other.

 Test Object

In this thesis, the term Test object means the test target. This target can be a
specific function or a specific combination of functions of the system being
tested (often called the “system under test”) that are to be tested. For
example, the hardware test object includes a hardware test for each
connector of the device under test (often called the “unit under test”).

 Test Coverage

Test coverage refers to the fraction of the entire program that is tested by
the test cases.

 7

WCDMA Automation Workflow Analysis and Implementation

As mentioned in previous section, software developers keep adding new
features, so that users will want/buy upgrades. This is one of the most
common sources of problems in the IT industry. However, each new version
or build of software will include some new functions that the customer
requires and will often contain a large number of features which the
customer does not require, but that are there for compatibility with a
previous release, for test purposes, to meet legal requirements, etc.
Therefore, the quality of the software is not only a function of the new
features, but will depend upon how well all of the functions work. Thus,
testing of a new build has to cover both the new functions and the old
functions – in order to ensure that the system works correctly after a
software upgrade. Since there are so many functions in many systems, it is
not possible to do an exhaustive test of all the functions for all inputs and
under all conditions. Therefore, test coverage definition is a very important
element in the design of the test process.

In the IT industry, many companies use IBM’s Rational Tools to design
test cases [12]. Since today most software development is modularized,
hence the test cases, especially for black box testing, are designed to test the
modules in combination. [4] This assumes that element tests have already
been performed when each module was being developed. For this reason the
type of testing that this thesis is concerned with is often called “integration
testing”.

 Test Suite

A test suite is a series of test cases. A test suite usually is the main product
of automated testing development. This test suite includes all the test cases
that have been automated. These tests can subsequently be executed for each
software build.

 Regression Test

In this report, our focus is the design of regression testing. Since test
coverage has to be expanded to cover all the new functions and the old
functions, the regression test must include legacy tests (i.e., to verify the
proper functioning of all the earlier functions). To prevent the test suite from
continuously growing requires either developing test cases that provide
improved coverage with a smaller number of test cases (using tests that
combine the effects of multiple separate tests) or eliminating some of the
tests of earlier functionality. To facilitate the later, the regression function
verification specification may allow some very old function test cases to be
removed from the test requirements.

 Black Box

Software testing can be divided into two types: white box and black box.
White box testing is primarily done at the time of development – as it
requires access to the source code, while black box testing is done for

 8

WCDMA Automation Workflow Analysis and Implementation

acceptance testing [6]. As acceptance testing in the focus of this thesis, the
testers do not use the source code to the WCDMA Radio Base Station
(WRBS) software, thus all the test cases are performed in black box manner.
We will assume that earlier white box testing was done to ensure that each
subsystem has been tested in isolation. Black box testing is necessary
because the focus of the acceptance (and integration) testing is verification at
a system level and it is not feasible to test every subsystem’s
implementation. Therefore, we are concerned only with the output of the test
cases, i.e., that the output of the test case matches the expected output.

 Test Environment

The test environment includes all the test software and hardware that are
require for the test, such as all the simulators (to provide input), test
instruments to observe the output of the equipment under test, and the
different configurations of the test object.

When automating the test process, all of the above points have to be addressed.
A well designed test process will improve the test efficiency. For instance, in
Ericsson’s WRBS I&V (Integration and Verification) department test analysis is
performed before the test process starts. Based on test procedure analysis and test
analysis 30% of the regression test cases can be eliminated [3]; both reducing the
duration of testing and making it easier to identify bugs. However, if the test process
is not defined properly, it can introduce additional problems during the test. [6]

2.3 Ericsson’s WRBS Automation Introduction

Ericsson’s WRBS I&V (Integration and Verification) department is currently
implementing an automated software test tool for regression testing. The goal of the
project is to automate all the test cases that do not need human intervention. The
reason for this development is that Ericsson’s WRBS includes so many features that it
is almost impossible to test all the previous functionality using human testers. Thus, to
expand the test coverage and reduce labor costs, use of an automated test tool is
proposed. This thesis project was conducted as part of this effort.

2.3.1 Ericsson WRBS I&V Test Target

In chapter 1, the basics of a WCDMA system were presented. The RBS acts as a
translator or relay node in UTRAN – as it receives a radio signal from a mobile
station and transfers the signals and data to RNC via a transmission network. Due to
the evolution of WCDMA networks (such as the introduction of HSPA); the RBS has
become responsible for resource allocation in the local cell. Moreover, the
deployment of Hybrid Auto Repeat Request (HARQ) in the RBS requires that the
RBS take responsibility for physic layer retransmission in order to reduce delay.

The desire is to verify all the features (including hardware control functions and
data processing functions - so called traffic functions) that have been implemented in
a new build and to ensure the stability of the software running on Ericsson’s

 9

WCDMA Automation Workflow Analysis and Implementation

 10

 Python.

WCDMA RBS. Thus a WCDMA RBS is the test target for all of the activities
described in this thesis.

2.3.2 Ericsson WRBS I&V Test Platform

Ericsson WRBS I&V department tests all the WCDMA RBS software for a
specific platform - including all the hardware and software.

 Hardware platform

The WCDMA UTRAN consists of three parts: RNC, RBS, and MS. For
testing purposes a RNC simulator and MS simulator are used to ensure a
stable verification environment. Thus during the test process, a fixed RBS
hardware platform is used – therefore the RBS software is the only variable
element during verification testing. Eliminating hardware variability should
make it much easier for the testers to identify bugs in a specific build of the
RBS software. Note that this requires testing to verify the hardware
platform’s correct operation, before it is used for software testing.

 Software platform

Since the RNC simulator and MS simulator provide open Application
Programming Interfaces (APIs) and each has a command line interface,
Ericsson’s WRBS I&V unit has developed a software platform called the
NodeB Integrated Test Environment (NITE) to control the three parts during
a test, i.e., to control the RNC simulator, the RBS, and the MS simulator in
the test environment.

2.3.3 Automated Testing Tool Development

In this thesis project, an automated testing tool is developed based on the
software and hardware platforms mentioned above. NITE provides the ability to
control basic operational functions of the RNC (simulator), RBS, and MS (simulator).
Using NITE’s open APIs, testers can write scripts to automatically perform each step
in the test process. The NITE platform is implemented in Python 1 , thus, the
automated test scripts will also be written in

Usually, a software build test includes many test cases. In our automated test tool,
each test case will be a Python script. The automated test tool generates a set of
scripts that implement each of the required test cases.

1 More information regarding python can be found at http://www.python.org .

http://www.python.org/

WCDMA Automation Workflow Analysis and Implementation

Chapter 3 TMAP in Ericsson

3.1 TMAP introduction

3.1.1 What is TMAP?

This section describes the Test Management Approach (TMAP) [5] that will be
used. The test process plays a very important part in software development. In the IT
industry, the number of testers is often equal to or greater than the number of
developers, in some companies this ratio can even be 1.5 or 2; thus the cost of testing
is quite significant.

The reason why software products need so many testers is the company’s desire
to ensure sufficiently high quality software and the financial risks associated with
delivering low quality software. Additionally, the trend toward continually adding
new features both adds new code that must be tested and can bring previously hidden
bugs to the fore. With a large number of testers and good management of these
testers, high test coverage is possible, i.e., the superset of all the test cases written
these testers can include more regression test cases. In Ericsson WRBS I&V, the test
cases are divided into work packages. Each work package includes not only the new
features, but also some regression functions which are related to the new features.
However, as there are a large number of legacy functions (that need regression
testing) and there are new functions that need new test cases, but the number of testers
is limited, the number of testers is usually less than necessary. Adding additional
testers, enables each work package to include test cases for new features and to add
additional regression test cases to expand the regression test coverage.

Unfortunately due to differences in the skills of testers and the interdependence of
functions, increasing the number of tests does not lead to a linear increase in test
coverage. Simply increasing the numbers of testers is not sufficient, as poorly
designed test processes and poor organization will cause the test process to yield poor
results. That is why TMAP is used many companies to utilize their resources more
efficiently. These resources can be reduced by utilizing a better management method
for software development and testing. An introduction to this better managmement
method is presented in the next section.

3.1.2 Basic TMAP Concept

TMAP considers and defines all the activities (including planning, preparation,
and execution) that may happen during the test process. This test process is organized
as a life cycle. The factors that will influence the lifecycle in a test process are:
techniques for testing activities (T), organization embedding (O), resources &
infrastructure (I), and the lifecycle process of the testing itself (L). Figure 4 shows the
relationships between these 4 cornerstones of TMAP. In the following sections, each

 11

WCDMA Automation Workflow Analysis and Implementation

part will be briefly introduced to clarify why TMAP and automation are necessary to
support the software development and testing process.

Figure 4: Software lifecycle TMAP model (based on the figure shown on page 35 of [5])

3.2 TMAP Components

3.2.1 Lifecycle model for testing activities

The lifecycle model for testing activities determines how the test process
progresses. As a tester, this model describes how the test can be performed, what kind
of tools and environment are required, and who will be the responsible for the test
process (including allocating the required resources). Each phase in the lifecycle has
certain pre-conditions and activities. The following paragraphs briefly describe these
phases, more details can be found in [5].

The lifecycle concerns the entire test process. Thus the lifecycle model describes
all the factors that might influence the test process, how to prepare for different
situations, and most important, the plan for the whole test process. A well designed
lifecycle model will drive the test process in the predefined direction.

As mentioned above, planning, preparation, specification execution and
completion [5] are part of each and every part of TMAP (lifecycle, technology,
organization, and infrastructure). In the lifecycle, the planning part defines a detailed
plan for the test process and answers all the questions listed at the beginning of this
section; for example, how, with what, under which preconditions, and so on. The
lifecycle part of TMAP is the core of the test process. After the test specification has
been agreed upon, the lifecycle plan controls the test process.

The main task during the lifecycle planning is to define the test assignments,
establish or define the test environment, setup a test control organization, and specify
the time plan and schedules. The test control organization usually generates the plan.

 12

WCDMA Automation Workflow Analysis and Implementation

However, since some situations may occur that were not considered during the
planning, the plan may have to be refined as the test process matures. Thus it is
important to recognize that the test process must be adaptive to the actual testing
results and business needs, thus the lifecycle plan is a living document and not simply
fixed in stone.

3.2.2 Techniques

The techniques that are going to be used for each of the various test activities
have to be thoroughly considered when the test process is being designed. Since
several activities (Planning & Control, Preparation, Specification, Execution, and
Completion) happen during the test process, it is necessary to know how the activities
can be finished.

Before the test process starts, the techniques in all the activities must be evaluated
and the proper testing techniques chosen to satisfy the test requirements; while also
offering test efficiency. This is why Erik van Veenendaal and Martin Pol’s TMap
paper[6] talks about “usable techniques”.

During the planning & control phase, the development strategy must be selected
and a schedule analysis must be done. Assuming the selection of an excellent
technique in this phase, then the test strategy and schedule will be determined based
upon the product requirement from customers. Since the expectation from the
customers for the product varies depending upon the different scenarios in which the
system is going to be used by the customers, thus defining a good test strategy and
schedule to meet these various requirements is difficult. It is reasonable to expect that
the first test cases will need to be based upon the most common scenarios, while later
test cases will cover the special cases necessary to a more limited set of customer
requirements (for example, there might even be a branch in the test suite based upon
the type of customer or even the risk tolerance of the customer – as some customers
may find it advantageous being on the “bleeding edge” while other customers will
want to operate a system which is already in widespread use (i.e., late adopters)).

In the preparation phase, the sub goal is to clarify the test bed that is necessary for
the test process. In specification phase, test case specifications driven by the test
strategy and test bed will be determined by test case analysis. During the execution
phase, the testers follow checklists and use statistical methods to determine if the
require features work correctly and if the system meets its requirements (including the
desired stability). Statistical control models (such as six sigma) are widely used in
manufacturing, but are not as widely used in the IT industry (however, there is some
work in this area, see for example [23][24][25][26][27][28]).

3.2.3 Organization

The complete test process is a complicated process which involves many factors
including hardware, software, and human beings. It is both desirable and necessary to

 13

WCDMA Automation Workflow Analysis and Implementation

assemble all the relevant resources into a highly efficiency testing system. To
construct a smoothly working team, requires that all of the following be considered:

 Who will be the testers?

 Who will be the team leader?

 Who will be the hardware management and support team?

 Who will perform the test monitoring?

 Who will be the test case designers?

 Who will be members of the control committee?

 Who will coordinate the various teams? What communications and technology
will be used for this coordination?

 Who will be the automation architect?

 Who will be the automation engineer?

Considering all the different roles above, it will be difficult to find a set of
persons with the required competences. Thus, when assembling the team, it is very
important to choose the proper persons.

Moreover, communication is also important inside the test team. As soon as the
test plan has been defined, execution ability must be given the highest priority. At this
phase, communication between the management team and testers will be essential;
this requires good organization and a suitable set of communication channels.

3.2.4 Infrastructure

The infrastructure for test process includes the test platform and test bed. The test
platform includes the hardware and software, and also the test procedures, test
environment construction, etc.

The infrastructure should be designed to provide stability and minimize
variations. To ensure that the test process can be executed smoothly, the infrastructure
has to be constructed to enable the optimal combinations of test inputs to be applied to
the system being tested. As the goal of testing is to determine if the product meets
specific requirements, a stable test infrastructure can make the test results more
convincible and much easier to analyze with statistical methods – since the variation
should only be due to the system being tested and not due to unintended variations in
the test environment. Since testing will be applied to many versions (both now and in
the future) it is important that the test environment be stable over a long period of
time – in order to decrease the difficulty of analyzing the test results.

Therefore the test infrastructure requires:

 the hardware necessary for carrying out the test suite(s),

 the software necessary for carrying out the test suite(s),

 14

WCDMA Automation Workflow Analysis and Implementation

 the procedures for carrying out the test suite(s),

 the necessary test environment to be constructed,

 functioning internal communication between the members of the team,

 the test environment must be stable, and

 Ideally variations should only be due to differences in the operations of the
system being tested.

Note that in the above there is reference to the possibility of multiple test suites,
this is important to consider as future tests (i.e., of subsequent builds/versions) of the
system may require quite different test suites than are used for earlier tests. As noted
previously the test process has to be adaptive to these changes and the changing
requirements of the company and its customers. Clearly there is a conflict between
being adaptive and maintaining stability, thus the test team must understand how to
make this trade-off over time.

3.3 Ericsson’s WRBS I&V Software Test Process

3.3.1 Ericsson’s WRBS Software Test Projects

In Ericsson’s WRBS I&V department, a release of software will be handled by
different project teams. These teams include an integration team, traffic team,
Operation & Maintenance (O&M) team, and legacy maintenance team.

Before a new software build for a WRBS is released, the integration team will
test the sub-modules of the software. This integration team is responsible for ensuring
that all the sub-modules work and that the basic functions of these modules do not
conflict with each other. After the integration team has verified that all the
sub-modules work correctly, then these modules will be built into a package of
software (called an upgrade software package) and transferred to both the O&M and
traffic teams.

Within a telecommunication operator, O&M refers to the equipments’ operation
and maintenance. The O&M team is responsible for testing the O&M functions of the
upgrade software package, such as locking and unlocking boards, correct licensing
operations, generation of alarms, and so on.

The traffic team works in parallel with O&M team. While the O&M focus is on
the operations and maintenance performance of the test target, the traffic team’s focus
is on the test cases related to actual (data) transmission such as the Radio Access
Bearer (RAB) setup and so on.

After the O&M and Traffic teams’ testing are completed, the next focus is on
testing the new features and functions of the release. This must be followed by some
regression testing. Only after all of these tests have been satisfactorily completed can
the product be released and be installed in live networks. Following the product

 15

WCDMA Automation Workflow Analysis and Implementation

release, the maintenance team takes responsibility for the upgrade software package
(as the completion phase mentioned above). The completion phase keep track of the
release software and corrects potential bugs which might occur in a live network. The
maintenance team’s major job is to ensure that the software is running correctly in
live networks and trouble shooting any problems which appear in the field within this
product. The maintenance team must provide feedback to both the software
developers and the various test teams – as if a problem is detected once the software is
installed in the field, then there has been a failure in the design and implementation of
both the software itself and of the testing process!

3.3.2 Ericsson’s WRBS I&V Workflow Model

As the section above described, the work flow within Ericsson’s WRBS I&V
department is primarily linear, but with feedback paths. Figure 5 illustrates this
structure (which can also be seen as a “work flow”).

Implement

O&M

Traffic

Maintenance
regression

integration

Feedback/TRs

release

The workflow now in RBS I&V

Figure 5: Ericsson’s WRBS I&V workflow model

As the figure above shows, the linear structure mainly focuses on the new
features, while the legacy tests will mainly be done during the maintenance phase.
Unfortunately, this means that backward compatibility testing will mainly occur in the
live network. However, if the software does not work in the live network, then the
product quality as seen by the customers will be considered poor. This may affect
Ericsson’s reputation and the willingness of the customer to purchase/license new
features – as they will come as part of a new package. Therefore there is a desire to
change this workflow.

3.3.3 Automation Test Workflow

With the traditional work flow currently used by Ericsson I&V, even though the
regression test cases have been chosen very carefully, there is a high level of risk and
a very large human resource requirement to conduct these tests. Additionally, the
existing manual regression testing can no satisfy the test coverage requirement. To
solve this problem, it is necessary to move regression testing to an earlier phase.
However, if the regression testing is not automated, it will be almost impossible to
move it, due to the test plan schedule and human resources available. Thus, a decision

 16

WCDMA Automation Workflow Analysis and Implementation

was made that an automation test tool was very necessary; not only to reduce testing
time and to allow easier execution of these tests, but also to dramatically decrease the
risk associated with releasing a software product/package.

Introduction of an automated testing tool should improve the efficiency of this
lifecycle - saving a lot of expense in the long run. Figure 6 illustrates the proposed
work flow model and shows how regression testing is now integrated into all of the
elements of this workflow. Moreover, since regression testing has been moved to (and
integrated with) the development phase, this can also reduce the product development
time cycle. As discussed earlier, understanding the lifecycle model of the software
testing process is essential.

Implement

O&M

Traffic

Maintenance
regression

integration

Feedback/TRs
The workfow with automation in RBS I&V

Maintenance
regression

Maintenance
regression

release

Figure 6: Ericsson WRBS I&V workflow with automation

3.3.4 Benefit of TMAP when using Automated Testing

TMAP is a software test process management approach with four important parts:
lifecycle, techniques, infrastructure, and organization. Using an automated testing
tool, decreases the critical paths in the lifecycle shortening the time before a
product/package can be released, thus accelerating product manufacturing. An
automated testing tool offers an efficient way to perform the tests in a test suite. Since
the automated testing tool removes the need for human interaction, this testing
technique should eliminate many of the human errors of both maintenance and
regression testing. Moreover, the automated testing tool will manage the
infrastructure, thus reducing the overhead imposed on the organization - while
providing a more stable test platform – hence reducing the potential variability. This
in turn should mean that deviations from the expected test results reflect the presence
of errors or bugs in the software and not errors in the conducting of the tests. Note that

 17

WCDMA Automation Workflow Analysis and Implementation

 18

human errors may still occur as the unit under test must still be placed in the test
environment, connected to the test equipment (in our case the simulators for the other
parts of the WCDMA system and other test instruments). Unfortunately, this testing
technique does not eliminate the problems due to errors or failures in these simulators
or test instruments. This is the reason that we introduced test cases integration work as
the last phase to form a test suite.

When test case scripts have been completed, integrating these scripts into the test
suite will be done. The integration work is not only testing the scripts themselves, but
also integrating the other components, MSsim, RNCsim, NITE platform, etc. to find a
optimal test environment combination. Usually, during the integration work, only one
of the varibles (i.e., one component) will be changed. The new test suite will be
released only after integration. The combination forms an entire release product
including all components’ configuration.

WCDMA Automation Workflow Analysis and Implementation

Chapter 4 Automation Test Tool Design

4.1 Automated Test Case workflow

4.1.1 Automated test case development workflow

It has been stated earlier that during the software development and test process,
the planning and control phase is very important. Thus, to automate the entire
regression test, the test cases need to be carefully designed and well organization so
that the test script developers will have a clear architecture and logical flow to realize.

After the test cases have been defined, those test cases that can be automated will
be selected and prioritized. To ensure product quality, the basic and most important
test cases will be given the highest priority. After the test cases have been organized,
according the test script workflow, then the test developers will implement these test
cases according to the test specifications. These testing scripts will themselves go
through a review process. After this review, the test scripts will be passed to the
integration testers and used to test a number of different scenarios; such as different
RBS configurations, interaction between the test cases, etc. If any problems are
detected, then the integration testers will inform both the software developers and the
test developers – so that they can both adjust their code to accommodate the various
scenarios – thus providing a more general platform for both the software and the test
cases. As soon as the integration work has been completed, the test cases will be
added to the test suite and released to all the other RBS software testers to use. This
work flow is illustrated in the following figure. Note that the automated analysis
reuses test analysis, as automated testing replaces the manual regression testing. The
only unique part is the automation test cases prioritization part (mentioned at the
beginning of this paragraph).

Figure 7: NITE script (automation) development workflow

 19

WCDMA Automation Workflow Analysis and Implementation

4.1.2 Automated test case maintenance workflow

During a software package’s lifecycle, traditionally more time is spent
maintaining the software product than was spent to develop it. However, this is
generally a highly inefficient approach – as the cost to correct an error increases
(greatly) with the delay between design & implementation and detection. Thus the
proposed new workflow integrates maintenance testing with the design and
implementation workflow. Obvious benefits are reduced development time, reduced
cost of late stage rework, and reduced incidents of bugs being detected after the
software package has been released (leading to reduced risk).

As mentioned in the previous section, the test suite will be used by the regression
testers. During the test process, these testers will probably find errors caused by both
the test target (RBS software) and the test tool. These testers must analyze these
failures and identify which type the failure is. If the failure is caused by the test tool,
then the testers will submit to the test developers a trouble report stating the error or
submit a change request to state the necessary change. If the failure occurs due to an
error in the test target, then a trouble report or change request will be submitted to the
software developers and designers. These error reports should all be analyzed to
improve the test coverage of the tests and as input to statistical process control.

4.2 Automation Test Tool Design Rules

4.2.1 Scripts Automated Precondition

All test scripts intended to run in an automated test suite must require no manual
intervention. Thus all the regression test cases can be run during the night.
Unfortunately, this means that test cases which require a human tester’s monitoring
can not be included in this test suite. For example, some of the test cases may require
the tester to examine status lights on the RBS, or the test case may require the testers
to remove or insert a single board. Such test cases will not be considered automated
test case candidates (at least not initially). However, in the future, the department is
planning to utilize a web camera to record the lights’ status, to enable automation of
the test cases which require verifying an LED’s status. Note that some of the test
cases involving removing and replacing boards can be implemented using computer
control of the specific board (for example, by powering it down or setting it into an
off or standby state).

4.2.2 Predefined Method Usage

The automated testing tool to implement the legacy regression test suite was
developed based on the NITE platform. This platform provides some predefined
functions to control the basic operation of the RBS, such as cell setup, radio link
setup, etc. The names of all of these functions have the prefix “AL_API”, indicating
that this function is provided by NITE platform. When developing a test script, it is

 20

WCDMA Automation Workflow Analysis and Implementation

very important for the developers to use the standard functions provided by the test
platform to reduce the maintain costs associated with each test script.

The test cases will be divided into several test groups (a sub test suite) based upon
the different test targets. For instance, the hardware test cases will be grouped into one
sub test suite, while the common channel control cases will form another sub test
suite. The test script team is responsible for developing a test base class for each sub
test suite. The functions in this class will be used throughout the various test cases
within a certain sub suite. This base class will be the super class for all test scripts
included in a sub test suite – thus a sub test suit is itself an object. The common
functions of this base class will be imported before any test case runs. After the base
class has been designed and implemented, the test cases can be coded to use the
functions of this base class. Details of this base class can be found in [7].

However, NITE and this base class may not provide all the functions needed by a
test script developer. Therefore test script developers will have to implement their
own functions within their script. If these functions can be used by another test case in
the future, then these functions should be moved to the test base class or to a base
class for a specific group of tests (i.e., to the sub test suite).

4.2.3 Comments in the Code

In software engineering development is only a part of the whole process. As
noted previous, traditionally a large amount of the total effort is spent on software
maintenance. Moreover, as the human resources assigned to a product change, the
software development and maintenance tasks must be handed over to new people.
Therefore, suitable documentation is very important so that a new engineer can
understand the code, modify it, and maintain it. Comments in the code itself are one
means to provide this document. Therefore, as part of the documentation procedures a
clear and consistent commenting style is important. This style is document in “NITE
TestScript Design Rules” [7].

Note that today there exist a number of tools (such as Doxygen [13]) to
automatically extract documentation that is included in the source code to produce
documentation for the code. Current NITE (NITE provides the documentation
generating function) is being used to extract the documentation embedded in the
source code.

4.2.4 Logging

Another important utility to develop software is a logging system. It is unlikely
that new software or a new script will be without any bugs. To identify the location of
errors in the code, logs sometimes offer a way to find the where the problem is.
Moreover, the log can also be used to monitor a running software process. In the
NITE scripts described in this thesis, the logging system is divided into three layers.
The first layer is called the normal layer. The main function of this layer is to monitor
the software’s activities. The second layer, also called the warning layer, contains

 21

WCDMA Automation Workflow Analysis and Implementation

some additional information to indicate that there might be some error. The third
layer, the debug layer, contains all the details generated by running the scripts.
Developers usually depend on debug logs to maintain the scripts.

Note that logs are particularly important for automatic testing as (1) there is not a
human watching the program’s output and (2) the logs can automatically be compared
to the expected output – thus reducing the amount of information that needs to be
presented to the (human) tester to only those log entries that are relevant to a
deviation from the expected output.

4.2.5 Result Report

One of the design rules [7] requires that at the end of every test case, the result of
this test case should be output to the log [7]. This result can be: Pass, Fail, or Skip. In
addition, to this trinary result, the test case identifier, test case name, failure/skip
reason (if a fail or skip occurred) will be logged to make it easier for testers to
monitor the test process. Each of these outputs is generated when the indicated
conditions are true:

FAIL FAIL is reported if the preconditions are not met or if the test case result
is not OK.

SKIP SKIP is reported if the actual test configuration does not fulfill the
required configuration specified in the precondition. If the test case
requires a specific configuration not covered by the precondition, then a
TestSkip_Exception can be raised.

PASS PASS is reported only if no Skip or Failed exception occurs.

4.2.6 Syntax Checking of the test scripts

After the implementation of every test case, it is necessary to check the syntax
and some potential bugs such as a variable or an object not having been defined.
When developing the automated testing tool, pylint [19] was used for syntax error
checking. However, pylint is only a simple syntax error checker, it is not possible to
debug and locate bugs with the pylint tool. This is a significant drawback in this
automation test tool. Additionally, when writing code the developers can utilize the
automatic syntax features offered by Emacs. However, developers and testers
sometimes have to dig deeply into the code to debug the scripts. Usually, these kinds
of bugs will be found during integration of the test scripts into the regression test
suite. Investigations are currently being performed concerning use of an integrated
development environment (IDE) such as Eclipse (see chapter 2 of [29]).

4.2.7 Version Control of the test scripts

In Ericsson WRBS I&V, ClearCase (more details regarding ClearCase can be
found in [21]) is used to manage different versions of scripts. To keep track of every

 22

WCDMA Automation Workflow Analysis and Implementation

 23

build of scripts, all the modifications will be made as a branch. Only after testing by
the integration team and testing with several RBSs with different configurations will
the modified version be merged into the main branch, then delivered to the users
(normally, here “users” means the testers). The goal of this version control system is
that it will be much easier for the script developers to maintain these test scripts and
keep track on all modifications. This will be especially important when the test suite
grows to hundreds of cases, as understanding each branch’s modifications will be
very helpful when trouble shooting.

WCDMA Automation Workflow Analysis and Implementation

Chapter 5 Implementation and Integration

5.1 Automated Test Tool development with TMAP

In Chapter 3, the TMAP approach was introduced. The lifecycle model was
introduced in Chapter 4. In this section, the four parts of the TMAP will be described
as they actually relate to the actual automated test tool development effort of this
thesis project. These four parts of TMAP are:

Lifecycle In this thesis project, the goal is to reduce the software testing
time - in order to reduce costs and improve the test efficiency.

Techniques Object Oriented Programming and the open source programming
language python have been used to implement the test scripts.

Infrastructure The hardware infrastructure consists of: an RNC simulator, an MS
simulator, an RBS, RDBTH, and FCCU. The details of these can be
found in [14], [15] , [16], [17], and [18] respectively.

The test target is the software running on an Ericsson WCDMA
RBS model [16].

Organization The automated testing tool development was carried out by a
team leader, test developers, and integrators.

5.2 Automated Test Tool Implementation

5.2.1 Development Preparation

During the software development process, the planning & control phase carefully
specifies the preconditions. Since well organized test cases simplify the
implementation phase, a subset of all the automated test case candidates were selected
and carefully described by the test case design team.

The test cases were designed and organized as a so called Function Verification
Specification (FVS)†. When the test target is to be tested, then the testers follow the
instruction in this FVS and check if the result of each test matches that stated in the
FVS.

In the FVS, the whole test process will be specified step by step. The FVS states
the precondition, test actions, and the test result for each test. In order to automate
some of the test cases, the test developers usually have to read through the FVS, select
the test cases that do not require any human intervention. This may require that the

† Note that the FVS is designed by the test analysis team.

 24

WCDMA Automation Workflow Analysis and Implementation

test developer understand each test’s steps; and if necessary run the test manually to
make sure that there will not be any problem that could affect the test’s result.

Based upon the FVS, the hardware and software necessary for the test
environment should also be prepared. The software is a python module in a UNIX
environment, the NITE platform software, and pylint syntax checking tool. All the
necessary modules should be integrated in the tester’s work station environment
before the test development process starts. The hardware platform and software
platform for the test infrastructure must match that assumed by the FVS; in fact, the
FVS should explicitly say what infrastructure it assumes.

5.2.2 Test Script Development

5.2.2.1 Test Script Structure

A Test Script must include the following parts to form a complete test script:

 Test Script Create and Revision History Record

At the very beginning of the script, it is important to record the
developers’ actions with regard to the creation and maintenance of the
script. The record should include the developer’s name, contact
information, date of modification, and a short description of what
changes have been made to the script. The purpose of this record is to
keep track of each modification of scripts. Thus it is essential to record
all the modification to the scripts. Additional details can be found in
section 4.2.7.

 Test Script Import Block

The test scripts build upon the NITE platform and are written in python.
Python is an Object Oriented programming language, thus python
supports objects. These objects are defined in terms of classes. Each
class should be well designed and a common base class will be imported
into each test script. Each test script should also import all the necessary
utility classes and super classes.

 setTcData Block

Each test case maps to a specific verification specification in the FVS.
Each of these explicitly states the required test configuration. The
setTcData() method of the NITE platform checks to see that the test’s
precondition is met. The precondition is defined in the FVS. All of the
setTcData fields present in the example below are mandatory for all test
scripts.

 25

WCDMA Automation Workflow Analysis and Implementation

Example:
def setTcData (self) :

 return {

'tcTag' :'RBS_I&V_49E_D.N.0461',

'tcName' : 'DRL: TFR Selection, Incremental redundancy, 16 QAM',

 'comment' : 'Tested',

 'status' : 'RELEASE',

 'rbsType' : 'ALL',

 'rbsSubType' : 'ALL',

 'rbsConfig' : 'HS',

 'rbsSw' : 'P6-',

 'nbapVer' : '6.9-',

 'niteVer' : 'R34C-',

 'extConfig' : 'RNCSIM,MSSIM,MDL'

 'transmissionType' : 'ALL',

'transmissionProtocol' : 'ALL'

'rbsUeConnections' : 'S1C1'

}

Note 1: Use only ‘status: RELEASE’ for test cases intended for regular
use, i. e., regression testing.

Note 2: Only one test case shall be included in the tcTag field. As the
result from each test must be reported per test case, this should provide a
unique identifier for each test case. (The identifier will be generated by
IBM Rational’s ClearCase tool [21]).

 TcData field descriptions

The TcData fields describe the precondition(s) for the test case to be run,
comments, and information about the test case information. These
determine if the script should be run. Most of these fields support an
“ALL” option, indicating that the script can handle any value in this
particular field. Note that string values in python are delimited by single
quotes.

A field can contain multiple comma separated values. Specifying
multiple values means that the precondition is satisfied if the actual value
is any one of the values specified. For example, if the nbapVer field is
“4.6, 6.9'”, this means the script applies to two cases; when the NodeB
Application Protocol (NBAP) version is “4.6” or “6.9”.

If a TcData field is empty, this is equivalent to the value “ALL”.
However, to make the scripts consistent and easier to maintain, it is
recommended that all fields are defined, thus this field should be
explicitly set to “ALL”.

 26

WCDMA Automation Workflow Analysis and Implementation

Information only fields (indicated as “Informational”) should also be
present in the tcData structure. If there is no specific information for this
particularly Test Case, the field should be kept anyway, possibly with the
empty string ('') as value.

Table 1: Table of tcData fields

Field name Description of field Remarks

tcTag The test case tag is a string indicating the FVS test

case.

Example: 'RBS_I&V_7N_R.1.N.1'

Informational

tcName Test Case name, describing the test case’s task

Example: 'DRH: Setup RLS, SRB 3.4 kbps'

Informational

comment The comment field describes deviations from the

verification specification. TRs and CRs that have an

impact on this test script must be listed in the

comment field. This may also include information,

such as modifications of the FVS.

Informational

status Current status of this test case.

Usual values:

'RELEASE' : The test script is finished and meant for

regular use, i.e. regression testing.

'DEVELOPMENT' : The test scipt is currently under

development and should not be used for regression

testing.

Informational

rbsType Type of RBS, out of all the WRBS types produced by

Ericsson

Supported values: 3018, 3101, 3104, 3106, 3107,

3116, 3202, 3203, 3206, 3206M, 3216, 3303, 3308,

3402, 3412, 3418, 3502, 3512, 3518, 3922, 3967, and

ALL

rbsSubType RBS Subtype.

Supported values: RBS2, RBS3, RBS4, and ALL

rbsConfig RBS configuration, i.e. number of sectors and

carriers.

Supported values:

 <sector>x<carrier> i.e: 1x1, 3x2, 3x3 etc.

“ALL” is only valid for the

“sector x carrier”

specification. That is, 'ALL'

simply indicates all

 27

WCDMA Automation Workflow Analysis and Implementation

HS

EUL_2MS_TTI

TX_DIV

MIMO

RET

ASC

ALL‡

[7]

combinations of sectors and

carriers, it does not concern

the other values (such as HS).

Thus, if the field’s value is

'ALL', it only means all the

sectorXcarrier attributes are

included.

The value “HS” indicates that

the script needs an HSDPA

capable RBS.

EUL_2ms_TTI means

enhanced uplink with 2

milisecond transmission

intervals, thus a RBS must

support this type of carrier.

These features are defined in

3GPP specification.

rbsSw RBS software version

Example:

'P4-': Script supports revisions from project P4

onwards.

'-P5': Script supports revisions up to and including P5.

'R2A-R2D' : Script supports revisions between R2A

and R2D.

Supports both project

revisions (such as P4, P5) and

software revisions (such as

R3A).

For example, 'P5:R3A': Script

will run if R3A revision of

software, in the P5 project, is

on the node.

Moreover, a dash ('-') should

be used if trying to specify

that that the script supports

up to a revision.

nbapVer Nbap version

Example 4.6-, 5.9-, 6.9- and ALL

niteVer NITE version supported by the script.

Example:

R<version number>, example R20. Means R20 of

NITE is needed.

-R<version number>, example -R15. Means NITE

versions up to and including R15 are supported.

R<version number>-, example R25-. Means NITE

versions from R25 and later supported.

extConfig External tools that the test script needs. If more than one value is

‡ HS stands for HSDPA resource required, EUL_2MS_TTI stands for enhanced uplink 2mili-seconds transmission interval, TX_DIV stands for Tx Diversity,

MIMO stands for Multi antenna output/input, RET stands for Remote Electronic Tilt unit required, ASC stands for Antenna System Controller required, All

means no special configuration required

 28

WCDMA Automation Workflow Analysis and Implementation

Supported values:

RDBTH

MDL

MSSIM

RNCSIM

FCCU

given for this field, it means

the test position configuration

must contain equipment that

satisfies all the values. That is,

there is an AND relationship

between the values.

If MSSIM is included, then the

script needs a MS Simulator.

If RNCSIM is included, then

the script needs and RNC

simulator.

msConfig MSIM Configuration, capabilities

Supported values:

HSDPA

HSUPA,

EUL

MUE

MBMS

MIMO

TX_DIV

transmissionType Transmission type, capability

Supported values:

Chan_STM1_E1

E1

E3

IP

J1

STM1

T1

T3

ALL

transmissionProtocol
The type of the transmission protocol(s) supported.

Supported values:

IP

ATM

IP_ATM

ALL

IP_ATM is not supported until

later in P6.

rbsUeConnections
Which cells needs to be connected to the UE. For

example: a Test Case would require S1C1 and S1C2

to be connected.

Supported values:

S1C1

 29

WCDMA Automation Workflow Analysis and Implementation

S2C1

S3C1

...

 Test Script Body

1st Step: Initialize the environment variables

At the very beginning of every test script, initialization is required. This
avoids possible conflicts between tests in a sequence of test cases in a
test suite. At initialization, all of the variables will be initialized and set
to an initial value. Since every test case begins with this step, the
initialization method will usually will be placed in the test base class, so
that every script can reuse this function.

2nd Step: Initialize Pre-condition

As specified in the FVS, some test cases need specific preconditions to
be satisfied in order to run. These requirements are defined in the
setTcData block. Additionally, a test case precondition may include
some parameter changes, system configuration control, and so on. Thus,
setting up the system to satisfy all of the preconditions will be the 2nd
step in each test case script.

3rd Step: Test Script body

The test script’s body contains all of the actions and specifies the
expected results for this test case. Test developers should follow the
FVS, preferably using methods provided by either the test base class or
NITE platform. After each action, the script must check the result to
confirm that the RBS system under test is working properly. A variety of
check functions have been implemented in the test base class and NITE
platform. A list of these check functions can be found in [30].

Note that in different RBS software projects, i.e. P6 or P7, the RBS work
procedure, interface, or parameters may have changed (from earlier
versions). Therefore, test developers should be aware of such changes
and carefully implement the test script with the necessary adaptation to
these changes.

Moreover, if the result check is unsuccessful, then an exception will be
raised and the test case terminated after generating a log entry indicating
the nature of the error for subsequent analysis.

 Test Script End

Since the precondition and scenarios for each test case are different,
when a test case execution has finished, the setup precondition,
parameters and states must be cleaned up so that this test will not
influence the next test case. As a test design principle, every action in the

 30

WCDMA Automation Workflow Analysis and Implementation

test case should be stored in an action stack. At the end of each test case,
the restore process will run the opposite action in reverse order according
to the action stack. If the restoration procedure fails, an exception will be
raised to warn the tester and a RBS restart operation should be
performed.

Note that inverting the actions to return the RBS to a given state is
preferable to performing a restart because in live network, the RBSs are
not frequently restarted with those operations. The RBS’s stable working
status must be remained until something goes wrong.

 Restart RBS

For the test cases that change the RBS configuration, these changes will
not be saved after the test case’s execution. In another words, any (new)
settings are temporary. Ericsson’s WRBS setting parameters are stored
in a file called the “configuration version”. Thus, changes in parameters
will not be saved permanently in the configuration version file, but only
modified for the current test case. After a RBS restart, the unsaved
changes will be erased (i.e., they will not become permanent changes).
This makes it possible to restore a RBS to a known initial state after a
restart operation. The restart operation can be invoked by calling the
NITE function AL_API_restartrbs(). After the RBS restart, to ensure that
the next test case runs smoothly, this new test case first checks the
RBS’s status and will continue to execute the test case only after the
RBS software has been re-loaded and all the relevant components in the
RBS have been properly configured.

5.2.3 Legacy Regression Suite Usage

Within Ericsson’s WRBS I&V department, the test scripts are integrated in a test
suite called the “legacy regression suite”. When testers upgrade an RBS with the latest
software build, they start their testing with the legacy suite to verify that the legacy
functions generate the same output as previously. Currently, the legacy regression
suite takes serveral hours to run the entire suite (including time to log any errors).

Usually, the testers start the regression test in the afternoon and examine the
results of this test suite the next morning. Given these test results, the testers will
report their result(s) in a database and analyze all of the results. If there is any
problem with the RBS software or with the test script itself, then a trouble report
should be submitted indicating where there is a problem.

 Legacy Suite Run-time Environment

The legacy suite will be executed in a UNIX (or Linux) environment.
Moreover, the workstation will (pre-)load several load modules to ensure
that the legacy suite can be executed correctly. These modules are:

• Python 2.5.1
• NITE Platform (latest version)

 31

WCDMA Automation Workflow Analysis and Implementation

• NITE Scripts (latest version)
• Mobile station simulator with latest software version
• RNC simulator with latest software versions
• RBS Software, test version
• Test Environment, such as decoder, matched to RBS software

These modules should be carefully loaded and correctly chosen to ensure
that the test process will be accurate. This may require that the human
tester ensure that a specific version of the software is loaded into all of
the external test equipment (including simulators).

 Run Legacy Suite

Depending on the node configuration and RBS type some test cases
will be skipped as specified in the TcData description. Three examples
of running the test suite are shown below:

Running the Whole Test Suite python regr_TestSuite.py wrbs096 --testsuite=TestSuite \

--clearLogDir --nbapver=6.9

Run a Object of the Test Suite

in this case mbdSuite

python regr_TestSuite.py wrbs096 --testsuite=mbdSuite \

--clearLogDir --nbapver=6.9

Run only one TC, in this case

mbd_R4N3.Test

python regr_TestSuite.py wrbs096 –clearLogDir \

--nbapver=6.9 --testcase=mbd_R4N3.Test

NOTE: The --nbapver option defines the NodeB Application
Protocol (NBAP) version and --clearLogDir will clear the logs which are
stored in a temporary directory.

 Failure Analysis

1. The legacy suite is mainly used to do regression testing. The
main goal is to ensure the quality of each software build. At a
minimum the RBS has to work correctly, thus it is very important
that testing starts by running the legacy test suite. Following this
test suite, the testers check if any alarms occurred and that the
data in the database is as expected. The testers also need to
check the software feature license status (Ericsson WRBS
software features are all based on license. The customers have
to buy and activate a certain feature license if they want some
functions to be run in theire network), before activating any of
the features that they want to test. The operation is based on
the software testing philosophy in Ericsson WRBS I&V. It is
believed that all the features should be deactivated unless a
single test case needs to test and then activate a certain feature.

 32

WCDMA Automation Workflow Analysis and Implementation

 33

2. Since the testing environment is a combination of different
parts, such as Mobile Station simulator and RNC simulator, the
testers may have to check the status of each of these test
facilities. Usually, the testers try to ping the MS and RNC to see if
the equipment (or emulation extension) are on-line.

3. After running a test suite, the failed test cases will be re-run for
several times (which can be defined by the testers). As the
testers will collect the test result after all the test process, the
testers will analyze the results and re-run failed test cases to
establish if these are reproducible errors.

4. The legacy test suite generates test results along with log file
entries. During analysis, the testers utilize the log to identify if
the apparent problem is in the RBS software or test script itself.

WCDMA Automation Workflow Analysis and Implementation

Chapter 6 Automation Tool Evaluation and Status

In this chapter, an evaluation of the automated tool development will be
presented. Moreover, some future work will also be suggested. To evaluate the tools,
the evaluation compares the cost of developing and maintaining an automated test
environment versus the cost of doing the same testing manually or by relying on any
faults being found (or not found at all) in other parts of the verification chain.

6.1 Test Coverage Improvement

In Ericsson’s WRBS P7 Wiona Project, automated regression test was moved to
the development (testing) phase. As a result a significant number of trouble reports (in
the range of 50-70%) are detected internally within the RBS prior to delivery. This
means that during the development phase, the automated legacy test suite can be very
helpful finding the bugs concerning the legacy functionalities. Therefore, the number
of test cases executed during development testing will significantly increase, as will
the number of trouble reports generated. The legacy suite also has support for
configurations other than those which were used (in the field) in order to increase the
breadth of the test coverage, thus enabling factor testing to find likely faults. (For
details of factor testing see section 9.5.2 of [20].)

6.2 Money saved by avoiding the error slipping into the next stage

There is a factor of two (based on earlier figures from the WBTS project[8]) in
increased cost - if a potential problem propagates to the next stage. Therefore, if the
problem remains undiscovered beyond the current stage, then the cost of finding this
problem will increase even more. The automated test tool is designed to give a daily
indication of the software’s current status. During the development phase, legacy
regression testing provides an indication of the software’s status. Although, not all
failures of legacy tests lead to trouble reports, the automated tests give the developers
a “heads up” of the software’s status, while providing project management with
information related to the planned software deliveries to the subsequent stages of the
development chain (or delivery to the end user).

Moreover, some of the faults that legacy testing may detect, might never have
been found during manual verification (i.e., as manual verification or
integration testing may not perform the same functional tests) or only found at a later
stage in the development and testing chain (or after deployment at the customer’s site,
i.e., in the operator’s network). Detecting these faults during the development phase
by using automated tools greatly decreases the cost of errors. By stopping problems
from reaching the live network, a large costs savings can be achieved and the risk
associated with an upgrade is reduced.

 34

WCDMA Automation Workflow Analysis and Implementation

6.3 Impact on Development

The RBS system is a large and complex system, thus it is very hard (almost
impossible) to predict the impact on legacy code due to the introduction of new
functionality due to either new software or hardware. Therefore development projects
that introduce changes to legacy code will probably increase the number of trouble
reports generated. This is especially true given that I heard someone say that in P7
“things are done to the hardware that it was not originally designed for”. Whether this
statement is true or not, the RBS system is a very large system and making changes
that cause the hardware to operate in ways that it was not anticipated to operate are
even more likely to cause unexpected problems. In this setting, an automated testing
method gives the company the ability to test for unexpected impact(s) on the legacy
functionality. If problems are detected early, it may be possible to correct the problem
while the cost of correcting it is low.

A potential effect of integrating legacy testing with development testing is to
increase the stability of the resulting system, as it more likely that both the new and
legacy functions with both work – and that they will be compatible. Another potential
effect is that developer can be more aggressive in making changes to the legacy code,
rather than simply trying to make minimal patches – as they can quickly learn if a
major reorganization of the code retains the legacy functionality while facilitating the
addition of new functionality. If this effort is realized, then it may be possible to
simplify the code while enhancing the functionality – thus resulting in fewer lines of
code and fewer potential bugs!

6.4 Manual versus automated testing

Today the automated test tool automates more than 40% within all functional
regression tests. The cost of the automated tool maintenance versus the
manual regression testing of the automated test cases is an important metric. Manually
executing the current test cases for every build requires more human resources than
are available. However, with the automated tool these tests can be executed for a
number of different configurations daily (i.e., several times per week) – and at a cost
that is far less than what it would cost in human resources to conduct far fewer tests.

The number of trouble reports (concerning the RBS software and not the test
scripts themselves) written after the introduction of the automated test environment
has increased compared to the earlier manual case4. This is perhaps an indicator that
the automated tool significantly increases the probability of finding potential bugs.

4 Measurements show that the automated testing is up to twelve times more efficient than the manual regression test within the

same time period.

 35

WCDMA Automation Workflow Analysis and Implementation

6.5 Test coverage over time

Using the earlier manual regression test, all of the earlier functions could only be
checked within the time of the entire project period. However, the automated test
environment enabled regression testing to be executed for a large number of test cases
in a single night, thus giving developers useful feedback the next day. This
approached also reduced the time it takes for a new package build to reach a
customer. Figure 8 shows the increasing number of test cases that are being used with
this new automated test tool. (Note that the flatness in the curve for the July to August
period reflects the summer vacation period for most employees; and the spurt of
growth just before this period is due to lots of people trying to finish their work up
before the start of their vacation.)

KPI NITE Automation - Goal Scorechart

0

50

100

150

200

250

apr/08
maj/08

jun/08
jul/08

aug/08

sep/08

okt/08
nov/08

dec/08

jan/09

Outcome

Figure 8: Increase in the number of test cases of the automated test tool as a function of time.

This thesis project accomplished its basic goal of automating part of the
regression testing in Ericsson WRBS I&V. However, there remains additional work to
be done – some of the most immediate work is described in the next section.

6.6 Future work

Today automated testing handles 40% of all test cases. This increases to 57% if
all of the tests which require manual interaction are excluded. These manual test cases
(17% of all test cases) need human intervention (such as the observation of an LED or
pulling out/insertion of a plug-in module). In the near future, the development team is
considering deploying a web camera to further increase the number of test cases
which can be automated. It is anticipated that 70% of the existing manual test cases

 36

WCDMA Automation Workflow Analysis and Implementation

 37

can be automated. Thus the introduction of automated testing will supplants more
than 70% of all the previous manual test cases, but has enabled these 70% of tests to
be run daily - rather than only once over the entire testing cycle for a given release!

WCDMA Automation Workflow Analysis and Implementation

References

[1] Robert Oshana, DSP Software Development Techniques for Embedded and
Real-time Systems, Newnes, ISBN 0750677597, 9780750677592, page 345,
published, 2005

[2] Armstrong Process Group, Inc., Test Case Design with UML, Course
description, Armstrong Process Group, Inc., New Richmond, Wisconsin,
USA, 15 June 2006
http://www.aprocessgroup.com/training/pdf/APG_TestCaseDesign_Course
Desc_01_0804_v2_0.pdf latest visit 2009.02.01

[3] Ericsson, WRBS Regression Function Verification Specification, June 2008
(confidential document)

[4] Yuanfang Cai, Sunny Huynh, Tao Xie: A Framework and Tool Supports for
Testing Modularity of Software Design
http://www.cs.drexel.edu/~yfcai/Papers/ASE2007.pdf lastest visit
2009.02.02

[5] Martin Pol, Ruund Teunissen, and Erik van Veenendaal, Software Testing –
A Guide to the Tmap Approach, ISBN 0-201-74571-2, published by Person
Education Limited, UK, 2002

[6] Erik van Veenendaal and Martin Pol, “A Test Management approach for
structured testing”, Published in Achieving Software Product Quality, Erik
van Veenendaal and Julie McMullan (eds.), UTN publishers, Den Bosch,
The Netherlands, 1997. http://www.improveqs.nl/pdf/tmap.pdf

[7] Gunnar Kalsson, NITE TestScript Design Rules, 1/102 60-CXC 124 1020+
Uen, Ericsson Internal Document

[8] Summary of WBTS Project , Petter Isaksson, NITE Script Developer,
2005.11.10

[9] Pierr Jahan and Denis Degioanni, Third Generation Partnership Project
(3GPP) web site, http://www.3gpp.org, 2008, last accessed: 2009.01.31.

[10] Harri Holma and Antti Toskala (Editors), WCDMA for UMTS: Radio Access
for Third Generation Mobile Communications, Wiley Technology
Publishing, First edition, June 2000, 344 pages, ISBN-10: 0471720518 and
ISBN-13: 978-0471720515.

[11] Erik Dahlman, Stefan Parkvall, Johan Skold, and Per Beming, 3G Evolution,
Second Edition: HSPA and LTE for Mobile Broadband, Academic Press,
Second edition, October 2008, 648 pages, ISBN-10: 0123745381 and
ISBN-13: 978-0123745385.

[12] Rosaline Makar, "Get started with unit and component testing using IBM
Rational tools: A comprehensive guide for unit and component testing",

 38

http://www.aprocessgroup.com/training/pdf/APG_TestCaseDesign_CourseDesc_01_0804_v2_0.pdf
http://www.aprocessgroup.com/training/pdf/APG_TestCaseDesign_CourseDesc_01_0804_v2_0.pdf
http://www.cs.drexel.edu/%7Eyfcai/Papers/ASE2007.pdf
http://www.improveqs.nl/pdf/tmap.pdf
http://www.3gpp.org/

WCDMA Automation Workflow Analysis and Implementation

IBM, on-line tutorial, 11 October 2007,
http://www.ibm.com/developerworks/edu/ws-dw-ws-testing.html

[13] Dimitri van Heesch, Doxygen: Source code documentation generator tool,
Web page, Last modified 2 January 2009.
http://www.stack.nl/~dimitri/doxygen/

[14] RNC simulator User Guide (TietEnator, confidential) Lastest release
2008.11

[15] Test Mobile Maual Book (confidential) Latest release 2009.2

[16] ERICSSON WRBS3000 User Guide (confidential) Latest release 2009.4.6

[17] RDBTH User Guide, 1553-CAL 115 0784, (confidential) Latest release
2009.3.17

[18] FCCU User Guide (Ericsson product, confidential) Latest release 2008.8

[19] Python community, "pylint 0.16.0: python code static checker", web page,
Python Software Foundation, http://pypi.python.org/pypi/pylint - last
accessed 2009.02.01

[20] Daniel Galin, Software Quality Assurance: From Theory to Implementation,
Pearson Education, 2004, 590 pages, ISBN 0-201-70945-7, 9780201709452.

[21] IBM Clear Case introduction,
http://www-01.ibm.com/software/awdtools/clearcase/features/index.html?S_
CMP=rnav, last vist 2009.03.05

[22] Standardization and related activities -- General vocabulary, ISO/IEC Guide
2:2004 (replaced ISO/IEC Guide 2:1996, that had replaced ISO/IEC Guide
2:1991), 8th Edition (Trilingual), International Standards Organization,
Geneva, Switzerland, 2004, 60 pages.

[23] Yang Bin, Quality Assurance, Masters Thesis, Department of
Communication Systems, Royal Institute of Technology, Stockholm,
Sweden, work in progress.

[24] Christine B. Tayntor, Six Sigma software development, CRC Press, 2002,
322 pages, ISBN 0849311934, 9780849311932.

[25] Capers Jones, Applied Software Measurement, 3rd edition, McGraw-Hill
Professional, 2008, 662 pages, ISBN 0071502440, 9780071502443.

[26] W. H. C. Bassetti, William E. Lewis, and Gunasekaran Veerapillai, Software
Testing and Continuous Quality Improvement, 2nd Edition, CRC Press,
2004, 560 pages, ISBN 0849325242, 9780849325243.

[27] Stephen H. Kan, Metrics and Models in Software Quality Engineering, 3rd
edition, Addison-Wesley, 2003, 528 pages, ISBN 0201729156,
9780201729153.

 39

http://www.stack.nl/%7Edimitri/doxygen/
http://pypi.python.org/pypi/pylint%20-%20last%20accessed%202009.02.01
http://pypi.python.org/pypi/pylint%20-%20last%20accessed%202009.02.01
http://www-01.ibm.com/software/awdtools/clearcase/features/index.html?S_CMP=rnav
http://www-01.ibm.com/software/awdtools/clearcase/features/index.html?S_CMP=rnav

WCDMA Automation Workflow Analysis and Implementation

 40

[28] Peter Farrell-Vinay, Manage Software Testing, CRC Press, 2008, 600 pages,
ISBN 0849393833, 9780849393839.

[29] Jeff Younker, Foundations of Agile Python Development, Apress, 2008, 416
pages, ISBN 1590599810, 9781590599815

[30] NITE Scripts Function list (Ericsson Confidential) Latest release 2009.4.19

www.kth.se

TRITA-ICT-EX-2009:4

