
Master of Science Thesis
Stockholm, Sweden 2009

COS/CCS 2009-01

H E N G C H O N G Z H A N G

Non-binary Authentication: Supplicant

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Non-binary Authentication: Supplicant

Hengchong Zhang

hzh@kth.se

Supervisor and Examiner:

Professor Gerald Q. Maguire Jr.

Master of Science Thesis

Department of Communication Systems

School of Information and Communication Technology

Royal Institute of Technology (KTH)

Stockholm, Sweden

February 24th, 2009

mailto:hzh@kth.se

Abstract

There are a number of authentication methods for wireless local area networks. The
IEEE 802.1x standard is one such method. This standard specifies a port-based access
control protocol. There are three entities involved: a supplicant (a device that wishes
to have network access and perhaps other services), an Access Point (AP) or other
port to which access is to be controlled, and an Authentication Server (AS). The goal
of this project was to design, implement, and evaluate a prototype of a non-binary
alternative to IEEE 802.1x authentication. This report focuses on the supplicant.
Specifically it describes the design, implementation, and evaluation of a supplicant
program to test and stress the authenticator, in order to evaluate a non-binary
authentication process.

Following, a brief introduction is given to the problem that is to be solved, a number
of existing IEEE 802.1x supplicants are described and compared. Following this, a
number of potential non-binary authentication processes are analyzed. The ability of a
supplicant to send and receive packets before and after authentication is also
examined. Based upon our implementation and evaluation of a supplicant and an
emulation of the non-binary authentication process, we conclude that non-binary
authentication is both feasible and valuable. Furthermore, the thesis evaluates why
and how non-binary authentication is valuable from the viewpoint of a supplicant.
Additional future work is suggested at the end of this thesis.

Key words: Supplicant, authentication, IEEE 802.1x, non-binary authentication

 i

Sammanfattning

Det finns ett antal metoder för trådlösa lokala nätverk. IEEE 802.1x-standarden är en
sådan metod. Denna standard anger en port-baserad passagekontroll protokollet. Det
finns tre enheter som är inblandade: en supplikant (en enhet som vill ha tillträde till
nät och kanske andra tjänster), ett Access Point (AP) eller annan hamn som tillgång är
att vara kontrollerad, och en Authentication Server (AS). Målet med projektet var att
utforma, genomföra och utvärdera en prototyp av en icke-binära alternativ till IEEE
802.1x-autentisering. Denna rapport fokuserar på supplikant. Specifikt beskrivs
utformning, genomförande och utvärdering av en supplikant program för att testa och
betona authenticator, för att utvärdera ett icke-binära autentiseringsprocessen.

Efter en kort introduktion ges till de problem som ska lösas, ett antal befintliga IEEE
802.1x supplikants beskrivs och jämförs. Efter detta har ett antal potentiella
icke-binära autentisering processer analyseras. Möjligheten för en supplikant att
skicka och ta emot paket före och efter autentisering är också undersökas. Baserat på
vårt genomförande och utvärdering av en supplikant och en emulering av den
icke-binära autentisering kan vi dra slutsatsen att icke-binära autentisering är både
möjligt och värdefullt. Dessutom, avhandlingen utvärderar varför och hur icke-binära
autentisering är värdefull ur ett supplikant. Ytterligare framtida arbetet föreslås i slutet
av denna uppsats.

Nyckelord: Supplikant, autentisering, IEEE 802.1x, icke-binära autentisering

 ii

Acknowledgement

During the entire thesis project, I received much help, support, and encouragement
from several people. Without their help, it would be impossible for me to complete
this project. Here, I would like to express my gratitude to all of them.

First, I would like to express my deep and sincere appreciation to my supervisor and
examiner: Professor Gerald Q. Maguire Jr. He is so knowledgeable, insightful,
gentle, and tolerant that I could not have finished this thesis project without his kind
help and guidance. In particular I received valuable comments and feedback from him
regarding my report. I can’t imagine how much time he spent on it. Each time I faced
difficulties, he always gave me great assistance with patience. I will never forget his
encouraging words which helped me to conquer any challenge. I feel so lucky to have
such a good tutor. His positive and easy-going attitude will stay with me all my life.

Second, I would like to thank my colleagues Guo Jia and Zhou Jia. We discussed all
of the details of this project and worked together. While each of us worked on
different aspects of the problem (with Guo Jia working on the authenticator and Zhou
Jia working on the authentication server). Although the time was short, it was an
unforgettable experience.

In addition, I am very grateful to my good friends, especially to Guo Yong, Dai Kaiyu,
Janko Frick, and Ren Xueliang. Thank you so much for your encouragement and
support.

Last but not least, I would like to thank my beloved parents who loved and support
me at all times. Any progress or achievement I have made, I would like to share with
them.

 iii

Table of Contents

Abstract ...i
Sammanfattning..ii
Acknowledgement.. iii
Table of Contents...iv
List of Figures ..v
List of Tables ...vi
List of acronyms and abbreviations..vii

1. Introduction..1
1.1 Problem Statement..1
1.2 Goals of this thesis ...2

2. Background and related work ..3
2.1 WPA..3
2.2 Authentication for Dial-up access ..3
2.3 IEEE 802.1x ...4
2.4 EAP ..7

2.4.1 What is EAP...7
2.4.2 EAPOL...9
2.4.3 PEAP..12

2.5 RADIUS ...13
2.6 Related Research ..15

2.6.1 Who is the Supplicant ..15
2.6.2 Available 802.1x supplicants ...16

3. Analysis of non-binary authentication process ..20
3.1 Handover process in wireless networks ...20
3.2 When is the EAP-Success returned - several scenarios......................................22

4. Experiment Analysis ..26
4.1 Measurement tool ...26
4.2 Experiments..26

4.2.1 After the supplicant is authenticated by KTHOPEN26
4.2.2 Before the supplicant is authenticated by a D-Link access point29
4.2.3 After the supplicant is authenticated by D-Link ..34

5. Implementation, testing, and analysis of a new supplicant......................................37
5.1 Implementation of a new supplicant ..37
5.2 Imitation of a non-binary AP..40
5.3 Test and Analysis ..41

6. Conclusions and Future Work..52
6.1 Conclusions ..52
6.2 Future work ..52
References ..54

Appendix A Source code for the new supplicant ..58
Appendix B Source code for emulation..63

 iv

List of Figures

Figure 2.1 Three entities in Wired LANs...5
Figure 2.2 Three entities in Wireless LANs...6
Figure 2.3 802.1x in the context of the surrounding protocol stack.....................................7
Figure 2.4 EAP message format...8
Figure 2.5 Request/Response message format ...8
Figure 2.6 EAPOL frame format for Ethernet..9
Figure 2.7 EAP message flow ..11
Figure 2.8 PAP Authentication Flow..14
Figure 2.9 CHAP Authentication Flow ..14
Figure 2.10 RADIUS Message Format ..15
Figure 3.1 Handover process in wireless networks..21
Figure 3.2 AP returns EAP-Success after getting a supplicant’s identity24
Figure 3.3 AP returns EAP-Success after getting EAP-Start message...............................24
Figure 3.4 AP returns EAP-Success after association phase..25
Figure 4.1 Log in page ...27
Figure 4.2 Log in OK page ..27
Figure 4.3 SSLv3 / TLS authentication..28
Figure 4.4 Packets captured after the supplicant is authenticated by KTHOPEN28
Figure 4.5 WIRE1x automatically chose a wireless interface..29
Figure 4.6 Choose the WiFi network interface ..29
Figure 4.7 Scanning available wireless networks ..30
Figure 4.8 Configuration of profile name and SSID..31
Figure 4.9 Editing profile...31
Figure 4.10 Select authentication method ..35
Figure 4.11 Set username and password ..35
Figure 5.1 Non-binary authentication process ...41
Figure 5.2 Initial interface of the emulation program ..44
Figure 5.3 Starting the supplicant and authenticator programs..45
Figure 5.4 Before the supplicant sent EAP-Start ...46
Figure 5.5 Interaction information shown after clicking Request (the upper figure shows

the authenticator’s interface and the lower figure is supplicant’s)46
Figure 5.6 Enter 5 characters ...47
Figure 5.7 The user interface of the authenticator (top) and supplicant (bottom) after the

supplicant has entered 25 characters ...47
Figure 5.8 The second step of the information interaction...48
Figure 5.9 Authentication Success information ...49
Figure 5.10 As the supplicant was assigned more bandwidth a longer text string could be

successfully sent..50
Figure 5.11 Authentication Failure information...50
Figure 5.12 The supplicant’s access was denied ..51
Figure 5.13 Capture of the traffic in the emulator..51

 v

List of Tables

Table 2-1 IEEE 802.1x Supplicants ...19
Table 4-1 Interaction between the supplicant and the authenticator32
Table 4-2 Assign IP address to the supplicant manually ..33
Table 4-3 Send traffic to the supplicant from another host ..34
Table 4-4 After the supplicant was authenticated ..36
Table 5-1 Interaction process between the supplicant and the authenticator........................42

(before the supplicant was authenticated) ...42
Table 5-2 Interaction process between the supplicant and the authenticator........................43

(after the supplicant was authenticated) ..43

 vi

List of acronyms and abbreviations

AAA Authentication, Authorization, and Accounting
ADSL Asynchronous Digital Subscriber Line
AKA Authentication and Key Agreement
AP Access Point
ARP Address Resolution Protocol
AS Authentication Server
ASF Alerting Standards Forum
BSD Berkeley Software Distribution
CA Certificate Authority
CCMP Counter Mode with Cipher Block Chaining Message Authentication

Code Protocol
CHAP Challenge Handshake Authentication Protocol
CSV Comma Separated Values
DB DataBase
DHCP Dynamic Host Configuration Protocol
DNS Domain Name System
EAP Extensible Authentication Protocol
EAPOL EAP Over LAN
FDDI Fiber Distributed Data Interface
GUI Graphical User Interface
IANA Internet Assigned Numbers Authority
IAS Internet Authentication Service
ICMP Internet Control Message Protocol
IEEE Institute of Electrical and Electronics Engineers
IETF Internet Engineering Task Force
IGMP Internet Group Management Protocol
ISP Internet Service Provider
LAN Local Area Network
LEAP Light EAP
MAC Medium Access Control
MD5 Message-Digest algorithm 5
NAK Negative Acknowledge
NAS Network Access Server
PAE Port Access Entity
PAP Password Authentication Protocol
PC Personal Computer
PDA Personal Digital Assistant
PEAP Protected EAP
PPP Point to Point Protocol
RADIUS Remote Authentication Dial In User Service
SIM Subscriber Identity Module

 vii

TKIP Temporal Key Integrity Protocol
TLS Transport Layer Security
UDP User Datagram Protocol
WEP Wired Equivalent Privacy
WPA Wi-Fi Protected Access
VoIP Voice over IP

 viii

1. Introduction

1.1 Problem Statement

With the rapid development of IEEE 802.11 wireless local area networks
(WLANs), both companies and ordinary people have benefited due to the use of
wireless data communications technology. Companies reduce the cost of installing
wiring and provide greater convenience to their employees. For most users, WLANs
enable them to enjoy Internet services easily with a laptop or personal digital assistant
(PDA) in a comfortable surrounding.

When a user wants to access an IEEE 802.11 wireless network, a common
security feature is to require authentication of the wireless device before providing this
user’s device with any service[1]. Currently, there are a number of authentication
methods for WLANs. In this project, we focus on IEEE 802.1x standard. In Chapter 2,
we will examine this standard in detail. Here, we will only give a brief introduction to
the authentication process when using IEEE 802.1x in the context of authentication,
authorization, and accounting (AAA) for WLANs.

IEEE 802.1x is a port-based access control protocol which was originally
designed for the point-to-point protocol (PPP)[2], then adapted to wired network ports
and later to WLANs. There are three entities involved: a supplicant, an access point
(AP) or other port to which access is to be controlled, and an authentication server
(AS). In this report we will focus on infrastructure mode WLANs, hence the resource
being controlled is traffic passing through an AP. However, a similar approach can be
used to control access via a wired network port (for example, an Ethernet switch). The
process begins when a supplicant wants access to the network. After the IEEE 802.11
wireless interface of the supplicant associates with an IEEE 802.11 AP, this AP will
only permit the supplicant to access the network after this supplicant is authenticated
by the AS and only if it is authorized to access the network. The AS decides whether
the supplicant represents a valid user who should get access to the network and in
many cases can even decided what sort of access should be granted (for example, how
much bandwidth this user’s device should receive). We refer to this authentication
process as a binary decision, because the AP decides whether to forward or not
forward any traffic (other than authentication traffic) for this supplicant (thus it is a
binary decision). Hence, if the supplicant is authenticated by the AS, then the AP will
forward traffic otherwise it will not. However, because the time to make this decision
is relatively long (in comparison to the inter-arrival spacing of voice over IP (VoIP)
packets) a mobile user who moves into the coverage area of this access point will not
be able to send or receive packets for some time – in the case of VoIP this will result
in a gap in the conversation or if the delay is too longer perhaps even premature

 1

termination of the conversation. Thus the problem with the existing authentication and
authorization procedure is that the AP will not provide any service until the device has
been both authenticated and authorized, despite the fact that we might expect that
most devices will in fact be successfully authenticated -- therefore providing poor
services to legitimate users!

1.2 Goals of this thesis

Based on the problem stated above, in this thesis project, we try to design a
non-binary authentication system as an alternative to IEEE 802.1x. With this system,
a supplicant can maintain a connection via the network at a low level (of traffic) –
even without being authenticated. Thus the user who moves into the coverage of a
given AP will be able to send and receive a limited number of packets for a limited
period (hence continuing their voice over IP session or other activity) in parallel with
the authentication and authorization process; therefore, unlike the situation today, the
user will not experience any handover latency due to AAA. The proposed
authentication system will dynamically manage and control the maximum bandwidth
made available to the supplicant, thus improving the perceived performance for valid
users, while minimizing the resources given to invalid users.

This thesis project mainly focuses on the supplicant. In particular this thesis was
to focus on a supplicant that would like to utilize resources without being a valid user,
i.e., it tries to sneak more packets through the authenticator than it should normally
able to send. The goal of this supplicant is to probe the authentication system to see if
it allows the supplicant to send any extra traffic, how much traffic this supplicant can
send before it is stopped, and how the authentication system responds when the
supplicant sends more traffic than it is expected to send.

This thesis project was done with cooperation with another two thesis projects by
Zhou Jia and Guo Jia who are developing other parts of the non-binary authentication
system. My specific task was to test and stress Guo Jia’s authenticator.

 2

2. Background and related work

2.1 WPA

The Institute of Electrical and Electronics Engineers (IEEE) standardization
working group[3] which focuses on Local Area and Metropolitan Area Networks (i.e.,
the 802 working group)[4] is further divided into different working groups. One of
them is 802.11 which establishes standards for WLAN. At first, IEEE 802.11 defined
only one security mechanism: Wired Equivalent Privacy (WEP). Unfortunately,
security experts found that there were some major weaknesses in WEP[2,5]. For
example, it is vulnerable to malicious tampering of messages and lacks protection
against replay attacks. Therefore, a solution was needed to address these problems.

In November 2002, the Wi-Fi Alliance introduced a new security mechanism
based on a draft of IEEE 802.11i, in order to quickly promulgate a subset of the
proposed security enhancements. This step on the way to IEEE 802.11i is called Wi-Fi
Protected Access (WPA)[6,7]. The Wi-Fi Alliance provides interoperability testing
and certification of IEEE 802.11 WLAN equipment. Today new WLAN products
support WPA. For some older equipment, vendors have developed software upgrades
to support WPA - without requiring a change of equipment.

WPA uses the Temporal Key Integrity Protocol (TKIP) which is a more secure
encryption method. Also, WPA supports a number of different network modes. In
home mode (without an authentication server), users can get access by entering a
network key. In enterprise mode, WPA needs an authentication server and it supports
IEEE 802.1x and the Extensible Authentication Protocol (EAP). In this thesis we will
focus on the enterprise mode - as it is in this mode that the effect of the time required
to authenticate a user's device is most significant. In addition, the enterprise mode is
most likely going to be used in an environment with large numbers of APs and user
devices; hence, the total traffic load to perform authentication and authorization is
likely to be significant -- further increasing the delay in performing both processes.

2.2 Authentication for Dial-up access

Before we describe the concepts underlying IEEE 802.1x, it is very useful to
introduce an authentication method developed earlier for use with dial-up access users.
This authentication method is useful because both EAP and Remote Authentication
Dial-In User Service (RADIUS) protocols are based on the concepts developed to
support dial-up access.

 3

Although broadband network access is very common nowadays, many users still
use dial-up methods to access the internet. They receive a phone number, username,
and password from their Internet Service Provider (ISP), and after a simple
configuration of their computers (and in some cases their modem) their modem can
dial this number and their computer can use this username and password to access the
network via this ISP's access network. The connection is a point to point connection
between two modems and is based on a protocol called the Point-to-Point Protocol
(PPP)[8]. As a data link layer protocol, PPP is used for connections over both
synchronous and asynchronous circuits[9]. There are two authentication methods in
PPP which are commonly used by ISPs. One method is called the Password
Authentication Protocol (PAP). In this method a user’s name and password are sent in
plain text. This means that eavesdroppers can intercept them easily. The other method
is called the Challenge Handshake Authentication Protocol (CHAP). It is based on a
challenge response mechanism and offers better security than PAP, but it is still not
very secure. To solve this problem, the Extensible Authentication Protocol (EAP) was
developed by the Internet Engineering Task Force (IETF) and defined in RFC 2284
(PPP Extensible Authentication Protocol)[10]. The details of EAP will be presented in
section 2.4.

2.3 IEEE 802.1x

What is IEEE 802.1x? According to the 802.1X-2004 standard, it is described as
follows:

“Port-based network access control makes use of the physical access
characteristics of IEEE 802 LAN infrastructures in order to provide a means of
authenticating and authorizing devices attached to a LAN port that has point-to-point
connection characteristics, and of preventing access to that port in cases in which the
authentication and authorization process fails. A port in this context is a single point
of attachment to the LAN infrastructure.” [18]

Therefore, IEEE 802.1x provides compatible authentication and authorization
mechanisms for devices interconnected by IEEE 802 LANs and WLANs. Normally, it
involves three entities[18]:

Supplicant The supplicant is an entity at one end of a point-to-point

LAN segment that seeks to be authenticated by an
Authenticator attached to the other end of that link. Thus the
supplicant is an entity which wants to connect via this
network. A number of other names are frequently used to
describe this entity, such as “user”, “client” or
“authenticating peer”[2]. In this thesis, we use the term
“supplicant” to describe this entity

 4

Authenticator The authenticator is an entity at the other end of a

point-to-point LAN segment that facilitates authentication of
the entity attached to the other end of that link. Thus the
authenticator controls network access by supplicants.

Authentication Server An authentication server provides an authentication service

to an Authenticator. This service determines, from the
credentials provided by the Supplicant to the authentication
server, whether the Supplicant is authorized to access the
services provided by the system in which the Authenticator
resides. Thus it is the authentication server that makes
authorization decisions, while the authenticator is in charge
of enforcing this decision.

Although our main concern is to apply 802.1x to WLANs, from the definition of

802.1x, we see that 802.1x was originally developed for wired LANs and dialup
connections using PPP. In the former case it was used to prevent someone from
getting access to the internet simply by plugging a cable into a jack on the wall unless
they have authorization. The relationship among the three entities in a dialup PPP
scenario is shown in Figure 2.1.

Supplicant Network Access Server

Figure 2.1: Three entities in Wired LANs

As shown in Figure 2.1, the supplicant wishes to access the network by

connecting via a Network Access Server (NAS). We will assume that initially, the
supplicant does not have access to the network. Therefore, the NAS initially prevents
the supplicant from accessing the network. The NAS has no authority to make
decisions about whether to let the supplicant access the network or not, instead this
decision is made based upon entries in an authentication database operated by the
authentication server. Therefore, the authenticator function within the NAS has to
communicate with the authentication server before it can change the state of the
switch to closed (i.e., granting the supplicant access to the network). Only when the

 5

supplicant has successfully been authenticated by the authentication server, does the
NAS close the switch in order to permit the supplicant to access the network.

When applying IEEE 802.1x to wireless LANs (WLANs), the Access Point (AP)
takes the place of the NAS and wireless links take the place of physical (cable)
connections. The wireless communication between a supplicant and an AP is assumed
to be based on the Extensible Authentication Protocol (EAP) or more precisely EAP
over LAN (EAPOL). The details of EAP and EAPOL[17], we will be presented in
section 2.4. The relationship among the three entities in the case of a WLAN are
shown in Figure 2.2.

Supplicant Access Point

Figure 2.2 Three entities in Wireless LANs

In Figure 2.2, the wireless device, such as a PDA or laptop, is a supplicant which

wants to access the network. In order to do so it must respond to the authenticator’s
request for data. Note that the authenticator is not the AP itself, but could be a
component of the AP. In Figure 2.2, the authenticator is shown inside the AP, but it
could be also implemented by another device. As in the wired LAN case, once the
authentication server authenticates the supplicant, then the authenticator will enable
the supplicant to access the network and all packets from the authenticated client may
pass through the (logical port) switch.

As stated earlier IEEE 802.1x is a port-based authentication method. The
authenticator operates controlled and uncontrolled ports. Both the controlled and
uncontrolled ports are virtual ports. However, they can share the same physical
connection to the LAN simply by filtering out frames which are destined for the
network when the logical switch is open[11]. Additionally, both the supplicant and the
authenticator have a Port Access Entity (PAE). Before the supplicant is authenticated,
the authenticator’s controlled port maintains the switch in an unauthorized state. In
this state the only traffic allowed to pass is EAPOL. After the supplicant is
authenticated, the authenticator’s port will be set to the authorized state.

Based on EAP, IEEE 802.1x provides several authentication mechanisms for

 6

WLANs. Examples of these authentication mechanisms are[12]:

• EAP-Message Digest 5 (EAP-MD5)[14].
• Certificate-based solutions such as EAP-Transport Layer Security

(EAP-TLS)[13].
• EAP-Tunneled TLS (EAP-TTLS)[15].
• Lightweight Extensible Authentication Protocol (LEAP)
• Smart-card-based solutions such as EAP-Subscriber Identification Module

(EAP-SIM).
• Password-based solutions such as EAP-One Time Password (EAP-OTP).
• Protected Extensible Authentication Protocol (PEAP)[16].

2.4 EAP

2.4.1 What is EAP

In previous sections, we have mentioned EAP many times. In this section, we will
specify EAP in greater depth following a general introduction.

The Extensible Authentication Protocol (EAP) is defined by RFC 3748 as: “An
authentication framework which supports multiple authentication methods. EAP
typically runs directly over data link layers such as Point-to-Point Protocol (PPP) or
IEEE 802, without requiring IP. EAP provides its own support for duplicate
elimination and retransmission, but is reliant on lower layer ordering guarantees.
Fragmentation is not supported within EAP itself; however, individual EAP methods
may support this.” [17]. The 802.1x protocol stack is shown in Figure 2.3.

Figure 2.3 802.1x in the context of the surrounding protocol stack

 7

From this definition, we learn that IEEE 802.1x is not an authentication method,
but rather that it makes use of EAP in order to support several authentication methods:
EAP-TLS, EAP-MD5, and so on. Besides these authentication methods, other special
methods are also allowed between the supplicant and the authenticator. These
methods have not been defined by the standard, but they can be added later if they
become popular. That is why EAP is called extensible.

Different types of messages are sent during the authentication process. In RFC
3748, four types of messages are mentioned[17]:

Request Used to send messages from the authenticator to the supplicant.
Response Used to send messages from the supplicant to the authenticator.
Success Sent by the authenticator to indicate access is permitted.
Failure Sent by the authenticator to indicate access is declined.

All EAP messages have a similar format, shown in Figure 2.4:

Figure 2.4 EAP message format

The code field is eight bits long and indicates the type of the message. Codes 1 to

4 stand for Request, Response, Success, and Failure respectively. The identifier field
is an eight bit long value used to match the response with the request. Length is a
sixteen bit field indicating the overall number of bytes in the EAP message. The data
field is zero or more bytes in length. The contents of the data field are the actual data
sent by supplicants and authenticators.

The messages of Success and Failure indicate the result of the authentication
server’s decision. The Request and Response messages indicate what type of
authentication is used. To indicate this, an extra eight bit field called Type is added to
the basic message format. The resulting format of a Request or Response message is
shown in Figure 2.5.

Figure 2.5 Request/Response message format

The type field indicates what information is being carried in the EAP message.

Also, it identifies different authentication methods. In RFC 3748, only type values 1
to 6 and 254 to 255 are defined. The other values are available to use for new
authentication methods. Type value 1 “Identity” is the basic, but very important

 8

authentication method. Initially, a request message with type value 1 is sent by the
authenticator to a new supplicant. The supplicant replies with a response message
with type value 1. This response message includes the suppliant’s identity information
such as a username which will be presented as the supplicant’s identity to the
authentication server. There are also some special rules for different type values[17].
For example, all EAP implementations must support types 1 to 4 (respectively Identity,
Notification, NAK, MD5-Challenge) and type 254 (Expanded types); NAK can only
be applied to Response packets. Also, type Identity, Notification, and NAK are
considered special case types.

2.4.2 EAPOL

RFC 3748 does not specify how messages are sent among the entities. EAP was
originally designed for a dial-up authentication process rather than authentication on a
LAN (or WLAN). To define how EAP messages should be transferred on a LAN, a
protocol named EAP encapsulation over LANs (EAPOL) is defined in IEEE 802.1x to
transport these messages among the different entities.

EAPOL encapsulations have been specified for IEEE 802.3/Ethernet and Token
Ring/FDDI. The EAPOL encapsulation used for IEEE 802.3/Ethernet can also be used
for other LAN media access and control (MAC) protocols technologies which have
the same basic frame format as Ethernet[18]. The frame format of an EAPOL used by
Ethernet is shown in Figure 2.6.

 2 bytes PAE Ethernet Type

 1 byte Protocol Version

 1 byte Packet Type

 2 bytes Packet Body Length

 N bytes

Packet Body

Figure 2.6 EAPOL frame format for Ethernet

There are five types of packets. They are briefly introduced as follows:

EAPOL-Start If a supplicant wants to access the internet, the

first step it needs to take is to find a viable
authenticator. However, the supplicant does
not know where it can find an available

 9

authenticator nor does it know the
authenticator’s MAC address. IEEE 802.1x
defined a EAPOL-Start message to solve this
problem. The supplicant sends an
EAPOL-Start message to a special
group-multicast MAC address
(01:80:c2:00:00:03) which specifies all
authenticators. In this way, the supplicant may
find an existing authenticator and notify this
authenticator that it is ready.

EAPOL-Logoff An EAPOL-Logoff message indicates that the

supplicant wishes to be cut off from the
network. When the authenticator receives this
message, it will return the port to the
uncontrolled state.

EAPOL-Packet This type of message is used for sending the

actual EAP messages (including Request,
Response, Success, and Failure).

EAPOL-Key This type of message is used for sending

session key information between the
authenticator and the supplicant.

EAPOL-Encapsulated-ASF-Alert This type of message is used for allowing

alerts to be forwarded through a port which is
in the unauthorized state[18]. Currently, it is
used by the Alerting Standards Format (ASF)
[40].

These messages are sent via EAPOL among supplicant, authenticator, and

authentication server. Next, we will examine the EAP message flow and the complete
process.

 10

Figure 2.7 EAP message flow

As figure 2.7 shows, if the supplicant wants to access the network, it first needs to

find an authenticator. The supplicant sets up a connection with the authenticator by
sending an EAPOL-Start message. Once the authenticator is alerted by the supplicant,
it will send a Request Identity message back to the supplicant. In some cases, the
authenticator does not need to do this if it knows the supplicant’s identity by some
other methods. Then, the supplicant needs to send a Response Identity message back
to indicate its identity. During this process, the authentication server is not (yet)
involved. Now that the authenticator knows the identity of the supplicant, it needs to
communicate with the authentication server to learn if the supplicant is to be
permitted access to the network. As noted earlier the authentication server is
responsible for making this decision. Therefore, the authenticator does not need to
know which kind of authentication method is used. Its task is simply to forward a
Request message from the authentication server to the supplicant and a Response
message from the supplicant to the authentication server. The authenticator does not
care about the contents of these messages, except for the Success and Failure message
from the authentication server. If the authenticator receives a Success message, it will
enable the supplicant to access the network, otherwise the supplicant will be denied
access.

 11

2.4.3 PEAP

As described in last section, EAP is used for authentication of IEEE 802.1x and it
supports several authentication methods. Besides the methods we mentioned earlier,
EAP-Double-TLS, EAP-SAKE, and EAP-POTP methods have been proposed in
recent years[41]. However, we will not specify all of them as their details are outside
the scope of this thesis. Readers who are interested in these methods are referred to
[41].

There are also some drawbacks in EAP. For example, the EAP negotiation lacks
protection, thus the EAP Identity message can be eavesdropped by an attacker. Also,
there is no standardized mechanism for key exchange, no built-in support for
fragmentation and reassembly, and no support for fast reconnection[19]. One method
to solve these problems is to do the EAP negotiation in a private encrypted way. Thus,
the authentication process is much safer and the supplicant’s identity will not be
disclosed. This is the general principle of PEAP.

Protected Extensible Authentication Protocol (PEAP) is a method to safely send
authentication information over wired or wireless networks[19,20]. It was developed
by Cisco Systems, Microsoft, and RSA Security as an open standard. Today it is
widely used. To make the authentication process more secure, PEAP uses server-side
only public key certificates to create a secure TLS tunnel between the supplicant and
the authentication server. As a result, the whole authentication process can de divided
into two phases: authentication and secure message transport.

In the first phase, the authentication process is similar to the usual EAP
negotiation. The authenticator sends a Request packet to the supplicant to inquire its
identity. The supplicant replies with a Response packet to the authenticator to state its
identity. This identity information indicates which authentication method is to be used.
Given this information the authentication server can respond appropriately. However,
the supplicant does not actually have to send its real identity in the first phase. Instead,
this identity can be transferred in the second phase. During the first phase, TLS is
used to setup a safe and private connection between the supplicant and the
authentication server. Note that only the server is authenticated in this phase. This is
because the server needs to prove its identity in order to be trusted by the supplicants

(in order to avoid passing the supplicant identity and credentials to a fake
authentication server).

In the second phase, all the EAP messages are sent via the encrypted TLS session
established in the first phase. Now the supplicant can reveal its real identity knowing
that only the authentication server can see this information. However, the supplicant’s
identity may not be trusted at the beginning of the second phase since any attacker
could perform the TLS negotiation with the authentication server and setup a TLS

 12

connection. Therefore, the supplicant must authenticate itself during the second phase.
Note that in addition to authenticating itself for the TLS session the supplicant also
authenticates itself to the authentication server for the purposes of gaining access to
the network (which was the whole point of the overall process!).

2.5 RADIUS

Remote Authentication Dial In User Service (RADIUS) is a very commonly used
component in the authentication process. RADIUS is an authentication, authorization,
and accounting (AAA) protocol used for IP networks[21,22]. It was first introduced
by Merit network in 1991 in order to control dial-up access. The first RADIUS RFC
was published in 1997[44]. This was replaced later by RFC 2865[21]. RADIUS has
been widely applied for network access authentication and many open source
RADIUS servers are available.

As we mentioned above, RADIUS was initially used for dial-up access control
which is based on a point-to-point protocol. PAP and CHAP are the two authentication
methods most strongly associated with PPP. When using these two authentication
methods, at most four types of packets are sent between the Network Access Server
(NAS) and the RADIUS Authentication Server (AS)[21]:

• Access-Request (from the NAS to the AS)
• Access-Challenge (from the AS to the NAS)
• Access-Accept (from the AS to the NAS)
• Access-Reject (from the AS to the NAS)

The PAP authentication method is comparatively simple. First, the dial-up user
connects to the NAS. Then the user sends a user name and password to the NAS to
prove its identity. The NAS will send an Access-Request message to the RADIUS
authentication server which contains the user’s account information. The RADIUS
authentication server indicates its decision by sending an Access-Accept or
Access-Reject message back to the NAS. This authentication flow is shown in Figure
2.8. However, this method is rather insecure since the password is sent in plaintext
and it can be easily captured by malicious persons.

 13

Figure 2.8 PAP Authentication Flow

The other authentication method, CHAP, is a little bit more secure. In this method,
the user first sends a user name to the NAS. Then the NAS sends back a challenge to
the user. This challenge is a random number. When the user receives the challenge, it
encrypts the challenge with its own password to generate a response. The user sends a
new response to the NAS. The NAS sends an Access-Request message to the AS by
forwarding the challenge, response, and identity information to the RADIUS
authentication server and waits for its decision (in the form of an Access-Accept or
Access-Reject message). This authentication flow is shown in Figure 2.9.

Figure 2.9 CHAP Authentication Flow

The basic format of a RADIUS message[21] is shown in Figure 2.10. The 8 bit

code field indicates the type of the message. Code values from 1 to 3 represents
Access-Request, Access-Accept, and Access-Reject message correspondingly. While
value 11 indicates an Access-Challenge. The 8 bit identifier field is used for matching
requests and replies. The 16 bit length field indicates the total number of bytes in the
message. The 128 bit authenticator field is used for authenticating the feedback from

 14

the RADIUS server. Each message can carry one or more attributes and each one is a
self-contained package of information. In addition, new attribute values can be
defined which makes RADIUS extensible. Attribute value 26 enables vendors to
implement their own proprietary hardware and software extensions. Using this feature,
Microsoft has designed and implemented MS-CHAP to support Microsoft’s
proprietary dial-up protocols[23].

Figure 2.10 RADIUS Message Format

Since RADIUS is an AAA protocol, it also supports accounting. The NAS can

make use of this to transfer the following parameters to the authentication server[22]:

• The user's session start time
• The user's session end time
• Reason for the session ending
• Total number of packets transferred during the session
• Volume of data (i.e., number of bytes) transferred during the session

2.6 Related Research

2.6.1 Who is the Supplicant

The term supplicant is a basic concept in IEEE 802.1x. Generally speaking, a
supplicant is an entity that is being authenticated by an authenticator. The supplicant
can connect to the authenticator through a point-to-point protocol, IEEE 802.3, or
IEEE 802.11 link. In practice, supplicants are client software developed by operating
system or third-party vendors and installed on end-users’ computers. For example,
Microsoft provides a supplicant in Windows XP, 2000, ME, and even some earlier
releases[24]. There are many 802.1x supplicants, some of which are commercial,
while others are available for free. Of the later, some are even open source products,
hence the source code is public. In particular, several networking and security
technology companies have cooperated as the OpenSEA alliance to develop an open
source 802.1x supplicant[25]. We will examine a number of these supplicants in more
detail in the following paragraphs.

 15

2.6.2 Available 802.1x supplicants

• Cisco Secure Services Client
The Cisco Secure Services Client (formerly Meetinghouse Data Communications

Inc. AEGIS SecureConnect[26,27]) provides 802.1x supplicant authentication for
access to both wired and wireless networks. It supports a wide range of operating
systems, including: Windows, Linux, and MacOS. It also supports several EAP
authentication methods including MD5, TLS, TTLS, and LEAP. In addition, as a part
of the Cisco Unified Wireless Network, the Secure Services Client is claimed to
provide the following benefits[28]:

(1) Simplify management of both wired and wireless networks
(2) Improve network security
(3) Reduce the total cost of network ownership

• Juniper Network Odyssey Access Client

Two of Funk Software’s[29,30] well known products were Odyssey Access Client
and Steel-Belted Radius. Odyssey Access Client is a 802.1x supplicant for wired and
wireless networks. Steel-Belted Radius is an authentication server. Funk Software was
acquired by Juniper Networks[31]. Juniper Network’s Odyssey Access Client is an
enterprise-class 802.1x supplicant software which supports WLAN security protocols
very well. It is available for Windows 98/ME/2000/XP, and it supports MD5 and
LEAP EAP authentication methods. Jupiter claims it has the following
advantages[30]:

(1) It is a secure 802.1x supplicant for enterprises and government agencies.
(2) It makes use of the WPA2 protocol to protect credentials and network data on

the wireless link.
(3) It reduces costs for enterprises.

• Microsoft 802.1x supplicant

Microsoft Windows 2000, Windows XP, and Windows Server 2003 families
include built-in support for an IEEE 802.1x supplicant. This supplicant supports MD5
and TLS EAP authentication methods.

The most popular commercial 802.1x supplicants were introduced above. Next we
will introduce some open source and free supplicants. There are three major open
source supplicants: XSupplicant[32], wpa_supplicant[33], and Wire1x[34].
XSupplicant and wpa_supplicant are mainly used on Unix & UNIX like operating
systems. While Wire1x is designed for various Windows platforms. We will describe
each of these in further detail below.

• XSupplicant

XSupplicant is the outcome of the Open1X project[32]. The goal of the Open1X
project was to develop an open source implementation of the IEEE 802.1x protocol.

 16

This project focused on the development of a supplicant and authenticator.
XSupplicant is an implementation of a 802.1x supplicant and it can be used in both
wired and wireless LANs. XSupplicant makes use of a modular architecture so that
new authentication methods can easily be added. Also, additional security components
can be integrated into the system. The latest version of XSupplicant is 2.0.1 and it
supports Linux/BSD and Apple Computer’s Mac OS; and has a graphical user
interface.

XSupplicant supports a variety of EAP authentication methods specifically:

 EAP-MD5
 LEAP
 EAP-MSCHAPv2
 EAP-AKA
 EAP-SIM
 EAP-TLS
 EAP-TTLS
 EAP-OTP
 EAP-PEAP (v0 and v1)

Based on the existing XSupplicant, an organization called the OpenSEA alliance

was founded by six networking and security technology companies (Extreme
Networks, Identity Engines, Infoblox, Symantec Corporation, TippingPoint, and
Trapeze Networks) to pursue open source 802.1x supplicant development[25]. The
name OpenSEA stands for Open Secure Edge Access. This alliance aims to develop
an open source 802.1x supplicant which not only inherits the merits of XSupplicant,
but also extends its functionality and supports additional platforms.

• Wpa_supplicant

Wpa_supplicant is a free IEEE 802.1x supplicant which supports a number of
operating systems, including: Linux, BSD, Apple Computer’s Mac OS X, and
Microsoft’s Windows operating system. It supports both WPA and WPA2 (IEEE
802.11i / RSN) [35]. Wpa_supplicant is designed to run in the background to control
the wireless connection. Both a graphical user interface and a command line interface
are available for monitoring the running supplicant. Via these user interfaces the user
can see all the networks available via the computer's network interfaces.
Wpa_supplicant supports following the WPA/IEEE 802.11i features[35]:

 WPA and full IEEE 802.11i/RSN/WPA2
 WPA with EAP (e.g., with a RADIUS authentication server)
 Key management for CCMP, TKIP, WEP
 WPA-PSK and WPA2-PSK (pre-shared key)
 RSN: PMKSA caching, pre-authentication

 17

Wpa_supplicant also supports many EAP authentication methods, including[35]:

 EAP-AKA
 EAP-SIM
 EAP-PSK
 EAP-FAST
 EAP-PAX
 EAP-SAKE
 EAP-IKEv2
 EAP-TLS
 EAP-TTLS
 EAP-PEAP (both PEAPv0 and PEAPv1)
 LEAP (requires special support from the driver)

• WIRE1X

WIRE1X is another open source implementation of an IEEE 802.1x supplicant
developed by the Wireless Internet Research & Engineering (WIRE) Laboratory in
National Tsing Hua University in Taiwan[12]. Although the implementation of
WIRE1X is based on Open1x, this supplicant was designed to run on various
Microsoft Windows operating systems; so that users can gain access to the network
more conveniently and securely than via Microsoft’s own IEEE 802.1x supplicant.
Currently, WIRE1X supports Windows Vista，Windows XP, Windows 2000, Windows
ME, and Windows 98. The EAP authentication methods it supports include:

 AKA
 MD5
 SIM
 TLS
 TTLS
 PEAP
 MSCHAPv2

Compared with Microsoft’s supplicant, WIRE1X supports more EAP

authentication methods. In addition, the user interface of WIRE1X is very easy to use,
thus a user can easily perform both installation and configuration. Therefore,
WIRE1X is more practical and more widely used than Microsoft's supplicant.

Table 2-1 summarizes the differences between these supplicants. The
development of a new supplicant in this thesis project builds upon this earlier work.
Specifically it leverages the WIRE1x open source code.

 18

Table 2-1. IEEE 802.1x Supplicants

Name OS Supported Supported EAP

Methods
Source

Availability
AEGIS
SecureConnect

Windows/Linux/
MacOS

MD5, TLS, TTLS,
LEAP

Non-open source

Odyssey Access
Client

Windows 98/ME/
2000/XP

MD5, LEAP Non-open source

Microsoft
Supplicant

Windows 2000/XP/
Server 2003

MD5, TLS Non-open source

XSupplicant Linux/BSD/MacOS MD5,LEAP,
MSCHAPV2,
AKA, SIM, TLS,
TTLS, OTP, PEAP

Open source

Wpa_supplicant Linux/BSD/MacOS/
Windows

AKA, SIM, PSK,
FAST,PAX, SAKE,
IKEv2,TLS, TTLS,
PEAP, LEAP

Open source

WIRE1X Windows
98/ME/2000/XP

AKA, MD5, SIM,
TLS, TTLS, PEAP,
MSCHAPv2

Open Source

 19

3. Analysis of non-binary authentication process

In the last chapter, we discussed the typical IEEE 802.1x authentication process
which is a binary authentication approach. As shown in Figure 2.7, the supplicant can
only send EAP type messages (such as EAP-Start and EAP-Response) before it
receives an EAP-Success message. This means that before the supplicant is
successfully authenticated, if it sends any other type of packets before it receiving an
EAP-Success, then normally the authenticator will simply drop these other packets.
However, a mobile user who moves into the coverage area of a new access point
wishes to send and receive packets as soon as possible. Otherwise, their existing
communication sessions (such as a VoIP session, file transfer, etc.) may be terminated
due to the handover latency. In our project, a new non-binary authentication system
tries to solve this problem. Potentially, the non-binary authenticator enables the
supplicant to send a small number of packets and have them delivered to the correct
destination - even before the supplicant has been authenticated. In this way, mobile
users can continue to send VoIP packets while they are performing the authentication.
An open question is when is the earliest that the non-binary access point can send an
EAP-Success message. Another question is if the supplicant will listen to this
EAP-Success message and continue to send other types of packets. We will address
these questions and their answers in following sections. But first, it is necessary to
introduce the concept of handover and the handover process in wireless networks.

3.1 Handover process in wireless networks

In wireless networks which use the architecture of the IEEE 802.11 standard,
every supplicant is associated with an access point (AP) which provides access to the
Internet. A supplicant may need to change the AP it is associated with when it moves
from one area to another since the coverage area of each AP is limited. We make this
change in APs via a handover process. As stated earlier, if a mobile user wants to
maintain an ongoing conversation, then the duration for the handover process needs to
be sufficiently short (as with a single IEEE 802.11 WLAN interface the interface can
only be associated with a single AP at a time). We show the detailed handover process
in wireless networks in Figure 3.1. (Note that in this figure we have assumed that the
AP and the authenticator are co-located and label them both as “Authenticator” in the
figure.)

 20

Figure 3.1 Handover process in wireless networks

During the first phase of the handover process the supplicant tries to probe for all

potential new APs, in order to determine which AP it could potentially connect to if
there is a need to change the AP. Based upon the Probe Response messages that the
supplicant receives, it will decide which AP to associate with. The next phase is the
association phase. The supplicant sends a 802.11 message to associate with the AP,
and the AP will send an Association Response message in response. At this point a
logical connection has been established between the supplicant and the AP. After the
association phase, the supplicant sends an EAP-Start message to start the
authentication phase. When the AP receives the identity information from the
supplicant, it will forward this to the authentication server and the authentication

 21

server will make a decision of whether the authenticator should be given permission
to provide the supplicant with network access or not. Before the authentication server
makes its final decision, there may be many messages exchange between the
authentication server and the supplicant. Also, the time required to perform the
authentication depends on the authentication method used. Note that the authenticator
does not need to know which kind of authentication method is used - this is a matter
between the supplicant and the authentication server. The authenticator’s task is
simply to forward Request messages from the authentication server to the supplicant
and to forward Response messages from the supplicant to the authentication server.
Therefore, the authenticator does not need to care about the contents of these
messages, except for the RADIUS-Access Accept or RADIUS-Access Reject message
from the authentication server - as the authenticator cares only about the decision
(Success/Failure) and not the process or policy underlying this decision. After
receiving the Success/Failure message, the authenticator forwards the EAP-Success or
EAP-Failure message to the supplicant. It is important to note that the supplicant can
be a good guy or a bad guy. According to the IEEE 802.1x model the supplicant is
assumed to be a bad guy, thus this supplicant should not be permitted to send any
packets other than EAP packets. If the supplicant is a good guy, then it will not send
any other types of packets than EAP packets until it receives an EAP-Success
message. But if it is a bad guy, it does not care about waiting for the EAP-Success
message (as it will not receive such a message!) – However, it will try to sneak
packets through the authenticator to the network. Unfortunately, for a good mobile
user, his or her VoIP session may be terminated because of the relatively long
authentication process. Therefore, a non-binary AP needs to send the EAP-Success
message back as soon as possible so that the user's applications can continue to
communicate with other hosts attached to the network. Otherwise the good guys are
punished and the bad guys may or may not succeed in getting packets through to/from
the network. How early can the supplicant receive an EAP-Success message? The
following section will consider a number of possible scenarios.

3.2 When is the EAP-Success returned - several scenarios

The possible situations are shown in Figures 3.2 to 3.4. In Figure 3.2, after the
association phase, the supplicant sets up a connection with the authenticator by
sending an EAP-Start message. Once the authenticator is alerted by the supplicant, it
will send an EAP-Request Identity message back to the supplicant. The supplicant
sends an EAP-Response Identity message back to indicate its identity. During this
process, the authentication server is not yet involved. At this point the authenticator
can choose to send an EAP-Success message back to the supplicant, assuming that
eventually this supplicant will be authenticated by the authentication sever - note that
this is the opposite assumption made by an IEEE 802.1x authenticator. When the
supplicant receives an EAP-Success message, it knows that it has the right to send all
types of packets. However, as the authenticator does not yet know if the supplicant
will be authenticated - if the supplicant attempts to send a lot of traffic, then the

 22

non-binary AP can throw some of these packets away or delay them using a traffic
shaper. Later, when the authenticator receives the actual EAP-Success message it can
change the parameters of its traffic shaper/filter for this supplicant and send the
supplicant another EAP-Success message. Note that for existing IEEE 802.1x
supplicants the supplicant will simply ignore this message - as it has already received
an EAP-Success message.

When the extended supplicant (as described in this thesis) receives the second

EAP-Success message, it will know that it has been completely authenticated and can
now send a lot of traffic. The advantage of this approach is that if most supplicants are
going to be successfully authenticated, then there is no reason not to let them sent all
types of packets. The disadvantages is that some supplicants will not be authenticated
(i.e., they are bad guys), but they may be able to send some packets that would have
been blocked using the IEEE 802.1x model. Thus the operator of the authenticator
needs to decide if the risk of forwarding packets from a bad guy is worth the value of
very low handoff delay for all of their actual subscribers.

In Figure 3.2, the non-binary Authenticator sends an EAP-Success message back
to the supplicant immediately after it gets the supplicant’s identity. Note that it could
not have sent an EAP-Success earlier, as it needed the supplicant to identify itself. In the
next scenario, the authenticator needs to trigger the supplicant to send the information
which will be needed by the authentication server. In Figure 3.3, the non-binary
authenticator in the AP sends an EAP-Success message back to the supplicant after it
receives the EAP-Start message from the supplicant. Note that in both of these
scenarios these messages are sent after the association phase. Since the supplicant has
sent an EAP-Start message to the non-binary authenticator in the AP, the authenticator
knows that the supplicant wants to trigger an authentication process. This is what a
normal supplicant should do. However, for a sneaky supplicant (operated by a bad
guy) once it finishes the association phase with the AP, it has a logical connection
with the AP. Thus the supplicant can start to send other types of packets in the hope
that they will be forwarded. Note that in the case of a good or bad guy, there is no
certainty that packets are going to be forwarded until the supplicant receives an
EAP-Success message. Thus even for the good guy it is necessary to send an
EAP-Success message (as otherwise the supplicant might not try to send any other
traffic). The advantage of this approach is that the supplicant will perform all the
normal EAP interactions and if authenticated then the supplicant will experience only
modest latency. The disadvantage is that a bad guy may be able to send some traffic
before the authenticator learns from the authentication server that this supplicant
should not be able to send any traffic.

In Figure 3.4, the non-binary authenticator in the AP sends an EAP-Success
message back to the supplicant immediately after the association phase is over. This is
the earliest time that the non-binary authenticator in the AP could send an
EAP-Success message. Since the association phase is very short, the latency of the

 23

handover can be reduced to a great extent. Although time is saved, the risk of sneaky
supplicants is greatly increased. While this approach offers the lowest latency, there
may be a problem as the supplicant might never send the authentication traffic - thus the
authenticator will never be able to learn if this supplicant should get service or not.

Figure 3.2 AP returns EAP-Success after getting a supplicant’s identity

Figure 3.3 AP returns EAP-Success after getting EAP-Start message

 24

Figure 3.4 AP returns EAP-Success after association phase

Note that in these three scenarios the supplicant gets to send other types of traffic

sooner than in the IEEE 802.1x case. Each of these scenarios represents different risk
versus reward potentials. Also note that in the first case, if the authentication method
used carries the necessary information in the first response from the supplicant, then
the same supplicant can be used for both an IEEE 802.1x authenticator and a
non-binary authenticator. Similarly in the second approach, a standard IEEE 802.1x
supplicant can be used - but now with a full range of authentication methods. In the
third approach a new supplicant is needed, as from the supplicant's point of view this
authenticator does not exist and the access point simply looks like an open access
point.

 25

4. Experiment Analysis

In this chapter, we examine the capability of a supplicant to send and receive
packets. The experiment was necessary in order to understand how existing
supplicants would behave when sent the EAP-Success message at different times. The
experiment consists of examining the response of a supplicant in two cases (i.e., with
different authenticators).

4.1 Measurement tool

In our experiment, we used Wireshark[36] to capture packets and analyze them.
Wireshark is a free network protocol analyzer and packet sniffer which is widely used
for network analysis & troubleshooting by the telecommunication and software
industry, and educational institutions. Before June 2006, this software was called
Ethereal. Its name was subsequently changed to Wireshark because of trademark
issues[37].

4.2 Experiments

4.2.1 After the supplicant is authenticated by KTHOPEN

In this section, we first examine the capability of a supplicant to send and receive
packets after it is authenticated by the authenticator for KTHOPEN. On the KTH
campus there is a wireless network in lecture rooms, labs, and public areas. This
network is called KTHOPEN and there are many base stations covering most of the
campus[38]. You can connect to the KTHOPEN network via a (built-in or plug-in)
WiFi interface. To access the network via KTHOPEN, you need a KTH identity
(provided either via a personal key or by entering your username and password via a
web page - for the purpose of this thesis we will only discuss the later form of user
authentication). In our experiment, we enabled a laptop’s built-in wireless network
interface, chose KTHOPEN as the wireless network to associate with, and clicked
“OK” to complete the connection process. We started Internet Explorer as the web
browser and entered the URL www.kth.se. Attempting to browse to any page is
trapped and the browser is redirected to the log in page automatically.

After we entered a correct username and password for a KTH account, a “Login
OK” page was shown. This indicates that the supplicant was authenticated by
KTHOPEN. This process is shown in Figure 4.1 and Figure 4.2. The interaction
process of the authentication is shown in Figure 4.3.

 26

http://www.kth.se/

Figure 4.1 Log in page

Figure 4.2 Log in OK page

 27

Figure 4.3 SSLv3 / TLS authentication

As shown in Figure 4.3, Secure Sockets Layer protocol version 3.0 / Transport

Layer Security protocol (SSLv3 / TLS)[42] was used during the authentication
process. The supplicant first sent a Client Hello message to the server. The server
responded with a Server Hello message, as well as a Certificate message and a Sever
Hello Done message. This indicated the handshake negotiation was finished. Then the
supplicant responded with a Client Key Exchange message and a Change Cipher Spec
record to tell the server that all the information will be encrypted. Finally, the
supplicant sent an Encrypted Handshake message. The server sent a Change Cipher
Spec and Encrypted Handshake message. The handshake was complete and the
application protocol was enabled by then. Note that before the SSL/TLS handshake
has even taken place, there was traffic going to IP address 64.233.183.97. It indicated
that the network did not block all traffic other than the traffic required do authenticate
and authorize the supplicant. Therefore the experiments with regard to KTHOPEN
have nothing to do with IEEE 802.1x.

Wireshark also captured packets after the supplicant was authenticated by

KTHOPEN (See Figure 4.4).

Figure 4.4 Packets captured after the supplicant is authenticated by KTHOPEN

As shown in Figure 4.4, the supplicant’s IP address was still 130.237.7.169. One

of the destination addresses is 89.100.133.228. The supplicant could send UDP

 28

packets to the destination and receive UDP packet from the destination as well. This
proves that after the supplicant is authenticated by KTHOPEN, it can send and receive
packets freely.

4.2.2 Before the supplicant is authenticated by a D-Link access

point

A D-Link access point model DWL-G700 was used as both an access point and as
an IEEE 802.1x authenticator. In this section and section 4.2.3, we will determine if
the supplicant can send and receive packets before and after it is authenticated by the
D-Link authenticator. For these experiment results, we setup two laptops and a
D-Link access point. On one laptop, we installed and configured a WIRE1x
supplicant running on Microsoft’s Windows operating system. On the other laptop, we
installed openSUSE running in a virtual machine. This operating system was used as
the host operating system for our RADIUS authentication server. We also used this
second laptop to configure and control the D-Link. The authenticator’s IP address was
192.168.1.1. The authentication server’s IP address was 192.168.1.5.

After installation of the WIRE1x supplicant program, when we first ran it,
WIRE1x chose a wireless interface automatically and asked us if the selected
interface was the one we want to use. If not, the user could choose the interface
manually. The selected interface is stored for future use. See Figure 4.5 and Figure
4.6.

Figure 4.5 WIRE1x automatically chose a wireless interface

Figure 4.6 Choose the WiFi network interface

After choosing a wireless interface, we clicked “scan” to view all available

wireless networks. All of the available wireless networks were shown in the list. The

 29

user can also click the “refresh” button to cause the program to scan for available
networks again. Then we chose our target AP (which was configured to have the SSID
“ROOM 12”) and clicked “Associate” button (See Figure 4.7).

Figure 4.7 Scanning available wireless networks

Then we configured profile name and SSID and clicked “OK” button. After

editing the profile, click “Save” button, see Figure 4.8 and Figure 4.9.

 30

Figure 4.8 Configuration of profile name and SSID

Figure 4.9 Editing profile

Finally, we started Wireshark, then clicked the “Associate” button and used

Wireshark to monitor the interaction process between the supplicant and the
authenticator. The result is shown in Table 4-1.

 31

Table 4-1 Interaction between the supplicant and the authenticator

No. Time Source Destination Protocol Info

1 0.000000 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

2 0.004502 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

3 2.712015 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xe843efc0

4 7.708180 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xe843efc0

5 16.707877 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xe843efc0

6 33.708156 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xe843efc0

7 54.138881 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

8 54.140452 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

9 57.710477 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xb1834b94

10 62.708707 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xb1834b94

11 71.708859 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xb1834b94

12 88.709111 0.0.0.0 255.255.255.255 DHCP DHCP Discover - Transaction ID 0xb1834b94

..

..

..

As shown in Table 4-1, “IntelCor_36:7d:86” and “D-Link_f4:c5:e7” are the MAC
address of the supplicant and the authenticator respectively. After the probe phase and
association phase, the supplicant sent an EAP-Start message to the authenticator and
the authenticator replied with an EAP-Request Identity message. Then the supplicant
started to send DHCP requests to get an IP address. Note that, the supplicant repeated
the DHCP request many times. But there was no reply from any DHCP server. This
shows that if the authentication information is not configured correctly, then the
supplicant will not be authenticated and that it could not successfully send any IP
packets as it did not yet have a valid IP address. Additionally, the supplicant can not
receive any packets since there is not yet a binding between the supplicant’s MAC
address and a valid IP address.

To enable the supplicant to send UDP packets, we manually assigned an IP
address (192.168.0.120) to the supplicant. See the resulting traffic in Table 4-2.

 32

Table 4-2 Assign IP address to the supplicant manually

No. Time Source Destination Protocol Info

1 0.000000 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

2 0.004502 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

3 3.656211 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.0.120 (Request)

4 4.463015 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.0.120 (Request)

5 5.463042 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.0.120 (Request)

6 6.496467 192.168.0.120 224.0.0.22 IGMP V3 Membership Report / Join group

239.255.255.250 for any sources

7 6.504335 192.168.0.120 239.255.255.250 SSDP M-SEARCH * HTTP/1.1

8 6.541383 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<00>

9 7.025580 192.168.0.120 224.0.0.22 IGMP V3 Membership Report / Join group

239.255.255.250 for any sources

10 7.291241 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<00>

11 8.041256 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<00>

12 8.791268 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<00>

13 9.510224 192.168.0.120 239.255.255.250 SSDP M-SEARCH * HTTP/1.1

14 9.573444 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<00>

15 10.322542 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<00>

16 11.072558 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<00>

17 11.822604 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<00>

18 12.525986 192.168.0.120 239.255.255.250 SSDP M-SEARCH * HTTP/1.1

19 12.604322 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<20>

20 12.607041 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<1e>

21 13.353846 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<20>

22 13.353966 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<1e>

23 14.103861 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<20>

24 14.103979 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<1e>

25 14.853873 192.168.0.120 192.168.0.255 NBNS Registration NB D8RRFP1X<20>

26 14.853997 192.168.0.120 192.168.0.255 NBNS Registration NB MSHOME<1e>

27 15.636425 192.168.0.120 192.168.0.255 BROWSER Request Announcement D8RRFP1X

28 15.639112 192.168.0.120 192.168.0.255 BROWSER Host Announcement D8RRFP1X, Workstation,

Server, NT Workstation, Potential Browser

29 16.141063 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

30 16.142796 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

31 17.135188 192.168.0.120 192.168.0.255 BROWSER Request Announcement D8RRFP1X

..

..

As shown in Table 4-2, after we manually assigned an IP address to the supplicant,

the supplicant attempted to send UDP packets despite not being authenticated.
However, the authentication process did not continue after the EAPOL start and EAP
Request (as the authentication server was not yet configured). The lack of responses to

 33

these messages shows that before the authentication is successfully finished, the UDP
packets could not be successfully delivered to their destinations. To examine the
supplicant’s capability to receive traffic prior to the authentication, we used another
host and made it to send traffic to the supplicant. The result is shown in Table 4-3.

Table 4-3 Send traffic to the supplicant from another host

 Source Destination Protocol Info

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

130.237.239.78 192.168.0.120 ICMP Echo (ping) request

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

...

...

130.237.239.78 192.168.0.120 ICMP Echo (ping) request

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

89.180.161.143 130.237.239.78 UDP Source port: 12398 Destination port: 9521

130.237.239.78 89.180.161.143 UDP Source port: 9521 Destination port: 12398

...

...

 As shown in Table 4-3, another host with IP address 130.237.239.78 sent Echo
request to the supplicant from time to time. However, there was no response from the
supplicant. Therefore before the authentication is successfully finished, the supplicant
can not receive any traffic other than those which is used for authentication and
authorization.

4.2.3 After the supplicant is authenticated by D-Link

In this section, the experimental environment is similar to that described in
section 4.2.2. The difference is that we configured a specific type of authentication
method and did some additional configuration of the supplicant. WIRE1x supports a
number of authentication methods. We chose EAP-MD5 as the authentication method
to be used. As shown in Figure 4.9, in section 4.2.2 we configured the WIRE1x
supplicant, we first selected “Enable 802.1x”, then clicked “Setting” button to enter
the details of our configuration. The configuration processes are shown in Figure 4.10
and Figure 4.11.

 34

Figure 4.10 Select authentication method

Figure 4.11 Set username and password

 35

After the configurations were finished and saved, we clicked the “Associate”
button to start the authentication process. The capture of the traffic is shown in Table
4-4.

Table 4-4 After the supplicant was authenticated

No. Time Source Destination Protocol Info

1 0.000000 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

2 0.058493 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

3 0.077240 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAP Response, Identity [RFC3748]

4 1.015882 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Auth [RFC3748]

5 1.052638 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAP Response, Auth [RFC3748]

6 1.095311 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Success [RFC3748]

7 1.144147 0.0.0.0 255.255.255.255 DHCP DHCP Discover – Transaction ID 0xb7a962df
8 1.148925 192.168.1.1 192.168.1.2 ICMP Echo (ping) request

9 1.750938 192.168.1.1 192.168.1.2 DHCP DHCP Offer – Transaction ID 0xb7a962df
10 1.775714 0.0.0.0 255.255.255.255 DHCP DHCP Request – Transaction ID 0xb7a962df
11 1.811022 192.168.1.1 192.168.1.2 DHCP DHCP ACK – Transaction ID 0xb7a962df
12 3.204338 D-Link_f4:c5:e7 IntelCor_36:7d:86 ARP Who has 192.168.1.2? Tell 192.168.1.1

13 3.204869 IntelCor_36:7d:86 D-Link_f4:c5:e7 ARP 192.168.1.2 is at 00:12:f0:36:7d:86

14 6.043206 192.168.1.2 60.28.213.176 UDP Source port: 9521 Destination port: 17788

15 6.043451 192.168.1.2 61.172.196.109 UDP Source port: 9521 Destination port: 17788

16 6.043536 192.168.1.2 121.9.201.99 UDP Source port: 9521 Destination port: 17788

17 6.043660 192.168.1.2 125.46.57.14 UDP Source port: 9521 Destination port: 17788

18 7.017898 60.28.213.176 192.168.1.2 UDP Source port: 17788 Destination port: 9521

19 7.018366 61.172.196.109 192.168.1.2 UDP Source port: 17788 Destination port: 9521

20 7.018519 121.9.201.99 192.168.1.2 UDP Source port: 17788 Destination port: 9521

21 7.019285 125.46.57.14 192.168.1.2 UDP Source port: 17788 Destination port: 9521

..

..

As shown in Table 4-4, after the authenticator received the supplicant’s identity
and authentication information, it returned an EAP-Success message to the supplicant.
Then the supplicant sent a DHCP request and received response with an assigned IP
address. After that the supplicant could send UDP packets to their destinations and
receive packets from destinations as well. This experiment showed that after the
supplicant was correctly configured and authenticated by the D-Link authenticator,
that the supplicant could send and receive UDP packets freely.

 36

5. Implementation, testing, and analysis of a new

supplicant

5.1 Implementation of a new supplicant

As we mentioned in the goals of this thesis, this thesis project mainly focuses on
the supplicant and tries to test the authenticator by using a new supplicant. The
original supplicant program of WIRE1x only sends EAP authentication packets.
Based on the WIRE1x code, a new supplicant was developed that can send UDP
packets in addition to the EAP-Start packets. These additional UDP packets are used
to determine if and when non EAPOL packets can be sent by the supplicant. In order
to do this, the “eapol.cpp” code was modified in order to construct and send additional
UDP packets. To implement this, a new function “txSendUdp” was added, and this
function was embedded in the “txStart” function. The “txStart” function was defined
to send EAP-Start packets. After EAP-Start packets were sent, the function
“txSendUdp” was invoked to send UDP packets. The main portions of the new added
code are listed here.
/***

* Name: Make udp Package

* Created: Hengchong

***/

int MakeUdp(u_char * udpPackage)

{

 //Construct space to store packets

 u_char *udppackage;

 u_char *src_addr;

 u_char domain[50];//domain name

DLC_Header *dlcheader,*fakedlc;

 IpHeader *ipheader,*fakeip;//IP header

 UDP_Header *fakeudp;//UDP header

 DNS_HEADER *fakedns;//DNS header

 PSD_HEADER *psdheader;

// USHORT ip_len;//IP header length

 char srcip[4];//Source IP address

 char destip[4];//Destination IP address

 char srcmac[6];//Source MAC address

// char destmac[6];// Destination MAC address

// char domain[50];

 //Fake IP address infomation

 memset(srcip,0,4);

 memset(destip,0,4);

 37

 //Construct fake respondent packets

 fakedns=(DNS_HEADER *)malloc(12+strlen((char *)domain)+21);//Assign memory for DNS packets

 memset(fakedns,0,12+strlen((char *)domain)+21);

 fakedns->id=2222;

 fakedns->flags=htons(0x8180);

 fakedns->questions=htons(1);

 fakedns->answers=htons(1);

 fakedns->author=0;

 fakedns->addition=0;

 memcpy((char *)fakedns+12,domain,strlen((char *)domain)+1);

 *((BYTE *)fakedns+12+strlen((char *)domain)+1)=0x00;//Type query

 *((BYTE *)fakedns+12+strlen((char *)domain)+2)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+3)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+4)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+5)=0xC0;

 *((BYTE *)fakedns+12+strlen((char *)domain)+6)=0x0C;

 *((BYTE *)fakedns+12+strlen((char *)domain)+7)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+8)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+9)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+10)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+11)=0x00;//TTL

 *((BYTE *)fakedns+12+strlen((char *)domain)+12)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+13)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+14)=0x80;

 *((BYTE *)fakedns+12+strlen((char *)domain)+15)=0x00;//IP address length

 *((BYTE *)fakedns+12+strlen((char *)domain)+16)=0x04;

 //Fill fake IP address

 *((u_char *)fakedns+12+strlen((char *)domain)+17)=192;

 *((u_char *)fakedns+12+strlen((char *)domain)+18)=168;

 *((u_char *)fakedns+12+strlen((char *)domain)+19)=1;

 *((u_char *)fakedns+12+strlen((char *)domain)+20)=2;

 //Fill udp packets

 fakeudp=(UDP_Header *)malloc(8+12+strlen((char *)domain)+21);

 memset((char *)fakeudp,0,8+12+strlen((char *)domain)+21);

 fakeudp->DstPort=7000;

 fakeudp->SrcPort=6000;

 fakeudp->Chksum=0;//Check sum

 fakeudp->Len=htons(8+12+strlen((char *)domain)+21);//UDP packets size

 memcpy((char *)fakeudp+8,(char *)fakedns,12+strlen((char *)domain)+21);

 psdheader=(PSD_HEADER *)malloc(12+8+12+strlen((char *)domain)+21);

 psdheader->mbz=0;

 psdheader->ptcl=17;

 psdheader->udpl=htons(8+12+strlen((char *)domain)+21);

 memcpy((char *)&(psdheader->saddr[0]),destip,4);

 38

 memcpy((char *)&(psdheader->daddr[0]),srcip,4);

 memcpy((char *)psdheader+12,(char *)fakeudp,8+12+strlen((char *)domain)+21);

 fakeudp->Chksum=checksum((USHORT *)psdheader,12+8+12+strlen((char *)domain)+21);

 //Fill IP packets

 fakeip=(IpHeader *)malloc(20+8+12+strlen((char *)domain)+21);

 memset((char *)fakeip,0,20+8+12+strlen((char *)domain)+21);

 fakeip->h_len=0x45;

 fakeip->checksum=0;

 fakeip->tos=ipheader->tos;

 fakeip->total_len=htons(20+8+12+strlen((char *)domain)+21);

 fakeip->ident=ipheader->ident;//Identity

 fakeip->frag_and_flags=ipheader->frag_and_flags;

 fakeip->proto=ipheader->proto;

 fakeip->ttl=128;

 memcpy((char *)fakeip+12,(char *)destip,4);//Source IP address

 memcpy((char *)fakeip+16,(char *)srcip,4);//Destination IP address

 memcpy((char *)fakeip+20,(char *)fakeudp,8+12+strlen((char *)domain)+21);

 //Calculate Checksum

 fakeip->checksum=checksum((USHORT *)fakeip,20);

 //Fill MAC frame

 fakedlc=(DLC_Header *)malloc(14+20+8+12+strlen((char *)domain)+21);

 memset(fakedlc,0,14+20+8+12+strlen((char *)domain)+21);

 src_addr = get_src_mac();

 memcpy((char *)&(fakedlc->DesMAC[0]),eapol_dst,6);//Fill destination MAC

 memcpy((char *)&(fakedlc->SrcMAC[0]),src_addr,6);//Fill source MAC

 free(src_addr);

 src_addr = NULL;

 fakedlc->Ethertype=dlcheader->Ethertype;

 memcpy((char *)fakedlc+14,(char *)fakeip,20+8+12+strlen((char *)domain)+21);

 udpPackage=(u_char *)fakedlc;

 return (14+20+8+12+strlen((char *)domain)+21);

}

/***

* Name: SendUdpPackage

* Description:

* Created:Hengchong

***/

void txSendUdp()

{

 printf("send txStart\n");

 u_char *temp=NULL;

 int len = MakeUdp(temp);

 if (send_frame(temp, len) == NULL)

 printf("send udp to link.\n");

 39

 free(temp);

 temp = NULL;

}

The complete source code is included as Appendix A. This new supplicant can
send both EAP-Start messages and UDP packets. It is useful to either a good guy or a
bad guy to find out that if the authenticator is an open access point or not. The former
can continue his/her VoIP session or other activities in parallel with the authentication
and authorization process. The later may try to sneak more packets and occupy
bandwidth resources as much as possible.

5.2 Imitation of a non-binary AP

The new supplicant program was intended to test and stress the authenticator
which was being implemented by Guo Jia. However, he has not yet finished this
implementation. Therefore, a non-binary AP and supplicant needed to be emulated in
order to complete the test and analysis for this thesis project. The general process to
do this was: Start two processes on one laptop. One process is used for the supplicant
and the other one is used for the authenticator. Assign different IP addresses for the
supplicant and the authenticator, so that they can communicate with each other. In the
case of an actual interaction between a supplicant and an IEEE 802.11 access point
and IEEE 802.1x authenticator, after the probe and association phase, the supplicant
would send an EAP-Start message to the authenticator to initiate the authentication
process. Then, the authenticator sends an EAP-Request / Identity message back to the
supplicant. Using the non-binary authenticator model, the authenticator also sends a
bandwidth specification with the value M1 to the supplicant. As long as the bandwidth
that the supplicant asks for is no greater than M1, the supplicant can access the
network temporarily if its usage remains within this limited bandwidth even without
being authenticated. The authentication process continues between the supplicant and
the authenticator. If the supplicant is subsequently successfully authenticated, then the
authenticator will send an EAP-Success message back, along with a new bandwidth
value M2. The new bandwidth value M2 indicates the bandwidth allowed for the
supplicant after it is authenticated. If the authentication is not successful, then the
authenticator will send an EAP-Failure message back and close the limited bandwidth
connection. The entire process is shown in Figure 5.1.

 40

Figure 5.1 Non-binary authentication process

5.3 Test and Analysis

In this section, we test the new supplicant first. The experiment environment is
similar to that described in section 4.2.3. In the case that before the new supplicant
was authenticated by the D-link authenticator, we used Wireshark to monitor the
interaction process between the new supplicant and the authenticator. The result is
shown in Table 5-1.

 41

Table 5-1 Interaction process between the supplicant and the authenticator

(before the supplicant was authenticated)

No. Time Source Destination Protocol Info

1 0.000000 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

2 0.001534 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

3 1.562611 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.1.2 (Request)

4 2.510364 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.1.2 (Request)

5 3.340358 IntelCor_36:7d:86 Broadcast ARP Gratuitous ARP for 192.168.1.2 (Request)

6 4.764649 192.168.1.2 224.0.0.22 IGMP V3 Membership Report / Join Group

239.255.255.250 for any sources

7 4.808615 192.168.1.2 192.168.1.1 UDP Source port: 6000 Destination port: 7000

8 6.392886 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

9 6.396192 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

10 6.400635 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

11 6.403577 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

12 6.407512 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

13 20.862331 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

14 20.864508 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

15 20.981658 192.168.1.2 192.168.1.1 UDP Source port: 6000 Destination port: 7000

16 22.862856 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

17 22.866522 192.168.1.1 239.255.255.250 SSDP NOTIFY * HTTP/1.1

..

..

 As shown in Table 5-1, “IntelCor_36:7d:86” and “D-Link_f4:c5:e7” are the
MAC address of the supplicant and the authenticator respectively. After the supplicant
was assigned the IP address 192.168.1.2, it attempted to send an UDP packet despite
not being authenticated. However, the authentication process did not continue after
the EAPOL-Start and EAP-Request / Identity due to the unfinished configuration of
the authentication server. The lack of response to this domain name query message
shows that before the authentication is successfully finished, the UDP packet could
not be successfully delivered to its destination.

In the case that after the new supplicant was authenticated by the D-link

authenticator, we chose EAP-MD5 as the authentication method to be used. The result
of the interaction process is shown in Table 5-2.

 42

Table 5-2 Interaction process between the supplicant and the authenticator
(after the supplicant was authenticated)

No. Time Source Destination Protocol Info

1 0.000000 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAPOL Start

2 0.001677 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Identity [RFC3748]

3 0.002052 192.168.1.2 192.168.1.1 UDP Source port: 6000 Destination port: 7000

4 0.003521 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAP Response, Identity [RFC3748]

5 0.004898 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Request, Auth [RFC3748]

6 0.005921 IntelCor_36:7d:86 D-Link_f4:c5:e7 EAP Response, Auth [RFC3748]

7 0.007528 D-Link_f4:c5:e7 IntelCor_36:7d:86 EAP Success [RFC3748]

8 0.009153 192.168.1.2 58.211.82.166 UDP Source port: 9521 Destination port: 17788

9 0.009331 192.168.1.2 121.12.255.104 UDP Source port: 9521 Destination port: 17788

10 0.009522 192.168.1.2 125.46.57.6 UDP Source port: 9521 Destination port: 17788

11 0.009716 192.168.1.2 58.211.82.167 UDP Source port: 9521 Destination port: 17788

12 0.009985 192.168.1.2 121.12.255.107 UDP Source port: 9521 Destination port: 17788

13 0.010162 192.168.1.2 125.46.57.7 UDP Source port: 9521 Destination port: 17788

14 1.002632 58.211.82.166 192.168.1.2 UDP Source port: 17788 Destination port: 9521

15 1.002788 121.12.255.104 192.168.1.2 UDP Source port: 17788 Destination port: 9521

16 1.002823 125.46.57.6 192.168.1.2 UDP Source port: 17788 Destination port: 9521

17 1.002977 58.211.82.167 192.168.1.2 UDP Source port: 17788 Destination port: 9521

18 1.003056 121.12.255.107 192.168.1.2 UDP Source port: 17788 Destination port: 9521

19 1.003127 125.46.57.7 192.168.1.2 UDP Source port: 17788 Destination port: 9521

..

..

As shown in Table 5-2, before the supplicant was successfully authenticated, the

supplicant sent an UDP packet to the destination but it did not get a response from the
destination. After the authenticator received the supplicant’s identity and
authentication information, it returned an EAP-Success message to the supplicant.
Then the supplicant could send UDP packets to their destinations and receive packets
from destinations as well. This experiment showed that after the supplicant was
correctly configured and authenticated by the D-Link authenticator, that the supplicant
could send UDP packets and that these packets could be delivered to the destination.

In the text below we describe the testing of the emulation program. The emulation

program integrated the supplicant and the authenticator together. The source code for
this program is included in Appendix B. The initial interface state is shown in Figure
5.2.

 43

Figure 5.2 Initial interface of the emulation program

As shown in Figure 5.2, on the right there are four buttons which belong to the

supplicant and two buttons which belong to the authenticator. This enables the user to
manually invoke these separate operations. Additionally, the user can manually set the
IP addresses of the supplicant and the authenticator. On the left, in the large field on
the top, the interaction between the supplicant and the authenticator will be shown.
When necessary users can enter information in the bottom left input box. For example,
the user can manually enter the maximum bandwidth that the supplicant is assigned.

This program can be run on two laptops or as two programs on one laptop. In our
test, we ran two such programs on one laptop. One program acts as the supplicant and
the other one as the authenticator. We set the IP address 213.100.34.72 for the
supplicant and 213.100.34.75 for the authenticator. In the authenticator, we clicked
“Start Authenticator” button, then the result “Server has been set ok” was shown in
the interaction information area. This test program allows us to emulate the
non-binary authentication process (see Figure 5.3).

 44

Figure 5.3 Starting the supplicant and authenticator programs

Before the supplicant clicks the “Request” button to send the EAP-Start, if the

 45

user tries to access the network, a popup window (shown in Figure 5.4) will indicate
that there was no connection between the supplicant and the authenticator. Thus
initially the supplicant has no connectivity and no bandwidth available to them.

Figure 5.4 Before the supplicant sent EAP-Start

Next the user clicks on the supplicant’s “Request” button. The interaction
information is shown in the interaction information area (Figure 5.5) - this shows that
the supplicant has set an EAPOL-Start message and in response the authenticator has
sent an EAP Request / Identity message.

Figure 5.5 Interaction information shown after clicking Request (the upper figure

shows the authenticator’s interface and the lower figure is supplicant’s)

 46

As shown in Figure 5.5, the authenticator received an “EAP-Start” request from
the supplicant and responded to this request with an “EAP-Request/Identity” and
“Min Band 1 Max Band 20” message. This information shows that the authenticator
requested the supplicant to send its identity and that it offered the supplicant an access
bandwidth which was no more than 20 (in this case the units are KB per second). After
learning this bandwidth value, the supplicant can access the network. We entered 5
characters and 25 characters separately (representing 5K/sec and 25K/sec separately)
in the blank area to see the result. The test results are shown in Figure 5.6 and Figure
5.7.

Figure 5.6 Enter 5 characters

Figure 5.7 The user interface of the authenticator (top) and supplicant (bottom) after

the supplicant has entered 25 characters

 47

As shown in Figure 5.6 and Figure 5.7, when the number of characters entered
were less than 20, then the characters could be shown in the interaction area of the
supplicant and authenticator after we pressed “Enter” button on the laptop. Thus the
supplicant could access the network although the available bandwidth was low. When
the number of characters entered were more than 20, after we pressed “Enter” button,
a popup window indicates that the packets that the supplicant attempted to send were
over the permitted bandwidth. Therefore, the packets could not be sent to the
destination and were discarded.

Following this, we clicked the supplicant’s “Send EAP-Response/Identity” button,
and this was shown in the information interaction area. In the actual authentication
process, the authenticator should forward this information to the authentication server.
In our emulation process, we did not emulate the interaction between the authenticator
and the authentication server. Details of this interaction can be found in Zhou Jia’s
thesis[39]. Note that authenticator does not have to know which kind of authentication
method was used. It simply forwards the authentication request from the
authentication server to the supplicant; this information is shown in the information
interaction area of the supplicant (as shown in Figure 5.8).

Figure 5.8 The second step of the information interaction

 48

Next we clicked the supplicant’s “Send EAP-Response/Auth” button. First we
examine the case of an authentication success. In this case, in the supplicant’s
information interaction area, “EAP-Success/MAX Band:50” was shown, indicating
that the supplicant’s identity had been authenticated and the maximum permitted
bandwidth to this supplicant was increased to 50. As the supplicant was allocated
greater bandwidth we were able to enter more characters of text and successfully sent
them. See Figure 5.9 and Figure 5.10.

Figure 5.9 Authentication Success information

 49

Figure 5.10 As the supplicant was assigned more bandwidth a longer text string

could be successfully sent
In the case that the supplicant was not successfully authenticated, then the

supplicant receives an EAP-Failure message. After this, we were unable to enter
characters in the blank area since access was denied due to the authentication failure.
See Figure 5.11 and Figure 5.12. The Wireshark capture of the traffic in the emulator
is shown in Figure 5.13.

Figure 5.11 Authentication Failure information

 50

Figure 5.12 The supplicant’s access was denied

Figure 5.13 Capture of the traffic in the emulator

From above test results, the goal of the non-binary authentication has been

achieved. The authentication system can control the allowed bandwidth to the
supplicant dynamically, thus improving the perceived performance for valid users,
while minimizing the resources given to invalid users.

 51

6. Conclusions and Future Work

In this chapter, we will summarize our conclusions for this thesis project and
propose some suggestions for future work.

6.1 Conclusions

In this thesis project, we have examined the capability of a supplicant to send and
receive packets before and after it is authenticated. Also, we have implemented a new
supplicant program which could test and stress the authenticator by sending EAP and
UDP packets together. Since the new non-binary authenticator has not yet been
implemented, the supplicant was unable to be tested together with the authenticator
and the authentication server. However, we have emulated the interaction between the
supplicant and the non-binary authenticator. The test results suggest that non-binary
authentication is both possible and useful. A supplicant can utilize a limited amount of
bandwidth even without being authenticated when it moves into the coverage of a
non-binary authentication AP. Therefore the supplicant can continue a VoIP session or
other activities without a major gap in traffic. The proposed authentication system can
also dynamically and flexibly control the bandwidth allocated to the supplicant.

Non-binary authentication is an interesting topic. However, it will take additional
time and effort to realize. This thesis project represents only a tiny step but hopefully
it offers a good start. In the next section, some suggestions are given for future work.

6.2 Future work

One potential aspect of future work would be to add a bandwidth negotiation
mechanism between the supplicant and the authentication server. Thus each supplicant
could negotiate its desired bandwidth with the authentication server. However, the
interaction of such a bandwidth negotiation mechanism among supplicant,
authenticator, and authentication server is somewhat complicated, but could easily be
done based on the prior work present in this thesis and the two accompanying
theses[39, 43].

In addition, as another example of non-binary authentication, a supplicant for the
HP iPAQ (a type of personal digital assistant) that could authenticate to the KTH’s
WLAN (KTHOPEN-WPA) once, then power down its radio to save power. When it
wants to communicate again it will simply power up and continue without the user
needing to enter their key again. In this way, it is more convenient for a PDA
supplicant to access the network, and the authentication mechanism is more secure

 52

than that of KTHOPEN. The supplicant’s configuration could be based on the new
non-binary authenticator’s implementation.

 53

References

[1] Jun Lei, Xiaoming Fu, Dieter Hogrefe, and Jianrong Tan, “Comparative Studies on
Authentication and Key Exchange Methods for 802.11 Wireless LAN”, available at:
http://www.net.informatik.uni-goettingen.de/publications/1358/PDF, last visited:
March 2008.

[2] Kwang-Hyun Baek, Sean W. Smith, and David Kotz, “A Survey of WPA and

802.11i RSN Authentication Protocols”, Technial Report TR2004-524, Dartmouth
College Computer Science, November 2004.

[3] Institute of Electrical and Electronics Engineers, available at:

http://en.wikipedia.org/wiki/IEEE, last visited: March 2008.

[4] IEEE 802 LAN/MAN Standards Committee, available at: http://www.ieee802.org/,

last visited: March 2008.

[5] William A. Arbaugh, Narendar Shankar, Y. C. Justin, and Kan Zhang, “Your

802.11 Wireless Network Has No Clothes”, IEEE Wireless Communications, 9(6):
pp. 44-51, December 2002.

[6] Wi-Fi Protected Access, available at:

http://www.wi-fi.org/knowledge_center_overview.php?docid=4486, last visited:
March 2008.

[7] Linux WPA/WPA2/IEEE 802.1X Supplicant, available at:

http://hostap.epitest.fi/wpa_supplicant/, last visited: March 2008.

[8] W.Simpson, “The Point-to-Point Protocol (PPP)”, RFC 1661, July 1994,

available at: http://www.ietf.org/rfc/rfc1661.txt?number=1661, last visited:
March 2008.

[9] Point-to-Point Protocol, available at:

http://en.wikipedia.org/wiki/Point-to-Point_Protocol, last visited: March 2008

[10] L. Blunk and J. Vollbrecht, “PPP Extensible Authentication Protocol (EAP)”,

RFC 2284, March 1998, available at:
http://www.ietf.org/rfc/rfc2284.txt?number=2284, last visited: March 2008.

[11] Lars Strand, “802.1X Port-Based Authentication HOWTO”, August 18th, 2004,

available at: http://tldp.org/HOWTO/html_single/8021X-HOWTO/, last visited:
March 2008.

 54

http://www.net.informatik.uni-goettingen.de/publications/1358/PDF
http://en.wikipedia.org/wiki/IEEE
http://www.ieee802.org/
http://www.wi-fi.org/knowledge_center_overview.php?docid=4486
http://hostap.epitest.fi/wpa_supplicant/
http://www.ietf.org/rfc/rfc1661.txt?number=1661
http://en.wikipedia.org/wiki/Point-to-Point_Protocol
http://www.ietf.org/rfc/rfc2284.txt?number=2284
http://tldp.org/HOWTO/html_single/8021X-HOWTO/

[12] Yu-Ping Wang, Yi-Wen Liu, and Jyh-Cheng Chen, “Design and Implementation
of WIRE1x”, National Tsing Hua University, Taiwan, available at:
wire.cs.nthu.edu.tw/wire1x/TANET03.pdf, last visited: March 2008.

[13] B. Aboba and D. Simon, “PPP EAP TLS Authentication Protocol”, RFC 2716,

October 1999, available at: http://www.ietf.org/rfc/rfc2716.txt?number=2716,
last visited: March 2008.

[14] W. Simpson, “PPP Challenge Handshake Authentication Protocol (CHAP)”, RFC

1994, August 1996, available at:
http://www.ietf.org/rfc/rfc1994.txt?number=1994, last visited: March 2008.

[15] Paul Funk, “EAP Tunneled TLS Authentication Protocol (EAP-TTLS)”, March

2002, available at: http://www.ietf.org/proceedings/02mar/slides/eap-1/, last
visited: March 2008.

[16] H. Andersson, S. Josefsson, G. Zorn, and B. Aboba, “Protected Extensible

Authentication Protocol (PEAP) <draft-josefsson-pppext-eap-tls-eap-01.txt >”,
Internet Draft, October 2001, available at:
http://ietfreport.isoc.org/all-ids/draft-josefsson-pppext-eap-tls-eap-01.txt, last
visited: March 2008.

[17] B. Aboba, L. Blunk, J. Vollbrecht, and J. Carlson, “Extensible Authentication

Protocol (EAP)”, RFC 3748, June 2004, available at:
http://www.ietf.org/rfc/rfc3748.txt?number=3748, last visited: March 2008.

[18] IEEE, “IEEE Standards for Local and Metropolitan Area Networks: Standard for

Port Based Network Access Control”, IEEE Std 802.1x-2004, October 2004,
available at: http://standards.ieee.org/getieee802/download/802.1X-2004.pdf, last
visited: March 2008.

[19] Joe Salowey, Hao Zhou, S. Josefsson, Glen Zorn, Dan Simon, and Ashwin

Palekar, “Protected Extensible Authentication Protocol (PEAP) Version 2
<draft-josefsson-pppext-eap-tls-eap-10.txt >”, Internet Draft, October 2004,
available at: http://www.potaroo.net/ietf/idref/draft-josefsson-pppext-eap-tls-eap/,
last visited: May 2008.

[20] PEAP Protected Extensible Authentication Protocol, available at:

http://www.arlinx.com/PEAP-Protected-Extensible-Authentication-Protocol.html,
last visited: April 2008.

[21] C. Rigney, S. Willens, A. Rubens, W. Simpson, “Remote Authentication Dial In

User Service (RADIUS)”, RFC 2865, June 2000, available at:
http://www.ietf.org/rfc/rfc2865.txt?number=2865, last visited: April 2008.

 55

http://www.ietf.org/rfc/rfc2716.txt?number=2716
http://www.ietf.org/rfc/rfc1994.txt?number=1994
http://www.ietf.org/proceedings/02mar/slides/eap-1/
http://ietfreport.isoc.org/all-ids/draft-josefsson-pppext-eap-tls-eap-01.txt
http://www.ietf.org/rfc/rfc3748.txt?number=3748
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf
http://www.potaroo.net/ietf/idref/draft-josefsson-pppext-eap-tls-eap/
http://www.arlinx.com/PEAP-Protected-Extensible-Authentication-Protocol.html
http://www.ietf.org/rfc/rfc2865.txt?number=2865

[22] RADIUS Server AAA Authentication Authorization Accounting, available at:
http://www.arlinx.com/RADIUS.html, last visited: April 2008.

[23] G. Zorn, “Microsoft Vendor-specific RADIUS Attributes”, RFC 2548, March

1999, available at: http://www.ietf.org/rfc/rfc2548.txt?number=2548, last visited:
April 2008.

[24] 802.1x Port Based Network Access Control, available at:

http://wiki.personaltelco.net/index.cgi/PortBasedNetworkAccessControl, last
visited: April 2008.

[25] OpenSEA Alliance Formed by Leading Vendors to Develop and Distribute Open

Source 802.1X Supplicant, available at:
http://www.openseaalliance.org/index.php?option=com_content&task=view&id=
6&Itemid=40, last visited: April 2008.

[26] AEGIS (network), available at: http://en.wikipedia.org/wiki/AEGIS_(network),

last visited: April 2008.

[27] Cisco Systems Completes Acquisition of Meetinghouse Data Communications,

available at: http://newsroom.cisco.com/dlls/2006/corp_081606.html, last visited:
April 2008.

[28] Cisco Secure Services Client Introduction, available at:

http://www.cisco.com/en/US/products/ps7034/index.html, last visited: April
2008.

[29] Juniper Networks Odyssey Access Client, available at:

http://www.juniper.net/products_and_services/aaa_and_802_1x/odyssey/odyssey
_access_client/index.html, last visited: April 2008.

[30] Sean Michael Kerner, “Network Access Heats Up With 802.1x Funk”, July 2006,

available at: http://www.internetnews.com/security/article.php/3620336, last
visited: April 2008.

[31] Juniper Networks Completes Acquisition of Funk Software, available at:

http://www.juniper.net/company/presscenter/pr/2005/pr-051201.html, last visited:
April 2008.

[32] IEEE 802.1x Open Source Implementation, available at:

http://open1x.sourceforge.net/, last visited: April 2008.

[33] Linux WPA/WPA2/IEEE 802.1X Supplicant, available at:

http://hostap.epitest.fi/wpa_supplicant/, last visited: April 2008.

 56

http://www.arlinx.com/RADIUS.html
http://www.ietf.org/rfc/rfc2548.txt?number=2548
http://wiki.personaltelco.net/index.cgi/PortBasedNetworkAccessControl
http://www.openseaalliance.org/index.php?option=com_content&task=view&id=6&Itemid=40
http://www.openseaalliance.org/index.php?option=com_content&task=view&id=6&Itemid=40
http://en.wikipedia.org/wiki/AEGIS_(network)
http://newsroom.cisco.com/dlls/2006/corp_081606.html
http://www.cisco.com/en/US/products/ps7034/index.html
http://www.juniper.net/products_and_services/aaa_and_802_1x/odyssey/odyssey_access_client/index.html
http://www.juniper.net/products_and_services/aaa_and_802_1x/odyssey/odyssey_access_client/index.html
http://www.internetnews.com/security/article.php/3620336
http://www.juniper.net/company/presscenter/pr/2005/pr-051201.html
http://open1x.sourceforge.net/
http://hostap.epitest.fi/wpa_supplicant/

[34] Wire1x, available at: http://wire.cs.nthu.edu.tw/wire1x/, last visited: April 2008.

[35] Linux WPA/WPA2/IEEE 802.1X Supplicant, available at:

http://hostap.epitest.fi/wpa_supplicant/, last visited: April 2008.

[36] About Wireshark, available at: http://www.wireshark.org/about.html, last visited:

July 2008.

[37] Wireshark, available at: http://en.wikipedia.org/wiki/Wireshark, last visited: July

2008.

[38] Wireless network, available at: https://dsv.su.se/en/comp/wireless, last visited:

August 2008.

[39] Zhou Jia, “Adding bandwidth specification to a AAA Server”, Master thesis,

Department of Communication Systems, School of Information and
Communication Technology, Royal Institute of Technology (KTH), Stockholm,
Sweden, September, 2008.

[40] Alert Standard Format (ASF) Specification, available at:

http://www.dmtf.org/standards/asf/, last visited: November 2008.

[41] Thomas Otto, “Extensible Network Access Authentication”, Diplomarbeit

(Diplom thesis), TU Braunschweig, July 4, 2006, available at:
www-public.tu-bs.de:8080/~y0013790/thesis-otto-eapmethods.pdf, last visited:
November 2008.

[42] Transport Layer Security, available at:

http://en.wikipedia.org/wiki/Transport_Layer_Security, last visited: November
2008.

[43] Guo Jia, “Non-binary authentication”, Master thesis, Department of

Communication Systems, School of Information and Communication
Technology, Royal Institute of Technology (KTH), Stockholm, Sweden, 2008
(draft)

[44] C. Rigney, A. Rubens, W. Simpson, S. Willens, “Remote Authentication Dial In

User Service (RADIUS)”, RFC 2058, January 1997, available at:
http://tools.ietf.org/html/rfc2058 , last visited: December 2008.

 57

http://wire.cs.nthu.edu.tw/wire1x/
http://hostap.epitest.fi/wpa_supplicant/
http://www.wireshark.org/about.html
http://en.wikipedia.org/wiki/Wireshark
https://dsv.su.se/en/comp/wireless
http://www.dmtf.org/standards/asf/
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://tools.ietf.org/html/rfc2058

Appendix A Source code for the new supplicant

/////////////////////////////////added by hengchong /////////////////////////////////////

typedef struct {

 u_char DesMAC[6];

 u_char SrcMAC[6];

 USHORT Ethertype;

}DLC_Header;

typedef struct {

 u_char h_len;

 u_char tos;

 USHORT total_len;

 USHORT ident;

 USHORT frag_and_flags;

 u_char ttl;

 u_char proto;

 USHORT checksum;

 u_char sourceIP[4];

 u_char destIP[4];

}IpHeader;

typedef struct _UDP{

 USHORT SrcPort;

 USHORT DstPort;

 USHORT Len;

 USHORT Chksum;

}UDP_Header;

typedef struct dns_header

{

 USHORT id;

 USHORT flags;

 USHORT questions;

 USHORT answers;

 USHORT author;

 USHORT addition;

}DNS_HEADER;

typedef struct tsd_hdr

{

 BYTE saddr[4];

 BYTE daddr[4];

 BYTE mbz;

 BYTE ptcl;

 USHORT udpl;

}PSD_HEADER;

 58

/***

* Name: //Calculate Checksum

* Created: hengchong

**

*************/

USHORT checksum(USHORT *buffer,int size)

{

 unsigned long cksum=0;

 while(size>1)

 {

 cksum+=*buffer++;

 size-=sizeof(USHORT);

 }

 if(size)

 {

 cksum+=*(UCHAR *)buffer;

 }

 while (cksum>>16)

 cksum=(cksum>>16)+(cksum & 0xffff);

 return (USHORT) (~cksum);

}

/***

* Name: Make udp Package

* Created: Hengchong

***/

int MakeUdp(u_char * udpPackage)

{

 //Construct a domain to store packets

// u_char *udppackage;

 u_char *src_addr;

 u_char domain[50];//domain name

 DLC_Header *dlcheader,*fakedlc;

 IpHeader *ipheader,*fakeip;//IP header

 UDP_Header *fakeudp;//UDP header

 DNS_HEADER *fakedns;//DNS header

 PSD_HEADER *psdheader;

// USHORT ip_len;//IP header length

 char srcip[4];//Source IP address

 char destip[4];//Destination IP address

 char srcmac[6];//Source MAC address

// char destmac[6];// Destination MAC address

// char domain[50];

 59

 //Fake IP address infomation

 memset(srcip,0,4);

 memset(destip,0,4);

 //Construct fake answering packets

 fakedns=(DNS_HEADER *)malloc(12+strlen((char *)domain)+21);//Assign memory for DNS

packets

 memset(fakedns,0,12+strlen((char *)domain)+21);

 fakedns->id=2222;

 fakedns->flags=htons(0x8180);

 fakedns->questions=htons(1);

 fakedns->answers=htons(1);

 fakedns->author=0;

 fakedns->addition=0;

 memcpy((char *)fakedns+12,domain,strlen((char *)domain)+1);

 *((BYTE *)fakedns+12+strlen((char *)domain)+1)=0x00;//Type query

 *((BYTE *)fakedns+12+strlen((char *)domain)+2)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+3)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+4)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+5)=0xC0;

 *((BYTE *)fakedns+12+strlen((char *)domain)+6)=0x0C;

 *((BYTE *)fakedns+12+strlen((char *)domain)+7)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+8)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+9)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+10)=0x01;

 *((BYTE *)fakedns+12+strlen((char *)domain)+11)=0x00;//TTL

 *((BYTE *)fakedns+12+strlen((char *)domain)+12)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+13)=0x00;

 *((BYTE *)fakedns+12+strlen((char *)domain)+14)=0x80;

 *((BYTE *)fakedns+12+strlen((char *)domain)+15)=0x00;//IP address length

 *((BYTE *)fakedns+12+strlen((char *)domain)+16)=0x04;

 //Fill fake IP address

 *((u_char *)fakedns+12+strlen((char *)domain)+17)=192;

 *((u_char *)fakedns+12+strlen((char *)domain)+18)=168;

 *((u_char *)fakedns+12+strlen((char *)domain)+19)=0;

 *((u_char *)fakedns+12+strlen((char *)domain)+20)=88;

 //Fill udp packets

 fakeudp=(UDP_Header *)malloc(8+12+strlen((char *)domain)+21);

 memset((char *)fakeudp,0,8+12+strlen((char *)domain)+21);

 fakeudp->DstPort=5555;

 fakeudp->SrcPort=6666;

 fakeudp->Chksum=0;//Check sum

 fakeudp->Len=htons(8+12+strlen((char *)domain)+21);//UDP packets size

 memcpy((char *)fakeudp+8,(char *)fakedns,12+strlen((char *)domain)+21);

 psdheader=(PSD_HEADER *)malloc(12+8+12+strlen((char *)domain)+21);

 60

 psdheader->mbz=0;

 psdheader->ptcl=17;

 psdheader->udpl=htons(8+12+strlen((char *)domain)+21);

 memcpy((char *)&(psdheader->saddr[0]),destip,4);

 memcpy((char *)&(psdheader->daddr[0]),srcip,4);

 memcpy((char *)psdheader+12,(char *)fakeudp,8+12+strlen((char *)domain)+21);

 fakeudp->Chksum=checksum((USHORT *)psdheader,12+8+12+strlen((char *)domain)+21);

 //Fill IP packets

 fakeip=(IpHeader *)malloc(20+8+12+strlen((char *)domain)+21);

 memset((char *)fakeip,0,20+8+12+strlen((char *)domain)+21);

 fakeip->h_len=0x45;

 fakeip->checksum=0;

 fakeip->tos=ipheader->tos;

 fakeip->total_len=htons(20+8+12+strlen((char *)domain)+21);

 fakeip->ident=ipheader->ident;//Identity

 fakeip->frag_and_flags=ipheader->frag_and_flags;

 fakeip->proto=ipheader->proto;

 fakeip->ttl=128;

 memcpy((char *)fakeip+12,(char *)destip,4);//Source IP address

 memcpy((char *)fakeip+16,(char *)srcip,4);//Destination IP address

 memcpy((char *)fakeip+20,(char *)fakeudp,8+12+strlen((char *)domain)+21);

 //Calculate Checksum

 fakeip->checksum=checksum((USHORT *)fakeip,20);

 //Fill MAC frame

 fakedlc=(DLC_Header *)malloc(14+20+8+12+strlen((char *)domain)+21);

 memset(fakedlc,0,14+20+8+12+strlen((char *)domain)+21);

 src_addr = get_src_mac();

 memcpy((char *)&(fakedlc->DesMAC[0]),eapol_dst,6);//Fill destination MAC

 memcpy((char *)&(fakedlc->SrcMAC[0]),src_addr,6);//Fill source MAC

 free(src_addr);

 src_addr = NULL;

 fakedlc->Ethertype=dlcheader->Ethertype;

 memcpy((char *)fakedlc+14,(char *)fakeip,20+8+12+strlen((char *)domain)+21);

 udpPackage=(u_char *)fakedlc;

 return (14+20+8+12+strlen((char *)domain)+21);

}

/***

* Name: SendUdpPackage

* Created:Hengchong

***/

void txSendUdp()

{

 printf("send txStart\n");

 u_char *temp=NULL;

 61

 int len = MakeUdp(temp);

 if (send_frame(temp, len) == NULL)

 printf("send udp to link.\n");

 free(temp);

 temp = NULL;

}

 62

Appendix B Source code for emulation

///

// CClientSocket

CClientSocket::CClientSocket()

{

 m_aSessionIn=NULL;

 m_aSessionOut=NULL;

 m_sfSocketFile=NULL;

 m_bInit=false;

 m_bClose=false;

}

CClientSocket::~CClientSocket()

{

 if(m_aSessionIn)

 delete m_aSessionIn;

 if(m_aSessionOut)

 delete m_aSessionOut;

 if(m_sfSocketFile)

 delete m_sfSocketFile;

}

// Do not edit the following lines, which are needed by ClassWizard.

#if 0

BEGIN_MESSAGE_MAP(CClientSocket, CSocket)

 //{{AFX_MSG_MAP(CClientSocket)

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

#endif // 0

///

// CClientSocket member functions

void CClientSocket::OnReceive(int nErrorCode)

{

 // TODO: Add your specialized code here and/or call the base class

 CSocket::OnReceive(nErrorCode);

 do

 {

 CMessg temp;

 temp.Serialize(*m_aSessionIn);

 m_dlg->m_sMsgList+=temp.m_strText+"\r\n";

//MessageBox(NULL,temp.m_strText,"",MB_OK);

 if(!m_dlg->m_bClient)

 {

 for(POSITION pos=m_dlg->m_connectionList.GetHeadPosition();pos!=NULL;)

 63

 {

 CClientSocket * t = (CClientSocket*)m_dlg->m_connectionList.GetNext(pos);

 //if(t->m_hSocket!=this->m_hSocket)

 {

//MessageBox(NULL,temp.m_strText,"",MB_OK);

 if(temp.m_strText.Compare("EAPOL-Start")==0)

 {

 CMessg temp1;

 temp1.m_strText ="Min Band:1 Max

Band:20\r\nEAP-Request/Identity";

 // m_dlg->bSuccessLittleBand=true;

 t->SendMessage(&temp1);

 // m_dlg->m_sMsgList+="\n"+temp1.m_strText+"\n";

 }else

 if(temp.m_strText.Compare("EAP-Response/Identity")==0)

 {

 CMessg temp1;

 temp1.m_strText ="EAP-Request/Auth";

 t->SendMessage(&temp1);

 // m_dlg->m_sMsgList+="\n"+temp1.m_strText+"\n";

 }else if(temp.m_strText.Compare("EAP-Response/Auth")==0)

 {

 CMessg temp1;

 temp1.m_strText ="EAP-Success/MAX Band:50";

 t->SendMessage(&temp1);

 m_dlg->bSuccess=true;

 }else if(temp.m_strText.Compare("EAPOL-Logoff")==0)

 {

 CMessg temp1;

 temp1.m_strText ="Finish Logoff";

 t->SendMessage(&temp1);

 m_dlg->bSuccess=false;

 }

 }

 }

 }else if(temp.m_strText.Compare("EAP-Success/MAX Band:50")==0)

 {

 m_dlg->bSuccess=true;

 }else if(temp.m_strText.Compare("Finish Logoff")==0)

 {

 m_dlg->bSuccess=false;

 }else if(temp.m_strText.Compare("EAP-Failure")==0)

 {

 64

 m_dlg->bSuccess=false;

 m_dlg->bSuccessLittleBand=false;

 }else if(temp.m_strText.Compare("Min Band:1 Max

Band:20\r\nEAP-Request/Identity")==0)

 {

 m_dlg->bSuccessLittleBand=true;

 }

 m_dlg->SetDlgItemText(IDC_SHOWTEXT,m_dlg->m_sMsgList);

 if(temp.m_tag==1&&m_dlg->m_willchating==FALSE)

 {

 // memcpy(m_dlg->m_sound.m_cBufferOut,temp.m_buffer,MAX_BUFFER_SIZE);

 }

 int linenum=((CEdit *)(m_dlg->GetDlgItem(IDC_SHOWTEXT)))->GetLineCount();

 ((CEdit *)(m_dlg->GetDlgItem(IDC_SHOWTEXT)))->LineScroll(linenum);

 if(!m_dlg->m_bClient)

 {

 for(POSITION pos=m_dlg->m_connectionList.GetHeadPosition();pos!=NULL;)

 {

 CClientSocket * t = (CClientSocket*)m_dlg->m_connectionList.GetNext(pos);

 if(t->m_hSocket!=this->m_hSocket)

 {

 t->SendMessage(&temp);

 }

 }

 }

 }

 while (!m_aSessionIn->IsBufferEmpty());

}

CServerSocket::CServerSocket()

{

}

// Do not edit the following lines, which are needed by ClassWizard.

#if 0

BEGIN_MESSAGE_MAP(CServerSocket, CSocket)

 //{{AFX_MSG_MAP(CServerSocket)

 //}}AFX_MSG_MAP

END_MESSAGE_MAP()

#endif // 0

///

// CServerSocket member functions

BOOL CServerSocket::Init(UINT port)

{

 m_uPort=port;

 65

 m_dlg=dlg;

 if(Create(m_uPort)==FALSE)

 {

 AfxMessageBox("Server Socket Create Error");

 return FALSE;

 }

 if(this->Listen()==FALSE)

 {

 AfxMessageBox("Server Listen Error");

 return FALSE;

 }

 m_dlg->SetDlgItemText(IDC_SHOWTEXT,"Server Has Been Set OK!");

 return TRUE;

}

void CServerSocket::OnAccept(int nErrorCode)

{

 // TODO: Add your specialized code here and/or call the base class

 m_dlg->ProcessPendingAccept();

 CSocket::OnAccept(nErrorCode);

}

 66

www.kth.se

COS/CCS 2009-01

	1. Introduction
	1.1 Problem Statement
	1.2 Goals of this thesis
	2. Background and related work
	2.1 WPA
	2.2 Authentication for Dial-up access
	2.3 IEEE 802.1x
	2.4 EAP
	2.4.1 What is EAP
	2.4.2 EAPOL
	2.4.3 PEAP

	2.5 RADIUS
	2.6 Related Research
	2.6.1 Who is the Supplicant
	2.6.2 Available 802.1x supplicants

	3. Analysis of non-binary authentication process
	3.1 Handover process in wireless networks
	3.2 When is the EAP-Success returned - several scenarios

	4. Experiment Analysis
	4.1 Measurement tool
	4.2 Experiments
	4.2.1 After the supplicant is authenticated by KTHOPEN
	4.2.2 Before the supplicant is authenticated by a D-Link access point
	4.2.3 After the supplicant is authenticated by D-Link

	5. Implementation, testing, and analysis of a new supplicant
	5.1 Implementation of a new supplicant
	5.2 Imitation of a non-binary AP
	5.3 Test and Analysis

	6. Conclusions and Future Work
	6.1 Conclusions
	6.2 Future work
	References

	Appendix A Source code for the new supplicant
	Appendix B Source code for emulation

