
Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-23

S H A S H A Z H A N G

 Implementing a Personal Area Network

Device aggregation
with data networking

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Device aggregation with data networking

Implementing a Personal Area Network

Shasha Zhang
 shasha@kth.se

Master’s thesis

3 October 2008

Examiner and Supervisor
Prof. Gerald Q. Maguire Jr.

mailto:%20shasha@kth.se

Abstract

Abstract
Technology is advancing rapidly and intelligent devices are becoming affordable and

wireless infrastructure is becoming pervasive. Personal information technology
appliances have become part of our life, via cellular phones, PDAs, Bluetooth headsets,
handheld keyboards, GPS, and digital cameras. In the future, new intelligent devices will
be invented as technology evolves. However, because multiple devices provide similar
(but different) functionality it is complex for the average user to choose a single device.
Moreover, today it is hard to configure, administer, and use several different appliances
together. In order to be utilized in an effective manner and in an accessible way, personal
devices should be aggregated, i.e., connected together via a local area network so that
they can appear to the user as if they were a single device.

This paper introduces a connection model based on device aggregation to realize
shared state, the behavior of a shared appliance, and with the superset of the individual
device functionality. Such an aggregated logical device might even exhibit functions
which a user would have a very hard time realizing by manually combining devices. This
will facilitate the user’s control over their appliances (build of different devices), but
acting as one device.

The project was a joint effort with David Sabaté Mogica. We developed such a
system based on Dynamic Host Client protocol (DHCP) and Service Location Protocol
(SLP) for service discovery and Virtual Network Computing (VNC) for remote desktop
control. The system builds on a laboratory network environment. This thesis concerns
the implementation and evaluation of service discovery. The Remote desktop control was
researched and implemented separately and will be reported separately. Service discovery
between two computers has been implemented using a custom program developed for a
PDA. However, at present the PDA only sends a DA request packet with DHCP.
However, service discovery has been successfully tested between two computers. This
provided an important base for the programming on PDA and the future development of a
similar program for a cellular phone.

Keywords: PDA, SLP, network, remote desktop

 i

Abstract

 ii

Sammanfattning
Den snabba tekniska utvecklingen ger våra apparater mer och mer intelligens, priset

på avancerade produkter är överkomligt och trådlösa infrastrukturer binder samman allt
fler produkter.

Tekniska produkter har blivit en del av vår vardag: Mobiltelefon, PDA-er, trådlösa
hörlurar och tangentbord med blåtandsradio, GPS och digitalkameror. I takt med den
tekniska utvecklingen kommer hela tiden nya intelligenta och kommunicerande
produkter.

Man kan hitta liknande funktioner i olika produkter, och det är svårt för den vanlige
användaren att välja den optimala produkten. Dessutom har de avancerade produkterna
många parametrar att ställa in, och att använda olika produkter tillsammans kräver att
användaren är djupt insatt i tekniken. Genom att aggregera, koppla ihop, produkterna i ett
lokalt nätverk, kan deras funktioner användas effektivt och göras bättre tillgängliga
genom att de för användaren ser ut som om de tillhör en enda produkt.

Denna avhandling introducerar en kommunikationsmodell baserad på
produktaggregering genom delade gemensamma tillstånd och reaktioner hos de ingående
produkterna, med tillägg av respektive produkters särskilda funktioner. En sådant logiskt
produktaggregat kan också fås att utföra funktioner som användaren annars skulle ha
väldigt svårt att realisera genom att manuellt kombinera de nödvändiga
produktfunktionerna. Det underlättar alltså användningen av systemet (byggt av flera
olika produkter), som fungerar som om det vore en enda produkt.

Projektet har genomförts tillsammans med David Sabaté Mogica. Vi har utvecklat ett
system för produktaggregering baserat på Dynamic Host Client protocol (DHCP) och
Service Location Protocol (SLP) för att identifiera tillgängliga fuktioner och Virtual
Network Computing (VNC) för ”remote desktop control”. Systemet är byggt i ett
laboratorienät.

Avhandlingen fokuserar på hur identifiering av tillgängliga funktioner och tjänster
genomförs och utvärderas. ”Remote desktop control” utvecklades och infördes separat
och kommer att rapporteras separat. Ömsesidig identifiering av funktioner mellan två
datorer har genomförts med ett program utvecklat speciellt för en PDA. Hittils sänder
emellertid PDA’n bara ett DA-frågepaket med DHCP. Den ömsesidiga
funktionsidentifieringen är dock testad och fungerar mellan två datorer vilket gav den
nödvändiga grunden för programmeringen av PDA’n och för framtida utveckling av
liknande program för mobiltelefoner.

Nyckeord: PDA, SLP, nätverk, remote deskto

Table of contents

Table of contents
Abstract .. i
Sammanfattning .. ii
Table of contents.. iii
List of Figures ... v
Glossary .. vii
1 Introduction... 1

1.1 Problem Statement .. 1
1.2 Objectives ... 1
1.3 Organization of this Thesis ... 2

2 Background and Related Work... 3
2.1 What is device aggregation? ... 3
2.2 Devices aggregation scenarios.. 3

2.2.1 Scenario 1.. 3
2.2.2 Scenario 2.. 4
2.2.3 Scenario 3.. 5

2.3 Related work and existing technology.. 5
2.3.1 Link layer .. 5
2.3.2 Network layer.. 7
2.3.3 Transport layer .. 12
2.3.4 Application layer... 12
2.3.5 P2P technologies... 13

2.4 Remote desktop software.. 13
2.3.2 VNC .. 13
2.4.1 Remote Desktop Protocol ... 14
2.4.2 X window system.. 15

2.5 Powering the individual devices ... 16
3 Implementation ... 17

3.1 Methods... 17
3.2 System Architecture.. 18

3.2.1 Laboratory environment.. 18
3.2.2 Devices used ... 20

3.3 Protocols and software used.. 28
3.3.1 DHCP.. 28
3.3.2 SLP.. 30
3.3.3 Programming on PDA... 33
3.3.4 Remote display software... 39

4 Testing and Analysis... 40
4.1 The DHCP server and the DHCP client.. 40
4.2 Openslp on two PCs.. 42
4.3 DA on Badge and SA on PC... 46
4.4 DA on PC and SA program on PDA .. 49
4.5 DA on Badge and SA program on PDA ... 49

5 Conclusions... 50
5.1 Conclusions... 50

 iii

Table of contents

5.2 Future work... 51
5.2.1 Improvement discovery service .. 51
5.2.2 Combining the discovery service and remote desktop control application
 51
5.2.3 Security ... 54
5.2.4 Power management... 54

References... 55
Appendix A. Source code of Udhcp-0.9.6 with changes .. 58
Appendix B. Source code of SA for the H5550.. 68

 iv

List of Figures

 v

List of Figures
Figure 1. Intelligent environment .. 1

Figure 2. New devices add into local area network .. 4

Figure 3. Access appliance from any device .. 5

Figure 4. Service location protocol mechanism... 10

Figure 5. Service location protocol message schema ... 10

Figure 6. VNC work schema .. 14

Figure 7. Remote Desktop Connection... 14

Figure 8. X windows system... 15

Figure 10. HP ipaq 5550 ... 21

Figure 11. Microsoft Pocket PC 2003... 22

Figure 12. ActiveSync successfully.. 23

Figure 13. Nokia E70.. 24

Figure 14. SmartBadge version 4.. 24

Figure 15. Successfully connecting to the Badge from a PC running Linux............ 25

Figure 16. Contents of the "startbadge" file.. 26

Figure 17. DHCP operation schema ... 29

Figure 18. Microsoft Visual Studio 2008 with Pocket PC 2003 SE Emulator 35

Figure 19. Connection with H5550 succeed... 36

Figure 20. Deploy program to H5550... 36

Figure 21. Simple flow chart of SA program on PDA ... 37

Figure 22. Service Request packet sent by Service Agent.. 38

Figure 23. Service Registration packet sent by Service Agent................................. 38

Figure 24. udhcp server started... 41

Figure 25. H5550 connected to the network with ESSID “ece8883”....................... 41

List of Figures

Figure 26. DHCP details shown by PocketDHCP.. 42

Figure 27. DA and SA on PCs .. 42

Figure 28. SLP packet between SA and DA on two PCs ... 44

Figure 29. A Service Request packet sent by “hlllab5”.. 45

Figure 30. A Service Registration packet sent by “hlllab5” 46

Figure 31. Available space on the badge before installing the SLP related files...... 47

Figure 32. Daemon, library files, and configuration files memory requirement 48

Figure 33. “slpd.log” file when Badge run DA .. 48

Figure 34. SA program sends the Service Request... 49

Figure 35. Personal area network for device aggregation... 50

Figure 36. New devices enter into the network .. 52

Figure 37. Devices register service... 53

Figure 38. PDA acts as a bigger display to the cellular phone 53

 vi

Glossary

Glossary

DA Directory agents
DHCP Dynamic Host Client protocol
DNS Domain name server
GPS Global Position-finding System
ICMP Internet Control Messages Protocol
IETF Internet Engineering Task Force
NFS Network File System
P2P peer to peer technology
PDA personal digital assistant
RDC Remote Desktop connection
RDP Remote Desktop Protocol
SA Service agents
SLP Service Location Protocol
UA User agents
UPnP Universal Plug and Play
USB Universal Serial
VNC Virtual Network Computing
Wi-Fi wireless fidelity
WLAN wireless local area networks

 vii

Introduction

1 Introduction

 1

1.1 Problem Statement
A large variety of smart devices will be available to users as information technology

develops in future. To perform a particular task, many small networked computing
devices can work together, enabling them to offer to the user the aggregate of their
functions. Unfortunately, today users have to care more than one device because each of
the devices has generally been designed to operate alone. In addition to a user’s personal
devices, there are often a number of fixed devices such as speakers, presentation
projectors, printers, or keyboards in the local environment. Currently, the large number of
devices gives burdens the user rather than benefiting him or her as the difficulty of trying
to get the different devices to work with each other is often very significant. Even though
some devices are capable of being connected to others, the interaction is very simple to
(for example, using Microsoft’s ActiveSync to share settings, information, and files with
the other connected device) or very complex (for example, connecting to a data projector
and adjusting the settings to get the best possible picture for the audience while
maintaining the view of the speaker’s notes which the speaker wants to see). In some
cases the user would like to maintain an interactive session with someone else even
though they change their device configuration (for example, changing from a headset to a
set of speakers in the room) [20].

1.2 Objectives
Our goal is to propose a means of aggregating multiple devices via a local network

infrastructure. This network will utilize protocols operating on different layers, to enable
intelligent devices including PCs, cellular phones, PDAs, Bluetooth headsets, GPS
receivers, camera, etc. to work together in order to create an intelligent environment
(Figure 1) for users. We envision a home or office of the future with this technology,
which allows users to switch between devices arbitrarily; just as if using a single device.
Obviously, this aggregated device should make it easier to do more tasks than is the
current situation when the user has to manually use one device at a time in the correct
order to perform the task which they wish to accomplish. This we expect that a user will
be able to use the devices at hand to perform the application they want.

Figure 1. Intelligent environment

Introduction

 2

1.3 Organization of this Thesis
The whole project is doing by David and me. We are developing such a system based

on Dynamic Host Client protocol (DHCP) and Service Location Protocol (SLP) for
service discovery and Virtual Network Computing (VNC) for remote desktop control.
The system builds on a laboratory network environment. This thesis concerns the
implementation and evaluation of service discovery. The Remote desktop control was
researched and implemented separately and will be reported separately. Service discovery
between two computers has been implemented using a custom program developed for a
PDA. Following this introduction, Chapter 2 gives a brief description of the concept of
device aggregation, and explains the existing technology. Chapter 3 proposes architecture
for device aggregation based on data networking and specifies each device and protocol
to be used. Chapter 4 tests the implementation and analyzes the test results. The final
chapter offers some conclusions and suggests some improvements and future work.

Background and Related Work

2 Background and Related Work

 3

In this chapter, the background and related work are discussed. These contents
provide the necessary background for the reader to understand the later chapters. First we
begin by introducing the basic idea of device aggregation. Devices aggregation scenarios
show how device aggregation can be exploited in real life. Related work is elaborated
considering four different protocol layers. The chapter ends with an examination of
remote desktop software and other means of providing an audio or visual interface to an
application which is running on another computer. An example of using a cordless
headset with a device is shown to illustrate that it is not only visual information and text
information, but also other types of media which can be exchanged between devices.

2.1 What is device aggregation?
Before discussing the related work and existing technologies, some crucial terms used

in this thesis are defined:

Intelligent or smart device a device that has its own computing capability. In this
paper, intelligent or smart devices will include cellular
phone, PDAs, Bluetooth headsets, and GPS receivers.

Device aggregation means to make multiple devices work together. To
understand aggregation architecture, each level is
defined in the context of the devices being aggregated.

2.2 Devices aggregation scenarios
To illustrate the advantages of device aggregation from a user’s perspective, three

scenarios closely related to real life are given.

2.2.1 Scenario 1
John is an employee in a company. He has a PC, a PDA, a cellular phone, camera and

a Bluetooth headset. All of these devices are connected to a local network. He is allowed
to use any device to authenticate his identity, because all of the networked devices share a
common set of configurations and preferences. When John adds some a new device, such
as a sensor, stereo headset, or GPS receiver into his existing network, the new device
must announce its presence. If this device is accepted as part of John’s (personal) local
area network, then the device preferences should be shared between these devices, there.
John does not need to re-configure each device manually to accommodate the new
device.

Background and Related Work

 4

Figure 2. New devices add into local area network

2.2.2 Scenario 2
John uses his cellular phone to connect to the Internet. He is looking at the latest

soccer scores with his web browser running on his PDA. As he enters his apartment the
PDA detects that he is in the room where his PC is located and asks if John would like to
use the large display to view these scores. If John says yes, then the software can use the
bigger display of the PC or other display device for display function at hand.

John has just a little work to do in his office, before it is time for his favorite soccer
team to start playing. He decides to use a window on his PC’s screen to view the
upcoming match - so that he can see just when the game starts. At the same time, he is
listening music via his Bluetooth connected headset. He finishes the last of his e-mail,
just as the game is about to start. He homes to hear back from Shasha about going to a
movie after the game and sends her an e-mail message as he moves into the living room
using his PDA. As he moves into the living room the video window with the game
follows him into the living room and appears on his large flat panel display. Part way
through the match, Shasha’s replay concerning the movie arrives via SMS and because
his system knew that he was waiting for it, the message was converted to audio and
played via his Bluetooth headset- as well as appearing as a text message on his PDA.
From this example, we can see that John’s cellular phone, PDA, and PC shared state and
can interact with the smart devices (in this case home appliances such as the flat panel
display), therefore John can access data via any of these devices (and appliances). For
example, e-mail, instant message, and calls share the same contact lists, call/IM/e-
mail…spam filtering can be used on all of these information sources without the user
have to configure each one of them,…. Changes made to the black list to block spam are
available to the other entire device when John edits and saves changes on one device. He
can use any device to edit files, photos, preferences … and continue to work later on any
other of his devices.

Background and Related Work

 5

Figure 3. Access appliance from any device

2.2.3 Scenario 3
In addition, when John receives a call from his brother Johan (who is a fan of the

opposing team) on his cellular phone, but the phone is not beside him, he can use the
keyboard on his PC, a button on his PDA, or interaction with any of the other devices
which can accept input from him devices to answer the call; now the call can make use of
any of the devices which he has at hand to participate in the call (for example, Johan can
use his camera to show Johan the new soccer jack he is wearing for tonight’s game – in
of course his teams colors).

Mark Wiser described ubiquitous computing as, “invisible, everywhere computing
that does not live on a personal device of any sort, but is in the woodwork everywhere”
[1].These scenarios show the benefits of device aggregation and how they can indeed
simply life (at least viewed from today’s perspective).

2.3 Related work and existing technology
Device aggregation can occur at many different system levels. We will explicitly

consider some of the forms of aggregation at the link layer, network layer, transport layer,
and application layer. This discussion follows the International Organization for
Standardization Open Systems Interconnection seven-layer reference model. While it is
useful for describing the ideas, we will not be strict in following this model for the actual
implementation. Related work is elaborated on each layer as below.

2.3.1 Link layer
Devices aggregation via a local area network or personal area network requires the

Link layer to provide low-power, medium to high bandwidth, and always-on connectivity
[2]. A number of communication interfaces are commonly found in ubiquitous in many
fixed and mobile devices; these include Universal Serial (USB), IEEE 1394a/b (also
known as Firewire), Bluetooth, and Wireless Local Area Networks (WLANs).

Background and Related Work

 6

2.3.1.1 USB
Universal Serial Bus (USB) is a serial bus standard to interface devices and. It was

designed to allow many peripherals to be connected to a computer using a single
standardized interface socket and to improve the plug-and play capabilities by allowing
devices to connect and disconnect without rebooting the computer. The USB 1.0
specification was introduced in November 1995.

Originally USB was intended to replace the multitude of connectors on the back of
PCs, as well as to simplify software configuration of communication devices. Other
convenient features include providing power to low-power consumption devices without
the need for an external power supply and allowing many devices to be used without
requiring manufacturer specific, individual device drivers to be installed. USB supports
three data rates:

1. Low Speed (1.5Mbit/s) is mostly used for Human Interface Devices (HID) such as
keyboards, mice, and joysticks [3].

2. Full Speed (12Mbit/s) was fastest rate before the USB 2.0 specification and many
devices fall back to Full Speed. All USB hubs support Full Speed [3].

3. Hi-Speed means 480Mbit/s [3].

2.3.1.2 IEEE 1394a/b
IEEE 1394 (also known as Apple’s FireWire, and Sony’s i.link) is a high speed serial

bus developed by Texas Instruments and Apple computers in the mid-1990s. IEEE 1394
a/b is widely used for multimedia (digital cameras, digital recorders…) and high speed
data applications (for example IEEE 1394 external disk drives). IEEE 1394 is a serial bus
interface standard that offers isochronous data services and high-speed data
communications between digital devices [4].

FireWire is similar to USB, but it supports data transfer rates of up to 400Mbps (in
IEEE 1394a) and 800Mbps (IEEE 1394b), compared to USB’s 400Mbps. This feature
meets high-speed data transfer equipments’ need to transfer large quantities of data in
real-time (for example, between a DVD player and a PC).

Like USB, it supports both Plug-Play and hot plugging, and provides power to
peripheral devices. Additionally, it facilitates peer-to-peer device communications
without using PC memory and permits multiple hosts per bus.

When the computer is turned on, it will query all equipment attached and
automatically and assign an address to each one. This 64-bit addressing is based on IEEE
1212 standard. Each packet of information sent by a device over the bus consists of three
parts:

• 10-bit bus ID: identifies which bus generated the data [4].
• 6-bit physical ID: identifies which device sent the data [4].
• 48-bit storage area: addressing 256 terabytes of information for each node [4].

2.3.1.3 Bluetooth
Bluetooth is a radio interface standard operating in the 2.45GHz frequency band that

was designed as a wire replacement for portable electronic devices. Thus its primary goal

http://www.tech-faq.com/firewire.shtml

Background and Related Work

 7

was to provide short range personal area network, but this war later extended to include
multihop-enabling larger ad hoc networks [5]. Bluetooth interfaces are available in
several classes, ranging from very short distance ~1m to 10m to 100m. Bluetooth was
designed as the successor to the earlier infrared standard, IrDA, in order to provide
host-to-host communication as well as USB-like wireless connectivity to peripherals.

Bluetooth technology was initially developed by Ericsson, but also gained the support
of Nokia, IBM, Toshiba, Intel, and many other manufacturers. It eliminates the need for
wires, cables, and connectors between a cellular phone, PDAs, headsets, printers,
projectors, local area networks, and so on. Bluetooth has also tried to foster entirely new
applications and devices.

2.3.1.4 Wi-Fi
Wi-Fi (short for “wireless fidelity”) is the trade name for another wireless technology

(wireless local area networks- WLANs) created by an organization called the Wi-Fi
Alliance. This term is used for wireless local area network based upon the specifications
of the 802.11family that meet the organizations requirements for certification for
interoperability.

The purpose of Wi-Fi is simple: hide complexity by enabling access to information
easily, ensuring compatibility and coexistence, getting rid of cabling and wiring, and
getting rid of switches, adapters, plugs and connectors.

A Wi-Fi enabled device such as a PC, PDA, cellular phone, or Media player
wirelessly connect to the Internet Wi-Fi access ranges from a hotspot and the coverage of
one or more hotspot (with coverage of a limited area) can be an area as small as a single
room to metropolitan area coverage of many square kilometers. Wi-Fi access via publicly
available hotspots, home and business WLANs, and municipal WLANs -provided free of
charge, hourly, or subscription based access [6].Peer-to-Peer mode, also called wireless
ad-hoc network mode, enables devices to connect directly with each other.

Compared to low-bandwidth standards, especially Zigbee and Bluetooth, power
consumption is fairly high for Wi-Fi, but the range is up to 32m indoors and 95m
outdoors using a typical Wi-Fi home router using 802.11b or 802.11g with a stock
antenna. However, outdoor range with improved antennas can be several kilometers or
more with line-of-sight. Additionally, Alisa Devlic and her colleagues have performed
measurements of the actual power consumed when performing file and context
distribution for several PDAs and have compared Bluetooth and WLAN – finding that in
some cases the total power consumption is actually lower when using WLAN .

2.3.2 Network layer
The network layer provides routing and controls information flow between devices

connected devices. The requirement for the network layer for device integration includes:

• Appliance advertising and discovery of devices in the “neighborhood”[2]
• Query other devices’ capabilities[2]
• Easy plug-and-play like addition of new devices[2]
• Self-organizing network [2]

Background and Related Work

 8

2.3.2.1 Jini
Jini technology is a service oriented architecture that defines a programming model

which both exploits and extends Java technology to enable the construction of secure and
distributed systems consisting of federations of well-behaved network services and
clients [7].

Jini technology consists of an infrastructure and a programming model that address
the fundamental issue of how clients connect with each other to form an impromptu
community. Jini technology uses the methods pioneered by the Java Remote Method
Invocation (RMI) protocols to move objects, including their behavior, around the
network. Network services run on top of the Jini software architecture [8].

A disadvantage of Jini is that devices are expected to be able to understand and use
the Java procedures which they receive as a result of a query for a service. In many cases
this means that the device needs to have a Java VM running to interpret and uses this
response.

2.3.2.2 UPnP
Universal Plug and Play (UPnP) is a set of computer network protocols promulgated

by the UPnP Forum. The goals of UPnP are to allow devices to connect seamlessly and to
simplify the implementation of networks in the home and corporate environments by
defining and publishing UPnP device control protocols [9]. UPnP is a distributed, open
architecture, based on established standards such as TCP/IP, UDP, HTTP, and XML, that
provides compatibility for peer-to-peer network connectivity of appliances, wireless
devices, and peripherals.

UPnP works with wired or wireless networks and can be supported on any operating
system, any programming languages, and zero-configuration networking. A UPnP device
from any vendor can dynamically join a network, obtain an IP address, announce its
name, and learn the presence and capabilities of other devices. Devices can also leave a
network smoothly and automatically without leaving any unwanted state behind. A
Dynamic Host Configuration Protocol client (DHCP) is required for each device since
UPnP networking is built on top of IP. When a device first time for the device connects to
the network, it will search for a DHCP server and obtains a domain name through a DNS
server or via DNS forwarding. The device uses this DNS name or IP address in
subsequent network operations.

2.3.2.3 SLP
Service location protocol (SLP) is a service discovery protocol that allows computers

and other devices to find services in a local area network without prior configuration
[10]. It was originally an Internet Engineering Task Force (IETF) standards track
protocol that provides a framework to allow networking applications to discover the
existence, location, and configuration of networked services in enterprise networks [32].
Traditionally, in order to locate services on the network, users of network applications
have been required to supply the host name or network address of the machine that
provides a desired service [32].

Background and Related Work

 9

Protocols that support service location are often taken for granted, mostly because they
are already included (without fanfare) in many network operating systems [32]. For
example, without Microsoft's SMB service location facilities, "Network Neighborhood"
could not discover services available for use on the network and Novell NetWare would
be unable to locate eDirectory trees [32]. Nevertheless, an IETF sponsored protocol for
service location was not standardized until the advent of SLP [32]. Because it is not tied
to a proprietary technology, SLP provides a service location solution that could become
extremely important (especially on Unix) platforms. For these details, the reader is
referred the following RFCs [32]:

• RFC 2165 - Service Location Protocol, Version 1

• RFC 2608 - Service Location Protocol, Version 2

• RFC 2609 - Service Templates and Service Schemes

• RFC 2614 - An API for Service Location Protocol

SLP can eliminate the need for users to know the names of network hosts. With SLP,
the user only needs to know the description of the service he is interested in. Based on
this description, SLP is then able to return the URL of the desired service [32].

URL is used to locate the service. SLP is used by service to announce services on a
local network [10]. Any network service may be encoded in a Service URL. A service
URL example is: “service:printer:lpr://myprinter/myqueue”. The “service:printer: lpr” is
called service type. “myqueue” is described one queue on a printer with the host name
“myprinter”. Service URL syntax and semantics are defined in RFC 2609.

SLP has three different roles for devices. A device can also have two or all three roles
at the same time.

• User agent (UA): A process working on the user’s behalf to establish contact with
some service. The UA retrieves service information from the Service Agents or
Directory Agents [11].

• Service agents (SA): a process working on the behalf of one or more services to
advertise the services [11].

• Directory agents (DA): a process which collects service advertisements. There
can only be one DA present per given host.

As figure 4 described, the service Location Protocol supports a framework by which
client applications are modeled as “User Agents” and services are advertised by “Service
Agents”. “Directory Agent” provides scalability to the protocol [11].

http://www.openslp.org/doc/rfc/rfc2165.txt
http://www.openslp.org/doc/rfc/rfc2608.txt
http://www.openslp.org/doc/rfc/rfc2609.txt
http://www.openslp.org/doc/rfc/rfc2614.txt

Background and Related Work

 10

Figure 4. Service location protocol mechanism

As the message schema of Figure 5 shown, the User Agent issues a ‘Service Request’
(SrvRqst) on behalf of the client application, specifying the characteristics of the service
which the client requires. The User Agent will receive a Service Reply (SrvRply)
specifying the location of all services in the network which satisfy the request [11].

User Agent is allowed to issue requests directly to Service Agents. In larger networks,
one or more Directory Agents are used [11]. Service Agents send register messages
(SrvReg) containing all the services they advertise to Directory Agents and receive
acknowledgements in reply (SrvAck). These advertisements must be refreshed with the
Directory Agent or they expire. User Agents unicast requests to Directory Agent instead
of Service Agents, if any Directory Agents are known [11].

Figure 5. Service location protocol message schema

Background and Related Work

 11

Because SLP was selected as the server discovery protocol in my thesis, reasons and
more SLP details from implementation view such as agent entity and messages will be
explained in Section 3.2.2.

2.3.2.4 Comparisons between Jini, UPnP and SLP
To select the most appropriate discovery protocol, three different protocols were

compared. All of them provide ways of locating and describing services provided by
devices on a network. Each protocol has positive and negative aspects, see Table 2-1. The
reason for selecting the Service Location Protocol for this thesis, will explained in
Chapter 3.

Table 2-1. Comparison between Jini, UPnP and SLP

Aspect Jini UPnP SLP
Adoption It was first developed and

lunched for small embedded
devices.

UPnP website states that
there are 648 member
vendors of which many are
influential actors in the
hardware and software field.

SLP seems to have gained
acceptance in the Linux
domain, mainly as a
protocol used by various
service location daemons
for printers. Axis and Sun
Microsystems provide
implementations. There is
also an Open SLP project.

Openness Specifications are open and
available on Jini website.

Specifications are available
on the UPnP web site.

RFCs are accessible from
IETF.org and other
websites.

Implementation 1. Jini requires a Java run-
time environment.

2. CMatos is a C
implementation of the Jini
framework, in addition to
SUN’s implementation.

There are several open-
source implementations
such as Kaffe and Jikes.
None of these provide
complete implementations
of the Java API and
cannot be guaranteed to
work with Jini libraries.

3. There are no open-source
implementations of Jini
since SUN prohibits
creating non-commercial
implementation from
scratch.

Libupnp and CyberLink are
both major open-source
UPnP implementation
projects.

Microsoft provides an SDK
for UPnP for Windows
platforms.

Full open-source
implementations (Open
SLP) exists for C under
Linux and for Java.

Background and Related Work

 12

Portability Jini is tied to the Java language. UPnP is not tied to any
language or platform.

Libupnp library likely to be
reusable on Windows
platform.

CyberLink is portable to any
platform which has a JRE.

The Java implementation is
portable to any platform
having a Java run-time
environment.

License Sun Java run-time
environments can be bundled
and distributed without license
fees.

Commercial use of Jini requires
special license from Sun.

CMatos also has a licensing
cost for commercial usage.

Both Libupnp and
CyberLink have a BSD-style
license.

SLP is provided with a
Berkeley Software
Distribution (BSD) style
license

Other Java development typically
involves fewer memory-related
bugs. This is thought to reduce
implementation time.

UPnP is targeted towards
home networking.

Each UPnP device has a
built-in HTTP server.

2.3.3 Transport layer
Interoperability across the transport layer is essential for many user-facing capabilities

including data synchronization, transfer, and formats [2]. Although it is appealing to
envision of being able to share digital content between intelligent devices in a local
wireless network or personal area network; data is still fragmented across devices thus
today users cannot always enjoy their music using the device at the hand, photos and
videos cannot be shared between these devices, and the cell phone’s message cannot
move from one device to the other device – despite our desire that our content follow us
(or at least that it be available using any device capable of dealing with this type of
media).

2.3.4 Application layer
In the Application layer, applications are created to provide ensemble services. For

example, the laptop’s keyboard might turn into a voip-entry device for a cell phone, or
devices at hand are used as on window into one application. Java platform, Micro Edition
(Java Me) provides a robust, flexible environment for applications running on mobile and
other embedded devices such as cell phone, PDA, and printers. In addition, Anoop
Sinha’s CrossWeaver system designs applications with multimodal and multi-devices
capabilities. Some of devices do not have keyboard and mouse, and thus CrossWeaver
embodies the informal prototyping paradigm, leaving design representations in an
informal, sketched form and creating a working prototype from these sketches [13].

Background and Related Work

 13

It is more difficult, more time-consuming to design multiple devices’ applications
rather than a single device and multiple devices interface should remain a rich field of
study for researchers to explore as well [2].

2.3.5 P2P technologies
A Peer to peer (P2P) computer network uses diverse connectivity between

participants in a network and the cumulative bandwidth of network participants rather
than conventional centralized resources where a relatively low number of servers provide
the core value to a service or application [12].

There are many sorts of applications that use Peer to peer technology such as: file
sharing, telephony, media streaming (audio, video), and discussion forums. Besides, peer-
to-peer networks are classified according to their degree of centralization including pure
peer-to-peer networks and hybrid peer-to-peer systems. Gnutella and Freenet are
examples of pure peer-to-peer application layer networks designed for file sharing while
Napster, KaZaA, CAN, Gnutella, and JXTA are examples of hybrid peer-to-peer systems.

The goal of peer-to-peer network is to provide resources, including bandwidth,
storage space, and computing power to all clients, increase robustness by replicating data
over multiple peers, and enable peers to find the data without relying on a centralized
index server.

2.4 Remote desktop software
In computing, Remote desktop software is remote access and remote administration

software that allows GUI applications to be run remotely on a server, while being
displayed locally [14]. The quality, speed and functions of any remote desktop protocol
are based on the system layer where the graphical desktop is redirected [14].

The current popular remote desktop protocols are virtual network computing (VNC),
Remote desktop Protocol (RDP), and X window System (X11).

2.3.2 VNC

VNC was created at the Olivetti & Oracle Research Lab (ORL). VNC is a graphical
desktop sharing system which uses a remote frame-buffer protocol to remotely control
another computer [15].

VNC is an independent platform. This a VNC system consists of a client, a server,
and a communication protocol. As shown in Figure 6. VNC work schema, the VNC
viewer runs on the VNC client. The viewer is a program that connects to a VNC server
on another system. It is important to note that the viewer and server can run on any
operating system to which they have been ported; and that both have been ported to a
very large number of operating systems and hardware platforms. Multiple VNC viewers
can connect to a VNC server at the same time, thus multiple views of the desktop can be
seen on different devices. The VNC server is installed on the computer to be controlled.
Connecting to the VNC server requires a password in order to provide some security.
When a VNC viewer tries to connect to the VNC server it must provide the correct user
name and password.

Background and Related Work

 14

Figure 6. VNC work schema

VNC is commonly used as cross-platform remote desktop protocol. The default TCP
ports are 5900 through 5906. Each separate system corresponds to a port. A Java viewer
is available in many implementations, such as RealVNC on ports 5800 through 5806
[15].

2.4.1 Remote Desktop Protocol
The Remote Desktop Protocol (RDP) is a multi-channel, Microsoft Windows-specific

protocol featuring audio and remote printing. The control panel for RDP is shown in
Figure 7. By default, all Microsoft Windows XP and Vista editions include a pre-installed
remote desktop connection (RDC) client application. Additionally, the client is available
for free download for Microsoft Windows operating systems and most Linux
distributions. The RDP server listens by default on TCP port 3389 [16].

Figure 7. Remote Desktop Connection

One the server, RDP uses its own video driver to render display output by placing
rendering information into a TCP stream using the RDP protocol. When the client

Background and Related Work

 15

receives this information it completes the rendering on the local display using Microsoft’s
Win32 graphic device interface API calls. For the input, client mouse and keyboard
events are redirected from the client to the server. On the server, RDP uses it own
on-screen keyboard and mouse driver to receive these keyboard and mouse events and to
input them into the appropriate local drivers [17].

2.4.2 X window system
The X window system (often known as X11 or X) is a windowing system which

implements the X display protocol and provides windowing on bitmap displays. X
originated at MIT in 1984 and the current protocol version is version 11.

A client-server model is used in X, i.e., with an X server and X clients. This X server
communicates with various client programs. The X server enables an application (an X
client) to display its output on a remote device and to get input from remote input
devices. The X client might be a computationally intensive simulation running on a
remote UNIX machine, but it can display its result on a local X Window desktop
machine. Using an X server a user can execute graphical software on several machines at
once [18].

Figure 8 shows the relationship between the X server, its input devices (e.g., keyboard
and mouse), and its output onto a screen. In this example, a web browser and a terminal
emulator run on the user’s local workstation and another X client runs on a remote
machine, but is controlled by the user via their X server. The local X display provides
display services to the X server and any remote application using its services is X client.
The X server and X client may run on the same machine or on different machines.

Figure 8. X windows system

Background and Related Work

 16

2.5 Powering the individual devices
It is necessary to consider the power consumption of each of the device, the power

consumption needed to communicate between the devices, and how to power each of
devices. Network devices, such as PC, cellular phone, and PDA traditionally received
power from wall outlets – with the PDA and cellular phone using this power to charge a
battery which is used to power the device when it is not connected to the wall outlet.
Devices connected to wired networks are increasingly frequently implementing
technologies such a Power over Ethernet – thus they do not directly connect to a wall
outlet. Nowadays, USB has become a popular method of connecting and powering
computer peripherals – thus avoiding the need for each device to be connected to either a
wall outlet or to have a battery of its own. For the purpose of this thesis project we
assume that each device has its own source of power or if it is physically wired to another
device it might obtain some of all of its power via this wired interface. We will explicitly
not consider the problems of operating times, rate of power consumption, etc.; but will
rather focus on how the device can learn about the other device & their services and how
devices can be aggregated (in terms of protocols).

Implementation

3 Implementation

 17

This chapter begins with a discussion of the method used to achieve device
aggregation. Afterwards, the complete system architecture for device aggregation and the
laboratory network environment where the tests will be conducted is fully detailed (from
the physical to logical connections). Finally, the protocols and software used are
introduced, along with how to develop programs for the PDA.

3.1 Methods
To achieve the device aggregation with data networking, the first step is to implement

the service discovery. When the new device enters into the local area network, the new
service should be discovered. Secondarily, the application will select the required service
in the local area network.

An example will be used to motivate the reason this thesis. Consider that a user wants
to display the graphical output of an application which he is using on his cellular phone to
surf on Internet. We will assume that the user is near a “bigger display”, that both the
user’s cellular phone and the display have some sort of local area network connectivity
(here we will assume that this is via a wireless local area network (WLAN)), and that the
application could generate a richer visual output if it could utilize this display. However,
before the user can make use of the larger display it is necessary to configure the cellular
phone so that it knows what services (and devices) are available via the WLAN. Thus the
cellular phone could learn of the existence of the “bigger display” and its X
windows/RDP/or VNC service that could be made available to the user. After
discovering the device, the cell phone can connect to the appropriate device and service
in order to use it.

 From the above scenario we can see that there are two preconditions for the service:
the devices must have some means to communication and they must have some means of
knowing what services are available (i.e., that there is so advantage in communicating).
Therefore, we developed a system based on the Dynamic Host Client protocol (DHCP)
(to dynamically get or assign an address), the Service Location Protocol (SLP) for service
discovery, and Virtual Network Computing (VNC) for remote desktop control. We will
try to realize this configuration in order to test it in a laboratory network environment.
As noted previously this thesis focuses on the first two components (the preconditions for
network applications to be used), while the use of VNC is described elsewhere [35].

 In this implementation, devices including a KTH+HP SmartBadge version 4 (here
after mostly referred to a badge), a PDA, and cellular phone are used. Each of these
devices and its operating system will be described in Section 3.2.2. The badge is a USB
bus master and it is equipped with a WLAN interface, thus it can control and manage all
the intelligent devices forming a personal area network. In this thesis project I have only
interconnected it with a PDA and cellular phone (although for testing purposes the
WLAN connection through an access point has been used to connect to a variety of other
computers for both testing and software development purposes). A DHCP server and
Device Agent (an SLP entity -- that will be explained in section 3.3.2) run on the badge -
thus the badge can perform dynamic IP address assignment for the other device and it can
also provide a central repository for service location information. A DHCP client and

Implementation

 18

Service Agent (another SLP entity) run on the PDA enabling the PDA to be assigned an
IP address and to advertise the location of services. Similarly, a DHCP client and Service
Agent should run on cellular phone In order to implement the application – user the
“bigger display” as mentioned above, a User Agent (another SLP entity) must also be run
on the cellular phone to locate the “bigger display” service. However, neither the
protocols nor the necessary software for the cellular phone have been implemented as
part of this thesis project.

3.2 System Architecture
System architecture is the most crucial part of this chapter, since it is the foundation

for the design and implementation of the system. This architecture is based on using the
badge as a central controller to perform the device aggregation. Thus all the other devices
will communicate with the badge, using the appropriate interface. In order to develop and
test this architecture the requisite equipment was set up in a laboratory environment. Next
we will describe this environment in detail, followed by a close examination of the
protocols that will be used.

3.2.1 Laboratory environment
The laboratory environment consists of both a network infrastructure and a number of

devices. First we will introduce the different networks which were available and describe
what computers were attached to each network. Figure 9 illustrates the network
infrastructure and introduces some of the relevant computers that were attached to the
different subnetworks.

The KTHOPEN WLAN is available throughout the lab and the surrounding campus
area. This WLAN is based upon an IEEE 802.11b WLAN. This network is operated by
the campus networking service and requires that users login in via web page redirection
to an authentication server. This network check that the device is still attached to a given
access point by sending periodic ICMP echo requests and if they are not returned, then
the devices access to the network is terminated. This means that this network is not very
usable by handheld devices that like to power down their WLAN interface. A second
WLAN is also available, this is called KTHOPEN-WPA and utilized WPA for security.
This network has the advantage that devices do not need to continue to answer ICMP
echo requests – however, the version of Windows running on the PDA does not support
WPA very well. Thus we make use of a local private WLAN access point. This access
point is connected to a LAN which is not connected to the campus networks – thus it
does not require that users authenticate themselves, but the only devices that can be
reached are a small number of PCs and badges physically near this access point. This
third WLAN uses the ESSID “ece8883” (the course number of a course taught by Prof.
Mark T. Smith at Georgia Institute of Technology where the access point and the badges
were last used).

This local WLAN and the computers which are physically attached to the access point
by wired Ethernet connects are on a private IP network with IP addresses in the range
192.168.2/24 (i.e., with a 255.255.255.0 network mask). One of the computers which is
attached to this network is a PC named “reheat” (at address 192.168.2.100). This
computer is the host for the cross compiler used to generate code for the badge (see

Implementation

 19

section 3.2.2.3.3). Reheat has a second Ethernet which is connected to the department’s
wired network (which has the address range 130.237.15/24). Note that reheat does not
forward IP traffic between these two interfaces.

 A wired broadband internet connection (connected via 1Gbps Ethernet connections to
a local Ethernet switch) is used to provide an isolated private network for use in the
laboratory. This network uses IP addresses in the range 192.168.1/24. There is a firewall
which connects this private network with the department’s wired network. Some of the
computers attached to this network are permitted out through this firewall, but no
machines outside this firewall are allowed to originate traffic into computers inside the
firewall.

One of the important machines for development and testing is hlllab5, which is
connected to all three of the wired networks which have been described above. To be
specific it has one interface connected with the IP address 130.237.15.243, another with
the IP address 192.168.1.215, and a third interface with the IP address 192.168.2.2. To
carry out software development and testing the user can use this computer to reach any of
the wired parts of the laboratory network. A separate computer connected to the
130.237.15/24 has a WLAN interface connected to an 18dBi Yagi-Uda antenna that can
be used with Wireshark to capture traffic on the WLAN [36].

An additional PC names “ccslex4” is connected on to the firewalled IP subnet and has
an IP address in the range 192.168.1/24. This machine is connected via a serial cable to
the badge to provide a console for program development, initial configuration, and testing.
Once the WLAN interface of the badge has been assigned an address in the 192.168.2/24
network, then this serial interface is generally no longer needed. However, during the
course of the testing, this interface was used (twice) to reload the initial FLASH file
system on the badge, which had become corrupted by attempting to copy more bytes to
the file system than the file system had capacity for. Note that this computer can be
remotely accessed using ssh via the user from any of the computers on the192.168.1/24;
this includes “hlllab5”. Note that any computer on this subnet with an available serial
interface could have been used.

The specific badge (badge6) used for this project is assigned the IP address
192.168.2.56 and it will act as a DHCP server to the other WLAN equipped devices in
the lab WLAN. Note that this means that the AP point must not act as a DHCP server.
The badge is equipped with a USB interface and can act as a USB master to control other
USB devices. It was originally planned that a handheld cording keyboard would be
included in the aggregate device via this interface, but this was not tested as part of my
thesis project (however, this keyboard was used in the testing of the VNC based remote
display via a laptop computer). Because of the limited amount of memory on the badge,
“reheat” is used as a Network File System (NFS) server and the badge acts a NFS client
computer. This allows the badge access files on “reheat” over the WLAN network, as
easily as if the files were stored in the local memory. This also speeds up software
development – since the cross compiler for the badge is also located on “reheat”.

Additionally, “hllab5” and “ccslex4” were used during the initial testing of service
discovery. This testing lay the foundation to port the program to the badge and to develop
a program for service discovery for the PDA (and potentially later for a cellular phone).

Implementation

 20

Figure 9. Laboratory network environment

The following subsections will describe each of the devices used and the tools used,
including each of the protocols and all the software running on each device.

3.2.2 Devices used

3.2.2.1 PDA
A personal digital assistant (PDA) is a handheld computer. Such devices are also

known as ‘palmtop computers’ [21]. Newer PDAs have color screens and audio
capabilities, enabling them to be used as mobile phones, (smart phones), web browsers,
or portable media players. Many PDAs can access the Internet, intranets, or extranets via

http://en.wikipedia.org/wiki/Mobile_phone
http://en.wikipedia.org/wiki/Smartphones
http://en.wikipedia.org/wiki/Web_browser
http://en.wikipedia.org/wiki/Portable_media_player
http://en.wikipedia.org/wiki/Internet
http://en.wikipedia.org/wiki/Intranet
http://en.wikipedia.org/wiki/Extranet

Implementation

 21

Wi-Fi or Wireless Wide-Area Networks (WWANs). Many PDAs employ touch screen
technology [21]. PDAs are used to store information that can be accessed at anytime and
anywhere [21].

In this thesis project, an HP iPAQ 5550 PDA is used (see Figure 10). This PDA
weighs 207g and measures 8.4cm by 13.8cm by 1.59cm [22]. It has a transflective
display capable of displaying over 65,000 colors and uses a Marvell (formerly Intel®) 400
MHz processor with XScale technology (PXA255)[22]. The operating system is
Microsoft® Pocket PC 2003. The device is equipped with 128 MB SDRAM, 48 MB
Flash ROM (of which 17MB is available as a File Store), both a WLAN 802.11b &
Bluetooth v1.1 wireless interfaces, Biometric security, a Secure Digital slot, and
advanced power management[22]. The H5550 comes with a 1,250mAh, lithium-ion
battery and can be charged via USB when the device is in its USB cradle and connected
to a PC or a wall connected transformer is connected to this cradle [22].

Figure 10. HP ipaq 5550

Additionally each user has an iPAQ PC Card Expansion Pack Plus - which enables
them to add a PC Card to the iPAQ. This sleeve can accommodate a PC Card type II
card. Earlier experiments have examined the use of PC Card based wireless wide area
network interfaces.

http://en.wikipedia.org/wiki/Wireless_network
http://en.wikipedia.org/wiki/WWAN
http://en.wikipedia.org/wiki/Touch_screen
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html

Implementation

 22

3.2.2.1.1 Microsoft® Pocket PC 2003

Figure 11. Microsoft® Pocket PC 2003

The preinstalled OS is Microsoft® Pocket PC 2003. This OS is also called “Windows®
Mobile 2003” [22]. Windows Mobile is a compact operating system combined with a
suite of basic applications for mobile devices based on the Microsoft Win32 API [23].
This operating system is designed to be similar to the desktop versions of Windows, both
in function and in appearance [23]. However, developing applications for such a device
requires that the application developer keep in mind the smaller screen and that the user
is unlikely to have a physical keyboard. Additionally, there is no console window –
although some third party consoles do exist. Thus the developer is expected to develop
their program either to require no user interface or to build a graphical interface using the
windows API.

The operating system includes built in support for a Bluetooth audio headset (for
audio input and output), a calendaring system (which has been used in an earlier thesis to
provide location aware alarms [37]). Other students have developed applications for this
platform, in earlier thesis projects, and there exists a wide variety of software for this
platform.

There are several options for developers to use when deploying an application for this
platform: writing native code with Visual C++, writing Managed code that works with
the .NET Compact Framework, or using Server-side code that can be deployed using
Internet Explorer Mobile or a mobile client on the user's device [23]. The .NET Compact
Framework is a subset of the .NET Framework, but while it shares many components
with the desktop .NET Framework it I not completely compatible. Microsoft has released
Windows Mobile Software development kits (SDKs) that work in conjunction with their
Visual Studio development environment [23]. These SDKs include emulators that enable
developers to test and debug their applications while developing them on their desktop or
laptop computer. Microsoft makes Visual Studio 2008 / 2005 Professional Editions, and
server / database available to students as free downloads [23]. In addition language-

http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://h18007.www1.hp.com/support/files/HandheldiPAQ/us/locate/105_5643.html
http://en.wikipedia.org/wiki/Operating_system
http://en.wikipedia.org/wiki/Mobile_device
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Windows_API
http://en.wikipedia.org/wiki/Application_programming_interface
http://en.wikipedia.org/wiki/Desktop_environment
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Visual_C%2B%2B
http://en.wikipedia.org/wiki/Managed_code
http://en.wikipedia.org/wiki/.NET_Compact_Framework
http://en.wikipedia.org/wiki/Server-side_scripting
http://en.wikipedia.org/wiki/Internet_Explorer_Mobile
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/Software_development_kit
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://en.wikipedia.org/wiki/Emulator
http://en.wikipedia.org/wiki/Debugging

Implementation

 23

specific versions (Visual Basic, C++, C#, Web) of Visual Studio Express and database
components are freely available to anyone via the Microsoft site [23].

3.2.2.1.2 ActiveSync
Synchronizing data with a PC is an important function of PDAs. It is done through

synchronization software such as the ActiveSync data synchronization program
developed by Microsoft. ActiveSync contact information, calendars, mail, and other files
to be synchronized between the PDA and a PC.

This synchronization function was used to develop software on a laptop and to
transfer this software to the PDA. In this case, the laptop’s operation system is Windows
Vista. After connecting the PDA with the laptop via USB, the PDA will display (as
shown in Figure 12) a screen indicating that it has successfully synchronized the selected
files (and folders). Just as NFS was used to make files quickly available on the badge,
the ActiveSync connection via USB or WLAN makes file prepared on the laptop readily
available on the PDA.

Figure 12. ActiveSync successfully

It is also possible to move files between the laptop by setting up a web server on the
laptop and then accessing the files using the built-in copy of Internet Explorer on the
PDA. However, this requires more user interaction, thus requiring much more effort –
particularly if more than a single file is needed. However, this method might be suitable
for distributing an application to a large number of users – who could be located
anywhere in the internet.

3.2.2.2 Cell phone
As originally planned this thesis project was to use the Nokia E70 (see Figure 13) as

the target cellular phone. The reason that the Nokia E70 was selected was that it was a
smartphone with a keyboard. The E series range of smartphone run the S60 3rd Edition
on top of Symbian OS version 9.1. There are two models of this phone, the specific
phone used was the E70-1 which supports tri-band (900, 1800, 1900MHz) GSM and
UMTS [25]. Additionally, the E70 is capable of GSM, 3G, WiFi and Bluetooth

http://en.wikipedia.org/wiki/S60_platform
http://en.wikipedia.org/wiki/Symbian_OS
http://en.wikipedia.org/wiki/GSM
http://en.wikipedia.org/wiki/UMTS

Implementation

 24

connectivity [25]. It should be noted that this smartphone is capable of interacting with
multiple Bluetooth devices at the same time.

However, because of a lack of time, the implementation for the Nokia E70 was not
finished. However, it was used extensively for the VNC portion of the project (see [35]).

Figure 13. Nokia E70

3.2.2.3 SmartBadge version 4
In the thesis, the KTH+HP SmartBadge version 4, here after referred to simple as the

badge (see Figure 14). This board was used because it is capable of acting as USB bus
master and because it had support for WLAN (via either a CF or PC Card form factor
WLAN card). This is necessary because while cellular phones, PDAs, etc. have USB
interfaces, they are not capable of being USB bus masters. Therefore one can not easily
connect multiple devices together using USB (unless one of them is laptop or desktop
computer!). However, by using a device which is capable of being a USB bus master and
a USB hub, multiple USB equipped devices can be interconnected.

Figure 14. SmartBadge version 4. The serial interface and power supply are connected to the badge

for initial configuration and development. The USB interface can be seen to the left of the badge. The
small white connector can be used to attach external sensors to the on-board ADC converter.

Implementation

 25

3.2.2.3.1 How to get started with Badge 4
For Linux, the recommended terminal emulator was minicom but I used Kermit to

connect to serial port of the badge to configure it. Either program can be used for
connecting to the Badge4’s serial port via a PC’s serial port. In either case, the terminal
emulator must be configured for 115200 baud, 8 bits, no parity, and one stop bit (115200,
8N1) [26]. Both hardware and software flow control should be disabled [26]. After
configuring Kermit on “ccslex4” and saving the configuration in ~shasha/.kermrc. This
file contains the following lines:

set line /dev/ttyS0
set speed 115200
set flow-control none
set carrier-watch off
set prompt Linux Kermit>
set escape 24

After the configuration file is created, you can use the command below to connect to
the Badge4 serial port.

ccslex4: # kermit
C-Kermit> take ~shasha/.kermrc
Linux Kermit> c

A screen dump of this interaction is shown in Figure 15 below. Seeing the shell prompt
(“#”) from the badge means you have connected successfully.

Figure 15. Successfully connecting to the Badge from a PC running Linux

To simplify subsequent operations on the badge, I created a file “startbadge” in
/home/shasha in the badge’s file system. This shell script is used to configure the
badge’s parameters such as IP address and hostname, perform a “mount” command to
mount an NFS file system from another computer (where I do the cross compilation of
code for the badge), and so on. The contents of “startbadge” are shown in Figure 16. The
lines beginning with “#” are comments.

Implementation

 26

#!/bin/sh

set ESSID
#iwconfig eth0 essid ece8883

set badge's ip address
ifconfig eth0 inet 192.168.2.56 netmask 255.255.255.0 broadcast 192.168.2.255

hostname badge6

mount remote file system
mount -o rw,nolock,intr 192.168.2.100:/home/badge6 /opt/Badge4

set the date and time
#rdate 192.168.2.100

install badge sensors
modprobe badge4_sensors

Figure 16. Contents of the "startbadge" file

3.2.2.3.2 NFS mounting
Because of the limited amount of memory on the badge, “reheat” is used as a

Network File System (NFS) server and the badge acts as an NFS client – this allows the
badge to access files on “reheat” over the network as easily as if the files were stored in
the local memory.

 NFS server
First, the machine from which you want to export the file system needs to be setup

(this machine is the NFS server) [26]. In my project, this machine is “reheat”. The file
/etc/exportfs is modified to include the directory to be exported. In our case /etc/exportfs
has one line to export /opt/Badge4 to our Badge (192.168.2.56 is IP address of the client
configured above in “startbadge”):

/opt/Badge4 192.168.2.56(rw,no_root_squash)

After modifying /etc/exportfs, it is important to run:

/usr/sbin/exportfs -av

Following the above command, both the portmappper and NFS subsystem should be
restarted through running:

/sbin/service portmap restart
/sbin/service nfs restart

http://192.168.2.56/
http://255.255.255.0/
http://192.168.2.255/
http://192.168.2.100/

Implementation

 27

Since there are multiple badges in use in this same network, I specify the host name
and IP address for my Badge in “startbadge”. Note also that the NFS clients have to be
allowed through the firewall on the NFS server machine (if a firewall is running).

The configuration of “reheat” had previously been done; therefore, I did not actually
have to perform the configuration steps on “reheat”. Next configuration of the NFS client
(to mount the remote NFS file system) is presented.

 NFS client
NFS mounting from the Badge is accomplished by typing the following commands at

the Linux prompt [26]:

mkdir /opt/Badge4
mount -o rw,nolock,intr 192.168.2.100:/home/badge6 /opt/Badge4

192.168.2.100 is the IP address of the NFS server (a.k.a “reheat”). Once the badge’s
serial port is connected to the PC and you are able to communicate with it via the Kermit
program, then you can type the following command on the badge to configure the IP
address, host name, and mount the remote directory:

#cd /home/shasha
#./startbadge
cd /opt/Badge4

Now, the badge is able to remotely access files on “reheat” over the network
connection, just as if the files are stored on the badge. The local files which appear to be
in /opt/Badge4 are actually the files stored at reheat in /home/badge6 /opt/Badge4. As we
will see in the next section, this makes development of applications for the badge rather
straight forward. Additionally, the use of the NFS server removes the constraints on what
can be available via the file system. The limitation is that you must have network
connectivity or these files will not be accessible.

3.2.2.3.3 Developing programs for the badge
A cross compiler is a compiler capable of creating executable code for a platform

other than the one on which the compiler is run [27]. Cross compiler tools are generally
used to compile code for embedded systems or multiple platforms. Such a tool must be
used for a platform where it is inconvenient or impossible to compile directly on the
target platform. For example, a microcontroller with only a minimal amount of memory
may not have sufficient resources to run the compiler, therefore a cross compiler must be
used. Using cross compilers has become more common with the increasing use of
paravirtualization -- where a single physical system may have multiple operating systems
and multiple machine architectures in use at a given time.

Because the badge has only a limited amount of local memory, we can consider it to
be an embedded platform; therefore a cross compiler must be used to compile the
program in order to make an executable file for execution on the badge.

http://en.wikipedia.org/wiki/Compiler
http://en.wikipedia.org/wiki/Executable
http://en.wikipedia.org/wiki/Platform_%28computing%29
http://en.wikipedia.org/wiki/Programming_tool
http://en.wikipedia.org/wiki/Embedded_system
http://en.wikipedia.org/wiki/Paravirtualization

Implementation

 28

The preferred method for compiling for this platform is to use the uClibs crosses
toolchain. The uClibs cross toolchain is initially located in /opt/Badge4/2.95-uclibc-
0.9.12.tar.bz2 [26].

For example, to compile a program “udhcp.c” on “reheat”, the following command
should be used:

#arm-uclibs-gcc –o udhcpd udhcp.c

“udhcpd” is the resulting executable file and it should be copied to the badge (or to
/home/badge6 /opt/Badge4 which is remotely mounted on the badge), in order to be
executed on Badge. Note that the use of the NFS cross mounted file system means that
the user can quickly editing, compile, and execute programs – without needing to
explicitly copy files between the development system and the target system (where the
programs are to be run).

3.3 Protocols and software used
The Dynamic Host Configuration Protocol (DHCP) and Service location Protocol

(SLP) are the main protocols used in this thesis project. The specific version of DHCP
used was the udhcp (pronounced “micro-DHCP”) implementation, as this was
determined to be the most suitable DHCP server for badge. A major reason for the
selection of udhcp was that the badge uses busybox (a collection of programs compiled
together to reduce their combined memory footprint) and udhcp is designed to be
compiled as part of busybox. Details of this will be presented in the following section.
OpenSLP is open source software that implements the Service Location Protocol.
OpenSLP was used as a reference when developing my own program for the PDA (this
will be described in detail in section 3.3.2).

3.3.1 DHCP
The Dynamic Host Configuration Protocol (DHCP) is a protocol used by networked

devices (clients) to obtain the parameters necessary for their operation in an Internet
Protocol network [28]. This protocol reduces the system administrator’s workload,
allowing devices to be added to the network with little or no manual configuration [28].
In this thesis, several devices are to be interconnected to form a personal area network.
Therefore, DHCP is used as the protocol to assign an IP address to each device’s
interface(s). Initially, on a single PDA and a smart phone are used, but additional devices
can be added to this personal area network.

As Figure 17 shows, DHCP consists of four phases: discovery, lease offer, request,
and lease acknowledgement. A DHCP client broadcasts a discovery packet on the
physical subnet to find available DHCP servers. The IP destination of this broadcast is
255.255.255.255 and the source of broadcast is 0.0.0.0. This source address is used
because at this point in time the client does not know what its own IP network address is.
(Note that here we are assuming that we are operating in an IPv4 network, rather than
using IPv6 auto-configuration.)

http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol

Implementation

 29

When a DHCP server receives the broadcast packet from the DHCP client, the server
will determine if it has an address available to assign to this client’s interface, if so, then a
DHCP lease offer will be sent by DHCP server. This packet contains the MAC address of
the client, the IP address assigned, and lease information. The packet may also contain
additional information, but we will focus here on these three elements of the lease.

The DHCP client will select a lease from one DHCP server if it receives several
responses from DHCP servers. The client will send a DHCP request broadcast to tell all
the DHCP servers which server it accepts to assign it an IP address:

Figure 17. DHCP operation schema

Depending on the implementation, a DHCP server has three methods of allocating an
IP address: dynamic allocation, automatic allocation, and static allocation [28]. Dynamic
allocation means that the DHCP server is allowed to reclaim and reallocate IP addresses.
Automatic allocation is like dynamic allocation, but the DHCP server keeps a table of
past IP address assignments, so that it can preferentially assign to a client the same IP
address that the client previously had [28]. Finally, using static allocation a DHCP server
utilizes a table specifying MAC address/IP address pairs to allocate IP address to DHCP
clients. In this project we will use a combination of static allocation (for well known
devices – this is primarily for testing) and automatic allocation (i.e., dynamic assignment,
but with some history).

3.3.1.1 Udhcp
The udhcp server/client is deliberately targeted at embedded environments [29]. Other

linux DHCP servers exist (such as the well know ISC DHCP server), but are targeted at
larger systems such as PCs (with more RAM/disk space/etc.) [29]. As a result, udhcp
does not have as large a feature set as some other DHCP packages [29].

In this thesis, a full DHCP server would not run on badge as its memory requirements
would be too great (especially if other applications are to be run). The badge has only
4 Megabytes (MB) of FLASH memory which stores the operating system and most of the
file system – along with 32 MB of regular memory for running applications, the OS, and
to hold the dynamic parts of the file system. Compiled against uClibs, the udhcp server
and client binaries are each around 18kbytes and when compiled as a combined binary,
28kbytes. Therefore, udhcp is a perfect fit for our badge’s required DHCP capabilities
[29].

Implementation

 30

The udhcp server lease file is in binary format making the additional storage space
required for IP and MAC addresses minimal [29]. Udhcp also has the option of storing
lease times in absolute form, or relative form, for systems without a clock [29]. The lease
file can also be saved periodically or by using a signal for systems with flash memory
[29]. This last aspect is useful in our setting as the dynamic file is kept in DRAM, thus if
the power were turned off the file contents would be lost – but by periodically saving the
file to FLASH the contents can be preserved. Hence the leases can be honored, with only
a small number getting lost (those between the time of the last commit to FLASH and a
sudden power failure).

Udhcp-0.9.6 was used as the basis for the DHCP server implementation for the badge.
This program was modified for the purposes of this thesis and cross compiled for the
badge. The main source code of Udhcp-0.9.6 with the changes is shown in Appendix A.
Note that the modifications were of two kinds: (1) to enable cross compiling and (2) to
add extra functionality. The extra functionality which was added was the ability to
specify static IP addresses to be assigned to devices based upon a table of IP address
MAC address pairs. This table is specified in the extended configuration file.

The cross compiling of udhcp-0.9.6 to create a DHCP server (udhcpd) was done on
“reheat” with the command line:

#arm-uclibs-gcc –o udhcpd dhcpd.c

The excutable file “udhcpd” should be copied into the appropriate directory for later
execution. In our case, we have placed the file in /sbin/. A configuration file
“/etc/udhcp.conf” should be created on te badge. This file contains configuration data for
udhcpd, the DHCP server. This file is a free-form ASCII text file. It consists of
statements containing parameters and declarations. The parameters for udhcpd specify
the maximum lease time, gateway IP address, and so on. Declarations are used to
describe the topology of the network and IP address to be assigned to specific subnets.
The contents of “udhcpd.conf” used for our experiments will be shown in section 4.1.

3.3.1.2 PocketDHCP
Sam C. Lin’s PocktDHCP V0.22 [30] was used as the DHCP client running on the

PDA. When a DHCP server is available on a network, PocketDHCP allows you to
determine the current network interface configurations and to release a leased IP address
assignment or to renew such an assignment. PocketDHCP is also a very useful utility to
find out your assigned IP address, name server, gateway, etc. The application also shows
the IP address of the DHCP server as well as the time and date of the last allocation,
along with the expiration time for the IP address lease. A detailed example will be shown
in the next chapter.

3.3.2 SLP
Service discovery is an essential step in my thesis if a user with a wirelessly device

enters into the new environment and want to use services in the surrounding area [31]. In
my thesis, I decided to use SLP as a service discovery protocol for some reasons through
comparisons of three service discovery protocols in Section 2.3.2.4. First, SLP is an open

http://www.geocities.com/lincomatic/software.html

Implementation

 31

standard and has open source software OpenSLP implementation for C under Linux and
for Java. It is the foundation for the programming on PDA in future and makes the whole
implement process easier. Second, the query language of the Service Location Protocol is
fairly capable. It does not only allow simple matching for equality or prefixes of names,
but also allows comparisons with mathematical operators such as “<=”,”>=”, which is
particularly interesting when used with location based services [31]. It is the most
important searching feature in service discovery when the user wants to find services in a
given area.

3.3.2.1 SLP implementation specification
Because Section 2.3.2.4 introduced SLP specifically, I will explain SLP from

implementation view here.

3.3.2.1.1 SLP agents and message mechanism
First, agent is an important software entity inSLP that processes SLP messages and

there are three types SLP agents:

 User Agent (UA): The SLP User Agent is a software entity that is looking for one or
more services. Usually this agent is implemented (at least partially), using a library
to which client applications link. This library provides client applications with a
simple interface for accessing SLP registered service information [32].

 Service Agent (SA): The SLP Service Agent is a software entity that advertises the
location of one or more services [32]. SLP advertisement is designed to be both
scalable and effective, minimizing the use of network bandwidth through the use of
targeted multicast messages, and unicast responses to queries [32].

 Directory Agent (DA): The SLP Directory Agent is a software entity that acts as a
centralized repository for service location information [32]. Both Service Agents and
User Agents make it a priority to discover available Directory Agents, since using a
Directory Agent minimizes the number of multicast messages that must be sent [32].

SLP agents communicate with each other using 11 different types of messages. These
messages are [32]:

 Service Request (SrvRqst)
Message sent by User Agents to Service Agents and Directory Agents to request the
location of a service.

 Service Reply (SrvRply)
Message sent by Service Agents and Directory Agents in response to a SrvRqst
message. The SrvRply contains the URL of the requested service.

 Service Registration (SrvReg)
Message sent by Service Agents to Directory Agents containing information about a
service that is available.

 Service Deregister (SrvDeReg)
Message sent by Service Agents to inform Directory Agents that a service is no
longer available.

Implementation

 32

 Service Acknowledge (SrvAck)
A generic acknowledgment that is sent by Directory Agents to Service Agents in
response to SrvReg and SrvDeReg messages.

 Attribute Request (AttrRqst)
Message sent by User Agents to request the attributes of a service.

 Attribute Reply (AttrRply)
Message sent by Service Agents and Directory Agents in response to a AttrRqst. The
AttrRply contains the list of attributes that were requested.

 Service Type Request (SrvTypeRqst)
Message sent by User Agents to Service Agents and Directory Agents requesting the
types of services that are available.

 Service Type Reply (SrvTypeRply)
Message by Service Agents and Directory Agents in response to a SrvTypeRqst. The
SrvTypeRply contains a list of requested service types.

 DA Advertisement (DAAdvert)
Message sent by Directory Agents to let Service Agents and User Agents know
where they are.

 SA Advertisement (SAAdvert)
Message sent by Service Agents to let User Agents know where they are.

3.3.2.1.2 Use of TCP, UDP and Multicast in Service Location
The Service Location Protocol requires both UDP (connectionless) and TCP

(connection oriented) transport protocols. TCP connections are used for bulk transfer,
such as a service registration message, but only when necessary [33]. Connections are
always initiated by an agent request or registration, but never by a replying Directory
Agent. Service Agents and User Agents use ephemeral ports for transmitting information
to the service location port, which is UDP or TCP port number 427 [33].

The Service Location Protocol was designed for use in networks where DHCP is
available, or where multicast is supported at the network layer [33]. Broadcasts are used
in place of multicast, if a network is not connected to other networks. Because DHCP is
available and the wireless local area network is a single subnet in this thesis, therefore
broadcast is used instead of multicast. This means that the messages described in the
previous section can either be unicast to one agent at a time or broadcast to all agents in
the subnet.

3.3.2.2 OpenSLP
The OpenSLP project has developed an open-source implementation of IETF’s

Service Location Protocol (RFC 2608 Error! Reference source not found.) for
commercial and non-commercial application. The interface conforms to the interface
defined in “An API for Service Location” (RFC 2614 Error! Reference source not
found.). OpenSLP is known to compile and run on many platforms, including Linux and
Win32.

Implementation

 33

The program “slpd” provides Service Agent (and possibly Directory Agent)
functionality, along with the ability to maintain a consistent state with respect to the
locations of other SLP agents on the network. In this thesis, the badge acts as a static
Directory Agent, while the PDA and cellular phone act as Service Agents. Therefore,
slpd should be run on the badge, PDA, and cellular phone. In order to produce a binary
version of the software for the badge, the OpenSLP source code was placed on “reheat”
and the source code of OpenSLP modified to enable it to be compiled by the cross
compiler (The update OpenSLP is saved in hlllab5 /home/shasha/update_sourcesoftware).
For the PDA, a custom program was developed for the PDA to provide a Service Agent
function (it was designed to be similar to and compatible with the OpenSLP). However,
porting of the software to the Symbian operating system used by the cellular phone has
not been done due to the limited time available for this project.

As mentioned as Section 3.3.2.1.1, the User Agent is usually implemented as a library
to which client applications link, providing this client application with a simple interface
for accessing SLP registered service information [32]. In OpenSLP, the SLP library
(libslp) provides User Agent functionality internally to the application, thus there is no
for a local slpd. However, due to limited time, such a simple interface with various client
applications has not been part of this thesis project, but should be added in the future.

In OpenSLP, there are two important files, a configuration file “slp.conf” and a static
registration file “slp.reg”. These files affect the operation of the OpenSLP daemon (slpd)
and any application that uses the OpenSLP library.

The “slp.conf” diverges slightly from the API defined in RFC2614 Error! Reference
source not found., because some settings from RFC 2614 were not considered useful or
were very difficult to implement by the OpenSLP implementers. The “slp.conf” file
syntax follows RFC 2614, with a list of key/value pairs separated by newlines; comment
lines begin with a ‘#’ or a ‘;’. An example of the “slp.conf” file for a DA and an SA will
be shown in Section 3.3.3.1.

The registration configuration file (“slp.reg”) is very useful in conjunction with
OpenSLP as it allows users to statically register legacy services (i.e., these services do
not need to implement SLP themselves). The syntax for a registration file follows
RFC 2614. This file is read by the OpenSLP daemon (slpd) and all of the registrations
specified in this registration file are maintained by this copy of slpd and will remain
registered as long as this slpd is alive. An example of a “slp.reg” file, as used for the tests
in this thesis will be shown in Chapter Error! Reference source not found., along with
a detailed explanation of its contents.

3.3.3 Programming on PDA
In this thesis project, the Service Agent needs to run on each intelligent device.

Unfortunately, each of them has a different operating system – other than the badge, none
of them runs Linux. As mentioned OpenSLP was written in C for running on Linux and
in Java; therefore a new program for each intelligent device must be implemented. The
following sections will specific the design of a program developed to provide SLP for the
PDA.

Implementation

 34

3.3.3.1 Preparations for programming on PDA
There are several different platforms in the project including Linux for the badge,

Linux on PCs, Microsoft Pocket PC 2003 on the PDA, and Symbian on the cellular
phone. The same functionality needs to be implemented for different platforms,
specifically to implement a Service Agent (SA). If a new intelligent device with a new
platform enters into the personal area network, having an implementation of an SLP SA
for it is necessary – otherwise it can not use SLP to find services provided by the other
devices.

OpenSLP is the good reference implementation to use when developing SLP for other
devices. To make use of OpenSLP to facility my programming, I began by configuring,
compiling, and installing OpenSLP on a Linux PC. Once OpenSLP was running on a
number of Linux PCs successfully, then the source code could be ported to other
platforms. Above we have discussed the port to the badge, in this section we will discuss
the development of an SLP SA for a DPA.

The test process for OpenSLP running on Linux PCs will be described in the next
chapter. The message mechanism and the format of packets captured between two PCs
provided important input during the development of a SA for the PDA.

3.3.3.2 Compiler environment
Choosing a compiler is a crucial beginning for programming. The Microsoft Visual

Studio compiler was selected because I want to program in C for a PDA running
Microsoft’s PocketPC 2003. Additionally, I wanted to use my laptop for this program
development and it is running the Windows Vista operation system.

We will begin with an introduction to Microsoft Visual Studio, then the Microsoft Visual
2008 with the Pocket PC 2003 SE Emulator (Figure 18). Microsoft Visual Studio is the
main Integrated Development Environment (IDE) from Microsoft [34]. It can be used to
develop console and graphical user interface applications along with Windows Forms
applications, web sites, web applications, and web services in both native code as well as
managed code for all platforms supported by Microsoft Windows, Windows Mobile,
.NET Framework, .NET Compact Framework, and Microsoft Silverlight [34]. Visual
Studio supports many programming language (including C/C++, VB.NET, and C#).
Microsoft Visual Studio 2008 is focused on development for Windows Vista, Windows
2007 office system, and Web applications [34]. However, there is a Pocket PC 2003 SE
Emulator in Microsoft Visual Studio 2008 using a virtual machine to run the full Pocket
PC 2003 environment. This emulation environment enabled me to test the application for
the PDA quickly and easily.

http://en.wikipedia.org/wiki/Integrated_Development_Environment
http://en.wikipedia.org/wiki/Microsoft
http://en.wikipedia.org/wiki/Console_application
http://en.wikipedia.org/wiki/Graphical_user_interface
http://en.wikipedia.org/wiki/Windows_Forms
http://en.wikipedia.org/wiki/Web_site
http://en.wikipedia.org/wiki/Web_application
http://en.wikipedia.org/wiki/Web_service
http://en.wikipedia.org/wiki/Native_code
http://en.wikipedia.org/wiki/Managed_code
http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Windows_Mobile
http://en.wikipedia.org/wiki/.NET_Framework
http://en.wikipedia.org/wiki/.NET_Compact_Framework

Implementation

 35

Figure 18. Microsoft Visual Studio 2008 with Pocket PC 2003 SE Emulator

Because UDP and TCP are needed in the program to be developed for the PDA, I
configured Pocket PC SE 2003’s options to enable it to connect with network. However,
in the end I found it is easier to deploy the program directly to H5550 (using a USB
connection) and to test the program in the real network environment – therefore, the
network configuration for the Pocket PC SE 2003 emulator will not be introduced. After
the H5550 is connected via USB to the laptop, then Visual Studio will show Figure 19
that means the Pocket PC was successfully detected. Now the program can be deployed
to H5550 after it is built (Figure 20).

Implementation

 36

Figure 19. Connection with H5550 succeed

Figure 20. Deploy program to H5550

Now that all of preparations are completed, the programming for the PDA can begin.
Section 3.3.3.3 introduces the design of the program for on the PDA and main functions
of this program.

Implementation

 37

3.3.3.3 Design
The design for a SLP Service Agent for the PDA is mainly based on the Service Agent

functionality in OpenSLP. However, the design is simplified to only two functions:
sending a packet to the DA and receiving a packet from the DA. The flow chart (Figure
21) shows the algorithm used in my program.

Figure 21. Simple flow chart of SA program on PDA

Because the OpenSLP “slpd” is running as a Directory Agent on the badge, the packet
format sent by Service Agent from PDA should be the same as would be sent by
OpenSLP. Therefore, I captured the packet sent between two PCs which had OpenSLP
running on them successfully, in order to see the exact information in each packet. The
two main packets sent from an SA are a Service Request to the DA and a Service
Registration. The Service Request message is sent using UDP, while the Service
Registration message is sent using TCP (Figure 22, Figure 23). The packet which is sent
by the DA or SA uses the exact same format as the packet in these two figures.

Implementation

 38

Figure 22. Service Request packet sent by Service Agent

Figure 23. Service Registration packet sent by Service Agent

Implementation

 39

The source code of program for the PDA is in Appendix B. Unfortunately the code
current only correctly sends the Service Request to the DA. The next chapter will
describe all of the tests conducted with the software and program in my thesis. This is
followed by an analysis of these results.

3.3.4 Remote display software
The implementation of remote display software was an important application for the

thesis. To complete the device aggregation, we must combine the simple remote display
application with the SLP implementation. As mentioned in Section 3.3.2.1.1, the UA in
SLP is usually implemented as a library to which client applications link. This library
provides client applications with a simple interface for accessing SLP registered service
information. The client application would be the remote display software. However, as
the remote display work is not yet finished, it could not be tested.

Testing and Analysis

4 Testing and Analysis

 40

In this chapter, each of the implementation mentioned in the previous chapter (as
being available and working) will be tested. First, the DHCP server on the badge and a
DHCP client on the PDA will be tested because having a DHCP assigned IP address is
essential for subsequent tests.

SLP was tested in four stages. The first stage tests if OpenSLP works correctly on two
Linux PCs. If this test is successful, this means that the OpenSLP implementation
satisfies my basic requirement and can be used. The next stage tests if OpenSLP works
well on badge and a linux PC – with the OpenSLP daemon “slpd” running as a DA on the
badge. This test is done to ensure that the OpenSLP daemon “slpd” can successfully run
on the badge – where it needs to run. The next stage tests if the SA program for the PDA
and OpenSLP daemon “slpd” running as a DA on a linux PC works successfully. The last
stage tests the SA on the PDA with the OpenSLP daemon “slpd” as DA running on the
badge in a personal area network.

While testing SLP, Wireshark is used as a packet sniffer. If the packets captured by
Wireshark are similar to those in the test between two PCs, then SLP is working
successfully.

4.1 The DHCP server and the DHCP client
The first test utilizes a DHCP server running on the badge and a DHCP client running

on the PDA. The DHCP server’s configuration file (“udhcpd.conf”) is shown below. The
DHCP server use a static IP allocation now to facilitate testing (because it is easier to
detect which device in the personal area network is which based upon a static IP address
– rather than needing to consult the lease file or having to recognize the MAC addresses
of each of the devices).

After all configurations for the DHCPA server on the badge has been place in the

badge’s /etc directory, then the following command starts the udhcp server on the badge:

#The start and end of the IP lease block
start 192.168.2.70
end 192.168.2.72
option subnet 255.255.255.0
opt router 192.168.2.1
#assign the static IP address to the host with Mac address

host B01 ethernet 00:02:8A:A2:F7:A1 ipaddress 192.168.2.71

#./udhcpd

If the udhcp server is running successfully, the programs output will be similar to that
shown in Figure 24:

Testing and Analysis

 41

Figure 24. udhcp server started

Note that the above output is for debugging purposes and could be disabled, but it
shows that the configuration file has been successfully parse and the IP address statically
assigned to the specified MAC address.

ADHCP client, in this case PocketDHCP V0.22, was installed on the PDA. With the
DHCP server on the badge is running, I connected the PDA to the wireless local area
network “ece8883” (see section 3.2.1) as follows:

Figure 25. H5550 connected to the network with ESSID “ece8883”

Using PocketDHCP I requested it to renew the IP address. The output of Pockdhcp is
shown in Error! Reference source not found. will show the specific IP address
assignment information on H5550.

Testing and Analysis

 42

Figure 26. DHCP details shown by PocketDHCP

As show in the figure “192.168.2.71” is the IP address assigned to the based upon the
configuration file shown above. “Y” means DHCP is used to assign the IP address. The
lower part of the screen shows additional information, such as the IP address, netmask,
gateway, IP address of the DHCP server, etc... The lease is valid for 10 days from Error!
Reference source not found.. Note that because the badge was not synchronized with a
time source nor was the date and time set manually, it uses the above absurd date and
time in 2003!

Despite the silly date and time for the lease, the DHCP server on the badge and the
DHCP client on PDA worked together successfully.

4.2 Openslp on two PCs
During this test stage, I utilized “ccslex4” and “hlllab5” as the two linux PCs to test the

basic operation of OpenSLP with the DA running on “ccslex4” and the SA running
on“hlllab5” (Figure 27).

Figure 27. DA and SA on PCs

Testing and Analysis

 43

OpenSLP was installed on the two PCs. The configuration file (“slp.conf”) was
modified to create a DA or SA, the resulting two “slp.conf” files are show below and the
main changes will be explained.

The changes to the “slp.conf” configuration file for the DA running on “ccslex4” are
shown below; all of the other contents of the default slp.conf file not shown are the same
as the default file. The comments explain why each line is specified as it is:

This line enables slpd to function as a DA
net.slp.isDA=true
This is a 32 bit integer giving the number of seconds between the DA heartbeats.
I configured this interval to be 1 second.
net.slp.DAHeartBeat=1
Broadcast is used in the place of multicast as there is single subnet to which I
want the packets sent to so, I force broadcast to be used.
Net.slp.isBroadcastOnly=true
I make “ccslex4” as DA listen on interface 192.168.1.208
Net.slp.interfaces=192.168.1.208

The result of the above configuration will be that the DA will send a link local
broadcast on the interface which has the address 192.168.1.208. This is necessary as if
the machine has multiple interfaces, it will not know which interface to send this
advertisement on. The final line also causes the DA to listen on this same interface for
unicast service registrations.

The “slp.conf” configuration for “hlllab5” uses the default configuration file.

Because “slp.conf” is by defaultan SA, the default configuration does not need to
be changed.
#Broadcast is used in the place of multicast as there is a single subnet to which I
want the broadcasts to be sent so I force broadcast to be used.
Net.slp.isBroadcastOnly=true
I enable SA to send active DA discovery SrvRqsts periodically.
net.slp.DAActiveDiscoveryInterval=1
For testing, I set the period to 500 ms to give the maximum amount of time
to perform active DA discovery requests.
Net.slp.DADiscoveryMaximumWait=500
Force “hlllab5” as an SA to listen on interface 192.168.1.215
Net.slp.interfaces=192.168.1.215

As a result of the above configuration “hlllab5” will send broadcast messages every
500ms looking for a DA.

The next step is to configure some services which the SA can register. For testing
three services have been listed in the file “slpd.reg” on “hllab5”:

Testing and Analysis

 44

After the configuration files have been set up, then “slpd” can be started on the two

linux PCs with command:

#/usr/sbin/slpd

##Register a OpenSLP test service
service:test.openslp://192.168.1.215,en,65535
description=OpenSLP Test Service
authors=shasha
##Register a ssh service
service:ssh.openslp://192.168.1.215,en,65535
description= “Secure Shell”
##Register a telnet service
service:ssh.telnet://192.168.1.215,en,65535

The following packets between the two linux PCs were captured with Wireshark:

Figure 28. SLP packet between SA and DA on two PCs

Two of these packets will be shown in detail. These were used as examples for next

tests because of the uniform packets format. The red line marks the important information
in the packet.

 45

Figure 29. A Service Request packet sent by “hlllab5”

Testing and Analysis

 46

Figure 30. A Service Registration packet sent by “hlllab5”

4.3 DA on Badge and SA on PC
After the SLP protocol was tested running between two linux PCs, I moved the DA to

the badge. This required some changes the source code of OpenSLP daemon “slpd” to
enable it to be cross compiled (these were much like the changes made to udhcpd). When
the OpenSLP installation script is executed, the daemon, libraries, and configuration files
are copied to various directories. I manually copied these files to the correct directories
on the badge (Table 4-1).

Testing and Analysis

 47

Table 4-1. Openslp file copied

Reheat Badge

Openslp-1.2.1/slpd/slpd ==> /usr/sbin/slpd

Openslp-1.2.1/libslp/libslp.so ==> /usr/lib/libslp.so

Openslp-1.2.1/libslp/libslp.a ==> /usr/lib/libslp.a

Openslp-1.2.1/etc/slp.conf ==> /etc/slp.conf

Openslp-1.2.1/etc/slp.reg ==> /etc/slp.reg

It must be noted that space must be available to copy these files to (keeping in mind
that the badge has a limited memory). If there is not sufficient space, there is a risk of
corrupting the FLASH file system, which will require reloading the initial FLASH file
system and redoing all of the configuration steps! The figure shows the amount free space
on the badge, just after a new FLASH file system was installed and the startbadge file
placed in my home directory.

Figure 31. Available space on the badge before installing the SLP related files.

Testing and Analysis

 48

By listing the directory for slpd, we can estimate the amount of storage required by
daemon, library files, and configuration files. The directory listing is shown below, with
the byte size of the necessary files underlined in red.

Figure 32. Daemon, library files, and configuration files memory requirement

Therefore, these files can be copied to the badge because the total amount storage
required is less than the 636k bytes which are available. After copying these files, the
OpenSLP daemon “slpd” can be started on the badge. Because this daemon should run as
a DA, the badge’s configuration file should be changed as the same was on the PC which
was acting as a DA – except that the interface address has to be changed to the IP
address assigned to the badge. Finally, the daemon starts successfully, but there are
some errors exist when I check the file “slpd.log” under “/var/log/” on the badge. The
differences from the correct log file (from ccslex4) in the previous test, are underlined in
red:

Figure 33. “slpd.log” file when Badge run DA

Unfortunately I have not yet found the reason why the DA on the badge does not work.
This should be a part of any future work.

4.4 DA on PC and SA program on PDA
To test my SA program on the PDA, a test network environment needed to be set up.

Because the PDA connects via WLAN to an access point, i.e. wireless local area network
“ece8883” another PC was configured to act as a DA on the 192.168.2/24 network, as the
PDA’s IP address is “192.168.2.71”. The DA on “ccelex4” could not be used because it
is connected to a different network and the limited broadcast (255.255.255.255) will not
be forwarded from one subnet to another. Therefore, another linux PC was configured
with the IP address “192.168.2.4”. However, the DA from “ccslex4” did not work on this
new PC. I do not yet understand why. These too remain as part of future work. However,
the SA program on H5550 successfully sends the DA service request packet to broadcast
address “255.255.255.255”, as show in Figure 34. SA program sends the Service Request.
SA program source code is in Appendix B.

Figure 34. SA program sends the Service Request

4.5 DA on Badge and SA program on PDA
Because of the tests have not been completed, testing can not be continued, but must be a
part of future work.

 49

Conclusions

5 Conclusions

 50

5.1 Conclusions
As mentioned above, the thesis contains two parts: discovery service implementation

and remote desktop control implementation. For the discovery service implementation, I
successfully build the whole device aggregation network environment, implemented SLP
between two PC and sent packet with a PDA acting as a SA. The whole system
architecture is shown in Figure 35. In the future additional intelligent devices such as a
camera, Bluetooth headset, and GPS receiver should be able to enter into this network, be
assigned an address, and discover the available services. Each new intelligent device
should act as SA (in the same manner as the PDA in this thesis).

Figure 35. Personal area network for device aggregation

In a wireless local area network, the DHCP server will assign each new device and
address either automatically from a pool of addresses or statically. This success of the
DHCP server is meaningful for not only this implementation, but also because an IP
address is essential for each network-device. I have only test a H5550 PDA and a Linux
PC as DHCPs clients. The DHCP client for a Symbian cellular phone has not been tested
yet.

I have not completed testing of the discovery service on the badge, because a number
of implementation steps could be followed, affecting the subsequent testing. However,
the SLP protocol has been implemented successfully on two PCs and the DA almost runs
successfully on the badge. However, there remain some errors which cause the badge to
not send DA packets.

Conclusions

 51

To demonstrate an SA program on an intelligent device, I have programmed the
necessary functions on a PDA running Microsoft’s Pocket PC 2003. However, only one
function of the two functions has been successfully tested at the present time.

All methods and tools used are introduced in the thesis, so that students who continue
to work on this thesis topic will have a good starting point. The following sections will
describe some suggested future work in detail.

5.2 Future work
Device aggregation with data networking will be a direction of development for the

next generation communication. Several scenarios were described in Chapter 2. The
remaining future work for successful device aggregation is significant and will require
many years to achieve the full potential of device aggregation. This thesis will hopefully
serve as a first step toward this future.

5.2.1 Improvement discovery service
As a first step, the implementation and testing of discovery service between the badge

and the PDA should be finished. The OpenSLP daemon “slpd” on the badge must run
without errors and the test should be done and the packets exchanged captured. Because
the badge connects to a WLAN, another PC with a wireless network card is necessary to
capture the WLAN traffic between the badge and the SA; as this traffic unicast will not
be forwarded through the WLAN access point. The completion of the SA program is as
important a task as a correctly running DA on the badge. The debugging work should be
continued in coordination with test between the SA on the PDA and a DA on a linux PC.
Once the DA Service Request and Service registration packets are sent successfully, then
the SA program on the PDA is finished. This will leave the last test between the DA on
the badge and the SA on PDA – which should work successful once each of the two pass
the earlier tests.

The discovery service needs to be made available on other intelligent devices, such as
cellular phones. As in this thesis, the first step will be to see that there is a DHCP client
on the cell phone, as it will need its own IP address in the WLAN. A Symbian version of
the program developed for the PDA needs to be created. As a result of this thesis project,
this step should be easier as the functionality of this SA is well known and quite limited.
For each different type of device, another SA program is necessary; but their functions
are quiet similar.

Another important step will be to write an SA program that can use the service
information from a Bluetooth device’s service discover to generate SLP service
registrations. This step will require some research and design to determine what
information should be registered and how this information would be used.

5.2.2 Combining the discovery service and remote desktop control
application

Remote desktop application research has not yet been completed, but communication
between several of the devices was successfully shown. Therefore, a simple application
should be developed which combines device and service discovery with the remote

Conclusions

 52

desktop application. This will require a SLP library to which client applications can link.
This library should provide client applications with a simple interface for accessing SLP
registered service information. Note that the UA could be run on another PC or run on
each intelligent device (as each device can initiate client applications). A test is scenario
is shown in the following three pictures. When a new device enters the wireless local area
network, it will request an IP address and register its services with the DA running on the
badge. When the remote desktop control application is started on the cellular phone, a
UA running on the cellular phone will query the DA for a bigger display service. If such
a service has been registered, then the cellular phone will get a service reply from the DA
running on the badge telling it the address to connect connected to (for example the
address of the PDA) as a result the cellular phone’s desktop can be displayed on the
bigger display. Thus it will bring the project to a successful finish.

Figure 36. New devices enter into the network

Conclusions

 53

Figure 37. Devices register service

Figure 38. PDA acts as a bigger display to the cellular phone

Conclusions

 54

5.2.3 Security
Security is very important point for any system architecture and its role in device

aggregation is clear. Two important security aspects which should be solved in a future
thesis are: (1) authentication is required when new devices enter into the personal area
network (in order to protect the network) and (2) authentication is also required when one
device want to connect to another device which could provide a certain service for it.
Thus it will be important to understand how to configure devices so that the owner can
decide who can use them.

5.2.4 Power management
Power management (such as PSM [19]) to reduce the power consumed in wireless

LANs could be explored in the future. Because the devices used in the device aggregation
examined in this thesis used a local PAN their power consumption will be low – if and
only if they can sleep much of the time and they can know when to wake up. An area of
increasing interested for the future is high speed wide area interfaces (such as devices
using 3G cellular networks). An interesting question is to what extent these devices can
use their wide area interface while still consuming only limited power.

References

References
[1] Mark Weiser, ”Ubiquitous Computing” March, 1996, available at:

http://www.ubiq.com/hypertext/weiser/UbiHome.html, last visited April 2008

[2] Bill N. Schilit and Uttam Sengupta, “Device ensembles”, published by the IEEE
Computer Society, 2004

[3] “Universal Serial Bus”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Universal_Serial_Bus, last modified on 4 May,
2008

[4] “What is Firewire”, Available at: http://www.tech-faq.com/firewire.shtml, last
visited at April, 2008

[5] “What is bluetooth”, Available at:
http://www.cycnet.com/cms/2004/englishcorner/digest/kepu/200512/t20051208
_42170.htm, last visited at April, 2008

[6] “Wi-Fi”, From Wikipedia, Available at: http://en.wikipedia.org/wiki/Wi-Fi,
Last modified on 1 May 2008

[7] “What is Jini”, Jini.org, Available at:
http://www.jini.org/wiki/What_is_Jini%3F, last modified on 8 March 2007

[8] “Jini Network Technology”, Sun Microsystems, Inc, 2001, Available at:
www.sun.com/jini.

[9] “Universal Plug and Play”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Universal_Plug_and_Play, last modified on 27
April 2008

[10] “Service Location Protocol”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Service_Location_Protocol, last modified on 4th
September 2008

[11] E. Guttman, C. Perkins, J. Veizades, and M. Day, “Service location Protocol,
Version 2”, IETF RFC 2608, June 1999. Available at:
http://www.ietf.org/rfc/rfc2608.txt

[12] “Peer to peer”, From Wikipedia, Available at: http://en.wikipedia.org/wiki/Peer-
to-peer#Classifications_of_peer-to-peer_networks, last modified on May 2008

[13] “Cross weaver”, Regents of the University of California, Available at:
http://guir.berkeley.edu/projects/crossweaver/, last updated Sunday December
21 2003

[14] “Remote desktop software”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Remote_desktop_software, last modified on 26
April 2008

[15] “Virtual Network Computing”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Virtual_Network_Computing, last modified on 1
May 2008

 55

http://www.ietf.org/rfc/rfc2608.txt

References

[16] “Remote desktop Protocol”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Remote_Desktop_Protocol, last modified on 4 May
2008

[17] “Remote desktop Protocol”, From Microsoft develop network, Available at:
http://msdn.microsoft.com/en-us/library/aa383015.aspx

[18] “X Window System”, Form Wikipedia, Available at:
http://en.wikipedia.org/wiki/X_Window_System, last modified on 2 May 2008

[19] Kevin Klues, “Power Management in Wireless Networks”, 9 May 2006,
Available at: http://www.cse.wustl.edu/~jain.

[20] Oscar_Santillana, “RTP redirection using a handheld device with Minisip”,
Masters Thesis, Department of Communication Systems, School of Information
and Communication Technology, Royal Institute of Technology (KTH);
Stockholm, Sweden, March 2007
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/070301-Oscar_Santillana-
FinalVersion-with-cover.pdf

[21] “Personal digital assistant”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Personal_digital_assistant, last modified on 12th
September 2008

[22] Gerald Q. Maguire Jr., “Hewlett-Packard Company (HP) iPAQ Pocket PC
h5550: Specifications”, Available at: http://web.it.kth.se/~maguire/ipaq-
notes.html, Latest update 8 August 2008

[23] “Windows Mobile”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Windows_Mobile#Windows_Mobile_2003 , last
modified on 14th September 2008

[24] Chris De Herrera, Windows Mobile 2003. Pocket PC Magazine. Retrieved 14
September 2007.

[25] “Nokia E70”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Nokia_E70, last modified on 9th September 2008

[26] Mat Hans, Christopher Hoover, Gerald Q. Maguire Jr., and Mark Smith.
“Badge 4 Embedded Development Kit Bastille Day Release”, Available at:
https://www.ece.gatech.edu/mailman/lisinfo/hp_badge4.

[27] “Cross compiler”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Cross_compiler, last modified on 12th September
2008

[28] “Dynamic Host Configuration Protocol”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Dhcp, last modified on 13th September 2008

[29] “udhcp Server/Client Package”, Available at: http://udhcp.busybox.net/. 4th
December 2004.

[30] Sam C. Lin, PocktDHCP V0.22, Available at:
http://www.lincomatic.com/wireless/pocketdhcp.zip, 6 July 2002

 56

http://www.cse.wustl.edu/%7Ejain
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/070301-Oscar_Santillana-FinalVersion-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/070301-Oscar_Santillana-FinalVersion-with-cover.pdf
http://en.wikipedia.org/wiki/Windows_Mobile#Windows_Mobile_2003
https://www.ece.gatech.edu/mailman/lisinfo/hp_badge4
http://udhcp.busybox.net/
http://www.lincomatic.com/wireless/pocketdhcp.zip

References

 57

[31] “Ubiquitous Computing Using SIP”, Stefan Berger, Henning Schulzrinne,
Stylianos Sidiroglou, Xiaoto Wu, Department of Computer Science in Colombia
University NewYork, June 2003

[32] “An Introduction to the Service Location Protocol (SLP)”, Caldera Systems.
Inc,Novell. Inc, Available at:
http://www.openslp.org/doc/html/IntroductionToSLP/index.html.

[33] E.Guttman, C.Perkins, and S. Kaplan, “Service Location Protocol RFC2165”,
J.Veizades, IETF RFC 2165, June 1997

[34] “Microsoft Visual Studio”, From Wikipedia, Available at:
http://en.wikipedia.org/wiki/Microsoft_Visual_Studio , last modified on 11th
September 2008

[35] David Sabaté Mogica, “Remote Desktop”, a Batchelors thesis project report,
Department of Communication Systems, School of Information and
Communication Technology, Royal Institute of Technology (KTH); Stockholm,
Sweden, (draft) Fall 2007

[36] Haruumi Shiode, In-building Location Sensing Based on WLAN Signal
Strength: Realizing a Presence User Agent Masters Thesis, Department of
Communication Systems, School of Information and Communication
Technology, Royal Institute of Technology (KTH); Stockholm, Sweden, March
2007
 http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080314-
Haruumi_Shiode-with-cover.pdf

[37] Yu Sun, Context-aware applications for a Pocket PC, Department of
Communication Systems, School of Information and Communication
Technology, Royal Institute of Technology (KTH); Stockholm, Sweden,
December 2007
 http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/071220-
Sun_Yu-with-cover.pdf

http://en.wikipedia.org/wiki/Microsoft_Visual_Studio
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080314-Haruumi_Shiode-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080314-Haruumi_Shiode-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/071220-Sun_Yu-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/071220-Sun_Yu-with-cover.pdf

Appendix A.

Appendix A. Source code of Udhcp-0.9.6 with changes

 dhcpd.h
/* dhcpd.h */
#ifndef _DHCPD_H
#define _DHCPD_H

#include <netinet/ip.h>
#include <netinet/udp.h>

#include "leases.h"

/************************************/
/* Defaults _you_ may want to tweak */
/************************************/

/* the period of time the client is allowed to use that address */
#define LEASE_TIME (60*60*24*10) /* 10 days of seconds */

/* where to find the DHCP server configuration file */
#define DHCPD_CONF_FILE "/etc/udhcpd.conf"

/***/
/* Do not modify below here unless you know what you are doing!! */
/***/

/* DHCP protocol -- see RFC 2131 */
#define SERVER_PORT 67
#define CLIENT_PORT 68

#define DHCP_MAGIC 0x63825363

/* DHCP option codes (partial list) */
#define DHCP_PADDING 0x00
#define DHCP_SUBNET 0x01
#define DHCP_TIME_OFFSET 0x02
#define DHCP_ROUTER 0x03
#define DHCP_TIME_SERVER 0x04
#define DHCP_NAME_SERVER 0x05
#define DHCP_DNS_SERVER 0x06
#define DHCP_LOG_SERVER 0x07
#define DHCP_COOKIE_SERVER 0x08
#define DHCP_LPR_SERVER 0x09
#define DHCP_HOST_NAME 0x0c
#define DHCP_BOOT_SIZE 0x0d
#define DHCP_DOMAIN_NAME 0x0f
#define DHCP_SWAP_SERVER 0x10
#define DHCP_ROOT_PATH 0x11
#define DHCP_IP_TTL 0x17
#define DHCP_MTU 0x1a
#define DHCP_BROADCAST 0x1c

 58

Appendix A.

#define DHCP_NTP_SERVER 0x2a
#define DHCP_WINS_SERVER 0x2c
#define DHCP_REQUESTED_IP 0x32
#define DHCP_LEASE_TIME 0x33
#define DHCP_OPTION_OVER 0x34
#define DHCP_MESSAGE_TYPE 0x35
#define DHCP_SERVER_ID 0x36
#define DHCP_PARAM_REQ 0x37
#define DHCP_MESSAGE 0x38
#define DHCP_MAX_SIZE 0x39
#define DHCP_T1 0x3a
#define DHCP_T2 0x3b
#define DHCP_VENDOR 0x3c
#define DHCP_CLIENT_ID 0x3d

#define DHCP_END 0xFF

#define BOOTREQUEST 1
#define BOOTREPLY 2

#define ETH_10MB 1
#define ETH_10MB_LEN 6

#define DHCPDISCOVER 1
#define DHCPOFFER 2
#define DHCPREQUEST 3
#define DHCPDECLINE 4
#define DHCPACK 5
#define DHCPNAK 6
#define DHCPRELEASE 7
#define DHCPINFORM 8

#define BROADCAST_FLAG 0x8000

#define OPTION_FIELD 0
#define FILE_FIELD 1
#define SNAME_FIELD 2

/* miscellaneous defines */
#define TRUE 1
#define FALSE 0
#define MAC_BCAST_ADDR "\xff\xff\xff\xff\xff\xff"
#define OPT_CODE 0
#define OPT_LEN 1

struct option_set {
 unsigned char *data;
 struct option_set *next;
};

struct server_config_t {
 u_int32_t server; /* Our IP, in network order */

 59

Appendix A.

 u_int32_t start; /* Start address of leases, network order */
 u_int32_t end; /* End of leases, network order */
 struct option_set *options; /* List of DHCP options loaded from the config file */
 char *interface; /* The name of the interface to use */
 int ifindex; /* Index number of the interface to use */
 unsigned char arp[6]; /* Our arp address */
 unsigned long lease; /* lease time in seconds (host order) */
 unsigned long max_leases; /* maximum number of leases (including reserved address)
*/
 char remaining; /* should the lease file be interpreted as lease time remaining, or
 * as the time the lease expires */
 unsigned long auto_time; /* how long should udhcpd wait before writing a config file.
 * if this is zero, it will only write one on SIGUSR1 */
 unsigned long decline_time; /* how long an address is reserved if a client returns a
 * decline message */
 unsigned long conflict_time; /* how long an arp conflict offender is leased for */
 unsigned long offer_time; /* how long an offered address is reserved */
 unsigned long min_lease; /* minimum lease a client can request*/
 char *lease_file;
 char *pidfile;
 char *notify_file; /* What to run whenever leases are written */
 u_int32_t siaddr; /* next server bootp option */
 char *sname; /* bootp server name */
 char *boot_file; /* bootp boot file option */
};

extern struct server_config_t server_config;
extern struct dhcpOfferedAddr *leases;

#ifdef NEVER
struct host_config_t {
 int hostindex; /* Index number of this host */
 u_int32_t hostip; /* Our IP, in network order */
 unsigned char arp[6]; /* Our arp address */
 char *hname; /* host name */
};

#define MAX_hosts 10
#endif

#endif

 60

Appendix A.

 dhcpd.c
/* dhcpd.c
 *
 * Moreton Bay DHCP Server
 * Copyright (C) 1999 Matthew Ramsay <matthewr@moreton.com.au>
 * Chris Trew <ctrew@moreton.com.au>
 *
 * Rewrite by Russ Dill <Russ.Dill@asu.edu> July 2001
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
 */

#include <fcntl.h>
#include <string.h>
#include <stdlib.h>
#include <sys/wait.h>
#include <sys/stat.h>
#include <arpa/inet.h>
#include <netdb.h>
#include <netinet/in.h>
#include <stdio.h>
#include <sys/types.h>
#include <sys/socket.h>
#include <unistd.h>
#include <signal.h>
#include <errno.h>
#include <sys/ioctl.h>
#include <time.h>
#include <sys/time.h>

#include "debug.h"
#include "dhcpd.h"
#include "arpping.h"
#include "socket.h"
#include "options.h"
#include "files.h"
#include "leases.h"
#include "packet.h"
#include "serverpacket.h"
#include "pidfile.h"

 61

Appendix A.

/* globals */
struct dhcpOfferedAddr *leases;
struct server_config_t server_config;

int initial_host_index=0;

/* Exit and cleanup */
static void exit_server(int retval)
{
 pidfile_delete(server_config.pidfile);
 CLOSE_LOG();
 exit(retval);
}

/* SIGTERM handler */
static void udhcpd_killed(int sig)
{
 sig = 0;
 LOG(LOG_INFO, "Received SIGTERM");
 exit_server(0);
}

static void print_leases(void)
{
 unsigned long i;
 int j;
 struct dhcpOfferedAddr *lease;
 time_t curr = time(0);

 struct in_addr addr;
 u_int32_t expires;

 for (i = 0; i < server_config.max_leases; i++) {
 printf("lease [%d]:", (int) i);
 lease = &leases[i];

 for (j = 0; j < 6; j++) {
 printf("%02x", lease->chaddr[j]);
 if (j != 5) printf(":");
 }

 addr.s_addr = lease->yiaddr;
 printf(" ip: %-15s", inet_ntoa(addr));
 expires = lease->expires;

 if (!expires)
 printf("expired\n");
 else {
 expires=expires-curr;

 62

Appendix A.

 if (expires > 60*60*24) {
 printf("%d days, ", expires / (60*60*24));
 expires %= 60*60*24;
 }
 if (expires > 60*60) {
 printf("%d hours, ", expires / (60*60));
 expires %= 60*60;
 }
 if (expires > 60) {
 printf("%d minutes, ", expires / 60);
 expires %= 60;
 }
 printf("%d seconds\n", expires);
 }

 }
}

#ifdef COMBINED_BINARY
int udhcpd(int argc, char *argv[])
#else
int main(int argc, char *argv[])
#endif
{
 fd_set rfds;
 struct timeval tv;
 int server_socket;
 int bytes, retval;
 struct dhcpMessage packet;
 unsigned char *state;
 char *server_id, *requested;
 u_int32_t server_id_align, requested_align;
 unsigned long timeout_end;
 struct option_set *option;
 struct dhcpOfferedAddr *lease;
 struct sockaddr_in *sin;
 int pid_fd;

 /* server ip addr */
 int fd = -1;
 struct ifreq ifr;

 argc = argv[0][0]; /* get rid of some warnings */

 OPEN_LOG("udhcpd");
 LOG(LOG_INFO, "udhcp server (v%s) started", VERSION);

 pid_fd = pidfile_acquire(server_config.pidfile);
 pidfile_write_release(pid_fd);

 memset(&server_config, 0, sizeof(struct server_config_t));

 63

Appendix A.

 read_config(DHCPD_CONF_FILE, 1); /* parse the configuration file the first time */
 if ((option = find_option(server_config.options, DHCP_LEASE_TIME))) {
 memcpy(&server_config.lease, option->data + 2, 4);
 server_config.lease = ntohl(server_config.lease);
 }
 else server_config.lease = LEASE_TIME;

 leases = malloc(sizeof(struct dhcpOfferedAddr) * server_config.max_leases);
 memset(leases, 0, sizeof(struct dhcpOfferedAddr) * server_config.max_leases);
 read_leases(server_config.lease_file);

 read_config(DHCPD_CONF_FILE, 2); /* parse the configuration file the second time */
#ifdef DEBUG
 print_leases();
#endif

 if((fd = socket(AF_INET, SOCK_RAW, IPPROTO_RAW)) >= 0) {
 ifr.ifr_addr.sa_family = AF_INET;
 strcpy(ifr.ifr_name, server_config.interface);
 if (ioctl(fd, SIOCGIFADDR, &ifr) == 0) {
 sin = (struct sockaddr_in *) &ifr.ifr_addr;
 server_config.server = sin->sin_addr.s_addr;
 DEBUG(LOG_INFO, "%s (server_ip) = %s", ifr.ifr_name, inet_ntoa(sin-
>sin_addr));
 } else {
 LOG(LOG_ERR, "SIOCGIFADDR failed!");
 exit_server(1);
 }
 if (ioctl(fd, SIOCGIFINDEX, &ifr) == 0) {
 DEBUG(LOG_INFO, "adapter index %d", ifr.ifr_ifindex);
 server_config.ifindex = ifr.ifr_ifindex;
 } else {
 LOG(LOG_ERR, "SIOCGIFINDEX failed!");
 exit_server(1);
 }
 if (ioctl(fd, SIOCGIFHWADDR, &ifr) == 0) {
 memcpy(server_config.arp, ifr.ifr_hwaddr.sa_data, 6);
 DEBUG(LOG_INFO, "adapter hardware address
%02x:%02x:%02x:%02x:%02x:%02x",
 server_config.arp[0], server_config.arp[1], server_config.arp[2],
 server_config.arp[3], server_config.arp[4], server_config.arp[5]);
 } else {
 LOG(LOG_ERR, "SIOCGIFHWADDR failed!");
 exit_server(1);
 }
 } else {
 LOG(LOG_ERR, "socket failed!");
 exit_server(1);
 }
 close(fd);

 64

Appendix A.

#ifndef DEBUGGING
 pid_fd = pidfile_acquire(server_config.pidfile); /* hold lock during fork. */
 switch(fork()) {
 case -1:
 perror("fork");
 exit_server(1);
 /*NOTREACHED*/
 case 0:
 break; /* child continues */
 default:
 exit(0); /* parent exits */
 /*NOTREACHED*/
 }
 close(0);
 setsid();
 pidfile_write_release(pid_fd);
#endif

 signal(SIGUSR1, write_leases);
 signal(SIGTERM, udhcpd_killed);

 timeout_end = time(0) + server_config.auto_time;
 while(1) { /* loop until universe collapses */

 server_socket = listen_socket(INADDR_ANY, SERVER_PORT,
server_config.interface);
 if(server_socket == -1) {
 LOG(LOG_ERR, "couldn't create server socket -- au revoir");
 exit_server(0);
 }

 FD_ZERO(&rfds);
 FD_SET(server_socket, &rfds);
 if (server_config.auto_time) {
 tv.tv_sec = timeout_end - time(0);
 if (tv.tv_sec <= 0) {
 tv.tv_sec = server_config.auto_time;
 timeout_end = time(0) + server_config.auto_time;
 write_leases(0);
 }
 tv.tv_usec = 0;
 }
 retval = select(server_socket + 1, &rfds, NULL, NULL, server_config.auto_time ?
&tv : NULL);
 if (retval == 0) {
 write_leases(0);
 timeout_end = time(0) + server_config.auto_time;
 close(server_socket);
 continue;
 } else if (retval < 0) {
 DEBUG(LOG_INFO, "error on select");
 close(server_socket);

 65

Appendix A.

 continue;
 }

 bytes = get_packet(&packet, server_socket); /* this waits for a packet - idle */
 close(server_socket);
 if(bytes < 0)
 continue;

 if((state = get_option(&packet, DHCP_MESSAGE_TYPE)) == NULL) {
 DEBUG(LOG_ERR, "couldnt get option from packet -- ignoring");
 continue;
 }

 lease = find_lease_by_chaddr(packet.chaddr);
 switch (state[0]) {
 case DHCPDISCOVER:
 DEBUG(LOG_INFO,"received DISCOVER");

 if (sendOffer(&packet) < 0) {
 LOG(LOG_ERR, "send OFFER failed -- ignoring");
 }
 break;
 case DHCPREQUEST:
 DEBUG(LOG_INFO,"received REQUEST");

 requested = get_option(&packet, DHCP_REQUESTED_IP);
 server_id = get_option(&packet, DHCP_SERVER_ID);

 if (requested) memcpy(&requested_align, requested, 4);
 if (server_id) memcpy(&server_id_align, server_id, 4);

 if (lease) {
 if (server_id) {
 /* SELECTING State */
 DEBUG(LOG_INFO, "server_id = %08x",
ntohl(server_id_align));
 if (server_id_align == server_config.server && requested
&&
 requested_align == lease->yiaddr) {
 sendACK(&packet, lease->yiaddr);
 }
 } else {
 if (requested) {
 /* INIT-REBOOT State */
 if (lease->yiaddr == requested_align)
 sendACK(&packet, lease->yiaddr);
 else sendNAK(&packet);
 } else {
 /* RENEWING or REBINDING State */
 if (lease->yiaddr == packet.ciaddr)
 sendACK(&packet, lease->yiaddr);
 else {
 /* don't know what to do!!!! */

 66

Appendix A.

 67

 sendNAK(&packet);
 }
 }
 }
 } /* else remain silent */
 print_leases();
 break;
 case DHCPDECLINE:
 DEBUG(LOG_INFO,"received DECLINE");
 if (lease) {
 memset(lease->chaddr, 0, 16);
 lease->expires = time(0) + server_config.decline_time;
 }
 break;
 case DHCPRELEASE:
 DEBUG(LOG_INFO,"received RELEASE");
 if (lease) lease->expires = time(0);
 break;
 case DHCPINFORM:
 DEBUG(LOG_INFO,"received INFORM");
 send_inform(&packet);
 break;
 default:
 LOG(LOG_WARNING, "unsupported DHCP message (%02x) -- ignoring",
state[0]);
 }
 }
 return 0;
}

Appendix B.

Appendix B. Source code of SA for the H5550

 FontList.h
//==
// Header file
//
// Written for the book Programming Windows CE
// Copyright (C) 2001 Douglas Boling
//==
// Returns number of elements
#ifndef __FontList__
#define __FontList__

#include "Global_Var.h"

//--
// Generic defines and data types
//
struct decodeUINT { // Structure associates
 UINT Code; // messages
 // with a function.
 LRESULT (*Fxn)(HWND, UINT, WPARAM, LPARAM);
};
struct decodeCMD { // Structure associates
 UINT Code; // menu IDs with a
 LRESULT (*Fxn)(HWND, WORD, HWND, WORD); // function.
};

//--
// Window prototypes and defines
//

typedef struct {
 int nNumFonts;
 TCHAR szFontFamily[LF_FACESIZE];
} FONTFAMSTRUCT;

typedef FONTFAMSTRUCT *PFONTFAMSTRUCT;

typedef struct {
 INT yCurrent;
 HDC hdc;
} PAINTFONTINFO;
typedef PAINTFONTINFO *PPAINTFONTINFO;

int InitClient (HINSTANCE);
int TermClient (HINSTANCE, int);

 68

Appendix B.

//--
// Function prototypes
//
int InitApp (HINSTANCE);
HWND InitInstance (HINSTANCE, LPWSTR, int);
int TermInstance (HINSTANCE, int);

// Window procedures
LRESULT CALLBACK FrameWndProc (HWND, UINT, WPARAM, LPARAM);
LRESULT CALLBACK ClientWndProc (HWND, UINT, WPARAM, LPARAM);

// Message handlers
LRESULT DoCreateFrame (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSizeFrame (HWND, UINT, WPARAM, LPARAM);
LRESULT DoDestroyFrame (HWND, UINT, WPARAM, LPARAM);

LRESULT DoCreateClient (HWND, UINT, WPARAM, LPARAM);
LRESULT DoPaintClient (HWND, UINT, WPARAM, LPARAM);
LRESULT DoVScrollClient (HWND, UINT, WPARAM, LPARAM);
LRESULT DoSLPMain (HWND, UINT, WPARAM, LPARAM);

void printsz(HWND hWnd, TCHAR szOut[]);

#define MYMSG_STARTSLP (WM_USER + 10)

#define dim(x) (sizeof(x) / sizeof(x[0]))

#define CLIENTWINDOW TEXT ("ClientWnd") // Client window ID

#define FAMILYMAX 24

//--
// Generic defines used by application
#define IDC_CMDBAR 1 // Command bar ID
#define IDC_CLIENT 2

#endif

 69

Appendix B.

 Global_var.h
 #ifndef __GLOBAL_VAR__
#define __GLOBAL_VAR__
#include <windows.h>

extern HINSTANCE hInst;
extern BOOL fFirst;
extern BOOL fReallyFirst;
//extern PAINTFONTINFO global_pfi;
extern INT global_nFontHeight;
extern INT yCurrent;
extern BOOL SLPfirst;
extern TCHAR global_szOut[10240];
extern INT offset;
extern RECT global_rect;
extern HANDLE g_hThread;
extern DWORD dwThreadID;
//extern SCROLLINFO si;
#endif

 70

Appendix B.

 SLP_Buf.h
#if(!defined SLP_BUFFER_H_INCLUDED)
#define SLP_BUFFER_H_INCLUDED

/*===
==*/
typedef struct _SLPBuffer
/*===
==*/
{
 unsigned char* start;
 /* ALWAYS points to the start of the xmalloc() buffer */

 unsigned char* curpos;
 /* "slider" pointer. Range is ALWAYS (start < curpos < end) */

 unsigned char* end;
 /* ALWAYS set to point to the byte after the last meaningful byte */
 /* Data beyond this index may not be valid */
}SLPBuffer,*PSLPBuffer;

/*===
==*/
typedef struct _SLPRegParams
/* Used to pass parameters to functions that deals with handle based SLP */
/* API calls */
/*===
==*/
{
 int lifetime;
 //int fresh; //used in header
 int urllen;
 const char* url;
 //int numauths;
 int srvtypelen;
 const char* srvtype;
 int scopelistlen;
 const char* scopelist;
 int attrlistlen;
 const char* attrlist;
 //int attrauths;
 //SLPRegReport* callback;
 //void* cookie;
}SLPRegParams,*PSLPRegParams;

/*===
==*/
typedef struct _SLPSrvReq
// havent been used
/*===
==*/
{
 //int multicast; //used in header

 71

Appendix B.

 int prlistlen;
 int srvtypelen;
 const char* srvtypelist;
 int scopelistlen;
 int predlen;
 int slpspilen;
}SLPSrvReq,*PSLPSrvReq;

#endif

 72

Appendix B.

 SLP_misc.h
#ifndef __SLPMISC__
#define __SLPMISC__

void ToUINT16(unsigned char *charptr, unsigned int val);
void ToUINT24(unsigned char *charptr, unsigned int val);

unsigned short AsUINT16(const char *charptr);
unsigned int AsUINT24(const char *charptr);

#endif

 73

Appendix B.

 SLPMain.h
#ifndef __SLPMain__
#define __SLPMain__

#include <windows.h>
#include <winsock.h>
#include <malloc.h>
#include "SLP_buf.h"
#include "FontList.h"
#include "SLP_misc.h"

//#define __DEBUG__ //when debuging, define it

#define SLP_RESERVED_PORT 427
#define SLP_TCP_PORT 4270
#define SLP_BCAST_ADDRESS 0xffffffff /* 255.255.255.255 */
#define SLP_LOCAL_ADDRESS 0xc0a80165 /* 192.168.1.101 */
#define SLP_DA_ADDRESS 0xc0a80166 /* 192.168.1.102 */ //only for
testing
#define SLP_FLAG_OVERFLOW 0x8000
#define SLP_FLAG_FRESH 0x4000
#define SLP_FLAG_MCAST 0x2000
#define MTU 1400

#define xmalloc(x) malloc((x))
#define xfree(x) free((x))

int SLPMain(HWND hWnd);
int SendSrvReq(HWND hWnd, int UDPsocketfd);
int SendSrvReg(HWND hWnd, int TCPsocketfd);
int creatUDPsocket(void);
int creatTCPsocket(void);
int receiveUDP(HWND hWnd, int sockfd); /* now these two function are quite the same*/
int receiveTCP(HWND hWnd, int sockfd); /* can be removed one, later*/
int REGreader(void);
int mystrcmp(char* source, char* keyword);

#endif

 74

Appendix B.

 ClientWnd.cpp
//==
// ClientWnd - Client window code for FontList2
//
// Written for the book Programming Windows CE
// Copyright (C) 2001 Douglas Boling

//==
#include <windows.h> // For all that Windows stuff
#include "FontList.h" // Program-specific stuff
#include "SLPMain.h"

void printsz(HWND hWnd, TCHAR szOut[])
{
 RECT rect;
 GetClientRect (hWnd, &rect);
 offset += wsprintf (global_szOut+offset, szOut);
 DrawText(GetDC(hWnd),global_szOut,lstrlen(global_szOut),&rect,DT_LEFT|DT_WORDB
REAK);
}
//--
// Global data
//
FONTFAMSTRUCT ffs[FAMILYMAX];
INT sFamilyCnt = 0;
INT sVPos = 0;
INT sVMax = 0;

// Message dispatch table for ClientWindowProc
const struct decodeUINT ClientMessages[] = {
 WM_CREATE, DoCreateClient,
 WM_PAINT, DoPaintClient,
 WM_VSCROLL, DoVScrollClient,
 MYMSG_STARTSLP, DoSLPMain,
};
//--
// InitClient - Client window initialization
//
int InitClient (HINSTANCE hInstance) {
 WNDCLASS wc;

 // Register application client window class.
 wc.style = 0; // Window style
 wc.lpfnWndProc = ClientWndProc; // Callback function
 wc.cbClsExtra = 0; // Extra class data
 wc.cbWndExtra = 0; // Extra window data
 wc.hInstance = hInstance; // Owner handle
 wc.hIcon = NULL, // Application icon
 wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
 wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Menu name
 wc.lpszClassName = CLIENTWINDOW; // Window class name

 75

Appendix B.

 if (RegisterClass (&wc) == 0) return 1;

 return 0;
}
//--
// TermClient - Client window cleanup
//

int TermClient (HINSTANCE hInstance, int nDefRC) {
 return nDefRC;
}
//==
// Font callback functions
//--
// FontFamilyCallback - Callback function that enumerates the font
// families.
//
int CALLBACK FontFamilyCallback (CONST LOGFONT *lplf,
 CONST TEXTMETRIC *lpntm,
 DWORD nFontType, LPARAM lParam) {
 int rc = 1;

 // Stop enumeration if array filled.
 if (sFamilyCnt >= FAMILYMAX)
 return 0;
 // Copy face name of font.
 lstrcpy (ffs[sFamilyCnt++].szFontFamily, lplf->lfFaceName);

 return rc;
}
//--
// EnumSingleFontFamily - Callback function that enumerates the font
// families
//
int CALLBACK EnumSingleFontFamily (CONST LOGFONT *lplf,
 CONST TEXTMETRIC *lpntm,
 DWORD nFontType, LPARAM lParam) {
 PFONTFAMSTRUCT pffs;

 pffs = (PFONTFAMSTRUCT) lParam;
 pffs->nNumFonts++; // Increment count of fonts in family.
 return 1;
}
//--
// PaintSingleFontFamily - Callback function that enumerates the font
// families.
//
int CALLBACK PaintSingleFontFamily (CONST LOGFONT *lplf,
 CONST TEXTMETRIC *lpntm,
 DWORD nFontType, LPARAM lParam) {
 PPAINTFONTINFO ppfi;
 TCHAR szOut[256];
 INT nFontHeight, nPointSize;

 76

Appendix B.

 TEXTMETRIC tm;
 HFONT hFont, hOldFont;

 ppfi = (PPAINTFONTINFO) lParam; // Translate lParam into
 // structure pointer.

 // Create the font from the LOGFONT structure passed.
 hFont = CreateFontIndirect (lplf);

 // Select the font into the device context.
 hOldFont = (HFONT__ *)SelectObject (ppfi->hdc, hFont);

 // Get the height of the default font.
 GetTextMetrics (ppfi->hdc, &tm);
 nFontHeight = tm.tmHeight + tm.tmExternalLeading;

 // Compute font size.
 nPointSize = (lplf->lfHeight * 72) /
 GetDeviceCaps(ppfi->hdc,LOGPIXELSY);

 // Format string and paint on display.
 wsprintf (szOut, TEXT ("%s Point:%d"), lplf->lfFaceName,
 nPointSize);
 ExtTextOut (ppfi->hdc, 25, ppfi->yCurrent, 0, NULL,
 szOut, lstrlen (szOut), NULL);

 // Update new draw point.
 ppfi->yCurrent += nFontHeight;
 // Deselect font and delete.
 SelectObject (ppfi->hdc, hOldFont);
 DeleteObject (hFont);
 return 1;
}
//==
// Message handling procedures for ClientWindow
//--
// ClientWndProc - Callback function for application window
//
LRESULT CALLBACK ClientWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 INT i;
 //
 // Search message list to see if we need to handle this
 // message. If in list, call procedure.
 //
 for (i = 0; i < dim(ClientMessages); i++) {
 if (wMsg == ClientMessages[i].Code){
 return (*ClientMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);
 }
 }

 return DefWindowProc (hWnd, wMsg, wParam, lParam);
}

 77

Appendix B.

//--
// DoCreateClient - Process WM_CREATE message for window.
//
LRESULT DoCreateClient (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 HDC hdc;
 INT i, rc;
 RECT *rect;

 rect = &global_rect;
 GetClientRect (hWnd, rect);
 rect->bottom = 1000;

 //Enumerate the available fonts.
 hdc = GetDC (hWnd);
 rc = EnumFontFamilies ((HDC)hdc, (LPTSTR)NULL, FontFamilyCallback, 0);

 for (i = 0; i < sFamilyCnt; i++) {
 ffs[i].nNumFonts = 0;
 rc = EnumFontFamilies ((HDC)hdc, ffs[i].szFontFamily,
 EnumSingleFontFamily,
 (LPARAM)(PFONTFAMSTRUCT)&ffs[i]);
 }
 ReleaseDC (hWnd, hdc);
 return 0;
}
//--
// DoPaintClient - Process WM_PAINT message for window.
//
LRESULT DoPaintClient (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {

 PAINTSTRUCT ps;
 RECT *rect;
 HDC hdc;
 TEXTMETRIC tm;
 INT i;
 PAINTFONTINFO pfi;
 SCROLLINFO si;

 //pfi=&global_pfi;
 hdc = BeginPaint (hWnd, &ps);

 rect = &global_rect;
 //GetClientRect (hWnd, &rect);

 // Get the height of the default font.
 GetTextMetrics (hdc, &tm);
 global_nFontHeight = tm.tmHeight + tm.tmExternalLeading;
 // Initialize struct that is passed to enumerate function.
 yCurrent = global_rect.top - sVPos;
 pfi.hdc = hdc;

 78

Appendix B.

 //rect.bottom += sVPos;
 //rect.top += sVPos;

 DrawText(pfi.hdc,global_szOut,lstrlen(global_szOut),&global_rect,DT_LEFT|DT_WORDB
REAK);

 if (SLPfirst==TRUE)
 {
 SendMessage(hWnd,MYMSG_STARTSLP,0,0);
 SLPfirst = FALSE;
 }

 /*
 while(1)

 // Format output string and paint font family name.
 wsprintf (global_szOut, TEXT ("Hello Shasha!"));
 ExtTextOut (hdc, 5, yCurrent, 0, NULL,
 global_szOut, lstrlen (global_szOut), NULL);
 yCurrent += global_nFontHeight;
 Sleep(500L);
 }
 *///
 // Compute the total height of the text in the window.
 if (fFirst) {
 sVPos = 0;
 sVMax = (yCurrent - rect->top) - (rect->bottom - rect->top);

 si.cbSize = sizeof (si);
 si.nMin = 0;
 si.nMax = yCurrent;
 si.nPage = rect->bottom - rect->top;
 si.nPos = sVPos;
 si.fMask = SIF_DISABLENOSCROLL; //SIF_ALL;
 SetScrollInfo (hWnd, SB_VERT, &si, TRUE);
 fFirst = FALSE;
 }
 EndPaint (hWnd, &ps);
 return 0;
}
//--
// DoVScrollClient - Process WM_VSCROLL message for window.
//
LRESULT DoVScrollClient (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 RECT *rect;
 SCROLLINFO si;
 INT sOldPos = sVPos;

 rect = &global_rect;
 //GetClientRect (hWnd, &rect);

 79

Appendix B.

 switch (LOWORD (wParam)) {
 case SB_LINEUP:
 sVPos -= 10;
 break;

 case SB_LINEDOWN:
 sVPos += 10;
 break;

 case SB_PAGEUP:
 sVPos -= rect->bottom - rect->top;
 break;

 case SB_PAGEDOWN:
 sVPos += rect->bottom - rect->top;
 break;

 case SB_THUMBPOSITION:
 sVPos = HIWORD (wParam);
 break;
 }
 // Check range.
 if (sVPos < 0)
 sVPos = 0;
 if (sVPos > sVMax)
 sVPos = sVMax;

 // If scroll position changed, update scroll bar and
 // force redraw of window.
 if (sVPos != sOldPos) {
 si.cbSize = sizeof (si);
 si.nPos = sVPos;
 si.fMask = SIF_POS;
 SetScrollInfo (hWnd, SB_VERT, &si, TRUE);

 InvalidateRect (hWnd, NULL, TRUE);
 }
 return 0;

}

LRESULT DoSLPMain (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {

 //HANDLE g_hThread;
 //DWORD dwThreadID;
 printsz(hWnd, TEXT ("DoSLPMain!\r\n"));

 //SLPMain();

 g_hThread =

 80

Appendix B.

CreateThread(NULL,2048,(LPTHREAD_START_ROUTINE)SLPMain,hWnd,0,&dwThreadID);
 if (g_hThread==NULL)
 {
 //printsz(hWnd, &global_pfi, global_nFontHeight, TEXT ("Thread Error!\r\n"));

 }
 return 0;
}

 81

Appendix B.

 Fontlist.cpp
//==
// FontList2 - Lists the available fonts in the system
//

// Written for the book Programming Windows CE
// Copyright (C) 2001 Douglas Boling
//==
#include <windows.h> // For all that Windows stuff
#include <commctrl.h> // Command bar includes
#include "FontList.h" // Program-specific stuff
//--
// Global data
//
const TCHAR szAppName[] = TEXT ("FontList2");

// Message dispatch table for FrameWindowProc
const struct decodeUINT FrameMessages[] = {
 WM_SIZE, DoSizeFrame,
 WM_CREATE, DoCreateFrame,
 WM_DESTROY, DoDestroyFrame,
};
//==
// Program entry point
//
int WINAPI WinMain (HINSTANCE hInstance, HINSTANCE hPrevInstance,
 LPWSTR lpCmdLine, int nCmdShow) {
 MSG msg;
 int rc = 0;
 HWND hwndFrame;

 // Initialize application.
 rc = InitApp (hInstance);
 if (rc) return rc;

 // Initialize this instance.
 hwndFrame = InitInstance (hInstance, lpCmdLine, nCmdShow);
 if (hwndFrame == 0)
 return 0x10;

 // Application message loop
 while (GetMessage (&msg, NULL, 0, 0)) {
 TranslateMessage (&msg);
 DispatchMessage (&msg);
 }
 // Instance cleanup
 return TermInstance (hInstance, msg.wParam);
}
//--
// InitApp - Application initialization
//

 82

Appendix B.

int InitApp (HINSTANCE hInstance) {
 WNDCLASS wc;

#if defined(WIN32_PLATFORM_PSPC)
 // If Pocket PC, allow only one instance of the application.
 HWND hWnd = FindWindow (szAppName, NULL);
 if (hWnd) {
 SetForegroundWindow ((HWND)(((DWORD)hWnd) | 0x01));
 return -1;
 }
#endif
 // Register application frame window class.
 wc.style = 0; // Window style
 wc.lpfnWndProc = FrameWndProc; // Callback function
 wc.cbClsExtra = 0; // Extra class data
 wc.cbWndExtra = 0; // Extra window data
 wc.hInstance = hInstance; // Owner handle
 wc.hIcon = NULL, // Application icon
 wc.hCursor = LoadCursor (NULL, IDC_ARROW);// Default cursor
 wc.hbrBackground = (HBRUSH) GetStockObject (WHITE_BRUSH);
 wc.lpszMenuName = NULL; // Menu name
 wc.lpszClassName = szAppName; // Window class name

 if (RegisterClass (&wc) == 0) return 1;

 // Initialize client window class.
 if (InitClient (hInstance) != 0) return 2;
 return 0;
}
//--
// InitInstance - Instance initialization
//
HWND InitInstance (HINSTANCE hInstance, LPWSTR lpCmdLine, int nCmdShow) {
 HWND hWnd;

 // Save program instance handle in global variable.
 hInst = hInstance;

 // Create frame window.
 hWnd = CreateWindow (szAppName, TEXT ("Font List 2"), WS_VISIBLE,
 CW_USEDEFAULT, CW_USEDEFAULT, CW_USEDEFAULT,
 CW_USEDEFAULT, NULL, NULL, hInstance, NULL);
 // Return fail code if window not created.
 if (!IsWindow (hWnd)) return 0;

 // Standard show and update calls
 ShowWindow (hWnd, nCmdShow);

 UpdateWindow (hWnd);
 return hWnd;
}
//--
// TermInstance - Program cleanup

 83

Appendix B.

//
int TermInstance (HINSTANCE hInstance, int nDefRC) {

 return nDefRC;
}
//==
// Message handling procedures for FrameWindow
//--
// FrameWndProc - Callback function for application window
//
LRESULT CALLBACK FrameWndProc (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 INT i;
 //
 // Search message list to see if we need to handle this
 // message. If in list, call procedure.
 //
 for (i = 0; i < dim(FrameMessages); i++) {
 if (wMsg == FrameMessages[i].Code)
 return (*FrameMessages[i].Fxn)(hWnd, wMsg, wParam, lParam);
 }
 return DefWindowProc (hWnd, wMsg, wParam, lParam);
}
//--
// DoCreateFrame - Process WM_CREATE message for window.
//
LRESULT DoCreateFrame (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 HWND hwndCB, hwndClient;
 INT sHeight;
 LPCREATESTRUCT lpcs;

 // Convert lParam to pointer to create structure.
 lpcs = (LPCREATESTRUCT) lParam;

 // Create a command bar.
 hwndCB = CommandBar_Create (hInst, hWnd, IDC_CMDBAR);
 // Add exit button to command bar.
 CommandBar_AddAdornments (hwndCB, 0, 0);
 sHeight = CommandBar_Height (GetDlgItem (hWnd, IDC_CMDBAR));

 //
 // Create client window. Size it so that it fits under
 // the command bar and fills the remaining client area.
 //
 hwndClient = CreateWindow (CLIENTWINDOW, TEXT (""),
 WS_VISIBLE | WS_CHILD | WS_VSCROLL,
 lpcs->x, lpcs->y + sHeight,
 lpcs->cx, lpcs->cy - sHeight,
 hWnd, (HMENU)IDC_CLIENT,
 lpcs->hInstance, NULL);

 // Destroy frame if client window not created.

 84

Appendix B.

 if (!IsWindow (hwndClient))
 DestroyWindow (hWnd);
 return 0;
}
//--
// DoSizeFrame - Process WM_SIZE message for window.
//
LRESULT DoSizeFrame (HWND hWnd, UINT wMsg, WPARAM wParam, LPARAM lParam) {
 RECT rect;
 INT i;

 GetClientRect (hWnd, &rect);
 i = CommandBar_Height (GetDlgItem (hWnd, IDC_CMDBAR));
 rect.top += i;

 SetWindowPos (GetDlgItem (hWnd, IDC_CLIENT), NULL, rect.left, rect.top,
 rect.right - rect.left, rect.bottom - rect.top,
 SWP_NOZORDER);
 return 0;
}
//--
// DoDestroyFrame - Process WM_DESTROY message for window.
//
LRESULT DoDestroyFrame (HWND hWnd, UINT wMsg, WPARAM wParam,
 LPARAM lParam) {
 PostQuitMessage (0);
 return 0;
}

 85

Appendix B.

 Global_Var.cpp
#include "Global_Var.h"
//**************FontList.cpp ClientWnd.cpp*********************
HINSTANCE hInst; // Program instance handle

//*********************ClientWnd.cpp***************************
BOOL fFirst = TRUE;
BOOL fReallyFirst = TRUE;
//PAINTFONTINFO global_pfi;
INT global_nFontHeight;
INT yCurrent;
BOOL SLPfirst = TRUE;
TCHAR global_szOut[10240];
INT offset = 0;
RECT global_rect;
HANDLE g_hThread;
DWORD dwThreadID;
//SCROLLINFO si;

 86

Appendix B.

 SLP_misc.cpp
#include "SLP_misc.h"

/*---*/
void ToUINT16(unsigned char *charptr, unsigned int val)
/*---*/
{
 charptr[0] = (val >> 8) & 0xff;
 charptr[1] = val & 0xff;
}

/*---*/
void ToUINT24(unsigned char *charptr, unsigned int val)
/*---*/
{
 charptr[0] = (val >> 16) & 0xff;
 charptr[1] = (val >> 8) & 0xff;
 charptr[2] = val & 0xff;
}

/*---*/
unsigned short AsUINT16(const char *charptr)
/*---*/
{
 unsigned char *ucp = (unsigned char *) charptr;
 return(ucp[0] << 8) | ucp[1];
}

/*---*/
unsigned int AsUINT24(const char *charptr)
/*---*/
{
 unsigned char *ucp = (unsigned char *) charptr;
 return(ucp[0] << 16) | (ucp[1] << 8) | ucp[2];
}

 87

Appendix B.

 SLPMain.cpp
#include "SLPMain.h"

int XID;
char REGbuf[256];
int regsrv; // how many services have been read in REG file

int SLPMain(HWND hWnd)
/* problems about, XID, and socket connect, should be solved later */
/* remember to close socket at the end */
{
 int FuncID;
 int UDPsockfd;
 int TCPsockfd;
 TCHAR Message[128];

 //creat a UDP socket
 UDPsockfd = creatUDPsocket();
 //creat a TCP socket
 TCPsockfd = creatTCPsocket();
/*
 while(1)
 {
SEND_DA_REQ:
 SendSrvReq(hWnd,UDPsockfd);
 FuncID = receiveUDP(hWnd,UDPsockfd);
 if (FuncID == 8) //DA Advertisement
 {
 wsprintf (Message, TEXT ("FuncID is %d\r\n"), FuncID);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
 }
 else
 {
 wsprintf (Message, TEXT ("FuncID is %d\r\n"), FuncID);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);

 Sleep(20000L);
 goto SEND_DA_REQ;
 }

REG_SERVICE:
 SendSrvReg(hWnd,TCPsockfd);
 FuncID = receiveTCP(hWnd,TCPsockfd);
 wsprintf (Message, TEXT ("FuncID is %d\r\n"), FuncID);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);

 goto REG_SERVICE;
 }
 */

 88

Appendix B.

 /******** Main algrithem **********
 while(1)
 {
SEND_DA_REQ:
 sendto(Req,UDP Bcast);
 receive(UDP);
 if (!got DA)
 {
 Delay some time;
 goto SEND_DA_REQ;
 }
 else
 {
 if needed update DA list;
 }
REG_SERVICE:
 if (new DA)
 {
 if (buf = assemble(REG) == NULL)
 {
 goto NOTHING_TO_DO;
 }
 sendto(Reg,buf,TCP);
 receive(TCP);
 if (ACK)
 {
 goto REG_SERVICE;
 }
 else
 {
 delay some time;
 goto REG_SERVICE;
 }
 }
NOTHING_TO_DO:
 delay some time;
 }
 **************************************/
 //closesocket(TCPsockfd);
 //closesocket(UDPsockfd);
 return 0;

}

/*===
==*/
int creatUDPsocket(void)
/* Creates a socket and provides a peeraddr to send to */
/* */
/* peeraddr (OUT) pointer to receive the connected DA's address */
/* */
/* Returns Valid socket or -1 if no DA connection can be made */

 89

Appendix B.

/*===
==*/
{
 int sockfd;
 BOOL on = 1; //broadcast model, 0 is off
 int iMode = 0; //blocking model, 0 is block

 /* setup broadcast */
 sockfd = socket(AF_INET, SOCK_DGRAM, IPPROTO_UDP);
 if(sockfd >= 0)
 {
 if(setsockopt(sockfd, SOL_SOCKET, SO_BROADCAST, (char*)&on, sizeof(on))) //allow
broadcast
 {
 return -1;
 }
 if(ioctlsocket(sockfd,FIONBIO, (u_long FAR*)&iMode)) //nonblocking
 {
 return -2;
 }
 }

 return sockfd;
}

/*===
==*/
int creatTCPsocket(void)
/* Creates a socket and provides a peeraddr to send to */
/* */
/* peeraddr (OUT) pointer to receive the connected DA's address */
/* */
/* Returns Valid socket or -1 if no DA connection can be made */
/*===
==*/
{
 int sockfd;
 int iSocketError;

 sockfd = socket(AF_INET, SOCK_STREAM, IPPROTO_TCP);

 if(sockfd == INVALID_SOCKET)
 {
 iSocketError = WSAGetLastError();
 return -1;
 }

 return sockfd;
}

/*===
==*/

 90

Appendix B.

int SendSrvReq(HWND hWnd, int UDPsocketfd)
/* return socket handle for receive function */
/* input hWnd for print function */
/*===
==*/
{
 //Set the target device parameters
 SOCKADDR_IN sTargetDevice;
 memset(&sTargetDevice, 0, sizeof(SOCKADDR_IN));
 sTargetDevice.sin_family = AF_INET;
 sTargetDevice.sin_port = htons(SLP_RESERVED_PORT);
 sTargetDevice.sin_addr.s_addr = htonl(SLP_LOCAL_ADDRESS);

 //assemble a SrvReq package first
 int result;
 PSLPBuffer pslpbuffer;
 pslpbuffer = (PSLPBuffer)xmalloc(sizeof(struct _SLPBuffer) + MTU + 1);

 /*************************
 // goto CLEANUP will skip the
 // initialization, so define it
 // before the goto
 *************************/
 char* srvtype = "service:directory-agent";
 char* langtag = "en";
 int bodysize=0;

 if (pslpbuffer)
 {
 pslpbuffer->start = (unsigned char*)(pslpbuffer + 1);
 pslpbuffer->curpos= pslpbuffer->start;
 pslpbuffer->end = pslpbuffer->start + MTU;
 }
 else
 {
 result = -1;
 goto CLEANUP;
 }

 /*************************
 // make body for SrvReq
 *************************/
 // I only implement a simple model, here you need to
 // re-calculate the length of the buf, and the fulfill
 // the content of the SrvReq package.
 unsigned char* body;
 //int bufsize=0; //define upper
 bodysize += 2; //PRList len = 0
 bodysize += 2; //srv type len = 23;
 //char* srvtype = "service:directory-agent"; //define upper
 int srvtypelen;
 srvtypelen = strlen(srvtype);

 91

Appendix B.

 bodysize += 6; //Scopelist len = 0; Predicate len = 0; SLP SPI len = 0;
 bodysize += srvtypelen;

 body = (unsigned char*)xmalloc(bodysize);
 if (body<=0)
 {
 result = -2;
 goto CLEANUP;
 }
 memset(body,0,bodysize);
 /*PRList len*/
 *(body) = 0;
 /*srv type len*/
 ToUINT16(body+2, 23);
 /*srv type*/
 memcpy(body+4,srvtype,srvtypelen);
 /*Scopelist len*/
 ToUINT16(body+4+srvtypelen, 0);
 /*Predicate len*/
 ToUINT16(body+6+srvtypelen, 0);
 /*SLP SPI len*/
 ToUINT16(body+8+srvtypelen, 0);

 /*************************
 // make header for SrvReq
 *************************/
 //char* langtag = "en"; //define upper
 int langtaglen;
 langtaglen = strlen(langtag);
 int headsize;
 headsize = langtaglen + 14;

 /*version*/
 *(pslpbuffer->start) = 2;
 /*function id*/
 *(pslpbuffer->start + 1) = 1;
 /*length*/
 ToUINT24(pslpbuffer->start + 2, bodysize+headsize);
 /*flags*/
 ToUINT16(pslpbuffer->start + 5, SLP_FLAG_MCAST);
 /*ext offset*/
 ToUINT24(pslpbuffer->start + 7, 0);
 /*xid*/
 ToUINT16(pslpbuffer->start + 10, (XID+1)%65535);
 /*lang tag len*/
 ToUINT16(pslpbuffer->start + 12, 2);
 /*lang tag*/
 memcpy(pslpbuffer->start + 14, langtag, langtaglen);

 pslpbuffer->curpos = pslpbuffer->start + langtaglen + 14 ; //curpos is point to the start of the
body

 92

Appendix B.

 /*************************
 // combine header and body
 *************************/
 memcpy(pslpbuffer->curpos, body, bodysize);
 pslpbuffer->curpos += bodysize;

 /*************************
 // send it by UDP BroadCast
 *************************/
 //SOCKADDR_IN sTargetDevice;
 //memset(&sTargetDevice, 0, sizeof(SOCKADDR_IN));
 //int UDPsocketfd;
 //UDPsocketfd = SLPNetworkConnectToBroadcast(&sTargetDevice);
 int nBytesSent;
 char* UDPbuf;
 int UDPbufsize;
 TCHAR Message[256];

 UDPbufsize = bodysize+headsize;
 UDPbuf = (char*)xmalloc(UDPbufsize);
 if (UDPbuf<=0)
 {
 result = -3;
 goto CLEANUP;
 }
 memset(UDPbuf,0,UDPbufsize);
 memcpy(UDPbuf, pslpbuffer->start, UDPbufsize);

#ifdef __DEBUG__ //just comment off the while(1) and {}
 while(1)
 { //when debuging, we loop the package
#endif
 nBytesSent = sendto(UDPsocketfd, UDPbuf, UDPbufsize, 0,
 (SOCKADDR*)&sTargetDevice,
 sizeof(SOCKADDR_IN));
 wsprintf (Message, TEXT ("Send Package, Len is %d\r\n"), nBytesSent);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
#ifdef __DEBUG__
 Sleep(10000L);
 }
#endif

 result = 0; // everything is ok
CLEANUP:
 /*Free memory here*/
 if (pslpbuffer)
 {
 xfree(pslpbuffer);
 }
 else if (body)

 93

Appendix B.

 {
 xfree(body);
 }
 else if (UDPbuf)
 {
 xfree(UDPbuf);
 }

 if (result!=0)
 {
 wsprintf (Message, TEXT ("Error Code is %d\r\n"), result);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
 }

 return result;
}
/*===
==*/
int receiveUDP(HWND hWnd, int sockfd)
/* return Function ID of the received package */
/*===
==*/
{
 int result=0;
 // set the receive end parameters
 SOCKADDR_IN sReceiveFromAddr;
 memset(&sReceiveFromAddr, 0, sizeof(SOCKADDR_IN));

 sReceiveFromAddr.sin_family = AF_INET;
 sReceiveFromAddr.sin_port = htons(SLP_RESERVED_PORT);
 sReceiveFromAddr.sin_addr.s_addr = htonl(SLP_LOCAL_ADDRESS);

 /******************************
 * Read the body of the package
 ******************************/
 char* head;
 head = (char*)xmalloc(16); //read the header of the package
 memset(head,0,16);
 int nBytesRecv = 0;
 int nReceiveAddrSize = 0;
 int FuncID = 0;

 if (head)
 {
 nBytesRecv = recvfrom(sockfd, head, 16, 0, //need to set non block
model
 (SOCKADDR *)&sReceiveFromAddr, //when
creat the socket
 &nReceiveAddrSize);
 }
 if (nBytesRecv<=0)
 {

 94

Appendix B.

 result = GetLastError();
 goto CLEANUP;
 }
 FuncID = *(head + 1);

 /******************************
 * Read the body of the package
 ******************************/
 int bodylen;
 PSLPBuffer body; //need to use end, and curpos
 //no useful here, maybe used later
 /* check the version */
 if(nBytesRecv >= 5 && *head == 2)
 {
 /* allocate the recvmsg big enough for the whole message */
 bodylen = AsUINT24(head + 2);
 /* one byte is minimum */
 if (bodylen <= 0)
 bodylen = 1;
 body = (PSLPBuffer)xmalloc(sizeof(struct _SLPBuffer) + bodylen + 1);
 memset(body,0,sizeof(struct _SLPBuffer) + bodylen + 1);
 if(body)
 {
 body->start = (unsigned char*)body + 1;
 body->curpos = body->start;
 body->end = body->start + bodylen;

 while(body->curpos < body->end)
 {
 if(nBytesRecv > 0)
 {
 nBytesRecv = recv(sockfd,
 (char*)body->curpos,
 body->end - body->curpos,
 0);
 if(nBytesRecv > 0)
 {
 body->curpos = body->curpos + nBytesRecv;
 }
 else
 {
 //errno = ENOTCONN;
 result = -2;
 goto CLEANUP;
 }
 }
 else if(nBytesRecv == 0)
 {
 //errno = ETIMEDOUT;
 result = -3;
 goto CLEANUP;
 }
 else

 95

Appendix B.

 {
 //errno = ENOTCONN;
 result = -4;
 goto CLEANUP;
 }
 } /* end of main read while. */
 }
 else
 {
 //errno = ENOMEM;
 result = -5;
 goto CLEANUP;
 }
 }
 else
 {
 //errno = EINVAL;
 result = -6;
 goto CLEANUP;
 }
#ifdef __DEBUG__
 if (result>=0)
 {
 TCHAR Message[128];
 wsprintf (Message, TEXT ("Function ID is %d\r\n"), result);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
 }
#endif
 // everything is ok, return the Function ID
 result = FuncID;

CLEANUP:
 if (head)
 {
 xfree(head);
 }
 if (body)
 {
 xfree(body);
 }

 return result;
}

/*===
==*/
int SendSrvReg(HWND hWnd, int TCPsocketfd)
/* return socket handle for receive function */
/* input hWnd for print function */
/*===
==*/
{

 96

Appendix B.

 int iSocketError;
 int result;
 int bodysize;
 int entrysize;
 int nBytesSent;
 int nBytesIndex;
 int nBytesLeft;
 int lowat;

 //Set the target device parameters
 SOCKADDR_IN sTargetDevice;
 memset(&sTargetDevice, 0, sizeof(SOCKADDR_IN));
 sTargetDevice.sin_family = AF_INET;
 sTargetDevice.sin_port = htons(SLP_RESERVED_PORT);
 sTargetDevice.sin_addr.s_addr = htonl(SLP_DA_ADDRESS); //need to get from last step

 // Connect with a valid socket
 // only can connect once!! need to add a sign to guarantee that !!!
 if(connect(TCPsocketfd, (SOCKADDR *)&sTargetDevice, sizeof(sTargetDevice)) == 0)
 {
 /* set the receive and send buffer low water mark to 18 bytes
 (the length of the smallest slpv2 message) */
 lowat = 18;

 setsockopt(TCPsocketfd,SOL_SOCKET,SO_RCVLOWAT,(char*)&lowat,sizeof(lowat));

 setsockopt(TCPsocketfd,SOL_SOCKET,SO_SNDLOWAT,(char*)&lowat,sizeof(lowat));
 }
 else
 {
 result = WSAGetLastError();
 return result;
 }

 //assemble a SrvReq package first

 PSLPBuffer pslpbuffer;
 pslpbuffer = (PSLPBuffer)xmalloc(sizeof(struct _SLPBuffer) + MTU + 1);

 /*************************
 // goto CLEANUP will skip the
 // initialization, so define it
 // before the goto
 *************************/
 //because of goto, need to define the char* varaible carefully (the location of the code)
 //need to read from REG file
 //i.e. readattr("attribute")
 //and in REG file, we can write like this
 //attribute:(description = OpenSLP Testing Service);
 //use : and ; to divide
 //or just do what they have done in the REG file, I mean the same way.
 char* url = "service:test.openslp://192.168.1.215";
 char* srvtype = "service:test.openslp";

 97

Appendix B.

 char* scope = "default";
 char* attribute = "(description = OpenSLP Testing Service)";
 char* langtag = "en";

 if (pslpbuffer)
 {
 pslpbuffer->start = (unsigned char*)(pslpbuffer + 1);
 pslpbuffer->curpos= pslpbuffer->start;
 pslpbuffer->end = pslpbuffer->start + MTU;
 }
 else
 {
 result = -1;
 goto CLEANUP;
 }

 /*************************
 // make body for SrvReq
 *************************/
 // I only implement a simple model, here you need to
 // re-calculate the length of the buf, and the fulfill
 // the content of the SrvReq package.

 //creat a URL entry first
 unsigned char* URLentry;
 entrysize = 0;
 entrysize += 1; //reserved
 entrysize += 2; //lifetime
 entrysize += 2; //URL len
 int urllen;
 urllen = strlen(url);
 entrysize += urllen;
 entrysize += 1; //Auths

 URLentry = (unsigned char*)xmalloc(entrysize);
 if (URLentry<=0)
 {
 result = -2;
 goto CLEANUP;
 }
 memset(URLentry,0,entrysize);

 /*reserved*/
 *(URLentry) = 0;
 /*URL life time*/
 ToUINT16(URLentry+1,65535);
 /*URL length*/
 ToUINT16(URLentry+3,36);
 memcpy(URLentry+5,url,urllen);
 /*Auths*/
 *(URLentry+5+urllen) = 0;

 98

Appendix B.

 //creat a body, and add URLentry at the beginning of the body
 //the size of the body is dependent on the contents of the REG file
 //need to write a REG file reading function
 unsigned char* body;
 bodysize = 0;
 bodysize += 2; //Srv len
 int srvtypelen;
 srvtypelen = strlen(srvtype);
 bodysize += srvtypelen;
 int scopelen;
 scopelen = strlen(scope);
 bodysize += scopelen;
 int attrilen;
 attrilen = strlen(attribute);
 bodysize += attrilen;
 bodysize += 1; //Auths

 bodysize += entrysize;

 body = (unsigned char*)xmalloc(bodysize);
 if (body<=0)
 {
 result = -3;
 goto CLEANUP;
 }
 memset(body,0,bodysize);

 memcpy(body,URLentry,entrysize);

 /*Srv type len*/
 ToUINT16(body+entrysize,srvtypelen);
 /*srv type*/
 memcpy(body+entrysize+2,srvtype,srvtypelen);
 /*scope len*/
 ToUINT16(body+entrysize+2+srvtypelen, scopelen);
 /*scope*/
 memcpy(body+entrysize+2+srvtypelen+2,scope,scopelen);
 /*attribute len*/
 ToUINT16(body+entrysize+2+srvtypelen+2+scopelen, attrilen);
 /*attribute*/
 memcpy(body+entrysize+2+srvtypelen+2+scopelen+2,attribute,attrilen);
 /*Auths*/
 *(body+entrysize+2+srvtypelen+2+scopelen+2+attrilen+1) = 0;

 /*************************
 // make header for SrvReq
 *************************/
 int langtaglen;
 langtaglen = strlen(langtag);
 int headsize;
 headsize = langtaglen + 14;

 99

Appendix B.

 /*version*/
 *(pslpbuffer->start) = 2;
 /*function id*/
 *(pslpbuffer->start + 1) = 3;
 /*length*/
 ToUINT24(pslpbuffer->start + 2, bodysize+headsize);
 /*flags*/
 ToUINT16(pslpbuffer->start + 5, SLP_FLAG_FRESH); //dependent on something ????
 /*ext offset*/
 ToUINT24(pslpbuffer->start + 7, 0);
 /*xid*/
 ToUINT16(pslpbuffer->start + 10, (XID+1)%65535); //need to be careful here, may assign
XID outside ????
 /*lang tag len*/
 ToUINT16(pslpbuffer->start + 12, 2);
 /*lang tag*/
 memcpy(pslpbuffer->start + 14, langtag, langtaglen);

 pslpbuffer->curpos = pslpbuffer->start + langtaglen + 14 ; //curpos is point to the start of the
body

 /*************************
 // combine header and body
 *************************/
 memcpy(pslpbuffer->curpos, body, bodysize);
 pslpbuffer->curpos += bodysize;

 /*************************
 // send it by TCP
 *************************/
 char* TCPbuf;
 int TCPbufsize;
 TCHAR Message[128];

 TCPbufsize = bodysize+headsize;
 TCPbuf = (char*)xmalloc(TCPbufsize);
 if (TCPbuf<=0)
 {
 result = -4;
 goto CLEANUP;
 }
 memset(TCPbuf,0,TCPbufsize);
 memcpy(TCPbuf, pslpbuffer->start, TCPbufsize);

#ifdef __DEBUG__ //just comment off the while(1) and {}
 while(1)
 { //when debuging, we loop the package
#endif
 nBytesSent = 0;
 nBytesIndex = 0;
 nBytesLeft = TCPbufsize;

 100

Appendix B.

 // Send the entire buffer
 while(nBytesLeft > 0)
 {
 nBytesSent = send(TCPsocketfd, TCPbuf+nBytesIndex, nBytesLeft, 0);
 if(nBytesSent == SOCKET_ERROR)
 {
 result = -5;
 goto CLEANUP;
 }

 // See how many bytes are left. If we still need to send, loop
 nBytesLeft -= nBytesSent;
 nBytesIndex += nBytesSent;
 }

 wsprintf (Message, TEXT ("Send Package, Len is %d\r\n"), nBytesSent);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
#ifdef __DEBUG__
 Sleep(10000L);
 }
#endif

 result = 0; // everything is ok
CLEANUP:
 /*Free memory here*/
 if (pslpbuffer)
 {
 xfree(pslpbuffer);
 }
 else if (body)
 {
 xfree(body);
 }
 else if (TCPbuf)
 {
 xfree(TCPbuf);
 }
 else if (URLentry)
 {
 xfree(URLentry);
 }

 if (result!=0)
 {
 wsprintf (Message, TEXT ("Error Code is %d\r\n"), result);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
 }

 return result;
}

 101

Appendix B.

int receiveTCP(HWND hWnd, int sockfd)
{
 int result;
 /******************************
 * Read the body of the package
 ******************************/
 char* head;
 head = (char*)xmalloc(16); //read the header of the package
 memset(head,0,16);
 int nBytesRecv = 0;
 int nReceiveAddrSize = 0;
 int FuncID = 0;

 if (head)
 {
 nBytesRecv = recv(sockfd, head, 16, 0);
 }
 if (nBytesRecv<=0)
 {
 result = GetLastError();
 goto CLEANUP;
 }
 FuncID = *(head + 1);

 /******************************
 * Read the body of the package
 ******************************/
 int bodylen;
 PSLPBuffer body; //need to use end, and curpos
 //no useful here, maybe used later
 /* check the version */
 if(nBytesRecv >= 5 && *head == 2)
 {
 /* allocate the recvmsg big enough for the whole message */
 bodylen = AsUINT24(head + 2);
 /* one byte is minimum */
 if (bodylen <= 0)
 bodylen = 1;
 body = (PSLPBuffer)xmalloc(sizeof(struct _SLPBuffer) + bodylen + 1);
 memset(body,0,sizeof(struct _SLPBuffer) + bodylen + 1);
 if(body)
 {
 body->start = (unsigned char*)body + 1;
 body->curpos = body->start;
 body->end = body->start + bodylen;

 while(body->curpos < body->end)
 {
 if(nBytesRecv > 0)
 {
 nBytesRecv = recv(sockfd,
 (char*)body->curpos,
 body->end - body->curpos,

 102

Appendix B.

 0);
 if(nBytesRecv > 0)
 {
 body->curpos = body->curpos + nBytesRecv;
 }
 else
 {
 //errno = ENOTCONN;
 result = -2;
 goto CLEANUP;
 }
 }
 else if(nBytesRecv == 0)
 {
 //errno = ETIMEDOUT;
 result = -3;
 goto CLEANUP;
 }
 else
 {
 //errno = ENOTCONN;
 result = -4;
 goto CLEANUP;
 }
 } /* end of main read while. */
 }
 else
 {
 //errno = ENOMEM;
 result = -5;
 goto CLEANUP;
 }
 }
 else
 {
 //errno = EINVAL;
 result = -6;
 goto CLEANUP;
 }
#ifdef __DEBUG__
 if (result>=0)
 {
 TCHAR Message[128];
 wsprintf (Message, TEXT ("Function ID is %d\r\n"), result);
 printsz(hWnd, Message);
 SendMessage(hWnd,WM_PAINT,0,0);
 }
#endif
 // everything is ok, return the Function ID
 result = FuncID;

CLEANUP:
 if (head)

 103

Appendix B.

 {
 xfree(head);
 }
 if (body)
 {
 xfree(body);
 }

 return result;

}

/*
int REGreader(void)
{
 FILE *regfd;
 char line[128];
 int result;
 int REGlen;
 int subregsrv = 0; //when find one service section, check the index of this section,
 //if it was already read by this function
(subregsrv<=regerv), then goto next section
 int starttowrite = 0; //if get a new section, set this to 1, and this function will start to write the
buffer

 if (regfd = fopen("F:\\Thesis\\Shasha\\REG.txt","r") == NULL)
 {
 result = -1;
 return result;
 }

 while (!feof(regfd))
 {
 if (fgets(line,sizeof(line),regfd)==NULL) //read one line from file
 {
 result = -2;
 return result;
 }
 if (line[0]=='#' || line[0]==';') //commment
 {
 continue;
 }
 if (mystrcmp(&line,"services"))
 {
 subregsrv += 1; // account this service section
 if (subregsrv<=regsrv)
 {
 continue; //read next line
 }
 else
 {
 starttowrite = 1;
 }

 104

Appendix B.

 105

 }
 else if ()
 else
 {
 continue;
 }
 }

 result = REGlen;
 return result;
}

int mystrcmp(char* source, char* keyword)
// check if the keyword in the beginning of the source
{
 int keywordlen=strlen(keyword);
 int ifequ = 1;

 for (int i=0; i<keywordlen; i++)
 {
 if (source+i == keyword+i)
 {
 continue;
 }
 else
 {
 ifequ = 0;
 break;
 }
 }

 return ifequ;
}*/

www.kth.se

COS/CCS 2008-23

	1 Introduction
	1.1 Problem Statement
	1.2 Objectives
	1.3 Organization of this Thesis

	2 Background and Related Work
	2.1 What is device aggregation?
	2.2 Devices aggregation scenarios
	2.2.1 Scenario 1
	2.2.2 Scenario 2
	2.2.3 Scenario 3

	2.3 Related work and existing technology
	2.3.1 Link layer
	2.3.1.1 USB
	2.3.1.2 IEEE 1394a/b
	2.3.1.3 Bluetooth
	2.3.1.4 Wi-Fi

	2.3.2 Network layer
	2.3.2.1 Jini
	2.3.2.2 UPnP
	2.3.2.3 SLP
	2.3.2.4 Comparisons between Jini, UPnP and SLP

	2.3.3 Transport layer
	2.3.4 Application layer
	2.3.5 P2P technologies

	2.4 Remote desktop software
	2.3.2 VNC
	2.4.1 Remote Desktop Protocol
	2.4.2 X window system

	2.5 Powering the individual devices

	3 Implementation
	3.1 Methods
	3.2 System Architecture
	3.2.1 Laboratory environment
	3.2.2 Devices used
	3.2.2.1 PDA
	3.2.2.1.1 Microsoft® Pocket PC 2003
	3.2.2.1.2 ActiveSync

	3.2.2.2 Cell phone
	3.2.2.3 SmartBadge version 4
	3.2.2.3.1 How to get started with Badge 4
	3.2.2.3.2 NFS mounting
	3.2.2.3.3 Developing programs for the badge

	3.3 Protocols and software used
	3.3.1 DHCP
	3.3.1.1 Udhcp
	3.3.1.2 PocketDHCP

	3.3.2 SLP
	3.3.2.1 SLP implementation specification
	3.3.2.1.1 SLP agents and message mechanism
	3.3.2.1.2 Use of TCP, UDP and Multicast in Service Location

	3.3.2.2 OpenSLP

	3.3.3 Programming on PDA
	3.3.3.1 Preparations for programming on PDA
	3.3.3.2 Compiler environment
	3.3.3.3 Design

	3.3.4 Remote display software

	4 Testing and Analysis
	4.1 The DHCP server and the DHCP client
	4.2 Openslp on two PCs
	4.3 DA on Badge and SA on PC
	4.4 DA on PC and SA program on PDA
	4.5 DA on Badge and SA program on PDA

	5 Conclusions
	5.1 Conclusions
	5.2 Future work
	5.2.1 Improvement discovery service
	5.2.2 Combining the discovery service and remote desktop control application
	5.2.3 Security
	5.2.4 Power management

