
Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-19

J I A Z H O U

Adding bandwidth specification
to a AAA Sever

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Adding bandwidth specification to a AAA
Sever

Jia Zhou

September 14th, 2008

Supervisor & Examiner: Professor Gerald Q. Maguire Jr.

Department of Communication Systems

School of Information and Communication Technology

Royal Institute of Technology

Stockholm, Sweden

Adding bandwidth specifications to a AAA server

Abstract

Authentication, authorization, and accounting (AAA) are key elements in network
security. In many networks, clients can use resources only after they have been
authenticated by an authentication server and authorized to use these resources. In
some cases the server will also maintain accounting records in order for an operator (a
provider of resources) to charge the account/subscriber for using the service. There
are four main AAA protocols being used today. Of these RADIUS is the mostly
widely used.

This thesis starts with an introduction to AAA protocols, and then goes in the details
of RADIUS. In order to perform a practical evaluation of how the AAA could be
improved, FreeRADIUS was selected as the base code for this project; because this
implementation is one of the most widely used RADIUS servers. A proposal for how
to improve AAA performance is introduced and the implementation steps needed to
realize these improvements are shown. Additionally, some experiments have been
conducted to show both the correct functioning of the resulting implementation and to
examine if there is a performance improvement. Following this some conclusions are
drawn based upon a comparison with a traditional AAA server.

A key element of the change in AAA which is proposed is the use of a non-binary
IEEE 802.1x process. This new non-binary solution introduces a new type of AAA
server and requires the re-thinking of a number of traditional AAA design decisions.
It is expected that this change will have a significant impact, but will require some
time for exposure, implementation by others, and a more extensive evaluation that
was possible during the period of this thesis project.

One of the most important conclusions drawn during this thesis is the difficulty of
making a change in authentication and authorization, because of the large amount of
interaction between both the various protocols and the standards which have been
developed for these protocols. Thus one of the difficult aspects of the task is how to
introduce a change in a protocol while maintaining backward compatibility for others
who have not adopted this change -- without requiring the addition of a protocol
version field.

A second important conclusion is that doing this implementation in three separate
parts with different students being responsible for the different parts revealed just how
complex the interaction of protocol design decisions are. While a working version of
the entire set of changes proved to be impossible, it was observed that the different
parts could be decoupled more than initially expected.

Keywords: AAA, RADIUS, FreeRADIUS, authentication, non-binary
authentication, IEEE 802.1x.

 - i - i

Adding bandwidth specifications to a AAA server

Acknowledgement

This thesis lasts for more than 6 months, and I dare say what I have learnt during
these 6 months is the most important thing in my master studying life.

At first, I would like to show my sincere thanks to my Supervisor & Examiner:
Professor Gerald Q. Maguire Jr. He is such a smart, erudite, insightful man leading
me to a new period of study. During my thesis time, he showed his great patience to
help me learn about this field, work with the RADIUS sever and Linux system, solve
all the problems I have faced, and improve my English writing. He helped me
understand more things about the AAA server and teach me what kind of
characteristic a master should have. Learning, thinking, and the tireless efforts would
be the spirit I will never drop in my life. His positive and friendly attitude rewarded
me a great time in Wireless@KTH Lab.

I will also show my thanks to all my friends, especially to: Zhang Jiayi, Dai Kaiyu,
Zuo Lin, Han Liu, Guo Jia, Zhang Hengchong, and Hu Lidan. Thanks for their
patience when I had problems with the thesis. They discussed with me, worked
together with me, and help me out with the problems blocked me. And thanks for their
encouragement which makes me never give up.

Moreover, thanks go to all the staff at Wireless@KTH Lab. It is really wonderful to
work together with them.

I will thank all my family members and best friends in China. Even they are not
beside me, they give me courage and strength to work hard on this thesis.

Thanks to all the people!

 - ii - ii

Adding bandwidth specifications to a AAA server

Table of Contents

Abstract ……………………………………………………………………………….i

Acknowledgement ..ii

Table of Contents ... iii

List of Figures ………………..………………………………………………………v

List of Table …………………………………………………………………………vi

List of Acronyms and Abbreviations ...vii

Chapter 1: Introduction to AAA...1

1.1 AAA Protocol ...1
1.2 AAA Protocol application...2
1.3 AAA Protocols ..3

1.3.1 RADIUS..3
1.3.1.1 Basic operation of RADIUS...4
1.3.1.2 RADIUS message exchange flow ..5

1.3.2 Diameter..5
1.3.3 TACACS...6
1.3.4 TACACS+...7

1.4 Summary ...7

Chapter 2: Introduction to RADIUS ..8

2.1 Background ...8
2.2 RADIUS details ..8

2.2.1 RADIUS packet structure..9
2.2.1.1 Code ...9
2.2.1.2 Identifier...10
2.2.1.3 Length ..11
2.2.1.4 Authenticator..11
2.2.1.5 Attributes..11

2.2.2 IEEE 802.1x authenticators...13
2.3 Widely used RADIUS servers...13

2.3.1 Open source...14
2.3.1.1 FreeRADIUS..14
2.3.1.2 GNU Radius ...14
2.3.1.3 OpenRADIUS ..14
2.3.1.4 Cistron RADIUS ..15
2.3.1.5 BSDRadius...15
2.3.1.6 TekRADIUS...16

2.3.2 Commercial products (appliances)..16
2.3.2.1 Infoblox RADIUSone ..17

 - iii - iii

Adding bandwidth specifications to a AAA server

2.3.2.2 Identity Engines Ignition..17
2.3.2.3 Palette Mobilette Access Management Gateway17

2.3.3 Commercial (software) products ...17
2.4 Vulnerability of RADIUS ...18
2.5 Comparing RADIUS with Diameter ...18

Chapter 3: Improving AAA utilizing FreeRADIUS ...21

3.1 Why select FreeRADIUS? ..21
3.2 Theoretic improvements..21

3.2.1 Analysis of the existing FreeRADIUS ..21
3.2.1.1 Major features of FreeRADIUS ...22
3.2.1.2 Current version 2.0.5 improvements and bug fixes..................................24

3.2.2 Proposed improvement to AAA..25
3.2.2.1 Non-binary solution of FreeRADIUS ..27
3.2.2.2 New message structure for non-binary solution.......................................30

3.3 Implementation of these improvements ..32
3.3.1 Modifying the database ...32

3.3.1.1 Define global attributes ..34
3.3.1.2 Define vendor specific attributes..35

3.3.2 New authentication success message ..36
3.3.3 Bandwidth negotiation function ..38

Chapter 4: Analysis of the proposed extensions to FreeRADIUS........................41

4.1 Experimental results..41
4.1.1 Experiment on non-binary RADIUS server without new attributes................41
4.1.2 Experiment on non-binary RADIUS server with new attributes.....................42

4.2 Comparing with other methods and improvements ..47

Chapter 5: Conclusions..48

Chapter 6: Future work...49

References ………………………………………………………………………….51

Appendix I. The FreeRADIUS sever set up process ...55

Appendix II. New codes for FreeRADIUS ..58

Appendix III. All test results in this thesis..62

Appendix IV. The working process log for Non-binary RADIUS when

authentication succeeds ..67

Appendix V. The working process log for Non-binary RADIUS when

authentication fails..79

Appendix VI. RADIUS Packet Type Code ...91

Appendix VII. RADIUS Attribute type..93

 - iv - iv

Adding bandwidth specifications to a AAA server

List of Figures

Figure 1.1 An example of AAA in the case of dial-up network access.....................3

Figure 1.2 Basic message exchange process of RADIUS ..5

Figure 1.3 TACACS+ overview...7

Figure 2.1 RADIUS packet structure ...9

Figure 2.2 IEEE 802.1x protocol stack...13

Figure 3.1 IEEE 802.1x use case of RADIUS and EAP ..26

Figure 3.2 802.1x authentication process ...27

Figure 3.3 Comparison the binary and non-binary AAA solutions.......................28

Figure 3.4 Database in authentication server ..29

Figure 3.5 Bandwidth discussing process ..30

Figure 3.6 EAP message format..31

Figure 3.7 The new value stored format ..33

Figure 3.8 FreeRADIUS MySQL database..34

Figure 3.9 The new SQL database ..35

Figure 3.10 Negotiation process ..39

 - v - v

Adding bandwidth specifications to a AAA server

List of Table

Table 2-1: Values for most used RADIUS Code field..10

Table 2-2: Commonly used RADIUS attributes ..12

Table 2-3: BSDRadius features ...16

Table 2-4: RADIUS protocol vulnerabilities..18

Table 3-1: The criteria for the FreeRADIUS server to select a configuration23

Table 3-2: Version 2.0.5 improvements and bug fixes...25

Table 3-3: Comparison of the two alternatives for modifying the FreeRADIUS

database ..33

Table 4-1 Authentication success results (without any new attributes)................42

Table 4-2 Authentication success results (with new attributes) by “radtest”

command...43

Table 4-3 Authentication success results (with new attributes) by “eaptest”

command...44

Table 4-4 Authentication results when password is incorrect by “radtest”

command...45

Table 4-5 Authentication results when password is incorrect by “eaptest”

command...46

 - vi - vi

Adding bandwidth specifications to a AAA server

List of Acronyms and Abbreviations

AAA Authentication, Authorization, and Accounting

AVPs Attribute-Value Pairs

CHAP Challenge-Handshake Authentication Protocol

CMS Cryptographic Message Syntax

DSL/xDSL Digital subscriber line

EAP Extensible Authentication Protocol

IAS Internet Authentication Service

IETF Internet Engineering Task Force

IPsec Internet Protocol Security

ISP Internet Service Provider

LDAP Lightweight Directory Access Protocol

LEAP Localized Encryption and Authentication Protocol

MD5 Message Digest 5

MIP Mobile IP

MN Mobile Node

NAS Network Access Server

OS Operating System

PAP Password Authentication Protocol

 - vii - vii

Adding bandwidth specifications to a AAA server

PEAP Protected Extensible Authentication Protocol

PPP Point-to-Point Protocol

RADIUS Remote Authentication Dial In User Service

SQL Structured Query Language

TACACS Terminal Access Controller Access-Control System

TACACS+ Terminal Access Controller Access-Control System Plus

TLS Transport Layer Security

UDP User Datagram Protocol

VOIP Voice over IP

VPN Virtual private network

WLAN Wireless Local Area Network

 - viii - viii

Adding bandwidth specifications to a AAA server

Chapter 1: Introduction to AAA

Authentication, authorization, and accounting (AAA) [1] are part of a network’s
security. They provide the framework for access control as enforced by a router or
access server. [2] While one might think that all network resources can be managed
using an authentication, authorization, and accounting system; this is not strictly true.
There are additional network management functions and functions concerning,
operations, maintenance, and provisioning - which we will ignore in this thesis. For
commercial systems, authentication is considered a crucial issue – as the operator
only wants to provide resources to legitimate subscribers. In this model, only when a
subscriber has been identified (based upon authentication) can the system determine
what services (if any) this subscriber is to be provided with and who will pay for the
usage of this service. The system must also prevent attacks by unauthorized users,
who may attempt to utilize a service for which they are not authorized. [3]

This thesis began with an observation by Gerald Q. Maguire Jr. that the traditional
networking approach of doing authentication and authorization before providing any
server (for example in the case of IEEE 802.1X port based access control - discussed
in section 2.2.2): (1) comes at the price of high delay before the user can receive
service and (2) many business based transactions are not based upon authentication
and authorization before a service is provided as a large percentage of users will in
fact pay for the services they use later - while only a small fraction will cheat. The
first of these observations can be directly correlated with the problems in packet loss,
loss of connectivity, etc. which moving nodes have today in many WLAN mobility
settings. While the second observation is based upon the risk of management
approach which credit card companies, restaurants, etc. take to ensure that the rate of
fraud is low -- but do not employ means which have greater cost than the potential
loss due to a user not paying! This thesis is one of three thesis projects taking place to
examine what would happen if users were enabled to have some service before they
were authenticated and authorized. Details of the related theses can be found in Guo
Jia’s thesis [4] and Zhang Hengchong’s thesis [5].

This thesis will focus on the authentication and authorization server, explicitly the
case of a RADIUS server, and its interaction with an alternative to an IEEE 802.1x
authenticator being developed by Guo Jia.

1.1 AAA Protocol

As AAA concerns three elements, we will introduce these three parts along with the
protocols used [1] [2] [3]:

Authentication refers to the process of establishing the digital identity of an entity to

 - 1 - 1

Adding bandwidth specifications to a AAA server

another entity (such as a client computer to a server computer). In a network,
authentication is configured by defining a named list (or unnamed default list) of
authentication methods, then applying that list of methods to various interfaces. To
validate the subscriber’s identity, the system considers the claimed identity and its
corresponding credentials. Passwords, digital certificates, one-time tokens, and even
physical/biological characteristics may be utilized as credentials.

Authorization refers to the granting of specific types of privileges (including "no
privilege") to an entity, based on their authentication, what privileges they are
requesting, and the current system state. Authorization may include special
restrictions, such as time restrictions, physical location restrictions, or restrictions
against multiple logins by the same user. Granting access to the service defines the set
of services a subscriber may utilize; i.e. their actual privileges and restrictions. Once
the subscriber has been authorized to use the service, they can now proceed to
actually use the service – often without any further checks - unless there is a metered
limited to their usage. Note that here we have referred to a subscriber as the entity
who has been authenticated and who is allowed to access a service. This definition of
a subscriber should be considered broadly, in order to encompass post-pay subscribers,
pre-paid subscribers, and even subscribers - who are allowed to access these services
because someone else is paying for these services.

Accounting refers to the tracking the consumption of resources by subscribers. This
function collects information such as subscriber identities, start and stops times, and
executed commands. All of this information may be used for management, planning,
billing, or other purposes. Real-time accounting refers to accounting information that
is delivered concurrently with the consumption of the resources. Batch accounting
refers to accounting information that is saved until it is processed at a later time.
Generally the index for all accounting records is the subscriber’s identity (or an
indirect representation of it – such as an account number).

These three functions enable the network to record who is using the network
resources and to determine whom should be allowed to use these resources.
Additionally, these three elements help the operator (actually, the service provider) to
ensure that the subscriber is provided with the services to which they have subscribed;
while helping to avoid providing service to those who have not subscribed for the
service.

1.2 AAA Protocol application

In a traditional telecommunication system, users can only use network resource after
establishing that they should be allowed to use this resource. Generally, the
authentication and authorization processes involve three entities: Client, Authenticator,
and AAA Server. In mobile communication systems, the client is often called a
Mobile Node (MN). [3]

 - 2 - 2

Adding bandwidth specifications to a AAA server

Consider the case of dial up remote access. In this case, as shown in Figure 1.1, an
authenticator is located at a Network Access Server (NAS). Because in this figure we
consider the case of dialup access, the authenticator generally uses the Point-to-Point
Protocol (PPP) [6] to communicate with the client. The AAA protocol used between
the Authenticator and the AAA Server is one of several AAA protocols (which we
will examine in the next section).

Figure 1.1 An example of AAA in the case of dial-up network access

In the case of dialup access, when clients try to connect to the network, they need to
be authenticated. Once they have been authenticated and authorized, then the switch
will be closed and they will have access to the network. The Authentication Server
controls this switch. After the session ends or at some point in time (when the
authorized usage ends), then the switch will be opened and access to the network will
be denied. Note that while we refer to the control of the access to the service as being
a switch, we will see that in traditional authorization systems it is a binary control (i.e.,
either access to the resource is permitted or it is not) and in the proposed new solution
we will see that rather than a binary switch, we can use a traffic shaper or other device
to provide limited access to a resource - where these limitations can be much more
varied than simply on or off.

1.3 AAA Protocols

There are four main AAA protocols currently being used: RADIUS, Diameter,
TACACS, and TACACS+. Sometimes these protocols are used in combination with
Point-to-Point Protocol (PPP), Extensible Authentication Protocol (EAP), Protected
Extensible Authentication Protocol (PEAP), and Lightweight Directory Access
Protocol (LDAP). The following subsections will introduce each of these protocols.

1.3.1 RADIUS

Remote Authentication Dial In User Service (RADIUS) is commonly used by ISPs

 - 3 - 3

Adding bandwidth specifications to a AAA server

(Internet Service Providers) and corporations for access control. It is primarily used to
manage access to the internet or other networks. These networks can employ a variety
of networking technologies, including analog modems, DSL, wireless local area
networks (WLANs), and VPNs. [7]

RADIUS is based on the UDP (User Datagram Protocol). As shown earlier in Figure
1.1, in the case of a dialup services, the NAS server acted as a RADIUS client when it
contacted the authentication server. This was the original use of RADIUS and the
origin of its name. However, today any computer which runs RADIUS Client
software can be a RADIUS client. The authentication mechanism of RADIUS is quite
flexible and offers a variety of ways to authenticate the user (in the case of some dial
up access this is referred to as logging in), such as: PAP, CHAP, or UNIX. [8]

RADIUS carries parameters using a vector of Attribute-Length-Value (often referred
to as S server will check the validity of the user name and password. It can also
referred as Attribute-Value Pairs (AVPs)) entries. RADIUS also allows manufacturers
to extend it by adding their own attributes. [8]

1.3.1.1 Basic operation of RADIUS

The basic operation of RADIUS is as follows:

a) User connects to the NAS; the NAS sends an Access-Require packet to the
RADIUS service. This packet contains user information, such as: user name
and password. The password will be hashed using MD5; therefore, both sides
must know this password which acts as a shared secret key. Note that the
plain text of this key will not be transmitted over the network. (Note that
techniques such as described in RFC 2085 can be employed to perform a
keyed MD5 hash with replay prevention. [9] However, in the simplest case if
the service provider assumes that the client is connected to the NAS via a
physically secure connection - therefore MD5 alone might be used.)

b) The RADIUS server will check the validity of the user name and password. It
can also return a challenge that can be used to authenticate either the user or
the NAS.

c) If the authentication is successful, then the RADIUS server will send an
Access-Accept packet to the NAS - thus allowing the user access to the
network; otherwise, it will return an Access-Reject packet and the NAS
will refuse the user access.

d) Once the user is allowed access, the NAS will send a charging requirement
(Account-Require) to the RADIUS service. The RADIUS server
answers with an Account-Accept message, the subscriber’s account will
now begin to accrue a fee for the service. Periodically, Interim Accounting

 - 4 - 4

Adding bandwidth specifications to a AAA server

records may be sent by the NAS to the RADIUS server, to update it on the
status of an active session.

e) Finally, when the user's network access ends, the NAS issues a final
Accounting-Stop message to the RADIUS server, providing information
on the final usage in terms of time, packets transferred, data transferred, and
the reason for disconnect, and other information related to the user's network
access. Therefore, the server will not continue to charge the subscriber any
longer.

There are also some other functions in RADIUS, such as: proxy operation service,
roaming service, repeating mechanism, etc. [8] However, for the purpose of this thesis
understanding the above basic operations is sufficient.

1.3.1.2 RADIUS message exchange flow

As described about, the authenticator (access point/RADIUS client) authenticates
users via the RADIUS server. The details of this as shown below: [10]

Figure 1.2 Basic message exchange process of RADIUS

1.3.2 Diameter

Diameter is a successor to RADIUS. It is not directly backwards compatible, but

 - 5 - 5

Adding bandwidth specifications to a AAA server

rather provides an upgrade path for RADIUS. [11] The Diameter protocol contains a
base protocol, a NAS protocol, an EAP protocol, a MIP protocol, a CMS protocol,
etc. Each of these will be described below: [3]

 The base protocol of Diameter provides the elementary service for Mobile IP,
NAS, and so on. The base protocol allows the transfer of commands and AVPs,
and it can transit AAA information between clients, proxy, and server.

 The NAS protocol (of Diameter) is simply the Network Access Service protocol.

 Diameter EAP, which stands for Extensible Authentication Protocol, provides a
standard mechanism to support all kinds of authentication (hence the word
“extensible”).

 Diameter MIP (Mobile IP) allows user roaming to exterior regions; the user can
use the service provided by an exterior region server or agent after getting
authorization.

 Diameter CMS (Cryptographic Message Syntax) protocol provides Peer-to-Peer
encryption to protect the protocol data.

Diameter Applications can extend the base protocol, by adding new commands and/or
attributes. An application is not a program, but rather a protocol based on Diameter.
Diameter security is provided by IPsec [12] or TLS [13], both well-regarded security
and privacy protocols. [11]

1.3.3 TACACS

Terminal Access Controller Access-Control System (TACACS) is a remote
authentication protocol that is used to communicate with an authentication server. It is
commonly used in networks of UNIX systems. TACACS allows a remote access
server to communicate with an authentication server in order to determine if the user
should have access to the network. [14]

Each TACACS client has a user name and password. The client can send a query to a
TACACS authentication server (sometimes called a TACACS daemon or simply
TACACSD). This server is normally a program running on a host. The program
determines whether to accept or deny the request and sends a response back. The TIP
(a node accepting dial-up connection would then allow access or not, based upon the
response. In this approach the decision making process is "opened up" and the
algorithms and data used to make the decision are completely under the control of
whoever is running the TACACS daemon. [14]

 - 6 - 6

Adding bandwidth specifications to a AAA server

1.3.4 TACACS+

TACACS+ (Terminal Access Controller Access-Control System Plus) is a protocol
which provides access control for routers, network access servers, and other
networked computing devices via one or more centralized servers. [15] TACACS+ is
based on TACACS, but, in spite of its name, it is an entirely new protocol which is
incompatible with all previous versions of TACACS. TACACS+ and RADIUS have
generally replaced the earlier access control protocols in more recently built or
updated networks, although TACACS and XTACACS are still running on many older
systems. [15] TACACS+ utilizes TCP port 59. The operation of TACACS+ is shown
Figure 1.3. [16] The sequence of the messages which are sent is shown in the figure.
The primary importance of this numbering is simply to shown that just as in the case
of RADIUS and Diameter, the NAS queries the server to determine if the user should
be allowed access to a resource; i.e., the NAS does not make the decision, but does
implement the result of the decision made by the server.

Figure 1.3 TACACS+ overview

If the client wants use a resource, it needs to authenticate and get authorization from
the TACACS+ server. TACACS+ offers multiprotocol support (supporting both IP
and AppleTalk). Normally TACACS+ fully encrypts the body of the packet to
provide secure communications. TACACS+ is a Cisco proprietary enhancement to the
original TACACS protocol. [15]

1.4 Summary

In this research project, RADIUS was chosen as it is one of most commonly used
AAA protocols and multiple open source implementations exist (one of which will be
used as the basis for this thesis project). In the next chapter we will take a deeper look
at RADIUS.

 - 7 - 7

Adding bandwidth specifications to a AAA server

Chapter 2: Introduction to RADIUS

2.1 Background

The RADIUS protocol was originally developed by the Livingston Company for
authenticating and charging of dial-up users. RADIUS was adopted in 1991 by Merit
Network, Inc. (a non-profit company belonging to the University of Michigan) for the
MichNET university network. This leads to wide adoption by many others. [8]

In the autumn of 1992, IETF founded a work group named NASREQ that worked
with a draft proposal for RADIUS. RADIUS became an internet access protocol soon
after that. Almost all internet access server providers have implemented this protocol.
[8] Since then RFC2039 [17], RFC2138 [18], RFC2865 [19], and RFC2866 [20] have
extended the definition of RADIUS. RADIUS remains in wide use, despite the
specification and development of DAIMETER.

2.2 RADIUS details

A RADIUS service involves three components: Protocol, Server, and Client. In the
client/server model of RADIUS, the client, such as a router or a switch, passes user
information to the designated RADIUS server and acts on the response of the server
(such as connecting/disconnecting users). The RADIUS server receives authentication
requests from a RADIUS client (authenticator), authenticates users, and returns the
required information to the client. [10]

In general, a RADIUS server maintains three databases: [10]

Subscribers This database stores user information such as the username,
password, and IP address.

Clients This database stores information about RADIUS clients such as
the shared key for each client.

Dictionary This database stores the information necessary for interpreting
RADIUS protocol attributes and their values.

RADIUS has one basic message exchange and a single packet structure. The basic
message exchange process has been introduced in section 1.3.1. Here we will
introduce the packet structure, and IEEE 802.1x authenticator is also introduced in
following subsections.

 - 8 - 8

Adding bandwidth specifications to a AAA server

2.2.1 RADIUS packet structure

RADIUS resides at the application layer in the TCP/IP protocol suite. In conjunction
with the RADIUS protocol it defines how to exchange information between a
RADIUS client and a RADIUS server. [10]

RADIUS uses UDP to transport its messages. It uses UDP port 1812 for RADIUS
authentication messages and UDP port 1813 for RADIUS accounting messages.1
Exactly one RADIUS packet is encapsulated in a UDP payload. [21]

Figure 2.1 RADIUS packet structure

2.2.1.1 Code

The Code field is 1 byte in length and indicates the type of the RADIUS packet. A
packet with an invalid Code field is silently discarded. Table 2-1 introduces a number
of different code values which are most commonly used. [10][21]

1 Some older network access servers use UDP port 1645 for RADIUS authentication messages and UDP port 1646
for RADIUS accounting messages. Microsoft’s Internet Authentication Service (IAS) (their implementation of
RADIUS) supports the receiving of RADIUS messages on both sets of UDP ports.

 - 9 - 9

Adding bandwidth specifications to a AAA server

Table 2-1: Values for most used RADIUS Code field

Code Packet type Sender Description

1 Access-

Request
Client

Sent from the client to the server. A packet of this
type carries user information for the server to
authenticate the user. It must contain the
User-Name attribute.

2 Access-

Accept
Server Sent from the server to the client. A message with

this code is sent when authentication succeeds.

3 Access-

Reject
Server

Sent from the server to the client. If any attribute
value carried in the Access-Request is
unacceptable, the request will be rejected.

4 Accounting-
Request

Client

Sent from the client to the server. A packet of this
type carries user information for the server to
start accounting. It contains the Acct-Status-Type
attribute, which indicates whether the server is
requested to start the accounting or to end the
accounting.

5 Accounting-
Response

Server

From the server to the client. The packet of this
type is to notify that it has received the
Accounting-Request and has correctly recorded
the accounting information.

11 Access-

Challenge
Server

If the RADIUS server desires to send the user a
challenge requiring a response, then the RADIUS
server MUST respond to the Access-Request by
transmitting a packet with this message code.

2.2.1.2 Identifier

The identifier field is 1 byte in length and it is used to match a request with its
corresponding response. The value in the reply is equal to the value in request. [22] It
varies with the attribute field and the received valid response packets, but remains
unchanged during retransmission. [10]

 - 10 - 10

Adding bandwidth specifications to a AAA server

2.2.1.3 Length

The Length field is two bytes in length. This field indicates the length of the entire
packet, including the Code, Identifier, Length, Authenticator, and Attribute fields.
Bytes in the UDP payload beyond this length are considered padding and are
neglected at receipt. The length field can vary from 20 to 4,096, indicating the number
of bytes in the entire packet bytes. If the length of a received packet is less than that
indicated by the Length field, the packet is dropped. [10][21]

2.2.1.4 Authenticator

The Authenticator field is sixteen bytes in length and contains the information that the
RADIUS client and server use to authenticate each other. There are two kinds of
authenticators: Request and Response. [10]

The authenticator value in a request is randomly generated. While the value in the
reply is MD5 digest of a reply message appended with the secret, using a vector value
from the request. [22]

2.2.1.5 Attributes

The Attributes section of the RADIUS packet contains one or more RADIUS
attributes, which carry the specific authentication, authorization, information, and
configuration details for RADIUS. For attributes that have multiple instances, the
order of the attributes must be preserved. Otherwise, attribute types do not have to
have their order preserved.

This field contains triplets of Type, Length, and Value (as shown in Figure 2.1). [10]

 Type: This is only one byte in length and indicates the type of the attribute.
Table 2-2 lists the most commonly used attributes.

 Length: This field is one byte in length and indicates the length of the attribute
in bytes, including the Type, Length, and Value fields.

 Value: Value of the attribute, up to 253 bytes. Its format and content depend on
the Type and Length fields.

 - 11 - 11

Adding bandwidth specifications to a AAA server

Table 2-2: Commonly used RADIUS attributes

Type Attribute type Type Attribute type

1 User-Name 2 User-Password

3 CHAP-Password 4 NAS-IP-Address

5 NAS-Port 6 Service-Type

7 Framed-Protocol 8 Framed-IP-Address

9 Framed-IP-Netmask 10 Framed-Routing

11 Filter-ID 12 Framed-MTU

13 Framed-Compression 14 Login-IP-Host

15 Login-Service 16 Login-TCP-Port

17 (unassigned) 18 Reply-Message

19 Callback-Number 20 Callback-ID

21 (unassigned) 22 Framed-Route

23 Framed-IPX-Network 24 State

25 Class 26 Vendor-Specific

27 Session-Timeout 28 Idle-Timeout

29 Termination-Action 30 Called-Station-Id

31 Calling-Station-Id 32 NAS-Identifier

33 Proxy-State 34 Login-LAT-Service

35 Login-LAT-Node 36 Login-LAT-Group

37
Framed-Apple

Talk-Link
38

Framed-Apple

Talk-Network

39
Framed-Apple

Talk-Zone
40-59 (reserved for accounting)

60 CHAP-Challenge 61 NAS-Port-Type

62 Port-Limit 63 Login-LAT-Port

 - 12 - 12

Adding bandwidth specifications to a AAA server

2.2.2 IEEE 802.1x authenticators

What is IEEE 802.1x? As described in the IEEE 802.1x-2004 standard:

“Port-based Network Access Control makes use of the physical access characteristics
of IEEE 802 LAN infrastructures in order to provide a means of authenticating and
authorizing devices attached to a LAN port that has point-to-point connection
characteristics, and of preventing access to that port in cases in which the
authentication and authorization process fails. A port in this context is a single point
of attachment to the LAN infrastructure.”[23]

IEEE 802.1X is a part of the IEEE 802.1 group of networking protocols. It provides a
port-based Network Access Control and is used to provide compatible authentication
and authorization mechanisms for devices interconnected by IEEE 802 LANs. [24]
Although RADIUS support is optional within IEEE 802.1X, it is expected that many
IEEE 802.1X Authenticators will function as RADIUS clients. [25] The IEEE 802.1x
uses Extensible Authentication Protocol (EAP) to support many authentication
methods - usually EAP-TLS. In Figure 2.2, the stack of 802.1x protocol is listed. [26]
(Further details RADIUS usage by IEEE 802.1x Authenticators can be found in
reference RFC 3580. [25])

Figure 2.2 IEEE 802.1x protocol stack

2.3 Widely used RADIUS servers

As RADIUS is very commonly used today, there are many different implementations
of RADIUS servers. Some are open source, which offers access to the source code;
[18] while the others are proprietary (and generally designed for commercial use).

 - 13 - 13

http://en.wikipedia.org/wiki/Source

Adding bandwidth specifications to a AAA server

2.3.1 Open source

Open source software projects are built and maintained by a network of volunteer
programmers. [27] One benefit of open source is that anyone can easily get the
original code and improve it. While there is some criticism that this means that
everyone has a chance to get the original code and attack it; history has shown that
open source code also enables problems to be fixed quickly and that security holes are
more likely to be found (see for example the number of bugs reported and addressed
in an open source based router as compared to non-open source routers in Sara
Dannerud's thesis [28]).

There are a number of open source RAIDUS servers used today, with most of them
being viewed as secure enough to satisfy almost all customers’ requirements.

2.3.1.1 FreeRADIUS

FreeRADIUS was developed by the FreeRADIUS Development Team. It is one of the
most modular and feature-rich RADIUS servers available today. The newest Version
2.0.5 was released in June 7th 2008. [29]

Additionally, FreeRADIUS scales from embedded systems with small amounts of
memory, to systems with multiple millions of users. The FreeRADIUS server comes
with a PHP based web user administration tool, called “dialupadmin”. This code base
is currently used as the foundation for multiple commercial RADIUS products. [29]

FreeRADIUS supplies the AAA needs of many Fortune-500 companies and Tier 1
ISPs [30]. In addition to being widely used in commercial settings, it is also widely
used by the academic community.

2.3.1.2 GNU Radius

GNU Radius is a centralized user authentication and accounting system. It supports
back-end SQL databases for accounting. [31] However, GNU Radius had some
vulnerabilities which needed to be addressed. An example of one such vulnerability
has been insufficient filtering of user entries, which might permit a SQL injection
attack (i.e., an entry which contains SQL attack code in it) -- this specific
vulnerability was fixed in version 1.4.

2.3.1.3 OpenRADIUS

OpenRADIUS is a RADIUS server that runs on many variations of UNIX, and has a

 - 14 - 14

Adding bandwidth specifications to a AAA server

number of interesting features. Some of these features are its versatile interface to the
outside world, flexibility for controlling processes, and ability to define user profiles.
It also has a powerful dictionary which can support all types of vendor-specific
attributes. [32]

2.3.1.4 Cistron RADIUS

Cistron RADIUS is an authentication and accounting server for terminal servers. It
was the parent of the FreeRADIUS project. [33] The current version of it 1.6.8, which
is last updated in February 8th 2006. [34]

2.3.1.5 BSDRadius

BSDRadius is an open source RADIUS server targeted for use in Voice over IP (VoIP)
applications. Typically a VoIP RADIUS server should be able to process a large
number of AAA requests in a short time period, handle large databases, and respond
in a timely fashion to prevent time-outs and request retransmissions. [35] The features
of BSDRadius are shown in Table 2-3.

BSDRadius uses a powerful library, pyrad, for lower level operations, such as parsing
attribute dictionaries and building accounting and authorization packets. Due to its
extensive use of Python, BSDRadius is as portable as Python is. Therefore it should
run on any distribution of Linux or any flavor of BSD (FreeBSD, OpenBSD and
NetBSD). [35]

 - 15 - 15

Adding bandwidth specifications to a AAA server

Table 2-3: BSDRadius features

RADIUS - compliant AAA (Authentication, Authorization, Accounting) server

Various database engines: MySQL, PostgreSQL (support for Oracle is under development)

CHAP-password authentication for H.323

Digest authentication for SIP

Vendor specific dictionary files (Cisco, Quintum).

Very easy to use custom module interface

Storing RADIUS server client data into database.

Platform independent

Logging of received, failed and rejected requests to separate files for easier later processing

Comfortable framework for building RADIUS applications

Ready to use CLI RADIUS client

2.3.1.6 TekRADIUS

TekRADIUS is a free RADIUS server for Windows. TekRADIUS complies with
RFC 2865 [19] and RFC 2866 [20]. It currently supports only Microsoft’s SQL
Server. It runs as a Windows Service and comes with a Win32 management interface.
[36]

Windows users in the "Administrators" group can access all functions of the
TekRADIUS Manager GUI. However, Windows users in the built-in "Users" group
can only access a restricted set of functions in the TekRADIUS Manager GUI. [36]

2.3.2 Commercial products (appliances)

As the RADIUS servers are at the heart of the RADIUS authentication fabric, they
need to be trusted implicitly by all parties and stakeholders. Running RADIUS on an
appliance rather than a general-purpose computer is thought to provide a much better
starting point to achieve this trust. [37] Therefore, there are several RADIUS
appliances which act as RADIUS servers. These are primarily designed for
commercial use.

 - 16 - 16

http://www.tekradius.com/sc13.html

Adding bandwidth specifications to a AAA server

2.3.2.1 Infoblox RADIUSone

Infoblox Inc. sells a RADIUS appliance under the product name: RADIUSone.
Running the RADIUS service on its own platform avoids unexpected and unwanted
interactions with other services. Hence this device only runs the software necessary
for this specific service and no other software. RADIUSone offer a built-in high
availability capability configuration, thus two RADIUSone appliances can be wired
together on a private connection; if the primary unit fails, the secondary, which has a
mirrored configuration, will take over. [37][38]

2.3.2.2 Identity Engines Ignition

The Identity Engines ™ Ignition ™ appliance enables enterprises to implement
centralized security policies despite the increasing complexity brought on by
replicating identity stores, complex network design, and constantly changing
organizational structures. [39] It supports RADIUS and allows the user of multiple
user identity stores, specifically Microsoft Active Directory 2000 and 2003, Sun Java
System Directory Server 5, Novell eDirectory 8.7, and Embedded User Store. [40]

2.3.2.3 Palette Mobilette Access Management Gateway

Palette’s Mobilette ™ Solution is based upon intelligent rules. It is used to implement
a RADIUS based client-server system. Palette’s Access Management Gateway is a
part of the MobiletteTM solution. [41]

There are additional commercial appliances, which will not be introduced here, but
many are available in the market. The above was not meant to be a recommendation
of any specific vendor(s), simply to illustrate the variety of commercial appliances
which exist.

2.3.3 Commercial (software) products

There are many commercial AAA software packages, such as: Microsoft’s Internet
Authentication Service which is included with server editions of Microsoft’s
Windows; Alepo’s Radius Server; Steel-Belted Radius; IEA Software RadiusNT/X;
Radiator radius, etc. [42] However, as these are commercial products which are not
open source, we will not consider them further - as part of this thesis project requires
that we extend the information which is communicated between the RADIUS client
and the server.

 - 17 - 17

http://en.wikipedia.org/wiki/Microsoft_Windows
http://en.wikipedia.org/wiki/Microsoft_Windows

Adding bandwidth specifications to a AAA server

2.4 Vulnerability of RADIUS

Although RADIUS is now widely used and well developed, it still has some
vulnerabilities. These vulnerabilities are either caused by the protocol or caused by a
poor client implementation and exacerbated by the protocol. Table 2-4 shows the
main security problems. [43]

Table 2-4: RADIUS protocol vulnerabilities

The User-Password protection technique is flawed in many ways. It should
not use a stream cipher, and it should not use MD5 as a cipher primitive.

The Access-Request packet is not authenticated at all.

Many client implementations do not create Request Authenticators that are
sufficiently random.

The Response Authenticator is a good idea, but it is poorly implemented.

Many administrators choose RADIUS shared secrets with insufficient
information entropy. Many client and host implementations artificially limit
the shared secret key space.

Some of these vulnerabilities have been addressed with the continuing developing of
the RADIUS protocol. However, there still remain weak points in the RADIUS
protocol. Additionally, various RADIUS software implementations and appliances
have their own special vulnerabilities. For example, authentication can be bypassed
when radius-authentication is used in OpenBSD, this will allow unauthorized access.

2.5 Comparing RADIUS with Diameter

Diameter was defined to be an upgrade protocol of RADIUS. It has solved some
known RADIUS problems and made some improvements. [44] Here a comparison
was made between RADIUS and Diameter; we can see clearly which part that
Diameter has improved.

 Strict limitation of attribute data

The reserved length for the data field of RADIUS in its attribute header is only
one byte, which allows a maximum of 255 bytes.

Diameter reserves two bytes for this (thus allowing a maximum length of 16535
bytes).

 - 18 - 18

Adding bandwidth specifications to a AAA server

 Inefficient retransmission algorithm

There is only one byte as 6 identifier field to identify retransmissions in RADIUS.
This means the number of requests that can be pending is limited to a maximum
of 255 requests.

Diameter has reserved four bytes which leads to maximum of 232 pending requests.
This avoids the limitation in RADIUS.

 Inability to control flow to servers

RADIUS operates over UDP. There is no standard scheme for UDP to regulate the
flow.

Diameter has a scheme which regulates the flow of UDP packets (windowing
scheme).

 End-to-end message acknowledgement

The Radius client expects a response after a request, in order to know if the
request was successful or not, but the client does not know whether the request
has been received by the server. Thus the client does not know if the request was
received but it is taking the server some time to process the request or if the
request was lost.

The Diameter client expects a failed response or an acknowledgement of the
received request by the server.

 Silent discarding of packets

The RADIUS server will silently discard packets which do not contain the
expected information, or which have errors. However, this might cause the client
to think that the server is down as no response has been received. The client would
then try to send request to a secondary server.

The Diameter server will send an error message back to the client to indicate the
problem, rather than simply dropping the request.

 No fail-over server support

There is no way to indicate that a given RADIUS server is going down.

The Diameter supports Keep-alive messages to indicate that a server is going
down for a time period.

 Authentication replay attacks

Any RADIUS client can generate a challenge response sequence when using PPP
CHAP. These sequences can be intercepted by any RADIUS client or proxy
server in the chain. This challenge response sequence can then be replayed by
another RADIUS client at any time. (This problem was partly solved by the radius
extension using the EAP protocol.)

 - 19 - 19

Adding bandwidth specifications to a AAA server

In Diameter, those challenge/response attributes can be secured by using
end-to-end encryption and authentication.

 Hop-by-hop security

RADIUS only supports hop-by-hop security, which means that it is easy to
modify information at every hop and information can not be traced to its origin.

Diameter supports end-to-end security which guarantees that the information can
not be modified without being noticed.

 No support for user-specific commands

RADIUS only supports vendor specific attributes, i.e., vendor specific
commands are not supported.

The Diameter has support for vendor specific commands codes.

 Heavy processing costs

The RADIUS protocol does not impose any alignment requirements, which adds
an unnecessary burden on most processors.

The Diameter protocol has a 32 bit alignment requirement, enabling messages to
be handled more efficient by most processors.

This thesis will utilize FreeRADIUS to improve (extend) the RADIUS server. In the
third chapter, details of this extension will be introduced.

 - 20 - 20

Adding bandwidth specifications to a AAA server

Chapter 3: Improving AAA utilizing FreeRADIUS

3.1 Why select FreeRADIUS?

FreeRADIUS was selected in this research project for the following reasons:

 It is open source server; hence the source code can be utilized without financial
cost.

 It is the most widely deployed RADIUS server in the world. Multiple commercial
offerings used it as their base. Thus the potential impact of extending it is greater
than applying these extension to other versions of RADIUS

 The FreeRADIUS development team has continued to develop it, so it is very
widely used and seems to be stable in everyday.

 Many Fortune-500 companies use it for their AAA needs. Thus these same
companies could use the extended version, hence fostering the spread of the
advantages of non-binary access control.

By basing our improvements to AAA on this AAA protocol a lot of people can
potentially benefit from these improvements. This is particularly important for the
overall project, as non-binary authentication will only be adopted if it is both feasible
and easy.

3.2 Theoretic improvements

This paper will extend the for FreeRADIUS server support two new features: (1) to
support non-binary authentication and (2) to allow on-demand negotiation. Before we
talk about this new solution, we first begin with a theoretical assessment of
FreeRADIUS.

3.2.1 Analysis of the existing FreeRADIUS

As the most commonly used free software RADIUS server, the FreeRADIUS has a
number of features that are the same as the other implementations. Additionally, it has
some other features which are not found in any RADIUS implementation. [45] In the
next paragraph, we list some of the features of FreeRADIUS before further analysis.

 - 21 - 21

Adding bandwidth specifications to a AAA server

3.2.1.1 Major features of FreeRADIUS

3.2.1.1.1 Cross-platform issues and source code

The FreeRADIUS server can run on a number of platforms, including linux (all
versions), FreeBSD, NetBSD, Solaris, and MAC OSX. Additional platforms such as:
HP/UX, AIX, MINGW32, CygWin (Unix- style environment under Window NT.),
and SFU (or Interix, for Windows XP) are supported by the current server, but
according to the FreeRADIUS website are not fully tested. [45]

FreeRADIUS has been designed (and verified, by others) to work on a large number
of processor and operation system architectures. This causes the installation of the
server to become rather complex as it is necessary to specify which configuration is
being targeted. However, a lot of the platforms have their own pre-built FreeRADIUS
package, thus installation is very easy (generally no more difficult that installing any
other pre-build software for these same platforms). While this enables the software to
be easily installed, there are still many configuration parameters (“attributes”) which
need to be set before the software can be used. These are addressed next. [45]

3.2.1.1.2 Additional Server configuration attributes

The FreeRADIUS server has a number of server configuration attributes which
control almost all aspects of processing an incoming RADIUS request. Both the
authentication and accounting RADIUS requests can use these server configuration
attributes. By setting the appropriate values for these attributes, the system
administrator can append attributes to the request, re-write any attribute of the request,
proxy or replicate the request to another RADIUS server (based on criteria, not just
the destination realm, i.e., ‘@realm’), choose an authentication method to use for a
specific supplicant, etc. However, most server configuration is limited to
authentication aspects only. [45] Note that this emphasis is important as our extension
of the server concerns extending authorization, rather than authentication.

3.2.1.1.3 Selecting a particular configuration

The FreeRADIUS server can select its configuration based on any criteria listed in
Table 3-1. [45]

 - 22 - 22

Adding bandwidth specifications to a AAA server

Table 3-1: The criteria for the FreeRADIUS server to select a configuration

Attributes which have a given value

Attributes which do not have a given value

Attributes which are in the request (independent of their value)

Attributes which are not in the request

String attributes which match a regular expression

Source IP address of the request. This can be different than the NAS-IP-Address

attribute.

Group of NAS boxes. (These may be grouped based on Source IP address,

NAS-IP-Address, or any other configuration)

Integer attribute which match a range (e.g. <, >, <=, >=)

User-Name

A DEFAULT configuration

Multiple DEFAULT configurations

3.2.1.1.4 Authentication methods

The FreeRADIUS server supports a wide range of authentication types, such as:
clear-text password in local configuration file (PAP), encrypted password in local
configuration file, CHAP, MS-CHAP, MS-CHAPv2, authentication to a Windows
Domain Controller (via ntlm_auth and winbindd), EAP with embedded authentication
methods (like: EAP-MD5, Cisco LEAP, etc.), a Perl script, etc. [45]

3.2.1.1.5 Authorization methods

The FreeRADIUS server supports following authorization types as shown below:
Local files, Local DB/DBM database, LDAP, a locally executed program. (similar to
a CGI program), Perl script, Python program, MySQL DB, PostgreSQL DB, Coracle
SQL DB, any IODBC SQL DB, IBM’s DB2. [45]

3.2.1.1.6 Accounting methods

The accounting methods, such as: local ‘datail’ files, local ‘wtmp’ and ‘utmp’ files,
proxy to another RADIUS server, replicate to one or more RADIUS servers, and SQL

 - 23 - 23

Adding bandwidth specifications to a AAA server

(Oracle, MySQL, Postgre SQL, Sybase, IODBC, etc), are supported by the
FreeRADIUS server. [45]

3.2.1.1.7 Dialup Admin Web Administration Interface

The FreeRADIUS server has a web administration interface which was based upon
PHP4. The dialup_admin interface supports [45]:

 Users in an LDAP database

 Users and Groups in SQL database (MySQL or PostgreSQL)

 Create, test, delete, change personal information, check accounting and

change dialup settings for a user

 Accounting Report Generator

 Bad Users facility to keep a record of users creating problems

 Online finger facility

 Test RADIUS server

 Online Usage Statistics

3.2.1.1.8 Scripting Languages

The FreeRADIUS has plug-in modules supporting Perl and Python. Both of these
languages allow scripts to modify RADIUS requests and responses in a very efficient
and simple manner. [45]

3.2.1.2 Current version 2.0.5 improvements and bug fixes

The newest FreeRADIUS version 2.0.5 was released in June 7th this year. This new
version focuses on increasing the stability of the FreeRADIUS. Compared with the
former releases, version 2.0.5 has some improvements in feature and a number of bug
fixes-listed in Table 3-2. [46]

 - 24 - 24

Adding bandwidth specifications to a AAA server

Table 3-2: Version 2.0.5 improvements and bug fixes

Permit SQL authorize_reply_query to be empty.

Allow setting response packet type in Post-Proxy-Type Fail handler.

Added install-chown target to set correct permission and ownership make
RADMIN=radmin RGROUP=radius install-chown.

Support for LDAP-Group and other dynamic comparison attribute in unlang.

Added chroot support.

Allow clients of 0/0.

Feature
improvements

Moved many module configurations into raddb/modules/*.

Allow proxying to virtual servers for accounting packets, too.

Added num_fields function to PostgreSQL client. This lets clients be read
from a PostgreSQL database.

Updated proxy fallback mechanism to validate fallback servers, and to process
fallback requests in a child thread.

The realm module returns ok for LOCAL realms, not noop.

Bug fixes

Fixed some DHCP code handling. The examples should now work.

3.2.2 Proposed improvement to AAA

Traditionally an AAA protocol is used to make a binary authentication choice: allow
a user access to a resource or not. This means that the authentication server sends to
the supplicant a binary signal (effectively 1 or 0, on or off, allow or disallow). For
example, in the case of an IEEE 802.11i WLAN access point which implements
authentication, the access point acts as an authenticator and only allows the user to
send frames for AAA until the authentication and authorization is successful. While
the Diameter protocol has improved the RADIUS protocol in many aspects; Diameter
still only supports a binary decision regarding authorization. In this thesis, we will
explore the proposal for a non-binary authentication solution and implement it using
in FreeRADIUS. A similar extension could be made to Diameter if desired, this
remains as future work.

 - 25 - 25

Adding bandwidth specifications to a AAA server

As FreeRADIUS can work in different network environments, for the purpose of
having a concrete scenario for this thesis – we consider the use of this extended
RADIUS together with IEEE 802.1x (a port based authentication mechanism has
introduced in section 2.2.2). Like all use cases of AAA protocols, in the case of IEEE
802.1x, there are also three main entities: a supplicant (which is the client), an
authenticator (which may be co-located with the access point), and the authentication
server (which is the FreeRADIUS server).

The Extensible Authentication Protocol (EAP) is used in IEEE 802.1x to support
several different authentication methods, such as: EAP-TLS (Transport layer
Security), EAP-MD5 (Message Digest 5), and so on. EAP is used between the
supplicant and the authentication server. This is an important change from the case of
the NAS which we examined earlier, as only the NAS and the authentication server
communicated. This additional entity and this additional protocol complicate the
process as compared to the simpler NAS use case.

Figure 3.1 illustrates the IEEE 802.1x use case with binary authentication. Before the
authentication succeeds, only an EAP message is acceptable for forwarding via the
authenticator (access point); and until the authentication process is successful all the
other types of packets can not be sent or if they are sent, then all other types of
packets will be filtered out by the authenticator (see Figure 3.1). After the
authenticator filters the messages received, each EAP message is placed into a
RADIUS packet and sent to the FreeRADIUS server.

Figure 3.1 IEEE 802.1x use case of RADIUS and EAP

 - 26 - 26

Adding bandwidth specifications to a AAA server

3.2.2.1 Non-binary solution of FreeRADIUS

In the traditional AAA process, the supplicant needs to communicate with an access
point first to perform an IEEE 802.11 Associate operation. Once this has occurred the
supplicant begins the authentication process using EAP with the authenticator. Only
after the supplicant has received the EAP-success message, can it start sending frames
outside of the local sub network (cell); i.e., all frames other than EAP frames will be
dropped by the access point. The authentication process is shown in Figure 3.2:

Figure 3.2 802.1x authentication process

From Figure 3.2, after the authentication is successful, the FreeRADIUS server will
sends a message to the authenticator containing logically 1/0. By 1, it means the
authentication is successful; while 0, means that the authorization request failed and
the supplicant can not access the resource (in the case the network shown in Figure
3.1). In reality the message does not simply contain a one or zero, but is an
Access-Accept or Access-Reject message (respectively); but as noted before
this in a binary authorization result. This kind of binary authentication is the only
authentication response which can be returned by RADIUS currently. Our proposed
extension of the RADIUS protocol and our implementation in FreeRADIUS will
provide a response to the Authenticator that allows it to control of the supplicant’s
bandwidth. This is illustrated with the image of a variable valve in Figure 3.3 (b),
rather than the switch shown in Figure 3.2 (a).

In the proposed extension, rather than simply telling the access point to allow or deny
a supplicant, the extended RADIUS response will tell the access point how much
traffic a supplicant can send during a unit time. In contrast when the current binary
response is sent to the Authenticator, all the supplicants generally have the same
(maximum) bandwidth. However, the proposed non-binary solution gives the

 - 27 - 27

Adding bandwidth specifications to a AAA server

FreeRADIUS server the ability to assign the supplicant a given amount of bandwidth,
limit the supplicant to a certain maximum data rate, limit the supplicant to a number
of packets, … . The server can even tell the supplicant how much traffic it is allowed.
This later could be further extended to allow the supplicant to negotiate with the
extended server to have more resources2.

Figure 3.3 Comparison the binary and non-binary AAA solutions

Figure 3.3 shows a comparison of the binary and non-binary solutions. As can be
seen, the proposed solution replaces the switch inside the authenticator (which might
be an access point) with more complex traffic control – based upon the response from
the authentication server. This can be used by the authenticator to separately control
the bandwidth (or other traffic parameters) for each supplicant.

On the authenticator side, a new traffic shaper will be added. This traffic shaper will
implement traffic control as per the message from the authentication server. The
details of this traffic shaper and the authenticator are described by Guo Jia in his
thesis [4].

From the view of the authentication server, FreeRADIUS should be extended to send

2
 This idea of indicating to the supplicant how much of the resource is available to it seems to be applicable to not

only the case of WLAN access but also to the case of fixed access. The later might be applicable for use in
situations where the user's ISP sets a cap on usage, but currently has no direct means of communicating this limit
or the user's remaining quantity of use - before the cap is applied. Comcast has proposed sending the user e-mail
when they have exceed their cap of 250Gbytes/month; but if the user fails to observe this cap they risk having their
service cut off for a year! Thus it would be useful to the user if they could learn how much remains to be used for
this month - in order to avoid exceeding the cap; otherwise the user has to do their own accounting for their usage,
but since the accounting records are only sent to the AAA server, this means they will have to duplicate this
accounting.

 - 28 - 28

Adding bandwidth specifications to a AAA server

a message containing the bandwidth. This requires that the FreeRADIUS client
database be extended with a new column, as not only must the database row contain a
user name or ID and the corresponding password information, but the row must also
have a specification of the traffic parameters to be assigned to this user. Note that the
table could be abbreviated; with each user’s entry simply containing a default
bandwidth and maximum bandwidth. The database could be extended like shown in
Figure 3.4.

Figure 3.4 Database in authentication server

The bandwidth value in the database is the default value for the supplicant if the
authentication is successful. This value will be sent by the FreeRADIUS server to the
Authenticator (access point), and this value will be used to configure the traffic shaper
to provide the specified bandwidth for this authenticated supplicant. Prior to the
Authenticator receiving the bandwidth value from the extended RADIUS server, it
might limit the user to a small bandwidth or only certain sizes of packets.

The maximum value in the database is used to define the maximal bandwidth for each
supplicant. It should be the value the supplicant decided upon when it subscribed to
the service and this subscription is registered in this FreeRADIUS server. In this
thesis, we will provide a chance for the supplicant and the RADIUS server to
negotiation how much bandwidth the supplicant would like to use for different
situations. This maximum value limits the maximal bandwidth that the RADIUS
server could specify for this supplicant.

The FreeRADIUS server sends the bandwidth value to both the access point and the
supplicant when the authentication is successful. Subsequently the user might wish to
negotiate for more bandwidth; in this case the process will occur as shown in Figure
3.5. Note that in Figure 3.5 both the authenticator and supplicant are told the new

 - 29 - 29

Adding bandwidth specifications to a AAA server

bandwidth value.

Figure 3.5 Bandwidth discussing process

3.2.2.2 New message structure for non-binary solution

Although the new solution need not change any part of the authentication process,
the message indicating authentication success is not the same as in the binary
authentication solution. That means more information should be contained in the
success message, or we would say the new message structure should be established.
Additionally, there needs to be a new message for bandwidth negotiation. These new
messages should be acceptable and readable for both the authenticator (access point)
and the supplicant. Otherwise, the supplicant and the authenticator will not able to
leam the bandwidth information nor perform the bandwidth control (traffic shaping).
Note that the same success message should be sent to the authenticator - even if the
authenticator is not capable of performing traffic shaping; this enables backward
compatibility and provides a smooth upgrade path (while minimizing administrative
tasks when the authenticator is replaced with one which is extended to allow
non-binary authentication). This means that when a supplicant receives this
bandwidth information from the authentication server, it simply represents a potential
maximum bandwidth which the authentication server has authorized - it does not
mean that the authenticator can actually provide this bandwidth! (Note that this
suggests that the resulting system supports non-binary authentication and variable
resource authorization.)

 - 30 - 30

Adding bandwidth specifications to a AAA server

3.2.2.2.1 Authentication success message

All the messages sent out from the authentication server are in the same RADIUS
format as shown in Section 2.2.2. The authenticator (access point) will reformat the
information into suitable formats for different situations.

The messages sent to the authenticator (access point) are the Access-Reject or
Access-Accept message. For a traditional RADIUS packet, no bandwidth
information is contained in these messages. For the non-binary solution, bandwidth
information should be added in the Access-Accept message, with a new attribute
field in the RADIUS packet structure which contains the bandwidth value. The
EAP-Success message is also encapsulated in the Access-Accept message and
will forward by the authenticator to the supplicant. This EAP-success message
also should be extended to convey the bandwidth information to the supplicant.

The supplicant will receive an EAP success/failure message. All the EAP messages
are in the same format (shown in Figure 3.6).

Figure 3.6 EAP message format

The code field will indicate the message type. Code value 3 or 4 means success or
failure in this field. In the binary authentication scheme the Success and Failure
messages are short and do not require any data in binary authentication field. These
messages simply indicate the result of the authentication server’s decision.

In the new non-binary authentication, the failure message does not need to be changed.
But the success message should contain the supplicant’s bandwidth information. That
means the EAP-success message should contain the bandwidth value in data
portion of the message expressed like an attribute. Thus when the EAP-success
message arrives at the supplicant, the supplicant learns its allowed bandwidth.

3.2.2.2.2 Bandwidth negotiation

Bandwidth negotiation is a totally new part of the non-binary authentication process.
After authentication successful, if the supplicant wishes to change the maximum
bandwidth he or she is able to use, then negotiation can be done with the RADIUS
server. From the view point of the authenticator (access point), negotiation is not

 - 31 - 31

Adding bandwidth specifications to a AAA server

limited to EAP messages, since the supplicant has been successfully authenticated any
type of packet could be used to carry the negotiation message. Thus either the
supplicant (now simply a client) directly sends a RADIUS request or the authenticator
must receive the message and reformat it into a negotiation message which is send as
a RADIUS message to the FreeRADIUS server. In this thesis we propose a new
attribute value should be defined for use by the supplicant, authenticator, and the
FreeRADIUS server for use in a negotiation message.

The FreeRADIUS server would be extended to provide this new bandwidth
negotiation function. When the negotiation message arrives at the server, the server
will know that this is a negotiation message because a new code will be assigned for
this message (it is proposed that the code can be 250-253 (these codes reserved for
experimental use) – a request has not been made to IANA for this code, but his should
be done as part of future work). The negotiation message not only contains the request
bandwidth, but also the suppliant information. So the function will used the supplicant
information, like: the same identifier that was used to identify the relevant client in
the client database, to determine the maximum bandwidth in the database. Then a
comparison will make between the maximum bandwidth and the requested bandwidth:
if the maximum value is smaller than the requested one, the bandwidth request will be
ignored; otherwise, the requested bandwidth will be sent in a message to both the
authenticator (access point) and the supplicant to notify them that the maximum
bandwidth should be changed to this requested value. This is should be an extended
RADIUS message contains the new bandwidth with a special code (for example: code
252 can be used to notice this is a bandwidth update message).

3.3 Implementation of these improvements

The implementation of the improved FreeRADIUS can be divided into three parts:

 Change the existing SQL database, to add the default bandwidth value and
maximum bandwidth value for each supplicant (client);

 Extend the authentication success message, to include the bandwidth value
as an attribute;

 Add the negotiation function to the FreeRADIUS program; make this
negotiation between the supplicant and the FreeRADIUS server work.

3.3.1 Modifying the database

After FreeRADIUS is installed in the server, the first thing to do is perform the
configuration, then setup the SQL database. This is because we decided to
authenticate users based upon an entry in an SQL database. MySQL is select in this
FreeRADIUS as it is one of the most widely used SQL database. This method of

 - 32 - 32

Adding bandwidth specifications to a AAA server

configuration was chosen because it allowed us to create, manage and control the user
database in the FreeRADIUS server easily. The traditional MySQL database contains
a user name or ID for each client. Different attribute values have different meanings,
for example, “2” means that the attribute contains a user-password. For the non-binary
authentication, new columns should be added to the client database to define the
default bandwidth value and maximum bandwidth for each client. Several different
approaches could be used to implement these extensions. One approach is to re-use an
existing attribute for these two new values; while the other approach is to add new
attributes for the RADIUS database. Both the solutions have their own advantages
and disadvantages, as shown in Table 3-3:

Table 3-3: Comparison of the two alternatives for modifying the FreeRADIUS
database

 1. Use the old attributes 2. Add new attributes

Advantage
Using existing attributes will
reduce the work.

Two new attributes are created
especially for these two
bandwidth values; they will not
influence any other parts of the
database.

Disadvantage

An attribute has different
meanings depending upon the
context of use. If not choose
well, this could impact other
parts of FreeRADIUS.

Adding the new attributes in
RADIUS protocol could affect a
lot of parts of the FreeRADIUS
server and require a lot of work
to make it running well.

In this thesis, the first solution was used initially to perform an experiment to see how
non-binary authentication might work. After this experiment we used the second
approach to implement the non-binary solution.

In MySQL, the command: “insert” can be used to add new information in the
database. As we started with the first approach, we choose to modify the
“Reply-message” for the experiment. A list separator (“:”) is used in the attribute
value part to separate different items. So adding a bandwidth value and the maximum
bandwidth was straight forward. The stored format is shown in Figure 3.7:

Figure 3.7 The new value stored format

 - 33 - 33

Adding bandwidth specifications to a AAA server

Using the command “insert into radreply (id, username, attribute, op, value) values(1,
fredf, Reply-Message, :=, 100:200); ”, we can check the database and see this
result in Figure 3.8.

Figure 3.8 FreeRADIUS MySQL database

This experiment shows it is easy to add new information to the MySQL database. The
value can retrieve by using the attribute. To achieve the non-binary authentication,
new attributes should be defined. There are two ways we can use to define the new
attributes: one is to define two new global attributes, the other is to define vendor
specific attributes. In the following subsections we will introduce the two approaches
separately.

3.3.1.1 Define global attributes

These attributes are defined in the file “radius.h” of the “src” files. As the attribute
values 192-223 are reserved for experimental use to add new attributes, we will use
the value 193 for the default bandwidth and 194 for the maximum bandwidth. The
modified code is as shown below:

// modified part of radius.h

/* here we define our own attributes, which are Default-Bandwidth and Max-Bandwidth.

We allocate them from the reserved for experimental use attribute numbers.

*/

#define PW_DEFAULT_BANDWIDTH 193

#define PW_MAX_BANDWIDTH 194

We also need to modify the dictionary file as shown below:

// modified part of /etc/raddb/dictionary

New Attributes are defined here.

The values 192-223 were reserved for experimental use, we will use two of these values.

ATTRIBUTE Default-BandWidth 193 string

ATTRIBUTE Max-Bandwidth 194 string

 - 34 - 34

Adding bandwidth specifications to a AAA server

The dictionary file should be contained in the library.

// modified part of /usr/local/etc/raddb/dictionary

$INCLUDE /etc/raddb/dictionary

After the definition of the two attributes, the new MySQL database entry for the user
“fredf” is shown in Figure 3.9.

Figure 3.9 The new SQL database

3.3.1.2 Define vendor specific attributes

The first thing to do is creating a special dictionary for vendor specific attributes, the
dictionary is created in: /usr/local/share/freeradius/dictionary.kth.

-*- text -*-

KTH dictionary

2008.09.01 GQMJr for experimental use

VENDOR KTH 933

BEGIN-VENDOR KTH

ATTRIBUTE KTH-default-bandwidth 3 integer

ATTRIBUTE KTH-max-bandwidth 4 integer

END-VENDOR KTH

The newly established dictionary should be included in the FreeRADIUS dictionary:

 - 35 - 35

Adding bandwidth specifications to a AAA server

include the dictionary to /usr/local/share/freeradius/dictionary

 $INCLUDE dictionary.kth

Then the new attributes have been defined and the MySQL database can use them as
attributes to store users’ information.

Using these new attributes, we can specify for each user a default bandwidth and
maximum bandwidth value. Now that we have extended the set of attributes which are
available, it is now time to examine the new authentication success message.

3.3.2 New authentication success message

An authentication success message is sent to both the access point (in the format of a
RADIUS Access-Accept message) and the supplicant (in the form of a RADIUS
encapsulated EAP success message) when authentication is successful. As the
database has already been extended; the main problem was how to add the bandwidth
value to the authentication success message(s).

For the EAP-Success message in a binary authentication server, only a code,
identifier, and length exist. As an EAP message has space for data following the
length field, in non-binary authentication the EAP-Success message will simply be
extended to contain the bandwidth information.

From the view of the authentication server, all the messages sent are RADIUS format
messages. For the purpose of telling the authenticator (access point) how much
bandwidth the supplicant can use, an attribute field containing the bandwidth was
added.

To do this, for testing purposes the “radiclient.c” source code should be modify to
include the default bandwidth and the maximum bandwidth in the access-accept
message.

// modified part of radclient.c

 /* handle DEFAULT bandwidth parameters */

 if (reply->code !=PW_AUTHENTICATION_REJECT) {

 VALUE_PAIR *vp;

 /* Find the pair with attribute PW_DEFAULT_BANDWIDTH*/

 vp = reply->vps;

 while(vp && vp->attribute != PW_DEFAULT_BANDWIDTH)

 vp = vp->next;

 - 36 - 36

Adding bandwidth specifications to a AAA server

 if(vp == NULL) {

 printf("The packet received does not contain DEFAULT bandwith

information\n");

 goto packet_done;

 }

 else {

 /* Extract the bandwidth information from received packet.

 */

 int default_bandwidth;

 char buf[128];

 /* Here 128 was used to make the buffer big enough, but not to

much redundant.*/

 strcpy(buf, vp->vp_strvalue);

 default_bandwidth = atoi(buf);

 printf("The DEFAULT bandwidth information recevied is:\n");

 printf("default_bandwidth: %d\n", default_bandwidth);

 }

 }

 /* handle MAX bandwidth parameters */

 if (reply->code !=PW_AUTHENTICATION_REJECT) {

 VALUE_PAIR *vp;

 /* Find the pair with attribute PW_MAX_BANDWIDTH*/

 vp = reply->vps;

 while(vp && vp->attribute != PW_MAX_BANDWIDTH)

 vp = vp->next;

 if(vp == NULL) {

 printf("The packet received does not contain MAX bandwith

information\n");

 goto packet_done;

 }

 else {

 /* Extract the bandwidth information from received packet.

 */

 int max_bandwidth;

 char buf[128];

 strcpy(buf, vp->vp_strvalue);

 - 37 - 37

Adding bandwidth specifications to a AAA server

 max_bandwidth = atoi(buf);

 printf("The MAX bandwidth information received is:\n");

 printf("max_bandwidth: %d\n", max_bandwidth);

 }

 }

We will also modify the “eap.c” in the file of /src/modules/rlm_eap. This will add the
bandwidth information into the EAP success message

 /*
 * EAP-Message is always associated with Message-Authenticator but not

vice-versa.

 *

 * Don't add a Message-Authenticator if it's already there.

 */

 vp = pairfind(request->reply->vps, PW_MESSAGE_AUTHENTICATOR);

 if (!vp) {

 vp = paircreate(PW_MESSAGE_AUTHENTICATOR, PW_TYPE_OCTETS);

 memset(vp->vp_octets, 0, AUTH_VECTOR_LEN);

 vp->length = AUTH_VECTOR_LEN;

 pairadd(&(request->reply->vps), vp);

 }

 /* only output the reply attribute when reply code is PW_EAP_SUCCESS */

 if ((!request->reply->code) && (reply->code != PW_EAP_SUCCESS)) {

 pairdelete(&request->reply->vps, PW_DEFAULT_BANDWIDTH);

 pairdelete(&request->reply->vps, PW_MAX_BANDWIDTH);

 pairdelete(&request->reply->vps, PW_KTH_Default_Bandwidth);

 pairdelete(&request->reply->vps, PW_KTH_Max_Bandwidth);

 vp_printlist(stdout, request->reply->vps);

 }

This configure make the EAP-Success message contains the default bandwidth
value and maximum bandwidth. If the authentication, the bandwidth information will
not be contained in the fail message.

3.3.3 Bandwidth negotiation function

The new bandwidth negotiation function enables the FreeRADIUS server to respond
to RADIUS client requests for a different maximum bandwidth. After the
authentication has succeeded, the supplicant can send message to the FreeRADIUS
server to ask for a different maximum bandwidth.

 - 38 - 38

Adding bandwidth specifications to a AAA server

The elements of this negotiation function are complex. Therefore, actually
implementing this in the FreeRADIUS code was more difficult. All the messages sent
to and from authentication server are in the RADIUS message format, with a code
field that labels the message type. In order to process the negotiation properly, a new
message type should be defined. As we discussed in section 3.2.2.2.2 in this thesis,
the code field 250-253 are reserved for experimental use, we can define 251 as the
bandwidth-negotiation-request message and 252 as the
bandwidth-negotiation-accept message. Then when the message with
code number 251 arrives at the FreeRADIUS server, the main function will detect it is
a bandwidth negotiation message and send the data in the message to the negotiation
function to process.

When a message was recognized as the bandwidth negotiation message, information
will go to the negotiation function to continue the working process. Functions will
work as shown below:

Figure 3.10 Negotiation process

 - 39 - 39

Adding bandwidth specifications to a AAA server

The codes for the bandwidth negotiation process are here, but not yet combined with
the main FreeRADIUS function.

//the bandwidth negotiation function

int band_width (int user_name int request_width)

{

 int max_width;

 max_width = value_sql (user_name, attribute value=194);

 if (request_width > max_width)

 {

 return 0;

 }

 else

 {

 return request_width;

 }

}

The bandwidth negotiation process is very clear and not difficult, but how to make
both the supplicant and the FreeRADIUS server handle these messages is more
complex than I thought. However, an attribute for the negotiation message has been
defined and the database extended to store the required value (per client). This new
attribute must be acceptable to the supplicant, FreeRADIUS server, and the
authenticator (access point). As the code to actually implement these messages has
not yet been added to the RADIUS server, I have not be able to test that this new
attribute will be ignored by existing supplicants and authenticators; nor that it
provides the correct information to the extended supplicant and authenticator.

 - 40 - 40

Adding bandwidth specifications to a AAA server

Chapter 4: Analysis of the proposed extensions to

FreeRADIUS

In this thesis, we extended the FreeRADIUS server, changing authentication from
binary to non-binary and introduced bandwidth negotiation. As we have only
implemented some parts of this extension in the FreeRADIUS server, experiments
were made to test the new authentication method. A comparison was also made
between this new method and an unmodified FreeRADIUS server.

4.1 Experimental results

As a part of the non-binary authentication research, a real test for the new system
would require all the parts of the network to operate together. However, as Guo Jia’s
authenticator part and Zhang Hengchong’s supplicant part are not yet finished, it is
impossible to test all the three non-binary authentication entities working together. In
this thesis, all the experiments were performed only with the FreeRADIUS server part
and test application (which can act as a RADIUS client).

The extension of the FreeRADIUS server can be divided into two parts: the
non-binary authentication part and the bandwidth negotiation part. For the
authentication part, there is a “radtest” application provided with the FreeRADIUS
source code that was adapted (as described in section 3.2.2) for my experiments. As
the bandwidth negotiation part has only been design and not implemented, we can not
do any experiments concerning it.

We have conducted two experiments to test the non-binary authentication server. The
first test is based on the non-binary authentication method without a new attribute;
while the other is based on the non-binary authentication method with new attributes.
For the second test, experiments are made to test both authentication success and
authentication fail.

4.1.1 Experiment on non-binary RADIUS server without new

attributes

In this experiment, we used the existing attribute; with application “radtest”, we could
get the default bandwidth and the maximum bandwidth information in a
“reply-message”. As a reply- message is always sent as a response to the supplicant,
our use of the “reply-message” attribute will have minimal affect on the FreeRADIUS
server. The experiment result is shown in Table 4-1.

 - 41 - 41

Adding bandwidth specifications to a AAA server

Table 4-1 Authentication success results (without any new attributes)

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./radtest
shelly hello localhost 1812 testing123

Sending Access-Request of id 140 to 127.0.0.1 port 1812
 User-Name = "shelly"
 User-Password = "hello"
 NAS-IP-Address = 127.0.0.2
 NAS-Port = 1812

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=140,

length=29
 Reply-Message = "100:200"

The bandwidth information recevied is:
default_bandwidth: 100
max_bandwidth: 200

The default bandwidth and maximum bandwidth can be sent when the authentication
succeeds. No further experiments are made regarding this, as we just used this result
to see if the non-binary authentication is realizable.

4.1.2 Experiment on non-binary RADIUS server with new

attributes

In this part, experiments are made on the server after it had been extended with the
two new attributes (for the default bandwidth value and maximum bandwidth value).
These experiments test whether these parts are functioning well. We use a valid user
name and password at first to perform a test whose results should be the
authentication success message, and then we use a valid user name but an incorrect
password to check the authentication fail case.

For testing of a supplicant or authenticator we have made a simple application that
can send the required messages with the additional attributes. What remains is to
actually implement the code which supports adding these attributes to the proper
RADIUS messages and to implement the bandwidth negotiation function.

The results of using the “radtest” command when using a correct user name and
password is shown in Table 4-2. It is the RADIUS Access-accept message.

 - 42 - 42

Adding bandwidth specifications to a AAA server

Table 4-2 Authentication success results (with new attributes) by “radtest”
command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main ./radtest
fredf fredf localhost 1812 testing123

Sending Access-Request of id 214 to 127.0.0.1 port 1812
 User-Name = "fredf"
 User-Password = "fredf"
 NAS-IP-Address = 127.0.0.2
 NAS-Port = 1812

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=214,
length=68

 Reply-Message = "Hello fredf!"
 Default-BandWidth = "100"
 Max-Bandwidth = "200"
 KTH-default-bandwidth = 3
 KTH-max-bandwidth = 4

Received response ID 214, code 2, length = 68
 Reply-Message = "Hello fredf!"
 Default-BandWidth = "100"
 Max-Bandwidth = "200"
 KTH-default-bandwidth = 3
 KTH-max-bandwidth = 4
 name: Reply-Message attribute: 18 vendor: 0
 name: Default-BandWidth attribute: 193 vendor: 0
 name: Max-Bandwidth attribute: 194 vendor: 0
 vendor: KTH name: KTH-default-bandwidth attribute: 3 vendor: 933
 vendor: KTH name: KTH-max-bandwidth attribute: 4 vendor: 933

The DEFAULT bandwidth information recevied is:
default_bandwidth: 100
The MAX bandwidth information received is:
Max_bandwidth: 200

We also use the “eaptest” to see the result of the EAP message, and the results are
showed in Table 4-3. It is the EAP-success message.

 - 43 - 43

Adding bandwidth specifications to a AAA server

Table 4-3 Authentication success results (with new attributes) by “eaptest”
command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./eaptest
fred fred

+++> About to send encoded packet:
User-Name = "fredf"
Cleartext-Password = "fredf"
EAP-Code = Response
EAP-Id = 210
EAP-Type-Identity = "fredf"
Message-Authenticator = 0x00

<+++ EAP decoded packet:
Reply-Message = "Hello fredf!"
EAP-Message = 0x01d300160410215716a8606857fd387004c142548c70
Message-Authenticator = 0x7efaaa66b147e2b35ad0a6c21ff61135
State = 0x05de8aa1050d8ebbd18207d5bd212ccc
EAP-Id = 211
EAP-Code = Request
EAP-Type-MD5 = 0x10215716a8606857fd387004c142548c70

+++> About to send encoded packet:
User-Name = "fredf"
Cleartext-Password = "fredf"
EAP-Code = Response
EAP-Id = 211
Message-Authenticator = 0x00000000000000000000000000000000
EAP-Type-MD5 = 0x102cd41af3a1c18cc935aea4ef7274f1d6
State = 0x05de8aa1050d8ebbd18207d5bd212ccc

<+++ EAP decoded packet:
Reply-Message = "Hello fredf!"
Default-BandWidth = "100"
Max-Bandwidth = "200"
KTH-default-bandwidth = 3
KTH-max-bandwidth = 4
EAP-Message = 0x03d30004
Message-Authenticator = 0xc3a8dfc9d623f39f293137a5d98e6fdc
User-Name = "fredf"
EAP-Id = 211
EAP-Code = Success

This experiment shows the result when the authentication is successful, thus the
default bandwidth and maximum bandwidth will be contained in the reply message.

 - 44 - 44

Adding bandwidth specifications to a AAA server

This result shows that our solution works correct.

We also made a test using a valid user name but an incorrect password to see that
authentication fail message is sent. This is the Access-reject message

Table 4-4 Authentication results when password is incorrect by “radtest”
command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./radtest
fredf nikos localhost 1812 testing123

Sending Access-Request of id 26 to 127.0.0.1 port 1812
User-Name = "fredf"
User-Password = "nikos"
NAS-IP-Address = 127.0.0.2
NAS-Port = 1812

rad_recv: Access-Reject packet from host 127.0.0.1 port 1812, id=26,
length=34

Reply-Message = "Hello fredf!"
Received response ID 26, code 3, length = 34

 Reply-Message = "Hello fredf!"
 name: Reply-Message attribute: 18 vendor: 0

The packet received does not contain DEFAULT bandwith information
The packet received does not contain MAX bandwith information

We can see clearly that when authentication fails, no bandwidth information will be
sent. That is just what we believed that the message would like.

An experiment on “eaptest” was also made to see the fail message of the
authentication. As shown in Table 4-5, no bandwidth information will come out in
the fail message.

 - 45 - 45

Adding bandwidth specifications to a AAA server

Table 4-5 Authentication results when password is incorrect by “eaptest”
command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./eaptest
jia 12345

+++> About to send encoded packet:
User-Name = "jia"
 Cleartext-Password = "12345"
 EAP-Code = Response
 EAP-Id = 210
 EAP-Type-Identity = "jia"
 Message-Authenticator = 0x00

<+++ EAP decoded packet:
 EAP-Message = 0x01d30016041050d5a5903e3909bbbd8b243f0e32c046
 Message-Authenticator = 0x7d2be2347c0665e73cfdf98964c41584
 State = 0xc17a5dbdc1a95900978f167a5e24092b
 EAP-Id = 211
 EAP-Code = Request
 EAP-Type-MD5 = 0x1050d5a5903e3909bbbd8b243f0e32c046

+++> About to send encoded packet:
 User-Name = "jia"
 Cleartext-Password = "12345"
 EAP-Code = Response
 EAP-Id = 211
 Message-Authenticator = 0x00000000000000000000000000000000
 EAP-Type-MD5 = 0x1085a7272f27adac8d71c8d1daf6995136
 State = 0xc17a5dbdc1a95900978f167a5e24092b

<+++ EAP decoded packet:
 EAP-Message = 0x04d30004
 Message-Authenticator = 0x0ebf5331dc6aed18ef9cfa86610fdaa9
 EAP-Id = 211
 EAP-Code = Failure

From these experimental results, the goal of non-binary authentication has been
achieved.

This thesis project, all the passwords are stored as clear text, but the password
encrypting arithmetic are still containing in the main code. For example, if the
passwords want to encrypt by CHAP, there is a specially function working with them.

 - 46 - 46

Adding bandwidth specifications to a AAA server

4.2 Comparing with other methods and improvements

In section 2.5, we compared FreeRADIUS and Diameter. The new AAA protocol
Diameter has improved a lot of different functions in RADIUS and solved some
problems. But as RADIUS is very widely used AAA server, it is unlikely that
RADIUS will be replaced in a short period of time.

From the result of our experiment, we can see the authenticator (access point) can
receive a default bandwidth of the supplicant together with the authentication success
message. Our extended FreeRADIUS changed the binary authentication into a
non-binary authentication. This is not simply change from 1/0 to a variable value, but
a revolutionary change in authentication. While Diameter has solved some bugs and
disadvantages of the RADIUS, it is obvious that non-binary authentication should also
be added to Diameter.

The non-binary authentication method gives the authentication server the ability to
control the bandwidth for each supplicant, and allows allocation of the total net
bandwidth to be made in a more flexible manner. The newly proposed bandwidth
negotiation process enables the supplicant request the bandwidth necessary for its
current use. The result is that users of a FreeRADIUS server could indicate the
amount of bandwidth which they actually need, rather than always being granted their
maximum bandwidth; this might enable better sharing of resources.

 - 47 - 47

Adding bandwidth specifications to a AAA server

Chapter 5: Conclusions

Although the server is not running together with the authenticator (access point) and
the supplicant, the proposed extensions suggest that non-binary authentication might
be possible and could offer some new possibilities to supplicants. This work also
suggest that AAA protocols are moving into a new period where their use is not
simply to authenticate users and to authorize their use of resource, but rather to allow
more fine graded control of the use of this resource. Thus different supplicants can
have their own bandwidth values and subsequently negotiate their maximum
bandwidth with the FreeRADIUS server. That potentially makes the whole network
environment working more effective. The accounting part of AAA protocol should
also be extended in order to charge the supplicant more for requests to increase the
maximum bandwidth.

In order for this non-binary authentication to become used all around the world will
require a huge amount of work, and what we have done is first step. One of the core
problems has been solved: new attributes have been defined specially for the default
bandwidth and the maximum bandwidth, and these values could be sent out together
with the authentication success message. While the results of this thesis project itself
are poor, the ideas proposed represent a good starting point for further research, and
we are sure that someone else will realize these ideas and enable an interesting new
epoch for AAA systems.

 - 48 - 48

Adding bandwidth specifications to a AAA server

Chapter 6: Future work

While RADIUS has developed a lot during the past few years, it still needs to be
improved. How to modify the AAA protocol to operate efficiently while maintaining
its security is a question all the researchers want to realize. That is also one of the
most important future works for AAA improving.

In the world today, a group number of people are working on the improvement of the
different AAA protocols. Such like Diameter has solved some disadvantage of
RADIUS, a clear question remains: Should there be continued development of
RADIUS or should this effort be put into its successor: Diameter. In this thesis we
have chosen to only look at extending FreeRADIUS, thus applying these same
extensions to Diameter should be part of any future work (as mentioned in Section
3.2.2).

For FreeRADIUS, we still have some suggestions for future work for making it into a
non-binary authentication server:

The first step is to combine the bandwidth negotiation function with the main
FreeRADIUS code, in order to realize this new function. Negotiation offers a great
benefit for the supplicant and the internet service provider. With the negotiation
process, if the supplicant has greater control of their data flows, then they do not need
to pay for extra bandwidth which they did not use. The internet service provider can
use this bandwidth to support other supplicants.

A judgment mechanism can also be added in the RADIUS server. For each supplicant
in the database, there is a record value. The authenticator will send a signal to the
RADIUS server in a unit of time to notice the server whether the supplicant is running
“friendly”. If the supplicant always follows the maximum bandwidth it allows using,
his record value would be rise; when the record value becomes big enough, the
RADIUS server can encourage the supplicant by raising his maximum bandwidth in
the system or raising his user level. If someone always tries to use more bandwidth
than he is allowed, the record value will reduce; when the record value becomes low
enough, the supplicant will receive some punishments: like reduce his maximum
bandwidth in the database, or even take him as a viciousness user and forbid his
account for a while. With this function, the RADIUS server will work in a more
intelligent way.

The accounting component can also be improved to make use of the information
about used & requested bandwidths. As we have achieved the non-binary
authentication, the accounting should be modified to account for this variable
bandwidth. Therefore not only time of usage needs to be recorded for each supplicant,
but the packet flux should also be thought of and used as input to the charging

 - 49 - 49

Adding bandwidth specifications to a AAA server

computation.

Our improvement was designed to create a non-binary authentication mode for the
FreeRADIUS server. As the Diameter becomes more widely used a non-binary
Diameter might also be important to realize. There will also be a need to develop
more cooperative and capable supplicants. We have given some suggestions for future
work, but these suggestions are for the near future as they should be realized a short
time. However, with this develop new problems are likely to appear, which have not
been apparently given the binary nature of authentication thus far.

 - 50 - 50

Adding bandwidth specifications to a AAA server

References

[1]. Wikipedia, “AAA protocol”, http://en.wikipedia.org/wiki/AAA_protocol, Apr.
20th, 2008

[2]. Cisco, “Cisco Craft Works Interface Configuration Applications Reference Guide;
Chapter 2: AAA Application”,
http://www.cisco.com/univercd/cc/td/doc/product/software/iosxr32/cwi_32/cwiap
32/cw32caaa.pdf, Apr. 20th,2008

[3]. Yuanchao Zhao, Jian Chen, and Daoben Li, “AAA protocol- Diameter analyze”,
“China data traffic”,http://news.ccidnet.com/art/2013/20041116/177981_1.html,
Nov. 16th, 2004 16

[4]. Guo Jia, “non-binary authentication”, Masters thesis, Department of
Communication Systems, School of Information and Communication Technology,
Royal Institute of Technology, Stockholm, Sweden, 2008 (draft)

[5]. Zhang Hengchong, “non-binary authentication—supplicant”, Masters thesis,
Department of Communication Systems, School of Information and
Communication Technology, Royal Institute of Technology, Stockholm, Sweden,
2008 (draft)

[6]. James D. Carlson, “PPP Design, Implementation, and Debugging”, Second
edition, Addison-Wesley, 2000, ISBN 0-201-7 0053-0

[7]. Wikipedia, “RADIUS”, http://en.wikipedia.org/wiki/RADIUS, May. 6th, 2008

[8]. Wikipedia, “RADIUS”, http://zh.wikipedia.org/wiki/RADIUS, Jan 20th, 2008

[9]. Network Working Group, RFC 2085, “HMAC-MD5 IP Authentication with
Replay Prevention”, http://www.rfc-editor.org/rfc/rfc2085.txt, Feb. 1997

[10]. H3C (IToIP Solutions Expert), “AAA&RADIUS&HWTACACS Introduction”,
http://www.h3c.com/portal/Products___Solutions/Technology/Security_and_VP
N/AAA_RADIUS_HWTACACS/200701/195605_57_0.htm, May 9th.2008

[11]. Wikipedia, “Diameter (protocol)”,
http://en.wikipedia.org/wiki/Diameter_%28protocol%29, May 8th, 2008

[12]. Wikipedia, “IPsec”, http://en.wikipedia.org/wiki/IPSEC, May 8th, 2008

[13]. Wikipedia, “TLS”, http://en.wikipedia.org/wiki/Transport_Layer_Security, May
8th, 2008

[14]. Wikipedia, “TACACS”, http://en.wikipedia.org/wiki/TACACS, May 8th, 2008

[15]. Wikipedia, “TACACS+”, http://en.wikipedia.org/wiki/TACACS%2B, May 8th,
2008

[16]. Vincent Chen, “Security control protocol- TACACS+”,

 - 51 - 51

http://en.wikipedia.org/wiki/AAA_protocol
http://www.cisco.com/univercd/cc/td/doc/product/software/iosxr32/cwi_32/cwiap32/cw32caaa.pdf
http://www.cisco.com/univercd/cc/td/doc/product/software/iosxr32/cwi_32/cwiap32/cw32caaa.pdf
http://news.ccidnet.com/art/2013/20041116/177981_1.html
http://en.wikipedia.org/wiki/RADIUS
http://zh.wikipedia.org/wiki/RADIUS
http://www.rfc-editor.org/rfc/rfc2085.txt
http://www.h3c.com/portal/Products___Solutions/Technology/Security_and_VPN/AAA_RADIUS_HWTACACS/200701/195605_57_0.htm
http://www.h3c.com/portal/Products___Solutions/Technology/Security_and_VPN/AAA_RADIUS_HWTACACS/200701/195605_57_0.htm
http://en.wikipedia.org/wiki/Diameter_%28protocol%29
http://en.wikipedia.org/wiki/IPSEC
http://en.wikipedia.org/wiki/Transport_Layer_Security
http://en.wikipedia.org/wiki/TACACS
http://en.wikipedia.org/wiki/TACACS%2B

Adding bandwidth specifications to a AAA server

http://www.cnitblog.com/wildon/archive/2007/03/19/24261.html, Feb. 7th, 2003

[17]. Network Working Group, RFC 2039, “Applicability of Standards Track MIBs
to Management of World Wide Web Servers”,
http://www.rfc-editor.org/rfc/rfc2039.txt, Nov. 1996

[18]. Network Working Group, RFC 2138, “Remote Authentication Dial In User
Service (RADIUS)”, http://www.ietf.org/rfc/rfc2138.txt, Apr. 1997

[19]. Network Working Group, RFC 2865, “Remote Authentication Dial In User
Service (RADIUS)", http://www.ietf.org/rfc/rfc2865.txt, Jun. 2000

[20]. Network Working Group, RFC 2866, “RADIUS Accounting”,
http://www.ietf.org/rfc/rfc2866.txt, Jun. 2000

[21]. Microsoft TechNet, “RADIUS Packet Format”,
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/intwork
/inbc_ias_wfwi.mspx?mfr=true, May 10th, 2008

[22]. HP website, “RADIUS Overview”,
http://docs.hp.com/en/T1428-90025/ch01s01.html, May 10th, 2008

[23]. IEEE, “IEEE Standards for Local and Metropolitan Area Networks: Standard
for Port Based Network Access Control”, IEEE Std 802.1x-2004,
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf, Oct. 2004

[24]. Wikipedia, “IEEE 802.1x”, http://en.wikipedia.org/wiki/802.1x, Aug. 11th, 2008

[25]. Network Working Group, RFC 3850, “IEEE 802.1x Remote Authentication
Dial In User Service (RADIUS) Usage Guidelines”,
http://www.ietf.org/rfc/rfc3580.txt, Sep. 2003

[26]. Tuomas Aura, Network security at UCL, Microsoft Research, UK, “Lecture 9:
WLAN Security”,
http://research.microsoft.com/users/tuomaura/Teaching/Lecture%2009%20-%20
WLAN.pdf, Jan.-Feb. 2008

[27]. Wikipedia, “Open source”, http://en.wikipedia.org/wiki/Open_source, May 10th,
2008

[28]. Sara Dannerud, “Sårbarheter i routrar och switchar”, Batchelors Thesis, Department
of Communications, School of Information and Communication Technology,
Royal Institute of Technology (KTH), COS/CCS 2008-03,
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/080313-Sara_Da
nnerud-with-cover.pdf, Mar. 13th, 2008.

[29]. Wikipedia, “FreeRADIUS”, http://en.wikipedia.org/wiki/FreeRADIUS, May
10th,2008

[30]. FreeRADIUS, http://www.freeradius.org/, Apr. 30th, 2008

[31]. Bugzilla Bug, “GNU Radius Format String Vulnerability”,

 - 52 - 52

http://www.cnitblog.com/wildon/archive/2007/03/19/24261.html
http://www.rfc-editor.org/rfc/rfc2039.txt
http://www.ietf.org/rfc/rfc2138.txt
http://www.ietf.org/rfc/rfc2865.txt
http://www.ietf.org/rfc/rfc2866.txt
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/intwork/inbc_ias_wfwi.mspx?mfr=true
http://www.microsoft.com/technet/prodtechnol/windows2000serv/reskit/intwork/inbc_ias_wfwi.mspx?mfr=true
http://docs.hp.com/en/T1428-90025/ch01s01.html
http://standards.ieee.org/getieee802/download/802.1X-2004.pdf
http://en.wikipedia.org/wiki/802.1x
http://www.ietf.org/rfc/rfc3580.txt
http://research.microsoft.com/users/tuomaura/Teaching/Lecture%2009%20-%20WLAN.pdf
http://research.microsoft.com/users/tuomaura/Teaching/Lecture%2009%20-%20WLAN.pdf
http://en.wikipedia.org/wiki/Open_source
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080313-Sara_Dannerud-with-cover.pdf
http://web.it.kth.se/%7Emaguire/DEGREE-PROJECT-REPORTS/080313-Sara_Dannerud-with-cover.pdf
http://en.wikipedia.org/wiki/FreeRADIUS
http://www.freeradius.org/

Adding bandwidth specifications to a AAA server

http://bugs.gentoo.org/show_bug.cgi?id=156376, Nov. 26th, 2006

[32]. OpenRADIUS, “OpenRADIUS introduction”,
http://www.xs4all.nl/~evbergen/openradius/openradius-introduction.html, Mar.
25th, 2007

[33]. FreeRADIUS Wiki, “Other RADIUS Server”,
http://wiki.freeradius.org/Other_RADIUS_Servers#GNU_RADIUS, Jun. 21st,
2007

[34]. “Cistron RADIUS server, version 1.6.8”, http://www.radius.cistron.nl/, Feb. 8th,
2006

[35]. Wikipedia, “BSDRadius”, http://en.wikipedia.org/wiki/BSDRadius, May 15th.
2008

[36]. TeKRADIUS, design by Free CSS Templates, http://www.tekradius.com/, May
15th, 2008

[37]. Dhivakaran Muruganantham, Michael Helm, Tony Genovese, Roberto Morelli,
and John Webster; “ESnet RAF Progress report”,
http://www.es.net/raf/ESnet%20RAF%20Progress%20Report%20Apr%202005.
doc, May 26th, 2005

[38]. Market Wire, “New Version of Infoblox RADIUSone(TM) Appliance Delivers
Enhanced AAA Services; Simplifies Wireless Deployments”,
http://findarticles.com/p/articles/mi_pwwi/is_200501/ai_n9477819, Jan., 2005

[39]. Business Wire, “Identity Engines Ignites Nationwide Channel With Marketlink;
Marketlink Technologies Rapidly Achieves Outstanding Channel Traction With
Identity Engines' Ignition™ Platform”,
http://findarticles.com/p/articles/mi_m0EIN/is_2006_April_10/ai_n16120467,
Apr. 10th, 2006

[40]. idEngines, “Ignition Server-Precision Made Simple”,
http://www.idengines.com/products/ignitionserver/, Aug. 25th, 2008

[41]. Pallette Multimedia Pte Ltd, “computing & IT services”,
http://sg.88db.com/sg/Services/Post_Detail.page/business_services/it_services/?
PostID=69495, Dec. 1st, 2006

[42]. Wikipedia, “List of RADIUS Servers”,
http://en.wikipedia.org/wiki/List_of_RADIUS_Servers, May 17th, 2008

[43]. Joshua Hill, “An Analysis of the RADIUS Authentication Protocol”,
http://www.untruth.org/~josh/security/radius/radius-auth.html, Nov. 24th, 2001

[44]. Cisco, “Authentication, authorization, and Accounting overview- Differences
between RADIUS and DIAMETER” ,
http://www.cisco.com/en/US/products/ps6638/products_data_sheet09186a0080
4fe332.html, Jun. 20th, 2008

 - 53 - 53

http://bugs.gentoo.org/show_bug.cgi?id=156376
http://www.xs4all.nl/%7Eevbergen/openradius/openradius-introduction.html
http://wiki.freeradius.org/Other_RADIUS_Servers#GNU_RADIUS
http://www.radius.cistron.nl/
http://en.wikipedia.org/wiki/BSDRadius
http://www.tekradius.com/
http://www.es.net/raf/ESnet%20RAF%20Progress%20Report%20Apr%202005.doc
http://www.es.net/raf/ESnet%20RAF%20Progress%20Report%20Apr%202005.doc
http://findarticles.com/p/articles/mi_pwwi/is_200501/ai_n9477819
http://findarticles.com/p/articles/mi_m0EIN/is_2006_April_10/ai_n16120467
http://www.idengines.com/products/ignitionserver/
http://sg.88db.com/sg/Services/Post_Detail.page/business_services/it_services/?PostID=69495
http://sg.88db.com/sg/Services/Post_Detail.page/business_services/it_services/?PostID=69495
http://en.wikipedia.org/wiki/List_of_RADIUS_Servers
http://www.untruth.org/%7Ejosh/security/radius/radius-auth.html
http://www.cisco.com/en/US/products/ps6638/products_data_sheet09186a00804fe332.html
http://www.cisco.com/en/US/products/ps6638/products_data_sheet09186a00804fe332.html

Adding bandwidth specifications to a AAA server

[45]. Arlinx, “freeRADIUS AAA Server”, http://www.arlinx.com/freeradius.html,
Jun. 16th, 2008

[46]. freeRADIUS, “Press Peleases”, http://freeradius.org/press/index.html#2.0.5, Jun.
7th, 2008

 - 54 - 54

http://www.arlinx.com/freeradius.html
http://freeradius.org/press/index.html#2.0.5

Adding bandwidth specifications to a AAA server

Appendix I. The FreeRADIUS sever set up process

This thesis is working under the Linux system: openSUSE. And the processes
introduced here are based on this system.

1. Install the FreeRADIUS and other support resource

The openSUSE system has “freeradius” in its install packet. This FreeRADIUS may
not be the latest version, but it is steadily combined with the system. Other support
resource like openssl, mysql can also be found in the openSUSE install packet and
recommended. All the installations can be finished by go to: “YaST -> System ->
System Services (Runlevel)”.

If the FreeRADIUS which provide in the system is not new enough, the server
manager can install the latest version by download the install packet from the
FreeRADIUS home website: http://freeradius.org/. Then the FreeRADIUS can be
installed by following steps:

1). tar zxvf ./freeradius-server-2.0.5.tar.gz (decompressing files)

2). cd freeradius-server-2.0.5 (go to the file of FreeRADIUS)

3). ./configure

4). make

5). make install (run this command as root user)

2. Configure the FreeRADIUS connecting with MySQL

This step will build a MySQL database for the FreeRADIUS. The first step is creating
a MySQL database for the RADIUS server. The system manager should define a root
user password when the SQL database created. The command “mysqladmin -uroot
password <yourpassword>” can achieved this when root use the SQL database for the
first time. Then a “radius” database can be created.

mysql -uroot -p <password>

mysql> create database radius;

mysql>\q

The configuration would be made to make the FreeRADIUS using MySQL. Files
under: /usr/local/etc/raddb would be modified as shown below:

--radiusd.conf:

authorize {

……

 - 55 - 55

http://freeradius.org/

Adding bandwidth specifications to a AAA server

sql（removed #）

……

}

accouting {

….

sql （removed#）

…

}

--sql.conf

server=”localhost”

login=”root”

password=”<mysql root password>”

radius_db=”radius”

--clients.conf

This part has contains the local testing information, the NAS connecting secret is
“testing123”, this part can be modified.

3. Run the FreeRADIUS server

After the FreeRADIUS has install and configured running MySQL, the server
manager can go to the /usr/local/sbin to start the RADIUS server. “radiusd or” is used
to start RADIUS server, and “radiusd –X” is used to start RADIUS server in debug
mode.

In the debug mode, if the message comes out as:

Listening on authentication address * port 1812

Listening on accounting address * port 1813

Listening on proxy address * port 1814

Ready to process requests.

That means the FreeRADIUS is running well.

4. Add new information in MySQL database.

Different information can be added in the “radius” MySQL database by following
command:

mysql -uroot -p <password> (enter to the MySQL database)

mysql> select * from radcheck;

 - 56 - 56

Adding bandwidth specifications to a AAA server

(This is used to check the user information in radcheck, which normal
contains the user name and password information. The information will
be listed as showed below.)

mysql> insert into radcheck values(4, “jia”, “Cleartext-Password”, “:=”, “1234”);

 (This command is used to add a user named “jia” and the password is
“1234”.)

mysql> select * from radreply;

(This is used to check the information in “radreply” file.)

mysql> insert into radreply values(4, “jia”, “KTH-default-bandwidth”, “:=”,
“120”);

(This command is used to add a KTH-default-bandwidth value 120 to the
database.)

mysql>\q

 - 57 - 57

Adding bandwidth specifications to a AAA server

Appendix II. New codes for FreeRADIUS

1. Adding global attributes for bandwidth information

Occupy Values 192-223 which are reserved for experimental use to add new
attributes.

a) in radius.h add

 /* here we define our own attributes, which are
 * Default-Bandwidth and Max-Bandwith.
 * These two attributes have been added for non-binary
 * authentication experiment
 */
 #define PW_DEFAULT_BANDWIDTH 193
 #define PW_MAX_BANDWIDTH 194

b) in /etc/raddb/dictionary add

 # New Attributes are defined here.
 ATTRIBUTE Default-BandWidth 193 string
 ATTRIBUTE Max-Bandwidth 194 string

c) include /etc/raddb/dictionary to /usr/local/etc/raddb/dictionary

 $INCLUDE /etc/raddb/dictionary

Then, when sql module queries the radreply table, it could search the dictionary file
and convert text-based attributes to corresponding integer number.

2. Adding vendor specific attributes for bandwidth information

a) create /usr/local/share/freeradius/dictionary.kth, add:

 # -*- text -*-

KTH dictionary

2008.09.01 GQMJr for experimental use

VENDOR KTH 933

BEGIN-VENDOR KTH

ATTRIBUTE KTH-default-bandwidth 3 integer

ATTRIBUTE KTH-max-bandwidth 4 integer

 - 58 - 58

Adding bandwidth specifications to a AAA server

END-VENDOR KTH

b) include it to /usr/local/share/freeradius/dictionary

 $INCLUDE dictionary.kth

3. Modification of the radclient.c

// modified part of radclient.c

 /* handle DEFAULT bandwidth parameters */
 if (reply->code !=PW_AUTHENTICATION_REJECT) {
 VALUE_PAIR *vp;

 /* Find the pair with attribute PW_DEFAULT_BANDWIDTH*/
 vp = reply->vps;

 while(vp && vp->attribute != PW_DEFAULT_BANDWIDTH)
 vp = vp->next;

 if(vp == NULL) {
 printf("The packet received does not contain
DEFAULT bandwith information\n");
 goto packet_done;
 }
 else {
 /* Extract the bandwidth information from received packet.
 */
 int default_bandwidth;
 char buf[128];
 /* Here 128 was used to make the buffer big enough, but not
to much redundant.*/

 strcpy(buf, vp->vp_strvalue);
 default_bandwidth = atoi(buf);

 printf("The DEFAULT bandwidth information recevied
is:\n");
 printf("default_bandwidth: %d\n", default_bandwidth);

 }
 }

 /* handle MAX bandwidth parameters */
 if (reply->code !=PW_AUTHENTICATION_REJECT) {

 - 59 - 59

Adding bandwidth specifications to a AAA server

 VALUE_PAIR *vp;

 /* Find the pair with attribute PW_MAX_BANDWIDTH*/
 vp = reply->vps;

 while(vp && vp->attribute != PW_MAX_BANDWIDTH)
 vp = vp->next;

 if(vp == NULL) {
 printf("The packet received does not contain MAX
bandwith information\n");
 goto packet_done;
 }
 else {
 /* Extract the bandwidth information from received packet.
 */
 int max_bandwidth;
 char buf[128];

 strcpy(buf, vp->vp_strvalue);
 max_bandwidth = atoi(buf);
 printf("The MAX bandwidth information received
is:\n");
 printf("max_bandwidth: %d\n", max_bandwidth);

 }
 }

4. Modification of eap.c

/*

 * EAP-Message is always associated with Message-Authenticator but not

vice-versa.

 *

 * Don't add a Message-Authenticator if it's already there.

 */

 vp = pairfind(request->reply->vps, PW_MESSAGE_AUTHENTICATOR);

 if (!vp) {

 vp = paircreate(PW_MESSAGE_AUTHENTICATOR, PW_TYPE_OCTETS);

 memset(vp->vp_octets, 0, AUTH_VECTOR_LEN);

 vp->length = AUTH_VECTOR_LEN;

 pairadd(&(request->reply->vps), vp);

 }

 - 60 - 60

Adding bandwidth specifications to a AAA server

 /* only output the reply attribute when reply code is PW_EAP_SUCCESS */

 if ((!request->reply->code) && (reply->code != PW_EAP_SUCCESS)) {

 pairdelete(&request->reply->vps, PW_DEFAULT_BANDWIDTH);

 pairdelete(&request->reply->vps, PW_MAX_BANDWIDTH);

 pairdelete(&request->reply->vps, PW_KTH_Default_Bandwidth);

 pairdelete(&request->reply->vps, PW_KTH_Max_Bandwidth);

 vp_printlist(stdout, request->reply->vps);

 }

5. Bandwidth negotiation function code

/the bandwidth negotiation function

int band_width (int user_name int request_width)

{

 int max_width;

 max_width = value_sql (user_name, attribute value=194);

 if (request_width > max_width)

 {

 return 0;

 }

 else

 {

 return request_width;

 }

}

 - 61 - 61

Adding bandwidth specifications to a AAA server

Appendix III. All test results in this thesis

1. Authentication success results (without any new attributes)

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./radtest
shelly hello localhost 1812 testing123

Sending Access-Request of id 140 to 127.0.0.1 port 1812
 User-Name = "shelly"
 User-Password = "hello"
 NAS-IP-Address = 127.0.0.2
 NAS-Port = 1812

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=140,

length=29
 Reply-Message = "100:200"

The bandwidth information recevied is:
default_bandwidth: 100
max_bandwidth: 200

 - 62 - 62

Adding bandwidth specifications to a AAA server

2. Authentication success results (with new attributes) by “radtest” command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main ./radtest
fredf fredf localhost 1812 testing123

Sending Access-Request of id 214 to 127.0.0.1 port 1812
 User-Name = "fredf"
 User-Password = "fredf"
 NAS-IP-Address = 127.0.0.2
 NAS-Port = 1812

rad_recv: Access-Accept packet from host 127.0.0.1 port 1812, id=214,
length=68

 Reply-Message = "Hello fredf!"
 Default-BandWidth = "100"
 Max-Bandwidth = "200"
 KTH-default-bandwidth = 3
 KTH-max-bandwidth = 4

Received response ID 214, code 2, length = 68
 Reply-Message = "Hello fredf!"
 Default-BandWidth = "100"
 Max-Bandwidth = "200"
 KTH-default-bandwidth = 3
 KTH-max-bandwidth = 4
 name: Reply-Message attribute: 18 vendor: 0
 name: Default-BandWidth attribute: 193 vendor: 0
 name: Max-Bandwidth attribute: 194 vendor: 0
 vendor: KTH name: KTH-default-bandwidth attribute: 3 vendor: 933
 vendor: KTH name: KTH-max-bandwidth attribute: 4 vendor: 933

The DEFAULT bandwidth information recevied is:
default_bandwidth: 100
The MAX bandwidth information received is:
max_bandwidth: 200

 - 63 - 63

Adding bandwidth specifications to a AAA server

3. Authentication success results (with new attributes) by “eaptest” command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./eaptest
fred fred

+++> About to send encoded packet:
User-Name = "fredf"
Cleartext-Password = "fredf"
EAP-Code = Response
EAP-Id = 210
EAP-Type-Identity = "fredf"
Message-Authenticator = 0x00

<+++ EAP decoded packet:
Reply-Message = "Hello fredf!"
EAP-Message = 0x01d300160410215716a8606857fd387004c142548c70
Message-Authenticator = 0x7efaaa66b147e2b35ad0a6c21ff61135
State = 0x05de8aa1050d8ebbd18207d5bd212ccc
EAP-Id = 211
EAP-Code = Request
EAP-Type-MD5 = 0x10215716a8606857fd387004c142548c70

+++> About to send encoded packet:
User-Name = "fredf"
Cleartext-Password = "fredf"
EAP-Code = Response
EAP-Id = 211
Message-Authenticator = 0x00000000000000000000000000000000
EAP-Type-MD5 = 0x102cd41af3a1c18cc935aea4ef7274f1d6
State = 0x05de8aa1050d8ebbd18207d5bd212ccc

<+++ EAP decoded packet:
Reply-Message = "Hello fredf!"
Default-BandWidth = "100"
Max-Bandwidth = "200"
KTH-default-bandwidth = 3
KTH-max-bandwidth = 4
EAP-Message = 0x03d30004
Message-Authenticator = 0xc3a8dfc9d623f39f293137a5d98e6fdc
User-Name = "fredf"
EAP-Id = 211
EAP-Code = Success

 - 64 - 64

Adding bandwidth specifications to a AAA server

4. Authentication results when password is incorrect by “radtest” command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./radtest
fredf nikos localhost 1812 testing123

Sending Access-Request of id 26 to 127.0.0.1 port 1812
User-Name = "fredf"
User-Password = "nikos"
NAS-IP-Address = 127.0.0.2
NAS-Port = 1812

rad_recv: Access-Reject packet from host 127.0.0.1 port 1812, id=26,
length=34

Reply-Message = "Hello fredf!"
Received response ID 26, code 3, length = 34

 Reply-Message = "Hello fredf!"
 name: Reply-Message attribute: 18 vendor: 0

The packet received does not contain DEFAULT bandwith information
The packet received does not contain MAX bandwith information

 - 65 - 65

Adding bandwidth specifications to a AAA server

5. Authentication results when password is incorrect by “eaptest” command

ccscenter:/home/jia/Desktop/jia/freeradius-server-2.0.5/src/main # ./eaptest
jia 12345

+++> About to send encoded packet:
User-Name = "jia"
 Cleartext-Password = "12345"
 EAP-Code = Response
 EAP-Id = 210
 EAP-Type-Identity = "jia"
 Message-Authenticator = 0x00

<+++ EAP decoded packet:
 EAP-Message = 0x01d30016041050d5a5903e3909bbbd8b243f0e32c046
 Message-Authenticator = 0x7d2be2347c0665e73cfdf98964c41584
 State = 0xc17a5dbdc1a95900978f167a5e24092b
 EAP-Id = 211
 EAP-Code = Request
 EAP-Type-MD5 = 0x1050d5a5903e3909bbbd8b243f0e32c046

+++> About to send encoded packet:
 User-Name = "jia"
 Cleartext-Password = "12345"
 EAP-Code = Response
 EAP-Id = 211
 Message-Authenticator = 0x00000000000000000000000000000000
 EAP-Type-MD5 = 0x1085a7272f27adac8d71c8d1daf6995136
 State = 0xc17a5dbdc1a95900978f167a5e24092b

<+++ EAP decoded packet:
 EAP-Message = 0x04d30004
 Message-Authenticator = 0x0ebf5331dc6aed18ef9cfa86610fdaa9
 EAP-Id = 211
 EAP-Code = Failure

 - 66 - 66

Adding bandwidth specifications to a AAA server

Appendix IV. The working process log for Non-binary

RADIUS when authentication succeeds

FreeRADIUS Version 2.0.5, for host i686-pc-linux-gnu, built on Sep 2 2008 at 13:26:46

Copyright (C) 1999-2008 The FreeRADIUS server project and contributors.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A

PARTICULAR PURPOSE.

You may redistribute copies of FreeRADIUS under the terms of the

GNU General Public License v2.

Starting - reading configuration files ...

including configuration file /usr/local/etc/raddb/radiusd.conf

including configuration file /usr/local/etc/raddb/proxy.conf

including configuration file /usr/local/etc/raddb/clients.conf

including configuration file /usr/local/etc/raddb/snmp.conf

including files in directory /usr/local/etc/raddb/modules/

including configuration file /usr/local/etc/raddb/modules/expiration

including configuration file /usr/local/etc/raddb/modules/smbpasswd

including configuration file /usr/local/etc/raddb/modules/attr_rewrite

including configuration file /usr/local/etc/raddb/modules/echo

including configuration file /usr/local/etc/raddb/modules/mac2ip

including configuration file /usr/local/etc/raddb/modules/attr_filter

including configuration file /usr/local/etc/raddb/modules/ldap

including configuration file /usr/local/etc/raddb/modules/krb5

including configuration file /usr/local/etc/raddb/modules/sradutmp

including configuration file /usr/local/etc/raddb/modules/passwd

including configuration file /usr/local/etc/raddb/modules/acct_unique

including configuration file /usr/local/etc/raddb/modules/logintime

including configuration file /usr/local/etc/raddb/modules/counter

including configuration file /usr/local/etc/raddb/modules/chap

including configuration file /usr/local/etc/raddb/modules/files

including configuration file /usr/local/etc/raddb/modules/exec

including configuration file /usr/local/etc/raddb/modules/digest

including configuration file /usr/local/etc/raddb/modules/mac2vlan

including configuration file /usr/local/etc/raddb/modules/sql_log

including configuration file /usr/local/etc/raddb/modules/pam

including configuration file /usr/local/etc/raddb/modules/realm

including configuration file /usr/local/etc/raddb/modules/pap

including configuration file /usr/local/etc/raddb/modules/mschap

including configuration file /usr/local/etc/raddb/modules/checkval

including configuration file /usr/local/etc/raddb/modules/expr

including configuration file /usr/local/etc/raddb/modules/etc_group

including configuration file /usr/local/etc/raddb/modules/ippool

 - 67 - 67

Adding bandwidth specifications to a AAA server

including configuration file /usr/local/etc/raddb/modules/radutmp

including configuration file /usr/local/etc/raddb/modules/detail.log

including configuration file /usr/local/etc/raddb/modules/preprocess

including configuration file /usr/local/etc/raddb/modules/unix

including configuration file /usr/local/etc/raddb/modules/always

including configuration file /usr/local/etc/raddb/modules/detail

including configuration file /usr/local/etc/raddb/modules/policy

including configuration file /usr/local/etc/raddb/eap.conf

including configuration file /usr/local/etc/raddb/sql.conf

including configuration file /usr/local/etc/raddb/sql/MySQL/dialup.conf

including configuration file /usr/local/etc/raddb/sql/MySQL/counter.conf

including configuration file /usr/local/etc/raddb/policy.conf

including files in directory /usr/local/etc/raddb/sites-enabled/

including configuration file /usr/local/etc/raddb/sites-enabled/inner-tunnel

including configuration file /usr/local/etc/raddb/sites-enabled/default

including dictionary file /usr/local/etc/raddb/dictionary

main {

 prefix = "/usr/local"

 localstatedir = "/usr/local/var"

 logdir = "/usr/local/var/log/radius"

 libdir = "/usr/local/lib"

 radacctdir = "/usr/local/var/log/radius/radacct"

 hostname_lookups = no

 max_request_time = 30

 cleanup_delay = 5

 max_requests = 1024

 allow_core_dumps = no

 pidfile = "/usr/local/var/run/radiusd/radiusd.pid"

 checkrad = "/usr/local/sbin/checkrad"

 debug_level = 0

 proxy_requests = yes

 log {

 stripped_names = no

 auth = no

 auth_badpass = no

 auth_goodpass = no

 }

}

 client localhost {

 ipaddr = 127.0.0.1

 require_message_authenticator = no

 secret = "testing123"

 nastype = "other"

 }

 - 68 - 68

Adding bandwidth specifications to a AAA server

radiusd: #### Loading Realms and Home Servers ####

 proxy server {

 retry_delay = 5

 retry_count = 3

 default_fallback = no

 dead_time = 120

 wake_all_if_all_dead = no

 }

 home_server localhost {

 ipaddr = 127.0.0.1

 port = 1812

 type = "auth"

 secret = "testing123"

 response_window = 20

 max_outstanding = 65536

 zombie_period = 40

 status_check = "status-server"

 ping_check = "none"

 ping_interval = 30

 check_interval = 30

 num_answers_to_alive = 3

 num_pings_to_alive = 3

 revive_interval = 120

 status_check_timeout = 4

 }

 home_server_pool my_auth_failover {

 type = fail-over

 home_server = localhost

 }

 realm example.com {

 auth_pool = my_auth_failover

 }

 realm LOCAL {

 }

radiusd: #### Instantiating modules ####

 instantiate {

 Module: Linked to module rlm_exec

 Module: Instantiating exec

 exec {

 wait = no

 input_pairs = "request"

 shell_escape = yes

 }

 Module: Linked to module rlm_expr

 - 69 - 69

Adding bandwidth specifications to a AAA server

 Module: Instantiating expr

 Module: Linked to module rlm_expiration

 Module: Instantiating expiration

 expiration {

 reply-message = "Password Has Expired "

 }

 Module: Linked to module rlm_logintime

 Module: Instantiating logintime

 logintime {

 reply-message = "You are calling outside your allowed timespan "

 minimum-timeout = 60

 }

 }

radiusd: #### Loading Virtual Servers ####

server inner-tunnel {

 modules {

 Module: Checking authenticate {...} for more modules to load

 Module: Linked to module rlm_pap

 Module: Instantiating pap

 pap {

 encryption_scheme = "auto"

 auto_header = no

 }

 Module: Linked to module rlm_chap

 Module: Instantiating chap

 Module: Linked to module rlm_mschap

 Module: Instantiating mschap

 mschap {

 use_mppe = yes

 require_encryption = no

 require_strong = no

 with_ntdomain_hack = no

 }

 Module: Linked to module rlm_unix

 Module: Instantiating unix

 unix {

 radwtmp = "/usr/local/var/log/radius/radwtmp"

 }

 Module: Linked to module rlm_eap

 Module: Instantiating eap

 eap {

 default_eap_type = "md5"

 timer_expire = 60

 ignore_unknown_eap_types = no

 - 70 - 70

Adding bandwidth specifications to a AAA server

 cisco_accounting_username_bug = no

 }

 Module: Linked to sub-module rlm_eap_md5

 Module: Instantiating eap-md5

 Module: Linked to sub-module rlm_eap_leap

 Module: Instantiating eap-leap

 Module: Linked to sub-module rlm_eap_gtc

 Module: Instantiating eap-gtc

 gtc {

 challenge = "Password: "

 auth_type = "PAP"

 }

 Module: Linked to sub-module rlm_eap_tls

 Module: Instantiating eap-tls

 tls {

 rsa_key_exchange = no

 dh_key_exchange = yes

 rsa_key_length = 512

 dh_key_length = 512

 verify_depth = 0

 pem_file_type = yes

 private_key_file = "/usr/local/etc/raddb/certs/server.pem"

 certificate_file = "/usr/local/etc/raddb/certs/server.pem"

 CA_file = "/usr/local/etc/raddb/certs/ca.pem"

 private_key_password = "whatever"

 dh_file = "/usr/local/etc/raddb/certs/dh"

 random_file = "/usr/local/etc/raddb/certs/random"

 fragment_size = 1024

 include_length = yes

 check_crl = no

 cipher_list = "DEFAULT"

 make_cert_command = "/usr/local/etc/raddb/certs/bootstrap"

 }

 Module: Linked to sub-module rlm_eap_ttls

 Module: Instantiating eap-ttls

 ttls {

 default_eap_type = "md5"

 copy_request_to_tunnel = no

 use_tunneled_reply = no

 virtual_server = "inner-tunnel"

 }

 Module: Linked to sub-module rlm_eap_peap

 Module: Instantiating eap-peap

 peap {

 - 71 - 71

Adding bandwidth specifications to a AAA server

 default_eap_type = "mschapv2"

 copy_request_to_tunnel = no

 use_tunneled_reply = no

 proxy_tunneled_request_as_eap = yes

 virtual_server = "inner-tunnel"

 }

 Module: Linked to sub-module rlm_eap_mschapv2

 Module: Instantiating eap-mschapv2

 mschapv2 {

 with_ntdomain_hack = no

 }

 Module: Checking authorize {...} for more modules to load

 Module: Linked to module rlm_realm

 Module: Instantiating suffix

 realm suffix {

 format = "suffix"

 delimiter = "@"

 ignore_default = no

 ignore_null = no

 }

 Module: Linked to module rlm_files

 Module: Instantiating files

 files {

 usersfile = "/usr/local/etc/raddb/users"

 acctusersfile = "/usr/local/etc/raddb/acct_users"

 preproxy_usersfile = "/usr/local/etc/raddb/preproxy_users"

 compat = "no"

 }

 Module: Checking session {...} for more modules to load

 Module: Linked to module rlm_radutmp

 Module: Instantiating radutmp

 radutmp {

 filename = "/usr/local/var/log/radius/radutmp"

 username = "%{User-Name}"

 case_sensitive = yes

 check_with_nas = yes

 perm = 384

 callerid = yes

 }

 Module: Checking post-proxy {...} for more modules to load

 Module: Checking post-auth {...} for more modules to load

 Module: Linked to module rlm_attr_filter

 Module: Instantiating attr_filter.access_reject

 attr_filter attr_filter.access_reject {

 - 72 - 72

Adding bandwidth specifications to a AAA server

 attrsfile = "/usr/local/etc/raddb/attrs.access_reject"

 key = "%{User-Name}"

 }

 }

}

server {

 modules {

 Module: Checking authenticate {...} for more modules to load

 Module: Checking authorize {...} for more modules to load

 Module: Linked to module rlm_preprocess

 Module: Instantiating preprocess

 preprocess {

 huntgroups = "/usr/local/etc/raddb/huntgroups"

 hints = "/usr/local/etc/raddb/hints"

 with_ascend_hack = no

 ascend_channels_per_line = 23

 with_ntdomain_hack = no

 with_specialix_jetstream_hack = no

 with_cisco_vsa_hack = no

 with_alvarion_vsa_hack = no

 }

 Module: Linked to module rlm_sql

 Module: Instantiating sql

 sql {

 driver = "rlm_sql_MySQL"

 server = "localhost"

 port = ""

 login = "radius"

 password = "radpass"

 radius_db = "radius"

 read_groups = yes

 sqltrace = no

 sqltracefile = "/usr/local/var/log/radius/sqltrace.sql"

 readclients = no

 deletestalesessions = yes

 num_sql_socks = 5

 sql_user_name = "%{User-Name}"

 default_user_profile = ""

 nas_query = "SELECT id, nasname, shortname, type, secret FROM nas"

 authorize_check_query = "SELECT id, username, attribute, value, op FROM

radcheck WHERE username = '%{SQL-User-Name}' ORDER BY id"

 authorize_reply_query = "SELECT id, username, attribute, value, op FROM

radreply WHERE username = '%{SQL-User-Name}' ORDER BY id"

 authorize_group_check_query = "SELECT id, groupname, attribute, Value,

 - 73 - 73

Adding bandwidth specifications to a AAA server

op FROM radgroupcheck WHERE groupname = '%{Sql-Group}'

ORDER BY id"

 authorize_group_reply_query = "SELECT id, groupname, attribute, value,

op FROM radgroupreply WHERE groupname = '%{Sql-Group}'

ORDER BY id"

 accounting_onoff_query = " UPDATE radacct SET

acctstoptime = '%S', acctsessiontime = unix_timestamp('%S')

- unix_timestamp(acctstarttime),

acctterminatecause = '%{Acct-Terminate-Cause}', acctstopdelay =

%{%{Acct-Delay-Time}:-0} WHERE acctstoptime IS NULL AND

nasipaddress = '%{NAS-IP-Address}' AND acctstarttime <= '%S'"

 accounting_update_query = " UPDATE radacct SET

framedipaddress = '%{Framed-IP-Address}', acctsessiontime =

'%{Acct-Session-Time}', acctinputoctets =

'%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', acctoutputoctets =

'%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}' WHERE acctsessionid = '%{Acct-Session-Id}'

AND username = '%{SQL-User-Name}' AND nasipaddress =

'%{NAS-IP-Address}'"

 accounting_update_query_alt = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm,

nasipaddress, nasportid, nasporttype, acctstarttime,

acctsessiontime, acctauthentic, connectinfo_start, acctinputoctets,

acctoutputoctets, calledstationid, callingstationid, servicetype,

framedprotocol, framedipaddress, acctstartdelay,

xascendsessionsvrkey) VALUES ('%{Acct-Session-Id}',

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

DATE_SUB('%S', INTERVAL (%{%{Acct-Session-Time}:-0} +

%{%{Acct-Delay-Time}:-0}) SECOND), '%{Acct-Session-Time}',

'%{Acct-Authentic}', '', '%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', '%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}', '%{Called-Station-Id}',

'%{Calling-Station-Id}', '%{Service-Type}', '%{Framed-Protocol}',

'%{Framed-IP-Address}', '0', '%{X-Ascend-Session-Svr-Key}')"

 accounting_start_query = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm,

nasipaddress, nasportid, nasporttype, acctstarttime,

acctstoptime, acctsessiontime, acctauthentic, connectinfo_start,

connectinfo_stop, acctinputoctets, acctoutputoctets, calledstationid,

callingstationid, acctterminatecause, servicetype, framedprotocol,

framedipaddress, acctstartdelay, acctstopdelay,

xascendsessionsvrkey) VALUES ('%{Acct-Session-Id}',

 - 74 - 74

Adding bandwidth specifications to a AAA server

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

'%S', NULL, '0', '%{Acct-Authentic}', '%{Connect-Info}',

'', '0', '0', '%{Called-Station-Id}', '%{Calling-Station-Id}', '',

'%{Service-Type}', '%{Framed-Protocol}', '%{Framed-IP-Address}',

'%{%{Acct-Delay-Time}:-0}', '0', '%{X-Ascend-Session-Svr-Key}')"

 accounting_start_query_alt = " UPDATE radacct SET

acctstarttime = '%S', acctstartdelay =

'%{%{Acct-Delay-Time}:-0}', connectinfo_start = '%{Connect-Info}'

WHERE acctsessionid = '%{Acct-Session-Id}' AND username =

'%{SQL-User-Name}' AND nasipaddress = '%{NAS-IP-Address}'"

 accounting_stop_query = " UPDATE radacct SET acctstoptime

= '%S', acctsessiontime = '%{Acct-Session-Time}',

acctinputoctets = '%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', acctoutputoctets =

'%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}', acctterminatecause =

'%{Acct-Terminate-Cause}', acctstopdelay =

'%{%{Acct-Delay-Time}:-0}', connectinfo_stop = '%{Connect-Info}'

WHERE acctsessionid = '%{Acct-Session-Id}' AND username =

'%{SQL-User-Name}' AND nasipaddress = '%{NAS-IP-Address}'"

 accounting_stop_query_alt = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm, nasipaddress, nasportid,

nasporttype, acctstarttime, acctstoptime, acctsessiontime,

acctauthentic, connectinfo_start, connectinfo_stop, acctinputoctets,

acctoutputoctets, calledstationid, callingstationid, acctterminatecause,

servicetype, framedprotocol, framedipaddress, acctstartdelay,

acctstopdelay) VALUES ('%{Acct-Session-Id}',

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

DATE_SUB('%S', INTERVAL (%{%{Acct-Session-Time}:-0} +

%{%{Acct-Delay-Time}:-0}) SECOND), '%S', '%{Acct-Session-Time}',

'%{Acct-Authentic}', '', '%{Connect-Info}',

'%{%{Acct-Input-Gigawords}:-0}' << 32 | '%{%{Acct-Input-Octets}:-0}',

'%{%{Acct-Output-Gigawords}:-0}' << 32 | '%{%{Acct-Output-Octets}:-0}',

'%{Called-Station-Id}', '%{Calling-Station-Id}',

'%{Acct-Terminate-Cause}', '%{Service-Type}', '%{Framed-Protocol}',

'%{Framed-IP-Address}', '0', '%{%{Acct-Delay-Time}:-0}')"

 group_membership_query = "SELECT groupname FROM radusergroup

WHERE username = '%{SQL-User-Name}' ORDER BY priority"

 connect_failure_retry_delay = 60

 simul_count_query = ""

 simul_verify_query = "SELECT radacctid, acctsessionid, username,

nasipaddress, nasportid, framedipaddress,

 - 75 - 75

Adding bandwidth specifications to a AAA server

callingstationid, framedprotocol FROM radacct

WHERE username = '%{SQL-User-Name}' AND acctstoptime

IS NULL"

 postauth_query = "INSERT INTO radpostauth (username,

pass, reply, authdate) VALUES

('%{User-Name}',

'%{%{User-Password}:-%{Chap-Password}}',

'%{reply:Packet-Type}', '%S')"

 safe-characters =

"@abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-_: /"

 }

rlm_sql (sql): Driver rlm_sql_MySQL (module rlm_sql_MySQL) loaded and linked

rlm_sql (sql): Attempting to connect to radius@localhost:/radius

rlm_sql (sql): starting 0

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #0

rlm_sql_MySQL: Starting connect to MySQL server for #0

rlm_sql (sql): Connected new DB handle, #0

rlm_sql (sql): starting 1

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #1

rlm_sql_MySQL: Starting connect to MySQL server for #1

rlm_sql (sql): Connected new DB handle, #1

rlm_sql (sql): starting 2

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #2

rlm_sql_MySQL: Starting connect to MySQL server for #2

rlm_sql (sql): Connected new DB handle, #2

rlm_sql (sql): starting 3

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #3

rlm_sql_MySQL: Starting connect to MySQL server for #3

rlm_sql (sql): Connected new DB handle, #3

rlm_sql (sql): starting 4

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #4

rlm_sql_MySQL: Starting connect to MySQL server for #4

rlm_sql (sql): Connected new DB handle, #4

 Module: Checking preacct {...} for more modules to load

 Module: Linked to module rlm_acct_unique

 Module: Instantiating acct_unique

 acct_unique {

 key = "User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address, NAS-Port"

 }

 Module: Checking accounting {...} for more modules to load

 Module: Linked to module rlm_detail

 Module: Instantiating detail

 detail {

 detailfile =

 - 76 - 76

Adding bandwidth specifications to a AAA server

"/usr/local/var/log/radius/radacct/%{Client-IP-Address}/detail-%Y%m%d"

 header = "%t"

 detailperm = 384

 dirperm = 493

 locking = no

 log_packet_header = no

 }

 Module: Instantiating attr_filter.accounting_response

 attr_filter attr_filter.accounting_response {

 attrsfile = "/usr/local/etc/raddb/attrs.accounting_response"

 key = "%{User-Name}"

 }

 Module: Checking session {...} for more modules to load

 Module: Checking post-proxy {...} for more modules to load

 Module: Checking post-auth {...} for more modules to load

 }

}

radiusd: #### Opening IP addresses and Ports ####

listen {

 type = "auth"

 ipaddr = *

 port = 0

}

listen {

 type = "acct"

 ipaddr = *

 port = 0

}

Listening on authentication address * port 1812

Listening on accounting address * port 1813

Listening on proxy address * port 1814

Ready to process requests.

rad_recv: Access-Request packet from host 127.0.0.1 port 1029, id=214, length=57

 User-Name = "fredf"

 User-Password = "fredf"

 NAS-IP-Address = 127.0.0.2

 NAS-Port = 1812

+- entering group authorize

++[preprocess] returns ok

++[chap] returns noop

++[mschap] returns noop

 rlm_realm: No '@' in User-Name = "fredf", looking up realm NULL

 rlm_realm: No such realm "NULL"

++[suffix] returns noop

 - 77 - 77

Adding bandwidth specifications to a AAA server

 rlm_eap: No EAP-Message, not doing EAP

++[eap] returns noop

++[unix] returns notfound

++[files] returns noop

 expand: %{User-Name} -> fredf

rlm_sql (sql): sql_set_user escaped user --> 'fredf'

rlm_sql (sql): Reserving sql socket id: 4

 expand: SELECT id, username, attribute, value, op FROM radcheck

WHERE username = '%{SQL-User-Name}' ORDER BY id -> SELECT id, username,

attribute, value, op FROM radcheck WHERE username = 'fredf'

ORDER BY id

rlm_sql (sql): User found in radcheck table

 expand: SELECT id, username, attribute, value, op FROM radreply

WHERE username = '%{SQL-User-Name}' ORDER BY id -> SELECT id, username,

attribute, value, op FROM radreply WHERE username = 'fredf'

ORDER BY id

 expand: SELECT groupname FROM radusergroup WHERE username =

'%{SQL-User-Name}' ORDER BY priority -> SELECT groupname FROM

radusergroup WHERE username = 'fredf' ORDER BY priority

rlm_sql (sql): Released sql socket id: 4

++[sql] returns ok

++[expiration] returns noop

++[logintime] returns noop

++[pap] returns updated

 rad_check_password: Found Auth-Type

auth: type "PAP"

+- entering group PAP

rlm_pap: login attempt with password "fredf"

rlm_pap: Using clear text password "fredf"

rlm_pap: User authenticated successfully

++[pap] returns ok

+- entering group post-auth

++[exec] returns noop

Sending Access-Accept of id 214 to 127.0.0.1 port 1029

 Reply-Message := "Hello fredf!"

 Default-BandWidth := "100"

 Max-Bandwidth := "200"

 KTH-default-bandwidth := 3

 KTH-max-bandwidth := 4

Finished request 0.

Going to the next request

Waking up in 4.9 seconds.

 - 78 - 78

Adding bandwidth specifications to a AAA server

Appendix V. The working process log for Non-binary

RADIUS when authentication fails

FreeRADIUS Version 2.0.5, for host i686-pc-linux-gnu, built on Sep 2 2008 at 13:26:46

Copyright (C) 1999-2008 The FreeRADIUS server project and contributors.

There is NO warranty; not even for MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.

You may redistribute copies of FreeRADIUS under the terms of the GNU General Public

License v2.

Starting - reading configuration files ...

including configuration file /usr/local/etc/raddb/radiusd.conf

including configuration file /usr/local/etc/raddb/proxy.conf

including configuration file /usr/local/etc/raddb/clients.conf

including configuration file /usr/local/etc/raddb/snmp.conf

including files in directory /usr/local/etc/raddb/modules/

including configuration file /usr/local/etc/raddb/modules/expiration

including configuration file /usr/local/etc/raddb/modules/smbpasswd

including configuration file /usr/local/etc/raddb/modules/attr_rewrite

including configuration file /usr/local/etc/raddb/modules/echo

including configuration file /usr/local/etc/raddb/modules/mac2ip

including configuration file /usr/local/etc/raddb/modules/attr_filter

including configuration file /usr/local/etc/raddb/modules/ldap

including configuration file /usr/local/etc/raddb/modules/krb5

including configuration file /usr/local/etc/raddb/modules/sradutmp

including configuration file /usr/local/etc/raddb/modules/passwd

including configuration file /usr/local/etc/raddb/modules/acct_unique

including configuration file /usr/local/etc/raddb/modules/logintime

including configuration file /usr/local/etc/raddb/modules/counter

including configuration file /usr/local/etc/raddb/modules/chap

including configuration file /usr/local/etc/raddb/modules/files

including configuration file /usr/local/etc/raddb/modules/exec

including configuration file /usr/local/etc/raddb/modules/digest

including configuration file /usr/local/etc/raddb/modules/mac2vlan

including configuration file /usr/local/etc/raddb/modules/sql_log

including configuration file /usr/local/etc/raddb/modules/pam

including configuration file /usr/local/etc/raddb/modules/realm

including configuration file /usr/local/etc/raddb/modules/pap

including configuration file /usr/local/etc/raddb/modules/mschap

including configuration file /usr/local/etc/raddb/modules/checkval

including configuration file /usr/local/etc/raddb/modules/expr

including configuration file /usr/local/etc/raddb/modules/etc_group

including configuration file /usr/local/etc/raddb/modules/ippool

including configuration file /usr/local/etc/raddb/modules/radutmp

 - 79 - 79

Adding bandwidth specifications to a AAA server

including configuration file /usr/local/etc/raddb/modules/detail.log

including configuration file /usr/local/etc/raddb/modules/preprocess

including configuration file /usr/local/etc/raddb/modules/unix

including configuration file /usr/local/etc/raddb/modules/always

including configuration file /usr/local/etc/raddb/modules/detail

including configuration file /usr/local/etc/raddb/modules/policy

including configuration file /usr/local/etc/raddb/eap.conf

including configuration file /usr/local/etc/raddb/sql.conf

including configuration file /usr/local/etc/raddb/sql/MySQL/dialup.conf

including configuration file /usr/local/etc/raddb/sql/MySQL/counter.conf

including configuration file /usr/local/etc/raddb/policy.conf

including files in directory /usr/local/etc/raddb/sites-enabled/

including configuration file /usr/local/etc/raddb/sites-enabled/inner-tunnel

including configuration file /usr/local/etc/raddb/sites-enabled/default

including dictionary file /usr/local/etc/raddb/dictionary

main {

 prefix = "/usr/local"

 localstatedir = "/usr/local/var"

 logdir = "/usr/local/var/log/radius"

 libdir = "/usr/local/lib"

 radacctdir = "/usr/local/var/log/radius/radacct"

 hostname_lookups = no

 max_request_time = 30

 cleanup_delay = 5

 max_requests = 1024

 allow_core_dumps = no

 pidfile = "/usr/local/var/run/radiusd/radiusd.pid"

 checkrad = "/usr/local/sbin/checkrad"

 debug_level = 0

 proxy_requests = yes

 log {

 stripped_names = no

 auth = no

 auth_badpass = no

 auth_goodpass = no

 }

}

 client localhost {

 ipaddr = 127.0.0.1

 require_message_authenticator = no

 secret = "testing123"

 nastype = "other"

 }

radiusd: #### Loading Realms and Home Servers ####

 - 80 - 80

Adding bandwidth specifications to a AAA server

 proxy server {

 retry_delay = 5

 retry_count = 3

 default_fallback = no

 dead_time = 120

 wake_all_if_all_dead = no

 }

 home_server localhost {

 ipaddr = 127.0.0.1

 port = 1812

 type = "auth"

 secret = "testing123"

 response_window = 20

 max_outstanding = 65536

 zombie_period = 40

 status_check = "status-server"

 ping_check = "none"

 ping_interval = 30

 check_interval = 30

 num_answers_to_alive = 3

 num_pings_to_alive = 3

 revive_interval = 120

 status_check_timeout = 4

 }

 home_server_pool my_auth_failover {

 type = fail-over

 home_server = localhost

 }

 realm example.com {

 auth_pool = my_auth_failover

 }

 realm LOCAL {

 }

radiusd: #### Instantiating modules ####

 instantiate {

 Module: Linked to module rlm_exec

 Module: Instantiating exec

 exec {

 wait = no

 input_pairs = "request"

 shell_escape = yes

 }

 Module: Linked to module rlm_expr

 Module: Instantiating expr

 - 81 - 81

Adding bandwidth specifications to a AAA server

 Module: Linked to module rlm_expiration

 Module: Instantiating expiration

 expiration {

 reply-message = "Password Has Expired "

 }

 Module: Linked to module rlm_logintime

 Module: Instantiating logintime

 logintime {

 reply-message = "You are calling outside your allowed timespan "

 minimum-timeout = 60

 }

 }

radiusd: #### Loading Virtual Servers ####

server inner-tunnel {

 modules {

 Module: Checking authenticate {...} for more modules to load

 Module: Linked to module rlm_pap

 Module: Instantiating pap

 pap {

 encryption_scheme = "auto"

 auto_header = no

 }

 Module: Linked to module rlm_chap

 Module: Instantiating chap

 Module: Linked to module rlm_mschap

 Module: Instantiating mschap

 mschap {

 use_mppe = yes

 require_encryption = no

 require_strong = no

 with_ntdomain_hack = no

 }

 Module: Linked to module rlm_unix

 Module: Instantiating unix

 unix {

 radwtmp = "/usr/local/var/log/radius/radwtmp"

 }

 Module: Linked to module rlm_eap

 Module: Instantiating eap

 eap {

 default_eap_type = "md5"

 timer_expire = 60

 ignore_unknown_eap_types = no

 cisco_accounting_username_bug = no

 - 82 - 82

Adding bandwidth specifications to a AAA server

 }

 Module: Linked to sub-module rlm_eap_md5

 Module: Instantiating eap-md5

 Module: Linked to sub-module rlm_eap_leap

 Module: Instantiating eap-leap

 Module: Linked to sub-module rlm_eap_gtc

 Module: Instantiating eap-gtc

 gtc {

 challenge = "Password: "

 auth_type = "PAP"

 }

 Module: Linked to sub-module rlm_eap_tls

 Module: Instantiating eap-tls

 tls {

 rsa_key_exchange = no

 dh_key_exchange = yes

 rsa_key_length = 512

 dh_key_length = 512

 verify_depth = 0

 pem_file_type = yes

 private_key_file = "/usr/local/etc/raddb/certs/server.pem"

 certificate_file = "/usr/local/etc/raddb/certs/server.pem"

 CA_file = "/usr/local/etc/raddb/certs/ca.pem"

 private_key_password = "whatever"

 dh_file = "/usr/local/etc/raddb/certs/dh"

 random_file = "/usr/local/etc/raddb/certs/random"

 fragment_size = 1024

 include_length = yes

 check_crl = no

 cipher_list = "DEFAULT"

 make_cert_command = "/usr/local/etc/raddb/certs/bootstrap"

 }

 Module: Linked to sub-module rlm_eap_ttls

 Module: Instantiating eap-ttls

 ttls {

 default_eap_type = "md5"

 copy_request_to_tunnel = no

 use_tunneled_reply = no

 virtual_server = "inner-tunnel"

 }

 Module: Linked to sub-module rlm_eap_peap

 Module: Instantiating eap-peap

 peap {

 default_eap_type = "mschapv2"

 - 83 - 83

Adding bandwidth specifications to a AAA server

 copy_request_to_tunnel = no

 use_tunneled_reply = no

 proxy_tunneled_request_as_eap = yes

 virtual_server = "inner-tunnel"

 }

 Module: Linked to sub-module rlm_eap_mschapv2

 Module: Instantiating eap-mschapv2

 mschapv2 {

 with_ntdomain_hack = no

 }

 Module: Checking authorize {...} for more modules to load

 Module: Linked to module rlm_realm

 Module: Instantiating suffix

 realm suffix {

 format = "suffix"

 delimiter = "@"

 ignore_default = no

 ignore_null = no

 }

 Module: Linked to module rlm_files

 Module: Instantiating files

 files {

 usersfile = "/usr/local/etc/raddb/users"

 acctusersfile = "/usr/local/etc/raddb/acct_users"

 preproxy_usersfile = "/usr/local/etc/raddb/preproxy_users"

 compat = "no"

 }

 Module: Checking session {...} for more modules to load

 Module: Linked to module rlm_radutmp

 Module: Instantiating radutmp

 radutmp {

 filename = "/usr/local/var/log/radius/radutmp"

 username = "%{User-Name}"

 case_sensitive = yes

 check_with_nas = yes

 perm = 384

 callerid = yes

 }

 Module: Checking post-proxy {...} for more modules to load

 Module: Checking post-auth {...} for more modules to load

 Module: Linked to module rlm_attr_filter

 Module: Instantiating attr_filter.access_reject

 attr_filter attr_filter.access_reject {

 attrsfile = "/usr/local/etc/raddb/attrs.access_reject"

 - 84 - 84

Adding bandwidth specifications to a AAA server

 key = "%{User-Name}"

 }

 }

}

server {

 modules {

 Module: Checking authenticate {...} for more modules to load

 Module: Checking authorize {...} for more modules to load

 Module: Linked to module rlm_preprocess

 Module: Instantiating preprocess

 preprocess {

 huntgroups = "/usr/local/etc/raddb/huntgroups"

 hints = "/usr/local/etc/raddb/hints"

 with_ascend_hack = no

 ascend_channels_per_line = 23

 with_ntdomain_hack = no

 with_specialix_jetstream_hack = no

 with_cisco_vsa_hack = no

 with_alvarion_vsa_hack = no

 }

 Module: Linked to module rlm_sql

 Module: Instantiating sql

 sql {

 driver = "rlm_sql_MySQL"

 server = "localhost"

 port = ""

 login = "radius"

 password = "radpass"

 radius_db = "radius"

 read_groups = yes

 sqltrace = no

 sqltracefile = "/usr/local/var/log/radius/sqltrace.sql"

 readclients = no

 deletestalesessions = yes

 num_sql_socks = 5

 sql_user_name = "%{User-Name}"

 default_user_profile = ""

 nas_query = "SELECT id, nasname, shortname, type, secret FROM nas"

 authorize_check_query = "SELECT id, username, attribute, value, op FROM

radcheck WHERE username = '%{SQL-User-Name}' ORDER BY id"

 authorize_reply_query = "SELECT id, username, attribute, value, op FROM

radreply WHERE username = '%{SQL-User-Name}' ORDER BY id"

 authorize_group_check_query = "SELECT id, groupname, attribute, Value,

op FROM radgroupcheck WHERE groupname = '%{Sql-Group}'

 - 85 - 85

Adding bandwidth specifications to a AAA server

ORDER BY id"

 authorize_group_reply_query = "SELECT id, groupname, attribute, value,

op FROM radgroupreply WHERE groupname = '%{Sql-Group}'

ORDER BY id"

 accounting_onoff_query = " UPDATE radacct SET

acctstoptime = '%S', acctsessiontime = unix_timestamp('%S')

- unix_timestamp(acctstarttime),

acctterminatecause = '%{Acct-Terminate-Cause}', acctstopdelay =

%{%{Acct-Delay-Time}:-0} WHERE acctstoptime IS NULL AND

nasipaddress = '%{NAS-IP-Address}' AND acctstarttime <= '%S'"

 accounting_update_query = " UPDATE radacct SET

framedipaddress = '%{Framed-IP-Address}', acctsessiontime =

'%{Acct-Session-Time}', acctinputoctets =

'%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', acctoutputoctets =

'%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}' WHERE acctsessionid = '%{Acct-Session-Id}'

AND username = '%{SQL-User-Name}' AND nasipaddress =

'%{NAS-IP-Address}'"

 accounting_update_query_alt = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm,

nasipaddress, nasportid, nasporttype, acctstarttime,

acctsessiontime, acctauthentic, connectinfo_start, acctinputoctets,

acctoutputoctets, calledstationid, callingstationid, servicetype,

framedprotocol, framedipaddress, acctstartdelay,

xascendsessionsvrkey) VALUES ('%{Acct-Session-Id}',

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

DATE_SUB('%S', INTERVAL (%{%{Acct-Session-Time}:-0} +

%{%{Acct-Delay-Time}:-0}) SECOND), '%{Acct-Session-Time}',

'%{Acct-Authentic}', '', '%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', '%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}', '%{Called-Station-Id}',

'%{Calling-Station-Id}', '%{Service-Type}', '%{Framed-Protocol}',

'%{Framed-IP-Address}', '0', '%{X-Ascend-Session-Svr-Key}')"

 accounting_start_query = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm,

nasipaddress, nasportid, nasporttype, acctstarttime,

acctstoptime, acctsessiontime, acctauthentic, connectinfo_start,

connectinfo_stop, acctinputoctets, acctoutputoctets, calledstationid,

callingstationid, acctterminatecause, servicetype, framedprotocol,

framedipaddress, acctstartdelay, acctstopdelay,

xascendsessionsvrkey) VALUES ('%{Acct-Session-Id}',

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

 - 86 - 86

Adding bandwidth specifications to a AAA server

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

'%S', NULL, '0', '%{Acct-Authentic}', '%{Connect-Info}',

'', '0', '0', '%{Called-Station-Id}', '%{Calling-Station-Id}', '',

'%{Service-Type}', '%{Framed-Protocol}', '%{Framed-IP-Address}',

'%{%{Acct-Delay-Time}:-0}', '0', '%{X-Ascend-Session-Svr-Key}')"

 accounting_start_query_alt = " UPDATE radacct SET

acctstarttime = '%S', acctstartdelay =

'%{%{Acct-Delay-Time}:-0}', connectinfo_start = '%{Connect-Info}'

WHERE acctsessionid = '%{Acct-Session-Id}' AND username =

'%{SQL-User-Name}' AND nasipaddress = '%{NAS-IP-Address}'"

 accounting_stop_query = " UPDATE radacct SET acctstoptime

= '%S', acctsessiontime = '%{Acct-Session-Time}',

acctinputoctets = '%{%{Acct-Input-Gigawords}:-0}' << 32 |

'%{%{Acct-Input-Octets}:-0}', acctoutputoctets =

'%{%{Acct-Output-Gigawords}:-0}' << 32 |

'%{%{Acct-Output-Octets}:-0}', acctterminatecause =

'%{Acct-Terminate-Cause}', acctstopdelay =

'%{%{Acct-Delay-Time}:-0}', connectinfo_stop = '%{Connect-Info}'

WHERE acctsessionid = '%{Acct-Session-Id}' AND username =

'%{SQL-User-Name}' AND nasipaddress = '%{NAS-IP-Address}'"

 accounting_stop_query_alt = " INSERT INTO radacct

(acctsessionid, acctuniqueid, username, realm, nasipaddress, nasportid,

nasporttype, acctstarttime, acctstoptime, acctsessiontime,

acctauthentic, connectinfo_start, connectinfo_stop, acctinputoctets,

acctoutputoctets, calledstationid, callingstationid, acctterminatecause,

servicetype, framedprotocol, framedipaddress, acctstartdelay,

acctstopdelay) VALUES ('%{Acct-Session-Id}',

'%{Acct-Unique-Session-Id}', '%{SQL-User-Name}',

'%{Realm}', '%{NAS-IP-Address}', '%{NAS-Port}', '%{NAS-Port-Type}',

DATE_SUB('%S', INTERVAL (%{%{Acct-Session-Time}:-0} +

%{%{Acct-Delay-Time}:-0}) SECOND), '%S', '%{Acct-Session-Time}',

'%{Acct-Authentic}', '', '%{Connect-Info}',

'%{%{Acct-Input-Gigawords}:-0}' << 32 | '%{%{Acct-Input-Octets}:-0}',

'%{%{Acct-Output-Gigawords}:-0}' << 32 | '%{%{Acct-Output-Octets}:-0}',

'%{Called-Station-Id}', '%{Calling-Station-Id}',

'%{Acct-Terminate-Cause}', '%{Service-Type}', '%{Framed-Protocol}',

'%{Framed-IP-Address}', '0', '%{%{Acct-Delay-Time}:-0}')"

 group_membership_query = "SELECT groupname FROM radusergroup

WHERE username = '%{SQL-User-Name}' ORDER BY priority"

 connect_failure_retry_delay = 60

 simul_count_query = ""

 simul_verify_query = "SELECT radacctid, acctsessionid, username,

nasipaddress, nasportid, framedipaddress,

callingstationid, framedprotocol FROM radacct

 - 87 - 87

Adding bandwidth specifications to a AAA server

WHERE username = '%{SQL-User-Name}' AND acctstoptime

IS NULL"

 postauth_query = "INSERT INTO radpostauth (username,

pass, reply, authdate) VALUES

('%{User-Name}',

'%{%{User-Password}:-%{Chap-Password}}',

'%{reply:Packet-Type}', '%S')"

 safe-characters =

"@abcdefghijklmnopqrstuvwxyzABCDEFGHIJKLMNOPQRSTUVWXYZ0123456789.-_: /"

 }

rlm_sql (sql): Driver rlm_sql_MySQL (module rlm_sql_MySQL) loaded and linked

rlm_sql (sql): Attempting to connect to radius@localhost:/radius

rlm_sql (sql): starting 0

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #0

rlm_sql_MySQL: Starting connect to MySQL server for #0

rlm_sql (sql): Connected new DB handle, #0

rlm_sql (sql): starting 1

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #1

rlm_sql_MySQL: Starting connect to MySQL server for #1

rlm_sql (sql): Connected new DB handle, #1

rlm_sql (sql): starting 2

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #2

rlm_sql_MySQL: Starting connect to MySQL server for #2

rlm_sql (sql): Connected new DB handle, #2

rlm_sql (sql): starting 3

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #3

rlm_sql_MySQL: Starting connect to MySQL server for #3

rlm_sql (sql): Connected new DB handle, #3

rlm_sql (sql): starting 4

rlm_sql (sql): Attempting to connect rlm_sql_MySQL #4

rlm_sql_MySQL: Starting connect to MySQL server for #4

rlm_sql (sql): Connected new DB handle, #4

 Module: Checking preacct {...} for more modules to load

 Module: Linked to module rlm_acct_unique

 Module: Instantiating acct_unique

 acct_unique {

 key = "User-Name, Acct-Session-Id, NAS-IP-Address, Client-IP-Address, NAS-Port"

 }

 Module: Checking accounting {...} for more modules to load

 Module: Linked to module rlm_detail

 Module: Instantiating detail

 detail {

 detailfile =

"/usr/local/var/log/radius/radacct/%{Client-IP-Address}/detail-%Y%m%d"

 - 88 - 88

Adding bandwidth specifications to a AAA server

 header = "%t"

 detailperm = 384

 dirperm = 493

 locking = no

 log_packet_header = no

 }

 Module: Instantiating attr_filter.accounting_response

 attr_filter attr_filter.accounting_response {

 attrsfile = "/usr/local/etc/raddb/attrs.accounting_response"

 key = "%{User-Name}"

 }

 Module: Checking session {...} for more modules to load

 Module: Checking post-proxy {...} for more modules to load

 Module: Checking post-auth {...} for more modules to load

 }

}

radiusd: #### Opening IP addresses and Ports ####

listen {

 type = "auth"

 ipaddr = *

 port = 0

}

listen {

 type = "acct"

 ipaddr = *

 port = 0

}

Listening on authentication address * port 1812

Listening on accounting address * port 1813

Listening on proxy address * port 1814

Ready to process requests.

rad_recv: Access-Request packet from host 127.0.0.1 port 1029, id=26, length=57

 User-Name = "fredf"

 User-Password = "nikos"

 NAS-IP-Address = 127.0.0.2

 NAS-Port = 1812

+- entering group authorize

++[preprocess] returns ok

++[chap] returns noop

++[mschap] returns noop

 rlm_realm: No '@' in User-Name = "fredf", looking up realm NULL

 rlm_realm: No such realm "NULL"

++[suffix] returns noop

 rlm_eap: No EAP-Message, not doing EAP

 - 89 - 89

Adding bandwidth specifications to a AAA server

++[eap] returns noop

++[unix] returns notfound

++[files] returns noop

 expand: %{User-Name} -> fredf

rlm_sql (sql): sql_set_user escaped user --> 'fredf'

rlm_sql (sql): Reserving sql socket id: 4

 expand: SELECT id, username, attribute, value, op FROM radcheck

WHERE username = '%{SQL-User-Name}' ORDER BY id -> SELECT id, username,

attribute, value, op FROM radcheck WHERE username = 'fredf'

ORDER BY id

rlm_sql (sql): User found in radcheck table

 expand: SELECT id, username, attribute, value, op FROM radreply

WHERE username = '%{SQL-User-Name}' ORDER BY id -> SELECT id, username,

attribute, value, op FROM radreply WHERE username = 'fredf'

ORDER BY id

 expand: SELECT groupname FROM radusergroup WHERE username =

'%{SQL-User-Name}' ORDER BY priority -> SELECT groupname FROM

radusergroup WHERE username = 'fredf' ORDER BY priority

rlm_sql (sql): Released sql socket id: 4

++[sql] returns ok

++[expiration] returns noop

++[logintime] returns noop

++[pap] returns updated

 rad_check_password: Found Auth-Type

auth: type "PAP"

+- entering group PAP

rlm_pap: login attempt with password "nikos"

rlm_pap: Using clear text password "fredf"

rlm_pap: Passwords don't match

++[pap] returns reject

auth: Failed to validate the user.

 Found Post-Auth-Type Reject

+- entering group REJECT

 expand: %{User-Name} -> fredf

 attr_filter: Matched entry DEFAULT at line 11

++[attr_filter.access_reject] returns updated

Sending Access-Reject of id 26 to 127.0.0.1 port 1029

 Reply-Message := "Hello fredf!"

Finished request 0.

Going to the next request

Waking up in 4.9 seconds.

Cleaning up request 0 ID 26 with timestamp +5

Ready to process requests.

 - 90 - 90

Adding bandwidth specifications to a AAA server

Appendix VI. RADIUS Packet Type Code

Message Reference

---- ------------------------- ---------

1 Access-Request [RFC2865]

2 Access-Accept [RFC2865]

3 Access-Reject [RFC2865]

4 Accounting-Request [RFC2865]

5 Accounting-Response [RFC2865]

6 Accounting-Status [RFC2882]

 (now Interim Accounting)

7 Password-Request [RFC2882]

8 Password-Ack [RFC2882]

9 Password-Reject [RFC2882]

10 Accounting-Message [RFC2882]

11 Access-Challenge [RFC2865]

12 Status-Server (experimental) [RFC2865]

13 Status-Client (experimental) [RFC2865]

21 Resource-Free-Request [RFC2882]

22 Resource-Free-Response [RFC2882]

23 Resource-Query-Request [RFC2882]

24 Resource-Query-Response [RFC2882]

25 Alternate-Resource-

 Reclaim-Request [RFC2882]

26 NAS-Reboot-Request [RFC2882]

27 NAS-Reboot-Response [RFC2882]

28 Reserved

29 Next-Passcode [RFC2882]

30 New-Pin [RFC2882]

 - 91 - 91

Adding bandwidth specifications to a AAA server

31 Terminate-Session [RFC2882]

32 Password-Expired [RFC2882]

33 Event-Request [RFC2882]

34 Event-Response [RFC2882]

40 Disconnect-Request [RFC3575]

41 Disconnect-ACK [RFC3575]

42 Disconnect-NAK [RFC3575]

43 CoA-Request [RFC3575]

44 CoA-ACK [RFC3575]

45 CoA-NAK [RFC3575]

50 IP-Address-Allocate [RFC2882]

51 IP-Address-Release [RFC2882]

250-253 Experimental Use

254 Reserved

255 Reserved [RFC2865]

 - 92 - 92

Adding bandwidth specifications to a AAA server

Appendix VII. RADIUS Attribute type

(Defined in RFC 2865)

VALUE Description Reference

------ ----------- --------

1 User-Name

2 User-Password

3 CHAP-Password

4 NAS-IP-Address

5 NAS-Port

6 Service-Type

7 Framed-Protocol

8 Framed-IP-Address

9 Framed-IP-Netmask

10 Framed-Routing

11 Filter-Id

12 Framed-MTU

13 Framed-Compression

14 Login-IP-Host

15 Login-Service

16 Login-TCP-Port

17 (unassigned)

18 Reply-Message

19 Callback-Number

20 Callback-Id

21 (unassigned)

22 Framed-Route

23 Framed-IPX-Network

24 State

 - 93 - 93

Adding bandwidth specifications to a AAA server

25 Class

26 Vendor-Specific

27 Session-Timeout

28 Idle-Timeout

29 Termination-Action

30 Called-Station-Id

31 Calling-Station-Id

32 NAS-Identifier

33 Proxy-State

34 Login-LAT-Service

35 Login-LAT-Node

36 Login-LAT-Group

37 Framed-AppleTalk-Link

38 Framed-AppleTalk-Network

39 Framed-AppleTalk-Zone

40 Acct-Status-Type [RFC2866]

41 Acct-Delay-Time [RFC2866]

42 Acct-Input-Octets [RFC2866]

43 Acct-Output-Octets [RFC2866]

44 Acct-Session-Id [RFC2866]

45 Acct-Authentic [RFC2866]

46 Acct-Session-Time [RFC2866]

47 Acct-Input-Packets [RFC2866]

48 Acct-Output-Packets [RFC2866]

49 Acct-Terminate-Cause [RFC2866]

50 Acct-Multi-Session-Id [RFC2866]

51 Acct-Link-Count [RFC2866]

52 Acct-Input-Gigawords [RFC2869]

53 Acct-Output-Gigawords [RFC2869]

54 (unassigned)

 - 94 - 94

Adding bandwidth specifications to a AAA server

55 Event-Timestamp [RFC2869]

56-59 (unassigned)

60 CHAP-Challenge

61 NAS-Port-Type

62 Port-Limit

63 Login-LAT-Port

64 Tunnel-Type [RFC2868]

65 Tunnel-Medium-Type [RFC2868]

66 Tunnel-Client-Endpoint [RFC2868]

67 Tunnel-Server-Endpoint [RFC2868]

68 Acct-Tunnel-Connection [RFC2867]

69 Tunnel-Password [RFC2868]

70 ARAP-Password [RFC2869]

71 ARAP-Features [RFC2869]

72 ARAP-Zone-Access [RFC2869]

73 ARAP-Security [RFC2869]

74 ARAP-Security-Data [RFC2869]

75 Password-Retry [RFC2869]

76 Prompt [RFC2869]

77 Connect-Info [RFC2869]

78 Configuration-Token [RFC2869]

79 EAP-Message [RFC2869]

80 Message-Authenticator [RFC2869]

81 Tunnel-Private-Group-ID [RFC2868]

82 Tunnel-Assignment-ID [RFC2868]

83 Tunnel-Preference [RFC2868]

84 ARAP-Challenge-Response [RFC2869]

85 Acct-Interim-Interval [RFC2869]

86 Acct-Tunnel-Packets-Lost [RFC2867]

87 NAS-Port-Id [RFC2869]

 - 95 - 95

Adding bandwidth specifications to a AAA server

88 Framed-Pool [RFC2869]

89 CUI [RFC-ietf-radext-chargeable-user-id-06.txt]

90 Tunnel-Client-Auth-ID [RFC2868]

91 Tunnel-Server-Auth-ID [RFC2868]

92-93 (Unassigned)

94 Originating-Line-Info [Trifunovic]

95 NAS-IPv6-Address [RFC3162]

96 Framed-Interface-Id [RFC3162]

97 Framed-IPv6-Prefix [RFC3162]

98 Login-IPv6-Host [RFC3162]

99 Framed-IPv6-Route [RFC3162]

100 Framed-IPv6-Pool [RFC3162]

101 Error-Cause Attribute [RFC3576]

102 EAP-Key-Name [RFC4072]

103 Digest-Response [RFC-ietf-radext-digest-auth-09.txt]

104 Digest-Realm [RFC-ietf-radext-digest-auth-09.txt]

105 Digest-Nonce [RFC-ietf-radext-digest-auth-09.txt]

106 Digest-Nextnonce [RFC-ietf-radext-digest-auth-09.txt]

107 Digest-Response-Auth [RFC-ietf-radext-digest-auth-09.txt]

108 Digest-Method [RFC-ietf-radext-digest-auth-09.txt]

109 Digest-URI [RFC-ietf-radext-digest-auth-09.txt]

110 Digest-Qop [RFC-ietf-radext-digest-auth-09.txt]

111 Digest-Algorithm [RFC-ietf-radext-digest-auth-09.txt]

112 Digest-Entity-Body-Hash [RFC-ietf-radext-digest-auth-09.txt]

113 Digest-CNonce [RFC-ietf-radext-digest-auth-09.txt]

114 Digest-Nonce-Count [RFC-ietf-radext-digest-auth-09.txt]

115 Digest-Username [RFC-ietf-radext-digest-auth-09.txt]

116 Digest-Opaque [RFC-ietf-radext-digest-auth-09.txt]

117 Digest-Auth-Param [RFC-ietf-radext-digest-auth-09.txt]

118 Digest-AKA-Auts [RFC-ietf-radext-digest-auth-09.txt]

 - 96 - 96

Adding bandwidth specifications to a AAA server

 119 Digest-Domain [RFC-ietf-radext-digest-auth-09.txt]

 120 Digest-Stale [RFC-ietf-radext-digest-auth-09.txt]

121 Digest-HA1 [RFC-ietf-radext-digest-auth-09.txt]

122 SIP-AOR [RFC-ietf-radext-digest-auth-09.txt]

123-191 (unassigned)

192-223 Experimental Use [RFC2058]

224-240 Implementation Specific [RFC2058]

241-255 Reserved [RFC2058]

RADIUS Attribute Values

Defined in RFC 2865 unless otherwise indicated.

Values for RADIUS Attribute 6, Service-Type:

1 Login

2 Framed

3 Callback Login

4 Callback Framed

5 Outbound

6 Administrative

7 NAS Prompt

8 Authenticate Only

9 Callback NAS Prompt

10 Call Check

11 Callback Administrative

12 Voice [Chiba]

13 Fax [Chiba]

14 Modem Relay [Chiba]

15 IAPP-Register [IEEE 802.11f][Kerry]

16 IAPP-AP-Check [IEEE 802.11f][Kerry]

17 Authorize Only [RFC3576]

 - 97 - 97

Adding bandwidth specifications to a AAA server

Values for RADIUS Attribute 7, Framed-Protocol:

1 PPP

2 SLIP

3 AppleTalk Remote Access Protocol (ARAP)

4 Gandalf proprietary SingleLink/MultiLink protocol

5 Xylogics proprietary IPX/SLIP

6 X.75 Synchronous

7 GPRS PDP Context [Moore]

Values for RADIUS Attribute 10, Framed-Routing:

0 None

1 Send routing packets

2 Listen for routing packets

3 Send and Listen

Values for RADIUS Attribute 13, Framed-Compression:

0 None

1 VJ TCP/IP header compression

2 IPX header compression

3 Stac-LZS compression

Values for RADIUS Attribute 15, Login-Service:

0 Telnet

1 Rlogin

2 TCP Clear

3 PortMaster (proprietary)

4 LAT

5 X25-PAD

6 X25-T3POS

 - 98 - 98

Adding bandwidth specifications to a AAA server

7 (unassigned)

8 TCP Clear Quiet (suppresses any NAS-generated connect string)

Values for RADIUS Attribute 29, Termination-Action:

0 Default

1 RADIUS-Request

Values for RADIUS Attribute 40, Acct-Status-Type [RFC 2866]:

1 Start [RFC 2866]

2 Stop [RFC 2866]

3 Interim-Update [RFC 2866]

4-6 (unassigned)

7 Accounting-On [RFC 2866]

8 Accounting-Off [RFC 2866]

9 Tunnel-Start [RFC 2867]

10 Tunnel-Stop [RFC 2867]

11 Tunnel-Reject [RFC 2867]

12 Tunnel-Link-Start [RFC 2867]

13 Tunnel-Link-Stop [RFC 2867]

14 Tunnel-Link-Reject [RFC 2867]

15 Failed [RFC 2866]

Values for RADIUS Attribute 45, Acct-Authentic [RFC 2866]:

1 RADIUS

2 Local

3 Remote

4 Diameter [Calhoun]

Values for RADIUS Attribute 49, Acct-Terminate-Cause [RFC 2866]:

1 User Request

 - 99 - 99

Adding bandwidth specifications to a AAA server

2 Lost Carrier

3 Lost Service

4 Idle Timeout

5 Session Timeout

6 Admin Reset

7 Admin Reboot

8 Port Error

9 NAS Error

10 NAS Request

11 NAS Reboot

12 Port Unneeded

13 Port Preempted

14 Port Suspended

15 Service Unavailable

16 Callback

17 User Error

18 Host Request

19 Supplicant Restart [RFC3580]

20 Reauthentication Failure [RFC3580]

21 Port Reinitialized [RFC3580]

22 Port Administratively Disabled [RFC3580]

Values for RADIUS Attribute 61, NAS-Port-Type [RFC 2865]:

 0 Async

 1 Sync

 2 ISDN Sync

 3 ISDN Async V.120

 4 ISDN Async V.110

 5 Virtual

 6 PIAFS

 - 100 - 100

Adding bandwidth specifications to a AAA server

 7 HDLC Clear Channel

 8 X.25

 9 X.75

 10 G.3 Fax

 11 SDSL - Symmetric DSL

 12 ADSL-CAP - Asymmetric DSL, Carrierless Amplitude Phase

 Modulation

 13 ADSL-DMT - Asymmetric DSL, Discrete Multi-Tone

 14 IDSL - ISDN Digital Subscriber Line

 15 Ethernet

 16 xDSL - Digital Subscriber Line of unknown type

 17 Cable

 18 Wireless - Other

 19 Wireless - IEEE 802.11

 20 Token-Ring [RFC3580]

 21 FDDI [RFC3580]

 22 Wireless - CDMA2000 [McCann]

 23 Wireless - UMTS [McCann]

 24 Wireless - 1X-EV [McCann]

 25 IAPP [IEEE 802.11f][Kerry]

 26 FTTP - Fiber to the Premises [Nyce]

27-29 Unassigned

 30 PPPoA - PPP over

ATM [RFC-zorn-radius-port-type-04.txt]

 31 PPPoEoA - PPP over Ethernet over

ATM [RFC-zorn-radius-port-type-04.txt]

 32 PPPoEoE - PPP over Ethernet over

Ethernet [RFC-zorn-radius-port-type-04.txt]

 33 PPPoEoVLAN - PPP over Ethernet over

VLAN [RFC-zorn-radius-port-type-04.txt]

 - 101 - 101

Adding bandwidth specifications to a AAA server

 34 PPPoEoQinQ - PPP over Ethernet over IEEE

802.1QinQ [RFC-zorn-radius-port-type-04.txt]

Values for RADIUS Attribute 64, Tunnel-Type [RFC 2868]:

1 Point-to-Point Tunneling Protocol (PPTP)

2 Layer Two Forwarding (L2F)

3 Layer Two Tunneling Protocol (L2TP)

4 Ascend Tunnel Management Protocol (ATMP)

5 Virtual Tunneling Protocol (VTP)

6 IP Authentication Header in the Tunnel-mode (AH)

7 IP-in-IP Encapsulation (IP-IP)

8 Minimal IP-in-IP Encapsulation (MIN-IP-IP)

9 IP Encapsulating Security Payload in the Tunnel-mode (ESP)

10 Generic Route Encapsulation (GRE)

11 Bay Dial Virtual Services (DVS)

12 IP-in-IP Tunneling

13 Virtual LANs (VLAN) [RFC3580]

Values for RADIUS Attribute 65, Tunnel-Medium-Type [RFC 2868]:

1 IPv4 (IP version 4)

2 IPv6 (IP version 6)

3 NSAP

4 HDLC (8-bit multidrop)

5 BBN 1822

6 802 (includes all 802 media plus Ethernet "canonical format")

7 E.163 (POTS)

8 E.164 (SMDS, Frame Relay, ATM)

9 F.69 (Telex)

10 X.121 (X.25, Frame Relay)

11 IPX

 - 102 - 102

Adding bandwidth specifications to a AAA server

12 Appletalk

13 Decnet IV

14 Banyan Vines

15 E.164 with NSAP format subaddress

Values for RADIUS Attribute 72, ARAP-Zone-Access [RFC 2869]:

1 Only allow access to default zone

2 Use zone filter inclusively

3 (not used)

4 Use zone filter exclusively

Values for RADIUS Attribute 76, Prompt [RFC 2869]:

0 No Echo

1 Echo

Values for RADIUS Attribute 101, Error-Cause Attribute [RFC3576]:

 201 Residual Session Context Removed

 202 Invalid EAP Packet (Ignored)

 401 Unsupported Attribute

 402 Missing Attribute

 403 NAS Identification Mismatch

 404 Invalid Request

 405 Unsupported Service

 406 Unsupported Extension

 501 Administratively Prohibited

 502 Request Not Routable (Proxy)

 503 Session Context Not Found

 504 Session Context Not Removable

 505 Other Proxy Processing Error

 506 Resources Unavailable

 - 103 - 103

Adding bandwidth specifications to a AAA server

 507 Request Initiated

 - 104 - 104

www.kth.se

COS/CCS 2008-19

	Chapter 1: Introduction to AAA
	1.1 AAA Protocol
	1.2 AAA Protocol application
	1.3 AAA Protocols
	1.3.1 RADIUS
	1.3.1.1 Basic operation of RADIUS
	1.3.1.2 RADIUS message exchange flow

	1.3.2 Diameter
	1.3.3 TACACS
	1.3.4 TACACS+

	1.4 Summary
	Chapter 2: Introduction to RADIUS
	2.1 Background
	2.2 RADIUS details
	2.2.1 RADIUS packet structure
	2.2.1.1 Code
	2.2.1.2 Identifier
	2.2.1.3 Length
	2.2.1.4 Authenticator
	2.2.1.5 Attributes

	2.2.2 IEEE 802.1x authenticators

	2.3 Widely used RADIUS servers
	2.3.1 Open source
	2.3.1.1 FreeRADIUS
	2.3.1.2 GNU Radius
	2.3.1.3 OpenRADIUS
	2.3.1.4 Cistron RADIUS
	2.3.1.5 BSDRadius
	2.3.1.6 TekRADIUS

	2.3.2 Commercial products (appliances)
	2.3.2.1 Infoblox RADIUSone
	2.3.2.2 Identity Engines Ignition
	2.3.2.3 Palette Mobilette Access Management Gateway

	2.3.3 Commercial (software) products

	2.4 Vulnerability of RADIUS
	2.5 Comparing RADIUS with Diameter

	Chapter 3: Improving AAA utilizing FreeRADIUS
	3.1 Why select FreeRADIUS?
	3.2 Theoretic improvements
	3.2.1 Analysis of the existing FreeRADIUS
	3.2.1.1 Major features of FreeRADIUS
	3.2.1.1.1 Cross-platform issues and source code
	3.2.1.1.2 Additional Server configuration attributes
	3.2.1.1.3 Selecting a particular configuration
	3.2.1.1.4 Authentication methods
	3.2.1.1.5 Authorization methods
	3.2.1.1.6 Accounting methods
	3.2.1.1.7 Dialup Admin Web Administration Interface
	3.2.1.1.8 Scripting Languages

	3.2.1.2 Current version 2.0.5 improvements and bug fixes

	3.2.2 Proposed improvement to AAA
	3.2.2.1 Non-binary solution of FreeRADIUS
	3.2.2.2 New message structure for non-binary solution
	3.2.2.2.1 Authentication success message
	3.2.2.2.2 Bandwidth negotiation

	3.3 Implementation of these improvements
	3.3.1 Modifying the database
	3.3.1.1 Define global attributes
	3.3.1.2 Define vendor specific attributes

	3.3.2 New authentication success message
	3.3.3 Bandwidth negotiation function

	Chapter 4: Analysis of the proposed extensions to FreeRADIUS
	4.1 Experimental results
	4.1.1 Experiment on non-binary RADIUS server without new attributes
	4.1.2 Experiment on non-binary RADIUS server with new attributes

	4.2 Comparing with other methods and improvements

	Chapter 5: Conclusions
	Chapter 6: Future work

