
Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-12

C A R L O S A N G E L E S P I Ñ A

Distribution of Context Information
using the Session Initiation Protocol

(SIP)

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Distribution of Context Information using the
Session Initiation Protocol (SIP)

Carlos Angeles Piña

angeles@kth.se

School of Information and Communication Technology

Royal Institute of Technology

Master of Science Thesis

Project conducted at Appear Networks

June 23, 2008

Academic Supervisor and Examiner, KTH

Professor Gerald Q. Maguire Jr.

Industrial Supervisor, Appear Networks

Alisa Devlic

i

ABSTRACT

 Context-aware applications are applications that exploit knowledge of the situation of

the user (i.e. the user’s context) to adapt their behavior, thus helping the user achieve his or her

daily tasks. Today, the transfer of context information needs to take place over unreliable and

dynamically changing networks. Moreover context information may be produced in different

devices connected to different networks. These difficulties have limited the development of

context-aware applications. This thesis presents a context distribution method exploiting the

event notification mechanisms of the Session Initiation Protocol (SIP), aiming to provide access

to context information regardless of where it is produced.

The context distribution component presented in this thesis uses SIP for Instant

Messaging and Presence Leveraging Extensions (SIMPLE) to enable context sharing by using a

SIP presence server, specifically the SIP Express Router (SER) and its presence module.

This context distribution component allows distribution of context information in both

synchronous and asynchronous mode. The distribution mode depends on the application

requirements for context distribution, as well as the nature and characteristics of the context-

information. In this thesis, based on system scalability, the user’s mobility, and latency -

recommendations are given about in which situations each mode is more suitable for

distributing context information.

The system was evaluated using a load generator. The evaluation revealed that the

server is highly scalable. The response time for synchronous retrieval of context information is

nearly constant, while in asynchronous mode the time to process a subscription increases with

the amount of information in the database regarding previous subscriptions. Notifications are

sent at a regular rate (≈2800 notifications per second); however there is a purposely random

delay (0 to 1 second), between an update of context information (i.e. receipt of a publish

message) and the start of notifications to subscribed users.

The requirements of the context-aware applications using the distribution component,

such as response time, have to be taken into account when deciding upon the mode of context

distribution for each application. This thesis provides some empirical data to help an

application developer make this selection.

ii

Sammanfattning
Kontext-medvetna (eng. Context-aware) applikationer är applikationer som utnyttjar

information om användarens situation (d.v.s. användarens kontext) och förändrar

applikationens beteende i syfte att hjälpa användaren i dennes vardagliga arbetsuppgiften. Idag

överförs kontextuell-information (eng. context information) i nätverk som är opålitliga och

dynamiskt föränderliga. Därtill tillkommer komplexiteten att kontextuell-information är ibland

producerad i olika noder anslutna till olika nätverk.Utvecklingen av kontext-medvetna

applikationer har hittills begränsats av ovannämnda svårigheter. Denna avhandling

presenterar en metod för att distribuera kontextuell-information genom användning av

mekanismer för händelsemeddelande (eng. event notification mechanisms) inbyggda i Session

Initiation Protocol (SIP). Målet är att undersöka hur metoden kan användas för att möjliggöra

tillgång till kontextuell-information oavsett vart den är producerad.

Komponenten för distribution av kontextuell data, som presenteras i denna uppsats,

använder SIP för direktmeddelanden (eng. Instant Messaging) och tekniken “Presence

Leveraging Extensions (SIMPLE)” för datadelning av kontextuell data (eng. Context sharing).

För detta ändamål används SIP närvaroserver (eng. SIP presence server), mer specifikt

modulen för närvaroinformation tillhörande SIP Expressroutrar (SER).

Komponenten för distribution av kontextuell information möjliggör både synkront och

asynkront distribution. Valet mellan de två beror delvist på applikationens kravspecifikation för

distribution av kontextuell information, delvist på typen av den kontextuella informationen.

Baserat på systemet skalbarhet (eng. Scalability), användarens rörlighet och latens (eng.

latency) kan man ge rekommendationer vilken av de två distributionssätten, synkront eller

asynkront, som är lämpligast för distributionen av kontextuell information.

Systemet utvärderades med hjälp av ett program som genererar belastning (eng. load

generator). Resultaten visar att systemet är mycket skalbart. Responstiden för synkront åtkomst

av kontextuell information är nästan konstant, medan responstiden för asynkront åtkomst ökar

med informationsmängden i databasen, i respekt till den föregående prenumerationen av

kontextändringar. Händelsemeddelande skickas regelbundet (2800 meddelande per sekund).

Vi har dock medvetet valt att skapa en slumpmässigt dröjsmål (0 till 1 sekund) mellan varje

uppdatering av kontextuell information (t.ex. en kvitto på en Publish-meddelande) och den

tidpunkten då händelsemeddelande skickas till de användare som prenumererar på

ändringarna.

För utvecklingen av varje kontext-medveten applikation, som distribuerar kontextuell

information måste man ta hänsyn till responstid vid beslut huruvida man ska välja synkront

eller asynkront sätt för distribution. Denna uppsats ger empirisk data som hjälper

applikationsutvecklare i detta val.

iii

Acknowledgements

 I would like to express my gratitude to my academic supervisor and examiner,

Profesor Gerald Quentin Maguire Jr, thank you for all the times you reviewed my thesis,

all the valuable comments you gave me help me to learn and to accomplish a better

work. I would also like to thank my industrial supervisor, Alisa Devlic, for her

invaluable assistance, support and guidance. Thank you for the innumerable times we

had discussions, for all the comments and advices you gave me, and for being a really

good friend.

 Thanks also to all my colleagues at Appear Networks, especially to the EU

Team: Attakorn, Giorgios, Hossein, Kai, and Vedran, for creating a very nice working

environment, I really had fun these last months. Also I should thank all my friends for

always being there.

 Last, I would like to thank my parents for their support, encouragement, and

endless love, through the duration of my studies.

iv

Table of Contents

List of Figures .. vi

List of Tables ... viii

List of Abbreviations and Acronyms .. ix

1. Introduction .. 1

1.1 Problem Statement ... 2

1.2 Objectives .. 2

1.3 Thesis Structure ... 3

2. An Emergency Scenario at an Airport .. 4

3. Background ... 7

3.1 The MUSIC Project .. 7

3.2 What is Context? ... 10

3.3 Context-Awareness .. 11

3.4 Context-Aware Applications ... 12

3.4.1 The PARCTab Mobile Computing System .. 12

3.4.2 Cyberguide ... 13

3.4.3 The DUMMBO Meeting Board and the Context Toolkit 13

3.5 Alternatives for distributing Context Information ... 14

3.6 Session Initiation Protocol (SIP) ... 15

3.6.1 Elements of a SIP Network .. 15

3.6.2 SIP Methods and Responses ... 16

3.6.3 Why use SIP for Distributing Context? .. 17

3.6.4 Reliability in SIP .. 17

3.7 SIP SIMPLE ... 18

3.7.1 SIP SIMPLE Messages ... 19

3.8 Context Modeling .. 25

3.9 Presence Information Data Format (PIDF) ... 27

3.10 Rich Presence Information Data Format (RPID) .. 28

3.11 SIP Express Router .. 32

3.12 Related Work in Context Distribution ... 33

3.12.1 A Location-Aware Content Delivery Service .. 33

v

3.12.2 MIDAS ... 34

3.12.3 Context Sharing in SIP-based Telephony Systems 34

3.12.4 A SIP infrastructure for Adaptive and Context-Aware Wireless Services .. 35

3.12.5 A Presence Server for Context-Aware Applications 36

4. Context Distribution using SIP .. 38

4.1 Context Server ... 39

4.1.1 SER Presence Module (pa) ... 40

4.2 Context entity and Watcher ... 41

5. Evaluation .. 43

5.1 One watcher and one contextity ... 45

5.2 Multiple Watchers and one contextity ... 48

5.3 One watcher, one contextity and multiple PUBLISH messages 55

5.4 One watcher and multiple contextities .. 57

5.5 Multiple watchers and multiple contextities ... 59

5.6 Summary of the tests performed .. 63

6. Suggestions for Distributing Context Information .. 66

6.1 Network Traffic ... 67

6.2 Latency .. 67

6.3 Asynchronous mode .. 69

6.4 Fetching Context Information ... 69

6.5 Polling for Context Information .. 70

How this fits in our Emergency Scenario? ... 70

7. Conclusions and Future Work ... 72

7.1 Conclusions ... 72

7.2 Future Work .. 73

References .. 75

Appendix A .. 79

Appendix B ... 83

Appendix C ... 92

Appendix D .. 93

vi

List of Figures

Figure 1. Task flow for a possible fire emergency at an airport 5

Figure 2. The layered MUSIC architecture ... 8

Figure 3. The MUSIC context middleware ... 8

Figure 4. MUSIC Network Architecture ... 9

Figure 5. Distributing context information using a SIP proxy server 10

Figure 6. The context toolkit architecture ... 14

Figure 7. SIP message flow for establishing and terminating a call 17

Figure 8. IETF Model for presence ... 19

Figure 9. Message flow for synchronous exchange of information 24

Figure 10. Message flow for asynchronous exchange of information 24

Figure 11. PIDF example... 28

Figure 12. Aggregating context information through a presence server 35

Figure 13. A PIDF schema for the location event ... 37

Figure 14. Elements of the Context Distribution component .. 38

Figure 15. RPID carrying location information... 41

Figure 16. Main Thread for the Load Generator ... 42

Figure 17. Response Time for the Asynchronous and Synchronous mode 44

Figure 18. Test Bed Configuration .. 45

Figure 19. One watcher and one contextity ... 46

Figure 20. Polling with one watcher and one contextity ... 47

Figure 21. Results from multiple requests messages (one contextity and one watcher in

synchronous mode) ... 47

Figure 22. Multiple watchers subscribing/requesting from one contextity 48

Figure 23. Results from Scalability Test – One contextity and Multiple Watchers

(messages sent in a burst) ... 49

vii

Figure 24. Notifications to 400 Watchers .. 50

Figure 25. Average time between notifications, varying number of watchers 51

Figure 26. Responses time for Synchronous and Asynchronous mode (i.e. Request vs

Subscription response time) - 400 messages sent in a burst .. 52

Figure 27. Bursts of 300 SUBSCRIBE/REQUEST messages 53

Figure 28. Time for serving bursts of 300 watchers, Synchronous and Asynchronous 53

Figure 29. subscription/request response time - sustained rate. 54

Figure 30. One watcher, one contextity, multiple PUBLISH messages........................ 56

Figure 31. Sending PUBLISH updates periodically (One contextity and one Watcher)

 .. 56

Figure 32. One watcher and multiple contextities ... 57

Figure 33. Scalability for PUBLISH messages sent in a burst 58

Figure 34. Time for Handling PUBLISH messages with 100 contextities 59

Figure 35. Multiple watchers and multiple contextities .. 60

Figure 36. Scalability when having multiple watchers and multiple contextities 60

Figure 37. Groups of watchers subscribing/requesting to multiple contextities. 61

Figure 38. Notifications with Multiple Watchers and Multiple Contextities 62

Figure 39. Notifications to Watchers subscribed to Publisher 92 62

viii

List of Tables

Table 1. Distribution of Context information .. 6

Table 2 SIP Methods ... 16

Table 3 SIP responses .. 16

Table 4. SIP IF-Match for publishing messages.. 20

Table 5. PUBLISH message .. 21

Table 6. NOTIFY message .. 22

Table 7. SUBSCRIBE message ... 23

Table 8. 200 OK message .. 23

Table 9. Extended Attributes of RPID... 30

Table 10. SER Configuration file structure ... 39

Table 11. Some SER configurable parameters .. 40

Table 12. Testbed .. 45

Table 13. Packet length in bytes for the tests .. 45

Table 14. Time response for one watcher and one contextity 46

Table 15. SUBSCRIBE and REQUEST response times when the database is loaded

with information PUBLISH messages ... 55

Table 16. Time for Handling PUBLISH messages ... 59

Table 17. Summary of test results ... 64

Table 18. Comparison between request and notification response time with 400

watchers .. 69

Table 19. Distribution mode for the Emergency Usage Case 71

ix

List of Abbreviations and Acronyms

3GPP Third Generation Partnership Project

CODEC Coder-Decoder

CONTEXTITY Context Entity

CPP Common Profiles for Presence

DUMMBO Dynamic Ubiquitous Mobile Meeting Board

HTTP Hyper Text Transfer Protocol

IETF Internet Engineering Task Force

IST Information Society Technology

MADAM Middleware for Adaptive Applications

MIDAS Middleware for the Deployment of Mobile Services in ad-hoc Networks

MUSIC Self-Adapting Applications for Mobile Users In Ubiquitous Computing Environments

PAN Personal Area Network

PIDF Presence Information Data Format

PRESENTITY Presence Entity

RFC Request For Comments

RPID Rich Presence Information Data Format

SCTP Stream Control Transmission Protocol

SER SIP Express Router

SIMPLE SIP for Instant Messaging and Presence Leveraging Extensions

SIMS Semantic Interfaces for Mobile Services

SIP Session Initiation Protocol

SMTP Simple Mail Transfer Protocol

TCP Transmission Control Protocol

TLS Transport Layer Security

UAC User Agent Client

UAS User Agent Server

UDP User Datagram Protocol

URI Uniform Resource Identifier

WLAN Wireless Local Area Network

XML Extensible Markup Language

1

1. Introduction

The popularity of mobile devices, such as smarthphones or handhelds, has

increased in recent years, and along with their increased adoption have come great

challenges to developers. Applications in mobile distributed environments should adapt

according to the situation and needs of the users. Schilit [1], defines such applications

as context-aware applications. This class of applications should exploit knowledge of

the user‟s context and take advantage of this information in order to adapt their behavior

accordingly. The result is both more useful and less cumbersome applications which

truly support the users.

The context information associated with a user includes all the information that

may affect the interaction between this user and a system. Contextual information

might include the location of the user, the temperature of their environment, date, time,

ambient brightness, ambient noise level, the available network bandwidth, the

remaining battery power of the device, the user‟s personal profile, etc.

Today, computers can be found everywhere, in mobile phones, music players,

cars, etc. In addition to difference in programmability (ranging from fixed function to

general purpose computers) theses device support different communication and

networking capabilities. Mark Weiser popularized the idea of having computing

anywhere and anytime [2], today this is known as ubiquitous computing. Because of

the decreasing prices and increasing adoption of computing and communications

systems, computers are becoming ubiquitous in our daily lives. Today a person

commonly employs several different devices, often highly specialized for specific

applications or use settings. Unlike a ubiquitous computing environment, where users

would not have to bring these devices with them - today users must bring much of their

computing and communications with them. This often causes problems as the user

needs to configure the device differently for use in different locations, via different

access networks, etc. In order to reduce this configuration and management burden from

the user, many believe that users could benefit from making more effective use of

information about their context, for example by allowing context-aware application to

help the user in their tasks.

The “Self-Adapting Applications for Mobile Users in Ubiquitous Computing

Environment” (MUSIC) project [3] is a project funded by the European Commission

under the Information Society Technology (IST) priority under the 6
th

 Framework

Programme as an Integrated Project. The MUSIC project aims to provide an open

platform that makes it technically and commercially feasible for the wider IT industry to

develop mobile applications that are context-aware (understand user‟s context), self

adapting (dynamically adapt to changes in context), and inherently distributed – while

supporting interactions between multiple users. More specifically the project‟s proposal

states:

2

“MUSIC will provide a design methodology and distributed system

architecture for the design and implementation of self-adapting

applications in ubiquitous computing environments. This will be

complemented with enhanced modeling languages for the specification of

context dependencies and adaptation capabilities, supported by model

specification, validation and simulation tools. This platform will be used to

develop trial services, based on a set of challenging application scenarios

with real market potential, having a central role: as sources of

requirements, to assess technical adequacy of the results, and to promote

the results.” [4]

 Applications developed using the MUSIC framework will be capable of

adapting in highly dynamic user and execution contexts while maintaining a high level

of usefulness across context changes. The MUSIC architecture [5] includes both

context and adaptation middleware. The context middleware is responsible for

monitoring, managing, and detecting changes in the user‟s context. The context

middleware also has the task of distributing contextual information to the relevant

nodes. The adaptation middleware controls, tunes, and monitors the adaptation of

applications according to context changes.

1.1 Problem Statement

 Context-aware systems should not be limited to a specific physical space or

network. Due to the wide variety of network technologies (e.g. WLAN, 3G, GPRS,

Bluetooth, etc.) context information may need to be shared among different context-

aware applications running on nodes (possibly) connected to different networks. Wei Li

[40] identified that the difficulty of distributing context information among context-

aware applications has limited the spreading of context-aware systems, especially

because context information providers may be widely dispersed throughout the Internet.

This thesis studies the distribution of contextual information for enabling applications

(that may be in a distributed environment) to take advantage of such information. The

MUSIC context middleware includes a context-distribution manager that provides

access to context information regardless of where it is produced. The context

distribution component is responsible for supporting both synchronous and

asynchronous access to context data, as well as for sharing context information among

different networked instances of the middleware available on different nodes.

1.2 Objectives

 Due to differences in the nature of the different elements of context information,

its distribution may need to be done in a synchronous fashion, as well as in an

asynchronous fashion in order to provide the relevant information to applications at the

proper time. This thesis has the objectifo of stydying how the Session Initiation

3

Protocol (SIP) may be used in order to share context information synchronously and

asynchronously. SIP offers a great variety of powerful features that are suitable for the

transmission of context information among devices. SIP is an open standard protocol

that is widely used by the networking industry and by the research community.

 The proposed approach for distributing context information used in this thesis is

based in the SIP SIMPLE (SIP for Instant Messaging and Presence Leveraging

Extensions). This protocol provides instant messaging and presence functionalities, but

can also be used for sharing context information in a SIP-enabled network. The context

distribution system presented in this thesis uses the SIP Express Router (SER), as a

presence/context server, and a SIP user agent for enabling context information delivery.

 The main goal of this thesis is to analyze and compare the synchronous and

asynchronous modes of context distribution in order to give recommendations about

when to use each mode, based on the desired scalability of the system and the response

time, while also considering the context dynamics.

1.3 Thesis Structure

 The remainder of this thesis is organized as follows: Chapter 2 presents a usage

case, via a scenario showing how context information distribution assists in coping with

an emergency situation at an airport. Chapter 3 explores and briefly describes related

protocols and the background needed to understand the proposed system. Chapter 4

describes the architecture and the methodology of the system for our proposed approach

for distributing context information. An evaluation of the system in terms of scalability

and response time is presented in Chapter 5. In Chapter 6 we provide some

suggestions about how to distribute context information based in the evaluation of

SIP/SIMPLE as a protocol for distributing context information. Finally Chapter 7

presents some conclusions and suggestions for future work in the area.

4

2. An Emergency Scenario at an Airport
This Chapter describes a usage case showing the need for distributing context

information through an emergency scenario in an airport. A context-aware application

is proposed in order to assist in coping with an emergency.

Aerodrome emergency planning is the process of preparing an airport to cope

with an emergency occurring at the airport or in its vicinity. The main goal of

emergency planning is to minimize the negative effects of an emergency particularly

with respect to saving lives and maintaining aircraft operations. The following user

scenario is based on the actual airport process from the Southwest Florida International

Airport and is an extension of a user case from Appear Networks [7].

 In order to assist the airport personnel in coping with an emergency at or near an

airport a context-aware application may be beneficial. A major requirement of this

application is that it dynamically reacts to the demanding emergency and security

situations that arise in the airport everyday by directing relevant information to the most

suitable response team, where suitability is in terms of abilities, equipment, roles,

location, etc.

 The National Fire Alarm Code (NPFA72) [6] norms state that “emergency teams

need to be able to correctly respond to a security situation within a critical three minute

window” before starting massive evacuation of premises. Within this three minute

window the emergency staff should discover an activated fire alarm and determine the

alarm‟s location, conclude whether the alarm‟s activation was legitimate or a “false

alarm”, handle the possible fire and reset this alarm in order to ensure passenger safety

and minimal disruption to the functioning of the airport [7]

 A context aware application may be helpful for such an emergency scenario at

an airport because properly handling the emergency involves making decisions in a

complex environment with hundreds of providers of context information. Moreover,

the system has to cover large areas of the airport and an emergency event may involve

coordination of dozens of different types of workers (guards, maintenance workers,

airline, police, fire, medical personnel, etc).

 A fire emergency at the airport requires the coordination between several

different units at the airport: command center, public relations, airlines, maintenance,

police, and fire department. Different tasks both must and should be performed in order

to properly deal with the emergency; some of these tasks should be performed in

parallel, while others are dependent on the completion of prior tasks.

Figure 1 shows the complete flow of tasks and events for handling a fire at the

airport. It can be seen that when a fire is detected by sensors an alert is sent to the

command center, to the public relations, fire, police, and maintenance departments. The

fire department is responsible for finding the source of the alarm, handling the possible

fire, and resetting the fire alarm panel. At the same time the police department should

control the crowds and manage the opening and close of doors. After the handling of

5

the fire the maintenance department should open the air conditioning baffles and close

the water valves. Finally the airline employees should restart the baggage conveyer

belt. In order to maintain airport operations all these tasks should be performed within a

3 minutes window in order to avoid initiating an evacuation of the whole airport.

Figure 1. Task flow for a possible fire emergency at an airport

 The context aware application, possibly running in a mobile device, may assist

in the coordination of the personnel; providing the relevant information for facilitating

the users making good decisions and increase the speed of their response. For instance

when a fire is detected by the sensors, an alert containing the location of the sensor(s),

this enables the visual display of this location on a map (or floor plans) – along with

displaying pertinent information about the emergency can be communicated to the

relevant personnel. The relevance of a worker is computed based on this person‟s

abilities, their current location, their equipment, and their completion of other tasks. A

fire alert will be sent to available fire department personnel close to the incident;

provided that they have the necessary equipment to deal with the problem. This alert

may also contain a map (including documentation about the water valves). At the same

time an alert containing information about the incident will be sent to the guards of the

airport closest to the emergency to inform them so that they can perform crowd control.

 After handling of the fire, some tasks have to be scheduled to be performed by

the maintenance unit. The context-aware application should assign tasks to different

maintenance workers according to their capabilities, location, presence information,

current activity, task completion progress, etc. The application will also track the

progress of the many different tasks, based on time (task assignment and planned

completion) and feedback received from each worker.

6

 In the emergency scenario several types of context information are involved:

each user‟s geographic location, location of the fire, presence information, each user‟s

profile, device type and capabilities, current task, task completion progress, available

network bandwidth, temperature, and presence of smoke, toxic fumes, etc.

Table 1. Distribution of Context information

Context With Whom?

Location of user Between user and control center

and peers

Location of fire Fire detector sending location to

other users and control center

User´s Profile Between users (workers,

firefighters, etc.) and the control

center

Presence Information Between users and the control

center

Current Task Between users and the control

center

Task completion progress Between users and the control

center

Available bandwidth With the control center

Temperature With the control center

Presence of smoke, fumes, etc. With the control center

 The context information produced by temperature, sensors, smoke detectors,

external applications, positioning systems, and a worker‟s profile should be distributed

among the different personnel involved in dealing with the emergency. This context

information may be distributed with different periodicity according to the characteristics

of the information and the current situation. Table 1 summarizes which information

may be distributed and among whom. Within this scenario the distribution of context is

important for coordinating the activities of workers and assisting then in their decision

making in order to solve their part of the problem. It is important to note that this

context application is not designed to be suitable for major emergencies, but rather is

focused on dealing with minor emergencies that can arise frequently in an airport. The

system is not designed to be suitable for large scale emergencies as this is not its target

market; thus it does not have program logic to marshal large numbers of responders nor

to interact with new entities (such as national or regional emergency personnel).

However, by focusing on the most frequently occurring minor and small scale

emergencies it should have greater applicability and produce savings for the typical

operations of an airport. Based on the evaluation of our context distribution approach

we will try to find which distribution mode is better for each type of context

information, this will be presented in Chapter 6.

7

3. Background
This Chapter provides an overview of topics that are useful for understanding

the work performed in this thesis. Also related work in the area is presented.

3.1 The MUSIC Project

Self-Adapting Applications for Mobile Users in Ubiquitous Computing

Environment (MUSIC) is an integrated project funded by the European Commission

under the Information Society Technology (IST) priority. The main objective of

MUSIC is to develop an open technology platform for software developers in order to

facilitate the development of context aware and self-adapting mobile applications,

capable of adapting in highly dynamic user and execution context -while maintaining a

high level of usefulness across context changes [3]. Self-adapting applications are

capable to dynamically adapt their functionality and internal implementation

mechanisms to changes in context.

MUSIC is an integrated project because it integrates and extends the results of

other European research and development projects, such as, Middleware for Adaptive

Applications (MADAM), Semantic Interfaces for Mobile Services (SIMS), and

Middleware for the Deployment of mobile services in ad-hoc networks (MIDAS).

The layered view of the MUSIC architecture [5] is shown in Figure 2. As can be

seen from the figure, the MUSIC architecture is divided into two main blocks: The

MUSIC Studio and the runtime environment. The MUSIC Studio represents a set of

tools that provide support to developers. These tools are needed in order to build the

adaptation model for applications. The runtime environment block is divided into three

different layers: system services, middleware, and applications.

The Application layer is responsible for managing the different MUSIC

applications running on top of the MUSIC middleware. The MUSIC middleware is

divided into the context middleware and the adaptation middleware. The context

middleware collects, organizes, manages, and shares context information - making this

information available to the adaptation middleware. The context middleware may also

be used directly by context-aware applications. The adaptation middleware analyzes the

changes of the context and its impact on the application(s) in order to adapt the set of

running applications to the current circumstances (e.g. resource situation).[5].

8

Figure 2. The layered MUSIC architecture

 The context middleware is composed of several blocks, as shown in Figure 3.

The context manager is the central hub of the context middleware. It is responsible for

coordinating the rest of the middleware components and interoprating with them. The

context providers manager communicates any data generated by the plugged-in sensors

to the context manager, and enables external context sensors to dynamically connect

and disconnect from the middleware.

The context query processor component reads parses and executes database-

style queries passed to the context middleware. This component has access to the

Context Cache (which that acts as a temporary storage for context information). The

context cache stores only the most recent historical context in order to provide quick

access to context clients. The context cache component interacts with the context

history component, so that the later can store historical context data for longer periods

of time. The ontology manager is responsible of the management of a set of ontologies

that can be used by other components of the context middleware or by applications.

Figure 3. The MUSIC context middleware

9

The MUSIC Distribution manager is the component within the MUSIC architecture

responsible for distributing context data among devices. The main function of this

component is to distribute context information within distributed context spaces.

Within the MUSIC project a context space is a collection of context types and values.

This context space is populated with information from context sensors. The context

distribution manager helps to avoid hardware replication and enables the ubiquitous

computing paradigm by providing methods for distributing context among different

devices and instances of the middleware.

The MUSIC network architecture is depicted in Figure 4. It includes three different

types of nodes:

i) Personal Area Network (PAN) nodes with a Bluetooth interface that can have

direct communication with other devices in the PAN.

ii) Nodes with Bluetooth and Wi-Fi interfaces linking the PAN devices with a

gateway node.

iii) Gateway nodes enabling communication between different PANs, WLANs, and

throughout the Internet.

Figure 4. MUSIC Network Architecture

 In this architecture the distribution manager distinguishes between two different

types of context distribution:

1) Context distribution in an ad hoc environment based on a WLAN service discovery

protocol presented in [8]. The main goal of this protocol is to discover peers and

exchange context information. For a deeper insight into this protocol and context

distribution scheme see [5] and [8].

2) Context Distribution in infrastructure-based environments using SIP. The idea

behind this context distribution method is that each device locally stores discovered

context information, which is distributed, synchronously and/or asynchronously to

remote devices that request this information. Whether the synchronous or

asynchronous mode of distribution is used depends on the characteristics of the

10

context information, such as how often it changes, the number of devices interested

in specific information, as well as the user‟s mobility. A SIP proxy server is used in

the Distribution Manager in order to receive queries and respond to them as shown

in Figure 5. The MUSIC distribution manager will take advantage of the SIP

addressing scheme (i.e. utilize URIs). All the devices with access to the SIP proxy

can make synchronous or asynchronous queries to the SIP proxy in order to retrieve

information concerning potential remote peers.

Figure 5. Distributing context information using a SIP proxy server

When a synchronous query occurs the peer must immediately responds to this

query. An asynchronous query occurs when an application subscribes to an event.

Subsequently, when a change (relevant to the subscribed event) occurs (while the

subscription is valid), the user will be notified of this change, thus decoupling the query

from the response. It is important to note that in the SIP event notification framework,

after a subscription, the user also gets an immediate response with the current status of

the peer within the subscribed event.

3.2 What is Context?

 Throughout the Ubiquitous Computing research community we can find several

definitions of context. Schilit and Theimer [9], were the first to introduce the term

context-aware, and they define context as “location, identities of nearby people and

objects and changes to those objects”. For Schilit the important components of the

contest are: where you are, who you are with, and what resources are nearby.

11

 Context is also defined by Schilit et al. [1] as the constantly changing execution

environment. This environment includes the computing environment (available

processors, devices capabilities, etc.), the user environment (location, social situation,

etc.), and the physical environment (light intensity, noise level, etc.).

 Dey and Abowd. [10] define context as “any information that can be used to

characterize the situation of an entity. An entity is a person, place, or object that is

considered relevant to the interaction between a user and an application, including the

user and applications themselves”.

 Based in some eariler definitions, the MUSIC project [11] uses context to denote

the circumstances and conditions under which services provided by applications and

other software systems (e. g. middleware) are being used. This context may be

subdivided into three main groups:

 User context related to the user of a service;

 System context that includes the properties of the execution environment of an

application and;

 Environmental context that reflects information concerning the object‟s

surroundings (e.g. location, weather, etc).

3.3 Context-Awareness

The first attempt to create a context-aware application occurred in 1992 with the

Olivetti Active Badge location system [12]. This system used wall-mounted sensors

responsible for collecting infrared IDs that were broadcasted by tags worn by building‟s

occupants. The first application that used this system routed telephone calls to the

extension nearest the intended recipient.

The first definition of context-aware computing was given by Schilit and Theimer

[9] as “software that adapts according to its location of use, the collection of nearby

people and objects, as well as changes to those objects over time”. This first definition

of context-aware applications limits the software to only adapt to context, however

applications may exploit context information not only for adaptation, but for executing

services, displaying information, etc.

 A more general definition of context-aware computing is given by Pascoe [13] as

“the ability of computing devices to detect and sense, interpret and respond to aspects

of a user’s local environment and the computing devices themselves”.

 Dey [10] gives the following definition “A system is context-aware if it uses context

to provide relevant information and/or services to the user, where relevancy depends on

the user’s task”. According to Dey, context-aware applications use context to perform

some behavior that can be: displaying context, automatically executing/adapting

services, or tagging captured information for easier retrieval.

12

 An extension to the previous definition is presented by Wei [14] describing the goal

of context-aware computing as “to provide computers with an awareness of user’s

situation by feeding them with various background (contextual) information, based on

that computers can take some actions on behalf of the users without their explicit

interference, thus making their attention more focused and interaction more efficient”.

 The definition of context-awareness used in the MUSIC [11] project follows

these earlier ideas. “Context-awareness is the ability of an application (possibly

middleware) to be conscious of the context and to act on its knowledge about the

context”. This definition emphasizes that context-aware applications should exploit the

knowledge of context as an integral part of their functionality.

3.4 Context-Aware Applications

 Throughout the Ubiquitous Computing research literature we can find a wide

variety of context-aware applications. The following subsections describe some of the

research that has contributed to greater understanding and exploitation of context-

awareness.

3.4.1 The PARCTab Mobile Computing System

 The Xerox PARCTab [15] used a palm-sized tablet computer capable of

communicating via a network of infrared (IR) transceivers. In this system the

PARCTab controlled the applications, but these were running in remote hosts, with the

results displayed on the tablet. Some of the applications running in the PARCTab

system used location information provided by the microcellular IR network, becoming

the first context-aware applications running on a handheld device.

 The main focus of the PARCTab was to function as a mobile personal digital

office assistant. Many of the PARCTab applications used context for adapting the user

interface, configuring the system, or as a criteria for extracting and presenting data to

the user. Some of the context elements used by the PARCTab are: location, the

presence of other mobile machines, the presence of people, time, nearby stationary

machines, and the state of the network file system. One of the simplest context aware

features was to automatically invert the display if the user was left-handed versus right-

handed. This was important because the buttons to interact with the device were along

one side - thus the user wanted to place these buttons under their thumb.

 Some of the applications that implemented context-awareness in the PARCTab

system are:

 Presenting information about the location of the user. This information could be

shown automatically or on request (e.g. when the user is at the library,

information about the library is shown.)

 Helping the user to find the most convenient local resource (e.g. the nearest

printer to the user.)

13

 Attaching a certain UNIX directory to a certain room, so when a user enters the

room all of the files of this directory are shown.

 For controlling the environment (e. g. for controlling the lights and temperature

of the current location.)

3.4.2 Cyberguide

 One of the most popular types of context-aware applications are systems dealing

with information about the surrounding environment. The Cyberguide [16] developed

at Georgia Tech is a context-aware tour guide in which the user‟s current location, as

well as a history of past location, are used to provide customized information or

services. The long-term vision of the Cyberguide includes knowing the location of the

user and his or her preferences in order to predict and answer question he or she might

pose and to facilitate interaction with other people and the environment.

 The Cyberguide is divided into four different components. The Map component

displays a map or maps of the physical environments that the tourist is visiting. The

information component provides information about the sights and area the tourist is

visiting. The positioning component is responsible for positioning the user within the

physical surroundings (i.e., computing the position of the user). Finally the

communications component enables the user to send and receive information.

3.4.3 The DUMMBO Meeting Board and the Context Toolkit

 As an effort for creating interoperable context-aware applications, Anind K. Dey

from Georgia Tech proposed an architecture for supporting the creation of context-

aware applications, known as the context toolkit [17]. The context toolkit was the first

research focused on providing generic support for context acquisition.

The context toolkit is based on three main abstractions: Widgets, Aggregators,

and Interpreters, as shown in Figure 6. A context widget is a “software component that

provides applications with access to context information from their operating

environment” [17]. The context widgets encapsulate information about a single piece of

context (e.g. location) and provide a uniform interface to applications, hiding all the

underlying context sensing mechanisms. Context widgets also provide reusable

building blocks of presentation to be defined once and reused, combined, and/or tailored

for use in many applications. Context widgets provide context information to

applications via polling and subscribing methods.

 The context aggregators are software entities responsible for aggregating context

information coming from different context widgets. A context aggregator can be seen

as a meta-widget acting as a gateway between applications and elementary context

widgets.

 Finally the interpreters are responsible of abstracting context information into

higher level context information. For instance identity, location, and sound level could

be use to deduce that a meeting has started. The context toolkit makes the distributed

14

nature of context transparent to applications. The context toolkit has been built in java

and is downloadable from http://www.cs.cmu.edu/~anind/context.html.

Figure 6. The context toolkit architecture

 Based on the context toolkit several applications have been deployed, an

example of one of these applications is the Dynamic Ubiquitous Mobile Meeting Board

(DUMMBO) [17] for capturing and providing access to informal and spontaneous

meetings. The DUMMBO system captures notes from the whiteboard and the audio of

a discussion. This application is context-aware because the recording of the meeting is

triggered when two or more persons are gathered close to the whiteboard. Also

information about the time and identities of the persons are captured in order to ease the

retrieval of the captured meetings.

3.5 Alternatives for distributing Context Information

Different approaches may be taken for distributing context information among

applications in a network. Some of these approaches rely on a central server, while

others are built on top of peer to peer architectures. Moreover, different protocols may

be used for context information distribution, such as HTTP, SIP, or JXTA. HTTP has

been a popular choice, however its main drawback is the increased latency and traffic

load related to the overhead of TCP; also HTTP is a stateless protocol without native

session support. In a peer to peer environment the JXTA protocol may be utilized for

disseminating context information, having all the advantages of peer to peer

architectures, especially avoiding having a single point of failure. However; the cost of

using JXTA, is the high latency relative to its startup [52] (i.e. local cache management,

rendevouz connection, etc.), which may be a critical issue for context aware

applications. Another popular approach is SIP/SIMPLE, which is a general purpose

http://www.cs.cmu.edu/~anind/context.html

15

communication protocol supporting interactive session establishment. SIP relies on

UDP and TCP, when using UDP it implements its own reliability mechanisms. The

current standardization of SIMPLE considers a centralized architecture; however a peer

to peer version of SIP is under standardization and can possibly be used in peer to peer

environments.

3.6 Session Initiation Protocol (SIP)

SIP is an application-layer control protocol for creating, modifying, and terminating

sessions with one or more participants. One of the strengths of SIP is that it provides

user mobility, thus a SIP proxy can decide where to direct a SIP request at the time of

the request – hence the target of the request can be in one or more locations and these

locations can dynamically change. Hence as long as the target has updated its proxy as

to its current location(s) it can be reached. The use of SIP URI enables the target to be

identified based either upon its own “name” (user@domain) or via a specific device

user@130.237.15.248. SIP allows the negotiation of any type of session between end

points.

SIP is a text based protocol similar to HTTP and SMTP, hence SIP messages are

human readable and the protocol is structured as a request-response protocol. SIP can

utilize UDP, TCP, TLS, or SCTP as transport protocols and typically port 5060 is used

for establishing a connection from a SIP user agent client to a SIP user agent server or

SIP proxy server.

3.6.1 Elements of a SIP Network

There are three main elements in a SIP network [18]:

1) User Agents executed in the end devices in a SIP network. These devices

originate SIP requests in order to send and receive data. A wide variety of

devices may act as a user agent (SIP phones, SIP softphones, etc.). Typically the

user agent is divided into two logical parts, a User Agent Client (UAC)

responsible for initiating requests and a User Agent Server (UAS) which

generates responses to received requests.

2) Servers are devices that assist user agents in session establishment and other

functions such as redirection. RFC 2543 [20] defines three different types of SIP

servers: proxy servers, redirect servers, and registrar servers. Proxy servers play

a central role in the SIP network, as they route SIP messages and can implement

complex decision logic [19]. A proxy receives SIP requests and forwards them

to another location. This proxy can be stateful (and remain part of the SIP

signaling) or stateless. The second type of server is the redirect server which

simply redirects requests or indicates where a request should be retried. Finally

16

the third type of server is the Registrar server, which is responsible for updating

the registering user agent‟s information in a location server.

3) Location Servers provide a database that contains location (current IP address)

information of user agents.

3.6.2 SIP Methods and Responses

The main methods defined in SIP are presented in Table 2; many of these methods

are defined in their own IETF RFCs.

Table 2 SIP Methods
Method Description

INVITE Session setup

ACK Acknowledgement to INVITE

BYE Session termination

CANCEL Session cancellation

REGISTER Registration of the user‟s URI

SUBSCRIBE Request notification of an event

PUBLISH Advertise and event

NOTIFY Transport of subscribed event notification

The responses in SIP include a number using a scheme inherited from HTTP. Table

3 shows the SIP response code classes.

Table 3 SIP responses
Class Description Examples

1xx Provisional or Informational 180 Ringing, 100 Trying

2xx Success 200 OK, 202 Accepted

3xx Redirection: (Request should be tried at

another location)

301 Moved permanently

4xx Client error 400 Bad Request, 404 Not found

5xx Server Error 500 Server Internal error,

501 Not Implemented.

6xx Global failure 600 Busy Everywhere

Figure 7 shows the normal flow of messages for setting up and terminating a SIP

call between two UACs. We note that messages 1, 4, and 5 are essential for

establishing the session. While messages 2 and 3 are purely informational and need not

be sent or received. : The “Bye” message can be sent by either party to terminate the

session. The other party responds with an OK to indicate that it has received this

message.

17

Figure 7. SIP message flow for establishing and terminating a call

An important feature of SIP is that it supports user, device, and session mobility,

hence users may utilize a wide variety of devices (phones, fax, handhelds, etc.), in

different locations, and can potentially switch between devices and change location

while in a session. Additionally, these devices can be attached to different types of

networks. A SIP connection is independent of the type of network or type of device the

parties may use at a given time [18]. Note that SIP messages may contain information

about where the device is, which ports are to be used, what CODECs are supported, etc.

In general, the INVITE message carries the media communication parameters proposed

by the caller, these can be modified by the callee in the OK response. Additionally, the

SIP signaling path is independent of the path which the session uses and even

asynchronous from the session (except that the SIP signaling to create the session must

occur before the session starts).

3.6.3 Why use SIP for Distributing Context?

SIP is a good candidate for provisioning context for several reasons. One of the

most important reasons is that SIP allows both synchronous and asynchronous events.

The usage of SIP URIs allows for symbolic addressing; this decouples the logical

address from the network address (i.e. IP address) – thus allowing devices to change

their network address. However, the most important reason to consider SIP for

distributing context is that it utilizes both a protocol and a communication infrastructure

that will be widely deployed in future mobile devices. SIP has been adopted by several

organizations (i.e. 3GPP), and is the foundation for session initiation and presence

support in desktop, mobile, and server platforms. We believe that this wide adoption

will make SIP events ubiquitously available [21].

3.6.4 Reliability in SIP

As stated before SIP can use many different transport protocols. Due to the fact that

some of these (such as UDP) are unreliable transport protocols, SIP must provide its

own reliability. SIP implements such reliability when using UDP by performing its

own retransmissions. RFC 2543 [20] states:

18

 A SIP client using UDP SHOULD retransmit a BYE, CANCEL,

OPTIONS, or REGISTER (also Notify) request with an exponential backoff,

starting at a T1 second interval, doubling the interval for each packet, and

capping off at a T2 second interval. This means that after the first packet is

sent, the second is sent T1 seconds later, the next 2*T1 seconds after that,

the next 4*T1 seconds after that, and so on, until the interval hits T2.

 The RFC also states that these retransmissions cease after sending eleven packets or

when the sender receives a definite response (i.e. 200 OK). The default values for T1

and T2 are 500 ms and 4 s respectively; however, larger values may be used. In the SIP

Express Router (SER) [29], an open source SIP proxy server, the values of these timers

may be modified if needed (See chapter 4).

3.7 SIP SIMPLE

Currently the IETF SIMPLE (SIP for Instant Messaging and Presence Leveraging

Extensions) working group [31], [23] is working on standardization of SIP Presence.

Presence is defined as the willingness and ability of a user to communicate with other

users on the network [32]. SIP SIMPLE was designed, as an interoperable and scalable

protocol for presence. One important feature of this standardization is that the presence

service may be used for other communication applications beyond short text messaging,

such as applications for alerting users about stock trading events, travel itinerary

changes, inventory events, supplies status, etc. [18]

 The IETF model for presence presented in [26] is shown in Figure 8, this model

defines a presentity (an abbreviation for “presence entity”), as a software entity that

provides information to the presence service. The model also defines an entity known

as a watcher. The watcher requests information from the presentity through the

presence service. The presence service or presence server is in charge of distributing

presence information concerning the presentity to the watchers, via a message, called a

Notification. A user agent is usually divided into two logical software entities. The

presence user agent is responsible of sending messages to the presence server for

publishing information and the watcher user agent is in charge of initiating request for

fetching presence information. In this model the presence protocol is any protocol

capable of enabling the exchange of presence information in close to real time, between

the different entities defined by the model.

19

Figure 8. IETF Model for presence

 In this IETF model three different types of watchers are defined:

Subscriber Asks to be notified of changes to one or more presentities.

Fetcher Makes a request for presence information.

Poller A fetcher that makes repeated requests to update presence information.

3.7.1 SIP SIMPLE Messages

 SIP SIMPLE provides the means for synchronous and asynchronous fetching of

information. This information is distributed using three SIP methods:

 SUBSCRIBE

 PUBLISH

 NOTIFY

 The synchronous fetch of information can be initiated by setting the expiration time

of the SUBSCRIBE message to zero seconds [22]. In order to avoid confusions, in the

remainder of this document the subscription with expiration equals to zero, will be

called a request and its notification as reply. A subscription always returns the current

state, resulting in a synchronous request, however if the expiration time is set to zero it

will cancel an outstanding subscription.

 SIP is a text based protocol and, hence the messages are readable to humans. SIP

messages contain a message header and in some cases a message body. The message

body for the NOTIFY and PUBLISH method utilizes the Presence Information Data

Format (PIDF), using an eXtensible Markup Language (XML) schema. PIDF will be

described in the next subsection. The syntax of the SIP-SIMPLE messages is shown in

Table 5, Table 6, Table 7, and Table 8.

20

 An important field in the PUBLISH message is the SIP-If-Match. This field is used

in order to refresh, remove, or modify an existing PUBLISH message. The initial

PUBLISH message does not contain this field. The value of this field is a random

number created by the presence server that can be found in the OK message that

acknowledges the initial PUBLISH message, as a SIP-Etag. In order to refresh a

message (i.e. to extend its validity) the presentity should send a new PUBLISH message

with the SIP-If-Match identifying the publication, with an expiration value greater than

zero and no message body (because the contents of the body will be the same as in the

initial publication). If the presentity wants to modify the contents of the publication,

then it should send a new PUBLISH message, with the SIP-If-Match identifying the

publication, an expiration value greater than zero, and the modified body. Finally the

presentity can remove the message by sending a PUBLISH message with the SIP-If-

Match, an expiration time of zero, and without a message body. Table 4, summarizes

how this SIP-If-Match should be used in order to refresh, remove, or modify a

PUBLISH message [25].

Table 4. SIP IF-Match for publishing messages

Message Type Body SIP-If-Match Expiration Value

Initial Yes No >0

Refresh No Yes >0

Modify Yes Yes >0

Remove No Yes =0

21

Table 5. PUBLISH message

Message Header Description

PUBLISH sip:Alice@192.168.100.153 SIP/2.0 The word PUBLISH indicates that this is a

PUBLISH message. The URI of the user publishing

the message is also stated. (The domain of the URI

is the SIP Proxy server domain)

Via: SIP/2.0/UDP

192.168.100.53:52768;branch=z9hG4bK-

d87543-3a35b0441f1d2b5c-1--d87543-;rport

This line indicates that UDP is used as transport

protocol. The second variable is the IP address and

port that shows the path the request has taken in the

SIP network. The branch is a random number used

to detect loops.

Max-Forwards: 70 This field is a limit in the number of hops that the

message can traverse for arriving to its destination.

Contact: <sip:Alice@192.168.100.53:1885> This field states the URI for direct communication

between UAS.

To: "Alice"<sip:Alice@192.168.100.153> The To and From fields are the same in the

PUBLISH message, containing the server‟s address.

From:

"Alice"<sip:Alice@192.168.100.153>;tag=a13

90c7b

Call-ID:

MmYzMGY4OTJiZmZjMDAxODE0NmJhM2

JiYTlhN2E2MDY.

The call-id is an identifier of the message. This call-

id should be the same in the OK message

acknowledging the PUBLISH message.

CSeq: 1 PUBLISH This Command Sequence number is incremented for

each subsequent request, it is used to distinguish a

retransmission from a new request.

Expires: 3600 It states the validity of the PUBLISH message in

seconds.

Content-Type: application/pidf+xml Indicates the type of message body attached.

Event:presence It indicates the category of the information

published in the body.

Content-Length: 578 Indicates length of the message in bytes

Message body

<?xml version='1.0' encoding='UTF-8'?>

 <presence

 xmlns='urn:ietf:params:xml:ns:pidf'

 xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

 xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

 xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

 entity='sip:Alice@192.168.100.153'>

 <tuple

 id='t8a130d03'>

 <status>

 <basic>

 open

 </basic>

 </status>

 <note>

 idle

 </note>

 <contact

 priority='0.8'>

 Carlos

 </contact>

 </tuple>

 </presence>

22

Table 6. NOTIFY message

Message Header Description

NOTIFY sip:Bob@192.168.100.53 SIP/2.0 The word NOTIFY indicates that it

is a notification.

Via: SIP/2.0/UDP

192.168.100.153;branch=z9hG4bKa957.04ab5e95.0

Same as in PUBLISH

To: "Bob"<sip:Bob@192.168.100.53>;tag=a1390c7b Identifies the recipient of the

Notification

From:

"Alice"<sip:Alice@192.168.100.153>;tag=a6a1c5f60faecf

035a1ae5b6e96

Identifies the sender of the

Notification.

CSeq: 1 NOTIFY Same as in PUBLISH.

Call-ID:

MmYzMGY4OTJiZmZjMDAxODE0NmJhM2JiYTlhN2E

2MDY

Same as in PUBLISH

Content-Length: 542 Same as in PUBLISH

Event: presence Same as in PUBLISH

Content-Type: application/pidf+xml;charset="UTF-8" Same as in PUBLISH

Subscription-State: active;expires=600 Indicates the state of the

Notification and the time left for

expiration.

Message Body

 <?xml version='1.0' encoding='UTF-8'?>

 <presence

 xmlns='urn:ietf:params:xml:ns:pidf'

 xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

 xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

 xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

 entity='sip:Alice@192.168.100.153'>

 <tuple

 id='t8a130d03'>

 <status>

 <basic>

 open

 </basic>

 </status>

 <note>

 idle

 </note>

 <contact

 priority='0.8'>

 Carlos

 </contact>

 </tuple>

 </presence>

23

Table 7. SUBSCRIBE message

Message Header Description

SUBSCRIBE sip:Bob@192.168.100.153

SIP/2.0

The Word SUBSCRIBE identifies the

message as a subscription.

Via: SIP/2.0/UDP

192.168.100.53:1886;branch=z9hG4bK-

d87543-3a35b0441f1d2b5c-1--d87543-;rport

Same as in PUBLISH

Max-Forwards: 70 Same as in PUBLISH

To: "Alice"<sip:Alice@192.168.100.153> It indicates to whom the user is subscribing

From:

"Bob"<sip:Bob@192.168.100.53>;tag=a139

0c7b

It indicates the sender‟s URI.

Call-ID:

MmYzMGY4OTJiZmZjMDAxODE0NmJh

M2JiYTlhN2E2MDY.

Same as in PUBLISH

CSeq: 1 SUBSCRIBE Same as in PUBLISH

Expires: 3600 It indicates the time in which the subscription

will be valid. No notifications will be sent

after the expiration of the subscription. A

value of 0 introduces a synchronous

fetching of information.

Event: presence It indicates the category of information that is

of interest for the watcher.

Content-Length: 0
This message doesn‟t contain a body

Table 8. 200 OK message

Message Header Description

SIP/2.0 200 OK This field identifies the message as

an OK

Via: SIP/2.0/UDP 192.168.100.153;branch=z7.04ab5e95.0 Same as in PUBLISH.

To:

"Alice"<sip:Alice@192.168.100.153>;tag=a6a1c5f60faecf

035a1ae5b6e96

Identifies the recipient of the OK

From: 192.168.100.153 Identifies the sender of the

message

Call-ID:

MmYzMGY4OTJiZmZjMDAxODE0NmJhM2JiYTlhN2E

It carries the Call-ID of the

message that is acknowledging.

CSeq: 1 NOTIFY It carries the CSeq of the message

Acknowledging.

SIP-Etag: 0xb58341kjl1345 It identifies the PUBLISH message

for refresh, modification of

removal. (only for OKs after

PUBLISH) This SIP-Etag is used

as SIP-If-Match as described in

Table 4.

Contact: 192.168.100.153 Same as in PUBLISH

Content-Length: 0 This message doesn‟t contain a

body.

24

 The message flow for a synchronous fetch is shown in Figure 9. As it can be seen

in the figure the request/response sequence results in four messages being exchanged

between the watcher and the SIP presence server (assuming that there are no messages

lost) Note that a SUBSCRIBE with expiration equal to zero was used for the request

and a NOTIFY for the reply.

Figure 9. Message flow for synchronous exchange of information

 The message flow using a Subscribe/Notification scheme is shown in Figure 10.

When a user subscribes to an event, he or she immediately receives a notification with

the status and presence information of the presentity. When the presentity modifies the

published information or the publication expires, then the watcher is notified

immediately.

Figure 10. Message flow for asynchronous exchange of information

25

3.8 Context Modeling

 Context data, as with other types of information, requires modeling mechanisms

to guarantee efficient and interoperable functionality. The main objective of context

modeling “is to develop uniform models, representation and query languages as well as

reasoning algorithms that facilitate context sharing and interoperability of applications.”

[46] A context model should provide an unambiguous definition of the context

artifacts, their representations, semantics, and usage. A context model should also take

into account the general characteristics of the context data, such as its temporal nature,

ambiguity, impreciseness, and incompleteness [11]. Furthermore, context models have

to address the requirements of pervasive computing, such as heterogeneity of context

sources, distribution, and mobility.

In the following subsections several context models will be described and summarized,

following the taxonomy of Thomas Strang [46]. Additionally, the context model

designed for the MUSIC project is summarized.

Key-value models

Key-value pairs are the simplest data structure used for modeling context. The

context data is stored as a key-value pair; the key will refer to the environment variable

and the value will hold the actual context data. Key-value models are easy to manage,

but lack capabilities for sophisticated structuring. An example of a key-value pair is

(status, busy) where status is the key and busy is the value.

Graphical models

Graphical models for context data are often based on the Unified Modeling

Language (UML) due to its generic structure. Various research projects have proposed

different approaches for modeling context through graphical models. An example is

ContextUML [48] that provides a model-driven approach to the development of

context-aware web services. The syntax of ContextUML includes a metamodel and a

notation. The metamodel defines the abstract syntax of the language and the notation

defines the concrete format used to represent the language.

Markup Scheme models

Markup based models use a hierarchical structure consisting of markup tags with

attributes and content. Typical markup scheme models are profiles based upon a

serialization of a derivative of the Standard Generic Markup Language (SGML), such as

XML. An example of these profiles is: the Composite Capabilities/Preference Profile

(CC/PP) [47] used for defining the capabilities and preferences of user agents. CC/PP is

a vocabulary extension of the Resource Description Framework (RDF).

Object Oriented models

Context data modeling using object oriented methods offers the possibility to

use the full benefit of object orientation, such as encapsulation, inheritance, and

26

reusability. “The detail of context processing is encapsulated on object level and hence

hidden to other components. Access to context information is provided through specific

interfaces” [46].

Logic based models

In logic based models, facts or concluding expression may be derived from other

expressions of facts through logic conditions. Context information is modeled as facts

and a logic-based system is used to manage the terms allowing: adding, updating, or

removing new facts.

Ontology based models

 Ontologies are an instrument for specifying concepts and interrelations. An

ontology is described by concepts, relations, and rules for combining concepts and

relations. “Context models based on ontologies provide a vocabulary for representing

and sharing context knowledge in a pervasive computing domain, including machine-

interpretable definitions of basic concepts in the domain and relations among them”

[11]. Ontologies enable context data to be described semantically and independent of

the underlying operating system, programming system, or middleware. Due to all the

strengths of context models based on ontologies, several context-aware frameworks

make use of them. An example is the CoBra [49] system that provides a set of

ontological concepts to characterize entities within their contexts.

The MUSIC Context Model

 The context model defined for MUSIC [11] is divided into three different layers:

the conceptual layer, the exchange layer, and the functional layer. The conceptual layer

is defined for developers to enable the definition of context elements, scopes, and

representations based on standard specification languages, such as the Ontology Web

Language (OWL). The exchange layer is used for interoperability between devices and

for distribution of context information. In this layer, the context data can be expressed

in eXtendible Markup Language (XML), Java Object Script Notation (JSON), and

Comma-Separated Values (CSV). Finally the functional layer is the actual

implementation of the context model representation based in object-oriented modeling.

 The conceptual layer includes an ontology described in OWL and a context

meta-model specified in UML. Ontologies are included for enabling interoperability,

for defining the internal structure of context data, and for modeling a wide range of

relationships between context elements, enabling flexible context reasoning.

 The distribution of context information is done at the exchange layer in which an

ontology server may be contacted for mapping between the context scopes received and

corresponding concepts in the ontology. This enables the correct interpretation of the

information. The XML representation was chosen because it is a widely adopted

standard; furthermore several libraries and tools exist for parsing and mapping XML to

object models in different programming languages (C, JAVA, C#). Another advantage

27

is its extensibility. The exchange layer converts the information from XML, JSON, or

CSV to appropriate data-structures at the functional layer.

 Finally, the functional layer contains a set of data structures for storing the

context information. The internal structure of the context elements is contained in the

ontology, so the data structures can easily be filled with the information represented at

the exchange layer.

3.9 Presence Information Data Format (PIDF)

 The Presence Information Data Format (PIDF) is defined in IETF‟s RFC 3863 [27]

as a common presence data format for Common Profiles for Presence (CPP) compliant

presence protocols [35]. The main objective of PIDF is to achieve interoperability

between different instant messaging and presence protocols meeting the “Instant

Messaging/Presence Protocol Requirements”, described in RFC 2778 [26]. PIDF

encodes the presence information using XML

 According to RFC 3863, presence information consists of one or more

PRESENCE TUPLES. A presence tuple consists of a mandatory status element and

other optional extension elements, such as a contact element, note element, or

timestamp element. The status in the presence tuple has at least the values OPEN and

CLOSED. RFC 3863 defines these two values in the context of instant messaging. The

status of OPEN means that the associated contact element is an instant mailbox ready to

accept an instant message. In the other hand, the status CLOSED means that the contact

is unable to accept an instant message. In a wider context these two values express that

the user is available for (near) real-time interactive exchange of information. The

message body presented in the PUBLISH and NOTIFY messages in follows the PIDF

format. A PIDF object is a well formed XML document. The first element of the XML

document is an encoding declaration of the form:

"<?xml version='1.0' encoding='UTF-8'?>".

 The root of a PIDF+xml object is a <presence> element that contains any

number of <tuple> elements. The <presence> element must have an entity attribute that

is the URI of the presentity publishing this presence document (e.g.

entity="pres:Alice@example.com">). The presence element must also contain a

namespace declaration indicating the namespace on which this presence document is

based (e.g. 'urn:ietf:params:xml:ns:pidf').

 The <tuple> element must contain an „id‟ attribute which is used to distinguish

the tuple. The <contact> element is optional and contains the URI of the contact

address. The <status> element in the tuple contains one <basic> element that contains

the “open” or “closed” values.

28

 The <note> element contains a string value, which is usually used for a human

readable comment. This note element may be child of a presence element or a tuple

element. In the first case the comment is about the presentity; while in the second case

the comment concerns a particular tuple (the parent tuple of the note element). Finally

the optional <timestamp> element contains a string indicating the date and time of the

status change of this tuple.

An example of a PIDF document is shown in Figure 11:

 <?xml version='1.0' encoding='UTF-8'?>

 <presence

 xmlns='urn:ietf:params:xml:ns:pidf'

 xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

 xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

 xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

 entity='sip:Alice@192.168.100.153'>

 <tuple

 id='t8a130d03'>

 <status>

 <basic>

 open

 </basic>

 </status>

 <note>

 idle

 </note>

 <contact

 priority='0.8'>

 Carlos@appearnetworks.com

 </contact>

 </tuple>

 </presence>

Figure 11. PIDF example

3.10 Rich Presence Information Data Format (RPID)

 Presence information is not limited to availability, for many applications the

Presence Information Data Format (PIDF) as defined in RFC 3863 [27] is not sufficient

to represent presence information accurately. IETF‟s RFC 4480 [33]defines extensions

to the PIDF document format for conveying richer presence information. The Rich

Presence Information Data Format (RPID) defines extensions providing features

common in many presence systems. It also defines elements that can be derived

automatically from existing applications such as the calendar or from other sensors that

can provide information about the user‟s current physical environment.

29

 RFC 4479 [34] defines a model for representing presence information based on

the status of a service, a device, or a person. According to this model, a

(communication) service is a system for providing interaction between users and

provides certain modalities or content. A device is a “physical component that a user

interacts with in order to make or receive communications”. Finally a person is the end

user, which is characterized (in terms of presence) by states that impact this person‟s

ability and willingness to communicate. RPID was defined for representing more

accurately this model for presence data. In RPID documents the presence information

from services is encoded using the <tuple> element defined in PIDF; devices and

persons are represented in extended XML elements: <device> and <person>.

 RPID also defines additional presence attributes beyond the <basic> status

element. These attributes are XML elements that extend the <tuple>, <device>, and

<person> elements. It is important to note that RPID is backward compatible with

PIDF. RPID seeks to derive presence information from different information sources,

such as personal calendars, the status of communication devices, typing activity, and

physical presence detectors. The additional attributes that extend the <tuple>,

<device>, and <person> elements are defined in [33] as:

Activities What the person is doing.

Class An Identifier that groups similar persons, devices or services.

deviceID A device identifier in a tuple references a <device> element,

indicating that this device contributes to the service described

by the tuple.

Mood It indicates the mood of the person.

Place-is Reports the properties of the place the presentity is currently

at.

Place-type It reports the type of place the person is located

Privacy It states whether the communication service is likely to be

observable by other parties.

Relationship This element is used when a service is likely to reach a user

besides the person associated with the presentity and states

how this user relates to the person.

Service-class This element describes how the service will be delivered.

Sphere The <sphere> element characterizes the overall current role of

the presentity.

Status-icon This element depicts the current status of the person or

service.

30

Time-offset Used for quantifying the time zone the person is in. This

offset is expressed as the number of minutes away from UTC.

User-input This element records the state of the service or device based

on human user input.

Table 9 shows (marked with an „x‟) which elements may have the from/until

attributes for expressing a period of time, which elements may contain a note containing

additional information, and which elements may be child of a <tuple>, <device>, or

<person> element.

Table 9. Extended Attributes of RPID

Element From/Until Note <person> <tuple> <device>

activities X X X

Class X X

deviceID X X

Mood X X X

place-is X X X

place-type X X X

privacy X X X X

relationship X X

service-class X X

sphere X X

status-icon X X X

time-offset X X

user-input X X X

As in PIDF the root element of a RPID document is the <presence> element

having an entity attribute containing the URL of the presentity publishing the

information (i.e. someone@example.com). This element also specifies the namespace

declarations in which the document is based. An example of a RPID document is the

following:

 <presence xmlns="urn:ietf:params:xml:ns:pidf"

 xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"

 xmlns:lt="urn:ietf:params:xml:ns:location-type"

 xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid"

 entity="pres:someone@example.com">

The following example document contains three different tuples (representing

three different services). The first one is a SIP contact that can be contacted at

someone@mobile.example.net and is ready to accept communication. This tuple

contains notes regarding presence information:

31

<tuple id="bs35r9">

 <status>

 <basic>open</basic>

 </status>

 <dm:deviceID>urn:device:0003ba4811e3</dm:deviceID>

 <rpid:relationship><rpid:self/></rpid:relationship>

 <rpid:service-class><rpid:electronic/></rpid:service-class>

 <contact priority="0.8">im:someone@mobile.example.net</contact>

 <note xml:lang="en">Don't Disturb Please!</note>

 <note xml:lang="fr">Ne derangez pas, s'il vous plait</note>

 <timestamp>2005-10-27T16:49:29Z</timestamp>

 </tuple>

The second tuple shows that the presentity has an assistant

(secretary@example.com) who happens to be available for communications via email.

 <tuple id="ty4658">

 <status>

 <basic>open</basic>

 </status>

 <rpid:relationship><rpid:assistant/></rpid:relationship>

 <contact priority="1.0">mailto:secretary@example.com</contact>

 </tuple>

The third and last tuple shows an email box service:

 <tuple id="eg92n8">

 <status>

 <basic>open</basic>

 </status>

 <dm:deviceID>urn:device:0003ba4811e3</dm:deviceID>

 <rpid:class>email</rpid:class>

 <rpid:service-class><rpid:electronic/></rpid:service-class>

 <rpid:status-icon>http://example.com/mail.png</rpid:status-icon>

 <contact priority="1.0">mailto:someone@example.com</contact>

 </tuple>

A RPID document may also have a note for additional information regarding to

the three tuples, such as:

<note>I'll be in Tokyo next week</note>

The second part of the RPID document contains information about the devices

which can be used to support the services, represented in the tuples. The device

represented in the document supports both SIP and email service. Note that the

deviceID corresponds to the one used in the <tuple> elements.

32

<dm:device id="pc147">

 <rpid:user-input idle-threshold="600"

 last-input="2004-10-21T13:20:00-05:00">idle</rpid:user-input>

 <dm:deviceID>urn:device:0003ba4811e3</dm:deviceID>

 <dm:note>PC</dm:note>

 </dm:device>

Finally the third part of the RPID document contains information about the

person, such as mood, location, environment, etc. We can see that the <activities>

element indicates the range of time in which the presentity will be in the activities using

the from/until attributes.

<dm:person id="p1">

 <rpid:activities from="2005-05-30T12:00:00+05:00"

 until="2005-05-30T17:00:00+05:00">

 <rpid:note>Far away</rpid:note>

 <rpid:away/>

 </rpid:activities>

 <rpid:class>calendar</rpid:class>

 <rpid:mood>

 <rpid:angry/>

 <rpid:other>brooding</rpid:other>

 </rpid:mood>

 <rpid:place-is>

 <rpid:audio>

 <rpid:noisy/>

 </rpid:audio>

 </rpid:place-is>

 <rpid:place-type><lt:residence/></rpid:place-type>

 <rpid:privacy><rpid:unknown/></rpid:privacy>

 <rpid:sphere>bowling league</rpid:sphere>

 <rpid:status-icon>http://example.com/play.gif</rpid:status-icon>

 <rpid:time-offset>-240</rpid:time-offset>

 <dm:note>Scoring 120</dm:note>

 <dm:timestamp>2005-05-30T16:09:44+05:00</dm:timestamp>

 </dm:person>

 </presence>

3.11 SIP Express Router

The SIP Express Router (SER) [29] is a SIP server licensed under the GNU General

Public license. This SIP server has high performance and is configurable for acting as a

SIP registrar, proxy, or redirect server. Recently, a presence module supporting the

presence event package has been developed by IPTEL. The implementation for the

proposed system in this thesis uses this SIP proxy server with this presence module.

33

The “main strength of SER is its performance, SER runs well even under heavy load

caused by large subscriber populations” [29].

SER was initially developed by Fraunhofer Gesellschaft, a German research

institute with 56 institutes spread throughout Germany. Part of the team that initially

developed the SER created a new company, iptel.org in 2004. In parallel, other

developers started a new open source project named OpenSER [45]. SER and

OpenSER have followed different development paths. For our implementation we are

using the SER development, rather than OpenSER because of the previous work done

by others [30] within context distribution using SIP [29] [45].

3.12 Related Work in Context Distribution

 Within the context-awareness research community several researchers have

identified the need for sharing context among different system components. Several

different solutions to this problem have been proposed; this section will review the

related work that is relevant to this thesis.

3.12.1 A Location-Aware Content Delivery Service

Alisa Devlic and Ivana Podnar [36] proposed a location-aware content delivery

service enabling the delivery of personalized content to users based on their location

and preferences. This service uses Publish/Subscribe mechanisms to transport content

between publishers and subscribers. In this architecture the users define personal

profiles specifying their subscriptions and preferences. These subscriptions are

location-aware; each subscription contains a list of locations for which it is valid. For

example in the delivery of weather information, the user may only be interested in

information related to his or her current location or other specific location of interest.

The architecture of the system uses a presence component which tracks the user

device employed in order to support personal mobility. A location management

component is used to track the location of the user for updating/removing subscriptions

from the system. A profile handler stores the subscriptions, device capabilities, and user

preferences.

Their proposed content delivery service can also be used for delivering context

information. During their work, they identified the need for an asynchronous mode of

retrieving information. Moreover, the requirement to support user mobility was also

identified. Although the design and the implementation of their system did not consider

the SIP event communication framework, we have determined that most of the features

and requirements for delivering content may be supported by SIP and related protocols.

Their work provided the motivation for this thesis project and its goals.

34

3.12.2 MIDAS

The Middleware Platform for Developing and Deploying Advanced Mobile

Services (MIDAS) [38] is a European research project concerning 3G and beyond, the

main goal of the project is to implement and develop a platform for rapid development

of mobile applications.

The context engine for this project is described in [37]. It provides mechanisms

to retrieve, synthesize, and distribute context information in a mobile distributed

environment. Context information distribution in MIDAS utilizes different sources of

context information and makes this information available to applications on remote

nodes through the replication of the information contained in their context database.

The context engine recognizes two different forms of context retrieval. The first

form is based on context queries that are used for stateless retrieval of context

information. The second form is based on context triggers that are queries for stateful

retrieval of context information; thus an action is triggered when a specific context

occurs.

The context information retrieval can be as simple as an access to the context

database or it can be very complex, for example requiring context synthesis through

operators. Operators are functions or programs that take as input certain context

information, and produce as output higher level context information.

 The MIDAS project has identified a need of distributing context among

distributed and mobile applications using both stateless and stateful context retrieval

mechanisms. The MIDAS project implements context synthesis through context

operators for providing high-level and meaningful information to context-aware

applications, this idea will be extended and used in MUSIC. As MUSIC, is an

integrated project, it should consider the ideas, experiences, and results from other

European projects working within the same research area, such as MIDAS.

3.12.3 Context Sharing in SIP-based Telephony Systems

When humans communicate, both the perceived information and the context of

those participating in this communication play an important role; however, distant

interpersonal communication does not provide means to know the situation or context of

the communicating partners.

Enhancements of the SIP protocol for IP telephony systems [39] has been

proposed by Görtz et al. in order to support context sharing between communication

participants to enhance the communication process. The approach proposed for sharing

context information may occur directly between two SIP User Agents or between a

client and a server that relays the information. The SIP event framework provides an

asynchronous communication mechanism.

 One of the advantages identified for using a centralized approach for sharing

context information is the capability of aggregating context information generated by

many different devices or sensors, as shown in Figure 12.

35

Figure 12. Aggregating context information through a presence server

 The proposed enhancements to SIP for supporting direct queries among SIP

peers are based upon use of the OPTIONS method. Today this method is used for

querying another SIP entity about its capabilities; however it may also be suited for

querying a peer for context information. In the proposed solution the OPTIONS method

is extended with a context header, this additional header is ignored by unmodified SIP

entities - but parsed by a modified SIP user client that will respond with its context

information in the OK response message. In this prototype the context information is a

simple ASCII string. It would be better to encode the context information in an XML

schema, instead of using a simple ASCII string for allowing easy extensibility

 In the previous enhanced IP telephony system, the use of the SIP event

mechanisms were proposed for supporting asynchronous means of context sharing. The

SUBSCRIBE, PUBLISH, and NOTIFY methods were used for distributing context

information. This context distribution method is proposed when the system is used in

conjunction with a context/presence server.

 In this thesis project SIP has also been selected as the protocol to be used to

share context information among applications. Just as was the case for Görtz et al. we

seek to support both synchronous and asynchronous means for sharing context

information, hence we will build upon their ideas.

3.12.4 A SIP infrastructure for Adaptive and Context-Aware Wireless
Services

 As part of a Person-Centric Context Aware System [14] Wei Li proposed a

service-oriented context infrastructure [40] for exchanging context among services. The

Session Initiation Protocol and related protocols were adopted for transferring context

information. The SIP protocol has been identified as an appropriate protocol for

transporting context, because it supports all the different requirements identified for

disseminating context information. The SIP presence framework was adopted because

it “provides a light support for short-term communication where a session only exists

36

within a few rounds of messages exchanges, supporting the timely and intermittent

nature of context exchange” [14]. Furthermore, the use of SIP URI enables naming and

addressing mechanisms for identifying and locating context entities. Another advantage

of using a SIP-based infrastructure for distributing context information is that it can be

tied seamlessly with any other SIP-based network.

 His context provisioning infrastructure extends the SIP Presence framework for

delivering context information. The architecture of the proposed system is based on a

Presence Agent and a Watcher. The first is responsible for handling the subscriptions to

presence and context information events and to notify the Watcher of any context

changes. Notifications are encoded in a XML format and sent to the registered

Watchers. A Watcher is defined as a consumer of context that registers with the

Presence Agent with an indicating interest in a specific context, then waits for

notifications from the Presence Agent.

 In his licentiate thesis [14] Wei Li has identified several of the requirements for

distributing context information and how SIP may support these requirements. His

context data communication is based on asynchronous mechanisms provided by the SIP

presence framework.

3.12.5 A Presence Server for Context-Aware Applications

 Mohammed Zarifi‟s master thesis [30] describes an adapted SIP presence server,

which acts as a context server in order to create a context-aware (middleware)

infrastructure for different types of context-aware applications. His design and

implementation of a context server is based on the SIP Express router (SER) [29], its

presence module and its MySQL database. The resulting context-server was evaluated

in terms of service time (How long does it take for the server in each scenario to

respond to each of the different messages) with 60 watchers subscribed to an event. The

proposed context server: (i) obtains the updated context information, (ii) reads,

processes, and stores this information in the local database, and (iii) notifies interested

watchers about context information.

 The context delivery mechanisms are based on SIP-SIMPLE for supporting

asynchronous distribution of information. The context information is distributed using

the Presence Information Data Format.

 However, the initial presence module of the SER only supports the presence

event package standardized by the IETF. In order to support different types of events

(e.g. location) he extended the source code of the SER. His context server

implementation extends the standard PIDF tags, by creating new tags inside the

<status> element. These new elements were designed in order to describe a location.

The location element includes a description, room, floor, and coordinates element.

Inside the coordinates elements for latitude, longitude, and height were defined. The

new schema for the location event is shown in Figure 13:

37

<location>

 <description>Appear</description>

 <room>Meeting_room</room>

 <floor>4</floor>

 <coordinates>

 <latitude>59 23'</latitude>

 <longtitude> 18° 00'</longtitude>

 <height></height>

 </coordinates>

</location>

Figure 13. A PIDF schema for the location event

In this schema the description, room, and floor elements should have at least one

value, the remaining elements can be empty. For further information and details of this

implementation the reader should refer to [30].

38

4. Context Distribution using SIP

 This chapter describes the approach we used for distributing context information.

Also, the different components of the testbed we used for evaluating SIP/SIMPLE as a

protocol for distributing context information are described.

As Li Wei observed, the development of context-aware applications in distributed

environments has been limited because of the difficulties faced in distributing context

information between applications and peers. One of the main difficulties is that the

transfer of context information needs to take place over unreliable and dynamically

changing networks. Moreover, context information may be produced in different

devices connected to different networks. This chapter presents a proposed context

distribution component for distributing context information via a SIP infrastructure.

This component uses SIP to distribute context information, both synchronously and

asynchronously. As shown earlier in Figure 5 on page 10, different devices may fetch

information synchronously or asynchronously via a SIP proxy server. In synchronous

mode a user can fetch context information once or poll periodically to retrieve the most

recent values of the desired information.

This distribution component consists of three subcomponents: a presence/context

server, a watcher, and a presentity/context entity (contextity); as shown in Figure 14.

The term context-server denotes a SIP presence server that can support context

information in the body of the PUBLISH and NOTIFY messages. On the other hand

the term contextity defines the entity that publishes not only presence information, but

also context information. Figure 14 shows different kinds of queries and responses that

can exist within the system. It is important to note that the watcher and the contextity

are logical entities that could reside in the same user agent.

Figure 14. Elements of the Context Distribution component

Request = Subscription with
expiration time of zero

Reply = A publish response
to a subscription message
with expiration time of zero

39

4.1 Context Server

 The context distribution component uses the SIP Express Router (SER) [29] for

the context/presence server. SER complies with the SIP RFC 3261 specifications [41].

SER version 0.10.99 was used for the context distribution component. Details of

installing and running this software can be found in Appendix C.

 SER is implemented around a processing core that receives messages and

enables the basic functionality needed for handling messages, this processing core is

very small, fast, and stable [42]. Other functions are provided by SER modules.

Another advantage of SER is its flexibility. A configuration file controls which

modules shall be loaded and defines the module‟s behavior (In terms of configuration

parameters).

 An example of a SER configuration file for supporting presence can be found in

appendix A. The SER configuration file can be seen as a script that is executed for

every SIP message received. The structure of the SER configuration file (ser.cfg) is

shown in Table 10.

Table 10. SER Configuration file structure
Section Description

Global definitions Configuration of IP address and port for listening, debug level,

etc.

Modules List of external libraries that are needed to expose functionality

not provided by the core.

Module configuration Configuration of parameters for the different modules.

Main route block The entry point of processing SIP messages for controlling how

each received message is handled.

Secondary route block This routing block can be called from the main route block.

Reply route block Utilized for handling replies to SIP messages

Failure route block Route block used to handle failure conditions (e.g. busy)

 Many parameters within SER are configurable through the configuration file in

the module configuration block. The syntaxes for setting the values for the different

parameter follow the following format:

modparam("module", "parameter", value)

 An example for modifying the max_publish_expiration parameter of the

presence module to have a value of 120 seconds is:

modparam("pa", "max_publish_expiration", 120)

 Table 11 summarizes some important parameters related to retransmission

timers and presence module parameters:

40

Table 11. Some SER configurable parameters

Parameter Value Module Description

retr_timer1 Millliseconds Tm Initial retransmission value. The T1

timer defined in RFC 2543 [20].

Default value 500 ms.

retr_timer2 Milliseconds Tm Maximum retransmission period.

The T2 timer defined in RFC 2543

[20]. Default value 4000 ms.

fr_timer Milliseconds Tm Timer which goes off if no final reply

for a request arrives. Default value

30 seconds.

default_expires Seconds pa Default expiration time for

SUBSCRIBE and PUBLISH message

when the client does not supply one.

Default value 3600 s.

max_subscription_expiration Seconds Pa Maximal subscription expiration

value. Default value 3600 s.

max_publish_expiration Seconds Pa Maximal expriation for PUBLISH

messages. Default value 3600 s.

use_db Integer Pa If set to 1, PA module stores all

subscription data into the database

db_url String Pa Database connection URL.

timer_interval Seconds Pa Interval when the timer runs and

clears expired watchers and send

NOTIFY for changed presentities.

maxbuffer Kbytes Core

Options

Maximum Receive buffer size,

default size 256 Kbytes.

4.1.1 SER Presence Module (pa)

 This SER presence module [43] implements a presence server, which is

responsible for receiving SUBSCRIBE requests and sending NOTIFY when the

presence status of a user changes. The SER presence server works in conjunction with a

MySql database which stores information about publications and subscriptions. This

module also receives PUBLISH requests for publishing presence status information.

The presence server supports PIDF, CPIM-PIDF (last version differs from PIDF only in

namespace and MIME type name), and PIDF extensions (e.g. RPID) as document

formats.

 In order to distribute context information a RPID [33] formatted document was

chosen because it is a standardized data format and is supported by SIP proxy servers,

specifically the SER. Another reason for using RPID is that context information at the

exchange layer of the MUSIC context model is represented using XML. An example of

an RPID document carrying information regarding location (place type, coordinates,

floor, sphere, etc) is shown in Figure 15.

41

<?xml version="1.0" encoding="UTF-8"?>

<presence xmlns="urn:ietf:params:xml:ns:pidf"

entity="pres:Publisher1@192.168.100.234">

<tuple id="0xb581e834x4046d8a5x47bc3b1b">

<status><basic>open</basic></status>

<contact priority="0.00"></contact>

</tuple>

<dm:person xmlns:dm="urn:ietf:params:xml:ns:pidf:data-model"

xmlns:rpid="urn:ietf:params:xml:ns:pidf:rpid" id="p1f5e1369">

<rpid:place-type><appear/>

 <rpid:note>longitude 18° 00'</rpid:note>

 <rpid:note>latitude 59 23'</rpid:note>

</rpid:place-type>

<rpid:sphere>meeting room

 <rpid:note>4th floor</rpid:note>

</rpid:sphere>

</dm:person>

</presence>

Figure 15. RPID carrying location information

 To support an XML schema different from that defined in RPID or PIDF, the

context distribution component needs to be modified. To create new tags a new XML

schema has to be defined in SER‟s source code, specifically in the “pidf.c” file, as

proposed by Mohammad Zarifi in his master thesis [30]. This file is used by the system

to parse the tags specified in the PIDF and RPID standards [27][33].

4.2 Context entity and Watcher

The contextity and watcher entities were implemented in a load generator in

order to perform scalability and latency tests of the proposed context server. This load

generator has been implemented in Java version 1.6.0_02 and the source code may be

found in Appendix B. The main objective of this implementation is to simulate multiple

watchers and contextities in order to load the server with SUBSCRIBE and PUBLISH

message and to test its performance.

The load generator implementation is based on non-blocking sockets of the java

New I/O (NIO) API. For each user (watcher or presentity) simulated in the load

generator a non-blocking socket is created. This kind of socket allows communications

between applications without blocking the processes using the sockets. An alternative

implementation could be a multithreaded load generator; however, this caused

concurrency and scheduling conflicts, affecting the performance of the system. The

non-blocking technology is based on a selector that monitors the recorded socket

channels and serializes the requests that the application has to satisfy.

42

The implementation is divided into three different threads simulating watchers

and contextities:

1) The main thread responsible for creating sockets for each user (watcher or

presentity) and registering them with their selectors. After initialization this the

thread goes into an infinite loop waiting for events on the sockets. When

information arrives to a presentity or watcher socket a callback function is

triggered. These callback functions are responsible for handling the incoming

messages to the watchers and presentities. In the case of watchers, when a

NOTIFY message arrives, a corresponding OK is generated. On the other hand,

when an OK message arrives to the presentity, acknowledging a PUBLISH, it is

parsed in order to extract the SIP-ETag for further PUBLISH messages.

2) The Subscriber thread is responsible for creating and sending SUBSCRIBE

messages to the server.

3) The Publisher thread is responsible for creating and sending PUBLISH

messages to the server.

Figure 16 shows how the main thread handles watchers. Messages arrive to a

selector through socket channels, in the selector the requests are serialized, each request

contains a key representing the client (watcher or publisher). This key does not

represent the entire information stream a client sends to a server, but simply a part. The

selector divides the client-data into sub-requests identified by the keys [44], the entire

message may be processed by the server processes using the key.

The process followed for responding to messages sent to presentities is analogous.

After a presentity sends a PUBLISH message, OK messages coming from the server are

serialized and parsed in order to extract the SIP-Etag that will be used for modifying,

refreshing, or removing the published information.

Figure 16. Main Thread for the Load Generator

43

5. Evaluation

Different types of context information have different characteristics, resulting in

different demands for distribution. For example, in the emergency scenario presented in

Chapter 2, the location of an emergency only has to be retrieved once, while

information about the current activity of a worker should be retrieved after a change

occurs, while the available bandwidth may be retrieved periodically for monitoring it.

The main goal of this chapter is to investigate when it is more suitable to use a

synchronous or asynchronous mode of context distribution when using SIP/SIMPLE.

The decision about whether to distribute context synchronously or asynchronously

mainly depends on: 1) how many users will be interested and subscribed to a certain

context information, 2) how many context providers will be publishing information to

the context server, 3) how often context information updates need to be retrieved by the

users, and 4) what is the intensity of context information updates compared to the

distribution time needed for information to reach the watcher(s).

The evaluation of SIP/SIMPLE as a protocol for distributing context information

will be based on how the number of users (watchers and contextities) and the number of

messages they send (with varying intensity) to the server affect the scalability and

latency of the system.

Scalability refers to the number of messages (e.g. PUBLISH or SUBSCRIBE) sent

by watchers or contextities that can be handled by the system in a short period of time.

It is important to consider multiple watchers and multiple contextities, because certain

information will be popular and may be of interest to many watchers, as well as some

applications will need to retrieve information from several contextities. The scalability

tests focus on how the context server performs in different load situations (multiple

watchers and/or multiple contextities) in terms of the packet acceptance rate, this is the

number of packets that are correctly processed (e.g. acknowledged with an OK

response). The packet acceptance rate is measured as a percentage of the total packets

sent.

The latency or response time refers to the time elapsed from a message triggering

the distribution of context information (REQUEST, SUBSCRIBE, and PUBLISH) and

the NOTIFY message arriving at the watcher. In asynchronous mode the notification of

new context information is triggered after a subscription and after a publication of

information. While, in synchronous mode the notification is only sent in response to the

REQUEST message (a SUBSCRIBE with expiration equals to zero). It is important to

consider the response time of each mode and compare it with the dynamics of the

context information to see if the information is still valid within the user‟s context.

Highly dynamic context information arriving late to a watcher will often be useless, so

the distribution time has to be compared with the rate of change of the context

44

information. For example if someone has subscribed to the location of a user moving at

the speed of 300 km/h, and it takes 5 seconds to get the information, then the received

location information may have a deviation of 400 meters. Acceleration or other

parameters may be used in order to predict the exact position, however it may be

inaccurate.

In order to measure how fast the context information distribution is, the response

time is defined as the period of time elapsed from when a watcher expects to get the

notification (i.e., when the send of a REQUEST or an information update occurs) until

the Watcher receives the information. In asynchronous mode, two different response

times can be identified. The first one (i.e. subscription response time) between the

SUBSCRIBE and the immediate NOTIFY messages and the second one (i.e.

notification response time) between a PUBLISH sent by a contextity and the

notification being received by the Watcher. On the other hand, for the synchronous

mode we have only one response time (i.e. request response time) – which is simply the

time between the REQUEST and the REPLY. These response times are shown in

Figure 17.

Figure 17. Response Time for the Asynchronous and Synchronous mode

For performing different measurements Wireshark [50] was used. Wireshark is

a protocol analyzer used for analyzing and monitoring network traffic available for

different platforms (Windows, Linux, OS X, and Solaris). The test bed used for the

different tests is described in Table 12. The tests were performed in an isolated wired

local area network having one switch (a Netgear fast Ethernet switch model FS108)

between the context server and the load generator. The test bed configuration is shown

in Figure 18.

45

The packet length of the SIP messages is not fixed because the message body is

variable; however, for the tests performed we use the same message body, the values of

the packet length for the different SIP messages are shown in Table 13

Figure 18. Test Bed Configuration

Table 12. Testbed

 SIP Context Server (SER) Load Generator for Watchers and

presentities

Device Fujitsu Siemens Celsius M420 HP Compaq dc5100 MT

Operating System Ubuntu (Linux) Microsoft Windows XP Professional

Processor Intel Pentium 4 @ 2.60 GHz Intel Pentium 4 @3.00 GHz

RAM Memory 1 GB 2 GB

Network Adapter Broadcom NetXtreme Gigabit

Ethernet

Broadcom NetXtreme Gigabit

Ethernet

IP Address 192.168.1.200 192.168.1.100

Maxbuffer 256 Kbytes (default value)

Timer_interval 1 second

Table 13. Packet length in bytes for the tests

Message Packet length (Bytes)

PUBLISH 1071

OK 710

SUBSCRIBE 510

NOTIFY 817

5.1 One watcher and one contextity

 The simplest case is when we have only one watcher and one contextity

interacting with the server; moreover, the response times measured for this case are

useful as a reference for more complex cases. This test aims to measure the different

response times, specifically the subscription and notification time for the

asynchronous mode and the request response time for the synchronous mode. In the

asynchronous mode the watcher sends a SUBSCRIBE message, then the contextity

sends a PUBLISH message. The subscription and notification response times are

measured. In synchronous mode the contextity publishes information, then the watcher

46

sends a REQUEST message and we measure the time until the reception of the REPLY

message. For both cases the test was repeated 100 times in order to reduce the random

error. The main goal of this test is to obtain reference response times that are a base for

comparison with more complex situations (when utilizing multiple watchers and/or

multiple contextities).

Figure 19. One watcher and one contextity

The results from the previous test are summarized in Table 14. As it can be seen

for the asynchronous mode, the average subscription response time is of 1.65

milliseconds and the notification response time is of 0.537 seconds. On the other hand,

for the synchronous mode the average request response time is of 1.45 milliseconds.

Statistically, the average subscription and request response times are equal, however in

asynchronous mode we got in some repetitions response times much higher than in

synchronous mode (maximum value was 5.1 ms), mainly because in this mode database

operations need to be performed. The notification response time depends on the

timer_interval parameter. As mentioned in section 4.1, when this timer runs out the

server sends NOTIFY messages of changed contextities. For this test this timer was set

to one second, so it is expected to have a notification response time randomly

distributed between zero and one second, this because the PUBLISH message may

arrive at any moment before the timer running out. This is the reason for having such a

considerable standard deviation for this response time.

Table 14. Time response for one watcher and one contextity

 Asynchronous Synchronous

Subscription

Response Time (ms)
Notification

Response Time (ms)
Request

Response Time (ms)

Minimum 1.4 56.4 1.1

Average 1.7 537.4 1.5

Maximum 5.1 932.9 1.8

Standard Deviation 0.5 384.4 0.07

Standard Error +/- 0.05 +/- 171.9 +/- 0.007

 A second test tries to determine the minimum interarrival time between

REQUEST messages that can be responded to by the server (i.e., with the server

sending a NOTIFY message). The main goal of this test is to find the maximum speed

at which a watcher can synchronously retrieve information from the server, in order to

47

find the absolute maximum polling rate (note that this rate is based upon the server not

having any other requests or tasks to perform). After a publication of information, the

watcher starts sending 30 REQUEST messages, first with 2 seconds of interarrival time,

and then with decreasing interarrival times (decreasing by 50 ms each) between

REQUEST messages. Figure 20 depicts the evaluation scenario. For each round we

measure how many packets were responded to by the server with a NOTIFY message.

Figure 20. Polling with one watcher and one contextity

 The results obtained are shown in Figure 21. We have found that the minimum

interarrival time between REQUEST messages is one second, when the watcher starts

sending REQUEST messages faster, some of these messages are not responded to with

a NOTIFY message, although they are acknowledged with an OK response. When a

watcher sends more than one REQUEST message per second, the context server emits

only one notification. This feature is inherent in the performance and behavior of the

server and is not related to the timer_interval parameter (is not parameterized in the

configuration file of the context server). Note that the arrows in the figure represent the

fraction of messages which were not responded to by a NOTIFY message.

Figure 21. Results from multiple requests messages (one contextity and one

watcher in synchronous mode)

0%

20%

40%

60%

80%

100%

2000 1500 1000 900 800 700 600 500M
e

ss
ag

ge
s

 r
e

sp
o

n
d

e
d

 w
it

h
 a

N

O
TI

FY
 m

e
ss

ag
e

 (
%

)

Time between REQUEST messages (milliseconds)

48

5.2 Multiple Watchers and one contextity

 In this evaluation scenario we want to simulate the case when several watchers

are interested in retrieving information from one contextity. This could occur when a

large number of users are interested in retrieving or subscribing to the location

information of a single user. We will like to explore how the server performs when

handling several subscription or request messages within a short period of time in terms

of response time and scalability. Furthermore, we want to determine if the service time

of the server is affected by the number of watchers using the system.

 The first test addresses scalability and tries to measure how many packets can be

handled by the server in a short period of time (acknowledged with an OK response),

the messages are sent at a rate of approximately 2000 messages per second. For the

asynchronous mode the load generator starts by sending 100 SUBSCRIBE messages

from different watchers (this is emulated by a single process sending these request in a

FOR loop), then we measure how many packets were processed by the server (i.e.

acknowledged by an OK response), the number of SUBSCRIBE messages increases in

steps of 100 messages in subsequent rounds, for each round we repeated the test 5

times. For the synchronous mode the same test is performed, but instead of

SUBSCRIBE messages, REQUEST (subscription with expire equals to zero) messages

from different watchers are sent. In Figure 22 this test scenario is shown.

Figure 22. Multiple watchers subscribing/requesting from one contextity

 The results obtained are shown in Figure 23. As it can be seen in the graph, for

both distribution modes the server can handle correctly up to 400 SUBSCRIBE or

REQUEST messages sent with an interarrival time approximately of 500 s. Sending

more than 500 messages in such short period of time results in a loss of messages,

mainly because the arrival rate of SUBSCRIBE/REQUEST messages is faster than the

service rate of the server and the server buffers have a size of only 256 KBytes. After

comparing the synchronous and asynchronous case, we can see that in asynchronous

49

mode, when sending more than 400 messages, even more packets are lost. Mainly, this

is because the service time of the server is larger for asynchronous mode, so the server

buffers got full faster, leading to more messages being discarded. The loss of packets is

addressed by the SIP reliability mechanisms- which will cause the entity to retransmit

them. By considering the length of the server buffers (256 Kb) and the length of

SUBSCRIBE messages (510 bytes), the expected number of accepted SUBSCRIBE

messages by the server is around 500 messages.

Figure 23. Results from Scalability Test – One contextity and Multiple Watchers

(messages sent in a burst)

A second test examines how the server notifies watchers in asynchronous mode.

400 different watchers sent a SUBSCRIBE messages in a burst, 400 messages are sent

because in the previous test we found that when 400 messages were sent in a burst they

could be handled successfully by the server. After getting all the OK responses for these

messages, a PUBLISH message is sent, in order to trigger the notifications. We

examine in which order the server notifies the watchers and also how quickly the

NOTIFY messages are sent to the different watchers. We are interested in learning how

long it takes to get a notification; in order to compare it with the case when a user is

synchronously retrieving the information – in order to decide which method is faster.

In Figure 24 we can observe how the notification process to 400 subscribed

watchers occurs. After the first notification all the subscribers are notified at a nearly

constant rate, with around 350 s of interarrival time between each NOTIFY message

(i.e. a rate of 2850 notifications per second). Also it is important to notice that the

notification order follows a last to subscribe first to be notified manner. In this case the

100 200 300 400 500 600 700 800

Synchronous 100% 100% 100% 100% 96.45% 94.87% 91.21% 86.41%

Asynchronous 100% 100% 100% 100% 92.80% 87.89% 81.16% 78.93%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

M
e

ss
ag

e
s

 P
ro

ce
ss

e
d

 C
o

rr
e

ct
ly

 (
%

)

Number of SUBSCRIBE messages from different Watchers (#)

Synchronous

Asynchronous

50

watcher400 is the first one to receive a notification and the watcher1 is the last one. From

all the repetitions, the average time for notifying 400 watchers was 139 ms. In general

the time for a watcher to get a notification after a PUBLISH message depends on a

random period of time which depends upon the timer_interval parameter and the

number of subscriptions received after his or her subscription. For the example depicted

in Figure 24, the most favored watcher is watcher400 (the last one subscribed), while

watcher1 is the last watcher receiving the notification, receiving the notification 140 ms

after the watcher400. It is important to note that the notification process starts after a

period randomly distributed between 0 and 1 second due to the timer_interval

parameter, in this graph we only show the process since the first notification.

Figure 24. Notifications to 400 Watchers

 In order to study if the number of watchers subscribed to the same event affects

the notification process and the time between NOTIFY messages, the previous test was

repeated for different numbers of watchers subscribed (100, 500, 1000, 2000, 3000,

4000, and 5000) to the contextity. The behavior of the notification process was the

same, notifications at a regular rate; the average time between notifications was between

300 and 400 s. The results are shown in Figure 25. As it can be seen the time between

notifications does not vary very much; having information stored in the database does

not affect the time between notifications.

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

4
0

0

3
8

7

3
7

4

3
6

1

3
4

8

3
3

5

3
2

2

3
0

9

2
9

6

2
8

3
2

7
0

2
5

7

2
4

4

2
3

1

2
1

8

2
0

5

1
9

2

1
7

9

1
6

6

1
5

3

1
4

0

1
2

7

1
1

4

1
0

1

8
8

7
5

6
2

4
9

3
6

2
3

1
0

Ti
m

e
 (

s)

Watcher #

51

Figure 25. Average time between notifications, varying number of watchers

 The next test measures how the subscription and request response times of the

server are affected when multiple users are subscribing or requesting information from

the server. In asynchronous mode we measure the subscription response time. For this

400 SUBSCRIBE messages (from different watchers) are sent in a burst, we measure

the response time to get the NOTIFICATION for each watcher in order to quantify the

subscription response time. For the synchronous mode the same procedure is followed,

but with REQUEST messages, in order to measure response times between a pair of

REQUEST and REPLY messages. We choose to send 400 messages, because from

previous tests we have found that 400 SUBSCRIBE messages sent in a burst (in 0.2

seconds) can be handled by the server. The averaged results for the subscription

response time and request response time from 10 repetitions is shown in Figure 26.

The black shadows in the figure represent the error bars derived from the measurments.

After comparing the response times for both distribution modes, we can observe that for

both modes the time response increases from one watcher to the next one(s). Also, we

can note that for the first 150 watchers the response time between the two modes is

almost the same; however for the next watchers the response time between watchers

increases faster in asynchronous mode. For the watcher400 in asynchronous mode the

subscription response time is 27.26 ms, while in synchronous mode the request response

time is 18.85 ms. One of the reasons for the increase in the response time from one

watcher and the previous ones, is that each message has to wait for longer in the buffer

(queues) of the server.

365s

391s 384s

325s 325s
354s 343s

0

0.00005

0.0001

0.00015

0.0002

0.00025

0.0003

0.00035

0.0004

0.00045

0 1000 2000 3000 4000 5000 6000

Ti
m

e
 (

s)

Number of Watchers subscribed to the event

52

Figure 26. Responses time for Synchronous and Asynchronous mode (i.e. Request

vs Subscription response time) - 400 messages sent in a burst

 In order to examine if the response times increases due to other factors (besides

the waiting time in the queues), such as database operations, we evaluate the system by

sending 14 bursts of 300 SUBSCRIBE messages from different watchers. The time

between each burst is 5 seconds, enough for empting the buffers. In this test we

measure the time required to serve a complete burst, in order to investigate if the time to

serve the following bursts is dependent on the number of previous bursts already

subscribed in the system. For the synchronous mode the same procedure will be

followed but with REQUEST messages.

 In Figure 27 the subscription and request response times are shown for both

modes of distribution for the 4200 watchers (14 bursts of 300 watchers). We can see

that the elapsed time between each burst was sufficient for emptying the server buffers.

Comparing both modes of distribution we can see that for the first 3 bursts the response

times for both modes is similar, however for the following bursts we can observe a

significant increase in the subscription response time for asynchronous mode. Clearly

we can observe that in asynchronous mode, the subscription request time increases from

one burst to the next one, while in synchronous mode the request response time is quite

constant for all the bursts. Analyzing the last burst, we can see that the subscription

response time in asynchronous mode is about 3 times larger than the request response

time in the synchronous mode. In Figure 28, we compare the time needed to serve each

0

0.05

0.1

0.15

0.2

0.25

0.3

0 50 100 150 200 250 300 350 400

Ti
m

e
 (

s)

Watcher Number (#)

Asynchronous

Synchronous

53

burst, and evidently it can be seen how in asynchronous mode the time for serving a

burst increases for each subsequent burst.

Figure 27. Bursts of 300 SUBSCRIBE/REQUEST messages

Figure 28. Time for serving bursts of 300 watchers, Synchronous and

Asynchronous

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0 1000 2000 3000 4000 5000

Ti
m

e

(s
)

Watcher #

Asynchronous

Synchronous

y = 0.0376x + 0.3228
R² = 0.9828

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

0 5 10 15

Ti
m

e
 (

S)

Burst #

Asynchronous

Synchronous

Lineal (Asynchronous)

54

 In asynchronous mode the time difference between one burst and the next one is

on average 37 ms. After this experiment we can recognize that the subscription

response time in asynchronous mode is dependent on the number of previous

subscriptions, mainly because of the database operations that have to be performed

when receiving a SUBSCRIBE message, primarily storing information from the

watcher in the database (URI, IP address, expiration value, etc.).

 In the next test for multiple watchers and one contextity 4200 SUBSCRIBE or

REQUEST messages from different watchers will be sent at a sustained rate for

examining how the response times are affected because of the number of watchers

already subscribed to the server. The interarrival time between messages was around 5

ms. In Figure 29, we can see that in synchronous mode the request response time is

nearly constant for all the watchers, while in asynchronous mode, the subscription

response time increases, for the last watchers the subscription time increases even faster

because the subscription response time increases and becomes larger than the

interarrival between SUBSCRIBE messages, so messages have to wait in the queue.

Figure 29. subscription/request response time - sustained rate.

 We have found that the subscription time is affected by the previous users

already subscribed to the system; mainly because of reading and writing information

from subscriptions in the watcher table of the server‟s database. In order to examine if

the subscription and request response times also increase because of having information

in the database from PUBLISH messages, we tested the server when the server‟s

database is loaded with information from the contextities (i.e. information from

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

0 1000 2000 3000 4000

Ti
m

e
 (

s)

Watcher Number

Asynchronous

Synchronous

55

PUBLISH messages). For this, first we load the database by sending PUBLISH

messages, the test was repeated for different numbers of PUBLISH messages (100, 500,

1000, 2000, 3000, 4000, 5000, and 10000 messages), then 100 different watchers start

to send REQUEST or SUSCRIBE messages to one contextity at a constant rate (3

messages per second). We measure, then average the SUBSCRIBE and REQUEST

response time from these 100 watchers.

The results are shown in Table 15. As it can be seen the REQUEST response

time and SUBSCRIBE response time for both distribution modes are nearly constant,

independent of the amount information in the database from publications. This is

because the information from PUBLISH messages and SUBSCRIBE messages are

stored in different tables within the server‟s database. Thus information stored in the

contextity tables does not affect the time required for performing operations in the

watcher table.

Table 15. SUBSCRIBE and REQUEST response times when the database is

loaded with information PUBLISH messages

Synchronous Asynchronous

of Publish
messages
stored at
database

REQUEST
Response Time

(ms)

SUBSCRIBE
Response
Time (ms)

10000 1.46 1.68

5000 1.48 1.68

4000 1.48 1.68

3000 1.45 1.66

2000 1.47 1.60

1000 1.44 1.64

750 1.45 1.66

500 1.45 1.64

100 1.44 1.62

5.3 One watcher, one contextity and multiple PUBLISH
messages

 This evaluation scenario will simulate different intensities of updates of context

information. As different types of context information change with different rates, for

instance location information may change quickly when compared to the temperature of

a city that may change more slowly. It is important to find out at what rate the server

can handle updates of context information. For this test we have one watcher

subscribed to the information from the contextity, then a PUBLISH message is sent,

after receiving the OK response, an update is sent. After 100 PUBLISH updates are

sent periodically, for the first round the interarrival time between these updates is 1.5

seconds, for later rounds the interarrival time decreases by 250 ms. In this test we

measure how many of the PUBLISH messages are responded with a NOTIFY messages

to the watcher. The scenario is shown in Figure 30.

56

Figure 30. One watcher, one contextity, multiple PUBLISH messages

In Figure 31 the results from the test are shown. As it can be seen only when the

time between PUBLISH messages is 1.5 seconds are all of the messages followed by a

NOTIFY message. It is clear than the server can only send a NOTIFY message each

second because of the timer_interval parameter (set to 1 second), that is why a smaller

number of PUBLISH messages result in notifications when PUBLISH messages are

sent with an interarrival time below 1 second. Although not all the messages were

followed by a NOTIFY, all were acknowledged by an OK response, this means that

they were handled correctly by the server (i.e. the information is updated correctly in the

database). Even when the PUBLISH updates are sent with a separation of 10 ms, they

were all acknowledged by the server (with an OK response). From this experiment we

can observe that one limitation of the context server is that it is not suitable for

distributing context information when the information is changing faster than one

message per second.

Figure 31. Sending PUBLISH updates periodically (One contextity and one

Watcher)

100% 99%
92%

69%

49%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

1500 1250 1000 759 500

P
U

B
LI

SH
 r

e
sp

o
n

d
e

d
 b

y
N

O
TI

FY
 (

%
)

Interarrival time between PUBLISH messages (ms)

57

5.4 One watcher and multiple contextities

 Certain applications need to retrieve information from several contextities, this

evaluation scenario simulates this case. For example in the emergency scenario

presented in Chapter 2, the system needs to retrieve information about the location,

current activity, and capabilities of a worker in order to decide if she or he is a relevant

worker for a certain task. In order to see how scalability is affected in relation to the

number of contextities publishing information to the server we perform tests having

multiple contextities, as shown in Figure 32.

Figure 32. One watcher and multiple contextities

 In order to study how many PUBLISH messages can be handled by the server in

a short period of time. We start by simulating 100 contextities each sending a

PUBLISH message, the messages are sent in a burst, the number of contextities sending

a PUBLISH message will increase in steps of 100 for each round. We measure how

many PUBLISH messages can be handled by the server, by quantifying how many

PUBLISH messages are responded to with an OK response.

 In Figure 33, the results show that when we sent SUBSCRIBE messages in a

burst, some of the messages were dropped. In the case of PUBLISH messages 18% of

the messages were lost when sending 300 PUBLISH messages (from different

contextities) in a short period of time. As in the case of SUBSCRIBE messages, this is

because the server‟s buffers got full, so these loss PUBLISH messages need to be

retransmitted by the contextities. The server can accept fewer PUBLISH messages in a

short period of time, than SUBSCRIBE messages, because PUBLISH messages are

larger and the buffer size is unchanged.

58

Figure 33. Scalability for PUBLISH messages sent in a burst

 A more interesting case is when PUBLISH messages from the different

contextities are sent at a sustainable rate. To measure the greatest sustainable rate for

PUBLISH messages coming from different contextities that can be handled by the

server (replied with an OK) we send 2000 PUBLISH messages, starting with a period of

50 ms between PUBLISH messages, we decrease this period of time for the next

rounds, until 4ms. For all the rounds performed the 2000 contextities got the OK

response, this means that the information from the PUBLISH messages is stored in the

database.

 In the previous test, we have found that the time between the PUBLISH message

and OK response, increased slightly, in order to get a deeper insight into this we test the

server by varying the number of contextities sending a PUBLISH message at a

sustainable rate (3 messages per second). After capturing all the packets in Wireshark,

we measure the time needed for handling the publication, this is the time between the

PUBLISH message and its OK response. We have found that the time for handling the

publication messages increases slightly. Figure 34 shows the case when we send 100

PUBLISH messages. As can be seen the time for handling the PUBLISH message in

general increases with respect to the previous messages, on average this increase in time

is 5s for each previous PUBLISH message. The average time for handling the

PUBLISH message for the different cases is shown in Table 16. As it can be seen the

average time for handling the publication increases slightly, however this increase is

quite small and may be insignificant for most of the applications using the context

server. The raise in the time needed for handling the PUBLISH messages is due to the

database operations that have to be performed in order to store the information from the

contextities in the database, as when there is already information in the database‟s table,

these operations take a little bit more time.

100% 100%

82%

65%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

100 200 300 400

P
U

B
LI

SH
 m

e
ss

ag
e

s
 a

ck
n

o
w

le
d

ge
d

 b
y

an
 O

K

re
sp

o
n

se

Number of Contextities Sending a PUBLISH message

59

Table 16. Time for Handling PUBLISH messages

of
Publishers

Average Time for handling
PUBLISH message (ms)

Standard
Error (ms)

100 3.405 +/- 5.55E-02

500 3.593 +/- 3.19E-02

750 3.66 +/- 3.52E-02

1000 3.664 +/- 2.38E-02

2000 3.764 +/- 2.26E-02

3000 3.82 +/- 2.83E-02

4000 3.913 +/- 3.53E-02

5000 3.954 +/- 4.26E-02

10000 4.494 +/- 4.92E-02

Figure 34. Time for Handling PUBLISH messages with 100 contextities

5.5 Multiple watchers and multiple contextities
 Finally the last evaluation scenario considers the most complex scenario:

multiple watchers retrieving or subscribing to information and multiple contextities

publishing different types of information to the server. This evaluation scenario

considers a more realistic case where several context providers are publishing different

kinds of context information to the server and also several applications are retrieving

synchronously and asynchronously these information. As in the previous tests we are

interested in studying how the server scales with multiple users (watchers and

contextities) in the system, as well as how the response times are affected.

 The first test will focus on the scalability of the server, starting with 50

contextities sending PUBLISH messages, at the same time 50 watchers subscribe to

different contextities by sending 50 SUBSCRIBE/REQUEST. So there will be 100

y = 5E-06x + 0.003

R² = 0.068
0.001

0.002

0.003

0.004

0.005

0 20 40 60 80 100

T
im

e
 (

s)

Publish #

60

messages sent at almost the same time. The number of contextities and watchers

sending messages increase in steps of 50 contextities and 50 watchers. In this test we

measure how many PUBLISH and SUBSCRIBE/REQUEST messages can be handled

correctly in a short period of time. This test scenario is shown in Figure 35.

Figure 35. Multiple watchers and multiple contextities

Figure 36. Scalability when having multiple watchers and multiple contextities

 As in the previous scalability tests messages were dropped, for this case the

maximum number of messages handled in a burst were 150 SUBSCRIBE and 150

PUBLISH messages all from different watchers and different contextities, after this

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

50/50 100/100 150/150 200/200

P
e

rc
e

n
ta

ge
 h

an
d

le
d

 c
o

rr
e

ct
ly

(r

e
sp

o
n

d
e

d
 w

it
h

an

 O
K

)

SUBSCRIBE/PUBLISH messages sent to the server

Synchronous

Asynchronous

61

amount of messages some were dropped mainly because of buffer overflow. The results

are shown in Figure 36.

The last test examines how the subscription and notification behavior (for the

asynchronous case) and the request behavior (for the synchronous mode) are affected by

having multiple watchers subscribing to or requesting information from the server and

multiple contextities publishing it. In the first round we begin with 1 watcher

subscribed to/requesting information from 1 contextity, this is 100 different watchers

retrieving from 100 different contextities. Later rounds will consider more watchers

subscribed to a same contextity, 100 groups of {5, 10, 50, or 100} watchers subscribing

to or requesting from 100 different contextities, all the watchers within a group will be

subscribing to or requesting context data from the same contextity. For the

asynchronous mode we measure the subscription response time, then we will send

PUBLISH updates for triggering notifications and examine how the notification process

occurs. In the synchronous case we will measure the request response time. This

evaluation scenario is shown in Figure 37.

Figure 37. Groups of watchers subscribing/requesting to multiple contextities.
X represent number of watchers that were subcribed to the same contextity in each round

After performing the tests we found that the subscription and request response

time for the both modes of distribution was the same as the one observed when having

multiple watchers. The only significant changes occurred in the behavior of the system

when notifying watchers after a PUBLISH message, more precisely in the scheduling of

notifications to watchers. We have chosen the particular case of having 5000 watchers,

divided in 100 groups of 50, each group subscribed to a different contextity in order to

show this scheduling behavior. As in the case of multiple watchers, the notification

process occurred at a regular rate, in average 326 s between each NOTIFY message;

however, the schedule of notifications changed compared to the case with only one

contextity. This scheduling is shown in Figure 38 and Figure 39. As it can be seen

62

within each group 50 notifications occurred subsequently and it followed the same

scheme as in the case with one contextity, last to subscribe, first to receive notification.

The difference lies in the order in which the system notified watchers subscribed to

different contextities. The pattern followed by the server is the one shown in Figure 38,

each rectangle in the graph is a group of 50 watchers that are subscribed to the same

contextity, the number besides the group denotes to which contextity the group is

subscribed. The pattern followed to notify watchers subscribed to different contextities

is presented in Appendix D. Figure 39 shows a snapshot of a group of 50 watchers

subscribed to the same contextity. In terms of accuracy, all the notifications were

addressed to the correct watcher (correct URI and correct UDP socket).

Figure 38. Notifications with Multiple Watchers and Multiple Contextities

Figure 39. Notifications to Watchers subscribed to Publisher 92

1.03

1.035

1.04

1.045

1.05

1.055

4550 4560 4570 4580 4590 4600

Ti
m

e
 (

s)

Watcher #

63

5.6 Summary of the tests performed

 We performed different tests considering: (i) one watcher and one contextity, (ii)

(iii) multiple watchers, (iv) multiple contextities, and (v) multiple watchers and multiple

contextities. From the tests dealing with sending several messages (PUBLISH;

SUBSCRIBE, and REQUEST) at a high rate (2000 messages/sec), we have found that

after 200 PUBLISH, 400 SUBSCRIBE, or 400 REQUEST messages some messages get

lost due to the limited buffer size (default value 256 KB) -and thus need to be

retransmitted by the user agents. The buffer size is a configurable parameter in the

server‟s configuration file, however this is configured at startup, so it cannot be

adaptively configured. Increasing the value of the buffer size allows receiving more

packets in a short period of time, but more memory will be reserved.

 As observed by Mohammad Zarifi [30], we also found that the schedule of

notifications follows a fixed scheme. For watchers subscribed to the same contextity,

the last ones to subscribe are the first ones to be notified. Notifications are delivered at a

uniform rate of 2850 notifications per second. In the case where watchers are

subscribed to different contextities the system follows the notification scheme illustrated

in Figure 38. Due to this fixed scheduling scheme for notifying watchers, some

watchers will always get the notified first, while the others will receive notifications

with some delay (while their subscriptions do not expire.)

 In terms of response times, we have found that the subscription response time in

asynchronous mode is dependent on the amount of information stored in the watcher‟s

table of the Mysql database. On the other hand the request response time in

synchronous mode is constant because no database operations need to be performed.

Both response times are not affected where there is information in the tables regarding

the contextity in the database. In order to decouple the subscription response time from

the database operations, it will be valuable to respond messages before performing

database operations.

In the asynchronous mode the server can quickly procces PUBLISH messages or

PUBLISH updates, however the notification to subscribed watchers is limited by the

timer_interval parameter (granularity in seconds). The server only sends notifications to

watchers when the timer_interval timer runs out. Finally for synchronous mode we

found that the maximum polling rate is 1 second. REQUEST messages arriving with an

interarrival time smaller than one second do not result in notifications, this behavior

cannot be parameterized in the server‟s configuration file. A summary of the results

obtained in the scalability evaluation tests is shown in Table 17.

 The evaluation of the system was designed in order to test the server in terms of

(1) how many users will be interested and subscribed to a certain context information,

(2) how many context providers will be publishing information to the context server, (3)

how often context information updates need to be retrieved by the users, and (4) what is

the rate of context information updates compared to the distribution time needed for

64

information to reach the watcher(s). After the evaluation we have gained some insights

into how the above factors affect the performance of the system.

 In asynchronous mode the number of watchers subscribed to an event affects the

subscription response time, because this means more information stored at the database.

The more information about watchers that is stored in the server‟s database, the greater

the increase in the subscription response time (on average 9.25 ms per 100 watchers

subscribed). As well, in asynchronous mode the notification response time is affected

by the number of watchers subscribed at the context server. Notifications are sent to all

the watchers subscribed to an event sequentially, so the whole notification process takes

about 35 ms more for every 100 watchers subscribed to the same context information.

In synchronous mode the number of watchers affects the system, mainly when requests

arrive at a faster rate than the processing time of the server (1.44 ms per request),

because messages have to wait in the queue to be processed.

Table 17. Summary of test results

SUBSCRIBE
messages

REQUEST
messages

PUBLISH
messages

SUBCRIBE/REQUEST and
PUBLISH messages

Maximum number of
messages that can be
processed in a short

period of time 400 400 200
150 SUBSCRIBE/REQUEST

and 150 PUBLISH

 Maximum Polling Rate
accepted by the server

(Synchronous)
1 Request per

Second

Server's Notification
rate (Asynchronous)

2850 Notifications
per second

 The number of context providers publishing information affects the time the

server needs to process and store information from PUBLISH messages. This time

increases linearly with respect to the amount of information about publications in the

database, on average 500 s per 100 PUBLISH message already stored. As mentioned

earlier, the server notifies subscribed watchers about PUBLISH messages only every

second, so the increase in processing PUBLISH messages may be not significant for

applications.

In terms of how often context information can be distributed to watchers, in

synchronous mode the maximum polling rate is 1 second. In asynhronous mode the

maximum rate at which the watchers can receive context updates is also one second.

However, in the asynchronous case this parameter is configurable through the

timer_interval parameter, but 1 second is the minimum time supported. Most context

information changes slower, however SIP/SIMPLE is not suitable for distributing

context information when it changes at high rates (>1 change per second).

65

 Finally, comparing the context information distribution time with the dynamics

of context information, we can see that the context information distribution time in

asynchronous mode may be an issue for some applications. In asynchronous mode, the

notification of a change in context information may take more than 4 seconds (when

there are 10000 or more users subscribed to a given item of context information), in this

cases if this delay is an issue, it may be convenient to switch to a polling (synchronous)

mode that is faster, but of course it will involve the transfer of more messages. The

switching threshold will depend mainly in the application latency requirements.

66

6. Suggestions for Distributing Context
Information

After evaluating the context server using the implemented load generator, this

chapter focuses on offering some suggestions about how to distribute context

information, especially when it is better to use the synchronous mode or the

asynchronous mode. These recommendations are based in the insights gained during

the evaluation phase of the thesis.

The evaluation of the system showed that the SIP Express router is highly

scalable and stable; it can handle hundreds of SIP messages per second running on

Linux Ubuntu on a PC with Intel Pentium 4 at 2.6 GHz CPU and 1 GB of RAM.

Different SIP messages are processed and responded to in a short period of time;

however when the processing involves database operations, this time depends on the

amount of information stored in the database.

The asynchronous and synchronous mode of context information distribution

have different characteristics, both methods have their advantages and disadvantages.

Their usage depends primarily on the characteristics and nature of the context

information to be transmitted, on the requirements of specific applications, and user‟s

mobility.

The main advantage of the asynchronous mode is that after the subscription and

its immediate notification, further notifications are decoupled from the watcher and

depends only on changes in the status of events. In this mode after the subscription, the

delivery of context information when a change occurs involves the exchange of only a

NOTIFY message and its OK response, every time the status of an event changes. In

contrast the synchronous mode involves the exchange of context information each of

which requires 4 messages (REQUEST, OK, NOTIFY, and OK).

The synchronous mode‟s main advantage is the handling of REQUEST

messages, which does not require operations in the database, so the response time is

constant and independent of the number of watchers and contextities using the system.

Different types of context information have different requirements for its

distribution, mainly because each type of context information has different dynamics.

Context information with a high update rate has to be delivered in a short period of

time; otherwise this information may be inaccurate.

Different context-aware applications have different requirements in terms of the

context information that should be retrieved. Thus, for some applications it will be

critical to receive the information in a short period of time; while other applications may

tolerate bounded delays in the distribution of context information. Some applications

will need to know the status of the context of the users nearly all the time, while others

will only need this knowledge just at certain moments.

67

Finally, we have to consider the user‟s mobility; when a user is moving rapidly

and the context information retrieved has to do with certain position, then the user wants

to get the information as fast as possible, otherwise this information might not be useful.

Using the context distribution method proposed in this thesis, context

information can be retrieved asynchronously or it can be fetched or polled

synchronously. The mode of context distribution mainly impacts the network‟s traffic

and the context retrieval response time, advantages and disadvantages with respect to

these factors are summarized in the next subsections.

6.1 Network Traffic

 For certain types of networks, especially those where the service provider

charges per byte transmitted (e.g. GPRS), the traffic in the network is an important

factor for deciding how to distribute context information. Also in low bandwidth

networks it is important to consider the traffic in the network to avoid network

congestion.

 In terms of the traffic generated when delivering context information, the

asynchronous mode involves the transmission of fewer packets and fewer bytes. In

asynchronous mode the distribution of context information only involves a NOTIFY

message and its OK response (≈1527 bytes). On the other hand, in synchronous mode

each time an application fetches context information 4 packets (1 SUBSCRIBE, 1

NOTIFY and 2 OK messages, for a total of ≈2747 bytes.) need to be exchanged

between the user agent and the context server. In order to reduce the number of bytes

and messages exchanged in synchronous mode it will be beneficial to piggyback the

context information in the body message of the OK response (The message

acknowledging the REQUEST message). The piggybacking of context information will

reduce one message exchanged per request.

 In asynchronous mode the notification is sent only after a change in the status of

the state of an event, so the watcher always has the current state of the contextity. In

synchronous mode, to have information up to date, the watcher has to poll for

information frequently and this will mean more traffic in the network.

6.2 Latency

 For certain applications, especially when the context information is highly

dynamic, the time for receiving the context information is an important factor. In terms

of the time response, the main constraints in asynchronous mode are the timer_interval

parameter and the scheduling algorithm of the server. The timer_interval timer

determines how often the server notifies about changes in the status of subscribed

events, having the minimum value of one second. After a publication, the notification

to watchers may take up to one second, due to this timer. Another drawback of the

68

asynchronous mode is the fixed notification scheduling of the server. The watchers are

always notified in the same order; this means that always some watchers will be more

penalized in terms of latency. In order to avoid this, it may be possible to find the

section in the code of SER that handles the notifications and change it to randomize the

notification scheduling.

 The synchronous mode for distributing context information has the main

advantage that retrieving information in this mode does not require the performance of

database operations, so the request response time is independent of the number of

entries stored at the database. The request response time, however depends mainly on

the number of messages waiting in the queue. When messages arrive in a short period

of time, the response time of messages will increase due to the time that messages have

to wait in the buffer.

 In terms of response time, the request response time in synchronous mode is

mostly shorter than the notification response time in asynchronous mode. Comparing

the case with only one watcher in the system, in synchronous mode the average request

response time was 1.65 milliseconds, while in the asynchronous mode the average

notification time was 537 milliseconds, however the minimum and maximum

notification times were 56.416 ms and 932.854 ms respectively. The main reason for

the notification time variability is the timer_interval parameter, a random delay of 0 to 1

seconds occurs between the PUBLISH message and the notification process. When we

consider multiple watchers the notification time in asynchronous mode may be faster for

some watchers, but slower for others when compared with the request response time in

synchronous mode, depending on the delay between the PUBLISH message and the

first notification. Taking into account the average values from our previous tests, we

can conclude that the synchronous mode is faster. As an example, we show in Table 18

the values of the response time when we had 400 watchers using the system. As it can

be seen the synchronous mode is faster especially when the requests occurred at a

sustained rate (350 requests per second). When dealing with the notification of a big

amount of users (around 10,000) the notification response time may be in the order of 4

or 5 seconds for some users, this time may be not tolerated by certain applications,

because context information may be out of date. In comparison in synchronous mode

there is no random delay related and the request response time is in the order of

milliseconds.

Having multiple watchers affects primarily the notification response time

because the notifications are sent sequentially to all subscribed watchers. Also the

subscription response time in asynchronous mode increases in relation with the number

of watchers already subscribed in the server. This may not be significant for many

applications, especially if the subscriptions have a large expiration time. The

subscription process occurs just once and it has to be repeated only after the expiration

of the subscription (if the user is still interested in the context information). In the

synchronous mode the number of requests and publications affects the time the

messages have to wait in the queues before being processed, especially if the requests

69

and/or publications arrive within the same period of time. Having multiple contextities

publishing context information mainly affects the time required to store and process this

information that is dependent on the amount of information stored in the contextities‟

tables of the database.

Table 18. Comparison between request and notification response time with 400

watchers

 Asynchronous

(ms)

Synchronous (ms)

(400 requests in a burst)

Synchronous request (ms)

(Sustained Rate - 350

requests per second)

Average 569 101 1.911

Minimum 501 2.15 0.852

Maximum 640 188 6.96

 Each mode of context distribution has advantages and disadvantages, in the

following subsections we summarize when is more suitable to use one or another.

6.3 Asynchronous mode

 The asynchronous mode for distributing context information is especially

suitable when applications need to get the context information just after a change in the

status of such information. This method is particularly beneficial when the bandwidth

and network traffic are critical, the delivery of context information in this mode contains

less overhead than the delivery in synchronous mode.

 The SUBSCRIBE/NOTIFY scheme is appropriate when context information

changes sporadically and an application needs to be aware of context changes; this may

be the case of the user‟s profile or the presence of smoke in the airport emergency

scenario presented in Chapter 2. Using asynchronous context distribution in this case is

optimal in terms of bytes transmitted; a frequent polling in this case will result in an

increase of the network‟s traffic.

 Due to the connection between a notification and a change in the status of the

user‟s context, applications will have knowledge of context changes almost in real time;

unless in events with a large amount of watchers subscribed (more than 5000), when the

delivery of context information may take several seconds.

6.4 Fetching Context Information

 Many applications only need to retrieve the user‟s context information, only

once before performing an action. For this application the synchronous mode will be

appropriate. For example, considering the airport‟s emergency scenario presented in

70

Chapter 2, a communication application will only need to retrieve the available

bandwidth before startup; in order to decide if voice or text based communications will

be preferred.

 The main benefit of distributing context information using a synchronous mode

is the short time period between the request and getting a response, so the received

information will be up to date and the system can perform the pertinent actions.

6.5 Polling for Context Information

 A variant in synchronous mode is periodically fetching the information, known

as polling. Polling for retrieving context information may be suitable when the context

information changes very quickly and applications do not need updates so often. This

may be the case of the location of the users in the airport‟s emergency scenario. The

location of the different workers may be changing every second, however for the

application it is sufficient to know the approximate location of the users, especially if

there is no emergency. If the application polls every 30 seconds for the location of the

workers, the system will have a very good idea of their location. Moreover, when there

is an emergency the polling rate can be increased in order to get their “real time”

position.

 An advantage of using a REQUEST/REPLY method for retrieving context

information is that the time response is shorter than the one in asynchronous mode.

When the time response has higher value, even at the expense of bandwidth and

network traffic, polling at a high rate (1 request per second) may deliver context

information quicker than the asynchronous mode.

How this fits in our Emergency Scenario?

 Taking into account the recommendations we have derived from the evaluation

of SIP/SIMPLE and the scenario we proposed in Chapter 2, now we can decide how to

distribute context information. The distribution mode for each type of context

information that needs to be shared is summarized in Table 19.

 For sharing the location of a user with the control center an asynchronous

distribution will be suitable, if the control center desires to track the position of workers

with a high accuracy. By using asynchronous mode the control center will be notified

of all the changes in the worker‟s position. In the case that the control center or other

workers only want to get the position of a user at certain time, then a synchronous

request may be appropriate.

 For the location of fire, user‟s profile, presence information, current task, task

completion, progress, and the presence of smoke or fumes an asynchronous distribution

of information will be beneficial, mainly because the distribution of information will be

71

decoupled from the receivers and will only depend on changes in the context, this will

result in having less network traffic.

 Finally retrieving the available bandwidth of a worker may be useful to the

system in order to decide which kind of communication software (voice, video or text

based) should be started for enabling communication between the control center and a

user. For this purpose the available bandwidth should be retrieved on a request basis

just before deciding which communication software to start.

Table 19. Distribution mode for the Emergency Usage Case

Context How Often?

Location of user When it changes or on request

(synchronous and asynchronous)

Location of fire When fire is detected

(asynchronous)

User´s Profile When a user makes a change

(asynchronous)

Presence Information When a change in presence status

occurs (asynchronous)

Current Task When a change in task occurs

(asynchronous)

Task completion

progress

When a threshold is reached (such

as every 10%) (aysnchronous)

Available bandwidth On Request (synchronous)

Temperature When a sudden increase of

temperature occurs (asynchronous)

Presence of smoke,

fumes, etc.

When smoke/fumes are detected

(asynchronous)

72

7. Conclusions and Future Work

7.1 Conclusions

 Context-aware applications aim to exploit the user‟s context information, in

order to adapt their behavior to the user‟s current situation and assist him/her in the

daily tasks. Most of the applications developed until now use only the context

implicitly sensed by the device; however, context information may be produced outside

of the local device causing the need for distributing context information among

applications (that may be running on different devices distributed on a network).

 This thesis studied context distribution based on the Session Initiation Protocol

for Instant Messaging and Presence Leveraging Extensions (SIP SIMPLE). This

context distribution method enables the delivery of context information, both

synchronously and asynchronously. In synchronous mode, this method uses a

SUBSCRIBE message with expiration equals to zero, resulting in an immediate

notification with the current context information. The asynchronous mode exploits the

event notification mechanisms of SIP-SIMPLE. In both distribution modes context

information is delivered via a NOTIFY message. Context information is contained in

the NOTIFY message body in a RPID document. RPID was chosen for representing

context information in order to distribute context in a standard format.

 In synchronous mode a NOTIFY message containing the context information is

sent just after the request message. In asynchronous mode, the user also receives the

current status of the context information immediately, however he or she will aslo be

notified about every change about the status of the subscribed context information. For

both cases, the context information status is reported to the server using a PUBLISH

message.

 The context distribution component is based on the SIP Express Router and its

presence module. A load generator was developed in order to evaluate the performance

of the server in terms of response time and scalability. The evaluation of the context

distribution component included different evaluation scenarios involving multiple users

interested in context information (i.e. watchers) or/and multiple users publishing context

information (i.e. contextities).

The evaluation revealed that the server is highly scalable and can respond to

hundreds (up to 600) of synchronous and asynchronous requests per second. The tests

performed showed that the time required for processing subscriptions in asynchronous

mode grows linearly in relation with the amount of information in the database from

previous subscriptions. On the contrary, the time required for responding synchronous

requests is constant, unless the messages have to wait in the buffer queues, when several

packets arrive in a short period of time. The time required for processing a PUBLISH

message also increases linearly in relation to the amount of information stored in the

database from previous publications. The notification scheduling in asynchronous mode

73

follows a fixed pattern and all notifications are sent at a constant rate (on average 2850

notifications per second). Considering average times for different load conditions, the

delivery of context information using the synchronous mode is faster than when using

asynchronous mode, mainly because in asynchronous mode a timer determines when to

send notifications to subscribed users (watchers).

One important limitation of using SIP/SIMPLE for distributing context

information is that the maximum polling rate and the maximum update rate supported

by the server is 1 second, so this approach is not suitable when context information is

changing more than one time per second.

 Based on application‟s requirements (e.g. accepted latency, how often they need

context information, and the nature of context information), for some it will be better to

use synchronous mode, while for others it will be better to use asynchronous. In order

to decide which mode is more suitable for certain application we needed to analyze the

application‟s needs and requirements, as well as the dynamics of the context

information.

 This thesis was written as part of the MUSIC project, resulting in

recommendations to middleware developers on how to implement the context

distribution component in order to fulfill with the needs and requirements of the project.

The evaluation performed in this thesis showed that SIP is an appropriate protocol for

transporting context information; moreover SIP infrastructure is the foundation for

session initiation and presence support in desktop, mobile, and server platforms and will

be widely deployed in future mobile devices. However, in order to fulfill the

requirements and features proposed in the architecture design of the MUSIC project

several open issues still need to be addressed. In the next section I emphasize in some

suggestions for future work that can build upon this thesis.

7.2 Future Work

 Some of the suggestions for extending and enhancing the work of this thesis are:

1) Distributing Context information within a Peer to Peer environment

The MUSIC middleware aims to run in infrastructure based environments, as well

as in ad hoc environments, where the distribution component cannot rely on a SIP

context server. Exploiting the distributed nature of MUSIC networks it would be

interesting to develop a distribution component based on Peer to Peer SIP [51]

(P2PSIP). Recently, an IETF group has started working in the standardization of this

Peer to Peer version of SIP, however this work is not related to context information, but

it might be adopted in the MUSIC project for sharing context. The work on this

protocol does not focus on SIP SIMPLE; however, we see a need for developing SIP

SIMPLE on top of peer to peer networks for enabling event notification mechanisms.

74

2) Design of a layer facilitating interaction between applications and the

context distribution component

In order to ease the communication between the context distribution component and

applications a layer in charge of controlling the distribution of context information is

needed. This layer, based on applications requirements and the nature of context, will

decide how to retrieve context. This software entity will keep track of the system

infrastructure conditions, such as response time, network traffic, etc. in order to select

between context distribution modes in order to comply with the mentioned

requirements. As well, this layer may keep track of the status of context information

subscriptions in order to renew expired subscriptions if it is needed.

3) Privacy Issues

When dealing with the information and context of a user, such as the user‟s location,

privacy may be critical. In order to deal with this, some authorization mechanisms may

be implemented in order to set policies determining how to distribute context

information. For instance, a user may only want to disclose his or her location to close

relatives. Policies may be established for distributing different granularities of the same

context information to different types of users; these policies may be based on social

relations. For example a user may set that his or her family will receive the exact

location, friends will receive a less granular location, and the information may be

disclosed to other group of users. It will be important to consider the delay caused by

processing these constraints and analyze if this is a feasible feature in order to fulfill

with the latency requirement of applications.

4) A Graphical User Interface for the load generator

In order to make the load generator easier to use and configure parameters of the

evaluation a graphical user interface may be developed.

5) Changes to Context server implementation

In order to improve the performance of context information distribution using

SIP/SIMPLE it is required to change the implementation of SER. In synchronous mode

changes in order to piggyback the context information in the body message of the OK

message are required. On the other hand, in asynchronous mode the SER has to be

change for responding messages before performing database operations, with this

modifications the time response will be decoupled from the database.

75

References
[1] Bill N. Schilit, Norman Adams, and Roy Want, Context Aware Computing

Applications, IEEE Workshop on Mobile Computing Systems and Applications,

Santa Cruz, CA, US, December, 1994.

[2] Mark Weiser, Some computer science issues in ubiquitous computing, ACM

SIGMOBILE Mobile Computing and Communications, 1999, Review, Vol. 3,

page 12.

[3] IST project 035166, Self-Adapting Applications for Mobile Users in

Ubiquitous Computing Environment project, available at www.ist-music.eu, last

accessed: March 27, 2008.

[4] The MUSIC Consortium, MUSIC - Annex 1 – Description of work, September

12, 2006.

[5] The MUSIC Consortium, D4.2 System Design of the MUSIC Architecture,

November 2007, available at http://www.ist-music.eu/MUSIC/results/music-

deliverables/techreportreference.2007-12-10.3633513999

[6] National Fire Protection Association (NPFA), NPFA 72: National Fire Alarm

Code, 2007, Quincy, Massachusetts, USA.

[7] Appear Networks, Southwest Florida International Airport, Context-Aware

Wireless Emergency Response, available at

http://www.appearnetworks.com/IMG/pdf/Southwest_Florida_International_Air

port.pdf, Last accessed March 25, 2008.

[8] Alisa Devlic, Alan Graf, Alessandro Barone, Paolo, Mamelli, and Athanasios

Karapantelakis, Evaluation of context distribution methods via Bluetooth and

WLAN: Insights gained while examining Battery Power Consumption, accepted

in Mobiquitous 2008, Dublin Ireland.

[9] B. Schilit and M. Theimer, Disseminating Active Map Information to Mobile

Hosts,. IEEE Network, IEEE Computer Society, 22-32, October 1994.

[10] Anind Dey and Gregory Abowd, Towards a Better Understanding of Context

and Context-Awareness, GVU Technical Report GIT-GVU-99-22, College of

Computing, Georgia Institute of Technology, 1999, Atlanta, Georgia.

[11] The MUSIC consortium, Initial research results on methods, languages,

algorithms and tools to modeling and management of context, Deliverable 2.2,

December, 2007, available at http://www.ist-music.eu/MUSIC/results/music-

deliverables/techreportreference.2008-02-21.2969892968 last accessed: March

30, 2008.

[12] R. Want, A. Hopper, V. Falcao and J. Gibbons, The Active Badge Location

System, ACM Transactions on Information Systems, 1992, Vol 10, pp. 91-102.

[13] J. Pascoe, Adding Generic Contextual Capabilities to Wearable Computers,

2
nd

.International Symposium on Wearable Computers, October, 1998,

Pittsburgh, Pennsylvania, U. S. , pp. 92-99.

[14] Wei Li, Towards a Person-Centric Context Aware System, Licentiate Thesis,

Department of Computer and System Sciences, Stockholm University and

Royal Institute of Technology, March 2006, Kista, Sweden.

http://www.ist-music.eu/
http://www.appearnetworks.com/IMG/pdf/Southwest_Florida_International_Airport.pdf
http://www.appearnetworks.com/IMG/pdf/Southwest_Florida_International_Airport.pdf
http://www.ist-music.eu/MUSIC/results/music-deliverables/techreportreference.2008-02-21.2969892968
http://www.ist-music.eu/MUSIC/results/music-deliverables/techreportreference.2008-02-21.2969892968

76

[15] Roy Want, Bill Schilit, et al., The PARCTAB Ubiquitous Computing

Experiment, Technical Report CSL-95-1, Xerox Palo Alto Research Center,

March 1995.

[16] Gregory Abowd, et al. Cyberguide. A mobile context-aware tour guide, Mobile

Computing and networking: selected papers from MobiCom 96, ACM, Vol. 3,

pp. 421-433, October 1997.

[17] Daniel Salber, Anind Dey, and Gregory Abowd, The Context Toolkit: Aiding

the Development of Context-Enabled Applications, Proceedings of Conference

fon Human Factors in Computing Systems (CHI´99), ACM press, Pittsburgh,

Pennsylvania, U. S., May 15-20, 1999.

[18] H. Sinreich and A. Johnston, Internet Communications Using SIP: delivering

VoIP and multimedia services with session initiation protocol, John Wiley and

Sons, New York, U.S., 2001.

[19] J. Kuthan and D. Sisalem, SIP: More Than You Ever Wanted to Know About,

IPTEL, March 2007, available at http://www.iptel.org/files/sip_tutorial.pdf.

[20] M. Handley, et al., SIP: Session Initiation Protocol, RFC 2543, IETF, March,

1999 available at http://tools.ietf.org/html/rfc2543

[21] Dana Pave and Dirk Trossen, Context Provisioning and SIP Events, Workshop

on Context Awareness at ACM SIGMOBILE, Boston Massachusetts, U. S.,

June 6, 2004.

[22] A. Roach, SIP-Specific Event Notification RFC 3265, IETF, June, 2002,

available at http://www.ietf.org/rfc/rfc3265.txt.

[23] J. Rosenberg, A Presence Event Package for the Session Initiation Protocol

(SIP), RFC 3856, IETF, August, 2004, available at

http://www.ietf.org/rfc/rfc3856.txt.

[24] Gerald Q. Maguire Jr., Lecture notes for Practical Voice Over IP (VoIP): SIP

and related protocols, School of Information and Communication Technology

(ICT), Royal Institute of Technology, March, 2007.

[25] A. Niemi, Session Initiation Protocol (SIP) Extension for Event State

Publication, RFC 3903, IETF, October 2004, available at

http://www.ietf.org/rfc/rfc3903.txt.

[26] M. Day, et al., A model for Presence and Instant Messaging, RFC 2778, IETF,

February 2000, available at http://www.ietf.org/rfc/rfc2778.txt.

[27] H. Sugano, et al., Presence Information Data Format (PIDF), RFC 3863, IETF,

August 2004, available at http://www.ietf.org/rfc/rfc3863.txt.

[28] SIP Express Router (SER) in Wikipedia available at

http://en.wikipedia.org/wiki/SIP_Express_Router_%28SER%29.

[29] IPTEL‟s SER Homepage, available at www.iptel.org/SER, last accessed: March

25, 2008.

[30] M. Zarifi, A Presence Server for Context-aware Applications, Master thesis,

School of Information and Communication Technology, KTH, December 17,

2007.

http://www.iptel.org/files/sip_tutorial.pdf
http://tools.ietf.org/html/rfc2543
http://www.ietf.org/rfc/rfc3265.txt
http://www.ietf.org/rfc/rfc3856.txt
http://www.ietf.org/rfc/rfc3903.txt
http://www.ietf.org/rfc/rfc2778.txt
http://www.ietf.org/rfc/rfc3863.txt
http://en.wikipedia.org/wiki/SIP_Express_Router_%28SER%29

77

[31] SIMPLE RFC´s, SIP for Instant Messaging and Presence Leveraging

Extensions, available at http://www.voip-telephony.org/rfc/simple.

[32] A. Georgescu, Presence, SIP beyond VoIP, AG-Projects, available at

http://www.mediaplaza.nl/uploaded/FILES/seminars/2007/OS%20VoIP%20tele

fonie/20070531-SIPSIMPLE.pdf, Last accessed March 25, 2008.

[33] H. Schulzrinne, et al., RPID: Rich Presence Extensions to the Presence

Information Data Format (PIDF), RFC 4480, IETF, July 2006, available at

http://www.ietf.org/rfc/rfc4480.txt

[34] J. Rosenberg, A Data Model for Presence, RFC 4479, IETF, July, 2006,

available at http://www.ietf.org/rfc/rfc4479.txt

[35] J. Peterson, Common Profile for Presence (CPP), RFC 3859, IETF, August,

2004, available at http://www.ietf.org/rfc/rfc3859.txt

[36] A. Devlic and I. Podnar, Location-aware Content Delivery Service Using

Publish/Subscribe, Telecommunications and Mobile Computing (tcmc 2003),

Workshop on Nomadic Data Services and Mobility, OVE-Mediacenter,

Austrian Electrotechnical Associations (OVE), Graz, Austria, March, 2003.

[37] A. Devlic and E. Klinstkog, Context retrieval and distribution in mobile

distributed environment, Third Workshop of Context Awareness for proactive

Systems, Guildford, UK, June, 2007.

[38] IST project MIDAS, Middelware Platform for Developing and Deploying

Advanced Mobile Services, available at www.ist-midas.org last accessed April

2, 2008.

[39] Manuel Görtz, Ralf Ackermann and Ralf Steinmetz, Enhanced SIP

Communication Services by Context Sharing, Euromicro Conference 2004,

IEEE, February 13, 2004, La Coruña, Spain.

[40] Wei Li, A Service Oriented SIP infrastructure for Adaptive and Context-Aware

Wireless Services, Proceedings of the 2
nd

 International Conference on Mobile

and Ubiquitous Multimedia, Norrköping, Sweden, Dec 10-12, 2003.

[41] J. Rosenberg, et. al. SIP: Session Inititiation Protocol, RFC 3261, IETF, june,

2002, available at http://www.ietf.org/rfc/rfc3261.txt

[42] Paul Hazlett, Simon Miles, and Greger Teigre, SER- Getting Started, IPTEL,

available at http://siprouter.teigre.com/doc/gettingstarted/, last accessed April 3,

2008.

[43] Vaclav Kubart, SER presence handbook, IPTEL, available at

http://www.iptel.org/~vku/presence_handbook/index.html#id2514614, last

accessed April 3, 2008.

[44] Naccarato Guisseppe, Introducing Nonblocking sockets, O‟Reilly ON Java.com,

available at http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html, last

accessed April 4, 2008.

[45] Openser, The Open Source Sip Server, available at www.openser.org, last

accessed April 10, 2008.

http://www.voip-telephony.org/rfc/simple
http://www.mediaplaza.nl/uploaded/FILES/seminars/2007/OS%20VoIP%20telefonie/20070531-SIPSIMPLE.pdf
http://www.mediaplaza.nl/uploaded/FILES/seminars/2007/OS%20VoIP%20telefonie/20070531-SIPSIMPLE.pdf
http://www.ietf.org/rfc/rfc4480.txt
http://www.ietf.org/rfc/rfc4479.txt
http://www.ietf.org/rfc/rfc3859.txt
http://www.ist-midas.org/
http://www.ietf.org/rfc/rfc3261.txt
http://siprouter.teigre.com/doc/gettingstarted/
http://www.iptel.org/~vku/presence_handbook/index.html#id2514614
http://www.onjava.com/pub/a/onjava/2002/09/04/nio.html
http://www.openser.org/

78

[46] Thomas Strang and Claudia Linhoff, A Context Modeling Survey, UbiComp 1
st

International Workshop on Advanced Context Modeling, Reasoning and

Management, Nottingham, September 7-10, 2004, pp 34-41

[47] WWW Consortium, CC/PP Information Page, available at

www.w3.org/Mobile/CCPP, last accessed April 11, 2008.

[48] Q. Sheng and B. Benatallah, ContextUML: a UML-Based Modeling Language

for Model-Driven Development of Context-Aware Web Services, International

Conference on Mobile Business (ICMB‟05) July 11-13, 2005, Sydney

Australia.

[49] H. Chen, T. Finin, and A Joshi, A Using OWL in a Pervasive Computing

Broker, Proceeding of Workshop on Ontologies in Open Agent systems,

Melbourne, Australia, July, 2003.

[50] Wireshark Network Protocol Analyzer available at www.wireshark.org last

accessed April 15, 2008.

[51] D. Bryan, et al, Concepts and Terminology for Peer to Peer SIP, Internet Draft,

November 15, 2007, expires May 18, 2008, IETF, available at

http://www.p2psip.org/drafts/draft-ietf-p2psip-concepts-01.txt

[52] E. Halepovic and R. Deters, The costs of using JXTA, Third International

Conference on Peer-to_Peer Computing, Linkoping, Sweden, IEEE Computer

Society, (2003).

http://www.w3.org/Mobile/CCPP
http://www.wireshark.org/
http://www.p2psip.org/drafts/draft-ietf-p2psip-concepts-01.txt

79

Appendix A
SER Configuration file ser.cfg

Ser.cfg file

configured as a Context server

debug=3 # debug level (cmd line: -dddddddddd)

check_via=no # (cmd. line: -v)

dns=no # (cmd. line: -r)

rev_dns=no # (cmd. line: -R)

#listen=192.168.1.103

port=5060

children=2

------------------ module loading ----------------------------------

Uncomment this if you want to use SQL database

loadmodule "/base/ser/directory/lib/ser/modules/sl.so"

loadmodule "/base/ser/directory/lib/ser/modules/avp.so"

loadmodule "/base/ser/directory/lib/ser/modules/avpops.so"

loadmodule "/base/ser/directory/lib/ser/modules/tm.so"

loadmodule "/base/ser/directory/lib/ser/modules/rr.so"

loadmodule "/base/ser/directory/lib/ser/modules/maxfwd.so"

loadmodule "/base/ser/directory/lib/ser/modules/usrloc.so"

loadmodule "/base/ser/directory/lib/ser/modules/registrar.so"

loadmodule "/base/ser/directory/lib/ser/modules/textops.so"

loadmodule "/base/ser/directory/lib/ser/modules/mysql.so"

loadmodule "/base/ser/directory/lib/ser/modules/dialog.so"

loadmodule "/base/ser/directory/lib/ser/modules/rls.so"

loadmodule "/base/ser/directory/lib/ser/modules/pa.so"

loadmodule "/base/ser/directory/lib/ser/modules/presence_b2b.so"

loadmodule "/base/ser/directory/lib/ser/modules/uri.so"

loadmodule "/base/ser/directory/lib/ser/modules/uri_db.so"

loadmodule "/base/ser/directory/lib/ser/modules/domain.so"

loadmodule "/base/ser/directory/lib/ser/modules/fifo.so"

loadmodule "/base/ser/directory/lib/ser/modules/xmlrpc.so"

loadmodule "//base/ser/directory/lib/ser/modules/xlog.so"

Uncomment this if you want digest authentication

mysql.so must be loaded !

loadmodule "/base/ser/directory/lib/ser/modules/auth.so"

loadmodule "/base/ser/directory/lib/ser/modules/auth_db.so"

loadmodule "/base/ser/directory/lib/ser/modules/msilo.so"

----------------- setting module-specific parameters ---------------

modparam("msilo","use_contact",0)

modparam("msilo","expire_time",7200)

-- auth params --

Uncomment if you are using auth module

modparam("auth_db", "calculate_ha1", yes)

If you set "calculate_ha1" parameter to yes (which true in this config),

uncomment also the following parameter)

modparam("auth_db", "password_column", "password")

-- rr params --

add value to ;lr param to make some broken UAs happy

modparam("rr", "enable_full_lr", 1)

modparam("rls", "min_expiration", 200)

modparam("rls", "max_expiration", 300)

modparam("rls", "default_expiration", 300)

modparam("rls", "auth", "none")

modparam("rls", "xcap_root", "http://localhost/xcap")

modparam("rls", "reduce_xcap_needs", 1)

modparam("rls", "db_mode", 1)

modparam("rls", "db_url", "mysql://ser:heslo@localhost:3306/ser")

modparam("pa", "use_db", 1)

allow storing authorization requests for offline users into database

modparam("pa", "use_offline_winfo", 1)

how often try to remove old stored authorization requests

modparam("pa", "offline_winfo_timer", 600)

how long stored authorization requests live

modparam("pa", "offline_winfo_expiration", 600)

modparam("pa", "db_url", "mysql://ser:heslo@localhost:3306/ser")

80

mode of PA authorization: none, implicit or xcap

modparam("pa", "auth", "none")

modparam("pa", "auth_xcap_root", "http://localhost/xcap")

do not authorize watcherinfo subscriptions

modparam("pa", "winfo_auth", "none")

use only published information if set to 0

modparam("pa", "use_callbacks", 1)

dont accept internal subscriptions from RLS, ...

modparam("pa", "accept_internal_subscriptions", 0)

maximum value of Expires for subscriptions

modparam("pa", "max_subscription_expiration", 600)

maximum value of Expires for publications

modparam("pa", "max_publish_expiration", 120)

how often test if something changes and send NOTIFY

modparam("pa", "timer_interval", 1)

route for generated SUBSCRIBE requests for presence

modparam("presence_b2b", "presence_route", "<sip:127.0.0.1;transport=tcp;lr>")

waiting time from error to new attepmt about SUBSCRIBE

modparam("presence_b2b", "on_error_retry_time", 60)

how long wait for NOTIFY with Subscription-Status=terminated after unsubscribe

modparam("presence_b2b", "wait_for_term_notify", 33)

how long before expiration send renewal SUBSCRIBE request

modparam("presence_b2b", "resubscribe_delta", 30)

minimal time to send renewal SUBSCRIBE request from receiving previous response

modparam("presence_b2b", "min_resubscribe_time", 60)

default expiration timeout

modparam("presence_b2b", "default_expiration", 3600)

process internal subscriptions to presence events

modparam("presence_b2b", "handle_presence_subscriptions", 1)

modparam("usrloc", "db_mode", 1)

modparam("domain", "db_mode", 1)

modparam("domain|uri_db|acc|auth_db|usrloc|msilo", "db_url",

"mysql://ser:heslo@localhost:3306/ser")

modparam("fifo", "fifo_file", "/tmp/ser_fifo")

------------------------- request routing logic -------------------

main routing logic

route{

 # XML RPC

 if (method == "POST" || method == "GET") {

 create_via();

 dispatch_rpc();

 break;

 }

 # initial sanity checks -- messages with

 # max_forwards==0, or excessively long requests

 if (!mf_process_maxfwd_header("10")) {

 sl_send_reply("483","Too Many Hops");

 break;

 };

 if (msg:len >= max_len) {

 sl_send_reply("513", "Message too big");

 break;

 };

 # we record-route all messages -- to make sure that

 # subsequent messages will go through our proxy; that's

 # particularly good if upstream and downstream entities

 # use different transport protocol

 if (!method=="REGISTER") record_route();

 # subsequent messages withing a dialog should take the

 # path determined by record-routing

 if (loose_route()) {

 # mark routing logic in request

 append_hf("P-hint: rr-enforced\r\n");

 route(1);

 break;

 };

 # if the request is for other domain use UsrLoc

 # (in case, it does not work, use the following command

 # with proper names and addresses in it)

 if (uri=~"192.168.1.103") {

 if (!lookup_domain("To")) {

81

 xlog("L_ERR", "Unknown domain to: %tu from: %fu\n");

 route(1);

 break;

 }

 if (method=="SUBSCRIBE") {

 log(1,"Subscribe\n");

 if (t_newtran()) {

 log(1,"Register\n");

 handle_subscription("registrar");

 log(1,"Done\n");

 };

 break;

 };

 if (method=="PUBLISH") {

 log(1,"Publish\n");

 if (!t_newtran()) {

 log(1,"newtran error\n");

 sl_reply_error();

 };

 handle_publish("registrar");

 log(1,"publish handled\n");

 break;

 };

 # get user (common for all other messages than SUBSCRIBE)

 if (!lookup_user("To")) {

 # log(1, "Unknown user - message should be forwarded?");

 # break;

 append_hf("P-hint: unknown user\r\n");

 route(1);

 break;

 }

 if (method=="NOTIFY") {

 if (!t_newtran()) {

 log(1, "newtran error\n");

 sl_reply_error();

 break;

 };

 # handle notification sent in internal subscriptions (presence_b2b)

 if (!handle_notify()) {

 t_reply("481", "Unable to handle notification");

 }

 break;

 };

 if (method=="MESSAGE") {

 if (authorize_message("http://localhost/xcap")) {

 # use usrloc for delivery

 if (lookup("location")) {

 log(1, "Delivering MESSAGE using usrloc\n");

 t_on_failure("1");

 if (!t_relay()) {

 sl_reply_error();

 }

 break;

 }

 else {

 # store messages for offline user

 xlog("L_ERR", "MSILO: storing MESSAGE for %tu\n");

 if (!t_newtran()) {

 log(1, "newtran error\n");

 sl_reply_error();

 break;

 };

 # store only text messages NOT isComposing... !

 if (search("^(Content-Type|c):.*application/im-iscomposing\+xml.*"))

{

 log(1, "it is only isComposing message - ignored\n");

 t_reply("202", "Ignored");

 break;

 }

 if (m_store("0", "sip:127.0.0.1")) {

 # log(1, "MSILO: offline message stored\n");

82

 if (!t_reply("202", "Accepted")) {

 sl_reply_error();

 };

 } else {

 log(1, "MSILO: error storing offline message\n");

 if (!t_reply("503", "Service Unavailable")) {

 sl_reply_error();

 };

 };

 break;

 }

 break;

 }

 else {

 # log(1, "unauthorized message\n");

 sl_reply("403", "Forbidden");

 }

 break;

 }

 if (method=="REGISTER") {

 # uncomment this if you want to authenticate REGISTER request

 if (!www_authenticate(" 192.168.1.103", "credentials")) {

 www_challenge("192.168.1.103", "0");

 break;

 };

 save("location");

 # dump stored messages - route it through myself (otherwise routed via DNS!)

 if (m_dump("sip: 127.0.0.1")) {

 xlog("L_ERR", "MSILO: offline messages for %fu dumped\n");

 }

 break;

 };

 # native SIP destinations are handled using our USRLOC DB

 if (!lookup("location")) {

 sl_send_reply("404", "Not Found");

 break;

 };

 };

append_hf("P-hint: usrloc applied\r\n");

 route(1);

}

route[1]

{

 # send it out now; use stateful forwarding as it works reliably

 # even for UDP2TCP

 if (!t_relay()) {

 sl_reply_error();

 };

}

failure_route[1] {

 # forwarding failed -- check if the request was a MESSAGE

 if (!method=="MESSAGE") { break; };

 log(1, "MSILO: MESSAGE forward failed - storing it\n");

 # we have changed the R-URI with the contact address, ignore it now

 if (m_store("0", "")) {

 t_reply("202", "Accepted");

 } else {

 log(1, "MSILO: offline message NOT stored\n");

 t_reply("503", "Service Unavailable");

 };

}

 # if (pthread_join (SendNotifyClient, NULL))

 # {

 # printf("error joining thread.");

 #abort();

 #}

#exit(0);

#}

83

Appendix B
Load Generator

import java.io.*;

import java.net.*;

import java.nio.*;

import java.nio.channels.*; // bug? redundant with previous one??

import java.util.*;

import java.nio.charset.Charset;

public class NonBlock {

 static String test;

 public static void main(String[] args){

 int port=54000;

 int portpub=64001;

 int SIPport=5060;

 String server="192.168.100.234";

 String client="192.168.100.53";

 int watchers=1500;

 int publishers=1;

 String subs_exp="0";

 String req_exp="0";

 String location="<?xml version='1.0' encoding='UTF-

8'?><presence xmlns='urn:ietf:params:xml:ns:pidf'

xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

entity='sip:Alice@192.168.100.153'><tuple

id='t8a130d03'><status><basic>open</basic><location><description>Appea

r</description><room>Eulab</room><floor>1</floor><coordinates><latitud

e>123213</latitude><longtitude>47382145</longtitude></coordinates></lo

cation></status><note>location</note><contact

priorit='0.8'>Carlos</contact></tuple></presence>";

 String location2="<?xml version='1.0' encoding='UTF-

8'?><presence xmlns='urn:ietf:params:xml:ns:pidf'

xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

entity='sip:Alice@192.168.100.153'><tuple

id='t8a130d03'><status><basic>open</basic><location><description>Kista

</description><room>Galleria</room><floor>1</floor><coordinates><latit

ude>1</latitude><longtitude>4</longtitude></coordinates></location></s

tatus><note>location</note><contact

priorit='0.8'>Carlos</contact></tuple></presence>";

 String location3="<?xml version='1.0' encoding='UTF-

8'?><presence xmlns='urn:ietf:params:xml:ns:pidf'

xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

entity='sip:Alice@192.168.100.153'><tuple

id='t8a130d03'><status><basic>open</basic><location><description>KTH</

description><room>Esal</room><floor>1</floor><coordinates><latitude>12

3213</latitude><longtitude>47382145</longtitude></coordinates></locati

on></status><note>location</note><contact

priorit='0.8'>Carlos</contact></tuple></presence>";

84

 String presence="<?xml version='1.0' encoding='UTF-8'?>

<presence xmlns='urn:ietf:params:xml:ns:pidf'

xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

xmlns:lt='urn:ietf:params:xml:ns:location-type'

xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

entity='pres:someone@example.com'><dm:person id='p1'><rpid:activities

from='2005-05-30T12:00:00+05:00' until='2005-05-30T17:00:00+05:00'>

<rpid:note>Far away</rpid:note> <rpid:away/>

</rpid:activities><rpid:mood><rpid:angry/></rpid:mood><rpid:place-

type><lt:residence/></rpid:place-type><rpid:sphere>bowling

league</rpid:sphere><dm:note>Scoring

120</dm:note></dm:person></presence>";

 String presence2="<?xml version='1.0' encoding='UTF-

8'?><presence xmlns='urn:ietf:params:xml:ns:pidf'

xmlns:dm='urn:ietf:params:xml:ns:pidf:data-model'

xmlns:rpid='urn:ietf:params:xml:ns:pidf:rpid'

xmlns:c='urn:ietf:params:xml:ns:pidf:cipid'

entity='sip:watcher1@192.168.1.103'><tuple

id='t3f127a27'><status><basic>open</basic></status></tuple><dm:person

id='p1f5e1369'><rpid:place-type><lt:appear/><rpid:note>longitude

35</rpid:note><rpid:note>latitude 45</rpid:note></rpid:place-

type><rpid:sphere>meeting room<rpid:note>2nd

floor</rpid:note></rpid:sphere></dm:person></presence>";

 Selector selector = null;

 Selector pselector=null;

 String subscribeto="Publisher1";

 String[] users=new String[watchers];

 String[] pubs=new String[publishers];

 for(int i=0;i<watchers;i++){

 users[i]="Watcher"+(i+1);

 }

 for(int i=0;i<publishers;i++){

 pubs[i]="Publisher"+(i+1);

 }

 try {

 // Create the selector

 selector = Selector.open();

 pselector = Selector.open();

 // Create non-blocking sockets.

 DatagramChannel[] sChannel=new

DatagramChannel[watchers];

 DatagramChannel[] pChannel=new

DatagramChannel[publishers];

 for(int i=0;i<watchers;i++){

 sChannel[i]=createDatagramChannel(client,port);

 sChannel[i].register(selector,

sChannel[i].validOps());

 port++;

 }

 for(int i=0;i<publishers;i++){

 pChannel[i]=NonBlock.createDatagramChannel(client,portpub);

 pChannel[i].register(pselector,

pChannel[i].validOps());

 portpub++;

 }

 Publisher publish;

85

 publish=new

Publisher(publishers,server,client,pubs,pChannel,presence2);

 publish.start();

 Subscriber subscrib;

 subscrib=new

Subscriber(watchers,server,client,subs_exp,subscribeto,users,sChannel)

;

 subscrib.start();

 } catch (IOException e) {

 }

 // Wait for events

 while (true) {

 try {

 // Wait for an event

 selector.select();

 pselector.select();

 } catch (IOException e) {

 // Handle error with selector

 break;

 }

 // Get list of selection keys with pending events

 Iterator it = selector.selectedKeys().iterator();

 Iterator itp= pselector.selectedKeys().iterator();

 // Process each key at a time

 while (it.hasNext()) {

 // Get the selection key

 SelectionKey selKey = (SelectionKey)it.next();

 // Remove it from the list to indicate that it is

being processed

 it.remove();

 try {

 processSelectionKey(selKey,server,client);

 } catch (IOException e) {

 // Handle error with channel and unregister

 selKey.cancel();

 }

 }

 while (itp.hasNext()) {

 // Get the selection key

 SelectionKey selKeyp = (SelectionKey)itp.next();

 // Remove it from the list to indicate that it is

being processed

 itp.remove();

 try {

 processSelectionKey2(selKeyp);

 } catch (IOException e) {

 // Handle error with channel and unregister

 selKeyp.cancel();

 }

86

 }

 }

 }

 // Creates a non-blocking socket channel for the specified host

name and port.

 // connect() is called on the new channel before it is returned.

 public static DatagramChannel createDatagramChannel(String

hostName, int port) throws IOException {

 // Create a non-blocking socket channel

 DatagramChannel sChannel = DatagramChannel.open();

 sChannel.configureBlocking(false);

 DatagramSocket socket=sChannel.socket();

 socket.bind(new InetSocketAddress(hostName,port));

 System.out.println("new Socket binded to "+port);

 return sChannel;

 }

 public static void processSelectionKey(SelectionKey selKey,String

server,String client) throws IOException {

 if (selKey.isValid() && selKey.isReadable()) {

 // Get channel with bytes to read

 DatagramChannel sChannel =

(DatagramChannel)selKey.channel();

 ByteBuffer buf = ByteBuffer.allocateDirect(3000);

 String message;

 try {

 String ID=null;

 String via=null;

 String to=null;

 String from=null;

 String user=null;

 String cseq=null;

 // Clear the buffer and read bytes from socket

 buf.clear();

 sChannel.receive(buf);

 buf.flip();

message=Charset.forName(System.getProperty("file.encoding")).decode(bu

f).toString();

if(message.contains("NOTIFY")&&message.contains("</presence>")){

 StringTokenizer tokens=new

StringTokenizer(message,"\n");

 String linea=tokens.nextToken();

 while(tokens.hasMoreTokens()){

 if(linea.contains("Call-ID")){

 ID=linea.trim()+(char)13+(char)10;

 linea=tokens.nextToken();

 }

 else if(linea.contains("Via")){

 via=linea.trim()+(char)13+(char)10;

 linea=tokens.nextToken();

 }

 else if(linea.contains("To:")){

 to=linea.trim();

 user=linea.substring(linea.indexOf('"'),linea.lastIndexOf('"'));

87

 to=linea.substring(4)+(char)10;

 linea=tokens.nextToken();

 }

 else if(linea.contains("From:")){

 from=linea.trim();

 from=linea.substring(6)+(char)10;

 linea=tokens.nextToken();

 }

 else if(linea.contains("CSeq:")){

 cseq=linea.trim();

 linea=tokens.nextToken();

 }

 else{

 linea=tokens.nextToken();

 }

 }

 Ok(sChannel,server,client,ID,via,to,from,user,cseq);

 }

 }

 catch (IOException e) {

 // Connection may have been closed

 }

 }

 }

 public static void processSelectionKey2(SelectionKey selKey)

throws IOException {

 String etag=null;

 if (selKey.isValid() && selKey.isReadable()) {

 // Get channel with bytes to read

 DatagramChannel sChannel =

(DatagramChannel)selKey.channel();

 ByteBuffer buf = ByteBuffer.allocateDirect(1024);

 String message;;

 try {

 buf.clear();

 sChannel.receive(buf);

 buf.flip();

message=Charset.forName(System.getProperty("file.encoding")).decode(bu

f).toString();

 if(message.contains("200 OK")){

 StringTokenizer tokens=new

StringTokenizer(message,"\n");

 String linea=tokens.nextToken();

 String cseq;

 String info[]=new String[2];

 String ID=null;

 while(tokens.hasMoreTokens()){

 if(linea.contains("Call-ID")){

 ID=linea.trim();

 ID=linea.substring(9);

 linea=tokens.nextToken();

 }

88

 else if(linea.contains("CSeq:")){

 cseq=linea.trim();

 linea=tokens.nextToken();

 }

 else if(linea.contains("SIP-ETag:")){

 etag=linea.trim();

 etag=linea.substring(10);

 linea=tokens.nextToken();

 test=etag;

 }

 else{

 linea=tokens.nextToken();

 }

 }

 }

 }

 catch (IOException e) {

 // Connection may have been closed

 }

 }

 }

 public static void Subscribe(DatagramChannel local_socket,String

server,String client,String expires,String subscriber, String

subscribeto,int code){

 Date ts=new Date();

 String mensaje="SUBSCRIBE sip:"+subscribeto+"@"+server+"

SIP/2.0"+(char)13+(char)10+"Via: SIP/2.0/UDP

"+client+":"+local_socket.socket().getLocalPort()+";branch=b9hG4cd-

d87543-3a35b0441f1d2b5c-1--d87543-;rport"+(char)13+(char)10+"Max-

Forwards: 70"+(char)13+(char)10+"To:

\""+subscribeto+"\"<sip:"+subscribeto+"@"+server+">"+(char)13+(char)10

+"Contact:

<sip:"+subscriber+"@"+client+":"+local_socket.socket().getLocalPort()+

">"+(char)13+(char)10+"From:

\""+subscriber+"\"<sip:"+subscriber+"@"+server+">;tag=b3412c8b"+(char)

13+(char)10+"Call-ID: "+ts.toString()+"-

"+code+(char)13+(char)10+"CSeq: 1

SUBSCRIBE"+(char)13+(char)10+"Expires:

"+expires+(char)13+(char)10+"Content-Type:

application/pidf+xml"+(char)13+(char)10+"Event:

presence"+(char)13+(char)10+"Content-Length:

0"+(char)13+(char)10+(char)13+(char)10;

 send(local_socket, mensaje);

 }

 public static void Ok(DatagramChannel local_socket,String

server,String client,String callid,String via,String to, String

from,String user,String cseq){

 String mensaje="SIP/2.0 200

OK"+(char)13+(char)10+via+"Contact:

<sip:"+user+"@"+client+":"+local_socket.socket().getLocalPort()+">"+(c

har)13+(char)10+"To: "+to+"From:

"+from+callid+cseq+(char)13+(char)10+"User-Agent: Music-Client

V1.0"+(char)13+(char)10+"Content-Length:

0"+(char)13+(char)10+(char)13+(char)10;

 send(local_socket, mensaje);

 }

89

 public static void Publish(DatagramChannel local_socket,String

server,String client,String pubuser,String body,String callid){

 int length=body.length()+2;

 String mensaje="PUBLISH sip:"+pubuser+"@"+server+"

SIP/2.0"+(char)13+(char)10+"Via: SIP/2.0/UDP

"+client+":"+local_socket.socket().getLocalPort()+";branch=a9hG4bK-

d87543-3a35b0441f1d2b5c-1--d87543-;rport"+(char)13+(char)10+"Max-

Forwards: 70"+(char)13+(char)10+"Contact:

<sip:"+pubuser+"@"+client+":"+local_socket.socket().getLocalPort()+">"

+(char)13+(char)10+"To:

\""+pubuser+"\"<sip:"+pubuser+"@"+server+">"+(char)13+(char)10+"From:

\""+pubuser+"\"<sip:"+pubuser+"@"+server+">;tag=a2390c7b"+(char)13+(ch

ar)10+"Call-ID: "+callid+(char)13+(char)10+"CSeq: 1

PUBLISH"+(char)13+(char)10+"Expires: 60"+(char)13+(char)10+"Content-

Type: application/pidf+xml"+(char)13+(char)10+"Event:

presence"+(char)13+(char)10+"Content-Length:

"+length+(char)13+(char)10+(char)13+(char)10+body;

 send(local_socket, mensaje);

 }

 public static void rePublish(DatagramChannel local_socket,String

server,String client,String pubuser,String etag,String body,String

callid,int cseq){

 int length=body.length()+2;

 String mensaje="PUBLISH sip:"+pubuser+"@"+server+"

SIP/2.0"+(char)13+(char)10+"Via: SIP/2.0/UDP

"+client+":"+local_socket.socket().getLocalPort()+";branch=a9hG4bK-

d87543-3a35b0441f1d2b5c-1--d87543-;rport"+(char)13+(char)10+"Max-

Forwards: 70"+(char)13+(char)10+"Contact:

<sip:"+pubuser+"@"+client+":"+local_socket.socket().getLocalPort()+">"

+(char)13+(char)10+"To:

\""+pubuser+"\"<sip:"+pubuser+"@"+server+">"+(char)13+(char)10+"From:

\""+pubuser+"\"<sip:"+pubuser+"@"+server+">;tag=a2390c7b"+(char)13+(ch

ar)10+"Call-ID: "+callid+(char)13+(char)10+"CSeq: "+cseq+"

PUBLISH"+(char)13+(char)10+"Expires: 30"+(char)13+(char)10+"Content-

Type: application/pidf+xml"+(char)13+(char)10+"SIP-If-Match:

"+etag+(char)10+"Event: presence"+(char)13+(char)10+"Content-Length:

"+length+(char)13+(char)10+(char)13+(char)10+body;

 send(local_socket, mensaje);

 }

 public static void send(DatagramChannel sChannel,String message){

 ByteBuffer bufout = ByteBuffer.allocateDirect(10024);

 byte[] mess=new byte[10024];

 mess=message.getBytes();

 bufout.put(mess);

 bufout.flip();

 try{

 sChannel.connect(new

InetSocketAddress("192.168.100.234",5060));

 int numBytesWritten = sChannel.write(bufout);

 sChannel.disconnect();

 }

 catch(IOException e){

 }

 }

}

class Subscriber extends Thread{

 protected int watcherss;

90

 protected String servers;

 protected String clients;

 protected String expirs;

 protected String subscribetos;

 protected String[] users;;

 protected DatagramChannel[] sChannels;

 Subscriber(int watcher,String server, String client, String

expir,String subscribeto,String[] user,DatagramChannel[] sChannel){

 this.watcherss=watcher;

 users=new String[watcherss];

 sChannels=new DatagramChannel[watcherss];

 this.servers=server;

 this.clients=client;

 this.expirs=expir;

 this.subscribetos=subscribeto;

 for(int i=0;i<watcherss;i++){

 this.users[i]=user[i];

 this.sChannels[i]=sChannel[i];

 }

 }

 int aux=watcherss;

 public void run(){

 int aux=0;

 for(int i=0;i<watcherss;i++){

 NonBlock.Subscribe(sChannels[i],servers,clients,expirs,users[i],

subscribetos,i);

 //for(int j=0;j<650000;j++){

 //}

 }

 }

}

class Publisher extends Thread{

 protected int publisherss;

 protected String servers;

 protected String clients;

 protected String[] users;;

 protected DatagramChannel[] sChannels;

 protected String body;

 Publisher(int publishers,String server, String client,String[]

user,DatagramChannel[] sChannel,String mess){

 this.publisherss=publishers;

 users=new String[publishers];

 sChannels=new DatagramChannel[publishers];

 this.servers=server;

 this.clients=client;

 this.body=mess;

 for(int i=0;i<publishers;i++){

 this.users[i]=user[i];

 this.sChannels[i]=sChannel[i];

 }

 }

 public void run(){

 // Wait.manySec(30);

91

 Date[] ts=new Date[publisherss];

 for(int i=0;i<publisherss;i++){

 ts[i]=new Date();

 String timestamp=ts.toString();

 String id=timestamp+"-"+i;

 NonBlock.Publish(sChannels[i],servers,clients,users[i],body,id);

 for(int j=0;j<500000;j++){

 }

 }

 /*String x;

 while(NonBlock.test==null){

 }

 Wait.manySec(5);

 for(int i=0;i<publisherss;i++){

 ts[i]=new Date();

 String timestamp=ts.toString();

 String id=timestamp+"-"+i;

 NonBlock.rePublish(sChannels[i],servers,clients,users[i],NonBloc

k.test,body,id,2);

 for(int j=0;j<620000;j++){

 }

 }*/

 }

}

class Wait{

 public static void oneSec() {

 try {

 Thread.currentThread().sleep(1000);

 }

 catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 public static void manyMilli(long s) {

 try {

 Thread.currentThread().sleep(s);

 }

 catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

 public static void manySec(long s) {

 try {

 Thread.currentThread().sleep(1000*s);

 }

 catch (InterruptedException e) {

 e.printStackTrace();

 }

 }

}

92

Appendix C
Installing SER as a presence/context server

 The SER version 0.10.99 was used for the context distribution component and

the source code is available at http://ftp.iptel.org/pub/ser/presence/ser-0.10.99-dev35-

pa-4.2_src.tar.gz. This server runs in a Linux environment. Before the installation of

the server the following libraries should be installed: the standard C libraries, libxml2,

libcurl3, flex, bison, and libmysqlclient-dev.

 The libpresence dependencies libcds also need to be compiled before installing

SER. This libraries are distributed with SER. These libraries are compiled from the lib

directory of the downloaded with the make command:

make –f Makefile.ser install prefix=”/base/ser/directory”

 The SER is compiled with:

Make install group_include=”standard,presence,standard-dep” prefix=/base/ser/directory

 Finally the following commands are used for running SER:

export LD_LIBRARY_PATH=/base/ser/directory/lib/ser

/base/ser/directory/sbin/ser -f /base/ser/directory/etc/ser/ser.cfg

The next step is to initialize the SER database, scripts for initializing the database are in

SER‟s source tree in directory scripts, in the case of MySql it can be created with:

scripts/mysql/ser_mysql.sh create

 After database creation data can be added using the ser_ctl utility also included in the

SER distribution.

add domain: ./ser_domain add domain domain_id

add user: /ser_user add user_name

add uri: ./ser_uri add user_name uri

For further information about installing and running SER the reader may consult

the SER presence handbook available at http://www.iptel.org/~vku/presence_handbook

http://ftp.iptel.org/pub/ser/presence/ser-0.10.99-dev35-pa-4.2_src.tar.gz
http://ftp.iptel.org/pub/ser/presence/ser-0.10.99-dev35-pa-4.2_src.tar.gz
http://www.iptel.org/~vku/presence_handbook

93

Appendix D

Scheduling Pattern when having watchers
subscribed to different contextities

Order Contextity

Order Contextity

Order Contextity

1 1

35 34

68 56

2 2

36 25

69 47

3 3

37 16

70 38

4 4

38 80

71 29

5 5

39 71

72 93

6 6

40 62

73 84

7 7

41 53

74 75

8 8

42 44

75 66

9 9

43 35

76 57

10 10

44 26

77 48

11 20

45 17

78 39

12 11

46 90

79 94

13 30

47 81

80 85

14 21

48 72

81 76

15 12

49 63

82 67

16 40

50 54

83 58

17 31

51 45

84 49

18 22

52 36

85 95

19 13

53 27

86 86

20 50

54 18

87 77

21 41

55 91

88 68

22 32

56 82

89 59

23 23

57 73

90 96

24 14

58 64

91 87

25 60

59 55

92 78

26 51

60 46

93 69

27 42

61 37

94 97

28 33

62 28

95 88

29 24

63 19

96 79

30 15

64 92

97 98

31 70

65 83

98 89

32 61

66 74

99 99

33 52

67 65

100 100

34 43

www.kth.se

COS/CCS 2008-12

