Mobile Web Browser Extensions

Utilizing local device functionality in mobile web applications

&

L,
TOMAS JOELSSON EFKTHS

{E VETENSKAP
39 OCH KONST 9%

NG

KTH Information and
Communication Technology

Master of Science Thesis
Stockholm, Sweden 2008

COS/CCS 2008-07

Mobile Web Browser Extensions

Utilizing local device functionality in mobile web applications

TOMAS JOELSSON

Master's Thesis at KTH
Academic supervisor and examiner: Gerald Q. Maguire Jr.
Company supervisors: Stefan Alund and Per-Erik Brodin, Ericsson Research

12 April 2008

maguire
Typewritten Text
12 April 2008

Abstract

Mobile web browsers of today have many of the same capabilities as
their desktop counterparts. However, among the capabilities they lack
is a way for web applications to interact with local devices. While
today’s mobile phones commonly include GPS receivers and digital
cameras, these local devices are currently not accessible from within
the browser. The only means of utilizing these devices is by using
standalone applications, but such applications lack the versatility of
web browsers. If a mobile browser could utilize these local devices, then
a mobile application could run within the browser, thus avoiding the
need for specialized client software.

This thesis suggests an approach for adding such capabilities to
mobile browsers. In the proposed method, scripted access to local device
functionality is facilitated by a local Java application. This application
acts as a proxy server and allows the browser to call methods exposed
by the local Java APIs. Both the benefits and some security concerns
of this approach are examined. The benefits are further highlighted
through two example web applications which utilize local devices.

Sammanfattning

Utokad funktionalitet for mobila webblasare

I dagens mobila webblésare aterfinns det mesta av funktionaliteten fran
webblasare for datorer. Det som dock fortfarande saknas dr mojligheten
for webbapplikationer att komma at lokala telefonfunktioner.
Dagens mobiltelefoner &r ofta utrustade med GPS-mottagare och
digitalkameror, men dessa kan fér ndrvarande ej nas fran webblédsaren.
Det enda sittet att utnyttja dessa inbyggda funktioner &r genom
separata applikationer, men s&dana applikationer &r inte lika
mangsidiga som webbldsare. Om en mobil webbldsare kunde utnyttja
de inbyggda funktionerna, sa skulle en mobil applikation kunna koras i
webblésaren istéllet for att ha separat klientprogramvara.

Det hir examensarbetet foreslar ett sétt att ge denna mojlighet
till mobila webblasare. I den foreslagna metoden anvénds en lokal
Java-applikation for att ge tillgang till inbyggda funktioner via skript.
Denna applikation fungerar som en proxy-server och later webblédsaren
anropa metoder exponerade av lokala Java-API. Bade fordelar och
nagra sikerhetsproblem med den hér 16sningen understks. Fordelarna
visas ytterligare genom tva exempel pa webbapplikationer som utnyttjar
inbyggda telefonfunktioner.

ii

Table of Contents

1 Introduction

1.1 Problem statement L
1.2 Proposed solution Lo o
1.3 Exampleusage
1.4 Security
2 Background
2.1 PCbrowsers. e
2.1.1 DHTML o
2.1.2 Plug-ins oL o
213 Java ...
2.2 Mobile browsers e
221 WAP ..
2.2.2 imode L e e
223 Plugins oL o
2.2.4 JavaScript
23 JavaME
2.3.1 JTWI . ..o
2.3.2 MSA . .
2.3.3 MIDlets

3 Related work

3.1 Mobile Web Server
3.2 S60 Web Run-Time
3.3 AjaxforJava ME oo
3.4 JSON-RPC-Java it
3.5 Location acquisition oL oL

3.5.1 LocationAware

3.5.2 EZweb
3.6 Google Gears
3.7 GlassFish e
3.8 Java proxy Servers e

iii

4 Evaluation methods
4.1 Usability
4.2 Performance analysis

5 Implementation

5.1 Platform
5.2 Proxy function
5.3 Features
5.3.1 Retrieving data . . .
5.3.2 Alerting the user . .
5.3.3 Taking pictures . . .
5.3.4 Audio capture . . .
5.3.5 Positioning

5.3.6 Local memory access
5.3.7 Wireless connectivity

5.4 Control script
5.4.1 Detection
5.4.2 Installation

5.5 Security

5.6 Example applications
5.6.1 The plug-in

5.6.2 The map application
6 Evaluation
7 Conclusions and future work

References

iv

25
25
26

28
28
29
30
30
31
31
32
32
33
33
33
33
34
34
35
35
36

39

46

49

List of Figures

1.1

2.1
2.2

3.1

5.1
5.2
5.3

System structureo 2
CLDC and CDC architecture 14
Mobile Service Architecture oL 15
The MWS’s communication paths 19
Final system structure oo o o 29
Plug-in for Hitta.se 36
The map application oo 37

List of Abbreviations

Ajax
API
BOM
CDC
cHTML
CLDC
CSS
DHTML
DNS
DOM
FTP
GCF
GPS
GUI
HTML
HTTP
iHTML
IMEI
JAD
JAR
Java EE
Java ME
Java SE
JCP
JNLP
JP-7
JRE
JSON
JSR
JTwWI
JVM

Asynchronous JavaScript and XML
Application Programming Interface
Browser Object Model

Connected Device Configuration
Compact HyperText Transfer Protocol
Connected Limited Device Configuration
Cascading Style Sheets

Dynamic HyperText Transfer Protocol
Domain Name System

Document Object Model

File Transfer Protocol

Generic Connection Framework

Global Positioning System

Graphical User Interface

HyperText Markup Language
HyperText Transfer Protocol

Inline HyperText Transfer Protocol
International Mobile Equipment Identity
Java Application Descriptor

Java Archive

Java Platform, Enterprise Edition

Java Platform, Micro Edition

Java Platform, Standard Edition

Java Community Process

Java Network Launching Protocol

Java Platform 7

Java Runtime Environment

JavaScript Object Notation

Java Specification Request

Java Technology for the Wireless Industry

Java Virtual Machine

vi

MIDI Musical Instrument Digital Interface

MIDP Mobile Information Device Profile

MMAPI Mobile Media Application Programming Interface
MSA Mobile Service Architecture

MWS Mobile Web Server

NMEA National Marine Electronics Association

NPAPI Netscape Plugin Application Programming Interface
OMA Open Mobile Alliance

OTA Over-The-Air

PDA Personal Digital Assistant

SIP Session Initiation Protocol

SMS Short Message Service

SVG Scalable Vector Graphics

TCP Transmission Control Protocol

TURN Traversal Using Relay NAT

UDP User Datagram Protocol

URI Uniform Resource Identifier

URL Uniform Resource Locator

W3cC World Wide Web Consortium

WAP Wireless Application Protocol

WGS 84 World Geodetic System 1984

WLAN Wireless Local Area Network

WMA Wireless Messaging API

WML Wireless Markup Language

WSH Windows Scripting Host

WTAI Wireless Telephony Applications Interface

WTP Wireless Transaction Protocol

XHTML eXtensible HyperText Markup Language
XHTML MP eXtensible HyperText Markup Language Mobile Profile
XML eXtensible Markup Language

vii

Chapter 1

Introduction

1.1 Problem statement

This master’s thesis concerns the continuing development of mobile devices,
specifically mobile phones. As more and more people use their mobile phones to
access the Web, the demand for new services and better user interfaces is growing.
Many of the new mobile phones sold today have a web browser pre-installed. As
mobile phones become more advanced, with more processing power and larger
screens, these browsers are approaching the capabilities and performance of browsers
running on PCs. This has enabled developers to build rich user interfaces, resulting
in applications that are easy to utilize. There are, however, still limitations as
to what these browser based applications can do. This thesis will examine these
limitations and show how to overcome many of them.

Unfortunately, much of the new functionality built into mobile phones is not
accessible from within the phone’s current web environment. To utilize a Global
Positioning System (GPS) receiver, a Bluetooth interface, or a built-in digital
camera programmers must write programs that work outside the web browser, but
these programs need to interface to the web browser - in order to easily integrate
other applications which the user is used to using. These other applications are
generally written in Java, C, C++4, C#, VB.NET, or Python and execute on the
phone itself. By writing Java code for mobile phones the application can access many
of the local device Application Programming Interfaces (APIs). If this functionality
can be integrated with the web browser it will facilitate access from many web
applications.

1.2 Proposed solution

To bridge the gap between mobile applications and the mobile web, we have to
creatively combine them. We can take advantage of the fact that modern phones can
run background processes. Such a background process can act as a local web server
- thus providing local device functionality which can be accessed via the built-in

CHAPTER 1. INTRODUCTION

Remote
web server

Mobile web ¢ .
browser ¢ *| Local web

server \
GPS Back-light
Camera Vibrator
Microphone v File system

Address book

Figure 1.1. System structure.

browser (see Figure 1.1). A page downloaded from the Web could call functions
within this local server using HyperText Transfer Protocol (HTTP) requests, for
example using Asynchronous JavaScript and XML (Ajax) (see section 2.1.1). This
would allow local APIs to be called from applications running in the phone’s browser.
A few obstacles have to be overcome in order for this to work. Most notably, the
“same origin policy” which prohibits scripts from one site from accessing another
site, must be addressed (see section 2.2.4). Section 5.2 explains how to get around
this problem.

The main goal of this project is to show how a local web server on a mobile
phone can facilitate adding new functionality to applications running in the mobile
browser. If this approach can be implemented on a mobile phone, there will be
two additional goals. First, access to local phone features will be implemented and
tested. These features should be made available for use by web applications. The
final goal will be to implement a basic security scheme.

1.3 Example usage

The proposed system could be used in many different applications. This section
will briefly cover a few example applications.

Digital maps have been around on the Web for some time; however, they are
just now becoming available on mobile phones. The introduction of both built-in
or external GPS receivers offer a natural extension from simply viewing maps to
geo-location based services. While such applications are already available on the

CHAPTER 1. INTRODUCTION

Web while using a laptop or handheld computer, running such an application via a
mobile browser offers little advantage unless the relevant GPS data is available. If
GPS data were available, then it can be used by the application to tailor the digital
map to the mobile device’s current location. The proposed system could enable
this by extracting the GPS data via the local server. Only the local server needs to
be able to access the GPS receiver. Using such a local server also isolates the web
application from the details of accessing the GPS receiver. For example, the local
server could use a proprietary interface to access a particular GPS receiver or could
parse NMEA messages coming from the GPS receiver via a serial interface.

Today new mobile phones frequently have an integrated digital camera. The
ability to take pictures and uploading them directly to a web site would facilitate
the creation of many new services. For example, one could update a photo blog
in real time using one’s phone. If GPS data was available along with the photos,
then each of the photos could automatically be labeled with the coordinates of the
camera when the photo was taken.

Mobile games are quite commonly written in Java; however, there is no reason
why one could not create games that run in a browser. However, when writing
interactive games for mobile devices, developers want to use the complete set of
input and output interfaces available on the device. Such interactivity can involve
vibration, sounds, and special input (for example, of orientation via gyroscopes
which are built into some new phone models). As long as the game’s application
logic can be written using JavaScript, and the user interface modeled with browser
supported markup, the proposed system’s local functions would only have to be
called upon for specific local events.

Utilizing the proposed system does not necessarily involve building a new
application from scratch. If the server has the ability to download documents by
itself and relay them to the browser (by acting as a proxy), information could be
dynamically added to extend the functionality of many web applications. Mozilla’s
Firefox web browser has an extension called Greasemonkey that enables users to add
or replace parts of the web sites they are viewing [55]. This proposed system could
enable similar functions by applying scripts or locally adding data to documents
before sending them along to the browser.

1.4 Security

There are obvious security risks with this solution. Opening up local APIs to web
applications exposes the device to a number of possible attacks, which could affect
the user’s privacy and personal data. The security implications and threats have to
be taken into serious consideration in order for this proposed solution to be viable.
Fortunately, there are a number of things that can be done to increase the security.
Three steps towards a secure solution are outlined below. For this approach to
make sense, it is absolutely crucial that the user can trust the software responsible
for exposing the local functionality. The proposed application, which is to run in

CHAPTER 1. INTRODUCTION

the background, must be certified by some authority trusted by the user. It could,
for example, be signed using a key issued by an authority whose root certificate is
installed on the device. This ensures authenticity of the software, which assumes
that the signer of the software is responsible for considering and evaluating the
security of the exposed functions.

The first step is to maintain a list of trusted domains. Only pages located
within these domains would be allowed to use local functions. The list could either
be a static part of the system, updated manually by the user, or downloaded
automatically from a central location. The user could be queried each time an
application requests to use the exposed APIs. If the user answers yes, the address
of the application could optionally be added to a local list, in order to be accepted
automatically in the future.

The next step is to handle access rights through sessions. Once the user grants
permission to a web application, a random session key would be generated and
sent to the application by the background process. Each request would then only
be accepted if it was accompanied by the session key, only known to this specific
application.

Asking the user for consent to use local functionality could be a problem. If there
is only one choice, to allow an application or not, the user might not understand the
implications of saying yes or no. On the other hand, if queries were made for each
request with a detailed description of the reason, it may become too distracting.
Therefore, the third and final step in this approach is to sort the different functions
into levels of possible impact. For example, lighting and vibration could be classified
as fairly harmless functionality, while access to the user’s private data would be on
the other end of the scale. The user would then be able to set a desired security
level for a certain web application.

Chapter 2

Background

2.1 PC browsers

This chapter examines some of the technologies used in web browsers to extend
their functionality. To understand how the mobile web is developing and in what
direction it is heading, we look at what has happened with regard to the development
of fixed computer based web browsing and fixed web servers. As the capabilities
of mobile devices increase, their usage becomes increasingly similar to that of fixed
computers. For this reason, many believe that the current trends of the (fixed) Web
may offer insights into the future development of the mobile web.

There have been several attempts to make the Web more dynamic. The reasons
for this are the need for richer designs, the availability of better user interfaces, and
the desire for increased interactivity. Each of these technologies will be examined in
the following section, focusing mostly on what this technology can provide in terms
of new resources.

2.1.1 DHTML

Dynamic HyperText Transfer Protocol (DHTML) encompasses a range of
technologies used together to create interactive web sites. The following subsections
will describe some of these technologies and the functions which they offer.

JavaScript

Most of the widely used web browsers include support for scripts. Although
people generally call it JavaScript, the standard language for client side scripting is
ECMAScript [79]. The actual script implementation in browsers consists of three
parts: ECMAScript, the Document Object Model (DOM), and the Browser Object
Model (BOM). The ECMAScript implementations are quite similar in different
browsers, but the DOM and BOM APIs are often not very compatible.

The ECMAScript part provides basic programming functionality. It
includes descriptions of types, objects, keywords, operators, and general syntax.

CHAPTER 2. BACKGROUND

ECMAScript is not limited to implementations of JavaScript, but is also used as a
base for other scripting languages such as Windows Scripting Host (WSH) [79] and
ActionScript [3].

DOM is an API for viewing and editing the structure and content of a document.
It maps the structure of an HyperText Markup Language (HTML) or eXtensible
Markup Language (XML) document onto a tree. The nodes of this tree represent
all the elements of the document and individual nodes can be edited or deleted
at will. One can also add nodes to create new elements in the document. This
allows web developers to create pages that dynamically change within the browser,
without needing to reload the page from the server.

BOM provides similar functionality to DOM, but instead of accessing web page
content, it lets you change windows and other browser related objects. One can
for example set the status bar text and move or pop up new windows using BOM.
The BOM implementation differs a lot between browsers since this functionality
is closely related to the internal structure of the browser. Some parts are almost
always available, such as the window object and the navigator object which provides
details about the web browser itself. For more information about DOM and BOM
see [50] and [54] respectively.

CSS

Cascading Style Sheets (CSS) is a language that defines style information for
documents written in markup languages such as XML and HTML [11]. CSS code
provides information about how to display data. It can define properties such as
color, font, and border layout. Its main purpose is to separate document content
from document presentation. CSS also has the ability to make pages appear properly
on different media. By supplying appropriate presentation properties, the same
document can for example be viewed in both a regular web browser and on a
mobile phone. This is accomplished by writing style information for specific media
types, such as ‘screen’, ‘print’, or ‘handheld’. The style sheet code can be supplied
in different ways and from several sources. Developers can embed CSS in an HTML
document or access it via a link to an external file. Users can provide their own
style information to override the provided presentation. Additionally, web browsers
usually have a default style for rendering documents.

Ajax

Ajax is a web development technique to enable browsers to communicate with
servers without reloading entire pages [80]. This can be accomplished through a
number of means, including using frames or the XMLHttpRequest object. The data
is often transmitted in XML format, but this is not a requirement. Any format can
be used, including plain text. Regardless of format, the data can be dynamically
sent to the server at any time. As the name suggests, it is an asynchronous process
where data returned by the server can be handled by a predefined callback function.

CHAPTER 2. BACKGROUND

There are several benefits to this technique. Since no page reload is required,
updates are faster and generate less traffic. Web interfaces can be made to look
more like desktop applications and feel more natural to the user.

2.1.2 Plug-ins

Common for all plug-ins is that application logic executes on the client computer.
These applications can usually benefit by having access to local functionality.

ActiveX controls

An ActiveX control is a software component used in Microsoft environments. It is
usually designed for visual presentation purposes, for example, to provide Excel
spreadsheets or other Microsoft software technology to any Windows platform
application, including web pages [35]. The Internet Explorer web browser supports
ActiveX and can download and use ActiveX controls from web sites. Once a control
is downloaded and installed it can provide resources and access the local system’s
APIs. This could be, and frequently is, used by malicious software to take control
of the client computer. Another downside to this technology, which has contributed
to its unpopularity among developers, is the fact that it only works properly in
Microsoft’s Internet Explorer. If support is needed in additional browsers, one
needs to employ other technologies.

NPAPI

Netscape Plugin Application Programming Interface (NPAPI) is a plug-in
architecture supported by many web browsers, although it is not included even
in recent versions of Microsoft’s Internet Explorer. It works by having plug-ins
declare which media types they can handle. When the browser encounters such
media it loads the appropriate plug-in. Some browsers also support interaction
between plug-ins and JavaScript. There have been several extensions developed
for this purpose. For example, LiveConnect (introduced with Netscape 4) enables
Java applets to access the DOM, and JavaScript to call Java methods. The most
recent extension agreed upon by most of the major browser developers (excluding
Microsoft), is called npruntime. Npruntime is independent of Java and is more
powerful and flexible than the earlier protocols [37].

Flash and Shockwave

Flash and Shockwave are technologies mainly used for embedding rich media in web
pages. They were both developed by Macromedia, which was acquired by Adobe
in 2005. Adobe supplies a browser plug-in for each of them [4, 5]. Flash provides
a lightweight solution that can be used for video playback and building interactive
web sites. It supports scripting through an ECMAScript based language called
ActionScript. Shockwave on the other hand has more extensive functionality and is

CHAPTER 2. BACKGROUND

designed for larger applications. It can display advanced media such as 3D games
and interactive product demonstrations. Both are widely utilized around the world.
According to Adobe, the Shockwave plug-in is currently installed on 58.5% [7] of all
Internet-enabled desktops in mature markets (US, Canada, UK, France, Germany,
Japan), while the Flash plug-in is available on 99.1% [6].

2.1.3 Java

Java applications can run on almost any platform and are therefore well suited
for extending browser functionality. The only requirement is that there is a Java
Virtual Machine (JVM) installed. There are two common ways of downloading and
executing Java code: Applets and Java Web Start.

Applets

Applets are small applications that run inside a web browser. A JVM is started
and acts as a “sandbox” where an applet can run with limited resources [66]. The
applet can either run as an embedded object or start up in a new window. Either
way, the browser needs to have a Java plug-in installed. The necessary Java plug-in
is available for nearly all browsers running on almost any platform.

Java Web Start

A more recent approach to loading Java applications from the Web is Java Web
Start. Instead of the browser controlling the program, the browser simply downloads
a Java Network Launching Protocol (JNLP) description file with information about
the application. If configured properly, the browser passes this file to the JVM. The
JVM immediately downloads and starts the indicated Java code. An important
feature of Java Web Start is its ability to make sure that the proper version of an
application and the correct Java Runtime Environment (JRE) are used [67].

Reflection API

In Java, a class can be loaded and its properties examined at runtime. This
allows developers to dynamically load and use classes without knowing their exact
specification. An important component in this process, which makes methods and
variables visible, is the reflection API [32]. This functionality could for example
be used when mapping objects between Java and another language. The system
developed in this thesis includes remote procedure calls from JavaScript to Java,
which such object mapping facilitates. Unfortunately the reflection API is not part
of the current CLDC! standard.

!Connected Limited Device Configuration (CLDC) is a basic Java configuration for mobile
phones (see section 2.3).

CHAPTER 2. BACKGROUND

2.2 Mobile browsers

Web browsers designed for mobile devices are different from regular web browsers
in certain aspects. To present web pages on small screens the rendering has to
be adjusted to the device’s screen size. Limited processing power and memory
means the web browser must be efficient and can not take up too much memory.
The browser needs to be easily controlled by the often limited input devices (for
example a small keypad for character input). Since mobile devices are battery
powered, applications suffer from a limited power supply. Finally, the issue of
varying bandwidth and unreliable connectivity may also have to be dealt with.

There are quite a number of browsers available specifically for mobile devices.
Some are optimized for devices with very limited resources, such as mobile phones
with small screen size and little processing power. Opera’s Mini is just such a
browser [65]. To make browsing faster, initial rendering is done on a proxy server
before being sent to the device in a binary format. This makes it possible to use not
only specific mobile web sites, but even sites designed for viewing on traditional fixed
computer screens. However, it means that the proxy will have to have access to the
content, hence introducing a security hole. Opera also has a more extensive browser
called Opera Mobile [46]. As the performance of devices and their memory capacity
has increased, many new devices are shipped with Opera Mobile pre-installed.
Opera Mobile is supported by many platforms [47]. Opera Mobile uses the same
page rendering engine as their PC version, but scales down web pages for viewing
on small screens.

Another similar browser, which is pre-installed on many new mobile phones,
is NetFront [1]. It supports many different web standards and is also available
for more capable (i.e., with greater resources) platforms. It was developed by a
Japanese company called Access.

There are several browsers based on the WebKit layout engine. Among them
are popular browsers such as the Nokia S60 Browser for the Symbian S60 platform
and Apple’s Safari for Mac OS X and their iPhone and iPod Touch. The engine
was originally based on a fork from Konqueror’s KHTML software library which is
used for the KDE browser, but WebKit is now a separate open source project [74].

All mobile browsers mentioned above (except Opera Mini) support modern web
technologies, such as JavaScript and CSS. They are in fact very similar to web
browsers on fixed computers. Limitations in functionality are mainly caused by the
mobile device’s hardware.

Other browser developers have in a similar fashion created mobile versions of
their PC browser. The Mozilla Project’s Minimo is a scaled down version of their
popular browser [36]. It uses the same Gecko layout engine as Firefox, but lacks some
of the more advanced features such as support for the File Transfer Protocol (FTP)
and SVG2. Minimo is mainly used on slightly larger devices, such as Personal

2Scalable Vector Graphics (SVG) is an XML based language for describing two-dimensional
vector graphics. For more information see W3C’s SVG page [72].

CHAPTER 2. BACKGROUND

Digital Assistants (PDAs) and high-end mobile phones, and only has ports for the
mobile Windows platform and various Linux distributions. Another commonly used
browser for PDAs is Microsoft’s Internet Explorer Mobile.

There are a number of different protocols used by mobile web browsers for
Internet access. The next sections describe their basic functions and limitations.

2.2.1 WAP

The Wireless Application Protocol (WAP) is an open standard for Internet access
on mobile devices, put forth by the Open Mobile Alliance (OMA) [78]. It includes a
collection of protocols initially similar to the HT'TP stack, with specific security
and compression features which were believed to be important for the mobile
environment. The transport layer equivalent works similarly to the User Datagram
Protocol (UDP). On top of this is the Wireless Transaction Protocol (WTP) which
performs error checking and re-sends lost packets.

In the first versions of WAP (1.x), documents were not downloaded directly from
a web server. Instead, all requests sent from the WAP browser were handled by a
WAP gateway. The gateway downloaded the document, transformed it into a WAP
specific format and sent it back to the WAP browser [75]. This made it possible for
simple devices with little processing power to display web content. Unfortunately,
it had a very large number of security problems.

Newer mobile browsers can read and interpret eXtensible HyperText Markup
Language Mobile Profile (XHTML MP), a subset of eXtensible HyperText Markup
Language (XHTML), which eliminates the need for a gateway for conversion. The
WAP 2.0 specification makes the gateway optional as HTTP is used end-to-end, i.e.
all the way from the browser to the web server and back. In addition to XHTML
MP, WAP version 2.0 also supports a mobile version of CSS, called WAP CSS. In
fact, WAP 2.0 is almost identical to the usual HTTP/TCP/IP stack.

WML

The Wireless Markup Language (WML) is a content format language specifically
created for presenting web content on mobile devices [76]. It was widely used in
the early days of mobile web development, but has now been replaced by XHTML
and HTML. WML was based on standard XML, thus it has many of the same
features as HTML, including hyperlinks, forms, and image embedding. However,
when writing WML, developers need to think of the documents as “decks”. The
“cards” of the deck are the pages and each page enables one interaction with the
user. This is very similar to an earlier programming model called Hypercard which
was developed for the Apple Macintosh computer [51].

WTAI

Wireless Telephony Applications Interface (WTAI) is part of the WAP standard.
It provides script functions and WML tags for utilizing basic phone functionality.

10

CHAPTER 2. BACKGROUND

Even though today’s mobile web sites use HIML or XHTML rather than WML, the
tags are still supported by browsers. The tags are written as protocol identifiers at
the start of Uniform Resource Locators (URLs), and tell the phone how to handle
the URL. For example, there is a tag for initiating a phone call to a specified

number, and another tag for adding a name and phone number to the phone’s
address book [77].

2.2.2 i-mode

The Japanese company, NTT DoCoMo, developed another standard for mobile
web browsing, called i-mode [43]. There were initially some major differences
in approach as compared to WAP. I-mode used packet-switched communication
right from the start. This enabled clients to constantly stay online, instead of
connecting every time they wanted to access the Web. While WAP could not
use packet-switched communication until later, when General Packet Radio Service
(GPRS) was introduced.

The markup language used with i-mode is not XML based, unlike WML, but is
instead a subset of HTML called Compact HTML (cHTML or sometimes iHTML)
[25]. It also includes some special i-mode tags. The supported embedded media
formats are ones commonly used on the Web. This and the use of cHTML makes
it very easy to adapt HTML documents for use with i-mode.

2.2.3 Plug-ins
Flash Lite

Just as for PC browsers, there is a Flash plug-in for mobile browsers. Flash Lite
is a scaled-down version of Flash 8 and can be used to view the Flash content
available for PCs (with a few limitations). It supports ActionScript 2.0, but lacks
some computationally intensive graphic functions such as filters and blend modes
[59].

2.2.4 JavaScript

Although not as powerful as on PCs, JavaScript support is being implemented
in many mobile browsers. There are standards proposed by Ecma International
(ECMAScript Compact Profile) [13] and OMA (ECMAScript Mobile Profile) [45]
specifically for mobile browser developers to conform to, but neither has gotten wide
support.

JSON-RPC

JSON-RPC is a remote procedure call protocol using the lightweight data
interchange format JavaScript Object Notation (JSON) [24]. JSON is based on
ECMAScript, but is completely language independent. It represents common data

11

CHAPTER 2. BACKGROUND

types and structures in a way that is very familiar to C++ and Java programmers.
JSON-RPC can use this language to communicate over different protocols, although
TCP/IP is recommended. Remote procedure calls can for example be made from a
client using HTTP to call methods on an HTTP server. The JSON data is sent in
the body of an HT'TP POST request.

Same origin policy

The same origin policy states that scripts from one origin may not set or get
properties of a document from a different origin [58]. This rule is applied by
browsers to prevent the use of cross-site scripting. To explain exactly what defines
an origin we examine the distinction made in the Mozilla browsers. We may
change a remote document as long as it is located on the same server as the
script. Changing directories is also allowed, but any change to the protocol, port, or
domain is considered a change in origin. While there is a way to change the domain
within a script, the new domain has to be a suffix of the previous one (i.e., be
a parent domain of the previous domain). For example, http://some.domain.com/
can be changed to http://domain.com/, but not to http://another.domain.com/.
In addition, http://domain.com/ now becomes the origin and it is not possible to
consider documents from http://some.domain.com/ as having the same origin any
longer.

SunSpider

SunSpider is a JavaScript benchmark put together by the WebKit developers [64].
Their goal is to collect and create tests based on code that is used in real web
applications. It consists of both calculations from the Web of today and the kind of
demands that they expect to find in newer more advanced applications. The current
version (0.9) includes benchmarks from areas such as 3D rendering, bit operations,
cryptography, and strings. It also has tools for statistical analysis and comparison
of results.

2.3 Java ME

The popularity of advanced mobile phones and other small form factor devices
has led to fierce competition and many different models of many products being
produced. More over, each of these devices has its own features, errors, etc.; this
makes it hard for developers, writing applications for these devices, to keep up.
There are so many platforms and standards that it is nearly impossible to port
software to all of them. Java is thought to provide a solution to this. In theory
all Java code can run on any device supporting a JVM, which means developers
only need to write a Java program once. In practice though, there are some
limitations concerning specific technical features of the target device which have
to be considered.

12

CHAPTER 2. BACKGROUND

To facilitate adapting code to specific device models, Sun Microsystems has
developed a standard API with classifications for different platforms. This standard,
called Java Platform, Micro Edition (Java ME), is basically a subset of Java
Platform, Standard Edition (Java SE), with certain additions for mobile device
functionality. The additions facilitate compatibility between devices with similar
features. The omitted classes include many data structures and convenient methods
for string manipulation. Sun created a completely new networking API for Java ME.
The Generic Connection Framework (GCF) provides I/O capabilities with a smaller
memory footprint than the original Java connection APIs. This can make it difficult
for developers to port network applications to Java ME, since most of the classes
handling connections have to be replaced. Sun provides a reference version of Java
ME, then allows device manufacturers to create their own implementation. Such
an implementation should consist of three parts:

o A configuration
o A profile
e Optional packages

The most basic libraries needed to run a Java application are bundled into a
given configuration. The Connected Limited Device Configuration (CLDC) is a
configuration aimed at small devices such as mobile phones. Connected Device
Configuration (CDC) includes more libraries and is meant for larger devices, such
as smart communicators, PDAs, and set-top boxes (see Figure 2.1). Profiles include
additional APIs to utilize features of a range of devices and extend the capabilities
of the underlying configuration. The Mobile Information Device Profile (MIDP) is
the most common profile being used with CLDC on mobile phones. Together the
configuration and the profile provide a specific Java application environment. On
top of a configuration and a profile, a device can also have optional packages. These
are typically APIs for specific technology available on the device.

Standardization of the Java ME technology is handled by the Java Community
Process (JCP). JCP guides the development of Java and approves technical
specifications known as Java Specification Requests (JSRs). Anyone is allowed
to participate in the process, which is designed to ensure the stability and
cross-platform compatibility of the Java (family of) platform(s). For further
information, see the JCP web site [23] or Sun’s Java ME page [69].

2.3.1 JTWI

Java Technology for the Wireless Industry (JTWI) was introduced in 2003 to
extend the current Java ME standard. The MIDP profile was considered to lack
strict definitions, and thereby creating fragmentation in the functionality between
different devices. MIDP’s vague hardware requirements also caused problems with
regard to portability. JTWI addresses these issues by enforcing stricter definitions
and requirements for Java enabled devices [27].

13

CHAPTER 2. BACKGROUND

{ RMI] [IDBC] [Swing J [Ad“a”FEd]
securty
ﬁersnnal Profile \\

sabeyoed
[eucndo

(7 N

1
1
I
1
I
1
1
I
1
|
I
I
I
|
MIDP I
- Application manage ment | - Full AWT
- Basic security i - Applet support
- Simple GUI components |
- - Persistent data storage | \
3 - Media support i Fersonal Basis Profile
= - OTA Provisioning : - Lightweight components
T ! - xlet support
1
L
i Foundation Prafile
-G
\ / ! ore Java classes / /
: b
0 :
e |
g [
= CLDC ! chc
=
& -
(=] ¥
= !

Figure 2.1. CLDC and CDC architecture. CLDC can also be extended with optional
packages (see Figure 2.2).

A device supporting JTWI is required to support CLDC 1.0, MIDP 2.0, and
the Wireless Messaging 1.1 API (WMA). The Mobile Media 1.1 API (MMAPI) is
required if the JVM exposes video playback, audio capture, or video/image capture
functions.

JTWI clarifies several, previously vaguely defined, requirements. A conforming
Java device must, for example, support a Java Archive (JAR) size of at least 64KB.
JTWTI also recommends 256KB of available heap memory, compared to MIDP 2.0’s
required 128KB. Other requirements include Short Message Service (SMS), phone
book access, and JPEG support. Musical Instrument Digital Interface (MIDI)
and tone-sequence content must be supported and, if the MMAPI is included, a
minimum quality for audio and video capture is imposed. JTWI also increases
requirements on the security model. More information can be found in the JTWI
specification [17].

14

CHAPTER 2. BACKGROUND

frﬁecurit].rand_ﬂ‘ & Graphics Y Camms AW Persoral ™ rﬁpplica‘tion_\'

Cornmerce Irfarmation Connectivity
fubabil = hdedia
Supplemert

- -
. Content
Paymert Loz ation Handler
e,
Security and .
Trust Services feb Services
L
L A AR AN AN ~
P ———
Application .
e
k -~
p
“irtual
fl=chine
[misA Subset Full MSA
Figure 2.2. Mobile Service Architecture (adapted from figure in [71]).
2.3.2 MSA

To accommodate the introduction of new technology in mobile devices, a new
platform extending Java ME has been specified. The Mobile Service Architecture
(MSA) [71] builds on the current specifications (i.e. CLDC, MIDP, and JTWI)
creating a new standard for the next generation of mobile devices. MSA provides
a new set of application functionality, but also clarifies interactions in existing
standards. Since mobile devices have varying capabilities, there are two choices
for implementation: to implement a predefined subset of MSA or the entire MSA
specification. To be MSA compatible, a device must either support all of the
predefined subset or all of the full MSA (see Figure 2.2).

Most of the components in both the subset and the full MSA are mandatory.
However, a few are only conditionally mandatory. These are only required if
the device supports the underlying hardware needed for the functionality. The
Blutetooth and location APIs are such components. If, for example, a device is to
support the MSA subset and has Bluetooth capabilities, then the Bluetooth Java
API must be implemented. However, if the device lacks Bluetooth connectivity, it
can support the subset without this API.

15

CHAPTER 2. BACKGROUND

2.3.3 MiIDlets

Java web applications can be run inside a browser environment on a computer.
These programs are called Applets. Unfortunately, currently it is not yet possible
to do so for mobile browsers. Java on mobile devices has to be started as a separate
application. These separate Java applications are known as MIDlets [28].

Installing

Installing MIDlets can be done from a PC or using ‘over-the-air’ (OTA) provisioning
[48]. Using a PC, the Java application is first downloaded, then using a cable
or a wireless connection (such as Bluetooth or WLAN) the file is transmitted to
and installed on the device. OTA provisioning was introduced as a recommended
practice after the MIDP 1.0 specification. In version 2.0 of MIDP, OTA provisioning
was improved and made part of the base specification. OTA is now the standard for
finding, downloading, and installing Java applications on a device over a wide area
wireless network. In order for a mobile device to support OTA it must be capable
of using both the HTTP protocol and HTTP authentication methods. The device
is also required to have software that can locate and discover MIDlets.

Starting

MIDlets can be started manually by the user, activated remotely, or started
automatically. Automated and remote starting is handled by the MIDP 2.0 push
registry [49]. A MIDlet can be registered to start at a certain time or after every
boot. There are several ways to activate a MIDlet remotely. A MIDlet can be
registered to start upon receiving an SMS message, or a UDP datagram or TCP
socket connection (such as an HTTP connection) [16].

Signing

The security of Java ME applications is based on protection domains. Each
potentially dangerous action requires a certain permission, based upon which the
action is accepted, denied, or permission is requested from the user, depending on
which domain the MIDlet is installed in. An unsigned application will request
permission from the user each time. Developers can sign their MIDlets using
a certificate from a recognized authority, and thereby become identifiable as the
authors. For an authority to be recognized, their root certificate must be available
on the device. A signed MIDlet can have certain permissions granted without
consulting the user or be given so-called “blanket” permissions. Blanket permissions
are only granted by the user once, then accepted subsequently without further asking
the user.

16

CHAPTER 2. BACKGROUND

Background MIDlets

Some Java enabled phone models support running minimized applications, i.e.
MIDlets running in the background without user interaction. These MIDlets can
either be applications without a user interface or be explicitly defined as background
applications in the Java Application Descriptor (JAD) file. Sony Ericsson refers
to the latter as standby MIDlets. Such a MIDlet can be used as a wallpaper
which is started when the phone enters standby mode. Standby MIDlets can not
interact with the user without first being activated. A regular MIDlet without a user
interface can not have user interaction either, but if the phone allows it, the MIDlet
can activate itself and present a user interface. This can be used to temporarily take
control of the screen for alerts and urgent user input. To separate these MIDlets
from standby MIDlets, this report will refer to them as background MIDlets.

MIDlet as a server

Java ME lacks built-in support for accepting HTTP connections, unlike Java SE
does. It does, however, have support for opening local sockets. A MIDlet running
on a mobile phone can open a socket for listening and parse (for example) an HTTP
request coming from a browser. If a mobile browser on the device can connect to
localhost (or equivalently its own IP address), then the MIDlet could act as a
local server. It could even be set up as an HTTP proxy, relaying traffic from any
application on the Web.

The Connector class works as a factory for all connections in a Java ME
implementation. It takes URLs of supported formats and creates appropriate
connection objects. For example, if a correctly formed HTTP URL is inputted,
a connection is opened and handled by an instance of HT'TPConnection.

17

Chapter 3

Related work

This section examines existing projects relating to this thesis. Some of them have
functions that could be used in the proposed system.

3.1 Mobile Web Server

Researchers at Nokia have developed a web server for their S60 platform, called the
Mobile Web Server (MWS) [40]. It is a version of the Apache HTTP Server ported
to run on Nokia’s S60 platform. Nokia has added several extensions to the server
and it supports web development using Python. The extensions are closed source
components, but both the Apache HTTP Server and Python are open source [8, 56].
The goal of the project is to provide a new way of publishing personal information
and media on the Web. Instead of uploading resources to a regular Internet server,
data already on the mobile device is made available directly through a local web
server. Examples of usage include sharing photos and videos with your friends,
straight from your camera phone. It also enables users to access and control their
mobile device from any personal computer (or other device) equipped with a web
browser. New entries can remotely or locally be added to the phone’s address book.
SMS messages can be sent using plug-ins made available via this web server to the
web browser which is running on their computer.

During development of this system many issues and problems had to be
addressed. Mobile devices usually have very limited resources compared to general
purpose computers. The processing power and available bandwidth is often lower
than for devices connected to main power and with fixed broadband connections.
If a mobile device runs on batteries this obviously limits its available power. There
are also issues concerning security and connectivity (few service providers allow
unrestricted incoming connections to their subscribers). Connecting to a mobile
device requires that you know its address. In IP based networks this would be
an IP-address. Addresses for devices in a wide area cellular network are usually
assigned dynamically, which means you may not get the same address every time
you turn on the device. The problem of needing to know the current IP address could

18

CHAPTER 3. RELATED WORK

——————

Internet -
! ehabled PC "

Internet

Intern et g
ehabled '
device ’

MWohile
devic e

running -+ Gateway
Rl S

2.58/36

fohile
devic e

Figure 3.1. The MWS’s communication paths (adapted from figure in [41]).

be solved via dynamic Domain Name System (DNS) or via Mobile IP. However, it is
also possible that the address is a private local address and therefore only reachable
from within a protected network. Nokia has solved this by routing all traffic through
a special gateway, the so-called Raccoon Mobile Web Server gateway (see Figure
3.1). When a remote client wishes to access the phone’s web server it first has to
look up the domain name of the phone by using DNS. The domain names associated
with all the mobile web servers point to a Raccoon Mobile Web Server gateway. This
means that all requests are first processed by the gateway, which redirects them to
the proper mobile device. Since only the gateway knows how to contact the MWSs,
all incoming traffic has to pass through it (at least initially). A related method is to
use Rendezvous (see Gustav Soderstrom’s thesis [60]) or a SIP TURN server [57].
Mobile devices running on batteries could become unreachable when the
batteries run out of power or when there is no network connectivity. This means the
mobile web site could sometimes be unavailable. To inform users of this, a default
page can be created and stored on the gateway. If someone tries to access the mobile
device’s MWS while it is unavailable, they are presented with this default page.

3.2 S60 Web Run-Time

In the Feature Pack 2 release of Nokia’s S60 3rd Edition system, support for
widgets is included [42]. The Web Run-Time enables developers to build small
web applications (widgets) using common industry standards, such as HTML, CSS,

19

CHAPTER 3. RELATED WORK

JavaScript, and Ajax. The applications are downloaded and installed on the system,
then they can gather and display content from the Web.

The JavaScript implementation follows the ECMA-262 specification, but also
includes some additional APIs specifically for widget development. The extended
scripting features enables retrieval of the following system information:

o Battery level and charging status

¢ Reception and network information
o System language

e Memory size and current usage

o File system listing and available space

The new APIs can also be used to store persistent values (associated with the
current application, not shared), and trigger certain system resources. Functions
for the following actions are available:

e Keypad illumination
o Trigger back-light

e Vibration

o Play tone

o Launch native application (not other widget)

Adding these APIs is a big step towards opening up local functionality to web
applications. However, some features have been left out in this release. Neither
local data access nor positioning functions are included. The reason for this most
likely relates to security and privacy concerns.

3.3 Ajax for Java ME

Sun Microsystems has created an open source library for creating Ajax applications
in Java ME [9]. The idea is to combine the simplicity and familiarity of the Ajax
model with the rich and (supposedly) secure Java ME environment. Sun’s MSA
specification provides functionality for multimedia and animated graphics that can
be used to create interactive user-friendly interfaces for mobile applications (see
section 2.3.2). In this context the Ajax model has three parts: asynchronous remote
calls using the MIDP GCF, data represented in either JSON or XML, and a user
interface based on a DOM enabled markup such as XHTML or SVG.

Building a web application using Java has several advantages over a browser
based solution. The Java ME environment has a strong security architecture and

20

CHAPTER 3. RELATED WORK

provides access to many APIs. Extra features on mobile devices such as cameras and
GPS receivers can be integrated directly into applications. There are also functions
for accessing the phone’s address book and local storage. However, exactly what
functionality can be used depends on the Java ME implementation on the device.

The Ajax for Java ME library provides a way of writing web applications that can
integrate local device functionality, with dynamic Graphical User Interfaces (GUIs)
written in a markup language. Such applications could theoretically replace web
browsers. However, currently the only markup supported by Java ME is SVG Tiny
1.1. JSRs for additional languages are being reviewed, including JSR 287 [18] for
extended SVG support and JSR 290 [19] for the common web languages (XHTML,
CSS, JavaScript).

3.4 JSON-RPC-Java

The company Metaparadigm has developed a framework for creating Ajax
applications using JSON-RPC. It uses JSON instead of XML to represent data.
JSON can represent basic data structures and has a simpler syntax than XML.
JSON-RPC-Java enables server side Java methods to be called from local JavaScript
[33]. A lightweight JavaScript script is used on the client side and the Java code
runs in a Servlet container on a Java EE application server!. Method calls are
dynamically mapped from JavaScript using Java Reflection.

3.5 Location acquisition

3.5.1 LocationAware

According to the Location Aware Working Group, location-aware content and
functionality will become more and more common in web applications. Therefore,
they are working with browser vendors, device manufacturers, developers, and
content providers to standardize the way location data is handled [29]. Location
data can be obtained through several methods, such as GPS, Wi-Fi triangulation,
and IP geo-location, yet there is no standard way for browsers to acquire this data.
There is also a need for standard methods to access the data from within web
applications, without compromising the user’s privacy. The latest working draft
includes sample code, showing how JavaScript access to location data might look:

var geolocator = navigator.getGeolocator();
geolocator.request (function(location) {
alert(location.latitude+’, ’+location.longitude);

1N

! Java Platform, Enterprise Edition (Java EE) is a Java platform used for server programming.
In addition to the Java SE APIs, it includes libraries for deploying distributed components on
application servers. For more information see [70] or Sun’s Java EE page [68].

21

CHAPTER 3. RELATED WORK

Name Platform Runningon Client Server Ajax support
Mobile Web Server S60 Nokia, LG, No Yes -
Lenovo,
Panasonic,
Samsung,
etc.
S60 Web Run-Time S60 Nokia, LG, Yes No Yes
Lenovo, (using
Panasonic, browser)
Samsung,
etc.
Ajax for Java ME Java ME Java Yes No Yes
enabled
devices
JSON-RPC-Java Java EE Computers No Yes -

Table 3.1. Feature summary of related projects.

The code snippet requests location data through a geo-location object, and adds
a callback function which displays the returned values for latitude and longitude in
a pop-up box.

3.5.2 EZweb

The EZweb mobile browser from KDDI (a Japanese company) has a built-in
function for requesting location data from the device it is running on. It utilizes a
special protocol that can be used in, for example, links to online maps. Such a link
might look like:

device:location?url=http://server/location.cgi
When a request using this protocol is made, the browser acquires location
data and appends it as GET variables in the URL. This would be the form of a
URL requested by the browser:

http://server/location.cgi?datum=AAA&unit=BBB&lat=XXX&lon=YYY

The capital letters represent the location data and included information provided
by the positioning system [26].

22

CHAPTER 3. RELATED WORK

Name Proxy classes Proxy code size JAR size
RabbIT 61 196KB 241KB
Super Proxy System 11 56KB 149KB
PAW 6 33.3KB 107KB

Table 3.2. Open source Java proxy servers. Proxy classes denotes the number of
class files used for the core proxy features and proxy code size is the total size of those
files. JAR size is the size of the whole application.

3.6 Google Gears

Google Gears is a plug-in for web browsers, adding extra functionality to allow
web applications to run offline. It lets developers create offline browser based
applications by adding new JavaScript APIs. The plug-in consists of three parts:

e Web server
« Database
o Worker thread pool

The web server is used to serve offline content such as HTML documents, JavaScript,
and CSS. A lightweight database allows applications to save persistent data, while
the worker thread pool handles long-running background operations. Google Gears
supports several browsers, including Firefox and Internet Explorer. It is also
meant to be used on mobile devices, but it currently only supports devices running
Windows Mobile (version 5 or higher). Google Gears is still in the early stages of
development and is not yet suitable for production applications [14].

3.7 GlassFish

It is possible to create an application server small enough to fit on a mobile
phone. This has been shown by Sun Microsystems. In 2005 they launched Project
GlassFish. It was an initiative to make their Java EE application server open source.
The third release, which is currently under development, has a very small basic
kernel size. Pelegri-Llopart, et al. wrote (about GlassFish v3): “Its architecture
is modular by default, its kernel is extremely small (under 100Kb which makes it
suitable for desktop and even mobile use), and its startup time is under a second”
[53].

3.8 Java proxy servers

There are many open source proxy servers written in Java available. These can be
extended for other applications and the code can be reused in other software. Three

23

CHAPTER 3. RELATED WORK

typical such proxy implementations are RabbIT [44], Super Proxy System [31], and
PAW [52]. They are written for Java SE and depend on the standard Java APIs for
networking. PAW also uses external frameworks for server and parsing capabilities.
The size of each of the three proxy servers can be seen in Table 3.2.

24

Chapter 4

Evaluation methods

4.1 Usability

Evaluation of usability is important when creating mobile applications just as it
is when developing for PCs. Boonlit Adipat and Zhang Dongsong wrote in a
report on usability testing that: “Usability testing is an evaluation method used to
measure how well users can use a specific software system. It provides a third-party
assessment of the ease with which end users view content or execute an application
on a mobile device” [2]. From their description, we can see that there are several
things that could be evaluated. Some of the questions that should be answered are:

e Can users easily search for specific information?
e Is the menu design and link structure easy to understand?
e Does the data entry method enable fast and easy input?

o How is the user experience affected by the mobile context?

The usage of mobile device applications differs from that of PCs in several
aspects. Some of the main differences concern connectivity, screen size, display
resolution, processing, battery power, and available user input methods. These
physical limitations all have an effect on the overall usability of the software.
The usage context is also somewhat different when it comes to testing mobile
applications. There are additional situations to deal with. For example, users
of mobile devices tend to work standing up or walking around. They also do not
always have proper lighting and sometimes there is too much light. These differences
have to be taken into account when designing an evaluation method.

There are two distinct categories of testing available for evaluation. One can
either perform the tests in a (closed) laboratory environment or send people out of
the laboratory to conduct field tests. Laboratory testing enables easy supervision
and direct control of participants. Mobility can be simulated by asking the
participants to move around while using the device. Details about the environment

25

CHAPTER 4. EVALUATION METHODS

can be controlled, such as lighting and noise. It also makes it easy to collect different
kinds of data, and is therefore well suited for usability testing. Testing in the field
does not provide the same ease of observation and supervision. It makes it harder to
control the context and properties of the environment, but potentially yields more
realistic information. The dynamic and sometimes unreliable nature of wireless
connections is naturally present when testing in a real-life situation. Connected
applications tested in the field can be used to predict more accurately the real life
experiences which users will have.

When conducting tests in a laboratory there is a choice to be made whether to
use emulators or real mobile devices. Emulators make it easy to collect data, but
lack the real context of the application. Using real devices creates a more realistic
user context. Consequently, while emulators are suited for initial testing of layout
and menu structure, real devices should be used for final testing.

4.2 Performance analysis

Mobile devices use wireless connections to communicate with services and other
devices in different locations. Connections can be made both on a local peer-to-peer
basis (for example, using Bluetooth) or via wide area networks. Many mobile
applications are created to work in this context and use network connections to
enhance interactivity. These applications can therefore be seen as distributed
systems, and evaluated as such. There are two aspects of mobility in distributed
mobile applications that should be considered: physical mobility which concerns the
actual movement of the device, and code mobility which refers to the positioning of
the distributed software parts.

Antinisca Di Marco and Cecilia Mascolo wrote: “Physical mobility is a
requirement which developers have not yet considered with the due care despite
it having a huge impact on the performance of the system” [30]. Analyzing physical
mobility involves identifying mobile user patterns and looking at the impact they
have on the system performance. Changing mobile contexts can affect connection
speeds, and must be thoroughly considered when evaluating the overall performance.

In the case of a mobile distributed application, different parts of the code run
on different hardware. Therefore, the application logic can be distributed across
a network. To evaluate performance in such a system, code mobility has to be
considered. Since mobile devices often have limited processing capabilities, higher
performance can sometimes be achieved by moving heavy computation to servers
which have greater resources. However, because transferring data between system
parts can be slow and expensive, this is not always the best solution. Another
way of improving performance is moving application components closer together,
thereby turning previously remote interactions into local interactions. If this kind
of software mobility were dynamic, then code location could be optimized during
execution. This could increase both flexibility and performance of the system [10].

Integrating performance analysis in the system specification is a critical part of

26

CHAPTER 4. EVALUATION METHODS

software design. When designing mobile applications it is therefore important to
plan for this kind of evaluation. Several researchers have suggested methodologies
for performance analysis in the mobile context [10, 15]. The methodologies usually
involve creating evaluation models based on UML diagrams.

27

Chapter 5

Implementation

This thesis project was carried out at Ericsson Research in Kista. The main goal
was to show how a local web server (proxy), running as a background process on a
mobile phone, can facilitate adding new functionality to web applications running
in the phone’s built-in browser. Based on the success of the main goal, there were
two additional goals: implementing several functions for use in real web applications
and setting up a basic security scheme.

A background application for mobile phones was implemented to prove that the
concept works. The application acts as a proxy server for the mobile browser. It
also accepts HTTP requests with commands for accessing local phone data and
triggering phone specific functions.

5.1 Platform

When choosing a suitable device to develop the software for, there were two
important aspects to consider. The phone had to have some built-in functions
that could be utilized. For example, enabling use of a digital camera was a definite
requirement. A GPS receiver would also be of use, if it could be accessed by the
application. Secondly, since Ericsson is supporting this thesis project, the device
would have to be of the Sony Ericsson brand. The currently available models
support either Symbian or Java ME applications. Since few of the Symbian models
had cameras, but several of the Java enabled phones had cameras, the latter was a
natural choice. None of the currently available Sony Ericsson phones had a built-in
GPS receiver, but some of the later models have support for an external GPS
device. Ericsson supplied a Sony Ericsson K800i [61] phone to be used during
development. The K800i supports Sony Ericsson’s Java Platform 7 (JP-7) [62],
which includes among other things, JTWI. However, full MSA compatibility was
not implemented until Java Platform 8. The K800i supports the Sony Ericsson
HGE-100, a GPS enabler/hands-free device, of which one was also supplied for use
during development.

28

CHAPTER 5. IMPLEMENTATION

Mobile web | < * | Remote
browser “——| |ocalweb | € web server
server \
GPS Back-light
Camera Vibrator
Microphone v File system

Address book

Figure 5.1. Final system structure. Web content can be loaded via the local server.

5.2 Proxy function

Before any specific features could be implemented, the problem of the same origin
policy had to be solved. Web browsers will not allow JavaScript from one domain
to read data downloaded from another domain. Data can be sent, in the form of
a URL, by programmatically adding page content located at the receiving server.
However, once the content is loaded, the same origin policy prohibits the script
from accessing it. Some of the desired features, such as positioning and reading
user data, would be impossible to implement using this method.

To get around the same origin policy, the script must be downloaded from
the very host accepting the local feature requests. This means that scripts must
originate from the local server, or at least the browser must think they do. This can
be accomplished by implementing a MIDlet working as a proxy, relaying content
from the Web to the browser (see Figure 5.1). A normal proxy server is not treated
as the origin of a page loaded through it. However, if the proxy server accepts
requests as if it was the actual destination server, then the browser would treat it as
the origin. A MIDlet was therefore implemented to accept both requests for local
features and fetching of remote content. The real address of the content is simply
added to the URL, as if it was the path of a file on the local server.

An HTTP request is made to the local IP address 127.0.0.1, where the MIDlet
is listening for connections, and the URL of the actual document is appended to
the request Uniform Resource Identifier (URI). The complete URL of a request for
a document index.html on the server www.example.com would look like this:

http://127.0.0.1/www.example.com/index.html

29

CHAPTER 5. IMPLEMENTATION

When the MIDlet receives this request, it extracts the correct address
(www.example.com/index.html), downloads the file, and sends the response
back to the client. As far as the browser knows, the document is downloaded from
the local server on 127.0.0.1.

A different solution would be to rewrite an open source proxy server and add
the necessary features to it. To simplify development, the MIDlet could work as
a regular proxy. Code could be added to intercept certain requests and handle
them locally. In this solution the URL would not have to be changed. However,
the user would have to change the browser’s proxy settings. The problem with
this solution, as with any adaptation of existing software for this purpose, is that
there are no suitable open source applications written for Java ME. The Java SE
based applications described in sections 3.7 and 3.8 were not used, since the work
of porting them would exceed any possible gain in development speed.

5.3 Features

To distinguish requests for local device functionality from proxy requests, the URI
of the former will begin with the word local (note that this must be a complete
match to the first string of the URL and not simply a partial match, to avoid
matching against a domain name such as local.org). A request URL for the
function some_function would look like this:

http://127.0.0.1/local/some_function

To make the syntax more intuitive for programmers, the function names are
formed using the same naming scheme as Java methods and can take zero or more
arguments:

someFunction(), someFunction(arg), or someFunction(argl, arg2), etc.

The MIDlet sends a valid HTTP response to every request, even if the response
does not include any data. The data is sent in the form of JSON objects, which can
easily be interpreted in JavaScript. Each response has a field called type, which
determines the type of data enclosed in the JSON object. The data, which can be
either a string message, a number, an array, or an object, is located in a field called
value. If the MIDlet can not execute the request properly, the type field is set to
‘error’ and the value field to a string message explaining what went wrong.

5.3.1 Retrieving data

As a first trial to see if the concept would work in practice, a simple function
was implemented to retrieve the phone’s International Mobile Equipment Identity
(IMEI) number. The IMEI number can be found in Java on the K800i by calling the

30

CHAPTER 5. IMPLEMENTATION

Java method System.getProperty("com.sonyericsson.imei"). This method returns
the number as a string which was then sent back to the browser as a JSON string.
After testing this function using a simple JavaScript, it was concluded that the
concept worked. Other data, such as the current time on the phone, could similarly
be retrieved. However, some of the potentially useful values such as battery level and
network signal strength, are not available from within the Java ME environment.
See [63] for a complete list of retrievable data.

5.3.2 Alerting the user

The K800i, like many other phones, can vibrate, play programmable melodies, and
light up the screen with a back-light. If a web application had control of these
features, it could for example be used to alert the user to certain events. JP-7
has specific methods for using these features. Playing sounds works fine, but using
the vibrator and back-light does not work while the MIDlet is in the background.
Sony Ericssons’s solution to this involves using iMelody files. iMelody is a simple
standardized tone sequence format, which supports both vibration and back-light
[22]. Using the support for iMelody playback, functions were implemented to trigger
vibration and back-light flashing, as well as simple sound and melodies. Also,
because the melodies are defined in a simple string format, a function which takes a
melody string as input was written. This allows web application developers to add
dynamic tone sequence playback using JavaScript.

5.3.3 Taking pictures

The APIs included in the K800i’s Java platform provide two ways of controlling
the phone’s built-in camera (only the backside camera, not the small one on the
front). The MMAPI has methods for displaying streaming video from the camera.
Snapshots can be saved from this stream. The snapshots are returned as byte
arrays, which can be saved to local memory or processed by the MIDlet. Another
way of utilizing the camera is provided by the Advanced Multimedia Supplements
API. It provides additional control over camera settings and allows burst shooting.
The pictures are saved directly as image files to a local storage folder, which must
be selected before shooting.

Both approaches were attempted through HTTP requests to the MIDlet. By
temporarily taking control of the screen, it was possible to display video from the
viewfinder. Unfortunately neither of the snapshot methods worked properly while
the phone’s web browser was still running. The MMAPI method triggered the
camera click sound, but no data was returned. The other method simply failed
with the debug output ‘STORAGE_ERROR’ The outcome was the same whether
the picture was to be saved to phone memory or memory card (both had plenty of
free space available at the time of testing).

31

CHAPTER 5. IMPLEMENTATION

Name String Description

Current Mobile Country Code com.sonyericsson.net.cmcc ~ Unique country number
Current Mobile Network Code com.sonyericsson.net.cmnc Operator number
Location Area Code com.sonyericsson.net.lac Number of current area
Cell Identity com.sonyericsson.net.cellid Base station number

Table 5.1. Network properties that can be used for positioning purposes.

5.3.4 Audio capture

All mobile phones are equipped with a microphone for speech input when making
calls. Using the MMAPI, it is possible to record the audio stream of the microphone.
Functions have been implemented to handle recording, playback, and uploading of
audio. This could for example be used to create an audio blog application.

5.3.5 Positioning

The Sony Ericsson HGE-100 is an external GPS receiver combined with a remote
control for the phone’s music player, a 3.5mm audio jack for stereo output, and an
analog microphone to add hands-free capability. It is connected by proprietary cable
to the phone and communicates with the phone through a virtual serial port. The
output is, as with most GPS devices, in the form of NMEA 0183 sentences [39]. The
HGE-100 outputs several sentences, but the most relevant ones are GGA and RMC
(Recommended Minimum). Both these sentences can include latitude and longitude
coordinates, but GGA can also provide additional information, such as altitude. The
coordinates are only available in the World Geodetic System 1984 (WGS 84) [38]
format.

The MIDlet uses a separate thread to handle the GPS receiver. While the
receiver is connected, the thread reads the NMEA sentences at regular intervals.
To reduce the MIDlet’s work load when not being used, the data is not processed
until actually needed. When a web application requests information about the
current position, the most current data is parsed and the coordinates converted
from degrees, minutes, and seconds to decimal degree format.

The K800i (and other Sony Ericsson phones with JP-7.3 or higher) support the
extraction of certain properties of the wide area wireless network it is connected
to. The properties are returned by calls to the method System.getProperty()
with specific strings as input. The properties of interest to positioning and their
respective input strings are shown in Table 5.1. (A complete list of all the properties
which can be retrieved can be found at [63].) A combination of these values represent
a specific base station of the connected network. By mapping the combined
properties to geographic coordinates, a positioning system can be created. Such
a system can be used in combination with GPS or separately when a GPS receiver
is unavailable.

32

CHAPTER 5. IMPLEMENTATION

Several online services exist where users collaboratively identify the location of
base stations to build databases for positioning without GPS. The locations can
be identified manually, as on CellSpotting [12], or automatically, as on Navizon [34]
where devices with GPS receivers combine network properties with GPS coordinates
to update the database.

5.3.6 Local memory access

The PDA Optional Packages API [20] can be used to access local file systems as
well as the address book and calendar on the device. On the K800i this means one
can read and write to the phone’s local storage and to inserted memory cards.
Documents and other content can be served from the MIDlet (just as from a
web server), media can be permanently stored on the phone, and web content
downloaded through the MIDlet can be cached. The API also allows contacts to
be retrieved or added to the address book, along with notes, URLSs, pictures, and
other data. The calendar can be viewed and edited as well. These functions can be
used to synchronize contacts and events with web applications.

5.3.7 Wireless connectivity

Many mobile phones and other devices have the ability to establish local wireless
connections. Using technology such as Bluetooth or IrDA, devices can be located,
queried for information, and remotely controlled. Java ME has APIs (included in
JP-7) for making Bluetooth connections (see [21] for details). These can be used
on the K800i to search for devices and make use of any services they provide.

5.4 Control script

For a web application to make use of the MIDlet’s features it can make HTTP
requests using JavaScript. To facilitate application development, an example script
with simple functions to send such requests, has been created. The script will also
automatically detect if the MIDlet is running. If it is not currently running, then
the script can start the installation procedure (see section 5.4.2).

5.4.1 Detection

Before allowing the application to make any function calls, the script has to make
sure the MIDlet is active. As mentioned earlier, web pages that are to use the extra
functionality must be loaded through the MIDlet. The script therefore checks for an
active MIDlet, then redirects the client through its proxy function. This detection
is performed by adding a hidden image to the page. The image is a single pixel GIF
hard coded into the MIDlet and mapped to a special URI. If the image is loaded
properly, then the MIDlet must be active, hence the client is redirected and the
MIDIlet’s features become accessible.

33

CHAPTER 5. IMPLEMENTATION

5.4.2 Installation

If the test image is not loaded within a certain amount of time (currently set to
three seconds), then detection has failed, and the user is given a choice. A confirm
pop-up dialog is shown, where the user can choose to either continue using the
application without extra features from the MIDlet, or download and install the
MIDIlet before continuing. If the user answers yes, then the JAD file is loaded in
an iFrame on the page, which initiates the download and installation process. Once
the installation process is over, then the script will try to detect the MIDlet again
at regular intervals (currently set to five seconds). Once it is detected, the MIDlet’s
features will be available to the application.

5.5 Security

While advanced security schemes should definitely be used in a commercial
application of this kind, some simple measures will suffice for the security of this
prototype implementation. The first step in securing this setup is making sure the
user can trust the MIDlet to handle security. This is done by signing the MIDlet
with a certificate to identify who the authors are. A certificate was acquired from
Thawte Consulting, which is an authority recognized by modern Sony Ericsson
phones. The MIDlet was signed and can now be installed in the trusted third party
domain. A trusted third party application can be traced back to its authors and
has a less strict policy on acquiring permissions during execution.

All scripts which are able to use the MIDlet features must be loaded through the
proxy function. Restricting the features to trusted applications is therefore simply
a matter of filtering out untrustworthy proxy requests. When the MIDlet receives
a request for content on a remote web server, it temporarily takes control of the
screen and displays a confirmation dialog with four choices. The user can choose
‘Yes’, ‘No’, ‘Always’, or ‘Never’, and thereby allow or deny the request, applied only
this one time or as a blanket decision. If the user selects ‘Always’ or ‘Never’, then
the server address is stored by the MIDlet and any subsequent requests matching
that address will automatically be treated the same way.

When a request for a new web application has been permitted, a random
session key is created. The web browser is redirected to a new URI where this key
is inserted before the remote address. When the browser sends a request with this
new URI, the remote content will be downloaded and sent back to the browser.
The complete URL of a trusted web application with the session key abc123456789
would look like this:

http://127.0.0.1/abc123456789/www.trusteddomain. com/webapp.html
The session key must be used in any requests for local functions. If the key

is missing or invalid, the request will be denied. To make sure the request is not
coming from an unauthorized application, the referrer HT'TP header field must be

34

CHAPTER 5. IMPLEMENTATION

included and contain a local server URL. This is ensured by the browser if the
application is loaded through the MIDlet. Once the client has been redirected,
the control script extracts the session key, and will automatically use it whenever
the application requests local functions from the MIDlet. These requests will have
URLs of the form:

http://127.0.0.1/abc123456789/1local/someFunction()

5.6 Example applications

To show how the functions described in the earlier sections can be used in practice,
two applications have been constructed. The first one is a plug-in that adds an
extra feature to the mobile web site Hitta.se. The second one is a map application
which makes use of the GPS positioning, audio recording, and alert functions.

5.6.1 The plug-in

Hitta.se is an online directory of people and organizations in Sweden. Their mobile
site (http://wap.hitta.se/) consists of a search engine where users can input names,
numbers, and /or locations. The result is two lists of entries matching the input data,
one for people and one for organizations. The data available in each entry varies,
but usually includes one or two phone numbers and an address. If available, it also
includes a link to a map centered at the given address, and a link to a photo of the
building.

On a mobile phone, the site can be used to find phone numbers to be dialed
or saved in the address book. Only the number can be copied though, not the
name or any other information. WTAI provides a link tag for saving names and
numbers. vCards! can be used to add numbers and detailed personal information
to the address book. However, neither of these are available on the site.

Using the plug-in, one can easily add name, address, and multiple phone numbers
to the phone’s address book. This is done by including a script within the page
which is returned by the local proxy to the web browser. This script adds a new link
labeled “Spara” (to save) (see Figure 5.2), that when clicked, collects all the available
information from the page. The script locates the URL of the map, if there is such
a link, and can also save the address of a building’s photo. All this information is
then sent to the background MIDIlet, which in turn, writes this information to the
phone’s address book.

As mentioned earlier, all applications that wish to make use of the MIDlet’s
functions must be loaded via the proxy. Since Hitta.se is an existing site which
cannot be changed without the website operator’s permission, no scripts have been

lvCard is a standard for electronic business cards. The cards can contain telephone numbers,
email addresses, URLs, photographs, and much more. They can be distributed through any network
connection and are supported by many handheld devices [73].

35

CHAPTER 5. IMPLEMENTATION

3.=§hitta.se - Mozilla Firefox

Arkiv Redigera Visa Historik Bokmérken Werkbye
¢' s - @ m L] htep:fhwap. hitka,sefT

Tomas Joelsson
+46707161181
Eapellgatan 5 E
17170 Solna
Karta

Tillbaka

hitta. se

(a) Without MIDlet

'-"'_) hitta.se - Mozilla Firefox

Arkiv Redigera Misa Historik Bokmdrken Yerkbyc

@ - - @ &t | htepejr127.0.0.1:808

Tomas Joelsson
+46707161181
Eapellgatan 5 E
17170 Solna
Earta

Tillbaka

hitta.se

Spara

(b) With MIDlet

Figure 5.2. The mobile web site Hitta.se displaying details of a person. The MIDlet
adds an additional link to the page. Clicking “Spara” will save the contact details to
the phone’s address book.

added to their website to automate this process. Therefore to use the plug-in’s
features, a client must access the site by following a link from another page, or
manually input the URL including the proxy address. The full URL for accessing
the site this way is:

http://127.0.0.1/wap.hitta.se/

Once the site is loaded this way, the MIDlet can add scripts to appropriate
documents by checking for the URI in a table of scripts which can be added on
a site specific basis. In our experiments the MIDlet does not edit the documents
before sending them to the browser, but simply appends extra script tags at the
end. This approach worked well on the K800i running the NetFront browser, but
other browsers might object to the incorrect XHTML syntax. Hence to avoid
problems, documents should be edited to add the extra lines containing the new
script within the head of the XHTML document.

The mapping of scripts to specific sites does not have to be predefined. The
MIDlet can add script files with names based on hash values of the URL. The
location of these files can be a central server or the referrer address supplied by the
first page request. Script tags are added whether the files exist or not and it is up
to the browser to load them properly if they are available.

5.6.2 The map application

There are several map applications available for mobile phones, but few of them are
browser based. The ones that are browser based are often very simple. A major
reason for this is the problem of obtaining positioning information from within the

36

CHAPTER 5. IMPLEMENTATION

: ~"-'1 2008-02-20 :
"_-f'f" & e 5 * N

Record || Update Centerj Scroll & - || +
(A VS =

Record | Update Centerj Scrall & - | +

— i - = -
(a) Map showing area with six (b) A clip has been selected and
uploaded audio clips. information about it is being displayed.

Figure 5.3. Two views of the map application.

browser. Today, standalone applications can utilize both internal and external GPS
receivers, and are therefore better able to display maps and position them relative
to the location of the user. Since this problem can be solved (as explained in section
5.3.5), there is little reason not to create browser based map services.

To show that there is a need for maps in browser based mobile applications,
an example map application was built. It not only displays maps centered on the
user’s location by using GPS positioning, but also allows users to record audio clips
that stick to their current location on the map. The audio clips are represented by
small yellow boxes. In this example map application, other users viewing the same
area may select this icon to hear the audio. If the application is left running, it will
automatically update the user’s position and check for new audio clips near their
current position. If a new clip is found, it will trigger the phone’s vibrator and start
flashing the back-light to alert the user.

The clips are submitted, by the MIDlet, to a server through an HTTP POST
request. Besides the audio file, the request also includes positioning information and
a hash value of the phone’s IMEI number or SIM subscriber number (if available),
to distinguish between users. The server stores the information in a database, which
can then be queried for clip information and the URL to the actual file hosted on
the server.

The interface is quite simple (see Figure 5.3). After starting the application,
the relevant map is automatically loaded and centered at the extracted location.
If the MIDIlet is not running or no positioning information is available, the map is
centered at a default location. The map can also be centered from GET variables
in the URI. If such variables are supplied, they will take priority over coordinates
extracted from the device.

The user can scroll to view different locations using the phone’s navigation keys.

37

CHAPTER 5. IMPLEMENTATION

To stop scrolling, one simply presses the middle button (‘Select’ or ‘OK’ on some
phones). On the bottom of the screen are six buttons. One to enable scrolling, one
to start recording, one for manually updating location and map content, one for
centering on the user’s current location, and two zoom buttons (marked as ‘+’ and
-”). Using the navigation keys, the user can select these buttons or the currently
visible audio clip icons. When the cursor is moved to an audio clip icon, a box is
displayed with a description and the time and date of recording. To listen to the
clip simply select it and the browser will use an appropriate plug-in for playback.

The map is built up from a set of equally sized tiles downloaded from a free
mobile map service, such as Eniro (http://wap.eniro.se/) or Hitta.se (http://wap.
hitta.se/). The size of the tiles is configurable and defines the distance the map will
move at each scroll event. In addition to the tiles making up the currently visible
map, to speed up scrolling the application downloads neighboring tiles bordering
the map in each direction. The default scale of the map depends on whether GPS
coordinates are available or not. If there are coordinates available, then the map
will have a scale detailed enough to show small streets. If GPS data is not available,
then the map will show a larger area. To view the map in a specific scale, the user
can supply a GET variable in the URI that will overload the default scale variable.

Running the application without the MIDlet will still work. However, no audio
can be submitted and the alerts are not available, but the user can still browse the
map and listen to previously created audio clips. The application also works with
PC browsers, where a larger map view can be displayed.

38

Chapter 6

Evaluation

The first project goal was to show how a background process could add functionality
to mobile web applications. In the last chapter it was described in detail how this
was accomplished on a Sony Ericsson K800i phone. The implemented background
MIDIlet functions as a proxy server for web applications and accepts HT'TP requests
from these applications to use local phone functions.

Though this worked without problems on the K800i, the concept makes certain
demands upon a device it is to run on. The phone must have the ability to open
local sockets, and the web browser has to be able to connect to the local IP address.
The K800i and other similar devices that were released around the same time,
and therefore running similar software, had no problems in doing either of these
operations. However, more recent Sony Ericsson models with the Java Platform 8
standard, were unable to make local connections. Since this is a crucial requirement,
the MIDlet is not useful on these models. The reason for this limitation is unknown.
It could be caused by a bug in the software or the manufacturer could have done
it intentionally, to improve performance or to increase security. Unfortunately, it is
possible the same limitation will be present in all Sony Ericsson devices released in
the near future; hence the method used in this thesis project can not be used with
these devices!

During the start of the implementation phase, a choice had to be made whether
to start from scratch or build the system on top of existing software. Three proxy
servers written in Java were considered. The problem with these applications is that
they were not written to run on mobile devices. They were all written for Java SE,
which (as explained in section 2.3) is quite different from Java ME, especially when
it comes to networking. An HT'TP proxy is a network application and requires a fair
amount of string manipulation, both of which must be handled differently in CLDC
applications. Additionally, the RabbIT and PAW proxy implementations both use
many Java SE classes for advanced data structures. PAW also depends on several
external packages, which if included in a JAR, would increase the total application
size. The Super Proxy System is comparatively simple in its design and does not
include many non-Java ME classes. It could be ported to run on a mobile phone

39

CHAPTER 6. EVALUATION

without too much work. However, the proxy function is not actually a very large
part of the MIDlet. In the finished implementation, only 27.4KB of code (three
class files) is used for the proxy functionality. This can be compared to the 56KB
of proxy code in the Super Proxy System. The major part of the implementation
consisted of adding methods for the specific services. This code amounts to more
than double that of the proxy function (63.6KB). Consequently, rewriting a Java SE
proxy application would not speed up the development process significantly. There
is also a major difference in total application size. The compiled and packaged
MIDlet JAR is only 74.8KB, compared to the Super Proxy System’s 149KB JAR
file.

Running a Java EE server on a mobile phone would enable a lot of additional
functionality. The MIDlet could have been implemented on top of an application
server, providing the proxy functionality through a Servlet. It would then be
possible to use a framework such as JSON-RPC-Java to facilitate communication
between the MIDlet and JavaScript in the browser. That is if one could somehow
implement reflection for CLDC. GlassFish v3 might be small enough to fit on a
mobile device. However, it is still based on the APIs of Java SE, including data
structures and networking, which would have to be changed if ported to CLDC.
Even if such a porting was done, the proxy functionality would still have to be
added. Thus, the gain of building the system on top of GlassFish would be even
smaller than if using a Java SE proxy application as base.

Nokia’s MWS has a lot of the same functionality that this thesis aims to develop.
However, the purpose of the application is somewhat different. While the Nokia
server makes local device features accessible to remote clients, this project aims to
give greater access to these local devices to the local user of the device. Despite
this difference, the approach of using web browsers to increase functionality and
versatility in mobile devices is much the same. The core of the MWS is built using
open source software. This part could be reused to create a background process
similar to the developed MIDlet, but for phones running Symbian. The K800i does
not run Symbian but many other phone models do. This approach has not be tried,
but it is possible Symbian devices would not have the same problem of accessing
the built-in camera while running a web browser. Even if that is not the case, a
Symbian application would be a viable alternative to the implementation in this
thesis.

While it was shown that having a process running in the background while
browsing can add functions to web applications, this will also increase CPU usage.
If it affects the browser and makes web applications run slower, this might not be a
very practical solution. Interactivity in advanced web applications is often based on
client side scripts. Therefore it is important that script execution is not affected too
much by the background MIDlet. This would decrease the perceived speed of mobile
web applications, which are generally slower than fixed computer web applications.
A JavaScript benchmark was therefore used to measure the impact of the MIDlet
on local script execution speeds.

The SunSpider JavaScript benchmark tests a lot of common algorithms used in

40

CHAPTER 6. EVALUATION

today’s web applications. It was not made for testing mobile browsers, but with
a few simple changes (because of a difference in the interpretation of for loops) it
could be used with NetFront on the K800i. Unfortunately, two of the tests (‘nsieve’
and ‘tagcloud’) had to be removed because they caused the browser to freeze up.
These tests are both memory intensive and were therefore probably not well suited
to run on a device with limited memory. The overall performance was a lot slower
than on a modern PC (see Table 6.1). It was obvious the phone would be slower,
but the difference was bigger than expected. This means converting existing web
applications for fixed computers to run on mobile phones might not always be
feasible. The benchmark could still be used to evaluate the MIDlet’s impact, by
running the benchmark on the same device and browser, once with and once without
the MIDlet.

SunSpider has a function to compare two benchmark results and show where
there are significant differences. After running the benchmark and comparing the
two results it seems there is only a small difference in performance. Some of the
tests were actually completed faster with the MIDlet running, which indicates that
the JavaScript execution was not constantly affected by the JVM. Each test was
performed five times to get a higher accuracy. If a test is repeated, SunSpider will
calculate a 95% confidence interval. By looking at these intervals it would seem that
the MIDlet causes variation in the execution speed. This means that some of the
test runs were affected more by the JVM than others. Since the MIDlet affected the
web browser only at certain times and the impact was different between runs of the
same test, it seems the JVM only slows performance when the MIDlet is actively
doing something. If this is the case, then the regular activities of the MIDlet (i.e. the
regular polling for a connected GPS receiver) is what caused the drop in execution
speed. See Table 6.2 for the complete output of the benchmark comparison.

The second project goal was to implement routines for utilizing local
functionality and use these routines in actual web applications. The intention
was to test which local devices and data could be used from the mobile browser
environment on a K800i phone. Most of the implemented features (as described
in section 5.3) worked very well. The only major problem was the digital camera.
Originally the camera function was meant to be part of the map application, but
since it did not work, it was replaced by audio recording. The reason why the phone
would not allow pictures to be taken by the MIDlet is still not known. It is clear
though, that it was not the application itself, but rather the browser being active
which caused the problem. Running the same code without the browser worked
fine. Since it is possible to display the viewfinder without exiting the browser, it
seems that the browser is blocking some resource needed by the camera specifically
for saving high resolution images. At the time of writing, Sony Ericsson has not
given any hint on the reason behind this limitation.

Together, the two example applications utilize most of the implemented features.
The plug-in writes to both the phone’s address book and a local file system. The
map application makes use of positioning, audio recording, and alert functions.
Both examples show how the background MIDIlet can improve the functionality

41

CHAPTER 6. EVALUATION

dH ue ueemjaq uostredwod rewrypuoq jdiogeser Ieprdgung

"JueoyTuSIs A[[BOIISIR)S SeM S}NSI 1S9} 9} UoMIaq
QOUAIOYIP OY} Py} SURSWI UWN[OD S[IBIdP O} UI JUeIYIUSIS pIOM O], ‘S[BAIIUI
9OUAPYUOD U GE [HIM SURSUI IR SAN[RA Y[} PUR SO} SAT UNI SeM 1S9} DRH “JUOLIION
Suruuni 190083 © pue (007 SMOPUIA\ IOpUN XOJaIl] SUuluUNI (QFFMX UOIIR)ISHIOA\

‘'T'9 9IqEL

JUedYIUSIS 770 -/+ SWRYRLI6E %VTl -/+ SWg9ge Iomols %40G8601 yndur-ojeprrea
JuedyIuss - %10 -/+ SWEHFII08EY %61 -/+ SW0 696 TOMO[S %06.L69L :apod-ypedun
JURDYIUSIS %G°() -/+ SWOFGLEGT %0°0T -/+ SWOLPy 1omO[s %069LG “e)sey
JURDYIUSIS %7°() -/+ SWO'RLIYILT %9FT -/+ SWETEY I0MO[S %0686LE ‘p9aseq
Juedyrusls 1) -/+ SWO'EERTI99 YL'F -/+ SWHE00E IOMO[S Y 0ESTEE ‘Surns
Juedyrusts %70 -/+ SWY T098TT %L'T -/+ SW) 0G9 ToMOTS %0GTST reup
Juedyrusis 9z°() -/+ SWY TO9STT %L1 -/+ SW0 059 1M0[S %0GE8T :dxoga1
JUROYIUSIS 5§ -/+ SW 63686 %&°0 -/+ Sw 18 ToMO[s %0076E wIou-[eroads
jreoyIudls 949°'7 -/+ SWR9ZGTY %p'9 -/+ sy eee IOMOTS %0TLOG :swns-eryred
JURDYIUSIS %§°0 -/+ SWE06611C %6'C -/+ SWE GLS ToMO[S %0989 :1PI0d
JURDYIUSIS %60 -/+ SWH90GL8E %G -/+ SWE05CT TOMOS %0001€ yen
JUROYIUSIS 949°() -/+ SWE 00L0S %9°0 -/+ SWRE6LT 1OMOTS %0729 ‘qredx-yeunio;
JURDYIUSIS 947 -/+ SWE 690G6 %0°€ -/+ SwWR'YTT ToMOTS %0ET8 :99J0)-YeULI0]
JuedyIusis 9p°() -/+ SWp EYLGLT %G1 -/+ SW9Y'TIVT TOMOTS % 0FTL o9ep
JUedYIUSIS %70 -/+ SWOOV6CEC %V'8T -/+ SWO'EST ToMOTs %0036 ‘Teys
JUROYIUSIS %00 -/+ SWY TO0FFF %8G -/+ SWg 18T 1MOS %0€06TT ‘gpw
JURDYIUSIS)7 -/+ SWZGERLLT %9°8C -/+ SWREHT ToMO[S %0975S 'soe
Juedyrudts %60 -/+ SWY9ERYOS %L'9 -/+ SWO'RLY I9MMO[S %OTLYTT 1034
JUROYIUSIS 4¢°] -/+ SWQ EOF6S %69 -/+ swg'RET ToMO[S %0¥L69 FOATSINDDI
JUBOYIUSIS e] -/+ SWQ EOF6S %69 -/+ Swg'8gT ToMOTS %07L69 -MOJTOTYUOD
JuedyIUsIS Y T°g -/+ SWOEYSE6T %Gl -/+ SWpgog ToMO[S % 08E€L $91(]-0A91ST
Juedyrusis 10T -/+ SWO6ZEOVT %61 -/+ SWYGIET ToMOTS %0665 ‘pue-osImMIIq
JUeDYIUSIS %§'() -/+ SWEOVLELT %0°0 -/+ SWOTES ToMOTS %0E8EL 1 hq-ur-s91q
JURDYIUSIS %R°() -/+ SW'ERECTT %9°€ -/+ SWRIFE TOMO[S %0669F 03Aq-UI-s)1q-41qE
JUeDYIUSES %60 -/+ SWY'GESIEY %91 -/+ SWO'60TE ToMOTS %0666T :sdojiq
JURDYIUSIS %) -/+ SWRGIFCZT %091 -/+ SWE €S ToMOTS %089ET :Apoqu
JUROYIUSIS %Q°() -/+ SWRTLIRTF %G -/+ SWRE6E I0MO[S %06190T ons{uTey
JuedyIusIs % 1°] -/+ SwW(9y9g9 %€'8€ -/+ swg 181 ToMO[S %0LGHE :s0013-A1RUIq
JUBDYIUSIS %9°() -/+ SWY'E8TINY %G8 -/+ SWg 90TT ToMO[S %0T8FS 1880000
JURDYIUSIS %6°0 -/+ SWR'EERL6T %S'ET -/+ SWO'EGE ToMO[S %0709S :oorIpAel
Juedyrusls %9°1 -/+ sWY0016ve %1'C -/+ SWETLOT TOMOTS %0ETET diow
JUROYIUSIS)"0 -/+ SWO0GLEYT %88 -/+ SWE90¢ 1oMO[S %0028C oqud
JUBDYIUSIS %Q°() -/+ SWHHRYE8S %FF -/+ SWHIEET ToMO[S % 08508 ‘PE
JUROYIUSIS % T°() -/+ SWYFIGCG00T %F'T -/+ SWOGIEET IOMO[S %00SSL ex TVLOL s
STIVLAA (10083) OL (Od) Woud NOSIYVAINOD LSHAL

42

CHAPTER 6. EVALUATION

1ISIATIN Y} YHm Surgse) WOIj oIt Son[eA UWN[Od JSII
® UO SUNI oM} Ueamjaq uosiredwod srewrypuaq jdimogeser roprdgung

*1S9] SIU) 10] S[qe[leAR ST s)Nsal oY)} Jo uosireduod e
QIOJOIOY], “JUROUIUSIS AJ[ROIISIIR]S Sem SI[NSOI 1S07 oY) UsaM)9(9OULIPIP oYl eyl
SUROWI UWIN[OD S[IRIOP O} Ul JURDYIUSIS PIOM O], ‘PUNOISYOR(SYI Ul FUTUUNI

‘JuorgIeN Suruuni 10083

‘¢'9 9IqEL

JUROYIUSIS %z () -/+ SWRIRTI6E %F0 -/+ SWYFEFI|E Tomo[s o417 yndur-ogepiyes
%T°0 -/+ SWEFITOREY %T0 -/+ SWRRITHLEY - :opoo-spedun
JURDYIUSIS %670 -/+ SWOFCLEGT %P T -/+ SWYOL]TT ToMO[S %F rejse)
%E0 -/+ SWO'RLIOILT %T0 -/+ SWO6FESILT - F9oseq
JUROYIUSIS % T°() -/+ SWO'EERT999 %T'0 -/+ SW('ETYGFI9 9OUDIPIP %C 0> :Burys
JURDYIUSIS %z () -/+ SWY TOIRTT %50 -/+ SWR'QOGRIT ~ 9OUSIPIP %G 0> “eup
JuedyIusIs 947°() -/+ SWY TO9]TT %50 -/+ SWY'ROTYIT dDUSIIP 9%¢‘0> :dxoB01
Jueoytudls %H 0 -/+ S 686£6 %9°0 -/+ SW¥'ZZTS6 Io3sef 9T ‘wIou-TeI3oads
JuedYIuSIS %9°T -/+ SWYYZGTY %G1 -/+ SWE GRLEL TOMOTS 97, sswms-rergred
%¥'0 -/+ SWE 066118 %T'T -/+ SWE CHEyIT - :TPI0d
%S0 -/+ SWP90GL8E %T'T -/+ SWRGHE6SE - yewt
JuedyIusls %9°() -/+ swg 00L08 %G1 -/+ Sup gg0e8 19)Se) %7 ‘qredx-yeurioy
Juedyruss % () -/+ SWg 69056 %01 -/+ SWy 17886)sey U Fr 193J0-JRULIO)
Juedyrusls 9§70 -/+ SWHEILGLT %0'T -/+ SWREFR0ST Tsey e gep
%E0 -/+ SWO' V62T %V'0 -/+ SWERLYEET - ‘Teys
JUROYIUSIS %00 -/+ SWY TO0FFF %6°0 -/+ SWE LEGETY)Ry ‘gput
JURDYIUSIS %)°F -/+ SWEGERLET %0°C -/+ SWO68EIET)Ry 0 soe
JUBDYIUSIS %G°() -/+ SWRYERFO8 %80 -/+ SWHHOEHI8)50 % T :09d 410
JueOYIUSIS e T -/+ SWY EOFES %V -/+ SWg GIRIE6 1995%J 94 FOAISITIONI
Jueoyrusls '] -/+ SWREOF6S %V'T -/+ SWECI816 w)sey e -MOPTOTYIOD
%1°C -/+ SWOEYST61 %0°C -/+ SWY 6E6V6T - 'S}Iq-0AQIST
%1 -/+ SWO'6EEOVT %0°C -/+ SWYGLOGHT - :pUR-oSIMIIq
JuedyIusIs () -/+ SWg OVLELT %9°T -/+ sSwg GORSLT 1995e] %7 :934q-ur-sy1q
%80 -/+ SWyERESTT %¥'T -/+ SWO6SFITT - odq-ur-spq-qg
%S0 -/+ SWY'GESTEY %¥'T -/+ SWY'99z69 - 'sdoyiq
%€°0 -/+ SWY GYFCTT %LT -/+ SWYTCILTT - :Apoqu
JUROYIUSIS %Q°() -/+ SWRILIRTF %EeC -/+ SWY LELSEY)sey U f “yonjurey
JuedyIuss 1T -/+ SW) 9y9Iz9 %S0 -/+ swg LGT9 T098€] %0 :s0013-A1eulq
JUROYIUSIS %0°() -/+ SWY'e8TI09 %61 -/+ SWF LOTLTY Tsey e 1850008
JUedYIUSIS 94670 -/+ SWY'EERLET %LT -/+ SWp 1€9208 19)S%) %G :00eIjAel
JUROYIUSIS %9°] -/+ SWY00I6¥c %Ee0 -/+ SWY9I1gSE)€Y O diow
JUeOYIUSIS 95270 -/+ SWOOGLGFT %ET -/+ SWO9pLIFT T)sey 96 Pqnod
Jueoyrusls %g°() -/+ SWyHERYE8S %6°0 -/+ SWOFEYI09 wIse] % P
JURDYIUSIS % T°() -/+ SWYFIGEG00T %0 -/+ SWO'EIZE0I0T POUDIPIP %G 0> e TVLOL s
STIVIAA (WIAIN Mouia) O (WIAIN 1) INOYA NOSIYVAINOD ISAL

43

CHAPTER 6. EVALUATION

of online services that are otherwise limited by the web browser. Other currently
available browser based solutions for accessing local devices completely lack support
for utilizing cameras, audio capture, and non application specific local data (i.e.
address book, calendar and local file systems). Google Gears gives web applications
additional functionality, but currently only persistent storage of application data
and caching content for offline usage. Nokia’s Web Run-Time adds a few new
features and is clearly a step towards opening up local APIs. However, it still
lacks methods for accessing most local devices. Positioning within the browser
environment is currently only implemented in one mobile browser (EZweb), which
is limited to the Japanese market. Hence, utilizing local device functionality
still requires writing separate applications. Building web applications in Java or
Symbian does not have the same flexibility as browser based applications. User
interfaces and integration with other web applications and services are easier to
develop using standard web technologies. Ajax for Java ME provides the means
to create MIDlets utilizing web services to create rich web applications, with the
ability to incorporate local functionality. However, the existing Java ME APIs
for rendering markup are not nearly as comprehensive as today’s mobile browsers.
Therefore creating user interfaces in Java ME is still not as practical as browser
based web development.

The third and final goal of the project was to find a suitable security model.
Such a model should ensure the user’s privacy and help keep malicious software from
accessing local functionality. The security measures implemented here rely on the
user to distinguish safe applications and to decide who is allowed to read personal
data. Before starting a new web application the user must answer a question of
whether this application will be allowed to use the MIDlet’s proxy function or
not. Only documents downloaded through the proxy are allowed to access local
functionality. This is ensured by the browser through the same origin policy. The
MIDIlet will not accept requests from remote hosts. This will prohibit external access
through a network connection. The only way a client other than the browser would
be able to utilize the MIDlet’s features is if it was a locally executing process. If
such a client existed and wanted to request a function from the MIDlet, it would still
need a valid session key. Session keys are only given out after receiving permission
from the user. A possible security threat could occur if an untrusted application
managed to steal a session key from an authorized web application. The key could
be stolen if an authorized web application includes external links. The target server
would then be able to extract the session key from the referrer field in the HT'TP
request header. It is therefore important to ensure that trusted applications do not
contain such links (it should be mentioned that the browser would not include the
referrer field if the local server required the use of secure HTTP connections). If
an untrusted application is browser based, even with the session key, it would not
be able to access the MIDlet’s features. The referrer header field, which can not be
changed by a script, would show that the application was not loaded through the
MIDlet. The only time the referrer field is not checked is when a web application
is requesting authorization, before attaining a session key. Nokia is the one device

44

CHAPTER 6. EVALUATION

manufacturer which has shipped phone software with several new JavaScript APIs
for local device functionality (as described in section 3.2). However, Nokia has not
implemented access to functions with any major security or privacy concerns. By
skipping such functions, they could add new APIs without adding an additional
security layer.

45

Chapter 7

Conclusions and future work

Adding local device functionality to mobile web applications would enrich the online
experience of mobile phone users. The currently available alternatives are either
browser based with very limited local device access or separate applications with
specific individual purposes. The background MIDlet facilitating additional access
from the browser environment creates a middle ground, with benefits from both
sides. Web applications can utilize standard web technologies and also access
local Java APIs. The main problem with allowing local device APIs to be called
from scripts executing in the mobile browser, is maintaining an acceptable level of
security and privacy. The background MIDlet allows or disallows requests for local
functionality based on the user’s decisions. This might not be an ideal solution,
since it is impossible to know if the user actually reads the questions and if the user
knows which web applications to trust.

In an extended implementation, one could imagine giving the user more specific
information about which local features a web application needs to use. Currently,
the user is only told that an application wants to be loaded through the MIDlet’s
proxy function to make use of its extended features. The user could be notified of
each local feature that is requested. However, this could be a lot of information and
the user might choose to ignore it. The security approach in section 1.4 suggests
sorting local features into different risk levels. This is yet to be implemented, but
could help simplify usage while still keeping the user informed of the possible security
risks. By associating each MIDlet feature with a specific level and having web
applications request access to a certain level, the user would have a good overview
of the implications. For example, one could distinguish low risk features such as
light and sound alerts, from high risk features such as audio capture and access to
personal data. If access with a low security level was requested, the user would
know that only low risk features are utilized by the particular application and so
on.

Most mobile browsers have some sort of function for special rendering of web
pages, bypassing the original style information. These functions are included for
the purpose of displaying information properly on small screens. In reality though,

46

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

web designers want full control over page layout, and these functions cause a lot
of problems. The NetFront browser on the K800i has such a function, called
Smart-Fit, which is enabled by default. If a web application interface depends
on absolute positioning of elements, Smart-Fit will cause the browser to ignore this
and render the elements differently than intended by the author. This means the
user has to change a setting in the browser options before using the application.
To get full use of the MIDlet, the user also needs to grant permissions. Access to
several restricted APIs is required. The MIDlet obviously needs to accept network
connections and download from the Internet, but some of the features also need
other permissions. Adding contacts requires access to the Personal Information
Manager (PIM) database. To include a contact photo, writing permission for file
storage is also needed, because the K800i’s PIM only allows locally stored photos
to be added. Recording audio needs explicit permission and saving recorded media
would require file writing. The HGE-100 external GPS receiver communicates with
the MIDlet through a serial connection, which requires an additional permission.
All these have to be acquired by the user for any web application to fully utilize the
MIDlet’s features. This, along with the MIDlet’s own security model, means that
the user will have to go through a whole process of questions and settings before
using local functionality in web applications. It might even add up to the same
amount of work required to install a separate application. However, if the MIDlet is
installed, settings are made, and permissions permanently set, then the MIDlet will
work almost seamlessly in the background while facilitating access to any number
of mobile web applications.

Each function that is made available by the MIDlet requires an explicit
implementation in Java. Even if the function is an existing Java method there still
needs to be a mapping from received HTTP requests. If the mapping could be made
dynamically, then the MIDlet would become much more generic. Currently, there
is no support for reflection or any kind of dynamic class loading in CLDC, which
could otherwise have been used to facilitate calling Java methods through HTTP
requests from a web application. Local Java classes could have been utilized from
JavaScript executed in the browser. In future versions of Java for mobile phones,
this might become possible. A more versatile background MIDlet could then be
created, which was less device dependent and left more of the application logic to
the actual web application. Even while such capabilities are not supported by the
Java platform, this functionality could be added through static method mapping.
Code can be generated by parsing available APIs for class names, method names,
and signatures. Another improvement, making the MIDlet more generic, would be
to standardize the positioning interface. The interface could implement the API
proposed by LocationAware (see section 3.5.1), thereby improving the chances of
compatibility with future location-aware web applications.

Currently the MIDlet starts automatically after booting the device. This might
not be desirable, since it will probably not be used all the time. Using the push
registry, it is possible to let MIDlets start from different remote events, such as
socket connections and SMS messages. If such an event was triggered by a web

47

CHAPTER 7. CONCLUSIONS AND FUTURE WORK

application, the MIDlet could be started automatically when needed. The web
application could tell the device to load the MIDlet whenever the user requests
a certain service. Sony Ericsson’s push registry implementation supports remote
starting, but only through SMS messages. A web server could send an SMS message
triggering the phone to start the background MIDlet, but to do that, the web server
must somehow get hold of the phone number. The number could be sent to the
server when starting the application, or if the user is a registered member of the site,
it could be associated with the user name and loaded when logging in. If the MIDlet
could be started when needed, it could also shut down when it was no longer being
used. This can be implemented by listening for an unload event that is triggered
when the user leaves the web page or exits the browser. When the unload event
occurs, the application sends one last request to the MIDlet telling it to shut down.
The MIDlet could also have a timeout which initiates a shut down after a certain
period of idle time.

The work done in this project can be continued in a number of directions. There
are several questions left unanswered. For example, the concept was only tested on
a few different phone models. It did not work on newer Sony Ericsson phones.
However, this could possibly be solved by implementing the MIDlet as a real HT'TP
proxy server. Another area which was not looked into is whether the system could
be implemented as a Symbian application. Such an application might not have
the same problem of utilizing the built-in camera, as the MIDlet did. Another
subject arose from the results of the JavaScript benchmarks. NetFront performed
very poorly in these tests, so it would be interesting to see if performance could
somehow be improved through the use of a proxy server. It is possible that a Java
or Symbian application would execute the calculations faster than a mobile browser.
Executing part of the code on a remote server might also have an impact on the
overall performance. Thus, code mobility is a subject for further study.

48

References

[11]

[12]

Access Co., Ltd. NetFront Browser v3.5 Mobile Profile, 2007. http://www.
access-company . com/PDF/NFv35_2007 . pdf.

Boonlit Adipat and Dongsong Zhang. Challenges, Methodologies, and Issues
in the Usability Testing of Mobile Applications. International Journal of
Human-Computer Interaction, 18(3):293-308, 2005.

Adobe. ActionScript Technology Center. http://www.adobe.com/devnet/
actionscript/, Last accessed 2007-10-17.

Adobe. Adobe Flash Player. http://www.adobe.com/products/flashplayer/,
Last accessed 2007-10-009.

Adobe. Adobe Shockwave Player. http://www.adobe.com/products/
shockwaveplayer/, Last accessed 2007-10-09.

Adobe. Flash Player Adoption Statistics, Dec 2007. http://www.adobe.com/
products/player_census/flashplayer/, Last accessed 2007-10-09.

Adobe. Shockwave Player Adoption Statistics, Dec 2007. http://www.adobe.
com/products/player_census/shockwaveplayer/, Last accessed 2007-10-09.

The Apache Software Foundation. The Apache HTTP Server Project. http:
//httpd.apache.org/, Last accessed 2008-03-28.

Akhil Arora and Vincent Hardy. Mobile Ajax for Java ME Technology.
Sun Microsystems, 2007. http://www.w3.0rg/2007/06/mobile-ajax/papers/
sun.hardy.mobileAjaxJavaME. pdf.

Simonetta Balsamo and Moreno Marzolla. Towards Performance Evaluation of
Mobile Systems in UML. In Proceedings of ESMc’03 Conference, pages 61-68.
Dipartimento di Informatica Universita Ca Foscari di Venezia, Oct 2003.

Bert Bos. Cascading Style Sheets. World Wide Web Consortium. http://www.
w3.org/Style/CSS, Last accessed 2007-10-18.

CellSpotting.com. CellSpotting. http://www.cellspotting.com/, Last accessed
2008-03-04.

49

REFERENCES

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

Ecma International. ECMAScript 3rd Edition Compact Profile, 2001. http:
//www.ecma-international.org/publications/files/ECMA-ST/Ecma-327.pdf.

Google. Google Gears API. http://code.google.com/apis/gears/, Last
accessed 2008-04-09.

Vincenzo Grassi and Raffaela Mirandola. PRIMAmob-UML: A Methodology
for Performance Analysis of Mobile Software Architectures. In Proceedings of
WOSP’02, pages 262-274. Dipartimento di Informatica Sistemi e Produzione,
Universita di Roma “Torvergata”, July 2002.

JSR 118 Expert Group. JSR 118: Mobile Information Device Profile 2.0.
Java Community Process, 2006. http://jcp.org/en/jsr/detail?id=118, Last
accessed 2007-10-09.

JSR 185 Expert Group. JSR 185: Java Technology for the Wireless Industry.
Java Community Process, 2003. http://jcp.org/en/jsr/detail?id=185, Last
accessed 2007-11-09.

JSR 287 Expert Group. JSR 287: Scalable 2D Vector Graphics API 2.0 for
Java ME. Java Community Process. http://www.jcp.org/en/jsr/detail?id=
287, Last accessed 2008-02-28.

JSR 290 Expert Group. JSR 290: Java Language & XML User Interface
Markup Integration. Java Community Process. http://www.jcp.org/en/jsr/
detail?id=290, Last accessed 2008-02-28.

JSR 75 Expert Group. JSR 75: PDA Optional Packages for the J2ME
Platform. Java Community Process, 2004. http://www.jcp.org/en/jsr/detail?
id=75, Last accessed 2008-03-25.

JSR 82 Expert Group. JSR 82: Java APIs for Bluetooth. Java Community
Process, 2006. http://www.jcp.org/en/jsr/detail?id=82, Last accessed
2008-03-25.

Infrared Data Association. iMelody V1.2 Approved, Oct 2000. http://

developer.sonyericsson.com/getDocument .do?docId=65053.

Java Community Process. Community Development of Java Technology
Specifications. http://www.jcp.org/, Last accessed 2007-11-07.

JSON-RPC.ORG. JSON-RPC Specifications, 2005. http://json-rpc.org/
wiki/specification, Last accessed 2007-10-11.

Tomihisa Kamada. Compact HTML for Small Information Appliances. Access
Co., Ltd., Feb 1998. http://www.w3.org/TR/1998/NOTE-compactHTML-19980209/.

KDDI Corporation. FEZweb. http://www.au.kddi.com/ezfactory/tec/spec/
eznavi.html, Last accessed 2008-03-10.

50

REFERENCES

[27]

[28]

[29]

[30]

Jonathan Knudsen. Understanding JSR 185. Sun Microsystems, May 2003.
http://developers.sun.com/mobility/midp/articles/jtwi/.

Sing Li and Jonathan Knudsen. Beginning J2ME Platform, From Novice to
Professional. Apress, third edition, 2005.

Location Aware Working Group. LocationAware.org. http://wuw.
locationaware.org/, Last accessed 2008-02-11.

Antinisca Di Marco and Cecilia Mascolo. Performance Analysis and Prediction
of Physically Mobile Systems. In Proceedings of 6th International Workshop
on Software and Performance. ACM Press, Feb 2007.

David Mazieres, Helen Nissenbaum, and Zhao Xiaojian. Super Proxy System.
http://www.scs.cs.nyu.edu/webbug/, Last accessed 2008-03-26.

Glen McCluskey. Using Java Reflection. Sun Microsystems, Jan 1998. http:
//java.sun.com/developer/technicalArticles/ALT/Reflection/.

Metaparadigm Pte Ltd. JSON-RPC-Java - JavaScript to Java AJAX
communications library. http://oss.metaparadigm.com/jsonrpc/, Last
accessed 2007-10-11.

Mexens LLC. Navizon - Virtual GPS for mobile devices and laptop computers.
http://www.navizon.com/, Last accessed 2008-03-04.

Microsoft. Introduction to ActiveX Controls. http://msdn2.microsoft.com/
en-us/library/aa751972.aspx, Last accessed 2007-10-09.

Mozilla. Minimo project. http://www.mozilla.org/projects/minimo/, Last
accessed 2007-10-10.

Mozilla. Gecko Plugin API Reference:Scripting plugins, Dec 2007.
http://developer.mozilla.org/en/docs/Gecko_Plugin_API_Reference:
Scripting_plugins, Last accessed 2008-01-29.

National Imagery and Mapping Agency. Department of Defense World Geodetic
System 1984, Jan 2000. http://earth-info.nga.mil/GandG/publications/
tr8350.2/wgs84fin. pdf.

National Marine Electronics Association. NMFEA 0183 Standard, 2003. http:
//www.nmea.org/pub/0183/index.html, Last accessed 2008-03-03.

Nokia. Mobile Web Server. http://www.forum.nokia.com/main/resources/
technologies/mobile_web_server/index.html, Last accessed 2007-10-09.

Nokia. Mobile Web Server: Mobile Environment Demands, May 2007.
http://sw.nokia.com/id/e3a333a0-9ac8-4a8b-aeal-ec3ceb21c443/Mobile_
Web_Server_Mobile_Environment_Demands_v1_O_en.pdf.

51

REFERENCES

[42]

[43]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

Nokia. Web Run-Time API Reference, Version 1.1, Nov 2007.
http://sw.nokia.com/id/b9ad2b23-07ea-46cd-badf-f0ba3df97da3/Web_Run_
Time_API_Reference_v1_1_en.pdf.

NTT DoCoMo, Inc. i-mode service guideline, Version 1.2.0, 2002. http://www.
nttdocomo.com/binary/technologies/imodetechnology_guideline2002030.pdf.

Robert Olofsson. RabbIT web proxy. http://rabbit-proxy.sourceforge.net/,
Last accessed 2008-03-26.

Open Mobile Alliance. FECMAScript Mobile Profile, A Wireless Markup
Scripting Language, 2004. http://www.openmobilealliance.org/release_

program/docs/Browsing/V2_1-20040816-C/0MA-WAP-ESMP-V1_0-20040709-C.
pdf.

Opera Software. Opera Mobile. http://www.opera.com/products/mobile/, Last
accessed 2007-10-11.

Opera Software. Products featuring the Opera Mobile Browser. http://www.
opera.com/products/mobile/products/, Last accessed 2007-10-11.

C. Enrique Ortiz. Introduction to OTA Application Provisioning.
Sun Microsystems, Nov 2002. http://developers.sun.com/mobility/midp/
articles/ota/.

Enrique Ortiz. The MIDP 2.0 Push Registry. Sun Microsystems, Jan 2003.
http://developers.sun.com/mobility/midp/articles/pushreg/.

OxfordU.net. Introduction to DOM, by Dr Sam, 2003. http://www.oxfordu.
net/webdesign/dom/straight_text.html, Last accessed 2008-02-15.

Pantechnicon. HyperCard FAQ039, 2005. http://pan.uqam.ca/pan/pmwiki.
php/HyperCard/FAQ039, Last accessed 2007-10-17.

PAW Project. PAW Web Filter. http://paw-project.sourceforge.net/, Last
accessed 2008-03-26.

Eduardo Pelegri-Llopart, Yutaka Yoshida, and Alexis Moussine-Pouchkine.
The GlassFish Community Delivering a Java FEE Application Server.
Sun Microsystems, 2007. https://glassfish.dev. java.net/faq/v2/
GlassFishOverview.pdf.

Jon Perry. DHTML Part 3: Browser Object Model. http://
www.webdevelopersjournal.com/articles/dhtm13/dhtml3.html, Last accessed
2008-02-15.

Mark Pilgrim. Dive Into Greasemonkey, 2005. http://diveintogreasemonkey.
org/, Last accessed 2007-10-10.

52

REFERENCES

[56]

[57]

[58]

[59]

[65]

[66]

[67]

[68]

Python Software Foundation. Python Programming Language — Official
Website. http://www.python.org/, Last accessed 2008-03-28.

J. Rosenberg, R. Mahy, and C. Huitema. Traversal Using Relay NAT (TURN)
draft. Internet Engineering Task Force (IETF), 2005. http://tools.ietf.org/
html/draft-rosenberg-midcom-turn-08.

Jesse Ruderman. JavaScript Security: The Same Origin Policy. Mozilla,
2001. http://www.mozilla.org/projects/security/components/same-origin.

html, Last modified 2001-08-24.

Keldon Rush. Getting started with Adobe Flash Lite. Smashing Ideas,
2007. http://www.adobe.com/devnet/devices/articles/getting_started_
flashlite.pdf.

Gustav Soderstrom. Virtual networks in the cellular domain. Master’s thesis,
Department of Microelectronics and Information Technology (IMIT) Royal
Institute of Technology (KTH) Kista, SWEDEN, Feb 2003. http://web.it.
kth.se/~maguire/DEGREE-PROJECT-REPORTS/030211-Gustav_Soderstrom.pdf.

Sony Ericsson. K800, 2006. http://developer.sonyericsson.com/site/global/
products/phonegallery/k800/p_k800. jsp, Last accessed 2008-01-09.

Sony Ericsson. New Java Platform 7 (JP-7), March 2006. http:
//developer.sonyericsson.com/site/global/newsandevents/latestnews/
newsmar06/p_new_javaplatform7.jsp, Last accessed 2008-01-09.

Sony FEricsson. Developers’ Guidelines Java Platform, Micro Edition, CLDC
- MIDP 2, Nov 2007. http://developer.sonyericsson.com/getDocument.do?
docId=65067.

Maciej Stachowiak. Announcing SunSpider 0.9. WebKit Open Source
Project, Dec 2007. http://webkit.org/blog/152/announcing-sunspider-09/,
Last accessed 2008-01-25.

David Storey. FEwvolving the Internet on your phone: Designing web sites with
Opera Mini 4 in mind. Opera Software, Aug 2007. http://dev.opera.com/
articles/view/evolving-the-internet-on-your-phone-des/.

Sun Microsystems. Code Samples and Apps: Applets. http://java.sun.com/
applets/, Last accessed 2007-10-09.

Sun Microsystems. Desktop Java: Java Web Start Technology. http://java.
sun.com/products/javawebstart/index. jsp, Last accessed 2007-10-09.

Sun Microsystems. Java EFE at a Glance. http://java.sun.com/javaee/index.
jsp, Last accessed 2007-11-08.

53

REFERENCES

[69]

[70]

[73]

[74]

[75]

[76]

Sun Microsystems. The Java ME Platform: the Most Ubiquitous Application
Platform for Mobile Devices. http://java.sun.com/javame/index.jsp, Last
accessed 2007-11-07.

Sun Microsystems. Simplified Guide to the Java 2 Platform, Enterprise
Edition, Sept 1999. http://java.sun.com/j2ee/reference/whitepapers/j2ee_
guide.pdf.

Sun Microsystems. Mobile Service Architecture: Meeting the Growing Needs
of Mobile Handsets, 2007. http://java.sun.com/javame/reference/docs/msa_
datasheet.pdf.

SVG Working Group. Scalable Vector Graphics (SVG) XML Graphics for the
Web. World Wide Web Consortium. http://www.w3.org/Graphics/SVG/, Last
accessed 2008-02-19.

Versit Consortium (now Internet Mail Consortium). wvCard: The Electronic
Business Card, Version 2.1, Jan 1997. http://www.imc.org/pdi/vcardwhite.
html, Last accessed 2008-02-01.

WebKit Open Source Project. The WebKit Open Source Project. http://
webkit.org/, Last accessed 2007-10-10.

Wireless Application Protocol Forum. Wireless Application Protocol
Architecture Specification, April 1998. http://www.openmobilealliance.org/
tech/affiliates/wap/Technical_June2000-20021106%5B1%5D.zip.

Wireless Application Protocol Forum. Wireless Application Protocol
Wireless Markup Language Specification, WAP-191-WML Version 1.3,
2000. http://www.openmobilealliance.org/release_program/docs/Browsing/
V2_1-20050614-C/WAP-191-WML-20000219-a.pdf.

Wireless Application Protocol Forum. WAP Wireless Telephony Application
Interface, WAP-268-WTAI Proposed Version, July 2001. http://www.wmlclub.
com/docs/especwap2.0/WAP-268-WTAI-20010715-p.pdf.

Wireless Application Protocol Forum. Wireless Application Protocol
Architecture Specification, WAP-210-WAPArch-20010712, 2001. http://www.
openmobilealliance.org/tech/affiliates/wap/wap-210-waparch-20010712-a.
pdf.

Nicholas C. Zakas. Professional JavaScript for Web Developers. Wiley
Publishing, Inc., 10475 Crosspoint Boulevard, Indianapolis, IN 46256, USA,
2005.

Nicholas C. Zakas, Jeremy McPeak, and Joe Fawcett. Professional Ajax. Wiley
Publishing, Inc., 10475 Crosspoint Boulevard, Indianapolis, IN 46256, USA,
2006.

54

COS/CCS 2008-07

www.kth.se

