
Master of Science Thesis
Stockholm, Sweden 2007

COS/CCS 2007-25

A L E X A N D E R L I N D S T R Ö M

Routing and constraint-based path computation in optical network segments

GMPLS multi-layer networking

K T H I n f o r m a t i o n a n d

C o m m u n i c a t i o n T e c h n o l o g y

Royal Institute of Technology (KTH) Master of Science Thesis
Stockholm, Sweden Alexander Lindström
2007-11-26 alindstr@kth.se

GMPLS multi-layer networking
Routing and constraint-based path computation

in optical network segments

Alexander Lindström
alindstr@kth.se

2007-11-26

Stockholm, Sweden

Supervisor Academic Supervisor / Examiner
Ericsson Research Royal Institute of Technology (KTH)
Annikki Welin Gerald Q. Maguire Jr.

Abstract

In recent years, IP based end-to-end services have grown in popularity. Efficiently meeting
the user demand for such services, different techniques for traffic engineering transport
networks have been developed. One such technique, currently being developed for multi-
layered networks, is Generalized Multi-Protocol Label Switching (GMPLS). GMPLS is a
necessary networking technique because provisioning end-to-end services will today, and
in the foreseeable future, very likely require the co-operation of multiple network layers.
Here, the readiness of GMPLS for optical networks is investigated by reviewing the
current support for optical networking components in the GMPLS standard documents.
Based on this investigation, a candidate solution for routing and constraint-based path
computation in optical network segments has been derived. This candidate solution is
shown to efficiently handle the additional attributes and constraints inherent in optical
networking components.

Sammanfattning

De senaste åren har IP-baserade tjänster ökat i popularitet. För att effektivt möta de
användarkrav som ställs på sådana tjänster har olika tekniker för att styra transportnätverk
utvecklats. En sådan teknik, nu under utveckling för multi-lagrade nätverk, är GMPLS.
GMPLS är en nödvändig nätverksteknik eftersom tillhandahållandet av sluttjänster mellan
olika användare idag, och inom en överskådlig framtid, mycket sannolikt kommer att kräva
samarbete mellan flera nätverkslager. Här undersöks GMPLS färdighet i optiska nätverk
genom att se över det nuvarande stödet för optiska nätverkskomponenter i GMPLS
standarddokument. Baserat på denna undersökning har en kandidatlösning för routing och
begränsad vägberäkning i optiska nätverkssegment tagits fram. Denna kandidatlösning
visas effektivt hantera de ytterligare attribut och restriktioner som existerar i optiska
nätverkskomponenter.

Keywords: GMPLS, multi-layer, traffic engineering, service provisioning, intra-domain
routing, OSPF-TE, RSVP-TE, path computation, PCE, PCC, optical constraints, optical
impairments, wavelength continuity, blocking switch architecture

i

Acknowledgments

I extend my gratitude to the confidence shown in me and support given by my supervisor
at Ericsson Research, Annikki Welin. Her many efforts to ease my daily work process have
been greatly appreciated. Further, my academic supervisor and examiner at KTH, Gerald
Q. Maguire Jr., has been a great help in shaping the contents and form of this thesis. His
many comments and constructive feedback have significantly improved the quality of this
report.

Additional appreciation is extended to the staff at Acreo AB, Stockholm, Sweden. Their
valuable input on the GMPLS framework, the modified GMPLS control plane software
implementation, and optical networking has been of great help. In addition, I would like to
express my appreciation for everyone that in some way either directly, or indirectly, have
helped or supported me during the period of time this work was accomplished.

ii

Table of Contents

Abstract... i
Acknowledgments..ii
Table of Contents.. iii
List of Figures.. v
List of Tables...vi
1 Introduction... 1

1.1 Objectives...2
1.2 Thesis outline... 2

2 Introduction to GMPLS...3
2.1 Background.. 3
2.2 Architectural components...4

2.2.1 Control plane extensions... 4
2.2.2 Generalized labels... 5
2.2.3 Bidirectional data paths... 6
2.2.4 Hierarchies...6
2.2.5 Protocol suite...7

2.3 Routing with OSPF-TE.. 8
2.3.1 Network topology dissemination...8
2.3.2 Type-Length-Value triplets... 9

2.4 Signaling with RSVP-TE... 10
2.4.1 Installing LSP state..11
2.4.2 Removing LSP state.. 12
2.4.3 Error handling..12
2.4.4 Explicit routes..13

3 Constraint-based path computation... 14
3.1 Introduction to the PCE..14

3.1.1 Architectural models... 14
3.1.2 Operational modes...15

3.2 Constraint-based algorithms...16
3.2.1 Functional overview.. 16
3.2.2 Proposed algorithms.. 17

4 Optical switching constraints.. 19
4.1 Wavelength switching.. 19

4.1.1 Routing implications... 19
4.1.2 Full conversion capability... 20
4.1.3 Limited or no conversion capability..21

4.2 Blocking switch architecture.. 22
4.3 Impairments..23

5 Implementation..25
5.1 Virtual test-bed design..25

5.1.1 Virtual machines..25
5.1.2 Control plane configuration...26
5.1.3 Data plane configuration... 27

5.2 GMPLS and PCE extensions..28

iii

5.2.1 Wavelength availability...28
5.2.2 Interface selectivity... 29
5.2.3 User-defined constraints..30
5.2.4 Candidate CSPF algorithm..31

5.3 Software implementation... 33
5.3.1 Open source software suite..33
5.3.2 Implemented Zebra extensions..33
5.3.3 Implemented RCE extensions... 34

6 Verification and analysis... 35
6.1 Test-bed verification...35
6.2 Software implementation verification.. 35
6.3 Software implementation performance.. 37

6.3.1 Theoretical network overhead... 37
6.3.2 Time efficiency..38
6.3.3 Space efficiency.. 40

7 Conclusion and future work.. 42
7.1 Future work.. 42

References.. 43
Appendix A: Abbreviations and acronyms.. 45
Appendix B: Table of OSPF-TE VTY commands...47
Appendix C: Table of DRAGON software changes.. 48
Appendix D: A RCE stack and heap profile.. 49

iv

List of Figures

Figure 2.1: A LSP in an MPLS network.. 4
Figure 2.2: Separating the control and data planes.. 4
Figure 2.3: The generalized label... 5
Figure 2.4: A bidirectional LSP tunnel.. 6
Figure 2.5: An opaque LSA header..8
Figure 2.6: The format of opaque LSAs...9
Figure 2.7: The conceptual RSVP message format..10
Figure 2.8: Installing state for a bidirectional LSP.. 11
Figure 2.9: Two ways of removing LSP state.. 12
Figure 2.10: The EXPLICIT_ROUTE object (ERO)...13
Figure 2.11: The label ERO sub-object..13
Figure 3.1: PCC to PCE interaction... 14
Figure 3.2: Composite and external PCEs..15
Figure 3.3: Single-source and single-pair algorithms.. 16
Figure 3.4: Network graph grooming...17
Figure 4.1: Wavelengths with different bandwidths on a WDM link.................................. 19
Figure 4.2: Full conversion capability of OEO switches... 20
Figure 4.3: Limited conversion capability... 21
Figure 4.4: Proposed standardization of lambda labels..22
Figure 4.5: The wavelength continuity constraint..22
Figure 4.6: An OADM and its network connectivity graph...23
Figure 4.7: Attenuation resulting in signal loss..23
Figure 5.1: Virtual test-bed ”host-only” network...26
Figure 5.2: Configured control plane topology.. 27
Figure 5.3: Configured data plane topology...28
Figure 5.4: The link sub-TLV defined for wavelength availability..................................... 29
Figure 5.5: The link sub-TLV defined for interface selectivity... 29
Figure 5.6: The link sub-TLV defined for user-defined constraints.................................... 30
Figure 5.7: The abstract operation of the BFS algorithm...31
Figure 5.8: The abstract operation of the candidate CSPF algorithm.................................. 32
Figure 6.1: Observed processing time in specified time intervals....................................... 39
Figure 6.2: Candidate path queue elements..40

v

List of Tables

Table 2.1: GMPLS specific sub-TLVs...9
Table 2.2: Important GMPLS signaling objects...10
Table 3.1: Popular SPF algorithms...18
Table 4.1: Linear optical impairments... 24
Table 5.1: Host computer configuration...25
Table 5.2: A summary of the control plane networks.. 27
Table 5.3: A summary of the data plane networks...28
Table 6.1: Constraints associated with the data plane links... 36
Table 6.2: Theoretical network overhead...38
Table 6.3: Observed processing time in each time interval... 39
Table 6.4: Candidate path queue elements...40

vi

1 Introduction

As the Internet has experienced a near exponential increase in traffic since the mid 1990s,
the need for controlling traffic flows in core transport networks has increased. Controlling
traffic flows changes the operating model from the best-effort dynamic routing to what is
commonly referred to as traffic engineering. To enable rapid service provisioning and
assure that suitable Quality of Service (QoS) is experienced by end users, service providers
need efficient traffic engineering mechanisms.

Meeting this demand, a standardization process for Multi-Protocol Label Switching
(MPLS) began within the Internet Engineering Task Force (IETF). MPLS was one of the
early IETF initiatives to enable Traffic Engineering (TE) and offered many interesting new
features, such as automated management of virtual paths. Although originally thought to
address performance issues associated with datagram forwarding, MPLS instead proved
valuable for automated service provisioning of both packet and frame based networks.
However, due to the switching limitations inherent in MPLS, traffic engineering in such
networks is usually restricted to the network edges; where data is packet or frame
switched.

As a direct consequence, Generalized Multi-Protocol Label Switching (GMPLS) has been
invented to introduce MPLS on multiple layers. GMPLS is being deployed to enable
automated traffic control in multi-layer transport networks. It defines architectural
components as well as a protocol suite. In practice, what GMPLS really is, is a framework
for software based interaction between network elements. Because GMPLS is being
designed for multiple layers, traffic engineering of end-to-end services utilizing core
transport networks that are not packet or frame switched can be enabled (e.g. time division
or optical networks).

One of the most pressing issues for GMPLS today is to efficiently support optical network
segments. The main motivation for this is clear; many currently deployed IP user networks
are connected via optical backbone networks. Increasingly, optical equipment's obvious
advantage when connecting user sites with each other is the achievable bandwidths far
surpassing other transport media. Combining many wavelengths into a single optical fiber,
using Wavelength Division Multiplexing (WDM), offers additional possibilities for traffic
engineering a transport network.

GMPLS has currently, however, little standardized support for optical network segments.
This lack of support is manifested in that such network segments still can not be efficiently
traffic engineered. Inherently, this is because optical network segments are exposed to
physical impairments and other constraints not visible to higher layers. As a result, the
GMPLS control plane and the generic Path Computation Element (PCE) it utilizes for path
computations must be extended to provide additional functionality. This is necessary to
enable efficient provisioning of autonomous end-to-end services with optical core transport
networks.

1

1.1 Objectives

This thesis will focus on GMPLS applicability in optical network segments. More
specifically, the goal is to provide a candidate solution for enabling the GMPLS routing
process and a PCE for such network segments. The candidate solution will be implemented
as an extension to an open source software suite. Verification will later be done by
deploying the software suite in a GMPLS network comprised of virtual machines or using
a physical network test-bed.

The following specific objectives will be addressed throughout this thesis:

• Investigation of constraints imposed by optical network segments
• Determination of the need for GMPLS and PCE extensions
• Derivation of a candidate solution for optical path computation in GMPLS
• Software implementation of the candidate solution
• Functional verification and analysis of the software implementation.

After the thesis has been completed, one of the deliverables will be a solution for
computing viable network paths in optical network segments. In this work, most optical
impairments and constraints should have been addressed.

1.2 Thesis outline

The thesis begins with a general introduction to the area (chapter 1). It is then divided into
two parts; a literature study (chapters 2, 3, and 4) and a description of the candidate
solution, its implementation, and evaluation (chapters 5 and 6). The thesis will conclude by
summarizing the major results and limitations and present some future work (chapter 7).
Useful material which supports the thesis, but is outside the main flow of the thesis will be
presented in the appendixes.

The literature study consists of three chapters. The first of these chapters introduces the
reader to the GMPLS architecture and protocol suite. The second presents the PCE and
different approaches to path computation in label switched networks. To close, the third of
these chapters examines vital optical switching constraints. An excellent reference to the
GMPLS architecture and its applications is the book written by Farrel and Bryskin [1].

Chapter 5 describes and explains the candidate solution and its implementation. In this
chapter, a virtual test-bed design, derived GMPLS and PCE extensions, and the software
implementation are detailed and motivated. Chapter 6 provides verification and analysis of
the software implementation. Here, different aspects of the software implementation
functionality and efficiency are evaluated.

2

2 Introduction to GMPLS

This chapter introduces the GMPLS framework and its building blocks. In addition, a brief
background of traffic engineering in MPLS networks is given.

2.1 Background

Traffic Engineering (TE) is a set of scientific principles encompassing control,
measurement, modeling, and characterization of Internet traffic. As described in RFC 2702
[2], the goal of traffic engineering is to optimize network performance by applying
different networking techniques. In many large Autonomous Systems (ASs), traffic
engineering has become an indispensable asset due to the high cost of networking
components and the competitive nature of provisioning Internet services. For MPLS, the
TE principles of most interest are control and measurement.

The primary TE performance objectives can be divided into those which are traffic
oriented or resource oriented. Traffic oriented performance objectives concern enhancing
the QoS of traffic streams. These performance objectives are visible to network users and
might include minimization of end-to-end delay or packet loss. Less visible to network
users, resource oriented objectives concern efficiently utilizing network resources.
Resource oriented performance objectives aim to ensure that no network resource is either
over utilized or underutilized. Meeting such performance objectives allows for efficient
utilization of deployed networking equipment.

The MPLS architecture, as described in RFC 3031 [3], implements the TE principles by
assigning network traffic to Forwarding Equivalence Classes (FECs). FECs classify
network traffic (e.g. depending on destination addresses and desired QoS) that will be
forwarded in the same manner. Because FECs are mapped to contiguous sequences of next
hops, assigning network traffic to a specific FEC will deterministically establish a path
through the MPLS network. Since all information needed to forward network traffic
belonging to a specific FEC has also been installed into the MPLS network, subsequent
hops need not analyze the network traffic further. This is a consequence of network traffic
being assigned to a FEC, and forwarded accordingly, as it enters the MPLS network.

Using MPLS terminology, assignment to FECs is encoded using labels. The labels are
link-local random 20-bit values inserted as “shim” headers. Based on these labels, the
network traffic belonging to a specific FEC is forwarded throughout the MPLS network
domain. More specifically, ingoing label-to-interface pairs are mapped to outgoing label-
to-interface pairs to establish routes through MPLS enabled network routers; these are
called Label Switching Routers (LSRs). By installing mappings into a set of contiguous
LSRs, a switchable trail of labels is created, called a Label Switched Path (LSP). Given
that a LSP has been established between two domain edge LSRs, network traffic can then
be forwarded through the MPLS network by (1) inserting a label at the incoming edge LSR
(2) switching the traffic based on that label within the MPLS domain, and (3) removing the
label at the outgoing edge LSR and forwarding the network traffic as usual (see figure 2.1).

3

In order to manage a traffic engineered MPLS network, LSRs implement a control plane.
In this control plane, connected LSRs can exchange control information via extended
signaling and routing protocols. More specifically, LSRs can request LSP establishment
within the controlled network domain and distribute network topology information.
Depending on how the MPLS network is managed, state might be altered either manually
(e.g. via manual operation) or automatically. From now on, a LSR implementing the
GMPLS control plane will be referred to as a Generalized LSR (GLSR).

2.2 Architectural components

This section will explain the main architectural components that comprise the GMPLS
framework as described in RFC 3945 [4]. Because GMPLS is merely a set of MPLS
extensions, only components specifically extended by GMPLS are presented.

2.2.1 Control plane extensions

Commonly referred to as the Multi-Layer Control Plane (MLCP), the GMPLS control
plane is extended to support multiple switching layers. In GMPLS, there is a clear
separation between the MLCP and the data plane (see figure 2.2). Unlike control signaling
in MPLS, the MLCP can manage the GMPLS network out-of-band; hence control
signaling need not follow the forwarded data. This means that the MLCP can continue to
function although there is a disruption in the data plane and vice versa. What is more, this
allows for separate control channels to be used for the MLCP. By deploying the MLCP on
separate control channels, the other channels are completely dedicated to forwarding data.

4

Figure 2.1: A LSP in an MPLS network. For this LSP,
LSR B never participates in data forwarding.

Figure 2.2: Separating the control and data planes. Dashed lines
indicate the MLCP, while the solid lines identify data links.

In GMPLS, the MLCP utilizes routing and signaling protocols to traffic engineer the
network in which it is based. These protocols are extensions to well-known protocols of
the TCP/IP protocol suite. As such, the MLCP implements IPv4 or IPv6 addressing. This
also applies to the data plane, but in cases where addressing is not feasible, or convenient,
unnumbered links (i.e. links without network addresses) are supported. MLCP addresses
are not required to be globally unique (however global uniqueness is required to allow for
remote management). However, addressing in the MLCP is separated from that in the data
plane. Essentially this is how the MLCP is separated from the data plane.

GMPLS supports deploying the MLCP according to the overlay, peer (integrated), or
augmented (hybrid) models. In the overlay model, the network layers are clearly separated.
This means that in order for a client layer to utilize some specific server layer it must
request that service via a network interface. Using the peer model, all network layers are
peers. As such, they have full visibility of each other and client layers can signal
unhindered through serving layers. Thus, this model is very suitable for smoothly installing
end-to-end services. The augmented model, in turn, is a hybrid model allowing for limited
peering according to some implemented policy. By supporting these service models,
GMPLS seems very suitable for independent control of multiple network layers.

2.2.2 Generalized labels

The labels in GMPLS have been generalized from those used in MPLS. Generalized labels
are tightly coupled to network resources. In contrast to MPLS where labels merely
represent network traffic, generalized labels represent network resources. For example, a
generalized label on an optical link could identify a wavelength or fiber, while on a packet
switched link it would simply identify network traffic, just as in MPLS. In the lower layers,
generalized labels are “virtual” meaning that they are not inserted into the network traffic,
but instead implied by the network resource being used (e.g. wavelength or fiber). This is
necessary since neither packets nor frames are recognized at the lowest layers which
GMPLS supports. Generalizing the label format, the conventional MPLS label has been
extended to 32 bits (see figure 2.3).

The interpretation of a generalized label is link-local and depends on the encoding of the
interfaces (or resource) it labels. GMPLS defines labels for a specific set of interface types.
More precisely, labeling of interfaces capable of fiber switching (FSC), lambda switching
(LSC), time-division multiplexing (TDM), layer-2 switching (L2SC), and packet switching
(PSC) are currently defined.

5

Figure 2.3: The generalized label. When smaller labels are
represented they are right-justified within the label.

2.2.3 Bidirectional data paths

The core activity of GMPLS is to establish TE data paths in enabled networks. A data path
between two GLSRs is abstracted by the LSP. Thus, a LSP consists of consecutive labels
which, when swapped in a specific order, carries data from one point in a label switched
network to another. In short, a LSP is represented by the distributed state needed to send
data along a specifically traffic engineered route.

Because LSPs might differ in link composition, an entity requesting labels for a LSP needs
to specify three major parameters: switching type, encoding type, and Generalized
Payload-ID (G-PID). Switching type defines how an interface switches data. Because this
is always expected to be known, a switching type needs only be specified for an interface
with multiple switching capabilities. Encoding type is needed to specify the specific
encoding of the data associated with the LSP. For example, data associated with an L2SC
interface might be encoded as Ethernet. The G-PID finally defines the client layer of the
LSP. This parameter is necessary to let the LSP ingress and egress identify what client
layer utilizes the LSP.

In GMPLS, bidirectional LSPs are considered the default (see figure 2.4). Unlike MPLS,
bidirectional data paths can be established without signaling for two unidirectional LSPs.
Bidirectional LSPs are established through simultaneous label distribution in both
directions. This halves the signaling overhead, albeit increasing the probability of race
conditions for network resources. Such resource race conditions will occur when two
bidirectional LSPs are simultaneously signaled in reverse directions; decreasing the
likelihood of successful installation of traffic engineered data flows. How GLSRs signal
bidirectional LSPs is detailed in later sections (see section 2.4).

2.2.4 Hierarchies

Since generalized labels are non-hierarchical, they do not stack. This is because some
supported switching media can not stack. Given an optical link, for example, it is not
possible to encapsulate a wavelength in another and then deterministically get it back
again. In GMPLS, tunneling data through different layers is therefore based on LSP
nesting (i.e. encapsulating LSPs within LSPs). LSPs can be nested either within or between
network layers (i.e. switching types), but nesting is always based on some sort of LSP
hierarchy. By exploiting LSP hierarchies, multiple layers can be connected and data plane
scalability increased (e.g. by establishing forwarding adjacencies).

6

Figure 2.4: A bidirectional LSP tunnel.

Ordering LSPs hierarchically within a network layer requires that LSP encodings
themselves are hierarchical. When hierarchically ordering layers there is, however, a
natural LSP hierarchy based on interface types. At the top of this hierarchy are FSC
interfaces followed, in decreasing order, by LSC, TDM, L2SC, and PSC interfaces. This
order is because wavelengths can be encapsulated within a fiber, time slots in wavelengths,
data link layer frames in time slots, and finally network layer packets in data link layer
frames. As such, an LSP starting and ending on PSC interfaces can be nested within higher
ordered LSPs.

2.2.5 Protocol suite

The MLCP can make use of several signaling and routing protocols. These protocols can
be divided into three distinct sets based on their functionality: routing, signaling, and link
management.

Routing protocols must be implemented by the MLCP to disseminate the network topology
and its TE attributes. For this purpose, Open Shortest Path First (OSPF) [5] with TE
extensions [6] (OSPF-TE) or Intermediate System to Intermediate System (IS-IS) are
currently defined. To account for multiple layers, however, GMPLS needs to add some
minor extensions to these existing protocols. The GMPLS routing process using OSPF-TE
is explained in the following sections (see section 2.3).

The signaling protocols are concerned with establishing, maintaining and removing
network state (i.e. setting up and tearing down LSPs). For signaling, GMPLS can use either
Resource ReSerVation Protocol (RSVP) [7] with TE extensions [8] (RSVP-TE) or
Constraint-based Routing-Label Distribution Protocol (CR-LDP). Again, supporting
multiple layers requires some extensions to existing protocols. Basic GMPLS signaling is
explained in the following sections (see section 2.4).

For link management, a new protocol called the Link Management Protocol (LMP) has
been defined. LMP can be used by GMPLS network elements to discover and monitor
their network links (i.e. their connectivity). Since network links must always be advertised
accurately, this is a vital part of GMPLS. To enable link discovery between an optical
switch and an optical line system, LMP has been further extended, creating LMP-WDM.
This extension can provide the MLCP with useful information about optical network
segments. Nevertheless, since this is out of the scope of this thesis, neither LMP nor LMP-
WDM will be considered further in this thesis.

7

2.3 Routing with OSPF-TE

This section describes the GMPLS routing process as defined in RFC 4202 [9]. Here,
OSPF-TE and its GMPLS extensions [10] are considered in the context of routing.

2.3.1 Network topology dissemination

To enable automated configuration of the controlled network, GMPLS defines an intra-
domain routing process. Via this routing process the network topology and its TE attributes
are disseminated within the traffic engineered domain. This routing process is implemented
using routing protocols specified for the MLCP. However, this routing process is not used
for routing user traffic, but only for distributing information in the MLCP. Extensions to
existing protocols necessary for this routing process were therefore created.

Essentially, with OSPF-TE, participating GLSRs first establish routing adjacencies by
exchanging hello messages. After routing adjacencies have been established, the GLSRs
then synchronize their link state databases. This is done by exchanging database
description packets. The database description packets contain at least one database
structure referred to as a Link State Advertisement (LSA). Different LSA types exist but
all share a common 20-byte header (see figure 2.5) and have a payload describing the
advertised links. For GMPLS routing purposes, the primary operation is to flood LSAs
throughout the MLCP domain by appending them to “link state update” messages
periodically sent between adjacent GLSRs. To avoid interference with any ordinary routing
processes, a TE LSA is made opaque. Such an opaque LSA is a special type of LSA only
processed by specific applications (e.g. the GMPLS routing process).

By extending the link state database with TE information, a Traffic Engineering Database
(TED) is produced. From this TED, a network graph with traffic engineering content can
be computed. Constructing a TE network graph is necessary to provide input for the
constraint-based algorithms subsequently used to compute network paths. Different ways
of computing network paths are presented in the following chapter (see chapter 3).

8

Figure 2.5: An opaque LSA header.

2.3.2 Type-Length-Value triplets

When flooding LSAs, each OSPF routing message contains a common 24-byte header
which is used to forward it. This routing message header includes information about
message type, addressing, and integrity. Within this header, LSAs are then encapsulated
and specific payloads appended to each LSA. In order to enable advertisement of TE
attributes in opaque LSAs, the LSA payload consists of Type-Length-Value (TLV) triplets
(see figure 2.6). These TLV triplets contain arbitrary data structures defined by two 2-byte
fields: the “type” and “length” fields.

Using TLVs, router addresses and TE links can be expressed. In GMPLS, if an advertising
router is reachable, a “router address”-TLV can be used to describe a network address at
which this router (i.e. GLSR) can always be reached. In turn, the “link”-TLV can be used
to abstract advertised TE links. Because several sub-TLVs have already been defined for
the “link”-TLV, multiple TE attributes can be represented on each link. In fact, new link
sub-TLVs describing additional TE information (see table 2.1) are the only GMPLS
extensions to OSPF-TE.

Sub-TLV name Type Length Value

Link Local/Remote Identifiers 11 8 bytes 2 x 4 bytes local/remote link identifiers

Link Protection Type 14 4 bytes 1 byte for link protection (3 bytes reserved)

Interface Switching Capability Descriptor 15 variable Minimum 36 bytes for ISCD information

Shared Risk Link Group 16 variable N x 4 bytes for link SRLG identification

Table 2.1: GMPLS specific sub-TLVs. These are all appended to the ”link”-TLV.
Length excludes “type” and “length” fields.

9

Figure 2.6: The format of opaque LSAs which are flooded
by the GMPLS routing process using OSPF-TE.

2.4 Signaling with RSVP-TE

This section describes the basics of GMPLS signaling as defined in RFC 3471 [11]. Here,
RSVP-TE and its GMPLS extensions [12] are considered in the context of signaling.

Because RSVP-TE inherits its design from the RSVP protocol, it is based on distributing
various signaling objects (see figure 2.7). These signaling objects, in turn, have been
grouped. These groups contain mandatory and optional signaling objects (e.g. installing
LSP state requires a mandatory set of signaling objects). Encapsulating the groups with a
common header, distinct signaling messages are created. When a GLSR receives a
signaling message, the resident objects are examined and interpreted based upon the
message type indicated by the common header.

Extending the RSVP-TE protocol for GMPLS was thus a matter of generalizing existing
signaling objects, including some new objects (see table 2.2), and adding some minor
signaling enhancements (e.g. signaling bidirectional LSPs and rapid notification).
Considering the RSVP-TE protocol with GMPLS extensions for signaling, each signaling
message contains a common 8-byte header. The common header defines the message type
followed by the encapsulated objects. Encapsulated objects, in turn, are of variable length
and contain a 4-byte header defining the object length, class, and type within class.

Object name Length Message Description

Generalized Label Request 4 bytes Path Describes the requested LSP

IF_ID RSVP_HOP variable Path/Resv Defines what interface to label

Generalized Label variable (4 bytes) Resv/ResvErr Downstream label

Upstream Label variable (4 bytes) Path/PathErr Upstream label

Label ERO 2 bits + label Path/Resv Explicit label control

Suggested Label variable (4 bytes) Path/PathErr Label suggestion

Label Set variable Path Label selection restriction

Table 2.2: Important GMPLS signaling objects. These are all specific to GMPLS.
Length excludes the object header.

10

Figure 2.7: The conceptual RSVP message format. This RSVP
message contains an arbitrary set of signaling objects.

Furthermore, RSVP-TE implies downstream-on-demand label distribution (just as in
RSVP). This means that upstream GLSRs request downstream GLSRs to select labels for
the TE links connecting them. In this way, each GLSR acknowledges a request to install an
LSP, forwards the request to the next downstream hop, and awaits the response. As a
response is returned upstream, the GLSR can install a cross-connection (i.e. state
describing ingoing and outgoing label-to-interface mappings and associated network
resources) for this LSP. Here, downstream is defined as the direction in which data would
flow on an unidirectional LSP properly installed (that is, the direction from LSP ingress to
LSP egress).

2.4.1 Installing LSP state

Establishing bidirectional LSPs employing RSVP-TE for signaling requires full sets of
Path and Resv messages to be exchanged between two GLSRs (see figure 2.8). Initially, a
sender GLSR (LSP ingress) requests a LSP to be set up by sending a Path message
downstream to the next hop. This Path message contains an UPSTREAM_LABEL object
defining the label to use in the upstream direction, objects describing the data flow, and a
GENERALIZED_LABEL_REQUEST object for requesting the LSP. If the Path message
is successfully received, the next hop then reserves path state to enable correct signaling of
returning Resv messages and saves the upstream label. The next hop then selects its own
upstream label, creates state for the upstream direction, replaces the upstream label in the
Path message and passes it on downstream to the next hop. This procedure is repeated until
the next hop is the receiver GLSR (LSP egress). The LSP has now been established in the
upstream direction, but no state has been saved in the downstream direction (i.e. label
distribution is downstream-on-demand). Consequently, the receiver GLSR now selects a
downstream label and returns a Resv message upstream. This Resv message mimics the
Path message, but inserts a GENERALIZED_LABEL object defining the selected
downstream label. If the Resv message is received successfully, the previous hop (the
signaling direction has changed) then sets state for the downstream direction, replaces the
downstream label with its own selected label and passes the Resv message further
upstream. This procedure is repeated until the sender GLSR successfully receives the Resv
message corresponding to a dispatched Path message. Now, the requested LSP has been
fully established and is ready to tunnel data in both directions.

11

Figure 2.8: Installing state for a bidirectional LSP.

2.4.2 Removing LSP state

RSVP-TE is a soft-state protocol. This means that it continuously sends messages
refreshing timers associated with installed state. Originally designed for MPLS, the
“softness” is somewhat reduced in GMPLS, however timers are still implemented. LSP
state removal can be triggered in two ways: when a timer expires in a GLSR or by some
external mechanism (e.g. manual operator or management system).

To remove LSP state using RSVP-TE, PathTear or PathErr messages are dispatched (see
figure 2.9). A PathTear message is dispatched downstream following the path of a Path
message, while a PathErr message is sent upstream following the path of a Resv message.
As these messages are processed by GLSRs they immediately clear, or partially clear, the
LSP state. This enhancement is specific to GMPLS and enables the LSP egress and
intermediate GLSRs to initiate LSP state removal. Using the PathErr message for clearing
state, a flag introduced by GMPLS is set to indicate that path state is no longer valid (i.e.
the Path_State_Removed flag). This means that GMPLS can tear down LSP state in both
directions (both upstream and downstream). Additionally, GMPLS provides rapid error
notification via the newly defined Notify message. The Notify message can be used to
inform an LSP ingress or egress of errors, enabling them to initiate state removal in the
place of an intermediate GLSR. Although the PathErr message is, strictly speaking, not
needed, it can increase signaling efficiency by eliminating the need for notification.

2.4.3 Error handling

While the above description of the signaling procedures presumed that no errors occurred
during signaling, this is unlikely to always be true. Thus, a need for error handling
messages is implied. When errors occur, PathErr or ResvErr messages can therefore be
signaled. A PathErr message indicates an error in processing a Path message and is sent
upstream towards the LSP ingress. Similarly, a ResvErr message indicates an error in
processing a Resv message and is sent downstream towards the LSP egress. A GLSR
receiving an error message may try to correct the error itself, if minor, or pass it further on.

12

Figure 2.9: Two ways of removing LSP state.

2.4.4 Explicit routes

To traffic engineer specific routes, the EXPLICIT_ROUTE object (ERO, see figure 2.10)
must be included in the Path and Resv messages exchanged during LSP state installation.
When used in Path messages, the ERO describes the next and previous hop for any GLSR
along the explicit route. Thus, when signaling paths explicitly using an ERO, path state is
not needed to indicate a reverse route, since returning Resv messages can instead be routed
based upon the ERO. The ERO might define order dependent hops (i.e. strict hops) or hops
that need only be visited regardless of order (i.e. loose hops). To deterministically install
an LSP in a GMPLS network, an ERO must only define strict hops.

While not specific to GMPLS, the ERO signaling object has been extended to support
explicit label control. This is done via the label ERO sub-object (see figure 2.11), which
defines what labels to install on specific interfaces along an explicit route. Expressing the
labels to install on an interface, one or more label ERO sub-objects (both upstream and
downstream labels may be specified) are inserted next to an ERO sub-object. This way,
making use of the label ERO sub-object, a set of available GLSR interface labels could be
selected and signaled. In GMPLS, signaling explicit routes with an ERO is considered the
default way to signal the setup of an LSP.

13

Figure 2.10: The EXPLICIT_ROUTE object (ERO). The figure
includes the common 4-byte signaling object header.

Figure 2.11: The label ERO sub-object. The figure
excludes hierarchically higher objects.

3 Constraint-based path computation

This chapter will present the application of path computation in GMPLS networks. Here,
architectural examples and some proposed algorithms are given.

3.1 Introduction to the PCE

A Path Computation Element (PCE), as defined in RFC 4655 [13], is a generic abstraction
for computing TE paths in label switched networks. How a PCE implements its functions
is not defined. However, the PCE framework defines several ways to implement path
computation. The only responsibility of a PCE is to compute paths, not to signal them.

Path computation is requested when a Path Computation Client (PCC) actively sends
requests to a PCE describing the path it wants to have computed. The PCC, embodied by
any network element interested in computing a network path (e.g. an edge GLSR), then
awaits the PCE response. When a response is returned, the PCC can signal the returned
path with relatively high assurance of successful setup; however, due to path contention no
guarantees of success can ever be given. As such, a PCC and PCE interact using a request-
response model (see figure 3.1).

3.1.1 Architectural models

Several architectural models have been defined for a PCE. Given this, PCEs can be
modeled as either distributed or centralized; in combination with being either composite or
external (meaning that there is a total of four model types). Since each model has its own
implications, they each also have their own uses.

When distributing several PCEs throughout the network domain, a PCE can be deployed in
the network elements potentially needing to issue requests (e.g. edge network elements).
This would balance the computational load between deployed PCEs, but increase the risk
for path contention (e.g. if multiple paths are computed simultaneously). While in the
centralized model, only a single PCE is deployed for the network domain resulting in a
single point of failure possibly prone to computational bottlenecks (when many PCC
requests are issued simultaneously).

14

Figure 3.1: PCC to PCE interaction.

A composite PCE is placed within a network element performing some other function (e.g.
as a GLSR software upgrade). Conversely, an external PCE is implemented in a network
element dedicated only to path computation. Implementing composite PCEs requires
processing resources from hosting network elements. On the other hand, external PCEs
may increase the network load and response latency since all PCCs are now remote, hence
they must use network bandwidth to issue their requests (possibly resulting in a high
network delay, see figure 3.2).

3.1.2 Operational modes

The PCE may also operate in different modes. However, the main operation is to apply a
constraint-based algorithm to a network graph when computing a path. Which algorithm is
applied is, as was earlier stated, not defined by the standard documents. Popular constraint-
based algorithms are described in the following section (see section 3.2).

Furthermore, path computation can be performed by a single or multiple PCEs. Thus,
several PCEs could distribute a PCC request between them, sharing the computational
load. This need not be visible to a requesting PCC, but merely be an internal distribution of
computational load. Nevertheless, if a single PCE is deployed (according to the centralized
model), the use of a single PCE is naturally inferred (although it could be a multiprocessor
node).

Finally, a PCE could be stateful or stateless. The stateful variant of these keeps track of all
TE routes it has computed and returned. This means, in contrast to a stateless PCE, that not
only the network state and available resources would be monitored, but also information
about the allocated resources. Although being stateful would also increase computational
overhead, compared to a stateless PCE, keeping state can potentially enable unsolicited
PCE interaction. This is a very neat feature that, if the PCC to PCE communication would
be extended, could mean that a PCE receiving a modified link advertisement could re-
compute effected paths and inform any effected PCC. Effectively, a PCE could preempt
future path computation requests generated by PCCs experiencing errors in the data plane.

15

Figure 3.2: Composite (left) and external (right) PCEs.
Dashed lines indicate external communication.

3.2 Constraint-based algorithms

Farrel and Bryskin describe several popular constraint-based algorithms in [1]. The
purpose of path computation with constraint-based algorithms is to find network paths that
meet given requirements and constraints. In this section, such algorithms are presented.

3.2.1 Functional overview

Computing paths in a network domain, a conventional path computation algorithm tries to
find the shortest path between single or multiple network elements. This is done by, in
different ways, operating on a network graph built from a TED. Some input is processed
and a single or a set of paths is returned. Here, the term “shortest” refers to some sort of
minimum cost and is represented by a single metric; often bandwidth. Thus, such
algorithms are often called Shortest Path First (SPF) algorithms (see figure 3.3).

Sometimes considering only a single metric is not sufficient. This is especially true for
optical network segments which impose multiple path constraints due to the low-layer
nature of optical switches. Constraint-based algorithms take this into consideration; being
capable of computing paths while resolving multiple constraints.

Implementing a constraint-based algorithm, it is important to distinguish between link-type
(limited to links only, e.g. available bandwidth) and path-type (that apply to entire paths,
e.g. end-to-end delay) constraints. Because these constraint types have different effects on
path computation, they should be handled in different ways.

Link-type constraints are efficiently handled by grooming network graphs (see figure 3.4).
This way, network graphs are merely pruned out of links not satisfying all specified
constraints. For example, links with less available bandwidth than that requested could
simply be removed from a network graph before it is operated on by a search algorithm.
Consequently, link-type constraints can be handled with ease by only pre-processing
network graphs.

16

Figure 3.3: Single-source and single-pair algorithms. The table holds
computed paths for the respective algorithms.

Path-type constraints can, on the other hand, not be handled when a network graph is pre-
processed (because paths do not exist until they have been discovered). Instead, path-type
constraints could be continuously evaluated using path-evaluation functions. By defining
path-evaluation functions, entire paths can be continuously approved or discarded given
specified constraints. For example, each time a candidate path is discovered (perhaps being
an extension of an earlier found path), accumulated bandwidth could be compared to some
maximum value by calling a path-evaluation function. If the called path-evaluation
function would return true, then the evaluated path would be considered viable. This way,
path-type constraints for entire paths can be evaluated.

3.2.2 Proposed algorithms

Given that a network graph has been groomed out of links not satisfying some specified
link-type constraints, at least three different methods approaches to Constrained SPF
(CSPF) algorithms exist: (1) computing paths using a conventional SPF algorithm after
which the computed path is evaluated, (2) initializing an SPF algorithm to compute several
paths and then sequentially request and evaluate the computed paths, and (3) concurrently
compute all possible paths and immediately discard computed paths not satisfying some
specific constraint.

When implementing a CSPF algorithm, that considers path-type constraints, the first
method begins by first selecting a preferred SPF algorithm (see table 3.1). Then, the
selected SPF algorithm must be modified to evaluate path-type constraints during path
computation. This can be done by evaluating discovered sub-paths when additional hops
are added (i.e. during arc relaxation). If a sub-path does not meet some specified path-type
constraint when evaluated, then there is no point in considering this path further and this
path is pruned from further consideration. Requesting network paths from such an SPF
algorithm, only viable network paths fulfilling some specified constraints will be returned.
In addition, accounting for path-type constraints that may be compensated for requires that
the sub-path discarding optimization is never employed. This is because some future hop
might modify a path to meet some earlier violated path-type constraint. However, note that
some constraints can never be compensated for (e.g. end-to-end delay).

17

Figure 3.4: Network graph grooming. A network graph before (left)
and after (right) pruning out all links with weights less than 10.

SPF Algorithm Description Run-time

Bellman-Ford Iteratively traverses all arcs |V|-1 times, single-
source, can detect negative loops

O(|V||A|)

Dijkstra Uses a minimum priority queue, single-pair, can not
account for negative weights

O(|V|lg|V|+|A|)
*depends on queue

Modified Dijkstra Uses a minimum priority queue, single-source, can
account for negative weights

-

Breadth First Search Does breadth first search, single-source, can be
optimized for single-pair

O(|V|+|A|)

Table 3.1: Popular SPF algorithms. V is the set of vertices and A the set of arcs
on a considered network graph.

Another approach would be to employ a K Shortest Paths (KSP) algorithm. Such an
algorithm computes the k shortest paths between two network elements. This is analogous
to iteratively calling an SPF algorithm while in between modifying the network graph.
However, this type of algorithms are usually optimized for this type of task. Once a KSP
algorithm has been initialized, paths can be sequentially requested and evaluated using
path-evaluation functions. When a suitable path is then found, it can be returned by the
path computing entity (e.g. PCE).

To close, all paths could be computed concurrently. Rather than sequentially evaluating
computed paths, paths could be computed using an algorithm based on the Optimal
Algorithm for Maximal Disjointness. Such an algorithm would grow all possible paths
concurrently, immediately discarding those not meeting specific path-type constraints.
Essentially, this can be done by iteratively initializing path candidates, evaluating
constraints, and detecting loops at each hop until a single or several viable paths are found.
This type of algorithm would be computationally more expensive, but be capable of
handling both link-type and path-type constraints. Note that the above arguing for not
discarding evaluated sub-paths still applies.

18

4 Optical switching constraints

Efficiently enabling GMPLS for optical network segments, several constraints must be
considered. Primarily, these constraints are imposed by physical impairments, limited
switching capabilities, and limited connectivity. Here, several such constraints inherent in
optical components are examined.

4.1 Wavelength switching

The applicability of GMPLS and a PCE for wavelength switching has been discussed by
Bernstein, et al. in a recent IETF Internet draft [14]. This Internet draft details additional
wavelength specific information needs and the inability to do wavelength conversions.

4.1.1 Routing implications

To begin, additional wavelength-specific information needs to be disseminated in the
GMPLS control plane. This is to increase the granularity of bandwidth allocation and allow
for the wavelengths available on GLSR interfaces to be considered by a PCE. Thus,
additions to the GMPLS routing process will be necessary.

First of all, the need for wavelength-specific bandwidth information is necessitated by the
nature of WDM links. As of now, the MLCP disseminates information about maximum
bandwidth, maximum reservable bandwidth, and unreserved bandwidth. However, since
each wavelength (or a band of wavelengths) on a WDM link might have a different
bandwidth, available bandwidth might not be uniformly distributed (see figure 4.1). This
means that a tenth of the available bandwidth on a WDM link is not automatically reserved
simply because a tenth of its available wavelengths has been reserved. To understand why
this is, imagine a WDM link supporting wavelengths λ1 – λ10 with an available bandwidth of
70 Gbit/s. In this case λ1 – λ4 might each have a bandwidth of 2.5 Gbit/s, while λ5 – λ10 might
have a bandwidth of 10 Gbit/s each. Thus, there is a need to distribute information about
maximum bandwidth per wavelength on WDM links in the MLCP.

19

Figure 4.1: Wavelengths with different
bandwidths on a WDM link.

In order to also know which set of wavelengths are available on any given link, the
availability of wavelengths needs to be advertised in the GMPLS routing process. What
this advertisement would look like is currently not defined in the GMPLS standard
documents. One approach includes advertising a bitmask indicating available and occupied
wavelengths via the link sub-TLV describing the interface switching capabilities.
However, care should be taken not to make such a bitmask ambiguous or congest a control
plane with this type of information.

In addition, the limited ability of an optical switch to receive a given wavelength and emit
another may limit the connectivity in an optical network segment. Thus, a way to describe
the conversion capabilities of an advertised interface would also be desired. At present,
wavelength selective interfaces can be said to be LSC; however, no further specification of
the level of supported wavelength conversion is (currently) possible. As a consequence,
additional information describing convertible wavebands or the lack of conversion
capability will be needed. Again, the link sub-TLV used to describe interface switching
capability could be used for this purpose.

4.1.2 Full conversion capability

Full conversion capability exists when all optical switches in an optical region are able to
convert all supported wavelengths on all their interfaces (see figure 4.2). This is typically
the case when deploying opto-electronic-optic (OEO) switches that transform optical
signals to electronic form during processing. OEO switches treat optical signals as bit
streams. This enables compensation for optical impairments (by regenerating optical
signals) and full freedom to select outgoing wavelengths (using tunable lasers). Processing
bit streams also enables measurement of the Bit Error Rate (BER) induced by optical
impairments, hence, such optical switches are often referred to as being “intelligent”.

Because OEO switches are capable of full conversion, wavelength assignment can be
treated link-locally when establishing bidirectional LSPs in optical network segments
comprised of such optical switches. Hence, the wavelength assignment problem need not
be resolved by GMPLS for such cases.

The above implies that path computation need not be performed in this type of optical
network segment. Hence, since a PCE will not be needed for link-local wavelength
selection, a GLSR may instead simply suggest what link-local wavelengths to use on a
specific link. Nevertheless, considering available wavelengths via a PCE could still prove
to be meaningful (e.g. as wavelengths might represent different bandwidths, and this type
of network segment might interface to network elements not capable of full wavelength
conversion).

20

Figure 4.2: Full conversion capability of OEO switches.

Nevertheless, full conversion capability is expensive. This is because of the opto-electronic
transformation done in OEO switches, requiring the electronics to run at the maximum data
rate of the optical media. Consequently, OEO switches will also impose constraints on bit
rates because data is processed electronically (and suffer from electronical processing
limitations). Hence, mechanisms to enable less expensive equipment to be deployed would
be preferable. This is further described in the next section (see section 4.1.3).

4.1.3 Limited or no conversion capability

Limited or no conversion capability exists in optical network segments which are not
capable of full wavelength conversion. Consequently, not all optical switches will be able
to convert all wavelengths on all their interfaces (see figure 4.3). In the extreme case where
no optical switch is able to convert any wavelength on any interface, no wavelength
conversion will be possible.

Optical network segments with limited conversion capabilities are referred to as
transparent, and impose specific constraints. Data switching in such network segments is
done by all-optical (OOO) switches. OOO switches do not transform the optical signal they
process. Instead, they switch data using all-optical technologies (e.g. by adjusting micro
mirrors to reflect specific wavelengths). Because there are limitations in all-optical
switching, such switches can not, today, convert the wavelengths they process. However,
because such devices are cost-efficient and have no restrictions on throughput (transparent
switches are not at all aware of bit rates since they simply forward photons) enabling them
for GMPLS (and vice versa) is imperative.

For signaling purposes, another IETF Internet draft standardizing the wavelength label has
been written by Otani, et al. [15]. In this draft, a standardized label format is proposed for
both coarse and dense WDM interfaces. The proposed label format specifies wavelengths
according to the wavelength grids specified by the ITU-T [16] [17] (see figure 4.4). This
eliminates ambiguity imposed by link-local wavelength perception and allows for signaling
LSPs efficiently through optical network segments. Standardizing the wavelength label
does not impose any constraints on signaling or routing, it merely enables the label
abstraction to be significant at the control plane level.

21

Figure 4.3: Limited conversion capability. B can not
convert all wavelengths on its interfaces.

For the application of path computation, transparent optical segments translate into a
“wavelength continuity constraint”; that is, all consecutive TE links connected by
transparent switches must use the same wavelength (see figure 4.5). In order to solve the
resulting problem, computed paths must be evaluated with the proper constraints. Thus, TE
information describing wavelength conversion capabilities of advertising switches and
available wavelengths on TE links are, as a minimum, needed as input to a path-evaluation
function used by a constraint-based path computation algorithm.

4.2 Blocking switch architecture

The blocking switch architecture of Optical Add-Drop Multiplexers (OADMs) also
imposes constraints on TE link advertisements. As described by Imajuku, et al. in a third
recently released IETF Internet draft [18], this is because the OADM switch architecture
results in a limited degree of connectivity (see figure 4.6). This limited connectivity occurs
because OADMs connect to an optical network segment using only two ports. More
specifically, west and east ports connect the OADM to the network. Using tributary ports
internally connected to the west and east sides of the OADM, traffic can then be added
onto or dropped off the network. In turn, this makes OADMs cost-effective and suitable for
adding and dropping traffic to and from optical network segments. However, this limited
degree of connectivity must be considered when enabling efficient installation of LSPs in
this type of optical network segments.

22

Figure 4.4: Proposed standardization of DWDM (top) and
CWDM (bottom) lambda labels.

Figure 4.5: The wavelength continuity constraint.
The only viable path between A and D is A-B-D.

Addressing the limited degree of connectivity, a PCE must bypass the resulting blocking
switch architecture. More specifically, some TE links advertised by an OADM will not be
viable for use depending on specific sequences of adjacent TE links. For example, port
selectivity for a network path entering the west side of an OADM is restrained not to
consider the east side tributary ports. Nevertheless, as modern OADMs are becoming
remotely reconfigurable (in software), the support for this type of networking component
will become even more significant. Harnessing Reconfigurable OADMs (ROADMs) will,
thus, be essential to allow service providers to build automated and cost-effective
networks. However, in what way this should be treated has not yet been defined in the
GMPLS standard documents. For simple network rings comprised of only ROADMs,
wavelengths for traffic entering or leaving the network could be statically set. For more
complex networks there is, on the other hand, a need to address these network elements.
Doing so, selectable TE links could be announced within the TE link advertisements.
Proposed by Imajuku, et al. in the above mentioned draft, it has been suggested that new
link sub-TLVs will be defined for this purpose.

4.3 Impairments

Deployed optical equipment such as switches, amplifiers, multiplexers, and fibers might
degrade optical signals due to impairments (see figure 4.7). If an optical network segment
is carefully planned, such impairments should become minimal. However, preempting
degraded performance in deployed equipment (or accounting for transparent network
segments) such impairments could be considered path-type constraints. Accounting for
impairments in general, however, is essential to guarantee that transmitted signals can be
delivered with sufficient quality throughout an optical network segment. Several optical
impairments are discussed in RFC 4054 [19].

23

Figure 4.6: An OADM (left) and its network connectivity graph
(right). C and D are west and east tributary ports respectively.

Figure 4.7: Attenuation resulting in signal loss at C.

Primarily, optical impairments can be classified into Optical Signal-to-Noise Ratios
(OSNRs) and impulse widening (i.e. dispersion). Example impairments affecting OSNR
are signal attenuation and Amplifier Spontaneous Emission (ASE) noise. Impulse
widening can, in turn, be the result of Polarization Mode Dispersion (PMD) or chromatic
dispersion. The above mentioned impairments are all linear and restricted to affecting only
a single optical signal (see table 4.1). Non-linear impairments involve more than a single
optical signal and are, thus, more difficult to predict. One such example is cross-talk which
might introduce bit errors as optical signals in neighboring channels interfere with each
other. This is most likely to occur in DWDM devices where many wavelengths compete
for the same network resources. Because of the difficulties associated with handling such
impairments, they will not be (explicitly) further considered.

Impairment Description Effect

Attenuation As an optical signal goes through transparent network
elements some of its energy, or power, is lost due to light
absorption. Also known as power loss, the signal quality
deteriorates.

Depending on the level
of deterioration bit
errors or signal loss at
the end receiver might
be introduced.

ASE noise To prevent attenuation of optical signals, amplifiers are
deployed to strengthen the signal. Amplifying signals,
however, introduces random noise to the amplified signal.

This effects the OSNR
and might introduce bit
errors or signal loss at
the end receiver.

Dispersion Optical signals sent through fibers experience impulse
widening. Specifically, chromatic dispersion is the result of
light separation into several spectral components (i.e. colors).
Similarly, PMD is the consequence of optical signals being
randomly polarized in elliptic fibers. Nevertheless, common
for both types of dispersion is that optical signals widen due
to different propagation velocities.

Widened signals might
interfere with each other
and introduce bit errors.

Table 4.1: Linear optical impairments.

Considering relevant impairments as constraints, these must first be identified. Exposing
GMPLS to all impairments could potentially create voluminous traffic in the control plane
(depending on the implementation). On the contrary, some impairments might be valuable
to disseminate. What is important, however, is to guarantee that computed network paths
will be viable despite any optical impairments. Guaranteeing this, impairments from the
links in a transparent network segment could be aggregated and evaluated as a path-type
constraint. For example, the ASE noise on all links in a given network segment could be
added together and compared to a minimum OSNR value for this impairment. Another
method would be to use maximum link length as the only constraint. This way, a group of
impairments are abstracted by assigning all TE links a “logical” maximum length. Then, a
specific OSNR is guaranteed by simply limiting “logical” TE link lengths. Decreasing the
number of constraints to consider, this can not account for impairments individually.

24

5 Implementation

This chapter presents a derived candidate solution (see section 1.1) based on the earlier
literature study. Here, a virtual test-bed design, derived GMPLS and PCE extensions, and a
software implementation of these are described.

5.1 Virtual test-bed design

In order to enable evaluation of the derived GMPLS and PCE extensions, a virtual test-bed
has been jointly designed and implemented together with S. Reinhold [20]. In this test-bed,
a number of virtual machines are hosted by a host computer. The virtual machines have
been connected to the host computer via an internally emulated IP network (i.e. a ”host-
only” network). The host computer configuration is specified in table 5.1.

Property Value Notes

Manufacturer and model HP Workstation xw8400 -

Central Processing Unit (CPU) Intel Xeon 5335 processor @ 2.66 GHz Quad-core, 64-bit

Random Access Memory (RAM) 6 GB DDR2 (ECC) RAM @ 667 MHz 3.5 GB available (in 32-bit OS)

Hard Disk Drive (HDD) 1 TB 7200 RPM SATA-2 HDD 2 x 500 GB

Operating System (OS) Ubuntu 7.04 (32-bit, Desktop Edition) Linux kernel 2.6.20-16

Virtual machine software VMware Server Console 1.0.3 Build-44356

Table 5.1: Host computer configuration.

Implementing an emulated network introduces some limitations. For example, the virtual
interfaces employed by the emulated network need not exactly match the functionality or
characteristics of corresponding physical interfaces. In addition, because all virtual
machines must share hardware resources with the host computer (as they are running as
host computer processes) software performance in the test-bed will be difficult to evaluate
(and not likely match real case scenarios). The following sections further specify the
virtual test-bed components and connectivity (see sections 5.1.1, 5.1.2, and 5.1.3).

5.1.1 Virtual machines

The virtual test-bed consists of eight VMware Server 1.0.31 virtual machines managed
from a console on the host computer. These virtual machines have been connected using a
”host-only” network, assigning all virtual machines a virtual Ethernet interface connected
to the host computer (see figure 5.1). For this purpose, the 192.168.112.0/24 network has
been reserved within the host computer. It is via this network that the virtual machines will
exchange information in a later deployed control plane.

1 See http://www.vmware.com/products/server for more information

25

http://www.vmware.com/products/server
http://www.vmware.com/products/server
http://www.vmware.com/products/server

Reserving hardware resources in the host computer, the virtual machines have each been
given 20 GB HDD and 256 MB (logical nodes, VLSR1-VLSR7) or 512 MB (logical node,
NARB) of RAM. This is consistent with the minimum hardware requirements needed to
support both the operating system and the software components later deployed on a virtual
machine (see section 5.3.1). Increasing performance, the virtual machines have been
evenly distributed between the two host computer HDDs (expected to decrease HDD usage
latencies).

In creating instances of the functional components, an operating system has then been
deployed onto all virtual machines. After deploying an operating system onto a virtual
machine, other software components can in turn be loaded into the operating system. By
loading a specific software component (later described, see section 5.3.1) into the deployed
operating system, a virtual machine finally becomes a specific network component. This
way, as indicated by the names of the virtual machines, a virtual machine becomes either a
Virtual LSR (VLSR, compare GLSR), or a Network Aware Resource Broker (NARB). In
the latter case, here we only load a subset of the NARB functionality (i.e. that needed for
path computation) into a NARB unit; namely, the stand-alone Resource Computation
Engine (RCE, compare PCE). In order to avoid potential software conflicts, the same
operating system has been deployed onto all virtual machines (i.e. Ubuntu 6.06, 32-bit,
Desktop Edition, with Linux kernel version 2.6.15-16, proven compatible with the loadable
software components).

5.1.2 Control plane configuration

Configuring a virtual control plane, the careful reader might have realized that deployed
VLSRs must interface to multiple networks (to enable simulation of multiple control plane
links). Recalling that the ”host-only” network is a single network, virtual control plane
links must therefore be created. For this purpose, Generic Routing Encapsulation (GRE)
tunnels [21] have been set up in the virtual test-bed. Using a GRE tunnel, a virtual machine
is connected to another virtual machine via a logical point-to-point link. This way, a virtual
topology consisting of point-to-point links has been placed on top of the ”host-only”
network connecting the virtual machines (see figure 5.2). Automating the setup of this
topology, start-up (bash) scripts have been installed (at the default runlevel) into the virtual
machines. A summary of the control plane networks is given in table 5.2.

26

Figure 5.1: Virtual test-bed ”host-only” network.

Abbr. Corresponding network Description

A 192.168.0.0/24 Connecting VLSR1 and VLSR2

B 192.168.1.0/24 Connecting VLSR1 and VLSR5

C 192.168.2.0/24 Connecting VLSR2 and VLSR4

D 192.168.3.0/24 Connecting VLSR5 and VLSR4

E 192.168.4.0/24 Connecting VLSR2 and VLSR3

F 192.168.5.0/24 Connecting VLSR5 and VLSR6

G 192.168.6.0/24 Connecting VLSR4 and VLSR6

H 192.168.7.0/24 Connecting VLSR4 and VLSR3

I 192.168.8.0/24 Connecting VLSR3 and VLSR7

J 192.168.9.0/24 Connecting VLSR6 and VLSR7

K 192.168.10.0/24 Connecting VLSR7 and NARB

Table 5.2: A summary of the control plane networks.

5.1.3 Data plane configuration

Configuring a virtual data plane, data plane links have (as in the previous section, see
section 5.1.2) been formed out of GRE tunnels. However, the data plane topology is not
formed on top of the host computer ”host-only” network. Instead, GRE tunnels connect
virtual interfaces that do not exist, constructing a distributable data plane topology. As a
result, arbitrary data plane topologies can be advertised by the configured control plane
without the need for an additional ”host-only” network. Using GRE tunnels, flexible
configuration of the data plane topology is also made possible (however existing interfaces
must be connected to enable data transport). Given the configured data plane topology (see
figure 5.3), it is envisioned that VLSR2 and VLSR6 will represent ROADMs, adding or
dropping traffic to or from the network consisting of VLSR3, VLSR4, and VLSR5
(providing a test-case for a blocking switch network architecture). Further, all data plane
links have been given aliases (shown between parentheses in figure 5.3). A summary of the
data plane networks is given in table 5.3.

27

Figure 5.2: Configured control plane topology. Interface numbers represent
network address suffixes.

Abbr. Corresponding network Description

A 10.0.0.0/24 Connecting VLSR1 and VLSR2

B 10.0.1.0/24 Connecting VLSR2 and VLSR6

C 10.0.2.0/24 Connecting VLSR6 and VLSR7

D 10.0.3.0/24 Connecting VLSR2 and VLSR3

E 10.0.4.0/24 Connecting VLSR2 and VLSR3

F 10.0.5.0/24 Connecting VLSR3 and VLSR4

G 10.0.6.0/24 Connecting VLSR4 and VLSR5

H 10.0.7.0/24 Connecting VLSR5 and VLSR6

I 10.0.8.0/24 Connecting VLSR5 and VLSR6

Table 5.3: A summary of the data plane networks.

5.2 GMPLS and PCE extensions

This section presents selected extensions to GMPLS and a PCE as motivated by the
material presented in the earlier chapters. For this, three new link sub-TLVs are defined
and a CSPF algorithm capable of dealing with these sub-TLVs introduced.

5.2.1 Wavelength availability

First of all, a new link sub-TLV for wavelength availability is proposed (see figure 5.4). In
this sub-TLV, the first body field expresses the base wavelength or frequency in a grid of
wavelengths. The base wavelength or frequency is, here, expressed in the label format
presented earlier (see section 4.1.3). Hence, this first field can hold either a wavelength (in
the case of a CWDM grid), or a frequency (in the case of a DWDM grid). The second field
expresses bandwidth per wavelength in bytes per second (in floating point number
representation, see section 4.1.1). Then, the third field expresses a variable length bitmask
(zero-padded so that the defined sub-TLV will always contain an even set of 4-octet
words). For experimenting with this link sub-TLV, a type value of 32768 has been used.

28

Figure 5.3: Configured data plane topology. Interface numbers represent
network address suffixes.

Utilizing this link sub-TLV, a grid of wavelengths can be unambiguously advertised in the
GMPLS routing process. More specifically, the base wavelength (or frequency) specifies
the first entry in a grid. If the base wavelength is unreserved (i.e. available for use), the
first bit in the bitmask is set to one. If the same wavelength is reserved (i.e. not available
for use) the first bit in the bitmask is instead set to zero. Uncompressing the grid of
wavelengths expressed in this sub-TLV, the consecutive bits in the bitmask then indicate
the availability of subsequent wavelengths (given the grid channel spacing).

Because the label format defined for the experimental sub-TLV specifies the channel
spacing of an expressed grid of wavelengths, all wavelengths in the grid are
deterministically defined. However, if this information is not available in the utilized label
format, then wavelengths must be parsed in some other way (e.g. by treating the channel
spacing as being uniform for all links in the network).

Hence, disseminating this sub-TLV, a compressed grid of wavelengths can be distributed
in the GMPLS control plane. Consequently, control plane traffic is reduced at the cost of
additional computation overhead (i.e. the compressed grid of wavelengths needs to be
uncompressed before it can be interpreted). This way, the defined link sub-TLV offers
additional functionality for service providers requiring wavelength availability to be
dynamically updated. Nevertheless, this sub-TLV will (as it is envisioned) be optional in a
GMPLS control plane implementation.

5.2.2 Interface selectivity

Another new link sub-TLV is proposed for interface selectivity (see figure 5.5). The body
of this sub-TLV expresses a variable length list of unselectable interfaces. To experiment
with this link sub-TLV, a type value of 32769 has been used to indicate that IPv4 addresses
are carried and a type value of 32770 to instead indicate 32-bit interface identifiers.

29

Figure 5.4: The link sub-TLV defined for wavelength availability.

Figure 5.5: The link sub-TLV defined for interface selectivity.

Implementing this link sub-TLV, unselectable interfaces can be declared for data plane
links advertised in the GMPLS control plane. For experimenting with this link sub-TLV,
unselectable interfaces have been specified to be the interfaces to which a declaring
interface (i.e. data plane link) is not locally connected. This way, the interface connectivity
of a network element with limited internal connectivity could be specified and distributed.

Making use of this link sub-TLV, the blocking switch network architecture of OADMs and
ROADMs (see section 4.2) can be reflected in the GMPLS control plane. Distributing the
limited internal connectivity for these types of devices, a path computation process could
detect illegal link sequences and discard candidate paths violating the interface selectivity
constraint. Bypassing the limited interface selectivity possibly existing in an optical
network segment, this sub-TLV provides service providers with a means to make use of a
blocking switch architecture. This link sub-TLV is thought to be optional, but useful for
dealing with blocking switch network architectures.

5.2.3 User-defined constraints

In order to enable user-defined constraints to be associated with links in a provisioned
GMPLS network, a third new sub-TLV (see figure 5.6) is proposed. This sub-TLV has
been defined to distribute code-value pairs representing arbitrary constraints. The body of
this sub-TLV holds a variable number of 4-octet words (in each 4-octet word, the first octet
specifies a value code followed by the value associated with that code). For experimenting
with this link sub-TLV, a type value of 32771 has been used.

For experimental purposes, one value code (0) has been reserved. This reserved code value
has been used to indicate the wavelength conversion capability of an advertising interface
(meaning that conversion capability has been indicated for outgoing links). Applying user-
defined constraints on links in a provisioned network domain, the remaining set of code-
value pairs are available for other uses. Potential use would be information describing
optical impairments and constraints (see section 4.3), however the link sub-TLV is generic
enough to also express other types of constraints (e.g. end-to-end delay or a set of ordered
metrics). Envisioned to be optional, this sub-TLV is useful to provide service providers
with a mechanism for distributing arbitrary (that is, user-defined) link constraints in a
GMPLS control plane.

30

Figure 5.6: The link sub-TLV defined for user-defined constraints.

5.2.4 Candidate CSPF algorithm

In order to harness the information that could be distributed in the link sub-TLVs earlier
defined (see sections 5.2.1, 5.2.2, and 5.2.3), a candidate CSPF algorithm (see section 3.2)
has also been implemented. This candidate CSPF algorithm searches for all loop-less paths
in an optical network segment, at the same time evaluating wavelength availability,
interface selectivity, and user-defined constraints. Growing candidate paths, this algorithm
extends the abstract operation of the Breadth First Search (BFS) algorithm [1]. Mimicking
this well-known SPF algorithm (see figure 5.7), the candidate CSPF algorithm is expected
to find all paths. In addition, BFS algorithms usually have excellent asymptotic run-time
(when operating on tree structures, see section 3.2.2).

Initially, the candidate algorithm creates an initial path containing only the source node (it
is from this path that all other paths will be grown). When this initial path has been created,
it is added to a First-In-First-Out (FIFO) queue. Adding paths to this queue deviates from
the conventional operation of the BFS algorithm (however, this is necessary to
continuously keep track of the grown paths). Proceeding, the algorithm starts to operate on
the candidate path queue by iteratively removing and examining paths from the queue,
until the queue becomes empty. Within each such iteration, the end node of an examined
path is first extracted. The neighbors of this extracted node, not forming a loop with the
examined path, are then considered. By not considering neighbors that form loops, the
candidate algorithm is able to safely operate on graph structures (i.e. tree structures with
loops, note that this is necessary to avoid eliminating any potential paths). Examining a
neighbor, the currently examined path is then copied and expanded with this neighbor
node. After this, the expanded path is checked for viability by running a suitable path-
evaluation function. If this path-evaluation function returns false, the expanded path will be
discarded. Otherwise, when the evaluation function returns true, the expanded path will be
either further examined by future iterations (i.e. added to the FIFO queue), or added to a
set of discovered paths (when an examined neighbor is the destination node). When all
neighbors have been examined, a new path is extracted from the queue (and a new iteration
is started). Because expanded paths are always checked for viability, this candidate
algorithm will only accept viable paths. The abstract operation of the candidate algorithm
is presented in the figure below (see figure 5.8).

31

Figure 5.7: The abstract operation of the BFS algorithm.

When candidate paths are checked for viablity, a path-evaluation function is to be called.
Depending on the properties of this function, different meanings may apply to the resulting
path-evaluation. The path-evaluation function used together with the candidate CSPF
algorithm has therefore, here, been carefully defined. This path-evaluation function should
return false if (1) any accumulated user-defined constraint exceeds a requested maximum
value, (2) there is no wavelength left for use on a path (i.e. it is not possible to preserve
wavelength continuity), and (3) an added link violates the semantics of interface selectivity
(i.e. is not possible due to a blocking switch network architecture). If none of the above
conditions occurs, then the path-evaluation function is to return true.

Closing this section, with regard to the candidate algorithm, paths can be easily grown in
orders other than breadth first (that is, not using a BFS algorithm). Changing the type of
queue (and in some cases adding minor modifications), candidate paths can be differently
grown. This would have semantic meaning by causing the candidate algorithm to compute
only a limited number of paths (that is, not all paths). For example, replacing the FIFO
queue by a Last-In-First-Out (LIFO) queue (and not always popping examined paths from
this LIFO queue) would result in growing paths depth first. In the same way, a minimum
priority queue would result in growing paths according to the priority of this queue (this
corresponds to the operation of the Dijkstra algorithm).

32

Figure 5.8: The abstract operation of the candidate CSPF algorithm.

5.3 Software implementation

This section presents the implemented software extensions. Here, the modification done to
an open source software suite to abstract the above defined functions (see section 5.2) are
detailed (here the focus is on the extended functionality provided).

5.3.1 Open source software suite

In order to implement the proposed functional extensions, the DRAGON project1 open
source software suite has been used as a base. Built on software components from other
open source software projects, this project seeks to enable service provisioning in multiple
layers and domains via the GMPLS framework. The other built-in projects are (1) the
KOM-RSVP engine2 (extended to support RSVP-TE) for GMPLS signaling, and (2) the
Zebra OSPF daemon3 for GMPLS routing (extended to support OSPF-TE). However, in
order to abstract a suitable PCE, the DRAGON project has developed a new software
component. This component currently consists of two separate parts, the NARB and RCE
(see section 5.1.1). Of these two components, the RCE is the one responsible for collecting
information about a network domain and computing network paths in it. Thus, as we are
only interested in implementing the path computation extensions, only the RCE will be
extended.

5.3.2 Implemented Zebra extensions

Extending the GMPLS routing process, the Zebra OSPF daemon has been extended with
the experimental link sub-TLVs and additional Virtual TeletYpe (VTY) commands. VTY
commands enable adding, removing, or changing information in the link state database
maintained by a Zebra OSPF daemon. Thus, to enable direct modification of this database,
syntax and semantics for a (1) wavegrid command (managing wavelength availability on
links), (2) unselectable command (managing unselectable interfaces for links), and (3)
constraint command (managing user-defined constraints on links) have been specified and
implemented. With these VTY commands, the previously described link sub-TLVs can be
added to or removed from the set of sub-TLVs distributed by the Zebra OSPF daemon.

The implemented VTY command scope has been set to apply to the OSPF_TE_IF_NODE
command node. This means that the VTY commands are issuable in the context of the
Zebra OSPF daemon configuration files. Consequently, the experimental link sub-TLVs
can only be added to the GMPLS control plane when the OSPF daemon is started (i.e.
when the configuration files are parsed). By extending the VTY command scope, these
commands could be issuable from other command locations (e.g. the Zebra OSPF daemon
TELNET interface) by associating them with other command nodes. This part of the
software extensions was jointly developed together with S. Reinhold [20]. A complete
specification of the added OSPF-TE VTY commands is given in the appendixes (see
Appendix B).

1 See http://dragon.maxgigapop.net or http://dragon.east.isi.edu for more information
2 See http://www.kom.tu-darmstadt.de/en/downloads/software/kom-rsvp-engine for more information
3 See http://www.zebra.org for more information

33

http://www.zebra.org/
http://www.zebra.org/
http://www.zebra.org/
http://www.kom.tu-darmstadt.de/en/downloads/software/kom-rsvp-engine
http://www.kom.tu-darmstadt.de/en/downloads/software/kom-rsvp-engine
http://www.kom.tu-darmstadt.de/en/downloads/software/kom-rsvp-engine
http://dragon.east.isi.edu/
http://dragon.east.isi.edu/
http://dragon.east.isi.edu/
http://dragon.maxgigapop.net/
http://dragon.maxgigapop.net/
http://dragon.maxgigapop.net/

5.3.3 Implemented RCE extensions

Implementing the path computation extensions, the RCE component has been extended
with the experimental sub-TLVs and the candidate CSPF algorithm. More specifically, the
added extensions enable the experimental link sub-TLVs to be stored in the RCE TED and
defines a new path computation event. Additionally, the RCE has also been extended with
a new format for returning computed paths in the form of an ERO signaling object
including label ERO sub-objects (containing wavelength labels).

The new path computation event abstracts the candidate CSPF algorithm and defines
additional processing needed to fully support it. When this path computation event is
requested from the RCE, six conceptual steps are sequentially executed. The first two steps
are no different from those of the algorithms already implemented in the RCE. This
includes verifying the client request and building a logical topology from the TED. Once a
logical topology has been built, a third step (unique to the implemented path computation
event) prunes the built topology. When pruning this topology, all links not meeting the
requested (1) switching type, (2) encoding type, and (3) minimum requested bandwidth are
removed. Note that handling link-type constraints by pre-processing the constructed graph
is, at this stage, required because the path-evaluation function will later only consider path-
type constraints. The fourth step is to run the candidate algorithm on the now pruned
topology. While running the algorithm (i.e. computing paths), all information needed to
extract paths with wavelength precision is accumulated and a path vector (containing
discovered paths between the source and destination nodes) is continuously grown. Once
this path computation finishes, a fifth step post-processes the returned result by sorting the
grown path vector (if not empty) by user preference. In keeping with the abstract operation
of the BFS algorithm, the default user preference (when no user preference has been
specified) is to sort paths by size (i.e. number of links in a path). Finally, a last step (i.e. the
sixth step) extracts a single path from the sorted path vector. For this path, an ERO
including upstream and downstream label ERO sub-objects (containing wavelength labels)
for each interface is built and returned (to a requesting client).

In order to simplify the implementation of this algorithm, some limitations have been
accepted. To begin, only user-defined constraints that are positive additive (i.e. summable
constraints which can only take on positive values) are supported. Adding support for
negative additive constraints (i.e. constraints that can be compensated for) could be added
by defining a set of constraints which are only evaluated when a complete path has been
discovered. In addition, the implementation of the candidate algorithm presumes that all
links stored in the TED are bidirectional, and that a wavelength can be used in two
directions. In the future, reverse links could also be looked up and examined. A complete
specification of the implemented Zebra and RCE software extensions is given in the
appendixes (see Appendix C).

34

6 Verification and analysis

This chapter provides a functional verification of the virtual test-bed and the software
implementation. Here, a performace indication of the implemented software extensions is
also given.

6.1 Test-bed verification

To verify the functionality of the virtual test-bed, the virtual machines, their network
configuration (i.e. ”host-only” network), and their software configuration (i.e. operating
system and compilers) have been inspected. Here, the inspected virtual test-bed is the same
as that described in section 5.1.1. Verifying the virtual machines, their installation and
hardware properties have first been checked (using the host computer console). Secondly,
the ”host-only” network connectivity has been checked (using a ping utility). Further, the
compilation and executability of software in the virtual test-bed have been checked (by
loading unmodified software onto the virtual machines and executing it). This has led to
the following observations:

1. All virtual machines are correctly configured and installed. Here, correctly refers
to the expected set of emulated hardware and operation of the virtual machines.

2. All virtual machines are connected to each other in the defined ”host-only”
network, and the GRE tunnels appropriately connect the virtual machines.

3. The software suite can be installed and executed on all virtual machines. When
executing the software, the expected behavior occurs.

Given these observations, the functional testing of the virtual test-bed implementation is
considered complete. Further verification has not been performed.

6.2 Software implementation verification

To verify the software implementation functionality, the extended software components
have been deployed onto the virtual machines. Enabling these software components to be
functionally verified, the data plane topology (see section 5.1.3) has then been associated
with more information. Associating the data plane links with additional constraints (and
attributes, see table 6.1), different test-cases have then been defined and executed. For this,
the aim has been to ensure that no relevant test-case would be excluded (and all relevant
test-cases included). In the same way as suggested in section 5.1.3, VLSR2 and VLSR6
here mimic data plane ROADMs. Additionally, the wavelengths associated with all data
plane links appertain to a DWDM grid with a 12.5 GHz channel spacing and 40 Gbit/s
bandwidth per wavelength. Note here that a user-defined constraint code of 0 declares
interface conversion capability (whereas a value of 1 indicates full conversion capability,
see section 5.2.3).

35

data plane link available wavelengths unselectable interfaces user-defined constraints

data1 (VLSR1) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data1 (VLSR2) 190000 - 190112.5 GHz 10.0.4.1 <0,0>, <1,1>, <2,5>

data2 (VLSR2) 190000 - 190112.5 GHz 10.0.3.1 <0,0>, <1,10>, <2,5>

data2 (VLSR6) 190000 - 190112.5 GHz 10.0.8.1 <0,0>, <1,10>, <2,5>

data3 (VLSR6) 190000 - 190112.5 GHz 10.0.7.1 <0,0>, <1,1>, <2,5>

data3 (VLSR7) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data4 (VLSR2) 190000 - 190112.5 GHz 10.0.4.1, 10.0.1.1 <0,0>, <1,1>, <2,5>

data4 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data5 (VLSR2) 190000 - 190112.5 GHz 10.0.0.2, 10.0.3.1 <0,0>, <1,1>, <2,5>

data5 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data6 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data6 (VLSR4) 190000 - 190112.5 GHz - <0,1>, <1,1>, <2,5>

data7 (VLSR4) 190050 - 190162.5 GHz - <0,1>, <1,1>, <2,5>

data7 (VLSR5) 190050 - 190162.5 GHz - <0,0>, <1,1>, <2,5>

data8 (VLSR5) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data8 (VLSR6) 190000 - 190112.5 GHz 10.0.2.1, 10.0.8.1 <0,0>, <1,1>, <2,5>

data9 (VLSR5) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data9 (VLSR6) 190000 - 190112.5 GHz 10.0.1.2, 10.0.7.1 <0,0>, <1,1>, <2,5>

Table 6.1: Constraints associated with the data plane links. Symbols in parentheses
indicate the link ends advertised in the control plane.

When inspecting the table above, we see that (1) VLSR2 and VLSR6 have been configured
with unselectable interfaces, (2) the outgoing interfaces on VLSR4 are conversion capable,
and (3) three user-defined constraints have been placed on all data plane links (in addition,
we see that data7 has been offset by four wavelengths). To then verify the GMPLS routing
extensions, the link state database of a Zebra OSPF daemon was examined using a
TELNET client; leading to the following observation: Connecting to a Zebra OSPF
daemon in the network domain and instructing it to show its link state database shows the
correct data plane topology (here, correct refers to the entire topology as defined by all
Zebra OSPF daemon configuration files).

Once the GMPLS routing process was verified, the RCE was in turn verified using a
software testing utility (included in the DRAGON software suite). This testing utility is
essentially an RCE software client (compare PCC) and was, before verification, extended
to support client requests including algorithm selection, path preference, and user-defined
constraints. For reference, the only two paths that exist (in the data plane) between VLSR1
and VSLR7 have been defined path1: VLSR1-VLSR2-VLSR6-VLSR7, and path2: VLSR1-
VLSR2-VLSR3-VLSR4-VLSR5-VLSR6-VLSR7. By issuing specific client requests with
this testing utility, the following observations were then made:

36

1. Issuing a client request to the RCE defining requested switching capability as non-
LSC, encoding as non-lambda, or bandwidth as more than 40 Gbit/s results in no
path being returned. This is correct because of the incorrect traffic specifications.

2. Issuing a client request to the RCE defining requested switching capability as LSC,
encoding as lambda, and bandwidth as 1 kB/s results in path1 being returned. This
is correct because path1 is the shortest path (with respect to the number of hops).

3. Issuing the client request defined in 2., while also setting path preference to be the
user-defined constraint with code 1, results in path2 being returned. This is correct
because path2 now is the shortest path (with respect to this user-defined constraint).

4. Issuing the client request defined in 3., while also requiring the user-defined
constraint with code 2 to be less than 20, results in that path1 is returned. This is
correct because path2 violates the specified constraint (i.e. with a value of 30).

5. Issuing the client request defined in 4., while also requiring the user-defined
constraint with code 1 to be less than 10, results in no path being returned. This is
correct because path1 violates the specified constraint (i.e. with a value of 12).

6. For all returned paths, wavelength continuity, interface selectivity, or user-defined
constraints are never violated and wavelength labels always correctly extracted.

Given these observations, the functional verification of the software implementation is
considered complete. The performance evaluation in section 6.3 somewhat contributes to
verification, but no further verification has been performed.

6.3 Software implementation performance

In this section, a performance evaluation of the software implementation is given. Here, the
same constraints and attributes as in section 6.2 have been associated with the data plane
links.

6.3.1 Theoretical network overhead

In theory, dissemination of additional link sub-TLVs in the GMPLS control plane results in
that more information about networking resources is made available. However, this comes
at the cost of an increased network overhead. Typically, this overhead (No) will equal the
sum of all bytes added to LSAs (Nb) times the number of links on which an LSA will be
distributed (Nd). Nb will in turn equal the sum of all appended link sub-TLVs specific to the
candidate solution (see section 5.2.1, 5.2.2, and 5.2.3). Furthermore, given that an LSA is
distributed on all links in an OSPF area, Nd will approximate the number of control plane
links. This theoretical network overhead is given table 6.2. In this table, a few theoretical
distribution times given different link bandwidths are also presented (note that the actual
data exchange between VLSRs has not been monitored).

37

Nb Nd No = Nb x Nd link bandwidth distribution time

18 x 32 bytes + 4 x 20
bytes = 576 bytes + 80

bytes = 656 bytes
11

656 x 11 bytes = 7216
bytes = 7.216 kbytes =

57.728 kbits

10 Mbit/s 5.7728 ms

100 Mbit/s 577.28 μs

1000 Mbit/s 57.728 μs

Table 6.2: Theoretical network overhead. Distribution time excludes LSA processing.

Of course, including (or excluding) the newly defined link sub-TLVs from a GMPLS
routing process will involve a trade-off between service efficiency and reliability. By
increasing the number of links and attributes (or bytes, Nb) distributed in a GMPLS control
plane, the number of links these are distributed on (Nd) need not be affected. This is
because (in GMPLS) the data plane topology can be kept separate from the control plane
topology. Keeping Nd constant over time, additional data plane links can be added without
necessarily resulting in a non-linear growth of overhead bytes. Thus, a resulting network
overhead (No) could actually grow linearly instead of quadratically when additional links
or attributes are added to a data plane configuration.

6.3.2 Time efficiency

To evaluate time efficiency, the path computation process implemented by a RCE has been
divided into separate time intervals. These time intervals will serve as reference points,
indicating where a RCE process spends time. The time intervals are specified below:

T1: time spent verifying a client path computation request
T2: time spent building a logical topology from the TED
T3: time spent pruning the built logical topology
T4: time spent searching and sorting found paths
T5: time spent extracting labels and returning an ERO
T6: total time spent (T1+T2+T3+T4+T5).

Enabling time spent in these time intervals to be observed, the RCE software component
has been extended to read the time at specific time instants. Here, time is read by querying
the CLOCK_PROCESS_CPUTIME_ID clock (a high resolution per-process timer
maintained by the host computer CPU) each time a specified time interval is either entered
or exited. Once this clock has been queried twice, the time difference between entering
and exiting any specific time interval is computed. This way, a set of time population
samples have been produced, after which time efficiency has been evaluated based on
these population samples. Here, the time population samples have been generated by
sequentially issuing 1000 requests (for a path between VLSR1 and VLSR7, each request
requiring four user-defined constraints to be evaluated) using the testing utility described in
section 6.2.

38

Due to the volatile nature of the virtual machines (running as processes on the host
computer), some values in the time population samples have been removed. More
specifically, all values deviating from a time population sample median with more than
50% have been discarded. These population sample adjustments are necessary to eliminate
incorrect observations, rendering only meaningful time values to be analyzed. In addition,
all population samples have been proved normally distributed by dividing the observed
time values (in a specific sample) into intervals and then count the value frequency in these
intervals. Given that we now have a set of normally distributed population samples with
observed means and standard deviations, 95% confidence intervals for these population
samples have then been calculated using the t-method (see table 6.3 and figure 6.1).

T1 [µs] T2 [µs] T3 [µs] T4 [µs] T5 [µs] T6 [µs]

4.87±1.26 37.16±5.92 2.35±0.59 98.72±11.02 3.28±0.6 146.38±16.73

Table 6.3: Observed processing time in each time interval. Observed time is given
as 95% confidence intervals for the population samples.

In figure 6.1, we see that the RCE implementation spends most of the time building a
logical topology, searching for, and sorting network paths. Interesting to see is that the
time spent searching for and sorting all loop-less network paths (T4) is only slightly more
than double the time spent building a logical topology (T2). Noting the total observed time
spent by a path computation event (T6), the RCE also seems quite responsive (given the
operational circumstances). Handling an arrived client request, we see that less than a few
hundred microseconds is spent on a single path computation event. Nevertheless,
observing performance in the virtual test-bed generated results that were hard to interpret.
Therefore, it would be useful to compare the observed time relative to other observed time
(e.g. comparing the time efficiency of several different candidate solutions).

39

Figure 6.1: Observed processing time in specified time intervals. This corresponds
to the confidence intervals given in the table above (see table 6.3).

T1 T2 T3 T4 T5 T6
0

10
20
30
40
50
60
70
80
90

100
110
120
130
140
150
160
170

mean
(+/-) +
(+/-) -

time interval

ob
se

rv
ed

 ti
m

e
[µ

s]

6.3.3 Space efficiency

To evaluate space efficiency, the candidate path queue has first been analyzed. This has
been done by prompting a RCE to show the queue contents at specific points in time. For
this, three different queue elements have been defined: (1) physical paths (equal to fiber
paths), (2) physical links (equal to fiber links), and (3) implicit wavelength paths (equal to
lambda paths). Here, physical links correspond to the links in a data plane configuration. In
turn, a physical path is a sequence of physical links. Finally, a lambda path is an implicit
wavelength path that can be extracted, with wavelength precision, from a physical path.

Extracting the candidate path queue contents in each outer search iteration (when a client
request was processed), the following results were obtained (see table 6.4 and figure 6.2).
Note that an outer search iteration corresponds to examining a single candidate path.

queue
elements

search iteration

0 1 2 3 4 5 6 7 8 9 10 11 12

fiber paths 0 1 1 2 2 2 2 2 3 3 2 1 0

fiber links 0 0 1 4 5 6 7 8 14 15 10 5 0

lambda paths 0 0 10 20 20 20 110 106 126 180 120 60 0

Table 6.4: Candidate path queue elements. Elements are given for each outer
search iteration performed by the candidate CSPF algorithm.

40

Figure 6.2: Candidate path queue elements. These correspond to those given
in the table above (see table 6.4).

0 1 2 3 4 5 6 7 8 9 10 11 12
0

20

40

60

80

100

120

140

160

180

fiber paths
fiber links
lambda paths

search iteration

qu
eu

e
el

em
en

ts

In figure 6.2, we see that the number of fiber paths in the candidate path queue remains
low throughout the entire search. This is very likely because the candidate solution
implementation only explicitly maintains a set of fiber paths, from which other information
is extracted when needed. Given the number of implicitly held lambda paths, both time and
space is thus saved by not abstracting candidate paths with this resolution. In addition,
when analyzing how the number of explicit and implicit queue elements propagate, the
candidate algorithm search pattern could be derived. For example, the instant increase in
lambda paths in search iteration 6 and 9 indicates that a wavelength conversion capable
VLSR has previously been processed (generating a lot of potential lambda paths). In turn,
drops in the number of fiber paths in the candidate queue indicates that a path has been (in
a previous search iteration) either discarded or discovered.

In addition to this, the RCE stack and heap usage have also been profiled. This has been
accomplished by using the Massif heap profiler tool built-in to the Valgrind software
suite1. This profile was generated by loading the RCE program into Massif and having it
process 1000 requests (for a path between VLSR1 and VLSR7, using the testing utility
described in section 6.1). Then, once the RCE finished processing all issued client
requests, Massif was prompted to terminate. Upon terminating, Massif in turn generated a
textual summary of the location and amount of consumed spacetime together with the
complementary graph given in the appendixes (see Appendix D). Note (when analyzing
this complementary graph) that profiling with Massif runs the RCE at about one twentieth
the speed of normal execution.

The stack and heap profile generated by Massif has resulted in some observations. First of
all, the amount of memory allocated by the stack is nearly constant over time (equal to
about 5% of the totally consumed spacetime). This is expected as the RCE iteratively
examines candidate paths with no recursive function calls. Secondly, very little spacetime
is consumed during an entire path computation event. In fact, the amount of spacetime
consumed for maintaining the candidate path queue is only about 1% of the total amount of
consumed spacetime. In addition, this amount never seems to exceed 5 kB.

Ignoring the unrelated functions (especially the message API functions) that leak memory,
a very small percentage of process memory is allocated when searching for all loop-less
paths. Partially, this is because the RCE process runs in a single thread (i.e. it is not
threaded, resulting in sequential handling of the issued requests). Moreover, by
immediately discarding candidate paths that violate constraints, the size of the candidate
path queue is kept small. Because of this, more complex data plane topologies are not
expected to result in exponential increases in consumed spacetime. Additionally, the RCE
implementation seems to utilize memory very efficiently (given that many potential paths
are intermediately computed).

1 See http://www.valgrind.org for more information

41

http://www.zebra.org/
http://www.zebra.org/
http://www.zebra.org/

7 Conclusion and future work

In conclusion, we have seen that handling additional routing constraints in GMPLS is
feasible. By distributing optical constraints (and attributes) in a generic format via OSPF-
TE, efficient traffic engineering in optical network segments is possible. By also extending
CSPF algorithms with support for optical network parameters it is possible to deal with
wavelength continuity, limited connectivity, and optical impairments. Additionally, this
means that a PCE can be deployed in more complex network regions (that is, optical
network regions). Returning paths computed in such network segments in the form of
RSVP-TE ERO signaling objects, network paths are ready to be immediately signaled
(requiring no additional processing) when returned.

Implementing this functionality, very little processing overhead was observed. Although
the software implementation was run in a volatile environment (i.e. on virtual machines),
the implemented RCE (compare PCE) was quite responsive to client requests. Enhancing
this RCE to be stateful, instantaneous client access of pre-computed paths will also be
possible. Based upon the theoretical network overhead in bytes, the flooding effect
introduced by OSPF-TE could, in some cases, become an issue. On the contrary, as the
performance of networking components will most likely continue to improve, this effect
will decrease. In the future, the need for efficient and reliable end-to-end service
provisioning in multi-layered networks will also very likely increase. Embracing new
technology, to provide service provisioning with GMPLS appears to be an efficient way of
accomplishing this.

7.1 Future work

Some logical follow-up work related to the work seen in this thesis include (1) further
analysis of the extended GMPLS routing process, (2) a comparison of CSPF algorithms in
a PCE, and (3) a physical network implementation of the candidate solution. Analyzing the
extended GMPLS routing process, placement and amount of network information could be
evaluated. In a comparison of CSPF algorithms, other algorithms performing the same
amount of work, or less, could be implemented and analyzed. Implementing the candidate
solution in a physical network, the GMPLS routing process must be interfaced to physical
networking components. In addition, the GMPLS signaling process could be extended to
support the proposed standardization of the wavelength label format (see section 4.1.3).

Even further, the introduced simplifications could be addressed as future work. This would
include examining reverse links (for bidirectionality), extending the VTY command scopes
(to that of other command nodes), and adding support for negative additive constraints (the
constraints that can be compensated for). In addition, another element of future work will
be to request Internet Assigned Numbers Authority (IANA) assignment of sub-TLV type
numbers and specific field values (that is, officially publish these sub-TLVs).

42

References

[1] Adrian Farrel and Igor Bryskin, GMPLS: Architecture and Applications, Morgan
Kaufmann (Elsevier), San Franscisco, 2005, ISBN: 0-12-088422-4.

[2] D. Awduche, J. Malcolm, J. Agogbua, M. O'Dell, and J. McManus, Requirements
for Traffic Engineering over MPLS, IETF Request for Comments 2702, September
1999. [www]: <http://www.ietf.org/rfc/rfc2702.txt>. Last access on 070830.

[3] E. Rosen, A. Viswanathan, and R. Callon, Multiprotocol Label Switching
Architecture, IETF Request for Comments 3031, January 2001. [www]:
<http://www.ietf.org/rfc/rfc3031.txt>. Last access on 070830.

[4] E. Mannie, Generalized Multi-Protocol Label Switching (GMPLS) Architecture,
IETF Request for Comments 3945, October 2004. [www]:
<http://www.ietf.org/rfc/rfc3945.txt>. Last access on 070830.

[5] J. Moy, OSPF Version 2, IETF Request for Comments 2328, April 1998. [www]:
<http://www.ietf.org/rfc/rfc2328.txt>. Last access on 070830.

[6] D. Katz, K. Kompella, and D. Yeung, Traffic Engineering (TE) Extensions to
OSPF Version 2, IETF Request for Comments 3630, September 2003. [www]:
<http://www.ietf.org/rfc/rfc3630.txt>. Last access on 070830.

[7] R. Braden, L. Zhang, S. Berson, S. Herzog, and S. Jamin, Resource ReSerVation
Protocol (RSVP) - Version 1 Functional Specification, IETF Request for
Comments 2205, September 1997. [www]: <http://www.ietf.org/rfc/rfc2205.txt>.
Last access on 070830.

[8] D. Awduche, L. Berger, D. Gan, T. Li, V. Srinivasan, and G. Swallow, RSVP-TE:
Extensions to RSVP for LSP Tunnels, IETF Request for Comments 3209,
December 2001. [www]: <http://www.ietf.org/rfc/rfc3209.txt>. Last access on
070830.

[9] K. Kompella and Y. Rekhter, Routing Extensions in Support of Generalized Multi-
Protocol Label Switching (GMPLS), IETF Request for Comments 4202, October
2005. [www]: <http://www.ietf.org/rfc/rfc4202.txt>. Last access on 070830.

[10] K. Kompella and Y. Rekhter, OSPF Extensions in Support of Generalized Multi-
Protocol Label Switching (GMPLS), IETF Request for Comments 4203, October
2005. [www]: <http://www.ietf.org/rfc/rfc4203.txt>. Last access on 070830.

[11] L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Functional Description, IETF Request for Comments 3471, January 2003. [www]:
<http://www.ietf.org/rfc/rfc3471.txt>. Last access on 070830.

43

http://www.ietf.org/rfc/rfc3471.txt
http://www.ietf.org/rfc/rfc3471.txt
http://www.ietf.org/rfc/rfc3471.txt
http://www.ietf.org/rfc/rfc4203.txt
http://www.ietf.org/rfc/rfc4203.txt
http://www.ietf.org/rfc/rfc4203.txt
http://www.ietf.org/rfc/rfc4202.txt
http://www.ietf.org/rfc/rfc4202.txt
http://www.ietf.org/rfc/rfc4202.txt
http://www.ietf.org/rfc/rfc3209.txt
http://www.ietf.org/rfc/rfc3209.txt
http://www.ietf.org/rfc/rfc3209.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc2205.txt
http://www.ietf.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc3630.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc2328.txt
http://www.ietf.org/rfc/rfc3945.txt
http://www.ietf.org/rfc/rfc3945.txt
http://www.ietf.org/rfc/rfc3945.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc3031.txt
http://www.ietf.org/rfc/rfc2702.txt
http://www.ietf.org/rfc/rfc2702.txt
http://www.ietf.org/rfc/rfc2702.txt

[12] L. Berger, Generalized Multi-Protocol Label Switching (GMPLS) Signaling
Resource ReserVation Protocol-Traffic Engineering (RSVP-TE) Extensions, IETF
Request for Comments 3473, January 2003. [www]:
<http://www.ietf.org/rfc/rfc3473.txt>. Last access on 070830.

[13] A. Farrel, J.-P. Vasseur, and J. Ash, A Path Computation Element (PCE)-Based
Architecture, IETF Request for Comments 4655, August 2006. [www]:
<http://www.ietf.org/rfc/rfc4655.txt>. Last access on 070830.

[14] G. Bernstein and Y. Lee, Applicability of GMPLS and PCE to Wavelength
Switched Optical Networks, IETF Internet Draft, June 25, 2007. [www]:
<http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-
00.txt>. Last access on 070830.

[15] T. Otani, H. Guo, K. Miyazaki, and D. Caviglia, Generalized Labels of
Lambda-Switching Capable Label Switching Routers (LSR), IETF Internet Draft,
June 2007. [www]: <http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-
lambda-labels-00.txt>. Last access on 070830.

[16] ITU-T Recommendation G.694.1, Spectral grids for WDM applications: DWDM
frequency grid, June 2002. [www]: <http://www.itu.int/rec/T-REC-G.694.1-
200206-I/en>. Last access on 071120.

[17] ITU-T Recommendation G.694.2, Spectral grids for WDM applications: CWDM

wavelength grid, December 2003. [www]: <http://www.itu.int/rec/T-REC-G.694.2-
200312-I/en>. Last access on 071120.

[18] W. Imajuku, Y. Sone, I. Nishioka, and S. Seno, Routing Extensions to Support
Network Elements with Switching Constraint, IETF Internet Draft, July 2007.
[www]: <http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-
constraint-02.txt>. Last access on 070830.

[19] J. Strand and A. Chiu, Impairments and Other Constraints on Optical Layer
Routing, IETF Request for Comments 4054, May 2005. [www]:
<http://www.ietf.org/rfc/rfc4054.txt>. Last access on 070830.

[20] S. Reinhold, GMPLS for optical network segments (working title), work in
progress (M.Sc. thesis), 2007, Department of Communication Systems (COS),
Royal Institute of Technology, Stockholm, Sweden.

[21] D. Farinacci, T. Li, S. Hanks, D. Meyer, and P. Traina, Generic Routing
Encapsulation (GRE), IETF Request for Comments 2784, March 2000. [www]:
<http://www.ietf.org/rfc/rfc2784.txt>. Last access on 071006.

44

http://www.ietf.org/rfc/rfc4054.txt
http://www.ietf.org/rfc/rfc4054.txt
http://www.ietf.org/rfc/rfc4054.txt
http://www.ietf.org/rfc/rfc4054.txt
http://www.ietf.org/rfc/rfc4054.txt
http://www.ietf.org/rfc/rfc4054.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://tools.ietf.org/wg/ccamp/draft-imajuku-ccamp-rtg-switching-constraint-02.txt
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.2-200312-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://www.itu.int/rec/T-REC-G.694.1-200206-I/en
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-otani-ccamp-gmpls-lambda-labels-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://tools.ietf.org/wg/ccamp/draft-bernstein-ccamp-wavelength-switched-00.txt
http://www.ietf.org/rfc/rfc4655.txt
http://www.ietf.org/rfc/rfc4655.txt
http://www.ietf.org/rfc/rfc4655.txt
http://www.ietf.org/rfc/rfc3473.txt
http://www.ietf.org/rfc/rfc3473.txt
http://www.ietf.org/rfc/rfc3473.txt

Appendix A: Abbreviations and acronyms

AS Autonomous System
ASE Amplifier Spontaneous Emission
BER Bit Error Rate
BFS Breadth First Search
CSPF Constrained Shortest Path First
CR-LDP Constraint-based Routing-Label Distribution Protocol
CWDM Coarse Wavelength Division Multiplexing
DWDM Dense Wavelength Division Multiplexing
ERO Explicit Route Object
FEC Forwarding Equivalence Class
FIFO First-In-First-Out
FSC Fiber Switching Capable
G-PID Generalized Payload-ID
GLSR Generalized Label Switching Router
GMPLS Generalized Multi-Protocol Label Switching
GRE Generic Routing Encapsulation
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IS-IS Intermediate System to Intermediate System
IP Internet Protocol
KSP K Shortest Paths
L2SC Layer-2 Switching Capable
LIFO Last-In-First-Out
LMP Link Management Protocol
LMP-WDM Link Management Protocol-Wavelength Division Multiplexing
LSC Lambda Switching Capable
LSA Link State Advertisement
LSP Label Switched Path
LSR Label Switching Router
MLCP Multi-Layer Control Plane
MPLS Multi-Protocol Label Switching
NARB Network Aware Resource Broker
OADM Optical Add-Drop Multiplexer
OEO Optical-Electronic-Optical
OOO Optical-Optical-Optical
OSNR Optical Signal-to-Noise Ratio
OSPF Open Shortest Path First
OSPF-TE Open Shortest Path First-Traffic Engineering
PCC Path Computation Client
PCE Path Computation Element
PMD Polarization Mode Dispersion
PSC Packet Switching Capable
QoS Quality of Service
RCE Resource Computation Engine

45

RFC Request For Comments
ROADM Reconfigurable Optical Add-Drop Multiplexer
RSVP Resource ReSerVation Protocol
RSVP-TE Resource ReSerVation Protocol-Traffic Engineering
SPF Shortest Path First
TED Traffic Engineering Database
TLV Type-Length-Value
TDM Time-Division Multiplexing
TE Traffic Engineering
VLSR Virtual Label Switching Router
VTY Virtual TeletYpe
WDM Wavelength Division Multiplexing

46

Appendix B: Table of OSPF-TE VTY commands

Table B.1 holds the OSPF-TE VTY commands extending the set of Zebra OSPF daemon
commands. These VTY commands can be given in the OSPF_TE_IF_NODE command
node scope, therefore they can be used in an OSPF daemon configuration file.

Command Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6 Resulting action in DB

wavegrid

new
dwdm cs [GHz] freq. [GHz] grid size bw [B/s] creates a dwdm wavegrid

cwdm cs [nm] λ [nm] grid size bw [B/s] creates a cwdm wavegrid

delete
dwdm - - - - deletes a dwdm wavegrid

cwdm - - - - deletes a cwdm wavegrid

set
dwdm cs [GHz] freq. [GHz] - - sets a frequency in wavegrid

cwdm cs [nm] λ [nm] - - sets a wavelength in wavegrid

unset
dwdm cs [GHz] freq. [GHz] - - unsets a frequency in wavegrid

cwdm cs [nm] λ [nm] - - unsets a wavelength in wavegrid

unselectable
add IPv4

address - - - - adds unselectable interface

delete IPv4
address - - - - deletes unselectable interface

constraint
add 8-bit

code
24-bit
value - - - adds user-defined constraint

delete 8-bit
code

24-bit
value - - - deletes user-defined constraint

Table B.1: OSPF-TE VTY commands.

47

Appendix C: Table of DRAGON software changes

Table C.1 holds the DRAGON (i.e. Zebra OSPF daemon and RCE) software changes. For
each created or modified file, the changes and their importance is indicated.

File Changes Importance

$OSPF/zebra/ospfd/ospf_te_lsa.h added support for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te_lsa.c added support for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te.h defined structures for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te.c added support for experimental sub-TLVs,
defined and installed VTY commands critical

$NARB/rce/rce_lsa.hh added defines for experimental sub-TLVs and
user-defined constraints moderate

$NARB/rce/rce_lsa.cc added support for adding information carried
by experimental sub-TLVs to links in the TED critical

$NARB/rce/rce_lsp.hh added define for path computation option moderate

$NARB/rce/rce_lsp.cc added support for loading path requirements
and triggering path computation event moderate

$NARB/rce/resource.hh added support for adding information carried
by experimental sub-TLVs to links in the TED critical

$NARB/rce/resource.cc added support for adding information carried
by experimental sub-TLVs to links in the TED critical

$NARB/rce/path_req.hh defined a class representing path requirements
appended to path computation request, new file critical

$NARB/rce/path_req.cc defined a class representing path requirements
appended to path computation request, new file critical

$NARB/rce/pcen_bfs.hh defined classes abstracting a path computation
event, added custom sort class, new file critical

$NARB/rce/pcen_bfs.cc defined classes abstracting a path computation
event, added custom sort class, new file critical

$NARB/rce/rce_test.cc added support for requesting path computation
events and parsing responses from the RCE moderate

Table C.1: DRAGON software changes. Here, $OSPF maps to the location of the
dragon-sw package while $NARB maps to the location of the narb-sw package.

48

Appendix D: A RCE stack and heap profile

Figure D.1 shows a RCE stack and heap profile. This profile contains the total amount of
spacetime consumed by a RCE process which has sequentially processed and returned
1000 client requests (for a path between VLSR1 and VLSR7).

49

Figure D.1: The RCE stack and heap profile. Stack spacetime is shown in brown,
heap spacetime allocated for candidate paths is shown in purple.

www.kth.se

COS/CCS 2007-25

	Abstract
	Acknowledgments
	Table of Contents
	List of Figures
	List of Tables
	1	Introduction
	1.1	Objectives
	1.2	Thesis outline

	2	Introduction to GMPLS
	2.1	Background
	2.2	Architectural components
	2.2.1	Control plane extensions
	2.2.2	Generalized labels
	2.2.3	Bidirectional data paths
	2.2.4	Hierarchies
	2.2.5	Protocol suite

	2.3	Routing with OSPF-TE
	2.3.1	Network topology dissemination
	2.3.2	Type-Length-Value triplets

	2.4	Signaling with RSVP-TE
	2.4.1	Installing LSP state
	2.4.2	Removing LSP state
	2.4.3	Error handling
	2.4.4	Explicit routes

	3	Constraint-based path computation
	3.1	Introduction to the PCE
	3.1.1	Architectural models
	3.1.2	Operational modes

	3.2	Constraint-based algorithms
	3.2.1	Functional overview
	3.2.2	Proposed algorithms

	4	Optical switching constraints
	4.1	Wavelength switching
	4.1.1	Routing implications
	4.1.2	Full conversion capability
	4.1.3	Limited or no conversion capability

	4.2	Blocking switch architecture
	4.3	Impairments

	5	Implementation
	5.1	Virtual test-bed design
	5.1.1	Virtual machines
	5.1.2	Control plane configuration
	5.1.3	Data plane configuration

	5.2	GMPLS and PCE extensions
	5.2.1	Wavelength availability
	5.2.2	Interface selectivity
	5.2.3	User-defined constraints
	5.2.4	Candidate CSPF algorithm

	5.3	Software implementation
	5.3.1	Open source software suite
	5.3.2	Implemented Zebra extensions
	5.3.3	Implemented RCE extensions

	6	Verification and analysis
	6.1	Test-bed verification
	6.2	Software implementation verification
	6.3	Software implementation performance
	6.3.1	Theoretical network overhead
	6.3.2	Time efficiency
	6.3.3	Space efficiency

	7	Conclusion and future work
	7.1	Future work

	References
	Appendix A: Abbreviations and acronyms
	Appendix B: Table of OSPF-TE VTY commands
	Appendix C: Table of DRAGON software changes
	Appendix D: A RCE stack and heap profile

