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Abstract

In recent years, IP based end-to-end services have grown in popularity. Efficiently meeting 
the user demand for such services, different techniques for traffic engineering transport 
networks have been developed. One such technique, currently being developed for multi-
layered networks, is Generalized Multi-Protocol Label Switching (GMPLS). GMPLS is a 
necessary networking technique because provisioning end-to-end services will today, and 
in the foreseeable future, very likely require the co-operation of multiple network layers. 
Here,  the  readiness  of  GMPLS  for  optical  networks  is  investigated  by  reviewing  the 
current support for optical  networking components in the GMPLS standard documents. 
Based on this  investigation,  a  candidate  solution for  routing and constraint-based path 
computation  in  optical  network  segments  has  been  derived.  This  candidate  solution  is 
shown to efficiently  handle the  additional  attributes  and constraints  inherent  in  optical 
networking components.

Sammanfattning

De  senaste  åren  har  IP-baserade  tjänster  ökat  i  popularitet.  För  att  effektivt  möta  de 
användarkrav som ställs på sådana tjänster har olika tekniker för att styra transportnätverk 
utvecklats.  En sådan teknik, nu under utveckling för multi-lagrade nätverk, är GMPLS. 
GMPLS är en nödvändig nätverksteknik eftersom tillhandahållandet av sluttjänster mellan 
olika användare idag, och inom en överskådlig framtid, mycket sannolikt kommer att kräva 
samarbete mellan flera nätverkslager. Här undersöks GMPLS färdighet i optiska nätverk 
genom  att  se  över  det  nuvarande  stödet  för  optiska  nätverkskomponenter  i  GMPLS 
standarddokument. Baserat på denna undersökning har en kandidatlösning för routing och 
begränsad  vägberäkning  i  optiska  nätverkssegment  tagits  fram.  Denna  kandidatlösning 
visas  effektivt  hantera  de  ytterligare  attribut  och  restriktioner  som  existerar  i  optiska 
nätverkskomponenter.

Keywords:  GMPLS, multi-layer,  traffic engineering, service provisioning, intra-domain 
routing, OSPF-TE, RSVP-TE, path computation, PCE, PCC, optical constraints, optical  
impairments, wavelength continuity, blocking switch architecture
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1 Introduction

As the Internet has experienced a near exponential increase in traffic since the mid 1990s, 
the need for controlling traffic flows in core transport networks has increased. Controlling 
traffic flows changes the operating model from the best-effort dynamic routing to what is 
commonly  referred  to  as  traffic  engineering.  To enable  rapid  service  provisioning and 
assure that suitable Quality of Service (QoS) is experienced by end users, service providers 
need efficient traffic engineering mechanisms.

Meeting  this  demand,  a  standardization  process  for  Multi-Protocol  Label  Switching 
(MPLS) began within the Internet Engineering Task Force (IETF). MPLS was one of the 
early IETF initiatives to enable Traffic Engineering (TE) and offered many interesting new 
features, such as automated management of virtual paths. Although originally thought to 
address performance issues associated with datagram forwarding, MPLS instead proved 
valuable for automated service provisioning of both packet  and frame based networks. 
However, due to the switching limitations inherent in MPLS, traffic engineering in such 
networks  is  usually  restricted  to  the  network  edges;  where  data  is  packet  or  frame 
switched.

As a direct consequence, Generalized Multi-Protocol Label Switching (GMPLS) has been 
invented  to  introduce  MPLS on multiple  layers.  GMPLS is  being  deployed  to  enable 
automated  traffic  control  in  multi-layer  transport  networks.  It  defines  architectural 
components as well as a protocol suite. In practice, what GMPLS really is, is a framework 
for  software  based  interaction  between  network  elements.  Because  GMPLS  is  being 
designed  for  multiple  layers,  traffic  engineering  of  end-to-end  services  utilizing  core 
transport networks that are not packet or frame switched can be enabled (e.g. time division 
or optical networks).

One of the most pressing issues for GMPLS today is to efficiently support optical network 
segments. The main motivation for this is clear; many currently deployed IP user networks 
are connected via optical  backbone networks. Increasingly,  optical  equipment's  obvious 
advantage when connecting user sites with each other is the achievable bandwidths far 
surpassing other transport media. Combining many wavelengths into a single optical fiber, 
using Wavelength Division Multiplexing (WDM), offers additional possibilities for traffic 
engineering a transport network.

GMPLS has currently, however, little standardized support for optical network segments. 
This lack of support is manifested in that such network segments still can not be efficiently 
traffic  engineered.  Inherently,  this  is  because optical  network segments  are  exposed to 
physical impairments and other constraints not visible to higher layers.  As a result,  the 
GMPLS control plane and the generic Path Computation Element (PCE) it utilizes for path 
computations must be extended to provide  additional functionality.  This is necessary to 
enable efficient provisioning of autonomous end-to-end services with optical core transport 
networks.
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1.1 Objectives

This  thesis  will  focus  on  GMPLS  applicability  in  optical  network  segments.  More 
specifically, the goal is to provide a candidate solution for enabling the GMPLS routing 
process and a PCE for such network segments. The candidate solution will be implemented 
as  an  extension  to  an  open  source  software  suite.  Verification  will  later  be  done  by 
deploying the software suite in a GMPLS network comprised of virtual machines or using 
a physical network test-bed.

The following specific objectives will be addressed throughout this thesis:

• Investigation of constraints imposed by optical network segments
• Determination of the need for GMPLS and PCE extensions
• Derivation of a candidate solution for optical path computation in GMPLS
• Software implementation of the candidate solution
• Functional verification and analysis of the software implementation.

After  the  thesis  has  been  completed,  one  of  the  deliverables  will  be  a  solution  for 
computing viable network paths in optical network segments. In this work, most optical 
impairments and constraints should have been addressed.

1.2 Thesis outline

The thesis begins with a general introduction to the area (chapter 1). It is then divided into 
two parts;  a  literature  study (chapters  2,  3,  and  4)  and a  description  of  the  candidate 
solution, its implementation, and evaluation (chapters 5 and 6). The thesis will conclude by 
summarizing the major results and limitations and present some future work (chapter 7). 
Useful material which supports the thesis, but is outside the main flow of the thesis will be 
presented in the appendixes.

The literature study consists of three chapters. The first of these chapters introduces the 
reader to the GMPLS architecture and protocol suite. The second presents the PCE and 
different approaches to path computation in label switched networks. To close, the third of 
these chapters examines  vital optical switching constraints. An excellent reference to the 
GMPLS architecture and its applications is the book written by Farrel and Bryskin [1].

Chapter 5 describes and explains the candidate solution and its implementation. In this 
chapter, a virtual test-bed design, derived GMPLS and PCE extensions, and the software 
implementation are detailed and motivated. Chapter 6 provides verification and analysis of 
the  software  implementation.  Here,  different  aspects  of  the  software  implementation 
functionality and efficiency are evaluated.
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2 Introduction to GMPLS

This chapter introduces the GMPLS framework and its building blocks. In addition, a brief 
background of traffic engineering in MPLS networks is given.

2.1 Background

Traffic  Engineering  (TE)  is  a  set  of  scientific  principles  encompassing  control, 
measurement, modeling, and characterization of Internet traffic. As described in RFC 2702 
[2],  the  goal  of  traffic  engineering  is  to  optimize  network  performance  by  applying 
different  networking  techniques.  In  many  large  Autonomous  Systems  (ASs),  traffic 
engineering  has  become  an  indispensable  asset  due  to  the  high  cost  of  networking 
components and the competitive nature of provisioning Internet services. For MPLS, the 
TE principles of most interest are control and measurement.

The  primary  TE  performance  objectives  can  be  divided  into  those  which  are  traffic 
oriented or resource oriented. Traffic oriented performance objectives concern enhancing 
the QoS of traffic streams. These performance objectives are visible to network users and 
might include minimization of end-to-end delay or packet loss. Less visible to network 
users,  resource  oriented  objectives  concern  efficiently  utilizing  network  resources. 
Resource oriented performance objectives aim to ensure that no network resource is either 
over utilized or underutilized. Meeting such performance objectives allows for efficient 
utilization of deployed networking equipment.

The MPLS architecture, as described in RFC 3031 [3], implements the TE principles by 
assigning  network  traffic  to  Forwarding  Equivalence  Classes  (FECs).  FECs  classify 
network traffic  (e.g.  depending on destination addresses and desired QoS) that  will  be 
forwarded in the same manner. Because FECs are mapped to contiguous sequences of next 
hops, assigning network traffic to a specific FEC will deterministically establish a path 
through  the  MPLS  network.  Since  all  information  needed  to  forward  network  traffic 
belonging to a specific FEC has also been installed into the MPLS network, subsequent 
hops need not analyze the network traffic further. This is a consequence of network traffic 
being assigned to a FEC, and forwarded accordingly, as it enters the MPLS network.

Using MPLS terminology,  assignment to FECs is  encoded using labels.  The labels are 
link-local  random 20-bit  values inserted  as “shim” headers.  Based on these labels,  the 
network traffic belonging to a specific FEC is forwarded throughout the MPLS network 
domain. More specifically, ingoing label-to-interface pairs are mapped to outgoing label-
to-interface pairs  to  establish routes  through MPLS enabled network routers;  these are 
called Label Switching Routers (LSRs). By installing mappings into a set of contiguous 
LSRs, a switchable trail of labels is created, called a Label Switched Path (LSP). Given 
that a LSP has been established between two domain edge LSRs, network traffic can then 
be forwarded through the MPLS network by (1) inserting a label at the incoming edge LSR 
(2) switching the traffic based on that label within the MPLS domain, and (3) removing the 
label at the outgoing edge LSR and forwarding the network traffic as usual (see figure 2.1).

3



In order to manage a traffic engineered MPLS network, LSRs implement a control plane. 
In  this  control  plane,  connected  LSRs  can  exchange  control  information  via  extended 
signaling and routing protocols. More specifically,  LSRs can request LSP establishment 
within  the  controlled  network  domain  and  distribute  network  topology  information. 
Depending on how the MPLS network is managed, state might be altered either manually 
(e.g.  via  manual  operation)  or  automatically.  From now on,  a  LSR implementing  the 
GMPLS control plane will be referred to as a Generalized LSR (GLSR).

2.2 Architectural components

This section will  explain the main architectural  components  that comprise the GMPLS 
framework as  described in  RFC 3945 [4].  Because GMPLS is  merely a  set  of  MPLS 
extensions, only components specifically extended by GMPLS are presented.

2.2.1 Control plane extensions

Commonly referred  to as  the Multi-Layer  Control  Plane (MLCP),  the GMPLS control 
plane  is  extended  to  support  multiple  switching  layers.  In  GMPLS,  there  is  a  clear 
separation between the MLCP and the data plane (see figure 2.2). Unlike control signaling 
in  MPLS,  the  MLCP  can  manage  the  GMPLS  network  out-of-band;  hence  control 
signaling need not follow the forwarded data. This means that the MLCP can continue to 
function although there is a disruption in the data plane and vice versa. What is more, this 
allows for separate control channels to be used for the MLCP. By deploying the MLCP on 
separate control channels, the other channels are completely dedicated to forwarding data.
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Figure 2.1: A LSP in an MPLS network. For this LSP, 
LSR B never participates in data forwarding.

Figure 2.2: Separating the control and data planes. Dashed lines 
indicate the MLCP, while the solid lines identify data links.



In  GMPLS,  the  MLCP utilizes  routing  and  signaling  protocols  to  traffic  engineer  the 
network in which it is based. These protocols are extensions to well-known protocols of 
the TCP/IP protocol suite. As such, the MLCP implements IPv4 or IPv6 addressing. This 
also applies to the data plane, but in cases where addressing is not feasible, or convenient, 
unnumbered links (i.e. links without network addresses) are supported. MLCP addresses 
are not required to be globally unique (however global uniqueness is required to allow for 
remote management). However, addressing in the MLCP is separated from that in the data 
plane. Essentially this is how the MLCP is separated from the data plane.

GMPLS supports  deploying  the  MLCP according  to  the  overlay,  peer  (integrated),  or 
augmented (hybrid) models. In the overlay model, the network layers are clearly separated. 
This means that in order for a client layer  to utilize some specific server layer  it must 
request that service via a network interface. Using the peer model, all network layers are 
peers.  As  such,  they  have  full  visibility  of  each  other  and  client  layers  can  signal 
unhindered through serving layers. Thus, this model is very suitable for smoothly installing 
end-to-end services. The augmented model, in turn, is a hybrid model allowing for limited 
peering  according  to  some  implemented  policy.  By  supporting  these  service  models, 
GMPLS seems very suitable for independent control of multiple network layers.

2.2.2 Generalized labels

The labels in GMPLS have been generalized from those used in MPLS. Generalized labels 
are  tightly  coupled  to  network  resources.  In  contrast  to  MPLS  where  labels  merely 
represent network traffic, generalized labels represent network resources. For example, a 
generalized label on an optical link could identify a wavelength or fiber, while on a packet 
switched link it would simply identify network traffic, just as in MPLS. In the lower layers, 
generalized labels are “virtual” meaning that they are not inserted into the network traffic, 
but instead implied by the network resource being used (e.g. wavelength or fiber). This is 
necessary  since  neither  packets  nor  frames  are  recognized  at  the  lowest  layers  which 
GMPLS supports. Generalizing the label format, the conventional MPLS label has been 
extended to 32 bits (see figure 2.3).

The interpretation of a generalized label is link-local and depends on the encoding of the 
interfaces (or resource) it labels. GMPLS defines labels for a specific set of interface types. 
More precisely, labeling of interfaces capable of fiber switching (FSC), lambda switching 
(LSC), time-division multiplexing (TDM), layer-2 switching (L2SC), and packet switching 
(PSC) are currently defined.

5
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represented they are right-justified within the label.



2.2.3 Bidirectional data paths

The core activity of GMPLS is to establish TE data paths in enabled networks. A data path 
between two GLSRs is abstracted by the LSP. Thus, a LSP consists of consecutive labels 
which, when swapped in a specific order, carries data from one point in a label switched 
network to another. In short, a LSP is represented by the distributed state needed to send 
data along a specifically traffic engineered route.

Because LSPs might differ in link composition, an entity requesting labels for a LSP needs 
to  specify  three  major  parameters:  switching  type,  encoding  type,  and  Generalized 
Payload-ID (G-PID). Switching type defines how an interface switches data. Because this 
is always expected to be known, a switching type needs only be specified for an interface 
with  multiple  switching  capabilities.  Encoding  type  is  needed  to  specify  the  specific 
encoding of the data associated with the LSP. For example, data associated with an L2SC 
interface might be encoded as Ethernet. The G-PID finally defines the client layer of the 
LSP. This parameter is necessary to let the LSP ingress and egress identify what client 
layer utilizes the LSP.

In GMPLS, bidirectional LSPs are considered the default (see figure 2.4). Unlike MPLS, 
bidirectional data paths can be established without signaling for two unidirectional LSPs. 
Bidirectional  LSPs  are  established  through  simultaneous  label  distribution  in  both 
directions.  This  halves the signaling overhead,  albeit  increasing the probability of race 
conditions  for  network  resources.  Such  resource  race  conditions  will  occur  when  two 
bidirectional  LSPs  are  simultaneously  signaled  in  reverse  directions;  decreasing  the 
likelihood of successful installation of traffic engineered data flows. How GLSRs signal 
bidirectional LSPs is detailed in later sections (see section 2.4).

2.2.4 Hierarchies

Since generalized labels  are  non-hierarchical,  they do not  stack.  This  is  because some 
supported switching media can not  stack.  Given an optical  link, for example,  it  is  not 
possible  to  encapsulate  a  wavelength  in  another  and then deterministically  get  it  back 
again.  In  GMPLS,  tunneling  data  through  different  layers  is  therefore  based  on  LSP 
nesting (i.e. encapsulating LSPs within LSPs). LSPs can be nested either within or between 
network layers (i.e. switching types),  but nesting is always based on some sort of LSP 
hierarchy. By exploiting LSP hierarchies, multiple layers can be connected and data plane 
scalability increased (e.g. by establishing forwarding adjacencies).
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Ordering  LSPs  hierarchically  within  a  network  layer  requires  that  LSP  encodings 
themselves  are  hierarchical.  When  hierarchically  ordering  layers  there  is,  however,  a 
natural  LSP hierarchy based  on  interface  types.  At  the  top  of  this  hierarchy  are  FSC 
interfaces followed, in decreasing order, by LSC, TDM, L2SC, and PSC interfaces. This 
order is because wavelengths can be encapsulated within a fiber, time slots in wavelengths, 
data link layer frames in time slots, and finally network layer packets in data link layer 
frames. As such, an LSP starting and ending on PSC interfaces can be nested within higher 
ordered LSPs.

2.2.5 Protocol suite

The MLCP can make use of several signaling and routing protocols. These protocols can 
be divided into three distinct sets based on their functionality: routing, signaling, and link 
management.

Routing protocols must be implemented by the MLCP to disseminate the network topology 
and its  TE attributes.  For  this  purpose,  Open Shortest  Path  First  (OSPF)  [5]  with TE 
extensions  [6]  (OSPF-TE)  or  Intermediate  System  to  Intermediate  System  (IS-IS)  are 
currently defined. To account for multiple layers,  however, GMPLS needs to add some 
minor extensions to these existing protocols. The GMPLS routing process using OSPF-TE 
is explained in the following sections (see section 2.3).

The  signaling  protocols  are  concerned  with  establishing,  maintaining  and  removing 
network state (i.e. setting up and tearing down LSPs). For signaling, GMPLS can use either 
Resource  ReSerVation  Protocol  (RSVP)  [7]  with  TE  extensions  [8]  (RSVP-TE)  or 
Constraint-based  Routing-Label  Distribution  Protocol  (CR-LDP).  Again,  supporting 
multiple layers requires some extensions to existing protocols. Basic GMPLS signaling is 
explained in the following sections (see section 2.4).

For link management, a new protocol called the Link Management Protocol (LMP) has 
been defined. LMP can be used by GMPLS network elements to discover and monitor 
their network links (i.e. their connectivity). Since network links must always be advertised 
accurately,  this is a vital part of GMPLS. To enable link discovery between an optical 
switch and an optical line system, LMP has been further extended, creating LMP-WDM. 
This  extension  can  provide  the  MLCP with  useful  information  about  optical  network 
segments. Nevertheless, since this is out of the scope of this thesis, neither LMP nor LMP-
WDM will be considered further in this thesis.

7



2.3 Routing with OSPF-TE

This section describes the GMPLS routing process as defined in RFC 4202  [9].  Here, 
OSPF-TE and its GMPLS extensions [10] are considered in the context of routing.

2.3.1 Network topology dissemination

To enable automated configuration of the controlled network, GMPLS defines an intra-
domain routing process. Via this routing process the network topology and its TE attributes 
are disseminated within the traffic engineered domain. This routing process is implemented 
using routing protocols specified for the MLCP. However, this routing process is not used 
for routing user traffic, but only for distributing information in the MLCP. Extensions to 
existing protocols necessary for this routing process were therefore created.

Essentially,  with  OSPF-TE,  participating  GLSRs  first  establish  routing  adjacencies  by 
exchanging hello messages. After routing adjacencies have been established, the GLSRs 
then  synchronize  their  link  state  databases.  This  is  done  by  exchanging  database 
description  packets.  The  database  description  packets  contain  at  least  one  database 
structure referred to as a Link State Advertisement (LSA). Different LSA types exist but 
all  share a common 20-byte header (see figure 2.5) and have a payload describing the 
advertised links. For GMPLS routing purposes, the primary operation is to flood LSAs 
throughout  the  MLCP  domain  by  appending  them  to  “link  state  update”  messages 
periodically sent between adjacent GLSRs. To avoid interference with any ordinary routing 
processes, a TE LSA is made opaque. Such an opaque LSA is a special type of LSA only 
processed by specific applications (e.g. the GMPLS routing process).

By extending the link state database with TE information, a Traffic Engineering Database 
(TED) is produced. From this TED, a network graph with traffic engineering content can 
be  computed.  Constructing  a  TE  network  graph  is  necessary  to  provide  input  for  the 
constraint-based algorithms subsequently used to compute network paths. Different ways 
of computing network paths are presented in the following chapter (see chapter 3).
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Figure 2.5: An opaque LSA header.



2.3.2 Type-Length-Value triplets

When flooding LSAs,  each OSPF routing message contains a common 24-byte  header 
which  is  used  to  forward  it.  This  routing  message  header  includes  information  about 
message type, addressing, and integrity. Within this header, LSAs are then encapsulated 
and specific  payloads appended to each LSA.  In order  to  enable  advertisement  of  TE 
attributes in opaque LSAs, the LSA payload consists of Type-Length-Value (TLV) triplets 
(see figure 2.6). These TLV triplets contain arbitrary data structures defined by two 2-byte 
fields: the “type” and “length” fields.

Using TLVs, router addresses and TE links can be expressed. In GMPLS, if an advertising 
router is reachable, a “router address”-TLV can be used to describe a network address at 
which this router (i.e. GLSR) can always be reached. In turn, the “link”-TLV can be used 
to abstract advertised TE links. Because several sub-TLVs have already been defined for 
the “link”-TLV, multiple TE attributes can be represented on each link. In fact, new link 
sub-TLVs  describing  additional  TE  information  (see  table  2.1)  are  the  only GMPLS 
extensions to OSPF-TE.

Sub-TLV name Type Length Value

Link Local/Remote Identifiers 11 8 bytes 2 x 4 bytes local/remote link identifiers

Link Protection Type 14 4 bytes 1 byte for link protection (3 bytes reserved)

Interface Switching Capability Descriptor 15 variable Minimum 36 bytes for ISCD information

Shared Risk Link Group 16 variable N x 4 bytes for link SRLG identification

Table 2.1: GMPLS specific sub-TLVs. These are all appended to the ”link”-TLV.
Length excludes “type” and “length” fields.
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Figure 2.6: The format of opaque LSAs which are flooded 
by the GMPLS routing process using OSPF-TE.



2.4 Signaling with RSVP-TE

This section describes the basics of GMPLS signaling as defined in RFC 3471 [11]. Here, 
RSVP-TE and its GMPLS extensions [12] are considered in the context of signaling.

Because RSVP-TE inherits its design from the RSVP protocol, it is based on distributing 
various  signaling  objects  (see  figure  2.7).  These  signaling  objects,  in  turn,  have  been 
grouped. These groups contain mandatory and optional signaling objects (e.g. installing 
LSP state requires a mandatory set of signaling objects). Encapsulating the groups with a 
common  header,  distinct  signaling  messages  are  created.  When  a  GLSR  receives  a 
signaling  message,  the  resident  objects  are  examined  and  interpreted  based  upon  the 
message type indicated by the common header.

Extending the RSVP-TE protocol for GMPLS was thus a matter of generalizing existing 
signaling objects,  including some new objects  (see  table  2.2),  and adding some minor 
signaling  enhancements  (e.g.  signaling  bidirectional  LSPs  and  rapid  notification). 
Considering the RSVP-TE protocol with GMPLS extensions for signaling, each signaling 
message contains a common 8-byte header. The common header defines the message type 
followed by the encapsulated objects. Encapsulated objects, in turn, are of variable length 
and contain a 4-byte header defining the object length, class, and type within class.

Object name Length Message Description

Generalized Label Request 4 bytes Path Describes the requested LSP

IF_ID RSVP_HOP variable Path/Resv Defines what interface to label

Generalized Label variable (4 bytes) Resv/ResvErr Downstream label

Upstream Label variable (4 bytes) Path/PathErr Upstream label

Label ERO 2 bits + label Path/Resv Explicit label control

Suggested Label variable (4 bytes) Path/PathErr Label suggestion

Label Set variable Path Label selection restriction

Table 2.2: Important GMPLS signaling objects. These are all specific to GMPLS.
Length excludes the object header.
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Figure 2.7: The conceptual RSVP message format. This RSVP 
message contains an arbitrary set of signaling objects.



Furthermore,  RSVP-TE  implies  downstream-on-demand label  distribution  (just  as  in 
RSVP). This means that upstream GLSRs request downstream GLSRs to select labels for 
the TE links connecting them. In this way, each GLSR acknowledges a request to install an 
LSP, forwards the request to  the next  downstream hop, and awaits  the response.  As a 
response  is  returned  upstream,  the  GLSR  can  install  a  cross-connection  (i.e.  state 
describing  ingoing  and  outgoing  label-to-interface  mappings  and  associated  network 
resources) for this LSP. Here, downstream is defined as the direction in which data would 
flow on an unidirectional LSP properly installed (that is, the direction from LSP ingress to 
LSP egress).

2.4.1 Installing LSP state

Establishing bidirectional  LSPs employing  RSVP-TE for signaling requires  full  sets  of 
Path and Resv messages to be exchanged between two GLSRs (see figure 2.8). Initially, a 
sender  GLSR (LSP ingress)  requests  a  LSP to  be  set  up  by sending  a  Path message 
downstream to the next hop. This Path message contains an UPSTREAM_LABEL object 
defining the label to use in the upstream direction, objects describing the data flow, and a 
GENERALIZED_LABEL_REQUEST object for requesting the LSP. If the Path message 
is successfully received, the next hop then reserves path state to enable correct signaling of 
returning Resv messages and saves the upstream label. The next hop then selects its own 
upstream label, creates state for the upstream direction, replaces the upstream label in the 
Path message and passes it on downstream to the next hop. This procedure is repeated until 
the next hop is the receiver GLSR (LSP egress). The LSP has now been established in the 
upstream direction,  but no state  has been saved in the downstream direction (i.e.  label 
distribution is downstream-on-demand). Consequently, the receiver GLSR now selects a 
downstream label and returns a  Resv message upstream. This  Resv message mimics the 
Path message,  but  inserts  a  GENERALIZED_LABEL  object  defining  the  selected 
downstream label.  If  the  Resv message is  received  successfully,  the  previous hop (the 
signaling direction has changed) then sets state for the downstream direction, replaces the 
downstream  label  with  its  own  selected  label  and  passes  the  Resv message  further 
upstream. This procedure is repeated until the sender GLSR successfully receives the Resv 
message corresponding to a dispatched  Path message. Now, the requested LSP has been 
fully established and is ready to tunnel data in both directions.
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Figure 2.8: Installing state for a bidirectional LSP.



2.4.2 Removing LSP state

RSVP-TE  is  a  soft-state  protocol.  This  means  that  it  continuously  sends  messages 
refreshing  timers  associated  with  installed  state.  Originally  designed  for  MPLS,  the 
“softness” is somewhat reduced in GMPLS, however timers are still implemented. LSP 
state removal can be triggered in two ways: when a timer expires in a GLSR or by some 
external mechanism (e.g. manual operator or management system).

To remove LSP state using RSVP-TE, PathTear or PathErr messages are dispatched (see 
figure 2.9). A PathTear message is dispatched downstream following the path of a  Path 
message, while a PathErr message is sent upstream following the path of a Resv message. 
As these messages are processed by GLSRs they immediately clear, or partially clear, the 
LSP  state.  This  enhancement  is  specific  to  GMPLS  and  enables  the  LSP  egress  and 
intermediate GLSRs to initiate LSP state removal. Using the PathErr message for clearing 
state, a flag introduced by GMPLS is set to indicate that path state is no longer valid (i.e. 
the Path_State_Removed flag). This means that GMPLS can tear down LSP state in both 
directions (both upstream and downstream).  Additionally,  GMPLS provides rapid error 
notification via the newly defined  Notify message.  The  Notify message can be used to 
inform an LSP ingress or egress of errors, enabling them to initiate state removal in the 
place of an intermediate GLSR. Although the  PathErr message is, strictly speaking, not 
needed, it can increase signaling efficiency by eliminating the need for notification.

2.4.3 Error handling

While the above description of the signaling procedures presumed that no errors occurred 
during  signaling,  this  is  unlikely  to  always  be  true.  Thus,  a  need  for  error  handling 
messages is implied. When errors occur,  PathErr or  ResvErr messages can therefore be 
signaled. A PathErr message indicates an error in processing a Path message and is sent 
upstream towards  the LSP ingress.  Similarly,  a  ResvErr message  indicates  an error  in 
processing a  Resv message and is  sent  downstream towards  the  LSP egress.  A GLSR 
receiving an error message may try to correct the error itself, if minor, or pass it further on.
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Figure 2.9: Two ways of removing LSP state.



2.4.4 Explicit routes

To traffic engineer specific routes, the EXPLICIT_ROUTE object (ERO, see figure 2.10) 
must be included in the Path and Resv messages exchanged during LSP state installation. 
When used in Path messages, the ERO describes the next and previous hop for any GLSR 
along the explicit route. Thus, when signaling paths explicitly using an ERO, path state is 
not needed to indicate a reverse route, since returning Resv messages can instead be routed 
based upon the ERO. The ERO might define order dependent hops (i.e. strict hops) or hops 
that need only be visited regardless of order (i.e. loose hops). To deterministically install 
an LSP in a GMPLS network, an ERO must only define strict hops.

While not specific to GMPLS, the ERO signaling object  has been extended to support 
explicit label control. This is done via the label ERO sub-object (see figure 2.11), which 
defines what labels to install on specific interfaces along an explicit route. Expressing the 
labels to install on an interface, one or more label ERO sub-objects (both upstream and 
downstream labels  may be specified) are inserted next to an ERO sub-object. This way, 
making use of the label ERO sub-object, a set of available GLSR interface labels could be 
selected and signaled. In GMPLS, signaling explicit routes with an ERO is considered the 
default way to signal the setup of an LSP.
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Figure 2.10: The EXPLICIT_ROUTE object (ERO). The figure 
includes the common 4-byte signaling object header.

Figure 2.11: The label ERO sub-object. The figure 
excludes hierarchically higher objects.



3 Constraint-based path computation

This chapter will present the application of path computation in GMPLS networks. Here, 
architectural examples and some proposed algorithms are given.

3.1 Introduction to the PCE

A Path Computation Element (PCE), as defined in RFC 4655 [13], is a generic abstraction 
for computing TE paths in label switched networks. How a PCE implements its functions 
is  not  defined.  However,  the  PCE framework defines  several  ways to  implement  path 
computation. The only responsibility of a PCE is to compute paths, not to signal them.

Path  computation  is  requested  when  a  Path  Computation  Client  (PCC)  actively  sends 
requests to a PCE describing the path it wants to have computed. The PCC, embodied by 
any network element interested in computing a network path (e.g. an edge GLSR), then 
awaits the PCE response. When a response is returned, the PCC can signal the returned 
path with relatively high assurance of successful setup; however, due to path contention no 
guarantees of success can ever be given. As such, a PCC and PCE interact using a request-
response model (see figure 3.1).

3.1.1 Architectural models

Several  architectural  models  have  been  defined  for  a  PCE.  Given  this,  PCEs  can  be 
modeled as either distributed or centralized; in combination with being either composite or 
external (meaning that there is a total of four model types). Since each model has its own 
implications, they each also have their own uses.

When distributing several PCEs throughout the network domain, a PCE can be deployed in 
the network elements potentially needing to issue requests (e.g. edge network elements). 
This would balance the computational load between deployed PCEs, but increase the risk 
for  path contention  (e.g.  if  multiple  paths  are computed simultaneously).  While  in  the 
centralized model, only a single PCE is deployed for the network domain resulting in a 
single  point  of  failure  possibly  prone  to  computational  bottlenecks  (when  many  PCC 
requests are issued simultaneously).
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Figure 3.1: PCC to PCE interaction.



A composite PCE is placed within a network element performing some other function (e.g. 
as a GLSR software upgrade). Conversely, an external PCE is implemented in a network 
element  dedicated  only  to path  computation.  Implementing  composite  PCEs  requires 
processing resources from hosting network elements. On the other hand, external PCEs 
may increase the network load and response latency since all PCCs are now remote, hence 
they must  use  network  bandwidth  to  issue  their  requests  (possibly  resulting  in  a  high 
network delay, see figure 3.2).

3.1.2 Operational modes

The PCE may also operate in different modes. However, the main operation is to apply a 
constraint-based algorithm to a network graph when computing a path. Which algorithm is 
applied is, as was earlier stated, not defined by the standard documents. Popular constraint-
based algorithms are described in the following section (see section 3.2).

Furthermore,  path computation  can be performed by a  single  or  multiple  PCEs.  Thus, 
several  PCEs could distribute  a  PCC request  between them, sharing the computational 
load. This need not be visible to a requesting PCC, but merely be an internal distribution of 
computational load. Nevertheless, if a single PCE is deployed (according to the centralized 
model), the use of a single PCE is naturally inferred (although it could be a multiprocessor 
node).

Finally, a PCE could be stateful or stateless. The stateful variant of these keeps track of all 
TE routes it has computed and returned. This means, in contrast to a stateless PCE, that not 
only the network state and available resources would be monitored, but also information 
about the allocated resources. Although being stateful would also increase computational 
overhead, compared to a stateless PCE, keeping state can potentially enable unsolicited 
PCE interaction. This is a very neat feature that, if the PCC to PCE communication would 
be extended, could mean that a PCE receiving a modified link advertisement could re-
compute effected paths and inform any effected PCC. Effectively, a PCE could preempt 
future path computation requests generated by PCCs experiencing errors in the data plane.
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Figure 3.2: Composite (left) and external (right) PCEs. 
Dashed lines indicate external communication.



3.2 Constraint-based algorithms

Farrel  and  Bryskin  describe  several  popular  constraint-based  algorithms  in  [1].  The 
purpose of path computation with constraint-based algorithms is to find network paths that 
meet given requirements and constraints. In this section, such algorithms are presented.

3.2.1 Functional overview

Computing paths in a network domain, a conventional path computation algorithm tries to 
find the shortest path between single or multiple network elements. This is done by, in 
different ways, operating on a network graph built from a TED. Some input is processed 
and a single or a set of paths is returned. Here, the term “shortest” refers to some sort of 
minimum  cost  and  is  represented  by  a  single  metric;  often  bandwidth.  Thus,  such 
algorithms are often called Shortest Path First (SPF) algorithms (see figure 3.3).

Sometimes considering only a single metric is not sufficient. This is especially true for 
optical  network segments  which  impose  multiple  path constraints  due to the low-layer 
nature of optical switches. Constraint-based algorithms take this into consideration; being 
capable of computing paths while resolving multiple constraints.

Implementing a constraint-based algorithm, it is important to distinguish between link-type 
(limited to links only, e.g. available bandwidth) and path-type (that  apply to entire paths, 
e.g. end-to-end delay) constraints. Because these constraint types have different effects on 
path computation, they should be handled in different ways.

Link-type constraints are efficiently handled by grooming network graphs (see figure 3.4). 
This  way,  network  graphs  are  merely  pruned  out  of  links  not  satisfying  all  specified 
constraints.  For example, links with less available bandwidth than that requested could 
simply be removed from a network graph before it is operated on by a search algorithm. 
Consequently,  link-type  constraints  can  be  handled  with  ease  by  only  pre-processing 
network graphs.
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Figure 3.3: Single-source and single-pair algorithms. The table holds 
computed paths for the respective algorithms.



Path-type constraints can, on the other hand, not be handled when a network graph is pre-
processed (because paths do not exist until they have been discovered). Instead, path-type 
constraints could be continuously evaluated using path-evaluation functions. By defining 
path-evaluation functions, entire paths can be continuously approved or discarded given 
specified constraints. For example, each time a candidate path is discovered (perhaps being 
an extension of an earlier found path), accumulated bandwidth could be compared to some 
maximum  value  by  calling  a  path-evaluation  function.  If  the  called  path-evaluation 
function would return true, then the evaluated path would be considered viable. This way, 
path-type constraints for entire paths can be evaluated.

3.2.2 Proposed algorithms

Given that a network graph has been groomed out of links not satisfying some specified 
link-type  constraints,  at  least  three  different  methods  approaches  to  Constrained  SPF 
(CSPF) algorithms exist: (1) computing paths using a conventional SPF algorithm after 
which the computed path is evaluated, (2) initializing an SPF algorithm to compute several 
paths and then sequentially request and evaluate the computed paths, and (3) concurrently 
compute all possible paths and immediately discard computed paths not satisfying some 
specific constraint.

When  implementing  a  CSPF  algorithm,  that  considers  path-type  constraints,  the  first 
method  begins  by  first  selecting  a  preferred  SPF  algorithm (see  table  3.1).  Then,  the 
selected SPF algorithm must be modified to evaluate  path-type  constraints  during path 
computation. This can be done by evaluating discovered sub-paths when additional hops 
are added (i.e. during arc relaxation). If a sub-path does not meet some specified path-type 
constraint when evaluated, then there is no point in considering this path further and this 
path is pruned from further consideration. Requesting network paths from such an SPF 
algorithm, only viable network paths fulfilling some specified constraints will be returned. 
In addition, accounting for path-type constraints that may be compensated for requires that 
the sub-path discarding optimization is never employed. This is because some future hop 
might modify a path to meet some earlier violated path-type constraint. However, note that 
some constraints can never be compensated for (e.g. end-to-end delay).
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Figure 3.4: Network graph grooming. A network graph before (left) 
and after (right) pruning out all links with weights less than 10.



SPF Algorithm Description Run-time

Bellman-Ford Iteratively traverses all arcs |V|-1 times, single-
source, can detect negative loops

O(|V||A|)

Dijkstra Uses a minimum priority queue, single-pair, can not 
account for negative weights

O(|V|lg|V|+|A|)
*depends on queue

Modified Dijkstra Uses a minimum priority queue, single-source, can 
account for negative weights

-

Breadth First Search Does breadth first search, single-source, can be 
optimized for single-pair

O(|V|+|A|)

Table 3.1: Popular SPF algorithms. V is the set of vertices and A the set of arcs
on a considered network graph.

Another  approach  would  be  to  employ  a  K Shortest  Paths  (KSP)  algorithm.  Such  an 
algorithm computes the k shortest paths between two network elements. This is analogous 
to iteratively calling an SPF algorithm while  in between  modifying the network graph. 
However, this type of algorithms are usually optimized for this type of task. Once a KSP 
algorithm has been initialized,  paths can be sequentially requested and evaluated using 
path-evaluation functions. When a suitable path is then found, it can be returned by the 
path computing entity (e.g. PCE).

To close, all paths could be computed concurrently.  Rather than sequentially evaluating 
computed  paths,  paths  could  be  computed  using  an  algorithm  based  on  the  Optimal 
Algorithm for Maximal Disjointness.  Such an algorithm would grow all  possible paths 
concurrently,  immediately  discarding  those  not  meeting  specific  path-type  constraints. 
Essentially,  this  can  be  done  by  iteratively  initializing  path  candidates,  evaluating 
constraints, and detecting loops at each hop until a single or several viable paths are found. 
This  type  of  algorithm would  be  computationally  more  expensive,  but  be  capable  of 
handling both link-type  and path-type  constraints.  Note that  the above arguing for not 
discarding evaluated sub-paths still applies.
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4 Optical switching constraints

Efficiently  enabling GMPLS for optical  network segments,  several  constraints  must be 
considered.  Primarily,  these  constraints  are  imposed  by  physical  impairments,  limited 
switching capabilities, and limited connectivity. Here, several such constraints inherent in 
optical components are examined.

4.1 Wavelength switching

The applicability of GMPLS and a PCE for wavelength switching has been discussed by 
Bernstein, et al. in a recent IETF Internet draft [14]. This Internet draft details additional 
wavelength specific information needs and the inability to do wavelength conversions.

4.1.1 Routing implications

To  begin,  additional  wavelength-specific  information  needs  to  be  disseminated  in  the 
GMPLS control plane. This is to increase the granularity of bandwidth allocation and allow 
for  the  wavelengths  available  on  GLSR interfaces  to  be  considered  by  a  PCE.  Thus, 
additions to the GMPLS routing process will be necessary.

First of all, the need for wavelength-specific bandwidth information is necessitated by the 
nature of WDM links. As of now, the MLCP disseminates information about maximum 
bandwidth, maximum reservable bandwidth, and unreserved bandwidth. However, since 
each  wavelength  (or  a  band  of  wavelengths)  on  a  WDM link  might  have  a  different 
bandwidth, available bandwidth might not be uniformly distributed (see figure 4.1). This 
means that a tenth of the available bandwidth on a WDM link is not automatically reserved 
simply because a tenth of its available wavelengths has been reserved. To understand why 
this is, imagine a WDM link supporting wavelengths λ1 – λ10 with an available bandwidth of 
70 Gbit/s. In this case λ1 – λ4 might each have a bandwidth of 2.5 Gbit/s, while λ5 – λ10 might 
have a bandwidth of 10 Gbit/s each. Thus, there is a need to distribute information about 
maximum bandwidth per wavelength on WDM links in the MLCP.
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Figure 4.1: Wavelengths with different 
bandwidths on a WDM link.



In  order  to  also  know which  set  of  wavelengths  are  available  on  any given  link,  the 
availability of wavelengths needs to be advertised in the GMPLS routing process. What 
this  advertisement  would  look  like  is  currently  not  defined  in  the  GMPLS  standard 
documents. One approach includes advertising a bitmask indicating available and occupied 
wavelengths  via  the  link  sub-TLV  describing  the  interface  switching  capabilities. 
However, care should be taken not to make such a bitmask ambiguous or congest a control 
plane with this type of information.

In addition, the limited ability of an optical switch to receive a given wavelength and emit 
another may limit the connectivity in an optical network segment. Thus, a way to describe 
the conversion capabilities of an advertised interface would also be desired. At present, 
wavelength selective interfaces can be said to be LSC; however, no further specification of 
the level of supported wavelength conversion is (currently) possible. As a consequence, 
additional  information  describing  convertible  wavebands  or  the  lack  of  conversion 
capability will be needed. Again, the link sub-TLV used to describe interface switching 
capability could be used for this purpose.

4.1.2 Full conversion capability

Full conversion capability exists when all optical switches in an optical region are able to 
convert all supported wavelengths on all their interfaces (see figure 4.2). This is typically 
the  case  when  deploying  opto-electronic-optic  (OEO)  switches  that  transform  optical 
signals  to electronic  form during processing.  OEO switches  treat  optical  signals as  bit 
streams.  This  enables  compensation  for  optical  impairments  (by  regenerating  optical 
signals) and full freedom to select outgoing wavelengths (using tunable lasers). Processing 
bit  streams also enables  measurement  of  the Bit  Error  Rate  (BER) induced by optical 
impairments, hence, such optical switches are often referred to as being “intelligent”.

Because  OEO switches  are  capable  of  full  conversion,  wavelength  assignment  can  be 
treated  link-locally  when  establishing  bidirectional  LSPs  in  optical  network  segments 
comprised of such optical switches. Hence, the wavelength assignment problem need not 
be resolved by GMPLS for such cases.

The above implies that path computation need not be performed in this type of optical 
network  segment.  Hence,  since  a  PCE  will  not  be  needed  for  link-local  wavelength 
selection,  a GLSR may instead simply suggest what link-local wavelengths to use on a 
specific link. Nevertheless, considering available wavelengths via a PCE could still prove 
to be meaningful (e.g. as wavelengths might represent different bandwidths, and this type 
of  network segment might interface to network elements not capable of full wavelength 
conversion).
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Figure 4.2: Full conversion capability of OEO switches.



Nevertheless, full conversion capability is expensive. This is because of the opto-electronic 
transformation done in OEO switches, requiring the electronics to run at the maximum data 
rate of the optical media. Consequently, OEO switches will also impose constraints on bit 
rates  because  data  is  processed  electronically  (and  suffer  from electronical  processing 
limitations). Hence, mechanisms to enable less expensive equipment to be deployed would 
be preferable. This is further described in the next section (see section 4.1.3).

4.1.3 Limited or no conversion capability

Limited  or  no conversion  capability  exists  in  optical  network  segments  which  are  not 
capable of full wavelength conversion. Consequently, not all optical switches will be able 
to convert all wavelengths on all their interfaces (see figure 4.3). In the extreme case where 
no  optical  switch  is  able  to  convert  any  wavelength  on  any  interface,  no  wavelength 
conversion will be possible.

Optical  network  segments  with  limited  conversion  capabilities  are  referred  to  as 
transparent, and impose specific constraints. Data switching in such network segments is 
done by all-optical (OOO) switches. OOO switches do not transform the optical signal they 
process. Instead, they switch data using all-optical technologies (e.g. by adjusting micro 
mirrors  to  reflect  specific  wavelengths).  Because  there  are  limitations  in  all-optical 
switching, such switches can not, today, convert the wavelengths they process. However, 
because such devices are cost-efficient and have no restrictions on throughput (transparent 
switches are not at all aware of bit rates since they simply forward photons) enabling them 
for GMPLS (and vice versa) is imperative.

For signaling purposes, another IETF Internet draft standardizing the wavelength label has 
been written by Otani, et al. [15]. In this draft, a standardized label format is proposed for 
both coarse and dense WDM interfaces. The proposed label format specifies wavelengths 
according to the wavelength grids specified by the ITU-T [16] [17] (see figure 4.4). This 
eliminates ambiguity imposed by link-local wavelength perception and allows for signaling 
LSPs efficiently  through optical  network segments.  Standardizing the  wavelength  label 
does  not  impose  any  constraints  on  signaling  or  routing,  it  merely  enables  the  label 
abstraction to be significant at the control plane level.
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Figure 4.3: Limited conversion capability. B can not 
convert all wavelengths on its interfaces.



For  the  application  of  path  computation,  transparent  optical  segments  translate  into  a 
“wavelength  continuity  constraint”;  that  is,  all  consecutive  TE  links  connected  by 
transparent switches must use the same wavelength (see figure 4.5). In order to solve the 
resulting problem, computed paths must be evaluated with the proper constraints. Thus, TE 
information  describing  wavelength  conversion  capabilities  of  advertising  switches  and 
available wavelengths on TE links are, as a minimum, needed as input to a path-evaluation 
function used by a constraint-based path computation algorithm.

4.2 Blocking switch architecture

The  blocking  switch  architecture  of  Optical  Add-Drop  Multiplexers  (OADMs)  also 
imposes constraints on TE link advertisements. As described by Imajuku, et al. in a third 
recently released IETF Internet draft [18], this is because the OADM switch architecture 
results in a limited degree of connectivity (see figure 4.6). This limited connectivity occurs 
because  OADMs  connect  to  an  optical  network  segment  using  only  two  ports.  More 
specifically, west and east ports connect the OADM to the network. Using tributary ports 
internally connected to the west and east sides of the OADM, traffic can then be added 
onto or dropped off the network. In turn, this makes OADMs cost-effective and suitable for 
adding and dropping traffic to and from optical network segments. However, this limited 
degree of connectivity must be considered when enabling efficient installation of LSPs in 
this type of optical network segments.
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Figure 4.4: Proposed standardization of DWDM (top) and 
CWDM (bottom) lambda labels.

Figure 4.5: The wavelength continuity constraint. 
The only viable path between A and D is A-B-D.



Addressing the limited degree of connectivity, a PCE must bypass the resulting blocking 
switch architecture. More specifically, some TE links advertised by an OADM will not be 
viable for use depending on specific sequences of adjacent TE links. For example, port 
selectivity for a network path entering the west  side of an OADM is restrained not to 
consider  the  east  side  tributary  ports.  Nevertheless,  as  modern  OADMs are  becoming 
remotely reconfigurable (in software), the support for this type of networking component 
will become even more significant. Harnessing Reconfigurable OADMs (ROADMs) will, 
thus,  be  essential  to  allow  service  providers  to  build  automated  and  cost-effective 
networks. However, in what way this should be treated has not yet been defined in the 
GMPLS standard  documents.  For  simple  network  rings  comprised  of  only  ROADMs, 
wavelengths for traffic entering or leaving the network could be statically set. For more 
complex networks there is, on the other hand, a need to address these network elements. 
Doing so,  selectable  TE links  could  be  announced  within  the  TE link advertisements. 
Proposed by Imajuku, et al. in the above mentioned draft, it has been suggested that new 
link sub-TLVs will be defined for this purpose.

4.3 Impairments

Deployed optical equipment such as switches, amplifiers, multiplexers, and fibers might 
degrade optical signals due to impairments (see figure 4.7). If an optical network segment 
is  carefully  planned,  such  impairments  should  become minimal.  However,  preempting 
degraded  performance  in  deployed  equipment  (or  accounting  for  transparent  network 
segments)  such impairments  could be considered path-type  constraints.  Accounting for 
impairments in general, however, is essential to guarantee that transmitted signals can be 
delivered with sufficient quality throughout an optical network segment. Several optical 
impairments are discussed in RFC 4054 [19].
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Figure 4.6: An OADM (left) and its network connectivity graph 
(right). C and D are west and east tributary ports respectively.

Figure 4.7: Attenuation resulting in signal loss at C.



Primarily,  optical  impairments  can  be  classified  into  Optical  Signal-to-Noise  Ratios 
(OSNRs) and impulse widening (i.e. dispersion). Example impairments affecting OSNR 
are  signal  attenuation  and  Amplifier  Spontaneous  Emission  (ASE)  noise.  Impulse 
widening can, in turn, be the result of Polarization Mode Dispersion (PMD) or chromatic 
dispersion. The above mentioned impairments are all linear and restricted to affecting only 
a single optical signal (see table 4.1). Non-linear impairments involve more than a single 
optical signal and are, thus, more difficult to predict. One such example is cross-talk which 
might introduce bit errors as optical signals in neighboring channels interfere with each 
other. This is most likely to occur in DWDM devices where many wavelengths compete 
for the same network resources. Because of the difficulties associated with handling such 
impairments, they will not be (explicitly) further considered.

Impairment Description Effect

Attenuation As an optical signal goes through transparent network 
elements some of its energy, or power, is lost due to light 
absorption. Also known as power loss, the signal quality 
deteriorates.

Depending on the level 
of deterioration bit 
errors or signal loss at 
the end receiver might 
be introduced.

ASE noise To prevent attenuation of optical signals, amplifiers are 
deployed to strengthen the signal. Amplifying signals, 
however, introduces random noise to the amplified signal.

This effects the OSNR 
and might introduce bit 
errors or signal loss at 
the end receiver.

Dispersion Optical signals sent through fibers experience impulse 
widening. Specifically, chromatic dispersion is the result of 
light separation into several spectral components (i.e. colors). 
Similarly, PMD is the consequence of optical signals being 
randomly polarized in elliptic fibers. Nevertheless, common 
for both types of dispersion is that optical signals widen due 
to different propagation velocities.

Widened signals might 
interfere with each other 
and introduce bit errors.

Table 4.1: Linear optical impairments.

Considering relevant impairments as constraints, these must first be identified. Exposing 
GMPLS to all impairments could potentially create voluminous traffic in the control plane 
(depending on the implementation). On the contrary, some impairments might be valuable 
to disseminate. What is important, however, is to guarantee that computed network paths 
will be viable despite any optical impairments. Guaranteeing this, impairments from the 
links in a transparent network segment could be aggregated and evaluated as a path-type 
constraint. For example, the ASE noise on all links in a given network segment could be 
added together and compared to a minimum OSNR value for this impairment.  Another 
method would be to use maximum link length as the only constraint. This way, a group of 
impairments are abstracted by assigning all TE links a “logical” maximum length. Then, a 
specific OSNR is guaranteed by simply limiting “logical” TE link lengths. Decreasing the 
number of constraints to consider, this can not account for impairments individually.
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5 Implementation

This chapter presents a derived candidate solution (see section 1.1) based on the earlier 
literature study. Here, a virtual test-bed design, derived GMPLS and PCE extensions, and a 
software implementation of these are described.

5.1 Virtual test-bed design

In order to enable evaluation of the derived GMPLS and PCE extensions, a virtual test-bed 
has been jointly designed and implemented together with S. Reinhold [20]. In this test-bed, 
a number of virtual machines are hosted by a host computer. The virtual machines have 
been connected to the host computer via an internally emulated IP network (i.e. a ”host-
only” network). The host computer configuration is specified in table 5.1.

Property Value Notes

Manufacturer and model HP Workstation xw8400 -

Central Processing Unit (CPU) Intel Xeon 5335 processor @ 2.66 GHz Quad-core, 64-bit

Random Access Memory (RAM) 6 GB DDR2 (ECC) RAM @ 667 MHz 3.5 GB available (in 32-bit OS)

Hard Disk Drive (HDD) 1 TB 7200 RPM SATA-2 HDD 2 x 500 GB

Operating System (OS) Ubuntu 7.04 (32-bit, Desktop Edition) Linux kernel 2.6.20-16

Virtual machine software VMware Server Console 1.0.3 Build-44356

Table 5.1: Host computer configuration.

Implementing an emulated network introduces some limitations. For example, the virtual 
interfaces employed by the emulated network need not exactly match the functionality or 
characteristics  of  corresponding  physical  interfaces.  In  addition,  because  all virtual 
machines must share hardware resources with the host computer (as they are running as 
host computer processes) software performance in the test-bed will be difficult to evaluate 
(and  not  likely  match  real  case  scenarios).  The  following  sections  further  specify  the 
virtual test-bed components and connectivity (see sections 5.1.1, 5.1.2, and 5.1.3).

5.1.1 Virtual machines

The virtual  test-bed consists  of eight  VMware Server  1.0.31 virtual  machines managed 
from a console on the host computer. These virtual machines have been connected using a 
”host-only” network, assigning all virtual machines a virtual Ethernet interface connected 
to the host computer (see figure 5.1). For this purpose, the 192.168.112.0/24 network has 
been reserved within the host computer. It is via this network that the virtual machines will 
exchange information in a later deployed control plane.

1 See http://www.vmware.com/products/server for more information
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Reserving hardware resources in the host computer, the virtual machines have each been 
given 20 GB HDD and 256 MB (logical nodes, VLSR1-VLSR7) or 512 MB (logical node, 
NARB) of RAM. This is consistent with the minimum hardware requirements needed to 
support both the operating system and the software components later deployed on a virtual 
machine  (see  section  5.3.1).  Increasing  performance,  the  virtual  machines  have  been 
evenly distributed between the two host computer HDDs (expected to decrease HDD usage 
latencies).

In creating instances of the functional  components,  an operating system has then been 
deployed onto  all virtual machines.  After deploying an operating system onto a virtual 
machine, other software components can in turn be loaded into the operating system. By 
loading a specific software component (later described, see section 5.3.1) into the deployed 
operating system, a virtual machine finally becomes a specific network component. This 
way, as indicated by the names of the virtual machines, a virtual machine becomes either a 
Virtual LSR (VLSR, compare GLSR), or a Network Aware Resource Broker (NARB). In 
the latter case, here we only load a subset of the NARB functionality (i.e. that needed for 
path  computation)  into  a  NARB  unit;  namely,  the  stand-alone  Resource  Computation 
Engine (RCE,  compare  PCE).  In  order  to  avoid  potential  software  conflicts,  the  same 
operating system has been deployed onto all  virtual machines (i.e. Ubuntu 6.06, 32-bit, 
Desktop Edition, with Linux kernel version 2.6.15-16, proven compatible with the loadable 
software components).

5.1.2 Control plane configuration

Configuring a virtual control plane, the careful reader might have realized that deployed 
VLSRs must interface to multiple networks (to enable simulation of multiple control plane 
links). Recalling that the ”host-only” network is a  single network, virtual control plane 
links must therefore be created. For this purpose, Generic Routing Encapsulation (GRE) 
tunnels [21] have been set up in the virtual test-bed. Using a GRE tunnel, a virtual machine 
is connected to another virtual machine via a logical point-to-point link. This way, a virtual 
topology  consisting  of  point-to-point  links  has  been  placed  on  top  of  the  ”host-only” 
network connecting the virtual  machines (see figure 5.2).  Automating the setup of this 
topology, start-up (bash) scripts have been installed (at the default runlevel) into the virtual 
machines. A summary of the control plane networks is given in table 5.2.
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Figure 5.1: Virtual test-bed ”host-only” network.



Abbr. Corresponding network Description

A 192.168.0.0/24 Connecting VLSR1 and VLSR2

B 192.168.1.0/24 Connecting VLSR1 and VLSR5

C 192.168.2.0/24 Connecting VLSR2 and VLSR4

D 192.168.3.0/24 Connecting VLSR5 and VLSR4

E 192.168.4.0/24 Connecting VLSR2 and VLSR3

F 192.168.5.0/24 Connecting VLSR5 and VLSR6

G 192.168.6.0/24 Connecting VLSR4 and VLSR6

H 192.168.7.0/24 Connecting VLSR4 and VLSR3

I 192.168.8.0/24 Connecting VLSR3 and VLSR7

J 192.168.9.0/24 Connecting VLSR6 and VLSR7

K 192.168.10.0/24 Connecting VLSR7 and NARB

Table 5.2: A summary of the control plane networks.

5.1.3 Data plane configuration

Configuring a virtual data plane, data plane links have (as in the previous section,  see 
section 5.1.2) been formed out of GRE tunnels. However, the data plane topology is  not 
formed on top of the host computer ”host-only” network. Instead, GRE tunnels connect 
virtual interfaces that do not exist, constructing a distributable data plane topology. As a 
result, arbitrary data plane topologies can be advertised by the configured control plane 
without  the  need  for  an  additional  ”host-only”  network.  Using  GRE  tunnels,  flexible 
configuration of the data plane topology is also made possible (however existing interfaces 
must be connected to enable data transport). Given the configured data plane topology (see 
figure 5.3), it is envisioned that VLSR2 and VLSR6 will represent ROADMs, adding or 
dropping  traffic  to  or  from  the  network  consisting  of  VLSR3,  VLSR4,  and  VLSR5 
(providing a test-case for a blocking switch network architecture). Further, all data plane 
links have been given aliases (shown between parentheses in figure 5.3). A summary of the 
data plane networks is given in table 5.3.

27

Figure 5.2: Configured control plane topology. Interface numbers represent
network address suffixes.



Abbr. Corresponding network Description

A 10.0.0.0/24 Connecting VLSR1 and VLSR2

B 10.0.1.0/24 Connecting VLSR2 and VLSR6

C 10.0.2.0/24 Connecting VLSR6 and VLSR7

D 10.0.3.0/24 Connecting VLSR2 and VLSR3

E 10.0.4.0/24 Connecting VLSR2 and VLSR3

F 10.0.5.0/24 Connecting VLSR3 and VLSR4

G 10.0.6.0/24 Connecting VLSR4 and VLSR5

H 10.0.7.0/24 Connecting VLSR5 and VLSR6

I 10.0.8.0/24 Connecting VLSR5 and VLSR6

Table 5.3: A summary of the data plane networks.

5.2 GMPLS and PCE extensions

This  section  presents  selected  extensions  to  GMPLS  and  a  PCE  as  motivated  by  the 
material presented in the earlier chapters. For this, three new link sub-TLVs are defined 
and a CSPF algorithm capable of dealing with these sub-TLVs introduced.

5.2.1 Wavelength availability

First of all, a new link sub-TLV for wavelength availability is proposed (see figure 5.4). In 
this sub-TLV, the first body field expresses the base wavelength or frequency in a grid of 
wavelengths.  The base wavelength or frequency is,  here,  expressed in the label  format 
presented earlier (see section 4.1.3). Hence, this first field can hold either a wavelength (in 
the case of a CWDM grid), or a frequency (in the case of a DWDM grid). The second field 
expresses  bandwidth  per  wavelength  in  bytes  per  second  (in  floating  point  number 
representation, see section 4.1.1). Then, the third field expresses a variable length bitmask 
(zero-padded  so  that  the  defined  sub-TLV will  always  contain  an  even  set  of  4-octet 
words). For experimenting with this link sub-TLV, a type value of 32768 has been used.
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Figure 5.3: Configured data plane topology. Interface numbers represent
network address suffixes.



Utilizing this link sub-TLV, a grid of wavelengths can be unambiguously advertised in the 
GMPLS routing process. More specifically, the base wavelength (or frequency) specifies 
the first entry in a grid. If the base wavelength is unreserved (i.e. available for use), the 
first bit in the bitmask is set to one. If the same wavelength is reserved (i.e. not available 
for  use)  the  first  bit  in  the  bitmask is  instead set  to  zero.  Uncompressing  the  grid  of 
wavelengths expressed in this sub-TLV, the consecutive bits in the bitmask then indicate 
the availability of subsequent wavelengths (given the grid channel spacing).

Because  the  label  format  defined  for  the  experimental  sub-TLV specifies  the  channel 
spacing  of  an  expressed  grid  of  wavelengths,  all  wavelengths  in  the  grid  are 
deterministically defined. However, if this information is not available in the utilized label 
format, then wavelengths must be parsed in some other way (e.g. by treating the channel 
spacing as being uniform for all links in the network).

Hence, disseminating this sub-TLV, a compressed grid of wavelengths can be distributed 
in the GMPLS control plane. Consequently, control plane traffic is reduced at the cost of 
additional  computation  overhead (i.e.  the compressed grid of  wavelengths  needs  to be 
uncompressed before it can be interpreted). This way,  the defined link sub-TLV offers 
additional  functionality  for  service  providers  requiring  wavelength  availability  to  be 
dynamically updated. Nevertheless, this sub-TLV will (as it is envisioned) be optional in a 
GMPLS control plane implementation.

5.2.2 Interface selectivity

Another new link sub-TLV is proposed for interface selectivity (see figure 5.5). The body 
of this sub-TLV expresses a variable length list of unselectable interfaces. To experiment 
with this link sub-TLV, a type value of 32769 has been used to indicate that IPv4 addresses 
are carried and a type value of 32770 to instead indicate 32-bit interface identifiers.
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Figure 5.4: The link sub-TLV defined for wavelength availability.

Figure 5.5: The link sub-TLV defined for interface selectivity.



Implementing this link sub-TLV, unselectable interfaces can be declared for data plane 
links advertised in the GMPLS control plane. For experimenting with this link sub-TLV, 
unselectable  interfaces  have  been  specified  to  be  the  interfaces  to  which  a  declaring 
interface (i.e. data plane link) is not locally connected. This way, the interface connectivity 
of a network element with limited internal connectivity could be specified and distributed.

Making use of this link sub-TLV, the blocking switch network architecture of OADMs and 
ROADMs (see section 4.2) can be reflected in the GMPLS control plane. Distributing the 
limited internal connectivity for these types of devices, a path computation process could 
detect illegal link sequences and discard candidate paths violating the interface selectivity 
constraint.  Bypassing  the  limited  interface  selectivity  possibly  existing  in  an  optical 
network segment, this sub-TLV provides service providers with a means to make use of a 
blocking switch architecture. This link sub-TLV is thought to be optional, but useful for 
dealing with blocking switch network architectures.

5.2.3 User-defined constraints

In order to enable user-defined constraints to be associated with links in a provisioned 
GMPLS network, a third new sub-TLV (see figure 5.6) is proposed. This sub-TLV has 
been defined to distribute code-value pairs representing arbitrary constraints. The body of 
this sub-TLV holds a variable number of 4-octet words (in each 4-octet word, the first octet 
specifies a value code followed by the value associated with that code). For experimenting 
with this link sub-TLV, a type value of 32771 has been used.

For experimental purposes, one value code (0) has been reserved. This reserved code value 
has been used to indicate the wavelength conversion capability of an advertising interface 
(meaning that conversion capability has been indicated for outgoing links). Applying user-
defined constraints on links in a provisioned network domain, the remaining set of code-
value pairs are available for other uses.  Potential  use would be information describing 
optical impairments and constraints (see section 4.3), however the link sub-TLV is generic 
enough to also express other types of constraints (e.g. end-to-end delay or a set of ordered 
metrics). Envisioned to be optional, this sub-TLV is useful to provide service providers 
with a  mechanism for  distributing arbitrary  (that  is,  user-defined)  link constraints  in  a 
GMPLS control plane.
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Figure 5.6: The link sub-TLV defined for user-defined constraints.



5.2.4 Candidate CSPF algorithm

In order to harness the information that could be distributed in the link sub-TLVs earlier 
defined (see sections 5.2.1, 5.2.2, and 5.2.3), a candidate CSPF algorithm (see section 3.2) 
has also been implemented. This candidate CSPF algorithm searches for all loop-less paths 
in  an  optical  network  segment,  at  the  same  time  evaluating  wavelength  availability, 
interface selectivity, and user-defined constraints. Growing candidate paths, this algorithm 
extends the abstract operation of the Breadth First Search (BFS) algorithm [1]. Mimicking 
this well-known SPF algorithm (see figure 5.7), the candidate CSPF algorithm is expected 
to find all paths. In addition, BFS algorithms usually have excellent asymptotic run-time 
(when operating on tree structures, see section 3.2.2).

Initially, the candidate algorithm creates an initial path containing only the source node (it 
is from this path that all other paths will be grown). When this initial path has been created, 
it is added to a First-In-First-Out (FIFO) queue. Adding paths to this queue deviates from 
the  conventional  operation  of  the  BFS  algorithm  (however,  this  is  necessary  to 
continuously keep track of the grown paths). Proceeding, the algorithm starts to operate on 
the candidate path queue by iteratively removing and examining paths from the queue, 
until the queue becomes empty. Within each such iteration, the end node of an examined 
path is first extracted. The neighbors of this extracted node, not forming a loop with the 
examined path, are then considered. By not considering neighbors that form loops,  the 
candidate algorithm is able to safely operate on graph structures (i.e. tree structures with 
loops, note that this is necessary to avoid eliminating  any potential paths). Examining a 
neighbor,  the currently examined path is  then copied and expanded with this  neighbor 
node. After this, the expanded path is checked for viability by running a suitable path-
evaluation function. If this path-evaluation function returns false, the expanded path will be 
discarded. Otherwise, when the evaluation function returns true, the expanded path will be 
either further examined by future iterations (i.e. added to the FIFO queue), or added to a 
set of discovered paths (when an examined neighbor is the destination node). When all 
neighbors have been examined, a new path is extracted from the queue (and a new iteration 
is  started).  Because  expanded  paths  are  always  checked  for  viability,  this  candidate 
algorithm will only accept viable paths. The abstract operation of the candidate algorithm 
is presented in the figure below (see figure 5.8).

31

Figure 5.7: The abstract operation of the BFS algorithm.



When candidate paths are checked for viablity, a path-evaluation function is to be called. 
Depending on the properties of this function, different meanings may apply to the resulting 
path-evaluation.  The  path-evaluation  function  used  together  with  the  candidate  CSPF 
algorithm has therefore, here, been carefully defined. This path-evaluation function should 
return false if (1) any accumulated user-defined constraint exceeds a requested maximum 
value, (2) there is no wavelength left for use on a path (i.e. it is not possible to preserve 
wavelength continuity), and (3) an added link violates the semantics of interface selectivity 
(i.e. is not possible due to a blocking switch network architecture). If none of the above 
conditions occurs, then the path-evaluation function is to return true.

Closing this section, with regard to the candidate algorithm, paths can be easily grown in 
orders other than breadth first (that is, not using a BFS algorithm). Changing the type of 
queue (and in some cases adding minor modifications), candidate paths can be differently 
grown. This would have semantic meaning by causing the candidate algorithm to compute 
only a limited number of paths (that is, not  all paths). For example, replacing the FIFO 
queue by a Last-In-First-Out (LIFO) queue (and not always popping examined paths from 
this LIFO queue) would result in growing paths depth first. In the same way, a minimum 
priority queue would result in growing paths according to the priority of this queue (this 
corresponds to the operation of the Dijkstra algorithm).
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Figure 5.8: The abstract operation of the candidate CSPF algorithm.



5.3 Software implementation

This section presents the implemented software extensions. Here, the modification done to 
an open source software suite to abstract the above defined functions (see section 5.2) are 
detailed (here the focus is on the extended functionality provided).

5.3.1 Open source software suite

In order to implement  the proposed functional extensions,  the DRAGON project1 open 
source software suite has been used as a base. Built on software components from other 
open source software projects, this project seeks to enable service provisioning in multiple 
layers  and domains via the GMPLS framework. The other built-in projects  are  (1) the 
KOM-RSVP engine2 (extended to support RSVP-TE) for GMPLS signaling, and (2) the 
Zebra OSPF daemon3 for GMPLS routing (extended to support OSPF-TE). However, in 
order to abstract  a suitable  PCE, the DRAGON project  has developed a new software 
component. This component currently consists of two separate parts, the NARB and RCE 
(see section 5.1.1). Of these two components, the RCE is the one responsible for collecting 
information about a network domain and computing network paths in it. Thus, as we are 
only interested in implementing the path computation extensions, only the RCE will be 
extended.

5.3.2 Implemented Zebra extensions

Extending the GMPLS routing process, the Zebra OSPF daemon has been extended with 
the experimental link sub-TLVs and additional Virtual TeletYpe (VTY) commands. VTY 
commands enable adding, removing, or changing information in the link state database 
maintained by a Zebra OSPF daemon. Thus, to enable direct modification of this database, 
syntax and semantics for a (1) wavegrid command (managing wavelength availability on 
links),  (2)  unselectable  command  (managing  unselectable  interfaces  for  links),  and (3) 
constraint command (managing user-defined constraints on links) have been specified and 
implemented. With these VTY commands, the previously described link sub-TLVs can be 
added to or removed from the set of sub-TLVs distributed by the Zebra OSPF daemon.

The implemented VTY command scope has been set to apply to the OSPF_TE_IF_NODE 
command node. This means that the VTY commands are issuable in the context of the 
Zebra OSPF daemon configuration files. Consequently, the experimental link sub-TLVs 
can only be added to the GMPLS control plane when the OSPF daemon is started (i.e. 
when the configuration files are parsed). By extending the VTY command scope, these 
commands could be issuable from other command locations (e.g. the Zebra OSPF daemon 
TELNET interface)  by  associating  them with  other  command  nodes.  This  part  of  the 
software extensions was jointly developed together with S.  Reinhold [20].  A complete 
specification  of  the  added  OSPF-TE VTY commands  is  given  in  the  appendixes  (see 
Appendix B).

1 See http://dragon.maxgigapop.net or http://dragon.east.isi.edu for more information
2 See http://www.kom.tu-darmstadt.de/en/downloads/software/kom-rsvp-engine for more information
3 See http://www.zebra.org for more information
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5.3.3 Implemented RCE extensions

Implementing the path computation extensions, the RCE component has been extended 
with the experimental sub-TLVs and the candidate CSPF algorithm. More specifically, the 
added extensions enable the experimental link sub-TLVs to be stored in the RCE TED and 
defines a new path computation event. Additionally, the RCE has also been extended with 
a  new  format  for  returning  computed  paths  in  the  form  of  an  ERO  signaling  object 
including label ERO sub-objects (containing wavelength labels).

The  new path  computation  event  abstracts  the  candidate  CSPF  algorithm and  defines 
additional  processing  needed  to  fully  support  it.  When this  path  computation  event  is 
requested from the RCE, six conceptual steps are sequentially executed. The first two steps 
are  no  different  from those  of  the  algorithms  already  implemented  in  the  RCE.  This 
includes verifying the client request and building a logical topology from the TED. Once a 
logical topology has been built, a third step (unique to the implemented path computation 
event) prunes the built topology. When pruning this topology, all links not meeting the 
requested (1) switching type, (2) encoding type, and (3) minimum requested bandwidth are 
removed. Note that handling link-type constraints by pre-processing the constructed graph 
is, at this stage, required because the path-evaluation function will later only consider path-
type  constraints.  The fourth step is  to  run the candidate  algorithm on the now pruned 
topology. While running the algorithm (i.e. computing paths), all information needed to 
extract  paths  with  wavelength  precision  is  accumulated  and  a  path  vector  (containing 
discovered paths between the source and destination nodes) is continuously grown. Once 
this path computation finishes, a fifth step post-processes the returned result by sorting the 
grown path vector (if not empty) by user preference. In keeping with the abstract operation 
of  the  BFS algorithm,  the  default  user  preference  (when no  user  preference  has  been 
specified) is to sort paths by size (i.e. number of links in a path). Finally, a last step (i.e. the 
sixth  step)  extracts  a  single  path  from the  sorted  path  vector.  For  this  path,  an  ERO 
including upstream and downstream label ERO sub-objects (containing wavelength labels) 
for each interface is built and returned (to a requesting client).

In  order  to  simplify  the  implementation  of  this  algorithm,  some limitations  have  been 
accepted. To begin, only user-defined constraints that are positive additive (i.e. summable 
constraints  which can only take on positive  values)  are  supported.  Adding support  for 
negative additive constraints (i.e. constraints that can be compensated for) could be added 
by defining a set of constraints which are only evaluated when a complete path has been 
discovered. In addition, the implementation of the candidate algorithm presumes that all 
links  stored  in  the  TED are  bidirectional,  and  that  a  wavelength  can  be  used  in  two 
directions. In the future, reverse links could also be looked up and examined. A complete 
specification  of  the  implemented  Zebra  and  RCE  software  extensions  is  given  in  the 
appendixes (see Appendix C).
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6 Verification and analysis

This  chapter  provides  a  functional  verification  of  the  virtual  test-bed and the  software 
implementation. Here, a performace indication of the implemented software extensions is 
also given.

6.1 Test-bed verification

To verify  the  functionality  of  the  virtual  test-bed,  the  virtual  machines,  their  network 
configuration (i.e. ”host-only” network), and their software configuration (i.e. operating 
system and compilers) have been inspected. Here, the inspected virtual test-bed is the same 
as that described in section 5.1.1. Verifying  the virtual machines,  their installation and 
hardware properties have first been checked (using the host computer console). Secondly, 
the ”host-only” network connectivity has been checked (using a ping utility). Further, the 
compilation and executability of software in the virtual test-bed have been checked (by 
loading unmodified software onto the virtual machines and executing it). This has led to 
the following observations:

1. All virtual machines are correctly configured and installed. Here, correctly refers
to the expected set of emulated hardware and operation of the virtual machines.

2. All virtual machines are connected to each other in the defined ”host-only”
network, and the GRE tunnels appropriately connect the virtual machines.

3. The software suite can be installed and executed on all virtual machines. When
executing the software, the expected behavior occurs.

Given these observations, the functional testing of the virtual test-bed implementation is 
considered complete. Further verification has not been performed.

6.2 Software implementation verification

To verify the software implementation functionality, the extended software components 
have been deployed onto the virtual machines. Enabling these software components to be 
functionally verified, the data plane topology (see section 5.1.3) has then been associated 
with more information. Associating the data plane links with additional constraints (and 
attributes, see table 6.1), different test-cases have then been defined and executed. For this, 
the aim has been to ensure that no relevant test-case would be excluded (and all relevant 
test-cases included). In the same way as suggested in section 5.1.3, VLSR2 and VLSR6 
here mimic data plane ROADMs. Additionally, the wavelengths associated with all data 
plane links appertain to a DWDM grid with a 12.5 GHz channel spacing and 40 Gbit/s 
bandwidth per  wavelength.  Note here that  a  user-defined constraint  code of 0 declares 
interface conversion capability (whereas a value of 1 indicates full conversion capability, 
see section 5.2.3).
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data plane link available wavelengths unselectable interfaces user-defined constraints

data1 (VLSR1) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data1 (VLSR2) 190000 - 190112.5 GHz 10.0.4.1 <0,0>, <1,1>, <2,5>

data2 (VLSR2) 190000 - 190112.5 GHz 10.0.3.1 <0,0>, <1,10>, <2,5>

data2 (VLSR6) 190000 - 190112.5 GHz 10.0.8.1 <0,0>, <1,10>, <2,5>

data3 (VLSR6) 190000 - 190112.5 GHz 10.0.7.1 <0,0>, <1,1>, <2,5>

data3 (VLSR7) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data4 (VLSR2) 190000 - 190112.5 GHz 10.0.4.1, 10.0.1.1 <0,0>, <1,1>, <2,5>

data4 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data5 (VLSR2) 190000 - 190112.5 GHz 10.0.0.2, 10.0.3.1 <0,0>, <1,1>, <2,5>

data5 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data6 (VLSR3) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data6 (VLSR4) 190000 - 190112.5 GHz - <0,1>, <1,1>, <2,5>

data7 (VLSR4) 190050 - 190162.5 GHz - <0,1>, <1,1>, <2,5>

data7 (VLSR5) 190050 - 190162.5 GHz - <0,0>, <1,1>, <2,5>

data8 (VLSR5) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data8 (VLSR6) 190000 - 190112.5 GHz 10.0.2.1, 10.0.8.1 <0,0>, <1,1>, <2,5>

data9 (VLSR5) 190000 - 190112.5 GHz - <0,0>, <1,1>, <2,5>

data9 (VLSR6) 190000 - 190112.5 GHz 10.0.1.2, 10.0.7.1 <0,0>, <1,1>, <2,5>

Table 6.1: Constraints associated with the data plane links. Symbols in parentheses 
indicate the link ends advertised in the control plane.

When inspecting the table above, we see that (1) VLSR2 and VLSR6 have been configured 
with unselectable interfaces, (2) the outgoing interfaces on VLSR4 are conversion capable, 
and (3) three user-defined constraints have been placed on all data plane links (in addition, 
we see that data7 has been offset by four wavelengths). To then verify the GMPLS routing 
extensions,  the  link  state  database  of  a  Zebra  OSPF  daemon  was  examined  using  a 
TELNET  client;  leading  to  the  following  observation:  Connecting  to  a  Zebra  OSPF 
daemon in the network domain and instructing it to show its link state database shows the 
correct data plane topology (here,  correct  refers to the  entire topology as defined by  all 
Zebra OSPF daemon configuration files).

Once the  GMPLS routing process  was  verified,  the  RCE was in  turn verified using a 
software testing utility (included in the DRAGON software suite). This testing utility is 
essentially an RCE software client (compare PCC) and was, before verification, extended 
to support client requests including algorithm selection, path preference, and user-defined 
constraints. For reference, the only two paths that exist (in the data plane) between VLSR1 
and VSLR7 have been defined path1: VLSR1-VLSR2-VLSR6-VLSR7, and path2: VLSR1-
VLSR2-VLSR3-VLSR4-VLSR5-VLSR6-VLSR7. By issuing specific client requests with 
this testing utility, the following observations were then made:
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1. Issuing a client request to the RCE defining requested switching capability as non-
LSC, encoding as non-lambda, or bandwidth as more than 40 Gbit/s results in no 
path being returned. This is correct because of the incorrect traffic specifications.

2. Issuing a client request to the RCE defining requested switching capability as LSC, 
encoding as lambda, and bandwidth as 1 kB/s results in path1 being returned. This 
is correct because path1 is the shortest path (with respect to the number of hops).

3. Issuing the client request defined in 2., while also setting path preference to be the
user-defined constraint with code 1, results in path2 being returned. This is correct 
because path2 now is the shortest path (with respect to this user-defined constraint).

4. Issuing the client request defined in 3., while also requiring the user-defined
constraint with code 2 to be less than 20, results in that path1 is returned. This is 
correct because path2 violates the specified constraint (i.e. with a value of 30).

5. Issuing the client request defined in 4., while also requiring the user-defined
constraint with code 1 to be less than 10, results in no path being returned. This is 
correct because path1 violates the specified constraint (i.e. with a value of 12).

6. For all returned paths, wavelength continuity, interface selectivity, or user-defined
constraints are never violated and wavelength labels always correctly extracted.

Given these observations,  the functional  verification of  the software implementation is 
considered complete. The performance evaluation in section 6.3 somewhat contributes to 
verification, but no further verification has been performed.

6.3 Software implementation performance

In this section, a performance evaluation of the software implementation is given. Here, the 
same constraints and attributes as in section 6.2 have been associated with the data plane 
links.

6.3.1 Theoretical network overhead

In theory, dissemination of additional link sub-TLVs in the GMPLS control plane results in 
that more information about networking resources is made available. However, this comes 
at the cost of an increased network overhead. Typically, this overhead (No) will equal the 
sum of all bytes added to LSAs (Nb) times the number of links on which an LSA will be 
distributed (Nd). Nb will in turn equal the sum of all appended link sub-TLVs specific to the 
candidate solution (see section 5.2.1, 5.2.2, and 5.2.3). Furthermore, given that an LSA is 
distributed on all links in an OSPF area, Nd will approximate the number of control plane 
links. This theoretical network overhead is given table 6.2. In this table, a few theoretical 
distribution times given different link bandwidths are also presented (note that the actual 
data exchange between VLSRs has not been monitored).
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Nb Nd No = Nb x Nd link bandwidth distribution time

18 x 32 bytes + 4 x 20 
bytes = 576 bytes + 80 

bytes = 656 bytes
11

656 x 11 bytes = 7216 
bytes = 7.216 kbytes = 

57.728 kbits

10 Mbit/s 5.7728 ms

100 Mbit/s 577.28 μs

1000 Mbit/s 57.728 μs

Table 6.2: Theoretical network overhead. Distribution time excludes LSA processing.

Of course,  including (or  excluding)  the newly defined link sub-TLVs from a GMPLS 
routing  process  will  involve  a  trade-off  between  service  efficiency  and  reliability.  By 
increasing the number of links and attributes (or bytes, Nb) distributed in a GMPLS control 
plane,  the  number  of  links  these  are  distributed  on  (Nd)  need not  be affected.  This  is 
because (in GMPLS) the data plane topology can be kept separate from the control plane 
topology. Keeping Nd constant over time, additional data plane links can be added without 
necessarily resulting in a non-linear growth of overhead bytes. Thus, a resulting network 
overhead (No) could actually grow linearly instead of quadratically when additional links 
or attributes are added to a data plane configuration.

6.3.2 Time efficiency

To evaluate time efficiency, the path computation process implemented by a RCE has been 
divided into separate time intervals. These time intervals will serve as reference points, 
indicating where a RCE process spends time. The time intervals are specified below:

T1: time spent verifying a client path computation request
T2: time spent building a logical topology from the TED
T3: time spent pruning the built logical topology
T4: time spent searching and sorting found paths
T5: time spent extracting labels and returning an ERO
T6: total time spent (T1+T2+T3+T4+T5).

Enabling time spent in these time intervals to be observed, the RCE software component 
has been extended to read the time at specific time instants. Here, time is read by querying 
the  CLOCK_PROCESS_CPUTIME_ID clock  (a  high  resolution  per-process  timer 
maintained by the host computer CPU) each time a specified time interval is either entered 
or exited. Once this clock has been queried  twice, the time difference between entering 
and exiting any specific  time interval  is  computed.  This way, a set  of time population 
samples have been produced, after  which time efficiency has been evaluated based on 
these  population  samples.  Here,  the  time  population  samples  have  been  generated  by 
sequentially issuing 1000 requests (for a path between VLSR1 and VLSR7, each request 
requiring four user-defined constraints to be evaluated) using the testing utility described in 
section 6.2.
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Due  to  the  volatile  nature  of  the  virtual  machines  (running  as  processes  on  the  host 
computer),  some  values  in  the  time  population  samples  have  been  removed.  More 
specifically,  all values deviating from a time population sample median with more than 
50% have been discarded. These population sample adjustments are necessary to eliminate 
incorrect observations, rendering only meaningful time values to be analyzed. In addition, 
all population samples have been proved normally distributed by dividing the observed 
time values (in a specific sample) into intervals and then count the value frequency in these 
intervals. Given that we now have a set of normally distributed population samples with 
observed means and standard deviations, 95% confidence intervals for these population 
samples have then been calculated using the t-method (see table 6.3 and figure 6.1).

T1 [µs] T2 [µs] T3 [µs] T4 [µs] T5 [µs] T6 [µs]

4.87±1.26 37.16±5.92 2.35±0.59 98.72±11.02 3.28±0.6 146.38±16.73

Table 6.3: Observed processing time in each time interval. Observed time is given
as 95% confidence intervals for the population samples.

In figure 6.1, we see that the RCE implementation spends most of the time building a 
logical topology, searching for, and sorting network paths. Interesting to see is that the 
time spent searching for and sorting all loop-less network paths (T4) is only slightly more 
than double the time spent building a logical topology (T2). Noting the total observed time 
spent by a path computation event (T6), the RCE also seems quite responsive (given the 
operational circumstances). Handling an arrived client request, we see that less than a few 
hundred  microseconds  is  spent  on  a  single  path  computation  event.  Nevertheless, 
observing performance in the virtual test-bed generated results that were hard to interpret. 
Therefore, it would be useful to compare the observed time relative to other observed time 
(e.g. comparing the time efficiency of several different candidate solutions).
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Figure 6.1: Observed processing time in specified time intervals. This corresponds
to the confidence intervals given in the table above (see table 6.3).
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6.3.3 Space efficiency

To evaluate space efficiency, the candidate path queue has first been analyzed. This has 
been done by prompting a RCE to show the queue contents at specific points in time. For 
this, three different queue elements have been defined: (1) physical paths (equal to fiber 
paths), (2) physical links (equal to fiber links), and (3) implicit wavelength paths (equal to 
lambda paths). Here, physical links correspond to the links in a data plane configuration. In 
turn, a physical path is a sequence of physical links. Finally, a lambda path is an implicit 
wavelength path that can be extracted, with wavelength precision, from a physical path.

Extracting the candidate path queue contents in each outer search iteration (when a client 
request was processed), the following results were obtained (see table 6.4 and figure 6.2). 
Note that an outer search iteration corresponds to examining a single candidate path.

queue
elements

search iteration

0 1 2 3 4 5 6 7 8 9 10 11 12

fiber paths 0 1 1 2 2 2 2 2 3 3 2 1 0

fiber links 0 0 1 4 5 6 7 8 14 15 10 5 0

lambda paths 0 0 10 20 20 20 110 106 126 180 120 60 0

Table 6.4: Candidate path queue elements. Elements are given for each outer
search iteration performed by the candidate CSPF algorithm.
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Figure 6.2: Candidate path queue elements. These correspond to those given
in the table above (see table 6.4).
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In figure 6.2, we see that the number of fiber paths in the candidate path queue remains 
low  throughout  the  entire  search.  This  is  very  likely  because  the  candidate  solution 
implementation only explicitly maintains a set of fiber paths, from which other information 
is extracted when needed. Given the number of implicitly held lambda paths, both time and 
space is thus saved by not abstracting candidate paths with this resolution. In addition, 
when analyzing how the number of explicit and implicit queue elements propagate, the 
candidate algorithm search pattern could be derived. For example, the instant increase in 
lambda paths in search iteration 6 and 9 indicates that a wavelength conversion capable 
VLSR has previously been processed (generating a lot of potential lambda paths). In turn, 
drops in the number of fiber paths in the candidate queue indicates that a path has been (in 
a previous search iteration) either discarded or discovered.

In addition to this, the RCE stack and heap usage have also been profiled. This has been 
accomplished  by using  the  Massif  heap profiler  tool  built-in  to  the  Valgrind  software 
suite1. This profile was generated by loading the RCE program into Massif and having it 
process 1000 requests (for a path between VLSR1 and VLSR7, using the testing utility 
described  in  section  6.1).  Then,  once  the  RCE  finished  processing  all  issued  client 
requests, Massif was prompted to terminate. Upon terminating, Massif in turn generated a 
textual  summary of the location and amount  of consumed spacetime together with the 
complementary graph given in the appendixes (see Appendix D). Note (when analyzing 
this complementary graph) that profiling with Massif runs the RCE at about one twentieth 
the speed of normal execution.

The stack and heap profile generated by Massif has resulted in some observations. First of 
all, the amount of memory allocated by the stack is nearly constant over time (equal to 
about  5% of  the totally  consumed spacetime).  This  is  expected as  the RCE iteratively 
examines candidate paths with no recursive function calls. Secondly, very little spacetime 
is consumed during an entire path computation event. In fact, the amount of spacetime 
consumed for maintaining the candidate path queue is only about 1% of the total amount of 
consumed spacetime. In addition, this amount never seems to exceed 5 kB.

Ignoring the unrelated functions (especially the message API functions) that leak memory, 
a very small percentage of process memory is allocated when searching for  all loop-less 
paths.  Partially,  this  is  because  the  RCE process  runs  in a  single  thread (i.e.  it  is  not 
threaded,  resulting  in  sequential  handling  of  the  issued  requests).  Moreover,  by 
immediately discarding candidate paths that violate constraints, the size of the candidate 
path queue is kept small.  Because of this, more complex data plane topologies are not 
expected to result in exponential increases in consumed spacetime. Additionally, the RCE 
implementation seems to utilize memory very efficiently (given that many potential paths 
are intermediately computed).

1 See http://www.valgrind.org for more information
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7 Conclusion and future work

In conclusion,  we have seen that  handling additional  routing constraints  in  GMPLS is 
feasible. By distributing optical constraints (and attributes) in a generic format via OSPF-
TE, efficient traffic engineering in optical network segments is possible. By also extending 
CSPF algorithms with support for optical network parameters it is possible to deal with 
wavelength continuity,  limited connectivity,  and optical  impairments.  Additionally,  this 
means that  a  PCE can be deployed  in more  complex network regions  (that  is,  optical 
network regions).  Returning paths computed in such network segments  in  the form of 
RSVP-TE ERO signaling objects,  network paths  are ready to be immediately signaled 
(requiring no additional processing) when returned.

Implementing this functionality, very little processing overhead was observed. Although 
the software implementation was run in a volatile environment (i.e. on virtual machines), 
the implemented RCE (compare PCE) was quite responsive to client requests. Enhancing 
this RCE to be stateful,  instantaneous client  access of pre-computed paths will  also be 
possible.  Based  upon  the  theoretical  network  overhead  in  bytes,  the  flooding  effect 
introduced by OSPF-TE could, in some cases, become an issue. On the contrary, as the 
performance of networking components will most likely continue to improve, this effect 
will  decrease.  In  the  future,  the  need  for  efficient  and  reliable  end-to-end  service 
provisioning  in  multi-layered  networks  will  also  very  likely  increase.  Embracing  new 
technology, to provide service provisioning with GMPLS appears to be an efficient way of 
accomplishing this.

7.1 Future work

Some logical follow-up work related to the work seen in this thesis include (1) further 
analysis of the extended GMPLS routing process, (2) a comparison of CSPF algorithms in 
a PCE, and (3) a physical network implementation of the candidate solution. Analyzing the 
extended GMPLS routing process, placement and amount of network information could be 
evaluated.  In a  comparison of CSPF algorithms,  other  algorithms performing the same 
amount of work, or less, could be implemented and analyzed. Implementing the candidate 
solution in a physical network, the GMPLS routing process must be interfaced to physical 
networking components. In addition, the GMPLS signaling process could be extended to 
support the proposed standardization of the wavelength label format (see section 4.1.3).

Even further, the introduced simplifications could be addressed as future work. This would 
include examining reverse links (for bidirectionality), extending the VTY command scopes 
(to that of other command nodes), and adding support for negative additive constraints (the 
constraints that can be compensated for). In addition, another element of future work will 
be to request Internet Assigned Numbers Authority (IANA) assignment of sub-TLV type 
numbers and specific field values (that is, officially publish these sub-TLVs).
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Appendix A: Abbreviations and acronyms

AS Autonomous System
ASE Amplifier Spontaneous Emission
BER Bit Error Rate
BFS Breadth First Search
CSPF Constrained Shortest Path First
CR-LDP Constraint-based Routing-Label Distribution Protocol
CWDM Coarse Wavelength Division Multiplexing
DWDM Dense Wavelength Division Multiplexing
ERO Explicit Route Object
FEC Forwarding Equivalence Class
FIFO First-In-First-Out
FSC Fiber Switching Capable
G-PID Generalized Payload-ID
GLSR Generalized Label Switching Router
GMPLS Generalized Multi-Protocol Label Switching
GRE Generic Routing Encapsulation
IANA Internet Assigned Numbers Authority
IETF Internet Engineering Task Force
IS-IS Intermediate System to Intermediate System
IP Internet Protocol
KSP K Shortest Paths
L2SC Layer-2 Switching Capable
LIFO Last-In-First-Out
LMP Link Management Protocol
LMP-WDM Link Management Protocol-Wavelength Division Multiplexing
LSC Lambda Switching Capable
LSA Link State Advertisement
LSP Label Switched Path
LSR Label Switching Router
MLCP Multi-Layer Control Plane
MPLS Multi-Protocol Label Switching
NARB Network Aware Resource Broker
OADM Optical Add-Drop Multiplexer
OEO Optical-Electronic-Optical
OOO Optical-Optical-Optical
OSNR Optical Signal-to-Noise Ratio
OSPF Open Shortest Path First
OSPF-TE Open Shortest Path First-Traffic Engineering
PCC Path Computation Client
PCE Path Computation Element
PMD Polarization Mode Dispersion
PSC Packet Switching Capable
QoS Quality of Service
RCE Resource Computation Engine
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RFC Request For Comments
ROADM Reconfigurable Optical Add-Drop Multiplexer
RSVP Resource ReSerVation Protocol
RSVP-TE Resource ReSerVation Protocol-Traffic Engineering
SPF Shortest Path First
TED Traffic Engineering Database
TLV Type-Length-Value
TDM Time-Division Multiplexing
TE Traffic Engineering
VLSR Virtual Label Switching Router
VTY Virtual TeletYpe
WDM Wavelength Division Multiplexing
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Appendix B: Table of OSPF-TE VTY commands

Table B.1 holds the OSPF-TE VTY commands extending the set of Zebra OSPF daemon 
commands. These VTY commands can be given in the  OSPF_TE_IF_NODE command 
node scope, therefore they can be used in an OSPF daemon configuration file.

Command Arg. 1 Arg. 2 Arg. 3 Arg. 4 Arg. 5 Arg. 6 Resulting action in DB

wavegrid

new
dwdm cs [GHz] freq. [GHz] grid size bw [B/s] creates a dwdm wavegrid

cwdm cs [nm] λ [nm] grid size bw [B/s] creates a cwdm wavegrid

delete
dwdm - - - - deletes a dwdm wavegrid

cwdm - - - - deletes a cwdm wavegrid

set
dwdm cs [GHz] freq. [GHz] - - sets a frequency in wavegrid

cwdm cs [nm] λ [nm] - - sets a wavelength in wavegrid

unset
dwdm cs [GHz] freq. [GHz] - - unsets a frequency in wavegrid

cwdm cs [nm] λ [nm] - - unsets a wavelength in wavegrid

unselectable
add IPv4 

address - - - - adds unselectable interface

delete IPv4 
address - - - - deletes unselectable interface

constraint
add 8-bit 

code
24-bit 
value - - - adds user-defined constraint

delete 8-bit 
code

24-bit 
value - - - deletes user-defined constraint

Table B.1: OSPF-TE VTY commands.
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Appendix C: Table of DRAGON software changes

Table C.1 holds the DRAGON (i.e. Zebra OSPF daemon and RCE) software changes. For 
each created or modified file, the changes and their importance is indicated.

File Changes Importance

$OSPF/zebra/ospfd/ospf_te_lsa.h added support for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te_lsa.c added support for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te.h defined structures for experimental sub-TLVs critical

$OSPF/zebra/ospfd/ospf_te.c added support for experimental sub-TLVs, 
defined and installed VTY commands critical

$NARB/rce/rce_lsa.hh added defines for experimental sub-TLVs and 
user-defined constraints moderate

$NARB/rce/rce_lsa.cc added support for adding information carried 
by experimental sub-TLVs to links in the TED critical

$NARB/rce/rce_lsp.hh added define for path computation option moderate

$NARB/rce/rce_lsp.cc added support for loading path requirements 
and triggering path computation event moderate

$NARB/rce/resource.hh added support for adding information carried 
by experimental sub-TLVs to links in the TED critical

$NARB/rce/resource.cc added support for adding information carried 
by experimental sub-TLVs to links in the TED critical

$NARB/rce/path_req.hh defined a class representing path requirements 
appended to path computation request, new file critical

$NARB/rce/path_req.cc defined a class representing path requirements 
appended to path computation request, new file critical

$NARB/rce/pcen_bfs.hh defined classes abstracting a path computation 
event, added custom sort class, new file critical

$NARB/rce/pcen_bfs.cc defined classes abstracting a path computation 
event, added custom sort class, new file critical

$NARB/rce/rce_test.cc added support for requesting path computation 
events and parsing responses from the RCE moderate

Table C.1: DRAGON software changes. Here, $OSPF maps to the location of the
dragon-sw package while $NARB maps to the location of the narb-sw package.
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Appendix D: A RCE stack and heap profile

Figure D.1 shows a RCE stack and heap profile. This profile contains the total amount of 
spacetime consumed by a  RCE process which has sequentially processed and returned 
1000 client requests (for a path between VLSR1 and VLSR7).
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Figure D.1: The RCE stack and heap profile. Stack spacetime is shown in brown,
heap spacetime allocated for candidate paths is shown in purple.
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