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Abstract 
The thesis deals with improving location determination when using time of flight of 
radio signals to determine the location of a radiator. The goal of this project is to enhance 
an existing wireless data access point to perform an accurate measurement of the time of 
arrival of a data signal from a transmitter, and to combine this information with 
information from additional wireless data access points to determine the location of the 
transmitter. 
 
There have been a number of earlier efforts in indoor location determination system 
using different technologies. Many of which used signal strength analysis and they have 
low tolerance to moving obstacles such as humans, which frequently are the most usual 
dynamic obstacles in indoors. In this thesis, the proposed solution utilizes time stamping 
and sample correlation to utilize properties of the signal waveform, which has not 
previously been examined by researchers other than the examiner and advisor. 
 
The main contribution of the project is a detailed analysis and design of a solution, as 
well as a comparison with other potential solutions. The main purpose of this solution is 
to increase the timing accuracy to below the duration of a single symbol.  
 
The wireless device that has been analyzed implements the IEEE 802.11b protocol. 
Several investigations have been done to determine the best way of extracting 
information from the 802.11b data frame and symbol sequence; here we utilize a 
correlator to determine the time of arrival of a specific sequence of symbols in a data 
frame. The time stamping of a stream of samples has been implemented in an Altera 
FPGA to get a deterministic computation time. 
 
Instead of decoding the incoming I&Q signals and mapping them to bits, the correlator is 
used to detect the unique sequence containing PSK encoded and Barker code spread 
scrambled ones , as this sequence always appears at the start of each data frame. The 
advantage of this approach is that using of samples of the waveform instead of bits gives 
a significant enhancement in timing resolution. 
 
The design documents of this work include detailed descriptions, simulations, and plots. 
A number of simulations have been done to show the timing accuracy and standard 
deviation, as well as comparisons with several different approaches. Several potential 
optimizations have also been discussed in the report. 
 
Simulation code for MATLAB and implementation code for the FPGA has been included 
in appendices in the end of this thesis. 
 
Keywords: IEEE 802.11b, Correlation, Time stamping, FPGA, PSK 
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Inledning 
Denna rapport beskriver ett examensarbete som utgår ifrån att förbättra noggrannhet av 
en lokaliseringsteknik som tillämpar flygtiden av radiosignal för att mäta positionen av 
utsändaren. Målet av detta arbete är att förstärka en befintlig trådlösdata accesspunkt för 
att utföra en noggrann mätning av signals anländning från sändaren, och kombinera 
denna information från ytterliga trådlösdata accesspunkter för att lokalisera sändaren.  
  
Det har varit ett antal utvecklingar med olika teknologier för att ta fram en lösning för 
inomhus lokaliseringssystem. Många av de förslag som har kommit fram tillämpa 
signalstyrka och har en dålig tolerans av rörande hinder så som människor, vilka är det 
vanligaste fallet inomhus. Denna rapport ger ett förlag att lösa detta problem med att 
tillämpa tidstämpel och sampelkorrelation för att utnyttja egenskaper av signalens 
vågform, ett förlag som inte har blivit undersökt mycket av andra forskare.  
  
Stor del av denna rapport består av detaljerad analys och lösningsdesign, plus en 
jämförelse med andra potentiella lösningar. Meningen med denna lösning är att öka 
noggrannhet till att felmarginal i tid ska ligga under en symboltid.  
  
Den trådlösa enhet som har analyserats implementerar IEEE 802.11b protokollen. Flera 
undersökningar har utförts för att bestämma det bästa sättet att extrahera information 
från 802.11b dataramer och symbolsekvenser. För att göra det har vi implementerat en 
korrelator för att bestämma anländningstid av specifika symbolsekvenser i en dataram. 
En Altera FPGA har använts för att tidstämpla inkommande sampel för att ge en 
deterministisk beräkningstid.  
  
Istället för att avkoda inkommande I&Q signaler och mappa dem till bitar, har vi valt att 
implementera korrelator så att den opererar direkt på PSK-modulerade och 
Barkerkod-spridda ettor, eftersom att det visar sig att denna sekvens alltid visar sig i 
början av varje dataram. Fördelen med denna lösning är att direktanvändning av sampel 
ger en signifikant ökning på tidsupplösning jämfört med bitar.  
  
Designdokumentet av detta examensarbete består av detaljerade beskrivningar, 
simuleringar och grafer. Ett antal simuleringar har utförts för att visa tidsnoggrannhet 
och medelfel, plus jämförelser mellan olkia lösningsförslag. Olika möjliga optimeringar 
har också diskuterats i rapporten.  
  
Simuleringskod för MATLAB och implementeringskod FPGA bifogas i appendix slutet 
av denna rapport.  
 
 
Nyckelord: IEEE 802.11b, korrelation, Tidstämpel, FPGA, PSK 
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Chapter 1: Introduction 

1.1. Background 

Efficient and accurate location determination has long been an interesting topic. There have been several 
efforts to produce accurate positioning systems at different levels, local vs. global, indoors vs. outdoors. 
The most famous is the global positioning system (GPS). It is a satellite based navigation system. 
Although this system is very powerful, it is also expensive—the cost of maintaining the system is 
approximately US$400 million per year, including the replacement of aging satellites [16]. However, the 
service is considered so important for commercial tasks, such as aircraft, ship, and vehicle navigation 
that there are three such systems in existence: GPS, GLOSNASS, and GALILEO. 
 
There have been a number of efforts to provide efficient and accurate indoor location determination 
systems and some of them are able to reach an accuracy of 95% [19]. Many of these proposals for using 
radio frequency measurements for indoor location determination are based on measurements of signal 
strength. One disadvantage of such systems is that they cannot tolerate dynamically moving obstacles 
such as animals and humans. As the signal will be attenuated, refracted, and reflected due to obstacles in 
the area, thus reducing the system’s accuracy. 
 

1.2. Existing positioning systems 

Mobile positioning systems are often classified by the task they are being applied to, such as real time 
positioning system, fleet tracking, and traveler information services; or environment, such as indoor or 
outdoor system. In general, the technologies are often divided into network-based or satellite-based 
systems. Another classification is based on the actual device that performs the positioning solution, i.e.,  
mobile device or the base station, leading to mobile terminal (user)-centric (such as GPS, A-GPS, E-OTD), 
network-centric (COO, TOA, TDOA, AOA, RSS, multipath pattern matching), or hybrid solutions. In the 
network-centric systems, the user’s position is determined by the base station or a control center and 
sent to the application, while in the terminal-centric solution, the position computation is performed by 
the user’s device. 
 
Due to recent developments, the borders between these classes seem to be rather artificial. GPS, formerly 
only feasible outdoor, is now also becoming available indoor. The increasing density of indoor and 
outdoor WLAN networks may offer further opportunities with respect to the positioning of mobile users. 
In the future, a mobile user may no longer be interested in the positioning technology, but only the 
results; seamless switching between the different approaches should be done more or less automatically. 
 
As the deployment of WLAN increase, WLANs are the principle means for delivering web services in 
limited mobility settings such as classrooms, campus areas of universities and enterprises, malls, and 
other indoor areas. For these types of applications WLAN positioning may be an interesting approach. 
Up to now, all WLAN-based position technologies use signal strength and sometimes use a propagation 
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model. The mobile client measures the signal strengths of all surrounding access points and delivers this 
data to a positioning engine which in turn calculates the position by solving a maximum likelihood 
problem. The system is not affected by the fact that several access points transmit at the same frequency 
because it uses the integrated signals. 
 

 
Figure 1: Indoor signal propagation (adapted from figure 2 of [13]) 

 
 
Other approaches utilizes modified access points in order to determine the distance to the mobile client 
via measuring the signal propagation time. Devices for this approach are manufactured by companies 
such as WhereNet (www.wherenet.com). There are is little detailed information on how these devices 
work, but they are expensive. 
 
There are also Bluetooth-based positioning techniques. The idea is similar to the methods described for 
WLAN. Due to the shorter range a better accuracy might be expected, but the standard does not provide 
measurement of signal strengths. In addition, the usage of received signal strength indicator (RSSI) is 
hampered by poor implementations of the hardware and firmware which may vary by manufacturer. 
[13] Hence the actual accuracy is not better than that for WLAN based systems, in fact is likely to be 
worse. 
 
See table 1 for a comparison of how today’s positioning systems work. As readers may note, positioning 
technologies that use WLAN have about 3 meters accuracy. This is in the situation when there are no 
moving objects in the area. The performance degrades if there are people moving in the area, due to the 
attenuation affects of human body, thereby changing the the radio propagation environment such that 
the propagation model no longer applies.  
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Table 1: Criteria for selecting appropriate positioning techniques 

 
Localization technology Range/operational availability Accuracy Services and content 

GSM-based approaches 

COO 
(Cell-of-Origin) 

In principle globally 250m – 35km Traffic information, informa-
tion services 

E-OTD 
(Enhanced Observed Time 
Difference) 

In principle globally  100m – 500m Location based billing, mo-
bile yellow pages, informa-
tion services 

TOA 
(Time of Arrival) 

Only after enormous capital 
investment globally 

100m – 500m Location based billing, mo-
bile yellow pages, informa-
tion services  

OTDOA 
(Observed Time Difference 
of Arrival) 

Only after enormous capital 
investment and with modified 
end devices globally 

30m Fleet management, routing 
functions, mobile advertise-
ment, information services 

Fingerprint Only after enormous capital 
investment, feasible in urban 
areas 

< 150m Fleet management, routing 
functions, mobile advertise-
ment, information services 

GPS-based approaches 

GNSS/SBAS/DGPS Globally 1cm – 100m Positioning and navigation 
services 

A-GPS 
(Assisted GPS) 

Only after enormous capital 
investment globally 

5m Navigation services, security 
services, localization services 

Indoor GPS Indoor/special chips 20m Localization services 

WLAN/Bluetooth 

WLAN outdoor Up to 500m around sender; cell-
of-origin; distance; fingerprint 

10m – 150m Cell-of-Origin and informa-
tion transfer  

WLAN indoor Up to 30m around sender; cell-
of-origin; fingerprint 

ca. 3m Cell-of-Origin and informa-
tion transfer 

Bluetooth Around sender/range up to 
100m indoor (Class 2) 

< 30m Cell-of-Origin and informa-
tion transfer  

Other techniques 

Infrared beacons/ 
Active badges/WIPS 

Around sender/range up to 
10m indoor  

< 10m Cell-of-Origin and informa-
tion transfer  

Ultrasonic Around sender/no hindrances accurate Localization services 

Visual tags Within visible range, typically 
indoor 

Room Localization services 

Semantic positioning In principle globally Depending  
on data set 

Mobile web location and in-
formation service 

Relative positioning (INS, 
odometer etc.)  

Locally, short time meter – cm Support technology for other 
localization services 
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1.3. Overview 

This project is part of a larger effort in using propagation time of radio signals to determine the location 
of a radiator.  The goal of the overall effort is to develop a low cost mechanism for accurately 
determining the location of a wireless device both indoors and outdoors. The physical phenomenon 
used is the time of flight of a radio signal.  An intuitive description of how such a system for device 
location works is as follows:  
 
Consider an ideal system consisting of a transmitting device and two receiving devices.  The two 
receiving devices have synchronized clocks which for this example are assumed to be perfectly 
synchronized, and the locations in space of the two receiving devices are exactly known.  When the 
transmitting device sends a signal the two receiving devices will report the time at which the signal 
arrived.  By relatively simple algorithmic manipulation it can be seen that the two ideal receiving 
stations can position the transmitting device anywhere on an infinite band, where the width of this band 
is based upon the error of the time measurement caused by the sampling, see figure 2. The addition of a 
third receiving station, perfectly synchronization to the other clocks and located at an exactly known 
point in space would allow the position of a transmitting device to be known to within the area common 
to all three measurements, see figure 3. 
 

 
Figure 2: Two access points can define an infinite band of the mobile’s possible position 
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Figure 3: Three access points. The overlap of these three areas defines a finite area of the transmitter’s 

possible position. 
  
The advantage of such a method for determining position is that as it is not based on signal strength, the 
accuracy of the system is not subject to external influences that can attenuate the transmitted signal, such 
as position of obstacles, antenna orientation, or transmitter design.  It only depends upon how accurately 
the receiving stations can measure both time, and the instant a signal arrives. Note that reflections, 
refraction, etc. will degrade the measurements, hence resulting in a larger region where the transmitter 
might be located, but not fundamentally change the result. 
 
 

1.4. Goals 

The specific deliverables for this master’s project are: 
 

1. Determine the sampling requirements for the I&Q baseband signals that can result in satisfactory 
signal reconstruction. 

 
2. Determine how to reconstruct the phase change edges, or other characteristic of the received 

signal that can be recognized by all the access points. 
 

3. Determine the temporal resolution requirements of the time stamping circuits. 
 
4. Examine error sources and suggest potential ways of improving location precision, for example 

by analyzing the arrival times of several packets from the same transmitter to estimate an 
unbiased mean of the standard deviation for the timing measurement. 
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1.5. Organization 

The remainder of this report is organized as follows: 
 
Chapter 2 will introduce IEEE 802.11b standard, specifically the coding and modulation which have 
been used in the protocol, thus facilitating the reader’s understanding of the remainder of this thesis. 
 
Chapter 3 introduces all the design patterns including some initial potential solutions, and the reasons 
for choosing the selected approach. This chapter surveys several solutions and presents the differences 
between these solutions in detail, as well as their advantages and limitations. 
 
Chapter 4 presents simulation results and its relation to the final implementation. 
 
In Chapter 5, hardware implementations will be presented, as well as a detailed explanation of different 
optimizations.  
 
The analysis of the implementation results will be presented in Chapter 6 as well as the interpretation of 
these results. 
 
Finally, Chapter 7 summarizes the results, possible limitations, and future improvements. 
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Chapter 2: Introduction to IEEE 802.11b 
This chapter introduces the relevant details of the IEEE 802.11b standard, and their relevance to 
the proposed location positioning system.  

2.1. IEEE 802.11b Data frame structure 

The IEEE 802.11b data frame structure is quite complex. It has several data fields that contain 
important information to ensure the data transfer. The part that is most relevant to this project is 
the Physical Layer Convergence Procedure PLCP protocol data unit (PPDU) header. There are 2 
different types of header formats. One has a long PLCP preamble and the other is a short PLCP 
preamble. The long PLCP has a 128 bit preamble with scrambled ones while the short PLCP has a 
64 bit preamble with scrambled zeros. The basic purpose of this scrambling will be explained 
later in this chapter. 

 

 
Figure 4:  Long PLCP PPDU format 

 
PLCP Frame Fields  
The PLCP takes each frame that a station wishes to transmit and forms a PLCP protocol data unit 
(PPDU). The resulting PPDU includes the following fields in addition to the frame fields 
necessary for the MAC Layer. The details of the modulation and coding of these fields is 
described in sections 2.3 and 2.4. 
  
Sync. This field consists of either 0s for short preamble or 1s for long preamble, alerting the 
receiver that a frame is about to start. The receiver synchronizes with the incoming signal. This 
field is important in this project to detect that a data frame will arrive. 
 
Start Frame Delimiter. This field is always 1111001110100000 and defines the beginning of a 
frame. This field enables the link layer to frame the symbols, which allows the extraction of the 
MAC address. We will later use this MAC address to identify the particular station which we are 
interested in locating. This delimiter also defines when the sync pattern terminates. 
 
Signal. This field identifies the data rate of the data portion of the frame, its binary value is equal 
to the data rate divided by 100Kbps. For example, the field contains the value of 00001010 for 
1Mbps, 00010100 for 2Mbps, and so on. The PLCP fields, however, are always sent at 1Mbps. This 
ensures that the receiver uses the correct demodulation mechanism for the subsequent symbols, 
as this decoding method, changes in order to support different data rates. 

7/50



Increasing Accuracy of Location Determination:  
Exploiting Phase Change Reconstruction and Timing Measurements 

 
 

 
Service. This field is always set to 0000 0000, and the standard reserves this field for future use.  
 
Length. This field represents the number of microseconds that it takes to transmit the contents of 
the PPDU. The receiver uses this information to determine the end of the frame. While other 
stations can use this field to know when they should next listen to the channel (since if the MAC 
address indicates that the frame is not for them, then they can sleep/power down while the rest 
of this frame is being sent). 
 
Frame Check Sequence. In order to detect possible errors in the physical layer header, the 
standard defines that this field containings a 16-bit cyclic redundancy check (CRC). The MAC 
Layer also performs error detection on the PPDU contents. This field is not relevant for this 
project because we assume that the data frames we receive have a correct header. Even if an error 
occurs, it will not significantly affect our system because we will utilize multiple packets, thus 
there is sufficient information – even if some frames are later rejected as not being relevant to our 
desired measurement (i.e. the MAC address might be in error and hence although we thought it 
matched the station we were trying to locate - if the CRC indicates an error them we should 
simply ignore this frame in our measurements). 
 
PSDU. The Physical Layer Service Data Unit, is a fancy name for the payload contents of the 
PPDU (i.e., the actual link layer frame being sent). This field is important because it contains the 
sender and destination MAC addresses. As shown in figure 4, this field may be coded at different 
rates. This means that additional processing is needed to decode these MAC addresses. There are 
several proposals for how to process this field, and they will be presented in section 4.2. 
 

2.2. Scrambling 

Direct Sequence Spread Spectrum (DSSS) has been used in 802.11b to spread the energy of the 
signal over a broader band and hence both reduce interference with others and increase the 
robustness of the signal. (Details of DSSS will be covered in section 2.3). A direct sequence spread 
spectrum system uses a locally generated pseudo random code to encode digital data to be 
transmitted. The local code rate is much higher than the data rate. Data for transmission is simply 
logically modulo-2 added (an EXOR operation) with the faster pseudo random code. The 
composite pseudo random code and data can be passed through a data scrambler to randomize 
the output spectrum (and thereby remove discrete spectral lines) when a symbol is repeated. 
Here scrambling has not been used to prevent others from decoding the signal, but rather it is 
used to mitigate the effects of this signal on others (i.e., reduce the probability that this signal will 
interfere with others using the same frequency band) [17]. 
 
The scrambler and descrambler are shown in figures 5 and 6.  
 
As stated in section 2.1, the preamble is always the same and for a long preamble it’s always 1s. 
Therefore in this thesis there is no need to implement a scrambler or descrambler. Since the 
scrambled sequence can be directly matched, because since the pattern is fixed, it can be 
precomputed, hence a direct match is possible. This eliminates the need to implement a 
descrambler in the device; however, we must implement a scrambler in software so that we can 
computer what pattern we are to match. 
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Figure 5: Data scrambler 

 

 
Figure 6: Data descrambler 

 

2.3. DSSS Spreading function 

Direct Sequence Spread Spectrum (DSSS) is used to disperse the signal over a relatively wide 
(approximately 30MHz) portion of the 2.4GHz frequency band. This results in greater immunity 
to narrow-band radio frequency interference as compared to narrowband signaling and reduces 
the impact on narrow band signals. It is this later properly that enabled the U.S. Federal 
Communications Commission to permit DSSS operation in the Industrial, Medical, and 
Instrumentation band (ISM band) as a tertiary user under part 15. This enabled license free 
operation of IEEE 802.11 DSSS equipment.  
 
In order to actually spread the signal, an 802.11 transmitter combines the PPDU with a spreading 
sequence through the use of a binary adder. The spreading sequence is a binary code. For 1Mbps 
and 2Mbps operation, the spreading code is the 11-chip Barker sequence, which is 10110111000 
(Note that the Barker code shown in Figure 8 is in the opposite order, but the correlation property 
is exactly the same). The binary adder effectively multiplies the length of the binary stream by the 
length of the sequence, which is 11. This increases the signaling rate and spreads the signal over a 
greater bandwidth.  
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Figure 7: Data spreading 

 
However, the 5.5Mbps and 11Mbps modes of 802.11b do not use the Barker sequence. Instead, 
802.11b uses complementary code keying (CCK) to provide the spreading sequences at these 
higher data rates. CCK derives a different spreading code based on fairly complex functions 
depending on the pattern of bits being sent. The modulator simply refers to a table for the 
spreading sequence that corresponds to the pattern of data bits being sent. This is necessary for 
efficient processing of the data in order to achieve the higher data rates. Principles of Barker code 
and CCK are described below. Note that these higher code rates are only applicable to the data in 
the PSDU. 
 
Because of the relatively wideband DSSS signal, 802.11b access points operating at high data rates 
must utilize specific channels to avoid spectral overlap, which can cause reductions in 
performance. 
 

2.3.1. Barker code  
A Barker code is a sequence of N values of +1 and −1, 

aj for  
such that 

 
for all                  . 
Figure 8 shows all known Barker codes, where negations and reversals of the codes have been 
omitted. 
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Figure 8: Barker codes 
 
Barker codes of length 11 and 13 are used in direct-sequence spread spectrum and Pulse 
Compression Radar systems because of their low autocorrelation properties. 
 
Barker codes utilize biphase modulation; that is, the change of phase in the carrier wave is 180 
degrees [14]. 
 

2.3.2. CCK 
Complementary Code Keying (CCK) is a modulation scheme used with wireless local area 
networks (WLANs) that employ the IEEE 802.11b specification and are operating at 5.5 Mbps or 
11 Mbps. In 1999, CCK was adopted to to support these higher data rates. 
 
Complementary codes, first introduced by Golay in 1961 are sets of finite sequences of equal 
length, such that the number of pairs of identical elements with any given separation in one 
sequence is equal to the number of pairs of unlike elements having the same separation in the 
other sequences. 
 
The complementary codes first discussed by Golay were pairs of binary complementary codes 
and he noted that when the elements of a code of length N were either [-1 or 1] it followed 
immediately from their definition that the sum of their respective autocorrelation sequences was 
zero at all points except for the zero shift where it is equal to K*N. (K being the number of code 
words in the set). 
 
CCK is a variation and improvement on, M-ary Orthogonal Keying and utilises ‘polyphase 
complementary codes’. Polyphase complementary codes, first proposed by Sivaswamy--1978, are 
codes where each element is a complex number of unit magnitude and arbitrary phase, or more 
specifically for 802.11b is one of [1,-1, j,-j]. This use of these codes for WLAN was introduced by 
Lucent Technologies and Harris Semiconductor and was adopted by the 802.11 working group in 
1998. CCK is the form of modulation utilized when 802.11b operates at either 5.5 or 11 Mbit/s. 
CCK was selected over competing modulation techniques as it utilized approximately the same 
bandwidth and could utilise the same preamble and header as existing 1 and 2 Mbit/s wireless 
networks thus facilitating interoperability. 
 
The CCK modulation used by 802.11b transmits data in symbols of eight chips, where each chip 
is a complex QPSK bit-pair at a chip rate of 11Mchip/s. In 5.5 Mbit/s and 11 Mbit/s modes 
respectively 4 and 8 bits are modulated onto the eight chips of the symbol c0,...,c7, where 

 

   
and                            are determined by the bits being modulated. 
 
In other words, the phase change φ1 is applied to every chip, φ2 is applied to every other chip, φ3 
is applied to the first two of every four chips, and φ4 is applied to the first four of the eight chips 
[15].  
 
Wireless networks using the 802.11b specification employ CCK to operate at either 5.5 or 11 
Mbit/s in the radio-frequency band ranging from 2.400 GHz to 2.4835 GHz. Networks using the 
IEEE 802.11g specification employ CCK when operating at 802.11b speeds. At higher speeds (up 
to a theoretical maximum of 54 Mbit/s), 802.11g WLANs use a more sophisticated modulation 
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scheme called orthogonal frequency division multiplexing (OFDM). This is the same modulation 
method used by IEEE 802.11a WLANs in the radio-frequency band ranging from 5.725 GHz to 
5.850 GHz. 
 

2.4. DSSS Modulation 

The modulator converts the spread binary signal into an analog waveform through the use of 
different modulation types, depending on which data rate is chosen. For example for 1Mbps 
operation, the standard specifies the user of differential binary phase shift keying (DBPSK). This 
isn't really as complex as it sounds. The modulator merely shifts the phase of the center transmit 
frequency to encode a binary 1 or a binary 0 within the data stream.  
 
For 2Mbps transmission, differential quadrature phase shift keying (DQPSK) is used, this similar 
to DBPSK except that there are four possible phase shifts that represents pairs of data bits. This is 
a clever process that enables the data stream to be sent at 2Mbps while using the same amount of 
bandwidth as the one sent at 1Mbps. The modulator uses similar methods for the higher, 
5.5Mbps and 11Mbps data rates. Principles of differential phase shift keying are described below. 
 
Since the PLCP fields are set at 1Mbps always - it is primarily DBPSK which concerns us in this 
thesis. DQPSK system has been studied and simulated for future works. 
 

2.4.1. Phase Shift Keying 
Phase shift keying is a modulation method that maps the information bits into symbols in form of 
phase shifts. 
 
The basic signal space function for Binary PSK is: 

 
Binary data is often conveyed with the following signals: 
  
for binary “0” 
  
 

                                                                                                                             for binary “1” 
 
 
Where  is the frequency of the carrier--wave. 
 
The symbols representing zeros and ones have a 180 degrees phase shift: 
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Figure 9: BPSK symbol mapping 

 
We can easily see that for Binary phase shift keying, since the phase shift is always 180 degrees, 
the quadrature signal is always zero. This means that we only need to analyze the In-phase signal 
and this makes the whole system easier and cheaper to implement. 
 

2.4.2. Differential encoding 
In differential encoding, information is not conveyed by the absolute phase of the signal with 
respect to a reference, but rather by the difference between phases of successive symbols, thus 
eliminating the requirement for a phase reference at the receiver. In practice, this method gives 
greater immunity to fading. 
 
Figure 10 illustrates how phase shifts carry the information in differential BPSK and QPSK. 
 

 
 

Figure 10: Differential BPSK & QPSK symbols 
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Chapter 3: Design 

3.1. General system design 

We begin by assuming that analog I and Q signals (or just the Q signal if we are not interested in 
the PSDU header) of the phase shift keying modulated baseband signal stream are picked off of 
the radio chipset and applied to a two channel, high speed analog to digital converter (ADC). The 
resulting digital bit stream is placed in a high speed FIFO buffer.  In parallel with these bit 
streams, a time stamp from a hardware clock is also stored.  The output of the FIFO is made 
available to a computer which performs digital signal processing operations to extract 
information from these bit streams. An outline of how the system works is as follows: 
 

1. The arriving analog intermediate frequency signal data is sampled, digitized, and time 
stamped.  It is then stored in a FIFO buffer that is written at the sampling rate of the ADC.  
The FIFO is large enough to hold enough data such that no packet’s header-information 
will be lost due to the processing latency of the new hardware that will be co-located with 
the access point. 

 
2. Demodulated and decoded packet data is provided to the DSP as shown in figure 11. Of 

course one could also use the MAC processing by the DSP in the AP to perform this 
decoding. When a packet is identified as being from the source of interest, the DSP will 
locate the stored digitized and time stamped data corresponding to the packet of interest.  
The packet identification occurs in near real time, so information in the FIFO will not be 
overwritten by the next packet. 

 
3. After locating and moving the stored digitized and time stamped signal data to the DSP, 

it will reconstruct the waveform by extract symbols and bits. When a suitable pattern is 
detected, then the time stamp for that bit’s arrival is sent to a central server which uses 
information from multiple receivers to compute the location of the mobile device. 

 
4. The location server will obtain time stamps for the arrival of the same pattern from three 

or more access points.  It will then perform the multilateralization calculations necessary 
to determine the transmitter’s location.  

 
Note that the signal processing is only concerned with reconstructing the signal’s phase changes, 
and determining when they occurred. Because the data is time stamped deterministically in 
hardware this signal processing does not have to occur in real time.  Another advantage is that 
the actual decoding of the data packet occurs normally in the existing access point hardware and 
software. This means that the new processing does not need to demodulate or decode the actual 
data packets, which means that the system can work even with encrypted data. 
 
Note also that the design shown in figure 11 is a potential design for a future access point, but in 
the tests done in this thesis there is a separate computation unit for the new signal processing – 
since we could not reprogram the existing DSP in the access point. 
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Figure 11:  Location measurement receiving system 

 

3.2. Advantages 

There are several advantages of this design.  
 
The first is that the signal strength is not a concern since we exploit other properties of the 
incoming signal. By doing this, we avoid a lot of complicated signal analyses and filters. 
Additionally, since we only care about the first incoming signal, no multipath propagation 
considerations are needed and therefore we need only consider an additive white Gaussian noise 
channel. 
 
Another advantage is, since the transmitter will most likely send multiple frames within a short 
period of time, and if the user is a ‘normal’ person (i.e., stationary or moving only at low 
velocities), we can track the user even if we sometimes get unreasonable positions because of 
large obstacles that block the line of sight signals, hence a reflected ray arrives first leading to an 
incorrect estimate of the user’s true position. 
 
One important thing to remember is that we look at samples instead of bits. The reason is that the 
bits need first to be decoded from samples, and the bit rate in the physical layer convergence 
procedure has been sent at 1Mbps, which if we looked at the bits would only give a resolution of 
a hundred meters. That is not what we want. The samples are Barker code spreaded chips which 
are set at a rate of 11M chips per second. To extract this information, a sampling rate at least 22M 
samples per second is needed according to the Nyquist theorem. However, higher sampling rate 
gives us greater timing resolution - since we are not simply aiming to reconstruct the original 
waveform, but are in fact interested in the time it take the wave to propagate. There is a tradeoff 
between good sampling circuits and cheap sampling circuits. Therefore, additional analysis is 
needed to determine what the best solution is. This will be discussed in detail in Chapter 4. 
 

3.3. Detailed description 

3.3.1. Positioning 
The position is determined by combining arrival time information from three access points and 
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calculating the distance of mobile transmitter to each of them. 
 
The difficulty of this approach is that since the radio signal travels at nearly the speed of light, the 
error in positioning will be large when using a low sampling rate. At 11 million samples per 
second, the distance represented by the difference between 2 samples is 27 meters. This is not 
sufficient to do a local positioning. 
 
To encounter this, the first thought was that if the deviation is deterministic, we can repeat the 
measurment many times and get a more precise value. Or we can implement a function that for 
each pair of access points, gives us a set of potential positions of the user.  
 
Since we don’t have any information about how the time of arrivals will be distributed, the actual 
position becomes harder to determine. One way to increase the time resolution is that to increase 
the sampling rate. The hardware we use in this project, the Ettus USRP board [9], has a maximum 
sampling rate of 64 millions samples per second. This will improve our resolution from 27 meters 
to about 5 meters.  
 
To improve it more, we need to utilize statistical methods. There are several proposals about how 
this can be performed. First we need an estimation of the timing error distribution. If the error is 
deterministically distributed, then what we need to do is simply subtracting this error from the 
signal arrive time measurements at the access points.  
 
But error can also be stochastic. If so, then there are two possible cases: the error distribution can 
be estimated, or it cannot. In the first case, the solution will be to apply a statistical analysis to the 
distribution, and subtract the expected value of the error from the signal arrive time 
measurements. In second case, the situation becomes more complicated. Since we cannot tell how 
the error is distributed, we could simply average the error of a lot of measurements. Thus at least 
reducing the effect of the error. Hardware test has not been performed in this thesis. 

 

3.3.2. Time stamping 
To time stamp the samples, we use a clock that is located on the board. This clock needs to be 
synchronized with the other access points – in order to provide a common time base. This 
common time based will be derived using NTP [5]. This is straight forward to implement in the 
FPGA. There could be problem if the time stamping clock has a lower frequency than the 
sampling clock, but in our case both have the same frequency. 
 

3.3.3. Timing measurement 
This is probably one of the most important issues for this project. 
 
As stated before, the accuracy of position determination depends on how accurate we can 
measure the arrival time at different APs. As radio waves propagate at the speed of light through 
air, a small unit of time means a large distance. It is for this reason that many earlier indoor 
location systems used acoustic signals, since the speed of propagation of sound is much lower 
than the speed of light. 
 
Since our approach is based on signal arrival time measurements, we need to time stamp the 
arrival time reliably. To do this, we perform correlation (correlation, also called correlation 
coefficient, indicates the strength and direction of a linear relationship between two sequences. In 
this thesis, correlation has been utilized to detect the signal arrival). This can be done either on a 
digital signal processor or a FPGA (field programmable gate array). We need to compute the 
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correlation peak and when it occurs. Since there is already a FPGA on the USRP board, we will in 
this thesis only consider a design based upon correlation implemented in the FPGA. 
 
A critical issue is the sampling rate. While there are ADC circuits that have very high sampling 
rate, this is not true in our case as we want to create a design that can use relatively cheap 
hardware in order to make this system practical. The hardware we are planning to use has a 
sampling rate of 64M samples per second (Msps). This sampling rate is not high enough to 
directly give use the arrival time with the temporal resolution which we might want. We cannot 
be sure if the time stamps tell us the exact signal arrival time or not, because the signal arrival 
time can be anywhere between the time stamp Tstamp minus a half sampling time and the time 
stamp plus half the sampling time, {Tstamp +/– 0.5*Tsample}. Since we are not sure about where 
in this interval we are, we need to consider both +0.5*Tsample and -0.5*Tsample to include all 
possible time intervals. The sampling time at our sampling rate is 1/64M which is about 15 ns, 
which corresponds to about 5 meters in distance (hence 15ns * C = 4.5 meter, C = light speed). As 
stated before, we estimate the position of the mobile device based upon the overlapping area of 
the estimated distances from the three access points. By doing this measurement several times the 
possible position area shrinks, see figures 12 and 13.  

 
Figure 12: The overlapping area is the possible user position area 
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Figure 13: The overlapping area shrinks when performing the estimation several times 

 
This computation can be done posterior, we do not need to implement it in the FPGA, but some 
post processing in MATLAB or with other software will be sufficient.  
 
In IEEE 802.11b, the mobile device actually synchronizes with the access point which it is 
associated with, [12]. And since all access points in our system is synchronized, what may 
happen is that the time estimation will be good after the synchronization and getting worse and 
worse as time goes by, and becoming good again with next synchronization. This is good because 
if the error propagation is limited, we will get better estimation faster. Future researchshould 
examine if it is possible to predict the error. 
 

3.3.4. System model 
The model uses four WLAN cards. All have a fixed position, with three of the cards being located 
about the periphery and one being located interior to the hull formed by the other three. The one 
in the interior will be considered to be the mobile device of a user. This WLAN card sends out 
data packets constantly or at some rate (e.g., every 20ms such as a voice over IP client would). 
The other three act as APs and each one has its own USRP attached to the I&Q signals. This 
model simulates the realistic case of a user located in a small area. The three USRP are 
synchronized to the same clock. The distance to the user is fixed and known. Every time the user 
sends a packet, all three APs will detect it and time stamp their samples. There will be a 
significant time delay between the signal’s arrival and the signal’s detection, but as described we 
be able to calculate a position estimate, the goal is this estimate should not be too far from the 
actual user’s position. 
 
There is also another proposal for how we can simulate the user case with fewer WLAN cards 
and USRPs. That is, instead of using four WLAN cards and three USRPs, we use only one of each. 
To get measurement data for the case we described above, we do the measurement three times 
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with different lengths of wire emulating the different distances to the user’s device. This avoids 
signal interference (since we have a wired connection). To simulate a moving user, we shift the 
sending data with a suitable delay. The USRP board we use has four 64Msps 12-bits ADCs on, 
and since we only need to consider the In-phase signal, we should have enough inputs to 
emulate 4 access points. As the USRP board also has four 128Msps 14-bit digital to analog 
converters (DAC) it is also feasible to test the system by generating a known waveform and 
detecting it.  
 

3.3.5. Test bench 
The test bench utilizes the GNU software radio (http://www.gnu.org/software/gnuradio/) and 
USRP (universal software radio peripheral) board from Ettus Research LLC. The USRP performs 
the sampling and analog to digital conversion. The sampling rate is 64Msps. The FPGA that is 
sitting on the USRP is an Altera Cyclone EP1C12 (see section 5.1 for details). The GNU radio 
project uses Verilog HDL as the programming language to configure this FPGA. Here is a review 
article about this board: (http://spectrum.ieee.org/oct06/4654).  
 
The GNU radio is a C++/Python hybrid system tied together by SWIG (simplified wrapper and 
interface generator, www.swig.org). Other libraries such as FFTW (www.fftw.org), Boost 
(www.boost.org) and CPP unit (cppunit.sourceforge.net/cppunit-wiki), are also necessary in the 
system construction. These will all be compiled using an Ubuntu Linux system. 
 

 
Figure 14: The Universal Software Radio Peripheral (USRP), reproduced by  

permission, Mark Smith 2007. 
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Chapter 4: Simulation 

4.1. IEEE 802.11b data frame analysis 

Because the PLCP preamble is always scrambled ones and always sent at 1 Mbps (that is, Barker 
code spreaded and DBPSK modulated), the pattern we will look for is always the same. Therefore 
the correlation can take place as soon as the intermediate frequency signals arrive, which gives us 
a significant gain in timing accuracy. 
 
The scrambled one’s will always be 0011 1111 0111 0110 0111 0100 0101 0010 0111 1100 1100 1010     
1100 0110 0001 0010 1111 0101 0100 0001 0110 1011 1001 0001 1100 0000 0111 1000 1000 0110 1001 
1011 in big endian order. In fact, the most unique sequence in the PLCP (Physical Layer 
Convergence Procedure) is the SFD (Start Frequency Delimiter) part, but this field is too short to 
be easily identified by the correlation. But since the scrambled one’s already have good 
correlation property, SFD is not needed in the header correlation. However, the SFD is useful 
since it tells us where exactly the preamble ends, hence we can look for this sequence when later 
processing the header data to find MAC addresses (if needed). 
 
The SIGNAL field indicates which transmission rate the data portion of the frame utilizes. Based 
upon the transmission rate we know how the frame is spreaded and which modulation has been 
used. This information is very useful in next step which is to decode the sender’s MAC address to 
see if the data frame comes from the desired user’s device.  
 
Since the main purpose of this project is location determination, the decoding of MAC header for 
data rates higher than 2 Mbps has been skipped, although CCK decoding is quite straight 
forward.  
 

4.2. MAC address decoding 

To identify a specific user’s device, we need to look at the sender’s MAC address. As stated 
before, the MAC addresses which are in the PSDU field of PPDU header can be coded and sent at 
different data rates. This makes it more complicated for us to identify the user’s device. However, 
since we know which device we are looking for we can precompute the pattern for each of the 
encodings and simply look for an instance of one of these patterns or we can let the normal MAC 
handling of the AP handle this. 
 

4.3. Investigation of the frame using simulation 

To analyze the IEEE 802.11b data frame, several experiments were performed using MATLAB. 
This leads to a number of useful insights which are described below. 
 
The first is that fields in the IEEE 802.11b PPDU header are in big-endian (which means the first 
bit is the most significant bit).  
 
The SFD field, as stated in IEEE 802.11b standard, is a unique sequence. This sequence is very 
useful for finding the beginning of the PLCP header and thereby extracting information from the 
MAC header. However, this sequence is 16 bits long, and since the PPDU header is always Barker 
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code spreaded, the SFD sequence has 176 chips. This length was not enough to find the frame as 
there is insufficient correlation to detect it. Therefore, the 128 bits SYNC sequence has also been 
used, as this results in a 1408 chip pattern. Although a longer correlation is necessary, this does 
not matter since the correlation still can be computed at the rate which new samples arrive. 
 
Additionally, correlation is needed during post processing to recognize the MAC address in 
order to identify the desired transmitter. Although there is only one user in our test case, there 
may be many other WLAN users in the test area. There is another way to do this, which is that let 
the WLAN card do the user identification. When the location hardware is added to a WLAN card, 
it is easy to use this second method. But for now, we will perform post processing to identify the 
specific transmitter which we are interested in. 
 

4.4. Sample correlation 

Several experiments were performed which used correlation of different length sample sequences. 
The results are satisfying: even if the correlation begins after the start of frame; a reliable 
correlation peak results. With an 11Msps sampled sequence, 1500 samples of the correlation 
sequence, the second highest peak, which we know does not belong to the header, has a value of 
about 500, while the highest peak has a correlation in about 2000. With a reduced length of the 
correlation sequence, this value decreases linearly. Thus at half the length, the correlation peak 
sinks below 500. 
 
Another experiment tested things the reverse. That is, with a full length correlation sequence, but 
only part of the incoming samples, beginning after several hundred samples into the frame. This 
simulation shows the correlation performance even if we are not able to detect samples from the 
very beginning of the SYNC sequence. The result is similar to the earlier case: The correlation 
decreases as the number of samples missed increases. We get a correlation lower than 500 with 
800 missed samples.  
 
These results tell us that the correlator will be reliable even in the worse cases of losing more than 
have the sample of the synchronization sequence. Additionally, we expect to have multiple 
complete frames to examine, hence the loss of occasional frames will not matter significantly. 
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Figure 15: Sample correlation between preamble and data frame, 11Msps 
 

In our case, the correlation will use a 64Msps sampled sequence. This expands the length of the 
sample sequence by a factor of 6, from 1500 to nearly 9000. With increased sampling rate, we will 
get a better temporal resolution, and with a longer correlation sequence, the peak of correlation 
becomes even more obvious. See figure 16. 

 
Figure 16: Sample correlation at 64 Msps 

 

4.5. Sampling time error analysis 

The sampling rate at 64Msps is relatively slow relative to the speed of light. While the correlation 
tells us when the sampled SYNC sequence arrives, it does so only at the temporal resolution of 
the sampling clock. Thus we know that the actual time of arrival could be off by up to one clock 
period. To illustrate the effect of this, a MATLAB simulation of the positioning error has been 
performed. 
 
We ignore the radio signal processing time in the simulation because we know that this 
processing is deterministic. Although, this time must be accounted for in the real implementation 
in order to get a reliable position estimate. 
 
Since we don’t know how the timing error is distributed, we assume in this simulation that this 
error is uniformly distributed. The total timing error is 1/Sampling rate which for 64Msps is 15.6 
nanoseconds. According to Maximum Likelihood, this error is evenly distributed over the time 
stamp of the current sample, which means that the timing deviation is plus and minus a half 
sample time = +/- 7.8 nanoseconds. Thus the user's current position is constrained to a cylindrical 
area from a give AP. 
 
Assume that the user and three access points are perfectly synchronized, and the user is not 
moving. The actual distance from the three access points to the user is 35 meters for AP1, 42 
meters for AP2 and 40 meters for AP3. Timing deviation between -7.8 to 7.8 nanoseconds gives us 
a distance error between 0 and 4.68 meters. The overlapping area marked with green in figure 17 
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shows the area where the user is. 

 
Figure 17: Location estimation with uniformly distributed timing error 

 
To get a more precise position estimation, we perform this measurement 10 times. It results in a 
decreased area of the user position. 

 
Figure 18: Overlapping of 10 possible user positions 
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In figure 18, the blue marked area is the overlapping area, which is the area of the possible user 
position. We can see that the estimation error decreased 0.36 meters. This simulation shows that 
the overlapping of possible user positions will give us a good estimate of the user position (since 
the actual user position must correspond to the measurement data from all the measurements). 
 

4.6. Position determination by arrival time 

In a real implementation, we will not be able to know the exact distances from the user to the 
access points, but only the time stamps which indicate the packet arrival time.  
 
In this case the algorithm to determine the possible user position is: 
 

1. Calculate the arrival time differences from three access points, which form 3 constraints. 
 

2. Add plus and minus one half sampling time to the time differences, this results in 6 
constraints. 
 

3. Derive the possible simultaneous solutions within the area. Since we know the exact 
coordinates of the access points, it becomes a simple system of equations with 2 equations 
and 2 unknowns. For each pair of access points, we need to solve this system of equations 
twice considering the difference of the signal arrive time Tdiff + 0.5*Tsample and Tdiff – 
0.5 *Tsample. The results are 6 sets of coordinates. 

 
4. From these 6 sets of coordinates we form a bounded area of the possible user position. 

 
5. Perform this calculation several times to get an improved position area estimate. 

 
 

The result will be presented in section 6.1. The MATLAB code for this algorithm is included as 
appendix A. 
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Chapter 5: Implementation 
The implementation has two 2 phases. The first is the single USRP implementation to investigate 
the difficulty of realizing the designed system. This part is the key to the complete system 
implementation. Once the single USRP implementation is finished, the whole positioning system 
would be very easy to put into practice.  
 

5.1. Single USRP implementation 

The most important parts of the single USRP implementation are the time stamping and 
calculation of the correlation. 
 
The FPGA we use in this project is an Altera EP1C12 Cyclone. It is not one of Altera’s most 
advanced products, but it is sufficient for our system design.  
 
The EP1C12 Cyclone field programmable gate array is based on a 1.5-V, 0.13-μm, all-layer copper 
SRAM process, with 12,060 logic elements (LEs) and up to 234 Kbits of RAM. With features like 
phaselocked loops (PLLs) for clocking and a dedicated double data rate (DDR) interface to meet 
DDR SDRAM and fast cycle RAM (FCRAM) memory interface requirements. This Cyclone 
device is a cost-effective solution for data-path applications. It supports various I/O standards, 
including LVDS at data rates up to 640 megabits per second (Mbps), and 66- and 33-MHz, 64- 
and 32-bit peripheral component interconnect (PCI), for interfacing with and supporting ASSP 
(Application Specific Standard Product) and ASIC devices, [1]. 
 
The time stamps are derived from a 64MHz Fortiming Corp. (www.4timing.com) HC49USMD 
crystal clock on the USRP. In future implementations, since the APs must be synchronized, all 
USRPs should be synchronized to the same clock. 
 

5.2. Performing the correlation using the FPGA  

As stated before, we use the 64Msps sampled sequence to perform the correlation in the FPGA in 
order to determine the signal’s arrival time. However, correlating a sequence of 9000 samples is 
unrealistic to implement in a Cyclone FPGA. The ADC samples the signal using a resolution of 12 
bits. Hence 9000 samples becomes 108000 bits. Even though the correlation contains only simple 
logical operations, this size is still far too large for this FPGA.  
 
Thus we need to decrease the sequence size. One theory is that, since the In-phase part of BPSK 
signal only contains plus and minus ones (as shown in figure 9), it is enough to perform the 
correlation by using the signs. This decreases the sample size from 12 bits to 1bit, and the total 
size to 9000 bits. 
 
The next question is, is 9000 bits still too much for our FPGA? If so, can we decrease the 
requirements yet again? How many samples are needed to find a reliable correlation peak? A 
simulation was performed to find the answer. Figure 19 shows that with 1000 bits, we are still 
able to identify the correct correlation peak. 
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Figure 19: Cross correlation with 1000 bits 

 

5.3. Verilog implementation 

The hardware description language (HDL) used was Verilog HDL. Verilog is a C-like language 
that is used to model electronic systems. It supports digital design and verification, and can be 
used in a limited way for mixed-signal circuits. The language is case-sensitive, has a preprocessor 
like C, and the major control flow keywords, such as "if" and "while", are similar. The formatting 
mechanism in the printing routines and language operators and their precedence are also similar. 
However, it differs from many programming language in that the execution of statements is not 
strictly sequential.  
 
A Verilog design consists of a hierarchy of modules. Modules are defined with a set of input, 
output, and bidirectional ports. Internally, a module contains a list of wires and registers. 
Concurrent and sequential statements define the behavior of the module by defining the 
relationships between the ports, wires, and registers. Sequential statements are placed inside a 
begin/end block and executed in sequential order within the block. But all concurrent statements 
and all begin/end blocks in the design are executed in parallel. A module can also contain one or 
more instances of another module to define a sub-behavior. A subset of statements in the 
language is synthesizable. If the modules in a design contain only synthesizable statements, 
software can be used to transform or synthesize the design into a netlist that describes the basic 
components and connections to be implemented in hardware. The netlist may then be 
transformed into, for example, a form describing the standard cells of an integrated circuit or a 
bitstream for a programmable logic device (e.g. a FPGA). [18] 
 
The Verilog implementation needed in this project consists of two main modules: correlator and 
timestamp. The correlator module contains a bitpattern with length 1000, which is pre-computed 
by MATLAB using preamble information about the IEEE 802.11b protocol as described in section 
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2.1. The bit pattern is the first 1000 bits of the sampled header. As shown above, this is sufficient 
for us to detect the signal’s arrival.   
 
The input of the correlator module is the incoming signal samples, mapped from sample values 
to ones and zeros. The reason we do this is stated above. For every incoming bit, the correlator 
will perform a digital correlation and a hamming weight calculation to return the correlation 
value. This value will then be sent to the timestamp module to decide if it exceeds the threshold; 
if so, then the timestamp is sent to the output.  
 
There should be no multiplications or divisions used in the implementation, as a multiplier is  
very resource consuming on a FPGA. The correlation operation can be realized for our case as a 
bit-wise inverted logical XOR. The hamming weight operation is done by summing the ‘1’ bits of 
a bitarray, and the return value is the sum of the correlation output. However, to illustrate the 
difference between correlation using multiplication and not using it, we have performed both 
implementations on a testbench. The result will be presented in section 6.2. 
 

5.4. Multiple USRP implementation 

In a multiple USRP implementation, the WLAN card that sends packets is assumed to have a 
fixed position. This makes it easier to do the timing measurement. Since in the test configuration 
the distances from the user to APs are known, it is easy for us to check our position estimation 
against these known distances. However, due to limited time, this case will not be included in 
this thesis. 
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Chapter 6: Results 

6.1. Location determination 

As presented in section 4.6, the position estimation algorithm calculates the possible user 
positions by using differences of two arrival times at two access points. To include all potential 
positions, we add plus and minus a half sample time to the measured time delay. The result for 
one measurement is shown in figure 20.  

 
Figure 20: Result of the position estimation algorithm 

 
The red point in figure 19 is the actual mobile position. The area of the possible mobile positions 
is defined by linking all six bounding points (based upon the pair-wise measurements). As we 
can see, the minimum estimate error is about 2 meters. Although this is a good estimation, we 
would like higher accuracy in our location determination. 
 
To achieve this, we perform the measurement several times and overlap computer the 
intersection of the estimated position areas. If the mobile remains still, we do not need to include 
tracking (although it is a good idea to implement a tracking algorithm for the ‘moving user 
scenario’).  
 
The result for the intersection of 10 simulated results is shown in figure 21. As we can easily see, 
the estimation area shrinks dramatically. The error of the position determination is between half 
to one meter, which is close to our requirement.  
 
Another thing that is good to note about this implementation is that the result is similar for 10 
simulations and 20 simulations. This is simply because although the estimated area shrinks to a 
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smaller size, the calculated positions still contain random errors.    

 
Figure 21: The error decreases to half a meter after 10 simulations  

with the area overlapping method 
 

With a well synchronized measurement environment and a better algorithm, the estimated area 
will theoretically converge to nearly zero. This will be discussed further in Chapter 7. 
 

6.2. FPGA based correlation 

The FPGA implementation is written in Verilog and quite simple. The correlation can be 
performed either by using multiplications or logical XORs. The main benefit of using logical 
XORs is that we do not need to implement multiplications on the FPGA, which is very resource-
demanding. First, FPGA on the USRP board does everything as 4 bit lookup tables (LUTs). So for 
example, to XOR two 2-bits numbers gives us 1 bit result, using a 4-bit LUT, while multiplying 
two 2-bits number gives us a 4-bits result, which needs 4 such LUTs to complete. This means that 
it takes 4 times the amount of power to perform two 2-bits multiplication as doing a 2-bits XOR. 
But since no LUT depends on the results of another LUT, the speed of these two operations is the 
same.  
 
However, if we want to work with more bits, for example 3-bits number, the difference becomes 
more significant. XORing 3 bits still just takes one LUT to give a 1 bit result.  Multiplying two 3-
bit numbers will result in a 6 bit result.  BUT, we can't build the multiplier from just 6 LUTs.  One 
way to build it is as a 6 bit input device for each output bit.  That means we will need three LUTs 
for each of the 6 output bits, and they will be connected as a binary tree for each output bit (2 
LUTS giving partial results to a third LUT giving the final answer for that particular bit). In this 
case, the multiplier will take 18 times as many LUTs and thus 18 times the power as the XOR 
solution, and will run twice as slow because of the binary tree structure.  The LUT driving each 
output bit has to wait for the partial result from the two LUTs behind it. So the more bits we use 
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from each sample, the more benefit we get by using XORs instead of using multiplier.  
 
But can we get as good result as we can get from multiplication by only using logical XORs? 
Following is a comparison between two correlations. One is done by XOR operation and the 
other is by multiplication. 
 
Figure 22 shows a correlation peak at 1000 when 2 identical sequences have perfect correlation. 
As we can see, uncorrelated parts of the result have positive maximum at about 300 and at 
negative minimum at about 500. In figure 23, which shows the result from a correlation operation 
using logical XORs, the correlation peak is the same in a perfect correlated situation, but the 
uncorrelated part has a maximum at about 650. It is hard to say that the result using logical XORs 
is less reliable, since we get a clear peak in both implementations, but rather that it’s less tolerant 
against noises such as signals from other access points in the area. The Verilog code is included in 
appendix B.  
 
 

 
Figure 22: The bit-wise correlation using multiplication 
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Figure 23: The bit-wise correlation using logical XOR 

 
 

6.3. Work summary 

Here is a summary of works that have been done. It is important to understand these aspects in 
order to continue this project: 
 

1. The MATLAB functions that are developed for analyzing the IEEE802.11b header 
 

2. The MATLAB functions that are developed for helping calculation of the mobile location. 
 

3. The use of USRP board and recompiling of the GNU radio FPGA code. 
 

4. FPGA functions that are developed for performing the correlation and time stamping. 
 

 

6.3.1. Header analysis function 
The MATLBAB simulation file for the IEEE 802.11b header analysis is headeranalysis.m. The file 
takes a data file called ‘myfile2.dat’ (can be changed to any name, as long as the name matches 
the data file), which contains coded and modulated IEEE 802.11b data frame, generated from 
Agilent’s simulation program and extracted by G. Q. Maguire Jr., then decode/demodulate using 
the information according to the IEEE802.11b protocol (The Aglient’s simulation tool is a very 
handy tool that can be used to generate IEEE 802.11 a/b/g dataframes with desired parameters.). 
Currently this MATLAB file only supports bit rates of 1 or 2Mbit/s, because the CCK decoding 
has not been implemented. The scrambler analysis can be switched on or off by changing the 
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variable ‘scrambler’ to 1 or 0. Even though it cannot decode higher bit rates using CCK coding, it 
can tell if the bit rate is 1 Mbit/s, 2 Mbit/s, or unknown bit rate. This is done simply by checking 
the SIGNAL field.  
 
One important thing to note is that this function uses the MATLAB function dpskmod and 
dpskdemod to perform the differential PSK modulation and demodulation. These functions are 
only included in latest version of MATLAB (which is version 7). When using an older version, 
these functions may not be available. It is not very hard to write similar functions to perform the 
mod/demod, and the theory is covered in previous chapters, (specifically section 2.4).  
 
The synchronization is done by correlating the scrambled (or nonscrambled) header. This part 
will be replaced in the real implementation by the FPGA based correlation. Once the frame 
arrival is insured, we use Start Frame Delimiter field (referred as SCRSFD, scrambled SFD) to 
find the starting point of the MAC address. Note that since the SFD field is always the same, you 
can use it without decoding.  
 
The Agilent’s simulation program used in this thesis is called E4438C-417 Signal studio for 802.11 
WLAN and can currently be found here:  
http://www.home.agilent.com/USeng/nav/-536902336.536883181/pd.html 

6.3.2. Mobile positioning function 
The function is called realcase.m (see appendix A.2), and is uses an utility function sortarg.m, 
which sorts an array of complex values using their arguments. This is used to compute the result 
of the location determination function, resulting in an array of 6 complex values, and we need to 
sort them to plot an area by linking them.  
 
The test bench file of this function is called realism.m (see appendix A.4). Note that the 
coordinates in the test bench file is only used to plot the position area. The time error is simulated 
with an evenly distributed random variable. In the later implementation, the receive time known 
as RecT1, RecT2, and RecT3 should be replaced by the received time form the timestamps coming 
out from the FPGA’s output, and the random time error Terr1-3 shall be removed. 
 
Another correction that should be made is that the signal speed is set to 108 meter/second now, 
and should be reconsidered when implementing with the hardware as light speed in air is about 
0.8c, and not 1c. This will improve the system performance slightly since with reduced signal 
speed, the time error becomes less crucial. 
 
As the function is written now, we estimate the mobile’s location by linking the 6 output values 
from the location determination equations. Then we illustrate the effect of multiple 
measurements by updating the values and saving the closest ones. That is why the error never 
converges to smaller values even with increased number of calculations. In a tracking system, 
you do not know the user’s original location, or where the user is moving. Ergo, improvements 
are necessary. First, the whole area defined by the solutions of the location determination 
equations shall be defined in coordinates /pixels. This means that we save the coordinates of all 
possible locations of the mobile device. Then after each calculation for the new possible position 
area, pixels/coordinates within the area shall be updated, and only overlapping regions should 
be saved. With this method, we will achieve a large improvement in location accuracy.  
 
But, keep updating constraints of an area often is a resource demanding computation. One can 
ask questions like ’how many pixels/coordinates shall be defined in one quadrate meter?’ or 
‘How often shall we update the coordinates of the points to be able to track the user?’. The more 
coordinates we define within an area, the shorter distance will it be between two coordinates, and 
thereby we get a higher positioning resolution. However, this is more close to an image 
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processing problem rather than a communication system problem. 

6.3.3. USRP and recompiling the verilog code 
The Universal Software Radio Peripheral is a low-cost board designed for running GNU radio 
code. It is a flexible platform that can be used to implement real-time applications. The GNU 
radio is a powerful code library that allows you to implement signal processing for digital 
communications. It has very useful support for both coding and modulation for sound signals 
and video streaming, and most important: it is a part of GNU project, which means developers 
over the whole world are working to improve it. 
 
There is an installation note available on http://comsec.com/wiki?GnuRadioWiki. Its hyperlink 
is also included in references to ease the future work [10]. The installation of GNU radio code is 
quite straight forward, although you may need to do some compiling and tests to get the code 
running. Once this is done, the only part that we are interested in is the FPGA.  
 
To recompile the verilog code is tricky. There are no documentations about how the FPGA is 
programmed, because the USRP board was built for a single purpose: to run the software radio 
code. However we were lucky – there are a few people in the world who are also interested in 
reprogramming the FPGA. One very useful paper is from Oussama Sekkat at UCLA. It clearly 
describes the USRP construction and how to build and load new verilog code [11]. 
 
Because of the limited time, I could not perform this experiment, but the information contained in 
this thesis should be sufficient to do so. 

6.3.4. FPGA functions 
To finish the hardware implementation, we need to replace the original verilog code of the FPGA 
on the USRP with our own. The down sampling part shall be replaced by the pattern correlation 
which is described in section 6.2. The code is written using M4 macros, in order to shorten the 
code length. The code included in the appendix B is the wrapped version, so one needs to 
unwrap that. To do it, execute the following command:  
 
C:\m4 filename.verilog > filename.v 
 
where filename is the name of the verilog source file. A document about GNU M4 is [6]. 
 
After the unwrapping, the verilog code will need to be passed through a synthesis tool like Altera 
Quartus II. In order to successfully synthesize, the verilog code may need some changes to reflect 
the mapping of the logic functions onto the architecture. The USRP directly reads the compiled 
binary file, so no file transfer to the FPGA is needed, although you need to put the binary file in 
the right place. See details in Sekkat’s document [11]. 
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Chapter 7: Conclusions 
7.1. Conclusion 

The result presented in chapter 6 seems encouraging. We have shown that the method of location 
determination is effective, and successfully designed a circuit which could be realized in the 
FPGA to implement our solution.  
 
By using a relatively low sampling rate and inexpensive FGPA we are able to perform an 
accurate location determination by analyzing signal arrival times at three different access points. 
By doing this, we avoid problems with methods that use signal strength and thereby have 
problems with determining the location of devices in an indoor area (especially one with people 
moving about in it). Additionally, we do not need to modify existing mobile devices’ architecture, 
but only need to extend the APs. 
 
The use of IEEE 802.11b protocol was a good choice. It is well described and developed, and has 
many advantages when attempting to detect the location of users. The preamble has good 
correlation properties, and the frame structure is simple to understand. On the other hand, one 
needs to understand the coding and digital modulation used in order to exploit this protocol. 
However, since the protocol is widely available and used extensively, it is just a matter of time 
before future developers implement solutions such as described here. 
 
The FPGA design shows that it is possible to perform the computation on the FPGA on the USRP 
board. Since the rest of the verilog code which controls the GNU radio input and output is not 
needed for this project, the FPGA will have sufficient gate resources for óur program. Analysis of 
the FPGA implementation also shows that our solution is possible without using multiplications 
or divisions. 
 
All the simulation and implementation files are found in Appendices A, B, and C. 
 

7.2. Future works 

Several goals that have been listed in section 1.4 have been achieved: 
1. The sampling frequency at 64MHz is theoretically enough for a good timing 

measurement. 
 

2. The correlation property of the samples of the Q base band signal is enough for us to 
detect signal arrival.  
 

3. Time stamping frequency is the same as sampling frequency, and is sufficient. 
 

4. Possible error sources are for example synchronization error of the access points, and 
noise from other mobile devices which use the same protocol.  

 
However, what this thesis has shown is theoretical analysis and solution proposal. These need to 
be tested with hardware experiments. 
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As stated before, I could not finish some of the work because of the time. However, developers 
who are going to continue with this work are welcome to contact me at linusji@gmail.com with 
further questions. 
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Appendix A: MATLAB code for header 
analysis and location determination 
A.1. Headeranalysis.m 

 
clear; 
clc; 
 
Barker=[1 -1  1  1 -1  1  1  1 -1 -1 -1]'; % Barker sequence 
SpreadingRate=length(Barker);              % Spreading rate = 11 
%length=57552; %1Mbps %the total length, in the real case it should be read dynamicly 
%length=32032;  %2Mbps myfile3 
%length=11152;  %11Mbps myfile4 
length=11000; %fix length to get 500 bits 
long_preamble = 1; %1 for long preamble and 0 for short preamble 
scrambler=1; %1 for on and 0 for off 
 
if long_preamble   %Reversed, MSB first. 
     SFD=[0 0 0 0 0 1 0 1 1 1 0 0 1 1 1 1];%F3A0 %SFD pattern, should be unique for DSSS PLCP 
else 
     SFD=[1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0];%reversed for short preamble 
end 
 
SCRSFD=[0 0 0 0 1 0 0 1 0 1 0 0 1 0 0 1]; 
 
SIGNAL=[0 1 0 1 0 0 0 0]; %MSB first. Sequence 00001010 for 1Mbps, 00010100 for 2Mbps 
     
SCBLHD=[0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 0 1 0 0 ... 
       0 1 0 1 0 0 1 0 0 1 1 1 1 1 0 0 1 1 0 0 1 0 1 0 ... 
       1 1 0 0 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 1 ... 
       0 1 0 0 0 0 0 1 0 1 1 0 1 0 1 1 1 0 0 1 0 0 0 1 ... 
       1 1 0 0 0 0 0 0 0 1 1 1 1 0 0 0 1 0 0 0 0 1 1 0 ... 
       1 0 0 1 1 0 1 1 0]; 
 
fid = fopen('myfile2.dat'); 
content = fscanf(fid,'F2I, %i\n',[2 length]); %500 bits 
fclose(fid); 
 
if max(content(1,:))>=max(content(2,:)) 
    PC = max(content(1,:)); %highest power. constraint 1 
else 
    PC = max(content(2,:)); 
end 
 
I = content(1,:)/PC; 
Q = content(2,:)/PC; 
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%Perform the downsampling  
M=2; 
I = I(1:M:length); 
Q = Q(1:M:length); 
 
%Make complex array 
Rx = I + Q*i; 
 
%Despreading, cause the preamble is also spreaded with barker code 
Rx_symbols=Barker'*reshape(Rx(1:length/2),SpreadingRate,length/22); 
 
%DBPSK Demodulation 
Rx_Demo = dpskdemod(Rx_symbols, 2); 
 
%Different approch of detecting Preamble&SFD 
if scrambler==1 
    SFD_sync=SCRSFD*2-1; 
    Rx_Demo_sync=Rx_Demo(1:300)*2-1; 
    [temp,Rx_sync]=max(xcorr(SFD_sync,Rx_Demo_sync)); 
    Rx_sync=300-Rx_sync; % 300 samples, circlic convelution 
else 
    SFD_sync=SFD*2-1; 
    Rx_Demo_sync=Rx_Demo(1:300)*2-1; 
    [temp,Rx_sync]=max(xcorr(SFD_sync,Rx_Demo_sync)); 
    Rx_sync=300-Rx_sync; 
end 
 
%preamble_length=129+16+8+8+16+16; %The first two bits are compensated by Rx_sync 
                                      %cuz it finds the real start 
preamble_length=Rx_sync+16; %This part is PLCP preamble. 
 
ifSignal=Rx_Demo(preamble_length+1:preamble_length+9); 
TR=0; 
Rate=binarray2hex(ifSignal,'LSB'); 
if Rate(2)==0; 
    disp('1 Mbps') 
    TR=1; 
elseif Rate(2)==1 
    disp('2 Mbps') 
    TR=2; 
elseif Rate(2)==3 
    disp('5.5 Mbps') 
    TR=3; 
elseif Rate(2)==6 
    disp('11 Mbps') 
    TR=4; 
else 
    disp('Unknown rate...') 
end 
     
if TR==1; 
    Rx_PSDU_Demo=dpskdemod(Rx_symbols(preamble_length+49:500), 2); 
    Rx_Data=binarray2hex(Rx_PSDU_Demo,'LSB'); 
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    dec2hex(Rx_Data) 
elseif TR==2; 
    Rx_PSDU_Demo=dpskdemod(Rx_symbols(preamble_length+49:length/22), 4); 
    Rx_Data=octarray2hex(Rx_PSDU_Demo); 
    dec2hex(Rx_Data) 
else 
    disp('Higher transmitt rate not finished yet...') 
end 
 
 
 

A.2. Realcase.m 

 
function crosses=realcase(SR) 
 
%Sampling rate 
SR=64*10^6; 
 
%Time between 2 samples 
TS=1/SR; 
 
%Light speed 
c=3*10^8; 
 
%user and AP position 
user=0; 
 
%Coordinates of the APs 
x1=-25; 
y1=25; 
x2=30; 
y2=30; 
x3=-5; 
y3=-40; 
 
AP1=x1+y1*i; 
AP2=x2+y2*i; 
AP3=x3+y3*i; 
 
%Distances 
dis1=abs(AP1); 
dis2=abs(AP2); 
dis3=abs(AP3); 
 
%Real time it takes for signal to arrive at three APs 
time1=dis1/c; 
time2=dis2/c; 
time3=dis3/c; 
 
%Time error regarding sampling rate 
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err=rand; 
temp=rand; 
if temp>0.5 
    err=err*1; 
end 
Terr1=TS*err/2; 
 
err=rand; 
temp=rand; 
if temp>0.5 
    err=err*1; 
end 
Terr2=TS*err/2; 
 
err=rand; 
temp=rand; 
if temp>0.5 
    err=err*1; 
end 
Terr3=TS*err/2; 
 
%Receive time regarding time error. Here we don't care about processing 
%time because it should be deterministic. 
RecT1=time1+Terr1; 
RecT2=time2+Terr2; 
RecT3=time3+Terr3; 
 
%Distance estimation 
IntvT1=[RecT1+TS/2 RecT1-TS/2]; 
IntvT2=[RecT2+TS/2 RecT2-TS/2]; 
IntvT3=[RecT3+TS/2 RecT3-TS/2]; 
 
%Difference in arrival time + possible error 
DiffT1=RecT1-RecT2+TS/2; 
DiffT2=RecT1-RecT3+TS/2; 
DiffT3=RecT2-RecT3+TS/2; 
 
%Difference in arrival time - possible error 
DiffT11=RecT1-RecT2-TS/2; 
DiffT22=RecT1-RecT3-TS/2; 
DiffT33=RecT2-RecT3-TS/2; 
 
%Cross points 
crosses=zeros(1,6); 
 
syms x y; 
 
fd12=sqrt((x-x1)^2+(y-y1)^2)+sqrt((x-x2)^2+(y-y2)^2)-abs(AP1-AP2); 
fd23=sqrt((x-x2)^2+(y-y2)^2)+sqrt((x-x3)^2+(y-y3)^2)-abs(AP2-AP3); 
fd13=sqrt((x-x1)^2+(y-y1)^2)+sqrt((x-x3)^2+(y-y3)^2)-abs(AP1-AP3); 
 
%Solve equations to find cross points 
f1=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT22*c; 
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f2=sqrt((x-x2)^2+(y-y2)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT33*c; 
sol=solve(f1,f2); 
crosses(1)=double(sol.x)+double(sol.y)*i; 
 
f1=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x2)^2+(y-y2)^2)-DiffT1*c; 
f2=sqrt((x-x2)^2+(y-y2)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT33*c; 
sol=solve(f1,f2); 
crosses(2)=double(sol.x)+double(sol.y)*i; 
 
f1=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x2)^2+(y-y2)^2)-DiffT1*c; 
f2=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT2*c; 
sol=solve(f1,f2); 
crosses(3)=double(sol.x)+double(sol.y)*i; 
 
f1=-sqrt((x-x3)^2+(y-y3)^2)+sqrt((x-x2)^2+(y-y2)^2)-DiffT3*c; 
f2=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT2*c; 
sol=solve(f1,f2); 
crosses(4)=double(sol.x)+double(sol.y)*i; 
 
f1=-sqrt((x-x3)^2+(y-y3)^2)+sqrt((x-x2)^2+(y-y2)^2)-DiffT3*c; 
f2=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-30)^2+(y-30)^2)-DiffT11*c; 
sol=solve(f1,f2); 
crosses(5)=double(sol.x)+double(sol.y)*i; 
 
f1=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x3)^2+(y-y3)^2)-DiffT22*c; 
f2=sqrt((x-x1)^2+(y-y1)^2)-sqrt((x-x2)^2+(y-y2)^2)-DiffT11*c; 
sol=solve(f1,f2); 
crosses(6)=double(sol.x)+double(sol.y)*i; 
 
crosses=sortarg(crosses); 
 
 
 

A.3. Sortarg.m 

 
function res=sortarg(input) 
%sort an complex array by its argument 
n=length(input); 
args=zeros(1,n); 
for i=1:n 
    args(i)=angle(input(i)); 
end 
 
[res,IX] = sort(args); 
for j=1:n 
    res(j) = input(IX(j));  
end 
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A.4. Realsim.m 

 
clc; 
clear; 
 
SR=64*10^6; 
 
%user and AP position 
user=0.2+0.2i; 
AP1=-25+25i; 
AP2=30+30i; 
AP3=-5-40i; 
 
r=10; 
res=zeros(r,6); 
 
for i=1:r 
    res(i,:)=realcase(SR); 
    i 
end 
 
resplot=zeros(1,6); 
 
for i=1:6 
    temp=sortabs(res(:,i)); 
    resplot(1,i)=temp(1); 
end 
 
%Plots 
plot(user,'.r'); 
axis('equal'); 
axis([-50  50  -50  50]); 
hold on; 
 
plot([resplot resplot(1)],'g'); 
 
plot(AP1,'ob'); 
plot(AP2,'ob'); 
plot(AP3,'ob'); 
 
plot([AP1 AP2]); 
plot([AP1 AP3]); 
plot([AP2 AP3]); 
 
%Text 
text(real(AP1)-15,imag(AP1)+5,'AP1'); 
text(real(AP2)-15,imag(AP2)+5,'AP2'); 
text(real(AP3)-20,imag(AP3)+5,'AP3'); 
 
Merr1=num2str(max(abs(resplot))); 
Merr2=num2str(min(abs(resplot))); 
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text(-45,45,['DerrMax: ' Merr1 'm']); 
text(-45,40,['DerrMin: ' Merr2 'm']); 
 
hold off; 
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Appendix B: Verilog code for time stamping 
and correlation 
B.1. Correlation module 

 
module correlation(mclk,bitin,reset,hw); 
input mclk; 
input bitin; 
input reset; 
output [10:0] hw; 
 
/*  The following are macro definitions that are processed using M4. 
Be sure to run this file through M4 before feeding it to Quartus! 
 
The first line is a define, that controls if this verilog source will 
be used by icarus verilog, or by the Quartus tool.  If it is for the 
Quartus tool, then comment out the definition statement using slashes 
and at least one # character.  M4 treats anything following a # character 
as a comment, while verilog like 'C' style comments.  Use both, ie: 
 
//##this is commented out. 
 
The reason we need to have the definition ICARUS is to be able to handle 
line continuation character differences between icarus verilog and Quartus. 
Quartus wants backslashes as line continuation character.  Icarus doesn't 
want any line continuation characters.  If you are going to run this source 
through the icarus verilog tool, then you will need a definition for ICARUS. 
If you are going to run this source through Quartus, then be sure that ICARUS 
has not been defined. 
#################################################################### */ 
 
define(`ICARUS') 
 
define(`forloop', 
            `pushdef(`$1', `$2')_forloop(`$1', `$2', `$3', `$4')popdef(`$1')') 
define(`_forloop', 
            `$4`'ifelse($1, `$3', , 
          `define(`$1', incr($1))_forloop(`$1', `$2', `$3', `$4')')') 
 
/* ################################################################# 
End of M4 macro definitions 
 
*/ 
 
reg [999:0] indata; 
wire [999:0] pattern; 
wire [999:0] corrout; 
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assign pattern[999]=1; 
… //Here assign the pattern bits. 
assign pattern[0]=1; 
 
forloop(`i', 0, 999, `assign corrout[i] = (~(indata[i]^pattern[i])); 
') 
 
 
/*This register could be the correlation output. 
  Use it as the data that will have the hamming weight computed. */ 
 
/* Compute the hamming weight. */ 
 
ifdef(`ICARUS', 
`assign hw = corrout[0] 
forloop(`i', 0, 248, `forloop(`j', 1, 4, ` + corrout[eval((i*4)+j)]') 
') + corrout[997] + corrout[998] + corrout[999];', 
 
dnl else for Quartus: 
 
`assign hw = corrout[0] / 
forloop(`i', 0, 248, `forloop(`j', 1, 4, ` + corrout[eval((i*4)+j)]') / 
') + corrout[997] + corrout[998] + corrout[999];') 
 
 
// Fake some serial input data 
 
always @(posedge mclk) 
begin 
  if (reset) indata <= 11'b00000000000;  //sync reset 
  else indata <= {indata[998:0], bitin}; 
end 
 
 
endmodule 
 
 

B.2. Testbench to simulate 

 
module testbench(); 
reg clk; 
reg [12:0] vectornum; 
reg [12:0] numerrors; 
reg [12:0] counter; 
reg [12:0] test; 
reg [11:0] tmstamp; 
reg mclk; 
reg bitin; 
reg reset; 
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wire [10:0] hw; 
 
// Instantiate the device under test 
 
correlation dut(mclk,bitin,reset,hw); 
 
//receive data 
//assign indata for simulation. 
wire [1499:0]indata; 
 
assign indata[0]=1; 
...  
 
// initialize things 
 
initial 
  begin 
   vectornum = 0; 
   numerrors = 0; 
   counter=0; 
   test=0; 
   tmstamp = 0; 
  end 
 
// Generate a clk to sequence tests.  The #50 are the relative amounts of 
// time the clock is high or low.  In this case, the duty cycle is 50%. 
 
always 
  begin 
   clk = 0; #50; clk = 1; #50; 
  end 
 
// On each clock edge, apply next test 
 
always @(posedge clk) 
  begin 
  tmstamp <= tmstamp + 1; 
 
  if (vectornum == 0) reset = 1'b1;  //activate reset on 0th test vector 
   else reset = 1'b0; 
 
  if(hw<950) begin  //We find the peak here, this is just a test value. 
  bitin=indata[counter];   
  //$display("The correlation at index %d is %d :",counter,hw); 
             end 
 
  else if(counter>0)begin 
  $display("The correlation peak found at index %d, with value %d",counter,hw); 
  //Display a 8 bits timestamp 
  //$display("Tmstamp 
bit %d %d %d %d %d %d %d %d.",tmstamp[7],tmstamp[6],tmstamp[5],tmstamp[4],tmstamp[3],t
mstamp[2],tmstamp[1],tmstamp[0]); 
  $display("Tmstamp is: %d",tmstamp);   
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//I should end the test here since I only need one peak,but don't know how. In real case this 
never ends. 
       end 
  counter=counter+1; 
  mclk = 1'b1; 
  end 
 
// print out results when clk is low 
 
always @(negedge clk) 
  begin 
  mclk = 1'b0; 
  vectornum = vectornum + 1; 
  end 
 
endmodule
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Appendix C: List of acronyms 
 
 
ADC   Analog to Digital Converter 
 
A-GPS  Assisted GPS 
 
AOA   Angle Of Arrival 
 
AP  Access Point 
 
ASIC  Application Specific Integrated Circuit 
 
CCK  Complementary Code Keying  
 
COO  Cell-of-Origin 
 
DBPSK  Differential Binary Phase Shift Keying 
 
DGPS  Differential Global Positioning System 
  
DQPSK   Differential Quadrature Phase Shift Keying 
 
DSP  Digital Signal Processor 
 
DSSS  Direct Sequence Spread Spectrum  
 
E-OTD  Enhanced Observed Time Difference 
 
FPGA  Field Programmable Gate Array 
 
GLONASS  GLObal NAvigation Satellite System 
 
GNSS    Global Navigation Satellite System 
 
GPS  Global Positioning System 
 
HDL  Hardware Description Language 
 
ISM band  Industrial, Medical, and Instrumentation band 
 
LUT  Lookup table 
 
NTP   Network Time Protocol 
 
OFDM  Orthogonal Frequency Division Multiplexing  
  
OTDOA  Observed Time Differ–ence of Arrival 
 
PLCP  Physical Layer Convergence Procedure 
 
PPDU  PLCP Protocol Data Unit 
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PSDU   Physical Layer Service Data Unit 
 
RSS  Received Signal Strength 
 
RSSI   Received Signal Strength Indicator 
 
SBAS  Satellite Based Augmentation System 
 
SFD   Start Frame Delimiter 
 
TOA  Time of Arrival 
 
TDOA  Time Difference Of Arrival 
 
USRP   Universal Software Radio Peripheral 
 
WLAN   Wireless Local Area Networks 
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